
Binder Manual
Abstract

This manual describes Binder, the product that reads, links, and produces object files.
This manual is a user's guide and reference manual for software developers who need
to link and modify object files.

Product Version

T9621 at H06.03 and D30

Supported Release Version Updates (RVUs)

This manual supports D30.00 and all subsequent D-series RVUs, G02.00 and all
subsequent G-series RVUs, and H06.03 and all subsequent H-series RVUs until
otherwise indicated in a new edition.

Part Number Published
528613-003 July 2005

Document History
Part Number Product Version Published
48509 BINDER C30 September 1991

085670 BINDER D10 January 1993

109641 BINDER D30 December 1994

528613-001 BINDER D30 August 2004

528613-003 T9621 H06.03 July 2005

Binder Manual
Glossary Index Figures Tables
What’s New in This Manual vii
Manual Information vii
New and Changed Information vii

About This Manual ix
Notation Conventions ix

1. Introduction
Definition of binding 1-1
Forms of Binder 1-2

BINSERV 1-2
BIND 1-3

Languages Used with Binder 1-4
Relation of Binder to Crossref, Inspect, and the Accelerator 1-5

2. Using Binder
Running Binder 2-1

Manual Operation 2-1
Command File Operation 2-2

Examples 2-2
Defining the Target File 2-3

Specifying Input File Names 2-3
Specifying the Target File Order 2-4

Binding Modules 2-5
Binding Rules 2-6
Examples 2-9
Binding COBOL85 and FORTRAN Programs 2-10
Binding C Programs 2-11
Binding Pascal Programs 2-12
Binding Mixed-Language Programs 2-13
Parameter Checking for a Mixed-Language Bind 2-14
Binding SQL Program Files 2-14
Resolving External References 2-16
 Hewlett-Packard Company—528613-003
i

Contents 2. Using Binder (continued)
2. Using Binder (continued)
Specifying a Different Volume for Binder Work Files 2-17

When Using BIND 2-18
When Using BINSERV 2-18
Specifying the Swap Volume for Pascal and C Programs 2-18

Generating Output Listings 2-19
Target File Statistics 2-19
Load Maps 2-21

Cross-Reference Lists 2-25

3. BIND Commands
Summary of Most Commonly Used Commands 3-2
How to Use BIND Commands Efficiently 3-3

Searching for Files 3-3
Replacing Procedures 3-3
Turning off Load Maps 3-4
Binding without Fixups 3-4

Syntax Conventions for Name Lists as Command Elements 3-4
ADD Command 3-6
ALTER Command 3-9
BUILD Command 3-10
CD Command 3-14
CHANGE Command 3-15
CLEAR Command 3-18
COMMENT Command 3-18
DELETE Command 3-19
DUMP Command 3-20
ENV Command 3-22
EXIT Command 3-22
FC Command 3-22
FILE Command 3-23
HELP Command 3-23
INFO Command 3-24
LIST Command 3-27
LMAP Command 3-31
LOG Command 3-31
MODE Command 3-32
MODIFY Command 3-33
MOVE Command 3-35
Binder Manual—528613-003
ii

Contents 3. BIND Commands (continued)
3. BIND Commands (continued)
OBEY Command 3-37
OUT Command 3-38
RENAME Command 3-39
REPLACE Command 3-40
RESELECT Command 3-42
RESET Command 3-44
SATISFY Command 3-46
SELECT Command 3-48
SET Command 3-56
SHOW Command 3-65
STRIP Command 3-73
SYSTEM Command 3-75
VERIFY Command 3-75
VOLUME Command 3-76

4. Object File Structure
Code Blocks, Entry Points, and Data Blocks 4-1

Code Blocks 4-1
Primary and Secondary Entry Points 4-2
Data Blocks 4-4

Object File Format 4-8
Header 4-9
Code Region 4-9
Data Region 4-11
Accelerator Region 4-11
Inspect Region 4-11
Binder Region 4-11

5. Binder Input and Output
The Input Control Lists 5-1

Creating the Input Control Lists 5-2
How Binder Uses the Input Control Lists 5-3

The Target File 5-8
Target File Attributes 5-8
How Binder Builds the Target File 5-11
Binder Manual—528613-003
iii

Contents 6. User Libraries
6. User Libraries
Binding User-Library Procedures 6-1
Object File Format 6-2
Preventing Binder Resolution of Library Calls 6-2

Compilation-Time Binding 6-2
Command-Driven Binding 6-2

Specifying a User Library 6-3
Restrictions on User Libraries 6-3
Shared Run-Time Libraries 6-4

Building Applications That Use SRLs 6-4
Using Binder Commands With SRLs 6-4
Reserving Space With the SET RESERVE Command 6-5

7. Guardian File Names and TACL Commands
Disk File Names 7-1

Parts of a Disk File Name 7-2
Partial File Names 7-3
Logical File Names 7-4
Internal File Names 7-4

TACL Commands 7-4
TACL DEFINE Commands 7-5

Substituting a File Name 7-5
TACL DEFINE Names 7-5
Setting DEFINE CLASS Attributes 7-6

TACL PARAM Commands 7-7
PARAM BINSERV Command 7-7
PARAM SAMECPU Command 7-7
PARAM SWAPVOL Command 7-8
PARAM SYMSERV Command 7-8
Using PARAM Commands 7-8

TACL ASSIGN Commands 7-9
Binder Manual—528613-003
iv

Contents 8. Binder Messages
8. Binder Messages
Error Messages and Warnings 8-1
Completion Codes 8-28

9. Syntax Summary

Glossary

Index

Figures
Figure 1-1. BINSERV: Compilation-Time Binding 1-3
Figure 1-2. BIND: Command-Driven Binding 1-4
Figure 2-1. External References 2-17
Figure 2-2. Target File Statistics 2-20
Figure 2-3. Alphabetic Entry Point Map for Entry Points and Code Blocks 2-22
Figure 2-4. Entry Point Map by Location for Multiple Code Segments 2-23
Figure 2-5. Alphabetical Load Maps for Data Blocks 2-24
Figure 2-6. Listing for Read-Only Data Blocks 2-25
Figure 2-7. Cross-Reference Listing 2-26
Figure 4-1. Example of the Binder Object File Format 4-8

Tables
Table 1-1. Languages used with Binder 1-4
Table 2-1. Target File Specifications built by Binder 2-4
Table 2-2. Binder Grouping of ENV Directive Parameters 2-7
Table 2-3. Run-Time Environment Resulting From Binding Modules 2-9
Table 2-4. Commands that Produce Listings 2-19
Table 2-5. Binder Statistics 2-20
Table 2-6. Information Included in Load Maps for Entry Points 2-22
Table 2-7. Information Included in Load Maps for Data Blocks 2-24
Table 3-1. Commonly Used BIND Commands 3-2
Table 3-2. Syntax Conventions for Named Lists 3-4
Table 3-3. Resulting Target Processor Type 3-62
Table 4-1. Code Block Attributes 4-2
Table 5-1. Commands That Create Control Lists 5-2
Table 5-2. Target File Attributes 5-9
Table 6-1. Binder Commands Used With Shared Run-Time Libraries 6-5
Table 8-1. Binder Completion Codes 8-28
Table 9-1. Binder Command Summary 9-1
Binder Manual—528613-003
v

Contents
Binder Manual—528613-003
vi

What’s New in This Manual
Manual Information

Binder Manual

Abstract

This manual describes Binder, the product that reads, links, and produces object files.
This manual is a user's guide and reference manual for software developers who need
to link and modify object files.

Product Version

T9621 at H06.03 and D30

Supported Release Version Updates (RVUs)

This manual supports D30.00 and all subsequent D-series RVUs, G02.00 and all
subsequent G-series RVUs, and H06.03 and all subsequent H-series RVUs until
otherwise indicated in a new edition.

Document History

New and Changed Information
This revision describes the changes and additions made to the D30 product version of
Binder (T9621) and the Binder Manual. This revision also incorporates support for
T9621 on TNS/E systems running H06.01 software.

Summary of Changes
This edition of the manual includes previously undocumented warnings and messages
for the Binder product. The changes include:

• This publication has been updated to reflect new product names.

Part Number Published
528613-003 July 2005

Part Number Product Version Published
48509 BINDER C30 September 1991

085670 BINDER D10 January 1993

109641 BINDER D30 December 1994

528613-001 BINDER D30 August 2004

528613-003 T9621 H06.03 July 2005
Binder Manual—528613-003
vii

What’s New in This Manual Summary of Changes
• Because the product names are changing over time, this publication might
contain both HP and Compaq product names.

• Product names in graphic representations are consistent with the current
product interface.

• Section 8, Binder Messages now includes the descriptions of error 770, fatal
error 233, and warning 234. The message text for error 15 and warning 106
has now been updated to match the current product interface.

• The description of the USERLIBRARY attribute is changed in Section 3, BIND
Commands.

Section One, the Introduction, has been extended to include an introduction to The
Object Code Accelerator (OCA) on page 1-6.

The following commands have been enhanced to support TNS/E usage:

• CHANGE Command on page 3-15

• RESET Command on page 3-44

• SET Command on page 3-57

• SHOW Command on page 3-67

• STRIP Command on page 3-75.
Binder Manual—528613-003
viii

About This Manual
Notation Conventions
Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
Binder Manual—528613-003
ix

About This Manual General Syntax Notation
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…
[-] {0|1|2|3|4|5|6|7|8|9}…
An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name
Binder Manual—528613-003
x

About This Manual Notation for Messages
Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.
Binder Manual—528613-003
xi

About This Manual Notation for Messages
lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

UPPERCASE LETTERS. Uppercase letters indicate names from definition files. Type these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV
Binder Manual—528613-003
xii

About This Manual Change Bar Notation
Change Bar Notation
Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of
changed portions of text, figures, tables, examples, and so on. Change bars highlight
new or revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all
messages except LOGICAL-CLOSE and LOGICAL-OPEN.
Binder Manual—528613-003
xiii

About This Manual Change Bar Notation
Binder Manual—528613-003
xiv

1 Introduction
The Binder program development tool reads, links, modifies, and produces executable
object files for the C, COBOL85, FORTRAN, and TAL compilers. Binder also operates
as an independent process for C, COBOL85, FORTRAN, TAL, and Pascal object files.
This manual focuses on the use of Binder as an independent process.

For a description of the use of Binder with language compilers, see the appropriate
language programmer’s guide or reference manual. This introduction addresses the
following topics:

Definition of binding
Binding is the operation of examining, collecting, linking, and modifying code and data
blocks from one or more object files to produce a target object file. The input files to
Binder and the output files created by Binder are all object files. To help you to
distinguish between the two types of files, this manual refers to an output file as a
target file.

All Binder operations are performed on object files. This manual uses the following
terms when discussing object files:

Each compiler has its own conventions for specifying block names for code and data.
Section 4, Object File Structure gives comparative information for source language
constructs and the resulting blocks. For additional information, consult the language
reference manual for the language that you are using.

Topic Page
Definition of binding 1-1

Forms of Binder 1-2

Languages Used with Binder 1-4

Relation of Binder to Crossref, Inspect, and the Accelerator 1-5

The Object Code Accelerator (OCA) 1-6

Block The smallest unit of code or data that can be relocated as a
single entity. You can compile data separately in FORTRAN as
COMMON and in TAL as BLOCK structures.

Object file One or more code and data blocks compiled and bound together.
Program An executable object file. It must contain an entry point with the

MAIN attribute.

BINDER - OBJECT FILE BINDER - T9621D30 - (31OCT94) SYSTEM \COCOLAT
Copyright Tandem Computers Incorporated 1982-1994
Binder Manual—528613-003
1-1

Introduction Forms of Binder
Forms of Binder
Binder has two forms: BINSERV and BIND.

• BINSERV is the form of Binder that a language compiler uses. BINSERV builds
executable object files for C, COBOL85, FORTRAN, and TAL. (The Pascal
compiler uses BINSERV but does not produce an executable object file.)

• BIND is the form of Binder you can use interactively to modify object files. You can
use BIND to update and link object files from C, COBOL85, FORTRAN, Pascal,
and TAL. BIND is the only form of Binder that produces executable object files for
Pascal programs.

BINSERV
BINSERV is a process that builds object files for a compiler process. It executes as a
separate process during a compilation. BINSERV accepts commands from the
compiler, builds lists of references that must be resolved, reports on its success in
locating needed blocks, and eventually creates a target object file or reports its failure
to do so. BINSERV also returns information to the compiler about the characteristics of
the blocks it found.

BINSERV can link program units written in different languages to form an application
program. For example, a server in a main COBOL85 program can use FORTRAN
subprograms for calculations and TAL procedures for block moves and scans of data.
For additional information on mixed-language binding, see Binding Mixed-Language
Programs on page 2-13.

All object files that serve as input to Binder originate either from the compilation-time
process BINSERV or from previous BIND sessions. The new object files produced can
then serve as input to further binding operations. The target object file BINSERV
creates has the standard object file format.

If you do not need special binding operations, you can simply compile and execute
programs. In the following example, the FORTRAN compiler automatically invokes
BINSERV, and the binding step is transparent to you:

Figure 1-1 shows how BINSERV uses information from the compilers to produce an
executable object file.

Pascal does not allow binding at compile time. For more information, see Binding
Pascal Programs on page 2-12.

12> FORTRAN/in source, out list/try1
13> RUN try1
Binder Manual—528613-003
1-2

Introduction BIND
.

BIND
BIND is the interactive form of Binder you can use to examine, modify, and link object
files. You can give BIND its commands from a terminal or a command file. In either
way, you can perform any of the following functions with Binder:

• Build a target file from separate object files.

• Build a target file for use as a library of shareable procedures.

• Display object file contents.

• Modify the values of words in the code and data blocks of the target file.

• Request consistency checks for parameters or for common data blocks.

• Reorder code blocks in a target file.

• Specify external references you do not want Binder to resolve.

• Produce optional load maps and cross-reference listings.

Figure 1-1. BINSERV: Compilation-Time Binding

C
FILE

FORTRAN
FILE

TAL
FILE

COBOL85
FILE

C

COBOL85

TAL

FORTRAN

Object
Files

Object
Files

Listings

BINSERV

VST001.vsd
Binder Manual—528613-003
1-3

Introduction Languages Used with Binder
• Reduce the size of object files by stripping them of the Binder region and Inspect
region (symbol tables).

• Specify a user run-time library.

Figure 1-2 illustrates Binder operation in command-driven mode.

Languages Used with Binder
Table 1-1 summarizes the languages and their compiler versions that can be used with
BINSERV and BIND.

Figure 1-2. BIND: Command-Driven Binding

Table 1-1. Languages used with Binder (page 1 of 2)

Language BINSERV BIND
C* C20 or later C00 or later

COBOL85 C20 or later B30 or later

FORTRAN C20 or later E00 or later

Listings

Target
File

BINDER

Startup
Message

Commands
or

Command
List

Object
Files

Interactive User

Noninteractive
User

VST002.vsd
Binder Manual—528613-003
1-4

Introduction Relation of Binder to Crossref, Inspect, and the
Accelerator
Relation of Binder to Crossref, Inspect, and
the Accelerator

The Binder, Inspect, and Crossref tools are designed to complement each other in the
program development cycle. The Accelerator is designed for use after you have written
and debugged your program.

The Inspect symbolic debugger enables you to debug a program or multiple programs
symbolically. That is, you can specify debugging commands using the same identifiers
you used in the source code. Because the Inspect debugger must find symbol tables in
the object module to allow this feature, the compilers provide the symbol information to
Binder at compile time. For more information on the Inspect product, see the Inspect
Manual.

Crossref, a debugging tool, provides symbol reference information in the detail that you
specify. Crossref listings contain source code symbols while Binder cross-reference
information is for object files (entry points and common data blocks only). See the
Crossref Manual for more information.

The Accelerator processes a TNS object file for use on either a TNS or a TNS/R
processor. The Object Code Accelerator processes a TNS object file for use on a
TNS/E processor.

Binder contains several command options that affect accelerated object code. They
are included in the CHANGE, RESET, SHOW, and STRIP commands. These
command options perform functions such as defining which processor the code can
run on. For more information about these commands, see Section 3, BIND
Commands.

For more information about the Accelerator, see the Accelerator Manual.

Pascal* C20 or later B30 or later

TAL C20 or later E01 or later

*BINSERV builds executable object files automatically for C00 or later versions of C
when a specific directive is used; it does not produce executable object files for the
Pascal compiler. For more information, see Binding C Programs on page 2-11 or
Binding Pascal Programs on page 2-12

Note. You can submit files bound with previous versions of the Binder to the Accelerator. The
special command options contained in this version of Binder are not required.

Table 1-1. Languages used with Binder (page 2 of 2)

Language BINSERV BIND
Binder Manual—528613-003
1-5

Introduction The Object Code Accelerator (OCA)
The Object Code Accelerator (OCA)
This section contains a general introduction to OCA; for more details see the Object
Code Accelerator Manual.

OCA processes TNS object code to produce accelerated object code. On TNS/E
systems, accelerated object code runs significantly faster than TNS object code.

OCA takes as input an executable TNS object file and produces as output an
accelerated object file. The accelerated object file contains both the original TNS code,
and the logically equivalent optimized Itanium instructions (accelerated object code).

This process is illustrated in Figure 1-3, The Acceleration Process.

For each TNS instruction OCA produces its functional equivalent on the TNS/E
system, in the form of either:

• A sequence of zero or more (usually more than one) Itanium instructions

• A call on a millicode routine

In the first and more common case, OCA treats a TNS instruction as though it were a
macro instruction, expanding it into Itanium instructions. In the second case, OCA
treats a TNS instruction as though it were a call on a closed subroutine, referred to as
a millicode routine. Millicode routines are sets of Itanium instructions that implement
various complex TNS instructions and low-level functions such as exception handling,
real-time translation routines, and floating-point and quad arithmetic. Millicode is
functionally equivalent to TNS microcode.

OCA can produce only optimized Itanium instructions for TNS instruction sequences
whose exact meaning can be determined before runtime. When the exact meaning
cannot be determined until run time, the program makes a transition into TNS code
and executes the original TNS instructions.

Figure 1-3. The Acceleration Process

Accelerated Object File

TNS
Compiler TNS

Object Code

TNS Object File

OCA

TNS
Object Code

Accelerated
Object Code

VST0101.vsd
Binder Manual—528613-003
1-6

Introduction The Object Code Accelerator (OCA)
Figure 1-4, User Program Execution Modes on TNS/E Systems shows two of the
execution modes available to user programs on TNS/E systems: TNS mode and
accelerated mode.

• TNS mode is the operational environment in which TNS instructions execute. On
TNS/E systems, TNS instructions are implemented by millicode routines.

• By default, accelerated mode is the operational environment in which Itanium
instructions generated by OCA execute. On TNS/E systems, Itanium instructions
execute directly on the Itanium processor.

OCA runs on TNS/R and TNS/E systems, and produces the same output in both
environments: a file containing both the original TNS/R code and its Itanium code
equivalent. Accelerated object files can run on both TNS/R and TNS/E systems,
although TNS/R systems ignore the Itanium code.

Figure 1-4. User Program Execution Modes on TNS/E Systems

VST0102.vdd

TNS Object File

TNS
Object Code

Accelerated Object File

TNS
Object Code

Accelerated
Object Code

TNS
Instructions TNS

Instructions
IPF

Instructions

IPF
Instructions

Millicode

TNS/E Processor
Binder Manual—528613-003
1-7

Introduction OCA Translation Mode
OCA can process bound, executable object programs generated by B40 and later
versions of the C, COBOL85, FORTRAN, Pascal, and TAL compilers. OCA processes
executable object programs that run only in the Guardian environment. (You cannot
accelerate object programs generated by the COBOL 74 compiler.)

OCA Translation Mode
On TNS/E systems, TNS objects are not run in accelerated mode by default.

You must explicitly accelerate your TNS program as part of the build or install process.
If you explicitly accelerate your program in this way, you are immediately alerted of any
error conditions.

If you have an accelerated object (with the corresponding IPF region) and no longer
want it accelerated, use the Binder CHANGE OCA ENABLE OFF command to disable
acceleration. See CHANGE Command on page 3-15.

Cross-Platform Acceleration
OCA is supported on D-series, G-series, and H-series systems, enabling you to
accelerate TNS object files on the TNS/E platform for execution on the TNS/E platform.
(A file with a TNS region only cannot be executed on the TNS/E platform). The TNS/R
acceleration equivalent, Accelerator, is supported on G-series RVUs, enabling you to
accelerate TNS object files on the TNS/R platform for execution on the TNS/R
platform. Having both accelerators available on both platforms enables you to use
either the TNS/R or TNS/E platform to create files that can be executed with improved
performance on either platform.
Binder Manual—528613-003
1-8

2 Using Binder
This section describes how to:

• Run Binder

• Define the target file

• Bind modules from the same language or different languages or from NonStop
SQL/MP

• Specify a volume for Binder work files

• Generate output listings

Running Binder
You can run Binder directly from the operating system command interpreter, called
TACL, or through a command file.

This section describes both ways of running Binder. Command keywords are shown in
uppercase characters, but Binder accepts lowercase characters as well for all
commands.

Manual Operation
You can manually start and stop Binder. To start a BIND process, type BIND at the
TACL prompt as shown:

Binder displays the product banner and the Binder prompt @ (an at sign) at your
terminal:

You can communicate with the BIND process by typing a command at each Binder
prompt.

Topic Page
Running Binder 2-1

Defining the Target File 2-3

Binding Modules 2-5

Specifying a Different Volume for Binder Work Files 2-17

Generating Output Listings 2-19

Cross-Reference Lists 2-25

1> BIND

BINDER - OBJECT FILE BINDER - T9621D30 - (31OCT94) SYSTEM \GREEN
Copyright Tandem Computers Incorporated 1982-1994
@

Binder Manual—528613-003
2-1

Using Binder Command File Operation
To stop a BIND process, type EXIT at the Binder prompt:

This returns you to TACL. You can press CTRL/Y instead of typing the EXIT
command.

For examples of and details on commands, see Section 3, BIND Commands.

Command File Operation
When you manually start a BIND process, you can specify an optional command file,
an optional listing file, or both. The command file controls the process so you do not
need to enter commands interactively. The listing file receives all listing output from the
BIND process.

The syntax for specifying the command file and listing file in the BIND command is:

IN command-file

specifies the file containing BIND commands. If you omit this parameter, Binder
prompts the current input file of the command interpreter, normally the home terminal.

OUT listing-file

specifies the file to receive output listings. If you omit this parameter, output is directed
to the current output file of the command interpreter, normally the home terminal.

command

is any BIND command. If you specify one or more commands, Binder executes those
commands and terminates without opening or reading the command file.

Examples
This subsection provides examples of running Binder in various ways.

• In the following example, Binder reads commands from the file BINDTAL and
directs its output listing to the home terminal:

@EXIT
2>

BIND [/ IN command-file /]
[/ OUT listing-file /]
[/ IN command-file, OUT listing-file /]
[command [; command] ...]

Note. Binder complies with the TACL ASSIGN messages that override the default
characteristics of the IN and OUT files, such as record length. For a description of ASSIGN
messages, refer to the Guardian Procedure Errors and Messages Manual

12> BIND / IN bindtal /
Binder Manual—528613-003
2-2

Using Binder Defining the Target File
• In the following example, Binder prompts you at the home terminal for commands.
Binder sends the output listing to the LISTTAL file:

• In the following example, Binder executes the commands, terminates, and returns
control to TACL.

This command causes Binder to accept and execute the commands in the file
named BUILDING and to direct the output (including error messages) to the file
LIST. Binder terminates when it reaches an end of file or when it encounters the
EXIT command in the file BUILDING.

If you do not specify an OUT file, Binder sends output to the default OUT file; this
file is normally your home terminal.

• In the following example, Binder directs its output to the LISTC file; it ignores the
command file BINDC because of the appearance of BIND commands in the BIND
command line:

Defining the Target File
To define the target file, you enter BIND commands that specify the order and contents
of the file. You specify the contents of the target file by identifying the code blocks and
data blocks that you want to include. You specify the order of the target file contents by
the order in which you specify the commands.

A block is the smallest unit that can be separately relocated. Both code instructions
and data are organized into blocks. Each compiler has its own conventions for
specifying block names for code and data. Section 4, Object File Structure gives
comparative information for source language constructs and the resulting blocks. For
additional information, consult the language reference manual for the language you are
using.

If you use BIND commands to modify code or data blocks, Binder makes these
changes in the target file only.

Specifying Input File Names
You specify the names of input object files using the ADD and REPLACE commands.
The ADD command tells Binder where to find the blocks for the include lists.

REPLACE tells Binder to exchange the specified entry for an existing one on either the
code block or data block include list.

13> BIND / OUT listtal /

14> BIND / IN building, OUT list/

15> BIND / IN bindc, OUT listc/ ADD * from prog1
Binder Manual—528613-003
2-3

Using Binder Specifying the Target File Order
You must supply the disk file name of the correct object file before Binder accepts the
name of a code or data block for an include list. The file Binder uses as the default for
block retrieval is the current file. Either a block must be in the current file or you must
specify the file when you add the block. You can change the current file designation as
often as you want by using the FILE command.

Specifying the Target File Order
Binder assumes the order you specify is the order you prefer for the code blocks in the
target file. (You cannot establish the ordering of data blocks in the target file
beforehand.)

Binder builds lists of target file specifications from your commands and from input
object files. You need at least one include list for the binding process; the other lists are
optional.

Table 2-1. Target File Specifications built by Binder (page 1 of 2)

Name of List Number of Lists Allowed Description
Include Lists 4 These lists reflect the order in which

Binder encounters code blocks, data
blocks, entry point names, or run-time
data units (RTDUs) and the order in
which Binder builds the target file. There
is one include list for code blocks, one for
data blocks, one for entry point names,
and one for RTDUs.

Omit List 1 This list is for external references to entry
points that Binder is not to resolve,
regardless of the names included.

Refer List 1 This list holds pairs of entry point names;
the first name satisfies references to the
second. For example, an entry point to a
code stub (that is, a block skeleton) can
satisfy references to code that is not
ready.

Modify List 1 This list contains an entry for every code
or data block patch.
Binder Manual—528613-003
2-4

Using Binder Binding Modules
The undefined list differs from the unresolved list in that the undefined list contains
references to just data blocks whereas the unresolved list contains references to both
data blocks and code blocks. While Binder does not need to resolve unresolved code
references to entry points into the operating system or system code library, Binder
must resolve all data references within the process before run time. Undefined data
blocks have known size, but unknown initial values. C and Pascal require a data block
to be defined by exactly one module that is responsible for its initialization. The
undefined data list contains the names of those data blocks whose responsible module
has not yet been located.

Normally, an unresolved reference list is present during some part of the session.For
descriptions of these lists and how they are created, see Section 5, Binder Input and
Output.

Binding Modules
You can bind modules from the same language or from different languages. For
example, suppose two object files, named OBJFILEX and OBJFILEY, contain the code
and data blocks needed to make up a large program. Each object file contains multiple
program units or procedures, all of which are needed in the target file. For this
discussion, the source language does not matter.

You can bind the separate blocks by running BIND and then entering commands at the
Binder prompt. For example:

Unresolved
Reference
Lists

2 There are two unresolved reference lists,
one for entry points and one for data
blocks. As you enter each name on an
include list, Binder removes entries from
the unresolved reference lists if the
entries are satisfied by the new name.

Undefined
List

1 This list contains data blocks referenced,
but not yet defined in C or Pascal.

Search List 1 This list holds disk file names of object
files to search for unresolved references.
Binder searches these files in the order
in which you name them. If two files
contain versions of the same block,
Binder uses the first block encountered.

12> BIND
@ADD * FROM objfilex
@ADD * FROM objfiley
@BUILD trgfilez

Table 2-1. Target File Specifications built by Binder (page 2 of 2)

Name of List Number of Lists Allowed Description
Binder Manual—528613-003
2-5

Using Binder Binding Rules
The ADD * command causes all the code and data blocks from an object file to be
included in the target file. Therefore, if OBJFILEX contains PROC A, PROC B, and
PROC D, and OBJFILEY contains PROC C, PROC E, and PROC F, then TRGFILEZ
contains all six procedures.

If more than one object file includes the same code block name or data block name,
Binder retains the first one it encounters.

Binding Rules
The rules that govern binding depend on the run-time environment. Before the D-series
RVUs, C, COBOL85, FORTRAN, Pascal, and TAL each had its own run-time
environment. These language-specific run-time environments were different from one
another and often incompatible. With the D-series RVUs, the Common Run-Time
Environment (CRE) provides a shared run-time facility for C, COBOL85, Pascal,
FORTRAN, and TAL. D-series versions of the C and Pascal compilers always generate
programs that run in the CRE1. D-series versions of the COBOL85, FORTRAN, and
TAL compilers generate programs that can run in either a language-specific run-time
environment or the CRE, depending on the setting of the ENV directive.

Binder categorizes the ENV directive parameters into three groups: OLD, NEUTRAL,
and COMMON. For the most part, these groups match the various ENV parameters
provided by the language compilers.

• OLD generates code that runs only in a language-specific run-time environment.

• COMMON generates code that runs only in the CRE.

• NEUTRAL generates code that runs in either a language-specific run-time
environment or the CRE.

1The C and Pascal compilers generate code that runs in either a language-specific run-time
environment or the CRE if you specify the ENV LIBSPACE or ENV EMBEDDED directives.
These C and Pascal routines cannot perform I/O or access the heap, and therefore are not
useful in most situations.
Binder Manual—528613-003
2-6

Using Binder Binding Rules
Table 2-2. Binder Grouping of ENV Directive Parameters (page 1 of 2)

Binder Group Language Generated by:
OLD C C-series compilers

COBOL85 C-series compilers by default

D-series compilers by default

D-series compilers with ENV OLD specified

FORTRAN C-series compilers by default

D-series compilers by default

D-series compilers with ENV OLD specified

Pascal C-series compilers by default

C-series compilers with ENV FULL specified

TAL D-series compilers with ENV OLD specified

COMMON C D-series compilers by default

D-series compilers with ENV COMMON
specified

D-series compilers with ENV LIBRARY
specified

COBOL85 D-series compilers with ENV COMMON
specified

D-series compilers with ENV LIBRARY
specified

FORTRAN D-series compilers with ENV COMMON
specified

Pascal D-series compilers by default

D-series compilers with ENV COMMON
specified

D series compilers with ENV FULL specified

TAL D-series compilers with ENV COMMON
specified
Binder Manual—528613-003
2-7

Using Binder Binding Rules
Here are the rules for binding modules together:

• You can bind object files that are in the same Binder group; the target object file
runs in the same environment as the input object files.

• You can bind object files that include routines from both the OLD and NEUTRAL
Binder groups; the target object file runs in a language-specific run-time
environment.

• You can bind object files that include routines from both the COMMON and
NEUTRAL Binder groups; the target object file runs in the CRE.

• You cannot bind object files that include routines from both the COMMON and OLD
Binder groups.

When you bind object files compiled for different environments, each procedure retains
its original ENV attribute.

NEUTRAL C D-series compilers with ENV EMBEDDED
specified

D-series compilers with ENV LIBSPACE
specified

Pascal C-series compilers with ENV EMBEDDED
specified

C-series compilers with ENV LIBSPACE
specified

D-series compilers with ENV EMBEDDED
specified

D-series compilers with ENV LIBSPACE
specified

TAL C-series compilers by default

D-series compilers by default

D-series compilers with ENV NEUTRAL
specified

Note. If you specify the ENV NEUTRAL directive in a TAL source file, BINSERV does not allow
the resulting object file to be combined (for example, through a SEARCH directive) with object
files compiled for the COMMON or OLD Binder groups. This rule prevents files from gaining the
COMMON or OLD attributes.

Table 2-2. Binder Grouping of ENV Directive Parameters (page 2 of 2)

Binder Group Language Generated by:
Binder Manual—528613-003
2-8

Using Binder Examples
Use the Binder INFO command with the DETAIL clause to show the ENV attribute of a
particular data or code block. For example:

Examples
The following examples show the different combinations for binding C, COBOL85, and
TAL modules. Pascal modules can be substituted for C modules and FORTRAN
modules can be substituted for COBOL85 modules throughout these examples.

• Binding a C-series C module with a D-series C module

A C-series C module is a member of the OLD Binder group. A D-Series C module
is a member of the COMMON Binder group.

You cannot bind these two modules together without recompilation. You must
recompile the C-series module using a D-series compiler to bind these modules.

• Binding a C-series COBOL85 module with a D-series COBOL85 module

A C-series COBOL85 module is a member of the OLD Binder group. A D-series
COBOL85 module can be a member of either the OLD or COMMON Binder
groups.

You can bind the C-series module with a D-series module compiled without an
ENV directive or with an ENV OLD directive.

Otherwise, you must recompile, recompile the C-series module using a D-series
compiler with an ENV COMMON directive.

• Binding a D-series C module with a D-series COBOL85 module

A D-series C module is a member of the COMMON Binder group. A D-series
COBOL85 module can be a member of either the OLD or COMMON Binder
groups.

You must compile the COBOL85 module with an ENV COMMON directive to bind
these two modules together.

Table 2-3. Run-Time Environment Resulting From Binding Modules
Binder Group

Binder Group OLD COMMON NEUTRAL
OLD language-specific Not allowed language-specific

COMMON Not allowed CRE CRE

NEUTRAL
language-specific CRE language-specific or

CRE

@ add * from test
@ info *, detail
TEST^PROCEDURE 167
LANG: TAL ENV: NEUTRAL TIME: 1994-06-19 09:48
Binder Manual—528613-003
2-9

Using Binder Binding COBOL85 and FORTRAN Programs
• Binding a C-series C module with a D-series COBOL85 module

A C-series C module is a member of the OLD Binder group. A D-series COBOL85
module can be a member of either the OLD or COMMON Binder groups.

You can bind the C-series C module with a D-series COBOL85 module compiled
without an ENV directive or with an ENV OLD directive.

Otherwise, you must recompile the C-series C module using a D-series C compiler.

• Binding a D-series C module with a C-series COBOL85 module

A D-series C module is a member of the COMMON Binder group. A C-series
COBOL85 module is a member of the OLD Binder group.

You cannot bind these two modules together without recompilation. You must
recompile the C-series COBOL85 module using a D-series compiler with an ENV
COMMON directive to bind these modules.

• Binding a C-series TAL module with a D-series TAL module

A C-series TAL module is a member of the NEUTRAL Binder group. A D-series
TAL module can be a member of the OLD, COMMON, or NEUTRAL Binder
groups.

You can bind the C-series module with a D-series module compiled without an
ENV directive or with an OLD, COMMON, or NEUTRAL directive.

• Binding a D-series C module with a D-series TAL module

A D-series C module is a member of the COMMON Binder group. A D-series TAL
module can be a member of the OLD, COMMON, or NEUTRAL Binder groups.

You can bind the D-series C module with a D-series TAL module compiled without
an ENV directive or with an ENV COMMON or ENV NEUTRAL directive.

Otherwise, you must recompile the TAL module without an ENV directive or with
an ENV COMMON or ENV NEUTRAL directive.

• Binding a D-series COBOL85 module with a D-series TAL module

A D-series COBOL85 module can be a member of either the OLD or COMMON
Binder groups. A D-series TAL module can be a member of the OLD, COMMON,
or NEUTRAL Binder groups.

You can bind the D-series COBOL85 module with the D-series TAL module if both
modules were compiled without an ENV directive or with the same ENV directive.
You can also bind a D-series TAL module compiled without an ENV directive or
with an ENV NEUTRAL directive with any COBOL85 module.

Binding COBOL85 and FORTRAN Programs
When you create an object file using BIND commands, Binder retains the program unit
concepts of the COBOL85 and FORTRAN compilers. Each COBOL85 code block in
Binder Manual—528613-003
2-10

Using Binder Binding C Programs
the include code block list is a separate program unit. All FORTRAN code blocks that
are bound together form one program unit. Based on these concepts, Binder
constructs all the control blocks needed to execute the program. These control blocks
include:

• One run-unit control block (RUCB) for the target file.

• One program unit control block (PUCB) for each COBOL85 program unit in the
target file; the PUCB includes the file control blocks.

• One program unit control block for the FORTRAN program unit in the object file
(the FORTRAN special data block, #PUCB, is always the last PUCB data block in
any object file).

• One file control block for each file (logical unit) in the set of files for the FORTRAN
program unit in the object file; these control blocks are contained in the PUCB
blocks.

• One FORTRAN logical unit table.

Binding C Programs
The C compiler generates one bindable code file for each source language compilation
unit. C code files are executable only when you specify a RUNNABLE pragma to
instruct the compiler to build an executable object file. Generally, you use the
RUNNABLE pragma in C to build an executable object file automatically. For large
programs created from multiple modules, it is often easier to invoke BIND as a
separate step.

To produce an executable C object file without using the RUNNABLE pragma, you
must invoke Binder and use it to do the following:

1. Bind together your separately compiled modules.

2. Bind in the appropriate version of the C memory-model file.

3. Bind in the appropriate version of the C run-time library file for C-series programs
only.

4. Specify a heap size before issuing the BUILD command. You can specify the heap
size in PAGES (1024 words), WORDS, or BYTES.

On C-series systems the C run-time library resides in a file, CLIB, that must be bound
into each object file that contains C functions. On D-series systems the C run-time
library is split between two files, CLIB and CRELIB. Because CLIB and CRELIB are
configured into the system library, do not bind them into object files. The D20 and D30
C run-time libraries have significant architectural differences. Because of these
differences, D20 programs that bound in CLIB without also binding in CRELIB will not
run correctly on D30 or later product versions. You must bind such programs again
without CLIB or CRELIB. CLIB no longer comes as a separate file. Check your BIND
scripts to ensure that you do not bind in CLIB or CRELIB. Delete any old copies of
CLIB from $SYSTEM.SYSTEM.
Binder Manual—528613-003
2-11

Using Binder Binding Pascal Programs
To bind a C program, either include the commands in a command file or enter them
interactively. The following example shows a sample Binder session for binding a D-
series C program:

Note the following points about this example:

• The file MAINOBJ is the user’s main object file.

• The file OBJ1 is a user file.

• The value of 10 PAGES in the SET HEAP command refers to the maximum heap
size for the target object file.

• You must set MODE to NOUPSHIFT if you specify code block names and entry
point names. MODE NOUPSHIFT directs Binder to differentiate between
uppercase and lowercase characters in names.

• This example program uses the wide data model. The memory-model file named
after the SELECT SEARCH command would have been named CLARGE if the
program used the large memory model or CSMALL if the program used the small
memory model. See the HP C/C++ Programmer’s Guide for additional information.

Binding Pascal Programs
The Pascal compiler generates one bindable code file for each source language
compilation unit. Pascal code files are not executable. To produce an executable
Pascal object file, you must invoke Binder and use it to do the following:

1. Bind together your separately compiled modules.

2. Bind in the appropriate version of the Pascal run-time library file for C-series
programs only.

3. Specify a heap size before issuing the BUILD command. You can specify the heap
size in PAGES (1024 words), WORDS, or BYTES.

As with a C program, you can bind a Pascal program by including the commands in a
command file or entering them interactively. The following example shows a sample
Binder session for binding a D-series Pascal program:

SELECT CHECK PARAMETER LENIENT
ADD * FROM mainobj
ADD * FROM obj1
SELECT SEARCH $system.system.cwide
SELECT RUNNABLE OBJECT ON
SELECT LIST * OFF
SET HEAP 10 PAGES
BUILD exobj

ADD * FROM mainobj
SELECT SEARCH (extraobj, moreobj)
SELECT RUNNABLE OBJECT ON
SELECT LIST * OFF
SET HEAP 2 PAGES
BUILD exobj
Binder Manual—528613-003
2-12

Using Binder Binding Mixed-Language Programs
The following example shows a sample Binder session for binding a C-series Pascal
program:

Note the following points about these examples:

• The file MAINOBJ is the user’s main object file.

• The files EXTRAOBJ and MOREOBJ are user files.

• For C-series Pascal programs, you must also specify the correct Pascal run-time
library, PASRUN or PASRUNS. Use PASRUN for programs that run in user code
space; use PASRUNS for programs that run in system or user library space or that
contain a main program written in another language. On C-series systems,
PASRUN and PASRUNS reside in the subvolume containing the Pascal compiler.
On D-series systems, the Pascal run-time library is named PASLIB. PASLIB
resides in the system library. See the Pascal Reference Manual for additional
information.

