
HP COBOL Manual for
TNS and TNS/R
Programs
Abstract

This publication describes the HP implementation of the 1985 version of the COBOL
language. It includes information on the COBOL85 and NMCOBOL compilers (T9257
and T8107, respectively) and program execution, task-oriented information to help an
experienced COBOL programmer use HP COBOL for NonStop™ systems, and
summaries of compiler and run-time error messages.

Product Version

COBOL85 D32, D42, D44, D46
NMCOBOL D44, D46
Tandem Development Suite (TDS) PC COBOL D45, G06
HP Enterprise Toolkit—NonStop Edition (ETK) PC COBOL G06, H01

Supported Release Updates (RVUs)

This publication supports D46.00, G06.00, H06.03 and all subsequent D-series,
G-series, and H-series RVUs until otherwise indicated by its replacement publication.

Part Number Published

522555-006 July 2005

Document History
Part Number Product Version Published

522555-001 COBOL85 D32, D42, D44, D46; NMCOBOL D44.01,
D46; PC COBOL D45, G06.06

February 2002

522555-002 COBOL85 D32, D42, D44, D46; NMCOBOL D44.01,
D46; TDS PC COBOL D45, G06.06; ETK PC
COBOL G06.06, G06.15, G06.18, G06.20

May 2003

522555-003 COBOL85 D32, D42, D44, D46; NMCOBOL D44.01,
D46; TDS PC COBOL D45, G06.06; ETK PC
COBOL G06.06, G06.15, G06.18, G06.20

April 2004

522555-006 COBOL85 D32, D42, D44, D46; NMCOBOL D44.01,
D46; TDS PC COBOL D45, G06.06, H06.03; ETK
PC COBOL G06.06, G06.15, G06.18, G06.20,
H06.03

July 2005

HP COBOL Manual for TNS and
TNS/R Programs
Glossary Index Examples Figures Tables
What’s New in This Manual liii
Manual Information liii
New and Changed Information liv

About This Manual lix
Manuals to Which This Manual Refers lix
Acknowledgment lxiv
Notation Conventions lxv

Part I. Features of HP COBOL
1. Introduction

HP COBOL Language 1-1
Embedded SQL/MP 1-2
Embedded SQL/MX 1-2

Summary of Execution Modes 1-3
HP COBOL Compilers for TNS and TNS/R Programs 1-4
Guardian and OSS Environments 1-4
Compiler Input 1-5
Compiler Output 1-6
Combining Separately Compiled Source Programs 1-7
Executing Loadfiles 1-8

Guardian Environment 1-8
OSS Environment 1-8

2. Source Program Organization and Format
Source Program Components 2-2
Reference Format for Source Program Lines 2-3

Indicator Area 2-4
Area A and Area B 2-6
Restrictions 2-6

COPY Libraries 2-9
 Hewlett-Packard Company—522555-006
i

Contents 2. Source Program Organization and
Format (continued)
2. Source Program Organization and Format (continued)
Nested Source Programs 2-9

Directly Contained Programs and Indirectly Contained Programs 2-10
Scope of User-Defined Names 2-11

Common Programs 2-14
Programs in the Same Run Unit 2-14
Initial Programs 2-14
How Programs Share Resources 2-15

Global and Local Names 2-16
External and Internal Objects 2-17
Shared Data 2-18
Shared Files 2-24

3. Language Elements
COBOL Character Set 3-2
Punctuation Characters 3-4

Separators 3-4
Comments 3-6
Nonnumeric and National Literals 3-6
Numeric Literals and PICTURE Character-Strings 3-6

Character-Strings 3-6
COBOL Words 3-7
Literals 3-16
PICTURE Character-Strings 3-24
Comments 3-24

4. Data Fundamentals
Data Levels, Classes, and Categories 4-1
Data Structures 4-2

Level-Numbers 4-2
Records 4-4
Files 4-6
Tables 4-12

Data Representation 4-14
Data Alignment in Receiving Items 4-15
Data Alignment in Memory 4-15
HP COBOL Manual for TNS and TNS/R Programs—522555-006
ii

Contents 4. Data Fundamentals (continued)
4. Data Fundamentals (continued)
Implicit FILLER Bytes 4-16

Records 4-17
Tables 4-17
REDEFINES Clause 4-18

References to Data Items 4-18
Qualifiers 4-19
Subscripts 4-19
Reference Modifiers 4-22
Identifiers 4-24
Condition-Names 4-25

5. Identification Division
Identification Division Syntax 5-1
PROGRAM-ID Paragraph 5-4
DATE-COMPILED Paragraph 5-5

6. Environment Division
Environment Division Syntax 6-2
Configuration Section 6-3

SOURCE-COMPUTER Paragraph 6-4
OBJECT-COMPUTER Paragraph 6-5
SPECIAL-NAMES Paragraph 6-10

Input-Output Section 6-22
FILE-CONTROL Paragraph 6-23
I-O-CONTROL Paragraph 6-57
RECEIVE-CONTROL Paragraph 6-64

7. Data Division
Data Categories and Data Descriptions 7-2

Record Description Entries 7-2
Independent Data Item Description Entries 7-3

File Section 7-3
File Description Entries 7-5
Sort-Merge File Description Entries 7-30
Data Description Entries 7-32
HP COBOL Manual for TNS and TNS/R Programs—522555-006
iii

Contents 7. Data Division (continued)
7. Data Division (continued)
Working-Storage Section 7-33

Data Description Entries 7-34
Initializing Data Items 7-36
Size Limits 7-36
Checkpointing 7-36

Extended-Storage Section 7-37
Data Description Entries and Initializing Data Items 7-37
Addressing 7-38
Size Limits 7-38
Checkpointing 7-38

Linkage Section 7-38
Data Description Entries and Initializing Data Items 7-39
ACCESS MODE Clause 7-39
CALL Statement and USING Phrase 7-40
Index-Names 7-42
Absent Linkage Section 7-42

Descriptions of Records (Levels 01-49) 7-43
General Considerations 7-44
FILLER Keyword 7-48
REDEFINES Clause 7-48
EXTERNAL Clause 7-52
GLOBAL Clause 7-53
PICTURE Clause 7-54
USAGE Clause 7-69
SIGN Clause 7-78
OCCURS Clause for Fixed-Size Tables 7-79
OCCURS Clause for Variable-Size Tables 7-83
SYNCHRONIZED Clause 7-86
JUSTIFIED Clause 7-87
BLANK WHEN ZERO Clause 7-88
VALUE Clause 7-89

Descriptions That Rename Items (Level 66) 7-91
Descriptions of Noncontiguous Elementary Items (Level 77) 7-93
Descriptions of Condition-Names for Values (Level 88) 7-95
HP COBOL Manual for TNS and TNS/R Programs—522555-006
iv

Contents 8. Procedure Division
8. Procedure Division
Procedure Division Components and Syntax 8-2

Statements 8-4
Sentences 8-10
Paragraphs 8-11
Sections 8-13
Procedures 8-14
Declaratives Portion 8-15

Execution of the Procedure Division 8-16
Statement Execution 8-16
Sentence Execution 8-17
Paragraph Execution 8-17
Section Execution 8-18
Procedure Execution 8-20
Declaratives Portion Execution 8-20

Common Semantic Rules 8-21
Operand Identification 8-21
Overlapping Operands 8-22

Common Phrases 8-22
CORRESPONDING Phrase 8-22
ROUNDED Phrase 8-23
SIZE ERROR Phrase 8-23
FROM Phrase 8-27
INTO Phrase 8-27

Input-Output 8-28
I-O Status Code 8-28
Diagnosing Input-Output Errors 8-33
Recovering from Input-Output Errors 8-39
Timed Input and Output 8-41

Arithmetic Operations 8-42
Common Features of Arithmetic Statements 8-43
Arithmetic Expressions 8-45
Arithmetic Precision 8-48

Conditional Expressions 8-53
Simple Conditions 8-53
Complex Conditions 8-64
Abbreviated Combined Relation Conditions 8-66
Condition Evaluation Rules 8-68

Concatenation Expressions 8-69
HP COBOL Manual for TNS and TNS/R Programs—522555-006
v

Contents 9. Procedure Division Verbs
9. Procedure Division Verbs
ACCEPT 9-1

ACCEPT With Mnemonic-Name 9-1
ACCEPT With DATE, DAY, DAY-OF-WEEK, or TIME Phrase 9-6

ADD 9-9
ADD TO 9-9
ADD GIVING 9-12
ADD CORRESPONDING 9-14

ALTER 9-16
CALL 9-18
CANCEL 9-32
CHECKPOINT 9-34
CLOSE 9-37

CLOSE for Sequential and Line Sequential Files 9-37
CLOSE for Relative, Indexed, and Queue Files 9-40

COMPUTE 9-41
CONTINUE 9-44
COPY 9-44
DELETE 9-45
DISPLAY 9-47
DIVIDE 9-50

DIVIDE INTO 9-51
DIVIDE GIVING 9-53
DIVIDE GIVING REMAINDER 9-55

ENTER 9-58
ENTER COBOL 9-67
EVALUATE 9-67
EXIT 9-76
GO TO 9-81

Unconditional GO TO 9-81
Conditional GO TO 9-82

IF 9-83
Delimited-Scope Form 9-83
Conditional Form 9-86

INITIALIZE 9-91
HP COBOL Manual for TNS and TNS/R Programs—522555-006
vi

Contents 9. Procedure Division Verbs (continued)
9. Procedure Division Verbs (continued)
INSPECT 9-95

INSPECT TALLYING 9-95
INSPECT REPLACING 9-103
INSPECT TALLYING REPLACING 9-107
INSPECT CONVERTING 9-113

LOCKFILE 9-115
MERGE 9-119
MOVE 9-128

MOVE TO 9-128
MOVE CORRESPONDING 9-132

MULTIPLY 9-132
MULTIPLY BY 9-133
MULTIPLY GIVING 9-136

OPEN 9-138
PERFORM 9-157

Unconditional PERFORM 9-157
PERFORM TIMES 9-162
PERFORM UNTIL 9-164
PERFORM VARYING 9-166

READ 9-177
READ for Sequential or Dynamic Access 9-178
READ for Line Sequential Files 9-193
READ for Random or Dynamic Access 9-195

RELEASE 9-200
REPLACE 9-201
RETURN 9-201
REWRITE 9-202

REWRITE for Sequential, Relative, Indexed, and Queue Files 9-202
REWRITE for Line Sequential Files 9-208

SEARCH 9-209
SEARCH VARYING 9-209
SEARCH ALL 9-214

SET 9-219
SET TO 9-219
SET UP or SET DOWN 9-225

SORT 9-227
START 9-237
STARTBACKUP 9-252
HP COBOL Manual for TNS and TNS/R Programs—522555-006
vii

Contents 9. Procedure Division Verbs (continued)
9. Procedure Division Verbs (continued)
STOP 9-256
STRING 9-257
SUBTRACT 9-262

SUBTRACT FROM 9-263
SUBTRACT GIVING 9-265
SUBTRACT CORRESPONDING 9-267

UNLOCKFILE 9-269
UNLOCKRECORD 9-270
UNSTRING 9-271
USE 9-283

USE DEBUGGING 9-284
USE AFTER EXCEPTION 9-288

WRITE 9-292
WRITE for Sequential Files 9-292
WRITE for Line Sequential Files 9-300
 WRITE for Relative, Indexed, and Queue Files 9-301

10. Source Text Manipulation
COPY Statement 10-2
REPLACING Phrase 10-7
COPY Libraries 10-11

Specifying Library Names 10-11
Library Format 10-12

REPLACE Statement 10-14

11. Program Compilation
Compiler Input 11-2

Main Programs 11-3
Calling and Called Programs 11-4
How an HP COBOL Program Calls a Non-COBOL Program 11-4
Compilation Units 11-5

Compilation Details 11-9
Processes Involved in Compilation 11-9
Temporary File Placement 11-11
CALL and ENTER Statement Processing: Overview 11-12
CALL and ENTER Statement Processing: Detailed Explanation 11-16
#RECEIVE Blocks 11-24
HP COBOL Manual for TNS and TNS/R Programs—522555-006
viii

Contents 11. Program Compilation (continued)
11. Program Compilation (continued)
Compiler Output 11-25

Listing Creation 11-26
Object File Creation 11-27
Manipulating Object Files 11-28
Compilation Statistics 11-29
Completion Codes 11-33

Running the Compiler 11-33
PARAM Commands 11-34
Predefined SEARCH DEFINEs 11-36
Starting a Compilation 11-38
Terminating a Compilation 11-44

Compiler Directives 11-44
Where Compiler Directives Are Allowed 11-45
Categories of Compiler Directives 11-47
ANSI 11-53
BLANK and NOBLANK 11-54
CALL-SHARED 11-55
CANCEL and NOCANCEL 11-56
CHECK 11-56
CODE and NOCODE 11-58
COLUMNS 11-59
COMPACT and NOCOMPACT 11-60
COMPILE 11-61
CONSULT and NOCONSULT 11-62
CROSSREF and NOCROSSREF 11-63
DIAGNOSE-74 and NODIAGNOSE-74 11-66
DIAGNOSE-85 and NODIAGNOSE-85 11-70
DIAGNOSEALL and NODIAGNOSEALL 11-71
ENDIF 11-71
ENDUNIT 11-72
ENV 11-72
ERRORFILE 11-75
ERRORS 11-76
FIPS and NOFIPS 11-76
FLOAT and NOFLOAT 11-78
FMAP 11-78
HEADING 11-79
HEAP 11-80
HP COBOL Manual for TNS and TNS/R Programs—522555-006
ix

Contents 11. Program Compilation (continued)
11. Program Compilation (continued)
Compiler Directives (continued)

HIGHPIN 11-80
HIGHREQUESTERS 11-83
IICODE and NOICODE 11-83
IF and IFNOT 11-84
INNERLIST and NOINNERLIST 11-87
INSPECT and NOINSPECT 11-88
LARGEDATA 11-88
LD 11-91
LESS-CODE 11-91
LIBRARY 11-93
LINES 11-94
LIST and NOLIST 11-95
LMAP and NOLMAP 11-96
MAIN 11-98
MAP and NOMAP 11-99
NLD 11-99
NONSTOP 11-100
NON-SHARED 11-101
OPTIMIZE 11-102
PERFORM-TRACE 11-103
PORT and NOPORT 11-104
RESETTOG 11-106
RUNNABLE 11-107
RUNNAMED 11-108
SAVE 11-109
SAVEABEND and NOSAVEABEND 11-111
SEARCH and NOSEARCH 11-112
SECTION 11-114
SETTOG 11-115
SHARED 11-116
SHOWCOPY and NOSHOWCOPY 11-117
SHOWFILE and NOSHOWFILE 11-118
SOURCE 11-119
SQL and NOSQL 11-122
SQLMEM 11-124
SUBSET 11-125
SUBTYPE 11-128
HP COBOL Manual for TNS and TNS/R Programs—522555-006
x

Contents 11. Program Compilation (continued)
11. Program Compilation (continued)
Compiler Directives (continued)

SUPPRESS and NOSUPPRESS 11-129
SYMBOLS and NOSYMBOLS 11-130
SYNTAX 11-131
TANDEM 11-132
TRAP2 and NOTRAP2 11-132
TRAP2-74 and NOTRAP2-74 11-134
UL 11-135
WARN and NOWARN 11-136

12. Program Execution
RUN or RUND Command 12-2
ASSIGN Command 12-4
PARAM Command 12-9
CLEAR Command 12-17
DEFINEs 12-19

DEFINE and ASSIGN 12-19
Controlling the Propagation of DEFINEs 12-20
DEFINE Names 12-20
DEFINE Attributes 12-21
ADD DEFINE Command 12-23

Initial State 12-24
Status of Internal Entities During Program Execution 12-25
Status of External Entities During Program Execution 12-25
Called Program Termination 12-26

13. Libraries and Utility Routines
Memory Areas 13-6
Linkfiles as Libraries 13-8
System Library 13-8
TNS User Library 13-8
User Library 13-9

Building a User Library 13-10
Specifying a User Library 13-10

Dynamic-Link Libraries (DLLs) 13-11
Building a DLL From a Single Source File 13-11
Building a DLL from Multiple Source Files 13-15
Specifying a DLL 13-19
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xi

Contents 13. Libraries and Utility Routines (continued)
13. Libraries and Utility Routines (continued)
Files of Dummy Routines 13-23
CBL85UTL Overview 13-23
FastSort Interface Overview 13-25

Establishing Parameters With FastSort Interface Routines 13-25
Establishing Parameters With =_SORT_DEFAULTS DEFINE 13-26

COBOLLIB Overview 13-26
COBOLLIB Routines in User Code Space 13-28
COBOLLIB Routines in User Library Space 13-28
COBOLLIB Routines in a Special TNS User Library 13-28
COBOLLIB Routines in System Code Space 13-29

ZCOBSRL Overview 13-29
 CLULIB Overview 13-30
Saved Message Utility (SMU) Overview 13-31

Checkpoint Lists for Process Pairs 13-35
Defined Portions of Saved Messages 13-36

ZCRESRL Overview 13-37
CBL85UTL and ZCOBSRL Routines 13-38

COBOL85^ARMTRAP 13-39
COBOL85^COMPLETION and COBOL_COMPLETION_ 13-40
COBOL_CONTROL_ 13-43
COBOL_GETENV_ 13-45
COBOL_PUTENV_ 13-46
COBOL85^RETURN^SORT^ERRORS and

COBOL_RETURN_SORT_ERRORS_ 13-46
COBOL85^REWIND^SEQUENTIAL and

COBOL_REWIND_SEQUENTIAL_ 13-49
COBOL85^SET^SORT^PARAM^TEXT and

COBOL_SET_SORT_PARAM_TEXT_ 13-51
COBOL85^SET^SORT^PARAM^VALUE and

COBOL_SET_SORT_PARAM_VALUE_ 13-55
COBOL_SET_MAX_RECORD_ 13-66
COBOL_SETMODE_ 13-67
COBOL85^SPECIAL^OPEN and COBOL_SPECIAL_OPEN_ 13-70
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xii

Contents 13. Libraries and Utility Routines (continued)
13. Libraries and Utility Routines (continued)
COBOLLIB, CLULIB, and ZCOBSRL Routines 13-85

COBOLASSIGN 13-86
COBOL_ASSIGN_ 13-89
COBOLFILEINFO 13-91
COBOL_FILE_INFO_ 13-93
COBOLSPOOLOPEN 13-95
CREATEPROCESS 13-101

Saved Message Utility (SMU) Routines 13-105
ALTERPARAMTEXT 13-106
CHECKLOGICALNAME 13-108
CHECKMESSAGE 13-110
DELETEASSIGN 13-111
DELETEPARAM 13-114
DELETESTARTUP 13-116
GETASSIGNTEXT 13-118
GETASSIGNVALUE 13-120
GETBACKUPCPU 13-122
GETPARAMTEXT 13-123
GETSTARTUPTEXT 13-125
PUTASSIGNTEXT 13-127
PUTASSIGNVALUE 13-131
PUTPARAMTEXT 13-133
PUTSTARTUPTEXT 13-136

Guardian Environment Level 3 Spooling Routines 13-139

14. Intrinsic Functions
Intrinsic Function Types 14-3

Alphanumeric Intrinsic Functions 14-3
Numeric Intrinsic Functions 14-4
Integer Intrinsic Functions 14-5
Variable-Type Intrinsic Functions 14-6

Argument Types 14-6
ACOS Function 14-8
ANNUITY Function 14-9
ASIN Function 14-11
ATAN Function 14-12
CHAR Function 14-13
COS Function 14-15
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xiii

Contents 14. Intrinsic Functions (continued)
14. Intrinsic Functions (continued)
CURRENT-DATE Function 14-16
DATE-OF-INTEGER Function 14-17
DAY-OF-INTEGER Function 14-18
FACTORIAL Function 14-19
INTEGER Function 14-20
INTEGER-OF-DATE Function 14-21
INTEGER-OF-DAY Function 14-23
INTEGER-PART Function 14-24
LENGTH Function 14-25
LOG Function 14-26
LOG10 Function 14-27
LOWER-CASE Function 14-28
MAX Function 14-29
MEAN Function 14-31
MEDIAN Function 14-32
MIDRANGE Function 14-34
MIN Function 14-35
MOD Function 14-37
NUMVAL Function 14-38
NUMVAL-C Function 14-40
ORD Function 14-43
ORD-MAX Function 14-43
ORD-MIN Function 14-45
PRESENT-VALUE Function 14-47
RANDOM Function 14-49
RANGE Function 14-50
REM Function 14-52
REVERSE Function 14-53
SIN Function 14-54
SQRT Function 14-55
STANDARD-DEVIATION Function 14-56
SUM Function 14-58
TAN Function 14-60
UPPER-CASE Function 14-61
VARIANCE Function 14-62
WHEN-COMPILED Function 14-63
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xiv

Contents 15. Debugging Tools
15. Debugging Tools
Standard COBOL Debugging Tools 15-1
Run-Time Debuggers 15-4

Visual Inspect 15-4
Inspect 15-5
Debug 15-5
Debugger Selection 15-6

CROSSREF Utility Program 15-8
FIXERRS Macro 15-10

16. ANSI Reference Format
Sequence Number Area 16-1
Indicator Area 16-2

Compiler Directive 16-2
Ordinary Comment 16-2
Comment for Top of Page 16-2
Debugging Line 16-2
Continuation Line 16-3

Area A 16-4
Area B 16-4
Identification Field 16-4

17. HP Extensions to ISO COBOL
Source Program Organization and Format 17-1
Language Elements 17-2
Data Fundamentals 17-2
Environment Division 17-3
Data Division 17-3
Procedure Division Verbs 17-4

18. HP COBOL CRE Support
Introducing the CRE 18-2
Compiler Directives 18-3
Volume Names 18-3
Shared File Operations 18-4
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xv

Contents 18. HP COBOL CRE Support (continued)
18. HP COBOL CRE Support (continued)
$RECEIVE Processing 18-4

EXTERNAL Clause 18-5
MESSAGE SOURCE Clause 18-5
REPORT Clause 18-5
Message Format 18-6
Message Replies 18-6

Arithmetic Overflow Processing 18-6
TNS HP COBOL Programs in TNS User Libraries 18-6
CHECKPOINT Access to Extended-Storage Section 18-6
CBL85UTL Routines 18-7
COBOLLIB Routines 18-8

COBOLASSIGN 18-8
COBOLFILEINFO 18-8
COBOLSPOOLOPEN 18-8

19. Using HP COBOL in the OSS Environment
Running the COBOL85 Compiler 19-2
Running the NMCOBOL Compiler 19-3
Running HP COBOL Programs 19-4
Calling OSS Functions From HP COBOL Programs 19-4
Mixed-Language Programs 19-5

TNS Programs 19-5
Native Programs 19-6

Changing Default Pathnames and Disk Volume 19-6
Files in the OSS Environment 19-8

OSS Pathnames 19-8
OSS Pathnames in HP COBOL Source Programs 19-10
OSS Files in HP COBOL Source Programs 19-11
#IN and #OUT 19-11

Line Sequential Files 19-11
File-Control Entries 19-12
File Description Entries 19-14
I-O-CONTROL Paragraph 19-15
OPEN Statement 19-17
READ Statement 19-20
REWRITE Statement 19-21
WRITE Statement 19-22
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xvi

Contents 19. Using HP COBOL in the OSS
Environment (continued)
19. Using HP COBOL in the OSS Environment (continued)
Features Unavailable in the OSS Environment 19-23

ASSIGN Commands 19-23
PARAM Commands 19-23
Compiler Directives 19-24
Process Pairs 19-24

Features That Operate Differently in the OSS Environment 19-24
ACCEPT and DISPLAY Statements 19-24
Utility Routines 19-25

20. HP COBOL Limits
Size 20-1
Number 20-4
Callability 20-7
External Names 20-7
Ranges of Values 20-7
Ignored Elements 20-8

21. Reserved Words
All Reserved Words 21-1
HP Reserved Words 21-11

Part II. Programming in HP COBOL
22. Creating and Compiling HP COBOL Source Programs

Using the TACL Command Log 22-2
Displaying Previous Commands 22-2
Reexecuting Previous Commands 22-3
Editing and Reexecuting Previous Commands 22-4

Creating or Altering an HP COBOL Source Program 22-5
EDIT Files 22-5
Reference Format 22-6
EDIT Editor 22-7
TEDIT Editor 22-8
HP Tandem Extensions for Codewright (TEC) 22-11
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xvii

Contents 22. Creating and Compiling HP COBOL Source
Programs (continued)
22. Creating and Compiling HP COBOL Source
Programs (continued)
Compiling an HP COBOL Source Program 22-13

Running the Compiler 22-13
Naming the Object File 22-16
Specifying the Default COPY Library 22-18
Specifying Compiler Directives 22-18
Specifying Subvolumes to Be Searched for Unqualified Files 22-19
Changing the Compilation Environment 22-20
Improving Compilation Speed 22-22
Launching Compilations to Run Unattended 22-22

Using COPY and SOURCE Libraries 22-22
Creating or Altering a COPY or SOURCE Library 22-24

Using an HP Editor 22-24
Using Data Definition Language (DDL) 22-25

Including Text From a COPY Library 22-29
Including Text From a SOURCE Library 22-34
Replacing Text-Words in an HP COBOL Source Program 22-36

Replacing Substrings 22-37
Replacing Text-Words From COPY Libraries 22-38
Replacing Text-Words From SOURCE Libraries 22-39

Understanding and Controlling the Compiler Listing 22-39
Compilation Banner 22-41
Source Program Listing 22-42
Diagnostic Messages 22-49
Symbol Table Listing 22-53
Octal Code Listing 22-54
Symbolic Code Listing 22-55
Cross-Reference Listing 22-63
Load Maps 22-63
Compilation Summary 22-64
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xviii

Contents 23. Calling Other Programs and Routines
23. Calling Other Programs and Routines
Run-Time Environment 23-2
Calling Other COBOL Programs 23-3

Separately Compiled HP COBOL Programs 23-3
Nested HP COBOL Programs 23-4
Common Programs 23-5
Initial Programs 23-5
Static Calls 23-5
Dynamic Calls 23-6

Calling Non-COBOL Routines 23-7
ENTER Statement 23-7
X/Open CALL Statement 23-9
Functions (Routines That Return Values) 23-9
Operating System Routines 23-10
HP COBOL Run-Time Routines 23-15
COBOL Utility Routines 23-15
ENFORM Programs 23-15
Restrictions on Calling Non-COBOL Routines 23-16

Passing Parameters 23-19
TNS Addressing Modes 23-20
Native Addressing Modes 23-20
What HP COBOL Can Pass by Content 23-21
What HP COBOL Can Pass by Reference 23-23
What HP COBOL Can Pass by Value 23-23
Passing Parameters to COBOL Programs 23-24
Passing Parameters to Non-COBOL Routines 23-25

24. Issues Related to Binding and Linking
Concepts and Terms 24-1

Code and Data Blocks 24-1
Binding or Linking 24-4
Loadfiles, Linkfiles, and Processes 24-8
Fixup 24-8

Binding or Linking HP COBOL Programs 24-9
Binding or Linking Automatically 24-10
Binding or Linking Programs to Be Called Dynamically 24-14
Binding With BIND 24-14

Binding or Linking Mixed-Language Programs 24-16
Accelerating TNS HP COBOL Programs 24-16
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xix

Contents 24. Issues Related to Binding and
Linking (continued)
24. Issues Related to Binding and Linking (continued)
Designing Programs With Large Amounts of Code 24-17

Separate Programs 24-18
Separate Processes 24-19
TNS User Library 24-19

Designing Programs With Large Amounts of Data 24-21
Extended-Storage Section 24-21
LESS-CODE Directive 24-22

COBOL Segmentation 24-23

25. Executing and Debugging HP COBOL Programs
Preparing to Execute an HP COBOL Program 25-1

Adding DEFINEs 25-2
Overriding File Assignments Made at Compilation Time 25-3
Specifying Characteristics of Files That a Program Creates 25-4
Enabling Debugging Declaratives 25-4
Overriding the NONSTOP Directive 25-5
Specifying a Default Input-Output Device 25-5
Providing for an Unavailable Printer 25-6
Turning On External Switches 25-6
Requesting a Debugger Instead of ABEND 25-6
Specifying Waited Input-Output 25-7
Using OBEY Files to Prepare for Execution 25-7
Finding Out What Preparation Commands Are Already Active 25-8
Changing or Clearing Unwanted Preparation Commands 25-9

Executing an HP COBOL Program 25-9
Starting an HP COBOL Program From a TACL Prompt 25-10
Specifying Default Input and Output Devices 25-10
Specifying the Home Terminal 25-11
Naming the New Process 25-12
Running the New Process in the Background 25-13
Run-Time Errors 25-13

Getting a Program to Enter Debugging Mode 25-15
Before Execution 25-15
Programmatically 25-15
Forcefully 25-15
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xx

Contents 26. Input and Output Concepts
26. Input and Output Concepts
Files 26-1

System File Names 26-2
COBOL File Names 26-4
Associating COBOL File Names With System File Names 26-5
Prereading File Records 26-10

Processes Handled as Files 26-10
Intercepting Operating System Messages 26-10

27. Tape Input and Output
Reading and Writing Tape Files 27-1

Preventing Prereading 27-1
Saving Tape and Time 27-2
Unlabeled Tape Files 27-3
Labeled Tape Files 27-8
Tape Files of Types Other Than HP 27-12

Adding DEFINEs for Tape Files 27-15
Unlabeled Tape Files 27-16
Labeled Tape Files 27-18

Executing HP COBOL Programs That Use Tape Files 27-24
Mount Messages 27-24
Run-Time Errors 27-26

28. Disk Input and Output
Common Disk File Topics 28-1

Allocation 28-2
Partitioned Files 28-2
Purging Files or Their Data 28-2
Locking 28-3
Ownership and Security 28-3
Fixed-Length and Variable-Length Records 28-6
Exclusion Modes 28-6
Time Limits 28-7
Reading Files From Called Programs 28-7
Sharing Files Among HP COBOL Programs 28-8
Sharing Files Among Different-Language Modules 28-8
Modification 28-9
Maximum Number of Files 28-9
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxi

Contents 28. Disk Input and Output (continued)
28. Disk Input and Output (continued)
Types of HP Disk Files 28-9

Unstructured (Sequential) Files 28-9
Structured Files 28-10

Creating and Using HP COBOL Sequential Files 28-14
Entry-Sequenced Files 28-14
Unstructured Files 28-15
EDIT Files 28-16

Creating and Using HP COBOL Relative Files 28-16
Creating and Using HP COBOL Indexed Files 28-17
Creating and Using Queue Files 28-19

Creating a Queue File 28-19
Opening a Queue File 28-19
Reading a Queue File 28-20
Writing to a Queue File 28-20

Establishing Starting Points in Files 28-20
Key of Reference 28-21
Alternate Record Keys 28-22
Positioning 28-23
Repositioning to New Record With Same Alternate Key 28-26

 Optimizing Disk File Processing 28-31
Unstructured Files 28-31
Structured Files 28-31
Files With Alternate Keys 28-35
Partitioned Files 28-37

Optimizing Disk File Storage 28-37
Avoiding Deadlock 28-38

Locking and Unlocking Files and Records 28-38
Setting Time Limits on Input-Output Operations 28-39

Using Enscribe and Operating System Routines 28-40
Physical File Names 28-41
Obtaining File Numbers and Other File Attributes 28-41
Determining Whether Two COBOL File Names Specify the Same Physical

File 28-42
Purging a File From an HP COBOL Program 28-43
Purging the Contents of a File From an HP COBOL Program 28-44
Renaming a File From an HP COBOL Program 28-44
Creating a File Having Alternate Keys From an HP COBOL Program 28-45
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxii

Contents 29. Terminal Input and Output
29. Terminal Input and Output
Using ACCEPT and DISPLAY With a Terminal 29-2

Guardian Environment 29-2
OSS Environment 29-4

Using a Terminal as a File 29-4
Prompting the Terminal Operator for Input 29-6
Sharing a Terminal 29-7

Terminal Associated With a Command Interpreter 29-8
Terminal Not Associated With a Command Interpreter 29-8
Non-COBOL Modules 29-8

Getting Break Ownership 29-8
Transferring Break Ownership 29-9
Communicating With an Operator or Process 29-10

Writing to a Console 29-11
Writing to a Terminal or Printer 29-12
Reading From a Terminal or Process 29-12
Reading and Writing Numeric Data 29-13

Logging Program Activity Information to a Terminal 29-14

30. Printer and Spooler Output
Using a Printer Directly 30-1
Understanding Spoolers 30-2

Spooler Components 30-2
Jobs 30-4

Using a Spooler 30-7
Spooling Compiler Listings 30-8
Spooling Program Output 30-8
Using PERUSE 30-11
Using SPOOLCOM 30-15

Controlling Vertical Spacing in a Printed Report 30-18
Skipping Lines 30-19
Overprinting Lines 30-19
Skipping to a Printer Control Tape Channel Punch 30-19
Skipping to a New Page 30-20

Formatting Pages of a Printed Report 30-20
Logging Program Activity Information to a Printer 30-22

DISPLAY 30-22
WRITE 30-22
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxiii

Contents 31. Process Initiation, Communication, and
Management
31. Process Initiation, Communication, and Management
Memory and Virtual Memory 31-2
Initiating a Process From an HP COBOL Program 31-3
Communicating With a Process 31-6

$RECEIVE 31-6
Process Names 31-12
Example of Simple Interprocess Communication 31-13
RECEIVE-CONTROL Paragraph 31-16
At-End Condition 31-17
Summary of $RECEIVE Rules 31-17
Simple Server Example 31-18

Managing a Process 31-22
Determining the Process Handle 31-22
Determining the Node (System Number) 31-23
Identifying the Message Source 31-24
Determining the Status 31-26
Identifying the Creator 31-33
Monitoring Descendants’ Completion 31-35
Changing the Creator ID 31-39
Suspending a Process 31-39

32. Fault-Tolerant Processes
NonStop Operating System 32-2

Introduction to the Fault-Tolerant Facility 32-2
Introduction to TMF 32-3
Choosing the Fault-Tolerant Facility or TMF 32-3

Fault-Tolerant Facility 32-3
Process Pairs 32-4
Checkpointing 32-6
Using the Fault-Tolerant Facility 32-9
Designing Programs for the Fault-Tolerant Facility 32-13
Debugging Programs That Use the Fault-Tolerant Facility 32-14

TMF 32-14
Concepts 32-15
Designing Programs for the TMF Subsystem 32-18
The TMF Subsystem and Requester Screen Transactions 32-19
The TMF Subsystem for Batch Jobs 32-19
Debugging Programs That Use the TMF Subsystem 32-20
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxiv

Contents 33. Migrating TNS Programs to Native Programs
33. Migrating TNS Programs to Native Programs
Reasons to Migrate 33-2
Migrating HP COBOL Programs 33-3
Data Alignment 33-6

Misalignment Tracing Facility 33-7
Misalignment Handling 33-8
Causes of Misalignment in HP COBOL Programs 33-10

Source Program Changes 33-13
General Migration Tasks 33-13
Removal Required 33-13
Possible Changes Required 33-15
Removal Optional 33-18
New Features (Optional) 33-20

Development and Management Changes 33-21
Maintaining Common Source Code 33-23
Using the Inspect and Visual Inspect Debuggers 33-23

34. Native COBOL Cross Compiler on PC
Cross Compiler Features 34-2
NonStop COBOL for TNS/R (ETK) 34-3
Tandem COBOL (TDS) 34-4
nmcobol (PC Command Line) 34-4
Linking 34-7
Debugging 34-7

ETK and TDS Platforms 34-7
Command-Line Platform 34-8
RUNV 34-8

Tools and Utilities 34-10
NonStop ar Utility 34-10
TACL DEFINE Tool (ETK and TDS) 34-10
PC-to-NonStop-Host Transfer Tools 34-11

Documentation 34-11
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxv

Contents 35. Commands
Part III. Syntax Summary
35. Commands

Guardian Environment 35-1
Before Running the Compiler (Optional) 35-1
Running the COBOL85 Compiler 35-2
Running the NMCOBOL Compiler 35-3
Running the Native Cross Compiler Under Visual Inspect 35-4
Before Running the Compiled Program (Optional) 35-5
Running the Compiled Program 35-9

OSS Environment 35-9
Before Running the Compiler (Optional) 35-10
Running the cobol (COBOL85) Compiler 35-11
Running the nmcobol Compiler 35-11
Running the Compiled Program 35-12

nmcobol (PC Command Line) 35-13

36. Compiler Directives
ANSI 36-4
BLANK and NOBLANK 36-4
CALL-SHARED 36-5
CANCEL and NOCANCEL 36-5
CHECK 36-6
CODE and NOCODE 36-7
COLUMNS 36-8
COMPACT and NOCOMPACT 36-8
COMPILE 36-9
CONSULT and NOCONSULT 36-9
CROSSREF and NOCROSSREF 36-10
DIAGNOSE-74 and NODIAGNOSE-74 36-11
DIAGNOSE-85 and NODIAGNOSE-85 36-11
DIAGNOSEALL and NODIAGNOSEALL 36-12
ENDIF 36-12
ENDUNIT 36-12
ENV 36-13
ERRORFILE 36-13
ERRORS 36-13
FIPS and NOFIPS 36-14
FLOAT and NOFLOAT 36-15
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxvi

Contents 36. Compiler Directives (continued)
36. Compiler Directives (continued)
FMAP 36-15
HEADING 36-16
HEAP 36-16
HIGHPIN 36-17
HIGHREQUESTERS 36-18
ICODE and NOICODE 36-18
IF and IFNOT 36-19
INNERLIST and NOINNERLIST 36-19
INSPECT and NOINSPECT 36-20
LARGEDATA 36-20
LD 36-21
LESS-CODE 36-21
LIBRARY 36-23
LINES 36-23
LIST and NOLIST 36-24
LMAP and NOLMAP 36-25
MAIN 36-26
MAP and NOMAP 36-26
NLD 36-27
NONSTOP 36-27
NON-SHARED 36-28
OPTIMIZE 36-29
PERFORM-TRACE 36-30
PORT and NOPORT 36-30
RESETTOG 36-31
RUNNABLE 36-32
RUNNAMED 36-33
SAVE 36-34
SAVEABEND and NOSAVEABEND 36-35
SEARCH and NOSEARCH 36-36
SECTION 36-36
SETTOG 36-37
SHARED 36-38
SHOWCOPY and NOSHOWCOPY 36-38
SHOWFILE and NOSHOWFILE 36-39
SOURCE 36-40
SQL and NOSQL 36-41
SQLMEM 36-42
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxvii

Contents 36. Compiler Directives (continued)
36. Compiler Directives (continued)
SUBSET 36-43
SUBTYPE 36-44
SUPPRESS and NOSUPPRESS 36-44
SYMBOLS and NOSYMBOLS 36-45
SYNTAX 36-46
TANDEM 36-46
TRAP2 and NOTRAP2 36-47
TRAP2-74 and NOTRAP2-74 36-48
UL 36-48
WARN and NOWARN 36-49

37. Source Program Organization and Format
Separately Compiled Source Program 37-1
Reference Format 37-2

TANDEM 37-2
ANSI 37-3

38. Language Elements and Expressions
COBOL Character Set 38-1
Character-Strings 38-3

COBOL Word 38-3
Literals 38-3
PICTURE Character-Strings 38-6

Arithmetic Expressions 38-8
Conditional Expressions 38-9

Simple Relation Condition 38-9
Simple Class Condition 38-11
Simple Sign Condition 38-12
Negated Condition 38-12
Combined Condition 38-12
Abbreviated Combined Relation Condition 38-12

Concatenation Expressions 38-13

39. Data References
Qualified Condition-Name 39-1
Qualified Data-Name 39-1
Qualified Paragraph-Name 39-2
Qualified Text-Name 39-2
Qualified LINAGE-COUNTER 39-2
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxviii

Contents 39. Data References (continued)
39. Data References (continued)
Qualified Identifier 39-2
Subscripted Table Element 39-3
Reference Modifier 39-3
OSS Pathname for OSS File 39-3
OSS Pathname for Guardian File 39-4

40. Identification Division

41. Environment Division
Configuration Section 41-1

SOURCE-COMPUTER Paragraph 41-2
OBJECT-COMPUTER Paragraph 41-2
SPECIAL-NAMES Paragraph 41-4

Input-Output Section 41-7
FILE-CONTROL Paragraph 41-8
I-O-CONTROL Paragraph 41-17
RECEIVE-CONTROL Paragraph 41-19

42. Data Division
File Descriptions 42-3

Sequential File 42-3
Line Sequential File 42-7
Relative, Indexed, or Queue File 42-8
Sort-Merge File 42-8

Data Descriptions 42-9
Record Item (Levels 01 through 49) 42-10
Level-66 Item 42-13
Level-77 Item 42-13
Level-88 Item 42-14
Clause for Data Descriptions in the Linkage Section 42-14

43. Procedure Division
ACCEPT With Mnemonic-Name 43-5
ACCEPT With DATE, DAY, DAY-OF-WEEK, or TIME Phrase 43-5
ADD TO 43-6
ADD GIVING 43-7
ADD CORRESPONDING 43-8
ALTER 43-8
CALL 43-9
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxix

Contents 43. Procedure Division (continued)
43. Procedure Division (continued)
CANCEL 43-10
CHECKPOINT 43-11
CLOSE for Sequential and Line Sequential Files 43-11
CLOSE for Relative, Indexed, and Queue Files 43-12
COMPUTE 43-12
CONTINUE 43-12
COPY 43-13
DELETE 43-15
DISPLAY 43-15
DIVIDE INTO 43-16
DIVIDE GIVING 43-17
DIVIDE GIVING REMAINDER 43-18
ENTER 43-18
ENTER COBOL 43-19
EVALUATE 43-19
EXIT 43-21
Unconditional GO TO 43-21
Conditional GO TO 43-21
Delimited-Scope IF 43-21
Conditional IF 43-22
INITIALIZE 43-22
INSPECT TALLYING 43-23
INSPECT REPLACING 43-23
INSPECT TALLYING REPLACING 43-25
INSPECT CONVERTING 43-27
LOCKFILE 43-27
MERGE 43-28
MOVE TO 43-29
MOVE CORRESPONDING 43-29
MULTIPLY BY 43-30
MULTIPLY GIVING 43-31
OPEN 43-32
Unconditional PERFORM 43-35
PERFORM TIMES 43-35
PERFORM UNTIL 43-36
PERFORM VARYING 43-37
READ for Sequential or Dynamic Access 43-38
READ for Line Sequential Access 43-39
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxx

Contents 43. Procedure Division (continued)
43. Procedure Division (continued)
READ for Random or Dynamic Access 43-40
RELEASE 43-40
REPLACE 43-41
RETURN 43-42
REWRITE for Sequential, Relative, Indexed, and Queue Files 43-42
REWRITE for Line Sequential Files 43-43
SEARCH VARYING 43-43
SEARCH ALL 43-44
SET TO for Pointer Data Items 43-45
SET TO for Nonpointer Data Items 43-45
SET UP or SET DOWN for Pointer Data Items 43-46
SET UP or SET DOWN for Nonpointer Data Items 43-46
SORT 43-46
START 43-48
STARTBACKUP 43-50
STOP 43-50
STRING 43-51
SUBTRACT FROM 43-52
SUBTRACT GIVING 43-53
SUBTRACT CORRESPONDING 43-54
UNLOCKFILE 43-54
UNLOCKRECORD 43-54
UNSTRING 43-55
USE DEBUGGING 43-56
USE AFTER EXCEPTION 43-57
WRITE for Sequential Files 43-57
WRITE for Line Sequential Files 43-59
WRITE for Relative, Indexed, and Queue Files 43-59

44. Intrinsic Function Calls
ACOS 44-2
ANNUITY 44-2
ASIN 44-3
ATAN 44-3
CHAR 44-3
COS 44-3
CURRENT-DATE 44-3
DATE-OF-INTEGER 44-4
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxxi

Contents 44. Intrinsic Function Calls (continued)
44. Intrinsic Function Calls (continued)
DAY-OF-INTEGER 44-4
FACTORIAL 44-4
INTEGER 44-4
INTEGER-OF-DATE 44-4
INTEGER-OF-DAY 44-4
INTEGER-PART 44-5
LENGTH 44-5
LOG 44-5
LOG10 44-5
LOWER-CASE 44-5
MAX 44-5
MEAN 44-6
MEDIAN 44-6
MIDRANGE 44-6
MIN 44-6
MOD 44-6
NUMVAL 44-7
NUMVAL-C 44-8
ORD 44-9
ORD-MAX 44-9
ORD-MIN 44-9
PRESENT-VALUE 44-9
RANDOM 44-9
RANGE 44-10
REM 44-10
REVERSE 44-10
SIN 44-10
SQRT 44-10
STANDARD-DEVIATION 44-11
SUM 44-11
TAN 44-11
UPPER-CASE 44-11
VARIANCE 44-11
WHEN-COMPILED 44-12
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxxii

Contents 45. CBL85UTL and ZCOBSRL Routine Calls
45. CBL85UTL and ZCOBSRL Routine Calls
COBOL85^ARMTRAP 45-2
COBOL85^COMPLETION 45-2
COBOL_COMPLETION_ 45-3
COBOL_CONTROL_ 45-3
COBOL_GETENV_ 45-4
COBOL_PUTENV_ 45-4
COBOL85^RETURN^SORT^ERRORS and

COBOL_RETURN_SORT_ERRORS_ 45-4
COBOL85^REWIND^SEQUENTIAL and COBOL_REWIND_SEQUENTIAL_ 45-5
COBOL85^SET^SORT^PARAM^TEXT and

COBOL_SET_SORT_PARAM_TEXT_ 45-5
COBOL85^SET^SORT^PARAM^VALUE and

COBOL_SET_SORT_PARAM_VALUE_ 45-6
 COBOL_SET_MAX_RECORD_ 45-6
COBOL_SETMODE_ 45-7
COBOL85^SPECIAL^OPEN and COBOL_SPECIAL_OPEN_ 45-7

For Spoolers and Printers 45-8
For System Log Files 45-9
For Partitioned Disk Files 45-9
For Tape Files in the CRE 45-10

46. COBOLLIB, CLULIB, and ZCRESRL Routine Calls
SMU Routines 46-1

ALTERPARAMTEXT 46-3
CHECKLOGICALNAME 46-3
CHECKMESSAGE 46-4
DELETEASSIGN 46-4
DELETEPARAM 46-5
DELETESTARTUP 46-5
GETASSIGNTEXT 46-6
GETASSIGNVALUE 46-6
GETBACKUPCPU 46-7
GETPARAMTEXT 46-7
GETSTARTUPTEXT 46-8
PUTASSIGNTEXT 46-8
PUTASSIGNVALUE 46-9
PUTPARAMTEXT 46-9
PUTSTARTUPTEXT 46-10
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxxiii

Contents 46. COBOLLIB, CLULIB, and ZCRESRL Routine
Calls (continued)
46. COBOLLIB, CLULIB, and ZCRESRL Routine
Calls (continued)
Non-SMU Routines 46-10

COBOLASSIGN 46-11
COBOL_ASSIGN_ 46-11
COBOLFILEINFO 46-12
COBOL_FILE_INFO_ 46-12
COBOLSPOOLOPEN 46-13
CREATEPROCESS 46-14

Part IV. Error Message Summary
47. Compiler Diagnostic Messages

Message Indicator Line 47-2
Warning Message Format 47-3
Error Message Format 47-3
Failure Message Format 47-3
Message List 47-4
Other Products’ Error Messages 47-95

NMCGEN 47-95
SCI 47-95

48. Run-Time Diagnostic Messages
Sources of Run-Time Diagnostic Messages 48-1
Where Messages Are Reported 48-1
Standard Message Format—Non-CRE Environment 48-2
Standard Message Format—CRE 48-5
Input-Output Error Messages 48-6
SORT Error Messages 48-6
Guardian Abnormal Termination Messages 48-7

Abend 48-7
Arithmetic Overflow 48-8
Stack Overflow 48-9

How to Use the Message List 48-10
Message List 48-15
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxxiv

Contents A. ASCII Character Set
Part V. Appendixes
A. ASCII Character Set

ASCII Character Set in Numeric Order A-1
ASCII Character Set in Alphabetic Order A-6

B. Data Type Correspondence

Glossary

Index

Examples
Example i. Code Example Without Ellipsis (...) lxx
Example ii. Code Example With Ellipsis lxx
Example 2-1. Continuation Line in Tandem Reference Format 2-5
Example 2-2. Programs With Shared Data 2-19
Example 2-3. Output From Programs With Shared Data 2-23
Example 3-1. Qualified Names 3-15
Example 3-2. Integer Decimal Numeric Literals 3-18
Example 3-3. Noninteger Decimal Numeric Literals 3-18
Example 3-4. Hexadecimal Numeric Literals 3-18
Example 3-5. Nonnumeric Literals 3-19
Example 3-6. Hexadecimal Nonnumeric Literals 3-20
Example 4-1. Level Numbers 4-3
Example 4-2. Logical Record 4-4
Example 4-3. One-Dimensional Table With Fixed Number of Elements 4-13
Example 4-4. One-Dimensional Table With Variable Number of Elements 4-13
Example 4-5. Multidimensional Table 4-14
Example 4-6. REDEFINES Clause 4-18
Example 4-7. Subscripting for Tables 4-21
Example 4-8. Reference Modifiers 4-24
Example 4-9. Identifiers 4-25
Example 4-10. Condition-Name 4-26
Example 5-1. Identification Division With Obsolete Paragraphs 5-3
Example 5-2. Identification Division With Comments 5-4
Example 5-3. DATE-COMPILED Paragraph 5-6
Example 6-1. ON STATUS Phrase 6-14
Example 6-2. Defining a Class of Vowels 6-20
Example 6-3. Defining a Class of Special Characters 6-20
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxxv

Contents Examples (continued)
Examples (continued)
Example 6-4. Defining a Class of Octal Numerics 6-21
Example 6-5. FILE-CONTROL Paragraph for Sequential File 6-37
Example 6-6. Relative File Used for Random Access 6-46
Example 6-7. Indexed File With One Alternate Key 6-53
Example 6-8. File-Control Entry for Sort-Merge File 6-56
Example 6-9. MESSAGE SOURCE Phrase (Non-CRE) 6-72
Example 6-10. MESSAGE SOURCE Phrase (CRE) 6-73
Example 7-1. Level-77 Description Entries 7-3
Example 7-2. File Description (FD) Entry 7-6
Example 7-3. Variable-Length Record 7-21
Example 7-4. LINAGE Clauses 7-25
Example 7-5. Sort-Merge File Description Entry 7-32
Example 7-6. Record Description Entries 7-35
Example 7-7. Correspondence Between Formal and Actual Parameters 7-41
Example 7-8. File Description Entry Followed by Record Description Entry 7-47
Example 7-9. Record Description Entries as Data Declarations 7-47
Example 7-10. FILLER Keyword 7-48
Example 7-11. REDEFINES Clause 7-49
Example 7-12. Alphabetic Data Items 7-61
Example 7-13. Numeric Data Items 7-61
Example 7-14. Alphanumeric Data Items 7-61
Example 7-15. Alphanumeric Edited Data Items 7-62
Example 7-16. Numeric Edited Data Items 7-62
Example 7-17. Fixed-Size Table 7-83
Example 7-18. Variable-Size Table 7-86
Example 7-19. Fixed-Size Table as an Element of a Variable-Size Table 7-86
Example 7-20. VALUE Clauses 7-90
Example 7-21. Level-66 Data Description Entry 7-91
Example 7-22. Condition-Names for Values (Level 88) 7-96
Example 7-23. VALUE Clauses for a Level-88 Data Item 7-96
Example 8-1. Procedure Division 8-3
Example 8-2. Imperative Statement 8-6
Example 8-3. Conditional Statement 8-7
Example 8-4. Delimited-Scope Statement 8-7
Example 8-5. Compiler-Directing Statement 8-8
Example 8-6. Paragraph With One Sentence 8-11
Example 8-7. Paragraph With Several Sentences 8-11
Example 8-8. Procedure Division with a Declaratives Portion 8-16
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxxvi

Contents Examples (continued)
Examples (continued)
Example 8-9. CORRESPONDING Phrase 8-23
Example 8-10. SIZE ERROR Phrase and TRAP2 Directive 8-25
Example 8-11. Simple Relation Conditions 8-57
Example 8-12. Conditional Variables 8-62
Example 8-13. External Switches 8-62
Example 8-14. Sign Conditions 8-63
Example 8-15. Concatenation Expressions 8-70
Example 9-1. ACCEPT Statement Reading From a Terminal 9-4
Example 9-2. ACCEPT Statement Reading Alphanumeric Data 9-4
Example 9-3. ACCEPT Statement Reading Numeric Data 9-5
Example 9-4. ACCEPT Statements Reading Current Data and Time 9-8
Example 9-5. ADD CORRESPONDING Statement 9-16
Example 9-6. ALTER Statement 9-17
Example 9-7. Alternative to ALTER Statement 9-17
Example 9-8. Called Program That Calls Another Program 9-29
Example 9-9. COMPUTE Statement 9-42
Example 9-10. Combination of IF and COMPUTE Statements 9-43
Example 9-11. CONTINUE Statement 9-44
Example 9-12. DELETE Statement 9-47
Example 9-13. DISPLAY Statement 9-48
Example 9-14. DIVIDE INTO Statement With GIVING and REMAINDER

Phrases 9-57
Example 9-15. DIVIDE BY Statement With GIVING and REMAINDER

Phrases 9-57
Example 9-16. Calling a pTAL Routine That Does Not Ignore Trailing Spaces 9-65
Example 9-17. HP COBOL Program Calling TAL Routine 9-66
Example 9-18. HP COBOL Program Calling TAL Routine in Object File 9-66
Example 9-19. EVALUATE Statement as “Case” Statement 9-70
Example 9-20. EVALUATE Statement With Both Ranges and Discrete Values 9-70
Example 9-21. EVALUATE Statement With Two Distinct Subjects 9-71
Example 9-22. EVALUATE Statement as a Decision Table 9-71
Example 9-23. EXIT PERFORM Statement 9-78
Example 9-24. EXIT PERFORM CYCLE Statement 9-79
Example 9-25. EXIT Statement in Nested In-Line PERFORM Statement 9-80
Example 9-26. Three-Way Conditional GO TO Statement 9-83
Example 9-27. Simple Conditional IF Statement 9-89
Example 9-28. Delimited-Scope IF Statement 9-89
Example 9-29. Simple Conditional IF ELSE Statement 9-89
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxxvii

Contents Examples (continued)
Examples (continued)
Example 9-30. Delimited-Scope IF ELSE Statement 9-89
Example 9-31. IF ELSE Statement Nested Within PERFORM Statement 9-89
Example 9-32. Delimited-Scope IF ELSE Statement Nested Within PERFORM

Statement 9-89
Example 9-33. Nested Conditional IF Statements 9-90
Example 9-34. Delimited-Scope IF Statement 9-90
Example 9-35. INITIALIZE Statements 9-92
Example 9-36. INITIALIZE Statement 9-93
Example 9-37. INSPECT TALLYING With One Compare-String 9-100
Example 9-38. INSPECT TALLYING With Multiple Compare-Strings 9-100
Example 9-39. INSPECT Statement Converting Leading Spaces to Zeros 9-106
Example 9-40. One INSPECT Statement, Several Replacements 9-107
Example 9-41. INSPECT CONVERTING Statement 9-114
Example 9-42. LOCKFILE Statement With TIME LIMIT Phrase 9-118
Example 9-43. MERGE Statement 9-127
Example 9-44. MOVE TO Statements 9-130
Example 9-45. MULTIPLY BY Statement 9-135
Example 9-46. MULTIPLY BY Statement With ROUNDED Phrase 9-135
Example 9-47. MULTIPLY GIVING Statement 9-138
Example 9-48. OPEN Statements 9-156
Example 9-49. Unconditional PERFORM Statement With One Paragraph 9-161
Example 9-50. Unconditional PERFORM Statement With Several

Paragraphs 9-161
Example 9-51. In-Line PERFORM Statement With Delimited-Scope

Statements 9-162
Example 9-52. PERFORM TIMES Statement 9-163
Example 9-53. PERFORM TIMES Statement 9-163
Example 9-54. PERFORM UNTIL Statement 9-166
Example 9-55. PERFORM VARYING Statement Used to Display a List 9-176
Example 9-56. PERFORM VARYING Statement Used to Build a Table 9-177
Example 9-57. Reading a Sequential File 9-190
Example 9-58. Reading a Dynamic Indexed File 9-191
Example 9-59. Reading $RECEIVE With Timed Input-Output 9-192
Example 9-60. Reading a Random Indexed File 9-200
Example 9-61. REWRITE Statement for Indexed File 9-207
Example 9-62. SEARCH VARYING Statement 9-214
Example 9-63. SEARCH ALL Statement 9-219
Example 9-64. Typical Use of Input and Output Procedures 9-236
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxxviii

Contents Examples (continued)
Examples (continued)
Example 9-65. START Statement for Indexed File 9-248
Example 9-66. START Statement With GENERIC Phrase for Sequential File 9-249
Example 9-67. START Statement With POSITION Phrase 9-250
Example 9-68. STRING Statement 9-261
Example 9-69. UNLOCKFILE Statement 9-270
Example 9-70. UNSTRING Statement 9-281
Example 9-71. UNSTRING Statement 9-281
Example 9-72. DEBUG-ITEM Special Register 9-285
Example 9-73. USE DEBUGGING Statement 9-287
Example 9-74. USE AFTER EXCEPTION Statement 9-291
Example 9-75. ADVANCING Phrase 9-299
Example 9-76. INVALID KEY Phrase 9-305
Example 10-1. COPY Statement 10-6
Example 10-2. COPY Statement With REPLACING Phrases 10-11
Example 10-3. REPLACE Statement 10-18
Example 11-1. Main Program and Another Program 11-3
Example 11-2. TNS HP COBOL Program Calling FORTRAN Program 11-5
Example 11-3. Compilation Unit 11-6
Example 11-4. Calling Programs That Are in a Separate File 11-8
Example 11-5. For Step 1 of Finding the Called Program 11-18
Example 11-6. For Step 2 of Finding the Called Program 11-18
Example 11-7. Binder Statistics 11-29
Example 11-8. COBOL85 Compiler Statistics 11-30
Example 11-9. NMCOBOL Compiler Statistics 11-32
Example 11-10. NMCOBOL Compiler and Linker Statistics 11-32
Example 11-11. IF Directive 11-85
Example 11-12. Nested IF and IFNOT Directive Scopes 11-85
Example 11-13. Omitting Uncompiled Lines from Compiler Listing 11-86
Example 12-1. RUN Commands 12-3
Example 12-2. #TEMP 12-8
Example 12-3. ASSIGN Command With Special COBOL Names 12-8
Example 12-4. PARAM Command 12-16
Example 12-5. CLEAR Command 12-18
Example 12-6. DEFINE Names 12-21
Example 13-1. Building a DLL From a Single Source File in One Step

(Guardian) 13-12
Example 13-2. Building a DLL From a Single Source File in Two Steps

(Guardian) 13-13
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xxxix

Contents Examples (continued)
Examples (continued)
Example 13-3. Building a DLL From a Single Source File in One Step (OSS) 13-13
Example 13-4. Building a DLL From a Single Source File in Two Steps (OSS) 13-14
Example 13-5. Building a DLL From a Single Source File in One Step (PC) 13-15
Example 13-6. Building a DLL From a Single Source File in Two Steps (PC) 13-15
Example 13-7. Building a DLL From Multiple Source Files (Guardian) 13-16
Example 13-8. Building a DLL From Multiple Source Files (OSS) 13-17
Example 13-9. Building a DLL From Multiple Source Files (PC) 13-18
Example 13-10. Specifying a DLL When the Compiler Calls the Linker

(Guardian) 13-19
Example 13-11. Specifying a DLL When You Compile and Then Link

(Guardian) 13-20
Example 13-12. Specifying a DLL When the Compiler Calls the Linker (OSS) 13-20
Example 13-13. Specifying a DLL When You Compile and Then Link (OSS) 13-21
Example 13-14. Specifying a DLL When the Compiler Calls the Linker (PC) 13-21
Example 13-15. Specifying a DLL When You Compile and Then Link (PC) 13-22
Example 13-16. COBOLASSIGN Routine 13-88
Example 14-1. ACOS Function 14-8
Example 14-2. ANNUITY Function 14-10
Example 14-3. ASIN Function 14-11
Example 14-4. ATAN Function 14-12
Example 14-5. CHAR Function Without ALPHABET Clause 14-13
Example 14-6. CHAR Function With ALPHABET Clause 14-14
Example 14-7. COS Function 14-15
Example 14-8. CURRENT-DATE Function 14-16
Example 14-9. DATE-OF-INTEGER Function 14-17
Example 14-10. DAY-OF-INTEGER Function 14-18
Example 14-11. FACTORIAL Function 14-19
Example 14-12. INTEGER Function 14-20
Example 14-13. INTEGER-OF-DATE Function 14-21
Example 14-14. INTEGER-OF-DATE Function 14-22
Example 14-15. INTEGER-OF-DAY Function 14-23
Example 14-16. INTEGER-PART Function 14-24
Example 14-17. LENGTH Function 14-25
Example 14-18. LOG Function 14-26
Example 14-19. LOG10 Function 14-27
Example 14-20. LOWER-CASE Function 14-28
Example 14-21. MAX Function 14-30
Example 14-22. MEAN Function 14-32
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xl

Contents Examples (continued)
Examples (continued)
Example 14-23. MEDIAN Function 14-33
Example 14-24. MIDRANGE Function 14-34
Example 14-25. MIN Function 14-36
Example 14-26. MOD Function 14-37
Example 14-27. NUMVAL Function 14-39
Example 14-28. NUMVAL-C Function 14-42
Example 14-29. ORD Function 14-43
Example 14-30. ORD-MAX Function 14-44
Example 14-31. ORD-MIN Function 14-46
Example 14-32. PRESENT-VALUE Function 14-48
Example 14-33. RANDOM Function 14-49
Example 14-34. RANGE Function 14-51
Example 14-35. REM Function 14-52
Example 14-36. REVERSE Function 14-53
Example 14-37. SIN Function 14-54
Example 14-38. SQRT Function 14-55
Example 14-39. STANDARD-DEVIATION Function 14-57
Example 14-40. SUM Function 14-59
Example 14-41. TAN Function 14-60
Example 14-42. UPPER-CASE Function 14-61
Example 14-43. VARIANCE Function 14-63
Example 14-44. WHEN-COMPILED Function 14-64
Example 15-1. Use of the DEBUG-ITEM Special Register 15-3
Example 15-2. CROSSREF Utility Program 15-9
Example 15-3. Setting the Default COPY Library 15-10
Example 16-1. Continuation of Nonnumeric Literal in ANSI Format 16-3
Example 19-1. OSS Pathnames for OSS Files 19-9
Example 19-2. OSS Pathnames for Guardian Files 19-10
Example 19-3. “GUARDIAN #DYNAMIC” in a File-Control Entry 19-25
Example 22-1. TEDIT Banner 22-9
Example 22-2. COPY or SOURCE Library 22-23
Example 22-3. Input to the DDL Compiler 22-26
Example 22-4. COPY Library Produced by the DDL Compiler 22-27
Example 22-5. FUP Command File Produced by the DDL Compiler 22-29
Example 22-6. Replacing Substrings 22-32
Example 22-7. Copying Into Debugging Lines 22-33
Example 22-8. Including Text From a Source File 22-34
Example 22-9. Replacing Text-Words in an HP COBOL Source Program 22-36
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xli

Contents Examples (continued)
Examples (continued)
Example 22-10. Replacing Substrings in an HP COBOL Source Program 22-37
Example 22-11. Replacing Text-Words From a COPY Library 22-38
Example 22-12. Replacing Text-Words From a SOURCE Library 22-39
Example 22-13. COBOL85 Compilation Banner 22-41
Example 22-14. NMCOBOL Compilation Banner 22-42
Example 22-15. Diagnostic Reported Against a Copied Line 22-45
Example 22-16. ANSI Format COPY Expansion 22-46
Example 22-17. Warning Message 22-50
Example 22-18. Error Message 22-50
Example 22-19. Failure Message 22-51
Example 22-20. Symbol Table Listing (COBOL85 Compiler) 22-53
Example 22-21. Symbol Table Listing (NMCOBOL Compiler) 22-54
Example 22-22. Octal Code Listing 22-54
Example 22-23. Symbolic Code Listing (COBOL85 Compiler) 22-55
Example 22-24. Symbolic Code Listing (NMCOBOL Compiler) 22-57
Example 22-25. Cross-Reference Listing 22-63
Example 22-26. Load-Map (ALPHA) 22-64
Example 22-27. COBOL85 Compilation and BINSERV Summary 22-65
Example 22-28. NMCOBOL Compilation Summary 22-66
Example 23-1. CALL Identifier Statement 23-6
Example 23-2. HP COBOL and HP C Programs Sharing Data 23-17
Example 23-3. Record Containing a Table 23-22
Example 23-4. TAL/pTAL Structures for Passing Parameters to COBOL

Program 23-25
Example 23-5. Using Reference Parameters to Pass Integers to C Routine 23-28
Example 23-6. Using External Declarations to Pass Integers to C Routine 23-28
Example 23-7. Passing a String to a C Routine 23-29
Example 23-8. Passing Parameters to a FORTRAN Routine 23-30
Example 23-9. Passing Parameters to a Pascal routine 23-32
Example 23-10. Passing Parameters to a TAL Routine 23-34
Example 24-1. Interactive BIND Session 24-15
Example 24-2. OBEY File Equivalent of Example 24-1 24-15
Example 25-1. DEFINE Names 25-3
Example 25-2. ASSIGN Command 25-4
Example 26-1. COBOL File Names 26-4
Example 27-1. One File on One Tape 27-4
Example 27-2. Several Files on One Tape 27-5
Example 27-3. Multitape File 27-7
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xlii

Contents Examples (continued)
Examples (continued)
Example 27-4. Labeled Tape File 27-10
Example 27-5. Converting a COBOL95 Program to Use Labeled Tape Files 27-11
Example 27-6. Copying an EBCDIC File to a New ASCII File 27-13
Example 27-7. Copying an EBCDIC File to an Existing ASCII File 27-13
Example 27-8. Copying an EBCDIC File to an Existing ASCII File 27-13
Example 27-9. DEFINE for Unlabeled Tape File With Variable-Length

Records 27-18
Example 27-10. DEFINE for Unlabeled Tape File With Fixed-Length Records 27-18
Example 27-11. DEFINE for Labeled Tape File With Variable-Length Records and

Labels to Be Bypassed 27-23
Example 27-12. DEFINE for Labeled Tape File With Variable-Length Records and

Standard IBM Labels 27-23
Example 27-13. DEFINE for Labeled Tape File With Fixed-Length Records and

Standard ASCII Labels 27-24
Example 28-1. File Accessible Only to Owner and Only Locally 28-5
Example 28-2. File Accessible Only to Owner 28-5
Example 28-3. File Readable and Executable to Owner’s User Group 28-5
Example 28-4. File Readable to Any User 28-5
Example 28-5. Setting Default File Security to “UUUU” 28-5
Example 28-6. Setting Default File Security to “CUCU” 28-5
Example 28-7. Relative File Without Alternate Keys 28-17
Example 28-8. Indexed File Without Alternate Keys 28-18
Example 28-9. Creating a Queue File With a Timestamp and a User Key 28-19
Example 28-10. Key of Reference 28-21
Example 28-11. Generic Positioning 28-25
Example 28-12. Use of START With the POSITION Phrase 28-27
Example 28-13. Purging a File From an HP COBOL Program 28-43
Example 28-14. Dynamic File Assignment 28-47
Example 29-1. ACCEPT and DISPLAY Statements With a Terminal 29-3
Example 29-2. Using a Terminal as a File 29-5
Example 29-3. READ Statement With PROMPT Phrase 29-6
Example 29-4. Transferring Break Ownership 29-10
Example 29-5. Using DISPLAY Statements to Write to a Console 29-11
Example 29-6. Reading and Writing Numeric Data 29-13
Example 30-1. Level-1 Spooling 30-8
Example 30-2. Level-2 Spooling 30-10
Example 30-3. PERUSE Output 30-12
Example 30-4. END-OF-PAGE Phrase 30-21
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xliii

Contents Examples (continued)
Examples (continued)
Example 31-1. CREATEPROCESS Routine 31-4
Example 31-2. Requester Code 31-8
Example 31-3. Server Code 31-8
Example 31-4. Requester Code 31-10
Example 31-5. Server Code 31-11
Example 31-6. Report Produced by PPD Command 31-12
Example 31-7. PITCHER Code 31-14
Example 31-8. CATCHER Code 31-15
Example 31-9. Simple Server 31-18
Example 31-10. PROCESSHANDLE_GETMINE_ and

PROCESSHANDLE_DECOMPOSE_ Procedures 31-23
Example 31-11. Determining a Process’s Node (System Number) 31-23
Example 31-12. MESSAGE-SOURCE Clause 31-25
Example 31-13. PROCESS_GETINFO_ Routine 31-28
Example 31-14. Reporting Processes With Program’s Accessor ID 31-31
Example 31-15. Identifying a Process’s Creator 31-34
Example 31-16. Monitoring Completion of Descendant Processes 31-36
Example 31-17. Suspending a Process 31-39
Example 32-1. Key Parts of Fault-Tolerant HP COBOL Program 32-12
Example 33-1. Misalignment 33-11
Example 47-1. Message Indicator Line (COBOL85 Compiler) 47-2
Example 47-2. Message Indicator Line (NMCOBOL Compiler) 47-2
Example 47-3. NMCGEN Run-Time Error Message 47-95
Example 47-4. SCI Run-Time Error Message 47-95
Example 48-1. Standard Run-Time Diagnostic Message (Non-CRE

Environment) 48-3
Example 48-2. Input-Output Error Message (Non-CRE Environment) 48-6
Example 48-3. Input-Output Error Message (CRE) 48-6
Example 48-4. Using noft to Find the MCB Pointer in a Native Object File 48-21

Figures
Figure 2-1. Tandem Reference Format 2-3
Figure 2-2. Directly Contained Programs and Indirectly Contained Programs 2-10
Figure 3-1. Language Element Relationships 3-1
Figure 3-2. COBOL Character Set 3-2
Figure 3-3. COBOL Words in a Source Program 3-7
Figure 6-1. Reply Table 6-71
Figure 7-1. LINAGE Clause Layout 7-26
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xliv

Contents Figures (continued)
Figures (continued)
Figure 7-2. Precedence Rules for PICTURE Symbols 7-59
Figure 7-3. Example of COMPUTATIONAL-3/PACKED-DECIMAL Storage 7-72
Figure 8-1. Relationship of Statements, Sentences, Paragraphs, and Sections 8-1
Figure 8-2. Statement Examples 8-4
Figure 9-1. ACCEPT Statement Collecting Alphanumeric Data 9-5
Figure 9-2. ACCEPT Statement Collecting Numeric Data 9-6
Figure 9-3. Comparison Phase of EVALUATE Statement 9-74
Figure 9-4. Execution Phase of the EVALUATE Statement 9-75
Figure 9-5. How the Delimited-Scope IF Statement Works 9-85
Figure 9-6. How the Conditional IF Statement Works 9-88
Figure 9-7. Execution of a PERFORM VARYING Statement

With a TEST BEFORE Phrase and Without an AFTER Phrase
List 9-170

Figure 9-8. Execution of a PERFORM VARYING Statement
With a TEST BEFORE Phrase and One AFTER Phrase 9-171

Figure 9-9. Execution of a PERFORM VARYING Statement
With a TEST AFTER Phrase and Without an AFTER Phrase
List 9-173

Figure 9-10. Execution of a PERFORM VARYING Statement
With a TEST AFTER Phrase and One AFTER Phrase 9-174

Figure 9-11. Execution of a SEARCH VARYING Statement With WHEN
Phrases 9-213

Figure 11-1. Compiler Input and Output 11-2
Figure 11-2. TNS Compilation Unit, Listing File, and Object File 11-7
Figure 11-3. TNS Compilation With Object-File Inclusion 11-8
Figure 11-4. COBOL85 Compilation of Single Program Unit 11-10
Figure 11-5. NMCOBOL Compilation of Single Program Unit (Non-PIC) 11-11
Figure 13-1. TNS Libraries and Their Utility Routines 13-1
Figure 13-2. Native SRLs and Their Utility Routines 13-2
Figure 13-3. Effect of Saved Message Utility (SMU) Routines 13-32
Figure 15-1. Definition of the DEBUG-ITEM Special Register 15-2
Figure 15-2. Debugger Selection for a TNS or Non-PIC Native Process 15-6
Figure 15-3. Debugger Selection for a PIC Native Process 15-7
Figure 16-1. ANSI Reference Format 16-1
Figure 21-1. How Lists of Reserved Words Are Related 21-1
Figure 22-1. Tandem Reference Format 22-6
Figure 22-2. ANSI Reference Format 22-6
Figure 22-3. DDL Input and Output 22-25
Figure 22-4. Source Program Listing Formats 22-42
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xlv

Contents Figures (continued)
Figures (continued)
Figure 23-1. Directly Contained Programs and Indirectly Contained Programs 23-4
Figure 24-1. Code and Data Blocks 24-2
Figure 24-2. Internal and External References 24-3
Figure 24-3. How External References Are Resolved 24-7
Figure 24-4. Run Unit Containing HP COBOL Code Blocks 24-18
Figure 26-1. MESSAGE SOURCE Format 26-11
Figure 27-1. Software Involved in Labeled-Tape Processing 27-9
Figure 27-2. DEFINE Names and COBOL File Names 27-19
Figure 30-1. LINAGE Clause Layout 30-20
Figure 31-1. Process Creation, Execution, and Termination 31-2
Figure 31-2. $RECEIVE as Separate Input and Output Files 31-7
Figure 31-3. $RECEIVE as Input/Output File 31-10
Figure 31-4. $RECEIVE From PITCHER to CATCHER 31-13
Figure 32-1. Process Pair 32-4
Figure 32-2. Activity of a Process Pair 32-5
Figure 32-3. Duplication in Takeover 32-8
Figure 32-4. PROGRAM-STATUS Data Item 32-10
Figure 37-1. Tandem Reference Format 37-2
Figure 37-2. ANSI Reference Format 37-3
Figure 38-1. COBOL Character Set 38-1
Figure 38-2. Precedence Rules for PICTURE Symbols 38-7

Tables
Table i. HP Manuals to Which This Manual Refers lix
Table 1-1. Required HP COBOL Modules and Their Levels 1-2
Table 1-2. Optional HP COBOL Modules and Their Levels 1-2
Table 1-3. HP COBOL TNS and TSN/R Compilers 1-4
Table 2-1. Source Program Components 2-2
Table 2-2. Valid Indicator Area Characters (Tandem Reference Format) 2-4
Table 2-3. Scope of User-Defined Names 2-11
Table 3-1. Alphanumeric Characters (for COBOL Words) 3-2
Table 3-2. Punctuation Characters 3-3
Table 3-3. Special Characters 3-3
Table 3-4. Reserved Word Categories 3-9
Table 3-5. Figurative Constants 3-23
Table 3-6. PICTURE Character-String Editing Characters 3-24
Table 4-1. Data Levels, Classes, and Categories 4-1
Table 4-2. File Organization 4-7
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xlvi

Contents Tables (continued)
Tables (continued)
Table 4-3. Relationship Between File Organization and Access Mode 4-8
Table 4-4. File Open Modes 4-10
Table 4-5. Exclusion Modes 4-10
Table 4-6. Allocation for COMPUTATIONAL Data Items 4-14
Table 6-1. How Alphabetic Class Tests Work With Default Character Set 6-8
Table 6-2. Additional Characters Accepted by Alphabetic Class Tests With

Nondefault Character Sets 6-9
Table 6-3. Summary of File-Control Entry Clauses 6-24
Table 6-4. Descriptions of File-Control Entry Clauses 6-25
Table 6-5. Sequential Access 6-26
Table 6-6. Random Access 6-26
Table 6-7. Receive-Control Table Example 6-70
Table 6-8. Message Types That the Program Generates (System) 6-74
Table 6-9. Message Types That the Hardware Generates (Asynchronous) 6-74
Table 6-10. REPORT Clause Message Types in the CRE 6-75
Table 7-1. Data Categories 7-2
Table 7-2. PICTURE Character-String Symbols 7-55
Table 7-3. Types of Editing Performed 7-63
Table 7-4. Sign Control Symbols 7-65
Table 7-5. COMPUTATIONAL-3/PACKED-DECIMAL Digit Representation 7-71
Table 7-6. COMPUTATIONAL-3/PACKED-DECIMAL Sign Digit

Representation 7-71
Table 7-7. Numeric Data Storage for the COMPUTATIONAL-3/PACKED-DECIMAL

PICTURE Clause 7-71
Table 8-1. Where Statements End 8-4
Table 8-2. Statement Types 8-4
Table 8-3. Imperative Verbs 8-5
Table 8-4. Explicit Scope Terminators 8-7
Table 8-5. Status Key 1 Values 8-29
Table 8-6. Status Key 2 Values: Successful Completion 8-30
Table 8-7. Status Key 2 Values: Unsuccessful Completion—At-End

Condition 8-31
Table 8-8. Status Key 2 Values: Unsuccessful Completion—Invalid-Key

Condition 8-31
Table 8-9. Status Key 2 Values: Unsuccessful Completion—Permanent Error

Condition 8-31
Table 8-10. Status Key 2 Values: Unsuccessful Completion—Logic Error

Condition 8-32
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xlvii

Contents Tables (continued)
Tables (continued)
Table 8-11. Status Key 2 Values: Unsuccessful Completion—Conditions Defined by

HP 8-33
Table 8-12. I-O Status Codes Augmented by GUARDIAN-ERR 8-35
Table 8-13. Arithmetic Operators 8-46
Table 8-14. Hierarchy of Operators 8-47
Table 8-15. Precedence in Arithmetic Expressions 8-47
Table 8-16. Operator-Operand Combinations 8-48
Table 8-17. Logical Operators 8-64
Table 8-18. Conditions, Logical Operators, and Parentheses 8-65
Table 8-19. Abbreviated Combined Relation Conditions 8-67
Table 8-20. Maximum Length of Result of Concatenation Expression 8-70
Table 8-21. Class of Result of Concatenation Expression 8-70
Table 9-1. CLOSE Statements for Sequential Tape File 9-39
Table 9-2. EXIT Statement Restrictions and Effects 9-76
Table 9-3. Summary of Legal Moves 9-129
Table 9-4. I-O Status Codes for Unsuccessful Open Operations 9-145
Table 9-5. I-O Statements You Can Use in Different Open Modes 9-148
Table 9-6. Open Modes for Files Assigned to Processes 9-149
Table 9-7. Open Modes for Files Assigned to Terminals 9-150
Table 9-8. Open Modes for Structured Disk Files Not Present at Run Time 9-152
Table 9-9. Open Modes for Structured Disk Files Present at Run Time 9-153
Table 9-10. Valid SET TO Combinations 9-223
Table 9-11. Using the POSITION and KEY Phrases 9-248
Table 11-1. Statements for Calling Programs 11-4
Table 11-2. Resolution of External References

(COBOL85 Compiler With No Search List Defined) 11-19
Table 11-3. Resolution of External References

(COBOL85 Compiler With Search List Defined) 11-20
Table 11-4. Resolution of External References (NMCOBOL Compiler) 11-21
Table 11-5. How Final Values of #RECEIVE Arguments Are Chosen 11-24
Table 11-6. Meaning of Binder Statistics 11-29
Table 11-7. Meaning of COBOL85 Statistics Messages 11-31
Table 11-8. Meaning of COBOL85 Statistics 11-31
Table 11-9. Completion Codes 11-33
Table 11-10. PARAM Commands Accepted by Compiler 11-34
Table 11-11. How the PARAM SYMBOL-BLOCKS Command Affects Space

Allocation 11-36
Table 11-12. Source Text Manipulation Directives 11-47
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xlviii

Contents Tables (continued)
Tables (continued)
Table 11-13. Input Format Control Directives 11-47
Table 11-14. Listing Control Directives 11-48
Table 11-15. Code-Generation Control Directives 11-49
Table 11-17. Miscellaneous Control Directives 11-51
Table 11-16. Resolution and Binding Control Directives 11-51
Table 11-18. ENDUNIT Directive 11-52
Table 11-19. CHECK Levels 11-57
Table 11-20. Effects of ENV Directive Options 11-73
Table 11-21. ENV Directive and TNS Program Compatibility 11-74
Table 12-1. Differences Between DEFINE and ASSIGN 12-19
Table 12-2. DEFINE Attributes 12-21
Table 13-1. All TNS and TNS/R Utility Routines 13-3
Table 13-2. Memory Area Characteristics 13-6
Table 13-3. Linker Options That Export Program Names 13-11
Table 13-4. Files of Dummy Routines 13-23
Table 13-5. CBL85UTL Routines 13-24
Table 13-6. FastSort Interface Routines 13-25
Table 13-7. Where Versions of COBOLLIB Routines Are 13-27
Table 13-8. COBOLLIB Routines 13-27
Table 13-9. ZCOBSRL Routines 13-29
Table 13-10. CLULIB Routines 13-30
Table 13-11. Saved Message Utility (SMU) Routines 13-32
Table 13-12. Message Operated Upon by Saved Message Utility (SMU)

Routines 13-33
Table 13-13. Portions of the ASSIGN Message 13-36
Table 13-14. Portions of the Startup Message 13-36
Table 13-15. Portions of the PARAM Message 13-36
Table 13-16. CBL85UTL and ZCOBSRL Routines 13-38
Table 13-17. Relationship Between param-id, subsort-number, and param-

text 13-53
Table 13-18. Non-SMU COBOLLIB Routines 13-85
Table 13-19. Guardian Environment Level 3 Spooling Routines 13-139
Table 14-1. Alphanumeric Intrinsic Functions 14-3
Table 14-2. Numeric Intrinsic Functions 14-4
Table 14-3. Integer Intrinsic Functions 14-5
Table 14-4. Variable-Type Intrinsic Functions 14-6
Table 14-5. How Argument Type Determines Variable-Type Intrinsic Function

Type 14-6
HP COBOL Manual for TNS and TNS/R Programs—522555-006
xlix

Contents Tables (continued)
Tables (continued)
Table 14-6. Argument Types 14-7
Table 16-1. Valid Indicator Area Characters (ANSI Reference Format) 16-2
Table 18-1. Run-Time Environments 18-2
Table 18-2. Old and New Utility Routine Names 18-7
Table 19-1. Environment Variables 19-7
Table 19-2. Analogous PARAM Commands and OSS Environment

Variables 19-23
Table 22-1. Compiler Listing Parts and the Directives That Control Them 22-40
Table 22-2. Diagnostic Messages in the Compiler Listing 22-49
Table 22-3. Compiler Directives That Produce Optional Warnings 22-50
Table 23-1. Effect of Mode and Environment on Calling Non-COBOL

Programs 23-1
Table 23-2. Run-Time Environments for TNS Languages 23-2
Table 23-3. HP COBOL and TAL or pTAL Parameter Correspondence 23-11
Table 25-1. Conditions Requiring Pre-Execution Preparation 25-1
Table 26-1. Special Names for System Files 26-5
Table 27-1. Mount Messages 27-6
Table 27-2. Effect of LABELS Attribute and LABEL RECORDS Clause on Unlabeled

Tape File 27-17
Table 27-3. Correspondence Between RECORD CONTAINS Clause and

RECFORM Attribute Value 27-17
Table 27-4. Effect of LABELS Attribute and LABEL RECORDS Clause on Labeled

Tape File 27-20
Table 27-5. Correspondence Between RECORD CONTAINS Clause and

RECFORM Attribute Value 27-21
Table 27-6. Corresponding Open Modes and USE Attribute Values 27-22
Table 27-7. Effect of LABELS Attribute on Mount Messages 27-24
Table 27-8. Run-Time Errors Specific to Tape File Use 27-26
Table 28-1. Security Attributes for Disk Files1 28-4
Table 28-2. Exclusion Modes and Their Meanings 28-7
Table 28-3. Corresponding HP and HP COBOL Disk File Terms 28-10
Table 28-4. Comparison of Structured File Characteristics 28-11
Table 28-5. Enscribe File Positioning Modes 28-24
Table 30-1. Guardian Environment Routines for Level 3 Spooling 30-11
Table 30-2. PERUSE Operations and Commands (Partial List) 30-13
Table 30-3. SPOOLCOM Operations and Commands (Partial List) 30-15
Table 32-1. Values for PROGRAM-STATUS

When STARTBACKUP Has Option 0, 1, or 2 32-10
HP COBOL Manual for TNS and TNS/R Programs—522555-006
l

Contents Tables (continued)
Tables (continued)
Table 32-2. Values for PROGRAM-STATUS When STARTBACKUP Has Option

3 32-11
Table 33-1. TNS Misalignment Handling Methods 33-9
Table 34-1. COBOL Cross Compiler Platforms 34-1
Table 35-1. Environment Variables 35-10
Table 37-1. Valid Indicator Field Characters (Tandem Reference Format) 37-2
Table 37-2. Valid Indicator Area Characters (ANSI Reference Format) 37-3
Table 38-1. Alphanumeric Characters (for COBOL Words) 38-2
Table 38-2. Punctuation Characters 38-2
Table 38-3. Special Characters 38-2
Table 38-4. Figurative Constants 38-5
Table 38-5. PICTURE Character-String Editing Characters 38-6
Table 38-6. Arithmetic Operators 38-8
Table 38-7. Hierarchy of Operators 38-8
Table 38-8. Precedence in Arithmetic Expressions 38-9
Table 38-9. Operator-Operand Combinations 38-9
Table 38-10. Maximum Length of Result of Concatenation Expression 38-13
Table 38-11. Class of Result of Concatenation Expression 38-13
Table 45-1. CBL85UTL and ZCOBSRL Routines 45-1
Table 46-1. Saved Message Utility (SMU) Routines 46-1
Table 46-2. Non-SMU COBOLLIB Routines 46-10
Table 47-1. Warning, Error, and Failure Characteristics 47-1
Table 47-2. Problem Discovery Time, Message Indicator Line Contents, and

Problem Location 47-2
Table 48-1. COBOL Message Mapping 48-11
Table A-1. ASCII Character Set in Numeric Order A-1
Table A-2. ASCII Character Set in Alphabetic Order A-6
Table B-1. Integer Types, Part 1 B-1
Table B-2. Integer Types, Part 2 B-3
Table B-3. Floating, Fixed, and Complex Types B-4
Table B-4. Character Types B-5
Table B-5. Structured, Logical, Set, and File Types B-6
Table B-6. Pointer Types B-7
Table B-7. Address Types1 B-8
HP COBOL Manual for TNS and TNS/R Programs—522555-006
li

Contents
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lii

What’s New in This Manual

Manual Information
HP COBOL Manual for TNS and TNS/R Programs

Abstract

This publication describes the HP implementation of the 1985 version of the COBOL
language. It includes information on the COBOL85 and NMCOBOL compilers (T9257
and T8107, respectively) and program execution, task-oriented information to help an
experienced COBOL programmer use HP COBOL for NonStop™ systems, and
summaries of compiler and run-time error messages.

Product Version

COBOL85 D32, D42, D44, D46
NMCOBOL D44, D46
Tandem Development Suite (TDS) PC COBOL D45, G06
HP Enterprise Toolkit—NonStop Edition (ETK) PC COBOL G06, H01

Supported Release Updates (RVUs)

This publication supports D46.00, G06.00, H06.03 and all subsequent D-series,
G-series, and H-series RVUs until otherwise indicated by its replacement publication.

Part Number Published

522555-006 July 2005
HP COBOL Manual for TNS and TNS/R Programs—522555-006
liii

What’s New in This Manual New and Changed Information
Document History

New and Changed Information
• New

• Changed

• Deleted

New

• NMCOBOL Compiler and Linker Statistics

• Example 22-21, Symbol Table Listing (NMCOBOL Compiler)

• Example 22-21, Symbol Table Listing (NMCOBOL Compiler)

• Native Addressing Modes

• CRE example in Guardian Abnormal Termination Messages

• Example 48-3, Input-Output Error Message (CRE)

• Glossary has some new entries

Changed
Throughout the manual (not marked by change bars):

• The changes in COBOL Name Conventions apply

• “COBOL85 run-time routines” was changed to “HP COBOL or CRE run-time
routines” (for the first occurrence) and “run-time routines” (everywhere else)

• “SQL” was changed to either “SQL/MP” or “SQL/MP and SQL/MX,” whichever was
accurate

Part Number Product Version Published

522555-001 COBOL85 D32, D42, D44, D46; NMCOBOL D44.01,
D46; PC COBOL D45, G06.06

February 2002

522555-002 COBOL85 D32, D42, D44, D46; NMCOBOL D44.01,
D46; TDS PC COBOL D45, G06.06; ETK PC
COBOL G06.06, G06.15, G06.18, G06.20

May 2003

522555-003 COBOL85 D32, D42, D44, D46; NMCOBOL D44.01,
D46; TDS PC COBOL D45, G06.06; ETK PC
COBOL G06.06, G06.15, G06.18, G06.20

April 2004

522555-006 COBOL85 D32, D42, D44, D46; NMCOBOL D44.01,
D46; TDS PC COBOL D45, G06.06, H06.03; ETK
PC COBOL G06.06, G06.15, G06.18, G06.20,
H06.03

July 2005
HP COBOL Manual for TNS and TNS/R Programs—522555-006
liv

What’s New in This Manual Changed
• “executable object file” was changed to “loadfile”

• “nonexecutable object file” was changed to “linkfile”

• Miscellaneous format changes

Change bars identify important changes to content in the following topics. (Minor
changes are marked by change bars but not listed here.)

• HP COBOL Language

• HP COBOL Compilers for TNS and TNS/R Programs (formerly “COBOL85 and
NMCOBOL Compilers”)

• Guardian and OSS Environments

• Combining Separately Compiled Source Programs

• Data Alignment in Receiving Items

• Data Alignment in Memory

• Using Indexes Instead of Subscripts

• Using Indexes Instead of Subscripts

• Storage Allocation For an Initial Program

• MESSAGE SOURCE Phrase

• Size Limits (Working-Storage Section)

• Size Limits (Extended-Storage Section)

• Table 8-3, Imperative Verbs

• CALL

• ENTER

• OPEN: Nonexistent Files

• Figure 9-11, Execution of a SEARCH VARYING Statement With WHEN Phrases

• How an HP COBOL Program Calls a Non-COBOL Program

• How the Compiler Resolves Unqualified References now applies to both compilers

• Table 11-10, PARAM Commands Accepted by Compiler

• PARAM SYMBOL-BLOCKS

• Where Compiler Directives Are Allowed

• BLANK and NOBLANK

• INSPECT and NOINSPECT

• SAVEABEND and NOSAVEABEND
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lv

What’s New in This Manual Changed
• SHARED

• SQL and NOSQL

• RUN or RUND Command

• PARAM Command

• COBOL85^ARMTRAP

• The description of library-reference in:

° COBOL85^COMPLETION and COBOL_COMPLETION_

° COBOL_CONTROL_

° COBOL85^RETURN^SORT^ERRORS and
COBOL_RETURN_SORT_ERRORS_

° COBOL85^REWIND^SEQUENTIAL and COBOL_REWIND_SEQUENTIAL_

° COBOL85^SET^SORT^PARAM^TEXT and
COBOL_SET_SORT_PARAM_TEXT_

° COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_

° COBOL85^SPECIAL^OPEN and COBOL_SPECIAL_OPEN_:

° Printers or Spoolers

° System Log Files

° Partitioned Disk Files

° COBOLFILEINFO

° COBOL_FILE_INFO_

• Section 15, Debugging Tools

• Arithmetic Overflow Processing

• Compiler Space Allocation

• Example 22-20, Symbol Table Listing (COBOL85 Compiler)

• Fixup

• Form Name

• Introduction to TMF

• Migrating HP COBOL Programs

• Removal Required

• Section 41, Environment Division and Section 42, Data Division have exchanged
places
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lvi

What’s New in This Manual Deleted
• Other Products’ Error Messages moved from Section 48, Run-Time Diagnostic
Messages, to Section 47, Compiler Diagnostic Messages

• Arithmetic Overflow

• Stack Overflow

• Glossary has some changed entries

Deleted

• From Section 19, Using HP COBOL in the OSS Environment and Section 35,
Commands:

° cobol Utility Flags
° nmcobol Utility Flags

These flags are described in the Open System Services Shell and Utilities
Reference Manual.

• From Features Unavailable in the OSS Environment: Utility Routines

• From Section 21, Reserved Words: New COBOL85 Reserved Words (additions to
COBOL 74)

• Former Section 35, Converting COBOL 74 Programs to COBOL85
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lvii

What’s New in This Manual Deleted
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lviii

About This Manual
This manual is a complete reference book for experienced COBOL programmers who
want to use HP COBOL for NonStop systems (HP COBOL). It explains every feature of
the HP COBOL programming language. To understand its explanations, you must have
some experience with structured (1974 or 1985) COBOL. If you do not, read an
introductory text first.

Topics:

• Manuals to Which This Manual Refers

• Acknowledgment

• Notation Conventions

Manuals to Which This Manual Refers

Table i. HP Manuals to Which This Manual Refers (page 1 of 6)

Manual Description

Accelerator Manual Explains how to improve performance of
TNS HP COBOL programs running on
TNS/R systems (migrating them to
TNS/R native mode is preferable)

Accelerator Manual Data Alignment Addendum Documents the data alignment
requirements of the Accelerator.

Binder Manual Explains how to use the stand-alone
Binder product to bind compilation units
(or modules) that were compiled with the
COBOL85 compiler

C/C++ Programmer’s Guide Contains information you need about
HP C for NonStop systems if you plan to
call HP C routines from HP COBOL

COBOL Manual for TNS/E Programs Describes and explains how to use the
ECOBOL compiler

CRE Programmer’s Guide Explains how to use the Common Run-
Time Environment (CRE) for running
mixed-language programs written for the
D-series operating system

CROSSREF Manual Explains how to use the stand-alone
CROSSREF product to collect cross-
reference information for programs
compiled with the COBOL85 compiler
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lix

About This Manual Manuals to Which This Manual Refers
Data Definition Language (DDL) Reference
Manual

Describes the Data Definition Language
(DDL), with which you can create COPY
and SOURCE libraries for your
HP COBOL program

Debug Manual Explains how to debug programs using
the Debug machine-level debugger

DLL Programmer’s Guide for TNS/R Systems Explains position-independent code
(PIC) and dynamic-link libraries (DLLs).

EDIT User’s Guide and Reference Manual Explains how to create and modify
source files

EMS Manual Describes the Event Management
Service (EMS). The misalignment tracing
facility generates EMS events (see
Misalignment Tracing Facility).

ENABLE User’s Guide Explains how to use the ENABLE utility
to build a file-maintenance application
that allows you to modify a disk file

ENFORM User’s Guide Explains how to use the ENFORM
language to query an online database

Enscribe Programmer’s Guide Explains how to use queue files.

Expand Network Management and
Troubleshooting Guide

Describes the Expand network, which
you must understand if your system is
connected to other systems by this
means and you want to create
partitioned disk files

FastSort Manual Describes the FastSort interface routines
that give your HP COBOL program
access to the utility program FastSort

File Utility Program (FUP) Reference Manual Describes the Guardian File Utility
Program (FUP), which you can use on
files that you use with the COBOL85 or
NMCOBOL compiler

FORTRAN Reference Manual Contains information you need about
HP FORTRAN for NonStop systems if
you plan to call HP FORTRAN routines
HP COBOL programs

Guardian Application Conversion Guide Explains how to convert C-series
procedures to use the extended features
of the D-series operating system

Table i. HP Manuals to Which This Manual Refers (page 2 of 6)

Manual Description
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lx

About This Manual Manuals to Which This Manual Refers
Guardian Native C Library Calls Reference
Manual

Contains information you need about
HP C for NonStop systems if you plan to
call HP C routines from HP COBOL
programs

Guardian Procedure Calls Reference Manual Describes Guardian file name syntax and
the syntax and programming
considerations for using system
procedures

Guardian Procedure Errors and Messages
Manual

Describes error codes, error lists, system
messages, and trap numbers for system
procedures

Guardian Programmer’s Guide Explains how to use the programmatic
interface of the operating system

Guardian User’s Guide Explains how to run loadfiles (the RUN
command) and how to create and modify
indexed (key-sequenced) files

Inspect Manual Explains how to debug programs using
theInspect source-level and machine-
level interactive debugger

Kernel-Managed Swap Facility (KMSF) Manual Explains how to use the Kernel-Managed
Swap Facility (KMSF) to configure and
manage swap volumes

ld Manual Explains how to use the ld utility to link
and change the attributes of TNS/R PIC
object files

NetBatch Manual Explains how to use the NetBatch job
management system, which is useful for
launching compilations to run unattended

nld Manual Explains how to use the nld utility to link
and change the attributes of TNS/R non-
PIC object files and how the ar utility
works

noft Manual Explains how to use the noft utility to
display TNS/R object files (PIC and non-
PIC)

Open System Services Programmer’s Guide Describes how to write applications in
HP C for the HP NonStop Open System
Services (OSS) environment, focusing
on how OSS differs from a standard
UNIX programming environment
(intended for application and system
programmers)

Table i. HP Manuals to Which This Manual Refers (page 3 of 6)

Manual Description
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lxi

About This Manual Manuals to Which This Manual Refers
Open System Services Shell and Utilities
Reference Manual

Describes the syntax and semantics of
each command that you can enter
interactively to access the OSS
command interpreter (the OSS shell),
and utilities and other functions that
perform general-purpose and program-
development operations (intended for all
audiences)

Open System Services System Calls Reference
Manual

Describes all OSS system calls (file
system and kernel functions), their
syntax, required external data structures,
resulting operations, and source file
(header) locations for all literals and
symbolic definitions (intended for system
and application programmers)

Pathway/TS SCREEN COBOL Reference
Manual

Describes the SCREEN COBOL
language (HP COBOL is often used to
implement servers that works with
SCREEN COBOL (TCP) requesters to
make up a Pathway/TS application)

Pathway/TS TCP and Terminal Programming
Guide

Explains how to write SCREEN COBOL
requesters in the Pathway environment

PS TEXT EDIT and PS TEXT FORMAT User’s
Guide

Explains how to create and modify
source files

PS TEXT EDIT Reference Manual Describes the PS TEXT EDIT editor,
which you can use to create and modify
source files

pTAL Conversion Guide Explains how to convert TAL programs to
pTAL, which you must do to any TAL
programs that your TNS/R HP COBOL
programs call

pTAL Reference Manual Describes the pTAL language, one of the
TNS/R languages in which you can
rewrite FORTRAN or Pascal programs
that you want your TNS/R HP COBOL
programs to call

SCF Reference Manual for the Kernel
Subsystem

Describes the Subsystem Control Facility
(SCF), whose user interface you can use
to control tracing (see Misalignment
Tracing Facility).

Spooler Programmer’s Guide Explains how to use the spooler utility
that collects and routes printer output

Table i. HP Manuals to Which This Manual Refers (page 4 of 6)

Manual Description
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lxii

About This Manual Manuals to Which This Manual Refers
Spooler Utilities Reference Manual Explains spoolers, which can be given
Guardian file names and used with
HP COBOL programs

SQL/MP Programming Manual for COBOL Describes the programmatic interface to
HP NonStop SQL/MP for COBOL. You
need it if your HP COBOL program
contains embedded SQL/MP statements.

SQL/MP Reference Manual Describes HP NonStop SQL/MP. You
might need it if your HP COBOL program
contains embedded SQL/MP statements.

SQL/MX Programming Manual for C and
COBOL

Describes the programmatic interface to
HP NonStop SQL/MX for HP C and
HP COBOL. You need it if your
HP COBOL program contains embedded
SQL/MX statements.

TACL Reference Manual Describes the HP Tandem Advanced
Command Language (TACL), which you
need to execute HP COBOL programs
from a TACL prompt

TAL Programmer’s Guide Contains information you need about the
HP Transaction Application Language
(TAL) if you plan to call TAL routines
from TNS HP COBOL programs

TAL Programmer’s Guide Data Alignment
Addendum

Describes the data alignment
requirements of TAL

TAL Reference Manual Contains information you need about
TAL if you plan to call TAL routines from
TNS HP COBOL programs

TNS/R Native Application Migration Guide Contains information you need about
migrating called TAL and TNS HP C
programs to pTAL and TNS/R HP C,
respectively

TNS/E Native Application Conversion Guide Introduces the TNS/E native
development and execution
environments and explains how to
convert exising TNS programs to TNS/E
native applications.

Table i. HP Manuals to Which This Manual Refers (page 5 of 6)

Manual Description
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lxiii

About This Manual Acknowledgment
Acknowledgment
COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
COBOL Committee as to the accuracy and functioning of the programming system and
language. Moreover, no responsibility is assumed by any contributor, or by the
committee, in connection herewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the
UNIVAC (R) I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry
Rand Corporation; IBM Commercial Translator Form No. F 28-8013, copyrighted
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-
Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications.

TS/MP Pathsend and Server Programming
Manual

Explains how to write servers and
Pathsend requesters in the Pathway
environment

TS/MP System Management Manual Explains the configuration and operation
of servers in the Pathway environment
(HP COBOL is often used to implement
servers that function as parts of a
Pathway applications, using the
HP NonStop TS/MP software)

Table i. HP Manuals to Which This Manual Refers (page 6 of 6)

Manual Description
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lxiv

About This Manual Notation Conventions
Notation Conventions
This manual uses these conventions throughout:

• “Compiler” means both the COBOL85 and NMCOBOL compilers unless otherwise
stated

• “Linker” means the nld and ld utilities unless otherwise stated

• COBOL Name Conventions

• Hypertext Links

• Syntax Diagram Conventions

• Range Convention

• Example Conventions

• Change Bar Notation

COBOL Name Conventions
This manual uses these COBOL names, and this is what they mean:

Hypertext Links
Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

Name Meaning

COBOL The implementation of the 1985 ISO/ANSI Standard COBOL language

HP COBOL HP COBOL for NonStop systems, the HP implementation of COBOL with HP
extensions

COBOL85 The HP compiler for the HP COBOL language that produces TNS objects

NMCOBOL The HP compiler for the HP COBOL language that produces TNS/R objects
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lxv

About This Manual Syntax Diagram Conventions
Syntax Diagram Conventions
This manual presents syntax in railroad diagrams. Here is a generic railroad diagram:

To use a railroad diagram, follow the direction of the arrows and specify syntactic items
as indicated by the diagram pieces:

Diagram Piece Meaning

Type KEYWORD as shown. You can type letters in uppercase or
lowercase.

Replace item with a value that fits its description, which follows the
syntax diagram.

Type content (punctuation mark, symbol, or letter) as shown. You can
type a letter in uppercase or lowercase.

«item» The 1985 COBOL standard classifies item as obsolete, so you are
advised not to use it. (An obsolete keyword is marked the same way;
that is, «KEYWORD».)

item3

,
KEYWORD item1

item2 item4

«item5»

VST406.vsd

VST412.vsd

KEYWORD

item

VST413.vsd

,

VST414.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lxvi

About This Manual Syntax Diagram Conventions
Some examples of the meanings of simple diagrams are:

Diagram Piece Meaning

Choose item1 or item2.

Choose item1, item2, or neither.

Specify item one or more times, separating occurrences
with commas.

Specify item at most n times.

Note. To refer to a particular railroad diagram or figure when giving feedback to HP, use the
number at the bottom right corner of that railroad diagram or figure (for example, VST742.vsd).

VST407.vsd

item2

item1

VST408.vsd

item1

item2

item

,

VST409.vsd

item

n

VST742.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lxvii

About This Manual Syntax Diagram Conventions
Spacing rules are:

• If the arrow between two diagram pieces is labelled “ns,” put no spaces between
the syntactic items that they represent. For example:

means that you type:

$NEWVOL

not

$ NEWVOL

• An “ns” on the top line of a choice structure applies to the lower lines in the choice
structure as well. For example:

means that you type one of:

"COBOL85^RETURN^SORT^ERRORS"
"COBOL_RETURN_SORT_ERRORS_"

• If two diagram pieces are not separated by a separator character (such as a
comma, semicolon, or parenthesis), separate the syntactic items that they
represent by at least one space or a new line. For example:

means that you type:

MULTIPLY 3 4

not

MULTIPLY34

ns
$ volume

VST420.vsd

VST635.vsd

COBOL85^RETURN^SORT^ERRORS "
COBOL_RETURN_SORT_ERRORS_

ns

"
ns

VST410.vsd

MULTIPLY integer1 integer2
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lxviii

About This Manual Range Convention
• If two diagram pieces are separated by a separator character, separating the
syntactic items that they represent by spaces is optional. For example:

means that you type:

MULTIPLY 3,4

or

MULTIPLY 3, 4

• If a diagram piece is immediately followed by a period, putting spaces between the
syntactic item and the period is optional. For example:

means that you can type:

END PROGRAM SORT.

or

END PROGRAM SORT .

• Explicit spacing rules given for individual railroad diagrams override the
aforementioned rules.

Range Convention
Ranges include their endpoints unless otherwise noted. For example, “x is in the range
from 0 through 32,767” means that x is greater than or equal to 0 and less than or
equal to 32,767.

Note. Except in literals and PICTURE clauses, HP COBOL treats the comma (,) and
semicolon (;) as equivalents.

VST411.vsd

integer1 integer2,MULTIPLY

PROGRAM .program-nameEND

VST374.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lxix

About This Manual Example Conventions
Example Conventions
In examples, a modified ellipsis (...) indicates an omission. The code in Example i can
be abbreviated as shown in Example ii.

In examples with user input, user input is shown in bold type and it is assumed that the
user presses Return after typing the input. For instance, in the example:

ENTER RUN CODE
?123
CODE RECEIVED: 123.00

the system displays ENTER RUN CODE on one line and prompts the user with a
question mark (?)on the next line, the user types 123 and presses Return, and the
system displays CODE RECEIVED: 123.00.

Change Bar Notation
A change bar (as shown to the right of this paragraph) indicates a substantive
difference between this edition of the manual and the preceding edition. Change bars
highlight new or revised information.

Example i. Code Example Without Ellipsis (...)

WORKING-STORAGE SECTION.
 01 MONTH-NAME-TABLE.
 05 FILLER PICTURE X(9) VALUE "January".
 05 FILLER PICTURE X(9) VALUE "February".
 05 FILLER PICTURE X(9) VALUE "March".
 05 FILLER PICTURE X(9) VALUE "April".
 05 FILLER PICTURE X(9) VALUE "May".
 05 FILLER PICTURE X(9) VALUE "June".
 05 FILLER PICTURE X(9) VALUE "July".
 05 FILLER PICTURE X(9) VALUE "August".
 05 FILLER PICTURE X(9) VALUE "September".
 05 FILLER PICTURE X(9) VALUE "October".
 05 FILLER PICTURE X(9) VALUE "November".
 05 FILLER PICTURE X(9) VALUE "December".
 01 MONTH-NAMES REDEFINES MONTH-NAME-TABLE.
 05 MONTH-NAME OCCURS 12 TIMES PICTURE X(9).

Example ii. Code Example With Ellipsis

WORKING-STORAGE SECTION.
 01 MONTH-NAME-TABLE.
 05 FILLER PICTURE X(9) VALUE "January".
 05 FILLER PICTURE X(9) VALUE "February".
 ...
 05 FILLER PICTURE X(9) VALUE "December".
 01 MONTH-NAMES REDEFINES MONTH-NAME-TABLE.
 05 MONTH-NAME OCCURS 12 TIMES PICTURE X(9).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
lxx

Part I.
Features of HP COBOL
Title

Section 1, Introduction

Section 2, Source Program Organization and Format

Section 3, Language Elements

Section 4, Data Fundamentals

Section 5, Identification Division

Section 6, Environment Division

Section 7, Data Division

Section 8, Procedure Division

Section 9, Procedure Division Verbs

Section 10, Source Text Manipulation

Section 11, Program Compilation

Section 12, Program Execution

Section 13, Libraries and Utility Routines

Section 14, Intrinsic Functions

Section 15, Debugging Tools

Section 16, ANSI Reference Format

Section 17, HP Extensions to ISO COBOL

Section 18, HP COBOL CRE Support

Section 19, Using HP COBOL in the OSS Environment

Section 20, HP COBOL Limits

Section 21, Reserved Words
HP COBOL Manual for TNS and TNS/R Programs—522555-006

Part I. Features of HP COBOL
HP COBOL Manual for TNS and TNS/R Programs—522555-006

1 Introduction
This manual describes the HP COBOL for NonStop systems (HP COBOL) language
and explains how to use it to create TNS processes and TNS/R native processes. (The
COBOL Manual for TNS/E Programs explains how to use the HP COBOL language to
create TNS/E native processes.)

Topics:

• HP COBOL Language

• Summary of Execution Modes

• HP COBOL Compilers for TNS and TNS/R Programs

• Guardian and OSS Environments

• Compiler Input

• Compiler Output

• Combining Separately Compiled Source Programs

• Executing Loadfiles

HP COBOL Language
The HP COBOL language, the implementation of the COBOL language by the Hewlett-
Packard Company, conforms to the standard published by the International
Organization for Standardization (ISO) and the American National Standards Institute
(ANSI) in 1985. HP COBOL also provides extensions to the language that enable
COBOL programs to act as servers, as in a Pathway application (which uses TS/MP),
and to be fault tolerant.

Standard COBOL is described in American National Standard for Information Systems
Programming Language—COBOL, which has ANSI document number X3.23-1985
and ISO document number ISO 1989-1985, and the intrinsic function and correction
amendments, ANSI X3.23a-1989 and ANSI X3.23b-1993, ISO 1989:1985/Amd.1:1992
and ISO 1989:1985/Amd.2:1994. HP offers high-level standard COBOL with HP
extensions.
HP COBOL Manual for TNS/E Programs—520347-003
1-1

Introduction Embedded SQL/MP
HP COBOL accepts the syntax for statements in all of these areas; however, certain
statements do not apply to NonStop system environments. In such cases, HP COBOL
treats these statements as comments after checking that the statements are
syntactically correct.

Embedded SQL/MP
The HP COBOL embedded SQL/MP implementation conforms fully to the ANSI
Database—Embedded NonStop SQL Standard (ANSI X3.168-1989), with the
restrictions and extensions mentioned in SQL/MP Programming Manual for COBOL.

SQL/MP is compatible with every HP COBOL compiler (see Table 1-3).

Embedded SQL/MX
The HP COBOL embedded SQL/MX implementation conforms to SQL:1999 standards
as described in SQL/MX Reference Manual with the restrictions and extensions
mentioned in SQL/MX Programming Manual for C and COBOL.

SQL/MX is compatible with every HP COBOL compiler except COBOL85 (see
Table 1-3).

Table 1-1. Required HP COBOL Modules and Their Levels

Module Level

Nucleus 2

Sequential I-O 2

Relative I-O 2

Indexed I-O 2

Inter-Program Communication 2

Sort-Merge 1

Source Text Manipulation 2

Table 1-2. Optional HP COBOL Modules and Their Levels

Module Level

Segmentation* 2 (partial)

Debug* 1

Intrinsic Function 1

Report Writer Null

Communication Null

* The 1985 COBOL standard classifies this module as obsolete, so you are advised not to use it.
HP COBOL Manual for TNS/E Programs—520347-003
1-2

Introduction Summary of Execution Modes
Summary of Execution Modes
TNS/Rsystems support three execution modes:

Because of architectural differences between execution modes, you cannot mix TNS
object code, accelerated object code, and native object code in one loadfile. A native
program can contain only native object code.

TNS Mode Accelerated Mode TNS/R Native Mode

Programs are generated by
TNS compilers.

Programs are generated by
TNS compilers and then
processed by the
Accelerator.

Programs are generated by
TNS/R native compilers.

Programs use TNS process
and memory architecture.

Programs use TNS process
and memory architecture.

Programs use TNS/R native
process and memory
architecture.

Programs consist of TNS
object code (TNS
instructions).

Programs consist of TNS
object code (TNS
instructions) and accelerated
object code (equivalent
Accelerator-generated RISC
instructions).

Programs consist of TNS/R
native object code (RISC
instructions).

Millicode routines
implement the TNS
instructions on RISC
processors.

Programs execute RISC
instructions directly on RISC
processors and use TNS
mode to execute instructions
for which the Accelerator
could not generate equivalent
RISC instructions.

Programs execute RISC
instructions directly on RISC
processors.
HP COBOL Manual for TNS/E Programs—520347-003
1-3

Introduction HP COBOL Compilers for TNS and TNS/R
Programs
HP COBOL Compilers for TNS and TNS/R
Programs

For HP COBOL source programs, HP provides the compilers in Table 1-3.

Guardian and OSS Environments
The NonStop operating system offers two operating environments, the Guardian
environment and the OSS environment.

These OSS utilities call these compilers on these systems:

The OSS environment provides industry-standard application program interfaces
(APIs) and utilities to enable you to port existing applications quickly and easily to
NonStop systems. The NonStop operating system continues to support Guardian
services. Most features of the HP COBOL language and library are available in the
OSS environment, and most of them operate as they do in the Guardian environment.
For more information on OSS, see Section 19, Using HP COBOL in the OSS
Environment.

In both the OSS and the Windows environments, the flag
-Wsystype={guardian|oss} determines whether the native COBOL cross
compiler creates loadfiles for the Guardian environment or for the OSS environment.
The default is the Guardian environment. For more information on the native COBOL
cross compiler, see Section 34, Native COBOL Cross Compiler.

Table 1-3. HP COBOL TNS and TSN/R Compilers

Compiler T Number Description

COBOL85 T9257 Produces TNS object code, which is
position-dependent code (non-PIC). Runs
on TNS, TNS/R, and TNS/E systems.

NMCOBOL* ** T8107 Produces native TNS/R object code, which
is either non-PIC (the default) or position-
independent code (PIC). Runs on TNS/R
systems.

Native COBOL Cross Compiler
for TNS/R Programs on PC**

T0328 Enables you to build native TNS/R objects
or NonStop systems applications on a PC.
Runs on a PC.

* The NMCOBOL compiler itself is a mixture of TNS and TNS/R programs.

** In this manual, “NMCOBOL compiler” means both of these compllers unless otherwise stated.

OSS Utility Compiler Systems

cobol COBOL85 TNS and TNS/R (but not TNS/E)

nmcobol NMCOBOL TNS/R
HP COBOL Manual for TNS/E Programs—520347-003
1-4

Introduction Compiler Input
Compiler Input
The only required input to the compiler is:

• A source file containing the program text
• In some cases, compiler directives

The optional input is:

• One or more source library files from which the compiler can copy additional
source text specified in COPY statements or SOURCE directives

• One or more user-specified object files that contain object code explicitly called by
the program being compiled

• For the COBOL85 compiler:

° The COBOL85 run-time object library file, C8LIB

° These COBOL external declarations files, which are used in resolving
references to routines in the system library:

• For the NMCOBOL compiler, these COBOL external declarations files, which are
used in resolving references to routines in the system library:

File Contents

COBOLEX0 Operating system routines for the latest RVU of the operating
system

COBOLEX1 Operating system routines for the next-to-latest RVU of the
operating system

COBOLEXT Operating system routines for the second-next-to-latest RVU of the
operating system

COBOLLIB Utility routines

CBL85UTL Utility routines

CLULIB Utility routines

File Contents

NMCOBEX0 Operating system routines for the latest RVU of the operating system

NMCOBEX1 Operating system routines for the next-to-latest RVU of the operating
system

NMCOBEXT Operating system routines for the second-next-to-latest RVU of the
operating system

ZCOBSRL Utility routines

ZCRESRL Utility routines
HP COBOL Manual for TNS/E Programs—520347-003
1-5

Introduction Compiler Output
Compiler Output
The output of the compiler is:

• A listing, including any compiler diagnostic messages (if the file for the listing is a
disk file, the compiler creates an EDIT file unless the file already exists)

• An object file, if no compilation errors occurred

If compilation errors occurred:

• The COBOL85 compiler produces a partial object file if any program units in the
compilation compile without errors.

• The NMCOBOL compiler produces no object file.

The COBOL85 compiler produces an object file that can be both executed and input to
the Bind utility. The NMCOBOL compiler produces either an executable object file, a
nonexecutable object file, a user library, or a dynamic-link library (DLL). Other
differences between the two compilers are explained throughout the manual. For an
overview of these differences, see Section 33, Migrating TNS/R Programs to TNS/RE
Programs.
HP COBOL Manual for TNS/E Programs—520347-003
1-6

Introduction Combining Separately Compiled Source Programs
Combining Separately Compiled Source
Programs

You can compile several source files separately and then combine their object code
files into a single loadfile . The method you use depends on mode and operating
environment, as this table shows:

In the Guardian environment:

You can combine multiple object files into a single loadfile only if the multiple object
files are either all TNS object files or all TNS/R native object files. You cannot combine
TNS object files and TNS/R object files into a single loadfile.

Mode
Operating
Environment Object Code Method For more information, see ...

TNS Guardian Non-PIC Binder object-
file builder

Binder Manual

OSS Non-PIC cobol utility Mixed-Language Programs

Native Guardian or
OSS

Non-PIC nld utility nld Manual

PIC ld utility ld Manual

Loadfile Can contain object code from these compilers:

TNS • COBOL85
• HP C
• TAL
• Pascal

TNS/R • NMCOBOL
• Native HP C
• Native HP C++
• pTAL
HP COBOL Manual for TNS/E Programs—520347-003
1-7

Introduction Executing Loadfiles
Executing Loadfiles

Guardian Environment

OSS Environment

From ... Use ... For more information, see ...

A terminal TACL command RUN or
RUND

RUN or RUND Command

An executing program TS/MP transaction-
processing software

TS/MP System Management
Manual

An executing COBOL
process (execute the
loadfile as a separate
process)

CREATEPROCESS routine
(to create a low-PIN
process)

CLU_PROCESS_CREATE_
routine (to create a high-PIN
process)

CRE Programmer’s Guide

From ... Use ... For more information, see ...

A terminal Name of the executable file
(type it and press the return
key). The current directory
must be in your search
path.

Running HP COBOL Programs

An executing COBOL
process (execute the
loadfile as a separate
process)

OSS process create
function fork() or
tdm_fork(2)

Open System Services
Programmer’s Guide
HP COBOL Manual for TNS/E Programs—520347-003
1-8

2
Source Program Organization and
Format

The lines of a COBOL source program are organized into divisions. The program ends
with an END PROGRAM statement. Individual lines must follow a reference format that
the compiler accepts. Any line in a source program can contain a COPY statement,
which tells the compiler to insert source text from a specified disk file, called a COPY
library.

A run unit can contain more than one source program. Programs in the same run unit
can share resources with each other. The programs can be nested, which means that
one program contains one or more other programs, which might in turn contain one or
more other programs. A nested program can be common, which means that it can be
called by any other program contained in the program that contains it. Nested
programs are always in the same run unit; therefore, they can share resources.

An initial program is one whose program state is initialized whenever any program in
its run unit calls it.

Topics:

• Source Program Components

• Reference Format for Source Program Lines

• COPY Libraries

• Nested Source Programs

• Common Programs

• Programs in the Same Run Unit

• Initial Programs

• How Programs Share Resources
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-1

Source Program Organization and Format Source Program Components
Source Program Components
The components of a COBOL source program must appear in the order shown in
Table 2-1.

The END PROGRAM statement has this syntax:

Table 2-1. Source Program Components

Component
Required or
Optional? Purpose

Explained
in Section

Identification Division Required • To specify the program name
(required)

• To specify your name, the date,
and the program purpose
(optional)

5

Environment Division Optional To describe the program’s
equipment and processing options
and name the files it uses (you must
change this information when you
move a COBOL program to an HP
system from another type of
system)

6

Data Division Optional To define the data that the program
uses (reserve data storage; define
data formats, types, and structures;
complete file descriptions)

7

Procedure Division Optional To specify the program activity (the
data processing)

8

END PROGRAM
statement

Depends—
see Purpose

To mark the end of the program

If you submit only one program to
the compiler at a time, the END
PROGRAM statement is optional. If
you compile several programs (one
after another or nested), the END
PROGRAM statement is required
for each program except the one
that ends last. You can use an
ENDUNIT directive instead of an
END PROGRAM statement.

2

PROGRAM .program-nameEND

VST374.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-2

Source Program Organization and Format Reference Format for Source Program Lines
program-name

is a COBOL word. It names the same program unit that the PROGRAM-ID does
(see PROGRAM-ID Paragraph), for example:

IDENTIFICATION DIVISION.
PROGRAM-ID. MYPROG.
...
END PROGRAM MYPROG.

Reference Format for Source Program Lines
Individual source program lines must follow a reference format that the compiler
accepts. There are two choices of reference format: Tandem and ANSI. Tandem
reference format, an HP extension to COBOL, is less restrictive than ANSI. The
principal differences between the Tandem and ANSI formats are in:

• Margin locations
• Permitted line lengths
• Absence of sequence number and identification field in Tandem reference format

You can write an HP COBOL program completely in either format or in a mixture of
both. The default is Tandem reference format. Unless you direct the compiler to accept
the ANSI format, the compiler assumes the entire program is in Tandem reference
format. (See ANSI and TANDEM.)

The rest of this topic describes the Tandem reference format. For information on the
ANSI reference format, see Section 16, ANSI Reference Format.

Lines in Tandem reference format are not restricted to a fixed length and can have up
to 132 characters (longer lines are truncated). The Tandem reference format has no
identification field. You can supply comments for your program on separate lines. See
Indicator Area.

Figure 2-1. Tandem Reference Format

Column:

Margin:

Area BArea A

Line

n <= 13221 3 4 5 6 7 8 9 10 ... n

Indicator Area

C A B R

VST500.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-3

Source Program Organization and Format Indicator Area
Topics:

• Indicator Area

• Area A and Area B

• Restrictions

Indicator Area
The indicator area begins at margin C and ends at margin A, using only column 1. It
can be empty, or it can contain a single character that describes the type of information
on the line.