Binding Mixed-Language Programs
The rules that govern binding mixed-language programs are determined by the run-
time environment. Before the D-series Release Version Updates (RVUs), C,
COBOL85, FORTRAN, Pascal, and TAL each had its own run-time environment.
These language-specific run-time environments were different from one another and
often incompatible. The Common Run-Time Environment (CRE) provides a shared
run-time facility for these languages. Under CRE, you can write mixed-language
programs without the restrictions imposed by the C-series compilers and run-time
environments.

All the object code in a single object file must be either compiled to operate under CRE
or compiled to operate under the pre-CRE conventions. Refer to the discussion of
Binding Rules on page 2-6 for more information.

There are additional restrictions in the areas of naming global variables and routines,
sharing global data, interlanguage procedure calls, and input and output. For more
information on these subjects, refer to the Common Run-Time Environment
Programmer’s Guide and the language reference manuals and programmer’s guides
for the languages you are using.

The following restrictions apply to binding mixed-language programs compiled with C-
series compilers or D-series compilers (with the ENV OLD directive):

• You cannot bind programs containing both C and FORTRAN routines.

ADD * FROM mainobj
SELECT SEARCH (extraobj, moreobj)
SELECT SEARCH $SYSTEM.PASCAL.PASRUN
SELECT RUNNABLE OBJECT ON
SELECT LIST * OFF
SET HEAP 2 PAGES
BUILD exobj
Binder Manual—528613-003
2-13

Using Binder Parameter Checking for a Mixed-Language Bind
• If your program contains a COBOL85 module, that module must be the main
module.

Parameter Checking for a Mixed-Language Bind
When binding modules from more than one language, you can check for parameter
mismatches with the CHECK PARAMETER option of the SELECT command. By
default, this option is set to STRICT. When this option is set to STRICT, Binder checks
each parameter for proper size, type, and mode (passed by value or reference); it also
checks the return type of functions. Binder issues an error message if calls and entry
points do not match.

For mixed-language programs, specify SELECT CHECK PARAMETER STRONG to
avoid extraneous Binder messages. Refer to the SELECT Command on page 3-49 for
more information.

Binding SQL Program Files
When binding SQL program files, you can bind them before running them through
either the NonStop SQL/MP compiler or the Accelerator and NonStop SQL/MP
compiler. You do so just as you would for any standard language file. For example:

The difficulty with SQL program files occurs when you attempt to replace SQL
procedures in a bound program with new SQL procedures. Each code block in a
procedure references corresponding data blocks and run-time data units (RTDUs).
Depending on the choice and order of Binder commands, the newly bound file may or
may not have the new RTDUs and data blocks.

To ensure that the final program contains the new code blocks, data blocks, and
RTDUs for the SQL procedures, use one of the following three methods:

1. Rebuild the entire file using a series of ADD * FROM commands or a single ADD *
FROM MAIN command followed by a series of SELECT SEARCH commands for
each additional module.

2. Add the new SQL procedures first followed by everything from the old file. For
example:

In this example Binder adds the code blocks, data blocks, and RTDUs to the
include list from SQLFILE. When Binder encounters the old SQL entry points in
OLDFILE, it issues a warning that the entry points are already on the include list

@BIND
@ADD * FROM sqlfile
@ADD * FROM mainfile
@BUILD newfile!

@ADD * FROM sqlfile
@ADD CODE * FROM oldfile
@BUILD newfile!
Binder Manual—528613-003
2-14

Using Binder Binding SQL Program Files
and does not include the second (and old) copy of the entry points, code blocks, or
RTDUs.

The following example also works by specifying the file containing the new
procedures first:

In this example Binder places the code blocks from SQLFILE on the include list
and the corresponding data blocks and RTDUs on the unresolved reference lists. It
also notes that the data blocks and RTDUs can be resolved from SQLFILE. After
the BUILD command, Binder then resolves the references to the data blocks and
RTDUs from SQLFILE.

3. Add everything from the old file, then replace the SQL code blocks and everything
associated with them. For example:

The REPLACE * command places the code blocks, data blocks, and RTDUs from
SQLFILE onto the include lists.

This method causes potential memory problems. Binder names data blocks using
the timestamp from the compilation. Therefore, the data blocks in OLDFILE and
SQLFILE have different names. The REPLACE command cannot replace the data
blocks added with the first command because they have different names from the
data blocks referenced in the REPLACE command. REPLACE cannot replace
something that is not there. Because the new data blocks are referenced by the
new procedure code, Binder puts the new data blocks on the unresolved reference
list and resolves the reference to the data blocks from SQLFILE after a BUILD
command. NEWFILE then contains both the old data blocks and the new data
blocks. If you use this method, you will eventually run out of data space.

In the previous example, a REPLACE CODE command would not work. REPLACE
CODE would add the new code blocks to the include list and place references to the
data blocks and RTDUs on the unresolved reference lists. After a BUILD command,
Binder would then resolve the references to the data blocks, giving you both the old
and new data blocks, but it would resolve the references to the RTDUs from OLDFILE.
Therefore, NEWFILE would not include the correct RTDUs.

Note. Specifying ADD * FROM OLDFILE as the second command would require
overhead for the same reason as the command sequence in method #3. See method #3
for a detailed explanation.

@ADD CODE * FROM sqlfile
@ADD CODE * FROM oldfile
@BUILD newfile!

Note. The previous example does not work if you transpose the two ADD commands. If
the ADD CODE * FROM OLDFILE command occurred first, Binder would place the
referenced RTDUs on the unresolved reference list with pointers to OLDFILE.

@ADD * FROM oldfile
@REPLACE * FROM sqlfile
@BUILD newfile!
Binder Manual—528613-003
2-15

Using Binder Resolving External References
To decrease the time required to SQL compile a program, Binder estimates the size of
the SQL object run-time data unit (RTDU) by adding slack space to the object file
during the host-language compilation. If the SQL-compiled object fits in the pre-
allocated slack space, then Binder can quickly update the RTDU region with the
compiled SQL code. Binder estimates the size of the SQL object RTDU region by
multiplying by four the size of the SQL source RTDU region. To determine the amount
of slack space Binder adds to the object file during host compilation, enter the following
Binder commands to list all blocks:

Next add the size of all blocks of type SQL_SRC, and multiply the value by four.

Resolving External References
Procedures in source code programs often contain references to other procedures
known as external references.

A major part of building an executable object file is resolving external references.
Binder resolves external references by locating entry points in other object files, if they
exist, and including a copy of any compiled code and data required by the reference in
the target file.

References to procedures in other programs, references to procedures in the same
source file, and references to a library of procedures shared by many users are all
considered external references. If a reference is made to a procedure entry point in the
same source file, or to a library of procedures shared by many users, the referenced
entry point name is considered external to the procedure. For information about user
libraries, see Section 6, User Libraries

If Binder cannot find the entry point to an external reference, the reference is not
satisfied. In the example shown in Figure 2-1, Program B can still be in the planning
stages when Program A is compiled. In this case, Binder would not be able to resolve
the reference to Procedure Z, and it would leave the entry point reference for later
resolution. Resolution can occur later in another binding operation or at program load
time.

@ADD * FROM object-file
@INFO INCLUDE *
Binder Manual—528613-003
2-16

Using Binder Specifying a Different Volume for Binder Work Files
Specifying a Different Volume for Binder Work
Files

Binder uses generous amounts of disk space. If there is insufficient disk space for
temporary files and the target file, Binder terminates with an error message and does
not build a target file. In this case, you want Binder to create its work files on a volume
other than the current default volume.

The rules for specifying a volume for Binder work files depend on whether you are
using Binder interactively or as part of a compilation.

Figure 2-1. External References

Note. External references to system procedures are unresolved until you first execute the
program that contains the reference. The user program does not define the external references
to the system procedures. When the program is first run, the operating system resolves any
unresolved references that are to system procedures. For more information, see Unresolved
Reference Lists on page 5-6.

PROCEDURE 2
.
.
.

END

PROCEDURE Y

PROCEDURE XX
.
.
.

CALL X
.
.
.

CALL Y
.
.
.

CALL Z
.
.
.

END

PROCEDURE X
.
.
.

CALL Y
.
.
.

END

Library LIB

Source Program A

Source Program B

VST003.vsd
Binder Manual—528613-003
2-17

Using Binder When Using BIND
When Using BIND
When disk space is insufficient, Binder terminates with an error message and does not
retain any of the information supplied prior to the BUILD command. You must start
over.

To have work files created on a different volume, use the command PARAM
SWAPVOL at the TACL prompt. The syntax of the PARAM SWAPVOL command is:

In the following example, the PARAM SWAPVOL command specifies $SCRATCH as
the volume for Binder work files:

For better performance, keep the swap volume, the BIND process, and the input and
output object files on the same node.

Note that the PARAM SWAPVOL command determines the swap volume used by
BIND regardless of the language used to code the input files. Thus, if issued, PARAM
SWAPVOL controls the swap volume used by BIND when it is processing files coded
in any valid language.

When Using BINSERV
If Binder is operating as part of a compilation, the swap volume is determined by
whether you entered the TACL command PARAM SWAPVOL before the compilation
command. The rule is:

• If a PARAM SWAPVOL command was issued, BINSERV uses the swap volume
specified in the PARAM SWAPVOL command.

• If a PARAM SWAPVOL command was not issued, BINSERV uses the same
volume that contains the new object file resulting from the compilation as the swap
volume.

This is true for all languages except Pascal and C.

Specifying the Swap Volume for Pascal and C Programs
For Pascal and C programs, the rules for swap volumes are different. The SWAP
volume option of the Pascal and C compilation commands determines the swap
volume used by the BINSERV process. The command interpreter PARAM SWAPVOL
command has no effect on the swap volume used by BINSERV when it is started by
the Pascal or C compilers.

If you do not specify the SWAP volume option in a Pascal or C compilation command,
the BINSERV process uses the volume on which the compiler code file resides as the

 PARAM SWAPVOL [node-name.] volume-name

14> PARAM SWAPVOL $SCRATCH
Binder Manual—528613-003
2-18

Using Binder Generating Output Listings
swap volume. Compiler code usually resides on volume $SYSTEM. See Section 7,
Guardian File Names and TACL Commands for more information.

Generating Output Listings
You can generate output listings using the DUMP, INFO, LIST, SHOW, or BUILD
command.

To print these listings to a file, use the OUT command on the BIND command line. In
the following examples, the first command creates a location load map for OBJFILEC
in file LISTFILE; the second example sends the listings specified in the command file
CMDFILE to a printer named $S.#LAND.

Binder sends the output from any of the commands listed in Table 2-2 to the listing file,
if one is specified; otherwise, it displays the output at the home terminal. In interactive
mode, use the OUT parameter to capture the output of a single command. The
following subsections describe each of the listings.

Target File Statistics
After a BUILD command executes, Binder automatically produces statistics for the
constructed target file. These statistics are shown in Figure 2-2 and described in
Table 2-5.

Table 2-4. Commands that Produce Listings
Command Listing Produced
BUILD Displays target file statistics upon successful completion of a BUILD

operation.

DUMP Displays all or part of the contents of a specified code or data block.

INFO Displays information about code blocks, entry points, data blocks, and
RTDUs in the include, unresolved, and undefined reference lists.

LIST, SELECT
LIST, or
BUILD...LIST

Displays load map and cross-reference data for code blocks, entry points,
data blocks, and RTDUs. By default, load maps are alphabetical.

SHOW Displays current values for the current file and its attributes, SET and
SELECT command parameters, and modifications established by the
MODIFY command.

16>BIND /OUT listfile / LIST LOC FROM objfilec
17>BIND /IN cmdfile, OUT $s.#land/
Binder Manual—528613-003
2-19

Using Binder Target File Statistics

Figure 2-2. Target File Statistics
BINDER - OBJECT FILE BINDER - T9621D30 - (31OCT94) SYSTEM \HOME
Copyright Tandem Computers Incorporated 1982-1994

Object file \HOME.$DATA.SAMPLE.OBJECT
User library file name $DATA.BIND.LIBRARY
TIMESTAMP 1994-06-19 15:17:12

 3 Code pages

 16 Primary data words

 603 Secondary data words

 35 Data pages

 0 Resident code pages

 20 Extended data pages

 Heap location: Extended data space

 10 Heap size in pages

 619 Top of stack location in words

 1 Code segment

 0 Binder warnings

 0 Binder errors

Elapsed time - 00:00:05

Table 2-5. Binder Statistics (page 1 of 2)

Statistic Definition
Object file name The name of the constructed target object file

User library file name The name of the object file to be linked to a program file
at run time, if one exists

Object file timestamp The target file timestamp

Code area size The number of pages required for code area allocation

Primary data The number of words of primary data space

Secondary data The number of words of secondary data space

Data area size The minimum number of pages required for data area
allocation

Resident code size The number of pages allocated for resident code

Extended data area size The number of pages allocated for an extended data
segment
Binder Manual—528613-003
2-20

Using Binder Load Maps
Load Maps
Binder can produce separate load maps for data blocks and entry points. By default,
load maps are alphabetical. You can also produce location load maps for entry points
and data blocks. You use the BUILD LIST, SELECT LIST, or LIST commands to
generate these listings.

Entry Point Maps
Entry point maps are load maps that contain storage addresses of code blocks and
entry points of a program.

A code block contains the executable machine code for a routine that is invoked
through a procedure call (PCAL) or an external call (XCAL) instruction and the
procedure entry point (PEP) table.

An entry point is the address or the label of the first instruction that the program or
process executes on entering a program, routine, or subroutine. A program or a code
block can have many different entry points, each corresponding to a different function
or purpose.

Alphabetic Entry Point Load Maps.
Figure 2-3 shows an alphabetically sequenced load map for code blocks and entry
points. The Binder wraps lines if the output line length of your listing is greater than the
record length of the file.

Heap location The type of memory that the heap area is located in.
This entry appears only for Pascal or C files that have
been bound with the Pascal or C run-time libraries,
respectively. The heap location can be extended data
space or regular data space

Heap size Heap size in pages

Top of stack Location of the top of the stack in words

Number of code segments The number of code segments in the object file

Number of Binder
warnings

The number of warning messages issued

Number of Binder errors The number of error messages issued

Elapsed time The amount of time (hh:mm:ss) spent in building the
object file

Table 2-5. Binder Statistics (page 2 of 2)

Statistic Definition
Binder Manual—528613-003
2-21

Using Binder Load Maps
Figure 2-3. Alphabetic Entry Point Map for Entry Points and Code Blocks
ENTRY POINT MAP BY NAME FOR FILE: \KITTY.$BIND.BINDER.TEST

SP PEP BASE LIMIT ENTRY ATTRS NAME DATE TIME LANGUAGE SOURCE FILE

00 052 033224 033224 033224 V IN^ASSIGN^MESSAGE 1994-11-19 01:45 TAL $BIND.Binder.INITIALS
00 033 002070 003401 003021 IN^INITIALIZE 1994-11-19 01:45 TAL $BIND.Binder.INITIALS
00 051 032775 033223 032775 V IN^PARAM^MESSAGE 1994-11-19 01:45 TAL $BIND.Binder.INITIALS
00 050 032651 032774 032651 V IN^STARTUP^MESSAGE 1994-11-19 01:45 TAL $BIND.Binder.INITIALS
00 066 035546 035640 035546 IOP^POP^INPUT^STACK 1994-11-19 01:45 TAL $INSP.PDTSHARE.PINOUT
00 056 033741 034001 033741 V IO^READ 1994-11-19 01:45 TAL $INSP.PDTSHARE.PINOUT
00 034 003402 005651 005040 IO^READ^LINE 1994-11-19 01:45 TAL $INSP.PDTSHARE.PINOUT
00 027 001435 001527 001435 IO^WRITE 1994-11-19 01:45 TAL $INSP.PDTSHARE.PINOUT
00 063 035236 035255 035236 IO^WRITE^BOTH 1994-11-19 01:45 TAL $INSP.PDTSHARE.PINOUT
00 030 001530 001552 001530 IO^WRITE^INPUT 1994-11-19 01:45 TAL $INSP.PDTSHARE.PINOUT
00 042 032050 032075 032050 IO^WRITE^LOG 1994-11-19 01:45 TAL $INSP.PDTSHARE.PINOUT
00 043 032076 032121 032076 IO^WRITE^SPOOLER 1994-11-19 01:45 TAL $INSP.PDTSHARE.PINOUT
00 071 050232 050664 050232 LC^ADD 1994-10-24 08:00 TAL $BIND.LIBRTY.LISTCOMS
00 072 050665 051624 051156 LC^ALTER 1994-10-24 08:00 TAL $BIND.LIBRTY.LISTCOMS
00 074 052411 052450 052411 LC^BEGIN^TEMPORARY 1994-10-24 08:00 TAL $BIND.LIBRTY.LISTCOMS
00 073 051625 052410 052046 LC^BUILD 1994-10-24 08:00 TAL $BIND.LIBRTY.LISTCOMS
00 075 052451 053134 052451 LC^CHANGE 1994-10-24 08:00 TAL $BIND.LIBRTY.LISTCOMS
00 055 033640 033740 033640 V LC^CLEAR 1994-10-24 08:00 TAL $BIND.LIBRTY.LISTCOMS

Table 2-6. Information Included in Load Maps for Entry Points (page 1 of 2)

Label Description
SP Code segment containing the entry point

PEP PEP table number

BASE Base address of the code block defining the entry point

LIMIT End address of the code block defining the entry point

ENTRY Address of the entry point

ATTRS Attributes of the entry point:

C = Callable

P = Privileged

E = Secondary entry

R = Resident

I = Interrupt

V = Variable arguments

M = Main

X = Extensible arguments
The absence of an attribute indicates a primary entry point.

NAME Entry point name
Binder Manual—528613-003
2-22

Using Binder Load Maps
Location Entry Point Load Maps
If you specify a command to display entry point maps by location, Binder outputs an
itemized listing following each map. The listing contains:

• Code size in words

• Procedure entry point (PEP) length in words

• Global P-relative length in words

• Procedure length in words

• Gap length at 32K boundary in words

• External entry point (XEP) size

• Code area size in pages

• Resident code size in pages

Figure 2-4 shows the location load map for an object file with multiple code segments.

DATE/TIME Timestamp for compilation of the block

LANGUAGE Source language of the block: TAL, FORTRAN, COBOL85, C,
or Pascal

SOURCE FILE Disk file name of source code for the block

Figure 2-4. Entry Point Map by Location for Multiple Code Segments
TIMESTAMP 1994-03-04 15:18:34

ENTRY POINT MAP BY LOCATION FOR FILE: \NORTH.$USERS.QA.SAMPLE
CODE SEGMENT 00

SP PEP BASE LIMIT ENTRY ATTRS NAME DATE TIME LANGUAGE SOURCE FILE

00 002 000006 000065 000006 SUB1 1994-10-24 11:51 FORTRAN $BUG.QATACL.FORTSUBS

CODE SEGMENT 01

SP PEP BASE LIMIT ENTRY ATTRS NAME DATE TIME LANGUAGE SOURCE FILE

01 002 000006 000067 000006 SUB2 1994-10-24 11:51 FORTRAN $BUG.QATACL.FORTSUBS

CODE SEGMENT 2

SP PEP BASE LIMIT ENTRY ATTRS NAME DATE TIME LANGUAGE SOURCE FILE

02 002 000006 000100 000006 SUB3 1994-10-24 11:51 FORTRAN $BUG.QATACL.FORTSUBS

CODE SEGMENT 03

SP PEP BASE LIMIT ENTRY ATTRS NAME DATE TIME LANGUAGE SOURCE FILE

03 002 000006 000117 000006 CHARASSIGN^ 1994-10-24 11:51 TAL $EM1.T9262C20.FTNLIB2

Table 2-6. Information Included in Load Maps for Entry Points (page 2 of 2)

Label Description
Binder Manual—528613-003
2-23

Using Binder Load Maps
Data Block Maps
Figure 2-5 shows an alphabetically sequenced load map for data blocks. At the
completion of a BUILD command, Binder puts read-only data blocks in a separate
map. If you use a LIST command, Binder lists read-only data blocks with the other data
blocks.

Figure 2-6 shows the listing for read-only data blocks by name and by location. For
additional information about read-only data blocks, see Section 4, Object File Structure

Figure 2-5. Alphabetical Load Maps for Data Blocks
DATA BLOCK MAP BY NAME FOR FILE: \HOME.$BIND.LIBRTY.SAMPLE

BASE LIMIT TYPE MODE NAME DATE TIME LANGUAGE SOURCE FILE

025117 025166 COMMON WORD .APPLY^ 1994-02-14 06:44 TAL $BIND.LIBRTY.APPLYS
001334 001462 COMMON WORD .APPLY^PUBLIC 1994-02-14 06:44 TAL $BIND.Binder.APPLYS
042612 045671 COMMON WORD .BINDLST 1994-03-12 04:34 TAL $BIND.Binder.BINDLSTS
001463 001542 COMMON WORD .BINDLST^PUBLIC 1994-03-12 04:34 TAL $BIND.Binder.BINDLSTS
025167 042216 COMMON WORD .BLDOBJ 1994-06-19 12:00 TAL $BIND.LIBRTY.BLDOBJS
001543 004342 COMMON WORD .BLDOBJ^PUBLIC 1994-06-19 12:00 TAL $BIND.Binder.BLDOBJS
004343 004425 COMMON WORD .BLDTAB^PUBLIC 1994-06-19 12:00 TAL $BIND.Binder.BLDTABS
004530 005543 COMMON WORD .CC^LOG^DATA 1994-03-12 04:34 TAL $ADA1.PDTSHARE.PCOMMAND
023577 024576 COMMON WORD .CC^SAVE^DATA 1994-03-12 04:34 TAL $ADA1.PDTSHARE.PCOMMAND
000366 000510 COMMON WORD .GLOBAL^VAR 1994-06-19 12:00 TAL $BIND.Binder.GLOBALS
005544 023514 COMMON WORD .IO^DATA 1994-06-19 15:04 TAL $ADA1.PDTSHARE.PINOUT
042503 042513 COMMON WORD .LISTCOM 1994-02-14 08:44 TAL $BIND.LIBRTY.LISTCOMS
042514 042611 COMMON WORD .LISTMGR 1994-11-19 19:36 TAL $BIND.Binder.LISTMGRS

Table 2-7. Information Included in Load Maps for Data Blocks
Label Description
BASE Base address of the data block (a word address, even for extended

storage)

LIMIT End address of the data block (a word address, even for extended
storage; if blank, the block is empty)

TYPE Type of the data block (own, common, special)

MODE Word or string

NAME Name of the data block

DATE Date of the compilation

TIME Timestamp for the compilation

LANGUAGE Source language of the block: C, COBOL85, FORTRAN, Pascal, or TAL

SOURCE FILE File name of the source code for the block
Binder Manual—528613-003
2-24

Using Binder Cross-Reference Lists
Cross-Reference Lists
The cross-reference lists are produced if you specify one of the following commands:

• SELECT LIST XREF ON or BUILD LIST XREF ON produces a cross-reference
listing of code blocks, entry points, and data blocks.

• LIST XREF CODE [name-list] produces a cross-reference listing of code

• blocks.

• LIST XREF DATA [name-list] produces a cross-reference listing of data blocks.

• LIST XREF produces a cross-reference listing of code blocks, entry points, and
data blocks.

You can also enter SELECT LIST * ON, BUILD LIST * ON, or LIST *. See Section 3,
BIND Commands for details.

Code block listings consist of these items:

• Names and locations of procedures called by the code block

• Names and locations of procedure that the code block calls

Entry point listings consist of these items:

• Entry point name

• Name of the code block containing the reference

Figure 2-6. Listing for Read-Only Data Blocks
READ-ONLY DATA BLOCK MAP BY NAME FOR FILE: \HOME.$KEVIN.LIBRTY.FILE1

SP BASE LIMIT TYPE MODE NAME DATE TIME LANGUAGE SOURCE FILE

00 C100024 100062 COMMON WORD FINDKEY^OFFSET^TABLE 1994-11-19 18:04 TAL $BIND.Binder.LISTM
00 C123127 123320 COMMON WORD HASH^DESC 1994-06-19 12:00 TAL $BIND.LIBRTY.WORDS
00 C125351 125407 COMMON WORD HASH^TABLE^LENGTH 1994-11-19 18:04 TAL $BIND.Binder.LISTM
00 C123516 124115 COMMON STRING RWTEXT 1994-06-19 12:00 TAL $BIND.LIBRTY.WORDS
00 C127765 130023 COMMON WORD SECONDARY^LIST 1994-11-19 18:04 TAL $BIND.Binder.LISTM
01 C053152 053210 COMMON WORD SECONDARY^LIST 1994-11-19 18:04 TAL $BIND.Binder.LISTM
00 C077761 100017 COMMON WORD SIZE^NODE^TABLE 1994-11-19 18:04 TAL $BIND.Binder.LISTM
00 C123321 123515 COMMON WORD WORD^DESC 1994-06-19 12:00 TAL $BIND.LIBRTY.WORDS
00 C122732 123126 COMMON WORD WORD^INFO 1994-06-19 12:00 TAL $BIND.LIBRTY.WORDS

READ-ONLY DATA BLOCK MAP BY LOCATION FOR FILE: \HOME.$KEVIN.LIBRTY.FILE1

CODE SEGMENT 00

SP BASE LIMIT TYPE MODE NAME DATE TIME LANGUAGE SOURCE FILE

00 C077761 100017 COMMON WORD SIZE^NODE^TABLE 1994-11-19 18:04 TAL $BIND.Binder.LISTM
00 C100024 100062 COMMON WORD FINDKEY^OFFSET^TABLE 1994-11-19 18:04 TAL $BIND.Binder.LISTM
00 C122732 123126 COMMON WORD WORD^INFO 1994-06-19 12:00 TAL $BIND.LIBRTY.WORDS
00 C123127 123320 COMMON WORD HASH^DESC 1994-06-19 12:00 TAL $BIND.LIBRTY.WORDS
00 C123321 123515 COMMON WORD WORD^DESC 1994-06-19 12:00 TAL $BIND.LIBRTY.WORDS
00 C123516 124115 COMMON STRING RWTEXT 1994-06-19 12:00 TAL $BIND.LIBRTY.WORDS
00 C125351 125407 COMMON WORD HASH^TABLE^LENGTH 1994-11-19 18:04 TAL $BIND.Binder.LISTM
Binder Manual—528613-003
2-25

Using Binder Cross-Reference Lists
• Location of each reference

Data block cross-reference listings consist of these items:

• Data block name (either a common block name or the TAL special block,
#GLOBAL)

• Location and storage type (word, byte) of referenced identifier

• Name of the code block containing block references

• Location of each reference

Locations are word offsets, in octal, from the base of the block.

Figure 2-7 shows a sample cross-reference list for code blocks, entry points, and data
blocks.

Figure 2-7. Cross-Reference Listing (page 1 of 2)
BINDER - OBJECT FILE BINDER - T9621D30 - (31OCT94) SYSTEM \BECCA
Copyright Tandem Computers Incorporated 1982-1994
TIMESTAMP 1994-06-19 11:55:33

ENTRY POINT CROSS REFERENCE
(SORTED BY REFERENCED CODE BLOCK)

REFERENCED ENTRY POINT REFERENCING CODE BLOCK WORD OFFSET OF REFERENCES

PROC1 M 00002

 PROC2 00002

 PROC3 00002

PROC2 M 00003

 PROC3 00003 00016

PROC3 M 00006

PROC4 M 00007

STOP M 00012

ENTRY POINT CROSS REFERENCE
(SORTED BY REFERENCING CODE BLOCK)

REFERENCING CODE BLOCK REFERENCED ENTRY POINT WORD OFFSET OF REFERENCES

M PROC1 00002

 PROC2 00003

 PROC3 00006

 PROC4 00007

 STOP 00012

PROC2 PROC1 00002

PROC3 PROC1 00002

 PROC2 00003 00016
Binder Manual—528613-003
2-26

Using Binder Cross-Reference Lists
COMMON BLOCK CROSS REFERENCE
(SORTED BY REFERENCING CODE BLOCK)

REFERENCING CODE BLOCK OFFSET TYPE REFERENCED COMMON BLOCK WORD OFFSET OF REFERENCES

PROC3 000000 000000 WORD #GLOBAL 00005

 000000 000001 WORD #GLOBAL 00007

 000000 000002 WORD #GLOBAL 00011

 000000 000001 WORD DATA1 00013

 000000 000002 WORD DATA1 00015

PROC4 000000 000001 WORD #GLOBAL 00001

COMMON BLOCK CROSS REFERENCE
(SORTED BY REFERENCED COMMON BLOCK)

REFERENCED COMMON BLOCK OFFSET TYPE REFERENCING CODE BLOCK WORD OFFSET OF REFERENCES

#GLOBAL 000000 000000 WORD PROC3 00005

 000000 000001 WORD PROC3 00007

 PROC4 00001

 000000 000002 WORD PROC3 00011

DATA1 000000 000001 WORD PROC3 00013

 000000 000002 WORD PROC3 00015

ENTRY POINT MAP BY NAME

SP PEP BASE LIMIT ENTRY ATTRS NAME DATE TIME LANGUAGE SOURCE FILE

00 006 000051 000063 000051 M M 1994-07-27 11:55 TAL $BIND.MANUAL.STEST1

00 002 000007 000021 000021 V PROC1 1994-07-27 11:55 TAL $BIND.MANUAL.STEST1

00 003 000022 000025 000022 PROC2 1994-07-27 11:55 TAL $BIND.MANUAL.STEST1

00 004 000026 000045 000026 V PROC3 1994-07-27 11:55 TAL $BIND.MANUAL.STEST1

00 005 000046 000050 000046 PROC4 1994-07-27 11:55 TAL $BIND.MANUAL.STEST1

DATA BLOCK MAP BY NAME

BASE LIMIT TYPE MODE NAME DATE TIME LANGUAGE SOURCE FILE

000000 000002 COMMON WORD #GLOBAL 1994-07-27 11:55 TAL $BIND.MANUAL.STEST1

000006 000006 COMMON WORD .#GLOBAL 1994-07-27 11:55 TAL $BIND.MANUAL.STEST1

000007 000152 COMMON WORD .DATA1 1994-07-27 11:55 TAL $BIND.MANUAL.STEST1

000003 000005 COMMON WORD DATA1 1994-07-27 11:55 TAL $BIND.MANUAL.STEST1

Figure 2-7. Cross-Reference Listing (page 2 of 2)
Binder Manual—528613-003
2-27

Using Binder Cross-Reference Lists
Binder Manual—528613-003
2-28

3 BIND Commands
You can use BIND commands to specify input object files, to define and build the target
file, and to query the status of options set by the SET and SELECT commands. The
following topics contain an overview of commands and syntax conventions.

This section also describes all the commands available in BIND in alphabetical order.

Topic Page
Summary of Most Commonly Used Commands 3-2

How to Use BIND Commands Efficiently 3-3

Syntax Conventions for Name Lists as Command Elements 3-4

Command Page
ADD Command 3-6

ALTER Command 3-9

BUILD Command 3-11

CD Command 3-14

CHANGE Command 3-15

CLEAR Command 3-18

COMMENT Command 3-19

DELETE Command 3-19

DUMP Command 3-20

ENV Command 3-22

EXIT Command 3-23

FC Command 3-23

FILE Command 3-24

HELP Command 3-24

INFO Command 3-25

LIST Command 3-28

LMAP Command 3-32

LOG Command 3-32

MODE Command 3-33

MODIFY Command 3-34

MOVE Command 3-36

OBEY Command 3-38

OUT Command 3-39

RENAME Command 3-40

REPLACE Command 3-41

RESELECT Command 3-43
Binder Manual—528613-003
3-1

BIND Commands Summary of Most Commonly Used Commands
For a summary of BIND commands and their syntax, see Section 9, Syntax Summary.

Summary of Most Commonly Used Commands
BIND commands allow a broad range of object file manipulations.

RESET Command 3-44

SATISFY Command 3-47

SELECT Command 3-49

SET Command 3-57

SHOW Command 3-67

STRIP Command 3-75

SYSTEM Command 3-77

VERIFY Command 3-77

VOLUME Command 3-78

Table 3-1. Commonly Used BIND Commands (page 1 of 2)

Command Description
ADD Names the blocks and entry points to include; replaces blocks, entry

points, and any referenced RTDUs, deleting any previous occurrence of
the named item.

BUILD Creates the target file.

CLEAR Deletes input information without building a file.

COMMENT Enters comments.

DELETE Removes block names from the include lists.

DUMP Displays object file contents in ASCII, HEX, ICODE, OCTAL, or
DECIMAL.

FILE Gives a default disk file name for the current file to use for retrieval of
code or data blocks.

INFO Displays information about names on the include, unresolved reference,
and undefined lists.

LIST Selects load maps and object cross-reference listings.

REPLACE Names replacements for code blocks, data blocks, and any referenced
RTDUs already on the include lists.

SELECT Specifies controls for satisfying references or building the target file; also
selects BIND services such as parameter checking or compressing the
code area.

Command Page
Binder Manual—528613-003
3-2

BIND Commands How to Use BIND Commands Efficiently
The following restrictions apply when entering commands:

• You can enter multiple commands on the same line by separating them with the
semicolon character (;).

• If you enter a COMMENT in a multiple command line, it must be the last command
on the line.

• To continue a command to the next line, enter the ampersand (&) as the last
nonblank character of the current line. The maximum line length, including
continuation characters, is 132 characters. The maximum length of a continued
command record is 528 characters.

BIND also provides the following commands that are commonly used in other tools and
utilities:

Binder automatically expands a partial file name if it contains the appropriate file-name
part. For details, refer to Section 7, Guardian File Names and TACL Commands.

How to Use BIND Commands Efficiently
Some BIND commands are more efficient than other commands. This subsection
discusses these commands and their less efficient counterparts.

Searching for Files
An ADD * FROM file-name command tends to be more efficient than a SELECT
SEARCH command for files with a large number of entry points. The use of ADD * over
SELECT SEARCH may result in a performance increase.

Replacing Procedures
When replacing a procedure, use the REPLACE command rather than the ADD
command to replace a single module in a large file. This is a more efficient procedure
than rebuilding the file using ADD commands for each module contained in the file. For

SET Sets object file characteristics of the target file.

SHOW Displays the current file name and values in effect for SELECT and SET;
also displays the modify list. Displays contents of an existing file.

STRIP Deletes Binder, Inspect, and Accelerator information from the object
files.

ENV HELP OUT

EXIT LOG SYSTEM

FC OBEY VOLUME

Table 3-1. Commonly Used BIND Commands (page 2 of 2)

Command Description
Binder Manual—528613-003
3-3

BIND Commands Turning off Load Maps
example, if you built LARGFILE from MOD1, MOD2, MOD3, and MOD4, then altered
MOD1, enter the following commands to replace MOD1 in LARGFILE:

@ADD * FROM LARGFILE

@REPLACE MOD1

@BUILD LARGFILE!

Turning off Load Maps
Turning off load maps with the SELECT LIST * OFF command results in a substantial
performance increase. This is because half of the time spent generating a target file is
actually spent producing load maps. Turn off load maps only when you are certain that
the specified command sequence will produce exactly what you intend. If you are
interested in viewing the load maps only up to a specific point, you can press the Break
key during load map output instead.

Binding without Fixups
You can save additional time by using SELECT FIXUPS OFF on files that must be
processed a second time by Binder. SELECT FIXUPS OFF tells Binder not to fix code
and data references in the object file. To create an executable file, you must turn
SELECT FIXUPS to ON when binding the file the second time.

Syntax Conventions for Name Lists as
Command Elements

Many BIND commands allow lists of names for entry points, code blocks, or data
blocks to be used as part of the command line syntax.

Table 3-2. Syntax Conventions for Named Lists (page 1 of 2)

Element Definition
string A valid language identifier for a code or data block or any

number of leading characters of a code or data block
identifier or an octal code or data block address

name-list string

(string [, string])

block-name Valid language identifier for a code block or for a data block

block-range block-name

block-name TO block-name

* TO block-name

block-name TO *
Binder Manual—528613-003
3-4

BIND Commands Syntax Conventions for Name Lists as Command
Elements
Name lists can include one or more code or data blocks. A code block is a C function,
a COBOL85 program unit, a FORTRAN program or subprogram, a Pascal routine, or a
TAL PROC. A data block is defined differently for each language. For information about
data blocks and data block names, see Section 4, Object File Structure.

Because name lists can also include ranges of names within lists, you can specify
ranges of blocks or entry points; for example, the ADD, DELETE, and REPLACE
commands allow this usage.

Name ranges can apply to input object files. If so, the range is the span of blocks or
entry points between the first name and the second name. You must give the names in
the order of their location in the file.

You can also specify ranges of names, such as on include lists; for example, the
ALTER, INFO, and MOVE commands allow this usage. The range is determined by the
order in which the names appear on the include list. You can use the INFO command
to display these lists.

block-list block-range

(block-range [, block-range]...)

*

entry-name A valid language identifier for a primary or secondary entry
point name

entry-range entry-name

entry-name TO entry-name

* TO entry-name

entry-name TO *

entry-list entry-range

(entry-range [, entry-range]...)

*

* All members of the current include list or input object file

name TO name All members from the first name to the second name of the
include list or object

file

* TO name All members from the start of the include list or object file to
the given name

name TO * All members from the given name to the end of the include
list or object file

Table 3-2. Syntax Conventions for Named Lists (page 2 of 2)

Element Definition
Binder Manual—528613-003
3-5

BIND Commands ADD Command
ADD Command
The ADD command has two forms. The first form of the ADD command inserts names
in the four include lists: include entry point list, include data block list, include code
block list, and include run-time data unit list (RTDU list). The second form of the ADD
command specifies that a code segment boundary marker be placed at the end of the
current include code list.

ADD resolves all previously unresolved external references that are satisfied by the
added entry point or data block, except those named on the omit list.

You cannot use the ADD command to include nested code blocks (blocks with lexical
levels greater than one).

CODE entry-list

specifies code to be included in the target file. Associated code blocks, entry
points, own blocks, and RTDUs are added to the appropriate include lists for each
entry point named. See Table 3-2 for valid forms of entry-list.

DATA block-list

specifies FORTRAN COMMON blocks, TAL BLOCKs, C external variables, Pascal
external variables, Pascal exported variables, and COBOL85 EXTERNAL data
items to be included in the target file. See Table 3-2 for valid forms of block-list.

*

specifies all code blocks, entry points, data blocks, and referenced RTDUs in the
file be added to the applicable include lists.

FROM file-name

specifies the Guardian object file name or OSS pathname to use. The default is the
current file.

DELETE

specifies any previously inserted occurrences of names added by this command
be deleted.

SPACE

specifies a code segment boundary marker be placed at the end of the current
include code list. The ADD SPACE command cannot include any other
parameters.

ADD { CODE entry-list } [FROM file-name] [, DELETE]
{ DATA block-list }
{ * }
or
ADD SPACE
Binder Manual—528613-003
3-6

BIND Commands ADD Command
Usually, Binder minimizes the number of TNS code segments used, by filling each
64K-instruction segment as fully as possible. The rarely-used ADD SPACE
command causes Binder to leave the current code segment unfilled, sending all
procs from subsequent include lists or search lists into the next segment(s).
Consecutive ADD SPACE commands will create one or more empty segments. For
example, when SYSGEN invokes BIND to create the TNS SC System Code
library, SYSGEN uses ADD SPACE commands to have the first nonempty segment
be addressed as SC.06 instead of the default SC.00. Another possible use for the
ADD SPACE command or the MOVE IN NEW SPACE command is to manually
arrange that frequently-called procs are located in the same segment as their
primary callers. A program codefile cannot have more than 32 TNS code
segments, numbered 0..31.

Considerations
• Binding Modules Compiled for Different Run-Time Environments

For a description of the rules Binder applies when binding modules compiled for
different run-time environments, see Section 2, Using Binder

• Entry Point or Data Block Names Not on the Include Lists

If you specify an entry or data block name for a block not already on an include list,
the ADD command adds the name to the end of the list, regardless of whether you
specify DELETE. If you specify an entry or data block name for a block already on
the include list, ADD adds the name to the end of the list only if you also specify
the DELETE option. Otherwise, Binder ignores the ADD command. For entry
points, Binder also issues a warning message indicating that the specified entry
point is already on the include list.

• Entry Point in an ADD Command

Naming an entry point in an ADD command automatically inserts the code block
that contains the entry point in the include code block list. Usually, data blocks are
added implicitly (by means of references in included code). You can add
FORTRAN COMMON blocks, TAL BLOCKs, C external variables, Pascal public
variables, and COBOL85 EXTERNAL blocks explicitly. This option lets you define a
different set of initial values.

• Pascal Procedures

If you want to use the ADD, DELETE option of the ADD command to replace one
copy of a Pascal procedure with another copy that has the same name, you must
export the procedure in both modules. Otherwise, Binder considers them to be
separate procedures. For example, if module A and module B both contain
procedure C and you do not export the procedure in each module, Binder names
one A.C and the other B.C. In this case, the command ADD CODE C FROM B,
DELETE adds B.C to the file without deleting A.C.