Compiler Directive (?)
A compiler directive has a question mark (?) in the indicator area. A compiler directive
is an instruction to the compiler (for more information on compiler directives, see
Compiler Directives).

The compiler interprets any line that has a question mark in column 1 as a compiler
directive. (This is true even when a program uses ANSI format, in which case the
compiler handles the line as if it began with the indicator area. For details on ANSI
format, see Section 16, ANSI Reference Format.)

Ordinary Comment (*)
An ordinary comment has an asterisk (*) in the indicator area. A comment can appear
anywhere in a program. The compiler ignores it.

Comment for Top of Next Page (/)
A comment to be printed at the top of the next page has a slash (/) in the indicator
area. Like an ordinary comment, this comment can appear anywhere in a program.
The compiler advances to the top of the next page and prints the comment at the top of
that page.

Table 2-2. Valid Indicator Area Characters (Tandem Reference Format)

Character Character Name Meaning and Topic Name

? Question mark Compiler Directive (?)

* Asterisk Ordinary Comment (*)

/ Slash Comment for Top of Next Page (/)

D Uppercase D Debugging Line (D or d)

d Lowercase d Debugging Line (D or d)

- Hyphen Continuation Line (-)

Space Text Line
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-4

Source Program Organization and Format Indicator Area
Debugging Line (D or d)
A debugging line has the letter D or d in the indicator area. If the program includes a
DEBUGGING MODE clause, the debugging line is part of the program; otherwise, it is
a comment. A debugging line cannot contain embedded SQL/MP or SQL/MX
statements. For information on DEBUGGING MODE, see SOURCE-COMPUTER
Paragraph.

Continuation Line (-)
A continuation line has a hyphen (-) in the indicator area. It is a continuation of the
previous line. Always leave area A of a continuation line blank.

In an HP COBOL source program, you can put a blank line between a continued line
and its continuation line. Such a blank line has no effect on the continued line or its
continuation (see Text Line).

You can continue any word or literal. If you continue a numeric literal, a reserved word,
or a user-defined word, the compiler ignores the trailing spaces of the previous line and
initial spaces of the continuation line.

The rules for continuing a nonnumeric literal in Tandem reference format are:

• The nonnumeric literal does not contain the trailing spaces of the previous line.

• The first nonblank character in area B of the continuation line must be a quotation
mark. The continuation begins with the character immediately following that
quotation mark.

The rules for continuing a national literal in Tandem reference format are:

• The national literal does not contain the trailing spaces of the previous line.

• The first nonblank character in area B of the continuation line must be the letter N
followed by a quotation mark. The continuation begins with the character
immediately following the quotation mark.

 Text Line
The compiler handles any line that begins with a space character as a program text
line.

Example 2-1. Continuation Line in Tandem Reference Format

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
 DISPLAY "THIS IS AN EXAMPLE OF CONTINUING A LITERAL
 - " IN TANDEM REFERENCE FORMAT."

Note. If the character in the indicator area is not a question mark, asterisk, slash, the letter D
(uppercase or lowercase), or a hyphen, the compiler issues a warning and handles the
character as if it were a space.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-5

Source Program Organization and Format Area A and Area B
If all characters between margin A and margin R are spaces, then the line is a blank
line. Blank lines can occur anywhere in the source text and have no effect on either the
syntax or semantics of source programs. If at least one character other than spaces
occurs after margin A, that character begins a new lexical element. When a program
text line is not continued (that is, when its successor text line does not contain a
hyphen in its indicator area), the compiler assumes that a space follows the last
nonblank character of the first line. If the final character is a period, comma, or
semicolon, the assumed space completes the separator begun by that character;
otherwise, the assumed space itself acts as a space separator.

Area A and Area B
HP COBOL ignores the distinction between area A and area B. The lexical elements of
a source program can occur anywhere between margin A and margin R. The few
exceptions to this are described in Restrictions.

Restrictions
You can format the text of a source program line freely except as noted in these topics:

• Reserved Words

• Period Separators

• Embedded SQL/MP or SQL/MX Statements

• Comment-Entry

• Standard COBOL Practice

Reserved Words
Do not split these reserved words across program lines:

• COPY

For other restrictions on the format of the COPY statement body, see COPY
Statement.

• DATE-COMPILED

If you split the reserved word DATE-COMPILED across program lines, the compiler
handles the paragraph as a simple comment-entry and does not replace its
contents with the date and time of compilation.

• REPLACE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-6

Source Program Organization and Format Restrictions
Period Separators
Do not put anything other than spaces after the period separator that follows one of
these reserved word sequences:

• DIVISION
• DECLARATIVES
• END DECLARATIVES

Do not put anything other than spaces or a USE statement after the period separator
that follow the reserved word SECTION.

Embedded SQL/MP or SQL/MX Statements
When COBOL statements and embedded SQL/MP or SQL/MX statements appear on
the same line, these restrictions apply:

• The COBOL statements cannot be COPY or REPLACE statements.

• The COBOL statements must follow the embedded SQL/MP or SQL/MX statement
terminator.

Comment-Entry
The restrictions on the comment-entry are:

• Following a comment-entry, the first keyword in the ensuing text (such as
ENVIRONMENT DIVISION or another comment-entry) must begin on a program
text line that has a space in the indicator area. This keyword must start in area A,
and only space characters can precede the keyword.

• You cannot continue a comment-entry with the hyphen convention; however, you
can implicitly continue it onto additional program text lines, provided that area A in
such lines contains only space characters.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-7

Source Program Organization and Format Restrictions
Standard COBOL Practice
Observe these restrictions to conform to standard COBOL practice (HP COBOL does
not enforce them).

• Verify that the special constructs DECLARATIVES and END DECLARATIVES
(along with each one’s terminating period separator) are completely contained in a
single program text line with a space character in the indicator area. Start them in
area A and precede them only by space characters.

• Start each of these in area A of a program text line that has a space in its indicator
area:

° The keyword or user-defined word naming a division, section, or paragraph
° The initial keyword of an END PROGRAM statement

Any characters preceding these words must be space characters.

• Start the level-numbers 01 and 77 and all level indicators (FD and SD) in area A of
a program text line with a space character in the indicator area and precede them
only by space characters. Other level-numbers can start in either area A or area B.

• When a lexical element that starts in area A of a program text line is followed by a
separator, you can start the next element (if any) on that line at any point after the
separator; otherwise, start all lexical elements other than those mentioned in the
preceding rules in area B. Always start continuations of lexical elements in area B.

• Verify that both of the characters that comprise the pseudo-text separator, ==,
appear on the same program text line.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-8

Source Program Organization and Format COPY Libraries
COPY Libraries
Any line in a source program can contain a COPY statement, which tells the COBOL
compiler to insert source text from a specified disk file, called a COPY library.

A COPY library is an EDIT or OSS ASCII file divided into one or more sections that
begin with a SECTION directive. In the COPY library, you can specify the reference
format of the line or lines to be copied.

You can specify the name of a COPY library in the source program or in a command to
compile the program:

• The COPY statement itself can include the phrase IN library-name (see COPY
Statement).

• The command that initiates the compilation can specify a library-name for the
compiler to use whenever a COPY statement does not include a library-name
(see Starting a Compilation).

If you do not specify a library-name in the compile command or in the COPY
statement, the compiler uses the name COPYLIB.

If you do not fully qualify library-name in the compile command or in the COPY
statement, the compiler assumes the library file is on the current default volume or
subvolume or both.

For details on the COPY statement and COPY libraries, see COPY Statement.

Nested Source Programs
Source programs can be nested (that is, a source program can contain other source
programs). One program can contain another program directly or indirectly. When a
program directly or indirectly contains other programs, each program can use the same
user-defined names for different objects.

Topics:

• Directly Contained Programs and Indirectly Contained Programs

• Scope of User-Defined Names
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-9

Source Program Organization and Format Directly Contained Programs and Indirectly
Contained Programs
Directly Contained Programs and Indirectly Contained Programs
One program can contain another program directly or indirectly. Suppose a program, L,
contains another program, R. Program L directly contains program R when program L
does not contain any other program that also contains program R. Program L indirectly
contains program R if program L does contain any other program that contains
program R.

In Figure 2-2, all the programs are in the same run unit and:

The program … Directly contains … And indirectly contains …

Mane Aaa, Bbb Ccc, Ddd

Aaa Nothing Nothing

Bbb Ccc Ddd

Ccc Ddd Nothing

Ddd Nothing Nothing

Sub Nothing Nothing

Figure 2-2. Directly Contained Programs and Indirectly Contained Programs

Program: Mane

Program: Sub

One
separately compiled
program

Another
separately compiled
program

Program: Bbb

Program: Ccc

Program: Ddd

One run unit

Program: Aaa

VST501.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-10

Source Program Organization and Format Scope of User-Defined Names
Scope of User-Defined Names
When a program directly or indirectly contains other programs, each program can use
identical user-defined names to name objects independent of the use of these user-
defined names by other programs. If program X describes a data item named B, and
program X includes another program Y, program Y can describe a different data item
named B (or even a file connector named B). The B of program Y is entirely separate
from the B of program X. The two Bs have different scopes.

Table 2-3. Scope of User-Defined Names

Type of User-Defined Name What Can Reference It

Paragraph-name
Section-name

Statements and entries in the program that defines it

Library-name
Text-name

Any COBOL program

Alphabet-name
Class-name
Condition-name
Mnemonic-name
Symbolic character

Statements and entries in either the program that contains
the Configuration Section or programs that it contains
(when the user-defined word is declared in a Configuration
Section)

Program-name
Condition-name*
Data-name
File-name
Record-name
Index-name

See these topics:

• Program-Name

• Condition-Name, Data-Name, File-Name, and Record-
Name

• Index-Name

* When not declared in the Configuration Section.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-11

Source Program Organization and Format Scope of User-Defined Names
Program-Name
The PROGRAM-ID paragraph of a program’s Identification Division declares that
program’s program-name. Only the CALL and CANCEL statements and the END
PROGRAM statement can refer to a program-name. The program-names allocated to
programs constituting a run unit are not necessarily unique, but when two programs in
a run unit are identically named, at least one of those two programs must be directly or
indirectly contained within another separately compiled program that does not contain
the other of those two programs.

These rules regulate the scope of a program-name:

• If the program-name, X, is that of a program that does not have the common
attribute and is directly contained within another program, Y, then only statements
included in Y can refer to X.

• If the program-name, V, is that of a program that does have the common attribute
and is directly contained within another program, W, then any programs directly or
indirectly contained within W can reference V; however, program V and any
programs contained within V cannot refer to V (because V calling V is recursion,
and because V cannot cancel itself).

• If the program-name, U, is that of a separately compiled program, then U can be
referenced by statements included in any other program in the run unit, except
programs it directly or indirectly contains. HP COBOL programs that are compiled
at the same time but separated by the ENDUNIT directive or by an END
PROGRAM statement are called separately compiled, as if they had been
compiled by different executions of the compiler.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-12

Source Program Organization and Format Scope of User-Defined Names
Condition-Name, Data-Name, File-Name, and Record-Name
When condition-names, data-names, file-names, and record-names are declared in a
source program, only that program can refer to them except when one or more of the
names is global and the program contains other programs.

The requirements governing the uniqueness of the names allocated by a single
program as condition-names, data-names, file-names, and record-names are
explained in the topic COBOL Words.

A program cannot reference any condition-name, data-name, file-name, or record-
name declared in any program it contains.

A program P that declares a global name can reference that name. Any program
directly or indirectly contained in P can also reference the global name.

When program B is directly contained within program A, both programs can declare a
condition-name, data-name, file-name, or record-name using the same user-defined
word. When program B refers to such a duplicated name, the compiler uses this
sequence of rules to determine which object is being referenced:

• The set of names the compiler uses to identify a referenced object consists of all
names that are defined in program B and all global names that are defined in
program A and in any programs that directly or indirectly contain program A. Using
this set of names, the compiler applies the normal rules of qualification and any
other rules for uniqueness of reference until it identifies one or more objects.

• If the compiler identifies only one object, that object is the reference object.

• If the compiler identifies more than one object, no more than one of them can have
a name local to program B. If zero or one of the objects has a name local to
program B, these rules apply:

° If the name is declared in program B, the object in program B is the referenced
object.

° If the name is not declared in program B, and if program A is directly contained
within another program, C, the referenced object is:

° The object in program A if the name is declared in program A and is global.

° The object in C if the name is not declared in program A or is not global in
A, and is declared in C and is global in C; otherwise, the compiler applies
this rule to further containing programs until it has found a single valid
name.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-13

Source Program Organization and Format Common Programs
Index-Name
If a data item is external and/or global and includes a table accessed with an index,
that index is also external and/or global (respectively); therefore, the scope of an index-
name is identical to that of the data-name that names the table whose index is named
by that index-name, and the scope rules for data-names apply. Index-names cannot be
qualified.

Common Programs
A common program is one that includes the COMMON clause in its Identification
Division. A common program can be called by any program directly or indirectly
contained in the program that directly contains the common program (except for the
called program itself and the programs that it contains). In Example 2-2, if program Aaa
includes the COMMON clause, the programs Bbb, Ccc, and Ddd can call it.

Programs in the Same Run Unit
A program and the programs that it contains are always in the same run unit, but
separate programs (not contained in that program and not containing it) can also be in
the same run unit.

Initial Programs
An initial program has an INITIAL clause in its Identification Division. An initial
program’s program state is initialized whenever the program is called. If program X is
an initial program, whenever a program calls X, the program state of X is the same as
when X was first called in that run unit. During the process of initializing an initial
program:

• The program’s internal data items are initialized (see Initializing Data Items).

• Files with internal file connectors associated with the program are not in the open
mode.

• The control mechanisms for all PERFORM and ALTER statements contained in the
program are set to their initial states.

The CANCEL and NOCANCEL directives, which determine whether a program is
initialized the first time it is called after having been canceled by a CANCEL statement,
do not affect initial programs. Initial programs are initialized every time they are called,
whether or not they were cancelled.

The LESS-CODE directive, which determines which parts of a program are initialized,
and how, handles initial programs as special cases (see LESS-CODE).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-14

Source Program Organization and Format How Programs Share Resources
How Programs Share Resources
A program can share resources with programs that it contains (directly or indirectly)
and programs that are in the same run unit as it is.

The resources that a program can share with programs that it contains are:

• record-names
• data-names
• condition-names
• file-names

The program makes them accessible to the inner programs by declaring them to be
global. This enables the inner programs to use the associated data items and file
connectors without declaring them. (The opposite of global is local. Local names are
only accessible to the program that declares them.)

The resources that a program can share with programs in its run unit are:

• data items
• file connectors

The program makes them accessible to the other programs by declaring them to be
external. Any other program in the run unit can use them by likewise declaring them to
be external. (The opposite of external is internal. Internal objects are only accessible to
the program that declares them—or, if they have global names, to programs within that
program—and only one program can declare them.)

Topics:

• Global and Local Names

• External and Internal Objects

• Shared Data

• Shared Files
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-15

Source Program Organization and Format Global and Local Names
Global and Local Names
A data-name (which names a data item) or a file-name (which names a file connector)
can be either global or local.

Suppose that program X declares data-name Y, and program X contains program Z,
which also declares data-name Y. When program Z references data-name Y, it is
referencing the Y that it declared, not the Y that program X declared, whether program
X declared its Y to be global or not.

Some names are always global; other names are always local; and some names are
either global or local, depending on specifications in the program that declares the
names:

In some circumstances, a data description, file description, or record description entry
cannot specify the GLOBAL clause (see GLOBAL Clause).

If a data-name, file-name, or condition-name declared in a data description entry is not
global, the name is local.

Global names are inherited by contained programs. Suppose program OUTER
declares a name X to be global and contains program INNER, which contains program
INNERMOST. As long as program INNER does not define the name X explicitly, a
reference to X in INNER refers to the X defined in OUTER. Also, as long as program
INNERMOST does not define the name X and program INNER does not define X as a
global name, a reference to X in INNERMOST refers to the X defined in OUTER.

Global names, as well as local names, can be associated with external and internal
objects.

Name It is global if a GLOBAL clause is in …

Record-name its record description entry
or
the file description entry for the file-name associated with its record
description entry (if the record-name is in the File Section)

Data-name its record description entry

Condition-name an entry to which its data description entry is subordinate (that is, if a
data-name is declared global, all condition-names subordinate to it are
automatically global)

File-name its file description entry
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-16

Source Program Organization and Format External and Internal Objects
External and Internal Objects
An external object is stored in an area that is associated with the run unit rather than
with any particular program within the run unit.

An internal object is stored in an area that is associated only with the program that
describes the object.

An external object can be referenced by any program in the run unit that describes the
object. All such descriptions must be identical, or the results of the references are
unpredictable. References to an external object from different programs are always to
the same object. In a run unit, there is only one representation of an external object.

External and internal objects can have either global or local names.

Topics:

• Data Records in Working and Extended-Storage

• File Connectors and Their Records

• Linkage Section Records

Data Records in Working and Extended-Storage
To give a data record described in the Working-Storage or Extended-Storage Section
the external attribute, include the keyword EXTERNAL in its data description entry.
Only record data description entries can include the EXTERNAL clause. Any data item
described by a data description entry subordinate to an entry describing an external
record also inherits the external attribute.

If a record or data item does not have the external attribute, it is part of the internal
data of the program that describes it.

File Connectors and Their Records
To give a file connector the external attribute, include the keyword EXTERNAL in its file
description entry. When a file connector has the external attribute, the records and the
data items of the file inherit the external attribute.

If a file connector does not have the external attribute, it is internal to the program that
describes the associated file-name.

The data records described subordinately to either of these file description entries are
internal to the program that describes the file-name unless the data records
themselves are declared to be external:

• A file description entry that does not contain the EXTERNAL clause
• A sort-merge file description entry

Any data items described subordinate to the data description entries for such records
are also internal to the program that describes the file-name.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-17

Source Program Organization and Format Shared Data
Linkage Section Records
Data records and any subordinate data items in the Linkage Section are
representatives of data items defined in other programs. They are considered to be
internal to the program describing them and are directly accessible only to that
program; however, they are indirectly accessible to programs called by that program.

Shared Data
Two programs in a run unit can refer to common data in these circumstances:

• Any program that has described an external data record can refer to the data
content of that record.

• If program B is contained within program A, both programs can refer to data
possessing the global attribute and described in either:

° The containing program A
° Any program that directly or indirectly contains A

• When a program passes a parameter value by reference, this establishes a
common data item—a storage location that each program can access. The called
program can refer to a data item in the calling program, using the same identifier or
a different identifier.

If several programs define a data item as external (causing its storage location to be a
single location outside all programs) and they also define the data item as having a
global name, then all such programs and all programs nested within each of them have
access to the data item.

Example 2-2 is a listing of a set of programs that share data through the global and
external mechanisms. Example 2-3 shows the output produced by executing the
programs.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-18

Source Program Organization and Format Shared Data
Example 2-2. Programs With Shared Data (page 1 of 4)

* ___
* | Program: Mane |
* | Data: w (local to Mane) |
* | y (global throughout Mane and its descendants) |
* | z (global throughout Mane and its descendants, and external) |
* | Can call: Aaa, Bbb because both are directly contained |
* | ___ |
* | | Program: Aaa | |
* | | Data: none | |
* | | Can call: Bbb because Bbb is common | |
* | | Sub because Sub is separate unit | |
* | |___| |
* | | Program: Bbb (common) | |
* | | Data: w (external) | |
* | | x (global throughout Bbb) | |
* | | Can call: Ccc because Ccc is directly contained | |
* | | Sub because Sub is separate unit | |
* | | __ | |
* | | | Program: Ccc | | |
* | | | Data: w (external) | | |
* | | | y (local to Ccc) | | |
* | | | Can call: Ddd because Ddd is directly contained | | |
* | | | Sub because Sub is separate unit | | |
* | | | __ | | |
* | | | | Program: Ddd | | | |
* | | | | Data: none | | | |
* | | | | Can call: Sub because Sub is separate unit | | | |
* | | | |__| | | |
* | | |___| | |
* | |___| |
* |___|
* | Program: Sub |
* | Data: w (external) |
* | x (local to Sub) |
* | y (global throughout Sub and any descendants) |
* | z (global throughout Sub and any descendants, and external) |
* | Can call: no other routines (calling Mane would be recursion) |
* |___|
*
* Accessibility: Which Routines Can Access Which Data Names?
* -----
* Mane Aaa Bbb Ccc Ddd Sub Item
* ---- --- --- --- --- --- -------------
* L w of Mane
* / . L . . . w of Bbb
* / . . L . . w of Ccc
* / L w of Sub
* . . L G G . x of Bbb
* L x of Sub
* L G G / G . y of Mane
* . . . L . . y of Ccc
* L y of Sub
* L G G G G . z of Mane
* L z of Sub
*
* (L = access because it is locally defined)
* (G = access because ancestor declared it global)
* (/ = can't access global because of local definition)
* (. = can't access because no local or global definition)*
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-19

Source Program Organization and Format Shared Data
* Storage 1. W of Bbb, w of Ccc, and w of Sub all refer to one location
* Allocation
* 2. Z of Mane and z of Sub each refer to one location.
*
* 3. All other identifiers refer to unique locations.
/
?main Mane
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Mane.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 w PICTURE 99 VALUE 3.
 01 y PICTURE 99 GLOBAL VALUE 1.
 01 z picture 99 GLOBAL EXTERNAL.
 PROCEDURE DIVISION.
 m.
 DISPLAY "Mane begin"
 MOVE 25 to z
 PERFORM show-me
 CALL Aaa PERFORM show-me
 CALL Bbb PERFORM show-me
 CALL Sub PERFORM show-me
 CALL Sub PERFORM show-me
 DISPLAY "Mane end"
 stop run
 .
 show-me.
 DISPLAY "in Mane, w=/" w "/ y=/" y "/ z=/" z "/"
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Aaa.
 PROCEDURE DIVISION.
 a.
 DISPLAY " Aaa begin"
 PERFORM show-me
 DISPLAY " Aaa adding 2 to y"
 ADD 2 TO y PERFORM show-me
 CALL Bbb PERFORM show-me
 DISPLAY " Aaa end"
 EXIT PROGRAM
 .
 show-me.
 DISPLAY " y (global from Mane)=/" y "/"
 " z (global from Mane)=/" z "/"
 .
 END PROGRAM Aaa.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. Bbb COMMON.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 x PICTURE 99 GLOBAL VALUE 0.
 01 w PICTURE 99 EXTERNAL.

Example 2-2. Programs With Shared Data (page 2 of 4)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-20

Source Program Organization and Format Shared Data
PROCEDURE DIVISION.
 b.
 MOVE 1 TO w
 DISPLAY " Bbb begin"
 PERFORM show-me
 DISPLAY " Bbb adding 3 to w and to x"
 ADD 3 to w x PERFORM show-me
 CALL Ccc PERFORM show-me
 DISPLAY " Bbb end"
 EXIT PROGRAM
 .
 show-me.
 DISPLAY " in Bbb, w (ext)=/" w "/"
 " x (global in Bbb)=/" x "/"
 " y (global from Aaa)=/" y "/"
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Ccc.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 w PICTURE 99 EXTERNAL.
 01 y PICTURE 99 VALUE 0.
 PROCEDURE DIVISION.
 c.
 DISPLAY " Ccc begin"
 PERFORM show-me
 DISPLAY " Ccc adding 4 to w, x, and y"
 ADD 4 to w x y
 PERFORM show-me
 CALL Ddd
 DISPLAY " Ccc end"
 EXIT PROGRAM
 .
 show-me.
 DISPLAY " in Ccc, w (ext)=/" w "/"
 " x (global from Bbb)=/" x "/"
 " y (local in Ccc)=/" y "/"
 .
 IDENTIFICATION DIVISION.
PROGRAM-ID. Ddd.
 DATA DIVISION.
 PROCEDURE DIVISION.
 d.
 DISPLAY " Ddd begin"
 DISPLAY " in Ddd, x (global from Bbb)=/" x "/"
 " y (global from Mane)=/" y "/"
 MOVE 17 to z
 DISPLAY " Ddd changing z to 17"
 DISPLAY " in Ddd, z (global from Mane)=/" z "/"
 DISPLAY " Ddd end"
 .
 END PROGRAM Ddd.
 END PROGRAM Ccc.
 END PROGRAM Bbb.
 END PROGRAM Mane.
?ENDUNIT

Example 2-2. Programs With Shared Data (page 3 of 4)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-21

Source Program Organization and Format Shared Data
IDENTIFICATION DIVISION.
 PROGRAM-ID. Sub.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 y PICTURE 99 GLOBAL VALUE 2.
 01 w PICTURE 99 EXTERNAL.
 01 x PICTURE 99 VALUE 0.
 01 z PICTURE 99 EXTERNAL.
 PROCEDURE DIVISION.
 s.
 DISPLAY " Sub begin"
 PERFORM show-me
 DISPLAY " Sub moving 5 to w"
 MOVE 5 to w PERFORM show-me
 IF x = 0
 DISPLAY " Sub adding 5 to w, x, y, and z"
 ADD 5 to w x y z PERFORM show-me
 END-IF
 DISPLAY " Sub end"
 EXIT PROGRAM
 .
 show-me.
 DISPLAY " in Sub, w (ext)=/" w "/ x (local)=/" x "/"
 " y (local)=/" y "/ z (ext)=/" z "/"
 .
 END PROGRAM Sub.

Example 2-2. Programs With Shared Data (page 4 of 4)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-22

Source Program Organization and Format Shared Data
Example 2-3. Output From Programs With Shared Data

Mane begin
in Mane, w=/03/ y=/01/ z=/25/
 Aaa begin
 y (global from Mane)=/01/ z (global from Mane)=/25/
 Aaa adding 2 to y
 y (global from Mane)=/03/ z (global from Mane)=/25/
 Bbb begin
 in Bbb, w (ext)=/01/ x (global in Bbb)=/00/ y (global from Aaa)=/03/
 Bbb adding 3 to w and to x
 in Bbb, w (ext)=/04/ x (global in Bbb)=/03/ y (global from Aaa)=/03/
 Ccc begin
 in Ccc, w (ext)=/04/ x (global from Bbb)=/03/ y (local in Ccc)=/00/
 Ccc adding 4 to w, x, and y
 in Ccc, w (ext)=/08/ x (global from Bbb)=/07/ y (local in Ccc)=/04/
 Ddd begin
 in Ddd, x (global from Bbb)=/07/ y (global from Mane)=/03/
 Ddd changing z to 17
 in Ddd, z (global from Mane)=/17/
 Ddd end
 Ccc end
 in Bbb, w (ext)=/08/ x (global in Bbb)=/07/ y (global from Aaa)=/03/
 Bbb end
 y (global from Mane)=/03/ z (global from Mane)=/17/
 Aaa end
in Mane, w=/03/ y=/03/ z=/17/
 Bbb begin
 in Bbb, w (ext)=/01/ x (global in Bbb)=/07/ y (global from Aaa)=/03/
 Bbb adding 3 to w and to x
 in Bbb, w (ext)=/04/ x (global in Bbb)=/10/ y (global from Aaa)=/03/
 Ccc begin
 in Ccc, w (ext)=/04/ x (global from Bbb)=/10/ y (local in Ccc)=/04/
 Ccc adding 4 to w, x, and y
 in Ccc, w (ext)=/08/ x (global from Bbb)=/14/ y (local in Ccc)=/08/
 Ddd begin
 in Ddd, x (global from Bbb)=/14/ y (global from Mane)=/03/
 Ddd changing z to 17
 in Ddd, z (global from Mane)=/17/
 Ddd end
 Ccc end
 in Bbb, w (ext)=/08/ x (global in Bbb)=/14/ y (global from Aaa)=/03/
 Bbb end
in Mane, w=/03/ y=/03/ z=/17/
 Sub begin
 in Sub, w (ext)=/08/ x (local)=/00/ y (local)=/02/ z (ext)=/17/
 Sub moving 5 to w
 in Sub, w (ext)=/05/ x (local)=/00/ y (local)=/02/ z (ext)=/17/
 Sub adding 5 to w, x, y, and z
 in Sub, w (ext)=/10/ x (local)=/05/ y (local)=/07/ z (ext)=/22/
 Sub end
in Mane, w=/03/ y=/03/ z=/22/
 Sub begin
 in Sub, w (ext)=/10/ x (local)=/05/ y (local)=/07/ z (ext)=/22/
 Sub moving 5 to w
 in Sub, w (ext)=/05/ x (local)=/05/ y (local)=/07/ z (ext)=/22/
 Sub end
in Mane, w=/03/ y=/03/ z=/22/
Mane end
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-23

Source Program Organization and Format Shared Files
Shared Files
Two programs in a run unit can refer to common file connectors in these
circumstances:

• Any program that has described an external file connector can refer to that file
connector.

• If program G is contained within program H, both programs can refer to a common
file connector. They do so by referring to an associated global file-name (or
associated global record-name, in the case of the WRITE and REWRITE
statements) described in either:

° The containing program H
° Any program that directly or indirectly contains H

If several programs define a file connector as external (causing its storage location to
be a single location outside all programs) and they also define the file connector as
having a global name, then all such programs and all programs nested within each of
them have access to the file connector.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
2-24

3 Language Elements
The smallest unit of the COBOL language is a character. You use most characters to
form character-strings, and you use a few punctuation characters to form separators.
The text of a source program consists of character-strings delimited by separators.

Most character-strings and all separators consist of one or more characters from the
COBOL character set, which is a subset of the ASCII character set. The character-
strings that are exceptions to this rule are comments and nonnumeric literals, which
can contain any of 256 characters (although ASCII characters are recommended).

Topics:

• COBOL Character Set

• Punctuation Characters

• Character-Strings

Figure 3-1. Language Element Relationships

Source
Program

Character-Strings

COBOL Character Set

ASCII Character Set

Punctuation
Characters

256-Character Set

VST502.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-1

Language Elements COBOL Character Set
COBOL Character Set
The COBOL character set is a subset of the ASCII character set (which is listed in
Appendix A, ASCII Character Set). The COBOL character set has 78 characters; the
ASCII character set has 128.

Figure 3-2. COBOL Character Set

Table 3-1. Alphanumeric Characters (for COBOL Words)

Characters Name of Character Set

0 through 9 Digits

A through Z Uppercase letters

a through z Lowercase letters

- Hyphen or minus sign

COBOL Character Set

Alphanumeric Characters
(for COBOL words)

Letters
(A – Z

 a – z)

Digits
(0 – 9)

Hyphen
(–)

Special Characters

 Punctuation Characters

VST503.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-2

Language Elements COBOL Character Set
Except in nonnumeric literals, the compiler handles lowercase letters as equivalent to
the corresponding uppercase letters.

You can use characters that are not in the COBOL character set in your COBOL
source programs in these cases:

• A character other than the dollar sign ($) can represent the currency symbol in
PICTURE clauses (see SPECIAL-NAMES Paragraph)

• A question mark (?) precedes a compiler directive
(see Indicator Area)

• Comment-entries, comment lines, and nonnumeric literals can contain any
characters in the computer’s character set (but some control characters adversely
affect the compiler listing)

Table 3-2. Punctuation Characters

Character Name of Character

 Space

, Comma

; Semicolon

: Colon

. Period

" Quotation mark

(Left parenthesis

) Right parenthesis

= Equal sign

Table 3-3. Special Characters

Character Name of Character

+ Plus sign

- Hyphen or minus sign

* Asterisk

/ Stroke or slash

$ Currency sign

> Greater than sign

< Less than sign
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-3

Language Elements Punctuation Characters
Punctuation Characters
Punctuation characters belong to the COBOL character set and are listed in Table 3-2.
In a COBOL source program, you can use a punctuation character in these contexts:

• Separators

• Comments

• Nonnumeric and National Literals

• Numeric Literals and PICTURE Character-Strings

Separators
A separator is one or more consecutive punctuation characters used to separate
character-strings, sentences, or special clauses or to delimit other characters in
expressions. The punctuation characters that can be used as separators are:

• Space

• Comma or Semicolon

• Colon

• Period

• Quotation Marks

• Parentheses

• Equal Sign

Every character-string must be followed by a sequence of one or more separators. The
syntactic definition of the COBOL language specifies when a sequence can or must
contain any of the period, parentheses, colon, or pseudo-text separators. A space
separator can always immediately precede or follow any other separator, except where
the reference format rules specify otherwise (see Reference Format for Source
Program Lines).

Space
A space character is a separator. Anywhere that a space is used as a separator or a
part of a separator, more than one space can be used. The compiler handles all
spaces immediately following a comma, semicolon, or period separator as part of that
separator and not as a distinct space separator.

Note. The rules for using the punctuation characters as separators do not apply within
comments, nonnumeric literals, numeric literals, or PICTURE character-strings)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-4

Language Elements Separators
Comma or Semicolon
A comma (,) or semicolon (;) that immediately precedes one or more spaces acts as a
comma separator or semicolon separator, respectively. Except where explicitly
prohibited, you can use comma and semicolon separators anywhere that the
specifications permit or require space separators.

Colon
The colon (:) is a separator that COBOL uses to distinguish a reference modifier from a
subscript. The colon marks the end of the leftmost character position portion of the
reference modifier. It is required when shown in a syntax diagram.

Period
A period (.) that immediately precedes one or more spaces acts as a period separator.
Period separators are required in certain places by the syntactic definition of COBOL.
They cannot appear anywhere else.

Each sentence within the Identification and Procedure divisions and each entry within
the Environment and Data divisions must end with a period separator.

Quotation Marks
Quotation marks in balanced pairs enclose nonnumeric literals. You must precede the
beginning quotation mark (") with a space and follow the ending quotation mark with a
separator space, comma, semicolon, period, or right parenthesis. Except where a
literal continues across several lines, each delimiting quotation mark acts as a
separator.

Within a simple nonnumeric literal, two consecutive quotation marks represent one
quotation mark.

Parentheses
The punctuation characters left parenthesis [(] and right parenthesis [)] serve
individually as separators. Parenthesis separators can appear only in balanced pairs
delimiting subscripts, reference modifiers, arithmetic expressions, or conditions. The
opening member of each balanced pair must be a left parenthesis separator; the
closing member must be a right parenthesis separator.

Equal Sign
The pseudo-text delimiter (==) is a separator. It can only appear in balanced pairs
delimiting pseudo-text. An opening pseudo-text separator must be immediately
preceded by a space. A closing pseudo-text separator must be immediately followed
by a space, comma, semicolon, or period separator.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-5

Language Elements Comments
Comments
All characters appearing within a comment-entry or comment line are a part of that
entity and are never interpreted as separators in that context.

Nonnumeric and National Literals
Characters appearing within a character-string that represents a nonnumeric or
national literal are components of its value and are never interpreted as separators.

Numeric Literals and PICTURE Character-Strings
Several punctuation characters (comma, period, left parenthesis, right parenthesis) are
also defined as characters available for the formation of numeric literals and PICTURE
character-strings. They are not separators in these contexts but instead represent a
part of that language element; however, an exception exists if the apparent last
character of such a character-string is a period or comma immediately followed by a
space. In this case, the period or comma is always interpreted as part of the separator
following the character-string, and not as the last character of the numeric literal or
PICTURE character-string.

Character-Strings
A character-string consists of one or more characters that form:

• COBOL Words

• Literals

• PICTURE Character-Strings

• Comments

Most character-strings are limited to certain characters, but nonnumeric literals (except
for hexadecimal literals beginning with X) and comments can contain any characters.
Character-strings and separators form the text of COBOL source programs.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-6

Language Elements COBOL Words
COBOL Words

char-1
char-n

If the COBOL word is a level-number or segment-number, then char-1 is a digit.

If the COBOL word is a section-name or paragraph-name, then these rules apply:

• char-1 is a letter (uppercase or lowercase) or a digit.
• char-n is a letter (uppercase or lowercase), a digit, or a hyphen (-).
• The last character cannot be a hyphen.
• The maximum length of the word is 30 characters.

If the COBOL word is not a level-number, segment-number, section-name, or
paragraph-name, these rules apply:

• char-1 is a letter (uppercase or lowercase) or a digit.
• If char-1 is the only character in the word, then it must be a letter.
• char-n is a letter (uppercase or lowercase), a digit, or a hyphen (-).
• At least one character must be either a letter or a hyphen.
• The last character cannot be a hyphen.
• The maximum length of the word is 30 characters.

The same COBOL word can be used as a system-name and as a user-defined name
within a source program. The class of a specific occurrence of the word is determined
by context.

Figure 3-3. COBOL Words in a Source Program

char-1

char-n
ns

ns

VST741.vsd

Reserved
Words

User-Defined
Names

COBOL Words in a Source Program

System-Names

VST505.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-7

Language Elements COBOL Words
With the exception described in the preceding paragraph, every name that you
reference in a COBOL program must be unique, either because no other name has the
same spelling (including hyphenation), or because the name is part of a hierarchy of
names (such as a data-name defined within a record). In the latter case, you can
qualify the name with one or more of the higher-level names. You must specify enough
higher-level names to make the name unique, but you need not specify all levels. The
most significant name in a hierarchy must have unique spelling, because you cannot
qualify it.

Topics:

• Reserved Words

• User-Defined Names

• System-Names

• Qualified Names
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-8

Language Elements COBOL Words
Reserved Words
A reserved word is a COBOL word that has a special meaning for the compiler. All
reserved words appear in uppercase letters throughout this manual. (Some other
words, such as product names, also appear in uppercase letters,)

A reserved word can appear in the source program only where the language syntax
requires or permits it. Every reserved word is unique and cannot be used or redefined
for any purpose other than those described in this manual.

For a list of all reserved words, see Section 21, Reserved Words.

Table 3-4. Reserved Word Categories

Category Definition Examples

Keywords Required elements of the language
construct for which they are defined

MOVE
DIVIDE
AND
OR

Optional words Elements of language constructs
that you can use or omit, at your
discretion (their presence or
absence does not affect the meaning
of the language construct for which
they are defined)

ON
THEN

Special registers Data items that the compiler
generates automatically when the
source program uses the associated
language

DEBUG-ITEM
GUARDIAN-ERR
LINAGE-COUNTER
LINE-COUNTER*

PAGE-COUNTER*

PROGRAM-STATUS

Figurative constants Words that name and reference
constant values

SPACE
ZERO

Special-character words Required arithmetic and relational
operators, used in arithmetic
expressions and relation conditions,
respectively

+
-
*
/
**
=
<
>
<=
>=

* LINE-COUNTER and PAGE-COUNTER are associated with the Report Writer and are not available in
HP COBOL.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-9

Language Elements COBOL Words
User-Defined Names
A user-defined name is a COBOL word that you compose for your own use. You
cannot use a reserved word for a user-defined name. You can compose words for
these types of items:

In general, each user-defined name in each category must identify a unique entity
within the source program. Exceptions:

• Level-numbers and segment-numbers have no uniqueness constraints.

• Using an all-digit word as a section-name or paragraph-name does not interfere
with its concurrent use as a level-number or a segment-number.

• The same paragraph-name can identify two or more paragraphs if each paragraph
appears in a different section of the Procedure Division.

• Using a word as a library-name does not interfere with its concurrent use as the
name of an entity in another category (this is an HP extension to COBOL, which
does not permit a library-name to duplicate the name of another entity); however,
library-names must be unique among themselves.

• Using a word as a text-name does not interfere with its concurrent use as the
name of an entity in another category. The same text-name can identify two or
more library texts if each text appears in a different library.

• The category data-reference includes record-names, data-names, and condition-
names. The same user-defined name can identify two or more entities in any
combination of these subcategories; however, a program cannot reference the
entities identified by a duplicated name unless the contexts of their definitions
permit sufficient qualification to construct a unique reference to each of them (see
Qualified Names).

System-Names
Although COBOL does not define any specific system-names, it includes several
syntactic definitions that require them. COBOL limits the forms of system-names to
those permitted for user-defined names. HP COBOL relaxes this restriction. The use of
each particular system-name is limited to contexts appropriate for its category. The few
minor restrictions on duplicate usages of system-names are discussed in SPECIAL-
NAMES Paragraph.

In HP COBOL, system-names are either resource names or file names in the form
used by the operating system.

alphabet-name index-name paragraph-name segment-number

class-name level-number program-name symbolic-character

data-reference library-name routine-name text-name

file-name mnemonic-name section-name
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-10

Language Elements COBOL Words
The types of system-names are:

• Resource names

 A resource name is a mnemonic-name that identifies part of the environment:

For more information on resource names, see SPECIAL-NAMES Paragraph.

• Operating system file names

The NonStop operating system supports two file systems: the Guardian file system
and the Open System Services (OSS) file system.

A Guardian file name identifies one of these:

° Disk file
° Input or output device (such as a line printer)
° Process (such as a requester)
° Spooler collector
° Special file name (such as a temporary disk file)

For details on Guardian file names, see the Guardian Procedure Calls Reference
Manual.

An OSS file name identifies one of these:

° Disk file
° Special file name (such as a temporary disk file)

For details on OSS file names, see Files in the OSS Environment.

Resource Name (mnemonic-name) Environment Part Identified

CONSOLE Operator console

MYTERM Home terminal

CHANNEL-1
through
CHANNEL-15

Carriage-control tape channels

SWITCH-1
through
SWITCH-15

External switches

DANSK-NORSK
DEUTSCH
ESPANOL
FRANCAIS-QW
FRANCAIS-AZ
SVENSK-SUOMI
UK
USASCII

Native character sets
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-11

Language Elements COBOL Words
• Special names for operating system files

A special name is a substitute (in the source program) for a certain operating
system file:

For more information on spooler collectors, see the Spooler Utilities Reference
Manual.

Special Name

Operating System File

Guardian OSS

#IN The file named in the IN
parameter of startup message of
current process.

The default input device (FD 0)—
do not use it in SELECT clauses
or the SPECIAL-NAMES
paragraph as you can in the
Guardian environment.

#OUT The file named in the OUT
parameter of startup message of
current process.

The default output device
(FD 1)—do not use it in SELECT
clauses or the SPECIAL-NAMES
paragraph as you can in the
Guardian environment.

#TERM Home terminal of current process.

#TEMP Temporary disk file on default volume.

Created during execution of an OPEN statement, purged during
execution of a CLOSE statement.

You cannot specify a volume name for #TEMP. The volume used for
#TEMP is the current default volume. If you want a temporary file on
another volume, either specify only the volume name or specify a
TACL ASSIGN command with only the volume name, for example:

ASSIGN a-file, $vol

#DYNAMIC File name specified with the run-time library routine COBOLASSIGN
or COBOL_ASSIGN_ during the execution of the current process.

Legal only in the SELECT clause of a file-control entry.

If you use #DYNAMIC as the file name in an ASSIGN command,
TACL accepts it, but does not make the file dynamically assignable,
and the file becomes unusable because it has an invalid name.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-12

Language Elements COBOL Words
Qualified Names
Every name that you reference in a COBOL program must be unique, either because
no other name has the same spelling (including hyphenation) or because the name is
part of a hierarchy of names (such as a data-name defined within a record). In the
latter case, you can qualify the name with one or more of the higher-level names. You
must specify enough higher-level names to make the name unique, but you need not
specify all levels. The most significant name in a hierarchy must have unique spelling,
because you cannot qualify it.

Qualified Condition-Name:

Qualified Data-Name:

Qualified Paragraph-Name:

Qualified Text-Name:

condition-name OF

IN

conditional-variable-name

mnemonic-name

VST001.vsd

data-name

OF

IN

file-name

OF

IN

data-name

VST002.vsd

paragraph-name OF

IN

section-name

VST003.vsd

OF

IN

text-name library-name

VST004.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-13

Language Elements COBOL Words
Within the Data Division, you can use file-names from file description (FD) or sort-
merge file description (SD) entries and data-names from data description entries for
qualification. Within the levels of qualification, file-names (names associated with level
indicators FD and SD) are most significant, then data-names for level-01 items, and
then data names for level-02 items, and so on to level-49 items. The name of a
conditional variable can qualify any of its condition-names.

These rules apply to qualification of names:

• Each qualifier must be at a higher level than the previous one and stay within the
same structure of the name it qualifies.

• The same name cannot occur at different levels in a structure; otherwise, the name
could qualify itself.

• A data-name used as a qualifier cannot be subscripted; all subscripts that apply to
a qualified data-name appear after all qualifiers.

• A name can be qualified even though it does not need qualification. If there is more
than one combination of qualifiers that make a name unique, then any one of them
will do, including complete qualification (naming all qualifiers). HP COBOL permits
a name to be qualified completely, with a name from every level of its structure.

• If a data-name or a condition-name is assigned to more than one element in a
source program, the data-name or condition-name must be qualified each time it is
referred to in the Procedure, Environment, and Data divisions (except in the
REDEFINES clause where, by context, qualification is unnecessary). The name of
a data-item can be used as the lowest level qualifier for any of its associated
condition-names.

• If a word defined as a status condition-name is assigned to more than one element
in a source program, the condition-name must be qualified by the mnemonic-name
of its external switch each time it is mentioned in the Procedure Division. The
qualification of status condition-names is an HP COBOL extension.

Qualified LINAGE COUNTER:

VST005.vsd

LINAGE-COUNTER OF

IN

file-name
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-14

Language Elements COBOL Words
• A word can be defined as a paragraph-name more than once in a source program.
If more than one paragraph in the same section of a source program has the same
name, no statement anywhere in the program can refer to any of those paragraphs
by name.

If two or more sections of a source program each contains a paragraph with the
same paragraph-name, unqualified references to that paragraph-name are
acceptable only within such sections—all other references must be qualified. For
example, suppose sections S1 and S2 contain paragraphs named P. All references
to P in other sections must be qualified as P OF S1 or P OF S2. Without such
qualification, they cause the compiler to report an ambiguous reference.
Unqualified references made within S1 to P are assumed to refer to P OF S1, and
unqualified references made within S2 to P are assumed to refer to P OF S2.
Statements in S1 can refer to P OF S2 and statements in S2 can refer to P OF S1.

The word SECTION is not part of a section-name when used to qualify a
paragraph-name.

• If a text-name is not a member of the default COPY library, it must be qualified by
its library-name each time a COPY statement mentions it.

• If more than one file description entry in a program contains a LINAGE clause, the
special register LINAGE-COUNTER must be qualified by its file-name each time
the Procedure Division mentions it.

In Example 3-1, all data-names except PREFIX are unique.

Qualification is necessary to refer to either PREFIX item. For example, any of these
sentences would move the contents of one PREFIX to the other PREFIX:

MOVE PREFIX OF ITEM-NO TO PREFIX OF CODE-NO.
MOVE PREFIX IN ITEM-NO TO PREFIX OF MASTER-REC.
MOVE PREFIX OF TRANSACTION-REC TO PREFIX IN CODE-NO.

Example 3-1. Qualified Names

FD TRANSACTION-FILE
 ...
 01 TRANSACTION-REC.
 03 ITEM-NO.
 05 PREFIX X(2).
 05 CODE X(3).
 03 QUANTITY S9(8).
 ...
 01 MASTER-REC.
 03 CODE-NO.
 05 PREFIX X(2).
 05 SUFFIX X(3).
 03 DESCRIPTION X(70).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-15

Language Elements Literals
It is possible to define a collection of program elements such that even complete
qualification fails to establish uniqueness for some of their names. In this case, your
program can never reference these elements. To avoid this situation, follow these
rules:

• Do not define two identical data-names subordinate to a data structure unless their
references can be made unique through qualification by intermediate data
structure names.

• Do not define two identical record-names subordinate to any file-name.
Independent data items (level-77 items) and record items that are not files must
have unique names if they are to be referenced.

• Do not associate two identical condition-names with the same data item. If a word
used as a condition-name is also used to identify another program element, then it
can be referenced if and only if the associated data item can be referenced.

• Do not define two identical status condition-names within the same system-name
clause of the SPECIAL-NAMES paragraph. If a word used as a condition-name in
such a clause is also used to identify another program element, then the clause
must also include a unique mnemonic-name to serve as a reference qualifier.

• Do not put two identical paragraph-names in the same section. If a word used as a
paragraph-name is also used to identify another program element, then it can be
referenced if and only if its section can be referenced. Sections must have unique
names if they are to be referenced.

• Do not locate two identical text-names in the same COPY library.

Literals
A literal is a character-string that has a value implied by either of these:

• An ordered set of characters that compose the literal
• A figurative constant (a special type of reserved word)

Topics:

• Numeric literals

° Decimal Numeric Literals

° Hexadecimal Numeric Literals

• Nonnumeric literals

° Simple Nonnumeric Literals

° Hexadecimal Nonnumeric Literals

• National Literals

• Figurative Constants
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-16

Language Elements Literals
Decimal Numeric Literals
A decimal numeric literal is a character-string that has the value of the sequence of its
digits.

digits

is a string of one to 18 digits. The total number of digits in a decimal numeric literal
cannot exceed 18.

dp

is a decimal point. It is a period (“.”) unless the program contains the DECIMAL
POINT COMMA phrase in the SPECIAL-NAMES paragraph, in which case it is a
comma (“,”).

Decimal numeric literals follow these rules:

• When a decimal numeric literal appears in a context where its value is assumed to
be a sequence of characters, its size is equal to the number of digits in its
representation.

• A sign character (+ or -) has no effect on the size of a literal. Absence of a sign
signifies a positive number.

• COBOL does not permit the decimal point as the rightmost (last) character;
HP COBOL relaxes this restriction somewhat:

° If the apparent last character of a numeric literal qualifies as a decimal point
and the immediately following character is not a space (but is a semicolon,
comma, or right parenthesis), the compiler interprets that last character as the
decimal point.

° If the apparent last character qualifies as a decimal point but the immediately
following character is a space, the compiler interprets that last character and
the space together as the separator that follows the literal.

• The compiler interprets a decimal point as an assumed decimal point; that is, the
character is not present in the value even if the context of the literal implies that the
value is represented as a sequence of characters.

• A decimal numeric literal that has no decimal point is an integer.

digits

digits

ns

digits
ns

+

-

dp

ns
dp

ns

VST743.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-17

Language Elements Literals
Hexadecimal Numeric Literals

hex-digit

is one of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, a, b, c, d, e, f.
The maximum number of hex-digits in a hexadecimal numeric literal is 16 (eight
pairs).

A hexadecimal numeric literal is considered an unsigned integer. It can appear
anywhere that a decimal numeric literal can appear.

Example 3-2. Integer Decimal Numeric Literals

+601
-234116
0
15
1234. , (an integer followed by a period separator and a comma
 separator)

Example 3-3. Noninteger Decimal Numeric Literals

+601.1
89.6
0.0051
-.1
1234., (a noninteger followed by a comma separator)

Example 3-4. Hexadecimal Numeric Literals

H"00"
H"0F"
H"0123456789ABCDEF"
H"1003c55b"

VST612.vsd

"H hex-digit hex-digit "
nsns nsns

ns
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-18

Language Elements Literals
Simple Nonnumeric Literals
 A simple nonnumeric literal is a character-string that has the value of the sequence of
its characters.

char

is an alphanumeric character or a quotation mark ("). If char is a quotation mark,
it must be immediately followed by another quotation mark. Each pair of quotation
marks represents a single embedded quotation mark. A simple nonnumeric literal
can have at most 160 characters, excluding the delimiting quotation marks.

Simple nonnumeric literals follows these rules:

• The literal must be both preceded and followed by at least one separator.

• The delimiting quotation marks are part of the character-string that represents the
literal; they are not part of the value of the literal.

• HP COBOL accepts only the double quotation mark ("), not the apostrophe ('), as a
quotation mark.

• The literal does not include the second of two consecutive quotation marks that
represent a single, embedded one.

• All other characters in the literal represent themselves as a part of the literal’s
value and have no other interpretation. Lowercase letters are not equivalent to
their uppercase counterparts. Punctuation characters are not interpreted as
separators.

• The value of a literal is the ordered sequence of characters in its representation
(excluding the delimiting quotation marks and interpreting a pair of contained
quotation marks as a single quotation mark character). The literal represents a
data item of the alphanumeric category whose value is the value of the literal.

Example 3-5. Nonnumeric Literals

"THIS IS A NONNUMERIC LITERAL"
"This is ANOTHER one. "" IS ONE EMBEDDED QUOTATION MARK"
"You don't need to double apostrophes."
". , ; : () == are not separators in literals."

VST744.vsd

" char "
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-19

Language Elements Literals
Hexadecimal Nonnumeric Literals

hex-digit

is one of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, a, b, c, d, e, f. A
hexadecimal nonnumeric literal can have at most 320 hexadecimal digits (160
pairs), excluding the delimiting quotation marks.

A hexadecimal nonnumeric literal can appear anywhere that a simple nonnumeric
literal can appear.

National Literals
A national literal is used for those spoken languages not represented by roman letters
and Arabic numbers. An example is the Japanese Kanji alphabet. To use national
literals, you must have a special terminal and a special keyboard.

As with other types of literals, the character-string of a national literal has the value of
the sequence of its characters. Each character is represented internally by 2 bytes.

char

is any character in the national character set, including a punctuation character. A
national literal can have at most 160 characters, excluding the delimiting quotation
marks.

Example 3-6. Hexadecimal Nonnumeric Literals

X"00"
X"0F"
X"0123456789ABCDEF"
X"1003c55b"

"X hex-digit hex-digit "
ns ns ns ns

ns

VST613.vsd

" char "
N

n

VST745.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-20

Language Elements Literals
National literals follow these rules:

• The letter N or n and the quotation marks are part of the character-string that
represents the literal; they are not part of the value of the literal.

• HP COBOL accepts only the double quotation mark ("), not the apostrophe ('), as a
quotation mark.

• The value of a national literal is the ordered sequence of characters in its
representation, excluding the delimiting quotation marks. The maximum number of
characters allowed on a line depends on the column in which the literal begins.

• The literal represents a data item of the national category whose value is the value
of the literal.

• Punctuation characters appearing within a character-string that represents a
national literal are components of its value and are never interpreted as separators.
Each character is represented internally as 2 bytes.

In general, you can use a national literal anywhere you can use a nonnumeric literal.
Exceptions are:

• A national literal cannot be compared to a nonnumeric or numeric literal or to a
data item not defined as national. Compare national literals only to other national
literals or national data items.

• A national literal cannot be specified in these paragraphs, statements, phrases, or
clauses:

° SPECIAL-NAMES paragraph

° PADDING clause of the SELECT statement

° RECEIVE-CONTROL paragraph

° INITIALIZE statement when the REPLACING phrase is used

° INSPECT statement

° As literal-1 or literal-2 of the REPLACING phrase of a COPY
statement

• If national literals and national data items are used for items in a STRING
statement (delim-1, delim-2, result, or delim-store), all the items must be
national literals or national data items.

Figurative Constants
A figurative constant is a character-string that has a value the compiler generates from
one of the reserved words in the first column of Table 3-5. The value it generates
depends on the context in which the figurative constant appears.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-21

Language Elements Literals
In general, you can use a figurative constant wherever the syntax rules of the language
require or permit a literal. The exceptions to this rule are:

• When the literal must be a numeric literal, the only acceptable figurative constant
is [ALL] ZERO[[E]S] (which generates the numeric value 0). The other forms of
figurative constant always generate a nonnumeric value; therefore, such forms are
not acceptable when the context requires a numeric value.

• There are certain contexts in which you cannot use figurative constants whose
source form includes the word ALL. When this is the case, the usage
considerations for that particular language element’s syntax mention the usage
restriction.

• The COBOL language includes several constructs where a literal cannot be any
figurative constant. When this is the case, the usage considerations for that
particular language element’s syntax mention the usage restriction.

• When SPACE, QUOTE, or ZERO is applied to a national data item, the class of the
figurative literal is national. The 2-byte value of the national character set that
corresponds to SPACE, QUOTE, or ZERO when the program is compiled is used.
For LOW-VALUES and HIGH-VALUES, the highest and lowest positions in the
collating sequence are assumed.

When a figurative constant represents a nonnumeric or national value, that value is a
string of one or more characters. The compiler determines the length of the string
according to these rules:

• When you associate a figurative constant with a data item (for example, by moving
the figurative constant to the data item or by comparing them or using the figurative
constant in a VALUE clause), the compiler repeats the figurative constant value
character by character until its size equals or exceeds the size of the data item.
The compiler then truncates the resultant string from the right end until it has the
same number of character positions as the associated data item. This happens
prior to and independently of the application of any JUSTIFIED clause for the data
item.

• When you use a figurative constant whose source form does not include the word
ALL with a DISPLAY, STRING, STOP, or UNSTRING statement, the compiler
generates exactly one character.

• When you use a figurative constant whose source form does include the word ALL,
there are two possibilities:

° If a nonnumeric or national literal follows the word ALL, the compiler generates
a string having the length and value of the literal.

° If a nonnumeric or national literal does not follow the word ALL, the compiler
generates a string of exactly one instance of the character represented by the
reserved word (figurative constant) or the symbolic character that follows the
word ALL.

• The length of a figurative constant in a concatenation expression is one.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-22

Language Elements Literals
The result of associating a figurative constant that represents a nonnumeric value with
a numeric or numeric-edited data item is defined only when the string the compiler
generates from the figurative constant contains only digit characters. In this case, the
generated nonnumeric value has the appearance of an integer whose length (in terms
of the number of digits it contains) is the same as the length of the associated data
item.

Table 3-5. Figurative Constants

Figurative Constant * What It Represents

ZERO[[E]S] One or more of the character zero (0), depending on the context

SPACE[S] One or more spaces, depending on the context

HIGH-VALUE[S] One or more of the character that has the highest position in the
program collating sequence, except in the SPECIAL-NAMES
paragraph, where it represents the character that has the
highest position in the ASCII character set (the 256th character,
which is all binary ones) or in the national character set (default
is hexadecimal FFFF)

LOW-VALUE[S] One or more of the character that has the lowest position in the
program collating sequence, except in the SPECIAL-NAMES
paragraph, where it represents the character that has the lowest
position in the ASCII character set (the first character, the NUL,
which is all binary zeros) or in the national character set (default
is hexadecimal 0000)

QUOTE[S] One or more of the character quotation mark (")

You cannot use either of these words instead of quotation marks
to enclose a nonnumeric literal.

symbolic-character One or more of the character specified as the value of
symbolic-character in the SYMBOLIC CHARACTERS
clause of the SPECIAL-NAMES paragraph

ALL literal The value of literal must contain one or more of these:

• A nonnumeric literal

• A national literal

• A symbolic-character

• One of the other reserved words previously defined as
figurative constants (except that you cannot precede an ALL
literal form of figurative constant with another ALL)

When literal is a nonnumeric literal or a national literal, this
form implies repetition of the literal’s value to the extent required
by the context. For the other cases, the word ALL is redundant
and is used only for readability.

* Singular and plural forms are equivalent and can be used interchangeably.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-23

Language Elements PICTURE Character-Strings
PICTURE Character-Strings
PICTURE character-strings (character-strings in the PICTURE clause) use the COBOL
character set as described in PICTURE Clause. The editing characters in Table 3-6
specify the editing operations that a process performs on data when storing it in data
items. The compiler recognizes these characters as editing characters only within
PICTURE clauses. In all other places, these characters follow the rules for character-
strings and separators.

Comments
A comment-entry or a comment line can contain any combination of characters in the
computer’s character set. Both types of comments are character-strings that serve only
to document a program. A comment-entry follows a paragraph header in the
Identification Division and can continue on additional lines. A comment line is any line
anywhere in the source text that has a comment character in the indicator field.

Table 3-6. PICTURE Character-String Editing Characters

Character Editing Operation

B Space insertion

Z Zero suppression

0 Zero

+ Plus

- Minus

CR Credit

DB Debit

* Check protect

$ Dollar sign

, Comma or decimal point

. Period or decimal point

/ Slash
HP COBOL Manual for TNS and TNS/R Programs—522555-006
3-24

4 Data Fundamentals
Every data item in a COBOL program has a level, class and category. Data items are
organized into data structures. How data is represented depends on the machine on
which it executes. Not all data storage locations in a COBOL program are the same
size. When you direct a COBOL program to store a value of a given size at a location
of a different size, the process extends or truncates the value according to a set of
alignment rules. Alignment considerations sometimes cause the compiler to allocate
unused bytes between data items, which are called implicit FILLER data. COBOL
provides several ways to refer to individual data items in a program.

Topics:

• Data Levels, Classes, and Categories

• Data Structures

• Data Representation

• Data Alignment in Receiving Items

• Data Alignment in Memory

• Implicit FILLER Bytes

• References to Data Items

Data Levels, Classes, and Categories
COBOL has two data levels: elementary item and data structure. An elementary item
cannot be subdivided; a data structure can be subdivided (see Data Structures).

Data items fall into the classes and categories shown in Table 4-1. The categories are
used in PICTURE Clause.

Table 4-1. Data Levels, Classes, and Categories

Level of Item Class Category

Elementary Alphabetic Alphabetic

Numeric Numeric

Alphanumeric Alphanumeric
Alphanumeric Edited
Numeric Edited

National National

Pointer Pointer

Data structure Alphanumeric Alphanumeric
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-1

Data Fundamentals Data Structures
Data Structures
Data structures—records, files, and tables—are built from elementary items. Level-
numbers show the relationship of elementary data items to data structures.

Although the structural forms are defined within a hierarchy, independent structures of
any level are permitted. There is no requirement that all data be fully organized to the
highest level. Furthermore, multiple structures can refer to the same or overlapping
physical data.

Topics:

• Level-Numbers

• Records

• Files

• Tables

Level-Numbers
Level-numbers show the relationship of elementary data items to data structures.

A data structure includes all data items described after it and before the next item
whose level-number is less than or equal to the level-number of that data structure. In
Example 4-1, ADDRESS-RECORD includes everything before PERSONAL-RECORD,
OFFICE-NUMBER includes everything before OFFICE-ADDRESS, and so on.

All elementary or data structures immediately subordinate to a given data structure
must have identical level-numbers greater than that of the data structure. In
Example 4-1, OFFICE-NUMBER and OFFICE-ADDRESS are immediately subordinate
to ADDRESS-RECORD, DISTRICT and REGION are immediately subordinate to
OFFICE-NUMBER, and so on.

Level-Number Describes ...

01 through 49 A record (whose level-number starts at 01) and its subordinate data
items (whose level-numbers are higher, but not necessarily successive).

66 An elementary item or a data structure introduced by a RENAMES
clause. Use level-66 entries to regroup data structures.

77 An entry in the Working-Storage, Extended-Storage, or Linkage section
that describes noncontiguous elementary items. These items are not
subdivided and are not subdivisions of other items.

88 Condition-name entries, which define a conditional variable to be tested,
including a value or range of values assigned to that variable.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-2

Data Fundamentals Level-Numbers
Example 4-1. Level Numbers

 FD BRANCH-OFFICE-FILE
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 100 CHARACTERS
 DATA RECORDS ARE ADDRESS-RECORD,
 PERSONNEL-RECORD, MISC-RECORD.
* A record follows.
 01 ADDRESS-RECORD.
* A data structure follows.
 05 OFFICE-NUMBER.
* An elementary item follows.
 10 DISTRICT PICTURE 99.
* Condition-names follow.
 88 NEW-YORK VALUE 21.
 88 TAMPA VALUE 43.
 88 OMAHA VALUE 55.
 ...
 10 REGION PICTURE 999.
 05 OFFICE-ADDRESS.
 10 STREET PICTURE X(25).
 10 CITY PICTURE X(15).
 10 STATE PICTURE X(2).
 10 ZIP-CODE PICTURE 9(9).
 ...
* A record follows.
 01 PERSONNEL-RECORD.
 05 OFFICE-MANAGER PICTURE X(35).
 05 NO-OF-EMPLOYEES PICTURE 9(4).
 05 TAX-GROUPS.
 10 HOURLY.
 15 PART-TIME PICTURE 99.
 15 FULL-TIME PICTURE 99.
 10 EXEMPT PICTURE 9(4).
 ...
 01 MISC-RECORD.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-3

Data Fundamentals Records
Records
A record is a sequence of character positions. It can be an elementary data item or a
data structure. Its data description entry determines its internal structure (see
PICTURE Clause). Records can be of fixed length or variable length. COBOL
programs manipulate logical records and physical records.

Most of the data in a typical COBOL program is in records. When a program reads
data from or writes data to a file, the unit of transmission is the record.

Topics:

• Physical Records and Logical Records

• Record Elements

• Record Length

Physical Records and Logical Records
COBOL programs manipulate physical records and logical records. A physical record
is a physical unit of information whose size and recording mode is convenient to a
particular computer for the storage of data on an input or output device (such as 80
characters for a terminal or 132 characters for a printer). The size of a physical record
is hardware dependent and bears no direct relationship to the size of the file of
information contained on a device. A physical record can contain one or several logical
records, or a logical record can span several physical records.

A logical record is a group of related information, uniquely identifiable, and handled as
a unit. The number of logical records that can exist in a file is a characteristic of its
supporting storage medium, possibly modified by instructions presented to the file
system during the file’s creation. The logical records of a file have either a fixed size or
a size that varies between a maximum and minimum size, depending on record type.

A logical record is defined by a set of data description entries. Each entry has a level-
number followed by a data-name and possibly a series of independent clauses. The
level-numbers form a structure, dividing a record into smaller and smaller parts.

Note. In this manual, “record” means logical record unless “physical record” is specified.

Example 4-2. Logical Record

01 BIBLIOGRAPHY-RECORD.
 03 AUTHOR-NAME.
 05 LAST-NAME PICTURE X(20).
 05 FIRST-NAME PICTURE X(20).
 03 TITLE PICTURE X(50).
 03 PUBLICATION-INFO.
 05 PUBLISHER.
 07 PUB-NAME PICTURE X(20).
 07 PUB-LOCATION PICTURE X(20).
 05 PUBLICATION-YEAR PICTURE 9999.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-4

Data Fundamentals Records
The concept of logical records also applies to data outside files. You can group data
into logical records in all sections of the Data Division.

Once you describe the relationship between logical records and physical records,
record manipulation is the responsibility of the HP COBOL or CRE run-time routines
and the NonStop operating system.

Record Elements
In COBOL, the lowest subdivisions of a record (that is, those not further subdivided)
are called elementary items. Consequently, a record is a series of elementary items, or
the record itself can be an elementary item. In Example 4-2, the elementary items are:

• LAST-NAME
• FIRST-NAME
• TITLE
• PUB-NAME
• PUB-LOCATION
• PUBLICATION-YEAR

A data structure is a sequence of one or more elementary items that you can refer to
by a group name. Data structures in turn can be combined to make other data
structures. An elementary item, then, can belong to more than one data structure. A
record is a data structure that does not belong to any larger data structure. In
Example 4-2, the data structures that contain more than one elementary item are:

• AUTHOR-NAME
• PUBLICATION-INFO
• PUBLISHER
• BIBLIOGRAPHY-RECORD

Record Length
The length of records can be fixed or variable. You specify the length in the file
description entry that precedes any data description entries for the records (see File
Section). If the file description entry includes a

RECORD CONTAINS rec-1 TO rec-2 CHARACTERS

or a

RECORD IS VARYING IN SIZE FROM rec-1 TO rec-2 CHARACTERS

clause, the record length is variable. If the file description entry has no RECORD
CONTAINS clause, or if the clause is

RECORD CONTAINS n CHARACTERS

the record length is fixed.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-5

Data Fundamentals Files
When a file has the fixed-length record type attribute, every record contains the same
number of character positions (bytes) and all input and output operations on the file
process this fixed size. A program can specify more than one record description for the
file, and some record descriptions can describe different numbers of character
positions, but every record existing in the file still has the same fixed length.

When a file has the variable-length record type attribute, different records can have
different numbers of character positions. In this case the input and output operations
on the file process whatever size is associated with a particular logical record. After a
record retrieval operation, the source program has sole responsibility for determining
which of the possible record formats or lengths apply. The logical record length
associated with a variable-length record file is therefore a maximum that records
cannot exceed, not a constant to which all records conform.

The OCCURS clause with a DEPENDING ON phrase defines a variable-size table. For
more information, see OCCURS Clause for Variable-Size Tables.

Files
A file is the highest structural form. Each file is a collection of records, ordered by the
file’s organization or by record attributes (keys), and maintained upon some storage
medium. Use of the record structure is not limited to files; individual records can exist
independently of files.

In COBOL, a file is a group of records. A file has both fixed attributes and dynamic
attributes. Fixed attributes are determined when you create the file, and you cannot
change them subsequently. Dynamic attributes can vary to some extent, depending on
the logical specifications that source programs request when they access the file.

Some attributes are language-specific. Regardless of file system or operating system,
COBOL files have a certain logical structure (organization and access mode). The
operating system provides an additional attribute of a file: an exclusion mode when the
file is open.

A COBOL program references a file by its file connector, which contains information
about the file’s attributes. One component of the file connector is the file position
indicator, which determines which record is the next one to be sequentially accessed.

Topics:

• Organization

• Access Mode

• Open Mode

• Exclusion Mode

• File Connector

• File Position Indicator
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-6

Data Fundamentals Files
Organization
Organization, which specifies a file’s logical structure, is a fixed attribute that is
established when you create the file and cannot be changed.

Table 4-2. File Organization (page 1 of 2)

Organization Description

Sequential A sequential file is organized so that each record except the first has a
unique predecessor record and each record except the last has a
unique successor record. These relationships are established by the
order in which the records are written and cannot be subsequently
changed. The only alterations a program can make to an existing
sequential file are record replacement (updating an existing record) and
record creation (appending a new record following the last existing
record).

Under the NonStop operating system, COBOL sequential files are
unstructured files or entry-sequenced files.

Line Sequential A line sequential file (code 180) is a sequential file that is compatible
with the system text editor of the OSS environment; therefore, it can
also be called an OSS ASCII text file. A line sequential file differs from a
sequential file in that each of its records ends with a line-feed character.
For its other characteristics, see Line Sequential Files.

Under the NonStop operating system, COBOL line sequential files are
line sequential files.

Relative A relative file is organized as a sequence of record areas, each capable
of holding a logical record. The successive record areas are uniquely
identified by successive integer values (called relative record numbers),
beginning with one for the first record area. A program can select any
record area for an operation by providing the value of its relative record
number. Because a program can fill or empty individual record areas
independently, without regard to the presence or absence of logical
records in any of the other areas, any combination of record areas can
be full or empty at any given time in the file’s existence.

Under the NonStop operating system, COBOL relative files are relative
files.

Indexed An indexed file is organized as a set of records uniquely identified by the
values of their prime record key, a data item defined within each logical
record of the file. A program can select any record for an operation by
providing the value of its prime record key.

Under the NonStop operating system, COBOL indexed files are key-
sequenced files.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-7

Data Fundamentals Files
Access Mode
The access mode of a file specifies the manner in which the records of the file are to
be manipulated: sequential, random, or dynamic. Access mode is a dynamic attribute,
described in the COBOL source program that specifies the manner in which the object
program unit operates upon records in the file. The access modes available to a file
depend on its organization.

Queue A queue file is an indexed file (and therefore, a key-sequenced file) that
can function as a queue. Processes can queue and dequeue records in
a queue file.

Queue files contain variable-length records that are accessed by values
in designated key fields. Unlike other key-sequenced files, queue files
have prime keys but cannot have alternate keys. The prime key for a
queue file includes an 8-byte timestamp; you can add a user key if
desired. The disk process inserts the timestamp when each record is
inserted into the file, and maintains the timestamp during subsequent file
operations.

Table 4-3. Relationship Between File Organization and Access
Mode (page 1 of 2)

File Organization

Access Mode

Sequential Random Dynamic

Sequential
Line sequential

Program can read
records in the order
they were created,
one after the other.
Program can write
records one after
another.

If the file is in
Tandem reference
format and has
alternate keys, the
program can read it
in more than one
sequential order.

Not available Not available

* If the file is in Tandem reference format and has alternate keys, this characteristic also applies to the alternate
keys. For a description of Tandem reference format, see Reference Format for Source Program Lines.

Table 4-2. File Organization (page 2 of 2)

Organization Description
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-8

Data Fundamentals Files
Relative Program can select
records in increasing
order of relative
record number
(ignoring empty
record areas).*
Relative record
numbers begin at 1.

Program can select
records from
anywhere in the file
by specifying relative
record numbers.
Records need not
exist or have
contiguous record
numbers.*

Program can select
records sequentially
(with READ NEXT
statements) or
randomly (with
READ statements).*

Indexed Program can select
records in increasing
order of prime or
alternate record key
value (record keys
are fields within
each record). If
records with
duplicate alternate
key values exist, the
order of retrieval is
either by prime key
or by date of entry.
To specify that
retrieval order is by
date of entry, set a
file attribute with
FUP.*

Program can select
records from
anywhere in the file.*

Program can select
records sequentially
(with READ NEXT
statements) or
randomly (with
READ statements).*

Queue Program can select
records in increasing
order of prime
record key value
(record keys are
fields within each
record). To specify
that retrieval order is
by date of entry, set
a file attribute with
FUP.

Program can select
records from
anywhere in the file.

Program can select
records sequentially
(with READ NEXT
statements) or
randomly (with
READ statements).

Table 4-3. Relationship Between File Organization and Access
Mode (page 2 of 2)

File Organization

Access Mode

Sequential Random Dynamic

* If the file is in Tandem reference format and has alternate keys, this characteristic also applies to the alternate
keys. For a description of Tandem reference format, see Reference Format for Source Program Lines.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-9

Data Fundamentals Files
Open Mode
The open mode is a dynamic attribute of a file connector; it controls which file
operations are permitted. In HP COBOL the status of a file connector always includes
an open mode.

A file connector that is open in any mode can be closed by a CLOSE statement, which
dissociates the file connector from the physical file and sets the open mode state to
Closed or Locked (see CLOSE).

An internal file connector that is open in any mode can be implicitly closed by a
CANCEL statement (see CANCEL).

Exclusion Mode
In HP COBOL, you specify a file’s exclusion mode when you open it (see OPEN).

Table 4-4. File Open Modes

Mode File Operations Allowed Statements Allowed

Locked None UNLOCKFILE

Closed Execution of OPEN statement to associate file connector with
its physical file

OPEN

Input Record retrieval operations READ
CLOSE

Output Record creation operations (deletes existing records upon
opening file)

WRITE
CLOSE

Extend Record creation operations (retains existing records upon
opening file)

WRITE
CLOSE

I-O Record retrieval, creation, deletion, and replacement
operations (as allowed by file organization and access
modes)

READ
WRITE
REWRITE
DELETE*
CLOSE

* Relative or indexed file only

Table 4-5. Exclusion Modes

Mode Other Processes Can Read File Other Processes Can Write to File

Shared Yes Yes

Protected Yes No

Exclusive No No
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-10

Data Fundamentals Files
File Connector
A COBOL program makes reference to files indirectly. It does not refer to a file by the
file’s Guardian file name. Instead, it uses an ASSIGN clause in a file-control entry in
the Input-Output Section of the Environment Division (possibly overridden at execution
time by command interpreter commands) to associate the Guardian file name with a
file connector, which is referred to throughout the remainder of the COBOL program
through a COBOL file name.

The file connector is an entity that exists at execution time and contains information
about the file, such as its open mode, position, and so on. A file connector can be
internal or external to a given COBOL program. Unless a file connector is explicitly
described as external, it is internal.

An internal file connector is associated with and only accessible to the specific program
that describes it or to programs contained within that program. An external file
connector is associated with the run unit and accessible to every program in the run
unit that describes the file connector.

The execution of an OPEN statement associates a physical file with a file connector.
HP COBOL permits the simultaneous association of one physical file with more than
one file connector in a run unit in certain cases.

The execution of a CLOSE statement dissociates a physical file from a file connector.

In this manual, “file” is often used as an abbreviation for “file connector” and “file name”
as an abbreviation for “file referenced by file name.” The context determines the
meaning in these cases.

File Position Indicator
The file position indicator is a conceptual component of a file connector, and its setting
is a dynamic attribute of the connector. During sequential record retrieval operations,
the setting of the file position indicator determines precisely which record is the next
one to be accessed.

Normally, the setting reflects:

• A record number for a sequential or line sequential file
• A relative record number for a relative file
• A prime record key value for an indexed or queue file
• An alternate record key value for a file with any organization

Sometimes its setting indicates that:

• The at-end condition exists (due to a prior unsuccessful execution of a READ
statement for the file).

• No valid next record has been established.

• An optional file is not present.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-11

Data Fundamentals Tables
The setting of the file position indicator is irrelevant when the open mode is Output or
Extend or the access mode is Random, because no sequential record retrieval
operations are permitted in these cases.

Tables

You can define a table by including an OCCURS clause in a data description entry.
This clause specifies that the data item be repeated a stated number of times. The
item is a table element, and the item’s name and description apply to each repetition of
the element.

A table is a data structure composed of one or more occurrences of a specified data
item. The repeated data item is called a table element. The number of occurrences of a
table element can be fixed or variable. If the element is a table itself, or if it contains
other tables, the table to which the element belongs is multidimensional.

Because table elements do not have individual names, you must reference a table
element by the table name and its position in the table. Two methods for giving the
position number are subscripting and indexing. For information on subscripting, see
Subscripts. For information on indexing, see Using Indexes Instead of Subscripts.

Topics explain how to declare:

• One-Dimensional Tables With Fixed Number of Elements

• One-Dimensional Tables With Variable Number of Elements

• Multidimensional Tables

One-Dimensional Tables With Fixed Number of Elements
You can define a table by including an OCCURS clause in a data description entry.
This clause specifies that the data item be repeated a stated number of times. The
item is a table element, and the item’s name and description apply to each repetition of
the element. For example, this entry defines a 1-dimensional table:

02 TOTAL OCCURS 20 TIMES ...

Each reference to TOTAL must have exactly one subscript (except in SEARCH
statements and some intrinsic functions, which do not allow subscripts).

Note. This topic applies to tables in the Data Division, not to SQL/MP or SQL/MX tables.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-12

Data Fundamentals Tables
One-Dimensional Tables With Variable Number of Elements
You can specify a fixed or variable number of occurrences of a table element. An
element of a table of the latter form is called a variable-occurrence data item. Because
the number of elements in such a table can vary during the execution of a program, the
size of each data structure that contains the table can also vary. Such data structures
are said to have a variable size.

Multidimensional Tables
The elements of a table can be elementary items or groups of subordinate structures,
some of which can also be tables. In Example 4-5, TOTAL-B is a table subordinate to
the 1-dimensional table named TOTAL. This means TOTAL-B is a 2-dimensional table;
each reference to TOTAL-B must have exactly two subscripts (except in SEARCH
statements and some intrinsic functions, which do not allow subscripts). The first
subscript specifies the element of the TOTAL table, and the second subscript specifies
the element of the TOTAL-B table within that element of TOTAL.

Example 4-3. One-Dimensional Table With Fixed Number of Elements

WORKING-STORAGE SECTION.
 01 MONTH-NAME-TABLE.
 05 FILLER PICTURE X(9) VALUE "January".
 05 FILLER PICTURE X(9) VALUE "February".
 05 FILLER PICTURE X(9) VALUE "March".
 05 FILLER PICTURE X(9) VALUE "April".
 05 FILLER PICTURE X(9) VALUE "May".
 05 FILLER PICTURE X(9) VALUE "June".
 05 FILLER PICTURE X(9) VALUE "July".
 05 FILLER PICTURE X(9) VALUE "August".
 05 FILLER PICTURE X(9) VALUE "September".
 05 FILLER PICTURE X(9) VALUE "October".
 05 FILLER PICTURE X(9) VALUE "November".
 05 FILLER PICTURE X(9) VALUE "December".
 01 MONTH-NAMES REDEFINES MONTH-NAME-TABLE.
 05 MONTH-NAME OCCURS 12 TIMES PICTURE X(9).

Example 4-4. One-Dimensional Table With Variable Number of Elements

WORKING-STORAGE SECTION.
 01 ACTIVITY-TABLE-RECORD.
 03 ACTIVITY-COUNT PICTURE 99.
 03 ACTIVITY-TABLE OCCURS 10 TO 20 TIMES
 DEPENDING ON ACTIVITY-COUNT
 INDEXED BY SAVE-INX-1
 SAVE-INX-2.
 05 ACTIVITY-ENTRY PICTURE 999.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-13

Data Fundamentals Data Representation
A COBOL table can have a maximum of 7 dimensions. If the description of a data item
T-B-S subordinate to TOTAL-B also has an OCCURS clause, T-B-S is a 3-dimensional
table.

The outermost table of a multidimensional table can be of variable size, but each
subordinate table must be of fixed size.

Data Representation
To define a language independent of computer designs, COBOL describes the
structure and representation of data in terms of a standard data format. This format
represents numbers as integers and represents noninteger and nonnumeric data as
strings of characters. The amount of computer storage space occupied by data is
measured in character positions. A data item’s description determines how many
character positions it has. How data is stored depends on the machine on which it
executes.

A character position in an HP computer system is a byte: an 8-bit quantity. Data items
represented as strings of characters occupy one byte per character. HP COBOL has
other data formats that do not maintain the values of data items in characters but use
forms more suitable for certain operations. In such cases, the number of bytes into
which a data item fits can differ from the number of characters that express the value
of the item.

When an arithmetic or MOVE statement stores a value in a COMPUTATIONAL item,
the number of digits stored equals the number of 9 s in the item’s PICTURE clause.
Because MOVE statements lack the SIZE ERROR phrase, they cannot detect the loss
of high-order digits.

In general, the set of bytes the compiler allocates for a record is simply the contiguous
sequence of bytes necessary to accommodate its constituent elementary data items. In
some cases, however, alignment considerations cause the compiler to allocate unused
bytes between data items. These bytes are called implicit FILLER bytes (see Implicit
FILLER Bytes).

Example 4-5. Multidimensional Table

02 TOTAL OCCURS 20 TIMES.
 03 TOTAL-A ...
 03 TOTAL-B OCCURS 3 TIMES ...

Table 4-6. Allocation for COMPUTATIONAL Data Items

PICTURE Size in Digits Byte Allocation

1 through 4 2 bytes

5 through 9 4 bytes

10 through 18 8 bytes
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-14

Data Fundamentals Data Alignment in Receiving Items
Data Alignment in Receiving Items
Not all data storage locations in a COBOL program are the same size. When you direct
a COBOL program to store a value of a given size at a location of a different size, the
process extends or truncates the value according to alignment rules:

Standard data representation and alignment rules are not always appropriate, so these
clauses and directive exist to override them:

Data Alignment in Memory
How a data item is aligned in memory is determined by:

• Its USAGE clause
• Whether its description includes the SYNCHRONIZED clause
• Whether the program is compiled with the PORT directive
• The machine on which the program executes

For efficiency, a data item that is described as USAGE BINARY or USAGE
COMPUTATIONAL is aligned on a 2-byte boundary.

Category of Receiving Item Standard Alignment Rule

Numeric If the receiving data item is numeric, data is aligned by
decimal point and zero-filled or truncated on either end of
each value, as required. When you do not specify a
decimal point in the data item’s description, the decimal
point is assumed to be immediately after the rightmost
character position.

Numeric Edited If the receiving item is numeric edited, data is aligned by
decimal point and zero-filled or truncated on either end of
each value, as required, except where editing would
replace leading zeros.

Alphanumeric
Alphanumeric Edited
Alphabetic
National

If the receiving data item is alphanumeric, alphanumeric
edited, alphabetic, or national, data is aligned at the
leftmost character position and space-filled or truncated to
the right of each value, as required.

Clause or Directive Effect

JUSTIFIED clause Right-justifies an alphanumeric data within a receiving data item
(see JUSTIFIED Clause)

SYNCHRONIZED clause Aligns an elementary data item on the most natural computer
storage boundary (see SYNCHRONIZED Clause)

PORT directive Aligns BINARY/COMPUTATIONAL data items on byte
boundaries unless the SYNCHRONIZED clause applies to them,
in which case standard alignment rules apply (see PORT and
NOPORT)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-15

Data Fundamentals Implicit FILLER Bytes
To improve the alignment of its subordinate items, a level-01 (record) or level-77 data
item is aligned on a 2-byte boundary.

For TNS processes, a word is 2 bytes (16 bits), so a data item that is aligned on a word
boundary is aligned on a byte position that is divisible by 2. For TNS/R processes, a
word is 4 bytes (32 bits), so a data item that is aligned on a word boundary is aligned
on a byte position that is divisible by 4.

The compiler aligns a data item according to its size if one of these conditions is true:

• The data item is described as USAGE BINARY or USAGE COMPUTATIONAL and
the PORT directive is not specified.

• The data item is described as USAGE NATIVE-n.

• The data item is described with a SYNCHRONIZED clause.

A data item that is aligned according to its size is usually aligned on a character
position that is divisible by 2. This is not a TNS/R word size, but this alignment
preserves data compatibility.

If the PORT directive is specified, BINARY/COMPUTATIONAL data items are not
aligned on byte boundaries, and program execution can be much slower. The PORT
directive does not affect NATIVE-n data items; they are always aligned on byte
boundaries.

If the PORT directive is not specified, then a data item is aligned on a 2-byte boundary
unless it is described with the SYNCHRONIZED clause. If it is described with the
SYNCHRONIZED clause, it is aligned on a 2-byte boundary if its size is less than 4
bytes, and on a 4-byte boundary if its size is 4 bytes or larger.

Within a data structure, the compiler might align BINARY/COMPUTATIONAL data
items by inserting implicit FILLER bytes.

More information:

Implicit FILLER Bytes
When an odd number of character positions precedes a 2-byte-aligned item within a
record, the compiler inserts FILLER bytes before the item, completing allocation of the
preceding 2 bytes.

When the number of character positions preceding a 4-byte-aligned item within a
record is not a multiple of 4, the compiler inserts the number of FILLER bytes needed
to complete allocation of the preceding 4 bytes.

Topics Sources

USAGE clause USAGE Clause

SYNCHRONIZED clause SYNCHRONIZED Clause

PORT directive PORT and NOPORT

Implicit filler bytes Implicit FILLER Bytes
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-16

Data Fundamentals Records
These extra bytes are not part of the data item. If a data structure contains two items
separated by implicit FILLER bytes, then these bytes are a part of that data structure;
however, a data structure always begins with the first character position of its first
elementary item, ignoring any FILLER bytes that were generated to align that item
properly. The initial character positions of a data structure are never implicit FILLER
bytes.

Topics:

• Records

• Tables

• REDEFINES Clause

Records
When a record contains implicit FILLER bytes, their character positions are included in
the record’s allocation requirements, and they occupy space in external
representations of the record.

Tables
When an elementary data item is described with an OCCURS clause, is subordinate to
a data structure described with an OCCURS clause, or both, all occurrences of the
data item must be aligned uniformly:

1. The first occurrence of the item is aligned to the required storage boundary. If the
elementary item also begins a containing table’s first occurrence, that table’s first
occurrence is defined to begin at the first character position of the item.

2. When the aligned item is itself a table, the first occurrence ends on the appropriate
storage boundary and the remaining occurrences follow without additional FILLER
bytes.

3. When the aligned item (or table of aligned items) belongs to a higher-level table,
further adjustment can be necessary.

If the elementary item is 2-byte-aligned and the containing group occurrence
consists of an odd number of character positions, the compiler inserts one byte of
FILLER after each group occurrence.

The preceding steps are repeated for each higher-level table.

FILLER bytes are not part of the containing occurrences themselves, but are included
in data structures that contain the complete table.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-17

Data Fundamentals REDEFINES Clause
REDEFINES Clause
When a data structure that is the object of a REDEFINES clause contains implicit
FILLER bytes, their character positions are included in the character positions
redefined.

Automatic or requested alignment of data items described by redefinition of a record’s
character positions (through use of the REDEFINES clause) follows the rules
described previously. When the first data item allocated by a redefinition requires 2-
byte or 4-byte alignment, the data item being redefined must begin on the appropriate
boundary within its record. HP COBOL does not permit redefinitions that require
insertion of implicit FILLER bytes before the first data item of the redefinition. Any bytes
inserted at other places within the redefinition are counted when determining its size.

In Example 4-6, MASTER appears to occupy this many bytes:

(((2+1) * 5+1) * 5+1) * 5 = 405 bytes

but it actually occupies this many bytes

(((2+1+1) * 5+1+1) * 5+1+1) * 5 = 560 bytes

due to the alignment requirement for the COMPUTATIONAL item.

References to Data Items
To refer to a data item, a statement in a COBOL program must contain a reference that
uniquely identifies that data item. In some cases, data items do not have unique
names; for example:

• All elements of a table share a single name.
• Items that have the same name can occur in different records.

To make references unique, you can use qualifiers, subscripts, and reference
modifiers. A data-name made unique by a combination of qualifiers, subscripts, and
reference modifiers is called an identifier.

If an item in a record is tested frequently by a program, assigning a condition-name to
the item is a convenient way to refer to the item and show the significance of the item’s
value. Assigning a condition-name to the item is also good programming practice.

Example 4-6. REDEFINES Clause

01 MASTER.
 02 TABLE-1 OCCURS 5 TIMES.
 03 TABLE-2 OCCURS 5 TIMES.
 04 TABLE-3 OCCURS 5 TIMES.
 05 ITEM-A PIC 99 USAGE IS COMP.
 05 ITEM-B PIC X.
 04 ITEM-3 PIC X.
 03 ITEM-2 PIC X.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-18

Data Fundamentals Qualifiers
Topics:

• Qualifiers

• Subscripts

• Reference Modifiers

• Identifiers

• Condition-Names

Qualifiers
When the name of a data element exists within a hierarchy of names, you must be able
to make references to the name unique by mentioning one or more names defined at
higher levels of the hierarchy. The higher-level names are called qualifiers. Although
you must provide enough qualifiers to make the name unique, you need not include all
levels. For more information on qualifiers, see Qualified Names.

Subscripts
A subscript, or set of subscripts, identifies an element in a table (created by an
OCCURS clause). Whenever a statement in the Procedure Division refers to an
individual table element or any item subordinate to a table element, that reference
must include a subscript.

If the data item belongs to a table nested within one or more other tables (because
more than one OCCURS clause applies to the data-name), a reference to the data
item must include a subscript corresponding to each table (except in SEARCH
statements and some intrinsic functions, which do not allow subscripts).

If a condition-name is associated with a data item for which subscripts are required, a
reference to that condition-name must also include appropriate subscripts.

Topics:

• Subscript Syntax

• Number and Range of Subscripts

• Using Indexes Instead of Subscripts
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-19

Data Fundamentals Subscripts
Subscript Syntax

data-name

is either a data item described with an OCCURS clause or a data item subordinate
to a data item described with an OCCURS clause. If data-name is qualified, the
subscripts follow the qualifiers.

condition-name

is a level-88 item associated with either a data item described with an OCCURS
clause or a data item subordinate to a data item described with an OCCURS
clause. If condition-name is qualified, the subscripts follow the qualifiers.

subscript

integer

is a nonzero numeric literal. If it is signed, the sign must be positive.

qualified-name

is the identifier of an integer numeric data item. It can be qualified, but cannot
have subscripts or reference modifiers.

index-name

is the index in the INDEXED phrase of the OCCURS clause that describes
data-name. Its value is the occurrence number of an element in the
associated table. The program must initialize the value of an index-name
before using it in a subscript.

offset

is an unsigned integer numeric literal. Its value is added to (+) or subtracted
from (-) the value of qualified-name or index-name.

Example 4-7 shows subscripting for two 1-dimensional tables and a 2-dimensional
table.

condition-name

data-name ()subscript

VST006.vsd

integer

qualified-name

index-name

+ offset

-

VST007.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-20

Data Fundamentals Subscripts
Number and Range of Subscripts
HP COBOL supports subscripting of up to 7 dimensions.

The lowest legitimate subscript value is 1, which selects the first element of a table.
The next sequential elements of the table are selected by subscripts whose values are
2, 3, and so on. The highest subscript value, in any particular case, is the maximum
number of elements in the table. Any higher subscript is erroneous, and can cause an
error.

You can use the directive CHECK, with a level-number greater than 1, to include code
in the resulting program to perform range checking during execution. If the program
attempts to use a subscript that is out of range, the range checking routine reports a
fatal error.

If you do not include a CHECK directive, the compilation produces a program in which
subscript-out-of-range errors go undetected. These undetected errors can cause
corruption of other data, producing errors that can be difficult to locate, even with a
symbolic debugger.

Using Indexes Instead of Subscripts
Using an index can be more efficient than using a qualified-name subscript because an
index’s value is the actual byte-offset of a table item within the table. A qualified-name
subscript’s value (expressed as an occurrence number) must first be converted to a
byte-offset value, usually by a multiplication operation.

To convert an index value to an occurrence number (or to do the reverse operation),
use the SET statement to copy the occurrence number associated with an index-name
to a data item (or the other way around).

A data item described by a USAGE INDEX clause provides a place to store the value
of an index (from an index-name) without converting it to an occurrence number. Use
the SET statement to copy the value to or from the index data item. The value stored in
this fashion is not an occurrence number and cannot be used with another table.

The only statements that can initialize or modify an index are the SET, SEARCH
(including SEARCH ALL), or PERFORM statements.

Example 4-7. Subscripting for Tables

MOVE TOTAL OF REPORT-MARK (8) TO REPORT-TOTAL-8.
MOVE MONTH-NAME (MONTH-NUMBER + 2) TO REPORT-MONTH.
MOVE MATRIX (ROW COLUMN) TO OUTPUT-DISPLAY-LINE.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-21

Data Fundamentals Reference Modifiers
Reference Modifiers
Reference modifiers allow you to reference an arbitrary portion of a data item’s value,
which is important in some applications. With reference modifiers, you define an
elementary item by specifying a leftmost character position within a data item and a
length for the new item. The unique data item created by reference modifiers can be
used not only as a sending item, but also as a receiving item—you can store a new
value into it.

Topics:

• Reference Modifier Syntax

• Rules for Reference Modifiers

Reference Modifier Syntax

identifier

is the name of a data item with USAGE DISPLAY. If it is qualified or subscripted,
the reference modifier appears after the qualifiers or subscripts.

leftmost-character-position

is an arithmetic expression. Its value must be a positive nonzero integer less than
or equal to the number of characters in identifier; it represents the leftmost
character of the portion of identifier you are selecting.

length

is an arithmetic expression. Its value must be a positive, nonzero integer; it
represents the size of the portion of identifier you are selecting. The value of
the expression

(leftmost-character-position + length) - 1

must be less than or equal to the number of characters in identifier.

identifier

)leftmost-character-position

length

(:

VST008.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-22

Data Fundamentals Reference Modifiers
If length is absent, the defined item begins with leftmost-character-
position and ends with the last character of identifier; thus the length of
the defined item is

(data-name-length - leftmost-character-position) + 1

where data-name-length is the length of identifier.

Rules for Reference Modifiers
These rules for reference modifiers apply directly if the data item referenced by
identifier is described as alphabetic or alphanumeric.

If the data item is described as numeric, numeric edited, or alphanumeric edited, it is
operated upon for purposes of reference modification as if it were redefined as an
alphanumeric data item of the same size as the data item referenced by identifier.
Any numeric item must be USAGE DISPLAY.

If the data item is described as national, the leftmost-character-position and
length variables refer to the 2-byte pairs representing the characters, not to
individual bytes. In all other respects, these rules for reference modifiers given apply
directly:

• Reference modifiers for an operand are evaluated immediately after evaluation of
any subscripts that are specified for that operand. If no subscripts are specified for
the operand, the reference modifiers are evaluated at the time subscripting would
be evaluated if subscripts had been specified.

• Each character of the data item referenced by identifier is assigned an
ordinal number, incrementing by one from the leftmost position to the rightmost
position. The leftmost position is assigned the ordinal number one. If identifier
is described with a SIGN SEPARATE clause, the sign position within that data item
is assigned an appropriate ordinal number.

• Reference modifiers create a unique data item, which is a substring of the data
item referenced by identifier. The program handles this unique data item as
an elementary data item without the JUSTIFIED clause.

When identifier references an alphabetic data item, the unique data item has
the class and category alphabetic.

When identifier references a data item of any other category, the unique data
item has the class and category alphanumeric.

• The unique data item created by reference modifiers can be used not only as a
sending item, but also as a receiving item—you can store a new value into it.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-23

Data Fundamentals Identifiers
Identifiers
An identifier is a data-name made unique by a combination of qualifiers, subscripts,
and reference modifiers.

data-name

is the name of a data item. If it has reference modifiers, it must be USAGE
DISPLAY. If it is used as a subscript or qualifier itself, it can be qualified but not
subscripted.

Example 4-8. Reference Modifiers

A program contains these data descriptions:

01 SPREAD.
 03 LTH PIC 99 VALUE 10.
 03 MM.
 05 FF PIC A(10) VALUE "MARGARINE ".
 05 GG PIC $$9.99.

The same program contains these statements:

MOVE 3.15 TO GG
DISPLAY MM
DISPLAY MM (1:LTH)
MOVE "GONE" TO MM (11:)
DISPLAY MM

Executing the program produces these display:

MARGARINE $3.15
MARGARINE
MARGARINE GONE

data-name

OF

IN

(leftmost-character-position

)

length

qualified-name

subscript()

:

VST009.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-24

Data Fundamentals Condition-Names
qualified-name

is defined in Qualified Names.

subscript

is defined in Subscript Syntax.

leftmost-character-position

is an arithmetic expression. Its value must be a positive nonzero integer less than
or equal to the number of characters in data-name ; it represents the leftmost
character of the portion of data-name you are selecting.

length

is an arithmetic expression. Its value must be a positive, nonzero integer; it
represents the size of the portion of data-name you are selecting. The value of
the expression

(leftmost-character-position + length) - 1

must be less than or equal to the number of characters in data-name.

If length is absent, the defined item begins with leftmost-character-
position and ends with the last character of data-name ; thus the length of the
defined item is

(data-name-length -leftmost-character-position) + 1

where data-name-length is the length of data-name.

Condition-Names
Often an item in a record is tested frequently by a program. Assigning a condition-
name to the item is a convenient way to refer to the item and show the significance of
the item’s value.

Every condition-name referred to in a COBOL program must be unique or capable of
being made unique through qualifiers, subscripts, or a combination of qualifiers and
subscripts. If you use qualifiers to make a condition-name unique, you can use the
conditional variable as the first qualifier. You can also use the structure of names for
the conditional variable as a qualifier. If references to a conditional variable require
subscripting, then any of its condition-names also require subscripting.

Example 4-10 defines a condition-name for the conditional variable USE-CODE.

Example 4-9. Identifiers

UNIQUE-IDENTIFIER
ITEM-1 OF GROUP-A
ELEMENT OF NAME-TABLE OF MASTER-RECORD (LAST-ACCESSES)
PROD-NAME OF ITEM-X (ITEM-DEX) (1:15)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-25

Data Fundamentals Condition-Names
This IF statement uses the condition-name RESTRICTED-USE to test the value of
USE-CODE:

IF RESTRICTED-USE IN PART-NUMBER (30)
 PERFORM REPORT-VIOLATION
ELSE ...

Using condition-names also makes it easier to modify the program. Suppose the table
definition in Example 4-10 changes so that both 1 and 2 mean RESTRICTED-USE.
Without the use of a condition-name, the program must examine and possibly change
each instance of the testing of the value of USE-CODE. With the condition-name, only
the data description entry needs changing:

88 RESTRICTED-USE VALUES ARE 1, 2.
 SET RESTRICTED-USE TO TRUE

The SET statement sets USE-CODE to the value 1, the first value in the list.

Example 4-10. Condition-Name

01 INVENTORY.
 02 PART-NUMBER OCCURS 100 TIMES.
 03 PREFIX PICTURE 99.
 03 USE-CODE PICTURE 9.
 88 RESTRICTED-USE VALUE 1.
 03 SUPPLIER-SUFFIX PICTURE 99.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
4-26

5 Identification Division
The Identification Division is required in a COBOL program. It has one required
paragraph (PROGRAM-ID, which specifies the program name), and five optional
paragraphs (which specify your name, the date, and the program purpose). The
compiler handles the optional paragraphs as comments, except for the DATE-
COMPILED paragraph, whose presence causes the compiler to report the compilation
time and date in the listing.

Topics:

• Identification Division Syntax

• PROGRAM-ID Paragraph

• DATE-COMPILED Paragraph

Identification Division Syntax

IDENTIFICATION DIVISION.

is the division header. It must begin in area A, have a space in the indicator field,
and be completely contained on a single program text line.

If the order of the paragraphs differs from that shown, the compiler prints a warning
message. If any paragraph is repeated, the compiler prints an error message.

.DIVISIONIDENTIFICATION

PROGRAM-ID paragraph

«AUTHOR paragraph»

«INSTALLATION paragraph»

«DATE-WRITTEN paragraph»

«DATE-COMPILED paragraph»

«SECURITY paragraph»

VST010.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
5-1

Identification Division Identification Division Syntax
PROGRAM-ID paragraph

is defined under PROGRAM-ID Paragraph.

AUTHOR paragraph

comment-entry

is any combination of characters from the ASCII character set.

The first keyword following a comment-entry must start on a program text
line that has a space character in its indicator field. This keyword must start in
area A and be preceded by space characters only.

A comment-entry cannot be continued with the hyphen convention;
however, it can be implicitly continued onto additional program text lines if area
A of those lines contains space characters only.

The compiler ignores keywords and periods in comment-entry.

The compiler copies comment-entry to the listing as is, except the one in
the DATE-COMPILED paragraph (see DATE-COMPILED Paragraph).

INSTALLATION paragraph

Note. The 1985 COBOL standard classifies the AUTHOR paragraph as obsolete, so you
are advised not to use it. Instead, use a comment, as in Example 5-2.

Note. The 1985 COBOL standard classifies the INSTALLATION paragraph as obsolete,
so you are advised not to use it. Instead, use a comment, as in Example 5-2.

AUTHOR .

comment-entry

VST400.vsd

VST401.vsd

INSTALLATION .

comment-entry
HP COBOL Manual for TNS and TNS/R Programs—522555-006
5-2

Identification Division Identification Division Syntax
DATE-WRITTEN paragraph

DATE-COMPILED paragraph

SECURITY paragraph

Note. The 1985 COBOL standard classifies the DATE-WRITTEN paragraph as obsolete,
so you are advised not to use it. Instead, use a comment, as in Example 5-2.

Note. The 1985 COBOL standard classifies the DATE-COMPILED paragraph as
obsolete, so you are advised not to use it. Instead, use a comment, as in Example 5-2.

Note. The 1985 COBOL standard classifies the SECURITY paragraph as obsolete, so
you are advised not to use it. Instead, use a comment, as in Example 5-2.

Example 5-1. Identification Division With Obsolete Paragraphs

IDENTIFICATION DIVISION.
 PROGRAM-ID. MYPROG
 AUTHOR. JANE DOE
 INSTALLATION. HEADQUARTERS
 DATE-WRITTEN. JANUARY 20, 1992
 DATE-COMPILED. JANUARY 21, 1992
 SECURITY. COMPANY CONFIDENTIAL

DATE-WRITTEN .

comment-entry

VST402.vsd

DATE-COMPILED .

comment-entry

VST013.vsd

SECURITY .

comment-entry

VST404.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
5-3

Identification Division PROGRAM-ID Paragraph
PROGRAM-ID Paragraph
The required PROGRAM-ID paragraph names the COBOL program and (optionally)
declares it to be an initial program, a common program, or both.

The name that the PROGRAM-ID paragraph gives the program can differ from the file-
name of the source code file or that of the object file. It is the name by which the
program is called by another COBOL program’s CALL statement. You can also use it
to qualify a file-name in the TACL command ASSIGN.

program-name

is a COBOL word. It names the program unit.

program-type

INITIAL

makes the program an initial program, which means that the program is in the
initial program state each time it is executed—that is, all internal program
entities (data item values, file connectors, and so on) are in their initial states at
the start of each execution of the program.

Example 5-2. Identification Division With Comments

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MYPROG
* AUTHOR. JANE DOE
* INSTALLATION. HEADQUARTERS
* DATE-WRITTEN. JANUARY 20, 1992
* DATE-COMPILED. JANUARY 21, 1992
* SECURITY. COMPANY CONFIDENTIAL

.PROGRAM-ID program-name

IS

program-type

.

PROGRAM

VST011.vsd

INITIAL

COMMON

COMMON

INITIAL

VST012.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
5-4

Identification Division DATE-COMPILED Paragraph
COMMON

makes the program common, which means that the program must be
contained within another program and can be called by any other program
contained (directly or indirectly) in the same containing program, but not by the
programs it contains.

Usage Considerations:

• A Program Can Be Both Initial and Common

• Storage Allocation For an Initial Program

For an initial program, all data items are allocated dynamically.

When a program declares very large data items that do not have initial values
assigned, including a NOBLANK directive in the compilation saves significant
amounts of compilation time, object program storage space on disk, and run-time
initialization time. If you must initialize such items to spaces, use VALUE clauses,
INITIALIZE statements, or MOVE statements of the form:

MOVE ALL SPACES TO x.

• Qualification of a File-Name in an ASSIGN Command

The program-name can also be used in the command interpreter ASSIGN
command, where it serves to qualify a file-name. For example, suppose a COBOL
program having the program-name “MAILING-LIST” contains the statement:

SELECT IN-FILE ASSIGN TO "$WEST.CALIF.LIVEONES"...

You can reassign the IN-FILE of that program by issuing the command interpreter
command

ASSIGN MAILING-LIST.IN-FILE, $MIDWST.OKLA.PROSPCTS

before executing the object program. See the Guardian User’s Guide for more
information about the ASSIGN command.

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph directs the compiler to report the compilation date
and time in the listing, which the compiler already does by default.

Note. The 1985 COBOL standard classifies the DATE-COMPILED paragraph as obsolete, so
you are advised not to use it. Instead, use a comment, as in Example 5-2.

DATE-COMPILED .

comment-entry

VST013.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
5-5

Identification Division DATE-COMPILED Paragraph
DATE-COMPILED

must begin in area A, have a space in the indicator field, be completely contained
on a single program text line, and end with a period followed by a space.

If you split the reserved word DATE-COMPILED across program lines, the compiler
handles the paragraph as a simple comment-entry and does not replace its
contents with the date and time of compilation.

comment-entry

is any combination of characters from the ASCII character set.

The first keyword following a comment-entry must start on a program text line
that has a space character in its indicator field. This keyword must start in area A
and be preceded by space characters only.

A comment-entry cannot be continued with the hyphen convention; however, it
can be implicitly continued onto additional program text lines if area A of those
lines contains space characters only.

Except for checking its syntax, the compiler ignores comment-entry and
replaces it with the date and time of the compilation, which it prints on the listing in
this format:

DATE-COMPILED. yy/mm/dd - hh:mm:ss

where:

Number Range Represents

yy 00 through 99 Year

mm 01 through 12 Month

dd 01 through 31 Day

hh 00 through 23 Hour

ss 00 through 59 Second

Example 5-3. DATE-COMPILED Paragraph

Source text:

DATE-COMPILED. This is the final version.

Listing text:

DATE-COMPILED. 92/01/08 - 14:45:00
HP COBOL Manual for TNS and TNS/R Programs—522555-006
5-6

6 Environment Division
The Environment Division is optional in a COBOL program. It has two optional
sections, the Configuration Section and the Input-Output Section.

The Configuration Section states the type of computer on which to compile the
program and the type of computer on which to run the program. This section can also:

• Define the association between program-supplied names and system-supplied
facilities such as program switches or character sets

• Provide for substitution of the dollar sign ($) and decimal point (.) characters

• Adjust the character set to allow national alphabet extensions to pass the
ALPHABETIC test

The Input-Output Section includes:

• File declarations
• File buffer allocations
• $RECEIVE supplementary declarations for interprocess communication

If the program does not need to describe anything previously listed and does not use
files, it does not need the Environment Division.

If the program has the Environment Division and you move the program to an HP
system from another type of system, you must change the information in the
Environment Division.

Topics:

• Environment Division Syntax

• Configuration Section

• Input-Output Section
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-1

Environment Division Environment Division Syntax
Environment Division Syntax

ENVIRONMENT DIVISION.

is the division header. It must begin in area A.

CONFIGURATION section

is defined in Configuration Section.

INPUT-OUTPUT section

is defined in Input-Output Section.

DIVISIONENVIRONMENT

CONFIGURATION section

INPUT-OUTPUT section

.

VST014.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-2

Environment Division Configuration Section
Configuration Section
The Configuration Section is forbidden in a contained program and is optional in any
other program. The compiler prints a warning if a Configuration Section paragraph is
out of order; it reports an error if a paragraph is repeated.

SOURCE-COMPUTER paragraph

is defined in SOURCE-COMPUTER Paragraph.

OBJECT-COMPUTER paragraph

is defined in OBJECT-COMPUTER Paragraph.

SPECIAL-NAMES paragraph

is defined in SPECIAL-NAMES Paragraph.

VST015.vsd

.SECTIONCONFIGURATION

SPECIAL-NAMES paragraph

SOURCE-COMPUTER paragraph

OBJECT-COMPUTER paragraph
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-3

Environment Division SOURCE-COMPUTER Paragraph
SOURCE-COMPUTER Paragraph
The optional SOURCE-COMPUTER paragraph names the computer system on which
the program is compiled and can specify that debugging lines be compiled.

name

is any sequence of ASCII characters except WITH, DEBUGGING, or MODE. It
names the computer system on which the program is compiled.

DEBUGGING MODE

puts any source line that has D or d in its indicator field into the object program,
along with any USE DEBUGGING sections in the Declaratives Portion of the
Procedure Division (see USE DEBUGGING).

The process executes USE DEBUGGING sections only if the PARAM DEBUG ON
command is active in the command interpreter environment. The process executes
debugging lines whether the PARAM DEBUG ON command is active or not.

Note. The 1985 COBOL standard classifies USE DEBUGGING as obsolete, so you are
advised not to use it, even in TNS HP COBOL programs. The NMCOBOL compiler does not
recognize it.

VST016.vsd

.SOURCE-COMPUTER

name

WITH

DEBUGGING MODE

.

HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-4

Environment Division OBJECT-COMPUTER Paragraph
OBJECT-COMPUTER Paragraph
The optional OBJECT-COMPUTER paragraph names the computer system on which
the object program can run.

name

is any combination of character-strings except reserved words and separators
(except period (.)). It is handled as a comment.

MEMORY-SIZE clause

is checked for proper syntax but otherwise ignored. For more information, see
MEMORY-SIZE Clause.

PROGRAM COLLATING SEQUENCE clause

specifies a collating sequence for use in nonnumeric comparisons. For more
information, see PROGRAM COLLATING SEQUENCE Clause.

SEGMENT-LIMIT clause

is checked for proper syntax but otherwise ignored. For more information, see
SEGMENT-LIMIT Clause.

Note. The 1985 COBOL standard classifies the MEMORY-SIZE clause as obsolete, so
you are advised not to use it.

Note. The 1985 COBOL standard classifies the SEGMENT-LIMIT clause as obsolete, so
you are advised not to use it.

.OBJECT-COMPUTER

name

«MEMORY-SIZE clause»

PROGRAM COLLATING SEQUENCE clause

«SEGMENT-LIMIT clause»

CHARACTER-SET clause

.

VST017.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-5

Environment Division OBJECT-COMPUTER Paragraph
CHARACTER-SET clause

defines the ALPHABETIC class. For more information, see CHARACTER-SET
Clause.

MEMORY-SIZE Clause

HP COBOL ignores the MEMORY SIZE clause except to check its syntax.

integer

must be in the range 1 through 32,767 but is otherwise ignored.

WORDS
CHARACTERS
MODULES

are ignored.

Note. The 1985 COBOL standard classifies the MEMORY-SIZE clause as obsolete, so you
are advised not to use it.

SIZE

MEMORY integer WORDS

MODULES

CHARACTERS

VST018.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-6

Environment Division OBJECT-COMPUTER Paragraph
PROGRAM COLLATING SEQUENCE Clause
The PROGRAM COLLATING SEQUENCE clause enables you to specify an arbitrary
collating sequence for use in nonnumeric comparisons and changes the values of the
figurative constants HIGH-VALUE, HIGH-VALUES, LOW-VALUE, and LOW-VALUES.
This clause has no effect on national data items, which are collated in ascending order
of binary value (of the 2-byte pair representing the character).

alphabet-name

is defined in an ALPHABET clause in the SPECIAL-NAMES paragraph. For more
information, see ALPHABET Clause.

SEGMENT-LIMIT Clause

HP COBOL ignores the SEGMENT LIMIT clause except to check its syntax. All
segment-numbers, from 01 to 49, are permanent.

segment-number

must be in the range 1 through 49 but is otherwise ignored.

Note. The 1985 COBOL standard classifies the SEGMENT-LIMIT clause as obsolete, so you
are advised not to use it.

PROGRAM

IS

alphabet-name

COLLATING

SEQUENCE

VST019.vsd

VST020.vsd

segment-numberSEGMENT-LIMIT

IS
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-7

Environment Division OBJECT-COMPUTER Paragraph
CHARACTER-SET Clause
The CHARACTER-SET clause is an HP COBOL extension that enables you to specify
the national character set defining the ALPHABETIC data class.

character-set-type

is a keyword in the left column of this table, representing an alphabet in the right
column:

In COBOL, this clause affects only the ALPHABETIC-UPPER, ALPHABETIC-LOWER,
and ALPHABETIC tests. In SCREEN COBOL, the CHARACTER-SET IS clause has
some additional semantics, including terminal configuration (see the Pathway/TS
SCREEN COBOL Reference Manual).

The CHARACTER-SET clause does not define the character sets used for national
literals or national data items.

The default character set is USASCII. The UK character set designator is handled as a
comment, because it contains no extensions to the ALPHABETIC class. When the
character set is USASCII (or UK), the ALPHABETIC class test work as Table 6-1
shows.

character-set-type Alphabets

DANSK-NORSK Danish, Norwegian

DEUTSCH German

ESPANOL Spanish

FRANCAIS-AZ French (AZERTY keyboard)

FRANCAIS-QW French (QWERTY keyboard)

SVENSK-SUOMI Swedish, Finnish

UK United Kingdom

USASCII United States ASCII

Table 6-1. How Alphabetic Class Tests Work With Default Character Set

Test Verifies that each character is …

ALPHABETIC A space or a letter between A and Z or between a and z

ALPHABETIC-UPPER A space or a letter between A and Z

ALPHABETIC-LOWER A space or a letter between a and z

character-set-typeCHARACTER-SET

IS

VST021.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-8

Environment Division OBJECT-COMPUTER Paragraph
If you specify a character-set-type other than USASCII or UK, the ALPHABETIC
class includes additional characters (see Table 6-2). The French character sets differ
only in non-ALPHABETIC characters.

Table 6-2. Additional Characters Accepted by Alphabetic Class Tests With
Nondefault Character Sets

Character Set

ASCII Character (Decimal Value and ASCII Graphic)

64
 @

91
 [

92
 \

93
]

94
 ^

96 123
 {

124
 |

125
 }

126
 ~

DANSK-NORSK U U U L L L L

DEUTSCH U U U L L L L

ESPANOL U L

FRANCAIS-QW L L L L L

FRANCAIS-AZ L L L L L

SVENSK-SUOMI U U U U U L L L L L

L = This character is ALPHABETIC and ALPHABETIC-LOWER.

U = This character is ALPHABETIC and ALPHABETIC-UPPER.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-9

Environment Division SPECIAL-NAMES Paragraph
SPECIAL-NAMES Paragraph
The optional SPECIAL-NAMES paragraph assigns names of your choice to certain
system-names. In addition, you can define a currency sign other than the dollar sign
($), and you can exchange the function of commas and periods in PICTURE character-
strings and numeric literals.

National literals and national data items cannot be used in the SPECIAL-NAMES
paragraph.

Topics:

• System-Name Clause

• File-Mnemonic Clause

• ALPHABET Clause

• SYMBOLIC CHARACTERS Clause

• CLASS Clause

• CURRENCY SIGN Clause

• DECIMAL-POINT Clause

SPECIAL-NAMES

System-Name clause

File-Mnemonic clause

ALPHABET clause

SYMBOLIC CHARACTERS clause

CLASS clause

.

CURRENCY SIGN clause

DECIMAL-POINT clause

.

VST022.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-10

Environment Division SPECIAL-NAMES Paragraph
System-Name Clause

system-name

is the name of a hardware device, carriage-control tape channel, or external
switch.

If the System Name clause has no STATUS phrase, system-name must be one
of these values:

mnemonic-name

is a name you choose for the hardware device, carriage-control tape channel, or
external switch specified by system-name.

STATUS phrase

Value Meaning

CONSOLE Operator console

MYTERM Process’s home terminal

CHANNEL-1 through CHANNEL-12 Carriage-control tape channel

Note. The operator console that CONSOLE specifies is $0, an output-only device. If you
post an ACCEPT to this device, a run-time error occurs.

system-name IS mnemonic-name

STATUS phrase

VST023.vsd

on-phrase

off-phrase

off-phrase

on-phrase

VST746.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-11

Environment Division SPECIAL-NAMES Paragraph
on-phrase

switch-on

is a condition-name for testing the settings of switches. You do not have to
specify a mnemonic-name for a switch; you can just define this condition-
name.

off-phrase

switch-off

is a condition-name for testing the settings of switches. You do not have to
specify a mnemonic-name for a switch; you can just define this condition-
name.

Usage Considerations:

• System-Name Clause Without a STATUS Phrase

When the System Name clause has no STATUS phrase, system-name must be
one of these values:

° system-name is CONSOLE

When system-name is CONSOLE, the System-Name clause assigns a
mnemonic-name to the operator console. You can then use the mnemonic-
name in DISPLAY statements, as in this example:

SPECIAL-NAMES.
 CONSOLE IS OPERATOR-CONSOLE ...
 ...
 DISPLAY "MOUNT THE PAYROLL MASTER TAPE"
 UPON OPERATOR-CONSOLE.

Value Meaning

CONSOLE Operator console

MYTERM Process’s home terminal

CHANNEL-1 through CHANNEL-12 Carriage-control tape channel

ON

ISSTATUS

switch-on

VST025.vsd

switch-offOFF

ISSTATUS

VST026.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-12

Environment Division SPECIAL-NAMES Paragraph
You cannot use the mnemonic-name in ACCEPT statements, because
CONSOLE maps to $0, an output-only device.

° system-name is MYTERM

When system-name is MYTERM, the System-Name clause assigns a
mnemonic-name to the home terminal You can then use the mnemonic-name
in ACCEPT and DISPLAY statements, as in this example:

SPECIAL-NAMES.
 MYTERM IS MY-TERMINAL .
 ...
 DISPLAY "MOUNT THE PAYROLL MASTER TAPE"
 UPON MY-TERMINAL.
 ...
 ACCEPT EMPLOYEE-NAME FROM MY-TERMINAL.

° system-name is CHANNEL-1 … CHANNEL-12

When system-name is one of CHANNEL-1 … CHANNEL-12, the System-
Name clause assigns a mnemonic-name to the channel in a printer carriage-
control tape. This assignment allows the ADVANCING phrase of a WRITE
statement to specify a channel skip instead of a line count, as in this example:

SPECIAL-NAMES.
 CHANNEL-1 IS SIXTEENTH-LINE ...
 ...
 WRITE HEADING AFTER ADVANCING SIXTEENTH-LINE.

• System-Name Clause With a STATUS Phrase

When the System Name clause has a STATUS phrase, system-name must be
the name of an external switch: SWITCH-1 through SWITCH-15.

In the Guardian environment, set these switches at run time using the TACL
command PARAM. In the OSS environment, set these switches with environment
variables.

The System-Name clause assigns a mnemonic-name to the chosen external
switch in SET statements in your program. Conditional statements in the program
can refer to the switch only through the condition-names you choose for switch-
on and switch-off.

You can give a mnemonic-name to the switch itself, but you must declare at least
one STATUS phrase for the switch because only the condition-name of the
STATUS phrase can be used for testing within the program. The mnemonic-name
has no purpose other than to qualify the condition-name.

You can code either the ON STATUS or the OFF STATUS phrase first, but you can
use only one of each phrase for each system-name.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-13

Environment Division SPECIAL-NAMES Paragraph
File-Mnemonic Clause
The File-Mnemonic clause is, technically, a variant of the “system-name IS
mnemonic-name ” clause, but its purpose is significantly different. It defines file-
mnemonic to be either a name that Binder or the linker uses to resolve an external
reference in the Procedure Division (see CALL and ENTER) or a name suitable for use
in ACCEPT and DISPLAY statements.

The keyword FILE informs the compiler that the next token is either an operating
system file name or (in the Guardian environment) a DEFINE name.

system-file-name

is a partially or fully qualified operating system file name. It can be represented as
a nonnumeric literal (enclosed in quotation marks).

In the Guardian environment, system-file-name must be represented as a
nonnumeric literal if it has the same spelling as a COBOL reserved word or has the
form subvolume-name.file-name. If system-file-name consists of a single
user-defined word or begins with one of the characters in this table, the compiler
recognizes it as a file name without its being in quotation marks:

In the OSS environment, system-file-name must have the syntax described
for filename in OSS Pathnames for OSS Files.

Example 6-1. ON STATUS Phrase

SPECIAL-NAMES.
 SWITCH-4 IS TRANSACTION-TRACE,
 ON STATUS IS TRACING-TRANSACTIONS ...
...
 IF TRACING-TRANSACTIONS
 WRITE ...

First
Character Meaning

\ System-name qualifier

$ Volume-name or process-name qualifier

Special operating system file name qualifier

FILE system-file-name

define-name-literal

file-mnemonic

system-file-name-word

IS

VST027.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-14

Environment Division SPECIAL-NAMES Paragraph
define-name-literal

is a nonnumeric literal that specifies the name of a DEFINE of type MAP. For
information about DEFINE names, see DEFINEs.

system-file-name-word

is a single user-defined word that specifies the name of an operating system file,
not qualified by any system name, volume name, or subvolume name. It cannot be
a nonnumeric literal. It cannot represent a DEFINE name.

file-mnemonic

is a name you choose as an alias for the operating system file name or (in the
Guardian environment) the DEFINE name. You can use it in ACCEPT, CALL,
DISPLAY, and ENTER statements.

ALPHABET Clause
The ALPHABET clause provides a way for you to associate a name with a specified
character code set, collating sequence, or both. You can use the alphabet-name
that you define in the ALPHABET clause in:

• PROGRAM COLLATING SEQUENCE clause of the OBJECT-COMPUTER
paragraph

• COLLATING SEQUENCE phrase of a SORT or MERGE statement

• CODE-SET clause of a file description entry

alphabet-name

is a user-defined word, the name to be associated with the character code set that
you define.

ALPHABET alphabet-name

STANDARD-1

STANDARD-2

NATIVE

EBCDIC

literal-phrase

IS

VST028.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-15

Environment Division SPECIAL-NAMES Paragraph
STANDARD-1
STANDARD-2
NATIVE

specify the USASCII character set.

EBCDIC

specifies the Extended Binary-Coded Decimal Interchange Code.

literal-phrase

defines an alphabet explicitly. An alphabet-name defined by literal-phrase
cannot be used in the CODE-SET clause in a file description entry. If you use
literal-phrase, you cannot specify a given character more than once in the
ALPHABET clause.

literal-1
literal-2
literal-3

are unsigned integer literals or nonnumeric literals, but not symbolic-character
figurative constants.

An unsigned integer literal must have a value in the range 1 through 256. It is the
ordinal number of a character position in the computer’s character set (the first
character has ordinal number 1, even though its representation is octal 00).

A nonnumeric literal is an actual character or set of characters in the computer’s
character set. If a nonnumeric literal consists of exactly one character, the literal
identifies that character. If a nonnumeric literal consists of more than one
character, the compiler handles it as an abbreviation for a consecutive series of
literal phrases that identify each of the specified characters individually, in the order
they appear in the nonnumeric literal.

Each nonnumeric literal in a THROUGH or ALSO phrase must specify exactly one
character.

ALSO literal-3

THROUGH literal-2

THRU

literal-1

VST029.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-16

Environment Division SPECIAL-NAMES Paragraph
Usage Considerations:

• Alphabet-Name in PROGRAM COLLATING SEQUENCE Clause

When you include an alphabet-name in the PROGRAM COLLATING SEQUENCE
clause of the OBJECT-COMPUTER paragraph, you are specifying that the
associated collating sequence is to be used in nonnumeric comparisons performed
throughout the program.

• Alphabet-Name in COLLATING SEQUENCE Phrase

When you include an alphabet-name in the COLLATING SEQUENCE phrase of a
SORT or MERGE statement, you are specifying that the associated collating
sequence is to be used in nonnumeric comparisons performed by that statement.

• Alphabet-Name in CODE-SET Clause of a File Description Entry

When you include an alphabet-name in a CODE-SET clause of a file description
entry, you are specifying that the associated character set is to be used in the
external representation of the data for that file.

• Literal-Phrase

The THROUGH phrase can specify an ascending or descending sequence of
characters. THRU is equivalent to THROUGH. The compiler interprets the
THROUGH phrase as an abbreviation for a consecutive series of literal phrases,
each identifying the next member of a set of contiguous characters in the
computer’s character set. The set begins with the character identified by
literal-1 and ends with the character identified by literal-2. If the
character identified by literal-1 occurs earlier in the collating sequence than
the one identified by literal-2, the implied literal sequence specifies the
characters in their collating order; otherwise, the implied literal sequence specifies
the characters in the reverse of their collating order.

The characters identified in the successive literal phrases, including any implicit
literal phrases generated by the interpretation previously described, are assigned
successive ascending positions in the collating sequence being defined by the
ALPHABET clause. The order of position assignment corresponds directly to the
order of the literal phrases.

When a literal phrase includes one or more ALSO components, each character
identified by a literal-3 is assigned the same position in the collating
sequence as the character identified by the phrase’s literal-1.

Any characters of the collating sequence that are not identified in the successive
literal phrases, including any implicit literal phrases generated by the
interpretations previously described, are assigned collating sequence positions
greater than that of the last character that is identified. The relative order within the
set of these unspecified characters is unchanged from their order in the collating
sequence.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-17

Environment Division SPECIAL-NAMES Paragraph
• Program Collating Sequence and Figurative Constants

You can use the literal phrase of the ALPHABET clause to specify an arbitrary
collating sequence for use in nonnumeric comparisons, sorting, and the intrinsic
functions CHAR and ORD. For information on nonnumeric comparisons, see
Arithmetic Operations. For information on sorting, see SORT. For information on
the intrinsic functions CHAR and ORD, see CHAR Function and ORD Function.

The character that has the highest ordinal position in the specified program
collating sequence is associated with the figurative constant HIGH-VALUE. If more
than one character has the highest position, the last character specified is
associated with HIGH-VALUE.

The character that has the lowest ordinal position in the specified program collating
sequence is associated with the figurative constant LOW-VALUE. If more than one
character has the lowest position, the first character specified is associated with
LOW-VALUE.

SYMBOLIC CHARACTERS Clause
The SYMBOLIC CHARACTERS clause assigns a name to a character, which can then
be referenced as a figurative constant. It is especially useful for nonprinting characters
that some input interfaces cannot except, such as the end-of-text character EXT.

character-list

assigns the name symbolic-char to the character in position within
alphabet-name, enabling you to reference the character as a figurative constant.
A character-list must have equal numbers of symbolic-char and
position. The first symbolic-char corresponds to the first position, and so
on.

symbolic-char

is a user-defined COBOL word. No symbolic-char can appear more than
once in the set of SYMBOLIC CHARACTERS clauses in one program.

SYMBOLIC character-list

CHARACTERS

VST030.vsd

symbolic-char

IN

ARE

IS position

alphabet-name

VST031.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-18

Environment Division SPECIAL-NAMES Paragraph
position

is an unsigned integer. Its value is in the range 1 through 256 and is the ordinal
position of a character in an alphabet (the first ASCII character has ordinal
position 1, although it is represented by octal 00).

alphabet-name

is an alphabet that includes the character to which you want to assign
symbol-char. The default is USASCII.

This SYMBOL-CHARACTERS clause sets C-RETURN to the carriage return
character, which has ordinal position 14:

SYMBOLIC CHARACTERS C-RETURN IS 14

CLASS Clause
The CLASS clause defines classes other than the NUMERIC, ALPHABETIC,
ALPHABETIC-UPPER, and ALPHABETIC-LOWER that the COBOL language defines.

class-name

is referenced in the program as a class-condition (see Class Conditions).

literal-phrase

specifies a string of characters (literal-1) or a range of characters
(literal-1 through literal-2) that make up the class you are defining.

CLASS class-name literal-phraseIS

VST032.vsd

THRU

THROUGH

literal-1

literal-2

VST033.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-19

Environment Division SPECIAL-NAMES Paragraph
literal-1

is an unsigned integer literal or a nonnumeric literal, but not a symbolic-
character figurative constant.

If literal-1 is an unsigned integer literal, its value must be in the range 1
through 256. The value is the ordinal number of a character position in the
computer’s character set (the first character has ordinal number 1, even
though its representation is octal 00).

If literal-1 is a nonnumeric literal, its value depends on the presence or
absence of literal-2. If literal-2 is present, the value of literal-1
must be exactly one character, and it can be a character that is either before or
after literal-2 in the ASCII collating sequence. If literal-2 is absent,
the value of literal-1 can be a string of one or more characters. The
compiler handles a multicharacter string as an abbreviation for a consecutive
series of literal phrases that identify each of the single characters individually,
in the order they appear in literal-1.

literal-2

is an unsigned integer literal or a nonnumeric literal, but not a symbolic-
character figurative constant.

If literal-2 is an unsigned integer literal, its value must be in the range 1
through 256. The value is the ordinal number of a character position in the
ASCII character set.

If literal-2 is a nonnumeric literal, its value must be exactly one character.

The compiler handles the range literal-1 through literal-2 as an
abbreviation for a consecutive series of literal phrases that specify all ASCII
characters from the lower ordinal position to the higher ordinal position.

The two definitions in Example 6-2 are equivalent.

The two definitions in Example 6-3 are equivalent.

Example 6-2. Defining a Class of Vowels

CLASS VOWEL IS "A" "E" "I" "O" "U" "a" "e" "i" "o" "u"

CLASS VOWEL "AEIOUaeiou"

Example 6-3. Defining a Class of Special Characters

CLASS SPEC-CHAR IS 1 THRU 32
OCT IS "0" THRU "7"

CLASS SPEC-CHAR IS 32 THRU 1
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-20

Environment Division SPECIAL-NAMES Paragraph
The order of specification has no effect on the performance of the program using the
definition.

CURRENCY SIGN Clause
The CURRENCY SIGN clause specifies a one-character nonnumeric literal, sign,
whose value is to be used in the PICTURE clause to represent the currency sign.

sign

is one of these characters (which must be enclosed in quotation marks):

! # $ % & ' : < > ? @
E F G H I J K L M O Q T U W Y
[\] ^ _ ~
e f g h i j k l m o q t u w y

It represents the currency sign, and cannot be a figurative constant, a control
character (ASCII position 0 through 31, or 127), the space character, or any of
these characters:

0 1 2 3 4 5 6 7 8 9
A B C D N P R S V X Z
a b c d n p r s v x z
* + - , . ; () " , =

The clause

CURRENCY SIGN IS "#"

makes the currency sign #, and the picture ordinarily expressed as

$$$,$$9.99

is instead expressed as

###,##9.99

If sign is a lowercase alphabetic character, it appears in any source listing as
lowercase, but the compiler converts it to an uppercase character for all further
processing. It is uppercase in any numeric edited item produced by the associated
PICTURE clause.

Example 6-4. Defining a Class of Octal Numerics

OCT IS "0" THRU "7"

CURRENCY

SIGN IS

sign

VST034.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-21

Environment Division Input-Output Section
DECIMAL-POINT Clause
The DECIMAL-POINT clause exchanges the functions of commas and periods in
PICTURE character-strings and numeric literals.

Input-Output Section
COBOL programs typically handle large amounts of data, stored on such devices as
disks and magnetic tapes. Before a program can use the stored data, the operating
system file names must be linked to COBOL file names. You connect the names in file-
control entries in the Input-Output Section.

Topics:

• FILE-CONTROL Paragraph

• I-O-CONTROL Paragraph

• RECEIVE-CONTROL Paragraph

DECIMAL-POINT

IS

COMMA

VST380.vsd

.SECTIONINPUT-OUTPUT

RECEIVE-CONTROL paragraph

I-O-CONTROL paragraph

FILE-CONTROL paragraph

VST035.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-22

Environment Division FILE-CONTROL Paragraph
FILE-CONTROL Paragraph
If the FILE-CONTROL paragraph is present, it must be the first paragraph in the Input-
Output Section.

file-control-entry

has different syntax for sequential, line sequential, relative, indexed, queue, and
sort-merge files. See the appropriate topic.

Topics:

• File-Control Entries in General

• File-Control Entries for Sequential Files

• File-Control Entries for Line Sequential Files

• File-Control Entries for Relative Files

• File-Control Entries for Indexed Files

• File-Control Entries for Queue Files

• File-Control Entries for Sort-Merge Files

File-Control Entries in General
The file name of every data file and every sort-merge file described in the Data Division
must appear exactly once in the SELECT clause of a file-control entry. Likewise, every
file name that appears in the SELECT clause of a file-control entry must also appear in
a corresponding data file description entry (with a level indicator of FD) or sort-merge
file description entry (with a level indicator of SD).

A file-control entry connects an operating system file name to a COBOL file name,
specifies the file’s organization and keys, and gives other information needed for input
and output. For information about Guardian file names, see the Guardian Procedure
Calls Reference Manual. For information about OSS file names, see Files in the OSS
Environment.

Each file-control entry consists of a SELECT clause followed by one or more clauses
that specify file-related information. Every file-control entry must contain at least the
SELECT clause and the ASSIGN clause. The file organization determines which of the
other clauses are required or optional. No clause can appear more than once except
for the ALTERNATE RECORD KEY clause, which can appear as often as needed to
describe the alternate record keys of the file. Code the SELECT clause first, and then
code the other clauses in any order.

.FILE-CONTROL file-control-entry

VST036.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-23

Environment Division FILE-CONTROL Paragraph
Table 6-3. Summary of File-Control Entry Clauses

File-Control
Entry Clause1

File Type

Sequential
Line
Sequential Relative Indexed Queue

Sort-
Merge

SELECT2 R R R R R R

ASSIGN R R R R R R

RESERVE O O O O O NA

ORGANIZATION O O R R R NA

PADDING
CHARACTER

O NA NA NA NA NA

RECORD
DELIMITER

O NA NA NA NA NA

ACCESS
MODE3

O O O O O NA

RECORD KEY NA NA NA R R NA

RELATIVE KEY NA NA O if
access
mode is
sequential,
R
otherwise

NA NA NA

ALTERNATE
RECORD KEY

O NA O O NA NA

FILE STATUS O O O O O NA

R=Required

O=Optional

NA=Not Applicable

1. File-control entry clauses have the same syntax for each file type, except as noted.

2. SELECT clause syntax is the same for all file types except sort-merge.

3. ACCESS MODE clause syntax is different for all types.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-24

Environment Division FILE-CONTROL Paragraph
Table 6-4. Descriptions of File-Control Entry Clauses (page 1 of 2)

Clause Description

SELECT Defines the file name used to refer to the file in the
remainder of the source program. The OPTIONAL phrase
applies only to files opened in the INPUT, I-O, or EXTEND
mode. When such a file is not required to be present every
time the object program unit is executed, you can designate
it as optional.

Every file name in a SELECT clause must also be in a file
description (FD) entry or sort-merge file description (SD)
entry in the Data Division. Conversely, every file name in a
file description entry or sort-merge file description entry
must also be in a SELECT clause.

ASSIGN Associates the file name used within the program with an
operating system file. The operating system file name is the
one the operating system uses to refer to the file.

ORGANIZATION Specifies the logical structure of a file, which was
established when the file was created and which you cannot
change. The default is sequential organization.

RECORD DELIMITER Specifies the method of determining the length of a
variable-length record on the file’s physical medium. It can
appear only for a sequential file whose description specifies
variable-length records. HP COBOL handles the RECORD
DELIMITER clause as a comment.

ACCESS Specifies the order in which a process can read records
from the file. The default is sequential access.

When the access mode is sequential, a process can read
records from or write records to the file one after the other,
in an order that depends on the file’s organization (see
Table 6-5).

When the access mode is random, you use key values to
specify the order in which a process reads or writes
records. The file-control entry specifies a data item to hold a
key value (see Table 6-6).

When the access mode is dynamic, records can be
processed either sequentially or randomly.

ALTERNATE RECORD KEY See the paragraphs after Table 6-6.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-25

Environment Division FILE-CONTROL Paragraph
The ALTERNATE RECORD KEY clause specifies an alternate record key (designated
in the syntax as altkey) for the file. Each altkey must reference an alphanumeric
or unsigned numeric data item defined in a record description entry associated with its
file name. In either case, the collating sequence is ASCII—using tricks to allow
altkey to be a signed numeric data item causes problems.

An altkey cannot reference an item whose size is variable. The presence or
absence of the DUPLICATES phrase specifies whether or not the value of this
alternate record key can be duplicated among the records in the file.

If more than one record in a file has the same alternate record key value then when a
program reads the file according to the alternate record key, the records are presented
to the program either in either prime record key order or in the chronological order of
their insertion into the file. The 1985 ISO/ANSI COBOL standard specifies insertion
order, but HP COBOL provides a mechanism to enable you to choose either order.

FILE STATUS The FILE STATUS clause specifies the identifier
(designated in the syntax as filestat) that is to serve as
the file-status data item for the file. When a COBOL run-
time I-O routine completes an operation on the file, it stores
the status code in the file-status data item before returning
control to your program.

The identifier filestat must reference an alphanumeric
data item with a size of exactly two characters. The data
item must be defined in the Working-Storage Section,
Extended-Storage Section, or Linkage Section of the Data
Division.

Table 6-5. Sequential Access

File Organization
Records are read by ascending alternate key
or processed in the order …

Sequential,
Line sequential

that they are written, from the first physical record to the last

Relative of ascending relative record numbers

Indexed of ascending record key values within a given key

Table 6-6. Random Access

File Organization Next record to be processed is determined by the value of …

Relative RELATIVE KEY or ALTERNATE RECORD KEY data item

Indexed RECORD KEY or ALTERNATE RECORD KEY data item

Table 6-4. Descriptions of File-Control Entry Clauses (page 2 of 2)

Clause Description
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-26

Environment Division FILE-CONTROL Paragraph
Each such file has an INSERTIONORDER attribute that governs this behavior for all its
alternate keys. An insertion-ordered alternate key cannot share an alternate key file
with other keys of different lengths, or with other alternate keys that are not insertion
ordered. The attribute can be changed only by using either a call to the operating
system routine SET or by use of the File Utility Program (FUP), not by any COBOL
language phrase or clause. In FUP, the BUILDKEYRECORDS and LOADALTFILE
commands do not support loading of insertion-ordered alternate key records.

There are size and performance penalties for using insertion-ordered duplicate
alternate keys; the size of the alternate file increases and the access time increases as
the number of records having duplicate alternate keys increases. For more information
see the File Utility Program (FUP) Reference Manual or the Guardian Procedure Calls
Reference Manual.

The data description of each altkey, its relative location within the file record, and the
specification of the DUPLICATES attribute must correlate with one of the alternate
record keys defined when the file was created. The file-control entry can contain at
most one ALTERNATE RECORD KEY clause that describes a particular alternate
record key of the file. If an alternate record key is not referenced in the source program
Procedure Division, then it is not necessary to describe it in the file-control entry. A
maximum of 31 alternate record keys can be described for a single file.

No altkey can reference an item whose leftmost character position within the file
record corresponds to the leftmost character position of the item referenced by any
other altkey associated with this file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-27

Environment Division FILE-CONTROL Paragraph
File-Control Entries for Sequential Files
HP COBOL supports two types of sequential disk files:

• A disk file created as a sequential file (also called an entry-sequenced file on
NonStop systems)

• An unstructured disk file

Also, a COBOL file defined as sequential can be assigned to a tape file, to a device
such as a terminal or process, or to $RECEIVE. See OPEN and RECEIVE-CONTROL
Paragraph.

In HP COBOL, entry-sequenced disk files can have alternate record keys, whose
values can identify individual records. A file-control entry for a sequential file includes
an ORGANIZATION SEQUENTIAL clause or no ORGANIZATION clause (in which
case the file has sequential organization by default).

SELECT clause

.SELECT clause ASSIGN clause

RESERVE clause

ORGANIZATION clause

PADDING CHARACTER clause

RECORD DELIMITER clause

ACCESS MODE clause

ALTERNATE RECORD KEY clause

FILE STATUS clause

VST037.vsd

SELECT file-name

OPTIONAL

VST038.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-28

Environment Division FILE-CONTROL Paragraph
OPTIONAL

makes the file optional, which means that an OPEN statement with an INPUT,
I-O, or EXTEND phrase can open the file whether or not the file exists. If the
file exists, its I-O status code is “00”; if not, its I-O status code is “05”.
OPTIONAL does not affect the OPEN statement with an OUTPUT phrase.

When you open a nonexistent optional file for input, the first READ statement
for that file uses the AT END option (or USE procedure if the READ statement
has no AT END phrase).

file-name

is the COBOL file-name (the file-name in a file description entry).

ASSIGN clause

associates file-name with system-file-name or define-name-literal.
Only the first system-file-name or define-name-literal has meaning.
The compiler ignores subsequent names and literals and issues a warning.

system-file-name

is the name of a file that the file system recognizes or one of the special
operating system file names described in System-Names. If system-file-
name does not begin with a dollar sign ($), backward slash (\), or number sign
(#), then it must be enclosed in quotation marks unless it forms a COBOL
word. For more information about operating system file names, see the
Guardian Procedure Calls Reference Manual.

define-name-literal

is allowed only in the Guardian environment. It is a nonnumeric literal
representing a DEFINE name of class MAP, SPOOL, TAPE, or
TAPECATALOG. Quotation marks must enclose define-name-literal. For
more information about DEFINE names, see DEFINEs.

ASSIGN

TO define-name-literal

system-file-name

VST039.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-29

Environment Division FILE-CONTROL Paragraph
RESERVE clause

enables or prevents sequential block buffering on input and buffered cache on
output, or enables or prevents HP COBOL Fast I-O for both input and output, for a
disk file, depending on the value of number.

number

is a numeric literal, an unsigned integer.

In the non-CRE environment, number must be in the range 1 through 8, and
its value is interpreted:

In the CRE, number must be in the range 1 through 32, and its value is
interpreted:

Value of number Effect

1 No buffering or HP COBOL Fast I-O

2 or greater HP COBOL Fast I-O if the assigned file qualifies; if not,
sequential block buffering for input and buffered cache for
output if the assigned file qualifies; otherwise normal I-O

number is the number of blocks to buffer.

Value of number Effect

1 No buffering or HP COBOL Fast I-O

2 Sequential block buffering on input and buffered cache on
output if the assigned file qualifies

3 or greater HP COBOL Fast I-O if the assigned file qualifies; if not,
sequential block buffering for input and buffered cache for
output if the assigned file qualifies; otherwise normal I-O

number is the number of blocks to buffer.

Caution. Do not use sequential block buffering for a file opened for shared access. If you do,
a process could read data that is not up-to-date while another process alters the file. For
information on shared access, see OPEN.

RESERVE

AREAS

AREAnumber

VST040.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-30

Environment Division FILE-CONTROL Paragraph
ORGANIZATION clause

makes the organization of the file sequential (the default).

PADDING CHARACTER clause

specifies pad-char, the character to be used for padding on sequential files on
unlabeled magnetic tape when the physical record size (block size) exceeds the
logical record size. HP COBOL handles this phrase as a comment, except for
checking if pad-char is acceptable.

pad-char

is either a nonnumeric literal that represents a single character, or a qualified or
unqualified name that references an alphanumeric data item whose value is a
single character. If pad-char is a data item, it must be defined in the
Working-Storage, Extended-Storage, or Linkage Section. pad-char cannot
be a national literal or national data item.

RECORD DELIMITER clause

specifies the method of determining the length of a variable-length record on the
file’s external medium. HP COBOL handles this clause as a comment, except that
these requirements are checked:

° This clause can appear only for a file whose description specifies variable-
length records.

° STANDARD-1 applies only to magnetic tape files that contain standard label
records.

° rec-delim must be IMPLICIT (see rec-delim, following).

ORGANIZATION IS

SEQUENTIAL

VST041.vsd

VST042.vsd

PADDING

CHARACTER IS

pad-char

RECORD DELIMITER

IS

STANDARD-1

rec-delim

VST043.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-31

Environment Division FILE-CONTROL Paragraph
rec-delim

must be IMPLICIT, the only name predefined by HP COBOL for use in this
clause. IMPLICIT signifies that the record delimiter is implied by the size of the
records on the magnetic tape.

ACCESS MODE clause

makes the access mode of the file sequential (the default).

ALTERNATE RECORD KEY clause

makes alt-key an alternate record key.

alt-key

is an alphanumeric or unsigned numeric data item declared in the record
description entry of the file and is used to gain access to records within the file.
The size and location of alt-key must agree with the size and location of the
alternate key within the file, as defined when the alternate key file was
established by the Guardian environment File Utility Program (FUP). (For
information about FUP, see the File Utility Program (FUP) Reference Manual.)

DUPLICATES

means that alternate key values are not necessarily unique.

ACCESS

IS

SEQUENTIAL

MODE

VST044.vsd

RECORD

KEY IS

alt-key

WITH DUPLICATES

ALTERNATE

VST045.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-32

Environment Division FILE-CONTROL Paragraph
FILE STATUS clause

defines filestat as the file-status data item for the file. When a COBOL run-
time IO routine completes an operation on the file, it stores the status code in
filestat before returning control to your program (see I-O Status Code).

filestat

is a 2-character alphanumeric, nonnational data item defined in the Working-
Storage Section, Extended-Storage Section, or Linkage Section.

Usage Considerations:

• EDIT Files

A file assigned to an EDIT file can be open for output only if it has the file code
101. It can be given the file code 101 by any of:

° The application that created it outside the COBOL program

° An ASSIGN command that was active during run unit initialization (the ASSIGN
command must have a CODE phrase)

° The COBOL_ASSIGN_ routine

The buffer size of an EDIT file created in the CRE is determined:

1. If an ASSIGN command includes the BLOCK parameter, that value is the
buffer size. (ASSIGN commands are allowed only in the Guardian
environment.)

2. If Step 1 is not true and the file description entry for the EDIT file includes a
BLOCK CONTAINS clause, then that value is the buffer size.

3. If Step 2 is not true, the buffer size is 4,096.

STATUS

ISFILE

filestat

VST046.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-33

Environment Division FILE-CONTROL Paragraph
• Alternate Record Keys

Records in a file can be read in the ascending order of alternate key values, even if
the file’s organization is sequential or relative. The order in which records are
obtained using alt-key can differ from the order in which the records are stored.
You can define up to 31 alternate keys for a file.

If you include the DUPLICATES phrase in the ALTERNATE RECORD KEY clause,
the value of alt-key need not be unique for each record in the file. Depending
on the INSERTIONORDER parameter of the alternate key file, records with
duplicate alternate key values are inserted (or retrieved) in either prime key order
(the way NonStop systems software ordinarily works) or in the order in which they
were inserted in the file (as specified in the 1985 ISO/ANSI COBOL standard).

The data description entry for alt-key cannot contain an OCCURS clause or be
subordinate to an entry that contains an OCCURS clause. The leftmost character
position of an alt-key item cannot correspond to the leftmost character position
of another alt-key item in that file.

The file-control entry can contain at most one ALTERNATE RECORD KEY clause
that describes a particular alternate record key of the file.

If a file in the file system is defined as having alternate record keys to which the
COBOL program does not make any reference, you do not need to specify them in
the File-Control paragraph.

An alt-key is permitted only for structured disk files and not for unstructured
disk files or files that are not disk files. A file having a LINAGE clause in its file
description cannot be a disk file (although it can be spooled to a printer by way of a
disk). It is, therefore, never legal to define a file with an ALTERNATE RECORD
KEY clause and have a LINAGE clause in the file description entry for that file.

• Sequential Block Buffering

Sequential block buffering, enabled by the RESERVE clause when the file is open
in INPUT or I-O mode, is a feature of the Enscribe database record manager that
enables faster reading of a sequentially structured file by reading a block of
records together into a memory buffer. The file’s access must be sequential, but its
organization can be sequential, relative, or indexed.

A program requests sequential block buffering (or does not request it) when it
opens the file. Each process that opens the file requests or does not request
sequential block buffering. One process can request it while another process does
not. Nothing stored on the disk keeps a record of whether the file is to be read with
sequential block buffering.

The RESERVE clause acts as a switch. In the CRE, the number 2 means to use
sequential block buffering on input (and buffered cache on output) if the assigned
file qualifies.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-34

Environment Division FILE-CONTROL Paragraph
Enscribe determines the size of the sequential block buffer. Usually, the buffer size
is the file’s data block size, but when a process accesses a file by alternate keys,
the buffer size is the alternate key file’s data block size. You can obtain the data
block size for the appropriate file with the FUP command:

FUP INFO file-name,DETAIL

The size is usually 1,024 characters.

The size of the buffer space used for reading is 4* dbs, where dbs is the file’s data
block size. The BLOCK CONTAINS clause, if specified, is ignored. Because
double buffering is used, the size of the block read is half the size of the buffer. The
maximum size of blocks read is 32,768 characters.

If the process cannot perform sequential block buffering for any reason, it performs
normal input-output. The file status code is “07”.

• Buffered Cache

Buffered cache is a feature of the DP2 disk process that uses more efficient disk
I-O to write disk files.

The RESERVE clause acts as a switch. In the CRE, the number 2 means to use
buffered cache on output (and sequential block buffering on input) if the assigned
file qualifies. The file must be open in the OUTPUT, I-O, or EXTEND mode.

The size of the buffer space used for writing is 29K characters, regardless of the
number in the RESERVE clause.

This technique buffers records in cache rather than writing them immediately to
disk, thereby reducing the number of requests to the disk process. Audited files
always use buffered cache; nonaudited files can use buffered cache or write-
through cache under DP2. Write-through cache transfers each record to the disk
as it is written.

You can use the File Utility Program (FUP) commands SET and ALTER to set the
BUFFERED attribute for a file, specifying that any programs that open that file
must use buffered cache. If a file has the BUFFERED attribute set, a process can
still override the attribute by calling the Guardian routine SETMODE to specify that
buffered cache must not be used, but the run-time routines do not do this. If a
COBOL program specifies RESERVE 1 AREA for a file that already has the
BUFFERED attribute set, the disk process still uses buffered cache.

Note. With the advent of the DP2 disk processing system, normal I/O could be faster than
sequential block buffering, depending on the number of records per block. For example, a
file containing eight 4K blocks and 1600 records requires one physical I/O operation and
1600 interprocess messages in normal mode, but eight physical I/O operations and only
eight interprocess messages in SBB mode; on the other hand, a file with eight 4K blocks
and only eight records requires one physical I/O and eight interprocess messages in
normal mode, but eight physical I/O operations and eight interprocess messages in SBB
mode
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-35

Environment Division FILE-CONTROL Paragraph
You must not use buffered cache in applications that require each record to be
actually written to disk before execution of the next statement in the program.

• HP COBOL Fast I-O (Local Buffering)

HP COBOL Fast I-O is an enhancement in input-output performance beyond that
of sequential block buffering or buffered cache. It is available if a program and the
sequential file on which it is to operate meet these criteria:

° You are not creating an audited file (you can read an audited file, however).

° The file description includes a RESERVE clause with a number specifying the
number of blocks to buffer. In the non-CRE environment, the number must be
greater than 1; in the CRE, it must be greater than 2.

° The file description does not include a LINAGE clause or a CODE-SET clause.

° The file is not opened with time limits (as with the TIME LIMITS phrase in the
OPEN statement).

° The file’s open mode is either INPUT or OUTPUT. If it is INPUT, its exclusion
mode is PROTECTED; if it is OUTPUT, its exclusion mode is EXCLUSIVE.

° The program is not compiled with the NONSTOP directive.

° Regarding fast I-O and alternate keys, you must adhere to these rules:

° If the program is compiled with ENV OLD, there must be no alternate keys
either in the SELECT statement or in the file itself.

° If the program is compiled with ENV COMMON, there must be no alternate
keys mentioned in the SELECT statement. Any alternate keys that exist in
the file must be set to NO UPDATE with FUP.

With HP COBOL Fast I-O, the run-time routines use an auxiliary block buffer and
perform the blocking and deblocking in local storage. This can operate as much as
ten times faster than having the operating system perform the blocking and
deblocking operations.

The size of the buffer space used for reading is 2 * number *dbs, where dbs is
the file’s data block size. The BLOCK CONTAINS clause, if specified, is ignored.
Because double buffering is used, the size of the block read is half the size of the
buffer. The maximum size of blocks read is 32,768 characters.

You can obtain the data block size for the appropriate file with the FUP command:

FUP INFO file-name, DETAIL

The size is usually 1,024 characters.

The size of the buffer space used for writing is 29K characters, regardless of the
number in the RESERVE clause.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-36

Environment Division FILE-CONTROL Paragraph
If the RESERVE clause specifies a number that uses HP COBOL Fast I-O and
the assigned file qualifies for HP COBOL Fast I-O, but there is not enough buffer
space for HP COBOL Fast I-O, then the I-O status code is “07” and sequential
block buffering is used.

If you run out of disk space, the corrupt bit is set, the program terminates
abnormally, and you cannot open the file. If the file is entry-sequenced, use FUP to
clear the corrupt bit. If the file is not entry-sequenced, the file is unusable.

An auxiliary block buffer can be shared by two files in a program as long as both
are not open at the same time. The space is allocated as part of the open
operation and deallocated as part of the close operation. The SAME AREA clause
has no effect on space allocation or deallocation.

Example 6-5 contains two simple sequential files:

° An input file that the COBOL program recognizes as MASTER1-IN and to the
operating system as NAMEFILE in a subvolume name SUB1 on a disk drive
named $BULK.

° An output file that the COBOL program recognizes as REPORT-OUT and to
the Guardian environment as a DEFINE named =ROSTER-PRINTER.

Example 6-5. FILE-CONTROL Paragraph for Sequential File

INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT MASTER1-IN
 ASSIGN TO "$BULK.SUB1.NAMEFILE"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.
 SELECT REPORT-OUT
 ASSIGN TO "=ROSTER-PRINTER"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.
 ...

DATA DIVISION.
FILE SECTION.
FD MASTER1-IN
 LABEL RECORDS ARE OMITTED.
 ...

FD REPORT-OUT
 LABEL RECORDS ARE OMITTED.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-37

Environment Division FILE-CONTROL Paragraph
File-Control Entries for Line Sequential Files
Line sequential files are available only in the OSS environment.

SELECT clause

OPTIONAL

makes the file optional, which means that an OPEN statement with an INPUT,
I-O, or EXTEND phrase can open the file whether or not the file exists. If the
file exists, its I-O status code is “00”; if not, its I-O status code is “05”.
OPTIONAL does not affect the OPEN statement with an OUTPUT phrase.

When you open a nonexistent optional file for input, the first READ statement
for that file uses the AT END option (or USE procedure if the READ statement
has no AT END phrase).

file-name

is the COBOL file-name (the file-name in a file description entry).

.

RESERVE clause

ORGANIZATION clause

ACCESS MODE clause

FILE STATUS clause

SELECT clause ASSIGN clause

VST624.vsd

SELECT file-name

OPTIONAL

VST038.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-38

Environment Division FILE-CONTROL Paragraph
ASSIGN clause

associates file-name with system-file-name. Only the first system-file-
name has meaning. The compiler ignores subsequent names and issues a
warning.

system-file-name

is the name of a code-180 file that the file system recognizes or one of the
special operating system file names described in System-Names. If system-
file-name does not begin with a dollar sign ($), backward slash (\), or
number sign (#), then it must be enclosed in quotation marks unless it forms a
COBOL word. For more information about Guardian file names, see the
Guardian Procedure Calls Reference Manual. For more information about OSS
file names, see the filename(5) reference page either online or in the Open
System Services System Calls Reference Manual.

RESERVE clause

is ignored.

ORGANIZATION clause

makes the organization of the file line sequential.

ACCESS MODE clause

makes the access mode of the file sequential (the default).

ASSIGN

TO

system-file-name

VST640.vsd

SEQUENTIALLINE

ISORGANIZATION

VST625.vsd

ACCESS

IS

SEQUENTIAL

MODE

VST044.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-39

Environment Division FILE-CONTROL Paragraph
FILE STATUS clause

defines filestat as the file-status data item for the file. When a COBOL run-
time I-O routine completes an operation on the file, it stores the status code in
filestat before returning control to your program (see I-O Status Code).

filestat

is a 2-character alphanumeric, nonnational data item defined in the Working-
Storage Section, Extended-Storage Section, or Linkage Section.

File-Control Entries for Relative Files
Relative organization provides the capability to read records from or write records to a
disk file either randomly or sequentially. For each record in a relative file, a positive
integer value that specifies the record’s logical ordinal position in the file uniquely
identifies the record. In HP COBOL you can also use alternate alphanumeric or
unsigned numeric keys (with possible duplicate values) within each record. A relative
file has a fixed maximum record length, but the records can be of various lengths up to
that maximum. A file-control entry for a relative file includes an ORGANIZATION
RELATIVE clause.

STATUS

ISFILE

filestat

VST046.vsd

.SELECT clause ASSIGN clause

RESERVE clause

ORGANIZATION clause

ACCESS MODE clause

ALTERNATE RECORD KEY clause

FILE STATUS clause

VST047.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-40

Environment Division FILE-CONTROL Paragraph
SELECT clause

OPTIONAL

makes the file optional, which means that an OPEN statement with an INPUT,
I-O, or EXTEND phrase can open the file whether or not the file exists. If the
file exists, its I-O status code is “00”; if not, its I-O status code is “05”.
OPTIONAL does not affect the OPEN statement with an OUTPUT phrase.

When you open a nonexistent optional file for input, the first READ statement
for that file uses the AT END option (or USE procedure if the READ statement
has no AT END phrase).

file-name

is the COBOL file-name (the file-name in a file description entry).

ASSIGN clause

associates file-name with system-file-name or define-name-literal.
Only the first system-file-name or define-name-literal has meaning.
The compiler ignores subsequent names and literals and issues a warning.

system-file-name

is either the name of a disk file or the special file name #DYNAMIC or #TEMP.
Quotation marks must enclose system-file-name unless it is a COBOL
word or begins with a dollar sign ($), a backward slash (\), or a number sign
(#). For more information about operating system file names, see the Guardian
Procedure Calls Reference Manual.

define-name-literal

is a nonnumeric literal. It represents the name of a DEFINE of class MAP that
is associated with a disk file. Quotation marks must enclose define-name-
literal. For information on DEFINE names, see DEFINEs.

SELECT file-name

OPTIONAL

VST038.vsd

ASSIGN

TO define-name-literal

system-file-name

VST039.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-41

Environment Division FILE-CONTROL Paragraph
RESERVE clause

enables or prevents sequential block buffering on input and buffered cache on
output, or enables or prevents HP COBOL Fast I-O for both input and output, for a
disk file, depending on the value of number. The access mode of the file must be
SEQUENTIAL.

number

is a numeric literal, an unsigned integer.

In the non-CRE environment, number must be in the range 1 through 8, and
its value is interpreted:

In the CRE, number must be in the range 1 through 32, and its value is
interpreted:

Value of number Effect

1 No buffering or HP COBOL Fast I-O

2 or greater Sequential block buffering for input and buffered cache for
output if the assigned file qualifies

number is the number of blocks to buffer.

Value of number Effect

1 No buffering or HP COBOL Fast I-O.

2 Sequential block buffering on input and buffered cache on
output if the assigned file qualifies.

3 or greater HP COBOL Fast I-O if the assigned file qualifies; if not,
sequential block buffering for input and buffered cache for
output if the assigned file qualifies; otherwise normal I-O

number is the number of blocks to buffer.

Caution. Do not use sequential block buffering for a file opened for shared access. If you do,
a process could read outdated data while another process alters the file. For information on
shared access, see OPEN.

RESERVE

AREAS

AREAnumber

VST040.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-42

Environment Division FILE-CONTROL Paragraph
ORGANIZATION clause

makes the organization of the file relative. (The default is sequential.)

ACCESS MODE clause

SEQUENTIAL

makes the access mode of the file sequential (the default). That means the
records of the file are to be operated upon as if they were sequentially
organized.

RANDOM

makes the access mode of the file random. That means the records of the file
are to be operated upon in any order, as selected by the current value of the
relative key or an alternate key.

DYNAMIC

makes the access mode of the file dynamic. That means the records of the file
are accessible by either sequential or random access; you can position the file
to a certain key value with START and read or write sequentially from there.

RELATIVE KEY clause

ORGANIZATION IS

RELATIVE

VST048.vsd

ACCESS

MODE

SEQUENTIAL

RANDOM RELATIVE KEY clause

IS

DYNAMIC

VST049.vsd

RELATIVE

KEY

rel-key

IS

VST050.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-43

Environment Division FILE-CONTROL Paragraph
rel-key

is an integer data item to be used as a prime key to specify records within the
file. It must be large enough to hold the maximum record number. Its definition
cannot be in a record description entry for that file. It can be in another record
description entry or in the Working-Storage Section, Extended-Storage Section,
or Linkage Section.

ALTERNATE RECORD KEY clause

alt-key

is an alphanumeric or unsigned numeric data item declared in the record
description entry of the file. It is used to access records within the file. Its size
and location must agree with the size and location of the alternate key within
the file, defined when the alternate key file was established by the Guardian
environment File Utility Program (FUP). (For information about FUP, see the
File Utility Program (FUP) Reference Manual.)

DUPLICATES

means that alternate key values are not necessarily unique.

FILE STATUS clause

defines filestat as the file-status data item for the file. When a COBOL run-
time IO routine completes an operation on the file, it stores the status code in
filestat before returning control to your program (see I-O Status Code).

filestat

is a 2-character alphanumeric, nonnational data item defined in the Working-
Storage Section, Extended-Storage Section, or Linkage Section.

RECORD

KEY IS

alt-key

WITH DUPLICATES

ALTERNATE

VST045.vsd

STATUS

ISFILE

filestat

VST046.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-44

Environment Division FILE-CONTROL Paragraph
Usage Considerations:

• Relative Key

Every record in a relative file is uniquely identified by a positive integer called the
relative record number. Each record’s number defines its logical position in the file.
The first logical record has a relative number of 1, the second logical record has a
relative number of 2, and so on. A file is not required to contain records in every
logical position; record 3 can exist even when record 2 is missing.

• Alternate Record Keys

The records within the file can be accessed in ascending order of the alt-key
value. The order in which records are obtained using alt-key can differ from the
order obtained using rel-key. You can define up to 31 alternate keys for a file.

If you include the DUPLICATES phrase in the ALTERNATE RECORD KEY clause,
the value of alt-key need not be unique for each record in the file. Depending
on the INSERTIONORDER parameter of the alternate key file, records with
duplicate alternate key values are inserted (or retrieved) in either prime key order
or in the order in which they were inserted in the file.

The data description entry for alt-key cannot contain an OCCURS clause or be
subordinate to an entry that contains an OCCURS clause. The leftmost character
position of an alt-key item cannot correspond to the leftmost character position
of another alt-key item in that file.

The file-control entry can contain at most one ALTERNATE RECORD KEY clause
that describes a particular alternate record key of the file.

If a file in the file system is defined as having alternate record keys to which the
COBOL program does not make any reference, you do not need to specify them in
the File-Control paragraph.

• Sequential Block Buffering

Sequential block buffering, enabled by the RESERVE clause when the file is open
in INPUT or I-O mode, is discussed under File-Control Entries for Sequential Files.

• Buffered Cache

Buffered cache, enabled by the RESERVE clause when the file is open in
OUTPUT, I-O, or EXTEND mode, is discussed under File-Control Entries for
Sequential Files.

Note. COBOL record numbers begin at 1. This is different from the Guardian file-system
convention of beginning record numbers at 0. The COBOL run-time I-O routines deduct 1
from the COBOL relative record number to obtain the Guardian file-system record number.
When a COBOL program requests record 1, it receives the first record in the file—the
record that the Guardian file system designates 0. Remember this difference if other HP
products are to operate on a file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-45

Environment Division FILE-CONTROL Paragraph
• HP COBOL Fast I-O (Local Buffering)

HP COBOL Fast I-O is an enhancement in input-output performance beyond that
of sequential block buffering or buffered cache. It is available if a program and the
relative file upon which it is to operate are in the CRE and meet the criteria under
File-Control Entries for Sequential Files.

Example 6-6. Relative File Used for Random Access

INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT INPUT-FILE ASSIGN TO "$DATA.MYDISC.INPUT"
 ORGANIZATION IS RELATIVE
 ACCESS MODE IS RANDOM
 RELATIVE KEY IS INP-RELKEY
 FILE STATUS IS INP-STATUS.
 ...
DATA DIVISION.
FILE SECTION.
FD INPUT-FILE
 LABEL RECORDS ARE OMITTED.
01 INPUT-REC.
 ...
WORKING-STORAGE SECTION.
01 STATUSES.
 03 INP-STATUS PICTURE XX VALUE SPACES.
 ...
01 KEYS.
 03 INP-RELKEY USAGE NATIVE-4.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-46

Environment Division FILE-CONTROL Paragraph
File-Control Entries for Indexed Files
Indexed organization provides the capability to read records from and write records to
a disk file either randomly or sequentially. In an indexed file, the value of the prime key
of each record uniquely identifies that record. A file-control entry for an indexed file
includes an ORGANIZATION INDEXED clause.

SELECT clause

OPTIONAL

makes the file optional, which means that an OPEN statement with an INPUT,
I-O, or EXTEND phrase can open the file whether or not the file exists. If the
file exists, its I-O status code is “00”; if not, its I-O status code is “05”.
OPTIONAL does not affect the OPEN statement with an OUTPUT phrase.

When you open a nonexistent optional file for input, the first READ statement
for that file uses the AT END option (or USE procedure if the READ statement
has no AT END phrase).

SELECT clause ASSIGN clause

RESERVE clause

ORGANIZATION clause

.

ACCESS MODE clause

ALTERNATE RECORD KEY clause

FILE STATUS clause

RECORD KEY clause

VST051.vsd

SELECT file-name

OPTIONAL

VST038.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-47

Environment Division FILE-CONTROL Paragraph
file-name

is the COBOL file-name (the file-name in a file description entry).

ASSIGN clause

associates file-name with a file designated by system-file-name, or
define-name-literal. Only the first system-file-name or define-name-
literal has meaning. The compiler ignores subsequent names and literals and
issues a warning.

system-file-name

is the name of a disk file or either of the special operating system file names
#DYNAMIC or #TEMP, described in System-Names. system-file-name
must be enclosed in quotation marks unless it begins with a dollar sign ($), a
backward slash (\), or a number sign (#), or is a COBOL word. If system-
file-name is #TEMP, the file cannot have alternate keys. For more
information about operating system file names, see the Guardian Procedure
Calls Reference Manual.

define-name-literal

is a nonnumeric literal that represents the name of a DEFINE of class MAP
that is associated with a disk file. Quotation marks must enclose any DEFINE
name. For information about DEFINE names, see DEFINEs.

RESERVE clause

enables or prevents sequential block buffering on input and buffered cache on
output, or enables or prevents HP COBOL Fast I-O for both input and output, for a
disk file, depending on the value of number.

ASSIGN

TO define-name-literal

system-file-name

VST039.vsd

RESERVE

AREAS

AREAnumber

VST040.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-48

Environment Division FILE-CONTROL Paragraph
number

is a numeric literal, an unsigned integer.

In the non-CRE environment, number must be in the range 1 through 8, and
its value is interpreted:

In the CRE, number must be in the range 1 through 32, and its value is
interpreted:

ORGANIZATION clause

makes the organization of the file indexed (the default is sequential).

ACCESS MODE clause

Value of number Effect

1 No buffering or HP COBOL Fast I-O

2 or greater Sequential block buffering for input and buffered cache for
output if the assigned file qualifies

number is the number of blocks to buffer.

Value of number Effect

1 No buffering or HP COBOL Fast I-O

2 Sequential block buffering on input and buffered cache on
output if the assigned file qualifies

3 or greater HP COBOL Fast I-O if the assigned file qualifies; if not,
sequential block buffering for input and buffered cache for
output if the assigned file qualifies; otherwise normal I-O

number is the number of blocks to buffer.

Caution. Do not use sequential block buffering for a file opened for shared access. If you do,
a process could read outdated data while another process alters the file. For information on
shared access, see OPEN.

ORGANIZATION IS

INDEXED

VST052.vsd

ACCESS

MODE IS

SEQUENTIAL

RANDOM

DYNAMIC

VST053.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-49

Environment Division FILE-CONTROL Paragraph
SEQUENTIAL

makes the access mode of the file sequential (the default). That means the
records of the file are to be operated upon as if they were sequentially
organized.

RANDOM

makes the access mode of the file random. That means the records of the file
are to be operated upon in any order, as selected by the current value of the
record key or of an alternate key. The default access mode is sequential.

DYNAMIC

makes the access mode of the file dynamic. That means the records of the file
are accessible by either sequential or random access; you can position the file
with START to a certain key value and read or write sequentially from there.
The default access mode is sequential.

RECORD KEY clause

rec-key

is an alphanumeric or unsigned numeric data item defined in the record
description entry for the file. It is the prime key for accessing records within the
file. If the file was created with FUP or CREATE, the reckey size and location
must agree with the size and location of the prime key established by FUP or
CREATE.

All records in the file are ranked in ascending order of the reckey value,
which must be unique for each record.

ALTERNATE RECORD KEY clause

makes alt-key an alternate record key.

RECORD

KEY IS

reckey

VST054.vsd

RECORD

KEY IS

alt-key

WITH DUPLICATES

ALTERNATE

VST045.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-50

Environment Division FILE-CONTROL Paragraph
alt-key

is an alphanumeric or unsigned numeric data item declared in the record
description entry of the file and is used to gain access to records within the file.
The alt-key size and location must agree with the size and location of the
alternate key within the file, as defined when the alternate key file was
established by the operating system File Utility Program (FUP). (For
information about FUP, see the File Utility Program (FUP) Reference Manual.)

DUPLICATES

means that alternate key values are not necessarily unique.

FILE STATUS clause

defines filestat as the file-status data item for the file. When a COBOL run-
time I-O routine completes an operation on the file, it stores the status code in
filestat before returning control to your program (see I-O Status Code).

filestat

is a 2-character alphanumeric, nonnational data item defined in the Working-
Storage Section, Extended-Storage Section, or Linkage Section.

Usage Considerations:

• Record Key

The data description entry for reckey cannot contain an OCCURS clause.

• Alternate Record Keys

The records within the file can be accessed in ascending order of the alt-key
value. The order in which records are obtained using alt-key can differ from the
order obtained using reckey. You can define up to 31 alternate keys for a file.

If you include the DUPLICATES phrase in the ALTERNATE RECORD KEY clause,
the value of alt-key need not be unique for each record in the file. Depending
on the INSERTIONORDER parameter of the alternate key file, records with
duplicate alternate key values are inserted (or retrieved) in either prime key order
or in the order in which they were inserted in the file.

The data description entry for alt-key cannot contain an OCCURS clause or be
subordinate to an entry that contains an OCCURS clause. The leftmost character
position of an alt-key item cannot correspond to the leftmost character position
of the reckey item or another alt-key item in that file.

STATUS

ISFILE

filestat

VST046.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-51

Environment Division FILE-CONTROL Paragraph
The file-control entry can contain at most one ALTERNATE RECORD KEY clause
that describes a particular alternate record key of the file.

If a file in the file system is defined as having alternate record keys to which the
COBOL program does not make any reference, you do not need to specify them in
the File-Control paragraph.

• Sequential Block Buffering

Sequential block buffering, enabled by the RESERVE clause when the file is open
in INPUT or I-O mode, is discussed under File-Control Entries for Sequential Files.

• Buffered Cache

Buffered cache, enabled by the RESERVE clause when the file is open in
OUTPUT, I-O, or EXTEND mode, is discussed under File-Control Entries for
Sequential Files.

• HP COBOL Fast I-O (Local Buffering)

HP COBOLFast I-O is an enhancement in input-output performance beyond that of
sequential block buffering or buffered cache. It is available if:

° Either the program runs in the non-CRE environment and the file is organized
sequentially, or the program runs in the CRE (in which case the file can have
any organization).

° The files upon which HP COBOLFast I-O is to operate meet the criteria under
File-Control Entries for Sequential Files.

• Performance Penalty for Poorly Organized Indexed File

If a large number of entries have been added to and/or deleted from an indexed
file, accessing its records in sequence requires a significant amount of random
processing; therefore, performance suffers.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-52

Environment Division FILE-CONTROL Paragraph
Example 6-7. Indexed File With One Alternate Key

INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT RECEIVABLES-MASTER
 ASSIGN TO "=RECMAST"
 ORGANIZATION IS INDEXED
 RECORD KEY IS INVOICE-NUMBER
 ALTERNATE RECORD KEY IS COMPANY-NAME
 WITH DUPLICATES,
 FILE STATUS IS IO-STATUS.
 ...
 DATA DIVISION.
 FILE SECTION.
 FD RECEIVABLES-MASTER
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 39 CHARACTERS.
 01 INVOICE-RECORD.
 05 INVOICE-NUMBER PICTURE 9(7).
 05 COMPANY-NAME PICTURE X(15).
 05 INVOICE-DATE PICTURE 9(6).
 05 INVOICE-AMOUNT PICTURE S9(9)V99.
 ...
 WORKING-STORAGE SECTION.
 01 STATUSES.
 03 IO-STATUS PICTURE XX VALUE SPACES.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-53

Environment Division FILE-CONTROL Paragraph
File-Control Entries for Queue Files
A queue file is an indexed file that can function as a queue. Unlike an ordinary index
file, a queue file cannot have alternate keys.

For descriptions of clauses and usage considerations, see File-Control Entries for
Indexed Files.

SELECT clause ASSIGN clause

RESERVE clause

ORGANIZATION clause

.

ACCESS MODE clause

FILE STATUS clause

RECORD KEY clause

VST740.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-54

Environment Division FILE-CONTROL Paragraph
File-Control Entries for Sort-Merge Files
A file-control entry for a sort-merge file defines a scratch file for a sort-merge process.

SELECT clause

sd-name

is a COBOL file-name (the file-name in a sort-merge file description entry).

ASSIGN clause

associates the COBOL file-name (sd-name) with a file designated by system-
file-name, or define-name-literal. Only the first system-file-name or
define-name-literal has meaning. The compiler ignores subsequent ones
and issues a warning.

system-file-name

is the name of a disk file that the file system recognizes. Quotation marks must
enclose system-file-name unless it is a COBOL word or begins with a
dollar sign ($), backward slash (\), or number sign (#). For more information
about operating system file names, see the Guardian Procedure Calls
Reference Manual.

define-name-literal

is a nonnumeric literal representing a DEFINE name of type MAP. Quotation
marks must enclose define-name-literal. For more information about
DEFINE names, see DEFINEs.

SELECT clause ASSIGN clause .

VST055.vsd

SELECT sd-name

VST056.vsd

ASSIGN

TO define-name-literal

system-file-name

VST039.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-55

Environment Division FILE-CONTROL Paragraph
Usage Considerations:

• Different Devices for Files

The sort-merge file is a temporary file used by a SORT or MERGE statement.
Programs that define their sort-merge file on a different device than the input or
output file of the SORT or MERGE statement must run more efficiently than those
defining input or output files on the same device as the sort-merge file.

• Redirecting the Swap File

The operating system assigns a swap file to swap pages in and out of memory
while the compiler is running. The swap file mirrors all of the data areas that the
compiler uses. The ideal swap file is a fast device that is neither busy nor mirrored.
To redirect the swap file, give define-name-literal the value
=_SORT_DEFAULTS.

In Example 6-8, a file-control entry assigns a sort file to a temporary file on the
default volume established at run time.

If you want the temporary file on a different volume than the default, do not use
#TEMP. The phrase

ASSIGN TO "$FLAG"

assigns a temporary file on $FLAG, regardless of the current default volume.

Example 6-8. File-Control Entry for Sort-Merge File

INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT SORT-FILE ASSIGN TO "#TEMP".
 ...
DATA DIVISION.
FILE SECTION.
SD SORT-FILE
 RECORD CONTAINS 40 CHARACTERS.
01 SORT-FIELDS.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-56

Environment Division I-O-CONTROL Paragraph
I-O-CONTROL Paragraph
The optional I-O-CONTROL paragraph specifies positioning information for a tape file
or the sharing of a memory area by more than one file. If the I-O-CONTROL paragraph
is present, it must follow the FILE-CONTROL paragraph, because it refers to files
established by file-control entries.

Sequential, relative, or indexed file:

Line sequential file:

.I-O-CONTROL

«RERUN clause»

SAME AREA clause

«MULTIPLE FILE clause»

.

VST057.vsd

.I-O-CONTROL

«RERUN clause»

SAME AREA clause

.

VST632.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-57

Environment Division I-O-CONTROL Paragraph
RERUN clause

rerun-file
system-name
units
condition

are handled as comments.

rerun-file-2-phrase

is handled as a comment.

Note. The 1985 COBOL standard classifies the RERUN clause as obsolete, so you are
advised not to use it.

RERUN

ON rerun-file

system-name

EVERY

units CLOCK-UNITS

condition

rerun-file-2-phrase

VST058.vsd

recs RECORDS

END OF

REEL

UNIT

OF rerun-file-2

VST059.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-58

Environment Division I-O-CONTROL Paragraph
SAME AREA clause

specifies the files that share the same memory during program execution. These
files do not share disk space or tape space.

The SAME AREA clause has different meanings for I-O files (sequential, relative,
indexed) than for sort-merge files.

same-file

is a file-name.

MULTIPLE FILE clause

specifies a multiple-file tape reel. For more information on multiple files, see
MULTIPLE FILE Clause.

tape-file

is the name of a sequential file on magnetic tape, defined in a file-control entry
and a file description entry.

position

is a numeric literal with a value of 1 or more. It defines the relative position of
tape-file on a tape.

Note. The 1985 COBOL standard classifies the MULTIPLE FILE clause as obsolete, so
you are advised not to use it.

AREA

RECORD

FOR

SAME

same-file

MERGE

SORT

VST060.vsd

FILE

CONTAINS

MULTIPLE

TAPE

tape-file

POSITION position

VST061.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-59

Environment Division I-O-CONTROL Paragraph
SAME AREA Clause for I-O Files
The SAME AREA clause advises the compiler that two or more files that are not sort-
merge files can use the same memory area during processing. Only one of these files
can be open at any given time.

RECORD

specifies that two or more files are to use the same memory area for processing
the current logical record.

same-file

is the sd-name in the sort-merge file description entry or the fd-name in the file
description entry for the file.

The compiler ignores the advice provided by the SAME AREA clause. For information
on one way files can share memory, see the HP COBOL Fast I-O (Local Buffering).

The SAME RECORD AREA clause specifies that two or more files use the same
memory area for processing the current logical record. Ordinarily, all the files can be
open at the same time, but see the restrictions on the usage of SAME clauses.

A logical record in the SAME RECORD AREA is considered a logical record of each
opened output file whose file name appears in this SAME RECORD AREA clause and
of the most recently read input file whose file name appears in this SAME RECORD
AREA clause. This is equivalent to a redefinition of the area—records are aligned on
the leftmost character position.

AREARECORD FOR

SAME

same-file

VST062.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-60

Environment Division I-O-CONTROL Paragraph
More than one SAME clause can be included in a program; however, there are some
restrictions on the usage of SAME clauses:

• A file name must not appear in more than one SAME AREA clause or in more than
one SAME RECORD AREA clause.

• If any file names of a SAME AREA clause appear in a SAME RECORD AREA
clause, all of the file names in that SAME AREA clause must appear in the SAME
RECORD AREA clause; however, additional file names not appearing in that
SAME AREA clause can also appear in that SAME RECORD AREA clause. The
rule that only one of the files mentioned in a SAME AREA clause can be open at
any given time takes precedence over the rule that all files mentioned in a SAME
RECORD AREA clause can be open at any given time.

The files mentioned in the SAME AREA or SAME RECORD AREA clause can differ in
organization or access.

SAME AREA Clause for Sort-Merge Files
The SAME AREA clause of the I-O-CONTROL paragraph can also specify sort-merge
files. HP COBOL ignores the advice provided to the compiler by the SAME AREA
clause. The file system automatically allocates and manages all memory areas needed
for file processing and for sort or merge operations.

RECORD

specifies that two or more files are to use the same memory area for processing
the current logical record.

SORT

is ignored by the compiler, but SORT specifies that the compiler can use (and re-
use) the same memory area to sort or merge each sort or merge file specified by
same-file. If SORT is specified, at least one same-file must be a sort file.

MERGE

is equivalent to SORT in the SAME AREA clause. If MERGE is specified, at least
one same-file must be a merge file.

AREA

RECORD

FOR

SAME

same-file

MERGE

SORT

VST060.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-61

Environment Division I-O-CONTROL Paragraph
same-file

is the sd-name in the sort-merge file description entry or the fd-name in the file
description entry for the file.

Usage Considerations:

• File Organization and Access Modes

The files specified in the SAME AREA clause can have different types of
organization or different access modes.

• SAME SORT AREA or SAME MERGE AREA Clause

If the SAME SORT AREA or SAME MERGE AREA clause is used, at least one
same-file must be a sort or merge file. Files that are not sort or merge files can
also be named.

You can include more than one SAME AREA clause in a program; however, if a file
name that is not a sort or merge file appears in a SAME AREA clause and one or
more SAME SORT AREA or SAME MERGE AREA clauses, then all of the files
named in that SAME AREA clause must also be named in each of the affected
SAME SORT AREA or SAME MERGE AREA clauses.

This clause specifies that storage be shared:

° The SAME SORT AREA and SAME MERGE AREA clauses advise the
compiler that the same memory area can be used in sorting or merging each
sort or merge file named and that any memory area used for sorting or merging
a sort-merge file can be reused in sorting or merging any other sort-merge
files. The compiler ignores the advice provided by this clause.

° Storage areas assigned to files that do not represent sort or merge files can be
allocated as needed for sorting or merging the sort-merge files named in the
SAME SORT AREA or SAME MERGE AREA clause.

° Files other than sort-merge files do not share the same storage area with each
other. If you want these files to share the same storage area, you must also
include a SAME AREA or SAME RECORD AREA clause naming the files.

° During the execution of a SORT or MERGE statement referring to a sort or
merge file named in this clause, any file named in this clause that is not a sort
or merge file must not be open.

• SAME RECORD AREA Clause

The SAME RECORD AREA clause specifies that two or more files are to use the
same memory area for processing the current logical record. All of the files can
be open at the same time. A logical record in the SAME RECORD AREA is
considered a logical record of each opened output file whose file name appears in
this SAME RECORD AREA clause. This is equivalent to implicit redefinition of the
area—records are aligned on the leftmost character position.

A file name must not appear in more than one SAME RECORD AREA clause.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-62

Environment Division I-O-CONTROL Paragraph
MULTIPLE FILE Clause

tape-file

is the file name of a file on the tape that the program uses. Regardless of the
number of files on a single reel, only files that the program uses need to be
defined; however, if any file in the set is not listed, or if the files are not listed in the
order they occur on the tape, then each file’s position relative to the beginning of
the tape must be specified.

POSITION

is unnecessary when you list all the files on the tape in physical order; otherwise, it
is required.

position

is an integer data item whose value is the ordinal number of a file on the tape. The
first file on the tape has position 1; the second, position 2; and so on.

For information on multiple-tape format, see the Guardian Programmer’s Guide.

Note. The 1985 COBOL standard classifies the MULTIPLE FILE clause as obsolete, so you
are advised not to use it.

FILE

CONTAINS

MULTIPLE

TAPE

tape-file

POSITION position

VST061.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-63

Environment Division RECEIVE-CONTROL Paragraph
RECEIVE-CONTROL Paragraph
You can write server processes in HP COBOL. The system file process named
$RECEIVE is the communication mechanism between a requester process and a
server process or between the operating system and any process (as if the process
were a server). When a COBOL server resumes execution upon the completion of a
READ on $RECEIVE, it can require information about the source of the message that
was delivered.

To define the two tables used by $RECEIVE, include a RECEIVE-CONTROL
paragraph in the Environment Division of your server process. In the CRE, the
RECEIVE-CONTROL paragraph used for a run unit is the one for the program that first
opens $RECEIVE. In the non-CRE environment, the RECEIVE-CONTROL paragraph
used for a run unit is the one in the main program.

The $RECEIVE mechanism of a server written in HP COBOL uses the receive-control
table (sometimes called the Requester table) to record the status of the requesting
processes that have opened the server. It uses the reply table to keep copies of the
replies it has sent to each requesting process.

When the requester is running as a process pair and the requester sends a message
and the backup process takes over before the requester receives a reply, the server
can resend the reply automatically if a CHECKPOINT statement is executed after the
server reads the requester’s message and before the server writes a reply (or
generates one automatically with another READ). In this case, the server does not see
the duplicate message. The CHECKPOINT statement can be executed even if the
server is not running as a process pair.

In the simplest case, when a single requester and a single server are involved and
neither is running as a process pair, the default tables can accommodate the
$RECEIVE operations.

The ERROR clause provides a means of specifying that the server itself (and not its
run-time routines) takes responsibility for specifying any error number that the
$RECEIVE mechanism is to deliver to the requester. The MESSAGE SOURCE phrase
provides a means of identifying the sender of any message arriving through
$RECEIVE. The REPORT clause provides a means of specifying the classes of
messages arriving at $RECEIVE that are to be delivered to the server, rather than
handled automatically by the $RECEIVE mechanism.

National literals and national data items cannot be used in a RECEIVE-CONTROL
paragraph.

In the non-CRE environment, the RECEIVE-CONTROL paragraph for a run unit is the
one in the main program. In the CRE, the RECEIVE-CONTROL paragraph for a run
unit is the one in the first program to open $RECEIVE.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-64

Environment Division RECEIVE-CONTROL Paragraph
EXTERNAL

can only appear in a CRE program; enables COBOL external files to share
communication with $RECEIVE and to share $RECEIVE properly with FORTRAN.

EXTERNAL causes the compiler to create a special block, #RECEIVE, which
contains the information used when $RECEIVE is opened by FORTRAN or by a
COBOL external file. The COBOL85 compiler does not generate a default
#RECEIVE block, as the FORTRAN compiler does

TABLE OCCURS phrase

establishes the length of the receive-control table, governing the maximum number
of requesters that can have this process open concurrently. In a Pathway
environment, this number can be decreased at execution time but not increased.

.RECEIVE-CONTROL

TABLE OCCURS phrase

SYNCDEPTH LIMIT phrase

REPLY CONTAINS phrase

ERROR CODE phrase

MESSAGE SOURCE phrase

REPORT phrase

EXTERNAL .

VST063.vsd

TABLE table-lengthOCCURS

TIMESEXTENDED-STORAGE

VST064.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-65

Environment Division RECEIVE-CONTROL Paragraph
Each entry in the receive-control table records which requester opened the server
process and which open operation the requester used (if a requester opens the
server process more than once).

table-length

is an unsigned integer numeric literal in the range 1 through 255. The default
value is 1.

EXTENDED-STORAGE

allows saved messages to be stored in extended storage. The conditions for its
use are:

• The program must open $RECEIVE (otherwise, EXTENDED-STORAGE is
irrelevant)

• The program does not run in the CRE (that is, it was compiled by the
COBOL85 compiler without the ENV COMMON or ENV LIBRARY
directive).

If the program runs in the CRE, the saved messages are automatically
stored in extended storage if they exceed an internal threshold value.

• The product of table-length, the length of the saved message, and
sync-id, plus the sizes of all the data items in the Extended-Storage
sections of all the programs in the run unit cannot exceed 134,217,214
characters. (The length of the saved message is specified by the REPLY
CONTAINS phrase.)

SYNCDEPTH LIMIT phrase

establishes the length of the reply table, controlling how many replies are saved for
each requesting process (opener).

sync-id

is an unsigned integer numeric literal in the range 1 through 255. In any
requester process that opens the server process, the value in the
SYNCDEPTH phrase of the OPEN statement cannot exceed sync-id.

When you do not use the SYNCDEPTH LIMIT phrase, sync-id defaults to 1. A
Pathway server never needs a SYNCDEPTH LIMIT greater than 1.

SYNCDEPTH

LIMIT

sync-id

IS

VST065.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-66

Environment Division RECEIVE-CONTROL Paragraph
REPLY CONTAINS phrase

specifies the number of characters of a reply message that are to be saved in the
reply table. The default is 0.

reply-length

is an unsigned integer numeric literal. Its value is the maximum number of
characters from a reply message to be saved in the reply table.

file-name

is the name of a file whose longest record’s length is the number of characters
from a reply message to be saved in the reply table.

ERROR CODE phrase

error

is an unsigned integer numeric item for storing an error code for a reply
message, which you must set. It can be in the Working-Storage Section, the
File Section, or the Linkage Section.

MESSAGE SOURCE phrase

REPLY

CONTAINS

reply-length

file-name

CHARACTERS

RECORD

VST066.vsd

ERROR

CODE

error

IS

VST067.vsd

MESSAGE

SOURCE message

IS

VST068.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-67

Environment Division RECEIVE-CONTROL Paragraph
message

is an alphanumeric item that is:

° Defined in the Working-Storage Section, Extended-Storage Section, File
Section, or Linkage Section

° Aligned on an even character boundary within a record

° At least 32 characters long

° Not a table

° Not modified by a reference

° Not of a variable size (not a data structure that contains an OCCURS
DEPENDING ON clause)

The contents of message are updated automatically after a file assigned to
$RECEIVE is successfully read.

REPORT phrase

specifies the type of system messages to be passed to the program.

message-type

depends on the environment. In the non-CRE environment, message-type
has one of these values:

ABEND NEWPROCESSNOWAIT-COMPLETION

BREAK NODE-DOWN

CLOSE NODE-UP

CONTROL OPEN

CONTROLBUF POWER-ON

CPU-DOWN PROCESS-DELETION

CPU-UP PROCESS-TIME-SIGNAL

DEVICE-INFO REMOTE-CPU-DOWN

DEVICE-INFO-2-COMPLETION REMOTE-CPU-UP

JOB-PROCESS-CREATION RESETSYNC

LOGICAL-CLOSE SETMODE

LOGICAL-OPEN SETPARAM

MEMORY-LOCK-COMPLETION SETTIME

REPORT message-type

MESSAGES

VST069.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-68

Environment Division RECEIVE-CONTROL Paragraph
In the CRE, message-type has one of these values:

message-type identifies the class of system message passed to a program.
Messages in unnamed classes are handled by the run-time routines in a
standard manner.

CONTROL and SETMODE messages are rejected if not requested by a
program. BREAK messages are ignored if not requested by a program.
SYSTEM as a type signifies a particular subset of the preceding list. The other
classes of messages provide the run-time routines with information needed to
accept, manage, and delete requesters.

MEMORY-LOCK-FAILURE STATUS-3270

MESSAGE-CANCELLED STOP

MESSAGE-MISSED SYSTEM

NETWORK TIME-SIGNAL

NEWPROCESS-COMPLETION

BREAK NEWPROCESSNOWAIT-COMPLETION

CLOSE NODE-DOWN

CONTROL NODE-UP

CONTROLBUF OPEN

CPU-DOWN PATHSEND-DIALOG-ABORT

CPU-UP POWER-ON

DEVICE-INFO PROCESS-CREATE-COMPLETION

DEVICE-INFO-2-COMPLETION PROCESS-DELETION

FILE-GETINFOBYNAME-
COMPLETION

PROCESS-TIME-SIGNAL

FILE-FILENAME-COMPLETION REMOTE-CPU-DOWN

JOB-PROCESS-CREATION REMOTE-CPU-UP

LOGICAL-CLOSE RESETSYNC

LOGICAL-OPEN SETMODE

MEMORY-LOCK-COMPLETION SETPARAM

MEMORY-LOCK-FAILURE SETTIME

MESSAGE-CANCELLED STATUS-3270

MESSAGE-MISSED SYSTEM

NETWORK TIME-SIGNAL

NEWPROCESS-COMPLETION
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-69

Environment Division RECEIVE-CONTROL Paragraph
Topics:

• Receive-Control Table

• Reply Table

• ERROR CODE Phrase

• MESSAGE SOURCE Phrase

• REPORT Phrase

Receive-Control Table
The receive-control table, an internal table, is required for $RECEIVE operation. Its
purpose is to identify, by the PROCESS-ID, which requesting processes have opened
the server process.

The compiler allocates only one receive-control table because only one file assigned to
$RECEIVE can be open for input or input-output at a time. When more than one
program unit defines a receive-control table, the compiler reserves space for the
largest table.

In the Pathway environment, the value of table-length for a server must be
greater than or equal to the value of the MAXLINKS parameter in the server-class
definition for the server.

When the number of active requesters fills the receive-control table, OPEN messages
from new requesters are refused with a run-time error message and are not reported to
your program. OPEN messages received from backup processes of active requesters
are still accepted and reported.

Reply Table
When reply messages are sent back to the requesting processes, the COBOL compiler
constructs a second internal table in which to save the replies. The reply message
includes the sync-id and the contents of the reply.

Table 6-7. Receive-Control Table Example

Entry Number Requesting Process

1 REQUESTER PROCESS 1

2 REQUESTER PROCESS 2

3 REQUESTER PROCESS 3

… …

100* REQUESTER PROCESS 100

* The number of entries in the receive-control table is defined by table-length.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-70

Environment Division RECEIVE-CONTROL Paragraph
In the COBOL85 environment, if the RECEIVE-CONTROL paragraph’s TABLE
OCCURS phrase includes EXTENDED-STORAGE, the reply table is in the Extended-
Storage Section.

In the CRE, if the reply table exceeds an internal threshold value, the reply table is in
the Extended-Storage Section.

Reply messages saved in the reply table are identified by their requester process.
These messages correspond to and answer the specific requester.

For example, if REQUESTER PROCESS 3 in Figure 6-1 failed before it received
REPLY MESSAGE 5, and its backup reissued the request based on the checkpoint
information, the COBOL fault-tolerant facility would recognize that the request was
performed. It would reissue REPLY MESSAGE 5 to REQUESTER PROCESS 3
without re-executing the request.

If a Receive-Control paragraph has no reply table (no SYNCDEPTH LIMIT and REPLY
CONTAINS clauses), then replies are not saved. The fault-tolerant facility cannot
retransmit them. If a requester’s backup process retransmits them, they are not
recognized as duplicate requests, because the originals were not saved. Responding
to duplicate messages can corrupt the database.

Note. You do not need a reply table if the requester is not a fault-tolerant process.

Figure 6-1. Reply Table

Entry length is defined by reply-length

or file-name

REQUESTER PROCESS 1 REPLY MESSAGE 1

REQUESTER PROCESS 1 REPLY MESSAGE 2

REQUESTER PROCESS 2 REPLY MESSAGE 6

REQUESTER PROCESS 2 REPLY MESSAGE 7

REQUESTER PROCESS 3 REPLY MESSAGE 4

REQUESTER PROCESS 3 REPLY MESSAGE 5

Number of entries is defined by
table-length * sync

Number of replies per
requester is defined by
sync

.

.

.

VST506.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-71

Environment Division RECEIVE-CONTROL Paragraph
ERROR CODE Phrase
The ERROR CODE phrase of the RECEIVE-CONTROL paragraph provides a way for
a server process to appear as a device to its requesters. When the server process
sends an error code to a requester, the server process uses file-system error codes to
set the ERROR CODE item. How the server process sets the ERROR CODE item
depends on the device type of the device the server is simulating.

When the server makes a reply to a READ on $RECEIVE, the operating system
passes back the value of the ERROR CODE item separately from the reply-message
text. Additionally, the system passes back a condition code (CCE, CCG, or CCL) based
on the value of the file-system error number. (See the Guardian Programmer’s Guide
for information about file-system errors and condition codes.)

The requester checks for a condition code other than CCE (successful operation) after
its action to send a task message and receive a response. If there is an error (CCG or
CCL), the requester must call FILEINFO, a system procedure, to determine the error
code (from ERROR CODE item) passed by the operating system. When a requester
process is written in COBOL, condition code checking (including the call to FILEINFO)
is handled by the COBOL run-time library routines.

When you use ERROR CODE error, but the server is not executing a WRITE for
each READ on $RECEIVE, the system acknowledges each message from a requester
and also passes the value of error with each internal reply. If you take this approach,
be careful to have the right value in error at all times.

The operating system also returns the value of error with explicit or system-
generated replies to reported system messages (system messages are reported when
the REPORT message-type MESSAGES option is used). When system messages
are not reported, the COBOL run-time library replies to them and generates an error
code.

MESSAGE SOURCE Phrase
The MESSAGE SOURCE phrase provides a mechanism through which a COBOL
program can discover the sender of each message received. During the successful
execution of a read operation on $RECEIVE, the $RECEIVE mechanism assigns a set
of values to the storage space designated in the MESSAGE SOURCE phrase.

Example 6-9. MESSAGE SOURCE Phrase (Non-CRE)

01 SOURCE-MESSAGE.
 05 MESSAGE-TYPE PICTURE S999 USAGE IS COMPUTATIONAL.
 05 ENTRY-NUMBER PICTURE 999 USAGE IS COMPUTATIONAL.
 05 FILLER PICTURE X(4).
 05 PROCESS-ID.
 10 PROCESS-NAME PICTURE X(6).
 10 CPU-PIN PICTURE X(2).
 05 FILLER PICTURE X(16).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-72

Environment Division RECEIVE-CONTROL Paragraph
MESSAGE-TYPE

is one of:

ENTRY-NUMBER

is the number assigned to the receive-control table entry for a requesting process.
It is in the range set by table-length. When certain system messages not
associated with any requester, such as CPU-UP and CPU-DOWN, are received,
the number is 0.

PROCESS-ID

is the 8-byte operating system process ID. The first 6 characters are the process
name or a timestamp for an unnamed process. The last 2 characters are the
processor number and process number.

PHANDLE

is a unique identifier that specifies a process to process-related procedure calls (for
more information, see the Guardian Programmer’s Guide).

REPORT Phrase
Normally, the $RECEIVE mechanism automatically intercepts and processes all
messages sent to the run unit by the operating system. By specifying the REPORT
clause, you state that the $RECEIVE mechanism is not to intercept certain classes of
system messages, but pass them back to the program for processing. The program
then supplies the appropriate error code (if the ERROR CODE clause appears), and
generates the appropriate response (by performing a write operation or another read
operation on $RECEIVE).

In the non-CRE environment, the file accepting messages through $RECEIVE must
have a record length of at least 34 characters when system messages are received. In
the CRE, the file must have a record length of at least 255 characters.

“System” is an abbreviation for the messages that are generated under program
control.

Example 6-10. MESSAGE SOURCE Phrase (CRE)

01 SOURCE-MESSAGE.
 05 MESSAGE-TYPE PICTURE S999 USAGE IS COMPUTATIONAL.
 05 ENTRY-NUMBER PICTURE 999 USAGE IS COMPUTATIONAL.
 05 FILLER PICTURE X(4).
 05 PHANDLE PICTURE X(20).
 05 FILLER PICTURE X(4).

Value Meaning

Zero or greater Message sent by the requesting process

Less than zero Message sent by the operating system
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-73

Environment Division RECEIVE-CONTROL Paragraph
Messages generated by asynchronous hardware events must be explicitly requested.

See the Guardian Programmer’s Guide for a description of system messages, their
formats, and their implications.

The D-series has many message types and some codes for HP COBOL message
types that the C-series does not have. For example, in the CRE, the message type
SYSTEM includes all messages except LOGICAL-CLOSE and LOGICAL-OPEN.

Table 6-8. Message Types That the Program Generates (System)

COBOL Keyword

Message-Type Code

Non-CRE
Environment CRE

ABEND -06 Not used—see Table 6-10

CLOSE -31 -104

CONTROL -32 -32

CONTROLBUF -35 -35

MEMORY-LOCK-COMPLETION -23 -23

MEMORY-LOCK-FAILURE -24 -24

NEWPROCESSNOWAIT-COMPLETION -12 -12

OPEN -30 -103

RESETSYNC -34 -34

SETMODE -33 -33

STOP -05 Not used—see Table 6-10

TIME-SIGNAL -22 -22

Table 6-9. Message Types That the Hardware Generates (Asynchronous)

COBOL Keyword

Message-Type Code

Non-CRE
Environment CRE

BREAK -20 -105

CPU-DOWN -02 -02 or -101

CPU-UP -03 -03

NETWORK -08 Not used—see Table 6-10

POWER-ON -11 -11

SETTIME -10 -10
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-74

Environment Division RECEIVE-CONTROL Paragraph
LOGICAL-OPEN and LOGICAL-CLOSE are conventions that enable a program to
keep track of its active requesters simply and directly. LOGICAL-OPEN selects only
the first OPEN message from each new requester. OPEN messages from requester
backups are automatically handled by the run-time routines and not passed to the
program. Similarly, LOGICAL-CLOSE selects only the final CLOSE message from a
requester. If both are asserted, the program receives a single OPEN message
whenever a process or process pair bids for requester access and a single CLOSE
message whenever an active requester relinquishes its access. Because the specific
message type causes all messages of its class to be passed to the program, the
assertion of OPEN (or SYSTEM, which implies OPEN) overrides LOGICAL-OPEN, and
the assertion of CLOSE (or SYSTEM) overrides LOGICAL-CLOSE.

Table 6-10. REPORT Clause Message Types in the CRE (page 1 of 2)

Message Type

Message Type Code

MeaningCRE COBOL85

BREAK -105 -20 Break on device

CLOSE -104 -31 Close

CONTROL -32 -32 CONTROL system request

CONTROLBUF -35 -35 CONTROLBUF system
request

CPU-DOWN -02 -02 Local processor failure

CPU-UP -03 -03 Local processor reload

DEVICE-INFO -106 -40 Device type inquiry

DEVICEINFO2-COMPLETION -41 -41 Nowait device type inquiry

FILE-GETINFOBYNAME-
COMPLETION

-108 N. A. Nowait
FILE_GETINFOBYNAME_
completion

FILENAME-FINDNEXT-
COMPLETION

-109 N. A. Nowait
FILENAME_FINDNEXT_
completion

JOB-PROCESS-CREATION -112 -09 Job process creation

LOGICAL-CLOSE N. A. N. A. Logical close

LOGICAL-OPEN N. A. N. A. Logical open

MEMORY-LOCK-
COMPLETION

-23 -23 Memory lock completion

MEMORY-LOCK-FAILURE -24 -24 Memory lock failure

MESSAGE-CANCELLED -38 -38 Message cancelled

MESSAGE-MISSED -13 -13 System message buffer
overrun

NEWPROCESS-
COMPLETION

-12 -12 NEWPROCESSNOWAIT
completion
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-75

Environment Division RECEIVE-CONTROL Paragraph
NEWPROCESSNOWAIT-
COMPLETION

-12 -12 NEWPROCESSNOWAIT
completion

NODE-DOWN -110 -08 Lost communication with
node

NODE-UP -111 -08 Established communication
with node

OPEN -103 -30 Open

POWER-ON -11 -11 Power on

PROCESS-CREATE-
COMPLETION

-102 N. A. Nowait
PROCESS_CREATE_
completion

PROCESS-DELETION -101 -02

-05

-06

Process deletion (processor
failure, STOP, ABEND)

PROCESS-TIME-SIGNAL -26 -26 Process time timeout

REMOTE-CPU-DOWN -100 -08 Remote processor down

REMOTE-CPU-UP -113 -08 Remote processor up

RESETSYNC -34 -34 RESETSYNC system
request

SETMODE -33 -33 SETMODE system request

SETPARAM -37 -37 Process SETPARAM

SETTIME -10 -10 Set time

STATUS-3270 -21 -21 3270 device status received

SUBORDINATE-NAME -107 N. A. Subordinate name inquiry

SYSTEM N. A. N. A. All except logical open and
close

TIME-SIGNAL -22 -22 Elapsed time timeout

Table 6-10. REPORT Clause Message Types in the CRE (page 2 of 2)

Message Type

Message Type Code

MeaningCRE COBOL85
HP COBOL Manual for TNS and TNS/R Programs—522555-006
6-76

7 Data Division
The Data Division is optional in a COBOL program. It has four sections: the File
Section, the Working-Storage Section, the Extended-Storage Section, and the Linkage
Section. Each section contains entries describing data that the program unit being
compiled from the source program manipulates. If your program does not use the type
of data that the section defines, then the section is optional.

Topics:

• Data Categories and Data Descriptions

• File Section

• Working-Storage Section

• Extended-Storage Section

• Linkage Section

• Descriptions of Records (Levels 01-49)

• Descriptions That Rename Items (Level 66)

• Descriptions of Noncontiguous Elementary Items (Level 77)

• Descriptions of Condition-Names for Values (Level 88)

.DATA DIVISION

LINKAGE Section

EXTENDED-STORAGE Section

WORKING-STORAGE Section

FILE Section

VST070.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-1

Data Division Data Categories and Data Descriptions
Data Categories and Data Descriptions

Topics:

• Record Description Entries

• Independent Data Item Description Entries

Record Description Entries
A record description entry is a set of one or more data description entries. The first
data description entry has level number 01. Each additional entry has a level number in
the range 02 through 49 or the special level number 66 or 88. Entries with level
numbers 02 through 49 and 66 are subordinate data items of the record data item
defined in the initial data description entry (which has level number 01). Entries with
level number 66 redefine or rename portions of the record. Entries with level number
88 define condition-names.

Data items with level number 77 do not belong to records.

Table 7-1. Data Categories

Category

File Data Internal Data External Data

Definition Data that a
process can read
from or write to
files (including the
mapping between
the internal
program storage
and the file
storage)

Data that a process
develops internally and
holds in temporary areas

Data that all programs in
the run unit can access

Where
Data is
Described

File Section Working-Storage Section
Extended-Storage Section
Linkage Section

File Section
Working-Storage Section
Extended-Storage Section

How
Data is
Described

Data file
description entries
and sort-merge
file description
entries, each
followed by one or
more record
description entries

Record description entries
and independent data item
entries

File descriptions, record
description entries, and
independent data item
entries
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-2

Data Division Independent Data Item Description Entries
More information:

Independent Data Item Description Entries
An independent data item description entry is a set of one or more data description
entries. The first entry must have level number 77. Each additional entry has either the
special level number 88 (to define condition-names associated with values of the level-
77 item) or both the level number 77 and the REDEFINES clause (to make it a
redefinition of the preceding level-77 item). Level-77 items are discussed at length in
Descriptions of Noncontiguous Elementary Items (Level 77).

There is no difference between a level-77 item and an elementary level-01 item, and
the latter is preferred.

File Section
The File Section defines the characteristics of the program’s files. Every file name
described as a data file (FD) or a sort-merge file (SD) in the File Section must be
defined as the same type of file in a corresponding file-control entry of the Environment
Division. Conversely, every data file defined in a file-control entry of the Environment
Division must be described exactly once in an file description entry of the File Section,
and every sort-merge file defined in a file-control entry of the Environment Division
must be described exactly once in an sort-merge file description entry of the File
Section.

The storage space in the File Section is limited because it is allocated in the lower
64 KB of user data space.

Record Levels Sources

01-49 Records

66 Descriptions That Rename Items (Level 66)

77 Independent Data Item Description Entries and
Descriptions of Noncontiguous Elementary Items (Level 77)

88 Descriptions of Condition-Names for Values (Level 88)

Example 7-1. Level-77 Description Entries

77 BUFFER PIC X(132).

77 ARTIFACT PIC X(10).
 88 CONTAINER VALUES ARE "JAR" "AMPHORA" "CANISTER".
 88 WEAPON VALUES ARE "SPEAR" "BOW" "KNIFE" "MISSILE".

77 LOCATION PIC X(30).
77 OFFICE PIC X(25) REDEFINES LOCATION.
 88 LOCAL VALUE IS "HEADQUARTERS".
 88 NORTHEAST-USA VALUES ARE "ALLENTOWN" "NEW HAVEN"
 "CAPE MAY" "WILMINGTON".
 88 SOUTHEAST-USA VALUES ARE "ATLANTA" "MYRTLE BEACH".
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-3

Data Division File Section
66-or-88

is a level-66 or level-88 description. For syntax, see Descriptions That Rename
Items (Level 66) and Descriptions of Condition-Names for Values (Level 88).

FD-entry

file-description

defines the physical aspects of a data file. See File Description Entries.

01-data-description

defines a logical record, specifying the layout of fields within the record and the
size and usage of each field. See Data Description Entries.

SD-entry

sort-merge-file-description

defines the physical aspects of a sort-merge file. See Sort-Merge File
Description Entries.

.FILE SECTION

SD-entry

66-or-88

66-or-88

FD-entry

66-or-88

VST071.vsd

file-descriptionFD 01-data-description

VST072.vsd

sort-merge-file-descriptionSD 01-data-description

VST073.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-4

Data Division File Description Entries
01-data-description

defines a logical record, specifying the layout of fields within the record and the
size and usage of each field. See Data Description Entries.

Topics:

• File Description Entries

• Sort-Merge File Description Entries

• Data Description Entries

File Description Entries
The file description (FD) entry is the highest level of organization in the File Section of
the Data Division. FD clauses give the size of logical and physical records and the
names and attributes of the data records within the file. When a file is to be printed on
a printer (either directly, or through a spooler), its file description can include
information about how the data is printed on a page.

The characteristics of the file determine which of the clauses are required and which
are optional. Clauses that appear can follow in any order, ending with a period after the
last clause. No clause can appear more than once. The data description entries of one
or more records must follow the file description entry.

Each file description entry must be followed by one or more record description entries.
These describe the format or formats of the logical records in the file. When more than
one record description entry appears, they can describe record images of different
lengths and substructures. All record description entries associated with a single file
represent implicit redefinitions of the file’s record area. The file name in the file
description entry can be used as the final qualifier in references to its record items,
their subordinate data items, or condition-names associated with any of these.

When more than one of the source programs compiled into a run unit includes a file
description entry defining the same external file name, all of these descriptions must
specify the same block size convention, character code convention, labeling
convention, linage attributes, and record attributes. For details, see EXTERNAL
Clause.

The file description entry describes the logical characteristics of a data file.

The record description entries associated with a file description entry define the
possible formats of the logical records for that file. Although different record
descriptions define different types of logical records from the perspective of the source
program, the corresponding logical records in the file might not have different
representations. Conceptually, every record description applies to every logical record
in the file; therefore, when the file actually contains different types of logical records, it
is your responsibility to code the program such that it determines which of the record
descriptions are appropriate for each particular record.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-5

Data Division File Description Entries
In Example 7-2, two record description entries (level-01 items) follow a file description
entry.

The syntax of a file description entry (file-description) depends on the file’s
access mode:

• File Description Entry for Sequential File

• File Description Entry for Line Sequential File (OSS environment only)

• File Description Entry for Relative, Indexed, or Queue File

Example 7-2. File Description (FD) Entry

FD INPUT-FILE-MASTER
 GLOBAL
 RECORD IS VARYING IN SIZE FROM 10 TO 256 CHARACTERS

01 OFFICE-DETAILS.
 03 NUMBER PIC 9(5).
 03 ADDRESS.
 05 LINE-1 PIC X(25).
 05 LINE-2 PIC X(25).
 05 LINE-3 PIC X(25).
 03 HEAD-COUNT PIC 999.
 03 MANAGER-ID-NUMBER 9(5).

01 EMPLOYEE-DETAILS.
 03 ID-NUMBER PIC 9(5).
 03 TITLE PIC X(25).
 03 MANAGER-ID-NUMBER PIC 9(5).
 03 SALARY-LEVEL PIC X(2).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-6

Data Division File Description Entries
File Description Entry for Sequential File

file-name

is the highest-level qualifier for both a file description entry and its data
descriptions; therefore, the name must be unique within a program.

EXTERNAL clause

is described in EXTERNAL Clause.

GLOBAL clause

is described in GLOBAL Clause.

BLOCK CONTAINS clause

is described in BLOCK CONTAINS Clause.

file-name .

BLOCK CONTAINS clause

RECORD CONTAINS clause

«LABEL RECORDS clause»

«VALUE OF clause»

«DATA RECORDS clause»

LINAGE clause

CODE-SET clause

REPORT clause

EXTERNAL clause

GLOBAL clause

VST074.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-7

Data Division File Description Entries
RECORD CONTAINS clause

is described in RECORD CONTAINS Clause.

LABEL RECORDS clause

is described in LABEL RECORDS Clause.

VALUE OF clause

is described in VALUE OF Clause.

DATA RECORDS clause

is described in DATA RECORDS Clause.

LINAGE clause

is described in LINAGE Clause.

CODE-SET clause

is described in CODE-SET Clause.

REPORT clause

is described in REPORT Clause.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-8

Data Division File Description Entries
File Description Entry for Line Sequential File

file-name

is the highest-level qualifier for both a file description entry and its data
descriptions; therefore, the name must be unique within a program.

EXTERNAL clause

is described in EXTERNAL Clause.

GLOBAL clause

is described in GLOBAL Clause.

RECORD CONTAINS clause

is described in RECORD CONTAINS Clause.

LABEL RECORDS clause

is described in LABEL RECORDS Clause.

Note. Available only in the OSS environment.

file-name .

RECORD CONTAINS clause

«LABEL RECORDS clause»

«VALUE OF clause»

«DATA RECORDS clause»

REPORT clause

EXTERNAL clause

GLOBAL clause

VST633.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-9

Data Division File Description Entries
VALUE OF clause

is described in VALUE OF Clause.

DATA RECORDS clause

is described in DATA RECORDS Clause.

REPORT clause

is described in REPORT Clause.

File Description Entry for Relative, Indexed, or Queue File

file-name

is the highest-level qualifier for both a file description entry and its data
descriptions; therefore, the name must be unique within a program.

EXTERNAL clause

is described in EXTERNAL Clause.

GLOBAL clause

is described in GLOBAL Clause.

file-name .

BLOCK CONTAINS clause

RECORD CONTAINS clause

«LABEL RECORDS clause»

«VALUE OF clause»

«DATA RECORDS clause»

EXTERNAL clause

GLOBAL clause

VST637.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-10

Data Division File Description Entries
BLOCK CONTAINS clause

is described in BLOCK CONTAINS Clause.

RECORD CONTAINS clause

is described in RECORD CONTAINS Clause.

LABEL RECORDS clause

is described in LABEL RECORDS Clause.

VALUE OF clause

is described in VALUE OF Clause.

DATA RECORDS clause

is described in DATA RECORDS Clause.

EXTERNAL Clause
The EXTERNAL clause gives the file connector referenced by file-name the
external attribute, meaning that it belongs to the run unit rather than to any single
program in the run unit. When more than one program in a run unit specifies a file
connector with the same file name and the external attribute, they all refer to the same
file connector. For an explanation of external objects (those with the external attribute),
see External and Internal Objects.

Usage Considerations:

• Sharing a File Connector

If more than one of the source programs compiled into a run unit contain file
description entries defining the same file name, all entries that include the
EXTERNAL clause describe the same external file connector.

Any file name whose file description entry does not include the EXTERNAL clause
refers to an internal file connector, even if the same file name identifies an external
file connector in some other program of the run unit.

EXTERNAL

IS

VST075.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-11

Data Division File Description Entries
• EXTERNAL Clause Inherited by Data Items in External Files

The EXTERNAL clause specifies that the file connector associated with the file
name defined by the containing file description entry is an external file connector,
and that the data items associated with all of the record descriptions for this file
name are external data items; therefore, any other source program compiled into
the same run unit can share these resources by including a file description entry
that defines the same file name and contains the EXTERNAL clause.

• Other Related Data Items Required to be External

Any data items referenced in the clauses of a file description entry containing the
EXTERNAL clause (such as the LINAGE clause or the VARYING DEPENDING
clause) or in the clauses of the corresponding file-control entry (such as the FILE
STATUS clause or the ALTERNATE RECORD KEY clause) must be external data
items.

• Consistency of External Files Throughout the Run Unit

All descriptions of the same external file connector, and the file that it references,
must be functionally identical. The detailed restrictions are:

° File-control entries

All of the file-control entries must specify or imply the same operating system
file name, organization, and access mode. If any of the file-control entries
includes the OPTIONAL phrase, all of them must do so.

° Keys

If any of the file-control entries specifies a relative key, record key, or alternate
record key, all of them must specify the same external data item for that
purpose. Each alternate record key must have a consistent DUPLICATES
attribute.

° PADDING CHARACTER clause

If any of the file-control entries includes a PADDING CHARACTER clause, all
of them must include a PADDING CHARACTER clause that specifies the same
padding attribute. In particular, when the value of a data item supplies the
padding character, the same external data item must be specified for this
purpose in each of the clauses.

° RECORD DELIMITER clause

If any of the file-control entries includes a RECORD DELIMITER clause
specifying a system-name, all of them must include a RECORD DELIMITER
clause specifying the same system-name.

° BLOCK CONTAINS clause

If any of the file description entries includes a BLOCK CONTAINS clause, all of
them must include a BLOCK CONTAINS clause that specifies the same block
size attribute.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-12

Data Division File Description Entries
° RECORD CONTAINS clause

If any of the file description entries includes a RECORD CONTAINS clause, all
of them must include a RECORD CONTAINS clause that specifies the same
record attributes (fixed-length or variable-length, fixed record size or minimum
and maximum record sizes, and the external data item that reflects the current
logical record size, if any).

° LABEL RECORDS clause

If any of the file description entries includes a LABEL RECORDS clause with
the STANDARD phrase, all of them must include a LABEL RECORDS clause
with the STANDARD phrase.

° LINAGE clause

If any of the file description entries includes a LINAGE clause, all of them must
include a LINAGE clause that specifies the same logical page attributes. In
particular, when the value of a data item supplies one of the attributes, the
same external data item must be specified for this purpose in each of the
clauses.

° CODE-SET clause

If any of the file description entries includes a CODE-SET clause that
references an alphabet-name associated with a system-name, all of them must
include a CODE-SET clause that references an alphabet-name associated with
the same system-name.

• Open Mode States

At the beginning of each execution of the run unit, the open mode state for each
external file connector is Closed and the status of all other dynamic file attributes is
undefined. If the open mode state of an external file connector is not Closed or
Locked when execution of the run unit terminates, it is closed by the execution of
an implicit CLOSE statement without any of the optional phrases.

Note. The 1985 COBOL standard classifies the LABEL RECORDS clause as
obsolete, so you are advised not to use it.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-13

Data Division File Description Entries
GLOBAL Clause
The GLOBAL clause makes file-name a global name, meaning that it is available to
every program contained within the program that describes it. The contained programs
do not contain a description of the file. For an explanation of global names, see Global
and Local Names.

Usage Considerations:

• Referencing Global Items

A statement in a program contained directly or indirectly within a program that
describes a global name can reference that name without describing it again.

• Subordinates of Global Names Are Global Names

A file name described using a GLOBAL clause is a global name. All data-names
subordinate to a global name are global names. All condition-names associated
with a global name are global names.

• SAME RECORD AREA Clause

If the SAME RECORD AREA clause is specified for several files, the record
description entries or the file description entries for these files must not include the
GLOBAL clause.

GLOBAL

IS

VST076.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-14

Data Division File Description Entries
BLOCK CONTAINS Clause
Use the optional BLOCK CONTAINS clause to specify the number of logical records or
the number of character positions in a physical record on tape or unstructured disk files
only. For these types of files, if this clause is absent, the compiler assigns a block size
of one logical record. The operating system handles all other file blocking and
deblocking in a way that is transparent to the COBOL program.

blk-1

is an unsigned integer literal that specifies the minimum size of a block.

blk-2

is an unsigned integer literal. In the presence of blk-1, blk-2 is the fixed size of
a block; otherwise, it is the maximum size of a block.

RECORDS

specifies that the values of blk-1 and blk-2 represent numbers of logical
records.

CHARACTERS

specifies that the values of blk-1 and blk-2 represent numbers of character
positions. This is the default.

Usage Considerations:

• Limits

The minimum number of character positions you can specify is equal to the
maximum record size of the file. If you specify more than 32,767 character
positions, the compiler reports an error.

If you specify a number of records greater than 32,767 divided by the maximum
record size for the file, the compiler reports an error.

blk-1CONTAINS

BLOCK

RECORDS

TO

blk-2

CHARACTERS

VST077.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-15

Data Division File Description Entries
When blk-1 is present, its value must be less than or equal to that of blk-2.
When the RECORDS option is not specified, the value of blk-1 must be greater
than or equal to the minimum record size of the file; otherwise, the value of blk-1
must be greater than 0.

Although tape devices are capable of handling blocks of 32,767 characters,
unstructured disk files are limited to a block size of 4,096. Furthermore, an
unstructured disk file can have a BLOCKSIZE attribute that is smaller than 4,096.
Other devices have their own block size limitations. See the discussion of the
WRITE procedure call in the Guardian Procedure Errors and Messages Manual for
these limits.

Because the compiler cannot determine the block size of the device that is
ultimately associated with a file, you must choose the correct block size and record
size or risk getting a run-time error.

• Blocking and Deblocking for Tape and Unstructured Disk

A BLOCK CONTAINS clause is effective (HP COBOL performs record blocking
and deblocking) only when all of these conditions are met, and the file associated
at open time is either a tape unit or an unstructured disk file:

° The file’s organization is sequential.

° The file has fixed-length records. This condition is met only when the file
description contains either no RECORD CONTAINS or RECORD VARYING
clause or contains a RECORD CONTAINS clause that specifies only a single
record size.

° When the block size is specified in characters, it is a multiple of the number of
characters in the logical record size. Also, when a RECORD CONTAINS
clause extends the record size, the block size expressed is a multiple of the
number of characters in that specified record size.

° The file is not described with a LINAGE or ALTERNATE RECORD KEY clause.

° Tape Files

If the actual file associated with the COBOL file at open time is a tape unit,
then blocking/deblocking always occurs. For an unlabeled tape file, the
maximum block size is the one specified in the BLOCK CONTAINS clause. For
a labeled tape file, the maximum block size specified in the tape label (which
must be an exact multiple of the logical record size) overrides the one specified
in the BLOCK CONTAINS clause.

If the file is opened for INPUT, then each physical block on the tape medium
must contain one or more complete logical records. The size of a block must
not exceed the maximum block size; however, any block can be smaller than
the maximum block size (can contain fewer than the potential number of logical
records).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-16

Data Division File Description Entries
° Unstructured Disk Files

If the actual file associated with the COBOL file at open time is an unstructured
disk file, then blocking/deblocking occurs if the logical record size is an even
number of character positions or the file has the odd-length access attribute;
otherwise the BLOCK CONTAINS clause is ignored (that is, logical records are
physically read or written one at a time). (To have the odd-length access
attribute, a file must be created with FUP CREATE and ODDUNSTR must be
specified.)

Odd-length records are written as even-length unless ODDUNSTR is active.

The compiler issues a warning if blocking is specified when the conditions,
other than variable-length records, are not satisfied.

RECORD CONTAINS Clause
Use the RECORD CONTAINS clause to specify whether the records of a file are of
fixed or variable length and to document the size of the records.

contains-phrase-fixed

length-fixed

is an unsigned integer literal that specifies the exact length, in characters, of
fixed-length records. Its value is in the range 0 through 32,767.

RECORD contains-phrase-fixed

«contains-phrase-range»

VARYING phrase

VST078.vsd

length-fixed

CONTAINS CHARACTERS

VST079.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-17

Data Division File Description Entries
«contains-phrase-range»

length-min

is an unsigned integer literal that specifies the minimum length, in characters,
of variable-length records. Its value is in the range 0 through 32,767.

No record description entry for the file described with length-min can specify
a number of character positions less than the value of length-min.

When the RECORD clause appears in a data file description entry, no record
key or alternate record key defined for the file can be described as beginning
after or extending beyond the number of characters specified by length-min.

length-max

is an unsigned integer literal that specifies the maximum length, in characters,
of variable-length records. Its value must be greater than or equal to the value
specified by length-min (for the RECORD CONTAINS form of variable-
length specification) or greater than the value specified by length-min (for
the RECORD VARYING form of variable-length specification).

No record description entry for the file described with length-max can specify
a number of character positions greater than the value of length-max.

Note. The 1985 COBOL standard classifies contains-phrase-range as obsolete, so
you are advised not to use it. Instead, use a VARYING phrase of the form:

RECORD IS VARYING FROM length-min TO length-max

TOlength-min length-max

CONTAINS

CHARACTERS

VST405.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-18

Data Division File Description Entries
VARYING phrase

explicitly declares that the file consists of variable-length records (records of
different sizes).

length-min

is as defined previously. The default is the size of the shortest record
description entry.

length-max

is as defined previously. The default is the size of the longest record
description entry.

length-var

is the data-name of an unsigned integer numeric data item. It tells the
REWRITE and WRITE statements how many characters to deliver, and
receives the size (in characters) of any record that was read successfully. It
can be qualified, but not subscripted or reference-modified.

Record size is the actual number of bytes needed to store the record, determined by
the sum of bytes for each fixed-length elementary item plus the maximum number of
bytes for any variable-length item. The number of bytes for an item also depends on its
USAGE clause, and if synchronization is active, any filler from alignment on storage
boundaries.

IS

VARYING

IN SIZE

FROM

length-min

DEPENDING length-var

TO length-max

ON

CHARACTERS

VST092.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-19

Data Division File Description Entries
Usage Considerations:

• Describing Fixed-Length Records

The RECORD CONTAINS length-fixed CHARACTERS form specifies that the
file consists of fixed-length records. Both other forms specify that the file consists
of variable-length records.

If the record you write is smaller than the fixed length, the extra characters are
undefined.

If you declare a file for a terminal, you must specify variable-length records, or else
each record entered must be exactly the same length.

• Defaulting to Fixed-Length Records

If no RECORD clause is present, the compiler declares the file to consist of fixed-
length records. In this case, the record length is the size of the associated record
description entry specifying the greatest number of character positions.

• File With Fixed-Length Records Can Hold Records of Shorter Lengths

If you describe a file as having fixed-length records, each record description for
that file’s record area can describe a record of any length from 1 up to the stated
fixed length.

The length you specify in the RECORD CONTAINS clause is the fixed length of the
record area that holds individual records read from or to be written to the file during
execution. Each record description entry can define the record area in a different
way, possibly describing a record of a shorter length than the actual record has in
the record area or in the file.

• Example of a File with Fixed-Length Records

This explicitly declares a file to have fixed-length records:

RECORD CONTAINS 256 CHARACTERS

• Purpose of Variable-Length Records

If you describe a file as having variable-length records, the individual record
descriptions for that file can be of any length from the stated or implied minimum
length to the stated or implied maximum length. The specified minimum size can
be less than that implied by the record description entry defining the smallest
number of character positions. The specified maximum size can be greater than
that implied by the record description entry defining the largest number of
character positions; however, only those character positions defined in the record
descriptions are accessible to the program.

If the record you write is smaller than the minimum length, the extra characters are
undefined.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-20

Data Division File Description Entries
• Depending Item

When length-var is specified, the data item it references is called the
depending item.

° Governs the length of the record to be written

The contents of this item, evaluated just before the execution of a REWRITE or
WRITE statement for the file, determine the size of the record to be written.

° Contains the length of the record after it has been read

After the successful execution of a READ statement for the file, the contents of
the depending item indicate the size of the item just read.

The size is expressed in characters.

The execution of a DELETE, RELEASE, REWRITE, START, or WRITE statement,
or the unsuccessful execution of a READ statement, does not alter the contents of
the depending item.

• Establishing the Length of a Variable-Length Record

When the run-time routines execute a REWRITE or WRITE statement referencing
a file of variable-length records, the number of character positions in the record
written is determined:

° If length-var is specified, by the content of the data item referenced by
length-var.

° If length-var is not specified and the record does not contain a variable-
occurrence data item, by the number of character positions in the record (as
specified in the record description).

° If length-var is not specified and the record contains a variable-occurrence
data item, by the sum of the size of the fixed portion and that portion of the
table described by the number of occurrences at the time of execution of the
output statement.

Example 7-3. Variable-Length Record

RECORD IS VARYING IN SIZE FROM 100 TO 144 CHARACTERS
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-21

Data Division File Description Entries
LABEL RECORDS Clause

On systems that support file labels, this clause specifies whether the file being
described has labels or not. HP COBOL does not support labeling or label processing.
If you want to use file labels, you must create your own and check them.

STANDARD

specifies that standard system labeling conventions apply to the file.

OMITTED

specifies that no explicit labels exist for the file.

Usage Considerations:

• File Description Entry Without LABEL RECORDS Clause

When a file description entry does not have a LABEL RECORDS clause,
HP COBOL assigns the OMITTED attribute to the file.

• STANDARD or OMITTED

The choice of STANDARD or OMITTED is significant only for files residing on tape.

• LABEL RECORDS Clause With MULTIPLE FILE TAPE Clause

When the LABEL RECORDS clause appears in the file description entry of any file
name mentioned in a MULTIPLE FILE TAPE clause, the specified labeling
convention must apply to all of the file names mentioned in that clause. In practical
terms, this means that every file name appearing in a particular MULTIPLE FILE
TAPE clause must be described with the LABEL RECORDS STANDARD clause if
any of them are so described.

Note. The 1985 COBOL Standard classifies the LABEL RECORDS clause as obsolete, so
you are advised not to use it.

LABEL

OMITTED

STANDARD

RECORDS

RECORD

IS

ARE

VST083.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-22

Data Division File Description Entries
VALUE OF Clause

label-name

is a COBOL word.

label-value

is either a literal or a COBOL word.

DATA RECORDS Clause

Use the optional DATA RECORDS clause to enumerate the names of the records that
are defined for the file. Each data-name corresponds to one level-01 name in the
record descriptions following the file description. The existence of more than one data-
name indicates the file has more than one type of data record. These records can vary
in size, format, and so on, and can be listed in any order. All data records within a file
share the same memory area.

rec-name

is the name of a record that is to follow the file definition.

Note. The 1985 COBOL Standard classifies the VALUE OF clause as obsolete. HP COBOL
does not support the VALUE OF clause. If this clause is present, the compiler checks its syntax
and issues a warning.

Note. The 1985 COBOL Standard classifies the DATA RECORDS clause as obsolete, so you
are advised not to use it.

VALUE OF label-name

OF

label-value

VST084.vsd

DATA rec-name

RECORDS

RECORD

IS

ARE

VST085.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-23

Data Division File Description Entries
Usage Considerations:

• Correspondence

Each rec-name specified in the DATA RECORDS clause must correspond to
some level-01 name in the list of record description entries. Order is not important.

The converse is not true; level-01 entries can exist among the record description
entries without their names appearing in the DATA RECORDS clause.

• FILLER Keyword and the DATA RECORDS Clause

Although a record description can, except in certain circumstances, be named
FILLER or have no name at all (the implicit FILLER), the name FILLER cannot
appear as a rec-name in the DATA RECORDS clause.

LINAGE Clause
The LINAGE clause controls where data is printed on a page. Top and bottom margins
and a body area with an optional footing area within it are defined in terms of the
number of lines each has.

body

is either an unsigned integer literal or the data-name of an elementary unsigned
numeric integer data item. Its value is the number of lines that can be written on a
logical page, so it must be greater than 0.

LINAGE

IS

body

LINES

WITH

footFOOTING

AT

LINES

LINES

topTOP

AT

bottomBOTTOM

AT

VST086.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-24

Data Division File Description Entries
foot

is either an unsigned integer literal or the data-name of an elementary unsigned
numeric integer data item. Its value is the line number within the page body at
which the footing area begins, so it must be greater than 0 and not greater than the
value of body. The default is body +1.

top

is either an unsigned integer literal or the data-name of an elementary unsigned
numeric integer data item. Its value is the number of lines in the top margin of the
logical page. The default is 0.

bottom

is either an unsigned integer literal or the data-name of an elementary unsigned
numeric integer data item. Its value is the number of lines in the bottom margin of
the logical page. The default is 0.

Example 7-4. LINAGE Clauses

LINAGE IS 60 LINES WITH FOOTING AT 51,
 LINES AT TOP 0, LINES AT BOTTOM 3

LINAGE IS NUMBER-OF-TEXT-LINES, LINES AT TOP TEXT-OFFSET,
 LINES AT BOTTOM REST-OF-PAGE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-25

Data Division File Description Entries
Usage Considerations:

• The Logical Page

The size of a logical page is the sum of the top and bottom margins and the body.
The logical page is not necessarily the same size as the physical page.

• Restriction

Because the purpose of the LINAGE clause is to control printing of data, it can be
used only with files assigned to line printer devices or spooler processes.

• Initial Positioning of First Logical Page

Before printing the first logical page, a standard printer file issues a page eject,
positioning itself at the fourth line of the physical page. The run-time routines
cannot determine if a printer file behaves in the standard way or not; therefore, the
run-time routines handle all printer files as if they do; therefore, when the LINAGE
clause applies, the OPEN statement operates:

° If the value of top is 3 or more

If the value of top is 3 or more, the run-time routines issue a page eject to
establish a known initial position on the physical page. Because the run-time
routines now expect the printer position to be at the fourth line (that is, 3 lines
have already been skipped), they advance the printer by top - 3 lines.

° If the value of top is 2 or less

If the value of top is 2 or less, the preceding strategy does not work, because
the run-time routines cannot backspace the printer. The run-time routines

Figure 7-1. LINAGE Clause Layout

Top Margin

Body
(Includes Footing)

Footing

Bottom Margin

Top

Body

Bottom

VST708.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-26

Data Division File Description Entries
assume that the printer is positioned at the first line, omit the page eject, and
advance the printer by top lines.

Examples:

This logic applies only during initial positioning of the first logical page. The
printer does not perform page ejects for subsequent pages, and the value of
top is not modified.

• Handling the First Logical Page Specially

If you know that the printer file does not behave in the standard way, you can
program around the situation described in Initial Positioning of First Logical Page.
In simple cases, follow these steps:

1. In the LINAGE clause, specify a data item for top.

2. Initialize the data item with a value that produces the desired result for the first
logical page (see Initial Positioning of First Logical Page).

3. Open the output file.

4. Change the value of the data item to the value of the “real” top margin. (You
can do this even before the first WRITE statement.)

In more complex cases, follow these steps:

1. In the LINAGE clause, specify a data item for top.
2. Initialize the data item to 0.
3. Open the output file.
4. Use WRITE statements to position the first logical page properly.
5. Change the value of the data item to the value of the “real” top margin.

Value
of top Page-Eject Issued?

Lines Skipped

Additional Total

0 No 0 0

1 No 1 1

2 No 2 2

3 Yes (skips 3) 0 3

4 Yes (skips 3) 1 4

5 Yes (skips 3) 2 5

6 Yes (skips 3) 3 6
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-27

Data Division File Description Entries
• Effect of body, foot, top, and bottom

The description of the first logical page is determined from top, body, foot, and
bottom when the file is opened by an OPEN statement with the OUTPUT phrase.

If literals are used to define all these page areas, all logical pages have the same
layout.

If one or more of the values are data-names, then each time a WRITE statement
with the ADVANCING PAGE phrase is executed or a page overflow occurs, the
current value of the data-names is used to set up the next logical page.

• Printing Device Does Not Space

Each logical page continues to the next with no additional spacing from the printing
device.

• The LINAGE-COUNTER Special Register

Every file description that has a LINAGE clause generates a special register called
LINAGE-COUNTER. At any given time, LINAGE-COUNTER contains the value of
the current line number within the current page body.

A LINAGE-COUNTER can be read but not modified.

If more than one file description contains a LINAGE clause, each reference to a
LINAGE-COUNTER must be qualified by its file name.

The value of LINAGE-COUNTER is automatically set to 1 when its file is opened.
During execution of a WRITE statement to its file, LINAGE-COUNTER is
automatically modified under these conditions:

° When the ADVANCING PAGE phrase of a WRITE statement is encountered,
LINAGE-COUNTER is reset to 1.

° When the ADVANCING phrase is specified in a WRITE statement, LINAGE-
COUNTER is increased by the number of lines given.

° When the ADVANCING phrase of the WRITE statement is not used, LINAGE-
COUNTER is increased by 1.

° When execution of a WRITE statement repositions the file to the first line in the
page body of the next logical page, LINAGE-COUNTER is reset to 1.

If the file description entry containing the LINAGE clause includes the EXTERNAL
clause as well, the file then has the external attribute. In this case, the LINAGE-
COUNTER special register is also an external data item. Execution of a WRITE
statement for such a file by any programs that share access to the file modifies the
same unique special register.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-28

Data Division File Description Entries
CODE-SET Clause
The CODE-SET clause specifies the character code convention used to represent data
on the external media supporting the file.

alphabet-name

is the character set used to represent data on external media. It determines the
way external codes are converted to native character codes during input and
output operations. It must be defined in the SPECIAL-NAMES paragraph to be
STANDARD-1, STANDARD-2, or NATIVE (all of which designate the ASCII
character set), or a system-name predefined by HP COBOL as an alternate
alphabet name. The only such system-name is EBCDIC.

Usage Considerations:

• Sequential Files Only

You can specify the CODE-SET clause only for sequential files that do not have
alternate keys. On files associated with the $RECEIVE device, the CODE-SET
clause has no effect.

• Action of CODE-SET EBCDIC

The presence of the CODE-SET clause causes translation between the native
USASCII character code convention and the EBCDIC code convention for all input
and output operations, regardless of the type of the device associated with the
sequential file.

If you specify CODE-SET EBCDIC in the file description associated with a printer,
EBCDIC codes are delivered to the printer (which may or may not be prepared to
accept EBCDIC codes).

The most common use for CODE-SET EBCDIC is for reading or writing tapes for
interchange with an EBCDIC-based system.

• Restrictions Established by the CODE-SET Clause

When the CODE-SET clause appears, it places these restrictions on all data items
defined in the record description entries associated with the file description entry:

° Some SIGN SEPARATE clause must apply to every signed numeric data item
° Every data item must be USAGE DISPLAY.

CODE-SET

IS

alphabet-name

VST087.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-29

Data Division Sort-Merge File Description Entries
REPORT Clause
HP COBOL does not support the report-writing feature of ISO/ANSI COBOL. If the
REPORT clause is present, the compiler checks it for syntactic validity and reports an
error.

report

is irrelevant.

Sort-Merge File Description Entries
Each SORT or MERGE operation refers to a sort-merge file. The sort-merge file
description (SD) describes the size, structure, and names of data records in a sort-
merge file.

A sort-merge file description must begin with sort-merge file description followed by a
file name. The optional clauses can follow in either order. A period ends the whole
entry. One or more record descriptions must then follow. No input-output statements
can be executed for this type of file. The system-file-name specified in the file-
control entry associated with this file identifies the sort-merge scratch file or volume.

file-name

is the highest qualifier for both the sort-merge file description entry and its records.
It must be unique within the program.

REPORTS

REPORT

ARE

report

IS

VST088.vsd

.file-name

RECORD CONTAINS clause

DATA RECORDS clause

VST089.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-30

Data Division Sort-Merge File Description Entries
RECORD CONTAINS clause

CONTAINS phrase

VARYING phrase

length-min
length-max
length-var

are integer values as in the file description entry.

RECORD CONTAINS phrase

VARYING phrase

VST090.vsd

length-fixed

length-min TO length-max

CHARACTERS

CONTAINS

VST091.vsd

IS

VARYING

IN SIZE

FROM

length-min

DEPENDING length-var

TO length-max

ON

CHARACTERS

VST092.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-31

Data Division Data Description Entries
DATA RECORDS clause

data-name

is the name of a record that is declared following the sort-merge file description
entry. One or more fields of those records are used as keys in SORT and
MERGE statements.

Usage Consideration: Only the DATA RECORD and RECORD CONTAINS (or
RECORD VARYING) clauses are valid. For descriptions of these clauses, see File
Description Entries.

In Example 7-5, the record description entry associated with the sort-merge file
description entry defines CUSTOMER-NAME, CUSTOMER-ADDRESS, and
CUSTOMER-ZIP. These data items can be used as sort-merge keys.

Data Description Entries
Data description entries in the File Section describe record areas associated with files.
Each level-01 data description entry is a record description entry that describes the
record area for the file named in the preceding file description entry or sort-merge file
description entry. If multiple record description entries follow an file description or sort-
merge file description entry, each record description entry after the first one is a
redefinition of the record area. See Descriptions of Records (Levels 01-49).

You can use level-66 data description entries to rename contiguous items in a record
and level-88 data description entries to assign condition-names to values of record
items. See Descriptions That Rename Items (Level 66) and Descriptions of Condition-
Names for Values (Level 88). You cannot put level-77 data description entries in the
File Section.

Example 7-5. Sort-Merge File Description Entry

SD SORT-THIS
 RECORD CONTAINS 80 CHARACTERS
 DATA RECORD IS SORT-TEMPLATE.
01 SORT-TEMPLATE.
 05 CUSTOMER-NAME PIC X(35).
 05 FILLER PIC X(35).
 05 CUSTOMER-ADDRESS PIC X(55).
 05 CUSTOMER-ZIP PIC 9(15).
 ...

DATA

RECORDS

RECORD

IS

ARE

data-name

VST093.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-32

Data Division Working-Storage Section
Working-Storage Section
The Working-Storage Section defines records and miscellaneous data items for the
process to use. You can set the initial values of most data items in working storage.
When a process does not need local data items or explicit intermediate storage to
execute the run unit, you can omit the Working-Storage Section.

01-data-description
77-data-description

describe data items for the process to use (for details, see Data Description
Entries). You can specify initial values for most of these data items (see Initializing
Data Items).

There is no difference between level-77 items and elementary level-01 items, and
the latter are preferred.

There are limits to the number of records and level-77 items that a program can
contain. See Section 18, HP COBOL CRE Support.

66-or-88

is a level-66 or level-88 description. For syntax, see Descriptions That Rename
Items (Level 66) and Descriptions of Condition-Names for Values (Level 88).

.WORKING-STORAGE SECTION

01-data-description

77-data-description

66-or-88

VST094.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-33

Data Division Data Description Entries
Data Description Entries
The data description entries for unrelated items (level-77 items) or records or both
follow the Working-Storage Section header. Record-names, level-77 item names, and
subordinate data-names are not required to be unique within the program except in
these cases:

• A data-name that is referenced in the program and cannot be uniquely designated
by including qualifying names in the reference cannot be uniquely designated by
including qualifying names in the reference (the reference is diagnosed, not the
data-name)

• A data-name for a language element whose syntax mandates uniqueness; for
example, the level-01 names of external data items

If data items have hierarchical relationships to one another, you must group them into
records according to the rules for record descriptions. All clauses available for record
descriptions in the File Section are available for record descriptions in the Working-
Storage Section. See Descriptions of Records (Levels 01-49).

If elementary data items bear no relationship to any other items, you do not need to
group them into records. You can define each as a noncontiguous item with level
number 77, followed by a data-name and a PICTURE or USAGE clause. Other data
description clauses are optional for noncontiguous items; you can use other clauses to
complete an item’s description when necessary.

You do not have to put level-01 items (records) and level-77 items in any special order
in the Working-Storage Section; however, if you are planning working storage for a
program to be run as a process pair, see Checkpointing for a recommended approach
that simplifies checkpointing.

You can also use level-66 data description entries to rename contiguous items in a
record (see Descriptions That Rename Items (Level 66)) and level-88 data description
entries to assign condition-names to values of items (see Descriptions of Condition-
Names for Values (Level 88)).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-34

Data Division Data Description Entries
In Example 7-6, the Working-Storage Section has five record description entries.

Example 7-6. Record Description Entries

WORKING-STORAGE SECTION.
01 DATA-TO-CHECKPOINT.
 05 USER-INPUTS.
 10 COMMAND-IN PICTURE X(8) VALUE SPACES.
 10 TRAN-CODE PICTURE 999 VALUE ZERO.
 10 REPORT-TO-PRINT PICTURE 99 VALUE ZERO.
 10 REPORT-NUMBER PICTURE 99 VALUE ZERO.
 05 PERFORM-FLAGS PICTURE 9.
 88 BAD VALUE 0.
 88 GOOD VALUE 1.