• Target File Order
Binder Manual—528613-003
3-7

BIND Commands ADD Command
To ensure Binder builds the target file correctly, add names to the lists in the order
in which you want them to appear in the target file. Binder adds names to the
include lists in the order in which ADD commands specify them and, in general,
uses the include list order to build the target file.

• COBOL85 Files

For COBOL85 files, ADD CODE is equivalent to ADD *, because COBOL85 files
do not have separate data blocks except for COBOL85 EXTERNAL.

• Creating an Object File that Has Multiple Code Segments

ADD SPACE lets you create an object file that has multiple code segments by
adding code blocks from one object file, adding a space boundary marker, adding
more blocks from the same file or another file, inserting another space, and so on.

• Rules for Setting HIGHPIN, HIGHREQUESTERS, and RUNNAMED

Binder sets HIGHPIN ON for a target object file only if all of the files that make up
the target object file are set HIGHPIN ON. Binder sets HIGHREQUESTERS ON for
a target object file if and only if HIGHREQUESTERS ON is set for the object file
containing the main program. Binder sets RUNNAMED ON for a target object file if
any object file that makes up the target file is set RUNNAMED ON.

• Error Conditions

If a specified entry point or data block is not in the specified FROM file, Binder
issues an error message and halts execution of the ADD command.

• Similarity Between the REPLACE Command and the ADD,DELETE Command

ADD,DELETE adds a specified entry name to the end of the include list, deleting
the previous occurrence of the entry; REPLACE removes the previous occurrence
of the entry name and inserts the new reference in its place. If an error occurs
when you attempt an ADD command, you might accomplish your goal by using a
REPLACE command. (Use REPLACE with caution for COBOL85 and FORTRAN
files. For details, see the REPLACE Command on page 3-41.)

Examples
• In this example, the first ADD command transfers the contents of OLDFILE to

NEWFILE; the second ADD command includes BLK-1 to BLK-5 of OBJ in
NEWFILE.

@FILE oldfile

@ADD *

@ADD CODE blk-1 TO blk-5 FROM obj

@BUILD newfile
Binder Manual—528613-003
3-8

BIND Commands ALTER Command
• In the following example, NEWFILE contains BLOCK-1 from OBJFILE and all of
OLDFILE except any code block named BLOCK-1.

@FILE oldfile

@ADD * FROM oldfile

@ADD CODE block-1 FROM objfile, DELETE

@BUILD newfile

• The following example shows the use of the ADD SPACE command to create a file
containing multiple code segments: code blocks from OLDFILE are in code
segment 0, those from SOMEFILE are in code segment 1, and those from
ANYFILE are in code segment 2.

@FILE oldfile

@ADD * FROM oldfile

@ADD SPACE

@ADD * FROM somefile

@ADD SPACE

@ADD * FROM anyfile

@BUILD newfile

ALTER Command
The ALTER command changes the attributes of code blocks and entry points in both
the include code block and the include entry point lists. Attributes that can be changed
are CALLABLE, MAIN, PRIVILEGED, and RESIDENT. You can change the MAIN
attribute only for TAL procedures and C functions.

You cannot use the ALTER command with nested code blocks (blocks with a lexical
level greater than one).

entry-list

specifies one or more primary or secondary entry points on the corresponding
include lists. See Table 3-2 for valid forms of entry-list.

alter-spec

is one of the following code attributes:

ALTER entry-list , alter-spec [, alter-spec] ...
alter-spec is one of:
CALLABLE { ON | OFF }
LIKE entry-name
MAIN { ON | OFF }
PRIV { ON | OFF }
RESIDENT { ON | OFF }
Binder Manual—528613-003
3-9

BIND Commands ALTER Command
CALLABLE {ON | OFF}

specifies whether privileged entry points are callable by nonprivileged
procedures. CALLABLE applies only to privileged code, and Binder
automatically sets PRIV ON for an entry point with CALLABLE ON.

LIKE entry-name

specifies that the entry points in entry-list have the same attributes as LIKE
entry-name, which must be on an include list. If LIKE occurs, it overrides any
preceding parameters of this ALTER command.

MAIN {ON | OFF}

specifies whether the entry points in entry-list have the MAIN attribute. You can
specify MAIN only for TAL and C code; COBOL85, Pascal, and FORTRAN
MAIN characteristics are set permanently at compilation time.

PRIV {ON | OFF}

specifies whether entry points in entry-list are run in privileged mode. If PRIV
ON is set, the procedure can be called only by procedures that also run in
privileged mode.

RESIDENT {ON | OFF}

specifies whether code blocks reside in main memory the entire time the
process is running. Binder automatically applies RESIDENT to the code block
containing the named entry point.

Examples
The following examples illustrate the syntax of the ALTER command.

• In the following example, the attributes of the SUB^1 code block are changed to
match the attributes of SUB^2.

@ADD CODE sub^1 FROM objfile1

@ADD CODE sub^2 FROM objfile2

@ALTER sub^1, LIKE sub^2

• The ALTER command in this example changes the RESIDENT attribute to ON for
all code blocks and entry points from the beginning of the include lists through
entry name SUB^5.

@ALTER * TO sub^5, RESIDENT ON

• The next example changes the CALLABLE attribute to OFF for entry names
SUB^1 and SUB^5 through SUB^8 on the include lists.

@ALTER (sub^1, sub^5 TO sub^8), CALLABLE OFF
Binder Manual—528613-003
3-10

BIND Commands BUILD Command
BUILD Command
The BUILD command builds the target file using the code block, entry point, data
block, and RTDU names from the include lists. You enter the BUILD command after
completely defining the target file with other commands. After the build operation,
Binder returns to its initial state.

OUT file-name

directs the output listing to the specified file. See the description of the OUT
Command on page 3-39 for additional information.

file-name

is a valid Guardian file name or OSS pathname for the target file. If file-name
already exists, Binder cannot write to it unless you use the ! option, which tells
Binder to purge the existing file.

In the Guardian environment, Binder uses the default file name OBJECT in the
default volume and subvolume if you omit file-name. Binder also uses the file
name OBJECT if you did not specify ! and file-name either already exists or
cannot be accessed.

In the OSS environment, Binder uses the default file name object in the default
working directory if you omit file-name. Binder also uses the file name object if
you do not specify ! and file-name either already exists or cannot be accessed.

!

specifies that Binder purge any previously existing file named file-name.

set-param

specifies an object-file attribute for the target file. This specification overrides, for
this command only, any value previously established for that attribute.

set-param can be one of the following:

{DATA} value [PAGES | WORDS | BYTES]

{EXTENDSTACK}

{STACK}

HEAP value [PAGES | WORDS | BYTES]

HEAP STATISTICS {ON | OFF}

HIGHPIN {ON | OFF}

HIGHREQUESTERS {ON | OFF}

BUILD [/ OUT file-name /] [file-name] [!]
 [, { set-param | select-param }] ...
Binder Manual—528613-003
3-11

BIND Commands BUILD Command
INSPECT {ON | OFF}

LARGESTACK value [PAGES | WORDS | BYTES]

LIBRARY file-name

LIKE file-name

PEP value

PFS value [PAGES | WORDS | BYTES]

RUNNAMED {ON | OFF}

SAVEABEND {ON | OFF}

SUBTYPE number

SYMBOLS {ON | OFF}

SYSTYPE {GUARDIAN | OSS}

TARGET [TNS | TNS/R | TNS/E | ANY]

USERLIBRARY {ON | OFF}

See the SET Command on page 3-57 for a description of these specifiers.

select-param

specifies a Binder control or option for building the object file. This specification
overrides, for this command only, any value previously established for that
parameter. select-param is defined as one of the following:

{CHECK check-option}

{CHECK (check-option [, check-option]...)}

COMPACT {ON | OFF}

COMPRESS DATA {ON | OFF}

FILESYS {OSS | GUARDIAN}

FIXUPS {ON | OFF}

{LIST listing-option}

{LIST (listing-option [, listing-option]...)}

{OMIT entry-name}

{OMIT (entry-name [, entry-name]...)}

{REFER refer-pair}

{REFER (refer-pair [, refer-pair]...)}

RUNNABLE OBJECT {ON | OFF}
Binder Manual—528613-003
3-12

BIND Commands BUILD Command
SATISFY {ON | OFF}

{SEARCH file-name}

{SEARCH (file-name [, file-name]...)}

WARNINGS {ON | OFF}

See the SELECT Command on page 3-49 for a description of these specifiers.

Considerations
• Using BUILD with SATISFY ON

If you enter BUILD SATISFY ON, Binder resolves any remaining external
references. Binder accesses the user files on the search list and, if it finds any of
the unresolved entry points, adds the corresponding code to the target file it is
building.

If you enter BUILD SATISFY OFF, Binder does not resolve remaining external
references, but does resolve data references. The default is BUILD SATISFY ON.

• Target File Name

Binder creates the target file in a temporary file and gives the target file one of the
following names:

° file-name, if a file by that name did not exist.

° file-name, if a file by that name previously existed, but you specified !, and
the purge was successful.

° OBJECT, if no file-name was specified (default), or if file-name existed
and was not purged.

° ZZBI nnnn, where nnnn is a random numeric identifier, if the preceding
naming attempts failed.

• Error Conditions

The build operation fails if Binder cannot name the target file. When this happens,
Binder issues an error message and prompts you for input. The temporary file
containing the target file is lost, as is the information from previous commands. You
must specify the target file contents again by entering definition commands.

If the build operation failed because of insufficient disk space, you must correct the
condition before the build operation can succeed.

Note. If the old object file is running when you specify a new object file of the same
name with the ! option, Binder does not purge the old file but renames it ZZBInnnn
(where nnnn is supplied by Binder).
Binder Manual—528613-003
3-13

BIND Commands CD Command
The only error condition that does not cause BUILD to clear the lists (and,
consequently, the only one that does not require you to begin again) is ILLEGAL
SYNTAX.

Examples
The following examples illustrate the syntax of the BUILD command.

• This example uses the REPLACE command to replace code for the entry point
EPNAME1 in the object file FILENAME with code of the same name from
NEWFILE.

@ADD * FROM filename

@REPLACE CODE epname1 FROM newfile

@BUILD objfile, SEARCH (lib1, lib2)

• The following example uses the SATISFY OFF option to suppress resolution of
external code references.

@ADD CODE sub^1 TO * FROM objfile1

@ADD CODE * FROM objfile2, DELETE

@BUILD newfile, SATISFY OFF

CD Command
The CD command allows you to specify the default current working directory Binder
uses to expand partial pathnames. The current working directory is only used if the file
system is set to OSS in the SELECT FILESYS command. To display the current
working directory, use the ENV command.

directory

specifies an OSS directory name.

Example
The following example illustrates the syntax of the CD command.

CD /usr/smith

CD { directory }
Binder Manual—528613-003
3-14

BIND Commands CHANGE Command
CHANGE Command
The CHANGE command allows you to amend or patch the attribute values of an
existing object file. In this respect, the CHANGE command is similar to the SET
command, which specifies attribute values for a target file before it is built.

AXCEL ENABLE {ON | OFF}

changes the AXCEL ENABLE attribute to ON or OFF. By default, Binder sets the
AXCEL ENABLE attribute to OFF. The Accelerator automatically sets the value of
this attribute to ON regardless of the Binder setting.

After a file has been processed by the Accelerator, AXCEL ENABLE OFF disables
the Accelerator region of an object file, allowing you to execute the TNS program
code in accelerated mode for certain debugging purposes. This is usually
unnecessary.

DATA value [PAGES | WORDS | BYTES]

specifies the amount of data space to be allocated for the object file. The default
data space allocated is the maximum number of data pages in any of the files from
which data is included or the number of pages needed to hold all the data blocks
plus an estimate of the stack space needed for local storage, whichever is larger. If
value is less than the value already in the target file, it is ignored.

You can specify either a decimal value or an octal value (preceded by %) for
value.

You can specify any of the following units for value: PAGES, WORDS, or BYTES.
The default unit for value is PAGES. (One PAGE is 1024 WORDS.)

If you specify BYTES as the unit and enter an odd number for value, Binder rounds
this number up to an even value.

CHANGE
{ AXCEL ENABLE { ON | OFF } } IN file-name
{ DATA value [PAGES | WORDS | BYTES] }
{ HIGHPIN { ON | OFF } }
{ HIGHREQUESTERS { ON | OFF } }
{ INSPECT { ON | OFF } }
{ LIBRARY file-name }
{ MISALIGN { FAIL | NOROUND | SYSDEFAULT} IN file-name
{ OCA ENABLE { ON | OFF } } IN file-name
{ PFS value [PAGES | WORDS | BYTES] }
{ RUNNAMED { ON | OFF } }
{ SAVEABEND { ON | OFF } }
{ SYSTYPE { GUARDIAN | OSS } }
{ SUBTYPE number }
{ TARGET { TNS | TNS/R | TNS/E | ANY } }
{ USER BUFFER { ON | OFF } }
Binder Manual—528613-003
3-15

BIND Commands CHANGE Command
HIGHPIN {ON | OFF}

specifies whether an object file can run at a high process identification number
(PIN), if the process creation request allows it and a high PIN is available.

HIGHREQUESTERS {ON | OFF}

specifies whether an object file can support calls from requesters running at a high
process identification number (PIN).

INSPECT {ON | OFF}

specifies whether the Inspect program or the Debug program is chosen for
debugging when you execute the object file. The default is OFF; that is, the Debug
program is used. INSPECT OFF automatically causes Binder to set SAVEABEND
OFF. (You can use the TACL SET INSPECT or RUN command to override the
INSPECT option.)

LIBRARY file-name

specifies the name of a user library to be associated with the object file at run time.
You can override file-name at run time by using the LIB parameter in the
command interpreter RUN command. The default is no user library.

MISALIGN { FAIL | NOROUND | SYSDEFAULT} IN file-name

specifies the MISALIGN attribute in the specified file. This codefile attribute is
ignored when executing on TNS/R systems. The attribute is effective on TNS/E
systems. The default is SYSDEFAULT.

MISALIGN FAIL causes the system to generate an instruction failure interrupts,
which will be reported as trap 1 (INSTRUCTIONFAILURE) or a process abend if no
ARMTRAP handler in a Guardian process. MISALIGN FAIL is only effective on
TNS/E systems.

MISALIGN NOROUND conveniently allows all valid TNS programs and also
erroneously-coded TNS programs to run, but not necessarily with the same results
as on some prior machines. This option causes the system to complete the
operation using the operand’s “natural”(unrounded) address.

MISALIGN SYSDEFAULT allows application of the current TNS Misalign policy.

OCA ENABLE { ON | OFF } IN file-name

The OCA ENABLE attribute has dual purposes:

It suppresses the translation (OCA will refuse to translate a file that has this bit
set). OCA ENABLE OFF will not allow an already Itanium-augmented file to be
translated again, returning an error. Again, OCA will refuse to translate an object
file (previously not Itanium-augmented) whose OCA ENABLE attribute has been
changed to OFF through Binder.
Binder Manual—528613-003
3-16

BIND Commands CHANGE Command
The OCA ENABLE attribute controls whether a program will execute in translated
mode on TNS/E machines. By default, Binder sets the OCA ENABLE attribute to
ON. OCA does not change the value of this attribute. After a file has been
processed by the OCA, OCA ENABLE OFF disables the Itanium region of an
object file, allowing you to execute the TNS program code (but not the translated
Itanium code) on TNS/E machines for debugging purposes.

PFS value [PAGES | WORDS | BYTES]

specifies the size of the process file segment field in the object header of the
specified file. value can be from 64 to 512 pages. The default unit for this
command is PAGES. Binder rounds bytes up to the nearest word.

RUNNAMED {ON | OFF}

specifies whether an object file runs as a named process, even if no RUN
command NAME parameter is specified.

SAVEABEND {ON | OFF}

specifies whether a save file is to be created if the process terminates abnormally
during execution. Binder automatically sets INSPECT ON if SAVEABEND is ON.
The default is OFF.

SUBTYPE number

specifies a value for the process subtype associated with the object file; number is
a decimal value in the range 0 through 63.

SYSTYPE {GUARDIAN | OSS}

specifies whether the target execution environment for the object file is the
Guardian environments or the OSS environment. The default is Guardian.

TARGET {TNS | TNS/R | TNS/E | ANY}

specifies the TARGET attribute in the specified file. See the SET Command on
page 3-57 for details. The default is unspecified.

IN file-name

specifies the Guardian object file or OSS pathname to be changed.

USER BUFFER { ON | OFF }

changes the value of USER BUFFER from ON to OFF (default is OFF) for any
particular object file.

Considerations
• You cannot patch the current file in Binder. If you attempt to use CHANGE on the

current file, you must then execute a CLEAR command and start again. Otherwise,
Binder Manual—528613-003
3-17

BIND Commands CHANGE Command
the file remains the current file and repeated attempts to CHANGE result in the
same error.

• Each successive CHANGE command specifying one of these parameters
overrides the previous specification. Use the SHOW command with the SET
attribute option to determine the current values of the file attributes.

• CHANGE can be used on files without a Binder region.

• The HIGHPIN ON attribute specifies that an object file is allowed to run at a high
PIN. It does not specify that an object file meets the conditions to run at a high PIN.
See Running Processes at a High PIN on page 3-65 for more information.

• The HIGHREQUESTERS ON attribute specifies that an object file is allowed to
support requests from processes running at high PINs. It does not specify that an
object file meets the conditions to support requests from processes running at high
PINs. See Running Processes at a High PIN on page 3-65 for more information.

Examples
The following examples illustrate the syntax of the CHANGE command.

• The following command specifies that a save file for MYFILE is to be created if the
process terminates abnormally during execution:

@CHANGE SAVEABEND ON IN myfile

• The following command specifies that the user library LIBFILE is to be associated
with MYFILE at run-time:

@CHANGE LIBRARY libfile IN myfile

• The following command shows the sequence of actions you need to perform in
order to find out the current value of an attribute, change the value of the attribute,
and verify that the attribute has been changed:

@file cref.cobext

CURRENT FILE IS $DATA.CREF.COBEXT

@show set subtype

SUBTYPE 0

@clear

@change subtype 1 in cref.cobext

@file cref.cobext

CURRENT FILE IS $DATA.CREF.COBEXT

@show set subtype

SUBTYPE 1
Binder Manual—528613-003
3-18

BIND Commands CLEAR Command
CLEAR Command
The CLEAR command returns Binder to the original state without building an object
file.

Binder clears its internal lists (include, omit, refer, search, unresolved reference,
undefined, and modify), the current file as established by a FILE command, and all
SET and SELECT options.

COMMENT Command
The COMMENT command allows you to enter comment information to be displayed in
the output listing.

text

is a string of characters.

Considerations
• If you use the COMMENT command in a line containing other commands,

COMMENT must be the last command on the line.

• To continue COMMENT text over more than one line, start each successive line
with either the COMMENT command or the ampersand (&) character.

Examples
The following examples show three COMMENT commands.

@DELETE CODE block1; COMMENT deletes all of block1

@COMMENT adds subprog1, subprog2, subprog3 from filea

@COMMENT adds subprog4, subprog5 from fileb

DELETE Command
The DELETE command removes the specified blocks from the include lists. If any
MODIFY commands were previously specified for these blocks, Binder also removes
these changes from the modify list.

CLEAR

COMMENT [text]
Binder Manual—528613-003
3-19

BIND Commands DUMP Command
You cannot use the DELETE command to delete nested code blocks (code blocks with
a lexical level greater than one).

CODE block-list

specifies code blocks to be deleted. See Table 3-2 for valid forms of block-list.

DATA block-list

specifies data blocks to be deleted. See Table 3-2 for valid forms of block-list.

*

specifies that all blocks are to be deleted.

Considerations
• The DELETE command has three functions:

° Places external references to deleted blocks on the unresolved reference lists.

° Removes external references from deleted blocks from the unresolved and
undefined reference lists if no other blocks refer to those names.

° Discontinues parameter checking for the deleted blocks.

• If you specify DELETE *, the SELECT and SET specifications remain in effect.
Binder clears the include, modify, undefined, and unresolved reference lists.

Example
The following example deletes all data and code blocks from the include lists.

@DELETE *

DUMP Command
The DUMP command displays all or part of the contents of a specified code or data
block from the current object file. The display is unformatted.

You can use DUMP on nested code blocks (blocks with a lexical level greater than
one); however, if you do not qualify the procedure name, BIND selects the first one in
the object file.

DELETE { CODE block-list }
{ DATA block-list }
{ * }

DUMP [/ OUT file-name /] { CODE code-block-name }
 { DATA data-block-name }
{ offset [, count] } [spec-list] [FROM file-name]
{ offset [, *] }
{ * }
Binder Manual—528613-003
3-20

BIND Commands DUMP Command
OUT file-name

directs the output listing to the specified file. See the OUT Command on page 3-39
for additional information.

CODE code-block-name

specifies a code block in either the FROM file-name or the current file.

DATA data-block-name

specifies a data block in either the FROM file-name or the current file.

offset

is a word offset, in octal, from the base of the block.

, count

specifies the number of words, in octal, to display starting from offset. The
default is one word.

, *

specifies that the part of the block starting at offset and continuing to the end of the
block be displayed.

*

specifies that the entire block be displayed.

spec-list

is one or more format specifiers in the form:

dump-spec

(dump-spec [, dump-spec]...)

dump-spec

is one of the following:

ASCII

DECIMAL

HEX

ICODE

OCTAL

Use ICODE with the CODE code-block-name parameter only. The default is
OCTAL.
Binder Manual—528613-003
3-21

BIND Commands ENV Command
FROM file-name

is the disk file name of an object file. The default is the current file. OSS
pathnames are accepted.

Considerations
DUMP displays the current file contents. Therefore, you cannot use DUMP to display
file contents changed with a MODIFY command. (MODIFY affects only the target file.)
DUMP DATA does not give useful information for COBOL85 data blocks, except for
COBOL85 EXTERNAL.

Examples
The following examples illustrate the syntax of the DUMP command.

• This example uses the DUMP command to dump all of BLOCK1.

@DUMP CODE block1 * HEX

• This example uses the DUMP command to dump eight words from decimal word
12 of BLOCK5 in OBJFILE.

@DUMP DATA block5 14,10 ASCII FROM objfile

• This example shows the corrective action taken when the current file does not
correspond to the dump request.

@FILE f1; ADD CODE b1 TO b5; FILE f2; ADD *

@DUMP CODE b3 *

***** ERROR ***** Block does not exist in file: B3

@DUMP CODE b3 * FROM f1

ENV Command
The ENV command displays the current settings of program environment parameters.

Considerations
If you specify no options, Binder displays the values for all parameters. For additional
information, see the descriptions of the CD Command, LOG Command, MODE
Command, SYSTEM Command, and VOLUME Command.

Example

ENV [LOG]
 [MODE]
 [SYSTEM]
 [VOLUME]
 [DIRECTORY]
Binder Manual—528613-003
3-22

BIND Commands EXIT Command
The following example displays the current settings of the program environment
parameters.

@env

LOG (Logging turned off)

MODE UPSHIFT

SYSTEM \CALIF

VOLUME $DATA.FTRAN

DIRECTORY /G/DATA/FTRAN

EXIT Command
The EXIT command stops the BIND process. If you do not issue a BUILD command
before exiting, Binder does not create a target file.

Considerations
Entering CTRL/Y also stops the BIND process.

FC Command
The FC (Fix Command) command allows you to edit or repeat a command. When you
enter FC, the last command you typed appears followed by the FC prompt, a period (.),
on the next line. At the prompt you can enter the subcommands R, I, and D to replace,
insert, and delete characters in the command line. See the Guardian User's Guide for
more information.

EXIT

FC
Binder Manual—528613-003
3-23

BIND Commands FILE Command
Example
This example uses the FC command to correct a word, from LISP to LIST, in the
command line.

@LISP SOURCE

^

***** ERROR ***** Invalid syntax

@FC

@LISP SOURCE

. T

@LIST SOURCE

FILE Command
The FILE command establishes the current file for subsequent ADD, DUMP, LIST,
REPLACE, and SHOW commands. The current file remains the current file until
another FILE, CLEAR, or BUILD command is successfully executed. There is no
default for the current file.

file-name

is the Guardian object file name or OSS pathnames.

Example
The following example establishes $PROGS.PRIMES.X as the current file.

@FILE $progs.primes.x

HELP Command
The HELP command displays Binder commands and syntax.

OUT file-name

directs the help output to the specified file. See OUT Command on page 3-39 for
additional information.

FILE file-name

HELP [/ OUT file-name /] [topic [subtopic [subtopic]]]
 [subtopic]
 [< param-name >]
Binder Manual—528613-003
3-24

BIND Commands INFO Command
topic

is a Binder command name or topic.

subtopic

is a command parameter or Binder topic as displayed in a HELP topic command.

<param-name>

is a command parameter as displayed in a HELP topic command.

Considerations
• If you specify no options for the HELP command, Binder displays the names of all

commands and topics.

• You can obtain the correct syntax for a particular subtopic by first specifying the
topic with which the parameter is associated; for example:

@HELP DELETE

DELETE {CODE <block-list>}

{DATA <block-list>}

{*}

• A command parameter can be preceded and followed by optional angle brackets.
In the following example, the name of the parameter for which you want help
information is surrounded by angle brackets:

@HELP DELETE

DELETE {CODE <block-list>}

{DATA <block-list>}

@HELP <block-list>

• If you do not get HELP information, verify that the PDTHELP file resides in the
same volume and subvolume as Binder. If the file is missing, Binder cannot print
HELP information.

• To exit HELP or move up a level within HELP, press RETURN or CRTL/Y.

INFO Command
The INFO command displays information about code blocks, entry points, data blocks,
and RTDUs in the include, unresolved, and undefined reference lists.
Binder Manual—528613-003
3-25

BIND Commands INFO Command
You can use the INFO command to display information about nested code blocks
(blocks with a lexical level greater than one). If you do not specify the qualified block
name, however, Binder selects the first occurrence of the block name.

OUT file-name

directs the output listing to the specified file. See OUT Command on page 3-39 for
additional information.

INCLUDE CODE block-list

displays the attributes and lengths of code blocks in the block-list and the total
code size. See Table 3-2 for valid forms of block-list. With the DETAIL option, only
the external definition of a code block is displayed. You can display any instance of
such a code block by fully qualifying the block-list with the name of its source file.

INCLUDE DATA block-list

displays the lengths of all data blocks in block-list and the total data size.

INCLUDE ENTRY entry-list

displays the attributes of entry points in entry-list. See Table 3-2 for valid forms of
entry-list.

INCLUDE *

displays the attributes of all code blocks, data blocks, entry points, and RTDUs in
the include lists. This is the only way to display all instances of a multiply-defined
code block.

DETAIL

provides further information for blocks in the include lists such as date and time
compiled, source language and environment (setting of the ENV directive),
SYMBOLS ON or OFF, and the source file from which the block was compiled.

UNRESOLVED DATA

displays names of data blocks on the unresolved reference list and in the
undefined list.

INFO [/ OUT file-name /]
{ INCLUDE { CODE block-list } [, DETAIL] }
{ { DATA block-list } }
{ { ENTRY entry-list} }
{ { * } }
{ }
{ UNRESOLVED { DATA } }
{ { ENTRY } }
{ { * } }
{ }
{ UNDEFINED * }
{ }
{ * [, DETAIL] }
Binder Manual—528613-003
3-26

BIND Commands INFO Command
UNRESOLVED ENTRY

displays the names and default files of entry points in the unresolved reference list.

UNRESOLVED *

displays the names of entry points and data blocks in the unresolved reference lists
and the undefined list.

UNDEFINED *

displays the names of data blocks in the undefined data list: data blocks whose
initializing module has not been located.

*

displays all include, unresolved, and undefined lists.

Examples
The following examples illustrate the syntax of the INFO command.

• The following example shows the insertion of a code segment boundary in a
multiple-code segment:

@INFO INCLUDE CODE *

INCLUDE CODE: 18 ENTRIES

NAME SIZE ATTRIB

T9621D30^31OCT94^22JAN95 1

LM^ADDENTRY 108

 NEW SPACE

LM^ALLOCATE 69

...

TOTAL CODE SIZE = 986
Binder Manual—528613-003
3-27

BIND Commands LIST Command
• This example displays all include and unresolved lists including DETAIL
information:

@INFO *, DETAIL

INCLUDE CODE: 15 ENTRIES

NAME SIZE ATTRIB

FORMATTER 4672

LANG: TAL ENV: NEUTRAL TIME: 1994-02-12 19:19 SYMBOLS: ON

FILE: \USA.$RLSD.TOOLS.VERS3

TOTAL CODE SIZE = 9876

...

INCLUDE ENTRY: 20 ENTRIES

NAME OFFSET ATTRIB

FORMATTER 4450 V

LANG: TAL ENV: NEUTRAL TIME: 1994-02-12 19:19 SYMBOLS: ON

FILE: \USA.$RLSD.TOOLS.VERS3

...

INCLUDE DATA: 5 ENTRIES

NAME SIZE

#RUCB 77

LANG: FORTRAN ENV: OLD TIME: 1992-04-12 19:19 SYMBOLS: ON

FILE: \USA.$RLSD.TOOLS.VERS4

...

TOTAL DATA SIZE = 512

UNRESOLVED ENTRY: 15 ENTRIES

NAME FILE

UT^INTERNAL^ERROR

...

UNRESOLVED DATA: 0 ENTRIES

LIST Command
The LIST command displays load maps and cross-reference data for entry points and
code and data blocks. You can specify the object file either with a previous FILE
command or with the FROM parameter of the LIST command.

The LIST command prints the object file name and timestamp at the start of its listings.
Binder Manual—528613-003
3-28

BIND Commands LIST Command
You can use the LIST command with nested code blocks (blocks with a lexical level
greater than one); however, if you do not fully qualify the code block, Binder selects the
first occurrence of the code block name in the file.

OUT file-name

directs the output listing to the specified file. file-name is a standard file name.
See OUT Command on page 3-39 for additional information.

SOURCE

specifies that the source file be listed for each code and data block used in
creating the object file. The output shows, by source file, all code blocks (identified
by the letter P) and all data blocks (identified by the letter B) in the object file.

CODE name-list [IN SPACE num]

lists the load map for each name in name-list. The 132-character output gives
all the information shown in a load map from Binder. See Table 3-2 for valid forms
of name-list.

num

is an octal number between 0 and %37.

CODE block-list

lists the base address in code space for each block name in block-list. The
asterisk specification is not acceptable for this command, but all other valid forms
of block-list, as shown in Table 3-2, are allowed. The 132-character output
gives all the information shown in a load map from Binder.

DATA name-list

lists the load map for each address in name-list. The 132-character output gives all
the information shown in a load map from Binder. See Table 3-2 for valid forms
of name-list.

LIST [/ OUT file-name /]

{ { SOURCE } [FROM file-name] }
{ { } }
{ { CODE name-list [IN SPACE num] } }
{ { } }
{ { CODE block-list } }
{ { } }
{ { DATA name-list } }
{ { } }
{ { DATA block-list } }
{ { } }
{ { XREF [XREF- options] } }
{ }
{ (list-option [, list-option] ...) }
{ [FROM file-name] [, BRIEF] }
Binder Manual—528613-003
3-29

BIND Commands LIST Command
DATA block-list

lists the base address in data space for each block name in block-list. The
asterisk specification is not acceptable for this command, but all other valid forms
of block-list, as shown in Table 3-2, are allowed. The 132-character output
gives all the information shown in a load map from Binder.

XREF [XREF-options]

displays cross-reference information for one or more code blocks, entry points, and
data blocks. (The * option in list-options also produces a cross-reference listing.)
XREF-options can be:

CODE [name-list]

DATA [name-list]

CODE name-list

displays cross-reference information for the specified code blocks. See
Table 3-2 for valid forms of name-list.

DATA name-list

displays cross-reference information for the specified data blocks.

list-option

specifies the type of map to be displayed:

ALPHA [CODE | DATA]

LOC [CODE | DATA]

*

ALPHA [CODE | DATA]

displays a load map in alphabetic order. The map lists names and addresses
for code blocks and data blocks. The map also gives the language and name
of the source file that yielded each block and the date and time of compilation.

The CODE option specifies that only the code blocks be printed. The DATA
option specifies that only the data blocks be printed.

LOC [CODE | DATA]

displays a load map in location order. The map lists names and addresses for
code blocks and data blocks. The map also gives source information as for
ALPHA. The CODE option specifies that only the code blocks be printed. The
DATA option specifies that only the data blocks be printed.
Binder Manual—528613-003
3-30

BIND Commands LIST Command
*

generates all three listings: ALPHA, LOC, and XREF.

FROM file-name

specifies the Guardian file name or OSS pathname of the object file to be mapped.
The default is the current file.

BRIEF

requests display of an 80-character load map line rather than the standard 132-
character load map line. The truncated line omits the DATE, TIME, LANGUAGE,
and SOURCE FILE information for code and data blocks. (Cross-reference
information is still displayed with a 132-character format.)

Considerations
If you specify an output device that is a spooler, a line printer, or a disk file, Binder
prints the page number, file name, file timestamp, and column header at the start of
each page for the LIST SOURCE, LIST ALPHA, LIST LOC, LIST XREF and LIST *
commands.

Examples
The following examples illustrate the syntax of the LIST command.

• The following command outputs to LISTFILE a code block, entry point, and data
block cross-reference list for the current file.

@LIST / OUT listfile / XREF

• The following command outputs to the home terminal all three load maps (ALPHA,
LOC, XREF) for OLDFILE, using an 80-character truncated line for the alphabetic
and location load maps.

@LIST * FROM oldfile, BRIEF

• The following command outputs to the home terminal the alphabetic and location
load maps for OBJFILE, using the standard 132-character line.

@LIST (ALPHA, LOC) FROM objfile

• The following command outputs to the home terminal the alphabetic load map for
OBJFILE, using the standard 132-character line. Only the data blocks are listed.

@LIST ALPHA DATA FROM objfile
Binder Manual—528613-003
3-31

BIND Commands LMAP Command
LMAP Command
The LMAP command produces an alphabetical load map of a specified file.

list-file

specifies the name of the file to which Binder sends the output listing.

file-name

specifies the Guardian file name or OSS pathname to be mapped.

Considerations
The LMAP command is useful for debugging stripped files. Unlike the LIST command,
the LMAP command does not require the presence of a Binder region.

Example
The following example shows the output produced by the file
$BECKY.BINDER.LMAPFILE:

@lmap from $becky.binder.lmapfile

TIMESTAMP 1994-02-12 19:19

SP PEP BASE LIMIT ENTRY ATTRS NAME

00 005 000143 000147 000143 DIV

00 004 000136 000142 000136 MUL

00 003 000131 000135 000131 SUM

00 002 000006 000130 000006 M TMAIN

@

LOG Command
The LOG command writes a copy of the current session’s input and output to a file.

TO file-name

identifies a file to receive the copy of the commands and output. If the file does not
exist, Binder creates a disk file with the name file-name.

LMAP [/ OUT list-file /] FROM file-name

LOG { TO file-name }
 { STOP }
Binder Manual—528613-003
3-32

BIND Commands MODE Command
STOP

closes the current log file and stops all logging.

Considerations
You start logging by entering a LOG command that specifies a file name.

• If file-name has the form of a disk file name and the file does not exist, Binder
creates an EDIT file.

• If the named file is an existing disk file, Binder appends log output to the file.

• If logging is already in progress, Binder closes the previous log file and begins
logging to the new file. If file-name is the same as the previous log file, Binder
ignores the LOG command and continues logging to the same file.

• file-name cannot be an OSS pathname.

MODE Command
The MODE command tells Binder whether it must differentiate between uppercase and
lowercase characters in block names and entry point names. You must set MODE to
NOUPSHIFT if you specify code blocks or entry points by name for C routines.

UPSHIFT

specifies that Binder need not differentiate between uppercase and lowercase
characters. This is the default.

NOUPSHIFT

specifies that Binder must differentiate between uppercase and lowercase
characters, as in C language code.

Considerations
• The ENV command shows the setting of the MODE command.

• Specify a MODE NOUPSHIFT command when binding mixed-language programs
that contain C routines.

• If you are in NOUPSHIFT mode, you need to be careful when entering code or
data block names from languages other than C in Binder commands. The block
names must be in uppercase characters for Binder to be able to find them in the
object file.

MODE { UPSHIFT | NOUPSHIFT }
Binder Manual—528613-003
3-33

BIND Commands MODIFY Command
MODIFY Command
The MODIFY command changes the values of words in the code and data blocks of
the target file. No changes are made to existing files.

You can use MODIFY with nested code blocks (blocks with a lexical level greater than
one); however, if you do not specify a fully qualified name, Binder selects the first
occurrence of the code block name in the file.

CODE code-block-name

specifies the name of a code block in the include code block list to be modified.
Use the INFO INCLUDE CODE * command to display the include code block list.

DATA data-block-name

is the name of a data block in the include data block list to be modified. Use the
INFO INCLUDE DATA * command to display the include data block list.

modify-spec

specifies the input format for value and the output format for the current values.
The default is OCTAL. modify-spec is one of the following:

ASCII

DECIMAL

HEX

OCTAL

offset

is the offset, in octal, from the base of the block of the word to receive value. The
default is the base of the block (offset 0).

value

is an expression that replaces the word contents. Binder prompts (interactively) for
the new value if you omit it and assumes value is in the same format as modify-
spec. You must enclose an ASCII value in quotation marks.

If you specify more than one value, Binder modifies word locations sequentially.

Considerations
• Prompting Sequence.

MODIFY { CODE code-block-name }
{ DATA data-block-name }
[modify-spec] [offset] [, value]...
Binder Manual—528613-003
3-34

BIND Commands MODIFY Command
The prompting sequence varies as follows:

° If you specify value in the MODIFY command, Binder does not prompt you for
input. Instead it replaces the current value of the word at the location specified
in offset with the new value specified in value.

° If you do not specify value but do specify offset, Binder prompts for input
by displaying the address, in octal, of the location and the current value at that
location.

° If you specify neither offset nor value, Binder prompts for input by
displaying the address of the base of the block (offset 0) and the current value
at that location.

The display that you see in prompt mode is as shown below, where nnnnn is
the offset, and the arrow is a special prompt. You should either enter a
replacement value after the arrow or press the carriage return key to indicate
that you do not want to modify the block.

{CODE} block-name+ nnnnn (old-value) <--

{DATA}

You can select whether the value display is octal, decimal, hex, or ASCII.
Binder accepts your replacement value in the same form as the displayed
value. Do not specify a prefix for hex or octal values; Binder does not accept
numbers in the form % nnn.

Prompting continues until you enter a carriage return (to indicate no further
modifications) or until the end of the block occurs.

• Modifying External References

Binder issues a warning message if you modify a CALL or a reference to global
data. If you include the modified target file in a subsequent binding operation,
Binder reissues the warning message.

• Verifying Changes

To verify changes, use the SHOW MODIFY command. Binder changes only the
target file, not the input object file.
Binder Manual—528613-003
3-35

BIND Commands MOVE Command
Examples
The following examples illustrate the syntax and use of the MODIFY command.

• The MODIFY command causes the prompting sequence to begin with the base
address. (The resulting display follows the command.)

@MODIFY CODE block-3

CODE BLOCK-3+00000 (012345) <-- 012346

CODE BLOCK-3+00001 (000000) <-- CR

@

Note that in the first line of the display BLOCK-3 is the name of the code block,
+00000 is the offset of the word, (012345) is the current value, and 012346 is the
replacement value entered by the user.

Note also that in the second line of the display the user enters a carriage return
after the arrow and thus stops the prompting for replacement values.

• The SHOW MODIFY command allows the user to verify changes by displaying all
modified entries.

@MODIFY CODE lm^init

CODE LM^INIT+00000 (070402) <-- 70401

CODE LM^INIT+00001 (024700) <-- 24701

CODE LM^INIT+00002 (002005) <-- 2006

CODE LM^INIT+00003 (040001) <-- 40000

CODE LM^INIT+00004 (014404) <-- 14403

CODE LM^INIT+00005 (100777) <-- CR

@SHOW MODIFY

MODIFY 5 ENTRIES:

MODIFY CODE LM^INIT+00000 = 070401 LADR L+001

MODIFY CODE LM^INIT+00001 = 024701 PUSH 701

MODIFY CODE LM^INIT+00002 = 002006 ADDS +006

MODIFY CODE LM^INIT+00003 = 040000 LOAD G+000

MODIFY CODE LM^INIT+00004 = 014403 BAZ +003

MOVE Command
The MOVE command relocates code blocks within the target file. For example, if
Binder was unable to fill the gap preceding the 32K boundary because of the order of
the include lists or because of code block sizes, you can establish a more efficient
order.
Binder Manual—528613-003
3-36

BIND Commands MOVE Command
You can also use the MOVE command to specify multiple code segments within the
target file.