01 CURRENT-DATE.
 05 CURRENT-YEAR PICTURE 99 VALUE ZERO.
 05 CURRENT-MONTH PICTURE 99 VALUE ZERO.
 05 CURRENT-DAY PICTURE 99 VALUE ZERO.

01 REPORT-HEADING-1.
 05 FILLER PICTURE X(7) VALUE SPACES.
 05 REPORT-MM PICTURE 99.
 05 FILLER PICTURE X VALUE "/".
 05 REPORT-DD PICTURE 99.
 05 FILLER PICTURE X VALUE "/".
 05 REPORT-YY PICTURE 99.
 05 REPORT-YY PICTURE 99.
 05 FILLER PICTURE X(7) VALUE SPACES.
 ...

01 MONTH-ABBREVIATIONS
 VALUE "JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC".
 03 MON-ABBR PIC X(3) OCCURS 12 TIMES.

01 CONSTANTS-FOR-I-O.
 05 ERROR-MSG-CONST PICTURE X(13) VALUE "*** ERROR ***".
 ...

01 CONSTANTS-FOR-LOGIC.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-35

Data Division Initializing Data Items
Initializing Data Items
The value to which a data item is initialized is determined by:

• EXTERNAL clause

A data item described with an EXTERNAL clause (an external data item) cannot
have a VALUE clause and is not affected by events that cause internal data items
to be initialized. Its contents are unpredictable until a program assigns a value to it.
Thereafter, it retains the last value assigned to it throughout the current execution
of the run unit.

• VALUE clause

With some exceptions, you can set the initial value of an internal data item by
including a VALUE clause in its data description entry (for exceptions, see VALUE
Clause).

• BLANK and NOBLANK directives

When a data item is not described with a VALUE clause, the BLANK or NOBLANK
directive determines its initial value (see BLANK and NOBLANK).

 An internal data item is initialized at each of these times:

• The first time the program is executed.

• The first time the program is called after a CANCEL statement that references it
has been executed, unless a NOCANCEL directive affects the program.

• Every time the program is called, if the program is an initial program (see Initial
Programs). The NOCANCEL directive does not affect initial programs.

Once initialized, an internal data item retains the last value assigned to it throughout
the current execution of the run unit, unless an event that causes internal data items to
be reinitialized occurs. In that case, the data item is reassigned its initial value if it has
a VALUE clause or if a BLANK directive is active; if not, its contents are unpredictable.

Size Limits
In Section 20, HP COBOL Limits, see Data in a run unit.

Checkpointing
You do not have to put level-01 items (records) and level-77 items in any special order
in the Working-Storage Section; however, when you plan working storage for a
program to be run as a process pair, this approach simplifies checkpointing:

• Group all independent data items into a record, and code the record in the same
part of the Working-Storage Section as other level-01 items.

• Reserve level-77 items for constants, and code them last.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-36

Data Division Extended-Storage Section
Extended-Storage Section

The Extended-Storage Section is similar to the Working-Storage Section, but it
describes data to be stored in the single area of extended memory each program can
address on a NonStop operating system. To have storage allocated for a data item in
the area of extended memory, you must either declare the data item explicitly in this
section or use the directive LARGEDATA.

01-data-description
77-data-description

describe data items for the process to use. You can specify initial values for most
of these data items. See Data Description Entries and Initializing Data Items.

There are limits to the number of records and level-77 items that a program can
contain. See Section 20, HP COBOL Limits.

66-or-88

is a level-66 or level-88 description. For syntax, see Descriptions That Rename
Items (Level 66) and Descriptions of Condition-Names for Values (Level 88).

The Extended-Storage Section, if present, must appear after any Working-Storage
Section. A program can have both sections, either section without the other, or neither
section.

Data Description Entries and Initializing Data Items
Data description entries and data initialization rules are the same in the Extended-
Storage Section as they are in the Working-Storage Section. See Data Description
Entries and Initializing Data Items.

Note. TNS/R HP COBOL does not need an Extended-Storage Section. The NMCOBOL
compiler handles any data items that are described in the Extended-Storage Section as if they
were described in the Working-Storage Section, without issuing a warning.

EXTENDED-STORAGE .SECTION

01-data-description

77-data-description

66-or-88

VST095.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-37

Data Division Addressing
Addressing
Items described in the Extended-Storage Section are accessed using 32-bit
addressing. Extended-storage items are allocated in a single extended data segment,
which is managed entirely by the run-time routines. Instructions that involve 32-bit
addresses consume more space in the object file and execute at a slightly slower
speed than the instructions that involve 16-bit addresses.

Size Limits
In Section 20, HP COBOL Limits, see Data in a run unit.

Checkpointing
If your program is compiled with the COBOL85 compiler and the ENV COMMON
directive, the CHECKPOINT statement can process data items declared in the
Extended-Storage Section.

Linkage Section
The Linkage Section describes data passed from a calling program to the program
containing the Linkage Section. No local data space is used for these items because
they refer to existing items in the calling program.

LINKAGE .SECTION

01-data-description

77-data-description

66-or-88

VST096.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-38

Data Division Data Description Entries and Initializing Data Items
01-data-description
77-data-description

are described under Working-Storage Section, except that each data description
entry can include this clause:

66-or-88

is a level-66 or level-88 description. For syntax, see Descriptions That Rename
Items (Level 66) and Descriptions of Condition-Names for Values (Level 88).

Topics:

• Data Description Entries and Initializing Data Items

• ACCESS MODE Clause

• CALL Statement and USING Phrase

• Index-Names

• Absent Linkage Section

Data Description Entries and Initializing Data Items
Data description entries and data initialization rules are the same in the Linkage
Section as they are in the Working-Storage Section, except that you can use the
VALUE clause only for level-88 items. For information on using the VALUE clause in
the Linkage Section, see Descriptions of Condition-Names for Values (Level 88). For
information on data description entries and data initialization rules, see Data
Description Entries, Initializing Data Items.

ACCESS MODE Clause
The ACCESS MODE clause describes the addressing method used to access
parameters passed to the program—STANDARD or EXTENDED-STORAGE. You can
specify the ACCESS MODE clause only in level-01 through level-49 and level-77 data
description entries in the Linkage Section.

ACCESS MODE IS EXTENDED-STORAGE

STANDARD

VST097.vsd

ACCESS MODE IS EXTENDED-STORAGE

STANDARD

VST097.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-39

Data Division CALL Statement and USING Phrase
EXTENDED-STORAGE

specifies extended (32-bit) addressing. This is the default.

STANDARD

specifies standard (16-bit) addressing.

STANDARD cannot be specified for a program that is to be called with a CALL
identifier statement. The compiler cannot check for this, so the result of such
a call is undefined.

Usage Considerations:

• STANDARD Access Mode and the CALL Statement

If a formal parameter (in the called program) has STANDARD access mode, the
CALL statement (in the calling program) cannot pass it an actual parameter that
has EXTENDED-STORAGE access mode (the default) and was declared in the
calling program’s Extended-Storage Section or Linkage Section. Also, the called
program’s object must be available to the compiler when the calling program is
compiled (see CALL).

The only advantage to STANDARD is slightly more efficient access in the called
program.

• Extended Addressing and the CALL Statement

If a formal parameter (in the called program) has EXTENDED-STORAGE access
mode (the default), a CALL statement (in the calling program) can pass it any
actual parameter defined in the calling program’s Data Division.

• Access Mode Heritability

Subordinate items inherit the access mode of their parent. If a record has no
ACCESS MODE clause or has an ACCESS MODE EXTENDED-STORAGE
clause, no element of that record can have STANDARD access mode. If a record
has an ACCESS MODE STANDARD clause in its description, no element of that
record can have EXTENDED-STORAGE access mode.

CALL Statement and USING Phrase
The Linkage Section is required when parameters are passed from a calling program
to a called program, which is signaled by the presence of a USING phrase in the
Procedure Division header of the called program.

The data items named in the CALL statement of the calling program correspond with
the data items named in the USING phrase of the Procedure Division header of the
called program. For details, see CALL.

Note. If you specify STANDARD in a TNS/R program, the NMCOBOL compiler issues a
warning and uses 32-bit addressing.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-40

Data Division CALL Statement and USING Phrase
Statements within the Procedure Division of the called program can refer to any items
defined in the Linkage Section of the program. Global items can be referenced by
contained programs. The Linkage Section can contain matched and unmatched items.
Matched items are those within a record that is specified in the USING phrase of the
Procedure Division header, within a record that is a redefinition of a matched record, a
level-77 item or a record that is in the USING phrase, or a redefinition of those. An
unmatched item is one not associated with the USING phrase.

The PORT directive determines the action taken for a reference to an unmatched item.
If the program was not compiled with the PORT directive, the compiler issues a
warning for any unmatched record or level-77 item. A reference to an unmatched item
can cause abnormal program termination, data corruption, or other failures. If the
program was compiled with the PORT directive, the SET ADDRESS OF statement can
make unmatched items accessible. A reference to an unmatched item for which no
address was set can cause abnormal program termination, data corruption, or other
failures.

Example 7-7. Correspondence Between Formal and Actual Parameters

These lines are in the calling program:

WORKING-STORAGE SECTION.
01 PARAMETER-TABLE.
 02 ROW-PART OCCURS 20 TIMES.
 03 COL-PART PIC 9999 COMPUTATIONAL
 OCCURS 10 TIMES.
 ...
77 ROW PIC 99 COMPUTATIONAL.
77 COL PIC 99 COMPUTATIONAL.
 ...
PROCEDURE DIVISION.
 ...
 CALL "SUBPROG1" USING ROW,
 COL,
 PARAMETER-TABLE.
 ...

These lines are in the called program:

LINKAGE SECTION.
01 PARM-3-IN-OUT.
 04 FORMAL-ROW OCCURS 20 TIMES.
 07 FORMAL-COLUMN PIC 9999 COMPUTATIONAL
 OCCURS 10 TIMES.
77 PARM-R PIC 99 COMPUTATIONAL.
 88 ROW-WITHIN-RANGE VALUE IS 1 THROUGH 20.
77 PARM-C PIC 99 COMPUTATIONAL.
 88 COLUMN-WITHIN-RANGE VALUE IS 1 THROUGH 10.
 ...
PROCEDURE DIVISION USING PARM-R, PARM-C, PARM-3-IN-OUT.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-41

Data Division Index-Names
Index-Names
A Procedure Division reference to a Linkage Section data item in the called program
refers to a location in the calling program; however, this convention does not extend to
index-names. The index-name of a table in the calling program and the index-name of
a table in the called program always refer to separate indexes. This remains true even
when the names of the indexes are the same in the calling program and the Linkage
Section of the called program. An index-name’s value can be passed if it is saved in a
separate item and then passed. (See the example under CALL.)

Absent Linkage Section
If there is no Linkage Section in the called program, it looks like a main program to the
compiler. If you compile a main program and a subprogram with no parameters in the
same compilation session, you must include either a MAIN directive or an empty
Linkage Section to tell the compiler which program is the main one (see Main
Programs). If you do neither, the compiler reports that it found two main programs.

Because the compiler interprets subprograms that have no parameters as main
programs, if you want to compile a collection of such subprograms, you need to direct
the compiler not to attempt to give any of them the main attribute. To do this, use a
MAIN directive specifying a program-name that does not correspond to the name of
any program in the compilation.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-42

Data Division Descriptions of Records (Levels 01-49)
Descriptions of Records (Levels 01-49)
A data description entry that starts at level-01 is a record description entry. It defines
the characteristics of a record, and is followed by subordinate data description entries
for items that are part of the record. You can put record description entries in any
section in the Data Division.

level

is a 1-character or 2-character string whose value is in the range “1” (or “01”) to
“49,” which represents the record’s level number.

level

data-name-1

FILLER

USAGE clause

SIGN clause

OCCURS clause

SYNCHRONIZED clause

EXTERNAL clause

GLOBAL clause

PICTURE clause

JUSTIFIED clause

VALUE clause

REDEFINES clause

BLANK WHEN ZERO clause

.

VST098.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-43

Data Division General Considerations
data-name-1

is an alphanumeric data item whose value is the name of the record you are
describing.

FILLER

is a place holder for a record to which the program never refers. This is the default.

General Considerations
These considerations apply to all record descriptions:

• Data Items Must be Defined

You must define every data item the source program uses (except the special
registers) with an appropriate data description entry in the Data Division. The forms
specified in this topic include:

° When the data item is a logical record associated with a file, you must define it
in a level-01 data description entry associated with the file description entry for
the file of which it is a record.

° When the data item is a logical record that is not associated with a file, you
must define it in a level-01 data description entry in the Linkage, Working-
Storage, or Extended-Storage Section.

° When the data item is an independent elementary data item, you must define it
in a level-01 or level-77 data description entry in the Linkage, Working-Storage,
or the Extended-Storage Section.

° When the data item is a subordinate part of a record, you must define it in a
data description entry (with a level number in the range 02 through 49)
associated with the appropriate record description entry.

° When the data item is a redefinition of another item, you must define it in a
data description entry (with the same level number as the item it redefines)
associated with the appropriate record description entry or level-77 data
description entry.

° The syntax and semantics of entries with level numbers 66 and 88 are
explained in later topics of this section.

• Constraints on Clauses of the Data Description Entry

Each data description entry must begin with the level number. If a data-name or the
keyword FILLER is specified, it must immediately follow the level number. The
characteristics of the data item determine which of the clauses are required or
optional. Clauses that appear can do so in any order. No clause can appear more
than once.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-44

Data Division General Considerations
° Data Name or FILLER Keyword

If the data-name appears, it specifies the name of the data item being
described.

You can give an entry a name so that the name can be used to refer to the
entry. If you do not need to refer to the entry, you can give it the name FILLER,
or omit the name entirely. Such unnamed or FILLER items act as place holders
in records where not all the fields are referred to or as convenient names for
constants, such as in report headings.

When the level number is 01, the data item is a record, and the data-name is
sometimes referred to as a record-name. In this case, the data-name must be
specified if the data description entry contains the EXTERNAL clause or if the
data description entry is associated with a file description entry that contains
the EXTERNAL clause. If neither the data-name nor the keyword FILLER is
specified, it is as if the keyword FILLER had been specified.

When the level number is 77, the data item is an independent (or
noncontiguous) elementary data item, and the data-name (not FILLER) must
always be specified.

° REDEFINES Clause

The REDEFINES clause, when it appears, must immediately follow the data-
name or FILLER keyword. If it does not, the compiler issues a warning,
because COBOL requires REDEFINES to precede all other clauses.

° EXTERNAL Clause

The EXTERNAL clause can be specified only for data description entries within
the Working-Storage or Extended-Storage Sections whose level number is 01.
It cannot be specified in a data description entry containing a REDEFINES
clause.

° PICTURE Clause

The PICTURE clause must be specified for every elementary item except
these, which must not have PICTURE clauses:

° Indexes (described only in INDEXED phrases)

° Data items described as USAGE INDEX, USAGE NATIVE-n, or USAGE
POINTER

° Data items declared by RENAMES clauses

° USAGE Clause

The USAGE clause cannot be used for national data items.

° SIGN Clause

The SIGN clause cannot be used for national data items.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-45

Data Division General Considerations
° SYNCHRONIZED Clause

The SYNCHRONIZED clause cannot be used for national data items.

° BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause cannot be used for national data items.

• Clauses Applying Only to Elementary Data Items

The PICTURE, SYNCHRONIZED, JUSTIFIED, and BLANK WHEN ZERO clauses
can be specified only for an elementary data item.

• Allocation of Storage

° Elementary Items

The description of an internal elementary item in the Working-Storage Section
or Extended-Storage Section causes allocation of storage space for that item
unless that item redefines another item, in which case that item shares the
redefined item’s storage space.

The description of an external elementary item causes allocation of storage
space for that item in space belonging to the run unit, outside the storage area
of any individual program. This space is shared by all programs that describe
the external data item.

° Linkage Items

The description of an elementary item in the Linkage Section does not cause
its allocation. In this case, the item is allocated by some other program, or by
the run unit, and is made available to the current program with the SET
statement or the CALL statement that causes its execution.

° Data Structures

The description of a data structure in the Working-Storage Section or
Extended-Storage Section does not cause any direct allocation, because its
data-name merely designates the combined storage spaces of all the
elementary items subordinate to it; however, the storage alignment
requirements of some elementary items can cause the generation of implicit
FILLER items whose storage space also belongs to the containing data
structures (for details, see SYNCHRONIZED Clause).

° Data Items in the File Section

Technically, the data description entries in the File Section only establish
descriptions of data items in record areas—they are not declarations in the
purest sense. If the file description does not establish a record length, the
longest data description entry associated with it does so.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-46

Data Division General Considerations
° Relationship with File Description Entries

In the File Section, data description entries that describe records follow file
description entries or sort-merge file description entries.

The file description or sort-merge file description entry is not part of the data
description entry (see Example 7-8).

The record description entry defines a record area associated with the file named in
the file description entry.

In the other sections of the Data Division, record description entries are data
declarations, as in Example 7-9. The level-77 entry is a description of a data item that
is not part of a record. See Descriptions of Noncontiguous Elementary Items (Level
77).

Note. Any File Section record you describe cannot exceed 32,767 bytes. At execution time,
records for $RECEIVE files cannot exceed 32 KB (see RECEIVE-CONTROL Paragraph). For
input and output operations on NonStop systems, the actual record-length limit for individual
devices depends on the operating system limits.

Example 7-8. File Description Entry Followed by Record Description Entry

FD SAMPLE-FILE
 LABEL RECORDS ARE OMITTED.
 01 SAMPLE-RECORD.
 05 STORE-ID.
 10 STORE-NUMBER PIC 999.
 10 STORE-REGION PIC X.
 88 NORTHERN VALUE "N".
 88 SOUTHERN VALUE "S".
 05 STORE-MANAGER PIC X(35).
 05 STORE-ADDRESS.
 10 STREET PIC X(25).
 10 CITY PIC X(15).
 10 ZIP-CODE PIC 9(5).

Example 7-9. Record Description Entries as Data Declarations

01 MEDICATIONS.
 03 BRAND-NAME PICTURE X(50).
 03 SIZE-IN-MG PICTURE 9999V99.
 03 CONTRA-COUNT PICTURE 99.
 03 CONTRAINDICATIONS OCCURS 1 TO 25 TIMES
 DEPENDING ON CONTRA-COUNT
 PICTURE X(50).
77 I-DEX PICTURE 9999
 USAGE IS COMPUTATIONAL
 VALUE IS ZERO.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-47

Data Division FILLER Keyword
FILLER Keyword
The FILLER keyword, explicit or implicit, substitutes for a data-name when it is not
important that an item have a name. It is allowed on elementary or data structures.
Commonly, FILLER is used when you build records in the Working-Storage Section or
Extended-Storage Section for heading lines or error messages, where most of the text
is groups of literals.

Data items designated as FILLER can be conditional data items. This means that a
FILLER item can be followed by one or more level-88 items describing condition-
names that have the value TRUE when the FILLER item contains a certain value.

REDEFINES Clause
The REDEFINES clause enables you to describe the same computer storage area in
more than one way. This can be quite valuable for tasks such as input data validation,
when tests require different descriptions of the data. It is also convenient when some
portions of a record are constant, while other parts vary.

data-name-2

is the name of the existing data item that is being redefined as data-name-1.

In Example 7-11, the two records RECORD-IN and RECORD-TOTAL share the same
storage space, but their fields are different.

Example 7-10. FILLER Keyword

WORKING-STORAGE SECTION.
01 HEAD-1.
 05 FILLER PIC X(10) VALUE "PART NUM".
 05 FILLER PIC X(25) VALUE "DESCRIPTION".
 05 FILLER PIC X(30) VALUE SPACES.
 05 FILLER PIC X(15) VALUE "UNITS ON HAND"
01 BAD-NEWS.
 02 THE-VALUES.
 05 PIC X(45)
 VALUE "That part number is invalid.".
 05 PIC X(45)
 VALUE "That job code is invalid.".
 05 PIC X(45)
 VALUE "That delivery date is a holiday.".
 ...
 02 THE-MESSAGES REDEFINES THE-VALUES.
 05 ERR-MESSAGE PIC X(45) OCCURS 15 TIMES.

REDEFINES data-name-2

VST102.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-48

Data Division REDEFINES Clause
Usage Considerations:

• Determining Size of Shared Storage Area

When the redefined item is a record item and one or more redefinitions specify a
different number of character positions than the redefined item (either greater or
lesser), the size of the shared storage area is determined by the requirements of
the largest associated record item.

• Elementary items or Data Structures Can Be Redefined

You can describe an elementary data item and follow that description with a
redefinition entry. You can also describe a data structure and follow that description
first with descriptions of its component elementary items (with numerically higher
level numbers), then with a redefinition entry that redefines the data structure.

Redefinition continues until the appearance of a level number less than or equal to
that of the data-name being redefined (or the ending of the current section of the
Data Division).

• Series of Redefinitions

You can describe a series of redefinition entries with the same level number as that
of the redefined entry, provided that each of these entries also contains a
REDEFINES clause specifying the data-name of the redefined item.

You cannot, however, separate a redefinition entry from the redefined entry by any
data description entry with a numerically lower level number.

• No Redefinitions of Level-66 or Level-88 Items

Data items of level 66 (RENAMES) and 88 (condition-name) cannot be redefined.

Example 7-11. REDEFINES Clause

WORKING-STORAGE SECTION.
 01 RECORD-IN.
 05 RECORD-CODE PIC 9.
 05 RECORD-DETAIL PIC X(30).
 05 RECORD-SUBTOTAL PIC 9(3)V99.
 01 RECORD-TOTAL REDEFINES RECORD-IN.
 05 TOTAL-1 PIC 9(5)V99.
 05 TOTAL-2 PIC 9(5)V99.
 05 TOTAL-3 PIC 9(5)V99.
 05 TOTAL-4 PIC 9(5)V99.
 05 TOTAL-5 PIC 9(6)V99.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-49

Data Division REDEFINES Clause
• Redefined Item Cannot Include OCCURS or REDEFINES

The description of data-name-2 cannot include an OCCURS clause or
REDEFINES clause; however data-name-2 can be subordinate to an item
containing one or both clauses, and items subordinate to data-name-2 can
contain one or both clauses. Because an OCCURS clause can occur in the
description of data-name-1, it is common to declare a record first and then to
declare an array that redefines the same storage.

Neither the original definition nor the redefinition can include an item whose size is
variable due to an OCCURS clause of a subordinate entry.

• No Subscripting or Qualifying in REDEFINES

The REDEFINES declaration cannot include any subscripting or qualification on
data-name-2. Qualification is automatic.

• VALUE Clauses Only in Condition-Name Descriptions

VALUE clauses are not permitted in the redefinition except as part of a condition-
name declared in conjunction with a conditional variable in the redefinition.

• Restrictions on Level Numbers

The level number of a data description entry with a REDEFINES clause can be 01
in the Working-Storage Section, Extended-Storage Section, or Linkage Section but
not in the File Section (where consecutive level-01 items are always multiple
definitions of the same storage space). When the level number is other than 01,
the redefinition must specify a number of character positions (bytes) that is less
than or equal to the number of character positions in the data item being redefined.

• Redefinitions Must All Specify Same Redefined Item

The REDEFINES clause redefines a storage area, not the data items occupying
the area. Multiple redefinition of the same record area is permitted, but each
instance of data-name-2 must designate the name of the entry that originally
defined the area.

• The EXTERNAL Clause and the REDEFINES Clause

The redefinition entry cannot contain the EXTERNAL clause.

When the redefined item is an external record item or is described with a level
number other than 01, the redefinition can specify the same or fewer character
positions (bytes) than the redefined item, but cannot specify more. When the
redefined item is a record (that is, has a level number of 01) without the
EXTERNAL clause, there is no such constraint.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-50

Data Division REDEFINES Clause
• Complete Description of Restrictions on Entry Order

The first redefinition of a data item must begin immediately after the last data
description entry associated with that item. Additional redefinitions can appear
immediately after the first one in any convenient order. Each redefinition begins
with the data description entry that contains the REDEFINES clause and continues
with any other entries needed to define the subordinate data items or condition-
names that complete it. That is, the scope of the redefinition continues until the
appearance of a level number less than or equal to that of the data-name being
redefined, or to the end of the current section of the Data Division; therefore, the
set of data description entries that describe a data item and its redefinitions must
appear in a continuous sequence within either a single record description or, if the
level number of the redefined item is 01 or 77, a single section of the Data Division.

• Multiple Redefinitions

The REDEFINES clause associates the redefinition data item with the same
storage area occupied by the redefined data item. Because more than one
redefinition can make reference to the same redefined item, the same storage area
can be described in as many ways as required by the logic of the containing
source program.

Although the REDEFINES clause associates multiple data description entries with
one storage area, the data items described by these entries are independent in all
other respects; therefore, the actual content of the shared storage area at any
particular time does not necessarily represent a valid value for all of the associated
data items.

• Alignment and the REDEFINES Clause

The location of data items within a record can be affected by their storage
alignment requirements (see SYNCHRONIZED Clause).

When a redefinition item is an elementary item, its first character position must
coincide with the first character position of the redefined item. The compiler issues
a diagnostic message if the item’s alignment requirements make this impossible.

When a redefinition item is a data structure, the first character position of its initial
contained elementary item must coincide with the first character position of the
redefined item. The compiler issues a diagnostic message if alignment
requirements of the elementary item make this impossible.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-51

Data Division EXTERNAL Clause
EXTERNAL Clause
The EXTERNAL clause specifies that a record data item is external. This item and all
of its subordinate data items are available to every program in the run unit that
describes that record.

Usage Considerations:

• Working-Storage Section and Extended-Storage Section Records Only

Only data description entries within the Working-Storage Section or Extended-
Storage Section whose level number is 01 can include an EXTERNAL clause. In
this case the data-name must be specified; it cannot be omitted or replaced with
the keyword FILLER. Within the same source program, you cannot define a
specific data-name in more than one level-01 entry described with an EXTERNAL
clause.

You cannot specify the EXTERNAL clause in a data description entry that contains
the REDEFINES clause.

• Not With VALUE Clause

You must not specify the VALUE clause in any data description entry that includes,
or is subordinate to an entry that includes, the EXTERNAL clause. You can specify
the VALUE clause for condition-name entries associated with the data description
entries, however.

• External Record

The EXTERNAL clause specifies that the data item defined by this data description
entry is external. Because this data item is a record data item, it is also referred to
as an external record. All data items defined by subordinate data description
entries, including any redefinitions, are also external.

The data contained in the record identified by the record-name is external and can
be accessed and processed by any program in the run unit that describes and,
optionally, redefines it.

EXTERNAL

IS

VST075.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-52

Data Division GLOBAL Clause
Within a run unit, if two or more programs describe the same external data record,
then the associated data description entries (including all subordinate data-names
and data items and their redefinitions) must be identical; however, a program that
describes an external record can contain a data description entry including the
REDEFINES clause that redefines the complete external record, and this complete
redefinition need not occur identically in other programs in the run unit. Also, all
descriptions must be in the same section; that is, a description cannot be in the
Extended-Storage Section in one program and in the Working-Storage Section of
another program.

When a file description entry contains the EXTERNAL clause, the data items
defined in its associated record description entries inherit the external attribute;
therefore, the preceding rules apply to these record description entries as well as
those defined in the Working-Storage Section and Extended-Storage Section.

Example 2-2 contains an example of the use of the EXTERNAL clause.

GLOBAL Clause
The GLOBAL clause specifies that a data-name is a global name. A global name is
available to every program contained within the program that describes it, even though
the contained programs do not contain a description of it.

Usage Considerations:

• Global Name Can be Used in Contained Programs

A statement in a program contained directly or indirectly within a program that
describes a global name can reference that name without describing it again.

• Only for Level-01 Items

The GLOBAL clause can be specified only in data description entries whose level
number is 01 in the File Section, Working-Storage Section, or Extended-Storage
Section.

• Name Uniqueness Within a Single Program

In the Data Division of any one program, the data description entries for any two
data items for which the same data-name is specified must not include the
GLOBAL clause.

GLOBAL

IS

VST076.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-53

Data Division PICTURE Clause
• Not With SAME RECORD AREA Clause

If the SAME RECORD AREA clause is specified for several files, the record
description entries or the file description entries for these files must not include the
GLOBAL clause.

• Global Attribute is Inherited

A data-name described using a GLOBAL clause is a global name. All data-names
subordinate to a global name are global names. All condition-names associated
with a global name are global names.

• Use With REDEFINES Clause

If the GLOBAL clause is used in a data description entry that contains the
REDEFINES clause, the global attribute applies only to the subject of the
REDEFINES clause.

Example 2-2 contains an example of the use of the GLOBAL clause.

PICTURE Clause
The PICTURE clause defines the characteristics and editing requirements of an
elementary item.

character-string

is one or more symbols that determine the category of an elementary item, restrict
the values that you can assign to the item, and define editing operations.

These data items do not have PICTURE clauses:

• An index (described only in an INDEXED phrase)
• A data item described as USAGE INDEX
• A data item described as USAGE NATIVE-n (where n is 2, 4, or 8)
• A data item described as USAGE POINTER
• A data item declared by a RENAMES clause

PICTURE character-string

PIC IS

VST103.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-54

Data Division PICTURE Clause
Usage Considerations:

• Size of character-string

The maximum number of characters in character-string is 30. To signify
more than one consecutive instance of a picture character, you can write it once,
followed by an unsigned integer in parentheses. The integer tells how many times
that character is to occur. For example, PICTURE 99999 is equivalent to PICTURE
9(5). While a character-string can have at most 30 characters, using the
repetition technique lets you define items longer than 30 characters. You cannot
use this technique for characters that are limited to one occurrence in a PICTURE
character-string.

• Composition of character-string

The meaning of each character used in a PICTURE character-string is
peculiar to the PICTURE clause and is independent of any meaning assumed in
other contexts.

The character-string in a PICTURE clause consists of certain allowable
combinations of symbols formed from the COBOL character set. The particular
combination of symbols in the character-string determines the size,
category, sign, and editing attributes of the elementary item that it describes. The
symbols also specify any restrictions on the values that the program can assign to
the item and any editing that COBOL is to perform in conjunction with an
assignment.

Most individual symbols serve two purposes:

° Represent character positions in the item value
° Describe the characteristics of these positions

Some symbols merely contribute attribute information without defining character
positions. Within the character-string, the presence of a symbol followed by a
repetition factor has the same meaning as the presence of the symbol repeated
the specified number of times.

The symbols are shown in uppercase, but both uppercase and lowercase are
effective.

Table 7-2 lists and explains the symbols used to describe an elementary item.

Table 7-2. PICTURE Character-String Symbols (page 1 of 3)

Symbol
Symbol Counts
in Item’s Size Description

A Yes Represents a character position for a letter or the space
character.

B Yes Represents a character position for a space character.

N No Indicates that the picture string is a national data item.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-55

Data Division PICTURE Clause
P No, but
determines the
maximum
number of digit
positions in
numeric and
numeric edited
items.

Indicates scaling when the decimal point is not within the
number that appears in the data item.

One or more P s can appear only as a string of contiguous
characters to the left or right of all other digit positions in the
character-string.

Because P implies an assumed decimal point, V is
redundant.

P and the insertion character period (.) cannot be in the same
character-string.

In some operations that manipulate a data item whose
character-string contains P, the algebraic value of the
data item is used rather than the actual character
representation of the data item. In this algebraic value, the
decimal point is in the prescribed location and zero is in each
digit position specified by P. The size of the value is the
number of digit positions represented by the character-
string. These operations are any of:

• Any operation requiring a numeric sending operand

• A MOVE statement where the sending operand is a
numeric or numeric-edited data item, its character-
string contains P, and the receiving operand is
numeric or numeric-edited

• A comparison operand where both operands are numeric

In all other operations, the digit positions specified with P are
ignored.

S Only if you use
a SIGN clause
with a
SEPARATE
phrase

Indicates that the picture string represents a signed numeric
value. Only one S can appear in a character-string. If
present, it must be the leftmost character. If no S is present,
the item is unsigned. A negative value becomes positive if it is
stored in an item that does not have an S.

The location (leading or trailing) and representation
(embedded or separate) attributes are specified in other
clauses of the data description entry, not in the PICTURE
clause (see SIGN Clause).

V No Represents the assumed decimal point location in noninteger
numeric items. Only one V can appear in a character-
string, and V cannot occur in the same character-
string with an explicit decimal point.

X Yes Represents a character position that can contain any
character from the ASCII character set.

Table 7-2. PICTURE Character-String Symbols (page 2 of 3)

Symbol
Symbol Counts
in Item’s Size Description
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-56

Data Division PICTURE Clause
Z Yes Represents a leading numeric character position whose
contents are to be replaced by a space when it and all
preceding numeric character positions are 0. All Zs must
precede any 9 s within the character-string.

9 Yes Represents a character position for a digit.

0 Yes Represents a character position where the character zero (0)
is to be inserted.

, Yes Represents a character position where a comma (,) is to be
inserted. A comma must not be the last (rightmost) character
in the character-string. See note below.

. Yes Represents the decimal point for alignment purposes. A
period (.) is to be inserted at that position. The period must
not be the last (rightmost) character in the character-
string and can only be used once. No V can occur in a
PICTURE character-string containing an explicit
decimal point.

/ Yes Represents a character position where a slash (/) is to be
inserted.

+
-
CR
DB

Yes Sign-editing symbols. A character-string cannot have
more than one sign-editing symbol. If it has one sign-editing
symbol, the sign-editing symbol represents the position where
the sign-control symbol goes.

* Yes Represents a leading numeric character position that is to be
replaced by an asterisk (*) if its contents and the contents of
all preceding numeric character positions are 0. All asterisks
must precede any 9 s.

$ Yes Represents the character position where the currency symbol
is to be placed. The dollar sign ($) is used unless a
CURRENCY SIGN clause specifies another single character.

Note. If you use the DECIMAL-POINT COMMA clause in the SPECIAL-NAMES paragraph in
the Environment Division, periods function as commas, and commas function as periods.

Neither the period nor the comma can be the last (rightmost) symbol of a PICTURE
character-string ; with this exception: when the comma, semicolon, or period separator
follows the character-string. In this case a preceding comma or period character is
acceptable as the last symbol in the character-string ; for example:

999. is “999” followed by a period separator
999., is “999.” followed by a comma separator

Table 7-2. PICTURE Character-String Symbols (page 3 of 3)

Symbol
Symbol Counts
in Item’s Size Description
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-57

Data Division PICTURE Clause
• Precedence Rules

Figure 7-2 shows the order of precedence for the symbols in a PICTURE
character-string. An x at an intersection indicates that the symbol at the top of the
column can precede the symbol at the left of the row. Where two symbols appear
in a column or row, they are mutually exclusive within the same character-string.

The comma (,) and period (.) insertion symbols can be reversed by the DECIMAL-
POINT COMMA clause (see DECIMAL-POINT Clause).

The symbol cs represents the currency symbol.

The nonfloating insertion symbols plus (+) and minus (-), the floating insertion
symbols Z, asterisk (*), plus (+), minus (-), and cs, and the symbol P appear
twice. The leftmost column and uppermost row for each symbol represents its use
to the left of the decimal point position. The other appearance of the symbol
represents its use to the right of the decimal point position.

Each PICTURE character-string must contain at least one of the symbols A, N, X,
Z, 9, or asterisk (*) or at least two of the symbols plus (+), minus (-), or cs.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-58

Data Division PICTURE Clause
• Data Item Size

A data item’s size is determined by the symbols of its PICTURE character-string.
Each A, B, N, X, Z, 9, zero (0), slash (/), comma (,), period (.), plus (+), minus (-),
asterisk (*), or currency symbol (usually the dollar sign ($)) counts as one
character position. CR or DB counts as two character positions. S is one character
only if the item is subject to a SIGN clause with a SEPARATE phrase.

S, V, CR, and DB cannot appear more than once in a single character-string.

Figure 7-2. Precedence Rules for PICTURE Symbols

Floating
Insertion
Symbols

Other
Symbols

cs = currency symbol

VST525.vsd

Non-
Floating
Insertion
Symbols

Second
Symbol B 0 / , .

+
–

cs
Z
*

Z
*

cs cs 9
A
X

S V P P
CR
DB

B

0

/

,

.

+ -

+ -

CR DB

cs

Z *

Z *

+ -

+ -

cs

cs

9

A X

S

V

P

P

Nonfloating
Insertion Symbols

Floating
Insertion Symbols

Other
Symbols

x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x x xx x

x x x x x x x x x x x xx x

x

x x x x x x

x x x x x x x x x

x

x

x x x x x x

x x x x x x x x x

x x x x x x

x x x x x x x x x

x x x x x x x x x x xxxxx

x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x

+
–

+
–

+
–

First
Symbol
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-59

Data Division PICTURE Clause
A PICTURE character-string (or part of a PICTURE character-string) of the format

symbol (integer)

where symbol is any symbol allowed in a PICTURE character-string except P, is
equivalent to a PICTURE character-string (or substring) of integer consecutive
occurrences of symbol. For example, PICTURE X(4) is equivalent to PICTURE
XXXX and PICTURE A(3)0A is equivalent to PICTURE AAA0A.

The size of a DISPLAY item is determined by the PICTURE character-string
symbols. COMPUTATIONAL and BINARY items deviate from the rules for
DISPLAY items. See USAGE Clause. The amount of storage given to a data item
can exceed its size if the SYNCHRONIZED clause is used; however, any excess
bytes so allocated (called “implicit FILLER” bytes) belong not to the synchronized
item but to its parent item.

• Trapping Size Errors

If a data item is described with a PICTURE clause, you must use the SIZE ERROR
Phrase to trap size errors that occur because the result of a calculation exceeds
the maximum number allowed by the PICTURE phrase. The SIZE ERROR phrase
is especially important for COMPUTATIONAL and BINARY items, because without
the SIZE ERROR phrase, you might not discover until much later that a value
larger than that allowed by the PICTURE was stored as the result of a
computation.

• Categories of Data Items

The PICTURE clause can describe these categories of data items:

° Alphabetic
° Numeric
° Alphanumeric
° Alphanumeric edited
° Numeric edited
° National

The results of most statements in the Procedure Division depend on the categories
of the data items. Some statements disallow certain categories for some or all of
their operands. In other cases, the same statement can take distinctly different
actions when applied to data items of different categories.

In the remainder of this topic, 9 s and A s within the PICTURE character-string are
described as representing character positions that contain only numbers or letters
and spaces. For greater efficiency, the HP COBOL compilers do not always
enforce this restriction. Characters other than those permitted can be moved into
these positions if they appear in the corresponding positions of a sending data
item.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-60

Data Division PICTURE Clause
Because the COBOL language considers every data structure to be in the
alphanumeric category, manipulations upon data structures ignore all PICTURE
constraints of their constituent elementary items, including editing specifications.
As an extreme (but quite legal) example, an assignment to a containing data
structure can cause any character position of an elementary item to assume any
character. If numeric items contain nonnumeric characters, the results of using
them in numeric operations are undefined.

• Alphabetic Data Items

An item is in the alphabetic category when its PICTURE character-string contains
only A s. The contents of this type of item are represented externally as some
combination of the 26 (uppercase or lowercase) letters of the alphabet and space
character.

• Numeric Data Items

An item is in the numeric category when its PICTURE character-string contains
only the symbols from the set: 9, P, S, and V. The number of digits described must
be greater than 0 and not more than 18. The contents are represented externally
as a combination of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. If the S is present, the sign of
the value is retained.

The PICTURE character-string must include the symbol S if the item is described
with a SIGN clause. If the item inherits a SIGN clause from a data structure, the
PICTURE character-string cannot include the symbol S unless the item category is
DISPLAY.

• Alphanumeric Data Items

An item is in the alphanumeric category when its PICTURE character-string
contains both 9 s and A s, or only X s, or a combination of 9 s, A s, and X s. A
PICTURE character-string of all A s or all 9 s is not an alphanumeric item. The item
is handled as if the string contained only X s. The contents of the item can be any
combination of characters.

Example 7-12. Alphabetic Data Items

05 PACKAGE-CODE PIC AAA.
15 DEPT-ID PIC A(12).

Example 7-13. Numeric Data Items

05 DIVISION-TOTAL PIC S9(10)V99.
05 FRACTION-AMOUNT PIC VPP99.

Example 7-14. Alphanumeric Data Items

10 STOCK-ITEM-NAME PIC X(25).
15 ZONE-ID PIC A(4)99.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-61

Data Division PICTURE Clause
• Alphanumeric Edited Data Items

An item is in the alphanumeric edited category when its PICTURE character-
string consists of at least one X or A and at least one B, zero (0), or slash (/).
The contents of the data item can be any combination of characters.

• Numeric Edited Data Items

An item is in the numeric edited category when its PICTURE character-string
contains only combinations of the symbols B, slash (/), P, V, Z, zero (0), 9, comma
(,), period (.), asterisk (*), plus (+), minus (-), CR, DB, and the currency symbol
(usually the dollar sign ($)). The number of digit positions must be in the range
from 1 through 18. The PICTURE character-string must have at least one symbol
from the listed set other than 9, P, or V.

• National Data Items

An item is in the national category when its PICTURE character-string begins with
N or n and contains no editing symbols. A national data item is used for
languages that are not represented by roman letters and numbers, such as the
Japanese Kanji alphabet. Special terminals and keyboards are required to use
national data items.

In general, you can use a national data item anywhere you can use an
alphanumeric data item. Exceptions are:

° In an ACCEPT statement with DATE, DAY, DAY-OF-WEEK, or TIME
° In a FILE STATUS clause of the SELECT statement
° In an INITIALIZE statement with a REPLACING phrase
° In an INSPECT statement

Example 7-15. Alphanumeric Edited Data Items

10 PART-NAME PIC X(5)BX(5).
15 BRANCH-CODE PIC XX0X.
05 REPORT-VERSION PIC XX/X.
20 SITE-ID PIC A(3)0A.
20 SYSTEM-TAG PIC AA/A.
05 SEAT-NUMBER PIC AB9.

Example 7-16. Numeric Edited Data Items

12 R-TOTAL-1 PIC ZZZ,ZZZ.99.
10 ITEM-PRICE PIC $999.
35 UNIT-PRICE PIC $$$9.
05 AMOUNT-OWED PIC 999CR.
10 AMOUNT-LEFT PIC ***99.
05 BACK-ORDERS PIC -99.
77 START-DATE PIC 99/99/99.
12 S-BLIVIT PIC +$99.99.
03 STARRED-X PIC ***.**.
77 SUM-X PIC --B---.---.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-62

Data Division PICTURE Clause
° In the PADDING clause of the SELECT statement
° In a RECEIVE-CONTROL paragraph
° In the SPECIAL-NAMES paragraph
° As the identifier in a CALL statement
° As the identifier in a CANCEL statement
° In comparison with a nonnational data item or nonnational literal

If national data items and national literals are used for items in a STRING
statement (part-1, delimiter, or result) or an UNSTRING statement
(delim-1, delim-2, result, or delimstore), all the items must be national
data items or national literals.

If you use a VALUE clause with a national item, you must precede the value with N
or n with no space between N or n and the value. For example:

01 kanji-field PIC N(4) VALUE IS N"kanji-value"

where kanji-value is a Kanji literal.

• Editing Characters

Editing is done by inserting, suppressing, or replacing a character. Editing occurs
when a value is moved into a data item whose PICTURE character-string contains
editing characters. The primary purpose of editing is to easily transform data into
reportable form.

The methods of editing are:

° Simple insertion

° Special insertion

° Fixed insertion

° Floating insertion

° Zero suppression

The type of editing that you can perform on an item depends on the item’s
category.

Table 7-3. Types of Editing Performed

Data Item Category Type of Editing

Alphabetic None

Numeric None

Alphanumeric None

Alphanumeric Edited Simple insertion [0, B, or slash (/)]

Numeric Edited All, subject to note following table

National None
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-63

Data Division PICTURE Clause
° Simple insertion

The comma (,), space (B), zero (0), and slash (/) are used as the insertion
characters. They are counted in the item’s size and represent where that
character is inserted. The result of simple insertion editing is the appearance of
the insertion character within the edited item value in the same position as it
appears in the character-string. Here are some examples:

° Special insertion

A period (.) is used as the insertion character and also acts as the decimal
point for alignment purposes. The insertion character used for the actual
decimal point is counted in the item’s size.

An assumed decimal point character (V) and an actual decimal point character
(.) cannot both occur in the same PICTURE character-string. The result of
special insertion editing is the appearance of the insertion character within the
edited item value in the same position as it appears in the character-string.

Here are some examples. The caret (^) in each source item is the decimal
point location from its PICTURE character-string.

Note. Floating insertion editing and editing by zero suppression and replacement are mutually
exclusive in a single PICTURE clause, and only one of the two replacement types can be used
with zero suppression in a single PICTURE clause.

Source Item PICTURE Edited Result

123456 PIC 999,999 123,456

123456 PIC 99BBB9999 12 3456

1234 PIC 990099 120034

1234 PIC 99/99 12/34

123456 PIC 99B99B99 12 34 56

1234 PIC 999900 123400

13184 PIC 99/99/99 01/31/84

12345 PIC 999,999 012,345

"ABCD" PIC ABABABA A B C D

"1st2nd" PIC XXXB/BXXX 1st / 2nd

Source Item PICTURE Edited Result

1234^56 PIC 9999.99 1234.56

1^23456 PIC 9.99999 1.23456

1^23456 PIC 99.999999 01.234560

123^4 PIC 99.9999 23.4000

12^345 PIC 99.99 12.34
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-64

Data Division PICTURE Clause
° Fixed insertion

The currency symbol and the editing sign control symbols (+, -, CR, DB) are
the insertion characters. Only one currency symbol and one of the editing
control symbols can be used in a PICTURE character-string. CR and DB
represent two positions when counting an item’s size. When used, they must
be in the rightmost positions. When a plus (+) or minus (-) is used, it must be in
either the leftmost or rightmost character position to be counted in the item’s
size. When the currency symbol is used, it must be the leftmost character,
except when preceded by either a plus (+) or minus (-). Only one currency
symbol and only one of the editing sign control characters can be used in the
same PICTURE character-string. The result of fixed insertion editing is the
appearance of the insertion characters within the item value in the same
positions as they appear in the PICTURE character-string.

Here are some examples of fixed insertion editing. The caret (^) in each source
item is the decimal point location from its PICTURE character-string.

Table 7-4. Sign Control Symbols

Editing Symbol

Result

Positive or Zero Data Item Negative Data Item

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

Source Item PICTURE Edited Result

12^34 PIC 99.99+ 12.34+

-12^34 PIC 99.99+ 12.34-

12^34 PIC +$99.99 +$12.34

-12^34 PIC +$99.99 -$12.34

12^34 PIC $99.99- $12.34

-12^34 PIC $99.99- $12.34-

12^34 PIC -$99.99 $12.34

-12^34 PIC -$99.99 -$12.34

12^34 PIC 99.99CR 12.34

-12^34 PIC 99.99CR 12.34CR

12^34 PIC $99.99DB $12.34

 -12^34 PIC $99.99DB $12.34DB
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-65

Data Division PICTURE Clause
° Floating insertion

The currency sign and editing sign control symbols plus (+) and minus (-) are
floating insertion characters, mutually exclusive in a PICTURE character-string.
At least two of any one symbol must be used. Simple insertion characters can
be mixed with floating characters.

To indicate floating insertion editing in a PICTURE character-string, you include
a string of at least two of the floating insertion characters. This string can also
contain any of the simple insertion symbols or have simple insertion characters
immediately to its right. Any such simple insertion characters are part of the
floating string.

The leftmost character of the floating insertion string marks the leftmost limit of
the floating symbol. The rightmost character of the floating string marks the
rightmost limit of the floating symbols. The second floating character from the
left marks the leftmost limit of numeric data that can be stored. Nonzero
numeric data can replace all characters at or to the right of this limit.

In floating insertion editing, you can either represent any or all of the leading
numeric positions on the left of the decimal point by the insertion symbol.R or
represent all the numeric positions, right or left of the decimal point, by the
insertion symbol.

If the character-string contains a decimal point symbol, at least one floating
insertion character must appear to the left of it.

If the insertion characters are only to the left of the decimal point, then
assignment to the item places a single floating insertion character in the
position immediately preceding either the decimal point or the first nonzero
digit in the data represented by the insertion symbol string, whichever is farther
to the left in the PICTURE character-string. The character positions preceding
the insertion character are replaced with spaces.

If all numeric character positions in the PICTURE character-string are
represented by the insertion character, the result depends on the value of the
assigned data. If the value is 0, the entire data item is set to spaces. If the
value is not 0, the result is the same as when the insertion character is only to
the left of the decimal point.

To avoid truncation of the edited item, the minimum size of the PICTURE
character-string for the receiving data item must be the number of characters in
the sending item, plus the number of nonfloating characters being edited into
the receiving data item, plus one for the floating insertion character.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-66

Data Division PICTURE Clause
Examples of floating insertion editing:

° Zero suppression

Suppression of leading zeros in numeric character positions is done with a Z
or asterisk (*) in the PICTURE character-string. These symbols are mutually
exclusive in a single PICTURE character-string. When you use the asterisk,
you cannot use BLANK WHEN ZERO in the same entry. Each suppression
symbol is counted in the item’s size. Spaces replace Z s; asterisks remain
asterisks.

Source Item PICTURE Edited Result

 123 $$999 $123

 1234 $$$$$ $1234

 2 $$999 $002

 0 $$$$$ (all spaces)

 0 $$$99 $00

 1234 +++99 +1234

-23 +++99 -23

 4 +++99 +04

 123 ------9 123

-123 ------9 -123

1.23 $$$9.99 $1.23

-1.23 $$$9.99 $1.23

0.03 $$$9.99 $0.03

-0.03 $$$9.99 $0.03

1.23 $$$$.$$ $1.23

-1.23 $$$$.$$ $1.23

0.03 $$$$.$$ $.03

-0.03 $$$$.$$ $.03

1.23 ---9.99 1.23

-1.23 ---9.99 -1.23

0.03 ---9.99 0.03

-0.03 ---9.99 -0.03

1.23 ----.-- 1.23

-1.23 ----.-- -1.23

0.03 ----.-- .03

-0.03 ----.-- -.03
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-67

Data Division PICTURE Clause
You specify zero suppression and replacement by using a string of one or
more Z s or asterisks to represent leading numeric character positions that are
to be replaced when any of those positions in the data are zero. Any of the
simple insertion characters embedded in the string of symbols or to the
immediate right of this string are part of the string.

For zero suppression in a PICTURE character-string, you can either represent
any or all of the leading numeric character positions to the left of the decimal
point by Z s or asterisks or you can represent all of the numeric positions, right
or left of the decimal point, as Z s or asterisks.

If the suppression symbols appear only to the left of the decimal point, any
leading zero in the data that corresponds to the symbol is replaced by the
replacement character. Suppression terminates at the first nonzero digit in the
data represented by the suppression symbol string or at the decimal point,
whichever comes first.

If all numeric character positions in the PICTURE character-string are
represented by suppression symbols and the value of the data is not 0, the
result is the same as if the suppression characters were only to the left of the
decimal point. If the value is 0 and the suppression symbol is Z, the entire data
item is set to spaces. If the value is 0 and the suppression symbol is the
asterisk, the data item is set to all asterisks except for the actual decimal point.
In this case, the actual decimal point appears in the data item.

Only one of the symbols plus (+), minus (-), asterisk (*), Z, and the currency
symbol can be used as a floating replacement character within a single
PICTURE character-string.

Here are some examples of suppression editing:

Note. The caret (^) in the source item is the decimal point from its PICTURE
character-string.

Source Item PICTURE Edited Result

123456 $ZZZ,ZZZ.99 $123,456.00

1234^56 $ZZZ,ZZZ.99 $ 1,234.56

0 Z,ZZZ.ZZ 8 spaces

12^34 $***,***.99 $*****12.34

0 $***,***.99 $*******.00

0 $***,***.** $*******.**
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-68

Data Division USAGE Clause
USAGE Clause
The USAGE clause determines how a data item is stored in the system (its format),
and usually, the number of character positions the data item uses.

BINARY
COMPUTATIONAL
COMP

describe a two’s complement binary integer with an implied decimal point.

COMPUTATIONAL-3
COMP-3
PACKED-DECIMAL

describe a numeric data item in radix 10, but with each digit of the value stored in
half a computer character (4 bits, called a nibble). The sign is stored in a separate,
trailing nibble; that is, at the right-hand (least significant) end of the data item. Any
unused nibbles are on the left-hand (most significant) end of the data item and are
set to zero. SeeTable 7-5, Table 7-6, and Table 7-7.

COMPUTATIONAL-3/PACKED-DECIMAL is also called binary coded decimal form.

The keyword PACKED-DECIMAL is an element of COBOL, but the data format is
not. If your program is compiled with a FIPS directive with NONSTANDARDEXT in
the flag-option-list, the compiler issues a warning message when it finds a
COMPUTATIONAL-3/PACKED-DECIMAL data item.

BINARY

COMPUTATIONAL

COMP

DISPLAY

INDEX

NATIVE-2

NATIVE-4

NATIVE-8

PACKED-DECIMAL

USAGE IS

COMPUTATIONAL-3

COMP-3

COMPUTATIONAL-5

COMP-5

POINTER

VST099.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-69

Data Division USAGE Clause
COMPUTATIONAL-5
COMP-5

describes a two’s complement binary integer that occupies 2, 4, or 8 character
positions (bytes), depending on its PICTURE clause. For more information on the
PICTURE clause, see PICTURE clause.

The COMPUTATIONAL-5 data type is not an element of COBOL. If your program
is compiled with a FIPS directive with NONSTANDARDEXT in the flag-option-
list, the compiler issues a warning message when it finds a COMPUTATIONAL-5
data item.

DISPLAY

describes a sequence of characters stored in standard data format. Its PICTURE
clause determines the number and types of characters in the value, which can be
used in any context for its category. DISPLAY is the default for elementary data
items.

INDEX

describes an index data item—a data item that occupies four character positions
and whose value is the occurrence number of a table element. This value cannot
be used in computations. An index data item has no PICTURE clause.

NATIVE-2

describes a signed, two’s complement binary integer that occupies 2 character
positions (bytes) and can have a value in the range -32,768 through +32,767.

NATIVE-4

describes a signed, two’s complement binary integer that occupies 4 character
positions (bytes) and can have a value in the range -2,147,483,648 through
+2,147,483,647.

NATIVE-8

describes a signed, two’s complement binary integer that occupies 8 character
positions (bytes) and can have a value in the range -9,223,372,036,854,775,808
through +9,223,372,036,854,775,807.

POINTER

describes a 4-byte data item whose value, which is assigned with the SET
statement, is the address of another data item.

Note. The NATIVE-n and POINTER data types are not elements of COBOL. If your program
is compiled with a FIPS directive with NONSTANDARDEXT in the flag-option-list, the
compiler issues a warning message when it finds a NATIVE-n or POINTER data item.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-70

Data Division USAGE Clause
Table 7-5. COMPUTATIONAL-3/PACKED-DECIMAL Digit Representation

Digit Value

Hexadecimal Digit Representation

Left* Nibble (Odd Digit) Right* Nibble (Even Digit)

0 X"00" X"00"

1 X"10" X"01"

2 X"20" X"02"

3 X"30" X"03"

4 X"40" X"04"

5 X"50" X"05"

6 X"60" X"06"

7 X"70" X"07"

8 X"80" X"08"

9 X"90" X"09"

* Count even and odd from right to left.

Table 7-6. COMPUTATIONAL-3/PACKED-DECIMAL Sign Digit Representation

Sign Convention in
PICTURE Clause Sign of Data Item Value Sign Half-Character (Hexadecimal)

Unsigned Not applicable X"0F"

Signed + X"0C"

Signed - X"0D"

Table 7-7. Numeric Data Storage for the COMPUTATIONAL-3/PACKED-DECIMAL
PICTURE Clause

Bytes Required Number of Digits (Signed or Unsigned)

1 1

2 2-3

3 4-5

4 6-7

5 8-9

6 10-11

7 12-13

8 14-15

9 16-17

10 18
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-71

Data Division USAGE Clause
A COMPUTATIONAL-3/PACKED-DECIMAL data item with PICTURE 9999 and value
+1234 is stored as shown in Figure 7-3, where F represents the nonprinting plus sign.

A COMPUTATIONAL-3/PACKED-DECIMAL data item with PICTURE S9999 and value
+1234 is stored as shown in Figure 7-3 except that F is replaced by C (1100), which
represents the plus sign (+).

A COMPUTATIONAL-3/PACKED-DECIMAL data item with PICTURE S9999 and value
-1234 is stored as shown in Figure 7-3 except that F is replaced by D (1101), which
represents the minus sign (-).

Usage Considerations:

• National Data Items Cannot Have USAGE Clauses

Verify that national data items do not have USAGE clauses (inherited, explicit, or
implicit) and are not mixed with nonnational data items in group descriptions.

• USAGE Clause Rarely Restricts Actual Usage

The USAGE clause describes a data item, but rarely restricts how the item is
actually used. Exceptions are USAGE INDEX, USAGE POINTER, and rules for
certain statements that require the DISPLAY phrase or default to USAGE
DISPLAY.

• USAGE Clause Applies to Both Elementary and Data Structures

Any level of a data description can have a USAGE clause. A USAGE clause at the
group level applies to each elementary item in the group, and the USAGE of an
elementary item cannot contradict the USAGE clause of a group to which the item
belongs. Because data structures are always in the alphanumeric category, their
USAGE clauses might not always apply to their own manipulation, for example:

The subitems of a BINARY/COMPUTATIONAL data structure can be used in
computations, but the data structure itself cannot.

The subitems of an INDEX data structure are index data items, but the data
structure itself is not.

The subitems of a POINTER data structure are pointers, but the data structure
itself is not.

Figure 7-3. Example of COMPUTATIONAL-3/PACKED-DECIMAL Storage

... 1 2 3 4 F

0000 0001 0010 0011 0100 1111

1 byte

VST601.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-72

Data Division USAGE Clause
• BINARY or COMPUTATIONAL Data Items

° Purpose

The purpose of BINARY or COMPUTATIONAL items is to improve
performance and reduce the size of generated code (sometimes by a factor of
as much as 100). Use BINARY or COMPUTATIONAL for a value that can be
represented in the number of digits specified in the PICTURE clause; for
example:

° PICTURE character-string contents

A BINARY/COMPUTATIONAL data item’s PICTURE character-string can
contain only 9 s, the sign character S, the decimal point character V, and one
or more P s. The PICTURE clause for an elementary
BINARY/COMPUTATIONAL data item must describe the item’s category as
numeric.

A BINARY/COMPUTATIONAL data item whose PICTURE character-string has
one to four 9 s is stored as 16 bits.

A BINARY/COMPUTATIONAL data item whose PICTURE character-string has
five or more 9 s is stored as 4 or 8 bytes.

° Cannot have or inherit SIGN clause

The description of a group or elementary data item with
BINARY/COMPUTATIONAL format cannot include or inherit a SIGN clause,
because if such an item is signed, the host computer’s architecture determines
the representation of the sign.

° Cannot have BLANK WHEN ZERO clause

A BLANK WHEN ZERO clause changes a numeric data item’s category from
numeric to numeric edited; therefore, the item cannot be
BINARY/COMPUTATIONAL.

° COMPUTATIONAL data item with value 8224 or 224

In HP COBOL, if you find that a data item of USAGE COMPUTATIONAL has
the value 8224, it might be because it actually consists of 2 bytes, each
containing a space character. If it is described as consisting of 3 digits, it
appears to have the value 224.

° See Trapping Size Errors.

PICTURE Range of Values

PICTURE 9(4) 0 through 9999

PICTURE S9(4) -9999 through 9999
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-73

Data Division USAGE Clause
• COMPUTATIONAL-3/PACKED-DECIMAL Data Items

° Purpose

COMPUTATIONAL-3/PACKED-DECIMAL data items are provided for data
compatibility with systems other than NonStop systems. They are not
recommended for other purposes.

° Inefficiency

Packed-decimal data format is inefficient because HP hardware does not
support it. Avoid using it if possible, especially in benchmarks and
performance-critical programs.

° Where you can use them

You can use COMPUTATIONAL-3/PACKED-DECIMAL data items wherever
you can use data items that do not have USAGE DISPLAY.

° SYNCHRONIZED clause

The SYNCHRONIZED clause (with or without the LEFT or RIGHT phrase) has
no effect on COMPUTATIONAL-3/PACKED-DECIMAL declarations.

° See Trapping Size Errors.

• COMPUTATIONAL-5 Data Items

° Purpose

The COMPUTATIONAL-5 data type is compatible with the X/Open COBOL
specification (see the X/Open CALL Statement).

Signed COMPUTATIONAL-5 data items are equivalent to NATIVE-n data
items, but unsigned COMPUTATIONAL-5 data items can store a larger range
of values than the corresponding NATIVE-n data items (see in PICTURE
clause).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-74

Data Division USAGE Clause
° PICTURE clause

A COMPUTATIONAL-5 data item can have any PICTURE clause containing 9,
P, S, and V. The PICTURE clause determines its size and the range of its
values. Bracketed items are optional.

° SYNCHRONIZED clause causes 2-Byte alignment

The SYNCHRONIZED clause causes COMPUTATIONAL-5 data items to be
aligned on 2-byte or 4-byte boundaries, depending on their size. In this case,
LEFT and RIGHT phrases have the same effect.

° Passing by reference requires SYNCHRONIZED clause

To pass a COMPUTATIONAL-5 data item to a routine written in a language that
requires parameters to be 2-byte-aligned, describe the data item with the
SYNCHRONIZED clause.

° Decimal numeric literal cannot have maximum value of COMP-5 data item

You cannot specify a decimal numeric literal that is the maximum value allowed
for a COMPUTATIONAL-5 data item. The reason is that the maximum value
allowed for a COMPUTATIONAL-5 data item has 19 digits and a decimal
numeric literal cannot have more than 18 digits. You can use a hexadecimal
numeric literal for the maximum value allowed for a COMPUTATIONAL-5 data
item.

• DISPLAY Data Items

If the data description entry for an elementary item does not include a USAGE
clause and is not subordinate to any data structure description that includes an
explicit USAGE clause, then the effect is as if a USAGE DISPLAY clause had
appeared in the elementary item’s data description entry; therefore, an elementary
data item’s usage attribute can be inherited, explicit, or implicit.

PICTURE
Clause

NATIVE-n
Equivalent

Range

Signed1 Unsigned2

PIC [S]9(1) -
PIC [S]9(4)

NATIVE-2 -32,768 through 32,767 0 through 65,535

PIC [S]9(5) -
PIC [S]9(9)

NATIVE-4 -2,147,483,648 through
2,147,483,647

0 through
4,294,967,295

PIC [S]9(10) -
PIC [S]9(18)

NATIVE-8 -9,223,372,036,854,775,
808 through
9,223,372,036,854,775,
807

0 through
18,446,744,073,709,
551, 615

1. NATIVE-n items must be in the signed range.

2. Applies only to PICTURE Clause.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-75

Data Division USAGE Clause
DISPLAY format is required for these data items:

° Data items subordinate to a data structure that is described with a VALUE
clause or has condition-names associated with it

° Signed numeric data items that are affected by a data structure’s SIGN clause

° Elementary items whose data description entries contain SIGN, JUSTIFIED, or
BLANK WHEN ZERO clauses

° See Trapping Size Errors.

• INDEX Data Items

The description of a group or elementary data item with INDEX format cannot
include any of these clauses:

° PICTURE
° VALUE
° SYNCHRONIZED
° JUSTIFIED
° BLANK WHEN ZERO

An index data item description cannot be followed immediately by any level-88
items; that is, an index data item cannot serve as a conditional variable.

The compiler stores each INDEX data item as 4 bytes, aligned on a 4-byte
boundary.

• NATIVE-n Data Items

The description of a group or elementary data item with NATIVE-n format cannot
include any of these clauses:

° PICTURE
° SYNCHRONIZED
° JUSTIFIED
° BLANK WHEN ZERO
° SIGN

If an arithmetic statement includes a SIZE ERROR phrase, the size error condition
occurs as defined in SIZE ERROR Phrase, except that in a NATIVE-n receiving
item the test is for truncation of significant bits, not significant decimal digits.

If a NATIVE-n data item used as a receiving operand specifies the ROUNDED
phrase, decimal (not binary) rounding occurs, as described in SIZE ERROR
Phrase.

Because COBOL limits literals to a length of 18 digits, the maximum value that you
can assign to a NATIVE-8 data item (by initialization with a VALUE phrase or by a
MOVE statement, for example) is the 18-digit value of -/+999999999999999999,
rather than the maximum storable 19-digit value of -9223372036854775808 or
+9223372036854775807.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-76

Data Division USAGE Clause
• How NATIVE-n and BINARY/COMPUTATIONAL Formats Differ

The significant difference between a NATIVE-n data item (which occupies n
character positions by definition) and a COMPUTATIONAL data item that happens
to occupy n character positions is that the COMPUTATIONAL item has the
number of decimal digits declared by its PICTURE clause. Although a NATIVE-n
data item and a certain COMPUTATIONAL data item both occupy n character
positions, they cannot necessarily assume the same set of values.

For example, a NATIVE-2 data item and a COMPUTATIONAL data item with
PICTURE 9999 both occupy 2 character positions, but any value larger than 9999
is truncated on the left before it is assigned to the COMPUTATIONAL data item,
whereas the NATIVE-2 data item can be assigned any value in the range -32768
through +32767.

A program can specify a NATIVE-n data item as an operand anywhere that it can
specify a BINARY/COMPUTATIONAL item (of equivalent size in character
positions), such as in arithmetic expressions, MOVE statements, and so on. In all
cases, the value of the item is interpreted as a signed integer.

• How NATIVE-n and COMPUTATIONAL-5 Formats Differ

The difference between a NATIVE-n data item and a COMPUTATIONAL-5 data
item is that the NATIVE-n data item is 2-byte-aligned and the
COMPUTATIONAL-5 data item is byte-aligned and requires a PICTURE clause
(see PICTURE clause).

• POINTER Data Items

° Clauses not allowed

A group or elementary data item described with a USAGE POINTER clause
cannot have any other clauses except VALUE IS NULL or VALUE IS NULLS.
The clause VALUE IS NULL or VALUE IS NULLS initializes the pointer to a
value (all ones) that causes an address fault if the pointer is referenced.

° How HP COBOL pointers differ from HP C and Pascal pointers

An HP COBOL POINTER data item is not the same as a pointer in HP C or
Pascal. An HP COBOL POINTER data item merely provides a container for an
address. You can access an HP COBOL POINTER data item only in a
conditional expression, a SET statement, or as a parameter in the USING
phrase of a CALL or ENTER statement.

The statement

MOVE "ABC" TO PTR1

where PTR1 is an HP COBOL pointer, does not move the value “ABC” to the
address that PTR1 contains.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-77

Data Division SIGN Clause
For an HP COBOL pointer to accomplish what an HP C or Pascal pointer
accomplishes, you must declare a base data item in the Linkage Section. You
must not put the base data item in the USING phrase of the PROCEDURE
DIVISION heading (that is, you must not pass the base data item as a
parameter).

SIGN Clause
The SIGN clause specifies the position and mode of representation of the operational
sign for a numeric data item. It can only be used for DISPLAY items with an S in the
PICTURE character-string. This precludes the use of the SIGN clause with USAGE
NATIVE-n or USAGE POINTER.

Usage Considerations:

• Function of the SIGN Clause

The representation of every signed numeric data item includes an operational sign.
When the data item is USAGE BINARY or USAGE COMPUTATIONAL, the
compiler automatically chooses the appropriate sign convention in accordance with
the item’s internal representation. When the data item is USAGE DISPLAY, the
SIGN clause determines the position and representation of the sign. When no
SIGN clause is used, SIGN TRAILING is assumed.

When the SEPARATE phrase is present, the sign is maintained as a separate
character to be considered in the size of the item. A plus (+) for a positive value or
a minus (-) for a negative value is placed at the beginning or end of the item’s
value, depending on the presence of LEADING or TRAILING. If the sign character
position contains a value other than plus (+) or minus (-), any operation that uses
the item as a numeric sending item has undefined results.

If the SEPARATE phrase is absent, negative values are represented by a
modification of the high-order bit of the high-order or low-order digit of the stored
number (depending on the presence of LEADING or TRAILING). The sign is not
considered in the size of the item. For positive values of the data item, the value of
the sign bit is 0; for negative values, the value of the sign bit is 1.

Note. If you move a data item with an included sign to another item with a group move,
the character with a negative sign is not a legitimate COBOL character. This can cause
problems. Use an item with an included sign only in operations that expect numeric data.

LEADING

TRAILING

SEPARATE

CHARACTER

SIGN IS

VST100.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-78

Data Division OCCURS Clause for Fixed-Size Tables
• Use of SIGN With Elementary or Data Structures

The SIGN clause can appear in the description of an elementary item or a data
structure. When it appears in the description of an elementary item, it specifies the
sign attributes for that item. The SIGN clause never applies to a data structure,
whose category is always alphanumeric. When it appears in the description of a
data structure, it specifies the sign attributes of every signed numeric item
belonging to that group, except as noted.

• A Lower-Level SIGN Clause Overrides an Upper-Level One

A SIGN clause appearing in the data description entry of a data structure or a
numeric data item overrides the SIGN clause of any data structure to which that
item is subordinate; therefore, when more than one SIGN clause apparently
applies to a data item, the one specified at the lowest level in the hierarchy takes
precedence over the ones specified at a higher level.

• Data Structure With SIGN Clause Must Include DISPLAY Numeric

When the data description entry of a data structure includes the SIGN clause, at
least one subordinate elementary item must be numeric and be described with a
PICTURE character-string containing S. All such items must be USAGE DISPLAY.

• Elementary Item With SIGN Clause Must Be DISPLAY Numeric

When the data description entry of an elementary item includes the SIGN clause,
its category must be numeric, it must be described with a PICTURE character-
string containing S, and it must be USAGE DISPLAY.

• The SIGN clause cannot be used for national data items.

OCCURS Clause for Fixed-Size Tables
The OCCURS clause defines tables (sets of repeated items), eliminating the need for
separate item entries. These tables can contain a fixed number of elements or can vary
within given limits. The OCCURS clause without a DEPENDING phrase defines a
fixed-size table.

OCCURS

INDEXED

BY

index

key-order

max

TIMES

VST104.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-79

Data Division OCCURS Clause for Fixed-Size Tables
max

is an integer literal that specifies the number of elements in the table.

key-order

determines whether the table elements are arranged in ascending or descending
order of key values.

key

is either the name of the entry containing the OCCURS clause or the name of
an entry subordinate to the entry containing the OCCURS clause.

index

is a name for a compiler-created item used to select an element from the table.
Each index must be unique in the program because you cannot qualify it.

Usage Considerations*:

• The OCCURS Clause Describes a Table

The OCCURS clause specifies that the data-name with which it is associated (the
one following the level number in the same data description entry) identifies a table
containing multiple occurrences of the elementary item or data structure described
by its entry. When the data description entry does not define a name (that is,
FILLER is specified either explicitly or implicitly), the table is anonymous and its
elements cannot be referred to directly. Except for the OCCURS clause itself, all of
the entry’s clauses apply to each occurrence of the item described.

• The INDEXED Phrase Declares Index-Names

The presence of an INDEXED phrase serves also to declare one or more index-
names for the table. The names thus declared must not be separately declared
elsewhere. These, and only these, index-names can be used as the subscript
when an index-name is used to select a particular occurrence of this table.

ASCENDING

DESCENDING KEY IS

key

VST105.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-80

Data Division OCCURS Clause for Fixed-Size Tables
• KEY Phrase

Each key (key in the syntax diagram) must reference a data item that is
subordinate to the table, except that the first key in a list can reference the table
itself. No OCCURS clause can apply to a key unless it also applies to the table. As
a consequence, a key cannot be or belong to a table that is subordinate to the
table of which it is a key. An OCCURS statement can have a maximum of 31 keys.
The representation of the reference to the key in this context does not include
subscripts.

The KEY phrase indicates that within the table occurrences, the values referenced
by the keys are arranged in a consistent order.

When the key appears in an ASCENDING phrase, the values are arranged in
ascending order of occurrence numbers (that is, the value associated with an
occurrence is never less than the value associated with any preceding
occurrence).

When the key appears in a DESCENDING phrase, the values are arranged in
descending order (that is, the value associated with an occurrence is never greater
than the value associated with any preceding occurrence).

This characteristic is relevant only during the execution of a SEARCH ALL
statement that references the table. All of the KEY phrases taken together define a
single list, within which the keys appear in decreasing order of search significance.

• Subscripts

Each appearance of a table’s data-name must include an appropriate subscript,
except when the entire table is desired (this only occurs in the SEARCH statement
and some intrinsic functions). References appearing in a REDEFINES clause or a
KEY phrase of the OCCURS clause are not considered operands and must not
include subscripts.

• References to Subordinates Must be Subscripted

If the data-name is a data structure, then all items belonging to the group must also
be subscripted whenever they are used as operands; however, subordinate data-
names used in the KEY phrase, or as objects of a REDEFINES clause, are not
considered operands and must not be subscripted or indexed.

• OCCURS Limited to Certain Level Numbers

The OCCURS clause must not be specified for a data description entry having a
level number of 01, 66, 77, or 88.

• OCCURS Forbidden for Redefined Data Elements

The OCCURS clause cannot appear in a data description entry whose data-name
is specified in a REDEFINES clause of some subsequent data description entry;
therefore, an entire table cannot be redefined. It is possible, however, to redefine
subordinate data items of table elements. (See REDEFINES Clause.)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-81

Data Division OCCURS Clause for Fixed-Size Tables
• Multidimensional Tables

Data items subordinate to the subject of an entry described with an OCCURS
clause can themselves contain an OCCURS clause; therefore, tables can consist
of multiple occurrences of subordinate tables for a maximum of seven levels. A
data description entry containing either type of OCCURS clause can be followed by
subordinate entries containing the OCCURS clause for fixed-size tables; however,
a data description entry with an OCCURS DEPENDING clause (discussed in the
next topic) cannot be subordinate to a group entry described with either type of
OCCURS clause.

• Order of Subscripts in References

Up to seven subscripts can be used with one data item. When more than one
subscript is used, they are written to the right of the table name, in the order of
more inclusive to less inclusive dimensions of the data organization (that is, the
first subscript matches the table having the lowest level number).

All qualification must precede any subscripts (see VEHICLE in Example 7-17).

• Index is a Variant of Subscript

In COBOL, an index is a variant of a subscript. The program can define an indexed
table within a nonindexed table (or the reverse). Both indexes and subscripts can
be augmented with an increment or a decrement. That is, if a table is described:

01 A-TABLE.
 03 ROWE OCCURS 20 TIMES INDEXED BY R.
 05 KOLUMN OCCURS 10 TIMES.
 07 ELEMENT PIC X.

then a statement in the program could refer to any of these (assuming X, R, and Y
had acceptable values):

ELEMENT (R , 5)
ELEMENT (3 , Y - 3)
ELEMENT (R + 1 , X + 2)

• Applying Index-Names to Other Tables

If you use an index-name specified in the INDEXED phrase of one table to refer to
an element of another table in the program, the compiler reports an error. You must
use the SET statement to the index-name associated with one table to the
occurrence-number designated by the index-name associated with a different
table.

In Example 7-17, MY-TABLE is appropriate for the SEARCH ALL statement. The
order of the table is governed by FIRST-ITEM. It can just as well be declared to be
governed by MY-TABLE, FIRST-A, FIRST-B, FIRST-B-1, FIRST-B-2, or SECOND-
ITEM.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-82

Data Division OCCURS Clause for Variable-Size Tables
These identifiers specify elements of the table VEHICLE in Example 7-17:

MODEL (3)
STYLE OF MODEL (3, 11)
COLOR OF STYLE OF MODEL (3, 11, 14)

OCCURS Clause for Variable-Size Tables
The OCCURS clause with a DEPENDING phrase defines a variable-size table.

min

is an integer literal that specifies the minimum number of table elements. Its value
is in the range 0 through max.

Example 7-17. Fixed-Size Table

01 MY-TABLE-RECORD.
 02 MY-TABLE OCCURS 100 TIMES
 ASCENDING KEY IS FIRST-ITEM.
 INDEXED MY-INDEX
 05 FIRST-ITEM.
 08 FIRST-A PICTURE 99.
 08 FIRST-B.
 10 FIRST-B-1 PICTURE 99.
 10 FIRST-B-2 PICTURE 99.
 05 SECOND-ITEM PICTURE X(6).

01 VEHICLE.
 03 MODEL OCCURS 9 TIMES.
 05 STYLE OCCURS 12 TIMES.
 07 COLOR OCCURS 15 TIMES PICTURE 9(10).
 05 LOCATION PICTURE X(25).

DEPENDING

min TO max

TIMES

ON

depend

INDEXED

BY

index

key-order

OCCURS

VST106.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-83

Data Division OCCURS Clause for Variable-Size Tables
max

is an integer literal that specifies the maximum number of table elements.

depend

is an integer data item that controls the size of the table. As depend increases or
decreases, the number of table elements increases or decreases. When the table
size decreases, elements beyond the element whose ordinal position is specified
by the new value of depend are lost—even if the next statement increases the
table to include them. When the table grows, you must assign values to the new
elements prior to using them.

key-order

determines whether table elements are arranged in ascending or descending order
of key values.

key

is either the name of the entry containing the OCCURS clause or the name of
an entry subordinate to the entry containing the OCCURS clause.

index

is a name for compiler-created item used to select an element from the table.
Each index must be unique in the program because you cannot qualify it.

Usage Considerations:

• See the usage considerations for OCCURS Clause for Fixed-Size Tables.

• Depending Item

The depending item (depend in the syntax diagram) must reference an integer
numeric data item that is capable of containing the value of max. The storage
space associated with the depending item cannot be contained within or overlap
the storage space associated with the table whose occurrences it controls;
therefore, the depending item cannot be described as a subordinate of the
variable-occurrence data item. If the table is external, the depending item must
also be external.

ASCENDING

DESCENDING KEY IS

key

VST105.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-84

Data Division OCCURS Clause for Variable-Size Tables
At any point during execution of the object program-unit, the current value of the
depending item represents the number of occurrences in the table; therefore, its
value must never be less than min or greater than max during execution of a
statement that references the table, any of its subordinate items, or any data
structure that contains the table.

You can use the CHECK compiler directive to verify that the depending item has an
acceptable value.

• Concept of a Variable-Size Item

Any data structure containing a variable-occurrence table has a variable size.
When such an item is referenced as an operand, its value normally includes only
those table elements whose occurrence numbers are less than or equal to the
value of the depending item at the start of the operation; however, when the data
structure is used as a receiving operand and the depending item is itself a
subordinate of the data structure (so that the operation changes its value), the size
of the receiving operand is the maximum size of the data structure; that is, the
operation proceeds as if the depending item contained the value of max.

• Changing the Depending Item Affects Table Values

Whenever the value of the depending item is increased, occurrences of the table
are dynamically appended to each affected variable-size data structure; however,
the portion of the item’s value contained in these new occurrences has an
unpredictable content unless the same or a subsequent operation assigns a known
value to that portion.

Whenever the value of the depending item is reduced, the values of table
members whose occurrence numbers exceed the new limit are lost. Even after a
subsequent increase in the value of the depending item restores these
occurrences to the table, their values are not predictable and they must not be
used as operands until known values are assigned.

• OCCURS DEPENDING Incompatible with REDEFINES

A variable-occurrence data item cannot be specified as a redefinition or as part of a
redefinition; that is, an OCCURS DEPENDING clause cannot appear in a data
description entry that includes a REDEFINES clause or that is subordinate to a
data description entry that includes a REDEFINES clause.

• OCCURS DEPENDING Cannot Be Nested and Must Be Last

A data description entry with an OCCURS DEPENDING clause can only be
followed, within its record description, by descriptions of subordinate items; that is,
only one table with a variable number of occurrences can appear in a single record
description entry, and the data items it contains must be the last data items in the
record. Note, however, that a fixed-occurrence data item can be subordinate to a
variable-occurrence data item.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-85

Data Division SYNCHRONIZED Clause
SYNCHRONIZED Clause
The SYNCHRONIZED clause forces alignment of an elementary item on the most
natural computer storage boundary. The elementary item cannot be a pointer or a
national data item.

Efficiency improves if data is aligned on natural computer memory boundaries,
because additional object code is sometimes required to store or retrieve data when 2
bytes of the same word belong to different data items. Also, when a data item is stored
within 2-byte boundaries, the complexity of code to process it can decrease.

The SYNCHRONIZED clause is usually unnecessary, because the automatic
alignment is also the most natural: each level-77 item of the Working-Storage Section
and Extended-Storage Section and each level-01 item is aligned on a physical 2-byte
boundary. (A TNS word is 16 bits and a TNS/R word is 32 bits.)

Both automatic and forced alignment can cause the compiler to generate implicit
FILLER data.

Example 7-18. Variable-Size Table

01 ACTIVITY-TABLE-RECORD.
 03 ACTIVITY-COUNT PICTURE 99.
 03 ACTIVITY-TABLE OCCURS 10 TO 20 TIMES
 DEPENDING ON ACTIVITY-COUNT
 INDEXED BY SAVE-INX-1
 SAVE-INX-2.
 05 ACTIVITY-ENTRY PICTURE 999.

Example 7-19. Fixed-Size Table as an Element of a Variable-Size Table

01 DISPOSAL-COMPANIES.
 03 H-COUNT PICTURE 99.
 03 HAULER OCCURS 1 TO 12 TIMES DEPENDING ON H-COUNT.
 05 VEHICLE OCCURS 15 TIMES.
 07 V-NUMBER PICTURE 9(5).
 07 CAPACITY-CU-FT PICTURE 9(4).
 07 SERVICE-SCHEDULE PIC X.
 ...

SYNCHRONIZED

SYNC LEFT

RIGHT

VST101.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-86

Data Division JUSTIFIED Clause
Usage Considerations:

• LEFT and RIGHT

The optional keywords LEFT and RIGHT have no effect in HP COBOL.

• Where You Can Use the SYNCHRONIZED Clause

You can use the SYNCHRONIZED clause only in the data description entry of an
elementary item that does not have a USAGE POINTER clause. You cannot imply
or specify the SYNCHRONIZED clause for national data items.

• DISPLAY Data Items That the SYNCHRONIZED Clause Does Not Affect

The SYNCHRONIZED clause does not affect DISPLAY items at levels other than
01 or 77. They are composed of one or more character positions and stored as a
corresponding number of 8-bit bytes aligned on byte or 2-byte boundaries, whether
or not they are described with the SYNCHRONIZED clause.

• COMPUTATIONAL or BINARY Data Items

If the program is not compiled with the PORT directive, then a data item is aligned
on a 2-byte boundary unless it is described with the SYNCHRONIZED clause. If it
is described with the SYNCHRONIZED clause, it is aligned on a 2-byte boundary if
its size is less than 4 bytes, and on a 4-byte boundary if its size is 4 bytes or larger.

If the program is compiled with the PORT directive, and the COMPUTATIONAL or
BINARY data item is not described with the SYNCHRONIZED clause, it is byte-
aligned.

JUSTIFIED Clause
The JUSTIFIED clause causes nonstandard positioning of data within a receiving item.
It can appear only in the data description of an elementary item that meets these
criteria:

• Its category is alphabetic or alphanumeric.
• It is not subordinate to any data structure that has associated condition-names.
• It is not subordinate to any data structure that is described with a VALUE clause.

When a receiving data item is described with the JUSTIFIED clause, the standard
alignment rules do not apply. Instead, a sending item too big for the receiving item is
truncated on the left. If the sending item is smaller, its rightmost character is aligned
with the rightmost character of the receiving field and the value is extended to the left
with space characters.

JUSTIFIED

JUST RIGHT

VST107.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-87

Data Division BLANK WHEN ZERO Clause
Usage Considerations:

• Effect of RIGHT on Compilation

The optional keyword RIGHT has no effect on the compilation, and serves only to
provide emphasis.

• Trailing Spaces Are Not Ignored

Trailing spaces in a data item are not ignored when the data item is moved to a
right-justified field. For example,

77 F1 PIC X(3) JUSTIFIED RIGHT.
77 F2 PIC X(2) VALUE "A".
MOVE F2 TO F1.

gives F1 the value

" A "

not the value

" A"

BLANK WHEN ZERO Clause
The BLANK WHEN ZERO clause fills an item with spaces when its value is 0.

You can use the BLANK WHEN ZERO clause only with elementary numeric or
elementary numeric edited data items. This clause revises the category of a numeric
item to numeric edited; therefore, the item must be USAGE DISPLAY.

The BLANK WHEN ZERO clause cannot be used for national data items.

Note. The JUSTIFIED clause has no effect on initialization by the VALUE clause.

Note. The BLANK WHEN ZERO clause has no effect on initialization by the VALUE clause.

BLANK

WHEN

ZERO

VST246.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-88

Data Division VALUE Clause
VALUE Clause
This form of the VALUE clause assigns an initial value to an elementary data item or
data structure described in the Working-Storage Section or Extended-Storage Section.
For the form of the VALUE clause that assigns an initial value to a condition-name in
any section of the Data Division, see Descriptions of Condition-Names for Values
(Level 88).

literal

is a literal or a figurative constant whose value is the initial value of the data item.

Usage Considerations:

• Restrictions on Use of the VALUE Clause

Do not use a VALUE clause in the description of:

° A data item described with an EXTERNAL clause

° An elementary data item described with a USAGE INDEX or REDEFINES
clause or subordinate to a data structure described with a VALUE or
REDEFINES clause

° A data structure that has a subordinate item described with a JUSTIFIED or
SYNCHRONIZED clause, a USAGE clause other than USAGE DISPLAY (the
default), or (except for a condition-name) a VALUE clause

• Restrictions on the Value of literal

° Numeric data items

If the data item is numeric, literal must be a numeric literal or the figurative
constant ZERO, ZEROS, or ZEROES. The keyword ALL cannot appear in the
figurative constant.

If literal is a numeric literal, its value must not require the truncation of
nonzero digits; that is, the number of significant fraction digits in literal
cannot exceed the number of fraction digits in the numeric data item, and the
number of significant integral digits in literal cannot exceed the number of
integral digits in the numeric data item.

If literal is a signed numeric literal, it must either be NATIVE-n or have an
associated signed numeric PICTURE character-string. Initialization follows
standard alignment rules for numeric data items.

VALUE

IS

literal

VST108.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-89

Data Division VALUE Clause
° Nonnumeric data items

If the data item is nonnumeric, literal must be nonnumeric or a figurative
constant. The keyword ALL can appear in the figurative constant.

The value of literal cannot exceed the size indicated by the data item’s
PICTURE clause. Editing characters in the PICTURE clause are included
when the size of the item is determined, but do not effect initialization;
therefore, the value of literal must conform to the edited form. Initialization
follows standard alignment rules for alphanumeric data items. The BLANK
WHEN ZERO and JUSTIFIED clauses do not affect initialization.

° Pointer data items

If the data item is described with a USAGE POINTER clause, literal must
have the value NULL or NULLS.

° Data structures

If the data item is a data structure, literal must be either a figurative
constant or a nonnumeric literal. A data structure is initialized without
consideration for its subordinate elementary or data structure items.

If the data structure is described with one or more OCCURS clauses, every
occurrence of the repeated item is initialized with the specified value. If an
OCCURS clause has a variable number of occurrences, the initialization
proceeds as if the data structure has its maximum number of occurrences.

Example 7-20. VALUE Clauses

01 MAIN-HEADING.
 05 FILLER PIC XX VALUE SPACES.
 05 FILLER PIC X(8) VALUE "DIVISION".
 05 FILLER PIC XX VALUE SPACES.
 05 FILLER PIC X(6) VALUE "REGION".
 ...
01 COUNTERS.
 05 NO-OF-READS PIC 9(5) VALUE ZEROS.
 05 NO-OF-WRITES PIC 9(5) VALUE ZEROS.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-90

Data Division Descriptions That Rename Items (Level 66)
Descriptions That Rename Items (Level 66)
The RENAMES clause assigns a new data-name to an item or to two or more
contiguous items in a record. RENAMES does not cause allocation of storage. You can
put level-66 items in any section of the Data Division.

new-name

is the alias for an elementary item or a data structure.

old-name

is either the name of a data structure or the name of the first of several items to be
given an alias. It can be qualified.

end-name

is the last group name or last item name included in the alias name. It can be
qualified.

The level-66 data description entry in Example 7-21 renames several items in a record
so that you can refer to the items by one name.

Usage Considerations:

• RENAMES Stands Alone

Because RENAMES merely renames a group of existing data items and does not
redescribe any of their characteristics, no other clauses can be used with it. One or
more RENAMES entries can be written for a logical record. They can occur in any
order but must immediately follow all other data description entries for the record.

Example 7-21. Level-66 Data Description Entry

05 CARD-CODES.
 10 STORE-CODE PIC 9.
 10 STATE-CODE PIC 9(4).
05 ACCOUNT-NUMBER PIC 9(6).
05 CHECK-DIGIT PIC 9.
66 CARD-NUMBER RENAMES CARD-CODES THRU CHECK-DIGIT.

.

THRU

66

THROUGH

RENAMES

end-name

old-namenew-name

VST109.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-91

Data Division Descriptions That Rename Items (Level 66)
• Restrictions on Names

old-name and end-name must be data areas within the same logical record and
must be different. No part of the storage area referenced by end-name can
occupy character positions preceding the beginning of the storage area referenced
by old-name. The area referenced by end-name can overlap that referenced by
old-name, but must extend beyond it; therefore, end-name cannot be
subordinate to old-name.

old-name and end-name cannot be the names of data entries with level number
01, 66, 77, or 88.

Neither old-name nor end-name can have an OCCURS clause in its data
definition or be subordinate to an item whose description has an OCCURS clause.

• Level-66 item is Elementary or Group

When end-name appears, new-name is a data structure including all elementary
items starting with old-name (if it is an elementary item) or the first elementary
item in old-name (if it is a data structure) and concluding with end-name (if it is
an elementary item) or the last elementary item in end-name (if it is a data
structure).

When end-name does not appear, new-name merely renames old-name and
is a data structure only if old-name is a data structure. The new item inherits all
characteristics of the old item.

• Restrictions on Data Area

If end-name appears, its data area can overlap that of old-name but must
extend beyond it; however, no part of the data area described by end-name can
occupy character positions preceding the beginning of the area described by old-
name. Because no part of the data area described by old-name can occupy
character positions following the end of the area described by end-name, end-
name cannot be subordinate to old-name.

No item within the renamed area can have a variable size.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-92

Data Division Descriptions of Noncontiguous Elementary Items
(Level 77)
Descriptions of Noncontiguous Elementary
Items (Level 77)

In the Working-Storage or Extended-Storage Section, you do not need to use the
record structure to define elementary items that bear no hierarchical relationship to one
another. Instead, you can classify and define them as noncontiguous elementary items.
Use a separate data description entry that begins with the special level number 77 for
each of these items.

data-name-1

is the name of the noncontiguous elementary item.

FILLER

is a place holder for a data item to which the program never refers.

data-name-2

is the name of a data item being redefined. See REDEFINES Clause.

77 data-name-1

SIGN clause

OCCURS clause

SYNCHRONIZED clause

JUSTIFIED clause

VALUE clause

BLANK WHEN ZERO clause

INDEX

USAGE IS

PICTURE clause

REDEFINES data-name-2FILLER

VST110.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-93

Data Division Descriptions of Noncontiguous Elementary Items
(Level 77)
PICTURE clause

is as described in PICTURE Clause.

INDEX

describes an index data item—a data item that occupies four character positions
and whose value is the occurrence number of a table element. This value cannot
be used in computations. If a level-77 description contains INDEX, then it cannot
include the SYNCHRONIZED, JUSTIFIED, or BLANK WHEN ZERO clause.

SIGN clause

is as described in SIGN Clause.

OCCURS clause

is as described in OCCURS Clause for Fixed-Size Tables or OCCURS Clause for
Variable-Size Tables.

SYNCHRONIZED clause

is as described in SYNCHRONIZED Clause. Do not use the SYNCHRONIZED
clause with INDEX.

JUSTIFIED clause

is as described in JUSTIFIED Clause. Do not use the JUSTIFIED clause with
INDEX.

BLANK WHEN ZERO clause

is as described in BLANK WHEN ZERO Clause. Do not use the BLANK WHEN
ZERO clause with INDEX.

VALUE clause

is as described in VALUE Clause. Do not use the VALUE clause with INDEX.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-94

Data Division Descriptions of Condition-Names for Values
(Level 88)
Descriptions of Condition-Names for Values
(Level 88)

You can assign a name to a specific value, set of values, or range of values that a data
item can have and use that name as a condition in a conditional statement. The name
is called a condition-name, and the data item associated with it is called a
conditional variable.

To do this, you must put one or more level-88 items (each including a condition-name
and a VALUE clause specifying a value or a range of values for that condition-name)
immediately after the data description of the conditional variable. You can put level-88
items in any section of the Data Division.

condition-name

is the name of the condition value.

value-1

is a literal. It is either a single value or the first in a range of values tested by the
condition.

value-2

is a literal and is the final value in a range of values tested by the condition.

88 condition-name VALUE

IS

VALUES

ARE

value-1

THRU

value-2THROUGH

VST112.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-95

Data Division Descriptions of Condition-Names for Values
(Level 88)
Usage Considerations:

• Condition-Name Description Location

All condition-name entries for a particular conditional variable must immediately
follow the entry describing that variable.

• Cannot Use With Certain Descriptions

A condition-name can be associated with any data description entry, even if
specified explicitly or implicitly as FILLER, with these exceptions:

° Level-66 items

° Level-88 items

° Index data item

° Data structure having any subordinate item described with the JUSTIFIED or
SYNCHRONIZED clause, or which are not USAGE DISPLAY

Example 7-22. Condition-Names for Values (Level 88)

Declaration:

05 RETURN-CODE PIC 99.
 88 END-OF-FILE VALUE 01.
 88 ERROR-ON-READ VALUE 02.
 88 PERMANENT-ERROR VALUE 03.
 88 ERROR-ON-WRITE VALUE 04.

Statement using one of the condition-names:

IF END-OF-FILE
 PERFORM END-UP-OPERATION
 CLOSE FILE-IN
END-IF

Definition of an item that has a range of values:

05 tax-code PIC 99.
 88 tax-range VALUES ARE 00, 03, 07 THROUGH 11.

Statement testing if tax-code is 00, 03, 07, 08, 09, 10, or 11:

IF NOT TAX-RANGE
 PERFORM TAX-ERROR-ROUTINE.

Example 7-23. VALUE Clauses for a Level-88 Data Item

01 ZIP-CODE.
 03 ZIP-FIRST-3 PICTURE 999.
 ...
 88 NEW-YORK VALUE IS 090 THRU 098,
 100 THRU 149.
 88 PENNSYLVANIA VALUE IS 150 THRU 196.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-96

Data Division Descriptions of Condition-Names for Values
(Level 88)
As the syntax presentation shows, the only clause permitted in a condition-name
entry is the VALUE clause containing the value, values, or range of values
associated with the condition-name; therefore, the characteristics of the condition-
name are implicitly those of the condition variable.

• Setting a Condition-Name to TRUE

You can set the value of a condition-name to TRUE with the SET TO statement.
See Nonpointer Data Items.

• Numeric data items

If an item is in the numeric category, all literals in the VALUE clause must be
numeric literals or figurative constants ZERO, ZEROS, or ZEROES (the keyword
ALL cannot appear in this context), and they must be in the range of values set by
the PICTURE character-string of the conditional variable. A signed numeric literal
only applies to a signed numeric conditional variable.

A numeric literal must not have a value that would require the truncation of
nonzero digits; therefore, the number of significant fraction digits in the numeric
literal cannot exceed the number of fraction digits in the data item, and the number
of significant integral digits in the numeric literal cannot exceed the number of
integral digits in the data item.

• Nonnumeric data items

If an item is not in the numeric category, all literals of VALUE must be nonnumeric
literals or figurative constants (the ALL form of figurative constant is legal in this
context), and must not exceed the size of the conditional variable.

• Multiple Values

More than one value or a range of values can be given for a condition-name entry.
Whenever THROUGH is used, the left-hand literal must be less than the right-hand
literal.

• Overlap

The values of different condition-names associated with the same conditional
variable are permitted to overlap; therefore, it is possible to construct sets of
condition names associated with one conditional variable in which more than one
condition-name has the same truth value.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-97

Data Division Descriptions of Condition-Names for Values
(Level 88)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
7-98

8 Procedure Division
The Procedure Division is optional, but a program without a Procedure Division does
nothing except initialize data.

The Procedure Division is composed of statements, which specify the actions to be
taken by the program. The program does its work by executing the statements in their
appropriate sequence. The way you organize the statements not only governs the
order in which they execute but also can contribute to your program’s readability and
maintainability.

You can organize statements into sentences, sentences into paragraphs, and
sentences and/or paragraphs into sections. A paragraph, a group of successive
paragraphs, a section, or a group of successive sections can be executed as a unit
called a procedure.

The Procedure Division can optionally include a Declaratives Portion. The Declaratives
Portion is a set of sections at the beginning of the Procedure Division. These sections
are executed if specified conditions arise during the execution of statements outside
the Declaratives Portion.

Figure 8-1. Relationship of Statements, Sentences, Paragraphs, and Sections

section(s)

paragraph(s)

sentence(s)

statement(s)

procedure(s)

VST508.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-1

Procedure Division Procedure Division Components and Syntax
Topics:

• Procedure Division Components and Syntax

• Execution of the Procedure Division

• Common Semantic Rules

• Common Phrases

• Input-Output

• Arithmetic Operations

• Conditional Expressions

• Concatenation Expressions

Procedure Division Components and Syntax

USING

marks the beginning of a parameter list in a called program. The CALL statement
in the calling program must contain a corresponding USING phrase.

parameter

is the identifier of a data item in the Linkage Section. See Linkage Section and
CALL.

declaratives-portion

is described in Declaratives Portion.

USING

PROCEDURE

parameter

DIVISION

.
declaratives-portion

paragraph

section

VST113.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-2

Procedure Division Procedure Division Components and Syntax
section

is described in Sections.

Topics:

• Statements

• Sentences

• Paragraphs

• Sections

• Procedures

• Declaratives Portion

Example 8-1. Procedure Division

PROCEDURE DIVISION.
DRIVER SECTION.
DRIVE.
 PERFORM 100-INITIALIZATION
 PERFORM 200-PROCESS-REQUESTS UNTIL JOB-IS-DONE
 PERFORM 300-TERMINATION.

100-INITIALIZATION SECTION.
OPEN-FILES.
 OPEN INPUT MESSAGE-IN
 OPEN OUTPUT MESSAGE-OUT
 OPEN INPUT BASE-FILE.

FINISH-UP-INIT.
 MOVE "READY" TO WATCH-WORD.
 ...

200-PROCESS-REQUESTS SECTION.
READ-DOLLAR-RECEIVE.
 READ MESSAGE-IN
 ...
PROCESS-INPUT-DATA.
 ...
300-TERMINATION SECTION.
CLOSE-AND-QUIT.
 CLOSE MESSAGE-IN
 MESSAGE-OUT
 BASE-FILE
 STOP RUN.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-3

Procedure Division Statements
Statements
A statement is a syntactically valid combination of words and symbols beginning with a
COBOL verb. Where a statement ends depends on its context.

Table 8-1. Where Statements End

Statement is … Statement ends …

in a sequence of statements
and is not the last one

immediately before the verb of the next statement

inside another statement either immediately before the keyword that begins
the next portion of a containing statement or at the
period separator that terminates its containing
sentence

isolated
or the last statement in a sequence

See Scope of Statements.

Figure 8-2. Statement Examples

Table 8-2. Statement Types

Statement Type Definition

Imperative Specifies an unconditional action for the process to take

Conditional Specifies that the truth value of a condition is to be determined and
that the subsequent action of the run unit depends on this truth value

Delimited-scope Terminates in its explicit scope terminator

Compiler-directing Causes the compiler to take some specific action during compilation

statement

IF SOME-COND MOVE 1 TO X MOVE 2 TO Y MOVE 3 TO Z .

ADD 1 TO A-COUNT ON SIZE ERROR DISPLAY "TILT" STOP RUN END-ADD

CLOSE MY-FILE

statement statement statement

statement

statement statement

statement

VST509.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-4

Procedure Division Statements
Topics:

• Imperative Statement

• Conditional Statement

• Delimited-Scope Statement

• Scope of Statements

Imperative Statement
An imperative statement specifies an unconditional action for the process to take. Each
imperative statement begins with an imperative verb.

An individual delimited-scope statement or a sequence of two or more imperative
statements is considered to be an imperative statement under the rules for statement
formation; therefore, when imperative-statement appears in a statement, it
refers to one or more consecutive imperative statements and/or delimited-scope
statements.

Table 8-3. Imperative Verbs

ACCEPT DISPLAY MULTIPLY1 STOP

ADD1 DIVIDE1 OPEN STRING3

ALTER ENTER7 PERFORM SUBTRACT1

CALL3 EXIT8 READ4 UNLOCKFILE6

CANCEL GO TO RELEASE UNLOCKRECORD6

CHECKPOINT6,9 INITIALIZE REWRITE2 UNSTRING3

CLOSE INSPECT SET WRITE5

COMPUTE1 LOCKFILE6 SORT

CONTINUE MERGE START2

DELETE2 MOVE STARTBACKUP6,9

1. Without SIZE ERROR or NOT SIZE ERROR phrase or else with a scope terminator

2. Without INVALID KEY or NOT INVALID KEY phrase or else with a scope terminator

3. Without OVERFLOW, EXCEPTION, or NOT EXCEPTION phrase or else with a scope terminator

4. Without AT END, NOT AT END, INVALID KEY, or NOT INVALID KEY phrase or else with a scope terminator

5. Without INVALID KEY, NOT INVALID KEY, END-OF-PAGE, or NOT END-OF-PAGE phrase or else with a
scope terminator

6. HP extension

7. In HP COBOL, analogous to CALL but used only to call non-COBOL routines

8. Limited to appearing alone in a paragraph conditional statement. This is because it can include phrases that
are or are not executed depending upon the value of a a condition (for example, the delimited-scope IF
statement) or upon the occurrence of an exception (for example, the delimited-scope READ statement).

9. Before RVU D46.00 and G06.00, software product revision T8107AAT (run-time library T8108AAR), the
NMCOBOL compiler ignores this directive and issues a warning.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-5

Procedure Division Statements
Conditional Statement
A conditional statement specifies that the truth value of a condition is to be determined
and that the subsequent action of the run unit depends on this truth value.

Any of these statements is a conditional statement (unless it ends with an explicit
scope delimiter):

• An EVALUATE, IF, RETURN, or SEARCH statement

• A READ statement with the AT END or INVALID KEY phrase

• A WRITE statement with the INVALID KEY or END-OF-PAGE phrase

• A DELETE, REWRITE, or START statement with the INVALID KEY phrase

• An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, or SUBTRACT)
with the SIZE ERROR phrase

• A STRING or UNSTRING statement with the OVERFLOW phrase

• A CALL statement with the EXCEPTION phrase (or the OVERFLOW phrase,
which is obsolete for the CALL statement)

The NOT AT END, NOT INVALID KEY, NOT END-OF-PAGE, NOT SIZE ERROR, and
NOT EXCEPTION phrases also make their parent statement a conditional statement.
There is no NOT OVERFLOW phrase.

Any conditional statement can be preceded by an imperative statement or any
sequence of statements specified as equivalent to an imperative statement by the rules
given in Imperative Statement.

Unless it is contained within an IF statement, a conditional statement must be the last
or only statement in a sentence; however, any statements listed previously can be
written as a delimited-scope statement. For clarity and convenience, you are
encouraged to avoid conditional statements entirely and use equivalent delimited-
scope statements instead.

In Example 8-3, the period ends both the IF and the AT END phrase. If there were an
operation that the program had to perform after the read operation succeeded, but only
when DONE-WITH-MASTER was false, you would have to package the READ
statement in a separate paragraph. Then you could end the AT END phrase with a
period that did not also end the IF statement.

Example 8-2. Imperative Statement

MOVE "Birnham Wood" TO DUNSINANE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-6

Procedure Division Statements
Compare Example 8-3 to Example 8-4.

Delimited-Scope Statement
A delimited-scope statement is any statement that terminates in its explicit scope
terminator. An explicit scope terminator is a reserved word used to delimit the scope of
a conditional statement or in-line PERFORM statement.

The form of each explicit scope terminator includes the verb from the statement that it
terminates. Explicit scope terminators can appear only as specified in the general
formats for statements. When the appropriate explicit scope terminator follows a
conditional statement, it is considered to be a delimited-scope statement instead.

In Example 8-4, if there were no END-READ scope terminator, the PERFORM would
be part of the AT END phrase of the (conditional) READ statement.

Under the rules for statement execution, a delimited-scope statement is handled in the
same manner as a conditional statement. This is because it can include phrases that
are or are not executed depending upon the value of a condition (for example, the
delimited-scope IF statement) or upon the occurrence of an exception (for example,
the delimited-scope READ statement).

Example 8-3. Conditional Statement

IF NOT DONE-WITH-MASTER
 READ MASTER-FILE
 AT END MOVE DONE-VALUE TO MASTER-FLAG.

Table 8-4. Explicit Scope Terminators

END-ADD END-EVALUATE END-RETURN END-SUBTRACT

END-CALL END-IF END-REWRITE END-UNSTRING

END-COMPUTE END-MULTIPLY END-SEARCH END-WRITE

END-DELETE END-PERFORM END-START END-UNSTRING

END-DIVIDE END-READ END-STRING

Example 8-4. Delimited-Scope Statement

IF NOT DONE-WITH-MASTER
 READ MASTER-FILE
 AT END MOVE DONE-VALUE TO MASTER-FLAG
 END-READ
 PERFORM PROCESS-MASTER-RECORD
 UNTIL DONE-WITH-MASTER
END-IF
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-7

Procedure Division Statements
Compiler-Directing Statement
A compiler-directing statement is a COPY, REPLACE, or USE statement. It causes the
compiler to take some specific action during compilation. A sentence that contains a
compiler-directing statement cannot contain any other statements.

The COPY statement directs the compiler to include additional source text at that point
in the program.

The REPLACE statement directs the compiler to replace source program text.

The USE statement directs the compiler to include logic in the object program that calls
the designated declarative section if the condition described in the USE statement
arises during execution.

Scope of Statements
When the formation rules for one statement cause it to contain other statements, you
must show the compiler the scope of both the contained and the containing statements
by using scope terminators. Scope terminators either explicit or implicit.

Explicit scope terminators are defined and listed under Delimited-Scope Statement.

Implicit scope terminators occur at the end of a sentence and at the end of a contained
statement.

• At the end of any sentence, the separator period that terminates the scope of all
previous statements not yet terminated is an implicit terminator.

• Within any statement containing another statement, the next phrase of the
containing statement following the contained statement is the implicit terminator of
the scope of any unterminated contained statement.

Note. In some implementations of COBOL, the ENTER verb marks the beginning of an
embedded routine in some other language. For this reason, ENTER is classified as a compiler-
directing verb in those implementations. The ENTER statement as implemented by
HP COBOL is similar to a CALL statement but calls a routine compiled from a language other
than COBOL.

Example 8-5. Compiler-Directing Statement

COPY NEIGHBORS-ANSWER
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-8

Procedure Division Statements
The detailed rules for scope termination are:

• A conditional statement is composed of other statements. When no delimited-
scope statements occur in the conditional statement, the next phrase of the
conditional statement terminates the contained statement. In this example, the
ELSE phrase implicitly terminates the statement of the THEN phrase and the
separator period implicitly terminates the ELSE phrase:

IF CREDIT
THEN PERFORM POST-CREDIT
ELSE PERFORM POST-DEBIT.

• When the last statement in a sentence is a conditional statement, the period
separator that terminates the sentence implicitly terminates the conditional
statement. In this example, the paragraph BOTTOM-LINE consists of a single
sentence. The period separator that ends the sentence ends the IF statement:

BOTTOM-LINE.
 MOVE NET-SALES TO NET-S OF SALES-REC-DISPLAY
 MOVE NET-PROFIT TO NET-P OF SALES-REC-DISPLAY
 IF NET-PROFIT < 0
 DISPLAY "Get Cracking!" UPON DIST-MGR-TUBE.

• When statements are contained within other statements, a period separator that
terminates the sentence also implicitly terminates the scope of any contained
statements not yet terminated otherwise. In this example, the period separator
terminates both the READ and the IF statements:

IF AUXILIARY-INPUT-TAPE
 READ AUX-TAPE
 AT END PERFORM AUX-TAPE-ENDED
 NOT AT END PERFORM PROCESS-AUX-REC.

• A conditional statement can be nested within an IF statement, but not within any
other form of conditional statement. The preceding example shows a conditional
READ statement nested within an IF statement. It is not possible, for example, to
have a READ statement with an AT END phrase and no END-READ terminator
(making it a conditional statement) within another such READ statement’s AT END
phrase. Both must be provided with scope terminators as shown in this example:

READ PRIMARY-FILE
 AT END READ SECONDARY-FILE
 AT END DISPLAY "End of second file"
 END-READ
END-READ
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-9

Procedure Division Sentences
• When a delimited-scope statement is contained within another delimited-scope
statement with the same verb, each explicit scope terminator terminates the
statement begun by the most recently preceding, and as yet unpaired, occurrence
of that verb. In this example, the first END-IF ends the second IF statement:

IF A NOT > B
 PERFORM PHASE-1
 IF A = B
 PERFORM PHASE-1X
 ELSE
 PERFORM PHASE-1Y
 END-IF
 PERFORM PHASE-2
ELSE
 PERFORM PHASE-5
END-IF

Sentences
A sentence is one or more statements terminated by a period separator.

statement

is described in Statements.

A sentence that contains a compiler-directing statement cannot contain any other
statements. When the compiler acts upon the COPY statement, that statement and its
terminating period are logically replaced by whatever text the statement specified. The
COPY sentence can therefore appear to be within another sentence, but once the
compiler acts upon the COPY statement, the COPY sentence itself is replaced by text
from a COPY library and the period separator has disappeared.

When you use the delimited-scope statements of COBOL, you can write an entire
paragraph with only one required period—the one at the end of the paragraph.

statement .

VST114.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-10

Procedure Division Paragraphs
Paragraphs
A paragraph groups related sentences and statements together and identifies them by
one name. Using the name, GO TO, PERFORM, SORT and MERGE statements can
transfer control to the paragraph.

paragraph-name

is either a COBOL word consisting of up to 30 alphanumeric characters or an
integer of up to 30 digits.

sentence

is described in Sentences. A sentence ends with a period; therefore, a paragraph
ends with the period at the end of its last sentence.

Example 8-6. Paragraph With One Sentence

CHK-REPORT-YY.
 IF CURRENT-YY IS LESS THAN 0
 OR GREATER THAN 99
 DISPLAY "REPORT YEAR IS NOT BETWEEN 00 AND 99, "
 "REENTER YEAR"
 ACCEPT CURRENT-YY
 GO TO CHK-REPORT-YY.

Example 8-7. Paragraph With Several Sentences

CONVERT-REPORT-DATE-TO-SERIAL-DAY.
 MOVE CURRENT-YY TO REPORT-SERIAL-YEAR.
 MOVE 0 TO DIVIDE-RESULT
 LEAP-YEAR.
 DIVIDE REPORT-SERIAL-YEAR BY 4
 GIVING DIVIDE-RESULT
 REMAINDER LEAP-YEAR.
 IF LEAP-YEAR EQUAL TO 0
 MOVE 1 TO LEAP-YEAR
 ELSE
 MOVE 0 TO LEAP-YEAR.
 ADD CURRENT-DD
 DAYS-TO-DATE(CURRENT-MM)
 GIVING REPORT-SERIAL-DAYS.
 IF REPORT-SERIAL-DAYS IS GREATER THAN 59
 ADD LEAP-YEAR TO REPORT-SERIAL-DAYS.

paragraph-name .
sentence

VST115.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-11

Procedure Division Paragraphs
Usage Considerations:

• Paragraph Headers Not Restricted to Area A

The HP COBOL compilers accept paragraph headers that do not begin in area A;
the compiler recognizes a statement by its initial verb. When the compiler
recognizes the end of a sentence (by detecting the terminating period) and is
prepared to accept another sentence or a paragraph, it accepts any legal
paragraph header or section header whether it begins in area A or after it.

• End of a Paragraph

A paragraph ends immediately before the next paragraph header or section
header, at the end of the Procedure Division, or when it is the last paragraph in the
Declaratives Portion of the Procedure Division, at the keywords END
DECLARATIVES.

• Multiple Paragraph Headers (Null Paragraphs)

A paragraph header can be followed immediately by another paragraph header:

CHECK-THE-INPUT.
GET-THE-FIRST-RECORD.
 READ IN-FILE ...

In this case, CHECK-THE-INPUT is a null paragraph, so

GO TO CHECK-THE-INPUT

is equivalent to

GO TO GET-THE-FIRST-RECORD

but PERFORM CHECK-THE-INPUT returns control immediately to the statement
following the PERFORM.

• Paragraph Form Only for Use With the ALTER Statement

There is a simpler form of the paragraph used in conjunction with an ALTER
statement. For details, see ALTER.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-12

Procedure Division Sections
Sections
A section groups related sentences and paragraphs together and identifies them by
one name. Using the name, GO TO, PERFORM, SORT and MERGE statements can
transfer control to the section.

section-name

is either a COBOL word consisting of up to 30 alphanumeric characters or an
integer of up to 30 digits.

segment-number

is a numeric literal of 1 or 2 digits.

sentence

is described in Sentences.

paragraph

is described in Paragraphs.

Usage Considerations:

• Section Format

° Beginning

After the period separator that precedes the first paragraph of a section, do not
put anything on the same text line except space characters or a USE
statement.

° End

A section ends at the next section header, at the physical end of the Procedure
Division, or at the keywords END DECLARATIVES.

section-name

sentence paragraph

SECTION

segment-number

.

VST116.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-13

Procedure Division Procedures
• Standard COBOL Format

To conform to the COBOL standard, observe these rules. (HP COBOL compilers
do not require that you follow these rules.)

° If you use sections, put all paragraphs in sections

If the Procedure Division contains sections, put every paragraph in a section.
(This means that if the Procedure Division contains a Declaratives Portion,
which always contains at least one section, then each paragraph in the
Procedure Division must be in a section.)

° Start each section on a separate line and follow section header immediately by
paragraph header

Start each section on a separate line, with the section-name beginning in
area A and nothing but space characters preceding it.

• Independent Segments

An independent segment is a section whose segment-number is greater than 49.
Independent segments are relevant only to the ALTER statement, which you are
advised not to use because the 1985 COBOL standard classifies it as an obsolete
element. (Use a MOVE statement and a conditional GO TO statement instead.)

Procedures
A procedure is a paragraph, a group of successive paragraphs, a section, or a group of
successive sections executed as a unit under the control of a PERFORM statement.

paragraph

is described in Paragraphs.

section

is described in Sections.

There is a distinct difference between procedure-name and procedure. A procedure-
name refers to a paragraph or section in the source program. A procedure-name is
either a section-name or a paragraph-name (which can be qualified by a section-
name). A procedure is a paragraph, a group of successive paragraphs, a section, or a
group of successive sections to be executed as a unit.

section

paragraph

VST415.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-14

Procedure Division Declaratives Portion
The term procedure can also refer to the set of paragraphs or sections executed under
control of a PERFORM procedure-name or a PERFORM procedure-name
THROUGH procedure-name statement. When the term is used in this dynamic
sense, one procedure can contain or overlap another procedure. The rules of COBOL
do not require that the relationships between members of this set of be obvious; that is,
the set of paragraphs executed by a PERFORM statement is determined by control
flow, not solely by the order of the paragraphs in the source file.

Declaratives Portion
The optional Declaratives Portion is one or more sections at the beginning of the
Procedure Division, bracketed by the keyword DECLARATIVES and the keywords
END DECLARATIVES, that are executed individually when certain conditions arise
during execution of statements in the rest of the Procedure Division.

The Declaratives Portion is reserved for debugging routines and input-output error
routines specified by USE statements. When used, this area must be coded
immediately after the Procedure Division heading.

section-name
segment-number

are described in Sections.

use-sentence

is a sentence containing only a USE statement.

paragraph

is described in Paragraphs.

section-name

use-sentence

DECLARATIVES .

DECLARATIVES .END

SECTION

segment-number

.

paragraph section

VST117.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-15

Procedure Division Execution of the Procedure Division
section

is described in Sections.

Execution of the Procedure Division
Execution of a run unit begins with the first procedure (that is, section or paragraph) of
the Procedure Division, excluding any declarative sections. Except where specific rules
indicate otherwise, sections are executed in the order in which they appear within the
source program. Similarly, paragraphs are executed in the order in which they appear
within their sections, sentences are executed in the order in which they appear within
their paragraphs, and statements are executed in the order in which they appear within
their sentences.

Topics:

• Statement Execution

• Sentence Execution

• Paragraph Execution

• Section Execution

• Procedure Execution

• Declaratives Portion Execution

Statement Execution
An individual imperative statement is always executed in its entirety. If the statement is
followed within its sentence by another statement, control then passes to that
statement; otherwise, control passes to the next executable sentence.

A conditional statement or a delimited-scope statement is not necessarily executed in
its entirety. Instead, the truth value of the condition in the statement causes the object
program to select between alternate paths of control. Because the specific possibilities
depend upon the particular statement, they are discussed along with the individual
statement descriptions.

Example 8-8. Procedure Division with a Declaratives Portion

PROCEDURE DIVISION.
DECLARATIVES.
 IN-FILES-USE SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON IN-FILE.
 IN-FILES-PARA.
 ...
END DECLARATIVES.
BEGIN-MY-PROGRAM SECTION.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-16

Procedure Division Sentence Execution
The compiler-directing statements COPY, REPLACE, and USE do not participate in
execution; therefore, control is never transferred to or from these statements.

Sentence Execution
A sentence containing only imperative statements is always executed in its entirety.
Normally, control then passes to the next sentence in the paragraph that contains an
imperative or conditional statement. Exceptions to this rule are:

• When the last statement in the sentence is a GO TO statement, control is
transferred unconditionally to the specified paragraph or section.

• When the last statement in the sentence is a STOP RUN statement, execution of
the run unit, and thus the program, terminates.

• When the last statement in the sentence is an EXIT PROGRAM statement, control
is transferred in accordance with the rules for that statement.

If the sentence is not followed within its paragraph by any other sentence that contains
an imperative, conditional, or delimited-scope statement, and none of the preceding
cases applies, then control passes to the first executable sentence in another
paragraph. The paragraph to which control passes is determined by the rules
described under Paragraph Execution.

A sentence containing a conditional or delimited-scope statement is not necessarily
executed in its entirety. After executing any initial imperative statements, the execution
of the conditional or delimited-scope statement causes the object program to select the
appropriate path of control.

Control is never transferred to or from sentences that consist of a compiler-directing
statement.

Paragraph Execution
Execution of a paragraph begins with the execution of the first sentence containing an
imperative, conditional, or delimited-scope statement. Except for the nested execution
of other procedures or programs (for example, by the execution of PERFORM or CALL
statements) control remains within the paragraph until either:

• The execution of a GO TO, STOP RUN, or EXIT PROGRAM statement transfers
control out of the paragraph.

• The final executable sentence of the paragraph completes without explicitly
transferring control to some other procedure. In this case, control passes to the
next paragraph of the same section if one exists or to the next section in the source
program, except in these situations:

1. The rules for the implicit transfer of control among procedures, described later,
can cause control to revert to some other paragraph or section instead.

2. If no such reversion occurs, and no next section exists, execution of the
program terminates.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-17

Procedure Division Section Execution
During the execution of a paragraph, control passes to successive sentences unless
this order is modified by a conditional or delimited-scope statement or a GO TO, STOP
RUN, CALL, ENTER, or EXIT PROGRAM statement. Execution of a paragraph that
does not have any sentences involves only the passing of control described for Item 2.

Section Execution
Execution of a section normally consists of serial execution of its paragraphs; however,
this order can be modified by explicit transfer statements (for example, a GO TO
statement) and the rules for implicit transfer of control. Execution of the section
terminates when either:

1. The execution of a GO TO, STOP RUN, or EXIT PROGRAM statement transfers
control out of the section.

2. The final paragraph of the section completes without explicitly transferring control
to some other section. In this case, control passes to the next section of the source
program, except in these situations:

• The rules for the implicit transfer of control among procedures, described later,
can cause control to revert to some other section instead.

• If no such reversion occurs, and the section is the last one in the source
program, the execution of the program terminates.

Execution of a section that does not have any paragraphs involves only the passing of
control described for Item 2.

Implicit Transfer of Control
The mechanism that transfers control from statement to statement in the sequence in
which they appear in the source program is an implicit transfer of control. This
mechanism applies unless it is overridden by an explicit transfer of control or the
absence of a next executable statement to which control can be passed.

Explicit Transfer of Control
An explicit transfer of control consists of execution of one of these statements:

• Conditional
• CALL
• ENTER
• Delimited-scope statement
• EXIT PROGRAM (when executed in a called program)
• GO TO
• PERFORM
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-18

Procedure Division Section Execution
COBOL provides these types of implicit transfers of control that override the statement-
to-statement mechanism:

1. When a paragraph is being executed under control of another COBOL statement
(for example, MERGE, PERFORM, SORT, and USE), and it is the last paragraph
in the range of the controlling statement, an implied transfer of control occurs from
the last statement in the paragraph to the control mechanism of the controlling
statement. If several controlling statements are active, the transfer is to the last
statement executed. Furthermore, if a paragraph is being executed under the
control of a PERFORM statement that causes iterative execution and that
paragraph is the first one in the range of the PERFORM statement, an implicit
transfer of control occurs between the control mechanism associated with the
PERFORM statement and the first executable statement in the paragraph for each
iterative execution of the paragraph.