You can use the MOVE command to reduce page faults by grouping procedures that
your program frequently uses. Before you do this, you should analyze your program
behavior carefully. For more information on obtaining the analytical data needed to
analyze program behavior, see the Measure Reference Manual.

You cannot use the MOVE command with nested code blocks (blocks with a lexical
level greater than one).

entry-list

is a list of one or more entry names in the include entry name list; Binder accepts
either a primary or secondary entry point name. If you specify a secondary entry
point name, Binder moves the containing block for the secondary entry point name.

You cannot use the asterisk (*) specification, but any other list format shown in
Table 3-2 is acceptable.

AFTER entry-name

specifies the position in the include entry name list after which entry-list is to
appear; entry-name cannot be within the range of entry-list. Binder accepts primary
and secondary entry point names.

BEFORE entry-name

specifies the position in the include entry name list before which entry-list is to
appear; entry-name cannot be within the range of entry-list. Binder accepts primary
and secondary entry point names.

IN NEW SPACE

tells Binder to end the current code segment without filling it, and to place the
procedures of entry-list into a new code segment. See also the related ADD
Command (ADD SPACE) command. A program codefile cannot have more than
32 TNS code segments, numbered 0 to 31.

Examples
The following examples illustrate the syntax of the MOVE command.

MOVE entry-list { AFTER entry-name }
 { BEFORE entry-name }
 { IN NEW SPACE }
 [, entry-list { AFTER entry-name }]...
 { BEFORE entry-name }
 { IN NEW SPACE }
Binder Manual—528613-003
3-37

BIND Commands OBEY Command
• MOVE repositions the entry name BLOCK-1 from whatever position it currently
occupies in the include list to the position immediately following BLOCK-5.

@ADD * FROM objfile

@MOVE block-1 AFTER block-5

@BUILD

• MOVE repositions the entry names BLOCK-1 and BLOCK-7 from whatever
positions they currently occupy in the include list to the positions immediately
preceding BLOCK-2.

@MOVE (block-1, block-7) BEFORE block-2

OBEY Command
The OBEY command tells Binder to read commands from a specified file and directs
output listing to a specified file.

OUT file-name

directs any output listing to the specified file. Error messages are also displayed at
the terminal if you are using Binder interactively, however. For additional
information, see OUT Command on page 3-39.

file-name

is the name of the OBEY file.

Considerations
• Binder reads commands from the named file and processes them until it

encounters an end of file. At end of file, Binder closes the OBEY file, and
command input reverts to the previous input file, normally the home terminal.

• If a command in the OBEY file contains an OUT specification, it overrides the OUT
specification in the OBEY command. Similarly, any subsequent command in the
file that has an OUT specification overrides a previous one.

• Additional OBEY commands can appear within an OBEY file; you can nest OBEY
files up to a depth of four.

• If an OBEY file changes the default setting of the node or volume, that setting
remains in effect for all subsequent commands, including commands entered after
you return from the OBEY file. To return to the previous settings, you must enter
another SYSTEM or VOLUME command.

OBEY [/ OUT file-name /] file-name
Binder Manual—528613-003
3-38

BIND Commands OUT Command
• If any part of the specification is invalid, if the file does not exist, or if the file cannot
be opened, Binder displays an error message and prompts for input if the input file
is a terminal. If the input file is not a terminal, Binder terminates.

• If Binder detects an error while processing an OBEY file, it closes the file and, in
the case of nested OBEY files, any other OBEY files currently open. If the original
input file was a terminal, Binder issues a prompt on the terminal. If the input file
was not a terminal, Binder terminates.

OUT Command
The OUT command directs the output listing to a specified file.

file-name

is a standard Guardian file name.

command

is a Binder command.

param-name

specifies one or more parameters for command.

Considerations
• The first form of the OUT command causes permanent redirection of the output. To

redirect the output back to the terminal, enter another OUT command with the
terminal name as the file-name.

• The second form of the OUT command causes temporary redirection of the output.
You use this form as part of another command.

• If the file name has the form of a disk filename and the file does not exist, an EDIT
file is created. If the named file is an existing disk file, the output is appended to the
file.

• If you specify an invalid file name or if Binder cannot open the file, Binder displays
an error message and does not execute the command.

• file-name cannot be an OSS pathname.

Examples
The following examples illustrate the syntax of the OUT command.

{ OUT file-name }
{ command / OUT file-name / param-name }
Binder Manual—528613-003
3-39

BIND Commands RENAME Command
• The following example directs the output produced by the SHOW command to the
printer $S.#LP1, then redirects it back to the terminal named $TERM.

@OUT $S.#LP1

@SHOW INFO FROM myfile

@OUT $TERM

• The following example directs the HELP description of the BUILD command to the
printer $S.#LP3. Any output subsequent to this command automatically goes to the
previous output setting.

@HELP BUILD /OUT $s.#lp3 /

RENAME Command
The RENAME command renames a code or data block.

You cannot use RENAME with nested code blocks (code blocks with a lexical level
greater than one).

CODE entry-point-name

specifies the current name of the code block to rename.

DATA data-block-name

specifies the current name of a data block to rename.

name

specifies the new name assigned to the specified block.

Considerations
• Use the RENAME command when binding together two object files that contain

different types of data blocks with the same name. For example, one data block is
an OWN block, and the other is a COMMON block.

• You are not allowed to rename special data blocks.

Example
The following example renames BLOCK1 to BLOCKA.

@RENAME CODE block1 TO blocka

RENAME { CODE entry-point-name } TO name
 { DATA data-block-name }
Binder Manual—528613-003
3-40

BIND Commands REPLACE Command
REPLACE Command
The REPLACE command inserts replacements for code blocks, data blocks, and any
referenced entry points or RTDUs into the include lists.

You cannot use the REPLACE command with nested blocks (blocks with a lexical level
greater than one).

CODE entry-list

specifies entry points in the file to replace entry points in the include entry name
list. See Table 3-2 for valid forms of entry-list.

DATA block-list

specifies data blocks in the file to replace data blocks in the include data block list.
See Table 3-2 for valid forms of block-list.

*

specifies that all entry points, data blocks, and RTDUs in the file are to replace
matching entry points, data blocks, and RTDUs in the appropriate include lists.

FROM file-name

specifies the Guardian file name or OSS pathname containing the entry points and
data blocks to replace corresponding ones in the include lists. The default is the
current file.

Considerations
• Binder sets HIGHPIN ON for a target object file if and only if all of the files that

make up the target object file are set HIGHPIN ON.

• Binder sets HIGHREQUESTERS ON for a target object file if and only if
HIGHREQUESTERS ON is set for the object file containing the main program.

• Binder sets RUNNAMED ON for a target object file if any object file that makes up
the target file is set RUNNAMED ON.

• The ADD command (with the DELETE option specified) performs functions similar
to those performed by REPLACE. ADD,DELETE adds a specified entry name to
the end of the include list, deleting the previous occurrence of the entry. REPLACE
removes the previous occurrence of the entry name and inserts the new reference
in its place.

• If an error occurs during a REPLACE command, you might accomplish the
operation by using ADD,DELETE. For example, the REPLACE command replaces

REPLACE { CODE entry-list } [FROM file-name]
 { DATA block-list }
 { * }
Binder Manual—528613-003
3-41

BIND Commands REPLACE Command
both the direct and the indirect data blocks in a TAL object file. In this case,
however, you can successfully use the ADD command with the DELETE option.

• If you want to replace one copy of a Pascal procedure with another of the same
name, you must export the procedure in each module containing it. Otherwise,
Binder leaves the old copy of the procedure in the file.

• The REPLACE CODE command replaces the specified code blocks and puts any
references to data blocks and entry points on the unresolved list. The REPLACE *
command replaces all code blocks, data blocks, and entry points.

Before replacing any language or SQL code blocks with the REPLACE CODE
command, you need to understand completely the interdependencies between an
object file and Binder. The choice and order of commands affects whether Binder
resolves references to the data blocks and entry points from the file containing the
new code blocks or from the file containing the old code blocks.

For more information on how Binder resolves unresolved references, see
Unresolved Reference Lists on page 5-6.

Examples
The following examples illustrate the syntax of the REPLACE command.

• In the following example, the REPLACE command replaces the code designated
by the entry name BLOCK-1 in OLDFILE with code by the same entry name in
OBJFILE. Note that you must enter an ADD command at some point in your
session before you enter a REPLACE command. Otherwise, the include lists do
not contain any blocks that can be replaced by the blocks specified in the
REPLACE command.

@ADD * FROM oldfile

@REPLACE CODE block-1 FROM objfile

• Assume that the object file OBJFILE was compiled with a SEARCH directive for
library LIBFILE. Later library LIBFILE was recompiled, and so OBJFILE must be
rebuilt. In the following example OBJFILE is rebuilt by replacing the old contents of
LIBFILE with the new contents of LIBFILE, and the rebuilt file is given the name
NEWOFILE.

@ADD * FROM objfile

@REPLACE * FROM libfile

@BUILD newofile

• Code or data specified in the REPLACE command but not on include lists is
ignored and no warning message is issued. For example, you entered the following
commands:

@ADD * from x

@REPLACE * from y
Binder Manual—528613-003
3-42

BIND Commands RESELECT Command
If procedure SUBPROG1 is in y, but not in x, then SUBPROG1 is not added.

• The following example replaces a FORTRAN subprogram in OBJFILEA with a new
subprogram in OBJFILEB. In this case, a command file contains the Binder
commands.

13> FORTRAN / IN newsub2, OUT listfile / objfileb

14> BIND /IN cmdfile, OUT listfile /

15> RUN trgfilec

CMDFILE contains the following Binder commands:

COMMENT - all entries from objfilea are needed

ADD * FROM objfilea

COMMENT - sub2 replaced by new sub2 in objfileb

REPLACE CODE sub2 FROM objfileb

BUILD trgfilec

RESELECT Command
The RESELECT command resets one or more SELECT command parameters to the
default value. SELECT parameters specify Binder operation during the execution of
BUILD and SATISFY commands.

select-param

is one of the following SELECT parameter names:

CHECK

REFER

COMPACT

RUNNABLE OBJECT

COMPRESS DATA

SATISFY

FILESYS

FIXUPS

SEARCH

LIST

WARNINGS

RESELECT { select-param [, select-param] ... }
 { * }
Binder Manual—528613-003
3-43

BIND Commands RESET Command
OMIT

*

specifies all SELECT parameters are to be reset to the default values.

Considerations
The SELECT command parameter defaults are:

Examples
• The following command sets all SELECT command parameters to their default

values:

@RESELECT *

• The following RESELECT command clears omit and refer lists, and resets the LIST
parameter to its default value:

@RESELECT OMIT, REFER, LIST

RESET Command
The RESET command resets one or more target file attributes that were previously
specified with the SET command to their default values.

set-param

is one of the following SET command parameters:

CHECK BLOCK ON, LIBRARY OFF, PARAMETER STRICT

COMPACT ON

COMPRESS DATA ON (C, Pascal, COBOL85)

OFF (TAL, FORTRAN)

FILESYS GUARDIAN

FIXUPS ON

LIST ALPHA ON, LOC OFF, XREF OFF

OMIT Empty list

REFER Empty list

RUNNABLE OBJECT OFF

SATISFY ON

SEARCH Empty list

WARNINGS ON

RESET { set-param [, set-param] ... }
 { * }
Binder Manual—528613-003
3-44

BIND Commands RESET Command
DATA

EXTENDSTACK

HEAP

HEAP STATISTICS

HIGHPIN

HIGHREQUESTERS

INSPECT

LARGESTACK

LIBRARY

LIKE

PEP

PFS

RUNNAMED

SAVEABEND

STACK

SUBTYPE

SYMBOLS

SYSTYPE

TARGET

USERLIBRARY

USER BUFFER

*

specifies that all SET attributes be reset to their default values.

Considerations
• Resetting LIKE causes Binder to reset the four parameters DATA, INSPECT,

LIBRARY, and SAVEABEND to their default values.

• Resetting the HEAP parameter clears any HEAP size specified. If you do not
specify a HEAP size, the HEAP data block is the size of the largest HEAP data
block encountered by Binder.
Binder Manual—528613-003
3-45

BIND Commands RESET Command
• The SET command parameter default values are:

Examples
The following examples illustrate the syntax of the RESET command.

• You have used the SET LIBRARY command to specify user library LIBFILE is to
be associated with the object file at run time. Also that you have used the SET
SAVEABEND ON command to specify a save file is to be created if the process
terminates abnormally during execution. The following command resets the
LIBRARY parameter to its default value of no user library and also resets the
SAVEABEND parameter to its default value of OFF.

@RESET LIBRARY, SAVEABEND

• The second example resets all the SET command parameters to their default
values.

@RESET *

DATAPAGES Estimate for all data blocks and stack

EXTENDSTACK PAGES estimated

HEAP (No default)

HEAP STATISTICS OFF

HIGHPIN OFF

HIGHREQUESTERS OFF

INSPECT OFF

LARGESTACK (No default)

LIBRARY No user library

LIKE (No default)

PEP Minimum for entry points in target file

PFS 128

RUNNAMED OFF

SAVEABEND OFF

STACK PAGES estimated

SUBTYPE No process subtype

SYMBOLS ON

SYSTYPE GUARDIAN

TARGET Unspecified

USERLIBRARY OFF

USER BUFFER OFF
Binder Manual—528613-003
3-46

BIND Commands SATISFY Command
SATISFY Command
The SATISFY command tries to resolve external references to entry points and data
blocks in the unresolved reference list. Binder uses the current include lists and the
search list.

select-param

specifies a SELECT command parameter and value to be used for this statement
only. This specification overrides any value previously established for that
parameter. select-param is defined as one of the following:

{CHECK check-option}

{CHECK (check-option [, check-option]...)}

COMPACT {ON | OFF}

COMPRESS DATA {ON | OFF}

FILESYS {GUARDIAN | OSS}

FIXUPS {ON | OFF}

{LIST listing-option}

{LIST (listing-option [, listing-option]...)}

{OMIT entry-name}

{OMIT (entry-name [, entry-name]...)}

{REFER refer-pair}

{REFER (refer-pair [, refer-pair]...)}

RUNNABLE OBJECT {ON | OFF}

SATISFY {ON | OFF}

{SEARCH file-name}

{SEARCH (file-name [, file-name]...)}

WARNINGS {ON | OFF}

See the SELECT Command on page 3-49 for a description of these specifiers.

Enter HELP SELECT for a description of these specifiers.

Considerations
• Specifying HIGHPIN ON with the SATISFY Command

SATISFY { select-param }
 { (select-param [, select-param] ...) }
Binder Manual—528613-003
3-47

BIND Commands SATISFY Command
Binder sets HIGHPIN ON for a target object file only if all of the files that make up
the target object file are set HIGHPIN ON.

• Specifying HIGHREQUESTERS ON with the SATISFY Command

Binder sets HIGHREQUESTERS ON for a target object file only if
HIGHREQUESTERS ON is set for the object file containing the main program.

• Specifying RUNNAMED ON with the SATISFY Command

Binder sets RUNNAMED ON for a target object file if any object file that makes up
the target file is set RUNNAMED ON.

• Using the SEARCH Parameter with the SATISFY Command

During execution of a SATISFY command, Binder searches the object files listed in
the search list in an attempt to resolve any unresolved external references listed in
the unresolved reference list. You can add object file names to the search list with
the SELECT command, but if you specify the SEARCH file-name parameter for
the SATISFY command, Binder searches the files you specified instead, overriding
any previously established search list.

If Binder cannot resolve a reference, the reference remains on the unresolved
reference list until you enter another SATISFY command or BUILD command that
resolves it.

• Using Search Files from the ADD Command

Binder also uses object files specified in ADD commands as search files for
unresolved references, and the order in which Binder searches files might be
different from what the user expects.

See Unresolved Reference Lists on page 5-6 for details.

• Using SATISFY in Interactive Mode

In interactive mode, Binder prompts for additional target file definition commands
following execution of a SATISFY command. Target file generation does not begin
until you enter a BUILD command.

Any select-param used in a SATISFY command temporarily sets a new value
that Binder uses only during execution of that same SATISFY command.

Examples
The following examples illustrate the syntax of the SATISFY command.
Binder Manual—528613-003
3-48

BIND Commands SELECT Command
• The following example causes all references to EPNAME1 in OLDFILE to refer
instead to EPNAME2 from NEWFILE.

@COMMENT - "caller" inserted on next command

@COMMENT - calls epname1; the satisfy will

@COMMENT - result in calling epname2

@ADD CODE caller FROM objfile

@SATISFY SEARCH newfile, REFER epname1 TO epname2

@ADD CODE epname1 FROM oldfile

@BUILD newfile !

• The following example leaves entry references unresolved because SATISFY OFF
(a select-param) is valid.

@ADD * FROM objfile

@SELECT SATISFY OFF

• In the following example, Binder searches the files OBJECTC and OBJECTD for
external reference resolution, and not files OBJECTA and OBJECTB, which have
already been added to the search list with the SELECT command.

@SELECT SEARCH (objecta, objectb)

@SATISFY SEARCH (objectc, objectd)

• In the following example, if FOO exists in FILE 1 and FILE2, the following
commands cause the reference to FOO to be resolved from FILE1 instead of
FILE2.

@ADD * from file1

@SATISFY SEARCH (file2, file1, file3)

SELECT Command
The SELECT command sets parameter values that control Binder during execution of
subsequent BUILD and SATISFY commands. You can override these values using the
BUILD and SATISFY commands or reset them to default values using the RESELECT
command.

select-param

is any of the parameter values set with SELECT. You can set one or more
parameter values with a single SELECT command. The select-param can be
any one of the following:

{CHECK check-option}

SELECT { select-param [, select-param]... }
Binder Manual—528613-003
3-49

BIND Commands SELECT Command
{CHECK (check-option [, check-option]...)}

COMPACT {ON | OFF}

COMPRESS DATA {ON | OFF}

FILESYS {OSS | GUARDIAN}

FIXUPS {ON | OFF}

IMPORT LIBRARY library-file-name

{LIST listing-option}

{LIST (listing-option [, listing-option]...)}

{OMIT entry-name}

{OMIT (entry-name [, entry-name]...)}

{REFER refer-pair}

{REFER (refer-pair [, refer-pair]...)}

RUNNABLE OBJECT {ON | OFF}

SATISFY {ON | OFF}

{SEARCH file-name}

{SEARCH (file-name [, file-name]...)}

WARNINGS {ON | OFF}

CHECK check-option

specifies the type of error checking as one of the following:

{BLOCK {ON | OFF}}

{DUPLICATE {ON | OFF}}

{LIBRARY {ON | OFF}}

{PARAMETER {ON | STRICT | STRONG | LENIENT | OFF}}

{WIDEMEM {ON | OFF}}

{*}

BLOCK {ON | OFF}

specifies whether Binder checks common blocks for consistency in length
and addressing (that is, all byte or all word).

Use CHECK BLOCK ON to check FORTRAN procedures for adherence to
the FORTRAN rules for common blocks. CHECK BLOCK ON checks TAL
blocks (if a global data block used in several object files changes but only
Binder Manual—528613-003
3-50

BIND Commands SELECT Command
some of the object files have the new one, Binder detects the length
mismatch and issues a warning). Binder also issues a warning if the
modules’ descriptions of a data block are not consistent. The default is ON.

DUPLICATE {ON | OFF}

specifies whether Binder reports a warning if a C data block is declared
multiple times. When combining independently developed subsystems, this
can be a symptom of accidentally using the same global variable name for
two different purposes.

LIBRARY {ON | OFF}

controls whether Binder enforces rules to which user libraries must adhere.
Use this option when building a target file that will be used as a user library.
Binder issues a warning for any reference to a data block other than a
read-only block or any entry point that has the MAIN attribute. BIND does
not check existing libraries, only user libraries that are being built. The
default is OFF.

PARAMETER {ON | STRICT | STRONG | LENIENT | OFF}

specifies the extent to which Binder checks parameter lists, function return
values, and language consistency between called and calling routines.
Binder issues a warning if calls and entry points are not consistent. The
default setting is STRICT.

Binder provides five levels of parameter and return-value checking:

Binder checks for language consistency between called and calling
procedures for all levels of parameter checking except CHECK
PARAMETER OFF. Binder checks to make sure that the caller specifies
the correct language for the called routine. If the caller explicitly states that
the language of the invoked routine is unspecified, Binder does not perform
this check.

ON Formal and actual parameters must be the
same size, type, and mode (value or
reference). Return values are not checked.

STRICT STRICT is the same as ON.

STRONG Interlanguage calls are checked as LENIENT.
Calls between routines compiled from the
same language are checked as STRICT.

LENIENT Parameters and return values are viewed as
members of classes. Corresponding formal
and actual parameters and corresponding
return values must belong to the same class.

OFF No parameter type and return-value
checking.
Binder Manual—528613-003
3-51

BIND Commands SELECT Command
Refer to Using CHECK PARAMETER on page 3-55 for more information.

WIDEMEM {ON | OFF}

specifies whether Binder checks wide and non-wide memory attribute
conflicts in the constituent object files when it builds the target object file.
The default is OFF.

* {ON | OFF}

specifies whether all check options are selected.

COMPACT {ON | OFF}

specifies whether Binder fills the gap at the 32K boundary when it builds the
target file. A gap occurs when Binder repositions a code block that would cross
the 32K boundary to begin at the 32K boundary. The default is ON.

COMPRESS DATA {ON | OFF}

specifies whether Binder compresses the regular data space in the object file
to include only those pages with initialization data. Binder always compresses
the extended data space. The default is ON for C, Pascal, and COBOL85; it is
OFF for TAL and FORTRAN; it is always OFF for shared run-time libraries.

FILESYS {OSS | GUARDIAN}

specifies whether the Guardian default volume and subvolume or the OSS
default directory is used to resolve partial file names. If a partially qualified file
name is used, the syntax must conform to that of the file system selected.

If the file system is a Guardian file system, partially qualified file names are
expanded using the Guardian defaults specified in the SYSTEM and VOLUME
commands. For example. if the current system is \CALIF and the current
volume is $DATA.FTRAN, the file alpha.beta is expanded to
\CALIF.$DATA.ALPHA.BETA.

If the file system is an OSS file system, partially qualified names are expanded
using the OSS default directory specified in the CD command. For example, if
the current directory is /usr/guest, the file alpha.beta is expanded to
/usr/guest/alpha/beta. The default is Guardian.

FIXUPS {ON | OFF}

specifies whether Binder fixes code and data references in the object file. If
you select OFF, the object file cannot be run without first being reprocessed by
Binder. The default is ON.

IMPORT LIBRARY library-file-name

specifies the use of an SRL library-file-name as a user library to be used
during binding. The library specified must be a pre-existing instance of the user
Binder Manual—528613-003
3-52

BIND Commands SELECT Command
library, that contains the library procedures and all the library variables
referenced by the application. This command can only be used when you are
building an application that will be linked to an SRL user library at run-time.

The imported library provides Binder with the recommended sizes to reserve
for library data in the BELOW64, PRIMARY, SECONDARY, and EXTENDED
data areas. It also provides the list of variables exported from the user library.

This command automatically turns on the RUNNABLE option and sets the
default run-time library to library-file-name. If you want to specify a
different run-time library, specify the SET LIBRARY command after the
IMPORT command.

Specify this command anytime before the BUILD command. When the
application is built, Binder compares the user library exported data block list
with the current user code data block list. A warning is issued if any block
definitions are not compatible.

Procedures specified in the SRL file are used only if they cannot be found in
the other libraries specified in the SELECT SEARCH command.

The SRL must reside in the Guardian file system. You may specify an IMPORT
library in the OSS file system. In this case, Binder uses the specified import
library as a model for building, but it does not set the run-time library in the
object file. The library can be set to a Guardian name using the SET LIBRARY
command or the /LIB/ option in the TACL RUN command.

LIST listing-option

specifies the printed output for building the target file as one of the following:

{ALPHA {ON | OFF}}

{LOC {ON | OFF}}

{XREF {ON | OFF}}

{* {ON | OFF}}

ALPHA {ON | OFF}

specifies whether Binder produces a load map in alphabetic order. The
map lists names and addresses for code blocks and data blocks, and also
lists source file information for each code block. The default is ON.

LOC {ON | OFF}

specifies whether Binder produces a load map in location order. The map
lists names and addresses for code blocks and data blocks, and also lists
source file information for each code block or data block. The default is
OFF.
Binder Manual—528613-003
3-53

BIND Commands SELECT Command
XREF {ON | OFF}

specifies whether Binder produces a cross-reference list of entry points
and data blocks. The default is OFF.

* {ON | OFF}

specifies whether you select all list options.

OMIT entry-name

specifies an additional entry point name for the omit list. The default is an
empty omit list. Omit lists are described in Section 4, Object File Structure.
Note that Binder omits all entry points belonging to a particular code block if
any one of them appears on the omit list. For more information, see
Considerations on page 3-56.

REFER refer-pair

specifies a pair of entry point names to be added to the refer list. The format for
refer-pair is:

entry-name1 TO entry-name2

The default is an empty refer list. See Considerations on page 3-56.

RUNNABLE OBJECT {ON | OFF}

specifies whether Binder should check at build time that the object file is
runnable or not. For the file to be runnable, the following conditions must be
true:

• The undefined data list must be empty.

• There must be a main procedure in the object file.

• Fixups must be applied to the object file.

• All function pointers must be resolved.

Binder cannot detect all errors; however, if it detects an error, it issues a
warning message and continues to build the target file.

The default is OFF.

SATISFY {ON | OFF}

specifies whether Binder attempts resolution of remaining unresolved external
references for entry points when you issue a BUILD or SATISFY command.
Data block references are not affected by SATISFY. OFF suppresses
automatic resolution; the default is ON.

SEARCH file-name

is a file name to add to the search list. The default is an empty search list.
Binder Manual—528613-003
3-54

BIND Commands SELECT Command
WARNINGS {ON | OFF}

specifies whether warning messages be sent to the output file. The default is
WARNINGS ON.

Using CHECK PARAMETER
• Binder provides parameter and return-value checking by matching parameters and

return values types between called and calling routines. Because each language
has its own set of data types, the matching of parameters and return-value types
between languages cannot be exact. To reduce the number of extraneous Binder
warnings generated when you bind mixed-language programs, Binder provides five
levels of checking:

Use the STRICT setting for single-language programs; use the STRONG setting
for mixed-language programs.

• Binder groups parameters into these classes:

° Two-byte scalar, passed by value.

° Four-byte integer scalar, passed by value.

° Four-byte real scalar, passed by value.

° Eight-byte integer scalar, passed by value.

° Eight-byte real scalar, passed by value.

° Byte address.

° Word address.

° Extended address.

° Two-byte procedure parameter.

° Four-byte procedure parameter.

Note that only the C language defines the passing of structured parameters by
value. Such parameters cannot match parameters in any other language.

ON Formal and actual parameters must be the same size, type,
and mode (passed by value or by reference). Return values
are not checked.

STRICT STRICT is the same as ON.

STRONG Interlanguage calls are checked as LENIENT. Calls between
routines compiled from the same language are checked as
STRICT.

LENIENT Parameters and return values are viewed as members of
classes. Corresponding formal and actual parameters and
corresponding return values must belong to the same class.

OFF No parameter type and return-value checking.
Binder Manual—528613-003
3-55

BIND Commands SELECT Command
• Binder groups return values (values returned on the stack) into these classes:

° Two-byte scalar.

° Four-byte scalar.

° Four-byte real scalar.

° Eight-byte scalar.

° Eight-byte real scalar.

° No return type.

Binder provides language consistency checking by making sure that callers specify
the correct language for called routines. If a caller explicitly states that the
language of a called routine is unspecified, Binder does not perform this check.

If one caller specifies one language, and a subsequent caller specifies a different
language, and neither of them has been resolved, Binder issues the message:

**** WARNING 149 **** Referencing procedures do not agree

on the language of procedure procedure-name.

After it issues the message, Binder must determine which language to use for
subsequent checking. If either caller is written in the same language as the called
routine, Binder uses that language. If both callers specify languages other than that
of the called routine, Binder selects the language of one of the caller routines.
Binder makes this selection in the following order: COBOL85, FORTRAN, TAL, C,
Pascal. For example, if one caller specifies C and another caller specifies
COBOL85, Binder selects COBOL85 for the called routine.

Once Binder has determined the language of a called routine, and a caller
specifies a different language, Binder issues the message:

**** WARNING 148 **** Referencing procedures claim

that procedure procedure-name is written in a

different language.

If Binder issues these messages during a bind session, examine calls to the
named procedure in your source code to make sure they specify the correct
language. Note that two routines in the same object file cannot have the same
name, even if they are written in different languages.

Considerations
• The SELECT command accepts OSS pathnames.

• OMIT does not remove an entry point name from the include list.You cannot use
OMIT for nested code blocks.

• REFER works only for entry point references that are not present; it does not apply
to entry points already on the include list.
Binder Manual—528613-003
3-56

BIND Commands SET Command
• You cannot use REFER for nested code blocks (blocks with a lexical level greater
than one).

Examples
The following examples illustrate the syntax of the SELECT command.

• This SELECT command allows a gap before the 32K boundary and suppresses
entry point name resolution.

@SELECT COMPACT OFF, SATISFY OFF

• This SELECT command adds three file names to the search list and selects all
error-checking options.

@SELECT SEARCH (obj1, obj2,obj3), CHECK * ON

• This SELECT command adds two pairs of entry names to the refer list and one
entry name to the omit list.

@SELECT REFER (b1 TO b4, b2 TO b3), OMIT b5

SET Command
The SET command specifies attribute values to be associated with the target file. You
can use the BUILD command to override attribute values or the RESET command to
reset them to their default values.

set-param

can be any of the following:

{DATA} value [PAGES | WORDS | BYTES]

{EXTENDSTACK}

{STACK}

HEAP value [PAGES | WORDS | BYTES]

HEAP STATISTICS {ON | OFF}

HIGHPIN {ON | OFF}

HIGHREQUESTERS {ON | OFF}

IMPORT DATA variable-name-list

INSPECT {ON | OFF}

LARGESTACK value [PAGES | WORDS | BYTES]

LIBRARY file-name

SET { set-param [, set-param]... }
Binder Manual—528613-003
3-57

BIND Commands SET Command
LIKE file-name

MISALIGN { FAIL| NOROUND | SYSDEFAULT}

PEP value

PFS value [PAGES | WORDS | BYTES]

RESERVE {BELOW64|PRIMARY|SECONDARY|EXTENDED} [+|-] nb

RUNNAMED {ON | OFF}

SAVEABEND {ON | OFF}

SUBTYPE number

SYMBOLS {ON | OFF}

SYSTYPE {OSS | GUARDIAN}

TARGET [TNS | TNS/R | TNS/E | ANY]

USERLIBRARY {ON | OFF}

USER BUFFER {ON | OFF}

DATA value [PAGES | WORDS | BYTES]

specifies the total amount of data space Binder allocates for the target file.

By default, Binder allocates the larger of the following two values: the
maximum number of data pages in any of the files from which data is included
or the number of pages needed to hold all the data blocks plus an estimate of
the stack space needed for local storage. By using the DATA option you
override Binder’s default estimate.

For value you can enter either a decimal value or an octal value (preceded by
%). If the value you specify in value is less than the amount of data needed to
build the object file, Binder issues a warning.

To specify a unit of value, enter PAGES, WORDS, or BYTES. If you do not
specify a unit, the default unit is PAGES. One PAGE is 1024 words.

EXTENDSTACK value [PAGES | WORDS | BYTES]

specifies the number of pages, words, or bytes you want to add to the Binder
estimate of stack space for local storage. Binder increases its total allocation of
space by the amount you specify.

You can specify either a decimal value or an octal value (preceded by %).
The default unit for value is PAGES. One PAGE is 1024 WORDS.

STACK value [PAGES | WORDS | BYTES]

replaces the estimate of stack space for local storage computed by Binder with
the value you specify. The number of pages, words, or bytes you specify plus
Binder Manual—528613-003
3-58

BIND Commands SET Command
Binder’s estimate of the space required for global data blocks is the total
number of data pages allocated (one PAGE is 1024 WORDS). The default is
the space Binder estimates for local storage.

You can specify either a decimal value or an octal value (preceded by %).
The default unit for value is PAGES.

If you specify an odd number of bytes, Binder rounds up the value to an even
value.

HEAP value [PAGES | WORDS | BYTES]

sets the maximum size of the heap used in C and Pascal. The default is 0.

You can specify value in pages, words, or bytes. The default unit for value is
PAGES.

The specified value overrides any other value Binder has encountered for the
heap size. If you omit this entry, Binder uses the largest #HEAP block.

HEAP STATISTICS {ON | OFF}

specifies whether a Pascal program collects heap statistics reported by calls to
the supplied routine HEAPUSED. The default for C-series Pascal programs is
ON; the default for D-series Pascal programs is OFF. You must set HEAP
STATISTICS ON if your D-series Pascal program calls the HEAPUSED
routine.

HIGHPIN {ON | OFF}

specifies whether an object file can run at a high process identification number
(PIN), if the process creation request allows it and a high PIN is available. The
default is HIGHPIN OFF.

HIGHREQUESTERS {ON | OFF}

specifies whether an object file can support high process identification number
(PIN) requesters. The default is HIGHREQUESTERS OFF.

IMPORT DATA variable-name-list

specifies a list of variables to be imported. Use the SET IMPORT command to
specify a list of data blocks to be imported from the SRL when building an SRL
application. This command can be repeated, appending to the list of imported
data blocks. It is optional for C-coded applications.

If the application is coded in C, imported data blocks are declared using the
keyword extern. The data block is not defined within the application codefile,
and Binder resolves the external references to the library. The IMPORT
command is provided mainly for TAL users. In TAL, no extern designation
exists. The IMPORT command instructs Binder to remove specific data blocks
from the application.
Binder Manual—528613-003
3-59

BIND Commands SET Command
INSPECT {ON | OFF}

specifies whether the Inspect program is chosen for debugging when you
execute the target file. The default is OFF; that is, the Debug program is used.
INSPECT OFF automatically causes Binder to set SAVEABEND OFF. You use
the command interpreter SET INSPECT or RUN commands to override the
INSPECT specification.

LARGESTACK value [PAGES | WORDS | BYTES]

sets the size of the $EXTENDED#STACK data block used in TAL. value can
be specified in pages, words, or bytes. The default unit is PAGES.

The specified value overrides any other value Binder has encountered for this
data block. If you omit this entry, Binder uses the largest $EXTENDED#STACK
block.

LIBRARY file-name

specifies the name of the user library to associate with the object file at run
time. You can override file-name at run time by using the LIB parameter in the
command interpreter RUN command. This option does not support OSS
pathnames. A Guardian filename must be specified. The default is no user
library.

LIKE file-name

specifies that the DATA, INSPECT, LIBRARY, and SAVEABEND attributes for
the target object file are to be identical to those of a specified object file.

MISALIGN { FAIL | NOROUND | SYSDEFAULT}

MISALIGN FAIL causes the system to generate instruction failure interrupts,
which will be reported as trap 1 (INSTRUCTIONFAILURE) in a Guardian
process, or a signal 4 (SIGILL) in an OSS process.

MISALIGN NOROUND allows all valid TNS programs and also erroneously-
coded TNS programs to run, but not necessarily with the same results as on
some prior machines. This option causes the system to complete the operation
using the operand’s “natural” (unrounded) address.

MISALIGN SYSDEFAULT allows application of the current TNS Misalign policy.
This codefile attribute is ignored when executing on TNS/R systems.

PEP value

specifies the size of the procedure entry point (PEP) table to be allocated for
the target file. The default value is the minimum size necessary for the number
of entry points in the target file. value can be any integer in the range 0 through
512. You can specify value either in decimal or in octal (preceded by %).
Binder Manual—528613-003
3-60

BIND Commands SET Command
PFS value [PAGES | WORDS | BYTES]

specifies the size of the process file segment to be allocated in the target file.
value can be from 64 to 512 pages (65,536 to 533,504 words). The default
unit of size is PAGES. Binder rounds byte values up to the nearest page.

RESERVE

specifies how much space to reserve in the application’s global data space for
library variables. Binder must reserve at least enough space to accommodate
the current library’s global variables. The SET RESERVE command can be
used to specify absolute maximum amount of space or an additional amount of
space.

BELOW64

reserves space in the first 64 words of primary data. COBOL and TAL code
allocate blocks in this area for use with the LWXX and SWXX instructions.
These instructions provide efficient access to data in extended memory
through pointers in the first 64 words of primary data. For TAL code, the
INHIBITXX directive can be specified to avoid depending on this limited
data space.

PRIMARY

reserves space in the first 256 words of primary data. This space is needed
for directly addressed TAL variables, or C variables that must be
accessible to TAL.

SECONDARY

reserves space in the first 256 words of secondary data. All scalar or
pointer C variables that do not need to be accessed from TAL are allocated
here.

EXTENDED

reserves space at the beginning of the extended segment. Most arrays,
structures, and string constants are allocated here.

[+|-] nb

specifies the positive or negative number of bytes of space to reserve in
the application’s global data space. When an absolute amount is specified,
it overrides any previous setting for that data area.

For more information on reserving space, see Section 6, User Libraries.

RUNNAMED {ON | OFF}

specifies whether an object file runs as a named process, even if no RUN
command NAME parameter is specified. The default is RUNNAMED OFF.
Binder Manual—528613-003
3-61

BIND Commands SET Command
SAVEABEND {ON | OFF}

specifies whether to create a save file if the process terminates abnormally
during execution. Binder automatically sets INSPECT ON if SAVEABEND is
ON. The default is OFF.

SUBTYPE number

sets the process subtype on input object files that contain a MAIN procedure.
number is in the range of 0 through 63. Note, however, that values in the
range of 1 through 47 are defined by Hewlett-Packard; values in the range of
48 through 63 can be defined by the user. The default value is 0.

BIND writes the specified number into the object file header. When you run the
program, the operating system assigns to it the process subtype for an object
file.

If you specify a SET SUBTYPE command before the MAIN procedure is added
from an object file (with an ADD or SELECT SEARCH command, for example),
Binder uses the subtype of the MAIN procedure instead of the specified
subtype.

Add the MAIN procedure and then specify the SET SUBTYPE command if you
need to set the subtype.

This option does not work on object files that do not have the MAIN attribute.
To change the subtype on a procedure other than a main procedure, use the
CHANGE SUBTYPE command.

SYMBOLS {ON | OFF}

specifies whether to retain Inspect symbol tables from the object files in the
target file. The default is ON.

SYSTYPE {OSS | GUARDIAN}

specifies whether the target execution environment of an object file is the OSS
environment or the Guardian environment. The default value is Guardian.

TARGET [TNS | TNS/R | TNS/E | ANY]

specifies the target processor that the target file runs on.

TARGET TNS specifies that the target file runs on a TNS processor only.
TARGET TNS/R specifies that the target file runs on a TNS/R processor only.
TARGET TNS/E specifies that the target file runs on a TNS/E processor only.
TARGET ANY specifies that the target file can run on either a TNS processor or
a TNS/R processor.

By default, the target processor is unspecified. In this case, the target file can
run on any processor. For more information, see Considerations on page 3-63.
Binder Manual—528613-003
3-62

BIND Commands SET Command
USERLIBRARY {ON | OFF}

specifies the maximum number of code segments in an object file built by
Binder.

• In a TNS system, the attribute specifies whether an object file is built with a
maximum of 16 or 32 code segments. If the file contains 17 to 32 code
segments, the process creation allocates the first 16 code segments in the
user code space and the remaining in the user library space. You cannot
run a program file that has more than 16 code segments by using an
external user library file. When USERLIBRARY is set to ON, the object file
is built with 32 code segments. When USERLIBRARY is OFF, the Binder
builds using a maximum of 16 code segments.

• In a TNS/R system or a TNS/E system, the attribute specifies whether an
object file is built with a maximum of 32 or 64 code segments. If the file
contains 33 to 64 code segments, the first 32 code segments are allocated
in the user code space and the remaining in the user library space. You
cannot run a program file that has more than 32 code segments by using
an external user library file. When USERLIBRARY is set to ON, the object
file is built with 64 code segments. When USERLIBRARY is OFF, the
Binder builds using a maximum of 32 code segments.

USER BUFFER {ON | OFF}

By default the USER BUFFER Flag will be set to OFF while creating an object file.