2. When a SORT or MERGE statement is executed, an implicit transfer of control
occurs to any associated input or output procedures. Another implicit transfer of
control occurs after the execution of such a procedure, as described in Item 1.

3. When the execution of any COBOL statement causes the condition described in
the USE statement of a declarative section, an implicit transfer of control occurs to
that section. Another implicit transfer of control occurs after the execution of the
declarative section, as described in Item 1.

The statement-to-statement transfers of control ignore the existence of COPY,
REPLACE, and USE statements. Although control never passes to a USE statement
itself, the existence of a USE statement generates the control mechanism for implicit
transfers of control to and from the section in which it appears.

The term next executable statement refers to the next COBOL statement to which a
process is to transfer control according to the rules given previously and the rules
associated with each language element in the Procedure Division. There is no next
executable statement in these situations:

1. The execution of the last statement in a program does not cause an explicit
transfer of control, and the paragraph in which it appears is not being executed
under the control of some other COBOL statement. Following the execution of
such a statement, execution of the program terminates. When it is a called
program, control reverts to the calling program as if an EXIT PROGRAM statement
were executed; otherwise, execution of the run unit terminates as if a STOP RUN
statement were executed.

2. The program contains no Procedure Division. Execution of such a program
proceeds as if it contained a Procedure Division with a single paragraph consisting
of a CONTINUE statement. Control then passes from the program as described in
Item 1.

3. An EXIT PROGRAM statement is executed within a called program. In this case,
control reverts to the calling program.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-19

Procedure Division Procedure Execution
4. A STOP RUN statement is executed within any program. In this case, execution of
the run unit terminates.

5. The last statement in the Declaratives Portion of a program completes execution
without causing an explicit transfer of control, and its paragraph is not the
designated end of a PERFORM … THROUGH procedure group. Following the
execution of such a statement in these circumstances, control reaches the end of
the Declaratives Portion, causing execution of both the program and the run unit to
terminate abnormally.

Both the program and the run unit terminate abnormally because execution of a
declarative section is expected to be done by a PERFORM statement with these
characteristics:

• An explicit PERFORM statement in the Declaratives Portion or somewhere in
the rest of the Procedure Division

• An implicit PERFORM statement executed due to either the use of the COBOL
debugging module or an input-output statement’s encountering an error

In the latter case, if the error was recoverable, control returns to the statement
following the input-output statement; if the error was not recoverable, execution of
the run unit terminates.

If you transfer control directly to a procedure in a declarative section from a GO TO
statement anywhere in the Procedure Division, there is no next executable
statement when execution reaches the end of the declarative section.

Procedure Execution
A procedure is a paragraph, a group of successive paragraphs, a section, or a group of
successive sections executed as a unit. See Paragraph Execution and Section
Execution.

Declaratives Portion Execution
The sections of the Declaratives Portion are executed individually when certain
conditions arise during execution of statements in the rest of the Procedure Division
(see Section Execution).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-20

Procedure Division Common Semantic Rules
Common Semantic Rules
The semantic rules about operand identification and overlapping operands apply to
several statements. Their explanations use these terms:

Operand Identification
An operand in a statement is either an identifier (which specifies a data item directly) or
a condition-name associated with a conditional variable (which specifies a data item
indirectly). In either case, the particular data item must be identified before the operand
can be used in executing the statement. Operand identification proceeds in this order:

1. Qualifiers

If an operand contains qualifiers, the compiler uses them to determine the correct
interpretation of the operand name.

2. Subscripts

If an operand contains subscripts, the run-time routines evaluate them from left to
right.

3. Size

If an operand has variable size, the run-time routines determine its appropriate
size. The appropriate size is usually the operand’s current actual size, but if the
operand is a receiving item, its appropriate size is sometimes its maximum size.
For details, see OCCURS Clause for Variable-Size Tables.

4. Reference Modifier

If the operand contains a reference modifier, the run-time routines evaluate the
reference modifier.

Unless the rules for a statement state otherwise, identification of each operand in a
statement occurs exactly once as the first operation (or series of operations) in the
execution of that statement. The identification of an operand only determines which
data item is specified, it does not evaluate or affect the content of the data item.

Term Definition

Sending data item A data item whose value is to be used in an operation

Receiving data item A data item to which the result of an operation is to be assigned

Intermediate data item A conceptual signed numeric data item used as a temporary
repository for the result being developed during the execution of an
arithmetic operation
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-21

Procedure Division Overlapping Operands
Overlapping Operands
When a sending and a receiving data item in a statement overlap—that is, when they
share part or all of their storage areas but are not defined by the same data description
entry—the result of the statement is undefined. Results are also undefined for some
statements in which sending and receiving data items are defined by the same data
description entry. Such cases are noted in the descriptions of those statements.

Common Phrases
These phrases are common to several different statements:

• CORRESPONDING Phrase

• ROUNDED Phrase

• SIZE ERROR Phrase

• FROM Phrase

• INTO Phrase

CORRESPONDING Phrase
For the purposes of this discussion, d1 and d2 are identifiers in a statement
containing a CORRESPONDING phrase and:

• Both d1 and d2 designate group (but not level 66) data items.

• The data description entries of d1 and d2 do not contain USAGE INDEX clauses.

• The data description entries of one or both of d1 and d2 can include REDEFINES
or OCCURS clauses or be subordinate to items whose data description entries
include these clauses.

A pair of data items, one subordinate to d1 and one subordinate to d2, correspond if
they follow these rules:

• Both data items have the same data-name and the same potential set of qualifiers
up to, but not including, d1 and d2. Neither data item has the data-name FILLER.

• The data description entries of the items do not contain REDEFINES, RENAMES,
OCCURS, or USAGE INDEX clauses.

• In a MOVE statement, at least one of the data items is an elementary data item,
and it is legal to move the sending item to the receiving item.

• In an ADD or SUBTRACT statement, both items are elementary numeric data
items.

If a data item does not qualify as a corresponding item, then none of its subordinates
qualify either.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-22

Procedure Division ROUNDED Phrase
In Example 8-9, assume that the records A and H obey all of the preceding rules. The
statement

MOVE CORRESPONDING A TO H

is equivalent to this series of MOVE statements:

MOVE B OF A TO B OF H
MOVE G OF F OF A TO G OF F OF H

ROUNDED Phrase
When the number of fraction digits in the result of an arithmetic operation exceeds the
number of fraction digits in the receiving item, the excess digits must be deleted by
either truncation or rounding. Also, when one or more low-order integer positions in a
receiving item are represented by P in the item’s PICTURE character-string,
equivalent digits in a result value must be deleted by truncation or rounding.

When the ROUNDED phrase is not specified, excess digits are deleted by truncation;
that is, the digits are simply discarded. If rounding is specified, the absolute value of
the retained portion of the value is increased by 1 whenever the most significant digit of
the excess is greater than or equal to 5.

In these examples, the caret (^) represents the assumed decimal point:

SIZE ERROR Phrase
The size error condition indicates a problem in computation, such as a loss of
precision. The SIZE ERROR and NOT SIZE ERROR phrases of the ADD, COMPUTE,
DIVIDE, MULTIPLY, and SUBTRACT statements enable you to test whether the
arithmetic operation caused the size error condition to arise. You cannot test for the
size error condition with an IF statement.

Example 8-9. CORRESPONDING Phrase

01 A 01 H
 03 B 05 F
 07 C 08 G
 07 D 05 B
 03 E 05 C
 03 F 09 E
 04 G 09 D
 09 G

Actual Result PICTURE Character-String of Receiving Item Rounded Value

5^71489 9V999 5^715

7650^ 99PP 77

3^141592654 9V99 3^14
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-23

Procedure Division SIZE ERROR Phrase
The situations that cause the size error condition are:

• Exponentiation

If the program attempts to raise zero to the zero power, or if no real number exists
as the result of the exponentiation, the arithmetic operation is terminated and the
size error condition arises.

• Division

If the program attempts to divide any value by zero, the arithmetic operation is
terminated and the size error condition arises.

• Overflow

If, after decimal point alignment, the absolute value of a result exceeds the largest
value that can be contained in the receiving data item, a size error condition arises.

The size error condition applies to intermediate and final results. If the ROUNDED
phrase is specified, rounding occurs before checking for a size error. When a size error
condition occurs, the subsequent action depends on whether the SIZE ERROR and
NOT SIZE ERROR phrases are specified.

Usage Considerations:

• SIZE ERROR Phrase and TRAP2 Directive

The SIZE ERROR phrase catches size errors in COMPUTATIONAL arithmetic that
the TRAP2 directive (which is the default) does not; however, the SIZE ERROR
phrase generates more code than the TRAP2 directive does.

In Example 8-10, C=A+B causes a size error that the TRAP2 directive does not
catch, but that the SIZE ERROR phrase does catch.

Note. The NMCOBOL compiler, which has traps set by default, ignores the TRAP2
directive and issues a warning.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-24

Procedure Division SIZE ERROR Phrase
• COMPUTATIONAL Data Items

If an arithmetic computation stores a value in a COMPUTATIONAL data item, and
the decimal representation of that value exceeds the number of decimal places in
the item’s PICTURE clause (as in C = A + B in the preceding example), a later
attempt to use that value (as in D = C - B in the preceding example) can cause
arithmetic overflow.

HP COBOL can retrieve a number larger than 9,999 from a PICTURE S9(4)
COMPUTATIONAL field (even though the storage unit is 2 bytes and can therefore
accommodate values from -32,767 through +32,767), but arithmetic overflow is
likely.

The largest value HP COBOL can use in a 4-byte COMPUTATIONAL item is
999,999,999 (not 2,147,483,647).

The largest value HP COBOL can use in an 8-byte COMPUTATIONAL item is
999,999,999,999,999,999 (not 9,223,372,036,854,775,807).

If you need the full capacity of 2-byte, 4-byte, and 8-byte storage, describe the item
as USAGE NATIVE-2, NATIVE-4, or NATIVE-8 (with no PICTURE) or
COMPUTATIONAL-5.

• SIZE ERROR and Multiple Results

When a statement includes more than one receiving item, the decision to assign a
result value or cause a size error condition is determined independently for each
such item; therefore, if the size error condition does not occur for a particular
receiving item, that item is assigned its correct result value even when the size
error condition exists for one or more other receiving items of the same statement
(unless the run terminates abnormally because of an arithmetic overflow).

Example 8-10. SIZE ERROR Phrase and TRAP2 Directive

 WORKING-STORAGE SECTION.
 77 A PIC 99 COMP VALUE 99.
 77 B PIC 99 COMP VALUE 88.
 77 C PIC 99 COMP.
 77 D PIC 99 COMP.
 PROCEDURE DIVISION.
 ...

* TRAP2 directive does not catch this size error:
 COMPUTE C = A + B.
 COMPUTE D = C - B.
 DISPLAY D.
* ON SIZE ERROR phrase catches this size error:
 COMPUTE C = A + B
 ON SIZE ERROR DISPLAY "Too Big"
 NOT ON SIZE ERROR DISPLAY "Acceptable".
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-25

Procedure Division SIZE ERROR Phrase
• Values Undefined When SIZE ERROR Phrase is Absent

When a size error condition occurs during execution of a statement for which the
SIZE ERROR phrase is not specified, a trap 2 (arithmetic overflow) occurs unless
a NOTRAP2 directive has suspended arithmetic overflow trapping. If a NOTRAP2
directive has suspended arithmetic overflow trapping, results are undefined.

• Values Remain Untouched When SIZE ERROR Phrase is Present

When a size error condition occurs during execution of an arithmetic statement for
which the SIZE ERROR phrase is specified, the value of the affected receiving
data items is not altered. That is, these data items retain whatever values they held
before the size error condition arose. Unaffected data items receive new values as
expected. The program has no mechanism by which it can determine which data
items were the cause of the size error condition.

• SIZE ERROR, NOT SIZE ERROR, and Transfer of Control

After completion of the execution of the arithmetic operations, if the size error
condition occurred, the imperative statement in the SIZE ERROR phrase is
executed. If execution of the imperative statement causes explicit transfer of
control (due to a procedure branching or conditional statement) control is
transferred according to the rules for that statement; otherwise, when the
imperative statement has been executed, control passes to the end of the
arithmetic statement and the NOT SIZE ERROR phrase (if any) is ignored.

When no size error condition occurs during the execution of an arithmetic
statement, the SIZE ERROR phrase (if any) is ignored, and control passes to the
NOT SIZE ERROR phrase (if one is present) or to the end of the arithmetic
statement. If execution of the imperative statement causes explicit transfer of
control (due to a procedure branching or conditional statement), control is
transferred according to the rules for that statement.

• CORRESPONDING Phrase and the Size Error Condition

When the CORRESPONDING phrase appears in an ADD or SUBTRACT
statement and any of the individual operations produces a size error condition, the
imperative statement in the SIZE ERROR phrase is not executed until all the
individual additions or subtractions are completed.

Note. The NMCOBOL compiler, which has traps set by default, ignores the NOTRAP2
directive and issues a warning.

Use the NOTRAP2 directive only during the process of conversion from COBOL 74 to
HP COBOL. It is provided to enable programs that do not include SIZE ERROR phrases to
be compiled and executed in HP COBOL without investing programmer time in analyzing
the potential for overflow problems. The availability of this directive might be discontinued
in HP COBOL after a period of time.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-26

Procedure Division FROM Phrase
FROM Phrase
The FROM phrase is an optional component of the RELEASE, REWRITE, and WRITE
statements, all of which specify a record-name as their primary operand. The identifier
in the FROM phrase and the record-name must not reference the same storage area
or overlapping storage areas.

The result of executing a statement that specifies the FROM phrase is equivalent to
the execution of these statements in this order:

1. “MOVE identifier TO record-name” executed in accordance with the rules specified
for the MOVE statement

2. The same RELEASE, REWRITE, or WRITE statement without the FROM phrase

After execution of the actual statement is complete, the information in the storage area
specified by the identifier is available, even though the information in the area specified
by record-name is not available (except as specified by the SAME AREA clause).

INTO Phrase
The INTO phrase is an optional component of the READ and RETURN statements,
both of which specify a file name as their primary operand. This phrase can be
specified in a READ or RETURN statement only if either:

• The specified file has only one associated record description entry.

• The data description entry for the data item specified by the identifier in the INTO
phrase and all record description entries associated with the file describe data
structures or elementary alphanumeric items.

The storage area specified by the identifier in the INTO phrase must not be the same
as or overlap the record area associated with the file identified by the file name.

The result of executing a statement that specifies the INTO phrase is equivalent to:

1. Execution of the same READ or RETURN statement without the INTO phrase
(which obtains a logical record of the file)

2. After successful execution of the READ or RETURN statement, assignment of the
current record in the file record area to the data item specified by the identifier in
accordance with the rules for the MOVE statement; therefore (except for a
destination described with the JUSTIFIED clause), long records are truncated at
the right, and short records are padded at the right with spaces according to the
standard alignment rules.

The size of the current record is the size of the record when it was written (see
RECORD CONTAINS Clause).

The record is then available in both the record area of the file and the storage area
associated with the data item specified by the identifier. The move operation does not
occur unless execution of the READ or RETURN statement was successful.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-27

Procedure Division Input-Output
Input-Output
These topics are common to several input-output statements:

• I-O Status Code

• Diagnosing Input-Output Errors

• Recovering from Input-Output Errors

• Timed Input and Output

I-O Status Code
Each file-control entry can include a FILE STATUS clause that designates a 2-
character file-status data item declared elsewhere in the program as the receptacle for
that file’s I-O status code. The leftmost character position of the file-status data item is
Status Key 1. The rightmost character position of the file-status data item is Status Key
2.

Whenever a program executes a CLOSE, DELETE, LOCKFILE, OPEN, READ,
REWRITE, START, UNLOCKFILE, UNLOCKRECORD, or WRITE statement for a file
that has a FILE STATUS clause, the run-time routines record the I-O status code in the
specified file-status data item. The storage operation occurs prior to the execution of
any applicable USE procedure or any applicable imperative statement associated with
the input-output statement (in AT END, NOT AT END, INVALID KEY, or NOT INVALID
KEY phrases).

The I-O status code indicates the success or failure of the input-output statement, and
(if failure), the reason for the failure. Table 8-6 through Table 8-11 show the possible
values of the file-status data item.

Topics:

• Status Key 1

• Status Key 2
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-28

Procedure Division I-O Status Code
Status Key 1
The leftmost character position of the file-status data item is known as Status Key 1
and is set for these conditions.

Table 8-5. Status Key 1 Values

Value Condition Explanation

0 Successful completion The input-output operation was completed without
error.

1 At-end condition A sequential READ statement was unsuccessfully
executed as a result of one of:

• The physical end of the file was reached.
• An optional file was not present.

2 Invalid-key condition The input-output statement was unsuccessfully
executed as a result of one of:

• Sequence error
• Duplicate key
• No record found
• Boundary violation

3 Permanent error The input-output statement was unsuccessfully
executed as a result of a boundary violation for a
sequential file or as a result of an input-output error,
such as data check, parity error, or transmission
error.

4 Logic error The input-output statement was unsuccessfully
executed because the program attempted an
improper sequence of input-output operations or
because a user-defined limit was violated.

9 Implementor-defined error Implementor-defined error means the input-output
statement was unsuccessfully executed as a result
of one of:

• Program logic error
• File description inconsistent with associated file
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-29

Procedure Division I-O Status Code
Status Key 2
The rightmost character position of the file-status data item is known as Status Key 2
and further describes the results of an input-output operation.

Table 8-6. Status Key 2 Values: Successful Completion

I-O
Status
Code File Exception Condition

“00” The input-output statement executed successfully, and no further information
concerning the input-output operation is available.

“02” The input-output statement executed successfully, but a duplicate key is detected
in one of these ways:

• For a READ statement, the key value for the current key of reference is equal
to the value of that same key in the next record within the current key of
reference

• For a REWRITE or WRITE statement, the record just written created a
duplicate key value for at least one alternate record key for which duplicates
are allowed.

“04” A READ statement executed successfully, but the length of the record being
processed does not conform to the fixed file attributes for that file.

“05” The input-output statement executed successfully; however, for an OPEN
statement, the referenced optional file is not present at the time the OPEN
statement is executed (if the open mode is I-O or EXTEND, the file has been
created).

“07” The input-output statement executed successfully, but a requested option could
not be done for of one of these reasons:

• For a CLOSE statement with the NO REWIND, REEL or UNIT REMOVAL
phrase or for an OPEN statement with the NO REWIND phrase, the
referenced file does not reside on a reel/unit medium.

• For an OPEN statement that references a file that qualifies for HP COBOL
Fast I-O, sufficient memory for HP COBOL Fast I-O was not available.

“97” The input-output statement is successfully executed, but the circumstances were
not entirely as expected.

For an OPEN statement, either the referenced file has labels and LABEL
RECORDS OMITTED was specified, or it does not have labels and LABEL
RECORDS STANDARD was specified.

For a READ statement, the retrieved record is currently locked, whether through
some other file name of the run unit or by some other process.

For a START statement, the start operation performed a read operation to
validate a position, and the record that was read was locked.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-30

Procedure Division I-O Status Code
Table 8-7. Status Key 2 Values: Unsuccessful Completion—At-End Condition

I-O
Status
Code File Exception Condition

“10” A sequential READ statement is attempted and no next logical record exists in
the file because the logical end of the file has been reached.

“14” A sequential READ statement is attempted for a relative file, but the relative
record number cannot be assigned to the relative key data item described for the
file without a loss of significance.

Table 8-8. Status Key 2 Values: Unsuccessful Completion—Invalid-Key
Condition

I-O
Status
Code File Exception Condition

“21” A sequence error exists for a sequentially-accessed Indexed file. The prime
record key value has been changed by the program between the successful
execution of a READ statement and the execution of the next REWRITE
statement for that file, or the ascending sequence requirements for successive
record key values are violated.

“22” An attempt has been made to write or rewrite a record that would create a
duplicate relative key, a duplicate prime record key, or a duplicate alternate
record key for which uniqueness is required.

“23” An attempt has been made to access a record identified by a key, and that record
does not exist in the file.

“24” An attempt has been made to write beyond the externally-defined boundaries of
a relative or indexed file, or a sequential WRITE statement is attempted for a
relative file but the relative record number cannot be assigned to the relative key
data item described for the file without a loss of significance.

Table 8-9. Status Key 2 Values: Unsuccessful Completion—Permanent Error
Condition (page 1 of 2)

I-O
Status
Code File Exception Condition

“30” A permanent error exists and no further information is available concerning the
input-output operation.

“34” A permanent error exists because of a boundary violation. This condition
indicates that an attempt has been made to write beyond the externally-defined
boundaries of a sequential file.

“35” A permanent error exists because an OPEN statement with the INPUT, I-O, or
EXTEND phrase is attempted on a required file that is not present.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-31

Procedure Division I-O Status Code
“37” A permanent error exists because an OPEN statement is attempted on a file that
is required to be a disk file but is supported on some other medium.

“38” A permanent error exists because an OPEN statement is attempted on a file
previously closed with lock.

“39” The OPEN statement is unsuccessful because a conflict has been detected
between the fixed file attributes and the attributes specified for that file in the
program.

Table 8-10. Status Key 2 Values: Unsuccessful Completion—Logic Error
Condition (page 1 of 2)

I-O
Status
Code File Exception Condition

“41” An OPEN statement is attempted for a file already in the open mode, or for one
in a set of files that resides on a multiple file reel set when some other file in that
set is already in the open mode.

“42” A CLOSE, LOCKFILE, or UNLOCKFILE statement is attempted for a file not in
the open mode.

“43” In the sequential access mode, the last input-output statement executed for the
file prior to the execution of a DELETE or REWRITE statement was not a
successfully executed READ statement.

“44” A boundary violation exists for one of these reasons:

• An attempt is made to write or rewrite a record that is larger than the largest
record description entry specified for the associated file name or smaller
than the smallest record allowed by the RECORD clause of the associated
file name.

• An attempt is made to rewrite a record to a Sequential file and the record is
not the same size as the record being replaced.

“46” A sequential READ statement is attempted on a file open in the input or I-O
mode and no valid next record has been established for one of these reasons:

• The preceding START statement was unsuccessful.

• The preceding READ statement was unsuccessful but did not end at an at-
end condition.

Table 8-9. Status Key 2 Values: Unsuccessful Completion—Permanent Error
Condition (page 2 of 2)

I-O
Status
Code File Exception Condition
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-32

Procedure Division Diagnosing Input-Output Errors
Diagnosing Input-Output Errors
The I-O status code returned to the program indicates what type of input-output error
occurred. The run-time routines send diagnostic messages for permanent error
conditions and logic error conditions to the home terminal (or designated execution-log
file), regardless of whether an error is recoverable. You must examine the I-O status
code and to determine whether an unsuccessful input-output operation must cause the
program to terminate abnormally or allow it to continue processing. To facilitate
program execution and error recovery, the COBOL run-time input-output errors are
classified as either:

• Program Logic Errors

• External Errors

Program Logic Errors
A program logic error is considered nonrecoverable and causes the program to
terminate abnormally after execution of any applicable declarative section. This type of
error causes I-O status code “4x ” where x is a decimal digit, or I-O status code “90”
(for errors defined by HP).

“47” The execution of a READ or START statement is attempted on a file not open in
the Input or I-O mode.

“48” The execution of a WRITE statement is attempted on a file not open in the I-O,
Output, or Extend mode.

“49” The execution of a DELETE or REWRITE statement is attempted on a file not
open in the I-O mode.

Table 8-11. Status Key 2 Values: Unsuccessful Completion—Conditions Defined
by HP

I-O
Status
Code File Exception Condition

“90” A Logic Error has occurred; it is not one of those defined under the “4x ” codes,
and no recovery is possible.

“91” An I-O Error from which recovery might be possible has occurred.

Table 8-10. Status Key 2 Values: Unsuccessful Completion—Logic Error
Condition (page 2 of 2)

I-O
Status
Code File Exception Condition
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-33

Procedure Division Diagnosing Input-Output Errors
External Errors
An external error is recoverable if the program includes an associated declarative
section; otherwise, an external error causes the program to terminate abnormally. The
types of recoverable input-output errors are:

• An external error that has an associated operating system input-output error
causes I-O status code “30”. The run-time routine then calls the FILEERROR
procedure to check whether an operation can be retried. If the operation is not
retried, the operating system reports an error, giving the file name and the file-
system error number, which the run-time routine includes in an error message that
it delivers to the process’s log file (usually the home terminal).

• An external input-output failure that is not related to an operating system error
causes the return of I-O status code “91”.

The format of the run-time error message depends on the environment. For details,
see Section 48, Run-Time Diagnostic Messages.

The run-time routines can also generate warnings, indicating that a minor error
condition exists. A warning message is issued, but no declaratives or error actions are
executed, and the program continues.

Each COBOL run unit contains a special register called GUARDIAN-ERR, a
COMPUTATIONAL data item defined as

PIC 9(4) COMPUTATIONAL.

The process updates this register each time it executes an input-output statement. The
value of GUARDIAN-ERR is delivered to the run-time routines by the operating system
upon its completion of the requested input-output statement. Do not use the library
routine COBOLFILEINFO or the Guardian routine FILEINFO to retrieve the error,
because they can return incorrect values.

Table 8-12 is provided for your guidance only. The final authority on the meaning of the
values of GUARDIAN-ERR is the current documentation of the operating system.
Table 8-12 is not exhaustive; values other than those shown for GUARDIAN-ERR
might be returned.

Note. GUARDIAN-ERR augments, but does not replace, the I-O status code.

The value of GUARDIAN-ERR derives only from the operating system. The run-time routines
merely make the value available for the process to examine after the process has examined
the appropriate I-O status code.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-34

Procedure Division Diagnosing Input-Output Errors
Table 8-12. I-O Status Codes Augmented by GUARDIAN-ERR (page 1 of 5)

Status
Code

GUARDIAN-ERR
Value COBOL Statement(s) Cause of Status Code

“00” 0 All Operation was successful

6 READ sequential Read from $RECEIVE and system
message was read. Operation was
still successful

“04” 0 READ Record on file shorter than
expected

“05” 11 OPEN Open for INPUT, I-O, or EXTEND—
OPTIONAL specified and file does
not exist

14 OPEN Open for INPUT, I-O, or EXTEND—
OPTIONAL specified and device
does not exist for a temporary file

“07” 0 OPEN Insufficient memory for HP COBOL
Fast I-O

0 CLOSE NO REWIND,
OPEN NO REWIND

NO REWIND on a device that is not
a tape

0 CLOSE REEL REEL/UNIT on a device that is not
a tape

“10” 1 READ sequential End of file

“21” 0 WRITE (indexed file) Sequence violation

11 REWRITE with
sequential access

Record does not exist

23 REWRITE with
sequential access

Relative key out of bounds

46 REWRITE with
sequential access

Invalid key specified

“22” 10 REWRITE Alternate key without duplicates
already exists

10 WRITE Record already exists

xxx = Whatever file-system error is returned
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-35

Procedure Division Diagnosing Input-Output Errors
“23” 0 READ random
(relative file)

The position not as expected

0 START On an optional file that is missing or
record at that position not desired
one

1 START Record not found before EOF

1 READ random
(relative or indexed file)

Record does not exist or relative file
has reached end

11 DELETE,
READ random,
REWRITE

Record does not exist

23 DELETE,
READ random,
REWRITE,
START

Relative key out of bounds

46 DELETE,
READ random,
REWRITE,
START

Invalid key specified

“24” 23 WRITE Relative key out of bounds

45 WRITE File is full

46 WRITE Invalid (duplicated) key specified)

Table 8-12. I-O Status Codes Augmented by GUARDIAN-ERR (page 2 of 5)

Status
Code

GUARDIAN-ERR
Value COBOL Statement(s) Cause of Status Code

xxx = Whatever file-system error is returned
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-36

Procedure Division Diagnosing Input-Output Errors
“30” xxx CLOSE Fatal error on WRITE to write final
block, or to write held spacing or
record for print files, or attempt to
write tape marks on tape failed

xxx CLOSE REEL Reel swap failed

xxx DELETE Attempt to position failed, or
attempt to delete record failed, or
attempt to reposition after deletion
failed

xxx LOCK,
UNLOCK

Attempt to lock/unlock file or record
failed

xxx LOCK,
UNLOCK

Wait on preread of file failed

xxx OPEN System open failed; position for
EXTEND failed; purge for existing
file failed; create for nonexistent file
failed; or other system call failed

xxx READ random System error on read

xxx READ sequential System error on read; reel swap
failed

xxx REWRITE System error on position request;
replace failed

xxx START System error on position request

xxx WRITE System error on various operations

11 OPEN Opening for OUTPUT, I-O or
EXTEND on file with alternate keys
when no FUP CREATE has been
done to create file

18 OPEN The node that file is on is not up

40 LOCKFILE,
READ,
START

Operation timed out

73 LOCKFILE,
READ,
START

Record in file locked

“34” 45 CLOSE,
WRITE

File is full

Table 8-12. I-O Status Codes Augmented by GUARDIAN-ERR (page 3 of 5)

Status
Code

GUARDIAN-ERR
Value COBOL Statement(s) Cause of Status Code

xxx = Whatever file-system error is returned
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-37

Procedure Division Diagnosing Input-Output Errors
“35” 11 OPEN Opening for INPUT, I-O, or
EXTEND on nonexistent file:
OPTIONAL not specified

14 OPEN Opening for INPUT, I-O, or
EXTEND on temporary file: device
does not exist, and OPTIONAL not
specified

“37” 0 OPEN Opening for INPUT or OUTPUT:
device won’t support it

“38” 0 OPEN File is locked

“39” 0 OPEN File is not disk or is an unstructured
disk file and organization is not
sequential or file has alternate keys
LINAGE specified on file that is not
a printer or process

Multiple files specified on a device
that is not a tape

OUTPUT specified on an EDIT file

Record too large for file buffer size

Fixed length records not specified
for unstructured file

Organization does not match file
type

Key specs for file do not match
program key specs

“41” 0 OPEN File is not closed

“42” 0 CLOSE Attempt to close an unopened file

0 LOCKFILE,
UNLOCKFILE

Attempt to access an unopened file

“43” 0 DELETE,
REWRITE (sequential
access)

No successful READ

“44” 0 REWRITE New record has different size than
replaced one

“46” 0 READ sequential Current position undefined

“47” 0 READ,
START

File is not opened for INPUT or I-O

Table 8-12. I-O Status Codes Augmented by GUARDIAN-ERR (page 4 of 5)

Status
Code

GUARDIAN-ERR
Value COBOL Statement(s) Cause of Status Code

xxx = Whatever file-system error is returned
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-38

Procedure Division Recovering from Input-Output Errors
Recovering from Input-Output Errors
When a process executes an I-O statement against a given file, either the I-O
operation is successful or it is not. In either case, if there is an I-O status data item
associated with the file, the run-time routines store an I-O status code there. (See I-O
Status Code.)

After the run-time routines store the I-O status code, the behavior of the process
depends on the nature of the exception and on the presence of any exception handling
phrases, or if no exception handling phrases are present, then on the presence of an
applicable declarative procedure.

Topics:

• At-End Condition or Invalid-Key Condition

• Other Error Conditions

“48” 0 WRITE (sequential
access)

Indexed or relative file not open for
OUTPUT and not open EXTEND
sequential access

0 WRITE (random or
dynamic access)

Indexed or relative file not open for
I-O

0 WRITE (sequential file) File was not opened for OUTPUT,
EXTEND, or I-O

“49” 0 DELETE,
REWRITE

File was not opened for I-O

“90” 0 LOCKFILE,
READ,
START

File was not opened for nowait I-O,
and TIME LIMIT was specified

0 WRITE Wrong file type for ADVANCING
operations

“91” xxx OPEN Unable to initialize EDIT file

0 OPEN No buffer space available in user
data space

xxx READ sequential Unable to read EDIT file

0 READ sequential Read with lock and preread on

“97” 9 READ,
START

A locked record was read or
nominated in a START statement

0 OPEN The program described a file as
having standard labels, and no
standard label was found

Table 8-12. I-O Status Codes Augmented by GUARDIAN-ERR (page 5 of 5)

Status
Code

GUARDIAN-ERR
Value COBOL Statement(s) Cause of Status Code

xxx = Whatever file-system error is returned
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-39

Procedure Division Recovering from Input-Output Errors
At-End Condition or Invalid-Key Condition
If the error condition is the at-end condition or the invalid-key condition, the file is not
affected (that is, if the statement was an output statement, the contents of the file
remain unchanged). The run-time routines then perform these actions in this order:

1. If the statement that caused the condition includes any positive exception handling
phrase (AT END or INVALID KEY), transfer control to that phrase’s imperative
statement. Ignore any USE AFTER EXCEPTION procedure and any negative
exception handling phrases (NOT AT END, NOT INVALID KEY).

If control reaches the end of the AT END or INVALID KEY phrase, transfer control
to the statement immediately following the terminating period or scope terminator
of the I-O statement that caused the exception condition.

2. If the statement that caused the condition does not include a positive exception
handling phrase, but does include a negative exception handling phrase (NOT AT
END or NOT INVALID KEY), ignore any USE AFTER EXCEPTION procedure and
any negative exception handling phrases. Transfer control to the statement
immediately following the terminating period or scope terminator of the I-O
statement that caused the exception condition.

3. If all exception handling phases (AT END, NOT AT END, INVALID KEY, or NOT
INVALID KEY) are absent but a declarative procedure of the form USE AFTER
EXCEPTION is associated with the file, execute that procedure.

4. If control reaches the end of declarative procedure, transfer control to the
statement immediately following the terminating period or scope terminator of the
I-O statement that caused the exception condition.

5. If neither exception handling phrases nor declarative procedures apply, transfer
control to the statement immediately following the terminating period or scope
terminator of the I-O statement that caused the exception condition.

Other Error Conditions
If the execution is unsuccessful for a reason other than an at-end or invalid-key
condition, the behavior of the program depends on the presence or absence of a
declarative procedure for the file in question. If there is such a declarative procedure,
the behavior of the program also depends on the presence or absence of any negative
exception handling phrase (NOT AT END or NOT INVALID KEY).

When the run-time routines have recognized the exception condition, generated a run-
time diagnostic message, and stored the I-O status code, they take these actions in
this order:

1. If a declarative procedure of the form USE AFTER EXCEPTION is associated with
the file, execute the declarative procedure.

Then, if recovery from the exception is not possible (the I-O status code is “90” or
Status Key 1 is “4”), terminate the process.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-40

Procedure Division Timed Input and Output
If recovery from the exception is possible (either when Status Key 1 is “3,” or when
it is “9” and Status Key 2 is not “0”), and the declarative procedure has not
voluntarily terminated execution of the process, continue the execution:

a. If the statement that caused the condition includes any negative exception
handling phrase (NOT AT END or NOT INVALID KEY), transfer control to that
phrase’s imperative statement. Ignore any positive exception handling phrases
(AT END, INVALID KEY).

b. If the statement that caused the condition does not include any negative
exception handling phrase, transfer control to the statement immediately
following the terminating period or scope terminator of the I-O statement that
caused the exception condition.

2. If no applicable declarative procedure exists, terminate the process.

Timed Input and Output
Timed input-output prevents the deadlock that can occur when processes require
concurrent access to shared data files. Timed I-O is enabled for a file when the file is
opened with an OPEN statement containing a TIME LIMIT phrase. When timed I-O is
enabled for a file, you can use a TIME LIMIT phrase in a LOCKFILE, READ, or START
statement that applies to the file. The time limit is the number of seconds within which
the operation must finish. A negative time limit means “wait indefinitely” (until the
contention is resolved or the waiting process is terminated by an external agency).

Topics:

• Expired Time Limit

• Overhead

• Fatal Error

• $RECEIVE Timeout

Expired Time Limit
An expired time limit indicates a potential deadlock. The programmed recovery action
(declarative procedure) must release any locks held by the program and restart the
execution of the current request.

If no declarative procedure applies to the file when the operation terminates, the
program terminates abnormally.

If a declarative procedure does apply to the file and the time limit expires, the
declarative procedure is performed and program execution continues with the
statement following the one terminated.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-41

Procedure Division Arithmetic Operations
The value of the file position indicator becomes undefined when an operation exceeds
its time limit. Because you cannot determine where in the operation the time limit was
exceeded, you cannot necessarily try the operation again immediately at the current
record.

Overhead
When a file is opened with timed I-O enabled, each I-O statement incurs more
overhead than a file opened without a time limit. Avoid using timed I-O unnecessarily.

When a file is being read with APPROXIMATE positioning, the value used for time limit
must take into account that a READ can take somewhat longer than expected. This
can occur when a nonexistent record is sought, because the operating system
searches through the file looking for the next defined record before reporting the
absence of the record sought.

Fatal Error
If a file is opened without the TIME LIMIT phrase, and the TIME LIMIT phrase is
specified in a LOCKFILE, READ, or START statement with a nonnegative value for the
time limit, a run-time error is reported to the process’s home terminal, and the process
terminates abnormally with the I-O status code “90”.

$RECEIVE Timeout
A process that must avoid unnecessary suspension when checking for messages on
$RECEIVE can use timed I-O. If the READ statement specifies the time limit 0 and no
message is present, the request times out immediately.

Arithmetic Operations
Many different statements tell the compiler to perform arithmetic operations, either
because they are arithmetic statements or because they include arithmetic
expressions.

The arithmetic statements are:

• ADD

• COMPUTE

• DIVIDE

• MULTIPLY

• SUBTRACT
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-42

Procedure Division Common Features of Arithmetic Statements
Topics:

• Common Features of Arithmetic Statements

• Arithmetic Expressions

• Arithmetic Precision

Common Features of Arithmetic Statements
This section describes the common features of the arithmetic statements, which are:

• Data Conversion and Alignment

• Composite of Operands

• Intermediate Data Items

• Multiple Results

• Incompatible Data

Data Conversion and Alignment
The data descriptions of the operands need not be the same; any necessary
conversion and decimal point alignment is supplied by the COBOL compiler throughout
the calculation.

Composite of Operands
The maximum size of each arithmetic operand is 18 decimal digits, independent of any
decimal point. When the computer performs arithmetic, it must handle operands of
different data descriptions. To discuss the restrictions on arithmetic operations, the
COBOL community coined the term “composite of operands.”

The composite of operands for a given operation is a fictitious data item. It has as
many positions in its integer portion (to the left of the decimal point) as the operand
that has the largest number of integer positions, and as many positions in its fraction
portion (to the right of the decimal point) as the operand that has the largest number of
fraction positions.

For example, in the data descriptions

01 A PIC S9(8)V9(4)
01 B PIC S9(2)V9(7)
01 C PIC S9(4)V9(9)

the composite of operands for an arithmetic operation involving only A, B, and C would
have a data description of S9(8)V9(9), or 17 digits.

The composite of operands for an arithmetic statement other than COMPUTE must not
exceed a size of 18 decimal digits. For arithmetic expressions or COMPUTE
statements, the composite of operands does not apply.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-43

Procedure Division Common Features of Arithmetic Statements
Intermediate Data Items
For each arithmetic operation, an intermediate data item holds the result value until
that value is either used as an operand in another operation or assigned to a receiving
data item. The size of the intermediate data item depends on the operations and data
items used in the operation and varies from 16 bits (about four digits) to 128 bits (about
39 digits). If the algebraic size of the result exceeds the capacity of this intermediate
data item, a binary, floating-point, intermediate data item is used and the compiler
issues warning 85. Because floating-point arithmetic has a maximum precision of 16
digits and often is not exact, the result might be incorrect in the rightmost digit or digits.

Multiple Results
The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements can have
multiple results from performing arithmetic necessary to arrive at the final result to be
stored in the receiving item. During execution, multiple results are the same as the
results produced by a sequence of statements that either combine the value of an
intermediate data item with a single result or transfer the value to a receiving item.
These statements are in the same left-to-right order as that of the multiple results in the
actual statement.

For example, the results of the statement

ADD A B C TO C D (C) E

are equivalent to those of the statements

ADD A B C GIVING TEMP
ADD TEMP TO C
ADD TEMP TO D (C)
ADD TEMP TO E

TEMP is the intermediate data item. Any subscripts specified in a reference to a
receiving item are evaluated just prior to the assignment operation for that item.

Incompatible Data
Normally, whenever the contents of a data item are used in the Procedure Division and
the current contents of that data item are not compatible with the class and size
specified by its PICTURE clause, the result of the reference is undefined; that is, the
semantic rules of the COBOL language apply only when operands have values
corresponding to their descriptions. The single exception to this rule is the class
condition, which exists specifically to permit testing whether or not an operand’s value
corresponds to its description. The presence of incompatible data can cause execution
of the run unit to terminate abnormally.

Some computations can generate a negative zero (for example, when the value of an
expression is -0.05, and this value is stored in a variable that is described as PICTURE
S99V9). When the program uses the value negative zero, it ignores the sign.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-44

Procedure Division Arithmetic Expressions
Arithmetic Expressions

num-id

is the identifier of a numeric data item.

num-lit

is a numeric literal.

arith-expr

is an arithmetic expression.

The value of an arithmetic expression is a numeric value.

Arithmetic expressions can appear in:

• ENTER statements
• EVALUATE statements
• Reference modifiers
• Sign conditions
• Relation conditions
• Function arguments

The values computed when arithmetic expressions are evaluated are transitory and
are not stored for later use by the program.

Topics:

• Operands

• Arithmetic Operators

• Formation and Evaluation Rules

+
-

num-id

+

-

**

num-lit

arith-expr

()arith-expr

*

/

arith-expr

VST739.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-45

Procedure Division Arithmetic Expressions
Operands
An operand is a numeric literal, the identifier of a numeric data item, or any arithmetic
expression enclosed within balanced left and right parentheses. The identifiers and
literals appearing in an arithmetic expression must represent numeric data items and
numeric literals upon which arithmetic can be performed.

Arithmetic Operators
Each operator in Table 8-13 must be preceded and followed by a separator (usually
spaces or parentheses).

The minus sign (-) and the plus sign (+) must be preceded by a space or a left
parenthesis and followed by a space. The exponentiation sign (**) cannot contain an
embedded space, but it can be split across two lines through the use of the hyphen
continuation character.

A plus (+) or minus (-) appearing as the first character of a numeric literal is the sign
character of that literal, not an arithmetic operator. For example, +2 is not an arithmetic
expression. In contrast, a plus (+) or minus (-) followed by a separator is interpreted as
a binary operator when preceded by an operand or as a unary operator when not
preceded by an operand. For example, X + 2 represents a simple arithmetic
expression. The presence of a sign character in a numeric literal does not affect its use
as an operand; therefore, both X + + 2 and X + 2 are valid and, in this case, equivalent
expressions.

Table 8-13. Arithmetic Operators

Operator

MeaningSymbol Kind

+ Unary Multiplication by +1

Binary Addition

- Unary Multiplication by -1

Binary Subtraction

* Binary Multiplication

/ Binary Division

** Binary Exponentiation
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-46

Procedure Division Arithmetic Expressions
Formation and Evaluation Rules
Parentheses can be used to specify the order in which the elements of an expression
are to be evaluated. Expressions within parentheses are evaluated first. Within nested
parentheses, evaluation proceeds from the least inclusive set to the most inclusive set.
When parentheses are not used, or parenthesized expressions are at the same level of
inclusiveness, the hierarchical order of execution is shown in Table 8-14.

When no parentheses are present to specify otherwise, the order of execution of
consecutive operations of the same hierarchical level is from left to right.

Table 8-15 shows some expressions that appear to be ambiguous and the COBOL
interpretation of them.

You can use arithmetic parentheses to:

• Override the normal hierarchical sequence of execution in expressions whose
evaluation must not follow the normal precedence, for example:

A / (B * C)

• Clarify the hierarchical sequence of execution for the benefit of the reader, for
example:

PRIN + (INT * PERIOD)

It is recommended that division be the last operation performed in an expression, if
possible; otherwise, execution can be slow and precision can be lost.

Table 8-14. Hierarchy of Operators

Hierarchy Operators

1st Unary plus and minus

2nd Exponentiation

3rd Multiplication and division

4th Addition and subtraction

Table 8-15. Precedence in Arithmetic Expressions

Ambiguous Interpretation

A / B * C (A / B) * C

A / B / C (A / B) / C

A ** B ** C (A ** B) ** C

A + B / C + D ** E * F - G ((A + (B / C)) + ((D ** E) * F)) - G
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-47

Procedure Division Arithmetic Precision
An arithmetic expression must begin with an operand (which can be a parenthetical
expression) or a unary operator followed by an operand. Parentheses must always
appear in balanced pairs such that each left parenthesis precedes its corresponding
right parenthesis within the expression. Any operand can be preceded by a unary
operator.

These rules apply to evaluation of the exponentiation operator in an arithmetic
expression:

• If the value of the base (left-hand) operand is 0, the power (right-hand) operand
must have a value greater than 0; otherwise, the size error condition exists.

• If the evaluation yields both a positive and a negative real number, the value
returned as the result is the positive number.

• If the result of the evaluation is not a real number or is not representable by the
computer system on which the operation is evaluated, the size error condition
exists.

• COBOL accepts noninteger as well as integer exponents.

Arithmetic Precision
The precision of ADD, SUBTRACT, MULTIPLY, and DIVIDE statements can be fairly
easily stated. The precision of arithmetic expressions is substantially more complex,
because the compiler must create intermediate data items as it evaluates the
expression. Arithmetic expressions occur only in the COMPUTE, ENTER, and
EVALUATE statements, the relation and sign conditions, function arguments, and in
reference modification.

In discussing precision, we ignore the presence of a scale factor or of any decimal
point; the arithmetic processing records and handles these elements separately. After
the computation is performed with integral values, the decimal point and scale factor (if
any) are then provided for the result.

Table 8-16. Operator-Operand Combinations

First Element

Successor Element

Variable
Binary Operator
+ - * / **

Unary Operator
+ or - ()

Identifier or literal No Yes No No Yes

Binary Operator
+ - * / **

Yes No Yes Yes No

Unary Operator
+ or -

Yes No No Yes No

(Yes No Yes Yes No

) No Yes No No Yes
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-48

Procedure Division Arithmetic Precision
The largest value HP COBOL can store is the unsigned COMPUTATIONAL-5 value
18,446,744,073,709,551,615.

The largest value HP COBOL can store associated with a DISPLAY or
COMPUTATIONAL data item (independent of any decimal point or scale factor) is the
20-digit number which is the highest value for an unsigned 64-bit number.

In evaluating arithmetic expressions, COBOL can manipulate intermediate values
having up to 128 bits (about 39 digits).

These topics explain arithmetic precision as it applies to:

• SIZE ERROR

• ADD and SUBTRACT Statements

• MULTIPLY Statement

• DIVIDE Statement

• Arithmetic Expressions

SIZE ERROR
As explained in SIZE ERROR Phrase, the size error condition indicates a problem in
computation. It arises when an arithmetic overflow occurs or when a program attempts
to divide by zero, raise zero to the zero power, or raise a negative number to a power
that produces other than a real number value. If no SIZE ERROR clause is present in
the statement where the condition arises, the process can terminate abnormally with
an arithmetic overflow or it can store invalid values into result items (mainly in items of
USAGE COMPUTATIONAL).

ADD and SUBTRACT Statements
Each data item in an ADD or SUBTRACT statement, except the one after GIVING, is
called an addend. In the statement

ADD P Q R S T GIVING W

the addends are P, Q, R, S, and T. In the statement

ADD P Q R S T TO X Y

the addends are P, Q, R, S, T, X, and Y.

The number of accurate fraction digits maintained during evaluation is determined by
the addend having the greatest number of fraction digits. All remaining intermediate
result representation space is used for nonfraction digits. The computed result is
always completely accurate unless an internal overflow occurs, raising the size error
condition; therefore, all digits in the value assigned to a receiving data item are
accurate unless the size error condition occurs for that data item.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-49

Procedure Division Arithmetic Precision
MULTIPLY Statement
The number of fraction digits in the product is the sum of the number of fraction digits
in the two operands. The number of accurate nonfraction digits in the product is the
sum of the nonfraction digits in the two operands. The computational method used
verifies that an internal overflow never occurs for a MULTIPLY statement; therefore, all
digits in the value assigned to a receiving data item are accurate unless the size error
condition occurs for that data item.

DIVIDE Statement
Because division is a rather complicated mathematical operation, and because the
computer is performing scaled integer arithmetic instead of floating-point arithmetic, the
rules stating the precision of HP COBOL division are somewhat complicated.

• Effect of GIVING

When the GIVING phrase is present, a single quotient is computed. The
appropriate number of fraction digits in that quotient is determined from the
receiving operand having the greatest number of fraction digits.

When no GIVING phrase is present, a separate quotient is computed for each
receiving data item. Such a DIVIDE statement with multiple receiving data items is
exactly equivalent to a sequence of DIVIDE statements, each having a single
receiving data item and all having the same divisor. The appropriate number of
fraction digits in each quotient is determined from the corresponding receiving data
item.

• Effect of Decimal Point Placement

Under the mathematical rules for division, fraction digits in the divisor cause the
significant digit positions of the quotient to appear shifted to the left with respect to
the significant digit positions of the dividend. This corresponds to moving the
decimal point of the dividend to the right the same number of positions as would be
necessary to make the divisor an integer:

1.00/0.3 = 10.0/03 = 03.3

Put another way, each divisor fraction digit cancels a trailing digit position in the
dividend, which then reappears as a leading digit position in the quotient. This
causes a problem when the actual dividend has fewer fraction digits than the sum
of the number of digits in the divisor’s fraction and the number of digits in the
appropriate quotient’s fraction.

Suppose you want to divide two data items described as:

DIVIDEND PICTURE 9(10)v9(5) USAGE DISPLAY
DIVISOR PICTURE 9(4)v9(7) USAGE DISPLAY

If the computer aligns them by scaling each up by 7 decimal places, it has to
extend the dividend’s fraction with 2 additional digit positions filled with zeros. It
would be dividing a 17-digit integer by an 11-digit integer.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-50

Procedure Division Arithmetic Precision
Because the sum of the number of actual dividend digits and the number of
appended zero digits cannot exceed 36, there are very few combinations of
operands in a DIVIDE statement for which it is impossible to append enough zeros.

• Size Error

All digits in the value assigned to the receiving data item are accurate unless either
the size error condition occurs for that data item or at least one trailing digit is
fictitious (that is, set to 0 because it was not generated by the division operation).

Arithmetic Expressions
HP COBOL maintains intermediate results during the evaluation of arithmetic
expressions. Arithmetic expressions occur only in the COMPUTE statement, the
EVALUATE statement, the relation condition, the sign condition, the reference modifier,
the parameters of the ENTER statement, and function arguments.

The evaluation of an arithmetic expression is the result of the evaluation of a sequence
of intermediate results. The maximum number of digits held for an intermediate result
is 36. If this number is exceeded, the compiler might use binary floating-point
arithmetic (and issue warning 85). The size error condition applies to both final results
and intermediate results.

These abbreviations are used to explain intermediate operations:

Note. The precision of COBOL arithmetic computation has limitations. The COMPUTE
statement is particularly sensitive. Use of an appropriate sequence of the ADD, SUBTRACT,
MULTIPLY, and DIVIDE statements permits you to attain the precision you desire, provided
that the PICTURE clauses describing the operands do not imply potential values of
exaggerated significance. There is no guarantee that the result of an arithmetic expression will
be the same in different implementations.

Abbreviation Description

IR Number of integer places carried for an intermediate result.

DR Number of decimal places carried for an intermediate result.

OP1 First operand in an arithmetic expression, which has the form 9(I1)V9(D1),
where I1 is the number of integer places carried and D1 is the number of
decimal places carried for the first operand.

OP2 Second operand in an arithmetic expression, which has the form
9(I2)V9(D2), where I2 is the number of integer places carried and D2 is the
number of decimal places carried for the second operand.

OPR Desired result, which has the form 9(IR)V9(DR), where IR is the number of
places carried for the integer result, and DR is the number of places carried
for the decimal result.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-51

Procedure Division Arithmetic Precision
The number of decimal places in the intermediate result (DR) is chosen first, then the
number of integer places in the intermediate result is determined from that and the
characteristics of the two operands.

HP COBOL guarantees that the mathematical significance of results will be at least as
good as application of these rules implies.

When an arithmetic expression involves a division operation, the intermediate results
are evaluated in these steps:

1. The actual division
2. The adjustment of that result for use in further computations

Therefore, in each of these instances of the arithmetic expression “A1/A2+A3*A4,”

COMPUTE AX = A1/A2 + A3 * A4
IF A1/A2 + A3 * A4 LESS THAN AX GO TO ...

the division is performed before further evaluation of either of the preceding
statements. If the division operation is not the last operation in the expression and the
divisor is not 2, 4, 5, 8, or a power of 10, the division is carried out to 36 digits. As
many fractional digits as possible are kept. This number can be truncated depending
on subsequent operations. In some cases adjustment is not possible, so the compiler
uses binary floating-point arithmetic (and issues warning 85). Since the precision of
floating-point arithmetic is 16 digits and numbers cannot always be represented
exactly, the result might be slightly larger or smaller than the exact number. You might
have to use individual operations or revise the expression to guarantee accurate
results.

To obtain the maximum accuracy in an arithmetic expression that involves a division,
use parentheses or revise the expression as necessary to assure that the division is
the last operation performed. For example, you can rewrite the expression “a / b * c" as
"(a * c) / b".

When a conditional expression compares a variable and an expression, the number of
decimal places carried for the variable is used for the number of decimal places carried
for the expression.

Operation

Decimal Places (Worst-Case Precision)

DR is the greater/greatest of … IR is the lesser of …

OP1 + OP2
OP1 - OP2

D1 and D2 (The greater of I1 and I2) + 1) and
(36 - DR)

OP1 * OP2 D1 and D2 (I1 + I2) and (36 - DR)

OP1 / OP2 D1 - D2, the D of the composite of
all the result fields, and 1

(I1 + D2) and (36 - DR)

OP1 ** OP2 D1 or D2 (The greater of I1 or I2) and (36 - DR)

Note. If (I1+D2+DR) > 36, the compiler uses floating-point arithmetic (and issues warning 85).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-52

Procedure Division Conditional Expressions
When a conditional expression compares two expressions, the compiler determines
the smallest number of decimal places suitable for each of the expressions and then
uses the larger of those numbers of decimal places.

In a COMPUTE statement, the number of decimal places of the composite of operands
of the receiving fields is the number of decimal places of the expression.

If ROUNDED is specified on any operand, one additional decimal position is used in
the computation, then the rounding is applied to the result.

Conditional Expressions
Many different statements include conditional expressions. A conditional expression is
a syntactically correct combination of simple conditions, logical operators, and
parentheses that can be evaluated to a truth value. The truth value determines which
of two paths of control the object program takes.

The simplest form of a conditional expression is a simple condition. Complex
conditions are combinations of simple conditions and any of the logical operators NOT,
AND, and OR. COBOL allows you to abbreviate sequences of complex relation
conditions. You can use balanced sets of parentheses to control or clarify the order of
evaluation within a conditional expression.

Topics:

• Simple Conditions

• Complex Conditions

• Abbreviated Combined Relation Conditions

• Condition Evaluation Rules

Simple Conditions
A simple condition has a truth value of TRUE or FALSE. Enclosing a simple condition
within parentheses does not affect its truth value. The simple conditions are:

• Relation Conditions in General

• Relation Conditions With Nonpointer Operands

• Relation Conditions With Pointer Operands

• Class Conditions

• Condition-Name Conditions (Conditional Variables)

• Switch-Status Conditions

• Sign Conditions
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-53

Procedure Division Simple Conditions
Relation Conditions in General
A relation condition causes a comparison of two operands. The relation condition has a
truth value of TRUE if the relation exists between the operands; otherwise, it has a
truth value of FALSE.

Usage Considerations:

• Terminology

In the preceding syntax diagrams, the left-hand operand is called the subject of the
condition; the right-hand operand is called the object of the condition.

• Where Pointer Relations Are Allowed

A relation with pointer operands is allowed in EVALUATE, IF, PERFORM, and
SEARCH VARYING statements. It is not allowed in SEARCH ALL statements,
because pointer data items have no meaningful order.

• Cannot Compare Literal With Literal

At least one nonpointer operand must be an index-name, identifier, or arithmetic
expression containing at least one reference to a data item; that is, the relation
must include at least one nonliteral element.

• Operators

The relational operators specify the type of comparison to be made in the relation
condition, as this table shows. NOT and the component following it are considered
to be a single relational operator. For example, NOT EQUAL is a truth test for an
unequal comparison. In this table, optional words are in brackets.

Relational Operator

MeaningWords Symbol

GREATER [THAN] > Greater than

NOT GREATER [THAN] NOT > Not greater than

LESS [THAN] < Less than

NOT LESS [THAN] NOT < Not less than

EQUAL [TO] = Equal to

NOT EQUAL [TO] NOT = Not equal to

GREATER [THAN] OR EQUAL [TO] >= Greater than or equal to

LESS [THAN] OR EQUAL [TO] <= Less than or equal to
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-54

Procedure Division Simple Conditions
• Numeric Comparisons

Numeric comparisons are made with respect to the algebraic values of the
operands. The number of digits present in the representation of an operand is not
significant. Comparison of numeric operands is permitted regardless of the manner
in which their usage is described. Unsigned numeric operands are considered
positive for purposes of comparison. Zero is considered a unique value regardless
of its sign.

• Nonnumeric Comparisons

For nonnumeric operands, or one numeric and one nonnumeric operand, a
comparison is made with respect to the program collating sequence (see OBJECT-
COMPUTER Paragraph).

° One operand is numeric:

° The numeric operand must be a numeric literal or a reference to a numeric
data item; therefore, it cannot be an arithmetic expression. COBOL
requires the operand to be an integer and, if a data item, to have DISPLAY
usage. HP COBOL removes both of these restrictions.

° When the nonnumeric operand is either an elementary data item or a
nonnumeric literal, the numeric operand is handled as though it were
moved to an elementary alphanumeric data item, and the value of this item
were then compared to the nonnumeric operand. The size of this
conceptual data item is the same as the number of digit positions in the
numeric operand. The numeric operand is handled as if it were an
unsigned integer; therefore any sign or assumed decimal point is deleted
by the conceptual move, and no COMPUTATIONAL items are converted to
usage DISPLAY.

° When the nonnumeric operand is a data structure, the numeric operand is
handled as though it were moved to a data structure, and the value of this
item were then compared to the nonnumeric operand. The size of this
conceptual data item is the same as the number of character positions
occupied by the numeric operand. Because the operand is handled as if it
were alphanumeric, the sign of the numeric operand (if any) is not deleted
by the conceptual move, and no COMPUTATIONAL usage items are
converted to DISPLAY usage.

° Operand size

The size of an operand is the total number of characters it contains. Operands
can be of equal or unequal size.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-55

Procedure Division Simple Conditions
° Operands of equal size

If the operands are of equal size, the process compares characters in
corresponding character positions, starting with the leftmost character
position and continuing until it either encounters a pair of unequal
characters or exhausts the operands. The process determines that the
operands are equal if all character pairs in the operands are equal;
otherwise, the process compares the first pair of unequal characters it
encounters to determine their relative position in the collating sequence
active for the comparison. The operand that contains the character that has
a higher position in the collating sequence is considered to be the greater
operand.

° Operands of unequal size

If the operands are of unequal size, comparison proceeds as though the
shorter operand were extended on the right by sufficient spaces to make
the operands of equal size.

• Index-Name and Index Data Item Comparisons

Relation tests can be made between these operands:

° Two index-names

The result is the same as if the corresponding occurrence numbers were
compared.

° An index-name and a numeric data item or numeric literal

The occurrence number that corresponds to the value of the index-name is
compared to the value of the data item or literal.

° An index data item and an index-name or another index data item

The actual values are compared without conversion.

Neither an index-name nor an index data item can be compared with any operand
other than those mentioned in the preceding rules.

• National Data Items and National Literals

A national data item or a national literal can be compared only to another national
data item or a national literal.

The first three simple relation conditions in Example 8-11 are equivalent.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-56

Procedure Division Simple Conditions
Relation Conditions With Nonpointer Operands

subject
object

is an identifier, a literal, an arithmetic expression, an index-name.

relationship

Example 8-11. Simple Relation Conditions

I + 1 > HIGH-I
(I + 1) > HIGH-I
HIGH-I < (I + 1)
TAXABLE-INCOME GREATER THAN ZERO
LAW-NAME = "MURPHY"
"POOL" NOT EQUAL TROUBLE-SOURCE
A-INDEX NOT > 23

subject

IS

objectrelationship

VST118.vsd

GREATER

LESS

EQUAL

OR

TO

EQUAL

=

>=

<

>

<=

NOT THAN

TO

GREATER

LESS THAN

VST119.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-57

Procedure Division Simple Conditions
Relation Conditions With Pointer Operands

pointer-subject
pointer-object

identifier-1

is a level-01 or level-77 data item defined in the Linkage Section or Data
Division.

identifier-2

is a data item with USAGE POINTER.

NULL
NULLS

is a null address (all 1s) that causes an address fault if a pointer with that value
is referenced. NULL or NULLS can be used for pointer-subject or
pointer-object, but not both.

relationship

pointer-subject

IS

pointer-objectrelationship

VST602.vsd

NULL

OFADDRESS identifier-1

identifier-2

NULLS

VST603.vsd

=

EQUAL

TONOTIS

VST604.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-58

Procedure Division Simple Conditions
Class Conditions
The class condition determines whether the operand is numeric, alphabetic, lowercase
alphabetic, uppercase alphabetic, or contains only characters in the set defined by a
CLASS clause in the SPECIAL-NAMES paragraph of the Environment Division.

identifier

is the identifier of a data item for which either:

• It is described as USAGE DISPLAY.
• It is of the numeric class, and its usage is not DISPLAY.

class-name

is the name of a class described in the SPECIAL-NAMES paragraph.

Usage Considerations:

• NOT Modifier

When NOT appears, the compiler considers it and the next keyword to form a
single class condition. For example, NOT NUMERIC is a truth test that determines
if the operand is nonnumeric.

• NUMERIC and NOT NUMERIC

You cannot use the NUMERIC and NOT NUMERIC tests with either:

° An alphabetic data item

° A data structure that contains any elementary item not described as USAGE
DISPLAY or whose description indicates the presence of an operational sign

identifier

NUMERIC

ALPHABETIC

ALPHABETIC-LOWER

ALPHABETIC-UPPER

class-name

IS NOT

VST120.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-59

Procedure Division Simple Conditions
If the description of the tested item does not indicate the presence of an
operational sign, the item belongs to the numeric class only if:

° The content of the item is numeric (consists entirely of the digit characters 0
through 9).

° No operational sign is present.

If the description of the tested item indicates the presence of an operational sign,
the item belongs to the numeric class only if:

° The content of the item is numeric (consists entirely of the digit characters 0
through 9).

° The item is not described as USAGE DISPLAY, and the content of the item
consists entirely of a valid representation for the usage. If a PICTURE clause is
specified, its numeric value is within the range of values implied by the
PICTURE clause.

• ALPHABETIC and NOT ALPHABETIC

You cannot use the ALPHABETIC and NOT ALPHABETIC tests with a numeric
data item. Normally, the tested item belongs to the alphabetic class only if its
content consists entirely of some combination of the alphabetic characters A
through Z, a through z, and space. When the CHARACTER-SET clause specifies
a program character set other than USASCII or UK, the set of characters that
constitute the alphabetic class is extended as appropriate (see OBJECT-
COMPUTER Paragraph).

• ALPHABETIC-LOWER and NOT ALPHABETIC-LOWER

You cannot use the ALPHABETIC-LOWER and NOT ALPHABETIC-LOWER tests
with a numeric data item. The tested item belongs to the alphabetic-lower class
only if its content consists entirely of the lowercase alphabetic characters a
through z and space. When the CHARACTER-SET clause specifies a program
character set other than USASCII or UK, the set of characters that constitute the
alphabetic class is extended as appropriate (see OBJECT-COMPUTER
Paragraph).

• ALPHABETIC-UPPER and NOT ALPHABETIC-UPPER

You cannot use the ALPHABETIC-UPPER and NOT ALPHABETIC-UPPER tests
with a numeric data item. The tested item belongs to the alphabetic-upper class
only if its content consists entirely of the uppercase alphabetic characters A
through Z and space. When the CHARACTER-SET clause specifies a program
character set other than USASCII or UK, the set of characters that constitute the
alphabetic class is extended as appropriate (see OBJECT-COMPUTER
Paragraph).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-60

Procedure Division Simple Conditions
• Class-name and NOT Class-name

You cannot use the class-name and NOT class-name tests with a numeric data
item. The result of the test is TRUE if the content of the data item consists entirely
of the characters listed in the definition of the class-name in the SPECIAL-NAMES
paragraph; otherwise the result is FALSE.

Class conditions are useful for field validation:

PART-NUMBER IS NUMERIC
REPLY-FIELD IS NOT ALPHABETIC
DIAGNOSTIC-MESSAGE IS NOT ALPHABETIC-UPPER

If the SPECIAL-NAMES paragraph includes the description

CLASS VOWEL IS "A" "E" "I" "O" "U" "a" "e" "i" "o" "u".

the procedure division can use this condition for validation:

SOME-FIELD IS VOWEL

Condition-Name Conditions (Conditional Variables)
In a condition-name condition, a conditional variable is tested to determine whether or
not its value is equal to one of the values or within one of the ranges of values
associated with a condition-name.

Usage Considerations:

• Condition-Name Conditions

The rules for comparing a conditional variable with the literal values corresponding
to a condition-name are the same as those specified for relation conditions.

The result of the test is TRUE if either of these relations is satisfied:

° The value of the conditional variable equals one of the single values
corresponding to the condition-name.

° The value of the conditional variable falls within one of the ranges of values,
including the end values, corresponding to the condition-name.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-61

Procedure Division Simple Conditions
Switch-Status Conditions
A switch-status condition determines whether an external switch is on or off. The
particular switch and the ON or OFF value associated with the condition must be
named in the SPECIAL-NAMES paragraph of the Environment Division.

Usage Considerations:

• TRUE Value

The result of the test is TRUE if the switch is set to the position corresponding to
the one identified by the condition-name; otherwise, the result of the test is FALSE.

• Setting External Switches

Set external switch value by using the PARAM command of the command
interpreter (see SPECIAL-NAMES Paragraph) or by the SET statement (see SET).

Example 8-12. Conditional Variables

WORKING-STORAGE SECTION.
01 ZIP-CODE.
 03 ZIP-FIRST-3 PICTURE 999.
 ...
 88 NEW-YORK VALUE IS 090 THRU 098,
 100 THRU 149.
 88 PENNSYLVANIA VALUE IS 150 THRU 196.
...
PROCEDURE DIVISION.
...
 ELSE IF NEW-YORK MOVE "NY" TO STATE-FROM-ZIP
 ELSE IF PENNSYLVANIA MOVE "PA" TO STATE-FROM-ZIP
...
 IF STATE-INPUT NOT = STATE-FROM-ZIP
 PERFORM QUERY-ZIP-OR-STATE-CORRECTION.

Example 8-13. External Switches

SPECIAL-NAMES.
 SWITCH-1 IS IN-SWITCH ON STATUS IS TAPE-INPUT
 OFF STATUS IS DISK-INPUT
 SWITCH-2 IS OUT-SWITCH ON STATUS IS TAPE-OUTPUT
 OFF STATUS IS DISK-OUTPUT.
...
PROCEDURE DIVISION.
...
 IF TAPE-INPUT OPEN INPUT TAPE-SOURCE
 ELSE OPEN INPUT DISK-SOURCE.
 IF TAPE-OUTPUT OPEN OUTPUT TAPE-SINK
 ELSE OPEN OUTPUT DISK-SINK.
...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-62

Procedure Division Simple Conditions
Sign Conditions
The sign condition determines whether the algebraic value of an arithmetic expression
is less than, greater than, or equal to zero.

arithmetic-expression

is an arithmetic expression, as described in Arithmetic Expressions.

Usage Considerations:

• NOT Modifier

When NOT appears, it and the next keyword are considered to form a single sign
condition. For example, NOT ZERO is a truth test that determines if the operand
value is nonzero (is positive or negative).

• Definition

An operand is positive if its value is greater than zero, negative if its value is less
than zero, and zero if its value is equal to zero.

• Expression Cannot Be Composed Entirely of Literals

The arithmetic expression must contain at least one variable operand (at least one
operand that is not a literal).

Example 8-14. Sign Conditions

(A - 10) IS POSITIVE
B NOT ZERO

arithmetic-expression

POSITIVE

NEGATIVE

ZERO

IS NOT

VST121.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-63

Procedure Division Complex Conditions
Complex Conditions
A complex condition is a combination of simple conditions and any of the logical
operators NOT, AND and OR. Its truth value is the one that results from the interaction
of the stated logical operators on the individual truth values of the simple conditions or
conditions enclosed within parentheses.

A complex condition formed by applying the unary operator NOT to a simple or
parenthetical condition is called a negated condition. A complex condition formed by
applying the binary operator AND or OR to two conditions (either of which can be
simple or parenthetical) is called a combined condition.

Negated Conditions

simple-condition

is described in Simple Conditions.

condition

is a simple or complex condition.

The truth value of a negated condition is the opposite of the truth value of the operand
condition.

You do not need to use parentheses when you use either AND or OR exclusively in a
combined condition. When you use a mixture of AND, OR, and NOT, you can use
parentheses to effect a final truth value.

Table 8-17. Logical Operators

Operator

MeaningSymbol Kind

NOT Unary Logical negation (reversal of truth value): The truth value is TRUE if the
condition is FALSE, FALSE if the condition is TRUE

AND Binary Logical conjunction: The truth value is TRUE if both conjoined
conditions are TRUE, FALSE if one or both conjoined conditions are
FALSE

OR Binary Logical inclusive OR: The truth value is TRUE if one or both included
conditions are TRUE, FALSE if both included conditions are FALSE

NOT simple-condition

condition()

VST122.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-64

Procedure Division Complex Conditions
Combined Conditions

condition

is a simple or complex condition.

As Table 8-18 shows, you can use the element pair OR NOT, but you cannot use the
pair NOT OR. Also, you can use NOT, but you cannot use NOT NOT. Within the
combined condition, parentheses must always be in balanced pairs, so that each left
parenthesis precedes its corresponding right parenthesis.

These combined conditions are valid:

Table 8-18. Conditions, Logical Operators, and Parentheses

Element

Location in
Conditional
Expression In a left-to-right sequence of elements

First Last

When not first, element
can be immediately
preceded only by

When not last, element can
be immediately followed only
by

simple-
condition

Yes Yes AND, NOT, OR, (AND, OR,)

AND or OR No No simple-condition,) NOT, (, simple-condition

NOT Yes No AND, OR, ((, simple-condition

(Yes No AND, NOT, OR, (NOT, (, simple-condition

) No Yes simple-condition,) AND, OR,)

LARRY AND MOE AND (CURLY OR SHEMP) All four are condition-names—
level-number 88.

I < E AND (E NOT > C) All three symbols are alphanumeric
data items.

NOT ((A IS POSITIVE) OR (B IS POSITIVE)) Both A and B are numeric data
items.

condition AND

OR

condition

VST123.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-65

Procedure Division Abbreviated Combined Relation Conditions
Abbreviated Combined Relation Conditions
COBOL enables you to abbreviate a sequence of complex relation conditions. For
example, you can use

A NOT EQUAL B OR C

instead of having to use

(A NOT EQUAL B) OR (A NOT EQUAL C)

You can abbreviate any condition in a sequence except the first one by omitting either
of these:

• The subject, for example:

A NOT EQUAL B OR NOT EQUAL C

• The relational operator and the subject, for example:

A NOT EQUAL B OR C

The subject is the term to the left of the operator. For more information, see Usage
Considerations:.

rel-condition

is a relational condition.

combined-part

rel-operator

is a relational operator.

object

is an identifier, a literal, an arithmetic expression, or an index-name.

This abbreviation technique is available when a group of the characteristics shown in
Table 8-19 is present.

rel-condition combined-part

VST124.vsd

NOT

AND

OR

object

rel-operator

VST125.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-66

Procedure Division Abbreviated Combined Relation Conditions
When either abbreviated form is used, the omitted subject is considered to be the
same as the last explicitly stated subject, and the omitted operator is considered to be
the same as the last explicitly stated operator.

If any portion of such an abbreviated condition is enclosed in parentheses, all the
subjects and operators required for the evaluation of that portion must be included in
the same set of parentheses.

Usage Considerations:

• Abbreviation in a Sequence of Relation Conditions

Within a sequence of relation conditions, both of the preceding forms of
abbreviation can be used. The effect of using such abbreviations is as if the last
preceding stated subject were inserted in place of the omitted subject, and the last
stated relational operator were inserted in place of the omitted relational operator.
This insertion of an omitted subject or relational operator terminates once a
complete simple condition is encountered within a complex condition.

• NOT as Modifier or Operator

The reserved word NOT in an abbreviated combined relation condition is
interpreted as a part of the relational operator if the word immediately following
NOT is GREATER, >, LESS, <, EQUAL, or =; otherwise, NOT is interpreted as a
logical operator, and the implied insertion of a subject or relational operator results
in a negated relation condition.

Table 8-19. Abbreviated Combined Relation Conditions

Characteristics Example

Simple relation conditions
or
negated simple relation conditions

A = C

NOT A = B

are combined using AND and OR operators NOT A = B OR A = C

in which a relation condition subject or subject
and relational operator is repeated
and there are no parentheses (except those
delimiting subscripts or reference modifiers)
within the sequence.

“A =” is repeated

When these conditions are met, any relation
condition except the first one in the series can
be abbreviated in one of these ways:

• Omit the subject.

• Omit the subject and the relational
operator.

The first “A =”

NOT A = B OR = C

NOT A = B OR C
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-67

Procedure Division Condition Evaluation Rules
Examples of abbreviated combined and negated relation conditions and expanded
equivalents:

Condition Evaluation Rules
Parentheses can be used to specify the order in which individual conditions are to be
evaluated when it is necessary to depart from the implied evaluation precedence.
Conditions within parentheses are evaluated first. Within nested parentheses,
evaluation proceeds from the least inclusive condition to the most inclusive condition.
When parentheses are not used, or parenthetical conditions are at the same level of
inclusiveness, this hierarchical order of logical evaluation is implied until the final truth
value is determined:

• Values are established for arithmetic expressions.

• Truth values for simple conditions are established in this order:

° Relation
° Class
° Condition-name
° Switch-status
° Sign

• Truth values for negated simple conditions are established.

• Truth values for combined conditions are established, first by applying the AND
logical operators, then by applying the OR logical operators.

• Truth values for negated combined conditions are established.

• When the sequence of evaluation is not completely specified by parentheses, the
order of evaluation of consecutive operations of the same hierarchical level is from
left to right.

Abbreviated Combined Relation
Condition Expanded Equivalent

A > B AND NOT < C OR D ((A > B) AND (A NOT < C)) OR (A NOT < D)

A NOT EQUAL B OR C (A NOT EQUAL B) OR (A NOT EQUAL C)

NOT (A GREATER B OR < C) NOT ((A GREATER B) OR (A < C))

NOT (A NOT > B AND C AND NOT D) NOT ((((A NOT > B) AND (A NOT > C)) AND
(NOT (A NOT > D))))

(A + B - C) > D AND NOT < E OR F (A + B - C) > D AND (A + B - C) NOT < E OR
(A + B - C) NOT < F
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-68

Procedure Division Concatenation Expressions
Using this order of evaluation, once a truth value for an entire complex condition is
established, evaluation of the condition ceases. For example, in the complex condition

A NOT < 1 AND A NOT > 10 AND B (A) > 5

no attempt is made to fetch B(A) if A is not a valid subscript, because determination
that the first condition is FALSE guarantees that the complete complex condition is
FALSE.

Concatenation Expressions
The value of a concatenation expression is the concatenation of the value of its
operands. It is the equivalent of a literal of the same class and value, and can be used
anywhere that a literal of that class can be used, except in a COPY or REPLACE
statement.

literal-1

is either a simple nonnumeric literal, a hexadecimal nonnumeric literal, or a
national literal. For information about these literals, see:

• Simple Nonnumeric Literals

• Hexadecimal Nonnumeric Literals

• National Literals

literal-2

is either a simple nonnumeric literal, a hexadecimal nonnumeric literal, or a
national literal of the same class (alphanumeric or national) as literal-1.

figurative-constant

is a figurative constant that does not include the word ALL. For information about
figurative constants, see Figurative Constants.

concatenation-expr

is a concatenation expression of the same class (alphanumeric or national) as
literal-1.

literal-1

figurative-constant

& literal-2

figurative-constant

concatenation-expr

VST801.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-69

Procedure Division Concatenation Expressions
Table 8-20. Maximum Length of Result of Concatenation Expression

Class of Operands Length of Result

Alphanumeric 160 alphanumeric character positions

National 80 national character positions

A figurative constant occupies one character position.

Table 8-21. Class of Result of Concatenation Expression

Number of Operands That
Are Figurative Constants Class of Result

0 Same class as the operands
(neither of which is a figurative constant)

1 Same class as the other operand
(which is not a figurative constant)

2 Alphanumeric

Example 8-15. Concatenation Expressions

"A zero-terminated string" & X"0"

"Another way of getting a zero-terminated string" & LOW-VALUE

"A string terminated by the zero digit" & ZERO

BLANK & BLANK & "Two leading blanks in the result"

"The symbolic constant" & COPYRIGHT & "is defined in SPECIAL-NAMES paragraph"
HP COBOL Manual for TNS and TNS/R Programs—522555-006
8-70

9 Procedure Division Verbs
This section describes the COBOL verbs that you can use in the Procedure Division, in
alphabetic order. The descriptions of some verbs, such as ADD and INSPECT, show
more than one syntax format.

For descriptions of the COPY and REPLACE verbs, which you can use in any
divisions, see COPY Statement and REPLACE Statement.

ACCEPT

ACCEPT With Mnemonic-Name
ACCEPT with a mnemonic-name delivers small amounts of data to a process from a
terminal or another process.

accept-name

is the identifier of an elementary item or data structure (not an index-name, index
data item, special register, or national data item) in which the process can store
accepted data.

mnemonic-name

identifies a terminal or another process from which the process can accept data.
You must associate mnemonic-name with a terminal or file name in the
Environment Division (see SPECIAL-NAMES Paragraph).

Form Description

ACCEPT With Mnemonic-Name Delivers small amounts of data to a
process from a terminal or another
process

ACCEPT With DATE, DAY, DAY-OF-WEEK, or
TIME Phrase

Retrieves the numeric representation of
the date, day, day of the week, or time
from the operating system

Note. If mnemonic-name is associated with CONSOLE in the SPECIAL-NAMES
paragraph, you cannot use it in an ACCEPT statement. CONSOLE maps to $0, an output-
only device.

FROM

ACCEPT accept-name

mnemonic-name

VST126.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-1

Procedure Division Verbs ACCEPT With Mnemonic-Name
Usage Considerations:

• Differences in the OSS and Guardian Environments

In the OSS environment but not in the Guardian environment:

° No prompt is given for an ACCEPT statement.

° If an ACCEPT statement includes mnemonic-name, it must be the OSS
pathname of a Guardian process or terminal. If mnemonic-name is an OSS
device, the compiler issues a warning and the default input device (#IN) is
used instead.

• If mnemonic-name Is Not Specified

If you omit the phrase FROM mnemonic-name, the process accepts data from its
default input device or default input-output device. (See Specifying Default Input
and Output Devices or Specifying a Default Input-Output Device.) The default input
device or default input-output device is usually the home terminal, except in a
Pathway environment where the COBOL run unit is functioning as a server. In that
case, the server class command SET SERVER determines the default input device
or default input-output device (see the TS/MP System Management Manual).

• Specifying the Default Input-Output Device as mnemonic-name

If you want the process to accept data from its default input-output device, omit the
FROM phrases from the ACCEPT statements and specify a default input-output
device before executing the program. (See Specifying Default Input and Output
Devices or Specifying a Default Input-Output Device.) Do not specify the default
input-output device as the mnemonic-name, because this causes the process to
terminate abnormally.

• If mnemonic-name Is Not Open

If mnemonic-name specifies a process that has not been opened by an earlier
ACCEPT or DISPLAY statement, or specifies a terminal, then the accepting
process opens the process or terminal that mnemonic-name specifies as if it
were a file.

• If Process Cannot Open or Accept Data From mnemonic-name

If the process cannot open or accept data from the terminal or process that
mnemonic-name specifies, the process tries to accept data from its home
terminal. If the home terminal is also unavailable, the process assigns the value 0
to each numeric or numeric edited receiving item and fills any other category of
receiving item with spaces.

• Cursor Placement When mnemonic-name Is a Terminal

If mnemonic-name specifies a terminal that was the object of a DISPLAY NO
ADVANCING statement, then the ACCEPT statement sets the cursor at the
location following that where the display operation ended; otherwise, the ACCEPT
statement prompts with a question mark (?) and awaits input.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-2

Procedure Division Verbs ACCEPT With Mnemonic-Name
• Whether Process Closes mnemonic-name or Leaves It Open

If mnemonic-name specifies a terminal that was not the object of a DISPLAY NO
ADVANCING statement, then the process closes the terminal after accepting data
from it. If mnemonic-name specifies another process or a terminal that was the
object of a DISPLAY NO ADVANCING statement, then the process leaves the
other process or terminal open.

• Case Sensitivity

The ACCEPT statement does not change the letters in the accepted data from
lowercase to uppercase or from uppercase to lowercase when it stores them in
accept-name. To perform such a conversion, use the INSPECT CONVERTING
statement.

• Alphabetic, Alphanumeric, and Alphanumeric Edited Data

If accept-name is an alphabetic, alphanumeric, or alphanumeric edited data
item, the process collects data in an intermediate data item using one or more read
operations. Each read operation collects zero or more characters from the process
or terminal that mnemonic-name specifies, up to the maximum physical record
size for that process or terminal (a typical maximum physical record size for a
terminal is 80 characters).

If a read operation gets a null response (that is, if the user enters only a carriage
return), the ACCEPT statement appends space characters to the intermediate data
item until its length is that of accept-name.

If a response is not null but contains fewer characters than the maximum physical
record size of the process or terminal that mnemonic-name specifies, the
ACCEPT statement appends space characters to the response until its length is
that of accept-name.

The ACCEPT statement constructs the intermediate item by appending responses
in the order in which it receives them, and continues to execute read operations
until it has filled accept-name or received a null response.

Finally, the ACCEPT statement moves the value of the intermediate item to
accept-name, following the rules for the MOVE statement.

• Numeric and Numeric Edited Data

If accept-name is a numeric or a numeric edited data item, the process collects
data with one read operation. The response to the read operation must be in
numeric literal format (see Decimal Numeric Literals and Hexadecimal Numeric
Literals). A null response or a response containing only spaces is invalid for a
numeric or a numeric edited accept-name.

If the response to the read operation is not in numeric literal format, the ACCEPT
statement reprompts with:

** Improper numeric value. Resupply input **
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-3

Procedure Division Verbs ACCEPT With Mnemonic-Name
If the response is in numeric literal format, the ACCEPT statement converts it to a
numeric literal in an intermediate data item and then moves the value of the
intermediate data item to accept-name. If accept-name has no fractional part,
any necessary truncation of the intermediate data item value deletes the rightmost
digits of the value; otherwise, the transfer of the data from the intermediate item to
accept-name follows the rules for the MOVE statement.

In Example 9-2, the ACCEPT statement reads an alphanumeric value into an
accept-name whose length (60 characters) exceeds the record size of the
terminal (40 characters).

Figure 9-1 shows the run-time interactions at the terminal. The user’s responses to
the ACCEPT statement’s prompts are in bold font. When the user enters the
fortieth character with no carriage return, the ACCEPT statement prompts again.

Example 9-1. ACCEPT Statement Reading From a Terminal

WORKING-STORAGE SECTION.
01 COMMAND-IN PICTURE X(7) VALUE SPACES.
 88 ADD-C VALUE "ADD".
 88 UPDATE-C VALUE "UPDATE".
 88 DELETE-C VALUE "DELETE".
 88 EXIT-C VALUE "EXIT".
 ...
PROCEDURE DIVISION.
 ...
 DISPLAY "ENTER COMMAND"
 ACCEPT COMMAND-IN
 IF ADD-C ...

Example 9-2. ACCEPT Statement Reading Alphanumeric Data

WORKING-STORAGE SECTION.
01 HEADING-IN PICTURE X(60) VALUE SPACES.
 ...
PROCEDURE DIVISION.
 ...
 DISPLAY "Enter heading (up to 60 characters)"
 ACCEPT HEADING-IN
 DISPLAY HEADING-IN
 MOVE HEADING-IN TO HEADING-OUT
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-4

Procedure Division Verbs ACCEPT With Mnemonic-Name
Figure 9-2 shows run-time interactions at the home terminal (#TERM). The user’s
responses to the ACCEPT statement’s prompts are in bold font.

Figure 9-1. ACCEPT Statement Collecting Alphanumeric Data

Example 9-3. ACCEPT Statement Reading Numeric Data

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP System.
OBJECT-COMPUTER. HP System.
SPECIAL-NAMES.
 FILE "#TERM" IS USER-TERMINAL.
...
WORKING-STORAGE SECTION.
01 PROGRAM-CODE PICTURE 999V99.
...
PROCEDURE DIVISION.
DEMO.
 PERFORM UNTIL PROGRAM-CODE = 0
 DISPLAY "ENTER RUN CODE" UPON USER-TERMINAL
 ACCEPT PROGRAM-CODE FROM USER-TERMINAL
 DISPLAY "CODE RECEIVED: "
 PROGRAM-CODE UPON USER-TERMINAL
 END-PERFORM
...

Enter heading (up to 60 characters).

?Certification of Karl Michael Weaver as

a? COBOL analyst
Certification of Karl Michael Weaver as

a COBOL analyst

1234567890123456789012345678901234567890
 1 2 3 4

Column

Display

Display

Accept line 1
Accept line 2

VST526.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-5

Procedure Division Verbs ACCEPT With DATE, DAY, DAY-OF-WEEK, or TIME
Phrase
ACCEPT With DATE, DAY, DAY-OF-WEEK, or TIME Phrase
ACCEPT with a DATE, DAY, DAY-OF-WEEK, or TIME phrase retrieves the numeric
representation of the date, day, day of the week, or time from the operating system.

Figure 9-2. ACCEPT Statement Collecting Numeric Data

Note. A simpler alternative is the CURRENT-DATE Function.

ENTER RUN CODE

?123
CODE RECEIVED: 123.00

ENTER RUN CODE

?12345
CODE RECEIVED: 345.00

ENTER RUN CODE

?1.2345

** Improper numeric value. Resupply input **

?

CODE RECEIVED: 001.23
ENTER RUN CODE

?1.23
CODE RECEIVED: 001.23

Low-order zeros assumed

High digits lost, by MOVE rules

Low digits lost, by MOVE rules

Null value entered

VST527.vsd

FROMACCEPT accept-name DATE

DAY

DAY-OF-WEEK

TIME

YYYYMMDD

YYYYDDD

VST127.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-6

Procedure Division Verbs ACCEPT With DATE, DAY, DAY-OF-WEEK, or TIME
Phrase
accept-name

is the identifier of the data item to which the representation of the day, date, day of
the week, or time is moved (following the rules for the MOVE statement). Typical
definitions for the data items are:

DATE

delivers the current date.

YYYYMMDD

Without YYYYMMDD, DATE behaves as if it were a data item described with the
PICTURE character-string 9(6) organized as yymmdd where yy is the year of the
century; for example, July 10, 1992, is represented as 920710.

With YYYYMMDD, DATE behaves as if it were a data item described with the
PICTURE character-string 9(8) organized as yyyymmdd; for example, July 10,
1992, is represented as 19920710.

DAY

delivers the current year and serial day number.

YYYYDDD

Without YYYYDDD, DAY behaves as if it were a data item described with the
PICTURE character-string 9(5) organized as yyddd; for example, January 23,
1992, is represented as 92023.

With YYYYDDD, DAY behaves as if it were a data item described with the PICTURE
character-string 9(7) organized as yyyyddd; for example, January 23, 1992, is
represented as 1992023.

Data Item Typical Definitions

DATE Without YYYYMMDD PICTURE 9(6) or
PICTURE 99B99B99

With YYYYMMDD PICTURE 9(8) or
PICTURE 9999B99B99

DAY Without YYYYDDD PICTURE 9(5) or
PICTURE 99B999

With YYYYDDD PICTURE 9(7) or
PICTURE 9999B999

DAY-OF-WEEK PICTURE 9

TIME PICTURE 9(8) or
PICTURE 99B99B99B99
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-7

Procedure Division Verbs ACCEPT With DATE, DAY, DAY-OF-WEEK, or TIME
Phrase
DAY-OF-WEEK

delivers the value of the current day of the week expressed as an integer between
1 and 7, inclusive. The value 1 represents Monday, 2 represents Tuesday, and so
on.

TIME

delivers the current time of day. TIME behaves like a data item described with the
PICTURE character-string 9(8) organized as four pairs of digits—hhmmsscc,
where hh is the hour (based on a 24-hour clock), mm is the minutes, ss is the
seconds, and cc is the hundredths of seconds. For example, 2:41 p.m. is
expressed as 14410000. The minimum value of TIME is 00000000; the maximum
value is 23595999.

In Example 9-4, ACCEPT statements tell the executing process to store the current
day of the week (integer) in DAY-SUB, the current date (yymmdd) in TODAYS-DATE,
the current time (hhmmsscc) in TIME-RIGHT-NOW, and 40 characters from the home
terminal in USER-REPLY.

Example 9-4. ACCEPT Statements Reading Current Data and Time

WORKING-STORAGE SECTION.
01 DATE-AND-TIME-FIELDS.
 05 DAY-SUB PIC 9 VALUE ZERO.
 05 TODAYS-DATE PIC 9(6) VALUE ZERO.
 05 TIME-RIGHT-NOW PIC 9(8) VALUE ZERO.
77 USER-REPLY PIC X(40) VALUE SPACES.
 ...
PROCEDURE DIVISION.
 ...
 ACCEPT DAY-SUB FROM DAY-OF-WEEK
 ACCEPT TODAYS-DATE FROM DATE
 ACCEPT TIME-RIGHT-NOW FROM TIME
 ACCEPT USER-REPLY
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-8

Procedure Division Verbs ADD
ADD

ADD TO
ADD TO adds the sum of one or more numeric values to one or more result data items;
for example,

ADD A B C TO D E

stores A+B+C+D in D and stores A+B+C+E in E.

Form Description

ADD TO Adds the sum of one or more numeric values to one or more
result data items; for example,

ADD A B C TO D E

stores A+B+C+D in D
and stores A+B+C+E in E

ADD GIVING Adds two or more numeric values and replaces the current
value of one or more result data items with that sum; for
example,

ADD A B C GIVING D E

stores A+B+C in both D and E

ADD CORRESPONDING Adds numeric elements of one data structure to corresponding
numeric elements of another data structure (not
recommended)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-9

Procedure Division Verbs ADD TO
addend

is a numeric literal or the identifier of an elementary numeric data item.

result

is the identifier of an elementary numeric data item to which addend or the sum of
the addends is added.

ROUNDED

specifies that result is to be rounded before being stored.

imperative-stmt-1

is an imperative statement to be executed if a size error occurs during the addition
of addends or the storing of a result.

imperative-stmt-2

is an imperative statement to be executed if no size error occurs during the
addition of addends or the storing of a result.

ADD addend TO

result

ROUNDED

END-ADD

ON

SIZE ERROR

NOT

imperative-stmt-2

imperative-stmt-1

ON

SIZE ERROR

VST128.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-10

Procedure Division Verbs ADD TO
END-ADD

ends the scope of the ADD statement and makes it a delimited-scope statement. If
you omit END-ADD but include the SIZE ERROR or NOT SIZE ERROR phrase,
the ADD statement is a conditional statement and ends at the next period
separator.

Usage Considerations:

• Specifying the Same Data Item for More Than One Result

For each result, the sum of the addends is added to the current value of
result, and that new sum becomes the new value of result (after rounding if
rounding was specified). If more than one result specifies the same data item,
the final value of that item reflects multiple additions of the intermediate sum. For
example, if the initial value of A is 2, then the statement

ADD 5 TO A A A

changes the value of A to 7, and then 12, and finally 19.

• Operand Identification Order

For each result, operand identification occurs just prior to the add-and-store
operation; therefore, in the statement

ADD A B C TO I I X(I)

the subscript is not evaluated until A+B+C is added to I twice.

• Arithmetic Operations

See Arithmetic Operations for information on data conversion and alignment,
intermediate results, multiple results (and subscript evaluation), and incompatible
data.

• Precision

See ADD and SUBTRACT Statements for information on precision of addition.

• ROUNDED, SIZE ERROR, and NOT SIZE ERROR Phrases

See ROUNDED Phrase and SIZE ERROR Phrase for information on these
phrases.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-11

Procedure Division Verbs ADD GIVING
ADD GIVING
ADD GIVING adds two or more numeric values and replaces the current value of one
or more result data items with that sum; for example,

ADD A B C GIVING D E

stores A+B+C in both D and E.

addend

is a numeric literal or the identifier of an elementary numeric data item.

result

is the identifier of an elementary numeric data item to which addend or the sum of
the addends is added.

ROUNDED

specifies that result is to be rounded before being stored.

ADD addend

END-ADD

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

ROUNDED

result

TO

addend GIVING

VST129.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-12

Procedure Division Verbs ADD GIVING
imperative-stmt-1

is an imperative statement to be executed if a size error occurs during the addition
of addends or the storing of a result.

imperative-stmt-2

is an imperative statement to be executed if no size error occurs during the
addition of addends or the storing of a result.

END-ADD

ends the scope of the ADD statement and makes it a delimited-scope statement. If
you omit END-ADD but include the SIZE ERROR or NOT SIZE ERROR phrase,
the ADD statement is a conditional statement and ends at the next period
separator.

Usage Considerations:

• Changing Addend Values

The ADD GIVING statement does not change the value of an addend unless you
also specify that addend for result.

• See these usage considerations in ADD TO:

° Operand Identification Order

° Arithmetic Operations

° Precision

° ROUNDED, SIZE ERROR, and NOT SIZE ERROR Phrases
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-13

Procedure Division Verbs ADD CORRESPONDING
ADD CORRESPONDING
ADD CORRESPONDING adds numeric elements of one data structure to
corresponding numeric elements of another data structure.

CORRESPONDING
CORR

are equivalent and specify that the values of corresponding elementary items of
two data structures are to be added.

group-1

is the identifier of a data structure in which some or all of the elementary items are
numeric.

Caution. ADD CORRESPONDING is not recommended, because minor changes to one data
structure can change the correspondence between its elements and those of the other data
structure, and this is difficult to detect.

ADD CORRESPONDING

CORR

ON

SIZE ERROR

group-1 TO group-2

ROUNDED

ON

SIZE ERROR

imperative-stmt-1

NOT

imperative-stmt-2

END-ADD

VST130.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-14

Procedure Division Verbs ADD CORRESPONDING
group-2

is the identifier of a data structure in which some or all of the elementary items are
numeric. The value of each elementary numeric item in group-2 that
corresponds to an elementary numeric item in group-1 is replaced by the sum
of the two corresponding items, as in the ADD TO statement.

ROUNDED

specifies that result is to be rounded before being stored.

imperative-stmt-1

is an imperative statement to be executed if a size error occurs during the addition
of addends or the storing of a result.

imperative-stmt-2

is an imperative statement to be executed if no size error occurs during the
addition of addends or the storing of a result.

END-ADD

ends the scope of the ADD statement and makes it a delimited-scope statement. If
you omit END-ADD but include the SIZE ERROR or NOT SIZE ERROR phrase,
the ADD statement is a conditional statement and ends at the next period
separator.

Usage Considerations:

• Definition of Correspondence

See CORRESPONDING Phrase.

• ADD CORRESPONDING Statement Generates ADD TO Statements

Each pair of corresponding elementary data items, group-1-item and
group-2-item, generates an ADD TO statement equivalent to this:

ADD group-1-item TO group-2-item [ROUNDED]

• Problem Adding Names to Group Data Items

When adding names to group data items that appear in ADD CORRESPONDING
statements, verify that the new name will not be included in unintended addition
operations.

• See these usage considerations in ADD TO:

° Operand Identification Order

° Arithmetic Operations

° Precision

° ROUNDED, SIZE ERROR, and NOT SIZE ERROR Phrases
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-15

Procedure Division Verbs ALTER
Correspondence depends on the names of the elementary items, not on the physical
order of the elementary items. In Example 9-5, all data item names correspond except
STAPLES and PAPER. Add operations skip STAPLES and PAPER.

ALTER

ALTER changes the destination of a GO TO statement, which can cause maintenance
problems.

paragraph-name

is the name of a paragraph that contains only an unconditional GO TO statement.

Example 9-5. ADD CORRESPONDING Statement

WORKING-STORAGE SECTION.
01 CABINET-SUPPLIES.
 05 PAPER-CLIPS PIC 99.
 05 WRITING-TOOLS.
 10 PENCILS PIC 99.
 10 PENS PIC 99.
 10 ERASERS PIC 99.
 10 PAPER PIC 99.
 05 STAPLES PIC 99.
01 STOCKROOM-SUPPLIES.
 05 WRITING-TOOLS.
 10 PENCILS PIC 99.
 10 ERASERS PIC 99.
 10 PENS PIC 99.
 05 PAPER-CLIPS PIC 99.
 05 PAPER PIC 99.
 ...
PROCEDURE DIVISION.
 ...
 ADD CORRESPONDING CABINET-SUPPLIES TO STOCKROOM-SUPPLIES.

Note. The 1985 COBOL standard classifies ALTER as obsolete, so you are advised not to
use it. Instead, use a flag, a conditional GO TO statement, and a MOVE statement.

ALTER paragraph-name TO

PROCEED TO

destination

VST131.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-16

Procedure Division Verbs ALTER
destination

is the name of a paragraph or section to which the GO TO statement in
paragraph-name transfers control.

Usage Considerations:

• Maintenance Problems

ALTER can cause maintenance problems because it enables a GO TO statement
to transfer control anywhere in the program. When you read the source code, the
only clue you have that the destination was altered is that the GO TO statement is
alone in a paragraph.

• Using a Flag, Conditional GO TO, and MOVE Instead of ALTER

Suppose that you want to initialize a routine the first time it is called, but not each
time it is called. You could either use an ALTER statement as Example 9-6 does
(not recommended) or a flag, a conditional GO TO statement, and a MOVE
statement as Example 9-7 does (recommended and no less efficient).

Example 9-6. ALTER Statement

PROCEDURE DIVISION.

ROUTINE-1.
 GO TO INITIALIZATION-ROUTINE.

INITIALIZATION-ROUTINE.
 ...
 ALTER ROUTINE-1 TO PROCEED TO ROUTINE-2.
 GO TO ROUTINE-2.

ROUTINE-2.
 ...

Example 9-7. Alternative to ALTER Statement

DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 FLAG VALUE IS 1.

PROCEDURE DIVISION.
 ROUTINE-1.
 GO TO INITIALIZATION-ROUTINE
 ROUTINE-2
 DEPENDING ON FLAG.

 INITIALIZATION-ROUTINE.
 ...
 MOVE 2 TO FLAG.
 GO TO ROUTINE-2.

 ROUTINE-2.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-17

Procedure Division Verbs CALL
• paragraph-name in an Independent Segment

If paragraph-name is in an independent segment (a section whose segment-
number is greater than 49), these restrictions apply:

° Every ALTER statement that references the paragraph-name must be in a
section that has the same segment-number as the section containing
paragraph-name.

° If the destination is in a section that does not have the same segment-
number as the section containing paragraph-name, these restrictions apply:

° An ALTER statement in the Declaratives Portion cannot refer to a
paragraph-name or destination in the other portion of the
Procedure Division.

° An ALTER statement cannot be used to establish a potential transfer of
control between the Declaratives Portion and the other portion of the
Procedure Division.

° An ALTER statement cannot refer to a paragraph-name or
destination in any debugging declarative procedure unless the ALTER
statement itself is in a debugging declarative procedure.

° An ALTER statement cannot be used to establish a potential transfer of
control between a debugging declarative procedure and a nondebugging
declarative procedure.

• Canceling the Effects of ALTER Statements

The effect of an ALTER statement persists until the execution of either:

° Another ALTER statement with the same destination

° A CANCEL statement in which program-name is the program containing the
paragraph in which destination appears.

CALL
CALL’s behavior is determined by the PORT directive. If the program is not compiled
with the PORT directive, CALL transfers control from one COBOL program to another
COBOL program. The called program can be in the current compilation unit or can be
extracted from an object file, provided that the entry point called is in a code block
created by a COBOL compiler on an HP system. To transfer control from a COBOL
program to a program written in another language in the absence of the PORT
directive, use ENTER (see ENTER).

If the program is compiled with the PORT directive and runs in the CRE, CALL
behaves like the X/Open CALL statement (which is not an element of COBOL). The
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-18

Procedure Division Verbs CALL
X/Open CALL statement transfers control from an HP COBOL program to a program
written in another language.

If the called program is not a function, or the calling program was compiled by the
COBOL85 compiler with the ENV LIBRARY directive, the X/Open CALL statement
does not change the value of RETURN-CODE.

If the value of the function is greater than 99,999, arithmetic overflow occurs.

If the called program is not a function, or was compiled by the COBOL85 compiler with
the ENV LIBRARY directive, the called program cannot change the value of RETURN-
CODE.

If a called program changes the value of RETURN-CODE, the calling program can
access that value when control returns to the calling program.

If the program was not compiled with the PORT directive, RETURN-CODE is
inaccessible.

called-entity

Note. If you use the X/Open CALL statement in the OSS environment, see Mixed-Language
Programs.

CALL called-entity

USING phrase

on-phrase

historical-on-phrase

END-CALL

not-on-phrase

VST132.vsd

identifier

program-name

OF

IN

file-mnemonic

VST133.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-19

Procedure Division Verbs CALL
program-name

is the program-name in the called program’s PROGRAM-ID paragraph. It
can be expressed as a nonnumeric literal (enclosed in quotation marks) or the
actual name (not enclosed in quotation marks). The form enclosed in quotation
marks is recommended.

If the program is not compiled with the PORT directive or does not run in the
CRE, the called program must be a COBOL program. If the program is
compiled with the PORT directive and runs in the CRE, the called program can
have been compiled with any of these HP compilers:

file-mnemonic

is the alias for the object file to be searched for the called program. The
association between file-mnemonic and the object file is established by the
File-Mnemonic clause of the SPECIAL-NAMES paragraph. The file-
mnemonic is not part of program-name and is not a qualifier that can make
program-name unique.

For the NMCOBOL compiler, file-mnemonic must specify either:

• A linkfile

• An archive file

identifier

can be used only if you are calling a COBOL program. It is an alphanumeric
identifier whose value, the program-name in the called program’s
PROGRAM-ID paragraph, is not known until run time. The compiler ignores
leading and trailing spaces in program-name and converts it to uppercase.

You must include the called program in the run unit, usually with a separate
bind or link step.

All parameters are passed as extended addresses; therefore, formal
parameters in the called program must not specify ACCESS MODE
STANDARD.

Architecture HP Compilers

TNS C
COBOL85
FORTRAN
Pascal
TAL

TNS/R C
C++
NMCOBOL
pTAL
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-20

Procedure Division Verbs CALL
USING phrase

USING

marks the beginning of the parameter list. The Procedure Division header of
the called program must contain a corresponding USING phrase.

REFERENCE

specifies that the called program uses the actual data item of the calling
program. If the called program changes the value of the parameter, it changes
the value of the data item in the calling program. REFERENCE applies to all
the parameters that follow it until a CONTENT or VALUE phrase appears. This
is the default.

CONTENT

specifies that the calling program makes a copy of the data item and passes
the address of the copy to the called program. If the called program changes
the value of the parameter, it does not change the value of the data item in the
calling program. CONTENT applies to all the parameters that follow it until a
REFERENCE or VALUE phrase appears.

VALUE

specifies that the calling program passes the value of the data item to the
called program. Nothing that the called program does with the value affects the
data item in the calling program. VALUE applies to all the parameters that
follow it until a REFERENCE or CONTENT phrase appears.

If you specify VALUE, the called program must be not be written in COBOL
and you must compile the calling program with the PORT directive and either
the ENV COMMON or ENV LIBRARY directive.

VALUE is not an element of COBOL. If you also compile the calling program
with a FIPS directive with NONSTANDARDEXT in the flag-option-list,
the compiler issues a warning message if it finds the keyword VALUE.

USING

BY

REFERENCE

CONTENT

parameter-1

VALUE parameter-2

VST134.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-21

Procedure Division Verbs CALL
parameter-1

is a data item defined in the Linkage, File, Working-Storage, or Extended-
Storage Section. It must be one of:

• An elementary data item

• A level-01 data item

• A level-77 data item

• A data item whose level is other than 01 or 77 is aligned on a 2-byte
boundary

If parameter-1 is subscripted, its first occurrence must be on a 2-byte
boundary and the number of occurrences must be even.

The number of parameter-1 s must be the same as the number of
parameters defined in the USING phrase of the called program. The size of
each parameter must be the same as the size of the corresponding parameter
in the called program. See Linkage Section.

If the called program is not written in COBOL, parameter-1 must be exactly
the data type that the called program expects.

parameter-2

is a data item defined in the Linkage, File, Working-Storage, or Extended-
Storage Section. It must be one of these data types:

If you are concerned about portability, use COMP-5 rather than NATIVE-2,
NATIVE-4, or NATIVE-8.

on-phrase

parameter-2 Corresponding Formal Parameter

Numeric data item described as COMP-5
with PICTURE S9(4) or NATIVE-2

16-bit data item

Numeric data item described as COMP-5
with PICTURE S9(9) or NATIVE-4

32-bit data item (2 words for a TNS
program, 1 word for a native program)

Numeric data item described as COMP-5
with PICTURE S9(18) or NATIVE-8

64-bit data item (four words for a TNS
program, 2 words for a native program)

1-character alphanumeric data item Single character

excp-imperative-statementEXCEPTION

ON

VST615.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-22

Procedure Division Verbs CALL
historical-on-phrase

excp-imperative-statement

is an imperative statement to be executed when an exception prevents calling
the specified program.

not-on-phrase

non-excp-imperative-statement

is an imperative statement to be executed when the specified program
completes its execution and returns control to the program that called it.

END-CALL

ends the scope of the CALL statement and makes it a delimited-scope statement.
If you omit END-CALL but include the EXCEPTION or NOT EXCEPTION phrase,
the CALL statement is a conditional statement and ends at the next period
separator.

Usage Considerations:

• Currently Active Program

The currently active programThe currently active program, the one containing the
CALL statement, is the calling program; the program identified by program-name
or by the value of identifier is the called program.

Note. Although you can specify excp-imperative-statement in any CALL
statement, it only works when the called program is a COBOL program. For programs
written in languages other than COBOL, it is ignored.

excp-imperative-statementEXCEPTION

ON OVERFLOW

VST135.vsd

non-excp-imperative-statement

EXCEPTION

ON

NOT

VST528.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-23

Procedure Division Verbs CALL
• Effect of CALL Statement Without PORT Directive

If the object form of the called program is included in the run unit that contains the
calling program, or if the called program is in the user library, execution of the
CALL statement transfers control from the calling program to the called program.
When the called program executes an EXIT PROGRAM statement or allows
control to pass beyond the end of its Procedure Division, control returns to the
calling program. If a NOT ON EXCEPTION phrase (not-on-phrase) is
specified, control passes to non-excp-imperative-statement and execution
continues according to the rules for that statement. Unless that statement transfers
control elsewhere, control passes from that statement to the end of the CALL
statement.

If the object form of the called program is not included in the run unit, the action of
the CALL statement depends on the presence or absence of an EXCEPTION
phrase (on-phrase or historical-on-phrase). If an EXCEPTION phrase is
specified, control passes to excp-imperative-statement. If an EXCEPTION
phrase is not specified, the run unit terminates abnormally with a failure message.

• Determining Which Program a CALL program-name Statement Calls

The steps for determining which program the CALL statement calls follow.

1. The value of program-name—the program name—is stripped of leading and
trailing spaces and is converted to uppercase. (All COBOL program names are
converted to uppercase for the purpose of matching.)

2. If the program name from Step 1 is that of a COBOL program that was
compiled in this compilation unit, then that program is the called program.

3. If the program name from Step 1 is not that of a program that was compiled in
this compilation unit, then the program searches for a program by that name in
these places, in this order:

a. The file associated with file-mnemonic (if file-mnemonic is
specified)

b. The files on the primary search list (established by the SEARCH directive)

c. The files on the tertiary search list (established by the CONSULT directive)

d. For a TNS program, the TNS user library (established by the LIBRARY
directive)

e. The files associated with SEARCH DEFINEs

4. If the program name from Step 1 is that of a program in one of the preceding
files, that program is the called program.

5. The program name from Step 1 is restored to its original case.

6. Step 3 is repeated.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-24

Procedure Division Verbs CALL
7. The program name from Step 4 is converted back to uppercase and
compilation continues. When compilation ends (at the end of the source file), if
a COBOL program with the desired name has been compiled, then it is the
called program.

8. If no program is found using the above steps, then the calling program looks
for a VALUE phrase. If the VALUE phrase is absent, the calling program
assumes that the CALL statement is a COBOL CALL statement. It passes the
uppercase name to the Binder (for a TNS program) or the nld or ld utility (for
a native program) and passes all parameters by reference as extended
addresses.

9. If the VALUE phrase is present, the calling program assumes that the CALL
statement is an X/Open CALL statement. It passes the name as it was
specified in program-name to the Binder (for a TNS program) or the nld or
ld utility (for a native program) and passes all parameters as extended
addresses—the VALUE parameters by value and all others by reference.

10. If you are calling a program written in a language other than COBOL, and it
has no VALUE parameters, you must make the program stub of the called
program available to the compiler using one of the files listed in Step 3.

11. If the program that program-name specifies is not available at execution
time, an exception exists.

12. If you are building a PIC loadfile, and you want rld to run your program with
unresolved externals, you must link your program with either of these ld
options:

• -set rld_unresolved IGNORE
• -set rld_unresolved WARN

• Two COBOL Programs With the Same Name

Two or more COBOL programs in a run unit can have the same program name. If
this happens, the compilation distinguishes between them according to these
scope rules:

° If program A lacks the COMMON attribute and is directly contained in program
B, then only CALL statements in B can call A.

° If program A has the COMMON attribute and is directly contained in program
B, then only CALL statements in B and CALL statements in other programs
contained in B (except for A and those contained in A) can call A.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-25

Procedure Division Verbs CALL
• Binding or Linking a Program Called With a CALL identifier Statement

Binding or linking a program called with a CALL identifier statement into a run
unit is not automatic. Verify that all such programs are bound or linked into the run
unit by doing one of:

° Compile all the program units in a single source file.

° For a TNS program, use the Binder object-file builder to bind the required
program units into the run unit (see the Binder Manual). For a native program,
use the nld or ld utility to link them into the run unit (see the nld Manual or the
ld Manual).

° Have each required program bound or linked into the run unit by referring to
the program explicitly in the source program with a dummy CALL statement
and then calling the program by an identifier.

° For a TNS program, bind the program into the user library.

° Use the SEARCH directive to add the program to the primary search list.

• How the BIND Process Finds the Object File (TNS Programs Only)

If file-mnemonic is present but the BIND process does not find the called
program in the associated object file, BIND reports an error.

If file-mnemonic is absent but a search list was specified, the BIND process
searches for the object file as explained in How the Compiler Validates and
Resolves References.

• Initial State of Called Programs

A program that has the INITIAL attribute is in its initial state every time it is called.
Programs directly or indirectly contained within a program that has the INITIAL
attribute also have the INITIAL attribute.

A program that does not have the INITIAL attribute is in its initial state the first time
it is called, but each successive time it is called, it is usually in the state in which its
previous execution left it. This state includes the final value of each internal data
item (except those described in the Linkage Section), the final status of each
internal file connector, and the final status of each GO TO statement whose
destination procedure was specified by an ALTER statement.

A program that does not have the INITIAL attribute is not in the state in which its
previous execution left it if its calling program cancelled it with a CANCEL
statement. In this case, the called program is in its initial state the next time it is
called. All PERFORM statements in the program are restored to their initial states.
All files are closed.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-26

Procedure Division Verbs CALL
• Storage Allocation

For programs with the INITIAL attribute, HP COBOL uses dynamic storage
allocation, allocating space for data items in the Working-Storage Section each
time the program is called and releasing it each time the program is exited. This
can cause stack overflow, which can cause the run unit to terminate abnormally.

For programs without the INITIAL attribute, HP COBOL allocates space at the start
of execution of the run unit for all program data except internal data, which it
allocates when the program is called. It is unlikely that allocating space for internal
data (usually a small amount) will cause stack overflow.

• Passing Parameters

Parameters passed by the USING phrase are data items from a calling program
that the called program can reference.

• Correspondence of Formal and Actual Parameters

The formal parameters in the USING phrase of the Procedure Division header and
the actual parameters in the USING phrase of the CALL statement correspond by
position, not by name.

• Declaration Locations and Access Modes of Formal and Actual Parameters

You must declare formal parameters in the Linkage Section. For a TNS program, a
parameter declared in the Linkage Section has EXTENDED-STORAGE access
mode (a 32-bit address) unless you specify STANDARD access mode (a 16-bit
address). For a native program, every parameter has a 32-bit address. If you
specify STANDARD access mode, the NMCOBOL compiler ignores it and issues a
warning.

If a formal parameter has EXTENDED-STORAGE access mode, its corresponding
actual parameter can have either STANDARD or EXTENDED-STORAGE access
mode. If a formal parameter has STANDARD access mode, its corresponding
actual parameter must also have STANDARD access mode.

For an actual parameter to have STANDARD access mode, you must declare it in
the File Section or Working-Storage Section.

If you declare an actual parameter in the Linkage Section of the calling program
and pass it to a formal parameter whose access mode is STANDARD, the
COBOL85 compiler reports an error, but the program might work.

• Parameter Validation

The COBOL85 and NMCOBOL compilers report errors under these conditions:

° The number of actual parameters (in the CALL statement) differs from the
number of formal parameters (in the Procedure Division heading).

° For a TNS program, the access mode of an actual parameter is incompatible
with that of its corresponding formal parameter.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-27

Procedure Division Verbs CALL
The COBOL85 compiler determines the access mode of the parameters in one of
these ways:

° The called program is found in an existing object file (either the object file
named by mnemonic-name or an object file named in the SEARCH directive).
The required parameter types are defined by the program in the existing object
file.

° The called program has been compiled earlier in the current compilation. The
required parameter types are defined by the Linkage Section of the called
program.

° The called program has not yet been found during the current compilation, or is
specified by identifier rather than by an explicit program-name. The
compiler assumes that all parameters are passed with extended addresses
(the default for the Linkage Section of the called program). If the called
program declares any matching parameters with ACCESS MODE
STANDARD, the program executes incorrectly. If identifier is not
specified, a subsequent attempt to bind the missing program to the run unit can
cause a Binder error.

The HP COBOL compilers do not report errors under these conditions:

° The type (alphanumeric, numeric, and so on) of an actual parameter differs
from that of its corresponding formal parameter.

° The size of an actual parameter differs from that of its corresponding formal
parameter.

• Passing Index Values

You cannot pass an index-name (defined by the INDEXED phrase of an OCCURS
clause) as a parameter because it is not a level 01, level 77, or elementary data
item. You can pass an index value in an index data item (defined by a USAGE
INDEX clause) as a parameter, but there is no correspondence between the index-
name used with the table in the calling program and the index-name used with the
table in the called program. Index-names in the called and calling program always
refer to separate data areas.

• Recursion

Although called programs can contain CALL statements, a called program cannot
call itself explicitly or implicitly.

• Calling and Called Program Using the Same File

A called program does not inherit access to an internal file opened by its caller. A
calling program and a called program can operate on records of the same file in
these ways:

° One of the programs does all the reading and writing and passes the data
items as parameters to the other.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-28

Procedure Division Verbs CALL
° Each program opens the file as an internal file with a separate file connector.

° The file name has the GLOBAL attribute.

° The file is declared in any program and is given the EXTERNAL attribute. Then
the file belongs to the run unit, and any program in the run unit that declares
the same file with the EXTERNAL attribute can share in its manipulation.

• Difference Between X/Open CALL Statement and ENTER Statement

The X/Open CALL statement reports an error if the types of the actual and formal
parameters do not match; the ENTER statement attempts to convert the actual
parameters into the types of the formal parameters.

Example 9-8. Called Program That Calls Another Program (page 1 of 3)

Main Program (source $DATA.MYSUBVOL.MAINSRC, object
$DATA.MYSUBVOL.MAINOBJ)

IDENTIFICATION DIVISION.
PROGRAM-ID. COBOLMAIN.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP System.
OBJECT-COMPUTER. HP System.
SPECIAL-NAMES.
 FILE "$DATA.MYSUBVOL.SUB1OBJ" IS SUB1.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 DATA-OUT PIC X(80) VALUE "I'M THE MAIN AND I'M ALIVE".
77 PARM1 PIC 99 VALUE 10.
77 PARM2 PIC XX VALUE "AB".
01 MAIN-TABLE.
 05 TABLE-DATA PIC X
 OCCURS 10 TIMES
 INDEXED BY TABLE-INDEX.
01 SAVE-TABLE-INDEX PIC 999.

PROCEDURE DIVISION.
START-PROGRAM.
 DISPLAY DATA-OUT
 SET TABLE-INDEX TO 5
 SET SAVE-TABLE-INDEX TO TABLE-INDEX
 DISPLAY "SAVE-TABLE-INDEX = " SAVE-TABLE-INDEX
 CALL COBSUB1 OF SUB1 USING PARM1
 PARM2
 MAIN-TABLE
 SAVE-TABLE-INDEX
 END-CALL
 DISPLAY "PROGRAM END"
 STOP RUN.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-29

Procedure Division Verbs CALL
Level 1 Subprogram (source $DATA.MYSUBVOL.SUB1SRC, object
$DATA.MYSUBVOL.SUB1OBJ)
IDENTIFICATION DIVISION.
PROGRAM-ID. COBSUB1.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP System.
OBJECT-COMPUTER. HP System.
SPECIAL-NAMES.
 FILE "$DATA.MYSUBVOL.SUB2OBJ" IS SUB2.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 DATA-OUT PIC X(80) VALUE "I'M COBSUB1 ALIVE AND WELL".
LINKAGE SECTION.
01 PARM1 PIC 99.
01 PARM2 PIC XX.
01 SUBPROGRAM-TABLE.
 05 SUB-TABLE-ENTRY, PIC X
 OCCURS 10 TIMES INDEXED BY SUB-INDEX.
01 SAVE-SUB-INDEX PIC 999.

PROCEDURE DIVISION USING PARM1,
 PARM2,
 SUBPROGRAM-TABLE,
 SAVE-SUB-INDEX.
START-PROGRAM.
 SET SUB-INDEX TO SAVE-SUB-INDEX
 DISPLAY DATA-OUT
 DISPLAY "SAVE-SUB-INDEX = " SAVE-SUB-INDEX
 DISPLAY PARM1
 DISPLAY PARM2
 CALL "COBSUB2" OF SUB2 USING PARM1, PARM2
 DISPLAY "I'M COBSUB1 AND I'M RETURNING TO MAIN NOW".

Level 2 Subprogram (source $DATA.MYSUBVOL.SUB2SRC, object
$DATA.MYSUBVOL.SUB2OBJ)
IDENTIFICATION DIVISION.
PROGRAM-ID. COBSUB2.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP System.
OBJECT-COMPUTER. HP System.

Example 9-8. Called Program That Calls Another Program (page 2 of 3)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-30

Procedure Division Verbs CALL
For the programs in Example 9-8 to work properly, they must be compiled in this
order:

>COBOL85 /IN SUB2SRC, / SUB2OBJ
>COBOL85 /IN SUB1SRC, / SUB1OBJ
>COBOL85 /IN MAINSRC, / MAINOBJ

If you want to eliminate the SPECIAL-NAMES paragraphs from the programs in
Example 9-8, compile them, in the same order, with these additional directives:

In COBSUB1: ?SEARCH SUBOBJ2
In COBOLMAIN: ?SEARCH SUBOBJ1

If COBSUB2 is a TNS program, and it must be recompiled for a reason that does
not involve changes to the parameter list, you need not even recompile COBSUB1
or COBOLMAIN. You can simply rebind them, replacing the old version of
MAINOBJ with the new one (see the Binder Manual).

Output from running the programs in Example 9-8 as a single run unit looks like
this:

I'M THE MAIN AND I'M ALIVE
SAVE-TABLE-INDEX = 005
I'M SUBCOB1 ALIVE AND WELL
SAVE-SUB-INDEX = 005
10
AB
I'M COBSUB2 ALIVE AND WELL
10
AB
I WILL NOW RETURN TO THE MAIN PGM VIA COBSUB1
I'M COBSUB1 AND I'M RETURNING TO MAIN NOW
PROGRAM END

DATA DIVISION.
WORKING-STORAGE SECTION.
77 DATA-MESSAGE PIC X(80) VALUE "I'M COBSUB2 ALIVE AND WELL".
LINKAGE SECTION.
01 PARM1 PIC 99.
01 PARM2 PIC XX.
PROCEDURE DIVISION USING PARM1, PARM2.
START-PROGRAM.
 DISPLAY DATA-MESSAGE
 DISPLAY PARM1
 DISPLAY PARM2

 DISPLAY "I WILL NOW RETURN TO THE MAIN PGM VIA COBSUB1".

Example 9-8. Called Program That Calls Another Program (page 3 of 3)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-31

Procedure Division Verbs CANCEL
CANCEL
CANCEL signals that you are done with a program that you called. On some computer
systems, CANCEL releases memory used by a program that is no longer needed. On
NonStop systems, CANCEL restores each specified program to its initial state (see
Initial State). Nothing happens if a CANCEL statement specifies an initial program, a
program that was not called, or a program that has already been cancelled.

program-name

is a nonnumeric literal whose value is the program-name in the PROGRAM-ID
paragraph of the COBOL program to be cancelled.

file-mnemonic

specifies the object file containing the program to be canceled. Associate file-
mnemonic with the operating system file name in the SPECIAL-NAMES
paragraph of the Environment Division (see SPECIAL-NAMES Paragraph).

identifier

is an alphanumeric, nonnational data item whose value (which is not known until
run time) is the program-name in the PROGRAM-ID paragraph of the COBOL
program to be cancelled.

Usage Considerations:

• Internal Data Items Resume Their Initial Values

Each internal data item (except those in the Linkage Section) is reset to the value
that it had the first time the program was called. (CANCEL does not affect external
data items.)

• Internal File Connectors Are Implicitly Closed

Each internal file connector whose open mode is neither closed nor locked is
implicitly closed. The implicit close operation proceeds as if a CLOSE statement
with no optional phrases were executed for each of the internal files. (CANCEL
does not affect external file connectors.)

CANCEL

identifier

program-name

OF

IN

file-mnemonic

VST136.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-32

Procedure Division Verbs CANCEL
If a called program that does not have the INITIAL attribute opens an internal file,
the file remains open until either:

° The called program closes the file.
° The calling program cancels the called program.
° The process terminates.

• PERFORM Statements Resume Their Initial State (Inactive)

• GO TO Statements Modified by ALTER Statements Resume Their Initial Forms

Each GO TO statement that was modified by an ALTER statement is restored to
the form specified in the source program.

• When Not to Use CANCEL

° On programs compiled with the NOCANCEL directive

The NOCANCEL directive prevents the compiler from generating code that
initializes the program the first time the program is called after being canceled
by a CANCEL statement.

° On programs that are still executing, including the main program

If you cancel the main program of the run unit or a called program that has not
returned control to its calling program, the run unit terminates abnormally with
a failure message.

° On routines written in languages other than COBOL and called with X/Open
CALL statement

Applying a CANCEL statement to a routine written in a language other than
COBOL that was called with an X/Open CALL statement terminates the run
unit.

° Within programs that are to run as process pairs

If the primary process of a process pair executes a CANCEL statement, the
backup process can become invalid.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-33

Procedure Division Verbs CHECKPOINT
CHECKPOINT

CHECKPOINT defines a restart point for the backup process of a process pair and
transfers the information that the backup requires to restart.

data-name-1

is the name of a data item to checkpoint, typically an item used for an I-O transfer
of data that is relevant to the current state of the program and is needed if the
backup process is to continue the operation in the event of a failure.

FILE

indicates that the next data item is the name or number of a file.

data-name-2

is an integer, the operating system file number of the file whose sync block is to be
checkpointed. Use data-name-2 only when files are managed entirely with
ENTER statements that call TAL routines (rather than COBOL I-O statements).

file-name

is the name of a file (usually a disk file) whose sync block is to be checkpointed.

QUEUE

indicates that the next data item is the name of a checkpoint list.

Note.

• Do not use this statement in the OSS environment.

• Before RVU D46.00 and G06.00, software product revision T8107AAT (run-time library
T8108AAR), the NMCOBOL compiler ignores this directive and issues a warning.

CHECKPOINT data-name-1

FILE data-name-2

FILE

file-name

QUEUE checkpoint-list-name

VST137.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-34

Procedure Division Verbs CHECKPOINT
checkpoint-list-name

is the name of a checkpoint list containing information that must be transferred to
the backup process. The checkpoint list is a COBOL record with a specific
structure in which the message changes are recorded. The information is returned
by these Saved Message Utility (SMU) routines:

For information on SMU routines and a description of the checkpoint list record, see
Saved Message Utility (SMU) Overview.

Usage Considerations:

• Reason to Checkpoint

If a backup process takes over, the contents of items that are not checkpointed are
undefined.

• Conditions Under Which Data Items Are Checkpointed

° COBOL85 compiler

° Working-Storage Section

The COBOL85 compiler automatically checkpoints data items that are
stored directly on the stack in 2 or fewer bytes (that is, if they are level 01
or 77, in the Working-Storage Section, and fewer than three characters
long).

° Extended-Storage Section

The COBOL85 compiler checkpoints data items in the Extended-Storage
Section only if all of these conditions are true:

° The program runs in the CRE (see ENV).

° The STARTBACKUP statement backs up the Extended-Storage
Section (see STARTBACKUP).

° One or more CHECKPOINT statements explicitly specify the data
items.

° NMCOBOL compiler (RVU D46.00 and G06.00 or later, software product
revision T8107AAT)

The NMCOBOL compiler checkpoints only those data items that one or more
CHECKPOINT statements specify explicitly. These data items can be in either
the Working-Storage Section or the Extended-Storage Section.

ALTERPARAMTEXT DELETESTARTUP PUTPARAMTEXT

DELETEASSIGN PUTASSIGNTEXT PUTSTARTUPTEXT

DELETEPARAM PUTASSIGNVALUE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-35

Procedure Division Verbs CHECKPOINT
• Sending Values to a Backup Process

When CHECKPOINT executes, the values of the data items and file sync blocks
are sent to the fault-tolerant facility in the backup process. If the primary process
fails before another checkpoint is made, the backup begins processing from the
current checkpoint. The set of values specified in any checkpoint must be sufficient
for the backup process to continue processing correctly with only that information.

After the CHECKPOINT statement transfers the information in the checkpoint list to
the backup process, it resets the checkpoint list to empty and its storage space is
available to record further message changes.

• Multiple Checkpoints for a Transaction

Use multiple checkpoints for a transaction if the number of WRITE statements
executed for a file exceeds the value of the sync depth with which the file was
opened. If a file was opened with sync depth n, use at least one CHECKPOINT for
every n WRITE statements executed for a file.

• CHECKPOINT for Process Pairs

When a requester that is running as a process pair sends a message, and the
backup process takes over before the requester receives a reply, the server can
resend the reply automatically—if a CHECKPOINT statement executes after the
server reads the requester’s message but before the server writes a reply (or
generates one automatically with another READ). When this happens, the server
does not see the duplicate message. The CHECKPOINT statement can execute
even if the server is not running as a process pair.

• A Process Pair Cannot Update an SQL/MP or SQL/MX Database

An HP COBOL program that runs as a process pair cannot update an SQL/MP or
SQL/MX database.

Note. A COBOL program must not modify the contents of a checkpoint list directly. The
execution logic of the routines and the CHECKPOINT statement maintain checkpoint lists
without the need for any other program action.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-36

Procedure Division Verbs CLOSE
CLOSE
CLOSE terminates processing of one or more open files or reels of tape. An optional
LOCK phrase prevents the program from reopening the file (unless the file is
dynamically assignable—see #DYNAMIC).

If a file is closed but not locked, the only I-O operation the process can perform on that
file is an open operation. If the file is closed and locked, the process cannot perform
any I-O operation on the file.

CLOSE has these formats:

• CLOSE for Sequential and Line Sequential Files

• CLOSE for Relative, Indexed, and Queue Files

CLOSE for Sequential and Line Sequential Files
Throughout this topic, “sequential file” means both sequential and line sequential files
unless otherwise noted.

file-name

is the name of the sequential file to be closed.

When more than one file-name appears, the files can have different
organization and access modes and the optional phrases following one file-
name are independent of those following any other file-name.

file-info

file-nameCLOSE file-info

VST138.vsd

UNIT

REEL FOR REMOVAL

WITH LOCK

NO REWIND

VST139.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-37

Procedure Division Verbs CLOSE for Sequential and Line Sequential Files
UNIT
REEL

specify that the current reel is to be closed and rewound, and a new reel is to
be mounted.

REMOVAL

specifies that the reel of a multiple-reel tape file be rewound and unloaded, and
a new reel is to be mounted.

NO REWIND

specifies that the sequential file is to be left in its current position, not rewound.

LOCK

means the file associated with file-name cannot be opened again during
the current run. If the file is dynamically assignable, the LOCK phrase has no
effect (see #DYNAMIC).

Usage Considerations:

• Effects of CLOSE

For each file-name in the CLOSE statement, the run-time routines perform an
appropriate close operation. These close operations occur as if separate CLOSE
statements were executed for each file-name in the order listed. Subsequent
usage considerations describe actions taken during the close operation for one file.

• File-Status Data Item

If the file being closed has an associated file-status data item, the CLOSE
statement assigns it an appropriate I-O status code. The possible I-O status codes
and their meanings are:

Failure of a close operation can terminate the run unit. When a run unit terminates
for any reason (normal or abnormal), the run-time routines implicitly close any
open files as if they were specified in a CLOSE statement without optional
phrases.

I-O Status Code Meaning

“00” The close operation completed successfully.

“07” The close operation completed successfully, but the CLOSE
statement included a NO REWIND, REEL, UNIT, or REMOVAL
phrase and the designated file does not reside on a reel or unit
medium.

“30” The close operation failed due to causes outside of COBOL. The
file is not closed. If the operation was a reel close, the reel might
not have been closed properly.

“42” The program attempted to close a file that was not open.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-38

Procedure Division Verbs CLOSE for Sequential and Line Sequential Files
• Closing Single-Tape and Multiple-Tape Files

See Table 9-1.

• Closing a File Open Under More Than One Name

If a program has one operating system file open under more than one file name,
closing one file name does not affect the availability of the operating system file
through any other file name, except when the LOCK phrase is present. The LOCK
phrase applies to all file names that the program has assigned to the operating
system file except those assigned dynamically with the COBOLASSIGN,
COBOL_ASSIGN_, or COBOL_ASSIGN_OSS_ routine.

• Closing Blocked Files

The close operation RVUs an incomplete block to the file if all of these conditions
are true:

° The file is declared with a BLOCK CONTAINS clause specifying more than one
record for each block.

° The current block contains at least one record but is not yet filled.

° The file’s open mode is OUTPUT or EXTEND.

If this RVU causes a boundary violation exception condition, the results are:

Table 9-1. CLOSE Statements for Sequential Tape File

CLOSE Statement Single Reel Multiple Reel

CLOSE See note 5 See notes 1 & 5

CLOSE NO REWIND See note 2 See notes 1 & 2

CLOSE LOCK See note 3 See notes 1 & 3

CLOSE REEL See note * See notes 4 & 5

CLOSE REEL FOR REMOVAL See note * See notes 3, 4, & 5

CLOSE REEL NO REWIND See note * See notes 2 & 4

1. OTHER REELS UNAFFECTED If more reels remain in the file, they are not processed.

2. NO REWIND The reel is left in its current position.

3. REEL REMOVAL The current reel is rewound and unloaded.

4. REEL SWAP When proceeding to the next reel in a multiple-reel set, a message is
written to the home terminal and a read is done. If the reply is a
carriage return, the new reel is assumed to be on the same device;
otherwise, the reply must be a device name that has the next reel in
the set.

5. REEL REWOUND The reel is rewound.

* If the program issues a CLOSE REEL of any form for a file that is open for INPUT, and the operator limits the
file to the current reel by responding “NO” to the reel swap prompt, the at-end condition occurs for that file. When
an operator responds “NO” for a file that is open for other than INPUT, the run-time routine rejects the “NO”
answer.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-39

Procedure Division Verbs CLOSE for Relative, Indexed, and Queue Files
° The block is not transmitted to the file.

° The close operation terminates immediately, setting any file-status variable
associated with the file to 34 (for a sequential file) or 24 (for a relative or
indexed file).

° Any applicable USE procedure executes.

° The file is not closed.

• COBOL and FUP Closing Procedures Are Incompatible (Multiple-Tape File)

When the run-time routine closes a nonfinal reel of a multiple-tape file, it writes an
end-of-file mark, a trash record, and an end-of-file mark. When the File Utility
Program (FUP) closes a multiple-reel tape file, it writes only the two consecutive
end-of-file marks. Because these closing procedures differ, you must not use FUP
to copy tapes written by and for COBOL programs. Instead, write a simple COBOL
program to copy such tapes.

• Process Pairs

When the run unit is executing as a process pair, the execution of a CLOSE file-
name also executes an implied statement of this form:

CHECKPOINT FILE file-name

• Repositioning a Sequential File to Its Beginning

Although you can reposition a sequential file to its beginning by closing it and
reopening it, you can do it faster with the routine
COBOL85^REWIND^SEQUENTIAL or COBOL_REWIND_SEQUENTIAL_. For
information on these routines, see COBOL85^REWIND^SEQUENTIAL and
COBOL_REWIND_SEQUENTIAL_.

CLOSE for Relative, Indexed, and Queue Files

file-name

is the name of the relative,indexed, or queue file to be closed.

When more than one file-name appears, the files can have different
organization and access modes and the optional phrases following one file-
name are independent of those following any other file-name.

file-nameCLOSE

WITH LOCK

VST140.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-40

Procedure Division Verbs COMPUTE
LOCK

means the file associated with file-name cannot be opened again during the
current run. If the file is dynamically assignable, the LOCK phrase has no effect
(see #DYNAMIC).

See these usage considerations in CLOSE for Sequential and Line Sequential Files:

• Effects of CLOSE

• File-Status Data Item

• Closing a File Open Under More Than One Name

• Closing Blocked Files

• Process Pairs

COMPUTE
COMPUTE evaluates an arithmetic expression and stores the result in the specified
data item or items.

result

is the identifier of a numeric elementary item or numeric edited elementary item
where the result of the computation is to be stored.

ROUNDED

specifies that the value is rounded before being stored.

COMPUTE result

ROUNDED

END-COMPUTE

= expression

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imp-stmt-1

imp-stmt-2

VST141.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-41

Procedure Division Verbs COMPUTE
expression

is an arithmetic expression.

imp-stmt-1

is an imperative statement to be executed when a size error has been detected in
the computation or in storing the result.

imp-stmt-2

is an imperative statement to be executed when no size error is detected in the
computation or in storing the result.

END-COMPUTE

ends the scope of the COMPUTE statement, causing the COMPUTE to be a
delimited-scope statement. If the COMPUTE statement does not end with an END-
COMPUTE phrase, the presence of the SIZE ERROR or the NOT SIZE ERROR
phrase causes the COMPUTE statement to be a conditional statement, which ends
at the next period separator.

Usage Considerations:

• See Arithmetic Operations for information on data conversion and alignment,
intermediate results, multiple results, and incompatible data.

• See Arithmetic Precision for information on precision of addition.

• See ROUNDED Phrase and SIZE ERROR Phrase for information on these
phrases.

For Example 9-9 and Example 9-10, these descriptions are in the Working-Storage
Section of a program:

Example 9-9. COMPUTE Statement (page 1 of 2)

WORKING-STORAGE SECTION.
01 COMPUTE-RESULT PIC 999 VALUE ZEROS.
01 DIAGNOSTIC-FIELD PIC X(35).
01 WS-RESULT PIC S9(9) VALUE ZEROS.
01 WS-99 PIC S99 VALUE 99.
01 WS-FIVE-ONES PIC S9(5) VALUE 11111.
01 EXPONENT PIC 9(5) VALUE ZERO COMP.
01 A PIC 9(4)V99.
01 B PIC 9(4)V99 VALUE 8.
01 C PIC 9(4)V99 VALUE 5.
01 U PIC 9(4)V99 VALUE 7.
01 X PIC 9V99.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-42

Procedure Division Verbs COMPUTE
This statement specifies that the result be stored in COMPUTE-RESULT without being
rounded:

COMPUTE COMPUTE-RESULT =
 (((24.0 + 1) * (60 - 10)) / 125) ** 2
END-COMPUTE

(The result is 100.)

This COMPUTE statement specifies that the result be rounded and then stored in WS-
RESULT:

MOVE 2 TO EXPONENT
COMPUTE WS-RESULT ROUNDED =
 WS-99 / 10 * WS-99 ** EXPONENT + WS-FIVE-ONES
END-COMPUTE

(The result is 108,141.)

Example 9-10. Combination of IF and COMPUTE Statements

IF A > 0
 COMPUTE X = B ** 2 - (4 * A * C) / (2 * A)
 ON SIZE ERROR
 MOVE "DIVISION ERROR" TO DIAGNOSTIC-FIELD
 END-COMPUTE
ELSE
 MOVE "DIVISION BY ZERO" TO DIAGNOSTIC-FIELD
END-IF.

Example 9-9. COMPUTE Statement (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-43

Procedure Division Verbs CONTINUE
CONTINUE
CONTINUE is a no-operation statement.

Usage Considerations:

• Effect of CONTINUE

A CONTINUE statement has no effect on the execution of the program.

• Where CONTINUE Can Appear

The CONTINUE statement can appear anywhere a conditional statement or an
imperative statement can appear. The normal use is as an unused branch of an IF
statement.

COPY
COPY summons source text from a file set up as a COPY library. You can use COPY
in any division. For more information, see COPY Statement.

Example 9-11. CONTINUE Statement

IF SALARIED
 IF ANNUAL-SAL > 50000
 IF BELOW-QUOTA
 CONTINUE
 ELSE
 PERFORM ADD-BONUS-TO-OVERPAID-SALESPERSON
 END-IF
 ELSE
 IF BELOW-QUOTA
 CONTINUE
 ELSE
 PERFORM ADD-BONUS-TO-FLUNKY
 END-IF
ELSE
 IF OVERTIME
 ...

CONTINUE

VST142.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-44

Procedure Division Verbs DELETE
DELETE
DELETE removes a record from a relative or indexed file that is open in I-O mode.

file-name

is the name of a relative or indexed file that is open in I-O mode.

imperative-stmt-1

is an imperative statement to be executed when the invalid-key condition arises
during the delete operation. It is required for a file whose access mode is random
or dynamic (but prohibited for a file whose access mode is sequential) when there
is no USE procedure that applies to the file.

imperative-stmt-2

is an imperative statement to be executed (after a declarative procedure) when no
exception or an exception other than the invalid-key condition arises during the
delete operation.

END-DELETE

ends the scope of the DELETE statement and makes it a delimited-scope
statement. If you omit END-DELETE but include the INVALID KEY or NOT
INVALID KEY phrase, the DELETE statement is a conditional statement and ends
at the next period separator.

DELETE file-name

RECORD

NOT

END-DELETE

INVALID

KEY

imperative-stmt-1

INVALID

KEY

imperative-stmt-2

VST143.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-45

Procedure Division Verbs DELETE
Usage Considerations:

• I-O Status Codes

If the file being closed has an associated file-status data item, the DELETE
statement assigns it an appropriate I-O status code. The possible I-O status codes
and their meanings are:

When the deletion is successful or the invalid-key condition occurs, these items are
not affected:

° Record area

° Data item specified in the DEPENDING phrase of the RECORD clause,
specifying the length of the record

° Key of reference

° File position indicator

• Record Deleted When File Access Mode is Sequential

If the file’s access mode is sequential and the last operation performed on the file
was a successful READ statement, then DELETE logically removes from the file
the record that the READ statement retrieved. If the last operation performed on
the file was not a successful READ statement, DELETE terminates with I-O status
code “43.”

In a Pathway environment under the NonStop Transaction Management Facility
(TMF), the last operation on the file must have been a successful execution of a
READ LOCK statement (rather than a READ statement). For information on coding
servers, see the Pathway/TS SCREEN COBOL Reference Manual for your
system.

The record retrieved by the READ statement is deleted.

I-O Status Code Meaning

“00” The delete operation was successful.

“23” The designated record does not exist.

“30” The delete operation failed due to causes outside of COBOL. The
specified record might or might not have been deleted. The file
position indicator might be undefined.

“43” The delete operation failed because the last input-output
statement executed for the file (which is in the sequential access
mode) was not a successfully executed READ statement.

“49” The file was not open in the I-O mode or was not opened by an
HP COBOL program.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-46

Procedure Division Verbs DISPLAY
• Record Deleted When File Access Mode is Random or Dynamic

If the file’s access mode is random or dynamic, the record to be deleted is defined
by the record key, or, for relative files, the relative key (indexed or prime key). If the
designated record does not exist, an invalid-key condition occurs with I-O status
code “23.”

DISPLAY
DISPLAY delivers a small amount of data (such as an error message) to a terminal, a
printer, or another process.

Example 9-12. DELETE Statement

INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT EMPLOYEE-MASTER ASSIGN TO "EMPMAST"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS EMPLOYEE-NUMBER
 FILE STATUS IS FILE-STAT.
 ...
FD EMPLOYEE-MASTER
 LABEL RECORDS ARE OMITTED
 ...
 05 EMPLOYEE-NUMBER PIC X(7).
 ...
PROCEDURE DIVISION.
 ...
DELETE-RECORD.
 MOVE KEY-TO-DELETE TO EMPLOYEE-NUMBER
 DELETE EMPLOYEE-MASTER RECORD
 INVALID KEY PERFORM KEY-ERROR
END-DELETE

DISPLAY identifier

literal

UPON

NO ADVANCING

mnemonic-name

WITH

VST144.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-47

Procedure Division Verbs DISPLAY
identifier

is the identifier of any data item except an index data item.

literal

is a literal or figurative constant name.

mnemonic-name

is the device on which the process displays the data. You must define mnemonic-
name in the SPECIAL-NAMES paragraph of the Environment Division. When you
omit mnemonic-name, the process delivers the data to its output file, typically its
home terminal.

NO ADVANCING

specifies that the device to which the display is directed is not reset to the next line
after the data is displayed.

The DISPLAY statement in Example 9-3 delivers an error message to the output file of
a process.

If INVOICE-NUMBER is 00246, the output from the code in Example 9-3 looks like this:

I-O ERROR 23 - NO RECORD FOR KEY = 00246

Usage Considerations:

• Differences in the OSS and Guardian Environments

In the OSS environment (but not in the Guardian environment), if a DISPLAY
statement includes mnemonic-name, it must be either the OSS pathname of a
Guardian file or the name of an OSS text file.

• Devices

The devices to which the DISPLAY statement can transmit data are terminals
(including the operator’s console), printers, processes (including spooler
collectors), and entry-sequences files. Once the DISPLAY device is assigned, the
program cannot change it. The WRITE statement is recommended for all but the
smallest amounts of data.

Example 9-13. DISPLAY Statement

IF IO-STATUS = "23"
 DISPLAY "I-O ERROR " IO-STATUS
 " - NO RECORD FOR KEY = " INVOICE-NUMBER
END-IF
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-48

Procedure Division Verbs DISPLAY
• Specifying the Wrong Device

If you specify a device that cannot be used for DISPLAY output, the process
displays a run-time error message and the output on its home terminal. The error
message includes this line:

Device assigned to ACCEPT or DISPLAY not a legal device

• Opening and Closing Devices

The display operation opens and closes the terminal or printer (but not a process)
for each DISPLAY statement. This prevents a COBOL program from locking out
other users between displays. Because a process is not prevented from accepting
requests from other run units, COBOL does not close a process after each display
operation; instead, it waits until execution of the run unit terminates.

• How Different Types of Values Are Displayed

° Numeric values

A numeric value is displayed as a numeric literal, preceded by a minus sign if
the value is negative, and with a decimal point before any fractional digits. The
number of digits displayed is the number of digits defined for the sending item.

A function that returns a floating-point value (such as NUMVAL or NUMVAL-C)
is displayed as if the value were described as PICTURE S9(18), with no
decimal positions. For this reason, do not reference such functions in DISPLAY
statements. Instead, move the values that such functions return to temporary
variables that have decimal points in the appropriate positions and display the
temporary variables.

° Nonnumeric values

A nonnumeric value is displayed as a string of characters.

° Figurative constant values

A figurative constant is displayed as a single occurrence of the constant value
(even if the figurative constant includes the prefix ALL).

° Multiple values

When you specify more than one value in a DISPLAY statement, DISPLAY
combines the values (in the order you specify them) into a single character-
string and displays the character-string. The size of the displayed item is the
sum of the sizes of all the values.

If the character-string exceeds the line capacity of the device, DISPLAY
displays the data as a sequence of lines. Every line except (perhaps) the last
one contains its maximum number of characters. The last line contains
whatever characters are left, up to the maximum.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-49

Procedure Division Verbs DIVIDE
• Displaying Records and Large Amounts of Data

Use the WRITE statement to display records and character-strings longer than
several lines. The DISPLAY statement is not designed to deliver logical records or
large amounts of data to a device.

• NO ADVANCING Phrase

If you include the NO ADVANCING phrase, the device is not changed after it
displays the final operand (for example, the device is not repositioned to the next
line). If the device is a printer or a spooler process, this causes the next line
displayed to overprint the current line (useful for underlining). If the device is a
terminal, the cursor appears after the last character displayed (useful for issuing a
prompt and accepting the response on the same line).

DIVIDE
Form Topic

DIVIDE a INTO b DIVIDE INTO

DIVIDE a INTO b GIVING c
DIVIDE b BY a GIVING c

DIVIDE GIVING

DIVIDE a INTO b GIVING c REMAINDER d
DIVIDE b BY a GIVING c REMAINDER d

DIVIDE GIVING REMAINDER
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-50

Procedure Division Verbs DIVIDE INTO
DIVIDE INTO
DIVIDE INTO divides one data item into one or more other data items and stores the
quotient(s) in the respective dividend data item(s).

divisor

is the identifier of the elementary numeric data item or numeric literal that is the
divisor.

dividend

is the identifier of an elementary numeric data item that is both the dividend and
the receiver of the quotient.

ROUNDED

specifies that quotient is to be rounded before being stored.

imperative-stmt-1

is an imperative statement for the process to execute if it detects a size error in the
division or in storing the result.

imperative-stmt-2

is an imperative statement for the process to execute if it does not detect a size
error in the division or in storing the result.

DIVIDE divisor INTO

END-DIVIDE

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

dividend

ROUNDED

VST145.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-51

Procedure Division Verbs DIVIDE INTO
END-DIVIDE

ends the scope of the DIVIDE statement and makes it a delimited-scope
statement. If you omit END-DIVIDE but include the SIZE ERROR or NOT SIZE
ERROR phrase, the DIVIDE statement is a conditional statement and ends at the
next period separator.

Usage Considerations:

• Mathematics

The statement

DIVIDE A INTO B

means store B /A in B.

• Precision

For information on the precision of HP COBOL division, see Arithmetic Precision.

• Order of Evaluation

The value of divisor is copied into a temporary data item for computation. The
value of each dividend is divided by the value of the temporary data item and
the value of the result is stored (after rounding, if specified) into dividend. If the
same data name occurs more than once in the list of dividends, the final value of
the item reflects multiple divisions by the value of divisor.

Each time the result is stored in a dividend, the process of operand
identification (including subscript evaluation and reference modification) occurs just
before the storage operation.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-52

Procedure Division Verbs DIVIDE GIVING
DIVIDE GIVING
DIVIDE GIVING divides one data item into another data item and stores the quotient in
one or more data items.

divisor

is the identifier of the elementary numeric data item or numeric literal that is the
divisor.

dividend

is the identifier of an elementary numeric data item that is the dividend.

quotient

is the identifier of the elementary numeric item or elementary numeric edited data
item in which the quotient is to be stored.

ROUNDED

specifies that quotient is to be rounded before being stored.

DIVIDE divisor

dividend

INTO dividend

BY divisor

GIVING

END-DIVIDE

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

quotient

ROUNDED

VST146.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-53

Procedure Division Verbs DIVIDE GIVING
imperative-stmt-1

is an imperative statement for the process to execute if it detects a size error in the
division or in storing the result.

imperative-stmt-2

is an imperative statement for the process to execute if it does not detect a size
error in the division or in storing the result.

END-DIVIDE

ends the scope of the DIVIDE statement and makes it a delimited-scope
statement. If you omit END-DIVIDE but include the SIZE ERROR or NOT SIZE
ERROR phrase, the DIVIDE statement is a conditional statement and ends at the
next period separator.

Usage Considerations:

• Mathematics

The statement

DIVIDE A INTO B GIVING C

means store B /A in C.

The statement

DIVIDE A BY B GIVING C

means store A /B into C.

• Precision

For information on the precision of HP COBOL division, see Arithmetic Precision.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-54

Procedure Division Verbs DIVIDE GIVING REMAINDER
DIVIDE GIVING REMAINDER
DIVIDE GIVING REMAINDER divides one data item into another data item and stores
the quotient and remainder in specified data items.

divisor

is the identifier of the elementary numeric data item or numeric literal that is the
divisor.

dividend

is the identifier of an elementary numeric data item that is the dividend.

quotient

is the identifier of the elementary numeric item or elementary numeric edited data
item in which the quotient is to be stored.

ROUNDED

specifies that quotient is to be rounded before being stored.

DIVIDE

quotient

ROUNDED

divisor

dividend

REMAINDER remainder

END-DIVIDE

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

INTO dividend

BY divisor

GIVING

VST147.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-55

Procedure Division Verbs DIVIDE GIVING REMAINDER
remainder

is the identifier of an elementary numeric or elementary numeric edited data item
where the remainder is stored.

imperative-stmt-1

is an imperative statement for the process to execute if it detects a size error in the
division or in storing the result.

imperative-stmt-2

is an imperative statement for the process to execute if it does not detect a size
error in the division or in storing the result.

END-DIVIDE

ends the scope of the DIVIDE statement and makes it a delimited-scope
statement. If you omit END-DIVIDE but include the SIZE ERROR or NOT SIZE
ERROR phrase, the DIVIDE statement is a conditional statement and ends at the
next period separator.

Usage Considerations:

• Mathematics

The statement

DIVIDE A INTO B GIVING C REMAINDER D

means store the quotient portion of the value of B /A in C and store the remainder
in D.

The statement

DIVIDE A BY B GIVING C REMAINDER D

means store the quotient portion of the value of A /B in C, and store the remainder
in D.

• Precision

For a discussion of the precision of HP COBOL division, see Arithmetic Precision.

• Remainder

HP COBOL computes the remainder by performing the division with a signed
quotient having the same number of decimal places as the quotient. For example,
dividing 2 into -5 yields a remainder of -1. This differs from COBOL, in which the
intermediate value has the same sign as the quotient.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-56

Procedure Division Verbs DIVIDE GIVING REMAINDER
Example 9-14. DIVIDE INTO Statement With GIVING and REMAINDER Phrases

WORKING-STORAGE SECTION.
01 ARITHMETIC-WORK-SPACE.
 03 LEAP-YEAR PIC 9 VALUE ZERO.
 03 DIVIDE-RESULT PIC 99 VALUE ZERO.
 ...
01 INVOICE-DATE.
 05 INV-MONTH PIC 99.
 05 INV-DAY PIC 99.
 05 INV-YEAR PIC 9999.
 ...
PROCEDURE DIVISION.
 ...
 DIVIDE 4 INTO INV-YEAR GIVING DIVIDE-RESULT
 REMAINDER LEAP-YEAR
 END-DIVIDE
 ...

Example 9-15. DIVIDE BY Statement With GIVING and REMAINDER Phrases

WORKING-STORAGE SECTION.
01 ARITHMETIC-WORK-SPACE.
 03 LEAP-YEAR PIC 9 VALUE ZERO.
 03 DIVIDE-RESULT PIC 99 VALUE ZERO.
 ...
01 INVOICE-DATE.
 05 INV-MONTH PIC 99.
 05 INV-DAY PIC 99.
 05 INV-YEAR PIC 9999.
 ...
 PROCEDURE DIVISION.
 ...
 DIVIDE INV-YEAR BY 4 GIVING DIVIDE-RESULT
 REMAINDER LEAP-YEAR
 END-DIVIDE
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-57

Procedure Division Verbs ENTER
ENTER
ENTER calls a routine written in a language other than COBOL. (To call a COBOL
routine, use CALL.)

In some implementations of COBOL, ENTER marks the beginning of an embedded
routine in some other language.

In HP COBOL, ENTER is analogous to CALL but is used to call a non-COBOL routine.
An HP COBOL program’s mode and operating environment determine what types of
non-COBOL routines it can call. A called routine can have an ordinary, VARIABLE, or
EXTENSIBLE parameter list.

language

The COBOL85 compiler reports an error if the called routine was not written in the
specified language, except when the specified language is C and the routine was
written in C++, which the COBOL85 compiler handles as if it were C.

Note. If you use the ENTER statement in the OSS environment, see Mixed-Language
Programs.

Compiler Environment language

COBOL85 Guardian C, TAL, FORTRAN, or Pascal

OSS C or TAL

NMCOBOL Unnecessary, because the compiler can determine the
language of the called program, but if specified,
language must be HP C or TAL.

If language is TAL, the compiler expects a pTAL
program. The compiler does not accept TAL programs.

ENTER

OF

language

routine-name

USING parameter

IN

file-mnemonic

OMITTED

GIVING return-value

VST148.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-58

Procedure Division Verbs ENTER
For the COBOL85 compiler, the absence or value of language determines these
things:

° The protocol used to pass string parameters
° The language in which the called routine must have been written

For the COBOL85 compiler:

° If language is absent, FORTRAN protocol is used to pass string parameters
and the called routines must have been written in TAL. Omit language when
calling TAL routines that can be called by either COBOL or FORTRAN, such as
Saved Message Utility (SMU) routines.

° If language is present, the protocol of the language specified is used to pass
string parameters and the called routine must have been written in the same
language.

routine-name

is either the actual name of the called routine or it is a nonnumeric literal whose
value is the name of the called routine.

If routine-name is a nonnumeric literal or a COBOL reserved word, or if it
contains a caret (^) or underscore (_), it must be enclosed in quotation marks.

If routine-name is not enclosed in quotation marks, the compiler handles it as
the actual name of the routine. Quotation marks are recommended.

If routine-name specifies an C or C++ function whose name includes lowercase
letters, the call fails, because the compiler automatically converts all names to
uppercase.

file-mnemonic

specifies the object file containing the called routine’s code and data blocks,
enabling the BIND process or nld or ld utility to find the routine during preparation
of the run unit.

For the NMCOBOL compiler, file-mnemonic must specify either:

• A linkfile

• An archive file

Establish the association between file-mnemonic and the operating system file
name in the SPECIAL-NAMES paragraph of the Environment Division.

The file-mnemonic phrase is not part of the routine-name. You cannot use
the phrase to make the routine-name unique.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-59

Procedure Division Verbs ENTER
parameter

is a value to be passed to the called routine.

data-name

can be qualified, subscripted, and include a reference modifier. If data-name
is a TAL or pTAL string:length parameter, you can set its length with a
reference modifier (see Restrictions on Calling TAL or pTAL Routines).

literal

is a numeric literal whose value corresponds to a value parameter in the
routine being called.

arithmetic-expression

is an arithmetic expression whose value corresponds to a value parameter in
the routine being called.

file-name

is the file description name of a file.

OMITTED

must be specified in place of any omitted parameter surrounded by other
parameters (because parameters are recognized by their order). OMITTED is only
permitted when the called routine has the VARIABLE or the EXTENSIBLE
attribute.

return-value

is a numeric or numeric edited elementary data item where the return value is
stored when the called routine is a function. The return-value can be a 2-byte,
4-byte, or 8-byte integer or a 4-byte or 8-byte floating-point value (in TAL terms:
INT, INT(32), FIXED, REAL, or REAL(64)).

data-name

literal

arithmetic-expression

file-name

()

VST149.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-60

Procedure Division Verbs ENTER
Usage Considerations:

• language

If you call a routine with a particular value of language (or with language
omitted), you must use the same value of language each time you call that
routine in the same compilation unit.

• file-mnemonic

If you specify file-mnemonic but the compiler does not find the called routine in
the associated object file, the compiler reports an error. For information on
resolving external references, see Finding the Entered Program.

• USING Phrase

The number and type of the parameters in the USING phrase must be compatible
with the expectations of the called routine. The called routine might interpret the
parameters slightly differently than the calling program does (see Appendix B, Data
Type Correspondence).

• GIVING Phrase

When calling a function (a routine that returns a value), include a GIVING phrase in
the ENTER statement. When control returns to the COBOL program, the value that
the function returns is assigned to return-value.

Scaling of the function’s value (if needed) is performed before the value is
assigned to return-value. If the function’s value is larger than the maximum
value allowed for a COBOL identifier, the COBOL program terminates with an
arithmetic overflow condition during the conversion process. The assignment
operation follows MOVE conventions (see MOVE TO).

• Passing Parameters by Value

When a formal parameter (in the called routine) is to be passed by value, the
actual parameter (in the ENTER statement) must be a numeric literal, a numeric
data item, a special register, an arithmetic expression, or the word OMITTED. If the
parameter is not OMITTED, it is evaluated, scaled, and converted to the storage
size and type of the formal parameter. The resulting value is passed to the called
routine. This conversion might cause an arithmetic overflow.

• Passing Parameters by Reference

When a formal parameter (in the called routine) is to be passed by reference, the
actual parameter (in the ENTER statement) must be a data item or, in some
routines supplied by HP, a file name.

If the actual parameter is a data item, the compiler generates code to pass the
address of the data item’s storage space to the called routine. The calling program
and the called routine must interpret the value of the data item the same way.

If the actual parameter is a file name, the compiler generates code to pass the
address of the COBOL file control block to the called routine.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-61

Procedure Division Verbs ENTER
• Addressing Parameters

All native instructions use 32-bit addressing. Some TNS instructions use 16-bit
addressing and others use 32-bit addressing. Those that use 16-bit addressing
execute faster, but cannot address data items in extended memory. The code in an
called routine that handles parameters specified in the calling program is
generated according to the addressing mode of the data descriptions in the called
routine.

Many COBOL data items are byte-addressed. Some data items in other languages
are 2-byte-addressed. This means different things in a TNS program and in native
program.

In a TNS program, when you pass a byte-addressed parameter to a routine that
expects a 2-byte-addressed parameter, the compiler shifts the byte address to the
right to produce a 2-byte address. The data item must begin in the leftmost byte;
otherwise, problems can arise. The compiler issues a warning if there is any
possibility of this happening (because the offset within the record is odd, the data
item is a table with odd element size, or the data item is within a table).

In a native program, when you pass a byte-addressed parameter to a routine that
expects a 2-byte-addressed parameter, the data item must be aligned on a 2-byte
boundary; otherwise, problems can arise, because the called routine is expecting
an aligned parameter. The compiler does not issue a warning in this case.

° TNS HP COBOL

TNS HP COBOL programs use 16-bit addressing for all items in the File
Section and the Working-Storage Section. They use 32-bit addressing for all
data items in the Extended-Storage section and all data items in the Linkage
Section that are not described as having STANDARD access mode.

Any TNS HP COBOL data item except a special register or a data item
declared in the Extended-Storage Section can correspond to a 16-bit-
addressed reference parameter of the called routine.

Any TNS HP COBOL data item except a special register can correspond to a
32-bit-addressed reference parameter of the called routine.

° FORTRAN (TNS only)

Each FORTRAN routine uses the same addressing mode for all parameters it
receives or passes—16-bit addressing by default, 32-bit addressing if the
routine is compiled with the EXTENDEDREF or LARGECOMMON directive.
(The LARGECOMMON directive also causes common blocks to be allocated in
extended memory.) All FORTRAN routines bound into one object file must use
the same addressing mode.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-62

Procedure Division Verbs ENTER
° Pascal (TNS only)

Each Pascal module uses the same addressing mode for all parameters and
pointers it receives or passes—16-bit addressing and 16-bit pointer allocation
by default, 32-bit addressing and 32-bit pointer allocation if the routine is
compiled with the XMEM directive. (16-bit addressing is called the “small-
memory model” and 32-bit addressing is called the “large-memory model.”) All
Pascal modules bound into one object file must use the same addressing
mode.

° pTAL

In pTAL modules, each data item declaration (including parameter
declarations) specifies either 1-byte or 2-byte addressing. All declarations use
32-bit addressing.

° TNS C and C++

Each HP C or HP C++ module uses the same addressing mode for all
parameters and pointers it receives or passes—32-bit addressing and 32-bit
pointer allocation by default, 16-bit addressing and 16-bit pointer allocation if
the module is compiled with the NOXMEM pragma. All modules bound into one
object file must use the same addressing mode. HP recommends using 32-bit
addressing mode for HP C and HP C++ pointers.

° Native C and C++

In native HP C and HP C++ modules, all data item declarations (including
parameter declarations) use 32-bit addressing.

° TAL

In TAL programs, each data item declaration (including parameter
declarations) specifies either 16-bit or 32-bit addressing.

• Restrictions on Calling HP C and HP C++ Functions

An HP COBOL program cannot call an HP C or HP C++ function for which any of
these conditions are true:

° The function name includes lowercase letters.

° The function prototype specifies a variable number of parameters.

° The function returns a structured value.

° The function specifies a formal parameter whose type has no corresponding
COBOL type (see Appendix B, Data Type Correspondence).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-63

Procedure Division Verbs ENTER
In the non-CRE environment (but not the CRE), an HP COBOL program cannot
call an HP C or HP C++ function for which any of these conditions are true:

° The function directly or indirectly allocates or deallocates controlled storage.
° The function performs HP C or HP C++ input-output operations.
° The function directly or indirectly accesses the HP C function getenv.

Do not include the GIVING phrase in an ENTER statement that accesses an HP C
or HP C++ function whose type is a pointer or whose type designation includes the
modifier “unsigned.” The type “char” is included in this prohibition, because the
HP C compiler and the HP C++ compiler interpret it as the type “unsigned char.”
The type “signed char” is acceptable.

When the formal parameter for an HP C or HP C++ function is a scalar variable, its
type designation cannot include the modifier “unsigned.” The type “char” is include
in this prohibition, because the HP C and HP C++ compilers interpret it as the type
“unsigned char.” The type “signed char” is acceptable.

Because the names of HP C++ routines are often modified to reflect their classes
and argument types, it is recommended that HP COBOL programs call only regular
HP C++ functions, not constructs that are peculiar to HP C++ (such as member
functions and templates).

• Restrictions on Calling FORTRAN Routines

Do not pass literals or expressions to FORTRAN routines. The FORTRAN
language has no way to specify that it expects to receive a parameter by value (all
parameters are passed to FORTRAN routines by reference).

If a program includes both HP COBOL and FORTRAN routines, these restrictions
apply to input-output operations:

° All input-output operations done on a particular file must be performed within
one language or by routines provided by HP.

° In the non-CRE environment (but not the CRE), an HP COBOL routine must
handle process termination. If execution terminates in FORTRAN code, the
run-time routines do not have a chance to complete any possible pending
input-output operations and lines of printer or terminal output are likely to be
lost.

° In the CRE, the HP COBOL and FORTRAN routines can share IN, OUT, and
$RECEIVE files.

• Restrictions on Calling Pascal Routines

In the non-CRE environment (but not in the CRE), an HP COBOL program cannot
call a Pascal routine that directly or indirectly allocates or deallocates controlled
storage or performs Pascal input-output operations.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-64

Procedure Division Verbs ENTER
• Restrictions on Calling TAL or pTAL Routines

If your HP COBOL program calls a TAL or pTAL routine that has a
string:length parameter, you only need to give the name of the corresponding
actual parameter, because the compiler can determine its length.

If a TAL or pTAL routine that has a string:length parameter does not ignore
trailing spaces and you want to pass it an actual parameter that is shorter than the
one defined for the corresponding formal parameter, use reference modification.

The HP COBOL code in Example 9-16 calls the pTAL routine
FILENAME_COMPARE_, which does not ignore trailing spaces and has two formal
parameters, filename1:length1 and filename2:length2.

If a TAL routine expects FORTRAN CHARACTER parameters (as the SMU
routines do), omit language when calling the routine. If you specify the
language TAL, differences in the TAL and FORTRAN parameter-passing
protocols will cause trouble.

The TAL parameter-passing protocol (which applies to all ordinary TAL routines
including operating system externals) is to push parameter addresses onto the
data stack and then call the routine.

The FORTRAN parameter-passing protocol is to push the length of each
CHARACTER parameter onto the data stack followed by its address. This allows
the called routine to retrieve the parameter’s length. If the called routine expects
lengths on the stack and they are not there, the called routine does not work as
intended.

In Example 9-17, a TNS HP COBOL program calls a TAL routine named
SYS^PROCEDURE that expects one reference parameter and three value
parameters. Because no qualifying mnemonic-name is present, one or more
search lists must be present (produced from SEARCH, LIBRARY, or CONSULT
directives) or the procedure must be in the object file COBOLEXT.

Example 9-16. Calling a pTAL Routine That Does Not Ignore Trailing Spaces

01 file-name-1 PIC X(255).
01 file-name-2 PIC X(255).
01 len-1 PIC 999 COMP.
01 len-2 PIC 999 COMP.
...
MOVE 0 TO len-1, len-2
INSPECT file-name-1 TALLYING len-1
 FOR CHARACTERS BEFORE SPACE
INSPECT file-name-2 TALLYING len-2
 FOR CHARACTERS BEFORE SPACE
ENTER "FILENAME_COMPARE_" USING file-name-1 (1: len-1)
 file-name-2 (1: len-2)
 GIVING ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-65

Procedure Division Verbs ENTER
In Example 9-18, a TNS HP COBOL program calls the TAL procedure
LOAD^BACKUP^CPU that is in this object file:

$DATA.MYSUBVOL.TALL

The procedure accepts no parameters and returns a 2-byte result.

Example 9-17. HP COBOL Program Calling TAL Routine

TAL procedure declarations:

INT PROC SYS^PROCEDURE (T, I, FIX, N);
 STRING .T; ! REFERENCE ADDRESS
 INT I; ! VALUE
 FIXED(4) FIX; ! VALUE
 INT N; ! VALUE

COBOL source code:

WORKING-STORAGE SECTION.
77 T PIC X(40) VALUE SPACES.
77 I PIC 9(4) VALUE ZERO COMP.
77 FIX PIC S9(13)V9999 VALUE -125641.3992 COMP.
77 RESULT PIC 9(4).
 ...
PROCEDURE DIVISION.
 ...
 ENTER TAL "SYS^PROCEDURE" USING T (I+1) FIX 25
 GIVING RESULT

Example 9-18. HP COBOL Program Calling TAL Routine in Object File

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
 ...
SPECIAL-NAMES.
 FILE "$DATA.MYSUBVOL.TALL" IS TAL-LIBRARY.
 ...
WORKING-STORAGE SECTION.
77 BACK-UP-CPU PIC S99 COMPUTATIONAL.
 ...
PROCEDURE DIVISION.
 ...
 ENTER TAL "LOAD^BACKUP^CPU" IN TAL-LIBRARY
 GIVING BACK-UP-CPU
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-66

Procedure Division Verbs ENTER COBOL
ENTER COBOL
HP COBOL compilers treat ENTER COBOL as a comment. In implementations that
use ENTER to mark the beginning of an embedded routine in a language other than
COBOL, the ENTER COBOL statement ends the embedded routine and the
resumption of COBOL source code.

EVALUATE
EVALUATE defines a multiple-branch structure, a decision table. EVALUATE executes
a different group of statements when one or more data items or expressions have
certain sets of values.

subject-list

ENTER COBOL .

VST150.vsd

EVALUATE subject-list

WHEN OTHER

END-EVALUATE

object-listWHEN

no-match-imp-stmt

match-imp-stmt

VST151.vsd

subject

ALSO subject

VST616.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-67

Procedure Division Verbs EVALUATE
subject

identifier

is any identifier (it can be qualified, subscripted, or reference-modified).

literal

is any literal.

expression

is an arithmetic or conditional expression.

TRUE
FALSE

are logical values.

object-list

object

identifier

literal

expression

FALSE

TRUE

VST152.vsd

object

ALSO object

VST153.vsd

condition

FALSE

TRUE

ANY

NOT

range

VST154.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-68

Procedure Division Verbs EVALUATE
ANY

matches any corresponding selection subject.

condition

is a relation condition, class condition, condition-name condition, switch-
status condition, sign condition, or complex condition.

TRUE
FALSE

are truth values.

NOT

inverts the comparison. A match occurs when the value of a subject
differs from the value of the corresponding object or lies outside the
range specified for the object.

range

identifier-1
identifier-2

are any identifiers (they can be qualified, subscripted, or reference-
modified). They can be compared to any corresponding selection
subjects being compared in a conditional expression.

literal-1
literal-2

can be any literals. They can be compared to any corresponding
selection subject being compared in a conditional expression.

arith-exp-1
arith-exp-2

are arithmetic expressions. They can be compared to any selection
subject being in a conditional expression.

identifier-1

literal-1

arith-exp-1

THROUGH

THRU

identifier-2

literal-2

arith-exp-2

VST155.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-69

Procedure Division Verbs EVALUATE
THROUGH
THRU

indicate that a range of values is to be compared. Two operands
combined by THROUGH or THRU must be of the same class
(alphabetic, alphanumeric, or numeric). The two operands thus
connected constitute a single selection object.

match-imp-stmt

is an imperative statement to be executed when the values of the objects in the
associated object-list match the values of the corresponding subjects in the
subject-list.

no-match-imp-stmt

is an imperative statement to be executed when no match-imp-stmt applies.
After no-match-imp-stmt executes, control passes to the end of the
EVALUATE statement.

END-EVALUATE

ends the scope of the EVALUATE statement and makes it a delimited-scope
statement. If you omit END-EVALUATE, the EVALUATE statement is a conditional
statement and ends at the next period separator.

Usage Considerations:

• EVALUATE in Comparison to “Case” Statement

The EVALUATE statement is a generalization of what some languages call the
“case” statement, a statement that enables you to execute one of several groups of
statements depending on the value of a single data item.

Example 9-19. EVALUATE Statement as “Case” Statement

EVALUATE TRAN-CODE
 WHEN 1 PERFORM TRAN-1
 WHEN 2 PERFORM TRAN-2
 WHEN 3 PERFORM TRAN-3
 WHEN OTHER PERFORM TRAN-BAD
END-EVALUATE

Example 9-20. EVALUATE Statement With Both Ranges and Discrete Values

EVALUATE SALARY OF PAYROLL-REC
 WHEN 15000 THRU 29999.99 PERFORM LOW-BRACKET
 WHEN 30000 THRU 49999.99 PERFORM MIDL-BRACKET
 WHEN 50000 THRU 99999999 PERFORM HIGH-BRACKET
 WHEN OTHER PERFORM NO-BRACKET
END-EVALUATE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-70

Procedure Division Verbs EVALUATE
The EVALUATE statement extends the “case” statement concept by allowing
several selection subjects and matching objects—the equivalent of a decision
table. The EVALUATE statement in Example 9-21 uses the values of two distinct
subjects to make its selection.

The selection objects (the “0” and “1 THRU 2” of Example 9-21) are not restricted
to being literals or ranges of literals; they can also be (for example) condition
names, identifiers, and arithmetic expressions.

The WHEN OTHER phrase is commonly used as the mechanism for handling
errors, enabling the program to detect invalid values for subjects and improper
specification of objects.

• Subject-Object Correspondence

Every object-list must have an object for every subject in the
subject-list. Each object in an object-list must correspond to the
subject that has the same ordinal position in the subject-list. The rules that
determine whether a subject and object correspond are:

° The object value ANY corresponds to any subject value.

° An object that is a condition or the value TRUE or FALSE corresponds to a
subject that is a conditional expression or the value TRUE or FALSE.

° An object composed of identifiers, literals, or arithmetic expressions
corresponds to a subject if the value of the object is a valid operand for
comparison to the subject.

Example 9-21. EVALUATE Statement With Two Distinct Subjects

EVALUATE DEDUCTIONS ALSO SALARY
 WHEN 0 ALSO 0 THRU 14999.99 PERFORM XXA
 WHEN 0 ALSO 15000 THRU 29999.99 PERFORM YYA
 WHEN 0 ALSO 30000 THRU 49999.99 PERFORM ZZA
 WHEN 1 THRU 2 ALSO 0 THRU 19999.99 PERFORM XXB
 WHEN 1 THRU 2 ALSO 20000 THRU 69999.99 PERFORM YYB
 WHEN 1 THRU 2 ALSO 70000 THRU 99999999 PERFORM ZZB
 WHEN OTHER PERFORM FURTHER-ANALYSIS
END-EVALUATE

Example 9-22. EVALUATE Statement as a Decision Table

EVALUATE XXX ALSO "GONE" ALSO (A + B) / C ALSO X = Y
 WHEN 5 ALSO ANY ALSO 25 ALSO TRUE
 PERFORM PROC-A
 WHEN 10 THRU 30 ALSO YYY ALSO 2 ALSO FALSE
 PERFORM PROC-B
 WHEN OTHER ADD 1 TO VACUOUS-COUNT
END-EVALUATE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-71

Procedure Division Verbs EVALUATE

r

• Subject-Object Comparisons

EVALUATE operates as if each corresponding subject and object were
evaluated and assigned one of:

° A numeric or nonnumeric value
° A range of numeric or nonnumeric values
° TRUE
° FALSE

The subject is determined:

The object is determined:

subject EVALUATE uses …

identifier The value and class of the data item referenced by identifier

literal The value and class of literal

arithmetic expression The numeric value determined by the rules for evaluating
arithmetic expressions

conditional expression The truth value determined by the rules for evaluating
conditional expressions

TRUE TRUE

FALSE FALSE

object EVALUATE uses …

identifier
(without NOT or THRU)

The value and class of the data item referenced by
identifier

literal
(without NOT or THRU)

The value and class of literal

ZERO or ZEROS or ZEROES
(without NOT or THRU)

The value 0 and the class of the corresponding selection
subject

arithmetic expression
(without NOT or THRU)

The numeric value determined by the rules for evaluating
arithmetic expressions

condition The truth value determined by the rules for evaluating
conditional expressions

ANY No value—ANY matches any selection subject

A range of items specified with
the keyword THRU but without
the keyword NOT

The range of all permissible subject values greater than o
equal to the first operand and less than or equal to the
second operand (if the value of the first operand is greater
than the value of the second operand, there are no values
in the range)

The keyword NOT followed by
an item or a range of items

All permissible subject values not equal to the value, or
not included in the range of values, that would have been
used if the keyword NOT had been omitted

TRUE TRUE

FALSE FALSE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-72

Procedure Division Verbs EVALUATE
• Execution of the EVALUATE Statement

Execution of the EVALUATE statement begins with the comparison phase
illustrated in Figure 9-3. A comparison is satisfied if one of these conditions is true:

° The object is ANY (and the value of the subject is irrelevant).

° The corresponding subject and object were both assigned TRUE or both
assigned FALSE.

° The corresponding subject and object were assigned the same type of
values (numeric or nonnumeric) and the value assigned to the subject is
equal to the value (or within the range of values) assigned to the object,
according to the rules for comparison defined for a relation condition (see
Relation Conditions in General).

If each comparison in an object-list is satisfied, the object-list
“qualifies.” After the comparison phase ends, execution of the EVALUATE
statement proceeds as shown in Figure 9-4.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-73

Procedure Division Verbs EVALUATE
Figure 9-3. Comparison Phase of EVALUATE Statement

Enter

Current
object-list

 is first
object-list

Current subject
is first subject

Compare
current

subject with
corresponding
object in

current
object-list

Current
subject is

next subject

Exit

Comparison
satisfied?

FALSE

TRUE

TRUE

TRUEAnother
subject

?

Another
object-list

?

Current
object-list

is next
object-list

FALSE

FALSE

VST532.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-74

Procedure Division Verbs EVALUATE
Figure 9-4. Execution Phase of the EVALUATE Statement

Exit

Enter

An
object-list

qualified?

TRUE

Execute
match-imp-stmt

associated with
 qualifying
object-list

WHEN
OTHER
phrase?

Control
passes to end
of EVALUATE

statement

Control returns
to point

immediately
after imperative

statement?

TRUE

FALSE

Control is
wherever

imperative
statement

transferred it

TRUE

Execute
no-match-imp-stmt

FALSE FALSE

VST533.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-75

Procedure Division Verbs EXIT
EXIT
EXIT provides:

• A common end point for a series of procedures
• A marker for the logical end of a called program
• A way to return to the test in an in-line PERFORM statement
• A way to go to the end of the last statement in a paragraph or section

PROGRAM
PARAGRAPH
SECTION
PERFORM
CYCLE

are explained in Table 9-2.

Table 9-2. EXIT Statement Restrictions and Effects (page 1 of 2)

Statement Restrictions Effect

EXIT Must appear in a sentence by
itself, and that sentence must
be the only sentence in the
paragraph.

Provides a common end point
for a group of procedures or
indicates the logical end of a
called program. Does not affect
program compilation or
execution.

EXIT PROGRAM If it appears in a consecutive
sequence of imperative
statements within a sentence,
it must be the last statement
in the sequence.

Not allowed while executing a
GLOBAL declarative
procedure, except within a
program that was called while
the declarative procedure was
executing.

Depends on the program that
executes it—see Usage
Considerations:.

EXIT

SECTION

PERFORM

PARAGRAPH

CYCLE

PROGRAM

VST156.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-76

Procedure Division Verbs EXIT
EXIT PARAGRAPH Must be contained in a
paragraph.

Transfers control to an implicit
CONTINUE statement
immediately preceding the next
procedure declaration. If there
is no next procedure
declaration, it transfers control
to an implicit CONTINUE
statement at the end of the
program.

EXIT SECTION Must be contained in a
section.

Transfers control to an implicit
CONTINUE statement
immediately preceding the next
section declaration. If there is
no next section declaration, it
transfers control to an implicit
CONTINUE statement at the
end of the program.

EXIT PERFORM Must be contained in an in-
line PERFORM statement.

Immediately transfers control to
an implicit CONTINUE
statement immediately
following the END-PERFORM
statement associated with the
in-line PERFORM statement
(see Example 9-23).

EXIT PERFORM CYCLE Must be contained in an in-
line PERFORM statement.

Immediately transfers control to
an implicit CONTINUE
statement immediately
preceding the END-PERFORM
statement associated with the
in-line PERFORM statement
(see Example 9-24).

Table 9-2. EXIT Statement Restrictions and Effects (page 2 of 2)

Statement Restrictions Effect
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-77

Procedure Division Verbs EXIT
Example 9-23. EXIT PERFORM Statement

0001-TEST-EXIT-PERF.
 INITIALIZE WS-ANS.
 INITIALIZE WS-NUMBER.
 INITIALIZE WS-NUMBER-PERF.
 INITIALIZE WS-TEST-RESULTS.
 DISPLAY "TEST EXITS-1 FOR EXIT PERFORM BEGINS".
 PERFORM
 UNTIL WS-NUMBER-PERF = 99
 ADD 3 TO WS-NUMBER-PERF
 IF WS-NUMBER-PERF = 96
 MOVE 1 TO WS-NUMBER-PERF
 EXIT PERFORM
 END-IF
 IF WS-NUMBER-PERF = 1
 DISPLAY "DID NOT EXIT PERFORM SUCCESSFULLY"
 MOVE 99 TO WS-NUMBER-PERF
 END-IF
 END-PERFORM.
 IF WS-NUMBER-PERF = 1
 DISPLAY "TEST EXITS-1 FOR EXIT PERFORM SUCCESSFUL."
 ELSE
 DISPLAY "TEST EXITS-1 FOR EXIT PERFORM FAILED .".
0001-TEST-EXIT-PERF-EXIT.
EXIT.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-78

Procedure Division Verbs EXIT
Usage Considerations:

• EXIT PROGRAM Statement in a Program That Was Not Called

If a program that was not called by another program executes an EXIT PROGRAM
statement, program execution continues with the next executable statement.

Example 9-24. EXIT PERFORM CYCLE Statement

?SYMBOLS
 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXIT-PERFORM.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 X PIC 999.
 77 X PIC 999.
 77 X PIC 999.

 PROCEDURE DIVISION.
 SUNRISE.
 DISPLAY "EXIT PERFORM TEST".
 MOVE 0 TO X
 MOVE 0 TO Y
 MOVE 0 TO Z

* The loop appears to execute 200 times ...
 PERFORM UNTIL X=200
 ADD 1 TO X

* however, we exit after only 100 times.
 IF X = 100
 EXIT PERFORM
 END-IF

* Y counts to 4, so that every 4th time, exit the perform
* cycle without incrementing Z ...
 ADD 1 TO Y
 IF Y = 4
 MOVE 0 TO Y
 EXIT PERFORM CYCLE
 END-IF

* so Z is incremented only 75 times, not 100.
 ADD 1 TO Z
 END-PERFORM
 .
 DISPLAY "X: " X.
 DISPLAY "Y: " Y.
 DISPLAY "Z: " Z.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-79

Procedure Division Verbs EXIT
• EXIT PROGRAM Statement in a Called Initial Program

If an initial program that was called by another program executes an EXIT
PROGRAM statement, the called program is cancelled (see CANCEL).

• EXIT PROGRAM Statement in a Called Program That is Not Initial

If a program that was called by another program and is not initial executes an EXIT
PROGRAM statement, program execution continues with the executable statement
following the CALL statement in the calling program.

The program state of the calling program is the same as it was when it executed
the CALL statement, except for possible changes in the contents of data items and
files that the calling and called programs shared.

The only change in the program state of the called program is that the ends of the
ranges of all PERFORM statements that it executed are considered to have been
reached.

• EXIT PERFORM in Nested In-Line PERFORM Statements

An EXIT PERFORM statement in a nested in-line PERFORM statement causes
the innermost PERFORM statement to be exited.

Example 9-25. EXIT Statement in Nested In-Line PERFORM Statement

 ...
 PERFORM REPORT-EXPLOSION THROUGH REPORT-EXPLOSION-END.
 ...
REPORT-EXPLOSION.
 READ MASTER-EXP RECORD
 AT END GO TO REPORT-EXPLOSION-END
 END-READ
 GO TO SUB-ASSY-1
 SUB-ASSY-2
 ...
 SUB-ASSY-23 DEPENDING ON SUB-ASSY OF MASTER-EXP
 PERFORM REPORT-BAD-SUB-ASSEMBLY
 GO TO REPORT-EXPLOSION-END.
SUB-ASSY-1.
 ...
SUB-ASSY-2.
 ...
REPORT-EXPLOSION-END.
 EXIT.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-80

Procedure Division Verbs GO TO
GO TO

Unconditional GO TO
Unconditional GO TO passes control to the beginning of a paragraph or section in the
current program.

procedure-name

is the name of the procedure (paragraph or section) to which the process transfers
control. If no procedure-name is present, the process must execute an ALTER
statement naming the procedure before it executes the GO TO statement to set the
destination procedure-name.

Usage Considerations:

• Declarative and Nondeclarative Procedures

A GO TO statement in a declarative procedure (a procedure in the Declaratives
Portion of the Procedure Division) cannot refer to a nondeclarative procedure (a
procedure in the other portion of the Procedure Division). A GO TO statement in a
nondeclarative procedure cannot refer to a declarative procedure.

• Debugging and Nondebugging Declarative Procedures

A GO TO statement in a debugging declarative procedure (a declarative procedure
introduced by a USE DEBUGGING statement) cannot refer to a nondebugging
declarative procedure. A GO TO statement in a nondebugging declarative
procedure cannot refer to a debugging declarative procedure.

• ALTER Statement

Because the 1985 COBOL standard classifies ALTER as an obsolete element, and
because the ALTER statement can cause maintenance problems, so you are
advised not to use it. For more information, see ALTER.

Form Passes control to:

Unconditional GO TO The beginning of a paragraph or section in the current program

Conditional GO TO One of several procedures, depending on the value of a variable
data item

Note. The 1985 COBOL standard classifies ALTER as obsolete, so you are advised not
to use it, and therefore, not to use unconditional GO TO without procedure-name.

GO

procedure-nameTO

VST158.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-81

Procedure Division Verbs Conditional GO TO
• Consecutive Imperative Statements in a Sentence

When a GO TO statement includes procedure-name and the paragraph
containing the GO TO statement is not referenced by an ALTER statement, the GO
TO statement can be the last of a sequence of consecutive imperative statements
within a sentence.

Conditional GO TO
Conditional GO TO passes control to one of several procedures, depending on the
value of a variable data item.

procedure-name

is the name of the procedure (paragraph or section) to which the process transfers
control, depending on the value of depend. The GO TO statement can have as
many as 255 different procedure names.

depend

is the identifier of an elementary integer data item. Its value determines which
procedure will receive control. If the value of depend is less than 1 or exceeds the
number of procedures, control passes to the next statement.

Usage Considerations:

• Declarative and Nondeclarative Procedures

A GO TO statement in a declarative procedure (a procedure in the Declaratives
Portion of the Procedure Division) cannot refer to a nondeclarative procedure (a
procedure in the other portion of the Procedure Division). A GO TO statement in a
nondeclarative procedure cannot refer to a declarative procedure.

GO

DEPENDING ON depend

procedure-name

TO

VST159.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-82

Procedure Division Verbs IF
• Debugging Declarative Procedures

A GO TO statement in a debugging declarative procedure cannot refer to a
nondebugging declarative procedure. A GO TO statement in a nondebugging
declarative procedure cannot refer to a debugging declarative procedure.

In Example 9-26, if BRANCH-FLAG equals 1, control passes to PROC-X. If
BRANCH-FLAG equals 2, control passes to PROC-Y. If BRANCH-FLAG equals 3,
control passes to PROC-Z. If BRANCH-FLAG is less than 1 or greater than 3,
control passes to the MOVE statement immediately following the GO TO
statement.

IF
IF transfers control if the value of a condition is TRUE or FALSE.

Delimited-Scope Form

condition

is any conditional expression (see Conditional Expressions).

statement-1

is an imperative or conditional statement to be executed if the value of condition
is TRUE. It can contain other IF statements.

Example 9-26. Three-Way Conditional GO TO Statement

PROCEDURE-BRANCH.
 GO TO PROC-X
 PROC-Y
 PROC-Z DEPENDING ON BRANCH-FLAG
 MOVE 0 TO BRANCH-FLAG

Form Comment

Delimited-Scope Form Recommended for clarity and convenience

Conditional Form Form that was available in COBOL 74

ELSE statement-2

END-IF

IF

THEN

condition statement-1

VST160.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-83

Procedure Division Verbs Delimited-Scope Form
ELSE

ends statement-1.

statement-2

is an imperative or conditional statement to be executed if the value of condition
is FALSE. It can contain other IF statements.

END-IF

ends the scope of the IF statement, making it a delimited-scope statement. Without
END-IF, the IF statement is a conditional statement that ends at the next period
separator.

Usage Considerations:

• Delimited-Scope Statements Are Recommended Over Conditional Statements

For clarity and convenience, delimited-scope statements are recommended over
conditional statements.

• Period Separator in Delimited-Scope IF Statement

A delimited-scope IF statement does not require a period separator. If a period
separator occurs within a delimited-scope IF statement, it terminates the statement
and the compiler diagnoses the END-IF as unmatched.

• Nested Delimited-Scope IF Statements

Delimited-scope IF statements can be “nested” (included) within other delimited-
scope IF statements. Nested delimited-scope IF statements are interpreted by
pairing each IF phrase with an ELSE phrase, ELSE … END-IF pair, or isolated
END-IF phrase, proceeding from left to right within a sentence. Each ELSE, ELSE
… END-IF, or isolated END-IF that the compiler encounters is considered to
correspond to the nearest previous IF phrase that has not already been paired with
an ELSE, ELSE … END-IF, or isolated END-IF.

• How the Delimited-Scope IF Statement Works

The condition is evaluated. If its value is TRUE, statement-1 is executed. If
control reaches the point immediately following statement-1 (that is,
statement-1 completes without executing a GO TO statement or the
equivalent), control passes to the end of the IF statement. The ELSE phrase, if
present, is ignored.

If the value of condition is FALSE and an ELSE phrase is present,
statement-2 is executed. If control reaches the point immediately following
statement-2 (that is, statement-2 completes without executing a GO TO
statement or the equivalent), control passes to the end of the IF statement.

If the value of condition is FALSE and there is no ELSE phrase, control passes
to the end of the IF statement.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-84

Procedure Division Verbs Delimited-Scope Form
Figure 9-5. How the Delimited-Scope IF Statement Works

Exit

Enter

condition

?

FALSE

TRUE

Execute
statement-1

ELSE
phrase?

FALSE

Control passes
to end of IF
statement

Execute
statement-2

Control
returns to point

immediately after
last

statement-1

?

TRUE

Control
returns to point

immediately after
last

statement-2

?

FALSE

Control is
wherever last
statement-2

transferred it

Control is
wherever last
statement-1

transferred it

TRUE

TRUE

FALSE

VST530.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-85

Procedure Division Verbs Conditional Form
Conditional Form

condition

is any conditional expression (see Conditional Expressions).

statement-1

is an imperative or conditional statement to be executed if the value of condition
is TRUE. It can contain other IF statements.

NEXT SENTENCE

specifies that control be passed directly to the end of the sentence containing the
IF statement. It is not recommended (see Usage Considerations:).

ELSE

ends statement-1.

statement-2

is an imperative or conditional statement to be executed if the value of condition
is FALSE. It can contain other IF statements.

Usage Considerations:

• CONTINUE and END-IF Are Recommended Over NEXT SENTENCE

NEXT SENTENCE transfers control to the next period (.) while CONTINUE
transfers control to END-IF. Either or both statement-1 and statement-2 can
be CONTINUE statements.

IF

THEN

condition

statement-1

NEXT

ELSE statement-2

SENTENCE

NEXT SENTENCE

VST161.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-86

Procedure Division Verbs Conditional Form
• IF Sentences

A conditional IF statement followed by a period separator is called an “IF
sentence.” An IF sentence can contain IF statements (of either form) only if such IF
statements do not end with period separators.

• Nested Conditional IF Statements

Conditional IF statements can be “nested” (included) within other conditional IF
statements. When conditional IF statements are nested, each optional ELSE
phrase is considered to be the next phrase of the nearest preceding unterminated
conditional IF statement with which that phrase is permitted to be associated
according to the syntax of the conditional IF statement, but with which no such
phrase has already been associated. An unterminated statement is one that has
not been previously terminated either explicitly or implicitly. The separator period
that terminates the sentence also terminates all nested statements.

• How the Conditional IF Statement Works

The condition is evaluated. If its value is TRUE and NEXT SENTENCE is
specified (as opposed to statement-1), control passes to the next executable
sentence. The ELSE phrase, if present, is ignored.

If the value of condition is TRUE and statement-1 is specified (as opposed
to NEXT SENTENCE), statement-1 is executed. If control reaches the point
immediately following statement-1 (that is, statement-1 completes without
executing a GO TO statement or the equivalent), control passes to the end of the
IF statement. The ELSE phrase, if present, is ignored.

If the value of condition is FALSE and an ELSE phrase specifies NEXT
SENTENCE, control passes to the next executable sentence.

If the value of condition is FALSE and an ELSE phrase specifies
statement-2, statement-2 is executed. If control reaches the point
immediately following statement-2 (that is, statement-2 completes without
executing a GO TO statement or the equivalent), control passes to the end of the
IF statement.

If the value of condition is FALSE and there is no ELSE phrase, control passes
to the end of the IF statement.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-87

Procedure Division Verbs Conditional Form
Example 9-27 and Example 9-28 are equivalent.

Figure 9-6. How the Conditional IF Statement Works

Exit

Enter

condition
?

Control
passes to

next sentence

FALSE

TRUE

THEN NEXT
SENTENCE

?

FALSE

TRUE

Execute
statement-1

ELSE
phrase

?

FALSE

ELSE NEXT
SENTENCE

?

Execute
statement-2

Control
returns to point

immediately after
last

statement-1

?

TRUE

Control
returns to point

immediately after
last

statement-2

?

FALSE FALSE

Control is
wherever last
statement-2
transferred it

Control is
wherever last
statement-1

transferred it

TRUE

TRUE

FALSE

TRUE

VST531.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-88

Procedure Division Verbs Conditional Form
Example 9-29 and Example 9-30 are equivalent.

Example 9-31 and Example 9-32 are equivalent.

Example 9-27. Simple Conditional IF Statement

IF JULIAN-DAYS IS GREATER THAN 59,
 ADD LEAP-YEAR TO JULIAN-DAYS.

Example 9-28. Delimited-Scope IF Statement

IF JULIAN-DAYS IS GREATER THAN 59
 ADD LEAP-YEAR TO JULIAN-DAYS
END-IF

Example 9-29. Simple Conditional IF ELSE Statement

IF TALLY GREATER THAN 0 MOVE 0 TO TALLY
 MOVE 3 TO MSG-INDEX
 PERFORM PRINT-ERROR-ROUTINE
ELSE MOVE 1 TO FLAG.

Example 9-30. Delimited-Scope IF ELSE Statement

IF TALLY GREATER THAN 0 MOVE 0 TO TALLY
 MOVE 3 TO MSG-INDEX
 PERFORM PRINT-ERROR-ROUTINE
ELSE MOVE 1 TO FLAG
END-IF

Example 9-31. IF ELSE Statement Nested Within PERFORM Statement

PERFORM DIV-IT VARYING I FROM 1 BY 1 UNTIL I > N
...
DIV-IT.
 MOVE INF TO Q (I)
 IF D (I) > 0 DIVIDE X (I) BY D (I) GIVING Q (I).

Example 9-32. Delimited-Scope IF ELSE Statement Nested Within PERFORM
Statement

PERFORM VARYING I FROM 1 BY 1 UNTIL I > N
 IF D (I) > 0 THEN DIVIDE X (I) BY D (I) GIVING Q(I)
 ELSE MOVE INF TO Q (I)
 END-IF
END-PERFORM
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-89

Procedure Division Verbs Conditional Form
Example 9-34 shows the equivalent delimited-scope IF statement with delimited-scope
statements marked.

Example 9-33. Nested Conditional IF Statements

 IF EMPLOYEE-NUMBER NOT EQUAL TO SPACES
 PERFORM READ-ROUTINE
* Must perform out of line
* to do INVALID KEY test
 IF NO-ERROR
 PERFORM LIST-RECORD-OUT
 DISPLAY "DELETE ? Y or N"
 ACCEPT ANSWER
 IF YES-ANSWER
 PERFORM DELETE-MASTER
* Must perform out of line
* to do INVALID KEY test
 IF NO-DELETE-ERROR
 ADD 1 TO DELETE-COUNT
 ELSE
 NEXT SENTENCE
 ELSE
 DISPLAY "0 RECORDS DELETED"
 MOVE 0 TO FLAG
 ELSE
 NEXT SENTENCE
 ELSE
 MOVE 1 TO FLAG.

Example 9-34. Delimited-Scope IF Statement

IF EMPLOYEE-NUMBER NOT EQUAL TO SPACES
 READ EMP-FILE RECORD
 NOT INVALID KEY
 PERFORM LIST-RECORD-OUT
 DISPLAY "DELETE ? Y or N"
 ACCEPT ANSWER
 IF YES-ANSWER
 DELETE EMP-FILE RECORD
 NOT INVALID KEY
 ADD 1 TO DELETE-COUNT
 END-DELETE
 ELSE
 DISPLAY "0 RECORDS DELETED"
 MOVE 0 TO FLAG
 END-IF
 END-READ
ELSE
 MOVE 1 TO FLAG
END-IF

VST529.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-90

Procedure Division Verbs INITIALIZE
INITIALIZE
INITIALIZE sets selected types of data items to predetermined values; for example,
numeric data to zeros or alphanumeric data to spaces.

receiver

is the identifier of an elementary item or data structure. These restrictions apply to
the data item:

° It cannot be an index data item or a pointer data item.

° It cannot be a special register.

° Its description cannot include a RENAMES clause.

° Its description (and the descriptions of its subordinate data items, if any)
cannot include an OCCURS clause with a DEPENDING phrase.

The maximum number of receivers in an INITIALIZE statement is 127.

replacement

INITIALIZE

REPLACING

receiver

replacement

VST162.vsd

ALPHABETIC

ALPHANUMERIC

ALPHANUMERIC-EDITED

NUMERIC-EDITED

DATA

BY

NUMERIC

sender

literal

VST163.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-91

Procedure Division Verbs INITIALIZE
specifies the category of elementary item in receiver to which the INITIALIZE
operation is to assign a value. The default replacement is ZEROS for each
NUMERIC or NUMERIC-EDITED receiver and SPACES for each
ALPHABETIC, ALPHANUMERIC, or ALPHANUMERIC-EDITED receiver. The
receiver is in one of these categories whether you specify replacement or
not (see PICTURE Clause).

ALPHABETIC
ALPHANUMERIC
NUMERIC
ALPHANUMERIC-EDITED

NUMERIC-EDITED

are categories defined in PICTURE Clause. The category you specify must be
permitted for a receiving operand in a MOVE statement where the
corresponding sending operand is sender or literal. You cannot specify a
category more than once in a single INITIALIZE statement.

sender

is the identifier of a data item from which the INITIALIZE statement obtains a
value to store into the elementary items specified by receiver. The sender
cannot be a national or index data item.

literal

is the representation of a value that the INITIALIZE statement stores into the
elementary item specified by receiver. literal cannot be a national literal.

The INITIALIZE statements in Example 9-35 assign initial values to data structures
composed of counters and pointers that a program uses for UNSTRING and INSPECT
statements. In the first statement, the REPLACING phrase can be omitted if
UNSTRING-COUNTERS and INSPECT-COUNTERS are numeric.

The INITIALIZE statement in Example 9-36 assigns a value of zero to only the
numeric-edited items in a table composed of a variety of categories.

Example 9-35. INITIALIZE Statements

INITIALIZE UNSTRING-COUNTERS
 INSPECT-COUNTERS
 REPLACING NUMERIC DATA BY ZERO

INITIALIZE UNSTRING-POINTERS
 INSPECT-POINTERS
 REPLACING NUMERIC DATA BY 1
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-92

Procedure Division Verbs INITIALIZE
Usage Considerations:

• Execution of the INITIALIZE Statement

The INITIALIZE statement is equivalent to a series of MOVE statements, each of
which has an elementary item as its receiving operand.

• Determining the Receiving Operands

If receiver includes reference modification, the data item to which it refers is
handled as an elementary item.

If receiver references an elementary data item, that data item is a receiving
operand unless the INITIALIZE statement includes a REPLACING phrase and the
category of the elementary data item is not specified in any of the phrases
following the REPLACING phrase. If receiver references an elementary data
item that is not a receiving operand, that data item is not initialized.

If receiver references a data structure, each elementary item subordinate to the
data structure (including each element in a subordinate table) is a receiving
operand; however, the initialize operation ignores:

° Index or pointer data items

° Elementary FILLER data items

° Data items whose descriptions contain REDEFINES clauses

° Data items subordinate to data items whose descriptions contain REDEFINES
clauses

° Data items that are not in the same categories as the initial values specified for
them; for example, an ALPHABETIC receiver is not initialized to a
NUMERIC replacement value even if the INITIALIZE statement specifies
this

Example 9-36. INITIALIZE Statement

01 STOCK.
 03 STOCK-ITEM OCCURS 500 TIMES.
 05 S-NAME PIC X(30).
 05 S-WHOLESALE-PRICE PIC $$$,$$$.99.
 05 S-MARKUP-PCT PIC P999.
...
INITIALIZE STOCK
 REPLACING NUMERIC-EDITED DATA BY ZERO
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-93

Procedure Division Verbs INITIALIZE
• Determining the Sending Operands

The initialize operation determines the sending operand in each implicit MOVE
statement:

° If you include replacement, the sending operand is the literal or sender
associated with the category of the receiving operand.

° If you omit replacement, the sending operand is the implied figurative
constant SPACES or ZEROS, as this table shows:

The value of sender is established before the implicit MOVE statement
executes.

• Execution of the Implicit MOVE Statements

For each receiving operand, the initialization operation executes an implicit MOVE
statement of the form:

MOVE SENDING-OPERAND TO RECEIVING-OPERAND

The implicit MOVE statements are executed in the order that the receiver s
associated with their receiving operands appear in the INITIALIZE statement
(reading from left to right). When a receiver references a data structure, the
affected elementary items are initialized in the order that they are defined within the
data structure. Tables within data structures are initialized element by element.

• Operand Overlap

The storage area referenced by a sender cannot be the same as or overlap the
storage area referenced by a receiver. If this rule is violated, the operation is
undefined.

Category of Receiving Operand Sending Operand

ALPHABETIC SPACES

ALPHANUMERIC SPACES

ALPHANUMERIC-EDITED SPACES

NUMERIC ZEROS

NUMERIC-EDITED ZEROS
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-94

Procedure Division Verbs INSPECT
INSPECT
INSPECT scans a data item and counts and/or replaces occurrences of a single
character or groups of characters.

INSPECT TALLYING
INSPECT TALLYING counts occurrences of a sequence of one or more characters in a
source string.

source-string

is the identifier of an elementary item or data structure with USAGE DISPLAY.
Inspection proceeds from left to right within source-string.

tallying-phrase

tally

is the identifier of an elementary numeric item where the number of
occurrences is to be stored. The INSPECT statement does not initialize tally
but adds to its current value. If you want tally to begin at a given number,
set it before the INSPECT statement executes.

Form Description

INSPECT TALLYING Counts occurrences of a character sequence in a
source string

INSPECT REPLACING Replaces occurrences of a character sequence in a
data item with a specified value

INSPECT TALLYING REPLACING Counts occurrences of a character sequence in a data
item and replaces each occurrence with a specified
value

INSPECT CONVERTING Performs a character-for-character replacement

INSPECT source-string tallying-phrase

VST164.vsd

FORtallyTALLYING for-clause

VST165.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-95

Procedure Division Verbs INSPECT TALLYING
for-clause

CHARACTERS

specifies that any character in source-string that has not satisfied a
previous compare-string relation is counted, regardless of its value.

position

marks a beginning or ending point for an INSPECT scan cycle. Each
CHARACTERS phrase, ALL phrase, or LEADING phrase can have a
single BEFORE phrase, a single AFTER phrase, or one BEFORE phrase
and one AFTER phrase in either order.

BEFORE

specifies that scanning is up to but not including the character or
characters matching delim-string. If INSPECT does not find
delim-string in source-string, it scans all of source-
string.

AFTER

specifies that scanning starts at the position immediately following the
character or characters matching delim-string. If INSPECT does
not find delim-string in source-string, it does not scan
source-string.

CHARACTERS

ALL

LEADING

compare-string

position

position

VST166.vsd

BEFORE

AFTER INITIAL

delim-string

VST167.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-96

Procedure Division Verbs INSPECT TALLYING
delim-string

is the identifier of an elementary item with USAGE DISPLAY or a
nonnumeric literal. It can be a figurative constant that does not include
the keyword ALL, in which case it represents one character.

ALL

specifies that all occurrences of compare-string are tallied.

LEADING

specifies scanning for consecutive occurrences of compare-string
beginning at the current position within source-string.

compare-string

is the identifier of an elementary data item with USAGE DISPLAY or a
nonnumeric literal. It can be a figurative constant that does not include the
keyword ALL, in which case it represents one character. The compare-
string is the character-string being sought.

Usage Considerations:

• Definition of “Leading”

Characters are “leading” when they begin in the leftmost position of source-
string and have not satisfied another compare-string condition. For
example, two leading As are found in “AARDVARK” when

INSPECT ... FOR LEADING "A"

is coded, but no leading As are found in “AARDVARK” when

INSPECT ... FOR ALL "A" ... FOR LEADING "A".

is coded. The ALL phrase finds all three As, so none are left for the LEADING
phrase to find. (For a complete explanation of the logic of the comparison, see
Comparison Operation.)

An example of LEADING ZERO is 00012.

• National Data Items and National Literals

National data items and national literals cannot be used in an INSPECT statement.

• How Parameter Categories Affect INSPECT

1. If source-string, compare-string, or delim-string is alphanumeric,
the INSPECT statement handles the contents of each of them as a character-
string.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-97

Procedure Division Verbs INSPECT TALLYING
2. If source-string, compare-string, or delim-string is alphanumeric
edited, numeric edited, or unsigned numeric, the source-string is
inspected as though it had been redefined as alphanumeric and the INSPECT
statement had been written to refer to the redefined item.

3. If source-string, compare-string, or delim-string is described as a
signed numeric, source-string is inspected as though it had been moved
to an unsigned numeric data item of the same length (excluding any separate
sign), and then Item 2 applies.

• Comparison Operation

The comparison operation to determine the occurrences of compare-string
works like this:

1. Each tally is considered in the order specified in the INSPECT statement
(reading from left to right). The first compare-string is compared to an
equal number of consecutive characters of source-string, starting with
source-string ’s leftmost character. If the compare-string and the
substring of source-string are equal, character for character, then they
match.

2. If no match occurs in the comparison of the first compare-string, the
comparison is repeated with each successive compare-string until either a
match is made or there is no next compare-string. When there is no next
compare-string, the character position in source-string immediately to
the right of the leftmost character position considered in the last comparison
cycle is considered to be the leftmost character position, and the comparison
cycle begins again with the first compare-string.

3. Whenever a match occurs, tallying occurs as described in Tallying. The
character position in source-string immediately to the right of the
rightmost character position that participated in the match is now considered to
be the leftmost character position of source-string, and the comparison
cycle resumes with the first compare-string.

4. The comparison operation continues until the rightmost character position of
source-string has participated in a match or has been considered to be
the leftmost character position. When this occurs, inspection terminates.

5. If the CHARACTERS phrase appears, an implied 1-character operand
participates in the comparison cycle, except that no comparison to the contents
of source-string occurs. This implied character is considered to match the
leftmost character of source-string participating in the current comparison
cycle.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-98

Procedure Division Verbs INSPECT TALLYING
• BEFORE and AFTER Phrases

The BEFORE and AFTER phrases affect the comparison operation like this:

1. If no BEFORE or AFTER phrase is present, compare-string or the
operand implied by CHARACTERS participates in the comparison operation.

2. If the BEFORE phrase appears, the associated compare-string or the
operand implied by CHARACTERS participates only in comparison cycles that
involve the portion of source-string from its leftmost character position up
to, but not including, the first occurrence of delim-string. The position of
this first occurrence is determined before the first cycle of the comparison
operation begins.

If, on any comparison cycle, compare-string or the operand implied by
CHARACTERS is not eligible to participate, it is not considered to match the
contents of source-string. If delim-string does not occur within
source-string, its associated compare-string or the operand implied by
CHARACTERS participates in the comparison operation as though the
BEFORE phrase was not specified.

3. If the AFTER phrase appears, the associated compare-string or the
operand implied by CHARACTERS can participates only in comparison cycles
that involve the portion of source-string following the first occurrence of
delim-string. The position of the first occurrence of delim-string. is
determined before the first cycle of the comparison operation begins. The
portion of source-string following the first occurrence of delim-string
begins with the character position immediately to the right of the rightmost
character of the first occurrence of delim-string and ends with the
rightmost character of source-string.

If, on any comparison cycle, compare-string or the operand implied by
CHARACTERS is not eligible to participate, it is not considered to match the
contents of source-string. If delim-string does not occur within
source-string, its associated compare-string or the operand implied by
CHARACTERS is not eligible to participate in the comparison operation.

• Tallying

The INSPECT statement does not initialize tally. During the inspection of
source-string, each properly matched occurrence of compare-string is
tallied, using these rules:

° If the ALL phrase appears, tally is incremented by one for each occurrence
of compare-string matched within source-string.

° If the LEADING phrase appears, tally is incremented by one for each
contiguous occurrence of compare-string matched within source-
string, provided that the leftmost such occurrence is at the point where
comparison began in the first comparison cycle in which compare-string
was eligible to participate.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-99

Procedure Division Verbs INSPECT TALLYING
° If CHARACTERS appears, tally is incremented by one for each character
matched within source-string.

In the Example 9-37, INSPECT TALLYING checks for spaces in a data item. If spaces
are present (J-TALLY is greater than 0), the code reports an error.

In Example 9-38, an INSPECT TALLYING statement uses multiple compare-string
s. Some characters look as if they qualify as matches, yet are not counted, because a
character can be counted only once, no matter how many comparisons it can satisfy.

Example 9-37. INSPECT TALLYING With One Compare-String

MOVE ZERO TO J-TALLY
INSPECT JOB-CLASS TALLYING J-TALLY FOR ALL SPACES
IF J-TALLY GREATER THAN 0
 MOVE 0 TO J-TALLY
 MOVE 3 TO MESSAGE-INDEX
 PERFORM PRINT-ERROR
ELSE
 MOVE 1 TO FLAG
END-IF

Example 9-38. INSPECT TALLYING With Multiple Compare-Strings

WORKING-STORAGE SECTION.

01 INSPECT-COUNTERS.
 03 COUNTER-1 PIC 99 VALUE 0.
 03 COUNTER-2 PIC 99 VALUE 0.
 03 COUNTER-3 PIC 99 VALUE 0.
 03 COUNTER-4 PIC 99 VALUE 0.
 03 COUNTER-5 PIC 99 VALUE 0.
77 ITEM-A PIC X(15) VALUE " 00001,003,200".

PROCEDURE DIVISION.
 ...
 INSPECT ITEM-A TALLYING
 COUNTER-1 FOR ALL "0",
 COUNTER-2 FOR CHARACTERS BEFORE INITIAL ","
 COUNTER-3 FOR LEADING " ",
 COUNTER-4 FOR ALL "0" BEFORE INITIAL ",",
 COUNTER-5 FOR ALL "0" AFTER INITIAL ","
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-100

Procedure Division Verbs INSPECT TALLYING
After execution of the INSPECT statement in Example 9-38, the counters have these
values:

Counter Value

COUNTER-1 8

COUNTER-2 3

COUNTER-3 0

COUNTER-4 0

COUNTER-5 0
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-101

Procedure Division Verbs INSPECT TALLYING
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-102

Procedure Division Verbs INSPECT REPLACING
9 Procedure Division Verbs
INSPECT REPLACING
INSPECT REPLACING replaces occurrences of a sequence of one or more characters
in a data item with a specified value.

source-string

is the identifier of an elementary item or data structure with USAGE DISPLAY.
Inspection proceeds from left to right within source-string.

replacing-phrase

absolute-replacement

CHARACTERS

specifies that any character in source-string can be replaced,
regardless of its value. If you use CHARACTERS, replace-string and
delim-string must each be one character in length.

replace-string

is the identifier of an elementary item with USAGE DISPLAY or a
nonnumeric literal. It can be a figurative constant that does not include the
keyword ALL, in which case it represents one character.

INSPECT source-string replacing-phrase

VST168.vsd

REPLACING absolute-replacement

matching-replacement

VST169.vsd

CHARACTERS BY replace-string

position

VST170.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-103

Procedure Division Verbs INSPECT REPLACING
position

marks a starting and ending place for a replacement cycle. It follows the
same item rules as replace-string. A CHARACTERS phrase, ALL
phrase, LEADING phrase, or FIRST phrase can have a single BEFORE
phrase, a single AFTER phrase, or one BEFORE phrase and one AFTER
phrase in either order.

BEFORE

specifies that scanning is up to but not including the character or
characters matching delim-string. If INSPECT does not find
delim-string in source-string, it scans all of source-string.

AFTER

specifies that scanning starts at the position immediately following the
character or characters matching delim-string. If INSPECT does
not find delim-string in source-string, it does not scan
source-string.

INITIAL

is for documentation only and has no effect.

delim-string

is the identifier of an elementary item with USAGE DISPLAY or a
nonnumeric literal. It can be a figurative constant that does not include
the keyword ALL, in which case it represents one character.

BEFORE

AFTER INITIAL

delim-string

VST167.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-104

Procedure Division Verbs INSPECT REPLACING
matching-replacement

defines the character-string being scanned for.

ALL

specifies that all occurrences of compare-string are replaced.

LEADING

specifies scanning for consecutive occurrences of compare-string
beginning at the current position within source-string. For example,
REPLACING LEADING “0” replaces only the first three zeros in
“000120020.”

FIRST

specifies that only the first occurrence of compare-string is replaced.

compare-string

is the identifier of an elementary data item with USAGE DISPLAY or a
nonnumeric literal. It can be a figurative constant that does not include the
keyword ALL, in which case it represents one character. The compare-
string is the character-string being sought.

replace-string

is an identifier of an elementary data item with USAGE DISPLAY or a
nonnumeric literal. It can be a figurative constant that does not include the
keyword ALL, in which case it represents one character. When replace-
string and compare-string are used together, they must be the
same size.

position

is as described earlier for absolute-replacement.

ALL

FIRST

LEADING

BY replace-stringcompare-string

position

VST172.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-105

Procedure Division Verbs INSPECT REPLACING
Usage Considerations:

• Rules for Replacement

° CHARACTERS causes each character in source-string to be replaced by
replace-string.

° ALL causes each occurrence of compare-string in source-string to be
replaced by replace-string.

° LEADING causes each contiguous occurrence of compare-string in
source-string to be replaced by replace-string, provided that the
leftmost occurrence is at the point where comparison began in the first
comparison cycle in which compare-string was eligible to participate.

° FIRST causes the leftmost occurrence of compare-string in source-
string to be replaced by replace-string.

ALL, LEADING, and FIRST apply to each succeeding BY phrase until the next
ALL, LEADING, or FIRST appears.

• See these usage considerations in INSPECT TALLYING:

° How Parameter Categories Affect INSPECT

° Comparison Operation

° BEFORE and AFTER Phrases

• Leading Zeros

HP COBOL does not treat leading spaces in a numeric data item as if they were
leading zeros, as some implementations of COBOL do. To convert leading spaces
to zeros, use the INSPECT statement as Example 9-39 does.

In Example 9-40, several replacements occur during the execution of one
INSPECT statement. When the INSPECT statement finishes executing, ITEM-C
equals “$$9,XXX.00.”

Example 9-39. INSPECT Statement Converting Leading Spaces to Zeros

WORKING-STORAGE SECTION.
03 A-VALUE PICTURE X(10) VALUE " 23".
03 N-VALUE PICTURE 9(10) REDEFINES A-VALUE.
 ...
 INSPECT A-VALUE REPLACING LEADING " " BY "0".
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-106

Procedure Division Verbs INSPECT TALLYING REPLACING
INSPECT TALLYING REPLACING
INSPECT TALLYING REPLACING counts occurrences of a sequence of one or more
characters in a data item and replaces each occurrence with a specified value.

source-string

is the identifier of an elementary item or data structure with USAGE DISPLAY.
Inspection proceeds from left to right within source-string.

tallying-phrase

tally

is the identifier of an elementary numeric item where the number of
occurrences is to be stored. The INSPECT statement does not initialize tally
but adds to its current value. If you want tally to begin at a given number,
set it before the INSPECT statement executes.

Example 9-40. One INSPECT Statement, Several Replacements

WORKING-STORAGE SECTION.
77 ITEM-C PIC X(10) VALUE "009,999. ".
PROCEDURE DIVISION.
 INSPECT ITEM-C REPLACING ALL " " BY "0",
 LEADING "0" BY "$",
 ALL "9" BY "X" AFTER INITIAL ","

INSPECT source-string tallying-phrase replacing-phrase

VST174.vsd

FORtallyTALLYING for-clause

VST165.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-107

Procedure Division Verbs INSPECT TALLYING REPLACING
for-clause

CHARACTERS

specifies that any character in source-string that has not satisfied a
previous compare-string relation is counted, regardless of its value.

position

marks a beginning or ending point for an INSPECT scan cycle. A
CHARACTERS phrase, ALL phrase, or LEADING phrase can have a
single BEFORE phrase, a single AFTER phrase, or one BEFORE phrase
and one AFTER phrase in either order.

BEFORE

specifies that scanning is up to but not including the character or
characters matching delim-string. If INSPECT does not find
delim-string in source-string, it scans all of source-string.

AFTER

specifies that scanning starts at the position immediately following the
character or characters matching delim-string. If INSPECT does
not find delim-string in source-string, it does not scan
source-string .

INITIAL

is for documentation only and has no effect.

CHARACTERS

ALL

LEADING

compare-string

position

position

VST166.vsd

BEFORE

AFTER INITIAL

delim-string

VST167.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-108

Procedure Division Verbs INSPECT TALLYING REPLACING
delim-string

is the identifier of any type of elementary item with USAGE DISPLAY
or a nonnumeric literal. It can be a figurative constant that does not
include the keyword ALL, in which case it represents one character.

ALL

specifies that all occurrences of compare-string are tallied.

LEADING

specifies scanning for consecutive occurrences of compare-string
beginning at the current position within source-string.

compare-string

is the identifier of an elementary data item with USAGE DISPLAY or a
nonnumeric literal. It can be a figurative constant (except one beginning
with ALL), in which case it represents one character. The compare-
string is the character-string being sought.

replacing-phrase

absolute-replacement

CHARACTERS

specifies that any character in source-string can be replaced,
regardless of its value. If you use CHARACTERS, replace-string and
delim-string must each be one character in length.

replace-string

is the identifier of an elementary item with USAGE DISPLAY or a
nonnumeric literal. It can be a figurative constant that does not include the
keyword ALL, in which case it represents one character.

REPLACING absolute-replacement

matching-replacement

VST169.vsd

CHARACTERS BY replace-string

position

VST170.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-109

Procedure Division Verbs INSPECT TALLYING REPLACING
position

marks a starting and ending place for a replacement cycle. It follows the
same item rules as replace-string. A CHARACTERS phrase, ALL
phrase, LEADING phrase, or FIRST phrase can have a single BEFORE
phrase, a single AFTER phrase, or one BEFORE phrase and one AFTER
phrase in either order.

BEFORE

specifies that scanning is up to but not including the character or
characters matching delim-string. If INSPECT does not find
delim-string in source-string, it scans all of source-string.

AFTER

specifies that scanning starts at the position immediately following the
character or characters matching delim-string. If INSPECT does
not find delim-string in source-string, it does not scan
source-string .

INITIAL

is for documentation only and has no effect.

delim-string

is the identifier of an elementary item with USAGE DISPLAY or a
nonnumeric literal. It can be a figurative constant that does not include
the keyword ALL, in which case it represents one character.

BEFORE

AFTER INITIAL

delim-string

VST167.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-110

Procedure Division Verbs INSPECT TALLYING REPLACING
matching-replacement

defines the character-string being scanned for.

ALL

specifies that all occurrences of compare-string are replaced.

LEADING

specifies scanning for consecutive occurrences of compare-string
beginning at the current position within source-string. For example,
REPLACING LEADING “0” replaces only the first three zeros in
“000120020.”

FIRST

specifies that only the first occurrence of compare-string is replaced.

compare-string

is the identifier of any type of elementary item with USAGE DISPLAY or
nonnumeric literal. It can be a figurative constant that does not include the
keyword ALL, in which case it represents one character.

replace-string

is an identifier of any type of elementary item with USAGE DISPLAY or a
nonnumeric literal. It can be a figurative constant that does not include the
keyword ALL, in which case it represents one character. When replace-
string and compare-string are used together, they must be the
same size.

position

is as described earlier for absolute-replacement.

ALL

FIRST

LEADING

BY replace-stringcompare-string

position

VST172.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-111

Procedure Division Verbs INSPECT TALLYING REPLACING
Usage Considerations:

• Action of the INSPECT TALLYING REPLACING Statement

The INSPECT TALLYING REPLACING statement is a combination of the
INSPECT TALLYING and the INSPECT REPLACING statements. See Usage
Considerations: and Usage Considerations:.

• Difference Between INSPECT TALLYING REPLACING and
INSPECT TALLYING Followed by INSPECT REPLACING

The only difference between an INSPECT TALLYING REPLACING statement and
an INSPECT TALLYING statement followed immediately by an INSPECT
REPLACING statement with the same source-string s, compare-string s,
and delim-string is the side effects.

Each form of the INSPECT statement performs all operand identification at the
beginning of execution. The INSPECT TALLYING REPLACING statement
performs only one operand identification operation, but the INSPECT TALLYING
statement followed by the INSPECT REPLACING statement performs operand
identification before the INSPECT TALLYING statement and again before the
INSPECT REPLACING statement. If subscripts or reference modifiers in any
operands of the REPLACING clause use values that the TALLYING phrase
changes, the INSPECT TALLYING REPLACING statement works differently than
the INSPECT TALLYING statement followed immediately by an INSPECT
REPLACING statement.

For example, suppose X has the value “AAABBBABAB” and C is an array
containing the values 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Executing the three statements

MOVE 1 TO Y
INSPECT X TALLYING Y FOR LEADING "A"
INSPECT X REPLACING LEADING "A" BY C (Y)

changes the value of X to “333BBBABAB,” because the subscript Y in the
REPLACING clause has the value 4 when the INSPECT REPLACING statement
begins execution; however, executing the two statements

MOVE 1 TO Y
INSPECT X TALLYING Y FOR LEADING "A"
 X REPLACING LEADING "A" BY C (Y)

changes the value of X to “000BBBABAB,” because the subscript Y in the
REPLACING clause has the value 1 when the INSPECT TALLYING REPLACING
statement begins executing.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-112

Procedure Division Verbs INSPECT CONVERTING
INSPECT CONVERTING
INSPECT CONVERTING performs a character-for-character replacement. It is easier
to express such a replacement with the CONVERTING phrase than it is with a series
of REPLACING ALL … BY … phrases.

source-string

is the identifier of an elementary item or data structure with USAGE DISPLAY.
Inspection proceeds from left to right within source-string.

match

compare-string

is the identifier of any type of elementary item with USAGE DISPLAY or a
nonnumeric literal. It can be a figurative constant that does not include the
keyword ALL, in which case it represents one character. A character must not
appear more than once in compare-string.

replace-string

is the identifier of any type of elementary item with USAGE DISPLAY or a
nonnumeric literal, that defines what to replace the source-string
characters with. It can be a figurative constant that does not include the
keyword ALL, in which case it represents one character. The size of replace-
string and compare-string must be the same.

INSPECT source-string CONVERTING match

VST175.vsd

TO replace-stringcompare-string

position

VST173.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-113

Procedure Division Verbs INSPECT CONVERTING
position

marks a starting and ending place for a replacement cycle. It follows the same
item rules as replace-string. A CONVERTING phrase can have a single
BEFORE phrase, a single AFTER phrase, or one BEFORE phrase and one
AFTER phrase in either order.

BEFORE

specifies that scanning is up to but not including the character or
characters matching delim-string. If INSPECT does not find delim-
string in source-string, it scans all of source-string.

AFTER

specifies that scanning starts at the position immediately following the
character or characters matching delim-string. If INSPECT does not
find delim-string in source-string, it does not scan source-
string.

INITIAL

is for documentation only and has no effect.

delim-string

is the identifier of any type of elementary item with USAGE DISPLAY or a
nonnumeric literal. It can be a figurative constant that does not include the
keyword ALL, in which case it represents one character.

Example 9-41 shifts any lowercase letters found in IN-BUFFER to uppercase letters.

Example 9-41. INSPECT CONVERTING Statement

INSPECT IN-BUFFER
 CONVERTING "abcdefghijklmnopqrstuvwxyz"
 TO "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

BEFORE

AFTER INITIAL

delim-string

VST167.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-114

Procedure Division Verbs LOCKFILE
Usage Considerations:

• Action of the INSPECT CONVERTING Statement

The compiler treats a statement of the form

INSPECT source-string CONVERTING compare-string
TO replace-string

as if it were a statement of the form

INSPECT source-string REPLACING
ALL comp-char-1 BY repl-char-1
ALL comp-char-2 BY repl-char-2 ...

In the INSPECT CONVERTING statement, the n th character of compare-
string corresponds to the n th character of replace-string.

• Restrictions on Overlapping Operands

The storage area referenced by compare-string, replace-string, or
delim-string cannot be the same as the storage area referred to by source-
string, and must not overlap the storage area referred to by source-string.
Violation of this rule produces unpredictable results.

• See these usage considerations in INSPECT TALLYING:

° How Parameter Categories Affect INSPECT

° Comparison Operation

° BEFORE and AFTER Phrases

LOCKFILE
LOCKFILE prevents other processes from accessing the records in a file. All records
remain locked until either:

• You use an UNLOCKFILE statement.
• You close the file.
• The run unit terminates.
• You are executing a transaction with TMF and the transaction ends.

file-name

is the file description name of the file to lock. For LOCKFILE to work, file-name
must specify a disk file.

LOCKFILE file-name

TIME LIMIT wait-time

VST176.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-115

Procedure Division Verbs LOCKFILE
wait-time

is a numeric literal or the name of a numeric data item. Its value must have no
more than seven digits preceding any decimal point. Any fractional portion is
rounded to two decimal places. For example:

03 WAIT-TIME PIC 9(7)V9(2) COMPUTATIONAL.

A nonnegative wait-time is the number of seconds within which the LOCKFILE
operation must finish. If the LOCKFILE operation does not finish within that time, it
terminates with no error message. The I-O status code has the value “30” and the
GUARDIAN-ERR register has the value 40.

If wait-time is negative or no wait-time is specified, the LOCKFILE
operation has no time limit. The program can wait indefinitely.

If file-name was not opened with a TIME LIMITS phrase, including wait-time
in the LOCKFILE statement causes a run-time error.

Usage Considerations:

• Action of the LOCKFILE Statement

The LOCKFILE statement has no effect if the process has already locked the file or
if the file is not a disk file. Whether effective or not, the LOCKFILE statement does
not affect the key of reference, the file position indicator, or the contents of the
record area associated with the file.

• I-O Status Code

If the file has an associated file-status data item, the LOCKFILE statement assigns
it an appropriate I-O status code. The possible I-O status codes that result from
LOCKFILE operations are:

• One File Open Under Multiple Names

If a file-system file is opened twice or more times, using two or more distinct file
descriptions, only one of the file descriptions can have the file locked at a time.

I-O Status Code Meaning

“00” LOCKFILE executed successfully.

“30” Either the specified (nonnegative) time limit elapsed before the
LOCKFILE completed (in which case, GUARDIAN-ERR is also
set to 40), or the LOCKFILE operation failed due to non-COBOL
causes. The file might or might not have been locked.

“42” The file was not open.

“90” The wait-time is nonnegative but the file was not opened with
time limits enabled. An error message is delivered to the
process’s home terminal.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-116

Procedure Division Verbs LOCKFILE
• Declarative Procedures

If a declarative procedure applies to the file and the time interval expires, the
declarative procedure is performed, and program execution continues with the
statement following the one terminated (see Expired Time Limit). If error message
42 or 90 is returned after the declarative procedure executes, the run unit
terminates abnormally.

• Interaction of LOCKFILE and READ LOCK Statements

If your process executes a READ LOCK statement on a file that it or any other
process has locked with a LOCKFILE statement, or your process executes a
LOCKFILE statement against a file that has an outstanding READ LOCK, the TIME
LIMIT phrase determines what happens.

If the second statement attempting to lock the file has a TIME LIMIT phrase, it
keeps trying to lock the file until the time limit expires. Either it fails and then times
out or it succeeds in locking the file.

If the second statement attempting to lock the file has no TIME LIMIT phrase, it
suspends execution until the statement succeeds because the contending lock is
removed or until the program is terminated by an external agency (such as the
TACL command STOP).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-117

Procedure Division Verbs LOCKFILE
Example 9-42. LOCKFILE Statement With TIME LIMIT Phrase

SELECT IN-MASTER-FILE
 ASSIGN ...
 ...
 FILE STATUS IS IN-MASTER-STATUS.
...
FD IN-MASTER-FILE.
 ...
PROCEDURE DIVISION.
DECLARATIVES.
DECL SECTION.
 USE AFTER ERROR PROCEDURE ON IN-MASTER-FILE.
DECL-ROUTINE.
 IF GUARDIAN-ERR NOT = 40
 STOP RUN
 END-IF
END DECLARATIVES.
 ...
 OPEN INPUT IN-MASTER-FILE WITH TIME LIMITS SHARED
 LOCKFILE IN-MASTER-FILE
 TIME LIMIT WAIT-TIME
 IF IN-MASTER-STATUS NOT = "00"
 IF GUARDIAN-ERR = 40
 PERFORM RECOVER-MASTER-LOCK
 END-IF
 END-IF
 PERFORM UP-DATE-MASTER UNTIL DONE
 MOVE 0 TO M-FLAG
 UNLOCKFILE IN-MASTER-FILE
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-118

Procedure Division Verbs MERGE
MERGE
MERGE combines two or more files into another file, ordered by the same key.
MERGE is performed by the FastSort utility, using files that are not open to the COBOL
program. MERGE opens, reads, writes, and closes these files. MERGE can return
records to an output procedure that can then write them to some file that is open to the
COBOL program.

merge-file

is a sort-merge file description (SD) name. merge-file can have variable-length
or fixed-length records. Its record description entry defines the data item or items
used as the key or keys.

key-specifier

ASCENDING

specifies ascending merge order.

DESCENDING

specifies descending merge order.

key

is a data item to be used as a merge key. If merge-file has variable-length
records, key must refer to data within the first x character positions of the
record, where x is the minimum record size for merge-file.

MERGE merge-file

COLLATING SEQUENCE phrase

USING phrase output-specifier

key-specifier

VST177.vsd

ON

ASCENDING

DESCENDING KEY

key

VST178.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-119

Procedure Division Verbs MERGE
COLLATING SEQUENCE phrase

specifies a collating sequence for sorting.

alphabet-name

must be associated with a collating sequence in the SPECIAL-NAMES
paragraph of the Environment Division (see SPECIAL-NAMES Paragraph).

USING phrase

merge-in-1
merge-in-2
merge-in-n

are file description (FD) names. Multiple-reel tape files are permitted. The files
can have variable-length or fixed-length records.

If merge-file has variable-length records, then the records of merge-in-1,
merge-in-2, and merge-in-n must not be shorter than the shortest record
that merge-file can have or longer than the longest record that merge-
file can have.

If merge-file has fixed-length records, then the records of merge-in-1,
merge-in-2, and merge-in-n must not be greater than that fixed length. If
a record of merge-in-1, merge-in-2, or merge-in-n is shorter than the
fixed length of each merge-file record, then the shorter record is space-
padded on the right when it is released to merge-file.

COLLATING

SEQUENCE

IS

alphabet-name

VST179.vsd

USING merge-in-1 merge-in-2

merge-in-n

VST180.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-120

Procedure Division Verbs MERGE
output-specifier

specifies the procedure to which the merge operation is to deliver the records of
the merged files, in order.

outproc-1

is the paragraph-name or section-name of the first (and maybe only) paragraph
or section of the procedure to which the merge operation delivers the records
of the merged files.

outproc-2

is the paragraph-name or section-name of the last paragraph or section of the
procedure in the group of procedures to which the merge operation delivers the
records of the merged files.

merge-out

is a file description (FD) name, the name of a file that results from the merge
operation. The merge-out file can have variable-length or fixed-length
records. If merge-out has fixed-length records, any record in merge-file
that is shorter than that fixed length is space-padded on the right when that
record is returned to merge-out.

PROCEDURE outproc-1OUTPUT

GIVING merge-out

THROUGH outproc-2

THRU

IS

VST181.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-121

Procedure Division Verbs MERGE
Usage Considerations:

• Placement of MERGE Statements

A MERGE statement cannot appear in the Declaratives Portion of the Procedure
Division.

• Files Specified in the MERGE Statement

You can merge to and from these types of files:

° Disk files
° Blocked tape files
° Multiple-reel tape files
° Tape files on a multiple-file reel

The files specified in the MERGE statement are subject to these restrictions:

° Every file record must contain all of the key fields.

° A file name cannot appear more than once in the same MERGE statement.

° Two files of a multiple-file tape reel cannot appear in the same MERGE
statement.

° Files that appear in the same MERGE statement cannot appear in a SAME
AREA or SAME SORT-MERGE AREA clause.

° Except for merge-out files, files that appear in the same MERGE statement
cannot appear in the SAME RECORD AREA clause.

° A merge-in-1, merge-in-2, or merge-in-n file whose SELECT clause
includes the OPTIONAL phrase must be present at execution time.

• Merge Keys

Each merge key is subject to these restrictions:

° The data item specified by key must be described within a record associated
with merge-file. When merge-file has more than one record description
entry, a merge key data item can be defined within any one of those entries.

° No key can have an OCCURS clause or be subordinate to an item that has
an OCCURS clause.

° No key can have a variable size (that is, have an OCCURS DEPENDING
clause in the description of a subordinate item).

Keys are listed from left to right within the MERGE statement in order of
decreasing significance (that is, the first key is the most significant and the last
key is the least significant). ASCENDING and DESCENDING phrases do not
affect keys’ significance.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-122

Procedure Division Verbs MERGE
When a key is in an ASCENDING phrase, the merged sequence is from the
record with the lowest value in the key to the record with the highest value. When
a key is in a DESCENDING phrase, the merged sequence is from the record with
the highest value in the key to the record with the lowest value. In both cases, the
rules for comparison of operands in a relation condition determine which value is
higher.

The results of the merge operation are predictable only when the records in each
of the input files are ordered as described in the key-specifier phrases.

The PROGRAM COLLATING SEQUENCE clause affects merge operations.

• Output Procedure

The output procedure is outproc-1 or outproc-1 through outproc-2. The
output procedure must have a RETURN statement. An output procedure can be
any procedure needed to select, modify, or copy the records that the RETURN
statement makes available to merge-file one at a time in merged order.

The range of an output procedure includes statements that execute due to transfer
of control by CALL, EXIT, GO TO, and PERFORM statements in the range of the
output procedure and statements in declarative procedures that execute as a result
of execution of statements in the range of the output procedure. The range of an
output procedure must not cause the execution of any of these statements:

° A MERGE, RELEASE, or SORT statement

° A RETURN statement that specifies a sort-merge file other than merge-file

° A statement that manipulates merge-in-1, merge-in-2, merge-in-n, or
merge-out or uses the record area associated with one of these files

If the MERGE statement is in a section that is not in an independent segment (a
segment whose segment-number is from 00 through 49), then any output
procedures must either be totally within dependent segments or they must be
wholly contained in a single independent segment.

If the MERGE statement is in an independent segment (a segment whose
segment-number is from 50 through 99), then any output procedures must either
be totally within dependent segments or they must be wholly contained in the same
independent segment that contains the MERGE statement.

• Execution Phases

The execution of a MERGE statement consists of an input-and-merge phase and
an output phase.

• Input-and-Merge Phase

The input-and-merge phase transfers records from the input files merge-in-1,
merge-in-2, and merge-in-n to merge-file in the order specified by the
merge keys and the collating sequence alphabet-name.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-123

Procedure Division Verbs MERGE
When the MERGE statement begins execution, merge-file and the input files
must be closed but not locked. The input-and-merge phase performs an implicit
OPEN statement on merge-file and each of the input files. The input-and-
merge phase opens each input file in INPUT mode, performs implicit READ NEXT
statements to retrieve their records, and performs implicit RELEASE statements to
release the records to the merge-file.

The MERGE statement determines the merging logic by retrieving the first record
from each input file to form a set of candidate records. After selecting the proper
candidate to transfer to merge-file, the merging logic retrieves the next record
from that input file, if any, to replace it. This process continues until all input files
are exhausted. The candidate records are first ranked in accordance with their
values for the most significant key. When two or more records have equal values
for the current key, that subset is then ranked in accordance with the record values
for the next most significant key, and so on.

When all records have been merged, the input-and-merge phase performs an
implicit CLOSE statement on each input file. If the MERGE statement has an
OUTPUT PROCEDURE phrase, the close operations occur after the specified
procedure completes execution and returns control to the MERGE statement.

• Output Phase

If the MERGE statement has an OUTPUT PROCEDURE phrase, the output phase
transfers the merged records to the output procedure using an implicit PERFORM
statement. The implicit PERFORM retrieves the merge-file records by
executing implicit RETURN statements. When the implicit PERFORM statement
finishes executing, control returns to the merge operation.

If the MERGE statement has a GIVING phrase, the output phase transfers the
merged records to one or more merge-out files. When the MERGE statement
begins execution, each merge-out file must be closed but not locked. The output
phase uses implicit OPEN statements to open each merge-out file in OUTPUT
mode. Then the output phase executes implicit RETURN statements to retrieve
records from the merge file and implicit WRITE statements to release them to the
merge-out files. Finally, the output phase uses implicit CLOSE statements to
close the merge-out files.

Regardless of whether the MERGE statement has an OUTPUT PROCEDURE
phrase or a GIVING phrase, the merge operation uses an implicit CLOSE
statement to close merge-file after the output phase ends. Then the MERGE
statement terminates execution.

The implicit OPEN and CLOSE statements are equivalent to OPEN and CLOSE
statements without optional phrases.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-124

Procedure Division Verbs MERGE
• How the Scratch File Is Determined

° If COBOL_SET_SORT_PARAM_TEXT_ specifies a SCRATCH-FILE, then that
file is the scratch file.

° If the SELECT statement associated with merge-file specifies the
=_SORT_DEFAULTS DEFINE as the define-name-literal, then:

° If the =_SORT_DEFAULTS DEFINE exists and specifies a scratch file, then
that file is the scratch file.

° If the =_SORT_DEFAULTS DEFINE exists but does not specify a scratch file,
then a temporary file on the volume $SYSTEM is the scratch file.

° If no =_SORT_DEFAULTS DEFINE exists, then a temporary file on the volume
$SYSTEM is the scratch file.

° For more information on the =_SORT_DEFAULTS DEFINE, see Establishing
Parameters With =_SORT_DEFAULTS DEFINE.

° If the SELECT statement associated with merge-file does not specify the
=_SORT_DEFAULTS DEFINE as the define-name-literal, then the file
that the SELECT statement specifies is the scratch file.

• How the Volume of the Swap File Is Determined

The operating system assigns a swap file to swap pages in and out of memory
while the compiler is running. The swap file mirrors all of the data areas that the
compiler uses. The ideal swap file is a fast device that is neither busy nor mirrored.
To redirect the swap file, give define-name-literal the value
=_SORT_DEFAULTS.

The swap file is a temporary file with a volume but no subvolume. If you specify a
swap file, including a volume, the volume is used but the file-id is not. If you
specify only a file-id, the default volume is used.

° If COBOL_SET_SORT_PARAM_TEXT_ specifies a SWAP-FILE, then the
swap file is created on that file’s volume.

° If the SELECT statement associated with merge-file specifies the
=_SORT_DEFAULTS DEFINE as the define-name-literal, then:

° If the =_SORT_DEFAULTS DEFINE exists and specifies a swap file, then
the swap file is created on that file’s volume.

° If the =_SORT_DEFAULTS DEFINE exists but does not specify a swap
file, then the swap file is created on the volume used for the scratch file.

Note. If a scratch file is specified but its value is all spaces, assume that no scratch file
was specified.

Note. If a swap file is specified but its value is all spaces, assume that no swap file was
specified.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-125

Procedure Division Verbs MERGE
° If no =_SORT_DEFAULTS DEFINE exists, then the swap file is created on
the volume used for the scratch file.

For more information on the =_SORT_DEFAULTS DEFINE, see Establishing
Parameters With =_SORT_DEFAULTS DEFINE.

° If the SELECT statement associated with merge-file does not specify the
=_SORT_DEFAULTS DEFINE as the define-name-literal, then the swap
file is created on the volume of the file that the SELECT statement specifies.

In Example 9-43, a MERGE statement merges two files to produce a third.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-126

Procedure Division Verbs MERGE
Example 9-43. MERGE Statement

INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT PARTS-ON-HAND ASSIGN TO "H215432.ONHAND"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.
 SELECT PARTS-RECEIVED ASSIGN TO "H215432.RECD"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.
 SELECT PARTS-TOGETHER ASSIGN TO "H215432.TGTHR"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.
 SELECT MERGER ASSIGN TO "$HISPD.#TEMP".
 ...
DATA DIVISION.
FILE SECTION.
 FD PARTS-ON-HAND
 RECORD CONTAINS 120 CHARACTERS
 LABEL RECORDS ARE OMITTED.
 01 P-O-H.
 05 PARTNO PIC 9(8).
 ...
 FD PARTS-RECEIVED
 RECORD CONTAINS 120 CHARACTERS
 LABEL RECORDS ARE OMITTED.
 01 P-R.
 05 PARTNO PIC 9(8).
 ...
 FD PARTS-TOGETHER
 RECORD CONTAINS 120 CHARACTERS
 LABEL RECORDS ARE OMITTED.
 01 P-T.
 05 PARTNO PIC 9(8).
 ...
 SD MERGER
 RECORD CONTAINS 120 CHARACTERS.
 01 PARTNO PIC 9(8).
 ...
PROCEDURE DIVISION.
 ...
 MERGE MERGER ON ASCENDING KEY PARTNO OF MERGER
 USING PARTS-ON-HAND
 PARTS-RECEIVED
 GIVING PARTS-TOGETHER
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-127

Procedure Division Verbs MOVE
MOVE

MOVE TO
MOVE TO copies data from a data item and stores it in one or more other data items.

sender

is the literal or the identifier of the data item from which data is copied.

receiver

is the identifier of a data item to which the data is to be copied.

Usage Considerations:

• Evaluation of Subscripts and Indexes

Subscripts or indexes in sender are evaluated only once, immediately before
data is moved to the first receiver. Subscripts or indexes in receivers are
evaluated in the order in which the receivers are specified. For example,

MOVE A(B) TO B C(B)

is equivalent to

MOVE A(B) TO temp
MOVE temp TO B
MOVE temp TO C(B)

• MOVE Statements That Are Not Recommended

Do not attempt these moves:

° SPACE, alphanumeric edited, or alphabetic data item to numeric or numeric
edited data item

° ZERO, numeric literal, numeric, or numeric edited data item to alphabetic data
item

Form Description

MOVE TO Copies data from a data item and stores it in one or more
other data items

MOVE CORRESPONDING Copies elements of one group to corresponding elements of
another group

senderMOVE receiverTO

VST182.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-128

Procedure Division Verbs MOVE TO
• MOVE Conventions

Table 9-3 summarizes the legal MOVE TO statements by category of sending and
receiving data items. Data is converted and stored according to the category of the
receiving data item.

• Alphabetic, Alphanumeric, Alphanumeric Edited, or National Receiving Data Items

Data is stored beginning at the leftmost position of receiver. If sender is
shorter than receiver, spaces are filled according to standard alignment rules. If
sender is longer than receiver, the value of sender is truncated on the right
to the length of receiver. Any editing required by receiver is performed
unless sender is a group data item.

If sender is a signed numeric data item, the operational sign is not moved to
receiver. If sender is described with the SEPARATE phrase in the SIGN clause,
the size of sender is considered to be one character less than the actual size of
sender.

If sender is a numeric item with the scaling factor (P) in its rightmost digits,
positions containing P are considered to contain zeros.

If sender is a numeric item with decimal digits (that is, sender has V in its
PICTURE clause), the decimal point is ignored and sender is treated as if it were
an alphanumeric item whose size is equal to the number of 9 s in the PICTURE
clause. If its USAGE is not DISPLAY, it is converted to DISPLAY for the move
operation. For example:

PIC 999V99 VALUE 123.45

is treated as if it were PIC X(5); that is, as the value 12345.