Considerations
• The SET command accepts OSS pathnames, except for the library option.

• Binder determines the target processor from the input object files. Table 3-3 shows
the resulting Binder setting for various combinations of target processor settings.

Table 3-3. Resulting Target Processor Type
File 1 Target Type File 2 Target Type Resulting Binder Setting
Unspecified Either unspecified or

specified as any one of the
three SET TARGET
options

Setting of File 2

TNS Unspecified or specified as
either TNS or ANY

TNS

TNS TNS/R or TNS/E Error

TNS/R Unspecified or specified as
either TNS/R or ANY

TNS/R

TNS/R TNS Error
Binder Manual—528613-003
3-63

BIND Commands SET Command
If you try to bind two object files that contain conflicting TARGET attributes, Binder
stops the current operation and issues the following error message:

****ERROR 165 **** TARGET types conflict:

entry point entry-name from file is type1, the current

setting is type2

If you enter the command SET TARGET ANY, and then later add in a procedure
whose setting is TARGET TNS, TARGET TNS/R or TARGET TNS/E, Binder
changes the target processor setting appropriately and issues the following
warning message:

**** Warning 166 **** SET attribute has been changed:

from TARGET ANY to TARGET type

type can be TNS, TNS/R or TNS/E.

• For the DATA, EXTENDSTACK, STACK, HEAP, and LARGESTACK options, if you
enter an odd number of bytes, Binder rounds up value to an even value.

• You can write process subtypes only into object files that contain a MAIN
procedure.

• You can set only one of the DATA, STACK, or EXTENDSTACK parameters at a
time. Each successive SET command specifying one of these parameters
overrides the previous specification. Note the distinctions among these
parameters:

° DATA specifies the total amount of data space allocated for data blocks and
local storage. This specification overrides Binder's estimate for the total
amount of data space.

° STACK specifies the amount of stack space allocated for local storage. This
specification overrides Binder's estimate for local storage. Binder takes your
specification for local storage, adds it to its space needed for these data
blocks, and then computes total data space required.

° EXTENDSTACK overrides Binder's estimate for local storage by specifying an
addition to it. Binder increases its allocation of local storage by the amount of
your addition and then adds together local storage and data space required for
data blocks to compute total data space required.

TNS/E Unspecified or specified as
either TNS/E or ANY

TNS/E

TNS/E TNS Error

ANY Specified as any one of
the SET TARGET options

Setting of File 2

Table 3-3. Resulting Target Processor Type
File 1 Target Type File 2 Target Type Resulting Binder Setting
Binder Manual—528613-003
3-64

BIND Commands SET Command
• Extended data block sizes for all languages are set at compile time, and Binder
collects all of these blocks into one extended segment that is automatically
allocated at run time. SET DATA does not affect the size of this extended segment.

• Once set with the SET PFS command, the default process file segment size is 128
pages. At this point, entering a RESET command causes Binder to set the PFS
size to 128 pages.

• If you do not set the size of the PFS, Binder uses the largest size encountered in
the input object files when building the target file. Binder treats files created with a
previous version of Binder as if they have a PFS size of 128 pages.

The PFS value can be from 64 to 512 pages. If you specify a value outside of this
range, Binder returns the following error message:

Illegal PFS size. Legal range is 64 to 512 pages.

• The HIGHREQUESTERS ON attribute specifies that an object file is allowed to
support requests from processes running at high PINs. It does not specify that an
object file meets the conditions to support requests from processes running at high
PINs.

Examples
The following examples illustrate the syntax of the SET command.

• The following command specifies that a save file is to be created if a process
terminates abnormally when the target file is executed:

@SET SAVEABEND ON

• The following example shows that two or more set parameters can be set in a
single command. In this case the Inspect symbol tables from the object files are
not to be retained in the target file, and the user library LIBFILE is to be associated
with the target file at run time.

@SET SYMBOLS OFF, LIBRARY libfile

Running Processes at a High PIN
The HIGHPIN ON attribute specifies that an object file is allowed to run at a high PIN. It
does not specify that an object file meets the conditions to run at a high PIN.

When the operating system creates a process, it assigns a process identification
number (PIN) to the process. D-series systems support the following ranges of PINs:

To run an object file at high PIN from the TACL prompt, the following conditions must
be met:

Low-PIN range 0 through 254

High-PIN range 256 through the maximum number
supported for the processor
Binder Manual—528613-003
3-65

BIND Commands SET Command
• Your processor is configured for more than 256 process control blocks (PCBs).

• High pins are available in your processor.

• Your object file and user library, if any, have the HIGHPIN attribute set.

The TACL HIGHPIN built-in variable or the HIGHPIN run-time parameter is set.

If the HIGHPIN attribute of the object file is set, the operating system assigns a high
PIN, if available. If no high PINs are available, the operating system assigns a low PIN.

You can set the HIGHPIN attribute of an object file either:

• During compilation by using the HIGHPIN directive

• After compilation by using a Binder command

If the above conditions are met, your object file can create another process to run at
high PIN by specifying the PROCESS_CREATE_ system procedure with create-
options bit 15 set to 0 and bit 10 set to 1.

The following sequence of examples show how to run an object file at high PIN from
the TACL prompt. The examples show how to check your processor configuration and
high-PIN availability, set the HIGHPIN attribute, and override the TACL HIGHPIN
setting if it is off.

1. To check the number of PCBs configured in your processor and to see if high PINs
are available, run the Peek product. For example, if you want to run your object file
on processor 1:

PEEK / CPU 1 /

The following display excerpt shows example values for the information you need
to check:

 ... CURRENT USAGE # CONFIGURED...

PCB 127: 48 255: 244

The processor is configured for high PINS if the sum of the two values displayed
for PCBs under # CONFIGURED is 256 or greater.

The processor has high PINs available if the righthand value under CURRENT
USAGE is less than the righthand value under # CONFIGURED.

2. You can set the HIGHPIN attribute of an object file during compilation by including
the HIGHPIN directive in the compilation command:

TAL /IN talsrc, OUT $S.#tallst, NOWAIT/ talobj; HIGHPIN

3. Alternatively, you can set the HIGHPIN attribute of an object file after compilation
by typing the following Binder command:

BIND CHANGE HIGHPIN ON IN talobj
Binder Manual—528613-003
3-66

BIND Commands SHOW Command
4. Before you run the object file, you can check the current setting of the TACL
HIGHPIN built-in variable by typing:

#HIGHPIN

5. If #HIGHPIN returns a NO value, you can set the HIGHPIN run-time parameter
(and run your object file at high PIN):

RUN talobj / HIGHPIN ON /

6. If #HIGHPIN returns a YES value, you can simply run your object file at high PIN:

RUN talobj

Refer to the Guardian Operating System Application Conversion Guide for additional
details on writing processes that run at a high PIN.

SHOW Command
The SHOW command displays the current values for the following:

• Current file.

• Set of modifications established by the MODIFY command.

• SELECT command parameters.

• Attributes of an object file.

• SET command parameters.

After a BUILD command executes, Binder resets SELECT, SET, FILE, and all lists to
the default states. SHOW SET attribute then displays information about the
constructed target file.

OUT file-name

directs the output listing to the specified file. For additional information, see OUT
Command on page 3-39.

SHOW [/ OUT file-name /]
{ AXCEL ENABLE [FROM file-name] }
{ FILE }
{ IMPORT }
{ INFO [FROM file-name] }
{ MODIFY }
{ OCA ENABLE [FROM file-name] }
{ RESERVE }
{ SELECT }
{ select-param }
{ SET attribute [FROM file-name] }
{ SET }
{ set-param }
Binder Manual—528613-003
3-67

BIND Commands SHOW Command
AXCEL ENABLE [FROM file-name]

displays the current state, either ON or OFF, of the AXCEL ENABLE attribute for
the current file or file specified in the FROM clause. You can set this attribute with
the CHANGE command. OSS pathnames are accepted.

FILE

displays the name of the current file.

IMPORT

displays the list of imported data blocks specified for the current session. This
command only lists the set of variables explicitly specified in the SET IMPORT
command. The complete import list is not determined until build time.

INFO [FROM file-name]

displays attributes (number of data pages, process subtype, number of code
segments and file segments, system type, Accelerator information, Binder
information, and debugging information) associated with the current Guardian file
or OSS pathname, or the Guardian file or OSS pathname specified in the FROM
clause. The output will include Itanium instruction information if the program has
been translated by OCA and will show the MISALIGN attribute of the object.

MODIFY

displays the current set of modifications established by the MODIFY command. If
code has been modified, the values are displayed in ICODE as well as octal.

OCA ENABLE [FROM file-name]

This command shows whether the named TNS object file is allowed to be
translated by OCA, and, if an Itanium instruction region exists, whether its Itanium
instructions can be executed in a translated mode of execution.

RESERVE

displays the reserve settings for each of the four data areas: BELOW64,
PRIMARY, SECONDARY, and EXTENDED.

SELECT

displays the current values for all the SELECT command parameters.

select-param

displays one of the following SELECT command parameters:

CHECK SATISFY

REFER FILESYS

COMPACT FIXUPS
Binder Manual—528613-003
3-68

BIND Commands SHOW Command
SET attribute [FROM file-name]

displays one, or all, of the attributes associated with the specified object file.
attribute is one of the following:

If you enter * as the value of attribute, the values of all the attributes are displayed.

FROM file-name specifies the object file whose attributes are to be displayed. If
FROM file-name is omitted, the current file is used. OSS pathnames are accepted.

SET

displays the current values for all SET parameters.

set-param

displays one of the following SET command parameters:

RUNNABLE OBJECT SEARCH

COMPRESS DATA LIST

WARNINGS OMIT

* SAVEABEND

RESERVE HIGHREQUESTERS

DATAPAGES SUBTYPE

RUNNAMED IMPORT

HIGHPIN SYMBOLS

INSPECT SYSTYPE

LIBRARY TARGET

PFS TIMESTAMP

DATA PEP

EXTENDSTACK PFS

HEAP RUNNAMED

HEAP STATISTICS SAVEABEND

HIGHPIN STACK

HIGHREQUESTERS SUBTYPE

INSPECT SYMBOLS

LARGESTACK SYSTYPE

LIBRARY TARGET

LIKE USERLIBRARY

MISALIGN
Binder Manual—528613-003
3-69

BIND Commands SHOW Command
Considerations
• SHOW SET PFS, SHOW PFS, and SHOW SET display the value of the PFS with

one of the following units of measure: PAGES, WORDS, or BYTES. If the value is
not a round number of pages, the value will be displayed in WORDS.

• SHOW SET attribute works on stripped files (files without a Binder region).

•
• Note the distinctions among the SET attribute, SET, and set-param options

of the SHOW command.

° SHOW SET attribute displays the value of the specified attribute of the
current object file or object file specified in FROM file-name.

° SHOW SET * displays the value of all the attributes associated with the current
object file or the object file specified in FROM file-name.

° SHOW SET displays the values of all the parameters established by the SET
command.

° SHOW set-param displays the value of a particular parameter established by
the SET command.

° SHOW SET MISALIGN displays the misalign attribute associated with the
specified object file.

Examples
• The following command displays the name of the current file:

@SHOW FILE

FILE \SALE.$EUROPE.PARIS.BROKERS

• The following command displays the value of the DATA parameter established by
the SET command:

@SHOW DATA

DATA (0 PAGES)
Binder Manual—528613-003
3-70

BIND Commands SHOW Command
• The following command displays the values of all the parameters established by
the SELECT command.

@SHOW SELECT

CHECK BLOCK ON, LIBRARY OFF, PARAMETER STRICT

COMPACT ON

COMPRESS DATA

FILESYS GUARDIAN

FIXUPS ON

LIST ALPHA ON, LOC OFF, XREF OFF

OMIT 0 ENTRIES

REFER 0 ENTRIES

RUNNABLE OBJECT OFF

SATISFY OFF

SEARCH 0 ENTRIES

WARNINGS ON
Binder Manual—528613-003
3-71

BIND Commands SHOW Command
• The following command displays the values of all parameters established by the
SET command:

@SHOW SET

DATA (64 PAGES)

EXTENDSTACK

HEAP

HEAP STATISTICS OFF

HIGHPIN OFF

HIGHREQUESTERS OFF

INSPECT ON

LARGESTACK

LIBRARY

PEP

PFS

RUNNAMED OFF

SAVEABEND OFF

STACK

SUBTYPE

SYMBOLS ON

SYSTYPE GUARDIAN

TARGET ANY

USERLIBRARY OFF

• The following command displays the value of the COMPACT parameter of the
SELECT command:

@SHOW COMPACT

COMPACT ON
Binder Manual—528613-003
3-72

BIND Commands SHOW Command
• The following command displays the values of all the attributes associated with the
current object file:

@SHOW SET *

TIMESTAMP 1994-10-24 11:51:06

LIBRARY NOT USED

DATAPAGES 2

HIGHPIN OFF

HIGHREQUESTERS OFF

INSPECT ON

RUNNAMED OFF

SAVEABEND OFF

SYMBOLS OFF

SEGMENTS 1

SUBTYPE 0

PFS 0 WORDS

TARGET UNSPECIFIED
Binder Manual—528613-003
3-73

BIND Commands SHOW Command
• The command SHOW INFO FROM file-name produces a listing such as the
following for accelerated files:

@SHOW INFO FROM myfile

Filename: \NCAL.$SANTA.CLARA.MYFILE

 General Information

 Binder region: YES

 Binder timestamp: 1994-03-01 16:38:53:23

 Data pages: 64

 Debugger: INSPECT

 Inspect region: YES

 Process subtype: 0

Program file segment: 1024 WORDS

 Highrequesters: OFF

 Runnamed: OFF

 Highpin: OFF

 Saveabend: ON

 Segments: 3

 Target: TNS/R

Accelerator Information

Accelerated Execution: ENABLED

 Optimization: PROCDEBUG

 Global options: ATOMIC_OFF, INHERITSCC_ON,

 OVTRAP_ON, SAFEALIASINGRULES_OFF,

 TRUNCATEINDEXING_ON

 Timestamp: 1994-03-01 14:24:56:14

 Version: 1994-03-01 12:04:05:16
Binder Manual—528613-003
3-74

BIND Commands STRIP Command
• The command SHOW INFO FROM file-name produces a listing such as the
following for D-series object files:

@SHOW INFO FROM myfile

Object File: \RUSTY.$USER.TEST.MYFILE

 General Information

 Binder Region: YES

 Binder Timestamp: 1994-10-24 11:51:06.30

 Data Pages: 2

 Debugger: INSPECT

 Inspect Region: NO

 Process Subtype: 0

Program File Segment: 0 WORDS

 Highrequesters: OFF

 Runnamed: ON

 Highpin: ON

 Saveabend: OFF

 Segments: 1

 Target: UNSPECIFIED

STRIP Command
The STRIP command removes the Binder, Inspect, and Accelerator regions from the
named object file. STRIP can also selectively remove the Itanium instruction region
from the named object file.

Note that STRIP modifies the named file; Binder does not copy the file to a target file. If
you need Binder and Inspect tables for future analysis, copy the file to another location.

file-name

specifies the Guardian disk file name or OSS pathname of an object file whose
Binder region and Inspect region (if any) are to be deleted. STRIP file-name leaves
the Accelerator region in the file.

SYMBOLS

strips the Inspect region containing symbols tables from the object file, leaving the
Binder, Accelerator and IPF regions.

STRIP file-name [, SYMBOLS | , AXCEL| , IPF / OCA]
Binder Manual—528613-003
3-75

BIND Commands STRIP Command
AXCEL

strips the Accelerator region (containing TNS/R code) from the object file, leaving
the Binder and Inspect regions.

IPF

strips the Itanium region (containing TNS/E code) from the object file, leaving the
Binder and Inspect regions. Use of IPF or OCA keywords produce an equivalent
result.

Considerations
• To strip all regions from a specified file, enter three commands STRIP

file-name then STRIP file-name, AXCEL then STRIPfile-name, IPF

• The named object file can be stripped of its Binder, Inspect, and Accelerator
regions whether it contains one code segment or multiple code segments.

• The named object file can be stripped whether or not it contains extended data
blocks.

• After an object file is stripped of its Binder tables, you can use the CHANGE,
LMAP, SHOW, and STRIP commands on it.

• After an object file is stripped, it can still be executed, and it can be debugged by
low-level Inspect or Debug.

• If you want to produce a target file without Inspect symbol tables but do not want to
strip the symbol tables from the input object file, issue the SET SYMBOLS OFF
command before issuing the BUILD command. This procedure does not change
the input file on disk. Binder copies the file to the target file, minus the Inspect
symbol tables.

Examples
The following examples illustrate the syntax of the STRIP command.

• The following command strips both the Binder and Inspect regions from the named
object file:

@strip cref.zcobext3

@

• The following command strips the Accelerator region from the named object file:

@strip cref.zcobext4, AXCEL

@

Binder Manual—528613-003
3-76

BIND Commands SYSTEM Command
• The following two commands strip the Binder, Inspect, and Accelerator regions
from the named object file:

@strip cref.zcobext5

@strip cref.zcobext5, AXCEL

@

SYSTEM Command
The SYSTEM command specifies the default node that Binder uses to expand file
names.

node

is a node name.

Considerations
• If you specify a node name with the TACL SYSTEM command, Binder expands

files using that node name in any subsequent Binder command that does not
specify a node name.

• Conversely, if you reset the TACL SYSTEM command to its default setting, Binder
expands files on your default node for any subsequent Binder command that does
not specify a node name.

VERIFY Command
The VERIFY command compares the value of a code or data word in an object file with
a value specified by the user. If the value in the object file is not identical to that
specified, the BIND process terminates.

You can use the VERIFY command with nested code blocks (blocks with a lexical level
greater than one); however, if you do not fully qualify the name, Binder uses the first
block found in the file.

CODE block-name

specifies the name of a code block containing a value to verify.

DATA block-name

specifies the name of a data block containing a value to verify.

SYSTEM [node]

VERIFY { CODE block-name } [verify-spec] [offset] , value
 { DATA block-name }
Binder Manual—528613-003
3-77

BIND Commands VOLUME Command
verify-spec

is one of the following keywords that specifies the format for value:

ASCII

DECIMAL

HEX

OCTAL

The default is OCTAL.

offset

is the offset, in octal, from the base of the block used to compute the exact location
of the word whose value Binder verifies against value. The default is the base of
the block (offset 0).

value

is an expression that Binder verifies against the contents of the specified word.
Enclose an ASCII value in quotation marks.

Considerations
You can use the VERIFY command during a noninteractive BIND session to check that
the value of a code or data word corresponds to the value you expect. If the VERIFY
command yields a discrepant value, Binder issues the fatal error message “Value
specified in VERIFY command not equal to current value” and terminates.

Examples
The following examples illustrate the syntax of the VERIFY command.

@VERIFY CODE block-3, 17

@VERIFY DATA block ASCII 50, "ab"

VOLUME Command
The VOLUME command specifies the default volume and subvolume names that
Binder uses in the expansion of Guardian file names.

$ volume

is a volume name.

VOLUME { $ volume }
 { [$ volume.] subvol }
Binder Manual—528613-003
3-78

BIND Commands VOLUME Command
subvol

is a subvolume name.

Considerations
• The ENV command lists the Binder default volume and subvolume.

• The VOLUME command is only used when the file system is set to Guardian in the
SELECT FILESYS command.
Binder Manual—528613-003
3-79

BIND Commands VOLUME Command
Binder Manual—528613-003
3-80

4 Object File Structure
This section discusses object file structure, including:

All Binder operations are performed on object files. The following discussions pertain to
object file structure both for input files and target files.

Code Blocks, Entry Points, and Data Blocks
Code blocks and data blocks are the smallest independently located pieces of a
program. Code blocks contain executable machine instructions, as well as some inline
constant data. Data blocks contain only data.

Code blocks are all located in the read-only code segments of the program’s user code
space or the user library space. There can be 1 to 32 code segments, each containing
up to 64K 16-bit words of code. Binder automatically determines where to put code
blocks within the minimum number of segments, unless you manually override this
determination with Binder commands.

Because code and library spaces are entirely read only, they are automatically
shareable among all processes concurrently executing an object code file. In contrast,
each process has its own private copy of the program’s data space. The name,
visibility, size, contents, and internal layout of a block are determined at compile time.
A block’s location in memory is determined at bind time. Each block’s location in
memory is independent of the locations assigned to other blocks. A major function of
binding is to fix up or relocate all address references from one block to another after
the locations of all blocks are known.

Code Blocks
A code block contains the executable machine code for a routine that is invoked
through a procedure call (PCAL) or an external call (XCAL) instruction and the
procedure entry point (PEP) table.

Code Block Names
The name of the code block is the same as that of the routine it contains. Thus, a code
block can be a COBOL85 compilation unit; a Pascal main program, procedure, or
function; a TAL PROC; a FORTRAN main program, subroutine, or function; or a C
function. The name given to an unnamed FORTRAN main program is MAIN^. For
more information on PCAL and XCAL instructions, see the appropriate description
manual for your system.

Topic Page
Code Blocks, Entry Points, and Data Blocks 4-1

Object File Format 4-8
Binder Manual—528613-003
4-1

Object File Structure Primary and Secondary Entry Points
Code block names are not case-sensitive except when the program includes C-coded
routines. You can call a C routine from other languages only if the routine name in the
C program is in all uppercase characters.

Code Block Attributes
Especially in TAL and Pascal, code block declarations can contain attributes that
define execution or relocation characteristics. You can alter some attributes using the
ALTER command. Once you have set the INTERRUPT, EXTENSIBLE, and VARIABLE
attributes of a TAL code block or the EXTENSIBLE attribute of a Pascal program at
compile time, however, you cannot change them.

The MAIN attribute applies to any of the languages. After compilation, however, you
can alter the MAIN attribute for TAL and C procedures only.

You can explicitly set the attribute in the given language compiler if “yes” is shown in
the table.

For descriptions of the code attributes, see theTAL Reference Manual discussion of
procedure and subprocedure declarations.

Primary and Secondary Entry Points
Each code block has one primary entry point, accessed through PCAL or XCAL
instructions. The name of the primary entry point is the same as the code block. The
primary entry point is generally, but not always, at the first word of the code block.

FORTRAN and TAL allow routines to have zero or more secondary entry points, which
are also accessed through PCAL instructions. Other languages do not use secondary
entries. To a caller, a secondary entry point looks and acts like independent routines; it
is sufficiently related to the primary entry point to share source code and machine code
and cannot be positioned independently at bind time. Secondary entry points have
distinct names and distinct starting locations within the code block.

Table 4-1. Code Block Attributes

Attribute C COBOL85 FORTRAN PASCAL TAL
Alterable by
Binder

MAIN Yes Yes Yes Yes Yes TAL, C

CALLABLE Yes Yes TAL, Pascal

INTERRUPT Yes

PRIVILEGED Yes Yes TAL, Pascal

RESIDENT Yes Yes TAL, Pascal

VARIABLE Yes

EXTENSIBLE Yes Yes
Binder Manual—528613-003
4-2

Object File Structure Primary and Secondary Entry Points
FORTRAN arithmetic statement functions, TAL SUBPROCs, and COBOL85
PERFORM ranges are routines that are invoked through branch to subroutine (BSUB)
instructions; these routines do not have their own code blocks. The code for such
routines must be contained in the same block as their callers. The location of the
routine’s code within the local code block is determined at compile time. Binder knows
nothing and does nothing about BSUB routines. Pascal and C do not use BSUB
routines.

Routine Scope
The scope or visibility of a routine name, code block name, or entry point name can be
public (global) or private. A routine’s status depends on the language as follows:

• In FORTRAN and TAL, all user routines are public and are callable from anywhere
in the whole program.

• In COBOL85, only user routines that are separately compiled are callable from
anywhere in the whole program.

• In C and Pascal, some routines of a module are public, but others can be private to
the module. Specifically, in C, public routines are called external and private
routines are called static. In Pascal, public routines are explicitly exported from
their module, whereas nonexported routines default to private.

A private routine, code block, or entry point is limited to a module or to its
encompassing procedure, that is, a nested procedure. Public routine names must be
unique across the whole program. Private routine names need only be unique within
their scope. It is possible for private routines in different scopes to have the same
name, or even for a private routine to have the same name as a public routine. You
resolve ambiguities by prefixing the routine name with the name of its scope. This is
called qualifying the routine name.

To call or reference a private routine, you can use its unqualified name if it is unique to
the whole program. Otherwise, you must use the fully qualified name. For example,
you would refer to a routine P private to module M as M.P; you would refer to a routine
P private to public routine Q as Q.P. In Pascal and C, module names are not the
program or module declaration, however, but the file name. You name routines private
to a Pascal or C program by prefixing the routine name with the module scope name.
The module scope name is the name of the module’s primary source file.

Nested Routines
In Pascal and COBOL85, user routines can be textually nested within larger routines.
In the other languages, you cannot nest user routines. Nested routines are private to
the routine containing them.

You reference private routines by prefixing the inner routine name with the fully
qualified name of the outer routine. Here is an example of a nested routine in Pascal:

• Routine P is directly nested within routine Q.
Binder Manual—528613-003
4-3

Object File Structure Data Blocks
• Q is directly nested within outermost routine R.

• R is private to module M compiled from source file $VOLUME.SUBVOL.FNAME.

The full name for routine P is FNAME.R.Q.P. FNAME, the file name, and not M, the
module name, is used. The fully qualified name must not be longer than 255
characters.

Routines textually nested within a Pascal main program are compiled as if they were
not nested. The scope name qualifying these routines is the main-program module’s
primary source file, rather than the declared name of the main-program routine.

Data Blocks
A data block is a collection of statically allocated variables or constants. The compilers
decide how many blocks are needed, how the blocks are accessed, what data to put in
each block, and where to put it within the block. Binder determines where to put the
entire block, within the address space of the process. The location or size of the block
does not change during process execution. All data blocks go into the data space of
the process, except for TAL read-only blocks, which reside in the read-only code space
of the process.

Programs also have dynamically allocated variables, whose locations are not
determined until the process is executing. These include routines’ local variables
residing in the stack, file buffers, and anonymous objects in C or Pascal’s heap space.
These variables are not part of any data block.

Binder must resolve data block references during binding. Therefore, you cannot
create an object file until all the necessary data blocks have been compiled. An object
file is not executable until all data block references have been resolved.

In addition to its contents and initial values, a data block has the following attributes:

• Name

• Scope (which routines can reference the block)

• Means of access (where it can be located)

The scope of a data block is either:

• Public to all modules, known to Binder as a common data block

• Private to one module or private to one code block, known to Binder as an own
data block

Binder recognizes one other type of data block called a special data block. These
blocks are generated either by a compiler or by Binder. Program control blocks such as
the run-unit control block (RUCB) and the program-unit control block are special
blocks.
Binder Manual—528613-003
4-4

Object File Structure Data Blocks
Special block names are distinguished by having a pound sign (#) for at least one of
the characters in the name. The data block output listings display the special block
names. You do not normally use these names in Binder commands.

Common Data Blocks
You can reference a public or common data block from any module that declares it.
The name of a common data block must be unique.

Each programming language has its own terminology for common data blocks.

• In FORTRAN, they are known as named or blank common blocks. (Blank common
is named BLANK^ by the compiler.)

• In COBOL85, they are known as external records.

• In TAL, they are known as named or private blocks. (TAL’s private block is treated
as named, using the module’s name. TAL variables declared before the first explicit
BLOCK declaration are put into an implicit block named #GLOBAL.)

• C and Pascal do not have a construct for declaring a block containing several
variables. Instead, every public variable is automatically treated as a block
containing exactly one variable; the block is named after the variable it contains.

° In C terminology, a public variable is described as an external, nonstatic
variable (which is a misnomer, because all nonlocal variables are statically
allocated).

° In Pascal, a public variable is a variable that is explicitly exported from one
module and imported into others.

A common data block can be owned by several modules, which means that they all
attempt to specify the block’s initial values. Make sure that all owners consistently
specify the same initial values; otherwise, the results will be random. C and Pascal
modules can distinguish between importing a public block, and owning and exporting
the block. FORTRAN, TAL, and COBOL85 are unable to declare a public data block
without also claiming to be its owner.

FORTRAN subprograms do not have to agree on the size of a particular public data
block; Binder uses the largest of the specified sizes.

Own Data Blocks
You can reference a private or own data block only from the module or code block that
owns it. Its name need not be unique. If the name is not unique, you must fully qualify it
in Binder commands, by prefixing it with the module scope name or the fully qualified
routine name.

Note. Uninitialized data in extended data blocks is compressed out of the object file space.
The operating system restores the extended data space to its original space before it was
compressed when the file is run. This enhancement saves disk space for object files with
uninitialized extended data space.
Binder Manual—528613-003
4-5

Object File Structure Data Blocks
Some compilers generate private data blocks to handle the collection of constants and
all private, statically allocated variables used by the compilation unit. For C and Pascal,
these data blocks are private to the module; for COBOL85, and FORTRAN, these data
blocks are private to one routine. Each language uses a different terminology for
private, statically allocated variables:

• In C, these are static, nonexternal variables.

• In COBOL85, these are nonexternal items in the Working Storage and Extended
Storage sections.

• In FORTRAN, these are SAVE variables and variables that appear in DATA
statements but not in common statements.

• In Pascal, these are nonexported, nonimported variables declared at the outermost
level.

• TAL does not use this kind of data.

The HP NonStop architecture uses four different ways to address statically allocated
data, with different tradeoffs in speed, capacity, or generality. These four ways create
four categories of data blocks:

1. Directly addressable data residing in the first 256 words of the data space,
accessed through small offsets from the G register.

2. Data indirectly accessed through 16-bit G-relative addresses, located anywhere
below the stack, within the first 32K words of the data space.

3. Data indirectly accessed through 32-bit extended addresses, located anywhere
within the data space.

4. P-relative read-only data residing in the local code segment, accessed through the
P register (TAL only).

Each compiler has different strategies for supporting its language through a
combination of these categories of static data.

A single block declaration at the source level can actually produce several data blocks
at the machine level, putting some of the conceptual block’s data into each of the four
categories of storage. Consider the following TAL example:

BLOCK BLK;

INT A;

INT .B;

INT .EXT C;

INT D[0:9];

INT .E[0:99];

INT .EXT F[0:9999];
Binder Manual—528613-003
4-6

Object File Structure Data Blocks
INT G[0:7] = 'P' := "abcdefgh";

END BLOCK;

At the conceptual level, this declares a single block named BLK, containing seven
variables. This actually gets compiled as four related blocks:

Binder derives the names of indirectly accessed blocks from the primary block’s name
by adding the prefix character “.” for 16-bit addressing or “$” for 32-bit addressing.

Other languages use some subset of TAL’s scheme of multiple blocks; refer to the
appropriate language manual for additional information.

Separately compiled modules need not use the same technique for addressing data in
public data blocks. For example, when accessing a block in secondary global named
.BLK, TAL always requires a directly accessible block in primary named BLK
containing pointers into .BLK. FORTRAN does not use BLK to access .BLK. And under
the large memory model, C and Pascal also do not use BLK to access .BLK. If BLK
happens to be present, for the sake of TAL modules, it is ignored by FORTRAN, C,
and Pascal modules.

Separately compiled modules need not agree on what category of memory is required
for a particular public data block. For example, TAL always requires that a block named
BLK be in primary global, below G+256, so that it is directly addressable. But under the
large memory model, C and Pascal do not require that BLK be directly addressable;
any location in secondary global, below G+32768, will do. If these TAL and C or Pascal
modules are bound together into one program, Binder places BLK in primary global to
meet the most restrictive requirements on its placement.

You can modify separately compilable data blocks in an object file either by recompiling
the block or by using the MODIFY command. Then, you can build a new object file with
the corrected data block during an interactive BIND session. You do not need to
recompile the entire program.

BLK containing directly accessed items residing in primary global space:

The value of the numeric variable A

The value of the 16-bit pointer variable B

The value of the 32-bit pointer variable C

The contents of the directly-addressable array variable D

A 16-bit pointer for the indirectly-addressed array variable E

A 32-bit pointer for the indirectly-addressed array variable F

.BLK containing indirectly accessed items residing in secondary global space:

The contents of the array variable E

$BLK containing indirectly accessed items residing in extended global space:

The contents of the array variable F

G containing read-only data residing in code space:

The contents of the array variable G
Binder Manual—528613-003
4-7

Object File Structure Object File Format
Object File Format
All object files have the same format, regardless of the number of code and data
blocks.

Figure 4-1 shows an example object file made up of several blocks copied from
different object files. For additional information on mixed-language binding, see Binding
Mixed-Language Programs on page 2-13.

On disk, an object file can consist of a maximum of 16 extents. The header, code, and
data areas must be in the first extent (0). You can use the additional extents (1 through
15) for Inspect symbol tables and Binder tables.

Figure 4-1. Example of the Binder Object File Format

Object File Directory

PEP

 COBMAIN - COBOL compiled
 FRTSUBA - FORTRAN compiled
 TAL^PROC - TAL compiled
 FRTSUBB - FORTRAN compiled
 COB-SUB - COBOL compiled
 TAL^PROC^1- TAL compiled

XEP

 Special Blocks:

 COMMON - FRTSUBA, FRTSUBB
 DATA - FRTSUBA
 BLOCK - TAL^PROC, TAL^PROC^1
 WORKING-STORAGE - COBMAIN, COB-SUB

 Special Blocks

Accelerator and OCA Tables

Symbol Tables

Binder tables

Header

Code Region

Data Region

Accelerated Regions

Inspect Region

Binder Region

VST004.vsd
Binder Manual—528613-003
4-8

Object File Structure Header
Header
The object file header is a block at offset zero containing pointers and descriptive
information for other regions in the object file.

Code Region
The code region consists of consecutive pages of disk space, starting on a page
boundary, in the object file. Binder output statistics give the exact number of pages to
be allocated for the code area at run time.

Code region contents, in order, are:

1. PEP table

2. Global read-only arrays (TAL only)

3. Resident code blocks (TAL only)

4. Nonresident code blocks

5. XEP table

You can define the order of blocks that Binder uses to build the code region. In building
the file, Binder separates resident code blocks from nonresident code blocks for you.

In the completed target file, nonresident code can come before resident code if
compression of the target file requires it. Binder compresses the file contents by
moving nonresident blocks that fit in the gap at 32K even if resident code blocks are
placed above the 32K boundary. The SELECT COMPACT OFF command prevents
Binder from performing any compression or filling the gap.

Multiple-Code-Segment Files
For small programs, Binder builds single-code-segment files. But if a program exceeds
64K words of code or 512 entry points, Binder builds its object file with multiple code
segments. You can also create multiple-code-segment files explicitly by using the ADD
SPACE command or the MOVE entry-list IN NEW SPACE command.

Note. This figure shows a single code segment in the code region. Normally, many more code
segments would appear.

Note. The object file format may change. New versions of Binder will accept all existing Binder
object file formats; however, old versions of Binder will not accept new object file formats.
Binder Manual—528613-003
4-9

Object File Structure Code Region
TAL Global Read-Only Arrays
Binder supports the concept of read-only global data arrays. Currently, the only
language that supports global read-only arrays that are visible to Binder is TAL. The
TAL term for read-only arrays is P-relative arrays. The name is derived from the fact
that read-only arrays reside in the code area of the object file rather than the data area.

Although it can be confusing to find data residing in the code area, it makes sense
when you realize that you can both read the data area and write to it, whereas you can
only read the code area. Therefore, read-only data can safely reside in the code area,
where you cannot accidentally overwrite it.

For single-code-segment object files, Binder places these arrays in the code region
immediately following the PEP. For multiple-code-segment object files, Binder places
these arrays with the first code block in each code segment that refers to them. They
can therefore appear in more than one code segment.

If possible, Binder does not allow read-only string arrays to straddle the 32K boundary.
Binder tries to place such an array above or below the boundary to avoid straddling it.
If it cannot fit the array above or below the boundary, Binder places the array across
the boundary and issues a warning message.

If a string P-relative array is below the 32K boundary and a procedure that refers to this
array is above the boundary, Binder issues a warning message.

You can tell which data blocks are read only in the Binder load map by noticing the “C”
that prefixes the base address of the data block. While the base addresses of the read-
only data blocks in the load map are code segment addresses, Binder lists the read-
only blocks either separately or with the regular data blocks. See Figure 2-6 for a
sample listing of a read-only data block.

Using read-only data blocks in Binder commands is straightforward. Binder treats all
read-only data blocks as DATA blocks, not CODE blocks. Thus, if you want to perform
a Binder function on a read-only data block, you need only specify DATA when using a
Binder command that distinguishes between code blocks and data blocks.

Binder specifies the base addresses and limits of read-only data blocks in the load
map just as it does for regular data blocks. In the following example, the values
specified to dump the first ten words of a regular data block and of a read-only data
block are expressed in the same way:

DUMP DATA regular^data 0,10

DUMP DATA read^only^data 0,10

PEP and XEP Tables
The PEP (procedure entry point) and XEP (external entry point) tables are operating
system tables.

The PEP table contains the entry point addresses for each code block in each code
segment. The PEP is in the first page of each code segment.
Binder Manual—528613-003
4-10

Object File Structure Data Region
The XEP table is in the last page of each code segment and contains an entry for each
unresolved external reference. The operating system fills in this table at run time.
These unresolved references can refer to entry points in the code or system library, the
FORTRAN or COBOL85 run-time libraries, or to entry points in user library segments.

Data Region
Binder determines the minimum number of pages to allocate for the data area and
reports the number in the output statistics. The data area starts on a page boundary.

 Binder also determines the order for data blocks so you need not specify their order
when you define a target file.

Accelerator Region
After you have run a run a file through the Accelerator, the Accelerator region contains
the TNS/R version of the original TNS instructions. If you do not use the Accelerator,
this region is a zero-length record. See the Accelerator Manual for information on the
Accelerator.

OCA Region
After you run a file through the Object Code Accelerator (the OCA), the OCA region
contains the TNS/E version of the original TNS instructions. If you do not use OCA, this
region is a zero-length record. See the Object Code Accelerator Manual for information
on OCA.

Inspect Region
Symbol tables in the Inspect region contain information on all symbols in blocks that
were compiled with the SYMBOLS directive. Because you can turn SYMBOLS on and
off for each procedure, an object file can contain symbol tables for some of the blocks
and not for others.

The space required for symbol tables depends on program characteristics. Space
requirements for the object file can increase significantly when data requirements are
complex. During an interactive Binder session, you can specify whether to retain the
symbol tables in the target file. You should retain symbol tables for blocks that are still
in the development cycle if you plan to use Inspect high-level commands. See the
STRIP Command on page 3-75

Once you delete the symbol tables, you can still use the LMAP command to display the
load map of the stripped file. You can also use low-level Inspect commands and Debug
commands whether symbol tables exist or not. If you need the symbol tables, you must
recompile the file. For information on debugging programs, see the Inspect Manual and
the Debug Manual. For information on LMAP, see LMAP Command on page 3-32
Binder Manual—528613-003
4-11

Object File Structure Binder Region
Binder Region
The Binder region contains a header and the following Binder tables:

• Procedure information table

• Entry point table

• Data block information table

You can strip Binder tables using the STRIP command. See STRIP Command on
page 3-75
Binder Manual—528613-003
4-12

5 Binder Input and Output
This section describes the two stages of Binder operation: input and output. It contains
the following topics:

During the input stage, you instruct Binder how to build the target file by specifying the
names of input object files and the code and data blocks within those files. You also
specify any changes to the code blocks, data blocks, and references that Binder must
follow to build its target file.

During the output stage, Binder builds the target file according to your instructions and
places the new target object file on disk.

Compilers provide names for all code and data blocks that are unnamed in the source
code. In turn, Binder receives from the compilers and interactive users the names of
disk files to search for specific code and data blocks. When the Binder finds each
block, it copies the code or data block into the target file. The input object file is not
affected; it remains on disk in its original state.

Binder determines which code blocks should be included in the final executable
program from among all the available code blocks contained in the input files (specified
in ADD and SELECT SEARCH commands). Binder makes these determinations
independently for each code block using the input control lists. If an input object code
file has four routines—A, B, C, and D—Binder might determine that only B and C are
needed in this application. Binder would then copy B and C into the new object code
file and omit A and D.

Binder makes these determinations by tracking which routines are needed to satisfy
direct or indirect calls from the main program. Routines that are called but not yet
included are called unsatisfied references. You can manually force additional blocks
into the output file by using the ADD command.

Although input files can include several copies or versions of the same routine, Binder
includes only one copy in the new object code file. The copy that is chosen depends on
the ordering of Binder commands and on the order in which Binder explores the search
list.

The Input Control Lists
During the input stage, Binder accepts commands and collects the information in
control lists. These lists are used to build the target file during the output stage. The
input control lists follow:

• Include lists, specifically:

° Include code block list

Topic Page
The Input Control Lists 5-1

The Target File 5-8
Binder Manual—528613-003
5-1

Binder Input and Output Creating the Input Control Lists
° Include entry point list

° Include data block list

° Include run-time data unit list (RTDU list)

• Modify list

• Omit list

• Refer list

• Search list

• Undefined list

• Unresolved reference lists, specifically:

° Unresolved code list

° Unresolved data list

When you start Binder, all lists are empty. After Binder builds the target file, the lists are
again empty. You can then define another target file or end the session.

Creating the Input Control Lists
You create the input control lists with Binder commands entered during the input stage.
Binder automatically maintains the unresolved reference lists. You do not enter
commands to create these lists.

Table 5-1. Commands That Create Control Lists
Command Description
ADD Places names on the include lists.

REPLACE Changes code blocks, their associated entry points and
RTDUs, and data blocks on the appropriate include lists.

SELECT Adds names to the omit, search, and refer lists.

MOVE Reorders the include entry name list and include code list.

SATISFY Resolves entry point names and RTDUs on the unresolved
entry point list and data block names on the unresolved and
undefined data lists.

CLEAR Clears (resets to empty) the include, omit, search, refer,
unresolved reference, undefined data, and modify lists.

MODIFY Creates the modify list by specifying a set of modifications
when building the target file.
Binder Manual—528613-003
5-2

Binder Input and Output How Binder Uses the Input Control Lists
How Binder Uses the Input Control Lists
The following subsections describe the input control lists and how and when Binder
adds and removes blocks and entry points from the lists.

Include Lists
The include lists are ordered lists of code blocks, data blocks, entry points, and RTDUs
to include in the target file. The ADD or REPLACE commands add the names of code
blocks, data blocks, entry points, and RTDUs to the applicable include list in the order
specified. Binder adds names from subsequent ADD commands to the end of the list.
REPLACE puts the replaced blocks in the same place on the list.

ADD and REPLACE commands can refer to entry points explicitly by name or implicitly
as part of a range of entry point names. Inserting a range of entry points specifies that
entry points in the file (in physical order) from the beginning to the end of the range are
to be added to the include list. All primary entry point names within the range are
added to both the include code block list and the include entry point list; secondary
entry point names are only added to the include entry point list. Names of own data
blocks for the code blocks are added to the include data block list.

If a code block added to the include code block list contains a reference to an entry
point, data block, or RTDU that is not in the respective include list, Binder adds the
name to the unresolved reference list. Binder tries to resolve the reference when you
execute a SATISFY or BUILD command. (You can prevent automatic resolution of
entry points and RTDUs by using the SELECT SATISFY OFF command.)

Include Code Block List.
Binder adds a code block name to the include code block list when one of the following
happens:

• An ADD or REPLACE command refers to the code block (primary entry point)
name explicitly or implicitly as part of a range of entry points.

• An ADD or REPLACE command refers to the total contents of a disk file containing
the code block.

• Binder executes a SATISFY or BUILD command and the following are true:

° An entry point, referenced by an included code block, is in the unresolved
reference list.

° The entry point name is not in the omit list.

° The code block containing the entry point that can satisfy the reference is in a
disk file in the search list.

The order of code block names in the include code block list generally determines the
order in which code blocks are allocated during the output phase. Binder might change
the order of code block names in three cases:
Binder Manual—528613-003
5-3

Binder Input and Output How Binder Uses the Input Control Lists
• When a code block is greater than 32K words

• When a code block is a resident procedure

• When a gap in a code segment could be filled by a small code block

Using the MOVE command, you can reorder the include code block list during the input
phase in such a way that page faults are avoided during execution. For diagnostic
information on using MOVE in this way, see the Measure Reference Manual

Include Data Block List.
Binder adds a data block name to the include data block list if any one of a set of
conditions is true:

• The data block is a common block, and an ADD or REPLACE command refers to
the data block name either explicitly or implicitly as part of a range of data blocks;
ordering is not necessary.

• The data block is a common block referenced by a code block in the include code
block list.

• The data block is the own (private) block of a code block in the include code block
list.

• The data block is part of a disk file whose total contents are referred to by an ADD
or REPLACE command.

• The data block is a special data block required by a code block in the include code
block list.

• Binder executes a SATISFY or BUILD command and the data block, referenced by
an included code block, is in the unresolved reference list.

Include Entry Point List.
Binder adds an entry point name to the include entry point list if any of the following is
true:

• An ADD or REPLACE command refers to the entry point name explicitly or
implicitly as part of a range of entry points.

• An ADD or REPLACE command refers to the total contents of a disk file containing
the entry point. Secondary entry points, as well as the primary entry points, are
added to the list.

• The code block including the secondary entry point is put on the include list.

The order of entry point names in this list corresponds to the order of code block
names in the include code block list. Binder positions an entry point name in the same
order as that of the ADD or REPLACE command that refers to it.
Binder Manual—528613-003
5-4

Binder Input and Output How Binder Uses the Input Control Lists
Include Run-Time Data Unit List.
Binder adds an RTDU name to the include run-time data unit list when one of the
following happens:

• An ADD or REPLACE command refers to the total contents of a disk file containing
the RTDU.

• Binder executes a SATISFY or BUILD command and the following are true:

° An RTDU, referenced by an included code block, is in the unresolved
reference list.

° The code block containing the RTDU that can satisfy the reference is in a disk
file in the search list.

Modify List
You can change the contents of an existing code block or data block when Binder
builds the target file. During the input stage, you specify modifications using the
MODIFY command. Binder saves the set of modifications established by this
command in the modify list and makes the actual changes when it builds the target file
(after fixups). You cannot modify uninitialized data blocks.

Omit List
The omit list contains the names of entry points that Binder must exclude from the
target file even if the included code refers to these entry points. Likewise, it does not
matter whether the files on the search list contain the entry points. You can use the
omit list to force an entry point to be satisfied at run time, either from a system library
or from a user library.

You cannot specify an entry point name for the omit list if the name is already in the
include entry point list.

The SELECT OMIT command specifies entries for the omit list. You can override the
omit list by specifying a different omit list in the SATISFY or BUILD command. The
SATISFY or BUILD respecification is in effect only during execution of these
commands.

Note that giving the BUILD command implies a SATISFY command unless you specify
SELECT SATISFY OFF, which prevents automatic resolution of entry point references.
The SATISFY command refers to entry points and data blocks; SELECT SATISFY
refers only to entry points.

Clear the current omit list by using the RESELECT OMIT command.

Refer List
The refer list is a list of pairs of entry point names. The first entry point name of the pair
is the existing name used to refer to an entry point (the old name). The second entry
Binder Manual—528613-003
5-5

Binder Input and Output How Binder Uses the Input Control Lists
point name of the pair is the name of an entry point (the new name) that is to be
substituted for the existing entry point name. The two names cannot be the same.

 When Binder executes a SATISFY or BUILD command, it checks unresolved entry
point references against the refer list. If the reference is to be changed, Binder makes
the change and then tries to resolve the reference. The refer list does not apply to
entry points previously added to the include entry point list.

Binder builds the refer list according to the specifications you give using the REFER
parameter of the SELECT command. If you specify the REFER parameter in the
SATISFY or BUILD command, the refer list of the SATISFY or BUILD command takes
precedence over the refer list of the SELECT command.

You can clear the refer list by using the REFER parameter of the RESELECT
command.

Search List
The search list contains the disk file names of object files to search in order to resolve
entry point and data block references. Binder uses this list when executing a SATISFY
or BUILD command. Binder searches the files in the order in which the file names are
listed for blocks that define entry points and data blocks in the unresolved and
undefined reference lists.

Binder builds the search list according to the specifications you give for the SEARCH
parameter of the SELECT command. If you specify the SEARCH parameter in the
BUILD or SATISFY command, the search list of the SATISFY or BUILD command
takes precedence over the search list of the SELECT command.

Undefined List
Binder creates an entry in the undefined list for any data block references that are not
initialized in an object file. This applies to C and Pascal binding only. Note that the
object file is not runnable until these blocks are initialized.

Unresolved Reference Lists
The unresolved reference lists contain entry point, data block, and RTDU names that
are referred to but are not defined by any block in the include lists. Binder notes
whether the reference is internal or external to the file that contains the reference at the
time it puts the reference on the unresolved reference list. The when Binder executes a
SATISFY or BUILD command, it tries to resolve each entry point, data block, or RTDU
name as described below.

For entry points, Binder performs the following steps:

1. Binder searches the refer list for a redirection of the entry point.
Binder Manual—528613-003
5-6

Binder Input and Output How Binder Uses the Input Control Lists
2. Binder searches the omit list; if it finds the name in the omit list, it does not resolve
the entry point name. No further action takes place for that reference and the entry
point name remains in the unresolved reference list.

3. If the reference is internal to the file that contained it, Binder searches that file. If
the reference is external to the file that contained it, Binder searches the object
files named in the search list for an entry point that satisfies the reference; Binder
searches object files in the order of the file names in the search list. If Binder finds
the entry point, it adds the code block that defines the entry point to the end of the
include code block list and deletes the entry point name from the unresolved
reference list.

4. If adding a code block to the include code block list introduces further unresolved
references, Binder checks the refer list for redirection of those entry points and
notes whether the reference came from the same file as the block that was just
included. If an entry point is redirected and can be resolved by the include entry
point list, no further action takes place; otherwise, Binder adds the entry point
name to the unresolved reference list.

For data block names, Binder tries to resolve each reference by searching the file
containing the code block that referenced the common block. Binder performs this step
regardless of the setting of SELECT SATISFY command.

For RTDUs, if the reference is internal to the file that contained it, Binder searches that
file. If the reference is external to the file that contained it, Binder searches the object
files named in the search list for an RTDU that satisfies the reference; Binder searches
object files in the order of the file names in the search list. If Binder finds the RTDU, it
adds the code block that defines the RTDU to the end of the include code block list and
deletes the RTDU name from the unresolved reference list.

Once Binder has built the target file, entry points, RTDUs, and data blocks are handled
differently. For entry points and RTDUs, any unresolved reference becomes an
external reference that must be satisfied either by a subsequent Binder operation or at
run time. For the languages currently supported by Binder, no data block names should
appear in the unresolved reference list after binding.

The following example illustrates how Binder resolves unsatisfied references when
building the target file. This example assumes that:

• The unresolved entry list specifies A, B, C, and D (in that order).

• Procedure A calls procedure B and procedure B calls procedures C and D.

• File OBJ1 contains procedures A and C and file OBJ2 contains procedures B, C,
and D.

The following commands produce the results specified in the subsequent paragraphs.

@ADD CODE A FROM OBJ1

@SELECT SEARCH OBJ1

@SELECT SEARCH OBJ2
Binder Manual—528613-003
5-7

Binder Input and Output The Target File
@SATISFY

Binder resolves the reference to A from OBJ1, and then resolves the reference to B
from OBJ2. Because B calls C and D, Binder adds the references to C and D to the
unresolved entry list. It also notes that C and D are contained in the same file as B.
When it comes time to resolve the reference to C, Binder does so by searching file
OBJ2. Finally, Binder resolves D from OBJ2.

If A had also called C, Binder would have added C to the unresolved entry list before
resolving B and would have noted that C was contained in OBJ1. In that case, C would
have been resolved from OBJ1.

It is important to be aware of the order in which calls are resolved, because two
procedures having the same name do not necessarily contain the same code. This can
lead to unexpected results.

The Target File
The output stage begins when the BUILD command causes an implicit satisfy for
unresolved references. During the output stage, Binder builds the target file according
to the names in the include lists, writes out listings, and clears all of the internal lists
(include, omit, refer, search, unresolved reference, undefined, and modify).

Target File Attributes
Binder builds the target file using the attributes specified with the SET command or by
the set-param parameter of the BUILD command.
Binder Manual—528613-003
5-8

Binder Input and Output Target File Attributes
Table 5-2. Target File Attributes (page 1 of 3)

Attribute Description
DATA Specifies the total amount of nonextended data pages

allocated at run time for data blocks, stack, and local
storage. The default is 64K words for C and Pascal.

Note that you can use only one of DATA, STACK, or
EXTENDSTACK to override the default amount of data
space allocated by Binder.

EXTENDSTACK Specifies an amount of stack space to add to the amount
of stack space estimated by Binder. Binder then
allocates the total amount of stack space and total data
block space.

Note that you can use only one of DATA, STACK, or
EXTENDSTACK to override the default amount of data
space allocated by Binder. The default data space
allocated by Binder is the amount of space required for
all of the data blocks plus an estimated amount of stack
space for local storage.

HEAP Sets the maximum size of the heap used in C and
Pascal. The value you specify (in words, pages, or
bytes) overrides any other value Binder has
encountered. The default is 0.

HIGHPIN Specifies that the object file can run at a high process
identification number (PIN) if one is available. The
default is OFF.

HIGHREQUESTERS Specifies that the object file can support requests from
processes running at a high process identification
number (PIN). The default is OFF.

INSPECT Specifies which debugging program (Inspect or Debug)
you want to use when the object code is executed. The
default is OFF; that is, the Debug program is used.

LARGESTACK Sets the size of the $EXTENDED#STACK data block
used in TAL. The value you specify overrides any other
value Binder has encountered. If you omit this entry,
Binder uses the largest $EXTENDED#STACK block
possible.

LIBRARY Specifies the user library to associate with the object file
at run time. If you omit this entry, Binder associates no
user library with the object file. You can override this file
attribute at run time by specifying the LIB parameter in
the command interpreter RUN command.

LIKE Specifies that the following attributes of the target file are
to be the same as those of a specified object file: DATA,
INSPECT, LIBRARY, and SAVEABEND.
Binder Manual—528613-003
5-9

Binder Input and Output Target File Attributes
PEP Explicitly specifies a larger size for the PEP table. By
default, Binder allocates the minimum amount of space
needed for the number of entry points in the object file.

PFS Specifies the size of the Process File Segment. The PFS
can be from 64 to 512 pages.

RUNNAMED Specifies that the object file must be run as a named
processes. The operating system assigns a name if a
name is not specified at process creation. The default is
OFF.

SAVEABEND Determines whether the Inspect symbolic debugger
creates a save file if the process terminates abnormally
during execution. Binder verifies that Inspect is ON if
SAVEABEND is ON. The SAVEABEND default is OFF.

The operating system creates the save file in the same
volume and subvolume as the program and assigns it a
name in the format of ZZSA nnnn. This file contains
information on the process environment at the point of
termination including:

• Names of all open files

• A copy of the data space at the time the process
terminated

• Name of the process and a timestamp for the time of
termination

STACK Specifies the amount of stack space to allocate for local
storage. Binder adds this parameter value to the amount
of space required for all data blocks, then allocates the
total amount of data space.

Note that you can use only one of DATA, STACK, or
EXTENDSTACK to override the default amount of data
space allocated by Binder.

SUBTYPE Sets the value of process subtype for the target file. The
default value is 0.

SYMBOLS Specifies whether Binder retains the symbol tables of
blocks on the include lists, in the target file’s Inspect
region. (When you use the SYMBOLS compiler directive,
Binder includes a symbol table in the object file.)
SYMBOLS ON is the default and specifies that Binder
retains the tables in

the object file.

Table 5-2. Target File Attributes (page 2 of 3)

Attribute Description
Binder Manual—528613-003
5-10

Binder Input and Output How Binder Builds the Target File
Note that the Inspect symbolic debugger also provides an interactive method for saving
the environment of a process as well as examining save files. See the descriptions of
the SAVE and PR commands in the Inspect Manual.

How Binder Builds the Target File
When the BUILD command executes, Binder creates the target file according to the
code block, data block, entry point, and RTDU names currently on the include lists.
Binder performs the following steps in creating the target file:

1. It tries to satisfy entry point, data block, and RTDU references in the unresolved
and undefined reference lists.

2. It defines entry points that cannot be resolved as external references for the object
file.

3. It allocates any uninitialized common block in an area preset to zero.

4. It copies blocks named in the include lists to the target file.

Binder allocates code blocks contiguously in the order in which the code block names
appear in the include code block list. The RESIDENT attribute overrides the include list
order.

If you have set the COMPACT parameter of the SELECT command to ON (the
default), Binder checks each succeeding code block to determine whether the block fits
in a gap between the previous code block and the 32K boundary. If Binder finds such a
block, Binder allocates the block in that gap. Use of the SELECT COMPACT ON
command can result in nonresident code blocks preceding resident code blocks.

The CHECK parameter of the SELECT command can also affect the construction of
the target file. This parameter selects the different types of error checking that Binder
provides during the binding operation. The available options are as follows:

SYSTYPE Specifies whether the target execution environment for
the object file is Guardian environments or OSS
environment. The default is Guardian.

TARGET Specifies the processor that the target file can run on.
TARGET can be TNS, TNS/R, ANY, or unspecified. The
default is unspecified.

USERLIBRARY Specifies whether Binder builds a target file with a
maximum of 16 or 32 code segments. If you specify the
latter, the process creation system procedure call
creates a process with the first 16 code segments in user
code space and the remaining segments in the user
library space. The default value, OFF, specifies a
maximum of 16 code segments.

Table 5-2. Target File Attributes (page 3 of 3)

Attribute Description
Binder Manual—528613-003
5-11

Binder Input and Output How Binder Builds the Target File
• The BLOCK option causes common block declarations to be checked for the same
length and the same type of addressing in every code block that refers to the
common block. If the length and type do not match for each of the references,
Binder issues a warning. The default is ON.

• The LIBRARY option causes the following checking to occur when Binder builds a
user library:

° Binder checks code blocks being placed into the object file for references to
data blocks other than read-only blocks.

° Binder also checks code blocks for the MAIN attribute.

If it finds either, Binder issues a warning message. The default is OFF.

• The PARAMETER option specifies the extent to which Binder checks parameter
lists, function return values, and language consistency.

Binder provides five levels of parameter, return value, and language checking: ON,
STRICT, STRONG, LENIENT, and OFF. The default setting is STRICT.

Depending upon the setting of the PARAMETER option, Binder checks the parameter
lists for the respective code blocks for consistency in size, type, and mode. Mode
checking refers to whether the parameter is passed by value or by reference. Binder
issues a warning message if the called code block’s parameter requirements do not
match those of the caller. Binder checks to make sure that the caller specifies the
correct language for the called routine; it issues a warning message if the caller
specifies a different language than that of the called routine. If the caller explicitly
states that the language of the invoked routine is unspecified, Binder does not perform
this check. Refer to the discussion in SELECT Command on page 3-49 for more
information.

Note. You might receive parameter mismatch errors when using BIND that you did not receive
when using BINSERV. This can occur if you compile with parameter checking turned off and
then start a BIND session with the parameter checking turned on. In particular, the parameter
mismatch messages are likely to occur in mixed-language binding.
Binder Manual—528613-003
5-12

6 User Libraries
This section contains the following topics:

A user library is a set of procedures that the operating system can link to a program file
at run time. This section contains general information needed for effective
programming with user libraries.

User libraries are available in TAL and FORTRAN and D-series C and COBOL85
programs. User libraries are not available in Pascal.

User libraries provide many benefits to programs. You can place commonly used
procedures in a user library:

• To reduce the storage required for object code on disk and in main memory.

• To share a set of common procedures among applications.

• To extend a single application’s code space.

Binding User-Library Procedures
The first time you execute a program file after compilation, the system searches the
optional user library to resolve each unresolved external reference before searching
the system code and library.

The HP NonStop Operating System resolves an external reference by changing the
call in the program file appropriately; that is, to point to the user library or to the system
library. You can then run the program file repeatedly without satisfying the references
again.

If the operating system cannot find a user or system library procedure to satisfy a run-
time external reference, it displays a message as the process starts. When the process
makes a call to an unresolved procedure, the process changes the reference into a call
to the Debug utility, and the process enters the debug state.

Run-time binding does not include copying the procedure into the program file. A
program file can have only one user library associated with it. Therefore, on a TNS
system, a running program can have 16 segments of program code space and 16
segments of library code space for a total of 32 segments. On a TNS/R system, a
running program can have 32 segments of program code space and 32 segments of

Topic Page
Binding User-Library Procedures 6-1

Object File Format 6-2

Preventing Binder Resolution of Library Calls 6-2

Specifying a User Library 6-3

Restrictions on User Libraries 6-3

Shared Run-Time Libraries 6-4
Binder Manual—528613-003
6-1

User Libraries Object File Format
library code space for a total of 64 segments. A segment can contain as many as 64K
words of code. For instructions about using the USERLIBRARY option to increase the
size of a program’s code space from 16 to 32 segments (for TNS systems) and from
32 to 64 segments (for TNS/R systems), see SET Command on page 3-57.

Object File Format
Because the operating system binds program files and library procedures at execution
time, there are no restrictions on object-file format. A program file and its library file can
exist in any combination of new Binder and old system formats.

Preventing Binder Resolution of Library Calls
If you plan to use a user library (for example, to avoid code-space overflow), make
sure Binder does not insert library procedures into the object file before run time. This
can be accomplished at compile time or during a command-driven BIND session.

Compilation-Time Binding
At compilation time, Binder tries to resolve external references if the compiler SEARCH
directive or pragma specifies a list of object files for this purpose. The exception to this
is COBOL85’s use of the file C8LIB. For more information, see the COBOL85
Reference Manual.

When a search list is present, the Binder tries to resolve all unresolved external
references. If compilation-time binding places a user-library procedure in the program
file, you can delete that procedure from the program file in an independent Binder
session.

Command-Driven Binding
During a Binder session, you can specify names of individual entry points that Binder
should not include in an object file. First build a user-library file of procedures copied
from existing program files; then, build more compact program files by omitting the
library procedures.

To specify the external references that Binder should not resolve, use these commands
as appropriate:

• The SELECT OMIT command to entry points of user library procedures.

This prevents binding of these procedures in the program file.

• The BUILD command with the SATISFY OFF parameter option.

This, however, prevents any attempt at resolution after the target file contents have
been specified by other commands.

• The DELETE command to remove user-library procedures that were already
bound in the program file.
Binder Manual—528613-003
6-2

User Libraries Specifying a User Library
Specifying a User Library
Only one user library can be associated with a program file at any time. Therefore, all
concurrently executing processes created from a single program file use the same
library file.

You specify the user library for a program file by using one of the following:

• The COBOL85, FORTRAN, and TAL compiler directive LIBRARY

• The Binder command SET LIBRARY

• The command interpreter RUN command LIB option

The Binder SET LIBRARY command overrides any LIBRARY compiler directives. The
RUN command LIB option overrides both the Binder SET LIBRARY commands and
the LIBRARY compiler directives.

The library remains associated with the program file until you explicitly change it. That
is, the operating system changes to the program file for external-reference resolution
remain when the process completes. If the operating system detects modifications to
the program file or the user library when either file is specified in a subsequent RUN
command, the operating system again resolves the calls left for resolution.

See the BUILD Command on page 3-11, CHANGE Command on page 3-15, and SET
Command on page 3-57 to learn how to specify and change user libraries.

To specify a different library with a program file, you need write access to the program
file, and all processes created from the program file must have stopped.

Restrictions on User Libraries
The SELECT CHECK LIBRARY ON command directs Binder to enforces rules to
which user libraries must adhere. Specify this command when building a target file that
will be used as a user library. Binder issues a warning for any reference to a data block
other than a read-only block or any entry point that has the MAIN attribute. Note that
BIND does not check existing libraries, only user libraries that are being built.

User library files must meet the following restrictions:

• A library file cannot contain a main program. If it does, a run-time error results.

• Library routines cannot call routines in the program file.

• FORTRAN user libraries cannot contain DATA statements, SAVE statements, or
COMMON statements.

• C user library routines can be called by routines written in any HP programming
language, but the calling program file must contain at least one C routine. This is
required to ensure the C run-time library resources are available to the user library.

Additionally, user library files must meet the following restrictions on data declarations:
Binder Manual—528613-003
6-3

User Libraries Shared Run-Time Libraries
• There is one data space (stack) for a process, the one allocated for the program
file.

• The library file’s global data matches the global data of the program file. Because
you specify the allocation and initialization of global data in your program file, if the
library file has global data, it must match the global data of the program file. The
operating system ignores any initialization of global data in the library file.

• The library file cannot contain global data if the program file contains embedded
SQL statements. These global data blocks are used to process the embedded SQL
statements at run-time.

• A TAL library procedure can have its own read-only arrays. Nevertheless, a global
read-only array must be in the code space containing references to the array. If
both code spaces contain references to such an array, copies of the array must
exist in both the library and in the program file.

• User-library procedures cannot pass read-only array arguments to user code or to
system code. In particular, a user-library call to the Guardian system call procedure
FORMATDATA cannot pass read-only array arguments. For language specific
information on user libraries, see the appropriate manuals for more information.

Shared Run-Time Libraries
Shared run-time libraries (SRLs) are special user libraries that contain global variables.
The SRLs are provided by HP. Building an application that uses an SRL is similar to
building an application that uses a user library. This section describes some additional
commands used with SRLs.

Building Applications That Use SRLs
When building an application, you must specify an existing library to import global
variables from and reserve space in primary, secondary, and extended memory to
store the library variables. Binder uses the recommended data space sizes from the
library, but you can adjust these space sizes. Variables explicitly exported by the library
can be accessed in the application by name.

Using Binder Commands With SRLs
The following Binder commands support shared run-time libraries:

Note. A program file can use either a user library or an SRL.
Binder Manual—528613-003
6-4

User Libraries Reserving Space With the SET RESERVE
Command
See Section 3, BIND Commands for a complete description of these commands.

Reserving Space With the SET RESERVE Command
The following considerations apply when reserving space in applications:

• The application reserves as much BELOW64, PRIMARY, SECONDARY, and
EXTENDED data space as is recommended in the library. Binder reads this
information from the user library object file header when the SELECT IMPORT
LIBRARY command is specified.

• The application builder can change the size of each reserved area, whether by
increasing it, by decreasing it, or by setting it to an absolute amount. The
incremental values are combined for each data area, to determine the final size of
space to reserve.

• If an absolute value is specified, it overrides any previous absolute or incremental
setting for that data area.

• If the final size is smaller than required for the current instance of the library, Binder
reports a warning. The application is built even though the reserved size is
insufficient.

• A new library can be supplied which uses less space, but most likely the
application needs to be rebound using a larger reserve space.

• If the application does not reserve enough space, the system gives a fatal error at
process initiation time.

Table 6-1. Binder Commands Used With Shared Run-Time Libraries
Command Description
SELECT IMPORT
LIBRARY

Specifies the use of an SRL library as a user library used
during binding.

SET IMPORT Specifies the list of variables to be imported.

SET RESERVE Specifies how much space to reserve in the application’s
global data space.

SHOW IMPORT Displays the list of imported data blocks

SHOW RESERVE Displays the reserve settings for each of the four data
areas.
Binder Manual—528613-003
6-5

User Libraries Reserving Space With the SET RESERVE
Command
Binder Manual—528613-003
6-6

7
Guardian File Names and TACL
Commands

This section discusses:

The Binder product assumes that file names supplied for input and output follow
NonStop Operating System naming conventions. Defaults are supplied by the
command interpreter when Binder is started.

For information on process or device file names, see the Guardian Programmer’s
Guide.

Disk File Names
A disk file name identifies a file that contains data or a program. A disk file name
reflects the specified file’s location on an HP system. The location of a disk file on an
HP system is analogous to the location of a form in a file cabinet. To find the form, you
must know:

• Which file cabinet it is in

• Which drawer it is in

• Which folder it is in

• Which form it is

Analogously, to find a disk file on an HP system, you must know:

• Which node (system) it is on

• Which volume it is on

• Which subvolume it is on

• Which disk file it is

In general, disk file names:

• Cannot contain spaces

Topic Page
Disk File Names 7-1

TACL Commands 7-4

TACL DEFINE Commands 7-5

TACL PARAM Commands 7-7

TACL ASSIGN Commands 7-9
Binder Manual—528613-003
7-1

Guardian File Names and TACL Commands Parts of a Disk File Name
• Can contain ASCII characters only

• Are not case-sensitive; the following names are equivalent:

myfile

MyFile

MYFILE

Language functions and system procedures that return file names might return
them in uppercase (even if the file name was originally in lowercase). Check the
description of the function or procedure that you are using.

Parts of a Disk File Name
A disk file has a unique file name that consists of four parts, with each part separated
by a period:

• A node name

• A volume name

• A subvolume name

• A file ID

Here is an example of a disk file name:

\mynode.$myvol.mysubvol.myfile

You can name your own subvolumes and file IDs, but nodes (systems) and volumes
are named by the system manager.

All parts of the file name except the file ID are optional except as noted in the following
discussion. If you omit any part of the file name, the system uses values as described
in Partial File Names on page 7-3, later in this section.

Node or System Name
The node or system name, such as \MYNODE, is the name of the node or system
where the file resides. If specified, the node or system name must begin with a
backslash (\) followed by one to seven alphanumeric characters. The character
following the backslash must be an alphabetic character.

Volume Name
The volume name, such as $MYVOL, is the name of the disk volume where the file
resides. If specified, the volume name must begin with a dollar sign ($), followed by
one to six or one to seven alphanumeric characters as follows. The character following
the dollar sign must be an alphabetic character.

The volume name can contain one to seven alphanumeric characters.
Binder Manual—528613-003
7-2

Guardian File Names and TACL Commands Partial File Names
Subvolume Name
The subvolume name, such as MYSUBVOL, is the name of the set of files, on the disk
volume, within which the file resides. The subvolume name can contain from one to
eight alphanumeric characters, the first of which must be alphabetic.

On a D-series system, if you specify the volume name, you must also specify the
subvolume name. If you omit the volume name, specifying the subvolume name is
optional.

File ID
The file ID, such as MYFILE, is the identifier of the file in the subvolume. The file ID
can contain from one to eight alphanumeric characters, the first of which must be
alphabetic.

The file ID is required.

Partial File Names
A partial file name contains at least the file ID, but does not contain all the file-name
parts. When you specify a partial file name, the operating system or other process fills
in the missing file-name parts by using your current default values. Following are the
optional file-name parts and their default values:

Following are all the partial file names you can specify for a disk file named
\BRANCH.$DIV.DEPT.EMP:

File-Name Part Default
node (system) Node (system) on which your program is executing

volume Current default volume

subvolume Current default subvolume

Omitted File-
Name Parts Partial File Name

Permitted on
D-Series and
G-series
Systems

Node (system) $div.dept.emp Yes

Node (system),
volume

dept.emp Yes

Node (system),
volume,
subvolume

emp Yes

Volume \branch.dept.emp Yes
Binder Manual—528613-003
7-3

Guardian File Names and TACL Commands Logical File Names
You can change your current default values in various ways:

• You can change the volume and subvolume with the VOLUME command of, for
example, the Binder, Inspect, and TACL products.

• In some cases, you can specify node (system), volume, and subvolume names by
issuing TACL ASSIGN SSV commands, described later in this section.

Logical File Names
You can use a logical file name in place of the disk file name. A logical file name is an
alternate name you specify in a TACL DEFINE or TACL ASSIGN command, described
later in this section.

Internal File Names
The C-series operating system uses the internal form of a file name when passing it
between your program and the operating system. The D-series operating system uses
the internal form only if your program has not been converted to use D-series features.

For information on converting external file names to internal file names in a program,
see the Guardian System Programmer’s Guide and the Guardian Procedure Calls
Reference Manual.

TACL Commands
You can send information to the compiler by using the following TACL commands:

• DEFINE

• PARAM

• ASSIGN

These commands are summarized in the remainder of this section. For complete
information on these commands, see the following manuals:

• TACL Reference Manual (syntactic information)

• TACL Programmer’s Guide (programmatic information)

Volume,
subvolume

\branch.emp Yes

Subvolume \branch.$div.emp No

Node (system),
subvolume

$div.emp No

Omitted File-
Name Parts Partial File Name

Permitted on
D-Series and
G-series
Systems
Binder Manual—528613-003
7-4

Guardian File Names and TACL Commands TACL DEFINE Commands
• Guardian User’s Guide (interactive information)

• Guardian Programmer’s Guide (programmatic information)

TACL DEFINE Commands
By issuing TACL DEFINE commands before starting the compiler, you can:

• Substitute a file name for a DEFINE name used in the source file

• Specify spooler attributes

• Specify file attributes on a labeled tape

• Specify process defaults, such as default volume and subvolume

Substituting a File Name
You can substitute a file name for a DEFINE name being passed by a nonprivileged
program to a system procedure. To substitute a file name, issue the following TACL
commands:

TACL DEFINE Names
TACL DEFINE names:

• Are not case-sensitive

• Consist of 2 to 24 characters

• Begin with an equals sign (=) followed by an alphabetic character

• Continue with any combination of letters, digits, hyphens (-), underscores (_), and
circumflexes (^)

Some examples of valid DEFINE names are:

=A

=The_chosen_file

=Long-but-not-too-long

=The-File-of-The-Week

TACL Command Purpose
SET DEFMODE ON Enable DEFINE processing

SET DEFINE CLASS Set the initial attribute of a DEFINE command to
CLASS MAP

SET DEFINE Set the working attributes

ADD DEFINE Specify a file name to substitute for a DEFINE name
Binder Manual—528613-003
7-5

Guardian File Names and TACL Commands Setting DEFINE CLASS Attributes
DEFINE names that begin with an equals sign followed by an underscore (=_) are
reserved by HP. For example, do not use DEFINE names such as =_DEFAULT.

Setting DEFINE CLASS Attributes
To create a DEFINE message or set its attributes, you must set a CLASS attribute for
the DEFINE. The CLASS attributes are MAP, TAPE, SORT/SUBSORT, SPOOL, and
DEFAULTS. Each attribute has an initial setting based on whether the attribute is
required, optional, or default.

MAP DEFINE
When you log on, the default CLASS attribute is MAP, which requires a file name. A
MAP DEFINE specifies a substitute file name for a file name. For example, suppose
that your current CLASS attribute is MAP and you have created a DEFINE called
=MYHOME for the file \SANTA.$CLARA.CALI.FORNIA.

To add all code and data blocks from \SANTA.$CLARA.CALI.FORNIA, you would
enter:

15> BIND

@ADD * FROM =MYHOME

You can use the TACL INFO command to find information about a DEFINE:

14> INFO DEFINE =MYHOME

 Define Name =MYHOME

 CLASS MAP

 FILE \SANTA.$CLARA.CALI.FORNIA

TAPE DEFINE (D-Series Systems Only)
The TAPE DEFINE lets you specify attributes for labeled magnetic tapes. For instance,
it lets you specify attributes such as block length, recording density, record format and
length, number of reels, and labeling.

SPOOL DEFINE
The SPOOL DEFINE lets you specify attributes such as number of copies, form name,
location, owner, report name, and priority.
Binder Manual—528613-003
7-6

Guardian File Names and TACL Commands TACL PARAM Commands
DEFAULTS DEFINE
In the DEFAULTS class, a permanently built-in DEFINE named =_DEFAULTS has the
following attributes, which are active regardless of any DEFMODE setting:

TACL PARAM Commands
The compilers accept TACL PARAM commands that you issue before starting the
compilers. PARAM commands are BINSERV, SAMECPU, SWAPVOL, and SYMSERV.

PARAM BINSERV Command
The PARAM BINSERV command lets you specify which BINSERV process you want
to use. You can specify a file name or a TACL DEFINE name.

For example, you can specify the BINSERV file on a particular node, volume, and
subvolume as follows:

PARAM BINSERV \mynode.$myvol.mysubvol.BINSERV

If the specified node is not the one the compiler runs on, the compiler ignores the
command. If you omit the volume and subvolume, the compiler uses the current default
volume and subvolume. If you omit the file ID, the compiler uses the file ID BINSERV. If
you specify a TACL DEFINE name, it must refer to a disk file of class MAP.

If you use this command, the error file PDTERROR must be on the same subvolume
as BINSERV. If you omit this command, the compiler uses the BINSERV process on its
own volume and subvolume.

PARAM SAMECPU Command
The PARAM SAMECPU command causes the compiler, BINSERV, and SYMSERV to
all to run in the same CPU if you specify any number but 0. For example:

PARAM SAMECPU 32767

TAL /CPU 6/

Specifying 0 means the compiler, BINSERV, and SYMSERV need not run on the same
CPU. For example:

PARAM SAMECPU 0

Attribute Required Purpose
VOLUME Yes Contains the default node, volume, and subvolume

names for the current process as set by the TACL
VOLUME, SYSTEM, and LOGON commands

SWAP No Contains the node and volume name in which the
operating system is to store swap files

CATALOG No Contains a substitute name for a catalog as
described in the NonStop SQL Reference Manual
Binder Manual—528613-003
7-7

Guardian File Names and TACL Commands PARAM SWAPVOL Command
PARAM SWAPVOL Command
The PARAM SWAPVOL command lets you specify the volume that the compiler,
BINSERV, and SYMSERV use for temporary files. For example:

PARAM SWAPVOL $myvol

The compiler ignores any node specification and allocates temporary files on its own
node. If you omit the volume, the compiler uses the default volume for temporary files;
BINSERV and SYMSERV use the volume that is to receive the object file.

Use this command when:

• The volumes normally used for temporary files might not have sufficient space.

• The default volume or the volume to receive the object file is on a different node
from the compiler.

Note that the C and Pascal compilers ignore PARAM SWAPVOL commands. The
SWAP volume option of the Pascal and C compilation commands determines the swap
volume used by the BINSERV process. If you do not specify the SWAP volume option
in a Pascal or C compilation command, the BINSERV process uses the volume on
which the compiler code file resides as the swap volume. Compiler code usually
resides on volume $SYSTEM.

PARAM SYMSERV Command
The PARAM SYMSERV command lets you specify which SYMSERV process you want
to use. You can specify a file name or a TACL DEFINE name.

For example, to specify the SYMSERV file on a particular volume and subvolume:

PARAM SYMSERV \mynode.$myvol.mysubvol.SYMSERV

If the node is not the one the compiler runs on, the compiler ignores the command. If
you omit the volume or subvolume, the compiler uses the current default volume or
subvolume. If you omit the file name, the compiler uses the name SYMSERV. If you
specify a TACL DEFINE name, the name must refer to a disk file of class MAP.

If you omit this command, the compiler uses the volume and subvolume specified in
the PARAM BINSERV command. If you omit both PARAM SYMSERV and PARAM
BINSERV commands, the compiler uses the SYMSERV process on its own volume
and subvolume.

Using PARAM Commands
You can specify one or more PARAM commands before starting the compiler. For
example, you can specify that:

• The compiler use the BINSERV process located on MYSUBVOL

PARAM BINSERV mysubvol
Binder Manual—528613-003
7-8

Guardian File Names and TACL Commands TACL ASSIGN Commands
• The compiler, BINSERV, and SYMSERV all run in the same CPU

PARAM SAMECPU 1

• The compiler, BINSERV, and SYMSERV allocate temporary files on volume
$JUNK

PARAM SWAPVOL $junk

Then you can issue the compiler compilation command:

TAL /IN mysource, OUT mylist/ myprog

TACL ASSIGN Commands
You can issue the TACL ASSIGN command before starting the compiler to substitute
file names for those used in the source file. The TACL product stores the file-name
mapping until the compiler requests it.

The ASSIGN command equates a file name with a logical file name used in
ERRORFILE, SAVEGLOBALS, SEARCH, SOURCE, and USEGLOBALS directives.
The compiler accepts only the first 75 ordinary ASSIGN messages.

In each ASSIGN command, specify a logical identifier followed by a comma and the file
name or a TACL DEFINE name:

ASSIGN dog, \a.$b.c.dog

ASSIGN cat, =mycat

If the file name is incomplete, the TACL product completes it from your current default
node, volume, and subvolume. For example, if your current defaults are \X.$Y.Z, the
TACL product completes the incomplete file names in ASSIGN commands as follows:

Incomplete File Names Complete File Names

ASSIGN qq, cat ASSIGN qq, \x.$y.z.cat

ASSIGN ss, b.dog ASSIGN ss, \x.$y.b.dog

ASSIGN tt, $a.b.rat ASSIGN tt, \x.$a.b.rat.

If you use a TACL DEFINE name in place of a file name, the TACL product qualifies
the file name specified in the ADD DEFINE command when it processes the ASSIGN
command. Even if you specify new node, volume, and subvolume defaults between the
ADD DEFINE command and the ASSIGN command, the ASSIGN mapping still reflects
the ADD DEFINE settings.