If the number of digits in sender is greater than 18 (for example, when a
NUMVAL function is used), the leftmost 18 digits are moved and any to the right of
this are discarded.

Table 9-3. Summary of Legal Moves

Category of Sending Data Item

Category of Receiving Data Item

Alphabetic Alphanumeric Numeric National

Alphabetic Yes Yes No No

Alphanumeric Edited Yes Yes* No No

Non-Edited Yes Yes Yes No

Numeric Integer No Yes Yes No

Noninteger No Yes Yes No

Edited No Yes Yes No

National No No No Yes

* Although it is possible to move an alphanumeric item to a numeric item, the presence of a nonnumeric
character in the data moved makes any operation on the numeric item unpredictable.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-129

Procedure Division Verbs MOVE TO
The COBOL standard requires that the numeric item have no decimal positions.
HP allows this as an extension.

If an elementary receiver is described as JUSTIFIED, see JUSTIFIED Clause.

• Numeric or Numeric Edited Receiving Data Items

Data is aligned by decimal point and filled with zeros as necessary.

If receiver is signed, the sign of sender is moved to receiver. If sender
has no sign, the new sign of receiver is positive.

If receiver is not signed, the absolute value of sender becomes the new value
of receiver.

If sender is alphanumeric, its value is treated as an unsigned numeric integer.

If sender is numeric-edited, the operand’s unedited numeric value is determined
(it can be signed). The unedited numeric value of sender is moved to receiver.

• Group MOVE Statements

Group MOVE statements (MOVE statements in which sender, receiver, or
both are data structures) are treated as alphanumeric-to-alphanumeric moves, with
no data conversion. Receiving items are filled without regard to individual or
subordinate items in either sender or receiver s. If a receiver is an
elementary item defined with a JUSTIFIED clause, justification does occur. If
sender is a national data item, its size is assumed to be twice the number of
national characters. Verify the receiving data structure can hold all of the national
characters.

In Example 9-44, several MOVE TO statements set the values of two records in
working storage.

Example 9-44. MOVE TO Statements (page 1 of 2)

WORKING-STORAGE SECTION.
 01 RECORD-IN.
 03 ITEM-A PIC X(5) VALUE "AAAAA".
 03 ITEM-B PIC 99V99 VALUE "2.38".
 03 ITEM-C PIC ZZ,ZZ9.99.
 ...
 01 TEMPS.
 03 TEMP1 PIC X(4).
 03 TEMP2 PIC X(8).
 03 TEMP3 PIC 9(5)V999.
 03 TEMP4 PIC 9V9.
 03 TEMP5.
 05 T PIC 99 OCCURS 12 TIMES.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-130

Procedure Division Verbs MOVE TO
 PROCEDURE DIVISION.
 BEGIN-PROCESSING.
 MOVE ITEM-A TO TEMP1
* TEMP1 is set to "AAAA"
 MOVE ITEM-A TO TEMP2
* TEMP2 is set to "AAAAA "
 MOVE ITEM-B TO TEMP3
* TEMP3 is set to 00002v380
* where "v" marks the decimal location
 MOVE ITEM-B TO TEMP4
* TEMP4 is set to 2v3
* where "v" marks the decimal location
 MOVE SPACES TO RECORD-IN
* RECORD-IN is set to " "
* (9 spaces)
 MOVE ZEROS TO ITEM-B
* ITEM-B is set to 00v00
* where "v" marks the decimal location
 MOVE 5280 TO ITEM-C.
* ITEM-C is set to " 5,280.00"

 MOVE ITEM-C TO TEMP-3.
* TEMP-3 is set to 05280v000
* where "v" marks the decimal location

 MOVE ZEROS TO TEMP-5.
* Each 2-digit T in TEMP-5 is set to
* the 2-character value "00". Do not
* move ZEROS to any group containing
* COMP or NATIVE-n items, because the
* operation delivers characters.
* Do not move LOW-VALUES to a group
* of numeric items -- instead use
* INITIALIZE ...
* REPLACING NUMERIC DATA BY ZERO

Example 9-44. MOVE TO Statements (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-131

Procedure Division Verbs MOVE CORRESPONDING
MOVE CORRESPONDING
MOVE CORRESPONDING copies elements of one group to corresponding elements
of another group. Groups of data correspond if they have the same names and
qualifier names, beyond the group-names in the MOVE statement, and if they meet
restraints explained under CORRESPONDING Phrase.

group-1

is the group-name of the data to be copied.

group-2

is the group-name to which the data is to be copied.

MULTIPLY

Caution. MOVE CORRESPONDING is not recommended, because minor changes to one
group can change the correspondence between its elements and those of the other group, and
this is difficult to detect. If someone adds a new name to a group, the new name might be
included in unintended move operations.

Form Description

MULTIPLY BY Multiplies one data item by one or more other data items and stores
the result(s) in the other data item(s); for example, the statement

MULTIPLY A BY B C D

means store A x B in B, A x C in C, and A x D in D

MULTIPLY GIVING Multiplies two data items and stores the product in one or more other
data item(s); for example, the statement

MULTIPLY A BY B GIVING C D E

means store A x B in C, D, and E

group-1MOVE group-2TOCORRESPONDING

CORR

VST183.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-132

Procedure Division Verbs MULTIPLY BY
MULTIPLY BY
MULTIPLY BY multiplies one data item by one or more other data items and stores the
result(s) in the other data item(s); for example, the statement

MULTIPLY A BY B C D

means store A x B in B, A x C in C, and A x D in D.

multiplicand

is a numeric literal or the identifier of an elementary numeric data item.

multiplier

is the identifier of an elementary numeric data item.

ROUNDED

specifies that the product is to be rounded before being stored as the new value of
multiplier.

imperative-stmt-1

is an imperative statement to be executed when a size error is detected in the
multiplication or in storing the product in multiplier.

MULTIPLY

multiplier

BYmultiplicand

ROUNDED

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

END-MULTIPLY

VST184.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-133

Procedure Division Verbs MULTIPLY BY
imperative-stmt-2

is an imperative statement to be executed when no size error is detected in the
multiplication or in storing the product in multiplier.

END-MULTIPLY

ends the scope of the MULTIPLY statement and makes it a delimited-scope
statement. If you omit END-MULTIPLY but include the SIZE ERROR or NOT SIZE
ERROR phrase, the MULTIPLY statement is a conditional statement and ends at
the next period separator.

Usage Considerations:

• Mathematics

The statement

MULTIPLY A BY B C D

means store A x B into B, A x C into C, and A x D into D.

• Repeating a Multiplier

If more than one multiplier specifies the same data item, the
final value of that data item reflects more than one
multiplication by multiplicand. For example,

MULTIPLY 4 BY A B B

results in A being replaced by 4 x A and B being replaced by 16 x B.

• Operand Identification

For each multiplier, operand identification occurs just prior to the multiply-and
store operation. For example, in the statement

MULTIPLY 4 BY A B C(B)

the subscript is not evaluated until B has been multiplied by 4. See Operand
Identification.

• Arithmetic Operations

See Arithmetic Operations for information on data conversion and alignment,
intermediate results, multiple results (and subscript evaluation), and incompatible
data.

• Precision

If you omit the SIZE ERROR phrase, arithmetic overflow can cause the run unit to
terminate abnormally. For information on precision of multiplication, see Arithmetic
Precision.

• ROUNDED and SIZE ERROR Phrases

See ROUNDED Phrase and SIZE ERROR Phrase for information on these.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-134

Procedure Division Verbs MULTIPLY BY
Example 9-45 converts a length in feet to a length in inches.

Example 9-46 converts several dimensions from centimeters to inches, with rounding.

Example 9-45. MULTIPLY BY Statement

05 LENGTH PICTURE S9(6)V9(6).
 ...
 MULTIPLY 12 BY LENGTH

Example 9-46. MULTIPLY BY Statement With ROUNDED Phrase

03 CM-TO-INCHES PICTURE S9V99
 VALUE 0.39.
 ...
03 LENGTH PICTURE S9(3)V9(2).
03 WIDTH PICTURE S9(3)V9(2).
03 DEPTH PICTURE S9(3)V9(2).
 ...
 MULTIPLY CM-TO-INCHES BY LENGTH ROUNDED
 WIDTH ROUNDED
 DEPTH ROUNDED
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-135

Procedure Division Verbs MULTIPLY GIVING
MULTIPLY GIVING
MULTIPLY GIVING multiplies two data items and stores the product in one or more
other data item(s); for example, the statement

MULTIPLY A BY B GIVING C D E

means store A x B in C, D, and E.

multiplicand

is a numeric literal or the identifier of an elementary numeric data item.

multiplier

is a numeric literal or the identifier of an elementary numeric data item.

result

is the identifier of an elementary numeric or numeric edited data item that is to
receive the product.

ROUNDED

specifies that the product is to be rounded before being stored in result.

VST185.vsd

MULTIPLY multiplicand multiplierBY GIVING

END-MULTIPLY

SIZE ERROR

NOT

ON

ERROR

imperative-stmt-2

imperative-stmt-1

SIZE

result

ROUNDED

ON
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-136

Procedure Division Verbs MULTIPLY GIVING
imperative-stmt-1

is an imperative statement to be executed when a size error is detected in the
multiplication or in storing the product in result.

imperative-stmt-2

is an imperative statement to be executed when no size error is detected in the
multiplication or in storing the product in result.

END-MULTIPLY

ends the scope of the MULTIPLY statement and makes it a delimited-scope
statement. If you omit END-MULTIPLY but include the SIZE ERROR or NOT SIZE
ERROR phrase, the MULTIPLY statement is a conditional statement and ends at
the next period separator.

Usage Considerations:

• Mathematics

The statement

MULTIPLY A BY B GIVING C D E

means store A x B into C, D, and E. The values of A and B do not change.

• Operand Identification

For each result, operand identification occurs just prior to the storage operation.
For example, in the statement

MULTIPLY A BY B GIVING C D(C)

the subscript is not evaluated until C has been set to A x B. See Operand
Identification.

• Arithmetic Operations

See Arithmetic Operations for information on data conversion and alignment,
intermediate results, multiple results (and subscript evaluation), and incompatible
data.

• Precision

If you omit the SIZE ERROR phrase, arithmetic overflow can cause the run unit to
terminate abnormally. For information on precision of multiplication, see Arithmetic
Precision.

• ROUNDED and SIZE ERROR Phrases

See ROUNDED Phrase and SIZE ERROR Phrase for information on these.

• Edited Result

The MULTIPLY GIVING statement can produce an edited result, as Example 9-47
shows.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-137

Procedure Division Verbs OPEN
OPEN
OPEN makes a file accessible for input, output, or both. OPEN associates a COBOL
file name within the program with a file name known to the file system.

The NonStop operating system treats processes as files, so an HP COBOL program
can open a terminal or another process as a file. The mode in which such files are
opened determines how they are treated (see Table 4-4).

file-specification

INPUT

specifies that the file or files in input-file-description are being
opened for reading only.

Example 9-47. MULTIPLY GIVING Statement

03 UNIT-PRICE PICTURE S9(5)V999 COMPUTATIONAL.
03 ORDERED PICTURE S9(5) COMPUTATIONAL.
03 NET-PRICE PICTURE S9(10)V999 COMPUTATIONAL.
03 NET-PRICE-DSP PICTURE $$,$$$,$$$,$$$.99.
 ...
 MULTIPLY UNIT-PRICE BY ORDERED
 GIVING NET-PRICE-DSP ROUNDED
 NET-PRICE

OPEN file-specification

VST186.vsd

INPUT input-file-description

OUTPUT output-file-description

I-O i-o-file-description

EXTEND extend-file-description

VST187.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-138

Procedure Division Verbs OPEN
input-file-description

for a sequential, relative, indexed, or queue file:

for a line sequential file:

infile

is the file description file name of a file to open in INPUT mode, for read
operations only.

TIME LIMITS

allows you to use the TIME LIMIT phrase in LOCKFILE, READ, and
START statements that apply to infile.

SHARED

allows other processes to read or write the file while this process is open.
SHARED is the default for terminals.

PROTECTED

allows other processes to read but not write the file while this process is
open. PROTECTED is the default for input files that are not terminals.

infile

WITH

TIME LIMITS

«REVERSED»

WITH

NO REWIND

SYNCDEPTH syncSHARED

PROTECTED

EXCLUSIVE

VST188.vsd

infile

SHARED

PROTECTED

EXCLUSIVE

VST627.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-139

Procedure Division Verbs OPEN
EXCLUSIVE

prevents other processes from reading or writing the file while this process
is open. EXCLUSIVE is the default for all other files.

sync

is a numeric literal that:

• Specifies the number of write requests that cannot be tried again
whose I-O status code is to be recorded by the file system.

• Determines the number of write operations that the primary process of
a process pair can perform on the file without doing a checkpoint to its
backup process.

• If sync is 0, no checkpointing or automatic disk recovery is performed.
To allow recovery from the failure of a processor that is controlling the
disk during a write operation, the value of sync must be 1 or greater.
The default value of sync is 1.

REVERSED

is ignored with a warning.

NO REWIND

specifies that a tape is not to be rewound. This phrase applies to single-
reel, single-file tapes; single-reel, multiple-file tapes; and multiple-reel,
single-file tapes. If NO REWIND is specified for other types of files, it is
ignored. If NO REWIND is not specified for a tape file, the tape is rewound.

The tape must be positioned at the beginning of the file prior to the
execution of the OPEN statement. No file repositioning is done.

OUTPUT

specifies that the file or files in output-file-description are being
opened for writing only.

Note. The 1985 COBOL standard classifies REVERSED as obsolete, so you are
advised not to use it.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-140

Procedure Division Verbs OPEN
output-file-description

for a sequential, relative, indexed, or queue file:

for a line sequential file:

outfile

is the file description file name of a file to open in OUTPUT mode, for write
operations only.

TIME LIMITS
SHARED
PROTECTED
EXCLUSIVE
sync
NO REWIND

are the same as described earlier for infile.

I-O

specifies that the file or files in i-o-file-description are being opened
for reading or writing.

outfile

WITH

TIME LIMITS

WITH

NO REWIND

SYNCDEPTH syncSHARED

PROTECTED

EXCLUSIVE

VST189.vsd

outfile

SHARED

PROTECTED

EXCLUSIVE

VST628.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-141

Procedure Division Verbs OPEN
i-o-file-description

for a sequential, relative, indexed, or queue file:

for a line sequential file:

iofile

is the file description file name of a file to open in I-O mode, for both read
and write operations.

TIME LIMITS
SHARED
PROTECTED
EXCLUSIVE
sync

are the same as described earlier for infile.

EXTEND

specifies that the file or files in extend-file-description are being
opened for writing additional data following any existing data.

iofile

WITH

TIME LIMITS

SYNCDEPTH syncSHARED

PROTECTED

EXCLUSIVE

VST190.vsd

iofile

SHARED

PROTECTED

EXCLUSIVE

VST626.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-142

Procedure Division Verbs OPEN
extend-file-description

for a sequential, relative, indexed, or queue file:

for a line sequential file:

extfile

is the file description file name of a sequential file to open in EXTEND
mode, for write operations that append records to the file. The file is
positioned after the last logical record when opened. All operations on the
file must be write operations, as if the file had been opened in OUTPUT
mode. If the file is an Enscribe unstructured file, its size must be a multiple
of the record size.

TIME LIMITS
SHARED
PROTECTED
EXCLUSIVE
sync

are the same as described earlier for infile.

extfile

WITH

TIME LIMITS

SYNCDEPTH syncSHARED

PROTECTED

EXCLUSIVE

VST191.vsd

extfile

SHARED

PROTECTED

EXCLUSIVE

VST629.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-143

Procedure Division Verbs OPEN
Usage Considerations:

• Associating COBOL File Names With System File Names

Before you can open a file, you must associate its COBOL file name with the name
of a system file name, using one of:

° The ASSIGN clause of the file-control entry for the COBOL file
(see FILE-CONTROL Paragraph)

° The TACL command ASSIGN
(see ASSIGN Command)

° A DEFINE of the class MAP, SPOOL, or TAPE
(see DEFINEs)

° The COBOLASSIGN or COBOL_ASSIGN_ routine
(see COBOLASSIGN and COBOL_ASSIGN_)

• Devices That You Can Open

The OPEN statement can open devices that accept normal read and write
operations (as opposed to read and write operations that require special control
information). This table shows which file organizations are compatible with which
devices:

• Successful and Unsuccessful Open Operation

Execution of an OPEN statement sets an I-O status code for each file specified in
the statement. Successful opening of a file sets the I-O status code of that file to
“00,” “05,” “07,” or “97.” Unsuccessful opening of a file sets the I-O status code to
one of the values in Table 9-4 and causes execution of any applicable USE AFTER
EXCEPTION CONDITION procedure.

If you declared a file-status data item for a file (see FILE-CONTROL Paragraph),
the process stores the I-O status code in that data item. For an extensive
discussion of I-O status codes, see I-O Status Code.

File Organization Devices Allowed Device Type Numbers

Relative, indexed, or queue Disk file 3

Sequential without LINAGE Process
$RECEIVE
Disk file
Tape
Printer
Page mode terminal
Envoy line
Card reader
X25 treated as a process
COMM system manager

0
2
3
4
5
6
7
8
9
50

Sequential with LINAGE Process
Printer

0
5

HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-144

Procedure Division Verbs OPEN
Table 9-4. I-O Status Codes for Unsuccessful Open Operations

I-O
Status
Code Unsuccessful Open Operation

“30” One of:

• The file was to be opened for OUTPUT and an existing disk file with
unsuitable attributes cannot be purged.

• The file was to be opened for OUTPUT and the data in an existing disk file
cannot be purged.

• The file was to be opened for EXTEND and the file cannot be positioned at
its end.

• The open operation failed due to some cause outside COBOL.

“35” The file was to be opened for INPUT, I-O, or EXTEND; the file is not optional; and
the file does not exist.

“37” One of:

• The file was to be opened for INPUT, but the device is not suitable for INPUT.

• The file was to be opened for OUTPUT, but the device is not suitable for
OUTPUT.

• The file was to be opened for I-O, but the device is not suitable for I-O (both
input and output). Only disks and terminals can be opened for I-O.

“38” The file is locked.

“39” The attributes of the file under the file system do not correspond to the attributes
specified for the file in the program, for example:

• The file was to be opened for INPUT but it is assigned to a printer device.

• The file description includes a LINAGE clause, but the file is assigned to a
tape drive.

• The file description includes a MULTIPLE FILE TAPE clause, but the file is
not assigned to a tape drive.

• The file is described as having keys, but the file is assigned to a nondisk file.

• The prime record key attributes of a disk file are inconsistent with the
description for the COBOL file.

• The alternate record key attributes of a disk file are inconsistent with the
description for the COBOL file.

“41” The program already has that file open, or the file is one of several on a tape reel
and another of the files on the reel is open.

“91” The file is an EDIT format, unstructured disk file and the call to the operating
system routine that reads EDIT files failed. The open operation cannot allocate a
resource required to process the file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-145

Procedure Division Verbs OPEN
• Labeled Files

When the LABEL RECORDS clause in the file description entry indicates that label
records are present, the beginning file or reel labels are processed in accordance
with the conventions for the specified open mode. If the file is opened for INPUT or
EXTEND, the label records are verified. If the file is opened for OUTPUT, the label
records are created. If the device assigned is not a tape, the LABEL RECORDS
clause is ignored.

• File Position Indicator

The file position indicator specifies the next record to be accessed within the
opened file during certain sequences of input-output operations. For files opened
for INPUT or I-O, it is defined to be just before the first record in the file. For files
opened for OUTPUT or EXTEND, it is undefined.

When a file is opened for OUTPUT, run-time routines position the file at its
beginning point. The first WRITE statement executed for the file creates the first
logical record in the file.

When a file is opened for EXTEND, run-time routines position the file to point
immediately following the last existing logical record, which is defined:

If a file opened for EXTEND is empty, the first WRITE statement executed for the
file creates the first logical record. If the file is not empty, the first WRITE statement
executed for the file creates the successor record to the current last record.

If a file opened for EXTEND is an Enscribe unstructured file, its size must be a
multiple of the record size.

• Key of Reference

For a relative file, the key of reference is the relative key. For an indexed or queue
file, the key of reference is the prime record key.

• Locked System Files

An HP COBOL program cannot open a system file that it closed and locked earlier
in its current execution.

File Organization Last Existing Record

Sequential Last record written to the file

Relative Existing record with highest relative record number

Indexed or queue Existing record with highest prime record key value
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-146

Procedure Division Verbs OPEN
• Opening a File Multiple Times, Simultaneously

An HP COBOL program can open one system file under more than one COBOL
file name. This is particularly helpful when you are developing a server. You can
open $RECEIVE twice—once for INPUT and once for OUTPUT—and use TACL
ASSIGN commands to make one terminal (or obey file) your input simulator and
another terminal your output monitor.

If an HP COBOL program opens a file with a certain COBOL file name, it must
close that COBOL file (using that COBOL file name) before it can open it again
with that COBOL file name.

• Operations by Other Input-Output Statements

Before any other input-output statement can operate upon a file, an OPEN
statement must make the file accessible.

Whether you can use a verb to operate on a file depends on the mode in which
you open the file (INPUT, OUTPUT, I-O, or EXTEND), the file’s organization and
access mode, and the device with which the file is associated.

The READ, WRITE, REWRITE, START, and DELETE statements can operate only
on files opened with certain options. Table 9-5 summarizes the open modes that
make files having different organizations and access modes accessible to these
statements.

The START and DELETE statements can operate only on files associated with disk
devices.

The REWRITE statement can operate only on files associated with disk devices.

The CLOSE, LOCKFILE, UNLOCKFILE, and UNLOCKRECORD statements can
operate on any open file.

• Direct Calls to NonStop Operating System I-O Procedures

If you open a file with the OPEN statement, do not perform I-O operations on that
file by making direct calls to NonStop operating system I-O procedures. If you do,
the results are undefined.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-147

Procedure Division Verbs OPEN
• Nonexistent Files

When the INPUT, I-O, or EXTEND phrase applies and the SELECT clause
includes the OPTIONAL phrase, the run-time routines determine whether or not
the file is present.

If the file is not present, one of these occurs:

° If the I-O or EXTEND phrase applies, the open operation creates a file. This
creation occurs as if these statements were executed in the order shown:

OPEN OUTPUT file-name.
CLOSE file-name.

The OPEN statement as specified in the source program is then executed. If
the file is defined to have alternate keys, the creation attempt fails because you
cannot create such files with COBOL verbs. They must be created by an
application outside the HP COBOL language (for example, by FUP, the File
Utility Program, or by using ENTER to call Enscribe routines).

If the creation attempt succeeds, then the file exists. Files Assigned to Disk
Devices explains the rules for existing disk files.

After a successful open operation that creates a file in the manner described,
the I-O status code is “05,” rather than “00” (as it would have been if the
operation had opened an existing file).

Table 9-5. I-O Statements You Can Use in Different Open Modes

I-O Statement

Open Mode

INPUT OUTPUT I-O EXTEND

READ ALL ALL

WRITE ALL Org: R, I
Acc: R, D

Org: S, R, I
Acc: S

REWRITE ALL

START Org: S*, R, I
Acc: S, D

Org: S*, R, I
Acc: S, D

DELETE Org: R, I

Org is the file’s organization: I = Indexed or queue

R = Relative

S = Sequential

S* = Sequential (but only for START specifying an alternate key)

Acc is the file’s access mode: S = Sequential

R = Random

D = Dynamic

ALL means all organizations and access modes
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-148

Procedure Division Verbs OPEN
Although no Guardian file is open, if the file might be created later by the
current or another program, you must close the file before opening it in
COBOL.

° If the INPUT phrase applies, the file position indicator is set to indicate that an
optional file is not present. In this case, the I-O status code is “05” and the
other steps described later are omitted from the open operation.

When the INPUT, I-O, or EXTEND phrase applies, the file is not described as
OPTIONAL, and the file is not present at run-time, the open operation terminates
immediately with I-O status code “35.”

• Files Assigned to Processes

Any file assigned to a process must be described with sequential organization
without alternate keys in its file-control entry. The mode in which you open the file
determines its use.

• Files Assigned to Terminals

Any file assigned to a terminal must be described with sequential organization
without alternate keys in its file-control entry. The mode in which you open the file
determines its use.

Table 9-6. Open Modes for Files Assigned to Processes

Open Mode Action

INPUT The file is treated as if it were a terminal. No carriage-control messages are
sent to the file, and it cannot have a LINAGE clause in its file description
entry. READ, with or without the PROMPT phrase, is the only I-O statement
that can be executed on the file; however, prompts are ignored in this open
mode.

OUTPUT or
EXTEND

If the process has a device subtype of 31, it is a spooler process, treated
like a printer. If the file description entry for the file includes a LINAGE
clause, or the file was opened by the routine COBOL85^SPECIAL^OPEN
or COBOL_SPECIAL_OPEN_, it is assumed to be a printer or a spooler
process. Carriage-control messages are sent to the file, and it can have a
LINAGE clause in its file description entry. WRITE, with or without the
ADVANCING phrase, is the only I-O statement that can be executed on the
file. Lines of output are held until a subsequent write or close operation, and
consecutive spacing operations due to ADVANCING clauses are
consolidated to minimized output operations.

If the process does not meet the criteria stated earlier, it is assumed to be
an ordinary process. No consolidation of operations occurs, and each line is
written to the process immediately. No control information or extra blank
lines are written to the process.

I-O The file is treated as if it were a terminal. No carriage-control messages are
sent to the file, and it cannot have a LINAGE clause in its file description
entry. READ and WRITE statements can be executed on the file, but
DELETE, REWRITE, and START statements cannot.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-149

Procedure Division Verbs OPEN
• Files Assigned to Disk Devices

When the object of an OPEN statement is a disk file, the presence or absence of
such a file on disk, as well as both the open mode and the file’s description,
determines what happens.

In all cases, a disk file cannot be described with a LINAGE clause in its file
description entry, nor can a WRITE statement that operates on a disk file include
an ADVANCING phrase.

• Unstructured Disk Files

Unstructured files can be used by a COBOL program in only certain instances:

° The program must specify sequential organization with no alternate keys.

° The file contains zero or more complete records. For this to be true, one of
these must be true:

° The COBOL program describes the records of the file as having an even
number of characters, and the file size is some integer multiple of the
record size.

° The COBOL program describes the records of the file as having an odd
number of characters, the file system description of the file includes the
“odd-unstructured” attribute, and the file size is some integer multiple of the
record size.

Table 9-7. Open Modes for Files Assigned to Terminals

Open Mode Action

INPUT No carriage-control messages are sent to the file, and it cannot have a
LINAGE clause in its file description entry. READ, with or without the
PROMPT phrase, is the only I-O statement that can be executed on the file;
however, prompts are ignored in this open mode.

OUTPUT or
EXTEND

No carriage-control messages are sent to the file, and it cannot have a
LINAGE clause in its file description entry. WRITE, with or without the
ADVANCING phrase, is the only I-O statement that can be executed on the
file; however, “ADVANCING mnemonic-name,” if used, is ignored.

I-O No carriage-control messages are sent to the file, and it cannot have a
LINAGE clause in its file description entry. READ and WRITE statements
can be executed on the file, but DELETE, REWRITE, and START
statements cannot.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-150

Procedure Division Verbs OPEN
° The COBOL program describes the records of the file as having an odd
number of characters, the file system description of the file does not
include the “odd-unstructured” attribute, and the file size is some integer
multiple of (COBOL record size plus 1).

° If the file code is 101 (EDIT format) because either the file already exists
with that code or an ASSIGN command with a CODE phrase has been
processed for the file, the file can be opened in INPUT, OUTPUT, or
EXTEND modes. Opening the file for OUTPUT deletes any existing
records in the file and starts the line numbers at 1, and increments by 1.
Opening the file for EXTEND retains existing records and starts the line
numbers at 1 greater than the number of the last line in the file, and
increments by 1. An EDIT-format file cannot be opened for OUTPUT or
EXTEND if the NONSTOP directive has been specified.

° If the file code is 180 (line sequential, available only in the OSS
environment).

° The file must be described as having fixed-length records (absence of the
rec-1 TO phrase and the VARYING phrase in the RECORD clause).

° If the file is opened in EXTEND mode, the file position indicator is
advanced to the end of the file.

• Structured Disk Files Not Present at Run Time

The open mode determines what happens when a structured disk file is not
present at run time.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-151

Procedure Division Verbs OPEN
• Structured Disk Files Present at Run Time

Certain requirements pertain to all files in this category:

° The organization declared for the file must be consistent with the actual
organization of the file (that is, if the file is declared ORGANIZATION
SEQUENTIAL, the file must be entry-sequenced; if it is declared
ORGANIZATION RELATIVE, the file must be relative; and if it is declared
ORGANIZATION INDEXED, the file must be key-sequenced).

° If the file is key sequenced or has alternate keys, the declaration of the keys in
the COBOL program must agree with the declaration of the keys in the file
system.

° The file security must be appropriate for the open mode. You cannot open a file
for INPUT or I-O if it is secured against your reading it. You cannot open a file
for OUTPUT, I-O, or EXTEND if it is secured against your writing to it.

When the preceding requirements are met for a disk file present at run time, the
open mode determines what happens during execution.

Table 9-8. Open Modes for Structured Disk Files Not Present at Run Time

Open Mode Action

INPUT When the SELECT clause for the file contains the word OPTIONAL, the
OPEN statement completes successfully, and COBOL simulates the
existence of an empty disk file. If the file is not described as OPTIONAL, the
open operation fails.

OUTPUT or
EXTEND or
I-O

If a file is described with alternate-record keys, the open operation fails. A
COBOL program cannot create files with alternate keys. When the disk file
is otherwise described, COBOL creates the file (see Structured Disk Files
Present at Run Time).

If the device name is associated with a proper file name (such as
$volumename.subvolname.filename), then the created file is permanent and
continues to exist after the program has closed it. If the device name is not
associated with a proper file name (that is, if its name has the form of just a
volume name or is a special name like #TEMP), the created file is temporary
and disappears when it is closed.

The device name can be associated with a proper file name in any of these
ways:

• By the ASSIGN clause at compile time
• By an ASSIGN command at run time
• By a DEFINE of class MAP at run time

Caution. If you open a disk file for shared access, do not use sequential block buffering,
because one process can read data from the file that is not up-to-date while another process is
altering the file. See the explanation of the RESERVE clause in file-control entries under FILE-
CONTROL Paragraph.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-152

Procedure Division Verbs OPEN
Table 9-9. Open Modes for Structured Disk Files Present at Run Time

Open Mode Action

INPUT If the record length of the physical file is shorter than the record length
declared in the File Section, and the record length is not declared as
variable (rec-1 TO rec-2 CHARACTERS or VARYING SIZE), the OPEN
statement fails.

If the open operation succeeds and the file organization is relative, the
relative key is established as the key of reference.

If the open operation succeeds and the file organization is indexed, the
prime record key is established as the key of reference.

The file position indicator is set so that the first execution of a READ
statement retrieves either of these, depending on the file’s organization:

• The first record in a sequential file

• The first record in the sequence defined by the key of reference in an
indexed, queue, or relative file

OUTPUT If the record length of the physical file is shorter than the record length
declared in the File Section, the file is not suitable for use:

• If no alternate record keys exist, the file is purged and a new one is
created. The new file has file code 0 unless the COBOL_ASSIGN_
routine or the TACL command ASSIGN provides another file code
value. The new file has the standard HP COBOL defaults for file size
and number of extents, rather than the size and extents of the original
file.

• If alternate record keys exist, the file cannot be purged, and the open
operation fails with I-O status code “30.”

If the record length of the physical file is not shorter than the record length
declared in the File Section, and the file contains some data, the file is not
purged, but its data is purged. In either case, no warning alerts you that a
purge is taking place. After the file is purged, the file position indicator is set
to either of these, depending on the file’s organization:

• The first record in a sequential file

• An undefined value for an indexed, queue, or relative file, because the
file contains no records at that point

EXTEND If the record length of the physical file is shorter than the record length
declared in the File Section, the file is not suitable for use. The open
operation fails with I-O status code “30.”

The file position indicator is set to the end of the file.

I-O If the record length of the physical file is shorter than the record length
declared in the File Section, the file is not suitable for use. The open
operation fails with I-O status code “30.”

The file position indicator is set to the first record in the file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-153

Procedure Division Verbs OPEN
• HP COBOL Queues Printer File Records

HP COBOL queues write operations to files that are associated with printers and to
processes that behave like printers. The LINAGE clause of the file description
entry and the ADVANCING phrase of the WRITE statement are valid only for such
files.

Records that HP COBOL writes to a process are queued only when the OPEN
statement specifies an attribute of OUTPUT, EXTEND, or I-O, and at least one of
these is true:

° The file description entry includes a LINAGE clause

° The OPEN statement discovers that the process with which it is associating the
file has the device subtype attribute value of 31

When the OPEN routine opens a printer-type file, it turns off automatic page
ejection, computes any dynamic logical page attributes, and when appropriate,
performs a page eject.

In the non-CRE environment (as opposed to the CRE), when a write operation for
a printer-type file releases a record to the run-time routines, the routines hold the
record until either another record is released or the file is closed. This enables the
run-time routines to consolidate any control operations (like page eject or spacing)
that follow one record with any that precede the next record, thereby reducing the
number of calls to the operating environment.

• Files Assigned to Tape Devices

When the file device is a tape unit, the run-time routines request mounting of the
first, last, or only reel of the file:

° The first or only reel if the open mode is INPUT or OUTPUT
° The last or only reel if the open mode is EXTEND

See CLOSE in this section for more information about the messages that the run-
time routines issue about tape mounting.

If the NO REWIND phrase appears, the tape is presumed to be already properly
positioned; otherwise, the tape is rewound and, if it is a multiple-file tape,
positioned to the file being opened.

The NO REWIND phrase is ignored if the file device is not a tape unit. If the rest of
the open operation actions complete successfully, the I-O status code is set to “07.”

• Process Pairs

When the process is executing as a process pair, each open operation for a file
also executes an implied statement of this form:

CHECKPOINT FILE file-name
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-154

Procedure Division Verbs OPEN
• Exclusion Modes

The EXCLUSIVE, SHARED, or PROTECTED phrase specifies the appropriate file
system exclusion mode for the file.

If the OPEN statement does not have one of these phrases, the process
determines the default exclusion mode: when a command interpreter ASSIGN
command that applies to the file specifies an exclusion mode, the process uses
that exclusion mode; otherwise, the process determines the exclusion mode from
the type of file device:

A file that no process has open can be opened by any single process with any
exclusion mode.

If some process already has a file open EXCLUSIVE, no other process can open
the file.

A file intended for multi-user access must specify SHARED.

If some process already has a file open SHARED for any access mode except
OUTPUT, another process can open the same file SHARED for any access mode.

If some process already has a file open SHARED for OUTPUT, no other process
can open the file (because the OPEN would delete all the records in the file).

If some process already has a file open SHARED for INPUT access mode, another
process can open the same file PROTECTED for any access mode.

If some process already has a file open PROTECTED for INPUT access mode,
another process can also open the same file PROTECTED for INPUT access
mode.

All other combinations of access mode and exclusion mode cause the open
operation to fail.

Device Exclusion Mode

Terminal (including the operator console) SHARED

Disk file being opened for input PROTECTED

Other file EXCLUSIVE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-155

Procedure Division Verbs OPEN
• Record Prereading

To save execution time by overlapping reading and processing, the run-time
routines perform record prereading (starting the read for record n +1 when
returning record n to the program) when all of these conditions are true:

° The file access mode is SEQUENTIAL.

° The file is open for INPUT.

° The file is either a disk file opened for PROTECTED use or a disk, tape,
terminal, or card reader opened for EXCLUSIVE use.

° The process is not running as a process pair.

° The file is not opened for timed I-O.

Example 9-48 shows an OPEN statement with a TIME LIMITS and a SYNCDEPTH
phrase and an OPEN statement without optional phrases.

Caution. Verify the OPEN statement does not meet prereading requirements when the
COBOL process does any of these, or the operation might begin with the wrong record:

• Enters a TAL routine to do input or output

• Executes the read operation as part of a TMF transaction (enters BEGINTRANSACTION,
executes a READ statement, then enters ENDTRANSACTION)

• Executes a CLOSE NO REWIND statement on a tape file and subsequently executes an
OPEN NO REWIND statement on the same file to continue from the previous position

Example 9-48. OPEN Statements

?NONSTOP
 IDENTIFICATION DIVISION.
 ...
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT EMPLOYEE-MASTER ASSIGN TO "EMPMAST"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC.
 ...
 SELECT LISTING-FILE ASSIGN TO "LISTOUT"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.
 ...
 PROCEDURE DIVISION.
 ...
 OPEN I-O EMPLOYEE-MASTER WITH TIME LIMITS SYNCDEPTH 1
 OPEN OUTPUT LISTING-FILE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-156

Procedure Division Verbs PERFORM
PERFORM
PERFORM executes one or more procedures in a program, simply or with looping.
When a procedure-name is a section-name, PERFORM executes all the paragraphs in
that section.

Unconditional PERFORM
Unconditional PERFORM executes a procedure, group of procedures, or imperative
statement one time. When execution reaches the end of the procedure, group of
procedures, or imperative statement, control returns to the statement following the
PERFORM statement.

procedure-group

proc-1

is a paragraph-name or section-name. Without THROUGH or THRU, proc-1
identifies the only procedure that is to be executed. With THROUGH or THRU,
proc-1 identifies the first procedure of a group.

THROUGH
THRU

indicate that a group of procedures is to be executed.

Form Description

Unconditional PERFORM Executes a procedure, group of procedures, or imperative
statement one time

PERFORM TIMES Executes a procedure, group of procedures, or imperative
statement a specified number of times

PERFORM UNTIL Executes a procedure, group of procedures, or imperative
statement repeatedly until a specified condition is true

PERFORM VARYING Executes a loop of procedures

END-PERFORM

procedure-group

imperative-statement

PERFORM

VST192.vsd

proc-1

proc-2THROUGH

THRU

VST193.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-157

Procedure Division Verbs Unconditional PERFORM
proc-2

identifies the last procedure in the group.

imperative-statement

is defined under Imperative Statement.

END-PERFORM

ends the scope of the PERFORM statement, causing the PERFORM to be a
delimited-scope statement. If the PERFORM statement does not end with an END-
PERFORM phrase, it is an out-of-line PERFORM. If the PERFORM statement
ends with an END-PERFORM phrase, it is an in-line PERFORM.

Usage Considerations:

• Execution Cycle of a PERFORM Statement (PERFORM Cycle)

Each execution of the range of a PERFORM statement is called a “PERFORM
cycle.” It begins with the implicit transfer of control to the first statement of the
range of the PERFORM and ends with an implicit transfer of control back to the
internal decision logic of the PERFORM statement. The point at which the return
occurs depends upon the proc-1 THROUGH proc-2 phrase:

° When proc-2 does not appear and proc-1 is a paragraph-name, the return
occurs after the execution of the last statement in the specified paragraph.

° When proc-2 does not appear and proc-1 is a section-name, the return
occurs after the execution of the last statement of the last paragraph of that
section.

° When proc-2 does appear and is a paragraph-name, the return occurs after
the execution of the last statement in that paragraph.

° When proc-2 does appear and is a section-name, the return occurs after the
execution of the last statement of the last paragraph of that section.

The preceding conditions for the return of control might be unsatisfied when the
range includes a GO TO statement. If the flow of control does not pass through the
last statement indicated above, the condition for return cannot be satisfied. Such a
PERFORM cycle ends only when the program terminates, which it can do by
executing one of these statements:

° A STOP RUN statement
° An EXIT PROGRAM statement (from within in a called program)
° The last statement in the program

Avoid including a GOTO statement in the range of a PERFORM statement. For a
program compiled by the COBOL85 compiler, a GOTO statement can cause a
stack overflow. For a program compiled by the NMCOBOL compiler, a GOTO
statement can cause a run-time diagnostic indicating that the PERFORM stack is
full.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-158

Procedure Division Verbs Unconditional PERFORM
• Procedure Relationships and the Ends of PERFORM Cycles

There is no necessary relationship between proc-1 and proc-2, except that a
PERFORM cycle begun at the procedure named by proc-1 ends when control
reaches the return point following the last statement of the procedure named by
proc-2. GO TO statements, PERFORM statements, CALL or ENTER statements,
and so forth, can occur in the logical sequence of statements executed during a
PERFORM cycle. If there are two or more logical points at which a cycle could
end, then proc-2 can name a paragraph consisting solely of the EXIT statement,
and all execution paths can terminate cleanly by transferring control to that
paragraph.

The existence of a return point following the end of an execution range is a
dynamic characteristic of an executing program. If control reaches the return point
defined for a PERFORM statement that is not in the process of execution (that is,
is not currently performing a cycle), then control passes through to the next
paragraph in accordance with the normal rules for implicit transfer of control from
one statement to the next.

• In-line and Out-of-Line PERFORM Statements

The PERFORM imperative-statement END-PERFORM form of the
statement is an “in-line PERFORM statement.” The PERFORM procedure-
group form of the statement is an “out-of-line PERFORM statement.”

The descriptions of the action of the PERFORM statement in this section are
expressed in terms of the out-of-line PERFORM statement. The execution of an in-
line PERFORM statement is exactly equivalent to that of an out-of-line PERFORM
statement, with the exception that the statements contained in imperative-
statement in the in-line PERFORM statement are executed in place of the
statements within the range of procedure-group. Unless specially qualified by
the term in-line or out-of-line, all the considerations that apply to the out-of-line
PERFORM statement also apply to the in-line PERFORM statement.

• Execution and Transfers of Control

Section 8, Procedure Division, explains the execution of sections and paragraphs
as well as explicit and implicit transfers of control.

• Range of the PERFORM Statement

The range of an out-of-line PERFORM statement is the statements contained
within the range of procedure-group.

The range of an in-line PERFORM statement is the statements contained within
the PERFORM statement.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-159

Procedure Division Verbs Unconditional PERFORM
• Logical Range of the PERFORM Statement

The logical range of any PERFORM statement is all statements that are executed
as a result of the PERFORM statement, including the transfer of control to the
statement following the PERFORM statement (or to the statement following the
END-PERFORM). The logical range includes all statements executed as a result of
a GO TO, PERFORM, or CALL statement in the range of the original PERFORM
statement, as well as all statements in the Declaratives Portion that might be
executed. There is no requirement for statements in the range of a PERFORM
statement to appear consecutively.

• Nested PERFORM Statements

The logical range of a PERFORM cycle can include another PERFORM statement
(called a nested PERFORM statement), but these restrictions apply:

° The logical range of the nested PERFORM statement must be either totally
included in or totally excluded from the logical range of the outer PERFORM
statement; therefore, an active PERFORM statement whose execution point
begins within the range of another active PERFORM statement must not allow
control to pass to the exit of the other active PERFORM statement.

° The final paragraph in the range of one active PERFORM statement cannot be
the same as the final paragraph in the range of any other active PERFORM
statement, because the program terminates only one PERFORM cycle for
each such final paragraph. The final paragraph would have to be executed
twice to terminate both cycles.

° The sequence of statements executed in any cycle of one PERFORM
statement must not allow control to reach the return point for any other active
PERFORM statement in which it is nested. If this does happen, neither
PERFORM cycle terminates, and control falls through to succeeding
statements.

° The sequence of statements executed in any cycle of one PERFORM
statement must not allow control to reach any active PERFORM statement,
including itself.

° As a consequence of the preceding rules, a cycle of an active PERFORM
statement cannot end until after any PERFORM statements nested within it
complete their execution.

For the COBOL85 compiler, the maximum number of PERFORM statements that
can be nested varies from 0 to approximately 15,000, depending on the space
available on the stack.

For the NMCOBOL compiler, the maximum number of PERFORM statements that
can be nested is 50. Violation of the preceding rules often causes run-time
diagnostic 148.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-160

Procedure Division Verbs Unconditional PERFORM
• Placement of Procedures

As a general rule, both proc-1 and proc-2 must be in the same logically
discrete area of the Procedure Division (in a specific declarative procedure,
including any associated sections, or in the portion of the Procedure Division that
does not include declaratives). Most violations of this rule cause the compiler to
issue a warning but to accept the PERFORM statement; however, if either proc-1
or proc-2 is in the Declaratives Portion, then both must be in the Declaratives
Portion.

• Placement of PERFORM Statements

As a general rule, a PERFORM statement must be in the same logically discrete
area of the Procedure Division as proc-1 and proc-2. Most violations of this
rule cause the compiler to issue a warning; however, certain combinations are
explicitly permitted, and others are totally prohibited:

° For any PERFORM statement, proc-1 and proc-2 can be in any
nondebugging declarative procedure; however, the compiler issues a warning if
proc-1 and proc-2 are in two different declarative procedures.

° When the PERFORM statement is in a debugging declarative procedure, its
proc-1 and proc-2 can be in any declarative procedure; however, the
compiler issues a warning if proc-1 and proc-2 are in two different
declarative procedures.

° When the PERFORM statement is not in a debugging declarative procedure,
neither proc-1 nor proc-2 can be in any debugging declarative procedure.

° When the PERFORM statement is in the Declaratives Portion, neither proc-1
nor proc-2 can be in the other portion of the Procedure Division.

Example 9-49. Unconditional PERFORM Statement With One Paragraph

IF REPORT-A
 PERFORM DO-REPORT-A
END-IF

Example 9-50. Unconditional PERFORM Statement With Several Paragraphs

IF REPORTS-TO-DO
 PERFORM DO-REPORTS THRU DO-REPORTS-EXIT.
IF MUST-EXIT
 ...
DO-REPORTS.
 ...
 (several paragraphs to create the reports)
 ...
DO-REPORTS-EXIT.
 EXIT.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-161

Procedure Division Verbs PERFORM TIMES
An in-line PERFORM statement can contain delimited-scope statements (such as a
delimited-scope READ or IF statements) because they count as imperative statements.

PERFORM TIMES
PERFORM TIMES executes a procedure, a group of procedures, or an imperative
statement a specified number of times.

procedure-group

proc-1

is a paragraph-name or section-name. Without THROUGH or THRU, proc-1
identifies the only procedure that is to be executed. With THROUGH or THRU,
proc-1 identifies the first procedure of a group.

Example 9-51. In-Line PERFORM Statement With Delimited-Scope Statements

PERFORM UNTIL END-IX
 READ IX-FILE RECORD
 AT END
 SET END-IX TO TRUE
 NOT AT END
 IF IX-NUMBER > 0
 READ MASTR-FILE RECORD KEY IS IX
 INVALID KEY DISPLAY "Bad IX value: " IX
 STOP RUN
 END-READ
 END-IF
 MOVE MASTER-NAME TO CUST-NAME
 ...
 END-READ
END-PERFORM

procedure-group

imperative-statement

PERFORM

count TIMES

END-PERFORM

count TIMES

VST194.vsd

proc-1

proc-2THROUGH

THRU

VST193.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-162

Procedure Division Verbs PERFORM TIMES
THROUGH
THRU

indicate that a group of procedures is to be executed.

proc-2

is the last procedure in the group.

count

is an integer numeric literal or the identifier of an integer data item that tells the
process how many times to execute the statements in the range of the PERFORM
statement.

imperative-statement

is defined in Imperative Statement.

END-PERFORM

ends the scope of the PERFORM statement, causing the PERFORM to be a
delimited-scope statement. If the PERFORM statement does not end with an END-
PERFORM phrase, it is an out-of-line PERFORM. If the PERFORM statement
ends with an END-PERFORM phrase, it is an in-line PERFORM.

Example 9-52 specifies that the value of the identifier TRAN-COUNT controls the
number of PERFORM cycles:

In Example 9-53, an in-line PERFORM uses a TIMES phrase to initialize a table of
squares.

Example 9-52. PERFORM TIMES Statement

PERFORM LIST-TRANSACTIONS TRAN-COUNT TIMES.

Example 9-53. PERFORM TIMES Statement

MOVE 1 TO R
PERFORM 100 TIMES
 MULTIPLY R BY R GIVING R-SQ (R)
 ON SIZE ERROR MOVE "OVERFLOW" TO REASON
 PERFORM REPORT-DEMISE
 END-MULTIPLY
 ADD 1 TO R
END-PERFORM
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-163

Procedure Division Verbs PERFORM UNTIL
Usage Considerations:

• Negative or Zero Value in the TIMES Phrase

The value of count can be a negative integer or 0, in which case the process
does not perform the procedure or group.

• See the usage considerations in Unconditional PERFORM.

PERFORM UNTIL
PERFORM UNTIL executes a procedure, group of procedures, or imperative
statement repeatedly until a condition is true. The condition is checked before or after
each PERFORM cycle, and when the condition is met, the PERFORM ends.

procedure-group

proc-1

is a paragraph-name or section-name. Without THROUGH or THRU, proc-1
identifies the only procedure that is to be executed. With THROUGH or THRU,
proc-1 identifies the first procedure of a group.

THROUGH
THRU

indicate that a group of procedures is to be executed.

procedure-group

imperative-statement

PERFORM

UNTIL

test-site

condition

test-site

UNTIL condition

END-PERFORM

VST196.vsd

proc-1

proc-2THROUGH

THRU

VST193.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-164

Procedure Division Verbs PERFORM UNTIL
proc-2

identifies the last procedure in the group.

test-site

specifies whether the condition is to be tested before or after the PERFORM range
is executed. The default is TEST BEFORE.

condition

is any conditional expression.

imperative-statement

is defined in Imperative Statement.

END-PERFORM

ends the scope of the PERFORM statement, causing the PERFORM to be a
delimited-scope statement. If the PERFORM statement does not end with an
END-PERFORM phrase, it is an out-of-line PERFORM. If the PERFORM
statement ends with an END-PERFORM phrase, it is an in-line PERFORM.

Usage Considerations:

• No Execution With TEST BEFORE if the Condition Value is TRUE

If the TEST AFTER phrase is not present and the value of the condition is TRUE
when control first arrives at the PERFORM statement, the PERFORM range is not
executed.

• See Usage Considerations: in Unconditional PERFORM.

The PERFORM UNTIL statement in Example 9-54 uses a condition-name condition.
Once the add routine is successful, a SET ANY-ADDS-CV TO TRUE statement is
executing (moving the value 1 to ANY-ADDS-CV); otherwise, ANY-ADDS-CV remains
0 when control returns to the PERFORM statement. As long as ANY-ADDS-CV is 0,
the PERFORM cycle is re-executed.

WITH

TEST BEFORE

AFTER

VST197.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-165

Procedure Division Verbs PERFORM VARYING
PERFORM VARYING
PERFORM VARYING executes a loop of procedures. PERFORM VARYING with TEST
BEFORE is a “while loop;” with TEST AFTER, it is a “repeat loop.”

A single PERFORM VARYING statement containing one or more AFTER phrases
enables you to perform nested loops of procedures. The last AFTER phrase defines
the innermost loop. The first set of parameters in the VARYING phrase defines the
outermost loop.

Example 9-54. PERFORM UNTIL Statement

 WORKING-STORAGE SECTION.
 01 ANY-ADDS-CV PICTURE 9.
 88 SOME-MORE-ADDS VALUE 0.
 88 NO-MORE-ADDS VALUE 1.
 ...
 PROCEDURE DIVISION.
 ...
 MOVE 0 TO ANY-ADDS-CV
 PERFORM ADD-ROUTINE UNTIL NO-MORE-ADDS
 ...
 ADD-ROUTINE.
 ...

procedure-groupPERFORM

test-site

test-site

END-PERFORM

imperative-statement

varying-phrase after-phrase

varying-phrase

after-phrase

VST198.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-166

Procedure Division Verbs PERFORM VARYING
procedure-group

proc-1

is a paragraph-name or section-name. Without THROUGH or THRU, proc-1
is the only procedure that is to be executed. With THROUGH or THRU,
proc-1 is the first procedure of a group.

THROUGH
THRU

indicate that a group of procedures is to be executed.

proc-2

is the last procedure in the group.

test-site

BEFORE

specifies that the condition is to be tested before the perform range is
executed. This is the default.

AFTER

specifies that the condition is to be tested after the perform range is executed.

varying-phrase

specifies the outermost loop of the PERFORM statement control logic.

proc-1

proc-2THROUGH

THRU

VST193.vsd

WITH

TEST BEFORE

AFTER

VST197.vsd

VARYING vary-1 FROM base-1 BY step-1

UNTIL condition-1

VST199.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-167

Procedure Division Verbs PERFORM VARYING
vary-1

is a numeric data item or an index. It is the iteration variable—the variable
whose value is changed each time the code in the outermost loop is executed.

base-1

is a numeric literal, an index-name, or the identifier of a numeric data item. It is
the initial value for vary-1.

step-1

is a numeric literal or the identifier of a numeric data item. It is the increment
that is to be added to vary-1 each time control returns from the end of the
range of the PERFORM. The value of step-1 must not be 0.

condition-1

is any conditional expression.

after-phrase

specifies additional inner loops of the PERFORM statement control logic. Up to six
AFTER phrases can be used in an out-of-line PERFORM statement. In COBOL,
the AFTER phrase is not permitted in the in-line PERFORM statement.

vary-2

is a numeric data item or an index. It is an iteration variable—a variable whose
value changes each time the process executes the code in an inner loop.

base-2

is a numeric literal, an index-name, or the identifier of a numeric data item. It is
the initial value for vary-2.

step-2

is a numeric literal or the identifier of a numeric data item. It is the increment
that is to be added to vary-2 each time control returns from the end of the
range of the PERFORM. The value of step-2 must not be 0.

condition-2

is any conditional expression.

AFTER vary-2 FROM base-2 BY step-2

UNTIL condition-2

VST200.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-168

Procedure Division Verbs PERFORM VARYING
imperative-statement

is defined in Imperative Statement.

END-PERFORM

ends the scope of the PERFORM statement, causing the PERFORM to be a
delimited-scope statement. If the PERFORM statement does not end with an END-
PERFORM phrase, it is an out-of-line PERFORM. If the PERFORM statement
ends with an END-PERFORM phrase, it is an in-line PERFORM.

Usage Considerations:

• No Execution With TEST BEFORE if the Condition Value is TRUE

If the TEST AFTER phrase is not present and the value of the condition in the
VARYING phrase is TRUE when control first arrives at the PERFORM statement,
the PERFORM range is not executed.

• Values of Data Items

The PERFORM VARYING statement initializes and augments the values of one or
more data items in an orderly manner.

When vary-1 or vary-2 is an index-name, it is initialized and subsequently
augmented according to the rules of the SET statement.

When vary-1 or vary-2 is the name of a numeric data item, it is initialized
either according to the rules of the SET statement (if the associated base-1 or
base-2 is an index-name) or according to the rules of the MOVE statement (if
base-1 or base-2 is not an index-name). In either case, subsequent
augmentation (with the BY phrase) occurs in the manner described later.

• Execution of PERFORM VARYING with TEST BEFORE Specified or Implied

When no AFTER phrase list appears, vary-1 is initialized with the value of
base-1 at the beginning of execution of the PERFORM statement. If
condition-1 evaluates to FALSE, the first cycle is performed; if TRUE, no
cycles are performed. After the completion of each cycle, the value of vary-1 is
augmented by step-1, and condition-1 is evaluated again to determine
whether or not to perform another cycle. Whenever the evaluation of
condition-1 results in TRUE, execution of the statement terminates. Figure 9-7
illustrates the execution of a PERFORM VARYING statement with a TEST
BEFORE phrase and without an AFTER phrase list.

After execution of the PERFORM statement terminates, vary-1 has the value
assigned, either by initialization or augmentation, at the point where the evaluation
of condition-1 gave a result of TRUE.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-169

Procedure Division Verbs PERFORM VARYING
When one AFTER phrase appears, vary-1 and vary-2 are initialized with the
values of base-1 and base-2, respectively, at the beginning of execution of the
PERFORM statement. Then either:

° If condition-1 is TRUE, execution of the statement terminates without ever
proceeding to the inner loop (without performing any cycles).

° If the initial value of condition-1 is FALSE, execution proceeds to the inner
loop of the PERFORM statement logic.

Each iteration of the inner loop begins with an evaluation of condition-2:

° If its value is FALSE, a cycle is performed, vary-2 is augmented by the
specified increment or decrement (the value of step-2), and control returns
to the top of the loop.

° If the value of condition-2 is TRUE, no cycle is performed, vary-1 is
augmented by the specified increment or decrement (the value of step-1),
vary-2 is initialized to base-2, and the inner loop terminates.

Figure 9-7. Execution of a PERFORM VARYING Statement
With a TEST BEFORE Phrase and Without an AFTER Phrase List

Exit

Enter

condition-1

?

Set vary-1 to
current base-1

value.

Execute the
 range of the
PERFORM.

Augment
vary-1 with
step-1 .

TRUE

FALSE

VST510.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-170

Procedure Division Verbs PERFORM VARYING
After each termination of the inner loop, the process evaluates condition-1
again:

° If the value of condition-1 is FALSE, execution proceeds to the inner loop,
as described in the preceding text.

° If the value of condition-1 is TRUE, execution of the statement terminates.

After termination of the PERFORM statement, vary-1 has the value assigned,
either by initialization or augmentation, at the point where the evaluation of
condition-1 gave a result of TRUE. vary-2 has the value assigned by its last
initialization from the base-2.

Figure 9-8. Execution of a PERFORM VARYING Statement
With a TEST BEFORE Phrase and One AFTER Phrase

Enter

Set vary-1 to
current base-1

value.

Execute the
 range of the
PERFORM.

Augment
vary-2

with step-2 .

condition-2

?

FALSE

Exit
TRUE

Set vary-2 to
current base-2

value.

condition-1

?

FALSE

Augment
vary-1

with step-1 .

TRUE

Set vary-2
to base-2 .

VST511.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-171

Procedure Division Verbs PERFORM VARYING
When multiple AFTER phrases appear, the mechanism is the same as for one
AFTER phrase except:

° In secondary AFTER phrases, vary-2 is also initialized with the value of
base-2 in its associated FROM phrase at the beginning of execution of the
PERFORM statement.

° In the inner loop (as described earlier), the step “a cycle is performed” is
replaced by “execution proceeds to the next inner loop.”

° The logic of the next inner loop parallels that of the first inner loop except for:

° Its condition plays the role of condition-2.

° The next vary-2 is augmented by the current value of its step-2 after
each cycle is performed.

° The next vary-2 is initialized with the current value of the base-2 in its
associated FROM phrase when the value of its condition is TRUE.

After termination of a PERFORM statement with multiple AFTER phrases, vary-1
has the value assigned, either by initialization or augmentation, at the point where
the evaluation of condition-1 gave a result of TRUE, and each vary-2 has
the value assigned by its last initialization from its associated base-2.

• Execution of PERFORM VARYING with TEST AFTER Specified

When no AFTER phrase list appears, vary-1 is initialized with the value of
base-1 at the beginning of execution of the PERFORM statement. The first cycle
is then performed. After the completion of each cycle, condition-1 is evaluated
to determine whether or not to perform another cycle. Whenever the evaluation of
condition-1 results in TRUE, execution of the statement terminates. If the
evaluation of condition-1 results in FALSE, the value of vary-1 is augmented
by the specified increment or decrement (the value of step-2), and another cycle
is performed.

After termination of the PERFORM statement, vary-1 has the value it contained
at the end of the last execution of the range of the PERFORM statement.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-172

Procedure Division Verbs PERFORM VARYING
When one AFTER phrase appears, vary-1 and vary-2 are initialized with the
values of base-1 and base-2, respectively, at the beginning of execution of the
PERFORM statement. Then the specified set of statements is executed. This is
considered the inner loop. Each iteration of the inner loop ends by evaluating
condition-2.

° If its value is FALSE, vary-2 is augmented by the specified increment or
decrement (the value of step-2), and a cycle is performed.

° If its value is TRUE, condition-1 is evaluated.

° If the value of condition-1 is FALSE, vary-1 is augmented by the
specified increment or decrement (the value of step-1), vary-2 is
initialized with the current value of base-2, and the inner loop is entered
again.

° Whenever the evaluation of condition-1 results in TRUE, execution of
the statement terminates.

Figure 9-9. Execution of a PERFORM VARYING Statement
With a TEST AFTER Phrase and Without an AFTER Phrase List

Exit

Enter

condition-1

?

Set vary-1 to
current base-1

value.

Execute the
 range of the
PERFORM.

Augment
vary-1

with step-1 .

TRUE

FALSE

VST512.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-173

Procedure Division Verbs PERFORM VARYING
After termination of the PERFORM statement, vary-1 and vary-2 have the
values they contained at the end of the last execution of the specified set of
statements.

Figure 9-10. Execution of a PERFORM VARYING Statement
With a TEST AFTER Phrase and One AFTER Phrase

Enter

Set vary-1 to
current base-1

value.

Set vary-2 to
current base-2

value.

Exit

TRUE
condition-2

?

FALSE

Augment
vary-1

with step-1 .

condition-1

?

FALSE

TRUE

Execute the
 range of the
PERFORM.

Augment
vary-2

with step-2 .

VST513.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-174

Procedure Division Verbs PERFORM VARYING
When two or more AFTER phrases appear, the mechanism is the same as for one
AFTER phrase except:

° In the second AFTER phrase, vary-2 is also initialized with the value of
base-2 in its associated FROM phrase at the beginning of execution of the
PERFORM statement.

° In the inner loop (as described earlier), the step “a cycle is performed” is
replaced by “execution proceeds to the second inner loop.”

° The logic of the second inner loop parallels that of the first inner loop except
for:

° Its condition plays the role of condition-2.

° The second vary-2 is increased by the current value of its step-2 after
each cycle is performed.

° The second vary-2 is initialized with the current value of the base-2 in
its associated FROM phrase when the value of its condition is TRUE.

After termination of a PERFORM statement with two AFTER phrases, vary-1
has the value assigned, either by initialization or increase, at the point where the
evaluation of condition-1 gave a result of TRUE, and each vary-2 has the
value assigned by its last initialization from its associated base-2.

• Restrictions for Index-Names

When the vary-1 or vary-2 is an index-name, these restrictions apply:

° The base-1 or base-2 operand must be a positive integer numeric literal,
an index-name, or an identifier that designates an integer numeric data item.

° The step-1 or step-2 operand must be an integer numeric literal or an
identifier that designates an integer numeric data item.

When the base-1 or base-2 operand is an index-name, these restrictions apply:

° The associated vary-1 or vary-2 operand must be an index-name or an
identifier that designates an integer numeric data item. It cannot designate a
special register.

° The associated step-1 or step-2 operand must be an integer numeric
literal or an identifier that designates an integer numeric data item.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-175

Procedure Division Verbs PERFORM VARYING
• Restrictions for Identifiers

When the vary-1 or vary-2 operand is an identifier, and the associated
base-1 or base-2 is not an index-name, these restrictions apply:

° The vary-1 or vary-2 identifier must designate a numeric data item. It
cannot designate a special register.

° The associated base-1 or base-2 operand must be a numeric literal or an
identifier that designates a numeric data item.

° The associated step-1 or step-2 must be a numeric literal or an identifier
that designates a numeric data item.

• Execution Cycles of PERFORM Statements (PERFORM Cycles)

Execution of a PERFORM statement causes none, one, or more executions of its
range. These executions are called PERFORM cycles. The number of PERFORM
cycles depends upon the values of the operands of the PERFORM statement. The
decision of whether to perform the first cycle or not occurs after any initialization
specified in the VARYING and FROM phrases.

• See Usage Considerations: in Unconditional PERFORM.

Example 9-55. PERFORM VARYING Statement Used to Display a List

WORKING-STORAGE SECTION.
01 COMMAND-DATA.
 05 FILLER PIC X(36)
 VALUE "ADD - ADD A NEW RECORD".
 05 FILLER PIC X(36)
 VALUE "DELETE - DELETE A RECORD".
 ...
01 COMMAND-TABLE REDEFINES COMMAND-DATA.
 05 COMMAND-ENTRY PIC X(36) OCCURS 10 TIMES.
01 COMMAND-NUMBERS.
 05 NO-OF-COMMANDS PIC 99 VALUE 9.
 05 COMMAND-SUB PIC 99 COMP VALUE 1.
PROCEDURE DIVISION.
 ...
 PERFORM LIST-COMMANDS
 VARYING COMMAND-SUB FROM 1 BY 1
 UNTIL COMMAND-SUB GREATER THAN NO-OF-COMMANDS
 ...
LIST-COMMANDS.
 DISPLAY COMMAND-ENTRY(COMMAND-SUB)
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-176

Procedure Division Verbs READ
In Example 9-56, each of the two paragraphs builds a table of numbers (rows) raised
to powers (columns). Each paragraph fills the 5 columns of row 1, then of row 2, and
so on.

READ
READ copies one logical record from a file and stores it in a record area defined by
your program.

Example 9-56. PERFORM VARYING Statement Used to Build a Table

WORKING-STORAGE SECTION.
01 TWO-D-TABLE.
 03 OCCURS 10 TIMES.
 05 PWR PICTURE 9(6) OCCURS 5 TIMES.

PROCEDURE DIVISION.
TWO-NESTED-PERFORMS.
 PERFORM VARYING R FROM 1 BY 1 UNTIL R > 10
 PERFORM VARYING C FROM 1 BY 1 UNTIL C > 5
 COMPUTE PWR (R, C) = R ** C
 END-PERFORM
 END-PERFORM.

SINGLE-PERFORM-WITH-AFTER.
 PERFORM VARYING R FROM 1 BY 1 UNTIL R > 10
 AFTER C FROM 1 BY 1 UNTIL C > 5
 COMPUTE PWR (R, C) = R ** C
 END-PERFORM.

Form Reads the record that is ...

READ for Sequential or Dynamic Access Next in the file

READ for Line Sequential Files Next in the file

READ for Random or Dynamic Access Identified by the value of a key
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-177

Procedure Division Verbs READ for Sequential or Dynamic Access
READ for Sequential or Dynamic Access
READ for sequential or dynamic access reads the next record in the file. (For
sequential access of line sequential files, see READ for Line Sequential Files.)

file-name

is the file description name of the file to retrieve a record from.

NEXT

indicates that the next record is to be read (that is, the record after the current
record, according to the key of reference). NEXT is required for sequential reading
of a relative, indexed, or queue file whose access is DYNAMIC.

REVERSED

indicates that the prior record is to be read (that is, the record before the current
record, according to the key of reference). For restrictions, see Restrictions on
REVERSED.

file-nameREAD

NEXT

END-READ

data-nameINTO

LOCK

PROMPT prompt-item

TIME LIMIT wait-time

NOT

AT

END imperative-stmt-2

AT

END imperative-stmt-1

WITH

RECORD

REVERSED

VST201.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-178

Procedure Division Verbs READ for Sequential or Dynamic Access
data-name

is the identifier of the data area defined by your program to which the contents of
the record area are transferred after the read operation is complete.

data-name cannot be an index-name or the identifier of an index data item. The
transfer is conducted as if it were a move from an alphanumeric item to an
alphanumeric item.

The INTO phrase is allowed only when one of:

° Only one record is associated with file-name.

° The record associated with file-name is defined as a data structure or as an
elementary alphanumeric item and data-name is either a data structure or an
elementary alphanumeric item.

LOCK

keeps other programs from accessing the record retrieved until an UNLOCKFILE
statement, UNLOCKRECORD statement, or REWRITE UNLOCK statement
executes. The file that file-name specifies must be associated with a disk
device.

PROMPT

displays prompt-item to the file before a READ operation (as in a COBOL
requester communicating with a server). The PROMPT phrase is permitted only for
files whose organization is SEQUENTIAL and works only for terminals, processes,
operator consoles, and communication system submanagers. If the PROMPT
phrase is specified for other devices, such as disk files, it is ignored.

prompt-item

is a DISPLAY data item that starts at the beginning of a record of the file
associated with file-name.

prompt-item is ignored if the file against which the READ is executed is open in
INPUT, OUTPUT, or EXTEND mode, or if the file is assigned to a device not
capable of supporting such operations (such as a disk file). For further information
on the use of prompt-item, see PROMPT phrase.

wait-time

is the time interval, in seconds, in which the operation must complete. wait-time
can be a literal or the name of a data item. In either case, it must have a value
described with at most seven digits preceding any decimal point position. Any
fractional portion is truncated to two decimal places.

If file-name was not opened with a TIME LIMITS phrase, including wait-time
in the READ statement causes a run-time error.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-179

Procedure Division Verbs READ for Sequential or Dynamic Access
imperative-stmt-1

is an imperative statement to be performed when the end of the file is encountered
at the beginning of the read operation. This phrase is required if no USE statement
is applicable for the file. If both a USE statement and an AT END phrase are
present, only the AT END phrase is used.

imperative-stmt-2

is an imperative statement to be performed when the end of the file is not
encountered at the beginning of the read operation.

END-READ

ends the scope of the READ statement, causing the READ to be a delimited-scope
statement. If the READ statement does not end with an END-READ phrase, the
presence of the AT END or the NOT AT END phrase causes the READ statement
to be a conditional statement, which ends at the next period separator.

Usage Considerations:

• Restrictions on REVERSED

REVERSED can be specified for a file only if all of these conditions are true:

° The file is a structured disk file.

° The file’s file-control entry does not have a RESERVE clause with number
greater than one in the non-CRE environment or greater than two in the CRE.

° The file’s access is not RANDOM.

° Prereading is not active for the file.

If REVERSED is specified, then:

° Neither LOCK nor PROMPT prompt-item can be specified.

° REVERSED cancels the effect of GENERIC (a positioning mode that the
START statement can specify).

REVERSED is not recommended if these conditions are true, because it is very
inefficient:

° File organization is RELATIVE.
° The relative key is the key of reference.
° Records are not contiguous.

• Action of the READ Statement (Sequential Read)

Any READ statement that has a NEXT or REVERSED phrase, or is associated
with a file for which the ACCESS MODE SEQUENTIAL clause is specified or
implied, is a sequential READ statement. Any other READ statement is a random
READ statement.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-180

Procedure Division Verbs READ for Sequential or Dynamic Access
The file identified by file-name must be open in the INPUT or I-O mode; if it is
not, the read operation is unsuccessful with I-O status code “47.” If the file is
described with fixed-length records and a smaller record is read, the read
operation is successful with I-O status code “04.”

In addition to the specific I-O status codes described later, the general codes “00,”
“30,” and “90” can occur. For more information, see I-O Status Code.

° Retrieval of a logical record

The read operation retrieves a logical record from the file identified by file-
name and places it into the record area associated with that file.

° Alignment within record area

If the size of the retrieved record is greater than the maximum record size
defined for the file (as specified in the explicit or implicit RECORD clause in the
file description entry for file name), the run-time routines truncate the retrieved
record on the right before placing it in the record area.

If the size of the retrieved record is less than the maximum record size defined
for the file, the run-time routines left justify the record content within the record
area. All character positions in the record area that are to the right of the last
character in the retrieved record have undefined values—that is, they can
contain any characters. If you want to verify that they are spaces, use the INTO
phrase.

When the read operation is attempted on a file with fixed-length records and
the size of the retrieved record is greater than the maximum record size
defined for the file or less than the minimum record size defined for the file (as
specified in the explicit or implicit RECORD clause in the file description entry
for the file), the read operation is unsuccessful with I-O status code “30” and
the GUARDIAN-ERR register has the value 21.

° Unsuccessful read operation

Whenever the read operation terminates with an I-O status code greater than
or equal to “30” (except “97”), execution of the READ statement is not
successful. In this case the applicable USE procedure, if one exists, is
executed.

If the execution of a READ statement is unsuccessful for any reason, the key
of reference and the contents of the record area associated with the file are
undefined and the value of the depending item, if one is defined for the file, is
not altered.

° PROMPT phrase

When the PROMPT phrase appears, and the device with which the file is
associated is either a terminal or a process (typically, a server), and the file’s
open mode is I-O, the value of prompt-item is sent to the file as part of the
read operation.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-181

Procedure Division Verbs READ for Sequential or Dynamic Access
The PROMPT phrase (often used for the WRITE/READ action common in
requesters) is effective only when the device with which the file is associated is
either a terminal or a process and the open mode of the file is I-O.

When these conditions are met, the PROMPT phrase causes the value of
prompt-item to be sent to the file before the actual read operation begins
(as if a write operation preceded the read operation). The record area is then
cleared to spaces for the length of the prompt-item. Characters being read
from the terminal or process are then copied into the record area.

When the specified conditions are not met, the PROMPT phrase is ignored.

If the file has variable-length records, then the DEPENDING ON data item
does not affect the length of the string written from the prompt-item. To write a
variable-length prompt-item, use reference modification. You can also write
a variable-length prompt-item by using an OCCURS DEPENDING phrase
in the prompt-item, but then you cannot use reference modification on the
prompt-item elsewhere in the program.

° Inability to establish a position for the read operation

The run-time routines examine the file position indicator at the start of the read
operation. Certain settings of the file position indicator reflect that the read
operation is unable to retrieve any record:

° If the file position indicator indicates that no valid next record has been
established, the read operation terminates immediately with I-O status
code “46.”

° If the file position indicator indicates that an optional file is not present, the
run-time routines change the setting of the file position indicator to indicate
that the at-end condition already exists. The read operation then
terminates with I-O status code “10.” Execution then proceeds as
described in the rule for the at-end condition (see the usage condition
Retrieval).

• File-Status Data Item

You can declare a file-status data item for a file in its file-control entry. During each
execution of a READ statement, this file-status data item is assigned a new value
that reflects the outcome of the read operation.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-182

Procedure Division Verbs READ for Sequential or Dynamic Access
The possible I-O status codes that result from successful read operations are:

If, at the start of the read operation, the file position indicator is at the end-of-file
mark or its value is not defined, execution of the READ statement is unsuccessful,
and the file-status data item is set to a value other than “00.”

The possible I-O status codes that result from unsuccessful read operations are:

I-O Status Code Successful Read Operation

“00” The read operation was unconditionally successful.

“02” This is possible only when a file has the INSERTIONORDER
attribute. The key value for the alternate key that is serving as the
current key of reference is equal to the value of that same key in
the record that is the next one in the file with respect to that key of
reference.

“04” The file is not described as having variable-length records (by
having the RECORD CONTAINS rec-1 TO rec-2
CHARACTERS clause or a RECORD VARYING clause in its file
description), and a record was read that was shorter than the
maximum size. The execution of the READ statement is
successful.

“97” A locked record was read successfully. (You must have called
SETMODE to allow locked records to be read.)

Note. After an unsuccessful execution of a READ statement, these values are
unpredictable:

• The value of the file position indicator
• The contents of the current record area
• The key of reference

Any key value found in the current record area: that is, the value of the current key for
indexed files or the value of the alternate key for any type of file-system file, because in
HP COBOL sequential and relative files can have alternate keys.

I-O Status Code Unsuccessful Read Operation

“10” The end of file condition arose either in the normal course of events
or because the program tried to read an optional file that was not
present.

“30” A permanent error exists.

“46” The value of the file position indicator is undefined at the beginning
of the execution of a READ statement.

“47” The file is not open in the INPUT or I-O mode.

“90” A logic error has occurred that is not covered by the “4x” file status
codes, and no recovery is possible.

“91” The file being read is a file in EDIT format, and some step in the
read operation failed due to non-COBOL causes. The record is not
read, and the execution of the READ statement is unsuccessful.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-183

Procedure Division Verbs READ for Sequential or Dynamic Access
• Retrieval

When the file position indicator has a value that permits positioning for the read
operation, the run-time routines use that value to identify the record to be retrieved.

In this topic, if the value of the file position indicator reflects a current key of
reference that is a record key, the comparisons relate to the value of that key for
records in the file; otherwise, the comparisons for a sequential file relate to the
record number of the records in the file, and the comparisons for a relative file
relate to the relative record number of the records in the file.

If the file position indicator was established by a previous OPEN or START
statement, then the record selected for retrieval is one of:

° If NEXT is specified or implied, the record whose record number or key value is
greater than or equal to the file position indicator

° If REVERSED is specified, the record whose record number or key value is
less than or equal to the file position indicator

If the file position indicator was established by an earlier READ statement, and its
setting does not reflect an alternate record key for which duplicates are allowed,
then the record selected for retrieval is one of:

° If NEXT is specified or implied, the first existing record in the file whose record
number or key value is greater than the file position indicator

° If REVERSED is specified, the first existing record in the file whose record
number or key value is less than the file position indicator

If the file position indicator was established by an earlier READ statement, and the
setting of the file position indicator reflects an alternate record key for which
duplicates are not allowed, then the record selected for retrieval is one of:

° If NEXT is specified or implied, the first record in the file whose key value is
either equal to the file position indicator and whose logical position within the
set of duplicates is immediately after the record that was made available by
that previous READ statement, or whose key value is greater than the file
position indicator

° If REVERSED is specified, the first record in the file whose key value is either
equal to the file position indicator and whose logical position within the set of
duplicates is immediately prior to the record that was made available by that
previous READ statement, or whose key value is less than the file position
indicator
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-184

Procedure Division Verbs READ for Sequential or Dynamic Access
The execution of a START statement establishes a subset of the file’s records that
can be retrieved by subsequent sequential or dynamic READ statements. If the
current statement is one in a sequence of such READ statements executed after a
START statement for the same file (without the execution of an OPEN, START, or
Random READ having intervened), then the record (if any) selected for retrieval by
the preceding rules is tested to determine whether it is a member of the file subset
established by the START statement. If it is not, then the record is disqualified and
the effect is the same as if no record had been selected.

If the read operation is successful, the record selected by the file position indicator
is retrieved and placed into the record area associated with the file.

If the file is a multiple-reel tape file, and the end-of-reel condition occurs during the
retrieval operation, the run-time routines perform a reel-swap sequence, and the
first record of the next reel is retrieved. (For information on the reel-swap
sequence, see OPEN.) If there is no next reel, the at-end condition exists. In this
case, the read operation terminates, and execution of the READ statement is
unsuccessful.

The at-end condition exists because one of these conditions is true:

° The file is present but there is no record at the position specified by the file
position indicator (such as the position immediately beyond the last record in
the file).

° The file has an OPTIONAL phrase in its SELECT clause and, although open, is
not actually present.

° The START GENERIC reached the end of a set of duplicates.

If the at-end condition exists, the read operation terminates, and execution of the
READ statement is unsuccessful.

When the at-end condition exists, the I-O status code of the read operation is set to
“10.” If the AT END phrase is specified, control passes to the imperative statement
in that phrase, and no USE procedure is executed. If neither the AT END nor the
NOT AT END phrase is specified, and an applicable USE procedure exists, that
procedure is executed.

• Relative Key Data Item of Relative Files

A successful execution of the READ statement for a relative file also assigns the
relative record number of the retrieved record to the file’s relative key data item if
the file description defines one. The relative key data item is optional for relative
files being accessed sequentially.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-185

Procedure Division Verbs READ for Sequential or Dynamic Access
• LOCK Phrase

When the READ statement includes a LOCK phrase, the read operation also locks
the retrieved record. The concept of record locking applies only to disk files and
queued files. A successful record lock operation guarantees you exclusive access
to the record until the program executes one:

° A REWRITE statement with the UNLOCK option for the same record
° An UNLOCKRECORD statement for the same record
° An UNLOCKFILE statement for the file

If the program already holds a record lock for the record in question, the read
operation notes this and preserves the lock.

If your HP COBOL process opens the same file twice (that is, treats the file as two
separate files with separate file-control entries, each with its own file-name,
executes a READ LOCK statement on one file-name and then executes
another READ LOCK statement on the other file-name), the process
deadlocks. This problem does not occur if the process opens the file only once or if
you use time limits.

• Interaction of LOCKFILE and READ LOCK Statements

If your process executes a READ LOCK statement on a file that it or any other
process has locked with a LOCKFILE statement, or your process executes a
LOCKFILE statement against a file that has an outstanding READ LOCK, the TIME
LIMIT phrase determines what happens.

If the second statement attempting to lock the file has a TIME LIMIT phrase, it
keeps trying to lock the file until the time limit expires. Either it fails and then times
out or it succeeds in locking the file.

If the second statement attempting to lock the file has no TIME LIMIT phrase, it
suspends execution until the statement succeeds because the contending lock is
removed or until the program is terminated by an external agency such as the
TACL command STOP.

• INTO Phrase

When the READ statement includes an INTO phrase, the retrieved logical record is
moved from the file record area to the data item specified in the INTO phrase.

Any specified subscript or index evaluation involved occurs after the record is
retrieved and placed in the record area and just before it is moved to the data item.

The size of the sending operand in the implicit MOVE statement is the size of the
record as placed into the record area.

This move does not occur if the execution of the READ statement is unsuccessful
for any reason. See INTO Phrase.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-186

Procedure Division Verbs READ for Sequential or Dynamic Access
• GUARDIAN-ERR Special Register

The GUARDIAN-ERR special register is updated each time a file-manipulating
statement is executed. The value of GUARDIAN-ERR usually provides more
specific information about the cause of an unsuccessful completion signaled by the
file-status data item. For example, if the file status is “30” (permanent error),
GUARDIAN-ERR contains the file system error number identifying the cause. See
Diagnosing Input-Output Errors.

• Handling Exception Conditions

The READ statement enables you to specify explicitly that when an at-end
condition occurs, a particular statement is to be executed.

For general exception handling, a group of statements called declaratives can be
placed at the beginning of the Procedure Division to respond to error conditions
arising for a single file or for all files open in the same input mode (INPUT,
OUTPUT, I-O, or EXTEND). See USE AFTER EXCEPTION.

The USE AFTER EXCEPTION statement specifies what to do when a file-
manipulating statement encounters an exception condition. Declaratives can be
called for at-end, invalid key, and other exception conditions.

If, for example, the program includes a USE statement referring to the file being
read, and a read operation is attempted when no next logical record exists, then
the process executes either an AT END phrase or the USE statement:

° If an AT END phrase is present, it is executed.
° If no AT END phrase is present, the USE statement is executed.

If a READ operation encounters a recoverable permanent error (Status Key 1
equals 3, or Status Key 1 equals 9 but Status Key 2 does not equal 7), no at-end
condition occurs; however, if a declarative is present for the file, that declarative is
activated, then any NOT AT END phrase is executed. Either the declarative or the
NOT AT END phrase can then determine the nature of the error (usually by
checking GUARDIAN-ERR) and take appropriate action. See Recovering from
Input-Output Errors.

After an at-end condition for a sequentially accessed file (other than $RECEIVE),
you must close and reopen or reposition the file before any further operations can
be done on it. You can reposition the file with the START statement, the routine
COBOL85^REWIND or COBOL_REWIND_.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-187

Procedure Division Verbs READ for Sequential or Dynamic Access
• Variable-Length Records

An Enscribe structured file is always capable of containing variable-length records.
The file has a stated maximum allowable record length, but records can vary from
a length of 0 up to the stated maximum. If the file is written as variable-length
records, the COBOL program can read it under a declaration of

RECORD CONTAINS rec-1 TO rec-2 CHARACTERS

or

RECORD IS VARYING IN SIZE FROM rec-1 TO rec-2 CHARACTERS
 DEPENDING ON rec-size

(although in COBOL you cannot explicitly state rec-1 as 0). The only way to
determine the length of the record read is to use the DEPENDING phrase of the
VARYING clause. The contents of the record area beyond the data fetched by any
given read is undefined.

Other HP products are capable of writing records of length 0 in such files. A
COBOL program can read a record of length 0; however, in an entry-sequenced
file with fixed-length records, such a record is ignored and the next record is
immediately read.

• Setting the Value of the DEPENDING Item (Variable-Length Records)

When the file has variable-length records whose sizes are reflected by the rec-
size item specified in the RECORD VARYING clause of the file description entry,
the value associated with the rec-size at the beginning of a read operation is
ignored. The read operation obtains the record and moves the number of character
positions the record contains into rec-size.

• Use of wait-time

wait-time must be either a numeric data item or a numeric literal, signed or
unsigned, having a maximum of seven digits to the left of the decimal. Any
fractional part to the right of the decimal is rounded to two decimal places; for
example:

05 WAIT-FILEX PIC 9(7)V9(2) COMPUTATIONAL.

A nonnegative value of wait-time indicates the time interval within which the
operation must complete. If the record is locked or reading a process and the
operation does not complete within that time interval, it is terminated, and no error
message is generated. The file-status item is set to “30,” the GUARDIAN-ERR
register is set to 40, and the value of the file position indicator becomes undefined.

The file position indicator is undefined because it is not clear at what point of the
read operation wait-time was exceeded. There is no guarantee that you can try
the operation again.

If the value of wait-time is -1 or the TIME LIMIT phrase is not present, no time
limit is placed on the operation. The program can wait indefinitely for its request to
complete. Any other negative value has the same effect as -1.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-188

Procedure Division Verbs READ for Sequential or Dynamic Access
If the TIME LIMIT phrase is specified with a nonnegative value and the file is not
opened with time limits enabled, the program terminates with an I-O status code
“90,” and a message (File is not opened for timed I-O) is delivered to the process’s
home terminal.

The effect of declaratives on time-limit termination is:

° If there is no declarative procedure applicable to the file when the operation is
abandoned, the process terminates, and an ABEND message is reported to
the process’s home terminal.

° If the applicable declarative procedure is present (but no AT END phrase is
present) and the time interval expires, the declarative procedure is performed.
Then program execution continues with the imperative statement in the NOT
AT END phrase, if one is present, or otherwise with the statement following the
one terminated.

When a file is being read with APPROXIMATE positioning (see START), the
value used for wait-time must take into account that a read operation can
take somewhat longer than expected. This can occur when a nonexistent
record is sought, because the file system searches through the file looking for
the next defined record before reporting the absence of the record sought. See
the Guardian Programmer’s Guide for more information on the action of READ.

• Concept of Next Record

READ NEXT is used to read the next record of a file whose access mode is
SEQUENTIAL or DYNAMIC. Files whose access mode is SEQUENTIAL can be
read without the NEXT keyword, but each such read gets the “next record” in the
file. The “next record” means “next existing record within the established key of
reference.”

° If the last operation on the file was a start operation (or open operation, in the
case of relative, indexed, or queue files), and the record selected by the file
position indicator is still accessible through the file position indicator, that
record is read.

° If the last operation on the file was a read operation (either a READ KEY or a
READ NEXT), or if the record selected by the file position indicator is no longer
accessible through the file position indicator (due to deletion or a change of the
alternate key), the file position indicator is updated to point to the next existing
record in the file, and that record is read.

° If the value of the file position indicator for the file is undefined when execution
of the READ statement begins, the read operation is unsuccessful, and any
file-status data item declared for the file in the file-control entry is updated to
specify the reason.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-189

Procedure Division Verbs READ for Sequential or Dynamic Access
• Use of the READ NEXT Statement on Relative, Indexed, or Queue Files

The READ NEXT statement operates on a relative, indexed, or queue file only if
the file is declared with ACCESS MODE SEQUENTIAL or ACCESS MODE
DYNAMIC.

• Sequential Block Buffering and HP COBOL Fast I-O

Sequential block buffering, enabled by the RESERVE clause of the FILE-
CONTROL Paragraph, is an Enscribe feature that speeds the reading of a
sequential, relative, indexed, or queue file by reading a block of records together
into a memory buffer. HP COBOL Fast I-O is a variant of sequential block buffering
that is even faster, because the run-time routines handle the record deblocking.

For either of these features, the file’s access must be sequential. In the non-CRE
environment, its organization must be sequential. In the CRE, its file organization
must be sequential, relative, indexed, or queue. See FILE-CONTROL Paragraph.

• Eight-Character Volume Names and HP COBOL Fast I-O

If you use an eight-character volume name in this context, you do not get an error
or warning, but you get normal output instead of fast output. (Input is not affected.)

Example 9-57. Reading a Sequential File

IDENTIFICATION DIVISION.
 ...
ENVIRONMENT DIVISION.
 ...
 SELECT INPUT-DATA
 ASSIGN TO "$TAPE"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL
 FILE STATUS IS INPUT-DATA-FILE-STATUS.
 ...
DATA DIVISION.
FILE SECTION.
FD INPUT-DATA.
01 INPUT-RECORD.
 ...
WORKING-STORAGE SECTION.
 ...
01 FILE-STATUSES.
 03 INPUT-DATA-FILE-STATUS PICTURE XX.
 ...
PROCEDURE DIVISION.
 ...
 READ INPUT-DATA
 AT END CLOSE INPUT-DATA
 END-READ
 IF ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-190

Procedure Division Verbs READ for Sequential or Dynamic Access
Example 9-58. Reading a Dynamic Indexed File

IDENTIFICATION DIVISION.
 ...
ENVIRONMENT DIVISION.
 ...
 SELECT MASTER-IN
 ASSIGN TO "$WOOSTR.BERTIE.MASTER"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS CUSTOMER-NUMBER
 FILE STATUS IS MASTER-IN-FILE-STATUS.
 ...
DATA DIVISION.
FILE SECTION.
FD MASTER-IN
 LABEL RECORDS ARE OMITTED.
01 MASTER-IN-RECORD.
 ...
WORKING-STORAGE SECTION.
 ...
01 FILE-STATUSES.
 03 MASTER-IN-FILE-STATUS PICTURE XX.
 ...
PROCEDURE DIVISION.
 ...
 MOVE 1 TO CUSTOMER-NUMBER
 START MASTER-IN
 KEY IS LESS THAN CUSTOMER-NUMBER
 IF MASTER-IN-FILE-STATUS NOT EQUAL TO ZERO
 PERFORM START-ERROR-ROUTINE
 ELSE
 READ MASTER-IN NEXT RECORD
 AT END PERFORM WRITE-TOTALS-AND-QUIT
 END-READ
 END-IF
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-191

Procedure Division Verbs READ for Sequential or Dynamic Access
Example 9-59. Reading $RECEIVE With Timed Input-Output

IDENTIFICATION DIVISION.
 ...
ENVIRONMENT DIVISION.
 ...
SELECT REQUEST
 ASSIGN TO "$RECEIVE"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL
 FILE STATUS IS REQUEST-FILE-STATUS.
 ...
DATA DIVISION.
FILE SECTION.
FD REQUEST
 LABEL RECORDS ARE OMITTED.
01 REQUEST-RECORD.
 ...
WORKING-STORAGE SECTION.
 ...
01 FILE-STATUSES.
 03 REQUEST-FILE-STATUS PICTURE XX.
 ...
01 WAIT-TIME PICTURE PICTURE 9(5)V99 VALUE 30.

PROCEDURE DIVISION.
DECLARATIVES.
DECL SECTION.
 USE AFTER ERROR PROCEDURE ON REQUEST.
DECL-ROUTINE.
 IF GUARDIAN-ERR NOT = 40
 STOP RUN.
END DECLARATIVES.

MAIN-STUFF SECTION.
MAIN-PROCESSING.
 ...
 OPEN INPUT REQUEST WITH TIME LIMITS
 READ REQUEST TIME LIMIT WAIT-TIME
 IF REQUEST-FILE-STATUS NOT = "00"
 IF GUARDIAN-ERR = 40
 PERFORM NO-MESSAGE
 END-IF
 END-IF
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-192

Procedure Division Verbs READ for Line Sequential Files
READ for Line Sequential Files
READ for line sequential files reads the next record in the file.

file-name

is the file description name of the file to retrieve a record from.

NEXT

indicates that the next record is to be read (that is, the record after the current
record, according to the key of reference). NEXT is required for sequential reading
of a relative, indexed, or queue file whose access is DYNAMIC.

data-name

is the identifier of the data area defined by your program to which the contents of
the record area are transferred after the read operation is complete.

data-name cannot be an index-name or the identifier of an index data item. The
transfer is conducted as if it were a move from an alphanumeric item to an
alphanumeric item.

The INTO phrase is allowed only when one of these conditions is true:

° Only one record is associated with file-name.

° The record associated with file-name is defined as a data structure or as an
elementary alphanumeric item and data-name is either a data structure or an
elementary alphanumeric item.

file-nameREAD

END-READ

data-nameINTO

NOT

AT

END imperative-stmt-2

AT

END imperative-stmt-1

VST630.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-193

Procedure Division Verbs READ for Line Sequential Files
LOCK

keeps other programs from accessing the record retrieved until an UNLOCKFILE
statement, UNLOCKRECORD statement, or REWRITE UNLOCK statement
executes. The file that file-name specifies must be associated with a disk
device.

imperative-stmt-1

is an imperative statement to be performed when the end of the file is encountered
at the beginning of the read operation. This phrase is required if no USE statement
is applicable for the file. If both a USE statement and an AT END phrase are
present, only the AT END phrase is used.

imperative-stmt-2

is an imperative statement to be performed when the end of the file is not
encountered at the beginning of the read operation.

END-READ

ends the scope of the READ statement, causing the READ to be a delimited-scope
statement. If the READ statement does not end with an END-READ phrase, the
presence of the AT END or the NOT AT END phrase causes the READ statement
to be a conditional statement, which ends at the next period separator.

See these usage considerations in READ for Sequential or Dynamic Access:

• In Action of the READ Statement (Sequential Read):

° Retrieval of a logical record

° Alignment within record area

° Unsuccessful read operation

• File-Status Data Item

• Retrieval

• GUARDIAN-ERR Special Register

• Handling Exception Conditions

• Variable-Length Records

• Setting the Value of the DEPENDING Item (Variable-Length Records)

• Concept of Next Record

• Sequential Block Buffering and HP COBOL Fast I-O

• Eight-Character Volume Names and HP COBOL Fast I-O
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-194

Procedure Division Verbs READ for Random or Dynamic Access
READ for Random or Dynamic Access
READ is for random or dynamic access reads a record from a file according to the
value of a key, rather than according to the present value of the file position indicator.

For relative files, READ without NEXT sets the file position indicator to the item
selected by RELATIVE KEY (if KEY is omitted) or to the specified alternate key.

For indexed and queue files, READ without NEXT sets the file position indicator to the
item selected by either the key of reference (if KEY is omitted) or to the specified prime
or alternate key.

When the selected record exists, the process places its contents in the record area. If it
does not exist, an invalid-key condition occurs, and the process executes either the
INVALID KEY statement or, if there is no INVALID KEY phrase, a USE AFTER
EXCEPTION procedure.

When duplicate alternate key values are allowed, the order of records with equal
values depends on the INSERTIONORDER parameter of the alternate key file: records
with duplicate alternate key values are retrieved in either prime key order (the way
NonStop systems software ordinarily works) or in the order in which they were inserted
in the file (as specified in the 1985 ISO/ANSI COBOL standard).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-195

Procedure Division Verbs READ for Random or Dynamic Access
file-name

is the file description name of the file to retrieve a record from.

data-name

is the identifier of the data area defined by your program to which the contents of
the record area are transferred after the read operation is complete. data-name
cannot be an index-name or the identifier of an index data item. The transfer is
conducted as if it were a move from an alphanumeric item to an alphanumeric
item.

file-nameREAD

data-name

RECORD

INTO

WITH

TIME LIMIT wait-time

imperative-stmt-2

END-READ

LOCK

NOT INVALID

KEY

imperative-stmt-1INVALID

KEY

KEY key

IS

VST202.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-196

Procedure Division Verbs READ for Random or Dynamic Access
LOCK

keeps other programs from using the record retrieved until an UNLOCKFILE
statement, UNLOCKRECORD statement, or UNLOCK phrase is executed on the
record.

wait-time

is the time interval, in seconds, in which the operation must complete. wait-time
can be a literal or the name of a data item. In either case, it must have a value
described with at most seven digits preceding any decimal point position. Any
fractional portion is truncated to two decimal places.

If file-name was not opened with a TIME LIMITS phrase, including wait-time
in the READ statement causes a run-time error.

key

is the key of reference. If file-name specifies a relative file, key must be an
alternate key for that file. If file name specifies an indexed file, key can be the
prime key or an alternate key. If file-name specifies a queue file, key must be
the prime key for that file. Unlike the START statement, the KEY clause provides
only APPROXIMATE positioning—not GENERIC positioning.

When the KEY phrase is absent, the relative key (for a relative file) or the prime
record key (for an indexed or queue file) is established as the key of reference.

imperative-stmt-1

is an imperative statement to be performed when an invalid key is encountered at
the beginning of the READ. It is required if no USE statement is applicable for the
file. If both a USE statement and an INVALID KEY phrase are present, only the
INVALID KEY phrase is used.

imperative-stmt-2

is an imperative statement to be performed when no invalid key is encountered at
the beginning of the read operation.

END-READ

ends the scope of the READ statement, causing the READ to be a delimited-scope
statement. If the READ statement does not end with an END-READ phrase, the
presence of the INVALID KEY or the NOT INVALID KEY phrase causes the READ
statement to be a conditional statement, which ends at the next period separator.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-197

Procedure Division Verbs READ for Random or Dynamic Access
Usage Considerations:

• Action of the READ Statement (Read According to Key Value)

The execution of this form of the READ statement proceeds:

° For a file with indexed organization, or a file being accessed according to an
alternate key, the run-time routines set the file position indicator to the first
record in the file with a key data item value that matches the value in the key of
reference. This record is then made available in the file’s record area.

° For a file with relative organization being accessed according to the relative
record number, the run-time routines set the file position indicator to the record
whose relative record number is contained in the data item named in the
RELATIVE KEY clause for the file. This record is then made available in the
file’s record area.

° In either case, if no such record exists in the file, the invalid-key condition
exists, and the read operation is unsuccessful.

A successful execution of the READ statement for a relative file, when the key of
reference is an alternate record key, also assigns the relative record number of the
retrieved record to the file’s relative key data item.

When the execution of the READ statement is successful and the access mode is
dynamic, the key of reference established for the read operation is used for
subsequent sequential-type READ statements executed for the same file until the
execution of some other statement explicitly establishes a different key of
reference.

• File-Status Data Item

If the file has an associated file-status data item, execution of the READ statement
always assigns an appropriate I-O status code.

One possible I-O status code that results from unsuccessful random or dynamic
read operations is:

I-O Status Code Unsuccessful Random or Dynamic Read Operation

“23” The invalid-key condition exists, and the read operation is
unsuccessful
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-198

Procedure Division Verbs READ for Random or Dynamic Access
For other possible I-O status codes representing successful and unsuccessful
operations, see File-Status Data Item.

• Key of Reference to Specify a Record

The program specifies which record is to be read by assigning the appropriate
value to the data item established as the key of reference, before the READ
statement is to be executed.

• Handling Exception Conditions

For general exception handling, put declaratives at the beginning of the Procedure
Division. They can respond to error conditions arising for a single file or for all files
open in the same mode (INPUT, OUTPUT, I-O, or EXTEND). (See USE.)

The USE AFTER STANDARD ERROR PROCEDURE statement specifies what to
do when a file-manipulating statement encounters an error. Declaratives can be
called for AT END, INVALID KEY, and other error conditions.

If an invalid-key condition is encountered at the beginning of a read, and the READ
statement contains the INVALID KEY phrase, control passes to imperative-
stmt-1 and no USE procedure is executed. If the READ statement does not
contain an INVALID KEY phrase, but an applicable USE procedure exists, that
procedure is executed.

After an invalid-key condition arises for a relative, indexed, or queue file, sequential
read operatons cannot be done on the file until you either:

° Close and reopen the file
° Execute a successful START statement on the file
° Execute a successful random READ statement on the file

• Timed Input-Output Errors

If a READ statement includes the TIME LIMIT phrase, and the I-O request exceeds
the time interval indicated, the codes FILE STATUS 30 and GUARDIAN-ERR 40
are returned. For information about the special register GUARDIAN-ERR, see
Diagnosing Input-Output Errors.

Note. After an unsuccessful execution of a READ statement, these values are
unpredictable:

• The value of the file position indicator
• The contents of the current record area
• The key of reference

Any key value found in the current record area: that is, the value of the current key for
indexed files or the value of the alternate key for any type of file-system file, because in
HP COBOL, sequential and relative files can have alternate keys.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-199

Procedure Division Verbs RELEASE
• See these usage considerations in READ for Sequential or Dynamic Access:

° File-Status Data Item

° LOCK Phrase

° Interaction of LOCKFILE and READ LOCK Statements

° INTO Phrase

° GUARDIAN-ERR Special Register

° Variable-Length Records

° Use of wait-time

RELEASE
RELEASE, which must be within a SORT input procedure, sends the next input record
to the sorting process.

record-name

is a record-name in a sort-merge file description (SD) entry.

data-name

is the identifier of the item containing the record to be sent. Before the record is
sent, it is moved to record-name.

 For more details and an example, see SORT.

Example 9-60. Reading a Random Indexed File

SELECT MASTER-IN ASSIGN TO "MASTER"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS INVOICE-NUMBER.
 ...
PROCEDURE DIVISION.
 ...
 MOVE WS-INVOICE-NUMBER TO INVOICE-NUMBER
 READ MASTER-IN
 INVALID KEY PERFORM RANDOM-READ-ERROR-RTN
 END-READ

record-nameRELEASE

data-nameFROM

VST203.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-200

Procedure Division Verbs REPLACE
REPLACE
REPLACE substitutes zero or more words of pseudotext for one or more words of
pseudotext. You can use REPLACE in any division. For more information, see
REPLACE Statement.

RETURN
RETURN, which must be within a SORT or MERGE output procedure, gets the next
output record from the SORT or MERGE.

file-name

is a file name described by a sort-merge file description (SD) entry.

data-name

is the identifier of the area in your program (other than record area associated with
file-name) where the record is stored.

imperative-stmt-1

is an imperative statement to be performed when the end of the file is encountered
at the beginning of the return operation. This phrase is required.

imperative-stmt-2

is an imperative statement to be performed when the end of the file is not
encountered at the beginning of the return operation.

file-nameRETURN

END-RETURN

data-nameINTO

NOT

AT

END imperative-stmt-2

AT

END imperative-stmt-1

VST204.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-201

Procedure Division Verbs REWRITE
END-RETURN

ends the scope of the RETURN statement, causing the RETURN to be a delimited-
scope statement. If the RETURN statement does not end with an END-RETURN
phrase, the presence of the AT END or the NOT AT END phrase causes the
RETURN statement to be a conditional statement, which ends at the next period
separator.

For more details and an example, see:

• SORT

• MERGE

REWRITE
REWRITE replaces an existing record in a disk file that is open for I-O.

Forms:

• REWRITE for Sequential, Relative, Indexed, and Queue Files

• REWRITE for Line Sequential Files

REWRITE for Sequential, Relative, Indexed, and Queue Files

REWRITE

END-REWRITE

UNLOCK

imperative-stmt-2

NOT INVALID

KEY

imperative-stmt-1INVALID

KEY

record-name

data-nameFROM

WITH

VST205.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-202

Procedure Division Verbs REWRITE for Sequential, Relative, Indexed, and
Queue Files
record-name

is the record-name in a file description entry whose current contents replaces a
record in the file. The file must be open in I-O mode.

data-name

is the identifier of the item that contains the new record instead of record-name.
When this phrase is used, an implicit MOVE statement occurs to copy the data to
record-name before the rewrite operation occurs. data-name cannot specify
an index-name or an index data item. data-name cannot specify a data item
allocated within the record area in which record-name is located.

UNLOCK

permits access by other processes to a record (after the rewrite operation) that was
previously locked with a LOCK phrase.

imperative-stmt-1

is an imperative statement to be performed when an invalid-key condition is
encountered by the REWRITE operation. It is required if no USE statement is
applicable for the file. If both a USE statement and an INVALID KEY phrase are
present, only the INVALID KEY phrase is used.

imperative-stmt-2

is an imperative statement to be performed when no invalid-key condition is
encountered by the REWRITE operation.

END-REWRITE

ends the scope of the REWRITE statement, causing the REWRITE to be a
delimited-scope statement. If the REWRITE statement does not end with an END-
REWRITE phrase, the presence of the INVALID KEY or the NOT INVALID KEY
phrase causes the REWRITE statement to be a conditional statement, which ends
at the next period separator.

Usage Considerations:

• Action of the REWRITE Statement

The rewrite operation releases a logical record to the run-time routines as a
replacement for a record that exists in the file. The size of the logical record (the
number of character positions in the record) is determined:

° When the file has fixed length records (the file description entry includes a
RECORD CONTAINS n CHARACTERS, or contains no RECORD clause at
all), the size of the logical record is the fixed record size.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-203

Procedure Division Verbs REWRITE for Sequential, Relative, Indexed, and
Queue Files
° When the file has variable-length records whose sizes are controlled by the
DEPENDING item specified in the RECORD clause (RECORD VARYING SIZE
DEPENDING name), the value of the DEPENDING item determines the size of
the logical record.

° When the file has variable-length records but no DEPENDING item is specified
in the RECORD clause of the file description entry (RECORD CONTAINS m
TO n CHARACTERS), the size of the logical record is the size of the data item
referenced by record-name. If the data item has a variable size because it
contains a table that is described with an OCCURS DEPENDING clause, the
current size of the item is used.

When the file is described with the RECORD VARYING clause, the logical record
size must not be greater than the maximum or less than the minimum number of
character positions specified in that clause. (See I-O status code “44.”)

The content of the logical record released by the rewrite operation is the left-
justified value of the data item specified by record-name. If the logical record size
is greater than the data item’s size, the value is logically extended on the right with
arbitrary characters (that is, you cannot predict what the extending characters will
be). If the logical record size is less than the data item’s size, the value is logically
truncated on the right.

The execution of a REWRITE statement, whether successful or not, does not
normally affect the key of reference, the value of file position indicator, or the value
of the depending item specified in the DEPENDING phrase of the RECORD clause
associated with record-name ; however, the value of the file position indicator
can be left undefined in some cases when the I-O status is set to 30.

• File-Status Data Item

If the file has an associated file-status data item, execution of the REWRITE
statement always assigns an appropriate I-O status code as its value. The status
“00” reports a successful rewrite operation with no duplicate alternate keys written.
The status code “02” reports a successful rewrite operation that created a duplicate
alternate key value for at least one alternate record key for which duplicates are
allowed (only when the file has the INSERTIONORDER attribute).

Note. The logical record released by a successful execution of the REWRITE statement is
no longer available in the record area unless the file name associated with record-name
is specified in a SAME RECORD AREA clause. The logical record is available to the
program as a record of other files referenced in the SAME RECORD AREA clause as the
associated output file, as well as the file associated with record-name.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-204

Procedure Division Verbs REWRITE for Sequential, Relative, Indexed, and
Queue Files
The rewrite operation cannot succeed if the device associated with the file is not a
disk device.

The possible I-O status codes for an unsuccessful rewrite are:

Note. After an unsuccessful execution of a REWRITE statement, these values are
unpredictable:

• The value of the file position indicator
• The contents of the current record area
• The key of reference

Any key value found in the current record area: that is, the value of the current key for
indexed files or the value of the alternate key for any type of file-system file, because in
HP COBOL sequential and relative files can have alternate keys.

I-O Status Code Unsuccessful Rewrite (page 1 of 2)

“21” The file’s access mode is sequential, the file organization is
indexed, and the prime record key value of the logical record is not
equal to the value of the prime record key of the last record read.
The invalid-key condition arises.

“22” One of the alternate key values in the logical record is equal to the
value of that key in a record that already exists in the file, and the
DUPLICATES phrase is not specified for that key. The invalid-key
condition arises.

“23” The file’s access mode is random or dynamic, and the specified
relative key value or prime record key value does not correspond to
that of any record existing in the file. The invalid-key condition
arises.

“30” The rewrite operation failed due to non-COBOL causes. The
specified record might or might not have been rewritten. The run-
time routines always return this status when the file is not assigned
to a disk, in which case nothing is rewritten. The value of the file
position indicator can be left undefined in some cases when the I-O
status code is “30.”

Whenever the rewrite operation terminates with an I-O status code
greater than or equal to “30,” execution of the REWRITE statement
is unsuccessful. In this case, the applicable USE procedure, if any,
is executed.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-205

Procedure Division Verbs REWRITE for Sequential, Relative, Indexed, and
Queue Files
• Access Mode and REWRITE

° Sequential-access files

When a sequential file has variable-length records, the number of character
positions in the logical record specified by record-name must be equal to the
number of character positions in the record being replaced. If this is not so, the
rewrite operation is unsuccessful and terminates with I-O status code “44.”

When the access mode of the file affected by the rewrite operation is
sequential, the last input-output statement executed for the file must have been
a successful READ statement. If it was not, the record is not released and the
rewrite operation terminates with the I-O status code “43;” otherwise, the
rewrite operation logically replaces the record that was accessed by the READ
statement; therefore, for an indexed or queue file, the program logic must verify
that the prime record key in the logical record has the same value as the prime
record key of the record previously read.

° Random-access or dynamic-access files

For relative files with random or dynamic access, the record replaced is the
one indicated by the value of the RELATIVE KEY item. If the old record does
not exist, an invalid-key condition occurs.

For indexed files with random or dynamic access or for files being accessed
through alternate keys using random or dynamic access, the prime record key
data item (the RECORD KEY item) selects the old record to be replaced. The
value of alternate keys can differ in the new records, unless this would create
duplicate key values for a key whose values must be unique.

“43” The access mode is sequential, and the last input or output
statement executed for the file was not a successful READ
statement. The record is not released.

“44” There are two possibilities:

• The file is described with the RECORD VARYING clause, and
the logical record size is greater than the maximum or less than
the minimum number of character positions specified in that
clause. The logical record is not released.

• The file is a sequential file described with the RECORD
VARYING clause, and the size of the logical record is not equal
to the size of the record being replaced. The logical record is
not released.

“49” The file is not open in I-O mode. The rewrite operation terminates
immediately.

I-O Status Code Unsuccessful Rewrite (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-206

Procedure Division Verbs REWRITE for Sequential, Relative, Indexed, and
Queue Files
• UNLOCK Phrase

If the UNLOCK phrase appears, the rewrite operation also assures that the record
is not in the locked state at the completion of the rewrite operation. If the record
was not in the locked state at the beginning of the rewrite operation, no report of
this is made to the program.

• Invalid-Key Condition

Any of these circumstances can lead to an invalid-key condition:

° The access mode is sequential, the file organization is indexed, and the prime
record key value of the logical record is not equal to the value of the prime
record key of the last record read. This results in a completion status of 21.

° The access mode is random or dynamic, and the specified relative key value or
prime record key value does not correspond to that of any record existing in
the file. This results in I-O status code “23.”

° One of the alternate key values in the logical record is equal to the value of that
key in a record that already exists in the file, and the DUPLICATES phrase is
not specified for that key. This results in an I-O status code of “22.”

When the invalid-key condition exists, the rewrite operation does not occur and
execution of the REWRITE statement is unsuccessful. The content of the record
area is unaffected. If the INVALID KEY phrase is specified, control passes to the
imperative statement in that phrase and no USE procedure is executed. If the
INVALID KEY phrase is not specified but an applicable USE procedure exists, that
procedure is executed.

When the invalid-key condition does not exist, and the rewrite operation is
successful, and the NOT INVALID KEY phrase is specified, control passes to the
imperative statement in that phrase.

Example 9-61. REWRITE Statement for Indexed File

READ MASTER-IN WITH LOCK
IF NO-ERROR
 PERFORM GET-INPUT
 REWRITE MASTER-RECORD WITH UNLOCK
 IF NO-ERROR
 ADD 1 TO UPDATE-COUNTER
 ELSE UNLOCKRECORD MASTER-IN
 END-IF
ELSE
 ...

Note. Invalid-key conditions are taken care of by USE procedures instead of by INVALID KEY
phrases on the READ and REWRITE statements.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-207

Procedure Division Verbs REWRITE for Line Sequential Files
REWRITE for Line Sequential Files

record-name

is the record-name in a file description entry whose current contents replaces a
record in the file. The file must be open in I-O mode.

data-name

is the identifier of the item that contains the new record instead of record-name.
When this phrase is used, an implicit MOVE statement occurs to copy the data to
record-name before the rewrite operation occurs. data-name cannot specify
an index-name or an index data item. data-name cannot specify a data item
allocated within the record area in which record-name is located.

END-REWRITE

ends the scope of the REWRITE statement, causing the REWRITE to be a
delimited-scope statement. If the REWRITE statement does not end with an END-
REWRITE phrase, the REWRITE ends at the next period separator.

REWRITE

END-REWRITE

record-name

FROM data-name

VST721.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-208

Procedure Division Verbs SEARCH
9 Procedure Division Verbs
SEARCH
SEARCH scans a table for an element that satisfies a condition. If SEARCH finds the
element, SEARCH sets an index-name to the element’s offset value.

Before executing SEARCH, the program must:

• Initialize the relevant index-names and the table with appropriate values
• Determine what criteria define successful completion of the search operation

A search proceeds by successively selecting candidates from among the elements of
the table and then evaluating the test conditions. For a variable-size table, only
elements currently defined as a part of the table can be searched. The last of these is
the one referenced by the maximum occurrence number, which is the value of the
associated DEPENDING data item.

The search ends when a condition evaluates to TRUE or when every element of the
table has been searched, whichever occurs first.

SEARCH operates on a single table dimension. To search an entire multi-dimensional
table, the program must execute a SEARCH for each dimension, beginning with the
outermost table level and ending with the innermost table level.

SEARCH VARYING
SEARCH VARYING performs a serial search beginning with the current index setting.
SEARCH VARYING can also set the value of a data item or another index-name.

Form Description

SEARCH VARYING Performs a serial search beginning with the current index. Can also
set the value of a data item or another index-name.

SEARCH ALL Performs a binary search until it finds the element satisfying the
conditions or has searched every element of the table.

table indexerSEARCH VARYING

AT

WHEN condition

imperative-stmt-1

END-SEARCH

END

SENTENCE

imperative-stmt-2

NEXT

VST206.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-209

Procedure Division Verbs SEARCH VARYING
table

is the name of a data item described with an “OCCURS … INDEXED BY index-1
… KEY …” clause. The search is done with index-1, which the search operation
initializes to the middle of the table before beginning to scan. Only the name of
table can appear, qualified if necessary, but not subscripted or reference
modified.

indexer

is one of:

° One of the index-names in the INDEXED phrase in the definition of table
° An integer data item (which can, itself, be subscripted)
° An index data item

indexer cannot specify a special register. indexer cannot be subscripted by
the first (or the only) index-name specified in the INDEXED phrase of the
OCCURS clause of the definition of table.

When indexer is from the INDEXED phrase, that index is used to start the
search. When it is a separate item, index-1 from the INDEXED option is used to
search table, and indexer is incremented by 1 when index-1 is
incremented.

The SEARCH statement does not initialize its index (either indexer or
index-1). The value of the index at the time the search begins is used.

imperative-stmt-1

is an imperative statement to be executed when an at-end condition is detected
during the search.

condition

specifies a conditional expression used to control the search for an element.

imperative-stmt-2

is an imperative statement to be executed when a condition is satisfied.

NEXT SENTENCE

specifies that control be passed directly to the end of the SEARCH statement.
It is not recommended (see Usage Considerations:).

END-SEARCH

ends the scope of the SEARCH statement, causing the SEARCH to be a delimited-
scope statement. Without the END-SEARCH phrase, the SEARCH statement is a
conditional statement, which ends at the next period separator.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-210

Procedure Division Verbs SEARCH VARYING
Usage Considerations:

• CONTINUE is Recommended Over NEXT SENTENCE

NEXT SENTENCE transfers control to the next period (.), while CONTINUE
transfers control to END-SEARCH. Either imperative-stmt-1, imperative-
stmt-2, or both can be CONTINUE statements.

• Execution

The SEARCH VARYING statement specifies a serial search through elements of
the table referenced by table. In general terms, the search operation
successively increments the value of an index-name, which represents the
occurrence number of an element in the table, until either some condition
evaluates to TRUE or the occurrence number represented by the value of the
index-name exceeds the maximum defined for the table.

When the VARYING phrase is present, and if it specifies an index-name
associated with table (by its OCCURS clause), then that index-name is used for
the search. If it specifies an index-name not associated with table, or if it
specifies a separate integer data item or an index data item, the primary index of
table is used in the search (starting at its current setting), and these operations
occur:

° If you specify an index-name associated with another table, the process
increments the occurrence number that index-name represents by the same
amount and at the same time as it increments the occurrence number the
primary index represents.

° If you specify an index data item, the process increments the value of the item
by the same amount and at the same time as it increments the index
associated with table.

° If you specify an integer data item, the process increments the value of the
item by 1 at the same time as it increments the index associated with table.

Without the VARYING phrase, the search varies the value of the primary index of
table (starting at its current setting). Any other indexes specified with table
remain unchanged.

If, when execution of the SEARCH statement begins, the value of the index-name
corresponds to an occurrence number greater than the one that identifies the last
element of the table, the at-end condition exists and the search operation
terminates immediately; otherwise, the search operation proceeds:

1. Each condition is evaluated, in the order in which they appear in the statement,
until one of them evaluates to TRUE or all of them evaluate to FALSE. For
each operand of a condition, the process of operand identification occurs just
prior to its use each time the operand participates in the determination of that
condition’s value. For details, see Condition Evaluation Rules.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-211

Procedure Division Verbs SEARCH VARYING
2. When a condition evaluates to TRUE, the search operation terminates
immediately. If that condition is followed by the NEXT SENTENCE phrase,
control passes to the next executable sentence; otherwise, the associated
imperative-stmt-2 is executed and control passes to the end of the
SEARCH statement (unless the imperative-stmt-2 explicitly transfers
control elsewhere using a GO TO statement).

3. When all conditions evaluate to FALSE, the index-name value is incremented
to correspond to the next occurrence number.

4. When the new value of the search index-name corresponds to an occurrence
number greater than the one that identifies the last element of the table, the at-
end condition exists and the search operation terminates immediately;
otherwise, the search operation repeats from Step 1.

When the search operation terminates due to the at-end condition, imperative-
stmt-1 is executed, if the AT END phrase is specified. Control then passes to the
end of the SEARCH statement (unless imperative-stmt-1 explicitly transfers
control elsewhere using a GO TO statement).

• Multidimensional Tables

If table is an element of another table, you have a multidimensional table. Each
dimension of the multidimensional table must be declared with an INDEXED
phrase. A SEARCH statement uses only the first index of each dimension. To
search an entire multidimensional table, you must execute several SEARCH
statements. Before each execution of a SEARCH statement, you must execute a
SET statement to adjust index-names to appropriate settings. The index-names
must be used in the SEARCH statement’s condition.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-212

Procedure Division Verbs SEARCH VARYING
Figure 9-11. Execution of a SEARCH VARYING Statement With WHEN Phrases

Enter

indexer
from

INDEXED
BY?

Index is indexer
Index is index-1
from INDEXED BY

TRUE FALSE

Index >max
?AT END? Increment index

Execute
imperative-stmt-1

Another
WHEN?

condition
?

Index
is

indexer
?

NEXT
SENTENCE

?

Execute next sentence

Increment indexer

Execute
imperative-stmt-2

Exit

FALSE TRUE

TRUE FALSE

TRUE

FALSE FALSE

TRUE

TRUE

FALSE

FALSE

TRUE

VST514.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-213

Procedure Division Verbs SEARCH ALL
SEARCH ALL
SEARCH ALL performs a binary search on a table. The table must be declared with a
KEY phrase in its OCCURS clause.

Example 9-62. SEARCH VARYING Statement

WORKING-STORAGE SECTION.
01 COMMANDS.
 05 FILLER PIC X(6) VALUE "ADD".
 05 FILLER PIC X(6) VALUE "DELETE".
 ...
01 COMMANDS-IN-TABLE REDEFINES COMMANDS.
 05 COMMAND-ENTRIES PIC X(6) OCCURS 6 TIMES
 INDEXED BY TABLE-INDEX.
 77 COMMAND-IN PIC X(6).
 ...
PROCEDURE DIVISION.
 ...
 SET TABLE-INDEX TO 1
 SEARCH COMMAND-ENTRIES VARYING TABLE-INDEX
 AT END
 PERFORM COMMAND-ERROR-ROUTINE
 WHEN COMMAND-ENTRIES(TABLE-INDEX) = COMMAND-IN
 CONTINUE
 END-SEARCH
 ...

tableSEARCH

AT

WHEN

imperative-stmt-1

END-SEARCH

END

SENTENCE

imperative-stmt-2

NEXT

ALL

match-1

AND match-n

VST207.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-214

Procedure Division Verbs SEARCH ALL
table

is the name of a data item described with an “OCCURS … INDEXED BY index-1
… KEY …” clause. The search is done with index-1, which the search operation
initializes to the middle of the table before beginning to scan. Only the name of
table can appear, qualified if necessary, but not subscripted or reference
modified.

imperative-stmt-1

is an imperative statement to be executed when an at-end condition is detected
(the end of the search is reached with no entry satisfying all specified conditions).

match-1
match-n

are matches that terminate the search operation.

identifier-1

is a data-name that is subscripted by the first index-name listed in the
INDEXED clause that defines the indexes of table, along with any other
subscripts that are required to identify the element in a multidimensional table.
identifier-1 must be defined as the first key of table. It can be
qualified, but it cannot include a reference modifier.

equal-part

identifier-2

is any identifier.

literal-2

is any literal.

identifier-1

condition-name-1

equal-part identifier-2

literal-2

arithmetic-expression-2

VST208.vsd

IS

EQUAL

TO

=

VST209.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-215

Procedure Division Verbs SEARCH ALL
arithmetic expression-2

is any arithmetic expression.

condition-name-1

is a condition (a level-88 item) that terminates the search operation.
condition-name-1 must be defined as having a single value. The data-
name with which condition-name-1 is associated must be specified as the
first in the KEY phrase of the OCCURS clause of table.

imperative-stmt-2

is an imperative statement to be executed when the condition that condition-
name-1 specifies is satisfied.

NEXT SENTENCE

specifies that control be passed directly to the end of the SEARCH statement. It is
not recommended (see Usage Considerations:).

END-SEARCH

ends the scope of the SEARCH statement, causing the SEARCH to be a delimited-
scope statement. Without the END-SEARCH phrase, the SEARCH statement is a
conditional statement, which ends at the next period separator.

Usage Considerations:

• CONTINUE is Recommended Over NEXT SENTENCE

NEXT SENTENCE transfers control to the next period (.), while CONTINUE
transfers control to END-SEARCH. Either imperative-stmt-1, imperative-
stmt-2, or both can be CONTINUE statements.