If you issue the following commands:

ASSIGN aa, $a.b.cat

ASSIGN bb, $a.b.dog

ASSIGN cc, =my_zebra
Binder Manual—528613-003
7-9

Guardian File Names and TACL Commands TACL ASSIGN Commands
ADD DEFINE =my_zebra, CLASS MAP, FILE $a.b.zebra

TAL /IN mysource, OUT $s/ obj

the compiler equates SOURCE directives in MYSOURCE to files as follows:

?SOURCE aa !Equates to ?SOURCE $a.b.cat

?SOURCE cc !Equates to ?SOURCE $a.b.zebra

?SOURCE bb !Equates to ?SOURCE $a.b.dog

You can name new source files at each compilation without changing the contents of
the source file.
Binder Manual—528613-003
7-10

8 Binder Messages
This section lists three types of messages returned by Binder: error messages,
warnings, and completion codes.

Error Messages and Warnings
This subsection lists Binder error and warning messages in numerical order. The listing
includes a description of the possible sources of the error and the corrective action you
can take.

The Program Development Tools (PDT)—that is, Binder, Crossref, and Inspect—all
have the error file called PDTERROR associated with them. This file must reside on
the same volume and subvolume as the PDT products. As part of the standard RVU,
they reside on $SYSTEM.SYSTEM. If you choose to relocate the PDT products on
some other volume or subvolume, you must also relocate PDTERROR and PDTHELP.
When Binder detects an error condition, it searches PDTERROR for the corresponding
error message (documented in this section). If PDTERROR is missing, Binder displays
a cryptic message of the form

BINDER ERROR nn

and warns you that the error file is missing.

All Binder error messages are qualified by a letter representing their severity code.
These codes and their meanings are as follows:

This message precedes other information about a Binder internal consistency error; a
stack trace usually accompanies the message. If you receive this message, contact
your HP representative.

Topic Page
Error Messages and Warnings 8-1

Completion Codes 8-28

Code Meaning
W Warning. Binder issues a WARNING but still produces an

object file.

E Error. Binder returns to the Binder prompt without completing
the current operation.

F Fatal Error. Binder terminates without producing an object file.

F Internal error at P=% nnnnnn text

W Object file is named $ vol. subvol.ZZBI nnnn
Binder Manual—528613-003
8-1

Binder Messages Error Messages and Warnings
Binder assigned an arbitrary name after other file-naming attempts failed for the target
file. nnnn is a numerical suffix that uniquely identifies the file. vol and subvol are the
same as would have been used. This is an informative message only.

1

You cannot specify an OWN (SAVE) block separately from its associated code block.
Adding, replacing, or deleting the code block automatically adds, replaces, or deletes
the own block.

2

These commands cannot refer to a COBOL85 PUCB by name. Although a COBOL85
PUCB is not classified as an OWN block, Binder treats it the same as an OWN block in
ADD, REPLACE, and DELETE commands

3

You cannot specify an ALTER option more than once in a command line.

4

Callable procedures must also be privileged code; Binder automatically sets PRIV ON
if you specify CALLABLE ON. PRIV OFF is overridden in this case.

5

The object file must be in the standard Binder format. If the code was produced by an
earlier, incompatible version of the compiler, you must recompile. (An older version of
Binder also displays this message if it attempts to process a new object file produced
by a later version of Binder.)

E ADD/REPLACE/DELETE may not be used on OWN (SAVE)
 blocks

E ADD/REPLACE/DELETE may not be used on PUCB blocks

E ALTER specification reused

W Alter to CALLABLE and not PRIV means CALLABLE and
 PRIV: entry-point-name

E Bad object file format version: file-name
Binder Manual—528613-003
8-2

Binder Messages Error Messages and Warnings
6

No code or data block by the given name was found in the specified object file. You
can check block names by using the LIST LOC command or by referring to a current
compiler listing. You can ensure that Binder searches the correct file by giving the file
name on the command or by using the FILE command.

7

The range of the data block specified in the DUMP or MODIFY command is not
completely initialized. Binder compresses uninitialized data out of the target file.
Therefore, it cannot be displayed.

8

The block specified in a MODIFY command is not in the include list (code or data)
indicated by the command.

9

The CHECK BLOCK parameter (SELECT command) is set ON, and common or global
declarations are inconsistent in length or addressing mode. The data block reference is
unresolved. You can correct the inconsistency or use SELECT CHECK BLOCK OFF to
allow resolution. (The INFO UNRESOLVED * command displays unresolved code and
data blocks.)

The additional text indicating which blocks are compared can have two forms. If you
are using Binder interactively, the text indicates which object files Binder gets the data
blocks from. If you are compiling a program, the text indicates which object file
contains the data block that Binder compares with the compiler definition.

E Block does not exist in file: block-name

E Part of data block being dumped is not initialized

E Block is not on the include list

W Block length/address mode error on
 data-block-name

Additional text is one of the following:

 Blocks compared are from filename
 and filename
 Blocks compared are from filename
 and the compiler
Binder Manual—528613-003
8-3

Binder Messages Error Messages and Warnings
10

An entry point cannot be on both lists. If the include list is wrong, use the DELETE
command. If the omit list is wrong, use the RESELECT OMIT command to clear the
list.

11

You cannot change the MAIN attribute after compilation for COBOL85, FORTRAN, and
Pascal code blocks. (Verify that the ALTER LIKE command is used only if both code
blocks have the same MAIN characteristic.)

12

You must add code and data block names and entry point names to the include lists
before you enter a SATISFY or BUILD command. If you enter a BUILD command first,
there are no names on the lists for Binder to include in the target file. Additionally,
Binder clears all previous specifications set by commands such as SELECT, SET, and
FILE. You must reenter those specifications.

13

An attempt to use file-name as the name of the target file failed. Binder uses the
name OBJECT instead. error-num is the file error received. Refer to the Guardian
Procedure Errors and Messages Manual for information on error-num.

14

The attempt to use OBJECT to name the target file failed. error-num is the file error
received. Binder then attempts to create the target file with a name of the form
ZZBInnnn. If the attempt fails, the target file definition is lost and, in interactive mode,
Binder prompts for input. Refer to the Guardian Procedure Errors and Messages
Manual for information on error-num.

E Cannot add entry point to omit list if already on
 include list: entry-point-name

E Can only ALTER MAIN attribute of C or TAL procedure

E Cannot satisfy references since include lists are
 empty

W Cannot create file, using OBJECT instead:
 file-name (error-num)

E\W Cannot create file: vol.subvol.OBJECT
 (error-num)
Binder Manual—528613-003
8-4

Binder Messages Error Messages and Warnings
15

Because the CHANGE command writes to the object file, the object file must not be
open when this command is executed. Binder might be using the file, in which case the
CLEAR command closes it.

17

The program exceeded the maximum amount of code space available. Use the
COMPACT directive to instruct Binder to compact the object file by rearranging code
blocks. Alternatively, you can use the SET USERLIBRARY ON command to change
the number of code segments allowed from 16 to 32.

18

This error occurs on COBOL85 input files.

The largest possible configuration exceeds available memory. Every file opened in a
COBOL85 program has its buffers allocated dynamically in the upper 32K of memory.
Because Binder cannot tell which files will be open concurrently, it assumes the worst
case. The receive-control table and reply-message table are also allocated dynamically
in the upper 32K of memory. The length of the latter is governed by the table length
and sync depth specified in your Receive-Control paragraph. Reduce the number of
concurrently open files, or reduce sync depth or table length, or both.

19

No room is available for the data block in the correct part of memory for the block type.
Reorganize the data space to make room for the specified block. space-location is one
of the following:

E CHANGE file cannot be open (use CLEAR command or close the file)

E Code space overflow in PROC: block-name

W Control data space overflow

E Data block cannot be allocated: block-name
 Data block trying to fit space-location

FIXED POSITION BELOW 32K LAST ANYWHERE

BELOW 256 ABOVE 32K LAST EXTENDED ADDRESS

BELOW 32K BELOW 32K PENULT

ABOVE 32K BELOW 64
Binder Manual—528613-003
8-5

Binder Messages Error Messages and Warnings
20

This error occurs on TAL input files.

A BLOCK global variable can be moved past TAL limit. code-block-name contains the
data reference. Rearrange global variables or use the INHIBITXX directive. Refer to
the TAL Reference Manual for information on the INHIBITXX directive.

21

The total command line cannot exceed 528 characters, excluding continuation
characters. Respecify as more than one command.

22

Your ADD command named a code block that is already on the include list. An entry
point name cannot be on the include list more than once. If two object files contain the
same code block name, Binder uses the first occurrence encountered. This may or
may not be in the first file on the search list. For the rules governing the resolution of
unresolved references, see Unresolved Reference Lists on page 5-6.

24

The entry point was already inserted in the include list. If the second occurrence is the
correct one, use the REPLACE command to replace the first occurrence. If you are
replacing an SQL code block, see Binding SQL Program Files on page 2-14.

25

The entry point has also been used as a secondary entry point name in another code
block that is already on the include list. Use the INFO INCLUDE * command to display
all instances of the multiply defined code block.

E Data reference failed due to relocation:
 (code-block-name) + (offset)
 REF TO (data-block-name) + (offset)

E Effective input record is too long

W Code block already on include list:
 entry-point-name

W Entry point already on include list:
 entry-point-name

W Entry point cannot be resolved due to conflict
 with another procedure: entry-point-name
Binder Manual—528613-003
8-6

Binder Messages Error Messages and Warnings
26

The file name was previously used in a SELECT SEARCH command. The file name is
ignored.

27

The indicated file is not an object file.

28

An identifier cannot exceed 31 characters.

29

The entry point name given as an ALTER LIKE entry point is not on the include list.

30

If you specified the * option, the include list is empty; otherwise, the range specifies a
block name that is not on the include list. Use the INFO INCLUDE * command to find
out which name is not on the list.

31

The offset and length specified in the DUMP command exceeds the block length.
Reenter the command with the * option or with the correct length and offset.

32

You cannot use ICODE dump specification for a data block.

W File already on search list file-name

E File code not 100: file-name

E Identifier too long

E Illegal ALTER PROC name: proc-name

E Illegal block range member: name OR *

E Illegal DUMP offset(s)

E Illegal DUMP specification
Binder Manual—528613-003
8-7

Binder Messages Error Messages and Warnings
33

You used the LOG file name for one of: IN file, OUT file, or OBEY file.

34

A MOVE command cannot refer to a block that is not on the include code block list nor
to a block that is inside a range of blocks to be moved.

35

You used the OBEY file name as one of: IN file, OUT file, or LOG file.

36

You specified an offset for the MODIFY or VERIFY command that extends beyond the
end of the block.

37

You used the OUT file name as one of: IN file, OBEY file, or LOG file name.

38

Names of a refer pair cannot be the same: a new name cannot have been used as the
old name of another refer pair; likewise, the old name cannot be the new name of
another refer pair.

E Illegal log file - ignored

E Illegal MOVE PROC name: code-block-name

E Illegal OBEY file - ignored

E Illegal offset for MODIFY/VERIFY command

E Illegal OUT file - ignored

E Illegal SELECT REFER pair - ignored
Binder Manual—528613-003
8-8

Binder Messages Error Messages and Warnings
39

The maximum values for SET parameters are:

40

Either the number supplied is too large or an invalid digit was received.

41

The file name does not conform to operating system requirements.

For a description of the file naming conventions, see Section 7, Guardian File Names
and TACL Commands.

42

The volume or subvolume name is too long or contains an invalid character.

For a description of file naming conventions, see Section 7, Guardian File Names and
TACL Commands.

43

The sequence of input characters does not result in a valid Binder command. A
circumflex (^) indicates the detected error.

E Illegal SET value - ignored

PEP 512

DATA 64 pages (65536 words)

EXTENDSTACK same as DATA

STACK same as DATA

RESERVE BELOW64 124 bytes

RESERVE PRIMARY 508 bytes

RESERVE SECONDARY 65,024 bytes

RESERVE EXTENDED 1,073,741,824 bytes

E Integer conversion error

E Invalid file name file-name

E Invalid subvolume name

E Invalid syntax
Binder Manual—528613-003
8-9

Binder Messages Error Messages and Warnings
44

The system name is too long or contains an invalid character, or the system does not
exist. For a description of the file naming conventions, see Section 7, Guardian File
Names and TACL Commands.

45

In attempting to include a procedure from a search file (because it has been directly or
indirectly referenced by the program being compiled), BINSERV has discovered that
the procedure has the MAIN attribute. You can remove the MAIN attribute with the
ALTER command.

46

The MODIFY command resulted in a change to a CALL or to a reference to global
data. This message is issued both at the time of the MODIFY and when the block is
added to an include list in a later Binder session.

48

There are more than 512 entry points in the external entry point table for the indicated
code space. Some of these unresolved references must be satisfied before the object
file can be built.

49

Only one entry point can have the MAIN attribute.

W Invalid system name

W MAIN entry point found in a search file: proc-name

W MODIFY overrides reference to another block in:
 block-name

E More than 512 entry points in the XEP table,
 nnn: in space % space-number

E Multiple MAIN entry points are not allowed:
 entry-point-name
Binder Manual—528613-003
8-10

Binder Messages Error Messages and Warnings
50

You must establish a current file before the named commands can be executed. Either
reenter the command with the FROM file-name parameter or use the FILE
command. FILE establishes the default file for subsequent commands (or until another
FILE is entered).

51

You have specified a command parameter in a form that is not recognizable by the
HELP command. Use HELP command-name to verify the parameter forms. HELP with
no parameters lists all the Binder commands.

52

This error occurs on COBOL85 input files.

Binder encountered a CANCEL for the entry point name, but no CALL statement
referred to the entry point. Therefore, parameters could not be checked.

53

Word 32767 is used in the word-addressable data space. Binder cannot allocate the
stack. Reorganize the data space.

54

The external entry point table cannot be placed in the code space.

55

Three levels of nesting is the maximum allowed for OBEY files.

E No current file for ADD/REPLACE/LIST/DUMP

E No help available for name

W No parameter information provided for entry-name

E No space left for stack after data block
 allocation

E Not enough space for XEP table; n words
 required, m words available

E OBEY nesting exceeds maximum
Binder Manual—528613-003
8-11

Binder Messages Error Messages and Warnings
56

This error can occur for two reasons:

1. The file had Binder tables but has been stripped by a Binder STRIP command.
Binder cannot manipulate the file in any way; recompile.

2. The file was compiled by a compiler version that does not incorporate Binder.
Recompile using the correct version. Check with your system support personnel.

57

Symbol table incompatible with the current version of Inspect. Recompile the program
containing entry-point-name.

58

Refer to the Guardian Procedure Errors and Messages Manual for a description of the
indicated error type.

59

SELECT CHECK PARAMETER is STRICT (default), and the consistency check failed.
The number of parameters in the call differ from the number required by the named
entry point. Binder also issues this message if calls to the same entry point from
separately compiled code blocks specify a different number of parameters.

60

SELECT CHECK PARAMETER is STRICT (default), and the consistency check failed.
The mode of the indicated parameter differs from that required by the named entry
point. Parameter mode is by value, by reference, or extended reference. Binder also
issues this message if calls to the same entry point from separately compiled code
blocks specify different parameter modes.

E No BINDER region in object file: file-name

E Incompatible version of INSPECT information for
 entry-point-name

F Paging file error file-err-msg (nnn) or
 ALLOCATESEGMENT err-code nnn, volume: $ vol-name

W Parameter count mismatch on entry-point-name

W Parameter mode mismatch on entry-point-name
 parameter n
Binder Manual—528613-003
8-12

Binder Messages Error Messages and Warnings
61

SELECT CHECK PARAMETER is STRICT (default), and the consistency check failed.
The type of the indicated parameter differs from that required by the named entry point.
Binder also issues this message if calls to the same entry point from separately
compiled code blocks specify incompatible types.

Binder goes on to say whether the mismatch was between two external declarations of
a procedure or between an external declaration and the actual procedure declaration.
Binder detects when at least one parameter is of type INT, INT(32), or STRING and
informs you.

If only one parameter is INT, INT(32), or STRING, Binder designates the parameter
that is not one of those types as “other.” If neither parameter is INT, INT(32), or
STRING, Binder outputs more detailed information on the mismatch, including one or
more of the following: parameter storage type, parameter length in bits, number of
units, and number of digits to the right of the decimal point.

62

This error can occur with FORTRAN or TAL input files.

For FORTRAN, this error means that too many variables in FORTRAN COMMON are
referenced. Recompile using the ?EXTENDCOMMON compiler directive.

For TAL, this error means that too many global variables are defined. Modify your
global data space.

63

This error occurs on TAL input files.

The RELOCATE directive was used and relocation might have occurred. The
#GLOBAL block is not at offset zero. The compiler and command-driven Binder issue
warnings.

W Parameter type mismatch on entry-point-name
 parameter n

E Primary global area overflow

W Procedure references absolute global data which
 may be relocated: code-block-name
Binder Manual—528613-003
8-13

Binder Messages Error Messages and Warnings
64

If the ADD or REPLACE command has an incorrect range given, respecify block
names in ascending order by location in the object file. Use LIST LOC command or a
current map listing to verify the order of blocks in the input file.

If the command refers to a range in an include list, respecify the command with names
in ascending order as on the list. You can use the INFO INCLUDE command.

65

This error occurs on TAL input files. A string P-relative array was moved.

66

This error occurs on TAL input files.

Binder cannot verify that references to the array are valid. Note that offset is the offset
of a fix-up word.

67

The code block specified in a RENAME command must be on the include list.

68

The data block specified in a RENAME command must be on the include list.

E Range members in wrong order: name to
 name

W Read-only data block moved to above 32K to avoid
 straddling 32K: data-block-name: in space
 % space-number

W Reference to string P-relative in wrong half of
 code space may fail: proc-name +
 offset REF TO block-name + offset

E RENAME code block is not on the include list

E RENAME data block is not on the include list
Binder Manual—528613-003
8-14

Binder Messages Error Messages and Warnings
69

SELECT CHECK PARAMETER is STRICT (default), and the consistency check failed.
The return type required by the named procedure is inconsistent with the call. This
message is also issued if calls to the same entry point from separately compiled code
blocks specify incompatible return types. You can disable parameter checking by
setting CHECK PARAMETER OFF.

70

An error occurred in the temporary work file that Binder uses to hold code and data
until the object file is built. Refer to the Guardian Procedure Errors and Messages
Manual for a description of the error.

71

The STRIP command cannot be used on a valid old-format object file.

72

Binder is currently using the file for prior commands (for example, FILE). CLEAR resets
Binder to the initial state. If no other opens are current for the file, it can then be
stripped.

73

An error occurred in the temporary work file that Binder uses to hold symbol
information until the object file is built. Refer to the Guardian Procedure Errors and
Messages Manual for a description of the error.

74

Mixed-language binding of C-series programs with COBOL85 code requires that the
MAIN program be COBOL85 to allow correct initialization for the COBOL85 run-time

W Return type mismatch on proc-name

F Storage file error file-sys-err (nnn)

E STRIP command cannot be used on this file

E STRIP file cannot be open (use CLEAR command)

F Symbol file error: file-sys-err (nnn)

E The MAIN must be in COBOL since COBOL procedures
 are present
Binder Manual—528613-003
8-15

Binder Messages Error Messages and Warnings
environment. Consider adding a skeleton program that contains a call to the major
entry point. (Only one block with the MAIN attribute is allowed.)

75

SELECT CHECK LIBRARY ON is in effect and a procedure with the MAIN attribute
was encountered.

76

A data block with read-write access was added to the include list and CHECK
LIBRARY ON is in effect. The addition of this block can affect data memory
organization.

77

Before you enter a BUILD command, the unresolved data reference list must be empty.
There are still unresolved data block references. Use INFO UNRESOLVED DATA
command to check the list.

78

End of file was encountered while scanning for the remainder of a continuation line.

79

The ASCII input to a MODIFY command is missing the closing quotation mark.

W TNS/II user library violation: MAIN procedure
 code-block-name

W TNS/II user library violation: referencing data
 block block-name

E Unsatisfied reference to a data block

E Unterminated continuation line

E Unterminated string
Binder Manual—528613-003
8-16

Binder Messages Error Messages and Warnings
80

You can use the VERIFY command during a noninteractive BIND session to stop the
session if a discrepancy exists between an expected code or data value and the actual
value. This message indicates which value did not match the expected value.

81

This error occurs on TAL input files.

Different callers disagreed about the VARIABLE or EXTENSIBLE attribute of an entry
point.

82

The work file is the object file being constructed. Refer to the Guardian Procedure
Errors and Messages Manual for a description of the error type.

83

This warning indicates the new name of a file that was already in use when you tried to
perform a Binder operation on it. The renaming permits the user to name the new
object file. If the old file is not in use, it is purged. If the old file is in use, it is renamed.

84

This message indicates a Binder internal error. Contact your HP representative.

F Value specified in VERIFY command not equal to
 current value: should be % value, is % value

W Extensible or variable attribute mismatch on
 proc-name

F Work file error: file-sys-err (nnn)

W Old object file has been renamed to file-name

F The compiler has used the same unique ID for two
 different names
Binder Manual—528613-003
8-17

Binder Messages Error Messages and Warnings
85

When you include an OWN block or COBOL85 PUCB in an object file, you must also
include the associated code for the data block.

86

Binder was expecting a G-relative address reference for a block but received an
address outside of G-relative space.

87

The attributes of FCBs for the same data block must match. This could be a user error
but is more likely a compiler error. Contact your HP representative.

88

You have added more extended data in extended data blocks than is allowed in the
largest extended data segment. Use less extended data.

90

You cannot use a RENAME command to change the name of a special data block or to
change a block name to that of a special data block name.

F An OWN block or COBOL PUCB has been included in
 the object file without the associated code for
 the data block: block-name

W Reference to a block expected, but not in,
 G-relative address area block-name +
 offset REF TO block-name + offset

F The attributes of two FCBs for the same data block
 do not match block-name

E There is too much data for the largest extended
 data segment allowed

E Block being renamed or block renaming to is a
 special data block
Binder Manual—528613-003
8-18

Binder Messages Error Messages and Warnings
91

OWN data blocks cannot be contained in a range of data blocks being added to the
object file. You can only add OWN data blocks by adding the code block to which they
belong. All data blocks other than the OWN block were added.

92

You attempted to bind two data blocks that are of different types but that have the
same name. Resolve the name conflict and recompile.

93

The data below 32K words in the data space plus the amount of stack space needed
for the program to execute add up to more than 32K words. You must either reduce the
data blocks below 32K words or reduce the amount of stack space used.

94

You cannot use a RENAME command to change the name of an indirect data block or
to change a block name to that of an existing indirect data block.

95

The data block name on the right side of the RENAME command already exists on the
include data list.

97

Code segment numbers outside the range of 0 through %37 are not valid segment
numbers.

W OWN data blocks contained in the range of blocks
 were not added

E Possible OWN block name conflict with a COMMON
 block: block-name

E Insufficient stack space for program, unable to
 create object file

E Block being renamed or block renaming to is an
 indirect data block

E Block being renamed to is already on include list

E A space number less than 0 or greater than %37
 has been used
Binder Manual—528613-003
8-19

Binder Messages Error Messages and Warnings
98

Data blocks do not have a code segment number associated with them. Remove the
code segment from the command, and try again.

99

The SUBTYPE value in the SET command must be in the range 0–63.

100

The procedure entry point table can have a maximum of 8160 entries, one for each
entry point. You must restructure the program.

101

You are attempting to bind a large model program with a small model program. This is
not allowed. All code and data blocks included at the same time must be from the
same model.

102

The Binder has failed with a trap; notify your HP representative.

104

The volume name used in PARAM swapvol is not a valid volume name on your
system.

E A space number has been given with a data address

E Illegal SUBTYPE value -- ignored

E More than 8160 entry points on include list:

E Parameter addressing incompatibility

F Fatal trap

W Illegal volume name passed in param swapvol
 message -- ignored
Binder Manual—528613-003
8-20

Binder Messages Error Messages and Warnings
106

A noninteractive BIND session that has errors or warnings outside of the BUILD
command has statistics printed at the end of the BIND session.

107

You cannot use these commands on procedures with a lexical level greater than one
(nested code blocks).

108

You cannot use these commands with nested code blocks (procedures with a lexical
level greater than one).

109

You cannot move a set of procedures between two procedures with a lexical level
greater than one (nested code blocks).

110

The range of the extended data block being dumped is not completely initialized.

111

Binder has seen the special data block $EXTENDED#STACK but not the special data
block EXTENDED#STACK#POINTERS. EXTENDED#STACK#POINTERS is required
with $EXTENDED#STACK, and it must be added to the include list at the same time.

W The Binder session contained errors or warnings (the error/warning
 counts exclude those found in the Build phase of the Bind session).

E ADD/ALTER/DELETE/MOVE/NAME/REPLACE not allowed on
 contained procedures

E OMIT/REFER not allowed on contained procedures

E MOVE not allowed between contained procedures

E Part of extended data block being dumped is not
initialized

E The data block EXTENDED#STACK#POINTERS is required
 but not present
Binder Manual—528613-003
8-21

Binder Messages Error Messages and Warnings
112

The special data block block-name is required on the include list for Binder to be able
to build on the object file.

113

reasons is one or more of the following:

• No MAIN code block

• Fixups are not applied

• Undefined data blocks are referenced

• References from data to code are unresolved

Correct the problem indicated. SELECT FIXUP ON applies fixups to the target file;
INFO UNDEFINED * displays the undefined data blocks; and INFO UNRESOLVED *
displays the names of unresolved entry points and data blocks.

114

This message is displayed when the data pages requested for the object file is less
than the data pages needed for the object file.

118

The specified system name exists, but this system is unavailable.

121

On TNS systems, SYSGEN checks the size of files sent to Binder to ensure that
Binder builds only one code segment at a time. On TNS/R systems, SYSGEN sends to
Binder a large group of files to build a multi-segment system code and system library.

E A required data block is not present:
 block-name

W The object file is not runnable for the following
 reason(s): reasons

W The data pages needed is greater than the data
 pages requested

E System is unavailable

W SET CODE SEGMENT entered with more than one code segment
 present
Binder Manual—528613-003
8-22

Binder Messages Error Messages and Warnings
You can safely ignore this message during the SYSGEN phase of INSTALL. If you
receive this message at any other time, contact your HP analyst.

143

The attributes of two C functions do not match. One is a variable and the other is not.
Correct your code and recompile before attempting to bind the files again.

144

Binder issues this error if you try to bind an file compiled for the OLD Binder group and
a file compiled for the COMMON Binder group into one object file.

BINSERV also issues this error if you try to bind an OLD Binder group file or a
COMMON Binder group file with an object file with a ENV NEUTRAL directive in its
source text.

146

Specify a process file segment (PFS) size within the range of 64 to 512 pages.

148

Procedures that call procedure-name incorrectly specify the language of
procedure-name.

149

Procedures that call procedure-name do not agree on the language of procedure-
name. When Binder determines the language of procedure-name, it issues warning
148 for referencing procedures that specify the incorrect language.

W Variable attribute mismatch on C function name

E Block is incompatible with run-time environment: block-name

E Illegal PFS Size. Legal range is 64 pages to 512 pages

W Referencing procedures claim that procedure procedure-name
 is written in a different language

W Referencing procedures do not agree on the language of
 procedure procedure-name
Binder Manual—528613-003
8-23

Binder Messages Error Messages and Warnings
151

Your version of Binder does not recognize the format of data block #MCB used for the
Common Run-Time Environment. Use a version of Binder that is compatible with the
version of the compiler.

152

The return types of procedures passed to procedure-name do not match. number
corresponds to the parameter order in the called procedure.

153

Procedures that call procedure-name do not match the declared parameters of
procedure-name.

154

Binder does not recognize eight-character volume names on non-local nodes.

165

Change the TARGET attribute on one of the files and try the operation again.

166

If you enter the command SET TARGET ANY, and then later add in a TNS procedure
or TNS/R procedure, Binder changes the target processor setting appropriately and
issues this warning message. type can be TNS or TNS/R.

E The COMMON run-time data block #MCB has a new format, use a
 newer BIND

W Parameter return type mismatch on procedure-name
 parameter number

W Parameter mismatch using lenient parameter checking on
 procedure-name parameter number

E Unable to express default volume in network form

E TARGET types conflict: entry point entry-name from file is
 type1, the current setting is type2

W SET attribute has been changed: from TARGET ANY to
 TARGET type
Binder Manual—528613-003
8-24

Binder Messages Error Messages and Warnings
167

You cannot bind C programs compiled under the wide-data model with C programs
compiled under the large-memory model or the small-memory model. Refer to the C
Reference Manual for details on C memory and data models.

209

You specified an invalid directory for the CD command. An existing OSS directory must
be specified in the CD command. The previous directory setting remains in effect.

213

You built an object file using the new features of the SRL Binder and the
USERLIBRARY option is set to build with the implied user library. Binder does not use
the implied user library when building the object file.

214

Binder encountered more than 512 different external entry points that must be
referenced as initialization data. Binder does not build the target codefile.

215

While building an SRL application, Binder encountered a data block that is also
exported by the library. The user code and user library block definitions do not match.
Binder builds the target codefile. The application is not runnable with the specified
library. Supply a correct library before running the application.

E Illegal mix of WIDE and NOWIDE memory attributes in file:
 file-name

E Invalid current working directory

W The SET USERLIBRARY option is obsolete

E More that 512 external entry points are referenced as
 initialization data

W The block length or address mode does not match the
 requirements for the imported block: block-name
Binder Manual—528613-003
8-25

Binder Messages Error Messages and Warnings
216

When building an SRL application, some of the external variable references were not
resolved. Binder continues to build the object file and include the missing blocks on the
imported block list. The application is not runnable with the specified library. A new
library must be supplied to declare the missing blocks.

217

When building an SRL user library, Binder found a data block that was named in an
EXPORT command, but was not found in any of the modules that make up this library.
Binder builds the target codefile, but the data block is removed from exported block list.

218

When building a user library, Binder encounters a data block with a location constraint
is not supported for user library codefiles. For example, a data block that is declared at
address 0 is illegal in a user library codefile. Binder does not build the target codefile.

220

The size of space you specified in the RESERVE command is not large enough for
global data space requirements of the current library. Binder builds the target codefile
and the size of the reserved area is increased to the size needed.

222

While building an SRL application, Binder encountered one or more of the mismatches
described in Warning 215. Binder builds the target application, but the application
codefile is not runnable with the current instance of the library. The mismatches must
be resolved by rebuilding the application under the application and/or the library
codefiles.

W There are unresolved references to data block block-name

W Exported data block block-name was never found

E The location constraint on data block data-block-name is
 illegal in a UL codefile

W Reserved value was insufficient for data-type data space .
 x bytes were reserved . y bytes must be reserved for
 library data

W The application is not runnable with the specified import
 library due to the mismatches reported above
Binder Manual—528613-003
8-26

Binder Messages Error Messages and Warnings
223

You specified a data area that cannot be allocated because the data area is full. Binder
does not build the target codefile.

224

You specified a SELECT RESERVE command with a value that exceeds the maximum
for the specified data area. The invalid setting is ignored and the previous setting is
used.

226

When adding data from a module, a data block was encountered that has already been
declared. This warning only occurs if the CHECK DUPLICATE BLOCK option is turned
on. Binder continues to process the ADD command and build the target object file. The
first data block definition is added to the target file and the duplicate is ignored.

228

The IMPORT and EXPORT commands are mutually exclusive. The contradictory
command is ignored.

230

You specified a filename that is not a TNS object file. The command is ignored.

231

References from data blocks to code blocks are unresolved at bind time. Binder
generates fixups for these references, so the references can be resolved to the user
library at run time.

E Data area is full. Cannot allocate data block block-name

W The reserve size of x exceeds the maximum for data area
 data-type

W Duplicate definition of data block data-block-name

E Illegal combination of IMPORT and EXPORT options

E File is not a TNS object file: filename

W There are data block references to unresolved code blocks
Binder Manual—528613-003
8-27

Binder Messages Completion Codes
232

When the build command is issued, Binder applies the modifications from the modify
list. If the requested data block is not currently initialized, it is not modified.

233

 Binder abends when the DST table is obsolete.

234

Binder cannot SQL-compile an SQL object file, if the object file is stripped of the Binder
region.

770

Either Binder cannot use the message table \.$SYSTEM.SYSTEM.PDTERROR or the
$SYSTEM.SYSTEM.PDTERROR file does not contain error messages for Binder.

Completion Codes
This subsection lists the completion codes returned by Binder. These codes are
displayed at the end of a Binder process and explain why a process terminated.

W Modify location is uninitialized,target object may not contain new data

F Error encountered during timestamp conversion.

W Cannot SQL compile a stripped object file.

E message table \.$SYSTEM.SYSTEM.PDTERROR

Table 8-1. Binder Completion Codes (page 1 of 2)

Code Meaning
0 The process terminated abnormally. No WARNINGS or ERRORS

were issued.

1 This code can have either of the following meanings:

One or more WARNINGS were issued in a session. Object
file is complete.

One or more ERRORS were issued in a noninteractive
session. Object file is complete.

2 A FATAL ERROR occurred. No object code was produced.
Binder Manual—528613-003
8-28

Binder Messages Completion Codes
3 The process terminated prematurely because of errors. No object
code was produced, and ERRORS were issued in a
noninteractive session. For example, this completion code is
returned if Binder is unable to open a file.

5 The process terminated abnormally. No object code was
produced.

8 A WARNING was issued because Binder had to rename the
object file.

Table 8-1. Binder Completion Codes (page 2 of 2)

Code Meaning
Binder Manual—528613-003
8-29

Binder Messages Completion Codes
Binder Manual—528613-003
8-30

9 Syntax Summary
This section summarizes Binder commands and their syntax.

Table 9-1. Binder Command Summary (page 1 of 2)

Command Description
ADD Inserts new names or replaces old names on the include lists; Binder

deletes replaced names.

ALTER Changes attributes of entry points.

BUILD Creates the target file.

CD Specifies the default current working directory.

CHANGE Patches the attribute values in an already-created object file.

CLEAR Returns Binder to its original state without creating the target file.

COMMENT Enters comments to appear in the output listing.

DELETE Removes names from include lists and removes associated changes from
the modify list.

DUMP Displays all or part of the contents of a code or data block.

ENV Displays the current settings of the process environment controls.

EXIT Stops the Binder process.

FC Displays the previous command line, which you can then repeat or
modify.

FILE Sets the default object file for the ADD, DUMP, LIST, REPLACE, and
SHOW commands.

HELP Displays the Binder commands and syntax.

INFO Displays information about code blocks, entry points, and data blocks on
the include, unresolved reference, and undefined lists.

LIST Specifies options for load maps and cross-reference listings.

LMAP Displays an alphabetical load map for a specified file.

LOG Starts or stops the recording of Binder input commands and output.

MODIFY Changes the values of code or data block contents in the target file.

MOVE Reorders code blocks on the include code block list.

OBEY Directs Binder to read commands from the named disk file.

OUT Names the file to receive output listings.

RENAME Renames a code or data block.

REPLACE Inserts replacements for code or data blocks on the include lists.

RESELECT Resets one or more SELECT command parameters to the default value.

RESET Restores one or more object file attributes to the default values.

SATISFY Attempts immediate resolution of all external references.
Binder Manual—528613-003
9-1

Syntax Summary
SELECT Sets options for Binder operation control.

SET Sets object file characteristics to use in building the target file.

SHOW Displays collected information: current file, modify list, and controls from
the SELECT and SET commands.

STRIP Deletes Binder, Inspect, and Accelerator regions from the object file.

SYSTEM Sets the default node name for expanding file names.

VERIFY Verifies a code or data value in an object file.

VOLUME Sets the default volume and subvolume for expanding file names.

ADD { CODE entry-list } [FROM file-name] [, DELETE]
 { DATA block-list }
 { * }
or
ADD SPACE

ALTER entry-list , alter-spec [, alter-spec] ...

BUILD [/ OUT file-name /] [file-name] [!]
 [, { set-param | select-param }] ...

CD { directory }

CHANGE
{ AXCEL ENABLE { ON | OFF } } IN file-name
{ DATA value [PAGES | WORDS | BYTES] }
{ HIGHPIN { ON | OFF } }
{ HIGHREQUESTERS { ON | OFF } }
{ INSPECT { ON | OFF } }
{ LIBRARY file-name }
{ PFS value [PAGES | WORDS | BYTES] }
{ RUNNAMED { ON | OFF } }
{ SAVEABEND { ON | OFF } }
{ SYSTYPE { GUARDIAN | OSS } }
{ SUBTYPE number }
{ TARGET { TNS | TNS/R | ANY } }

CLEAR

Table 9-1. Binder Command Summary (page 2 of 2)

Command Description
Binder Manual—528613-003
9-2

Syntax Summary
COMMENT [text]

DELETE { CODE block-list }
 { DATA block-list }
 { * }

DUMP [/ OUT file-name /] { CODE code-block-name }
 { DATA data-block-name }
{ offset [, count] } [spec-list] [FROM file-name]
{ offset [, *] }
{ * }

ENV [LOG]
 [MODE]
 [SYSTEM]
 [VOLUME]
 [DIRECTORY]

EXIT

FC

FILE file-name

HELP [/ OUT file-name /] [topic [subtopic [subtopic]]]
 [subtopic]
 [< param-name >]
Binder Manual—528613-003
9-3

Syntax Summary
INFO [/ OUT file-name /]
{ INCLUDE { CODE block-list } [, DETAIL] }
{ { DATA block-list } }
{ { ENTRY entry-list} }
{ { * } }
{ }
{ UNRESOLVED { DATA } }
{ { ENTRY } }
{ { * } }
{ }
{ UNDEFINED * }
{ }
{ * [, DETAIL] }

LIST [/ OUT file-name /]

{ { SOURCE } [FROM file-name] }
{ { } }
{ { CODE name-list [IN SPACE num] } }
{ { } }
{ { CODE block-list } }
{ { } }
{ { DATA name-list } }
{ { } }
{ { DATA block-list } }
{ { } }
{ { XREF [XREF- options] } }
{ }
{ (list-option [, list-option] ...) }
{ [FROM file-name] [, BRIEF] }

LMAP [/ OUT list-file /] FROM file-name

LOG { TO file-name }
 { STOP }

MODE { UPSHIFT | NOUPSHIFT }

MODIFY { CODE code-block-name }
 { DATA data-block-name }
[modify-spec] [offset] [, value]...
Binder Manual—528613-003
9-4

Syntax Summary
MOVE entry-list { AFTER entry-name }
 { BEFORE entry-name }
 { IN NEW SPACE }
 [, entry-list { AFTER entry-name }]...
 { BEFORE entry-name }
 { IN NEW SPACE }

OBEY [/ OUT file-name /] file-name

{ OUT file-name }
{ command / OUT file-name / param-name }

RENAME { CODE entry-point-name } TO name
 { DATA data-block-name }

REPLACE { CODE entry-list } [FROM file-name]
 { DATA block-list }
 { * }

RESELECT { select-param [, select-param] ... }
 { * }

RESET { set-param [, set-param] ... }
 { * }

SATISFY { select-param }
 { (select-param [, select-param] ...) }
Binder Manual—528613-003
9-5

Syntax Summary
SELECT { select-param [, select-param]... }
select-param can be any of the following:

{ CHECK check-option }
{ CHECK (check-option [, check-option]...) }

COMPACT { ON | OFF }

COMPRESS DATA { ON | OFF }

FILESYS { OSS | GUARDIAN }

FIXUPS { ON | OFF }

{ LIST listing-option }
{ LIST (listing-option [, listing-option]...) }

{ OMIT entry-name }
{ OMIT (entry-name [, entry-name]...) }

{ REFER refer-pair }
{ REFER (refer-pair [, refer-pair]...) }

RUNNABLE OBJECT { ON | OFF}

SATISFY { ON | OFF }

{ SEARCH file-name }
{ SEARCH (file-name [, file-name]...) }

WARNINGS { ON | OFF }
Binder Manual—528613-003
9-6

Syntax Summary
SET { set-param [, set-param]... }
set-param can be any of the following:
{ DATA } value [PAGES | WORDS | BYTES]
{ EXTENDSTACK }
{ STACK }

HEAP value [PAGES | WORDS | BYTES]

HEAP STATISTICS { ON | OFF }

HIGHPIN { ON | OFF }

HIGHREQUESTERS { ON | OFF }

IMPORT DATA variable-name-list

INSPECT { ON | OFF }

LARGESTACK value [PAGES | WORDS | BYTES]

LIBRARY file-name

LIKE file-name

PEP value

PFS value [PAGES | WORDS | BYTES]

RESERVE { BELOW64|PRIMARY|SECONDARY|EXTENDED } [+|-] nb

RUNNAMED { ON | OFF }

SAVEABEND { ON | OFF }

SUBTYPE number

SYMBOLS { ON | OFF }

SYSTYPE { OSS | GUARDIAN }

TARGET [TNS | TNS/R | ANY]

USERLIBRARY { ON | OFF }

SHOW [/ OUT file-name /]
{ AXCEL ENABLE [FROM file-name] }
{ FILE }
{ IMPORT }
{ INFO [FROM file-name] }
{ MODIFY }
{ RESERVE }
{ SELECT }
{ select-param }
{ SET attribute [FROM file-name] }
{ SET }
{ set-param }

STRIP file-name [, SYMBOLS | , AXCEL]
Binder Manual—528613-003
9-7

Syntax Summary
SYSTEM [node]

VERIFY { CODE block-name } [verify-spec] [offset] , value
 { DATA block-name }

VOLUME { $ volume }
 { [$ volume.] subvol }
Binder Manual—528613-003
9-8

Glossary
absolute pathname. A pathname that begins with a slash (/) character and is resolved

beginning with the root directory. Contrast with “relative pathname.”

accelerate. To use the Accelerator program to generate an accelerated object file.

accelerated object code. The RISC instructions that result from processing a TNS object
file with the Accelerator.

accelerated object file . The object file that results from processing a TNS object file with
the Accelerator. An accelerated object file contains the original TNS object code, the
accelerated object code and related address map tables, and any Binderÿ and symbol
information from the original TNS object file.

Accelerator. A program that processes a TNS object file and produces an accelerated
object file. Most TNS object code that has been accelerated runs faster on TNS/R
processors than TNS object code that has not been accelerated. Accelerated object
files run no faster on TNS/E machines than TNS programs that have not been
accelerated, for TNS/E you must use OCA.

Accelerator region. The region of an object file that contains the RISC instructions
generated by the Accelerator.

ASSIGN Command. A TACL command that lets you associate a logical file name with a
physical file name. The physical file name is a fully qualified file ID. See also filename
and file ID.

application program interface. The set of functions or procedures that permits user
programs to communicate with the HP NonStop operating system.

API. See application program interface.

BIND. The stand-alone Binder you can use to bind separately compiled object files (or
modules) into a new object file.

Binder region. The region of an object file that contains a header and the following Binder
tables: procedure information table, entry point table, and data block information table.

binding. The operation of examining, collecting, linking, and modifying code and data
blocks from one or more object files to produce a target object file.

BINSERV. The Binder that is integrated with the C, COBOL85, FORTRAN, and TAL
compiler.

block. The smallest unit of code or data that can be relocated as a single entity.
Binder Manual—528613-003
Glossary-1

Glossary code block
code block. The smallest independently relocatable piece of a program. Code blocks
contain executable machine instructions and possibly inline constant data. Compare
with data block.

common data block. A data block with a scope defined as public to all modules.

Common Run-Time Environment (CRE). A set of services implemented by the CRE
library that supports mixed-language programs. Contrast with language-specific run-
time environment.

Common Run-Time Environment (CRE) library. A collection of routines that supports
requests for services managed by the CRE, such as I/O and heap management, math
and string functions, exception handling, and error reporting. CRE library routines can
be called by C, COBOL85, FORTRAN, Pascal, and TAL user routines and run-time
libraries.

compilation unit. A source file plus source code that is read in from other source files by
SOURCE directives, which together compose a single input to the compiler.

compiler directive. A compiler option that lets you control compilation, compiler listings,
and object code generation. For example, compiler directives let you compile parts of
the source file conditionally or suppress parts of a compiler listing.

CRE. See Common Run-Time Environment (CRE)

Crossref. A stand-alone product that collects cross-reference information for your program.

data segment. A segment that contains information to be processed by the instructions in
the related code segment. Applications can read and write to data segments. Data
segments contain no executable instructions.

DEFINE command. A TACL command that lets you specify a named set of attributes and
values to pass to a process.

data block. The smallest independently relocatable piece of a program. Data blocks contain
statically allocated variables or constants. Compare with code block.

DLL. See Dynamic Linked Library.

Dynamic Linked Library. This is a library loadfile that has symbols that can be referenced
by another loadfile to resolve symbolic references at link time or at runtime. This
loadfile offers functions or data for use by other loadfiles. For TNS/E, DLLs replace
SRLs commonly associated with the TNS/R architecture. The object file linker eld
generates DLLs for TNS/E (as does ld for the TNS/R DLLs). In UNIX, this type of file
is known as a shared object file or dynamic shared object (DSO).

entry point. A location where a code block can be accessed. See also primary entry point
and secondary entry point.
Binder Manual—528613-003
Glossary-2

Glossary extended data segment
extended data segment. A segment that provides up to 127.5 megabytes of indirect data
storage. A process can have more than one extended data segment.

external entry point (XEP)table. The XEP table contains an entry for each unresolved
external reference and is in the last page of each code segment.

file ID. The last of the four parts of a file name; the first three parts are node name (system
name), volume name, and subvolume name.

filename. In the OSS environment, a component of a pathname containing any valid
characters other than a slash (/) character or null. In the Guardian environment, the set
of node name, volume name, subvolume name, and file identifier characters that
uniquely identifies a file.

file system. In the OSS environment, a collection of files and file attributes. A file system
provides the namespace for the file serial numbers that uniquely identify its files. See
also ISO/IEC IS 9945-1:1990 (ANSI/IEEE Std. 1003.1-1990), Clause 2.2.2.38.

On an HP system, the Guardian file system for a node is a subset of OSS virtual file
system and is therefore contained within a single fileset. Traditionally, the application
program interface for file access in the Guardian environment is referred to as the
Guardian file system.

Guardian. The original application program interface (API) to the HP NonStop Operating
System.

Guardian services. An application program interface (API) to the HP NonStop Operating
System and associated tools and utilities.

global data. The identifiers that are accessible to all compilation units in a binding session.

high PIN. A process identification number (PIN) that is greater than 255. Contrast with low
PIN.

HP NonStop Operating System. The operating system for HP NonStop systems. The
operating system does not include any application program interfaces.

input control lists. The lists Binder uses to determine which code blocks to include in the
target file.

Inspect region. The region of an object file that contains symbol tables for all blocks
compiled with the SYMBOLS directive or pragma. These tables are used by Inspect.
Also called the symbol region.

Itanium instruction region. Register-oriented 64-bit machine instructions that are directly
executed on TNS/E processors. IPF instructions execute on TNS/E systems, but not
on TNS systems or on TNS/R systems. OCA-generated IPF instructions are produced
by translating a TNS object file using OCA. Native-compiled IPF instructions are
produced by compiling source code with a TNS/E native compiler.
Binder Manual—528613-003
Glossary-3

Glossary local data
local data. Data that you declare within a procedure; identifiers that are accessible only
from within that procedure.

low PIN. A process identification number (PIN) in the range 0 through 254. Contrast with
high PIN.

lower 32K-word area. The lower half of the user data segment. The global, local, and
sublocal storage areas.

language-specific run-time environment. A set of services implemented by the run-time
library of each language. Without the CRE, C, COBOL85, FORTRAN, Pascal or TAL
programs each have their own language-specific run-time environments. These
language-specific run-time environments are often incompatible with each other.
Contrast with Common Run-Time Environment.

language-specific run-time library. A collection of routines outside the CRE that supports
requests from a specific language for services such as I/O and heap management,
math and string functions, exception handling, and error reporting.

large memory model. A program attribute that specifies that a program’s heap is allocated
in the extended memory segment.

main routine. The first routine to execute when a program is run. The main routine
determines the run-time environment for a program. It is the routine declared with the
MAIN or PROGRAM keyword.

mixed-language program. A program that contains source files written in different HP
programming languages.

NonStop Operating System Open System Services (OSS). An application program
interface (API) to the HP NonStop Operating System and associated tools and utilities.

object file. A file generated by a compiler or binder that contains machine instructions and
other information needed to construct the executable code spaces and initial data for a
process. The file may be a complete program that is ready for immediate execution, or
it may be incomplete and require binding with other object files before execution.

Object Code Accelerator (OCA). A program that processes a TNS object file and
produces an object file that contains both TNS instructions and Itanium instructions.
Most TNS object files that have been processed by OCA run faster on TNS/E
machines than do TNS object files that have not been processed by OCA.

own data block. A data block with a scope defined as private to one module or code block.
Also referred to as an private data block.

PARAM command. A TACL command that lets you associate an ASCII value with a
parameter name.
Binder Manual—528613-003
Glossary-4

Glossary pathname
pathname. The string of characters that uniquely identifies a file within its file system. A
pathname can be either relative or absolute. See also ISO/IEC IS 9945-1:1990
(ANSI/IEEE Std. 1003.1-1990 or POSIX.1), Clause 2.2.2.57.

PEP table. See procedure entry point (PEP) table.

PIN. See process identification number (PIN).

primary data space. The area of the user data segment that can store pointers and directly
addressed variables.

primary entry point. The location where a code block can be accessed through a PCAL or
XCAL instruction. The name of the primary entry point is the same as that of the code
block.

private data area. The part of the data space that is reserved for the sole use of a
procedure or subprocedure while it is executing.

private data block. A data block with a scope defined as private to one module or code
block. Also referred to as an own data block.

procedure entry point (PEP) table. The PEP table contains the entry point addresses for
each code block and is in the first page of each code segment.

process. A program that has been submitted to the operating system for execution. An
instance of execution of a program.

process identification number (PIN). An unsigned integer that identifies a process in a
processor module. Internally, a PIN is used as an index to the process control block
(PCB) table.

program file. An executable object file. It must contain an entry point with the MAIN
attribute.

public name. A specification within a TAL procedure declaration of a procedure name to
use in Binder, not within the compiler. Only an EXTERNAL procedure declaration can
include a public name. If you do not specify a public name, the procedure identifier
becomes the public name.

relative pathname. A pathname that does not begin with a slash (/) character. A relative
pathname is resolved beginning with the current working directory. Contrast with
“absolute pathname.”

RISC instructions. Register-oriented 32-bit machine instructions that are directly executed
on TNS/R processors. RISC instructions execute only on TNS/R systems, not on TNS
systems. Contrast with TNS instructions.

RTDU. See run-time data unit (RTDU).
Binder Manual—528613-003
Glossary-5

Glossary run-time data unit (RTDU)
run-time data unit (RTDU). Region of an object file used to store NonStop SQL source and
object code.

run-time environment. The services provided by run-time library routines and data objects
(data blocks and pointers) to a program at run-time.

run-time library. A collection of routines that supports requests for services such as I/O and
heap management, math and string functions, exception handling, and error reporting.

secondary entry point. The location where a code block can be accessed through a PCAL
instruction. Only FORTRAN and TAL routines allow secondary entry points. Secondary
entry points have distinct names.

shared run-time libraries (SRL). A library that allows run-time linked libraries to contain
global variables. Binder commands support shared global data between applications
and library files. SRLs are replaced by DLLs in TNS/E.

single-language program. A program in which all routines are written in the same
programming language.

small memory model. A program attribute that specifies that the program’s heap is
allocated in the user data segment.

source file. A file that contains source text such as data declarations, statements, compiler
directives, and comments. The source file, together with any source code read in from
other source files by SOURCE directives, compose a compilation unit that you can
compile into an object file.

sublocal data. Data that you declare within a subprocedure; identifiers that are accessible
only from within that subprocedure.

Symbol region. See Inspect region.

system. The processors, memory, controllers, peripheral devices, and related components
that are directly connected together by buses and interfaces to form an entity that is
operated as one computer.

TAL. See Transaction Application Language (TAL).

TNS/R. The HP computers that support the HP NonStop Operating System and that are
based on reduced instruction set computing (RISC) technology. TNS/R processors
implement the TNS/R instruction set and maintain application compatibility with TNS
processors. The term TNS/R can refer to the instruction set, the architecture, or the
processors.

TNS/R instruction. A 32-bit, register-oriented RISC machine instruction defined as part of
the TNS/R environment. TNS/R instructions are implemented by the RISC chip of a
TNS/R processor. These instructions execute on TNS/R systems but not on TNS
systems.
Binder Manual—528613-003
Glossary-6

Glossary TNS/E.
TNS/E. 64-bit computers that support the HP NonStop operating system and that are based
on INTEL’s Itanium architecture. TNS/E machines are upwardly compatible with the
TNS system-level architecture. Contrast with TNS and with TNS/R.

TNS/E instruction. See Itanium instruction.

TNS. The HP computers that support the Guardian operating system and that are based on
the instruction set computing (CISC) technology. The term TNS can refer to the
instruction set, the architecture, or the processors. Systems with these processor
include the NonStop II, NonStop TXP, NonStop EXT, NonStop VLX, NonStop Cyclone,
and NonStop CLX 600, CLX 700, and CLX 800 series.

TNS environment. The registers, instruction set, and processing logic that are defined by
the TNS architecture.

TNS instruction. A 16-bit, stack-oriented machine instruction common to all TNS and
TNS/R systems. On TNS systems, TNS instructions are implemented by microcode;
on TNS/R systems, TNS instructions are implemented by millicode or by acceleration
to RISC code.

TNS object code. The TNS instructions that result from processing source code with a TNS
language compiler. TNS object code executes on both TNS and TNS/R systems.

TNS word. A 16-bit word. Named for the assumed operand size associated with most TNS
instructions.

TNS object file. The object file created by a TNS compiler. The file contains TNS
instructions and other information needed to construct the code spaces and the initial
data for a TNS process.

Transaction Application Language (TAL). A systems programming language for NonStop
systems.

upper 32K-word area. The upper half of the user data segment. You can use pointers to
allocate this area for your data; however, if you use the CRE, the upper 32K-word area
is not available for your data.

user data segment. An automatically allocated segment that provides modifiable, private
storage for the variables of your process.

user library. A set of procedures that the operating system links to a program file at run
time.

XEP table. See external entry point (XEP)table.
Binder Manual—528613-003
Glossary-7

Glossary XEP table
Binder Manual—528613-003
Glossary-8

Index
Numbers
32K boundary 4-10

A
Accelerated mode

executing in 1-7
Acceleration

cross platform 1-8
Accelerator 1-8

AXCEL ENABLE attribute 3-15
introduced 1-5

Accelerator Region
description 4-11
stripping 3-75

ADD Command
efficient usage 3-3
examples 3-8
syntax and description 3-6/3-8
using search files 3-48
with SQL subprograms 2-15

ADD SPACE Command 3-6
ADD, DELETE vs. REPLACE 2-15, 3-41
ALPHA option 3-30, 3-53
Alphabetic Load Maps 2-21, 2-24, 3-30,
3-32, 3-53
ALTER Command

examples 3-10
syntax and description 3-9/3-10

Amending attribute values 3-15
Arrays, global read-only 4-9
ASSIGN Command

and TACL DEFINE name 7-9
TACL Product 7-9

Attributes
See also individual attributes
amending or patching values 3-18
amending values 3-15

changing 3-9, 3-15/3-18
clearing 3-18
code block 4-1
data block 4-4
object file 3-11
resetting 3-44
setting 3-57/3-67
showing 3-67/3-75
target file 3-57/3-67, 5-8/5-12

AXCEL ENABLE attribute 3-15

B
BIND

command file operation 2-2/2-3
commands See Commands
defined 1-2
introduced 1-3
manual operation 2-1

Binder
BIND process 1-3
BINSERV process 1-2
commands See Commands
cross-reference lists 2-25/2-26, 3-30,
3-54
input object files 1-2
languages used with 1-4
listings 2-19/2-26
load maps 2-21/2-25
output object files 1-2
prompt 2-1
relation to other products 1-4
starting

compiler-invoked 1-2
interactive 2-1

stopping 3-23
work files 2-17

Binder region
Binder Manual—528613-003
Index-1

Index C
description 4-12
stripping 3-75

Binding 2-14, 3-50, 3-55, 5-11
C 2-11
changing the swap volume 2-17
COBOL85 2-10
compilation time 6-2
C-Series object with D-Series
object 2-6
defined 1-1
FORTRAN 2-10
interactive 1-3, 2-2
language checking 3-50, 3-55, 5-11
logging a session 3-33
mixed languages 2-13
modules 2-5/2-17
Pascal 2-12
redirecting output 3-39
resolving external references 2-16
rules 2-6
seperately compiled object
files 2-5/2-16
SQL subprograms 2-14/2-16
target file specifications 2-4
target file statistics 2-19

BINSERV 1-2
Blank common blocks 4-5
Blocks

binding 2-5/2-17
code and data 4-1/4-7
defined 1-1
deleting from include lists 3-19
displaying content 3-20
displaying information 3-25
named 4-5
read-only 4-1
renaming 3-40
replacing 3-41

Block-list 3-4
Block-name 3-4

Block-range 3-4
BRIEF option 3-31
BUILD Command

examples 3-14
SATISFY ON option 3-13
setting parameters 3-49/3-57
syntax and description 3-11/3-14

Building applications using SRLs 6-4

C
C

binding 2-11
blocks 4-5
compressed data 3-52
distinguishing character case 3-33
memory models 2-12
mixed language binding 2-13
PARAM SWAPVOL command 2-18
routine scope 4-3
run-time libraries 2-11
undefined list 2-4
version used with Binder 1-4

CALLABLE attribute 3-10, 4-2
Calls from high-PIN requesters 3-16, 3-59
CD Command 3-14
CHANGE Command

examples 3-18
syntax and description 3-15/3-18

Changing working directory 3-14
Character case 3-33
CHECK option 5-11
CHECK PARAMETER option 3-55
CLEAR Command 3-18
CLIB 2-11
COBOL 1-8
COBOL85

binding 2-10
control blocks 2-10
external records 4-5
mixed language binding 2-13
Binder Manual—528613-003
Index-2

Index C
procedure replacement 3-41
routine scope 4-3
user libraries 6-1
version used with Binder 1-4

Code area size 2-23
Code blocks

adding to include list 3-6
attributes 3-9, 4-2
cross-reference lists 3-30, 3-54
defined 2-21, 3-4
deleting 3-19
displaying content 3-20
displaying information 3-25
displaying multiply-defined 3-26
in multiple object files 2-6
load maps 2-21/2-24, 3-28
modifying word values 3-34
moving 3-36
names 4-1
name-lists 3-4
order 5-3
renaming 3-40
replacing 3-41
scope 4-3
See also Blocks
size 2-23
specifying target file order 2-4, 3-7
verifying word values 3-77

Code region 4-9
Code segment

boundary marker 3-6, 3-37
determining segments 4-9
determining size 3-63
load maps 2-23

Command files 2-2, 3-38
Commands

ADD 3-2, 3-6/3-9
ADD SPACE 3-6
ALTER 3-9

automatic file name expansion 3-3
BUILD 3-11/3-14
CD 3-14
CHANGE 3-15/3-18
CLEAR 3-18
COMMENT 3-19
correcting with FC command 3-23
DELETE 3-19
displaying parameters 3-24
DUMP 3-20
efficient usage 3-3
entering 2-1, 2-2
ENV 3-22
EXIT 3-23
FC 3-23
FILE 3-24
HELP 3-24
INFO 3-25/3-28
LIST 3-28/3-31
LMAP 3-32
LOG 3-32
MODE 3-33
MODIFY 3-34/3-36
MOVE 3-36
multiple-line 3-3
OBEY 3-38
order of 2-4
OUT 3-39
RENAME 3-40
REPLACE 3-41/3-43
RESELECT 3-43/3-44
RESET 3-44/3-46
SATISFY 3-47/3-49
SELECT 3-49/3-57
SET 3-57/3-67
SHOW 3-67/3-75
STRIP 3-75
summary 3-2
syntax for name lists 3-4/3-5
Binder Manual—528613-003
Index-3

Index D
SYSTEM 3-77
VERIFY 3-77
VOLUME 3-78

Command-driven binding
command file 2-2
interactive 2-1
introduced 1-3

COMMENT Command 3-19
COMMON 2-7
Common data blocks 4-5
Common run-time environment 2-6, 2-13
COMPACT option 3-52, 5-11
Compilation time binding 1-2
Compiler directives 2-6
Completion codes 8-28
COMPRESS DATA option 3-52
Control blocks, in mixed binding 2-10
Control lists

commands to create 5-2
include code block 5-3
include data block 5-4
include entry point 5-4
include run-time data unit (RTDU) 5-5
modify 5-5
omit 5-5
refer 5-5
search 5-6
undefined 5-6
unresolved reference 5-6

CPU, specifying for compiler 7-7
CRE 2-6, 2-13
Cross platform acceleration 1-8
Crossref, relation to Binder 1-4
Cross-Platform Acceleration 1-8
Cross-reference lists

example 2-26
generating 2-25, 3-28, 3-54

CTRL/Y 2-2, 3-23
Current file

clearing 3-18

establishing 3-24
showing 3-67

D
DATA attribute 3-15, 3-58, 5-9
Data blocks

adding to include lists 3-6
attributes 4-4
common 4-5
cross-reference lists 3-30, 3-54
defined 3-6, 4-4
deleting 3-19
directly addressable 4-6
displaying 3-20, 3-25, 3-28
in multiple object files 2-5
indirectly accessed 4-6
load maps 2-24/2-25
modifying word values 3-34
name lists 3-4
name-lists 3-4
own 4-5/4-7
P-relative read-only data 4-6
renaming 3-40
replacing 3-41
See also Blocks
special 4-4
TAL example 4-6
verifying word values 3-77

Data region 4-11
Data space

allocating 3-15
specifying 3-58

Debugging
Crossref 1-5
Inspect 1-5, 3-16, 3-60
stripped files 3-32, 3-76

Default system, specifying 3-77
Default volume/subvolume, specifying 3-78
DEFAULTS DEFINEs 7-7
Binder Manual—528613-003
Index-4

Index E
DEFINE command,TACL product 7-5
Defining target file 2-3
Definitions

BIND 1-2
binding 1-1
BINSERV 1-2
block 1-1
code block 2-21
data block 3-6
entry point 2-21
object file 1-1
program 1-1
target file 1-1

DELETE Command 3-19
Disk files

names of 7-1
Disk space, managing 2-17
DUMP Command

examples 3-22
syntax and description 3-20/3-22

E
Efficient usage, BIND Commands 3-3
Entry points

adding to include list 3-6
changing attributes 3-9
cross-reference lists 3-30, 3-54
definition 2-21
displaying 3-25, 3-28
external 2-23, 4-10
load maps 2-21/2-23
name-lists 3-4
primary and secondary 4-2
scope 4-3

Entry-list 3-4
Entry-name 3-4
Entry-range 3-4
ENV Command 3-22
ENV directive parameters 2-6

Environment
CRE 2-6
language-specific 2-6

Environment parameters 3-22
Error checking 3-50
Error Messages 8-1
Execution modes

accelerated 1-7
TNS 1-7

Execution parameters
clearing 3-18
resetting 3-43
showing 3-67
specifying 3-49/3-57
value during SATISFY 3-51

EXIT Command 3-23
EXTENDSTACK attribute 3-58, 5-9
EXTENSIBLE attribute 4-2
External call (XCAL) 4-1
External entry point (XEP)

size 2-23
table 4-10

External records 4-5
External references

modifying 3-35
resolving 2-16, 3-13, 3-47, 3-54
to system procedures 2-17
unsatisfied 2-16

F
FC Command 3-23
FCB (file control block) 2-10
FILE Command 3-24
File control block 2-10
FILE ID

in file names 7-3
File names 7-1

defaults in 7-3
equating with logical file names 7-9
internal 7-4
Binder Manual—528613-003
Index-5

Index G
logical 7-4
parts of 7-2
replacing define names 7-5
specifying defaults 7-4

Files
Binder work files 2-17
changing attributes 3-15/3-18
establishing current 3-24
multiple-code segment 4-9
setting target file attributes 3-57/3-67
target attributes 5-9/5-11

FIXUPS option 3-4, 3-52
FLUT (FORTRAN logical unit table) 2-10
FORTRAN

blank common blocks 4-5
control blocks 2-10
logical unit table 2-10
mixed language binding 2-13
named blocks 4-5
procedure replacement 3-41
routine scope 4-3
version used with Binder 1-4

FORTRAN binding 2-10
FORTRAN, Pascal 1-8

G
Gap length 2-23
Global

names 4-3
P-relative length 2-23
read-only arrays in TAL 4-9

Global variables 6-4

H
HEAP attribute 3-59, 5-9
HEAP STATISTICS attribute 3-59
HELP Command 3-24
High PIN

determining 3-65

running 3-65
HIGHPIN attribute 3-15, 3-59, 5-9

rules for combining 3-41
HIGHREQUESTERS attribute 3-16, 3-59,
5-9

rules for combining 3-41

I
IMPORT DATA attribute 3-59
Include lists

clearing 3-18
code block 5-3
data block 5-4
deleting blocks 3-19
displaying contents 3-25
entry point 5-4
introduced 2-4
replacing blocks 3-41
run-time data unit (RTDU) 5-5

INFO Command
examples 3-27
syntax and description 3-25/3-27

Input control lists
clearing 3-18
include code block 5-3
include data block 5-4
include entry point 5-4
include run-time data unit (RTDU) 5-5
introduced 2-4
modify 5-5
omit 5-5
refer 5-5
search 5-6
undefined 5-6
unresolved reference 5-6

Input files
search efficiency 3-3
specifying 2-3
TACL command lines 2-2
Binder Manual—528613-003
Index-6

Index L
Inspect
attribute 3-16, 3-60, 5-9
program 3-60
region 4-11
relation to Binder 1-5

Inspect region
description 4-11
stripping 3-75

Interative binding 1-3
Internal file names 7-4
INTERRUPT attribute 4-2

L
Language specific run-time
environment 2-6
Languages used with Binder 1-4
LARGESTACK attribute 3-60, 5-9
LIBRARY attribute and option 3-16, 3-51,
3-60, 5-9, 5-12
Library calls 6-2
LIKE attribute 3-10, 3-60, 5-9
LIST Command

examples 3-31
syntax and description 3-28/3-31

LIST option 3-53
Listing options 3-53
Listings

control 5-1/5-8
cross-reference 2-25, 3-30, 3-54
data block 2-24/2-25
entry point maps 2-21/2-23
generating 2-19, 3-28
load maps 2-21/2-25
target file statistics 2-19

LMAP Command 3-32
Load maps

alphabetic 2-21, 2-24
data blocks 2-24/2-25
entry points 2-21/2-23
for multiple code segments 2-23

generating 3-53
listing 3-28
location 2-23, 2-25
turning on/off 3-4, 3-53

LOC option 3-30, 3-53
Local storage, stack space 3-58
Location load maps 2-23, 2-25, 3-30, 3-53
LOG Command 3-32
Logical file names 7-4, 7-9
Low PIN

determining 3-65
running 3-65

M
MAIN attribute 3-9, 4-2
Maps

code blocks 2-21/2-23
data blocks 2-24/2-25
entry point 2-21/2-23
multiple code segments 2-23

Memory models, C 2-12
Messages 8-1
Millicode 1-6
MISALIGN 3-16, 3-60
Mixed language binding 2-13

character case 3-33
parameter checking 2-14

MODE Command 3-33
MODIFY Command

examples 3-36
showing modifications 3-67
syntax and description 3-34/3-36

Modify list
clearing 3-18
described 5-5
introduced 2-4

Modifying external references 3-35
Module declaration, in Pascal and C 4-3
MOVE Command

examples 3-37
Binder Manual—528613-003
Index-7

Index N
syntax and description 3-36/3-37
Multiple code segments

creating 3-8
files 4-9
load maps 2-23

Multiple-line commands 3-3

N
Named blocks 4-5
Names, private vs. public 4-3
Name-lists 3-4
Nested routines, referencing 4-3
NEUTRAL 2-7
Node name in file names 7-2
Nonexported, nonimported variables 4-6
Nonexternal items 4-6

O
OBEY 3-38
OBEY Command 3-38
Object Code Accelerator (OCA)

accelerated mode 1-8
explicit acceleration 1-8
functional overview 1-6
introduction 1-6

Object file
accelerator region 4-11
attributes

See Object file attributes
binder region 4-12
binding seperately compiled 2-6/2-10
code region 4-9
creating with multiple code
segments 3-8
cross-reference lists 2-25/2-27
data region 4-11
defined 1-1
displaying content 3-20
format 4-8/4-12

inspect region 4-11
load maps 2-21/2-25
setting current file 3-24
statistics 2-19
structure 4-1/4-12

Object file attributes
amending and patching 3-15/3-18
AXCEL ENABLE 3-15
clearing 3-18
DATA 3-15, 3-58
EXTENDSTACK 3-58
HEAP 3-59
HEAP STATISTICS 3-59
HIGHPIN 3-15, 3-59
HIGHREQUESTERS 3-16, 3-59
IMPORT DATA 3-59
INSPECT 3-16, 3-60
LARGESTACK 3-60
LIBRARY 3-16, 3-60
LIKE 3-60
PEP 3-60
PFS 3-17, 3-61
RESERVE 3-61
RUNNAMED 3-17, 3-61
SAVEABEND 3-17, 3-62
setting 3-11, 3-57/3-67
STACK 3-58
SUBTYPE 3-17, 3-62
SYMBOLS 3-62
SYSTYPE 3-17
TARGET 3-17, 3-62
USERLIBRARY 3-63

OBJECT, as default file name 3-13
OCA ENABLE 3-16
OCA Translation Mode 1-8
OLD 2-7
Omit list

clearing 3-18
described 5-5
Binder Manual—528613-003
Index-8

Index P
introduced 2-4
syntax 3-54

Online help 3-24
Optimization 1-6
OUT Command 3-39
Output listings

displaying 3-29
entry point maps 2-21/2-24
generating 2-19
load maps 2-21/2-25
specifying a file 2-2
statistics 2-19

Own data blocks 4-5/4-7

P
Page faults, reducing 3-37
PARAM BINSERV command 7-7
PARAM command, TACL product 7-7
PARAM SAMECPU command 7-7
PARAM SWAPVOL command 2-18, 7-8
PARAM SYMSERV command 7-8
Parameter checking 3-51, 3-55

mixed language bind 2-14
parameter checking 2-14, 3-50, 3-55, 5-11
Parameter checking, mixed language
bind 2-14
PARAMETER option 3-51, 3-55, 5-12
Pascal

binding 2-12
blocks 4-5
compressed data 3-52
HEAP STATISTICS attribute 3-59
mixed language binding 2-13
PARAM SWAPVOL command 2-18
procedure replacement 3-7, 3-42
routine scope 4-3
run-time libraries 2-13
run-time library 2-13
undefined list 2-4
version used with Binder 1-4

Pascal HEAPUSED routine 3-59
PCAL (procedure call) 4-1
PDTERROR file 8-1
PDTHELP file 3-25
PEP

attribute 3-60, 5-9
length 2-23
table 4-10

PFS attribute 3-17, 3-61, 5-9
PIN

determining 3-65
setting 3-65

Primary entry point 4-2
PRIV attribute 3-10
Private

blocks 4-5
Private names 4-3
PRIVILEGED attribute 4-2
Procedure call (PCAL) 4-1
Procedure entry point

See PEP
Procedure length 2-23
Procedure replacement

ADD, DELETE command 3-6, 3-7
ADD, DELETE vs. REPLACE 2-14,
3-41
Pascal 3-7
REPLACE command 3-41
SQL subprograms 2-14/2-16

Process file segment
See PFS attribute

Process subtype, setting 3-62
Processes

named 3-17, 3-61
running at a high-PIN 3-18, 3-59

Processor, specifying 3-63
Program defined 1-1
Program environment parameters

displaying 3-22
ENV 3-22
Binder Manual—528613-003
Index-9

Index R
LOG 3-32
MODE 3-33
SYSTEM 3-77
VOLUME 3-78

Program unit control block (PUCB) 2-10
Public names 4-3
PUCB(program unit control block) 2-10

R
Read-only arrays,TAL global 4-10
Read-only code segments 4-1
Read-only data blocks 2-24, 4-4
Redirecting output 3-39
Refer list

clearing 3-18
described 5-5
introduced 2-4
syntax 3-54

RENAME Command 3-40
REPLACE Command

efficient usage 3-3
examples 3-42
syntax and description 3-41/3-42

REPLACE command
with SQL subprograms 2-15

RESELECT Command 3-43
RESERVE attribute 3-61
Reserving space in applications 3-61, 6-5
RESET Command

examples 3-46
syntax and description 3-44, 3-45

RESIDENT attribute 3-10, 4-2, 5-11
Routines

nested 4-3
referencing 4-3
scope 4-3

RUCB (run-unit control block) 2-10
RUNNABLE OBJECT option 3-54
RUNNAMED attribute 3-17, 3-61, 5-9

rules for combining 3-41

Running processes at a high PIN 3-65
Run-time environment

definition 2-6
Run-time libraries

C 2-11
Pascal 2-13

Run-unit control block (RUCB) 2-10, 4-4

S
SATISFY Command

examples 3-48
interactive mode 3-48
setting parameters 3-49
syntax and description 3-47

SATISFY option 3-54
Save file, specifying 3-62
SAVE variables 4-6
SAVEABEND attribute 3-17, 3-62, 5-9
Scope

data blocks 4-4
routines 4-3

Search list
clearing 3-18
described 5-6
introduced 2-4

SEARCH parameters with SATISFY
command 3-48
Searching for files, efficiency 3-3
Secondary entry point 4-2
SELECT Command

examples 3-57
syntax and description 3-49/3-57

SELECT parameters
defaults 3-43
resetting 3-43
setting 3-49/3-55
showing 3-67/3-70

SET Command
examples 3-65
syntax and description 3-57/3-65
Binder Manual—528613-003
Index-10

Index T
SET parameters
defaults 3-46
resetting 3-44
setting 3-57/3-63
showing 3-67/3-70

Shared run-time libraries 6-4
SHOW Command

examples 3-70
syntax and description 3-67/3-70

Single-code segment files 4-9
Space

reserving in applications 6-5
Special data block 4-4
SPOOL DEFINEs 7-6
SQL, binding subprograms 2-14/2-16
SRLs 6-4
STACK attribute 3-58, 5-9
Stack space 3-58
Static variables 4-6
Statistics of target file 2-19
Straddling 32K boundary 4-10
String 3-4
STRIP Command 3-75
Stripped files

command 3-75
debugging 3-76
displaying load maps 3-32

SUBTYPE attribute 3-17, 3-62, 5-9
Subvolume name

in file names 7-3
specifying defaults 7-4

Swap volume, changing 2-18
Symbol tables 4-11

retaining 3-62
stripping 3-75

SYMBOLS attribute 3-62, 5-9
SYMSERV

specifying which one 7-8
SYSTEM Command 3-77
System name

in file names 7-2
System procedures, referencing 2-17
SYSTYPE attribute 3-17

T
TACL

setting a PIN 3-65
TACL ASSIGN messages 2-2
TACL commands

DEFINE 7-5
PARAM 7-7

TACL DEFINE names, rules for 7-5
TAL 1-8

data block example 4-6
ENV NEUTRAL directive 2-6
global read-only arrays 4-10
routine scope 4-3
user libraries 6-1
version used with Binder 1-4
$EXTENDED#STACK 3-60

TAL mixed language binding 2-13
TAPE DEFINEs 7-6
TARGET attribute 3-17, 3-62, 5-9
Target file

building 3-11/3-14, 5-11
code block order 2-4, 3-7
cross-reference lists 2-25/2-27
defined 1-1
input control lists 2-4
load maps 2-21/2-25
modifying values of words 3-34
moving blocks 3-36
naming convention 3-13
specifications 2-4
specifying content 2-3
specifying processor 3-63
statistics 2-19
structure 4-1/4-12

Target file attributes
Binder Manual—528613-003
Index-11

Index U
changing 3-15/3-18
clearing 3-18
in built file 5-9/5-11
list of

See Object file attributes
resetting 3-44
setting 3-57/3-67
showing 3-67/3-75

Temporary files
specifying volume for 7-8

The Object Code Accelerator (OCA) 1-6
TNS mode, executing in 1-7
TNS processor 1-5, 3-63
TNS/R processor 1-5, 3-63

U
Undefined list

clearing 3-18
described 5-6
displaying contents 3-27
introduced 2-4

Unresolved external references, SATISFY
Command 3-48
Unresolved reference list

clearing 3-24
described 5-6
displaying contents 3-26
introduced 2-4

User libraries 6-1
allocating space 3-63
binding procedures 6-1
command driven binding 6-2
compilation time binding 6-2
introduced 6-1
purpose 6-1
restrictions 6-3
specifying 6-3

USERLIBRARY attribute 3-63, 5-9

V
VARIABLE attribute 4-2
Variables 4-4
VERIFY Command

examples 3-78
syntax and description 3-77

VOLUME Command 3-78
Volume names

in file names 7-2
specifying defaults 7-4

W
Warnings 8-1
WARNINGS option 3-55
Words, modifying the values of 3-34
Work files, managing 2-17

X
XCAL (external call) 4-1
XEP

table 4-10
XEP (external entry point)

size 2-23
XREF option 3-30, 3-54

Z
ZZBInnnn 3-13

Special Characters
$EXTENDED#STACK 3-60
.(period)

in file names 7-2
Binder Manual—528613-003
Index-12

	What’s New in This Manual
	Manual Information
	New and Changed Information
	Summary of Changes

	About This Manual
	Notation Conventions
	Hypertext Links
	General Syntax Notation
	Notation for Messages
	Change Bar Notation

	1 Introduction
	Definition of binding
	Forms of Binder
	BINSERV
	BIND

	Languages Used with Binder
	Relation of Binder to Crossref, Inspect, and the Accelerator
	The Object Code Accelerator (OCA)
	OCA Translation Mode
	Cross-Platform Acceleration

	2 Using Binder
	Running Binder
	Manual Operation

	Command File Operation
	Examples

	Defining the Target File
	Specifying Input File Names
	Specifying the Target File Order

	Binding Modules
	Binding Rules
	Examples
	Binding COBOL85 and FORTRAN Programs
	Binding C Programs
	Binding Pascal Programs
	Binding Mixed-Language Programs
	Parameter Checking for a Mixed-Language Bind
	Binding SQL Program Files
	Resolving External References

	Specifying a Different Volume for Binder Work Files
	When Using BIND
	When Using BINSERV
	Specifying the Swap Volume for Pascal and C Programs

	Generating Output Listings
	Target File Statistics
	Load Maps

	Cross-Reference Lists

	3 BIND Commands
	Summary of Most Commonly Used Commands
	How to Use BIND Commands Efficiently
	Searching for Files
	Replacing Procedures
	Turning off Load Maps
	Binding without Fixups

	Syntax Conventions for Name Lists as Command Elements
	ADD Command
	ALTER Command
	BUILD Command
	CD Command
	CHANGE Command
	CLEAR Command
	COMMENT Command
	DELETE Command
	DUMP Command
	ENV Command
	EXIT Command
	FC Command
	FILE Command
	HELP Command
	INFO Command
	LIST Command
	LMAP Command
	LOG Command
	MODE Command
	MODIFY Command
	MOVE Command
	OBEY Command
	OUT Command
	RENAME Command
	REPLACE Command
	RESELECT Command
	RESET Command
	SATISFY Command
	SELECT Command
	SET Command
	SHOW Command
	STRIP Command
	SYSTEM Command
	VERIFY Command
	VOLUME Command

	4 Object File Structure
	Code Blocks, Entry Points, and Data Blocks
	Code Blocks
	Primary and Secondary Entry Points
	Data Blocks

	Object File Format
	Header
	Code Region
	Data Region
	Accelerator Region
	OCA Region
	Inspect Region
	Binder Region

	5 Binder Input and Output
	The Input Control Lists
	Creating the Input Control Lists
	How Binder Uses the Input Control Lists

	The Target File
	Target File Attributes
	How Binder Builds the Target File

	6 User Libraries
	Binding User-Library Procedures
	Object File Format
	Preventing Binder Resolution of Library Calls
	Compilation-Time Binding
	Command-Driven Binding

	Specifying a User Library
	Restrictions on User Libraries
	Shared Run-Time Libraries
	Building Applications That Use SRLs
	Using Binder Commands With SRLs
	Reserving Space With the SET RESERVE Command

	7 Guardian File Names and TACL Commands
	Disk File Names
	Parts of a Disk File Name
	Partial File Names
	Logical File Names
	Internal File Names

	TACL Commands
	TACL DEFINE Commands
	Substituting a File Name
	TACL DEFINE Names
	Setting DEFINE CLASS Attributes

	TACL PARAM Commands
	PARAM BINSERV Command
	PARAM SAMECPU Command
	PARAM SWAPVOL Command
	PARAM SYMSERV Command
	Using PARAM Commands

	TACL ASSIGN Commands

	8 Binder Messages
	Error Messages and Warnings
	Completion Codes

	9 Syntax Summary
	Glossary
	Index