• Binary Search

HP COBOL performs a binary search when these conditions are met:

° Each condition-name referenced in the WHEN clause must be defined as
having a single value.

° The data-name associated with a condition-name must appear in the KEY
phrase in the OCCURS clause of the data definition of table.

° Each identifier-1 must be subscripted by the first index-name associated
with table, along with other subscripts as required, and must be referenced in
the KEY phrase in the OCCURS clause of the data definition of table.

° The identifiers mentioned in the operands must not be referenced in the KEY
phrase in the OCCURS clause associated with table, and must not be
subscripted by the first index-name associated with table.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-216

Procedure Division Verbs SEARCH ALL
° When a data-name in the KEY phrase of the OCCURS clause associated with
table is referenced, or when a condition-name associated with such a data-
name is referenced, all preceding data-names (or the associated condition-
names) in the KEY phrase of that OCCURS clause must also be referenced.

When a SEARCH ALL statement does not meet these conditions, the compiler
issues a warning and does a linear search.

• Additional Syntactic Constraints

If the WHEN phrase mentions either a data-name in the KEY phrase of the
OCCURS clause of the definition of table or a condition-name associated with a
data-name in that KEY phrase, all preceding data-names in the KEY phrase must
also be mentioned in the WHEN phrase. To illustrate, suppose you have this
OCCURS clause:

05 DEPT-TABLE OCCURS 500 TIMES
 ASCENDING KEY IS DIV
 SEC
 DEPARTMENT
 INDEXED BY NDEX, MDEX.
 07 DIV PIC 9(4).
 07 SEC PIC 9(3).
 07 DEPARTMENT PIC 9(3).
 88 R-AND-D VALUE 555.

You can search on DIV, or DIV and SEC, or all three keys. You cannot search on
SEC without searching on DIV, and you cannot search on DEPARTMENT without
searching on DIV and SEC.

• Order of Table Elements

Verify that the table is ordered as specified in the ASCENDING or DESCENDING
phrase of the OCCURS clause of the table’s definition. If it is not, the result of the
search is undefined.

• Execution

The SEARCH ALL statement specifies a search through the elements of a table.
The results of a SEARCH ALL statement are predictable only when both of these
are true:

° The data in the table are ordered in the manner described in the KEY phrase of
the OCCURS clause that describes the table.

° The condition specified in the WHEN phrase (called the “target condition”)
evaluates to TRUE only during the consideration of exactly one of the table
elements.

The search operation varies the value of the first index-name that appears in the
INDEXED phrase of the OCCURS clause describing the table. The search
operation insures that the varying value always corresponds to an occurrence
number defined for the table.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-217

Procedure Division Verbs SEARCH ALL
The SEARCH ALL operation proceeds in a binary fashion, successively setting the
index-name to correspond to different table elements and evaluating the target
condition. For each operand of the target condition, the process of operand
identification occurs just before its use each time the operand participates in the
determination of the value of the target condition.

• When Exactly One Matching Element Is Found

When the target condition evaluates to TRUE, the search all operation terminates
and the value of the index-name corresponds to the element under consideration.
If the NEXT SENTENCE phrase is specified, control passes to the next executable
sentence; otherwise, imperative-stmt-2 is executed and then control passes
to the end of the SEARCH ALL statement (unless execution of imperative-
stmt-2 explicitly transfers control elsewhere using a GO TO statement).

If more than one element satisfies the condition, the index can point to any one of
them.

• When No Matching Element Is Found

When the value of the target condition is FALSE, the search operation terminates
with the at-end condition and the value of the index-name is undefined. If the AT
END phrase is specified, imperative-stmt-1 is executed. Control passes to
the end of the SEARCH statement (unless execution of imperative-stmt-2
explicitly transfers control elsewhere using a GO TO statement).

• Tables Defined With a DEPENDING Phrase

For a variable-occurrence table, only those elements currently defined as a part of
the table can be candidates. The last of these is the one specified by the maximum
occurrence number, which is the value of the associated DEPENDING data item.

• Index Values

During the search operation, the first index-name appearing in the INDEXED
phrase of the OCCURS clause describing the table is varied so that its value
always corresponds to an occurrence number defined for the table. The value of
this index-name at the start of execution of the SEARCH statement is immaterial.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-218

Procedure Division Verbs SET
SET

SET TO
SET TO sets the values of data item addresses, indexes, switches, or conditional
variables.

Topics:

• POINTER Data Items

• Nonpointer Data Items

Example 9-63. SEARCH ALL Statement

WORKING-STORAGE SECTION.
01 COMMANDS.
 05 FILLER PIC X(6) VALUE "ADD".
 05 FILLER PIC X(6) VALUE "DELETE".
 05 FILLER PIC X(6) VALUE "EXIT".
 05 FILLER PIC X(6) VALUE "LIST".
 ...
01 COMMANDS-IN-TABLE REDEFINES COMMANDS.
 05 COMMAND-ENTRIES PIC X(6) OCCURS 6 TIMES
 ASCENDING KEY IS COMMAND-ENTRIES
 INDEXED BY TABLE-INDEX.
 ...
01 COMMAND-NUMBERS.
 05 COMMAND-INDEX PIC 99 COMP VALUE 1.
 05 COMMAND-IN PIC X(6).
 ...

PROCEDURE DIVISION.
 ...
 SEARCH ALL COMMAND-ENTRIES
 AT END
 PERFORM COMMAND-ERROR-ROUTINE
 GO TO GET-ANOTHER-COMMAND
 WHEN COMMAND-ENTRIES(TABLE-INDEX) = COMMAND-IN
 CONTINUE
 END-SEARCH
 SET COMMAND-INDEX TO TABLE-INDEX
 ...

Form Description

SET TO Sets the values of data item addresses, indexes, switches, or
conditional variables

SET UP or SET DOWN Increments or decrements data item addresses or indexes
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-219

Procedure Division Verbs SET TO
POINTER Data Items

pointer

address

identifier-1

is a level-01 or level-77 data item in the Linkage Section that does not have an
ACCESS MODE STANDARD clause in its data description entry. If pointer
is ADDRESS OF identifier-1, identifier-1 is relinked so that
subsequent references to identifier-1 reference the item whose address
is specified by address.

If address is ADDRESS OF identifier-3, then identifier-1 is
linked to the address of identifier-3 (not the value of identifier-3).

If address is identifier-4, then identifier-1 is linked to the address
that identifier-4 contains.

If address is NULL or NULLS, then identifier-1 is linked to a null
address guaranteed to point to no data item.

identifier-2

is a data item with USAGE POINTER. If pointer is identifier-2, the
address specified by address is moved into identifier-2. This address
is valid until the program terminates or returns control to its calling program.

SET TOpointer address

VST605.vsd

OFADDRESS identifier-1

identifier-2

VST606.vsd

NULL

OFADDRESS identifier-3

identifier-4

NULLS

VST607.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-220

Procedure Division Verbs SET TO
identifier-3

is a data item of any level except 88, anywhere in the Data Division. The value
of ADDRESS OF identifier-3 is the address of identifier-3, not the
value of identifier-3.

identifier-4

is a data item with USAGE POINTER.

NULL
NULLS

is a null address guaranteed not to point to any data item. A reference to a
pointer whose value is NULL causes a trap 1 instruction failure.

If you redefine a VS COBOL II pointer variable as a COMPUTATIONAL field and
perform an arithmetic operation on the field to change the value of the pointer, the
pointer does not behave the same as it would in IBM/370 COBOL. The reason is that
pointer format depends on machine architecture, and NonStop servers and IBM/370
machines have different architectures.

Nonpointer Data Items
SET TO can:

• Set an index-name to one of these values:

° A value that corresponds to the occurrence number designated by another
index-name

° A value that corresponds to the occurrence number corresponding to the value
of an integer literal or an integer data item

° The value of an index data item

• Set the value of an index data item to the value of an index-name or the value
associated with the contents of another index data item

• Set the value of an integer data item to the occurrence number of an index

• Set an external switch to ON or OFF

• Set a conditional variable to a value that makes an associated condition true
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-221

Procedure Division Verbs SET TO
identifier-1

is the name of an integer elementary item or an index data item to be set.

identifier-2

is the name of an integer data item or an index data item.

index-name-1

is the name of an index to be set.

index-name-2

is the name of an index.

integer

is a numeric literal having no fractional part. If signed, it must have a positive value.

mnemonic-name

is the mnemonic name associated with an external switch in the SPECIAL-NAMES
paragraph of the Environment Division. A SET statement can refer to any of the 15
external switches.

condition-name

is the condition-name (level-88 item) associated with a conditional variable.

SET

TRUETOcondition-name

ONTOmnemonic-name

OFF

identifier-1

index-name-1

identifier-2

index-name-2

integer

TO

VST211.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-222

Procedure Division Verbs SET TO
Usage Considerations:

• Index-Names and Index Data Items

An index-name is directly associated with a table and is declared in the INDEXED
phrase of the table’s data description entry. The value associated with an index-
name is related only to the table with which it is defined.

An index data item is a separate data item, not associated with any table, that is
declared with the USAGE INDEX clause.

• Copying and Converting Values

The SET statement performs copying between indexes and index data items. It
also performs conversions from indexes to integer data items (occurrence
numbers) or from integer data items (occurrence numbers) to indexes. This
conversion is necessary because the values associated with indexes and index
data items are machine-architecture related, whereas the occurrence numbers are
not.

Table 9-10 summarizes these rules:

° The receiving item (index-name-n) is set to a value causing it to refer to the
table element corresponding in occurrence number to the table element
specified by the sending item (identifier-1, index-name-1, or integer
). If the sending item is an index data item, or if it is an index-name that is
related to the same table as the receiving item, no conversion occurs.

° If the receiving item is an index data item, it can be set equal to the contents of
either an index-name or another index data item. No conversion occurs.

° If the receiving item is not an index data item, it can be set only to an
occurrence number corresponding to the value of an index-name. The sending
item cannot be a numeric integer literal or a numeric integer data item.

° The assignment process is repeated for any other receiving data-names
specified. Each time, the value of a sending data item is used as it was at the
beginning of the execution of the statement. Any subscripting or indexing
associated with the sending data item is evaluated immediately before the
value of the receiving data item is changed.

Table 9-10. Valid SET TO Combinations

Sending Item

Receiving Item

Integer Data Item Index-Name Index Data Name

Integer literal No (rule 3) OK (rule 1) No (rule 2)

Integer data item No (rule 3) OK (rule 1) No (rule 2)

Index-name OK (rule 3) OK (rule 1) OK (rule 2)*
Index data item No (rule 3) OK (rule 1) OK (rule 2)*
* No conversion occurs
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-223

Procedure Division Verbs SET TO
• Index Values Before and After Execution

If the sending item is an index-name, then before the execution of the SET TO
statement, the value of the index must correspond to an occurrence number of an
element in the associated table.

If the receiving item is an index-name, then after the execution of the SET TO
statement, the value of the index must correspond to an occurrence number of an
element in the associated table.

• External Switches

The SET statement modifies the status of the external switch associated with each
specified mnemonic-name. When the SET statement changes the status of a
switch to ON, any condition-name associated (in the SPECIAL-NAMES paragraph)
with the ON setting of that switch evaluates to TRUE. When the SET statement
changes the status of a switch to OFF, any condition-name associated (in the
SPECIAL-NAMES paragraph) with the ON setting of that switch evaluates to
FALSE.

• Condition Names

The SET statement assigns to the conditional variable associated with the
condition-name the value of the first literal in the VALUE clause of the
definition of the condition-name.

When more than one condition-name appears in the SET statement, the
results are the same as if a separate SET statement had been written for each
condition-name in the same order as specified in the SET statement.

• integer Out of Range

In the statement

SET index-name-n TO integer

the value of integer must be at least zero and not greater than the maximum
number of occurrences plus one. If the value of integer is outside this range, a
warning message is produced. If the warning message is produced and subscript
checking is active, the run unit terminates abnormally.

If the value of integer is greater than 2,147,483,647 or less than -
2,147,483,648, or if the product of integer and the occurrence length of the
associated table (the length of one occurrence of the table) is not within that range,
a run-time error occurs.

• Any Sending Item Out of Range

If the value of any sending item (identifier-1, index-name-1, or integer)
is greater than 2,147,483,647 or less than -2,147,483,648 and subscript checking
is active, an error message is produced and the run unit terminates abnormally.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-224

Procedure Division Verbs SET UP or SET DOWN
SET UP or SET DOWN
SET UP increments data items addresses or indexes; SET DOWN decrements them.

Topics:

• POINTER Data Items

• Nonpointer Data Items

POINTER Data Items
SET UP increments a pointer by an integral number of memory locations. SET DOWN
decrements a pointer by an integral number of memory locations.

pointer

is a data item with USAGE POINTER. In these parameter descriptions, assume
that the value of pointer is the address p.

number-of-locations

identifier-1

is either an elementary numeric data item described as an integer or a function
that returns an integer value. If number-of-locations is identifier-1,
and the value of identifier-1 is n, then pointer is adjusted so that it
references the address p +n bytes for SET UP or p -n bytes for SET DOWN.

integer

is a numeric literal whose value is an integer. If number-of-locations is
integer, then pointer is adjusted so that it references the address
p +integer bytes for SET UP or p -integer bytes for SET DOWN.

SET BYpointer UP

DOWN

number-of-locations

VST608.vsd

identifier-1

integer

VST609.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-225

Procedure Division Verbs SET UP or SET DOWN
Usage Considerations:

• Do Not Use SET UP or SET DOWN for Record Pointers

Do not use SET UP or SET DOWN to point a record pointer at a different record.
This would be syntactically correct, but the memory positions of records are not
defined in HP COBOL and can vary between implementations.

• Incompatibility With IBM/370 Mainframe Pointer Variables

If you redefine a VS COBOL II pointer variable as a COMP field and perform an
arithmetic operation on the field to change the value of the pointer, the pointer does
not behave the same as it would in IBM/370 COBOL. The reason is that pointer
format depends on machine architecture, and HP and IBM/370 machines have
different architectures.

Nonpointer Data Items
SET UP increments an index value by an integer amount. SET DOWN decrements an
index value by an integer amount.

index-name

is the name of an index whose value is to be incremented or decremented.

identifier

is the identifier of an integer numeric item whose value UP adds to the index or
DOWN subtracts from the index.

integer

is an integer that UP adds to the index or DOWN subtracts from the index. It can
be signed.

The value of each index-name is incremented (UP) or decremented (DOWN) by a
value corresponding to the number of occurrences represented by identifier or
integer. Each time, the identifier of an integer numeric item is used as it was at the
beginning of the execution of the statement.

Both before and after the execution of the SET statement, the value of the index must
correspond to an occurrence number of an element in the associated table.

BYSET index-name UP identifier

integerDOWN

VST212.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-226

Procedure Division Verbs SORT
SORT
SORT orders a set of records according to one or more keys. The records can either
be in a file or an input procedure can send them to SORT, one at a time. SORT can
either write the sorted records to a file or it can send them to an output procedure, one
at a time. SORT calls the FastSort utility.

sd-name

is the file name given in a sort-merge file description (SD) entry.

key-specifier

specifies one or more of the items described in the record descriptions of sd-
name.

key

is used to sort the records in ascending or descending order. The first key is
compared first, the second next, and so on. Two records equal in all sort keys
are sorted by their original order in the file.

SORT sd-name key-specifier

COLLATING SEQUENCE phrase

DUPLICATES phrase

input-specifier-1

input-specifier-2

output-specifier-1

output-specifier-2

VST213.vsd

ON

ASCENDING

DESCENDING KEY

key

VST214.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-227

Procedure Division Verbs SORT
DUPLICATES phrase

specifies that, if two or more records contain equal values for all sort keys, their
final order within the sort file is the order in which they were released to the sort
file. If this phrase is omitted, the order of such duplicate records is arbitrary.

COLLATING SEQUENCE phrase

specifies a collating sequence for sorting. The alphabet-name must be associated
with a sorting sequence in the SPECIAL-NAMES paragraph of the Environment
Division (see SPECIAL-NAMES Paragraph).

input-specifier-1

specifies a procedure that sends records one at a time to SORT using one or more
RELEASE statements. The procedure input-specifier-1 cannot terminate
before it finishes sending records.

inproc-1
inproc-2

are sections or paragraphs of the Procedure Division.

WITH

DUPLICATES

IN ORDER

VST215.vsd

COLLATING

SEQUENCE

IS

alphabet-name

VST216.vsd

PROCEDURE

IS

inproc-1INPUT

THROUGH

THRU

inproc-2

VST217.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-228

Procedure Division Verbs SORT
input-specifier-2

specifies one or more files (a maximum of 31) that contain the records to be
sorted.

infile

is a file description name. During execution of the SORT statement, infile
must either be closed or be open in another process or by another file
description entry, but not in conflict with a following open for protected input.

output-specifier-1

specifies a procedure that processes the sorted records, one at a time. Each
record is returned by a RETURN statement. The procedure output-specifier-
1 cannot terminate before it finishes returning all the sorted records.

outproc-1
outproc-2

are sections or paragraphs of the Procedure Division.

output-specifier-2

specifies one or more files (a maximum of 31) where the sorted records are to be
written.

USING infile

VST381.vsd

PROCEDURE

IS

outproc-1OUTPUT

THROUGH outproc-2

THRU

VST218.vsd

GIVING outfile

VST382.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-229

Procedure Division Verbs SORT
outfile

is a file description name. During execution of the SORT statement, outfile
must be closed and cannot be locked.

Usage Considerations:

• Using the Features of FastSort

Three utility routines that enable you to control the features of FastSort (such as
multi-processor parallel sorting) are:

For descriptions of the preceding routines, see Section 13, Libraries and Utility
Routines.

• How the Scratch File is Determined

In this explanation, if a scratch file is specified but its value is all spaces, assume
that no scratch file was specified.

If COBOL_SET_SORT_PARAM_TEXT_ specifies a SCRATCH-FILE, then that file
is the scratch file.

If the SELECT statement associated with sd-name specifies the
=_SORT_DEFAULTS DEFINE as the define-name-literal, then:

° If the =_SORT_DEFAULTS DEFINE exists and specifies a scratch file, then
that file is the scratch file.

° If the =_SORT_DEFAULTS DEFINE exists but does not specify a scratch file,
then a temporary file on the volume $SYSTEM is the scratch file.

° If no =_SORT_DEFAULTS DEFINE exists, then a temporary file on the volume
$SYSTEM is the scratch file.

° If the SELECT statement associated with sd-name does not specify the
=_SORT_DEFAULTS DEFINE as the define-name-literal, then the file
that the SELECT statement specifies is the scratch file.

For instructions for creating the =_SORT_DEFAULTS DEFINE, see the FastSort
Manual.

• How the Volume of the Temporary Swap File is Determined

The operating system assigns a swap file to swap pages in and out of memory
while the compiler is running. The swap file mirrors all of the data areas that the
compiler uses. The ideal swap file is a fast device that is neither busy nor mirrored.
To redirect the swap file, give define-name-literal the value
=_SORT_DEFAULTS.

Non-CRE Routine CRE Routine

COBOL85^SET^SORT^PARAM^VALUE COBOL85_SET_SORT_PARAM_VALUE_

COBOL85^SET^SORT^PARAM^TEXT COBOL85_SET_SORT_PARAM_TEXT_

COBOL85^RETURN^SORT^ERRORS COBOL85_RETURN_SORT_ERRORS_
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-230

Procedure Division Verbs SORT
The swap file is a temporary file with a volume but no subvolume. If you specify a
swap file, the file-id you specify is not used, only the volume. If you specify
only the file-id, the default volume is used.

In this explanation, if a swap file is specified but its value is all spaces, assume that
no swap file was specified.

If COBOL_SET_SORT_PARAM_TEXT_ specifies a SWAP-FILE, then the swap
file is created on that file’s volume.

If the SELECT statement associated with sd-name specifies the
=_SORT_DEFAULTS DEFINE as the define-name-literal, then:

° If the =_SORT_DEFAULTS DEFINE exists and specifies a swap file, then
the swap file is created on that file’s volume.

° If the =_SORT_DEFAULTS DEFINE exists but does not specify a swap
file, then the swap file is created on the volume used for the scratch file.

° If no =_SORT_DEFAULTS DEFINE exists, then the swap file is created on
the volume used for the scratch file.

° If the SELECT statement associated with sd-name does not specify the
=_SORT_DEFAULTS DEFINE as the define-name-literal, then the
swap file is created on the volume of the file that the SELECT statement
specifies.

For instructions for creating the =_SORT_DEFAULTS DEFINE, see the FastSort
Manual.

• Placement of SORT Statements

A SORT statement cannot appear in the Declaratives Portion of the Procedure
Division. It can appear anywhere in the other portion except within the range of a
sort input procedure or a sort or merge output procedure.

• File Descriptions

File sd-name must be described by a sort-merge file description entry (sort-merge
file description entry) in the File Section of the Data Division. The file can be
described as having fixed-length or variable-length records. Every file record must
contain all of the sort key fields.

• Restrictions on Sort Keys

Each key identifies a sort key data item and is subject to these restrictions:

° The data item specified by key must be described within a record associated
with sd-name. When sd-name has more than one record description, a sort
key item can be defined within any one of those record descriptions.

° No sort key data item can have a variable size (have a subordinate described
with an OCCURS DEPENDING clause).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-231

Procedure Division Verbs SORT
° No sort key data item can be described with an OCCURS clause or can be
subordinate to an item described with an OCCURS clause.

• Sort Input and Sort Output Files

Files specified by infile and outfile must be defined as data files; that is,
none of them can be defined in a sort-merge file description entry.

If the file identified by sd-name has variable-length records, the size of the
records contained in the file identified by infile must not be less than the size of
the smallest record described for sd-name ; likewise, the size must not be greater
than the size of the largest record described for sd-name. If sd-name is
described as having fixed-length records, the size of the records contained in the
file described by infile must not be larger than the largest record defined for
sd-name.

If the file identified by outfile has variable-length records, the size of the
records contained in the file identified by sd-name must not be less than the size
of the smallest record described for outfile ; likewise, the size must not be
greater than the size of the largest record described for outfile. If outfile is
described as having fixed-length records, the size of the records contained in the
file described by sd-name must not be larger than the largest record defined for
outfile.

If infile specifies a file whose SELECT clause does not include the OPTIONAL
phrase, the file must be present at execution time.

If an instance of outfile identifies an indexed or queue file, the major key must
be associated with the ASCENDING phrase and the first instance of key must
specify the same character positions in its record as are specified for the prime
record key for that file.

A COBOL program can sort to and from these types of files:

° Disk files
° Tape files
° Multiple-reel tape files
° Tape files on a multiple-file reel

No more than one file name from a multiple-file reel can be in a SORT statement.

• Sort Input Procedures

The INPUT PROCEDURE phrase defines a sort input procedure that extends from
inproc-1 to inproc-2, each of which must identify a Procedure Division
section or paragraph. If THROUGH or THRU is omitted, the compiler assumes an
inproc-2 that specifies the same section or paragraph as inproc-1.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-232

Procedure Division Verbs SORT
• Sort Output Procedures

The OUTPUT PROCEDURE phrase defines a sort output procedure that extends
from outproc-1 to outproc-2, each of which must identify a Procedure
Division section or paragraph. If THROUGH or THRU is omitted, the compiler
assumes an outproc-2 that specifies the same section or paragraph as
outproc-1.

• Execution Phases

The execution of the SORT statement consists of three phases:

° The input phase transfers records to the sort file sd-name, either from one or
more infile files specified in a USING phrase or from a sort input procedure
specified in an INPUT PROCEDURE phrase.

° The sort phase reorders these records according to the sort keys and the
applicable collating sequence.

° The output phase either transfers the sorted records to a set of one or more
files specified by outfile in the GIVING phrase or returns them to the sort
output procedure specified in an OUTPUT PROCEDURE phrase.

• Input Phase of Execution

° USING phrase

If the USING phrase appears, the input phase transfers all of the records in
each input file infile to the sort file sd-name. When the SORT statement
begins executing, each input file must be either closed but not locked, or open
but not in conflict with a following open for protected input (that is, the same file
connector cannot be open).

For each input file, the input phase implicitly opens it in the input mode,
executes implicit “READ infile NEXT AT END …” statements to retrieve the
records and implicit release operations to release them to the sort file, then it
implicitly closes the input file. The open and close operations are equivalent to
OPEN INPUT and CLOSE statements without any optional phrases.

All of these implicit functions are performed such that any associated
declarative procedures are executed; however, the execution of a declarative
procedure must not cause the execution of any statement that manipulates any
of the input files or accesses the record area associated with any input file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-233

Procedure Division Verbs SORT
° INPUT PROCEDURE phrase

If the INPUT PROCEDURE phrase appears, the input phase executes an
implicit PERFORM procedure-group statement (where procedure-
group is procedure name, optionally followed by THROUGH or THRU and
another procedure name). The sort input procedure thereby specified is
responsible for releasing the records to be sorted by one or more executions of
RELEASE statements. The sort input procedure must not open a file specified
by outfile. Control automatically returns to the sort operation after
completing the execution of the implicit PERFORM statement.

The range of the implicit procedure must not cause the execution of a MERGE,
RETURN, or SORT statement or a RELEASE statement that references any
sort or merge file other than the one identified by sd-name.

• Sort Phase of Execution

The sort phase reorders the records within the sort file according to their sort key
values. The records of sd-name are first sorted in accordance with their values for
the most significant (first listed) sort key. When two or more records have equal
values for the current sort key, that group of records is then sorted in accordance
with the record values for the next most significant key, and so on. When two or
more records contain equal values for all sort keys, their final order within the sort
file depends on the DUPLICATES phrase. If DUPLICATES is specified, their order
will be the order in which they were released to the sort file. If DUPLICATES is not
specified, their order is arbitrary.

The key s are listed from left to right within the SORT statement in order of
decreasing significance, without regard to how the list of keys is divided into
ASCENDING KEY or DESCENDING KEY phrases; therefore, the data item
specified by the first key is the most significant sort key, and the data item
specified by the last key is the least significant sort key.

The ordering implied by a sort key depends upon its KEY phrase:

° When the sort key is specified in an ASCENDING KEY phrase, the sorted
sequence is from the record having the lowest value in the sort key data item
to the record having the highest value in the sort key data item.

° When the sort key is specified in a DESCENDING KEY phrase, the sorted
sequence is from the record having the highest value in the sort key data item
to the record having the lowest value in the sort key data item.

° In both cases, the determination of which value is higher is made according to
the rules for comparison of operands in a relation condition.

The collating sequence that applies to the comparison of nonnumeric sort key data
items is the one specified by the alphabet-name in the COLLATING SEQUENCE
phrase. When this phrase is not specified, the program collating sequence applies.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-234

Procedure Division Verbs SORT
• Output Phase of Execution

° GIVING phrase

If the GIVING phrase appears, the output phrase transfers all records in the
sd-name file to each output file outfile. Each output file must be in the
closed state, but not in the locked state, when the output phase begins
executing. First, the output phrase implicitly opens each output file in the output
mode. The output phase then executes implicit return operations to retrieve the
records from the sort file and implicit WRITE statements write operations to
release them to each of the output files. Finally, the output phase implicitly
closes each of the output files.

The open and close operations are equivalent to OPEN OUTPUT and CLOSE
statements having no optional phrases.

All of these implicit functions are performed such that any associated
declarative procedures are executed; however, the execution of a declarative
procedure must not cause the execution of any statement that manipulates any
of the output files or accesses the record area associated with any output file.

When more than one instance of outfile is specified, each operation is
performed on each file in the order that they appear in the GIVING phrase.
That is, the output files are opened in order, each retrieved record is written to
each file in order, and then the files are closed in order.

If an output file is a relative file, the relative key data item is set to the value 1
for the first record returned, 2 for the second, and so forth. After the SORT
statement finishes executing, the content of the relative key data item indicates
the last record returned to the file.

If an output file has fixed-length records, each record retrieved from the sort file
containing fewer character positions than the fixed size specified for the output
file is extended on the right with as many space characters as needed before it
is written to the output file.

The first attempt to write beyond the defined boundaries of an output file
causes a boundary violation condition. This in turn causes the execution of the
applicable USE procedure, if one exists. If the logic of the non-CRE
environment permits continued execution of the run unit, control then returns to
the output phase. In this case no additional implicit write operations are
executed for that file; however, the logic of the output phase closes it as
described earlier.

The sort operation automatically closes the sort file after the end of the output
phase. Then the SORT statement terminates execution.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-235

Procedure Division Verbs SORT
° OUTPUT PROCEDURE Phrase

If the OUTPUT PROCEDURE phrase appears, the output phase executes an
implicit PERFORM procedure-group statement (where procedure-
group is the procedure name, optionally followed by THROUGH or THRU
and another procedure name). The sort output procedure thereby specified is
responsible for retrieving the sort file records by one or more executions of
RETURN statements. The sort output procedure must not open the sort input
file infile. Control automatically returns to the sort operation after execution
passes beyond the last statement in the range of the PERFORM statement.

The range of the output procedure must not cause the execution of a MERGE,
RELEASE, or SORT statement or a RETURN statement that references any
sort or merge file other than the one identified by sd-name.

• Sort Scratch File

The FastSort utility determines the default scratch file size if the file-system file
named in the file-control entry does not exist. If the file does exist, SORT uses it.
You can use the File Utility Program CREATE or command interpreter CREATE
command to create the scratch file on disk. If the sort input file is defined to be on
tape, or if the sort receives its records from an input procedure, the default number
of records in the scratch file is 50K.

SORT deletes the scratch file after it completes ordering the records unless you
specify SAVE-SCRATCH in the routine COBOL85^SET^SORT^PARAM^VALUE or
COBOL_SET_SORT_PARAM_VALUE_.

Example 9-64. Typical Use of Input and Output Procedures (page 1 of 2)

FILE-CONTROL.
 SELECT EMPLOYEE-MASTER ASSIGN TO "EMPMST"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.
 SELECT SORT-WORK ASSIGN TO "SORTWORK".

DATA DIVISION.
FD EMPLOYEE-MASTER
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 52 CHARACTERS.
01 EMPLOYEE-DETAIL.
 05 EMPLOYEE-NUMBER PIC X(05).
 05 EMPLOYEE-NAME PIC X(20).
 05 DEPT PIC X(03).
 05 JOB-CLASS PIC X(05).
 05 HOURLY-RATE PIC 9(3)V99.
 05 DEDUCTIONS PIC 9(3)V99.
 05 ANNUAL-SALARY PIC 9(7)V99.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-236

Procedure Division Verbs START
START
START positions a file, in sequential or dynamic access mode, for subsequent read
operations. START cannot reference a file that is open for HP COBOL Fast I-O. If the
START statement executes successfully, it establishes the key of reference and the
initial record position needed for subsequent sequential record retrievals.

SD SORT-WORK
 RECORD CONTAINS 52 CHARACTERS.
01 SORT-RECORD.
 05 EMPLOYEE-NUMBER PIC X(05).
 05 EMPLOYEE-NAME PIC X(20).
 05 DEPT PIC X(03).
 05 JOB-CLASS PIC X(05).
 05 HOURLY-RATE PIC 9(3)V99.
 05 DEDUCTIONS PIC 9(3)V99.
 05 ANNUAL-SALARY PIC 9(7)V99.
 ...
PROCEDURE DIVISION.
 ...
 IF NO-ERROR
 SORT SORT-WORK ON ASCENDING KEY EMPLOYEE-NAME
 OF SORT-RECORD
 INPUT PROCEDURE IS SORTIN-PROC
 OUTPUT PROCEDURE IS SORTOUT-PROC
 ...
SORTIN-PROC SECTION.
 READ EMPLOYEE-MASTER NEXT RECORD
 AT END GO TO SORTIN-EXIT
 END-READ
 IF WS-DEPT EQUAL DEPT OF EMPLOYEE-DETAIL
 OR WS-DEPT EQUAL SPACES
 RELEASE SORT-RECORD FROM EMPLOYEE-DETAIL
 GO TO SORTIN-PROC
 END-IF.
SORTIN-EXIT.
 EXIT.
SORTOUT-PROC SECTION.
 RETURN SORT-WORK
 AT END GO TO SORTOUT-EXIT
 END-RETURN
 MOVE CORRESPONDING SORT-RECORD TO LIST-RECORD
 WRITE LIST-RECORD
 GO TO SORTOUT-PROC.
SORTOUT-EXIT.
 EXIT.
SORT-END SECTION.
 EXIT.

Example 9-64. Typical Use of Input and Output Procedures (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-237

Procedure Division Verbs START
HP COBOL includes two extensions that are of particular interest if you are writing a
server program:

file-name

is the file description name of the file to position. It must have an access mode of
sequential or dynamic and be opened for INPUT or I-O but not for HP COBOL Fast
I-O.

Phrase Description

GENERIC Lets you position a file at the first record in a subset of a file that consists of all
records that satisfy a certain (EQUALS) key relation. After such a START, you
can execute sequential READ statements (READ NEXT, for dynamic-access
mode) to read all records of the subset. When, eventually, a record does not
satisfy the key relation, the run-time routine simulates an at-end condition.

POSITION Lets you position a file at a specific point in a set of duplicate values of an
alternate key (as specified in the KEY phrase). The position-key must be
a unique value: a prime or relative key or a unique alternate key. By using this
feature, a context-free server can return a series of groups of records to its
requester. With each group, it returns the value of the unique key last used.
The requester can then send both the alternate key value for the KEY phrase
and the unique value for the POSITION phrase to the server, to specify where
to begin the next group.

START file-name

KEY phrase

APPROXIMATE

GENERIC

TIME LIMIT wait-time

INVALID

KEY

imperative-stmt-1

END-START

NOT INVALID

KEY

imperative-stmt-2

VST219.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-238

Procedure Division Verbs START
KEY phrase

must appear if the file has sequential organization or if the file has relative
organization but is not described with a RELATIVE KEY clause. If KEY phrase is
omitted, the file’s prime key is used.

relationship

If position is present, relationship is limited to:

key

determines, with relationship, where the file position indicator is to be set.
The file position indicator is to be set such that the next record to be read from
file-name contains a key value having the specified relationship to the
current value of key.

KEY

IS

relationship

position

key

VST220.vsd

GREATER

THAN

EQUAL

TO

OR

=

<

>

NOT

LESS

THAN

>=

VST221.vsd

EQUAL

TO

=

VST223.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-239

Procedure Division Verbs START
The value of key is restricted by the presence or absence of position. If
position is present, key must be either:

• A prime record key or leftmost subordinate of a prime key for an indexed or
queue file

• An alternate key or leftmost subordinate of an alternate key for an indexed,
queue, or relative file

If position is absent, key can be one of:

• The relative key for a relative file

• The prime record key or leftmost subordinate of the prime key for an
indexed or queue file

• An alternate key or leftmost subordinate of an alternate key for a file of any
organization

A reference modifier can be applied to key, but leftmost-character-
position must be the constant 1. For reference modifier syntax, see
Reference Modifier Syntax.

position

specifies that a combination of alternate key or prime key (specified by key in
the KEY phrase) and position-key (specified either by the file prime key or
by a unique alternate key) is to be used to position the file. This phrase is not
permitted for files having sequential organization, or files having the
INSERTIONORDER attribute.

BEFORE

specifies that the file position indicator is set to the record before the
position defined by the values of key and position-key.

AFTER

specifies that the file-position indicator is set to the record after the position
defined by the values of key and position-key.

Note. BEFORE is available only for the NMCOBOL compiler.

Note. Only use BEFORE when the file will subsequently be read in reverse. If the
file is not read in reverse, reading is slightly less efficient.

POSITION position-key

VST222.vsd

AFTER

BEFORE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-240

Procedure Division Verbs START
If neither BEFORE nor AFTER is present, the file-position indicator is set to the
record at the position defined by the values of key and position-key.

position-key

is either the file prime key or a unique alternate key. If position-key is
the file prime key (the prime record key of an indexed or queue file or the
relative key of a relative file), then key must refer to one of:

• The prime key
• A leftmost subordinate of the prime key
• An alternate key
• A leftmost subordinate of an alternate key

If position-key is a unique alternate key (a key described without the
DUPLICATES clause), then key must refer to the same alternate key (or
to a leftmost subordinate of that alternate key).

If position-key is a leftmost subordinate of a prime or alternate key,
see GENERIC.

APPROXIMATE

is the default positioning mode. APPROXIMATE means that reading begins at the
first record that satisfies the relationship that the KEY phrase specifies.
Subsequent READ statements read the records in file key order or physical order,
depending on the file’s organization, until the end of the file is reached.

GENERIC

is an alternative positioning mode. If GENERIC is used, then relationship
must be EQUAL, EQUAL TO, or =. Reading begins at the first record that satisfies
the relationship and continues until the relationship is not satisfied (logical end of
file).

GENERIC is usually used with a partial key; that is, a subordinate item of the key
defined for the file. Use of the leftmost subordinate governs the action of the
GENERIC clause, but the complete alternate key is used for positioning (as
explained in START Statement With the POSITION Phrase).

wait-time

is the time interval, in seconds, in which the operation must complete. wait-time
can be a literal or the name of a data item. In either case, it must have a value
described with at most seven digits preceding any decimal point position. Any
fractional portion is truncated to two decimal places.

If file-name was not opened with a TIME LIMITS phrase, including wait-time
in the START statement causes a run-time error.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-241

Procedure Division Verbs START
imperative-stmt-1

is an imperative statement to be executed when an invalid-key condition is
encountered by the START operation. It is required if no USE statement is
applicable for the file. If both a USE statement and an INVALID KEY phrase are
present, only the INVALID KEY phrase is used.

imperative-stmt-2

is an imperative statement to be executed when no invalid-key condition is
detected in the START operation.

END-START

ends the scope of the START statement, making the START statement a delimited-
scope statement. If the START statement does not end with an END-START
phrase, the presence of the INVALID KEY or the NOT INVALID KEY phrase makes
the START statement a conditional statement, which ends at the next period
separator.

Usage Considerations:

• Action of the START Statement

The START statement proceeds in this manner:

1. It establishes the specified key as the key of reference and searches the file for
the first logical record whose value for that key satisfies the specified relation
with respect to the comparison data item values.

When the specified key is the prime record key or an alternate record key, the
comparison data item is handled as if it were an alphanumeric data item
(regardless of its actual description) and the normal nonnumeric comparison
rules apply, except that the standard collating sequence for the first 128
characters is always used.

When the size of the comparison data item in character positions is less than
that of the file key, the comparison proceeds as if the record’s key value were
truncated on the right so as to reduce its size to the equivalent number of
characters.

Note. The program collating sequence does not apply to file key comparisons.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-242

Procedure Division Verbs START
2. When the file does not contain a qualifying record, the invalid-key condition
exists and the start operation terminates with the I-O status code “23.” When
the search operation succeeds, the file position indicator is set to the value of
the key of reference for the record found.

The execution of the START statement does not alter the contents of the
record area associated with file-name or the content of the depending item
specified in the DEPENDING phrase of the RECORD clause that describes
file-name.

• File-Status Data Item

If file-name has an associated file-status data item, execution of the START
statement always assigns an appropriate I-O status code to it. The value “00”
reports an unconditionally successful start operation. The value “97” reports a
successful start operation that validated a position by reading a locked record.

Note. Use care in specifying the starting record. When you are starting a file with
APPROXIMATE positioning (which is the default), the value you use for wait-time
must take into account that a START can take somewhat longer than expected. This
can occur when the START leads to a nonexistent record, because the file system
searches through the file looking for the next defined record before reporting the
absence of the record sought.

Suppose that your file contains alternate keys that can have duplicates, and one such
alternate key is DEPT-NUM. If you want to start at the department whose number
follows 5440, it is more efficient to use a START of the form

MOVE "5441" TO DEPT-NUM.
START MYFILE KEY IS NOT LESS THAN DEPT-NUM.

than it is to use

MOVE "5440" TO DEPT-NUM.
START MYFILE KEY IS GREATER THAN DEPT-NUM.

because the latter form causes the file system to sequentially read each record having
the key value “5440” until it finds a record whose key exceeds 5440. The time saved
depends upon the number of duplicates in the file.

See the Guardian Programmer’s Guide for more information on the action of READ
(which is called by the START logic).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-243

Procedure Division Verbs START
The values of the I-O status data item for unsuccessful start operations are:

• Invalid-Key Condition

If the START statement contains the INVALID KEY phrase, control passes to the
imperative statement in that phrase, and no USE procedure is executed. If the
START statement does not contain an INVALID KEY phrase, but an applicable
USE procedure exists, that procedure is executed.

• Key Data Item

The data item specified by key is the comparison data item for the start operation.
When this data item is a file key data item, that key is the specified key for the start
operation; otherwise, the file key data item of which key is a leftmost subordinate
specifies the file key for the start operation.

The key data item can be reference-modified. It can be a level 66 (RENAMES)
item.

key can also be an item whose description contains a REDEFINES clause or
subordinate to an item whose description contains a REDEFINES clause. The
redefining data item and, in the latter case, the data item subordinate to the
redefining item must contain the leftmost character positions of the redefined data
item.

When the KEY phrase does not appear, the start operation behaves as if the
START statement includes the phrase KEY EQUAL TO the-key, in which the-
key is either the relative key data item (for files with relative organization) or the
prime record key data item (for files with indexed organization).

I-O Status Code Unsuccessful Start Operation

“23” The file position indicator indicates that an optional input file is not
present, the invalid-key condition exists, and the start operation
terminates.

“30” Either the time specified in the TIME LIMIT phrase elapsed before
the start operation completed (indicated by the special register
GUARDIAN-ERR having the value “40”), or the start operation
failed for some non-COBOL reason. In either case, the value of
the file position indicator becomes undefined.

“47” The file identified by file-name is not open for INPUT or for
I-O. The start operation terminates.

“90” The program attempted to use the TIME LIMIT phrase when the
associated OPEN statement does not specify TIME LIMITS.

“91” The program attempted to use the POSITION phrase when the
file has insertion-ordered alternate keys. The start operation fails.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-244

Procedure Division Verbs START
• TIME LIMIT Phrase

If the TIME LIMIT phrase appears, the time limit operand is evaluated and
rounded, if necessary, to include at most two fractional digits. When the result is
negative, the TIME LIMIT phrase does not apply, and the operation is not subject
to a time limit; otherwise, the result specifies the time interval, in seconds, within
which the start operation must complete. The start operation fails if an acceptable
record cannot be located within the time interval specified.

If the TIME LIMIT phrase is specified with a nonnegative value, and the file is not
opened with time limits enabled, the program terminates with an I-O status code
“90,” and a message, “File is not opened for timed I-O,” is delivered to the
process’s home terminal.

• Effect of Declaratives on Termination

If there is no declarative procedure applicable to the file when the operation is
terminated, the program terminates, and an error message is reported to the
process’s home terminal.

If the applicable declarative procedure is present (but no INVALID KEY phrase is
present) and the time interval expires, the declarative procedure is performed.
Then program execution continues with the imperative statement in the NOT
INVALID KEY phrase, if one is present, or otherwise with the statement following
the one terminated.

• Result of Successful Start Operation

A successful start operation identifies a subset of the file’s records that can be
retrieved by subsequent sequential READ statements. The initial record in the
subset is the one located by the search.

When the APPROXIMATE phrase appears, the subset includes all records that
follow the initial record according to the key of reference.

When the GENERIC phrase appears, the subset includes only those records
whose value for the key of reference satisfies the specified relation with respect to
the comparison data-item value. During the execution of subsequent READ NEXT
statements, the at-end condition occurs when the run-time routines detect the end
of the subset.

When neither the APPROXIMATE nor the GENERIC phrase is present, the start
operation behaves as if the APPROXIMATE phrase is present.

When the execution of the START statement is successful, the key of reference
established for the start operation is also used for any subsequently executed
READ NEXT statements for the file, until the execution of some statement explicitly
establishes a different key of reference.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-245

Procedure Division Verbs START
Whenever the start operation is successful, if a NOT INVALID KEY phrase is
specified, control passes to the imperative statement in that phrase. If that
imperative statement does not transfer control elsewhere using a GO TO
statement, control then passes to the end of the START statement.

• Result of Unsuccessful Start Operation

When the execution of a START statement is unsuccessful for any reason, the file
position indicator is set to indicate that no valid next record has been established,
and the key of reference for the file is undefined.

• START Statement Without the POSITION Phrase

Execution of the START statement establishes the specified key as the key of
reference for the file:

° For sequential files, an alternate key
° For relative files, the relative key item or an alternate key
° For indexed files, a prime key or alternate key
° For queue files, a prime key

The start operation searches the file for the first record whose value for the key of
reference satisfies the specified relation with respect to the comparison data item.

When the specified key is the prime record key or an alternate record key, the
comparison data item is handled as if it were an alphanumeric data item
(regardless of its actual description) and the normal nonnumeric comparison rules
(using the ASCII collating sequence) apply. When the size of the comparison data
item in character positions is less than that of the file key, the comparison proceeds
as if the record’s key value were truncated on the right to reduce its size to the
equivalent number of characters.

When the file does not contain a qualifying record, the invalid-key condition exists,
and the execution of the START statement is unsuccessful.

When the search succeeds, the file position indicator for the file is set to point to
the record found.

• START Statement With the POSITION Phrase

A START statement that includes a POSITION phrase also serves to establish a
key of reference and to establish a value for the file position indicator. If more than
one record has the same alternate key, the POSITION phrase determines which
record is read. If the program is reading according to a partial alternate key that
has duplicate values in the file, but the complete alternate key values are unique,
the POSITION phrase has no effect (even if the alternate key is specified with the
DUPLICATES phrase).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-246

Procedure Division Verbs START
Suppose a requester asks for a set of records from a member of a context-free
server class: all the records that have a certain alternate key value, or partial value.
If the message buffer cannot hold all such records, the server can return the first
group of records plus the value of the unique key with the reply. This value is that
of the prime record key, the relative key, or the entire alternate key declared as
having no duplicates. Then the requester can ask for another group, supplying the
value of both the partial alternate key and the unique key, and the server can
resume with the last record it had sent or (by using the AFTER phrase) the record
beyond that. The server can remain context-free, because the information
necessary to do the positioning and to establish the key of reference and the
comparison length (for partial keys) accompanies the request.

° GENERIC Positioning Mode and the POSITION Phrase

The choice of APPROXIMATE or GENERIC positioning mode, coupled with
the KEY clause, govern where the next READ statement starts reading and
what constitutes the end of the file (or the beginning of the file, if the file is
being read in reverse). A common use of GENERIC involves reading all
records that have a common value in the leftmost subordinate of a given
alternate key; for example, all records that have a 10-character alternate key,
where the first five characters of that key have the value “A5R32.” Under the
GENERIC mode, the program reads records until it encounters one that has
something different in the first five characters for that alternate key, then the
program receives an end-of-file condition instead of a new record value.

Only if the file contains multiple records that have the same value for the
complete alternate key (not just the leftmost subordinate) can the POSITION
phrase be used as outlined in the general discussion earlier to process groups
of records.

° BEFORE and AFTER Phrases

If neither the BEFORE phrase nor the AFTER phrase is included, the
execution of the START statement sets the file position indicator to point to the
record uniquely identified by the two key values.

If the BEFORE phrase is included, the execution of the START statement sets
the file position indicator to point to the record preceding the one that the two
key values uniquely identify.

If the AFTER phrase is included, the execution of the START statement sets
the file position indicator to point to the record following the one that the two
key values uniquely identify.

• INSERTIONORDER Attribute Incompatible with POSITION Phrase

The POSITION phrase can be used only if the file on which the START statement
is operating has the NO INSERTIONORDER attribute; that is, records with
duplicate values of an alternate key are delivered in principal key order.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-247

Procedure Division Verbs START
• Next READ After a START with POSITION Might Fail

When you use the POSITION phrase, there is no guarantee that the record you
specify actually exists. In this aspect, the start-with-position operation differs from
the ordinary COBOL start operation. The positioning operation merely sets the file
position indicator to the file location where the record can be found if it exists;
therefore, the invalid-key condition does not occur when the record does not exist.
Instead, the first subsequent sequential READ statement encounters the at-end
condition (if the physical end of the file has been reached, or if the logical end of
file associated with the generic positioning mode has been reached).

• Determining Key Value of Last Record of an Indexed or Queue File

To determine the key value of the last record of an indexed or queue file, which is
especially important when using the READ REVERSED statement, move HIGH-
VALUES to the key and then use the START statement with the relationship
LESS THAN. START LESS THAN positions the indexed file so that a READ NEXT
or READ REVERSED statement accesses the last record in the file.

Table 9-11. Using the POSITION and KEY Phrases

Position-Key Key
Length Used and
Restriction Effect

Relative key
(ORGANIZATION
RELATIVE)

Alternate or
alternate(1:n)

Relative key

length (entire alternate)
+ 4 < 254

4 (which is the length of
the relative key)

Full value of alternate
AND of relative used

Relative key used alone

Prime key
(ORGANIZATION
INDEXED)

Alternate or
alternate (1:n)

Prime key

length (entire alternate)
+ length (prime) < 254

length (prime)

Full value of alternate
AND of prime used

Prime key used alone

Alternate key
(ORGANIZATION
RELATIVE or
INDEXED)

Same alternate
or alternate (1:n)

Full alternate must be
unique (no
DUPLICATES) < 254

Full value of alternate
used alone

Example 9-65. START Statement for Indexed File (page 1 of 2)

SELECT RECEIVABLES-MASTER ASSIGN TO "RECMAST"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS INVOICE-NUMBER
 ALTERNATE RECORD KEY IS COMPANY-NAME
 WITH DUPLICATES.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-248

Procedure Division Verbs START
Example 9-66 reads all records for employees whose last names start with G.

PROCEDURE DIVISION.
 ...
 OPEN I-O RECEIVABLES-MASTER
 ...
 MOVE LOW-VALUES TO COMPANY-NAME
 START RECEIVABLES-MASTER KEY NOT LESS THAN COMPANY-NAME
 INVALID KEY
 DISPLAY "ERROR STARTING READ FOR REPORT"
 GO TO REPORT-EXIT
 END-START.
GET-NEXT-RECORD.
 READ RECEIVABLES-MASTER NEXT RECORD
 AT END PERFORM...

Example 9-66. START Statement With GENERIC Phrase for Sequential File

 SELECT INPUT-FILE ASSIGN TO "INFILE"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL
 ALTERNATE RECORD KEY IS EMP-NAME
 WITH DUPLICATES.
 ...
FD INPUT-FILE
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 95 CHARACTERS
 DATA RECORD IS PERSONNEL-DATA.
01 PERSONNEL-DATA.
 05 DEPT-NO PIC 9(5).
 05 EMPLOYEE-NO PIC 9(7).
 05 EMP-NAME.
 10 LAST-NAME.
 15 FIRST-LETTER PIC X.
 15 FILLER PIC X(14).
 10 FIRST-NAME PIC X(9).
 ...
PROCEDURE DIVISION.
 ...
 OPEN I-O INPUT-FILE
 ...
 MOVE "G" TO FIRST-LETTER
 START INPUT-FILE KEY = FIRST-LETTER GENERIC
 INVALID KEY GO TO START-ERROR-ROUTINE
 END-START
 READ INPUT-FILE
 AT END

Example 9-65. START Statement for Indexed File (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-249

Procedure Division Verbs START
Example 9-67, fragments of a server program, shows the use of a START statement
with a POSITION phrase. The query the server gets through $RECEIVE includes a
department number and a unique employee number. The server is to return an array
containing information about all employees in the specified department.

At the first call, the requester sends the chosen department number but an employee
number of zero. If there are more than ten employees in a department, the server
reports only the first ten it found. The requester can then send another query, but this
time it includes the employee number of the last array entry of the previous reply. By
using this technique, the server remains context-free, able to serve another requester.

When the server executes the START statement, the key of reference used with the
GENERIC phrase is still the department number, but the presence of a unique record
key value of EMP-NO in the AFTER POSITION phrase says to resume reading along
the DEPT-NO path after the record for the specified employee.

Example 9-67. START Statement With POSITION Phrase (page 1 of 2)

 SELECT EMP-FILE ASSIGN TO "EMPL1093"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS EMP-NO
 ALTERNATE RECORD KEY IS DEPT-NO WITH DUPLICATES
 ALTERNATE RECORD KEY IS EMP-NAME WITH DUPLICATES
 FILE STATUS IS EMP-STATUS.
 ...

DATA DIVISION.
 FILE SECTION.
 ...
 FD EMP-FILE.
 01 EMP-DATA.
 05 EMP-NO PIC 9(6).
 05 EMP-NAME PIC X(45).
 05 EMP-DEPT PIC 9(7).
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-250

Procedure Division Verbs START
In Example 9-67, suppose that department 1572 has 12 employees:

000131Smith Jan 0001572
001552Nguyen Tracy 0001572
001744Dietrich Pat 0001572
001745Wellhausen Robin 0001572
001746Thomas Kim 0001572
001991Chew Meredith 0001572
004451O'Hara Flemming 0001572
005433Logan Shannon 0001572
006112McClure Beck 0001572
009733Kinoshita Lynn 0001572
012255Bostrup Stacy 0001572
013146Tilden Tex 0001572

If the requester sends a request with an EMP-NO value of zero for department 1572,
the server returns the records for the first 10 employees (131 through 9733) in
response. If the requester sends EMP-NO as 9733 in the second request for
department 1572, the START AFTER positions the file to resume reading after that
number, so the server returns the last 2 records in the file.

PROCEDURE DIVISION.
 ...
 OPEN INPUT EMP-FILE
 ...
* Read $RECEIVE to get the query
 READ REC-IN ...
* If this is an initial request, do a nonposition start
 IF DEPT-NO OF EMP-LIST-REQUEST = ZEROS
 START EMP-FILE KEY = DEPT-NO OF EMP-DATA
 GENERIC
* Otherwise, resume after record last reply array ended with
 ELSE
 START EMP-FILE KEY = DEPT-NO OF EMP-DATA
 AFTER POSITION EMP-NO
 GENERIC
 END-IF
 * Zero the counter
 * Perform (with test after) until EOF or 10 employees found:
 * Read EMP-FILE NEXT record
 * If EOF, return array to requester with signal for EOF
 * else add 1 to the counter
 * copy info to the array
 * end-if

Example 9-67. START Statement With POSITION Phrase (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-251

Procedure Division Verbs STARTBACKUP
STARTBACKUP

STARTBACKUP defines options for handling process pairs and starting the backup
process.

cpu

is the processor module where the backup process is to run. The cpu parameter
is either an integer numeric literal or an identifier that designates an integer
numeric data item. The value associated with cpu must not be less than 0 nor
greater than 15 and cannot designate the same processor in which the process
executing the STARTBACKUP statement is running.

options

is either an integer numeric literal or an identifier that designates an integer
numeric data item. The value must be 0, 1, 2, or 3.

Note.

• Do not use this directive in the OSS environment.

• Before RVU D46.00 and G06.00, software product revision T8107AAT (run-time library
T8108AAR), tThe NMCOBOL compiler ignores this directive and issues a warning.

Value Meaning (page 1 of 2)

0 The fault-tolerant facility is to read and process system messages, and the
primary process is to terminate abnormally if a trap condition occurs. If this
option is specified and the primary process is stopped (because of a command
interpreter STOP command or by a third process), the backup process stops.
The non-CRE environment run-time processes relevant system messages,
such as CPU-DOWN, as part of this activity. The occurrence of a trap condition
in the primary process causes it to fail (see the explanation of ARMTRAP in
the Guardian Programmer’s Guide.) Additionally, if the backup process fails,
the primary process automatically starts a new backup process when it is
possible to do so.

1 This option is the same as option 0 except that if the primary process stops,
the backup process takes over processing of the application.

2 This option is the same as option 1 except that if the primary process
encounters a trap condition, it enters the DEBUG procedure instead of being
terminated abnormally. (For an explanation of traps and the DEBUG
procedure, see the Guardian Programmer’s Guide.)

STARTBACKUP cpu options backup-ext

VST224.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-252

Procedure Division Verbs STARTBACKUP
backup-ext

is ignored by the NMCOBOL compiler. For a program compiled by the COBOL85
compiler, backup-ext works only if the program runs in the Guardian
environment and in the CRE. It is an integer numeric literal or an integer numeric
data item. Its legal values and their meanings are:

Usage Considerations:

• When STARTBACKUP Statement Has No Effect

In the OSS environment, or in the Guardian environment when PARAM NONSTOP
OFF is active, the STARTBACKUP statement has no effect.

• NONSTOP Compiler Directive

The STARTBACKUP statement can appear in a source program only when the
compiler finds the NONSTOP directive before it finds an Identification Division
header (see NLD).

• Backup Process and Takeover Points

When the process is qualified to execute as a process pair, successful execution of
the STARTBACKUP statement establishes and initializes a backup process. The
STARTBACKUP statement does not itself establish a valid takeover point; this is a
function of the CHECKPOINT, OPEN, or CLOSE statement.

Code a CHECKPOINT statement after each STARTBACKUP statement so that the
new backup process will have all the data it needs for a possible takeover.

3 The primary process, rather than the fault-tolerant facility, reads the $RECEIVE
file and takes appropriate action for system messages. In addition, if the
primary process encounters a trap condition, it enters the DEBUG procedure.
When this option is in force and the backup process fails, the primary process
must re-execute the STARTBACKUP statement to reestablish the backup.
(This is considered an advanced option because it requires direct calls to the
operating system. If you use this option, see the information on interprocess
communication and checkpointing in the Guardian Programmer’s Guide.)

Value Meaning

0 (default) The Extended-Storage Section is not to be backed up.

1 The Extended-Storage Section is to be backed up.

Note. If the primary process executes a STOP RUN statement, the backup process also
stops, regardless of the specified option.

Value Meaning (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-253

Procedure Division Verbs STARTBACKUP
• Creation and Maintenance of a Backup Process

Execution of the STARTBACKUP statement assigns a value to the special register
PROGRAM-STATUS, reflecting the success or failure of the creation of the backup
process. PROGRAM-STATUS is a record with two fields, PROGRAM-STATUS-1
and PROGRAM-STATUS-2:

01 PROGRAM-STATUS.
 02 PROGRAM-STATUS-1 PIC X.
 02 PROGRAM-STATUS-2 PIC XXX.

Automatic backup process maintenance (for levels below 3) does not take effect
until after the successful execution of a STARTBACKUP statement.

For PROGRAM-STATUS values, see Table 32-1 and Table 32-2.

• Unnamed Processes

If the process to which the STARTBACKUP statement applies was not initiated as
a named process (that is, with the NAME option of the RUN command), the
STARTBACKUP statement returns a specific value in the special register
PROGRAM-STATUS. In the CRE, the value is 4922; in the non-CRE environment,
it is 4013.

• STARTBACKUP Options

For most applications, use option 0 or 1. For either of these options, a
STARTBACKUP statement must execute once during the initialization phase of the
program (check the outcome of the STARTBACKUP execution by examining the
PROGRAM-STATUS variable). At each successive checkpoint, the fault-tolerant
facility checks the state of the backup process and processor. If the backup
process is inoperable, the fault-tolerant facility re-creates the backup process. If
the backup’s processor is operable, the fault-tolerant facility re-creates the backup
process immediately. If the backup’s processor is inoperable, the fault-tolerant
facility re-creates the backup process when backup’s processor becomes
operable.

• What Fault-Tolerant Facility Checkpoints

° TNS

The fault-tolerant facility checkpoints the lower 32 KB of user data space, all
open files, and (if selected) extended storage when the STARTBACKUP
statement is executed; however, your program must contain a CHECKPOINT
statement to verify the creation of a backup process and to establish a valid
takeover point in the program code (rather than in the run-time library).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-254

Procedure Division Verbs STARTBACKUP
° TNS/R

The fault-tolerant facility checkpoints the global-data portion of the globals-
heap segment, the main stack, and all open files when the STARTBACKUP
statement is executed; however, your program must contain a CHECKPOINT
statement to verify the creation of a backup process and to establish a valid
takeover point in the program code (rather than in the run-time library).

• Whether to Back Up the Extended-Storage Section (COBOL85 Compiler Only)

If the value of backup-ext is 0, the STARTBACKUP statement does not back up
the Extended-Storage Section. If a backup process takes over, the contents of any
data item in the Extended-Storage Section is undefined unless that data item is
explicitly referenced in a CHECKPOINT statement. If the contents are undefined,
VALUE clauses have no effect and the extended stack functions incorrectly. (The
extended stack is important only if the HP COBOL program calls a non-COBOL
routine that uses it. FORTRAN routines, for example, can use the extended stack.)

If the value of backup-ext is 1, the STARTBACKUP statement backs up the
Extended-Storage Section. If a backup process takes over, the contents of any
data item in the Extended Storage Section are determined:

If the data item … Then its contents are …

has a VALUE clause as specified by the VALUE clause

has no VALUE clause and the BLANK directive
applies

spaces

and the NOBLANK
directive applies

undefined
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-255

Procedure Division Verbs STOP
STOP
STOP halts the execution of a run unit, either permanently or only to display a
message.

RUN

halts the execution of a run unit and transfers control to the operating system,
closing any open files.

message

is a nonnumeric literal string. Execution stops temporarily and message is sent to
the home terminal. When any response or carriage return is entered, execution
resumes.

The routine COBOL85^COMPLETION or COBOL_COMPLETION_ provides the
application program a means of reporting a completion code to the operating
environment and terminating execution.

This statement suspends processing until the home terminal sends a carriage return:

STOP "Press Return to show you are out there.".

This sequence of statements is equivalent:

DISPLAY "Press Return to show you are out there.".
ACCEPT USER-REPLY.

Note. The 1985 COBOL standard classifies the latter use as obsolete, so you are advised not
to use it.

Note. The 1985 COBOL standard classifies message as obsolete, so you are advised
not to use it. Instead, use a DISPLAY statement followed by an ACCEPT statement.

STOP

«message»

RUN

VST225.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-256

Procedure Division Verbs STRING
STRING
STRING combines some or all the characters from two or more data items into one
other data item.

part-1

is an alphanumeric literal or identifier of a DISPLAY data item. The concatenation
of their values is stored in the data item named by result. If a data item is
numeric, it must be described as an integer without P in its PICTURE character-
string. When a figurative constant is used, it represents a one-character
nonnumeric literal.

STRING

part-1 DELIMITED

BY SIZE

INTO

ON

OVERFLOW

POINTER

END-STRING

delimiter

result

pointer

imperative-stmt-1

WITH

ON

OVERFLOWNOT imperative-stmt-2

VST226.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-257

Procedure Division Verbs STRING
delimiter

is an alphanumeric literal or the identifier of a DISPLAY data item. It specifies the
portion of part-1 that is moved. It also specifies that all characters up to but not
including the value of delimiter are moved.

If the literal is a figurative constant, it represents the equivalent one-character
nonnumeric literal.

If the data item is numeric, it must be described as an integer whose PICTURE
character-string does not include P.

SIZE

specifies that all the characters in part-1 are moved.

result

is an identifier for an alphanumeric data item where the characters chosen from the
part-1 s are stored. If result is an elementary item, its PICTURE character-string
must not contain editing symbols or a JUSTIFIED clause. Reference modification
is not permitted.

Storing begins at the position identified by the initial value of pointer. When
pointer is not used, the leftmost position is the beginning place. An internal
index keeps track of the next available position in result. result cannot
reference a special register.

pointer

is the identifier of an integer data item whose PICTURE character-string does not
include P. The initial value of pointer (which you must set) is the position in
result to which the first character of data will be moved. The value of the first
position is 1. At the conclusion of STRING, pointer ’s value is its initial value plus
the total number of characters moved. pointer cannot reference a special
register.

imperative-stmt-1

is an imperative statement to be executed when the internal index points past the
end of result. OVERFLOW also occurs if the initial value of pointer is less
than 1 or greater than the length of result. If no OVERFLOW statement is given,
control passes to the next statement after STRING.

imperative-stmt-2

is an imperative statement to be executed when the internal index does not point
past the end of result.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-258

Procedure Division Verbs STRING
END-STRING

ends the scope of the STRING statement, causing the STRING to be a delimited-
scope statement. If the STRING statement does not end with an END-STRING
phrase, the presence of the OVERFLOW or the NOT OVERFLOW phrase causes
the STRING statement to be a conditional statement, which ends at the next period
separator.

Usage Considerations:

• Operand Identification

For each identifier, the process of operand identification occurs only once, at the
beginning of the execution of the STRING statement.

• Initialization

The execution of the STRING statement begins in this manner:

1. The data item specified by result is established as the receiving item.

2. When the POINTER phrase appears, the data item specified by pointer is
established as the pointer variable.

If the initial value of pointer is less than 1 or greater than the size of the
receiving item, then the overflow condition exists immediately and no string
operation occurs; otherwise, the initial value of pointer determines the
relative character position within result at which the first sending value is
assigned. The leftmost character position is designated to be 1.

When the POINTER phrase does not appear, the string operation presumes an
initial relative character position of 1.

• String Operation Cycle

The string operation transfers data from each part-1, in the same order as they
are specified in the STRING statement. The steps involved in the transfer of a
sending value are:

° Determining the transfer string

If the applicable DELIMITED phrase specifies delimiter, then the value of
the current part-1 is examined character by character from left to right until
either of these is found: the end of the value, or a sequence of contiguous
characters that matches the value of delimiter.

If a match is found, the transfer string consists of the portion of the sending
value preceding the character that matches the first character of the delimiter;
otherwise, the transfer string consists of the entire sending value.

If the applicable DELIMITED phrase specifies SIZE, then no delimiter exists
and the transfer string always consists of the entire sending value.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-259

Procedure Division Verbs STRING
° Copying the transfer string to the receiving item

Assignment of the transfer string to the receiving item (result) proceeds on a
character by character basis. Beginning with the leftmost character, each character
of the transfer string is moved into the receiving item character position designated
by the pointer value, which is incremented by 1 after each character is moved.

° Overflowing the size of the receiving item

Overflow occurs if not all of the characters of a transfer string can be moved to
the receiving item. The overflow condition exists when the pointer value
exceeds the size of the receiving item during assignment of any transfer string
or after completing assignment of any transfer string except the last one. After
assignment of the last transfer string, the pointer value can be one character
past the end of the receiving item, and overflow does not occur unless there
are leftover characters in the transfer string.

If the overflow condition exists, the string operation terminates immediately.
Any remaining characters in the current transfer string are ignored; any
sending values not yet processed are ignored.

• State of the Rest of result

After termination of the string operation, only the portion of the data item specified
by result that was referenced as described earlier is changed. That is, any
portions preceding the first character assigned or following the last character
assigned retain their previous value.

When the execution of a STRING statement specifying a POINTER phrase
terminates, either normally or due to an overflow condition, the contents of the data
item specified by pointer contains a value equal to its initial value plus the total
number of characters transferred into the data item specified by result.

• Overflow Condition

When an overflow condition exists, execution of the STRING statement terminates
at that point. If the OVERFLOW phrase is specified, the imperative statement in
that phrase is executed; otherwise control passes directly to the end of the
STRING statement.

• Overlapping Operands

If any part of the storage area referenced by result or of that referenced by
pointer is the same as the storage area referenced by any other identifier
appearing in the STRING statement, the execution of the STRING statement will
produce unpredictable results.

• National Data Items and National Literals

If any of the data items part-1, delimiter, and result is a national data item
or national literal, then all of them must be national items.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-260

Procedure Division Verbs STRING
In Example 9-68, STRING builds a single data item from several data items. Also see
the examples in UNSTRING.

Example 9-68. STRING Statement

Input:

WORKING-STORAGE SECTION.
77 PART-1 PIC X(10).
77 PART-2 PIC X(26).
77 PART-3 PIC X(10).
77 RESULT-1 PIC X(80) VALUE SPACES.
77 COUNT-1 PIC 99.
PROCEDURE DIVISION.
A10-START.
 DISPLAY "ENTER PART-1 (MAX 10 NUMERIC CHARACTERS)"
 ACCEPT PART-1
 INSPECT PART-1 REPLACING ALL " " BY "0"
 IF PART-1 NOT NUMERIC DISPLAY "NOT NUMERIC"
 GO TO A10-START
 END-IF
 DISPLAY "ENTER PART-2 (MAX 26 CHARACTERS)"
 ACCEPT PART-2
 DISPLAY "ENTER PART-3 (MAX 10 CHARACTERS)"
 ACCEPT PART-3
 MOVE 1 TO COUNT-1
 STRING PART-1 DELIMITED BY ZERO
 SPACE DELIMITED BY SIZE
 PART-2 DELIMITED BY SPACE
 SPACE DELIMITED BY SIZE
 PART-3 DELIMITED BY SPACE
 INTO RESULT-1 WITH POINTER COUNT-1
 END-STRING
 DISPLAY "PART-1 = " PART-1
 DISPLAY "PART-2 = " PART-2
 DISPLAY "PART-3 = " PART-3
 DISPLAY "COUNT-1 = " COUNT-1
 DISPLAY "RESULT-1 AFTER STRING = " RESULT-1
 STOP RUN.

Output:

>RUN rununit
ENTER PART-1 (MAX 10 NUMERIC CHARACTERS)
?1234 67
ENTER PART-2 (MAX 26 CHARACTERS)
?MINNIE MOUSE
ENTER PART-3 (MAX 10 CHARACTERS)
AAAAA
PART-1 = 1234067000
PART-2 = MINNIE MOUSE
PART-3 = AAAAA
COUNT-1 = 18
RESULT-1 AFTER STRING = 1234 MINNIE AAAAA
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-261

Procedure Division Verbs SUBTRACT
SUBTRACT
SUBTRACT computes differences between numeric values.

Form Description

SUBTRACT FROM Subtracts one or more values from the values of one
or more identifiers and stores the results in the
identifiers; for example,

SUBTRACT A B C FROM D E

stores D - (A + B + C) in D
and stores E - (A + B + C) in E

SUBTRACT GIVING Subtracts one or more values from the values of one
or more identifiers and stores the results in another
set of identifiers; for example,

SUBTRACT A B C FROM D GIVING E

stores D - (A + B + C) in E

SUBTRACT CORRESPONDING Subtracts elements of one data structure from
corresponding elements of another data structure
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-262

Procedure Division Verbs SUBTRACT FROM
SUBTRACT FROM
SUBTRACT FROM subtracts one or more values from the values of one or more
identifiers and stores the results in the identifiers.

subtrahend

is the identifier of a numeric elementary data item or a numeric literal.

minuend-result

is the identifier of a numeric elementary data item.

ROUNDED

specifies that the result is to be rounded before being stored.

imperative-stmt-1

is an imperative statement to be executed when a size error is detected in the
subtraction or in storing the result.

SUBTRACT subtrahend FROM

minuend-result

END-SUBTRACT

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

ROUNDED

VST227.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-263

Procedure Division Verbs SUBTRACT FROM
imperative-stmt-2

is an imperative statement to be executed when no size error is detected in the
subtraction or in storing the result.

END-SUBTRACT

ends the scope of the SUBTRACT statement, causing the SUBTRACT to be a
delimited-scope statement. If the SUBTRACT statement does not end with an
END-SUBTRACT phrase, the presence of the SIZE ERROR or the NOT SIZE
ERROR phrase causes the SUBTRACT statement to be a conditional statement,
which ends at the next period separator.

Usage Considerations:

• Mathematics

The values of all the subtrahend s are totaled. That sum is subtracted from each
result, and the result of each such subtraction is then stored after rounding, if
ROUNDED was specified as the new value of the minuend-result. For
example, the statement

SUBTRACT A B C FROM D E

means store D - (A + B + C) in D and store E - (A + B + C) in E.

• Specifying the Same Data Item for More Than One Result

If more than one minuend-result specifies the same data item, the final value
of that item reflects multiple subtractions of the intermediate sum. For example,

SUBTRACT A FROM B B

means the final value of B is (B - A) - A.

• Operand Identification

For each minuend-result, the process of operand identification occurs just prior
to the “subtract and store” operation; therefore, in

SUBTRACT A, B, C FROM I, I, X(I)

the subscript is not evaluated until the sum of A, B, and C is subtracted twice from
I.

• Arithmetic Operations

See Arithmetic Operations for information on data conversion and alignment,
intermediate results, multiple results (and subscript evaluation), and incompatible
data.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-264

Procedure Division Verbs SUBTRACT GIVING
• Precision

For any series of items involved in a subtraction, when their decimal points are
aligned, the composite picture must involve not more than 18 digits of
representation, or a size error condition can result (which can cause a run unit to
terminate abnormally with an arithmetic overflow condition). For information on
precision of subtraction, see ADD and SUBTRACT Statements.

• ROUNDED, SIZE ERROR, and NOT SIZE ERROR Phrases

See ROUNDED Phrase and SIZE ERROR Phrase for information on these
phrases.

SUBTRACT GIVING
SUBTRACT GIVING subtracts one or more values from a value of one identifier and
stores the results in another set of identifiers.

subtrahend

is a numeric literal or the identifier of a numeric elementary data item.

SUBTRACT subtrahend FROM

ROUNDED

END-SUBTRACT

ON

SIZE ERROR

minuend

GIVING

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

result

VST228.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-265

Procedure Division Verbs SUBTRACT GIVING
minuend

is a numeric literal or the identifier of an elementary numeric data item.

result

is the identifier of a numeric or numeric edited elementary data item.

ROUNDED

specifies that the result is to be rounded before being stored.

imperative-stmt-1

is an imperative statement to be executed when a size error is detected in the
subtraction or in storing the result.

imperative-stmt-2

is an imperative statement to be executed when no size error is detected in the
subtraction or in storing the result.

END-SUBTRACT

ends the scope of the SUBTRACT statement, causing the SUBTRACT to be a
delimited-scope statement. If the SUBTRACT statement does not end with an
END-SUBTRACT phrase, the presence of the SIZE ERROR or the NOT SIZE
ERROR phrase causes the SUBTRACT statement to be a conditional statement,
which ends at the next period separator.

Usage Considerations:

• Mathematics

The values of all the subtrahend s are totaled. That sum is subtracted from
minuend, and the result of this subtraction is then stored after rounding, if
ROUNDED was specified as the new value of each result. For example, the
statement

SUBTRACT A B C FROM D GIVING E

means store D - (A + B + C) in E.

• Changing Operand Values

The SUBTRACT GIVING statement does not change the value of any subtrahend
or the minuend, unless one is also named as a result.

• Arithmetic Operations

See Arithmetic Operations for information on data conversion and alignment,
intermediate results, multiple results (and subscript evaluation), and incompatible
data.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-266

Procedure Division Verbs SUBTRACT CORRESPONDING
• Precision

For any series of items involved in a subtraction, when their decimal points are
aligned, the composite picture must involve not more than 18 digits of
representation, or a size error condition can result (which can cause a run unit to
terminate abnormally with an arithmetic overflow condition). For information on
precision of subtraction, see ADD and SUBTRACT Statements.

• ROUNDED and SIZE ERROR Phrases

See ROUNDED Phrase and SIZE ERROR Phrase for information on these
phrases.

SUBTRACT CORRESPONDING
SUBTRACT CORRESPONDING subtracts elements of one data structure from
corresponding elements of another data structure.

Caution. SUBTRACT CORRESPONDING is not recommended, because minor changes to
one data structure can change the correspondence between its elements and those of the
other data structure, and this is difficult to detect.

SUBTRACT

FROM

END-SUBTRACT

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

group-1

group-2

CORRESPONDING

CORR

ROUNDED

VST229.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-267

Procedure Division Verbs SUBTRACT CORRESPONDING
group-1

is the identifier of a data structure in which some or all of the elementary items are
numeric.

group-2

is the identifier of a data structure that has one or more elementary numeric items.
For each elementary numeric item in group-2 that corresponds to such an item
in group-1, the difference between the values of the two items replaces the value
of group-2.

The composite picture of any pair of items aligned by decimal points must not
involve more than 18 digits of representation.

ROUNDED

specifies that each difference be rounded before being stored.

imperative-stmt-1

is an imperative statement for the compiler to execute when it detects a size error
in any subtraction or in storing the result.

imperative-stmt-2

is an imperative statement to be executed when no size error is detected in any
subtraction or in storing the result.

END-SUBTRACT

ends the scope of the SUBTRACT statement, causing the SUBTRACT to be a
delimited-scope statement. If the SUBTRACT statement does not end with an
END-SUBTRACT phrase, the presence of the SIZE ERROR or the NOT SIZE
ERROR phrase causes the SUBTRACT statement to be a conditional statement,
which ends at the next period separator.

Usage Considerations:

• Definition of Correspondence

Groups of data correspond if they have the same names and qualifier names,
beyond the group-names in the SUBTRACT statement, and if they meet restraints
explained under CORRESPONDING Phrase.

• Problem Inherent in Using SUBTRACT CORRESPONDING

The SUBTRACT CORRESPONDING statement can save keystrokes, but can
cause problems when someone adds a name to a data structure: the name might
be included in an unintended subtraction operation.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-268

Procedure Division Verbs UNLOCKFILE
UNLOCKFILE
UNLOCKFILE restores access to any records in a file previously locked with
LOCKFILE or to those records locked with a LOCK phrase on previous READ
statements. Other processes can then read or write records, depending on the file’s
open mode.

file-name

is the file description name of a file.

Usage Considerations:

• Action of the UNLOCKFILE Statement

A successful UNLOCKFILE statement releases the exclusive file-access guarantee
obtained by a previously executed LOCKFILE statement specifying the same
file-name. It also releases all exclusive record-access guarantees for that file
obtained by previously executed READ LOCK statements. If the file is not locked,
or no records of the file are locked, no error occurs.

• File-Status Data Item

If file-name has an associated file-status data item, execution of the
UNLOCKFILE statement always assigns an appropriate I-O status code as its
value. The status code “00” reports a successful UNLOCKFILE operation.

Whenever the statement terminates with an I-O status code greater than or equal
to “30,” execution of the UNLOCKRECORD failed. The possible I-O status codes
for an unsuccessful UNLOCKFILE operation are:

• Disk Files Only

The UNLOCKFILE statement has no effect unless the file specified is a disk file.

• Key of Reference, File Position Indicator, and Record Area

The key of reference, the file position indicator, and the record area are not
affected by the execution of an UNLOCKFILE statement, whether it succeeded or
not.

I-O Status Code Unsuccessful UNLOCKFILE Operation

“30” The unlock operation failed due to non-COBOL causes. The file
might or might not now be unlocked.

“42” The file was not open.

UNLOCKFILE file-name

VST230.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-269

Procedure Division Verbs UNLOCKRECORD
In Example 9-69, the UNLOCKFILE statement precedes a CLOSE statement to unlock
the file before the process closes it.

UNLOCKRECORD
UNLOCKRECORD restores access by other processes to the last record read (the
record selected by the file position indicator). The record was locked by execution of a
READ LOCK statement.

file-name

is the file description name of a file.

Usage Considerations:

• Action of the UNLOCKRECORD Statement

The UNLOCKRECORD statement affects only the record designated by the file
position indicator for the specified file; therefore, in normal use, it follows a
successful read operation or a successful read-then-rewrite sequence. A
successful UNLOCKRECORD statement releases the exclusive record-access
guarantee obtained by a previously executed READ LOCK statement. If the record
is not locked, no error occurs.

• UNLOCKRECORD Statement Immediately After START Statement

If an UNLOCKRECORD statement is the first input-output statement after a START
statement, a run-time error occurs.

Example 9-69. UNLOCKFILE Statement

 FD IN-MASTER-FILE
 ...
 PROCEDURE DIVISION.
 ...
 IF UPDATE-FILE
 OPEN INPUT IN-MASTER-FILE
 LOCKFILE IN-MASTER-FILE
 PERFORM UP-DATE-MASTER
 UNTIL DONE
 UNLOCKFILE IN-MASTER-FILE
 CLOSE IN-MASTER-FILE
 ELSE
 ...
 UP-DATE-MASTER.
* Perform the update, during which time no other process
* can read any record in that file.
 ...

UNLOCKRECORD file-name

VST231.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-270

Procedure Division Verbs UNSTRING
• File-Status Data Item

If file-name has an associated file-status data item, execution of the
UNLOCKRECORD statement always assigns an appropriate I-O status code as its
value. The status “00” reports a successful UNLOCKRECORD operation.

Whenever the statement terminates with an I-O status code greater than or equal
to “30,” execution of the UNLOCKRECORD failed. The possible I-O status codes
for an unsuccessful UNLOCKRECORD operation are:

• Disk Files Only

The UNLOCKRECORD statement has no effect unless the file specified is a disk
file.

• Key of Reference, File Position Indicator, and Record Area

The key of reference, the file position indicator, and the record area are not
affected by the execution of an UNLOCKRECORD statement, whether it
succeeded or not.

UNSTRING
UNSTRING partitions a data item (the source) into strings of consecutive characters
and stores those strings into other data items (the results). You can determine the
partitioning in two ways:

• Use the size of the result data items.

• Use the presence of specific character sequences in the source (like spaces in a
person’s name or commas and decimal points in an edited number).

When the statement executes, it stores these into data items of your choice:

• Each part

• For each part, the delimiter that ended that part (optional) and the number of
characters stored (optional)

• A count of the parts stored (optional)

• A character-count pointer to specify where in the item the unstring operation
terminates (optional)

I-O Status Code Unsuccessful UNLOCKFILE Operation

“30” The unlock operation failed due to non-COBOL causes. The record
might or might not now be unlocked.

“42” The file was not open.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-271

Procedure Division Verbs UNSTRING
source

is the identifier of an alphanumeric data item containing a sequence of characters
that the unstring operation is to separate into one or more sequences of characters
and store them in one or more result items. source can be qualified or
subscripted, but cannot include reference modification.

UNSTRING source

DELIMITED

BY

delim-1

ALL

ALL

OR delim-2

INTO result-list

WITH

POINTER pointer

TALLYING

IN

tally

OVERFLOW imperative-stmt-1

ON

OVERFLOWNOT imperative-stmt-2

ON

END-UNSTRING

VST232.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-272

Procedure Division Verbs UNSTRING
ALL

causes the unstring operation to handle all consecutive occurrences of the value of
delim-1 as if they were only one occurrence of delim-1. Without ALL, the
unstring operation handles only the first occurrence of the value of delim-1 as
the delimiter.

delim-1

is the identifier of an alphanumeric data item or an alphanumeric literal. If it is a
figurative constant, it must represent a single character.

The delimiter delim-1 marks the end of a portion of the value of source. The
value that the unstring operation stores into a result item does not include the
value of delim-1.

ALL

causes the unstring operation to handle all consecutive occurrences of the value of
delim-2 as if they were only one occurrence of delim-2. Without ALL, the
unstring operation handles only the first occurrence of the value of delim-2 as
the delimiter.

delim-2

is the identifier of an alphanumeric data item or an alphanumeric literal. If it is a
figurative constant, it must represent a single character.

The delimiter delim-2 marks the end of a portion of the value of source. The
value that the unstring operation stores into a result item does not include the
value of delim-2.

result-list

result

DELIMITER

IN

delimstore

VST233.vsd

COUNT

IN

count
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-273

Procedure Division Verbs UNSTRING
result

specifies the identifier of an alphanumeric, alphabetic, or numeric DISPLAY
elementary data item into which the unstring operation copies characters from
source. If result identifies a numeric data item, the PICTURE clause that
describes it cannot contain any P s.

result cannot reference a special register.

An UNSTRING statement can have at most 127 result fields.

delimstore

is the identifier of an alphanumeric data item. You can only use the
DELIMITER phrase when you also use the DELIMITED phrase. The unstring
operation copies the character or characters of source that matched the
delimiter specified in the DELIMITED phrase to delimstore. delimstore
cannot reference a special register.

count

is the identifier of an integer data item. You can only use the COUNT phrase
when you also use the DELIMITED phrase. The unstring operation stores in
count the number of characters it moved to result. If it did not move any
characters, the unstring operation does not alter the value of count, so you
must initialize count to a known value if you want to use it to determine
whether the UNSTRING statement moved any characters to result.

When the character-string from source is longer than result, the unstring
operation truncates it to fit into result, and stores into count the length
source had before it was truncated.

pointer

is the identifier of an integer data item. When you omit this phrase, the unstring
operation begins at the first character of the source data item. When you include
this phrase, the integer value in pointer specifies the position in the source data
item where the unstring operation begins. When the unstring operation completes,
the integer value in pointer specifies the position just beyond the last character
processed by the unstring operation (delimiter or portion copied to a result data
item).

pointer must reference a data item that is capable of containing a numeric value
equal to one plus the size of the item referenced by source. pointer cannot
reference a special register.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-274

Procedure Division Verbs UNSTRING
tally

is the identifier of an integer data item to which the unstring operation adds the
number of result data items it stored. The UNSTRING statement does not
initialize tally but adds to its current value. If you want tally to begin at a
given number, set it before the UNSTRING statement executes.

tally cannot reference a special register.

imperative-stmt-1

is an imperative statement to be executed when overflow occurs; that is, when
these conditions exist:

• The initial value of pointer is less than 1 or greater than the length of
source.

• All data-receiving areas have been acted upon, and source still contains
unexamined characters.

If you do not specify an OVERFLOW clause and an overflow occurs, control
passes to the next statement after UNSTRING.

imperative-stmt-2

is an imperative statement to be executed when overflow does not occur.

END-UNSTRING

ends the scope of the UNSTRING statement, causing the UNSTRING to be a
delimited-scope statement. If you omit the END-UNSTRING phrase, the presence
of the OVERFLOW or the NOT OVERFLOW phrase makes the UNSTRING
statement a conditional statement, which ends at the next period separator.

Usage Considerations:

• Purpose

In general terms, the UNSTRING statement partitions the value of the sending
area (referenced by source) into a sequence of strings of consecutive characters
and stores them in the receiving areas (referenced by a list of one or more
instances of result).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-275

Procedure Division Verbs UNSTRING
• Execution of the UNSTRING Statement

The execution of the UNSTRING statement consists of these three phases:

1. Initialization phase

In the initialization phase, the UNSTRING statement performs these
initialization operations before beginning to cycle through the list of INTO
phrases:

• It establishes the source item as the sending area. Even if the item has a
variable size (is defined with the OCCURS DEPENDING clause), the initial
size is used as the sending area size for the duration of statement
execution.

• If the UNSTRING statement includes the POINTER phrase, the
initialization establishes the pointer item as the pointer variable. The
initial value of this item determines the relative character position within the
sending area at which the unstring operation begins. The first character
position is 1.

• This enables you to start the unstring operation at some character other
than the first character in the source item, and to retain a record of where
the unstring operation terminated. (A later UNSTRING statement could
then begin its operation at the point where another one left off.)

• If the initial value of the pointer item is less than one or greater than the
size of the source item, then the overflow condition exists immediately
and no unstring operation occurs.

• If the UNSTRING statement does not include the POINTER phrase, the
unstring operation begins at the first character position in the sending area.

• If the UNSTRING statement includes a TALLYING phrase, the initialization
establishes tally as the tallying variable.

• Initialization establishes the first result item as the current receiving
area.

2. UNSTRING cycle phase

In the UNSTRING cycle phase, the unstring operation consists of one or more
cycles. Each cycle examines characters in the “sending area” one by one. The
sending area is the portion of the source item beginning at the current
character position and ending at the last character of the source item. Each
cycle assigns an appropriate string of characters to the current result.

The identification of the item to be copied depends on the presence or
absence of the DELIMITED phrase, and on when the unstring operation
reaches the end of the source item.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-276

Procedure Division Verbs UNSTRING
If the statement includes the DELIMITED phrase, the examination proceeds
left to right until it encounters either a delimiter string or the end of the sending
area. A delimiter string is a contiguous set of characters, beginning with the
character under examination, whose value exactly matches the value of any of
the constants or data items specified in the DELIMITED phrase.

If your program has these data items:

05 U PIC X(32) VALUE "The UNSTRING statement is handy."
* '....'....'....'....'....'..
* 5 10 15 20 25 30
01 WORD-LIST.
 03 WORD-1 PIC X(8).
 03 WORD-2 PIC X(10).
 03 WORD-3 PIC X(7).
 03 WORD-4 PIC X(3).
 03 WORD-5 PIC X(8).
 03 WORD-6 PIC X(9).

And if you execute

UNSTRING U DELIMITED BY SPACE
 INTO WORD-1 WORD-2 WORD-3
 WORD-4 WORD-5 WORD-6

the first item to be copied is “The” and the second is “UNSTRING” and so on.

If you specify two or more delimiters, the unstring operation compares their
values with the sending area in the same order as they appear in the phrase. If
a match occurs, the corresponding set of characters in the sending area forms
the delimiter string; any delimiters not yet tested are ignored. If no delimiter
value matches the sending area at the current position, the unstring operation
repeats the delimiter search beginning with the next character of the sending
area. No character in the sending area can be considered a part of more than
one delimiter.

If you execute

UNSTRING U DELIMITED BY SPACE OR "I"
 INTO WORD-1 WORD-2 WORD-3
 WORD-4 WORD-5 WORD-6

the first item to be copied is “The,” the second item is “UNSTR,” the third is
“NG,” and so on.

Two special cases are consecutive delimiters and multicharacter delimiters.

If ALL was not specified and the unstring operation encounters two
consecutive delimiters, it interprets the sending item as zero if result is
numeric. If result is not numeric, the unstring operation interprets the
sending item as spaces.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-277

Procedure Division Verbs UNSTRING
Each instance of delim-1 or delim-2 represents one delimiter. When a
delimiter contains two or more characters, all of the characters must be present
in contiguous positions in the source item, and in the order given, to be
recognized as a delimiter.

If you omit the DELIMITED phrase, the examination proceeds left to right until
the number of characters examined equals the size of the current receiving
area.

If you execute

UNSTRING U INTO WORD-1 WORD-2 WORD-3

 WORD-4 WORD-5 WORD-6

the first item to be copied is “The UNST,” the second item is “RING state,” and
so on.

If the result item is numeric and its operational sign occupies a separate
character position, the number of characters the unstring operation examines
(when you omit the DELIMITED phrase) is one less than the size of the item.

If the unstring operation reaches the end of the source item before it detects
a matching delimiter (for the DELIMITED phrase), or before it fills all the
receiving items, the examination terminates with the last character examined.

If you execute

UNSTRING U DELIMITED BY SPACE
 INTO WORD-1 WORD-2 WORD-3
 WORD-4 WORD-5 WORD-6

The fifth item to be copied is “handy.” There is no sixth item to be copied.

The unstring operation handles the set of characters thus examined (excluding
the delimiter string, if any) as an elementary alphanumeric data item and
copies it to the current receiving area in accordance with the rules for the
MOVE statement. When the set contains no characters (that is, if a delimiter
string begins at the very first character examined in this cycle), the unstring
operation moves a null value to the current receiving area. If the current
receiving area is described as numeric or numeric-edited, the value 0 is
moved; otherwise the value spaces is moved.

If you include a DELIMITER phrase in the INTO phrase for this cycle, the
unstring operation handles the set of characters in the delimiter string as an
elementary alphanumeric data item and copies it to delimstore in
accordance with the rules for the MOVE statement. If the delimiting condition is
the end of the sending area (that is, there is no delimiter string), then the
unstring operation fills the delimiter data item with spaces.

If the delimiter is described as a figurative constant with the ALL qualifier, only
one occurrence of the unqualified figurative constant is moved.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-278

Procedure Division Verbs UNSTRING
If you execute

UNSTRING U DELIMITED BY SPACE OR "."
 INTO WORD-1 DELIMITER IN DEL-1
 ...
 WORD-5 DELIMITER IN DEL-5

you get

"The "

in WORD-1,

" "

in DEL-1, and so on down to

"handy "

in WORD-5 and

"."

in DEL-5.

If you include the DELIMITER phrase in the INTO phrase for this cycle, the
unstring operation advances the current character position in the sending area
to the first character following the delimiter string located in this cycle.

If the specification of the matched delimiter includes the keyword ALL and the
portion of the sending area following the delimiter string contains one or more
repetitions of that set of characters, then the unstring operation advances the
current character position past all repetitions; therefore the unstring operation
considers two or more contiguous occurrences of the matched delimiter string
as equivalent to a single occurrence in determining the beginning character for
the next examination cycle.

If you include a COUNT phrase in the INTO phrase for this cycle, the unstring
operation assigns the numeric value equal to the number of characters
examined (excluding the delimiter string, if any) to count in accordance with
the rules for an elementary move operation.

If you execute

UNSTRING U DELIMITED BY SPACE OR "."

 INTO WORD-1 COUNT IN COUNT-1

 ...

 WORD-5 COUNT IN COUNT-5

you get

"The "

in WORD-1, but 3 in COUNT-1, and you get

"stateme"
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-279

Procedure Division Verbs UNSTRING
in WORD-3 but 9 in COUNT-3.

If you include the POINTER phrase, the unstring operation increments the
value of the pointer item by one for each character examined as a part of
this cycle. This includes each character in the value copied to the receiving
area, each character in the delimiter string (if any), and each character in any
contiguous repetitions of the delimiter string; therefore the resulting value of the
pointer variable reflects the relative character position within the sending area
at which the next cycle begins.

If the sending area still contains any unexamined characters and the current
receiving area is not the last one, then the unstring operation establishes the
next result item as the new current receiving area and begins another
unstring cycle.

If the sending area still contains any unexamined characters but the current
receiving area is the last one, then the overflow condition exists and the
unstring operation terminates.

If the sending area does not contain any unexamined characters, then the
unstring operation terminates normally and any remaining receiving areas are
ignored.

When the execution of an UNSTRING statement with a TALLYING phrase
terminates, either normally or due to an overflow condition, tally contains a
value equal to its initial value plus the number of data receiving items that were
assigned new values.

If an overflow condition arises, execution of the UNSTRING statement
terminates at that point.

3. OVERFLOW/NO OVERFLOW processing phase (optional)

If you include an OVERFLOW phrase, the imperative statement in that phrase
is executed; otherwise control is transferred to the next executable statement
in the normal way.

• Operand Identification

For each identifier, the process of operand identification occurs only once, at the
beginning of the execution of the UNSTRING statement.

• Operand Overlap

Neither the storage area referenced by pointer nor that referenced by tally
can be the same as or overlap the storage area referenced by any other identifier
appearing in the UNSTRING statement.

The storage area referenced by result, delimstore, and count must not
overlap or be the same as any of the storage areas referenced by source,
delim-1, or delim-2.

Violation of these rules produces unpredictable results.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-280

Procedure Division Verbs UNSTRING
• National Data Items and National Literals

If any of the data items delim-1, delim-2, result, or delimstore is a
national data item or national literal, then all of them must be national items.

In Example 9-70, UNSTRING breaks a data item into a collection of data items.
UNSTRING uses the MOVE statement rules in transferring values into shorter data
items.

In Example 9-71, UNSTRING separates a name, entered as it would be typed on a
mailing envelope, into a last name and a remainder. You could use this mechanism to
build records that can be sorted on last and first name.

Example 9-70. UNSTRING Statement

Input:

DATA DIVISION.
WORKING-STORAGE SECTION.
77 SOURCE-STRING PIC X(18) VALUE "12345 MICKEY ABCDE".
77 UNPART-1 PIC X(3).
77 UNPART-2 PIC X(3).
77 UNPART-3 PIC X(3).
PROCEDURE DIVISION.
A10-START.
 UNSTRING SOURCE-STRING DELIMITED BY " "
 INTO UNPART-1 UNPART-2 UNPART-3
 DISPLAY "UNPART-1 = " UNPART-1
 DISPLAY "UNPART-2 = " UNPART-2
 DISPLAY "UNPART-3 = " UNPART-3
 STOP RUN.

Output:

>RUN RUNUNIT
UNPART-1 = 123
UNPART-2 = MIC
UNPART-3 = ABC

Example 9-71. UNSTRING Statement (page 1 of 2)

 WORKING-STORAGE SECTION.
 01 NAMES-TABLE.
 03 NAMES PIC X(50) OCCURS 10 TIMES
 INDEXED BY NAME-INDEX,
 FIRST-NAME-INDEX.

 01 WORK-GROUP.
 03 NAME-COUNT PIC 99 COMP.
 03 WHOLE-NAME PIC X(50).
 03 LAST-NAME PIC X(50).
 03 REST-OF-NAME PIC X(50).
 03 POINTER-1 PIC 99 COMP.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-281

Procedure Division Verbs UNSTRING
 PROCEDURE DIVISION.
 WHATS-NEXT.
* PROMPT FOR A NAME AS IT WOULD BE TYPED ON AN ENVELOPE
 DISPLAY "Enter a name (or a space to terminate):".
 ACCEPT WHOLE-NAME
 IF WHOLE-NAME = SPACES
 STOP RUN
 END-IF
* INITIALIZE
 MOVE SPACES TO NAMES-TABLE, REST-OF-NAME
 MOVE 0 TO NAME-COUNT

* GET EACH CONSECUTIVE BLOCK OF CHARACTERS ENDING IN ONE
* OR MORE SPACES INTO A NAME (I) AND COUNT THE BLOCKS.
 UNSTRING WHOLE-NAME
 DELIMITED BY ALL " " INTO
 NAMES (1) NAMES (2) NAMES (3)
 NAMES (4) NAMES (5) NAMES (6)
 NAMES (7) NAMES (8) NAMES (9) NAMES (10)
 TALLYING IN NAME-COUNT

* LAST ONE COPIED IS LAST-NAME
 MOVE NAMES (NAME-COUNT) TO LAST-NAME
* IGNORE LEADING SPACES
 IF NAMES (1) = SPACES
 SET FIRST-NAME-INDEX TO 2
 ELSE
 SET FIRST-NAME-INDEX TO 1
 END-IF

* CONCATENATE OTHER NAMES INTO REST-OF-NAME
 MOVE 1 TO POINTER-1
 PERFORM COLLECT-REST
 VARYING NAME-INDEX FROM FIRST-NAME-INDEX BY 1
 UNTIL NAME-INDEX = NAME-COUNT
 DISPLAY "Last name is......" LAST-NAME
 DISPLAY "Rest of name is..." REST-OF-NAME
 DISPLAY " "
 GO TO WHATS-NEXT.
 COLLECT-REST.
 STRING NAMES (NAME-INDEX) DELIMITED BY SPACE
 INTO REST-OF-NAME
 POINTER POINTER-1.

Example 9-71. UNSTRING Statement (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-282

Procedure Division Verbs USE
This is a sample run of Example 9-71 with a typical name and a single-word name:

Enter a name (or a space to terminate):
?Abraham Moyer
Last name is......Moyer
Rest of name is...Abraham

Enter a name (or a space to terminate):

?Johann Philip Geissinger
Last name is......Geissinger
Rest of name is...JohannPhilip

Enter a name (or a space to terminate):
?Copernicus
Last name is......Copernicus
Rest of name is...

The portions of the rest of the name are not separated by spaces. If you want spaces,
make the STRING statement look like this:

STRING NAMES (NAME-INDEX) DELIMITED BY SPACE
 " " DELIMITED BY SIZE
 INTO REST-OF-NAME
 POINTER POINTER-1.

USE
USE defines debugging or exception-handling procedures beyond the standard
techniques of the file system. USE also defines the conditions under which the
procedure paragraphs following it are executed.

USE can appear only as the first statement of a section in the Declaratives Portion of
the Procedure Division, and it must be the only statement in the sentence containing it.
Any other statements that the section contains must be organized into sentences
belonging to paragraphs of the section. Empty debugging declarative sections serve no
purpose.

Each section containing a USE statement is a declarative procedure. A declarative
procedure, together with any associated utility sections, forms a logically discrete area.
(The other logically discrete area of a program is the remainder of the Procedure
Division.)

Control statements (ALTER, GO TO, and PERFORM) specified in one logically
discrete area are, with a few exceptions, not permitted to refer to procedure-names
defined within another logically discrete area. For the detailed restrictions and
permissions, see ALTER, GO TO, and PERFORM.

Form Description

USE DEBUGGING Obsolete. The NMCOBOL compiler ignores it.

USE AFTER EXCEPTION Transfers control to an error-handling procedure
when an error occurs
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-283

Procedure Division Verbs USE DEBUGGING
USE DEBUGGING

USE DEBUGGING traces procedure-names as a program executes. Immediately
before a procedure is executed, the code for the section containing USE DEBUGGING
is executed. If you collect and report procedure-names from a special register as the
program executes, you can monitor the actual sequence of operations and detect logic
errors.

The symbolic debuggers are significantly more versatile than the USE DEBUGGING
statement. For information on the symbolic debuggers, see Run-Time Debuggers.

ALL REFERENCES OF name

is checked for syntactic correctness but diagnosed as unsupported. If the selected
debugger is symbolic, use the BREAK command to observe all uses of and
changes to a data item.

file-name

is checked for syntactic correctness but diagnosed as unsupported. If the selected
debugger is symbolic, use the BREAK command to observe all uses of a file.

procedure

is one or more procedure-names to trace during program execution. procedure
cannot be named in multiple USE statements.

Note. The 1985 COBOL standard classifies USE DEBUGGING as obsolete, so you are
advised not to use it, even in TNS HP COBOL programs. The NMCOBOL compiler does not
recognize it.

DEBUGGING

FOR

USE

REFERENCES OF

ALL

ON

.

procedure

filename

PROCEDURESALL

name

VST234.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-284

Procedure Division Verbs USE DEBUGGING
ALL PROCEDURES

traces every procedure-name and appears only once when used. It precludes the
use of any USE procedure statements.

Usage Considerations:

• Declarative Procedures

Procedure-names defined within a debugging declarative procedure (and
procedure-names defined within utility sections associated with that declarative
procedure) can be referred to by PERFORM statements located within other
debugging declarative procedures (and utility sections associated with them).

• Placement of Debugging Declarative Procedures

Within the Declaratives Portion of the Procedure Division, all debugging declarative
procedures must precede all nondebugging declarative procedures.

• DEBUG-ITEM Special Register

A special register, DEBUG-ITEM, is defined for you and available within a USE
DEBUGGING statement. You can choose to display or print the contents of this
register as is or move the fields to your own message description. The point here is
that procedure-names are not automatically displayed as a trace is done. You are
responsible for external evidence of a trace.

Example 9-72. DEBUG-ITEM Special Register

01 DEBUG-ITEM.
 05 DEBUG-LINE PIC X(6).
 05 FILLER PIC X VALUE SPACE.
 05 DEBUG-NAME PIC X(30).
 05 FILLER PIC X VALUE SPACE.
 05 DEBUG-SUB-1 PIC S9999 SIGN IS LEADING
 SEPARATE CHARACTER.
 05 FILLER PIC X VALUE SPACE.
 05 DEBUG-SUB-2 PIC S9999 SIGN IS LEADING
 SEPARATE CHARACTER.
 05 FILLER PIC X VALUE SPACE.
 05 DEBUG-SUB-3 PIC S9999 SIGN IS LEADING
 SEPARATE CHARACTER.
 05 FILLER PIC X VALUE SPACE.
 05 DEBUG-CONTENTS PIC X(n).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-285

Procedure Division Verbs USE DEBUGGING
Before the USE statement is executed, DEBUG-ITEM is filled with spaces.
Immediately before the debugging section obtains control, DEBUG-ITEM is updated:

DEBUG-LINE Contains the source line number where the procedure-name
was called

DEBUG-NAME Contains the first 30 characters of the procedure-name

 If it is a paragraph-name, any section-name qualifier is
reported in DEBUG-ITEM.

DEBUG-CONTENTS Contains a nonnumeric string varying in size and value.
Depending on the situation when it is updated, it contains
one of:

• START PROGRAM

When the first procedure in the program calls USE

• A procedure-name

When an ALTER statement specifies that procedure as
a destination

• Spaces

When a GO TO statement specifies the procedure

• PERFORM LOOP

When the procedure is in a PERFORM loop

• SORT INPUT

When the procedure is in a SORT input procedure

• SORT OUTPUT

When the procedure is in a SORT output procedure

• USE PROCEDURE

When the procedure is in a USE procedure section

• FALL THROUGH

When the procedure is executed as a result of falling
through from the previous procedure
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-286

Procedure Division Verbs USE DEBUGGING
In Example 9-73, the debugging procedure displays the contents of the special register
DEBUG-ITEM.

The COBOL process executes the debugging statements if the PARAM DEBUG is on
(see PARAM Command).

Example 9-73. USE DEBUGGING Statement

 ...
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP WITH DEBUGGING MODE.
 ...
PROCEDURE DIVISION.
DECLARATIVES.
TRACE-PROGRAM SECTION.
 USE FOR DEBUGGING ON ALL PROCEDURES.
DISPLAY-DEBUG-ITEM.
 DISPLAY DEBUG-ITEM.
END DECLARATIVES.
BEGIN-PROCESSING.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-287

Procedure Division Verbs USE AFTER EXCEPTION
USE AFTER EXCEPTION
USE AFTER EXCEPTION intercepts control when an input-output exception occurs.
The input-output system executes USE AFTER EXCEPTION procedures after it
completes the standard input-output error routine. It also executes USE AFTER
EXCEPTION procedures when invalid-key or at-end conditions arise and no INVALID
KEY or AT END phrases apply to the file. After the USE procedure executes, it returns
control to the calling routine, unless the I-O status code is “4x ” or “90,” in which case
the process terminates.

GLOBAL

applies the declarative exception procedure to the program in which the USE
statement appears and to any programs nested within that program, unless such a
nested program has its own declarative exception procedure for that particular
exception.

EXCEPTION
ERROR

introduce the exception procedure and specify that the procedure is to be
performed after the COBOL run-time input-output error routine, or when an invalid-
key or at-end condition arises and no INVALID KEY or AT END phrase is present
in the statement then executing.

Note. If you are using the NMCOBOL compiler, do not use GLOBAL in the Declaratives
Portion.

GLOBAL

USE

ON

file-name

EXTEND

I-O

PROCEDURE

INPUT

.

AFTER

STANDARD

EXCEPTION

ERROR

OUTPUT

VST235.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-288

Procedure Division Verbs USE AFTER EXCEPTION
file-name

is a file description name that is to use this USE statement when an exception
occurs. A given file-name can occur in only one USE statement in a given
program. Sort-merge file description names are not permitted.

INPUT

specifies that all files opened in INPUT mode that are not specified explicitly in
another USE statement are to use this USE statement.

OUTPUT

specifies that all files opened in OUTPUT mode that are not specified explicitly in
another USE statement are to use this USE statement.

I-O

specifies that all files opened in I-O mode that are not specified explicitly in another
USE statement are to use this USE statement.

EXTEND

specifies that all files opened in EXTEND mode that are not specified explicitly in
another USE statement are to use this USE statement.

Usage Considerations:

• Restrictions

° Control statements (ALTER, GO TO, and PERFORM) specified in one logically
discrete area are, with a few exceptions, not permitted to refer to procedure-
names defined within another logically discrete area. For detailed restrictions
and permissions, see ALTER, GO TO, and PERFORM.

° Procedure names defined within a nondebugging declarative procedure (and
procedure-names defined within utility sections associated with that declarative
procedure) can be referred to by PERFORM statements located anywhere in
the Procedure Division.

° A declarative exception procedure in which the GLOBAL phrase is specified
must not execute an EXIT PROGRAM statement.

° Declarative exception procedures apply only to data files, not to sort-merge
files.

• Implicit and Explicit File Reference

A USE statement that mentions a file by name is said to make an explicit reference
to the corresponding file. A USE statement that mentions an open mode (INPUT,
I-O, OUTPUT, or EXTEND) makes reference to a file implicitly, according to the
mode in which the program opened (or attempted to open) the file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-289

Procedure Division Verbs USE AFTER EXCEPTION
It is usually best to write USE statements that explicitly reference individual files,
because this gives you better control over the handling of exceptions. The
declarative called by implicit reference has no simple way to determine the identity
of the file that generated an exception. The management of this generic sort of
exception handling can be difficult, particularly when program maintenance might
introduce additional files, or in nested programs when a GLOBAL declarative is
active.

• Precedence Rules for Nested Programs

When a program contains other programs, these precedence rules apply. When
the run-time routines detect an I-O exception, they apply these rules (in the order
indicated) to select and perform only the first declarative procedure that qualifies.

1. If the program in which the exception-causing statement occurred contains an
appropriate declarative, use it.

2. If no declarative in that program is appropriate, check the next containing
program (the next one outward in the nesting). If the containing program
contains an appropriate declarative in which the GLOBAL phrase is specified,
use it.

3. Repeat Item 2 until the outermost program has been checked. If no qualifying
declarative procedure has been found, none is executed.

An outer program can contain a GLOBAL declarative procedure to handle each
file, but a nested program can contain an overriding GLOBAL or local declarative
procedure that governs the handling of exceptions for certain files within the nested
program or any programs it contains.

• File Status and GUARDIAN-ERR Special Register

For information on file status and the special register GUARDIAN-ERR, see I-O
Status Code. A USE AFTER EXCEPTION procedure can base its activity on the
values of these data items.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-290

Procedure Division Verbs USE AFTER EXCEPTION
In Example 9-74, two files use the same error routine and another file uses a separate
error routine.

Example 9-74. USE AFTER EXCEPTION Statement

 ...
PROCEDURE DIVISION.
DECLARATIVES.
MASTER-FILES SECTION.
 USE AFTER EXCEPTION PROCEDURE ON MASTER-1 MASTER-2.
MASTER-ERROR-ROUTINE.
 IF FILE-STATUS....
 ...
DETAIL-FILE SECTION.
 USE AFTER EXCEPTION PROCEDURE ON DETAIL-IN.
DETAIL-ERROR-ROUTINE.
 ...
END DECLARATIVES.

MAIN-SECTION SECTION.
BEGIN-PROGRAM.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-291

Procedure Division Verbs WRITE
WRITE
WRITE delivers a record to its associated file.

Forms:

• WRITE for Sequential Files

• WRITE for Line Sequential Files

• WRITE for Relative, Indexed, and Queue Files

WRITE for Sequential Files

record-name

is a logical record described in the File Section of the Data Division. The record-
name can be qualified by the name of the file with which the record is associated.
The data written is the current contents of record-name.

from-name

is the identifier of a data area whose contents are to be moved to the record
specified by record-name before the WRITE occurs. from-name must specify
a data area other than that specified by record-name. It also cannot specify an
index data item.

WRITE record-name

FROM from-name

ADVANCING clause

END-WRITE

end-of-page clause

invalid-key-phrase

not-end-of-page clause

not-invalid-key-phrase

NOT

NOT

VST236.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-292

Procedure Division Verbs WRITE for Sequential Files
ADVANCING clause

advances the file (skips lines) before or after the record is written to it. The default
ADVANCING clause is AFTER ADVANCING 1. The ADVANCING clause can be
used only with files assigned to processes or printers.

BEFORE

specifies that the record is to be printed before any lines are skipped.

AFTER

specifies that the record is to be printed after any lines are skipped.

no-of-lines

is a numeric integer literal, or the identifier of a numeric integer data item,
whose value is greater than or equal to zero and represents the number of
lines to advance before or after the write operation.

mnemonic-name

specifies a channel position on a carriage-control tape that directs the printer to
skip lines (advancing to a particular channel is usually faster than printing lines
of spaces). mnemonic-name is defined in a SPECIAL-NAMES paragraph for
a printer (or a process simulating a printer) with the CHANNEL option.
mnemonic-name is not permitted for a file described with a LINAGE clause.

Note. When no-of-lines has the value -1, HP COBOL advances to the top of a
page; however, setting no-of-lines to -1 is not recommended, because it could
interfere with later extensions to COBOL that would allow backspacing one line. To go
to the top of a page, use BEFORE PAGE or AFTER PAGE.

BEFORE

AFTER ADVANCING

PAGE

mnemonic-name

no-of-lines LINE

LINES

VST237.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-293

Procedure Division Verbs WRITE for Sequential Files
PAGE

advances the printer to the top of the page before or after the write operation.
PAGE and end-of-page clause cannot appear in the same WRITE
statement.

end-of-page clause

executes imperative-statement when the write operation encounters the
end-of-page condition. The file description must include a LINAGE clause.

not-end-of-page clause

executes imperative-statement when the write operation does not encounter
the end-of-page condition. The file description must include a LINAGE clause.

imperative-statement

is to be executed when the end-of-page condition is satisfied when LINAGE-
COUNTER is either greater than the defined page length or is at a line in the
footing area. In both cases, the line is written before imperative-
statement is executed. If an attempt is made to write beyond the allowable
area on a page, whether at or after the end-of-page condition, the page is
automatically advanced (this is called the page overflow condition).

invalid-key-phrase

executes imperative-statement when the write operation encounters the
invalid-key condition. The file description cannot include a LINAGE clause.

AT

END-OF-PAGE

EOP

imperative-statement

VST238.vsd

AT

END-OF-PAGE

EOP

imperative-statement

VST238.vsd

KEY

imperative-statementINVALID

VST239.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-294

Procedure Division Verbs WRITE for Sequential Files
imperative-statement

is an imperative statement to be executed when an invalid-key condition arises
because alternate keys are defined for the sequential file, and the write
operation would create a duplicate key when the file definition did not specify
that duplicates are allowed. If no INVALID KEY phrase is present, a USE
procedure must be present for the file or files to be opened in OUTPUT mode.

not-invalid-key-phrase

executes imperative-statement when the write operation does not encounter
the invalid-key condition. The file description cannot include a LINAGE clause.

imperative-statement

is an imperative statement to be executed when an invalid-key condition does
not arise.

END-WRITE

ends the scope of the WRITE statement, causing the WRITE to be a delimited-
scope statement. If the WRITE statement does not end with an END-WRITE
phrase, the presence of the AT END-OF-PAGE, the NOT AT END-OF-PAGE, the
INVALID KEY, or the NOT INVALID KEY phrase causes the WRITE statement to
be a conditional statement, which ends at the next period separator.

Usage Considerations:

• Action of the WRITE Statement

The write operation releases a logical record to the run-time routines for inclusion
in the file. For a file of sequential organization, the order of the records in the file
therefore corresponds to the order in which they are released.

In general, the logical record consists of the value of the data item specified by
record-name ; however, when the file has fixed-length records, and the record-
name item contains fewer than the defined number of character positions, the
logical record is extended with arbitrary character values.

• Printer or Spooler Files

Release of a logical record does not necessarily imply immediate transmission to
the file. The record can be held in an internal buffer.

In the non-CRE environment, the actual transmission of a logical record to the file
or spooler buffer can be deferred until some time after completion of the WRITE
statement.

KEY

imperative-statementINVALID

VST239.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-295

Procedure Division Verbs WRITE for Sequential Files
In the CRE, the logical record is always transmitted to the file or spooler buffer
immediately.

• Opening File Positions Printer at Top of First Page

When you open a file, the printer is positioned at the top of the first page, as if
BEFORE ADVANCING PAGE had been executed. If you use default advancing
(AFTER ADVANCING 1), you get a blank line at the top of the first page. (You
usually use BEFORE 1 before the first write operation.)

• Files That Are Not Printers or Spooler Files

If a file is not a printer or spooler file, each logical record is written to the file
immediately, any ADVANCING clause is ignored, and no control information (for
advancing or forms control) or extra blank lines are written to the file.

• Writing to EDIT Files

An HP COBOL program can write at most 239 characters to an EDIT file (a file
with file code 101). The action of the WRITE statement depends on the existence
of the file and on the form of OPEN used.

° Existing EDIT file, OPEN EXTEND

Each write operation appends a line to the file. The line numbers of the new
lines begin at a value one greater than the last line number in the file, and are
incremented by one.

° Existing EDIT file, OPEN OUTPUT

Existing records are deleted from the file. Each write operation appends a line
to the file. Line numbers begin at one and are incremented by one.

° File does not exist, OPEN OUTPUT or EXTEND

For the write operation to create the file, the run-time environment must contain
an ASSIGN command that specifies CODE 101. Each write operation appends
a line to the file. Line numbers begin at one and are incremented by one.

To make the file an EDIT file before writing it, use the COBOL_ASSIGN_
routine with file-code 101.

° Program was compiled with the NONSTOP directive

If a program was compiled with the NONSTOP directive, it can open an EDIT
file for input, but not for either form of output.

• File-Status Data Item

If the file has an associated file-status data item, execution of the WRITE
statement always assigns an appropriate I-O status code. The value “00” reports a
successful write operation.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-296

Procedure Division Verbs WRITE for Sequential Files
The I-O status codes that result from an unsuccessful write operation are:

• Invalid-Key Condition

When the sequential WRITE statement is used to write to an indexed file, or to
write to a file with alternate keys, the invalid-key condition arises when the I-O
status code is “21” or “22.”

• Reel-Swap Sequence for Multiple-Reel Tape Files

If execution of a WRITE statement for a multiple-reel tape file exhausts the
capacity of the current reel, the run-time routine automatically performs a reel-
swap sequence. You can use the COBOL_SPECIAL_OPEN_ routine to notify the
program.

• Page Headers and Trailers

If you want a page trailer, describe the footing area with a FOOTING value less
than or equal to the LINES value in the LINAGE clause. Then use an END-OF-
PAGE phrase to write a page trailer; eject the page, if necessary; and write the
next page header. If you want only a page header, omit the FOOTING phrase from
the LINAGE clause.

Multiple end-of-page conditions can occur during the production of one logical
page if several successive WRITE statements cause printing or spacing within that
logical page’s footing area.

I-O Status Code Unsuccessful Write Operation

“22” An alternate record key value of the logical record equals that of a
record that already exists in the file and duplicate values are not
allowed for that key (all access modes).

“30” The write operation failed due to non-COBOL causes. The
specified record might or might not have been written.

“34” A boundary violation exception exists when execution of a WRITE
statement would require exceeding the record storage capacity of
the file. The logical record is not released.

“44” When the file is described with the RECORD VARYING clause, the
logical record size must be neither greater than the maximum nor
less than the minimum number of character positions specified in
that clause. This requirement is not met, and the logical record is
not released.

“48” Either the file has sequential organization and is not open in I-O,
OUTPUT, or EXTEND mode; or the open mode is I-O, and the file
device is not a terminal, process, or $RECEIVE.

“90” The WRITE statement contains an ADVANCING phrase, and the
value of no-of-lines is a negative number other than -1.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-297

Procedure Division Verbs WRITE for Sequential Files
• Page Overflow

An automatic page overflow condition exists whenever the execution of a write
statement cannot be fully accommodated within the current page body of a printer
file described with a LINAGE clause. This situation arises when the execution of
the WRITE statement would cause the LINAGE-COUNTER to assume a value
greater than the number of lines in the current page body.

In this case, the process prints the record on the logical page before or after
advancing the device to the first line following the top margin of the next logical
page.

If the END-OF-PAGE phrase appears in the WRITE statement, then its imperative
statement is executed after both the print and advancing operations are completed.

When execution of a WRITE statement causes both the end-of-page and the page
overflow conditions to occur, only the actions for the page overflow condition occur.

• Buffered Cache

Buffered cache, enabled by the RESERVE clause of the FILE-CONTROL
paragraph, speeds the writing of disk files. This technique buffers records up in
cache rather than writing them immediately to disk.

Do not use buffered cache in applications that require each record to be actually
written to disk before execution of the next statement in the program.

See FILE-CONTROL Paragraph.

• Variable-Length Records

An Enscribe structured file can have variable-length records. See READ for
Sequential or Dynamic Access.

When you write to a file that is defined as having variable-length records, the
length of the record written depends on whether the file is declared with

RECORD CONTAINS rec-1 TO rec-2 CHARACTERS

or

RECORD IS VARYING IN SIZE FROM rec-1 TO rec-2 CHARACTERS
 DEPENDING ON rec-size

form of the RECORD CONTAINS clause.

In the former case, the length of the record specified in the WRITE statement is the
number of characters written to the file system file.

In the latter case, the length of the record written is the value present in the rec-
size data item specified in the DEPENDING clause at the time the WRITE
statement is executed.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-298

Procedure Division Verbs WRITE for Sequential Files
Example 9-75. ADVANCING Phrase

ENVIRONMENT DIVISION.
 ...
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT MASTER-RANDOM-FILE
 ASSIGN TO "$MARKT.PLATZ.RPT"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL
 FILE STATUS IS M-R-STATUS.
 ...
 DATA DIVISION.
 FILE SECTION.
 ...
 FD MKT-REPORT
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 132 CHARACTERS
 LINAGE IS 60 LINES
 WITH FOOTING AT FOOTLINE
 LINES AT TOP TOPLINES
 LINES AT BOTTOM BOTTOMLINES.
 01 PRINT-LINE-OUT PIC X(132).
 ...
 WORKING-STORAGE SECTION.
 01 LINAGE-STUFF.
 03 FOOTLINE PIC 99 VALUE 45.
 03 TOPLINES PIC 99 VALUE 0.
 03 BOTTOMLINES PIC 99 VALUE 6.
 ...

 PROCEDURE DIVISION.
 ...
 WRITE-DETAIL.
 WRITE PRINT-LINE-OUT FROM DETAIL-LINE
 AT EOP
 PERFORM
 ADD 1 TO PAGE-COUNTER
 MOVE PAGE-COUNTER TO PAGE-NUMBER
* The next WRITE statement advances to the third
* line after the one just written, leaving two lines
* of spaces and printing on the third line.
 WRITE PRINT-LINE-OUT FROM PAGE-NUMBER-LINE
 AFTER ADVANCING 3 LINES
* The next WRITE statement advances to the top of
* the next page (issues a forms-control code to skip
* to channel 1.)
 WRITE PRINT-LINE-OUT FROM DETAIL-HEADER
 AFTER ADVANCING PAGE
 MOVE SPACES TO PRINT-LINE-OUT
 WRITE PRINT-LINE-OUT
 END-PERFORM
 END-WRITE
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-299

Procedure Division Verbs WRITE for Line Sequential Files
WRITE for Line Sequential Files

record-name

is a logical record described in the File Section of the Data Division. The record-
name can be qualified by the name of the file with which the record is associated.
The data written is the current contents of record-name.

from-name

is the identifier of a data area whose contents are to be moved to the record
specified by record-name before the WRITE occurs. from-name must specify
a data area other than that specified by record-name. It also cannot specify an
index data item.

END-WRITE

ends the scope of the WRITE statement, causing the WRITE to be a delimited-
scope statement. If the WRITE statement does not end with an END-WRITE
phrase, the presence of the AT END-OF-PAGE, the NOT AT END-OF-PAGE, the
INVALID KEY, or the NOT INVALID KEY phrase causes the WRITE statement to
be a conditional statement, which ends at the next period separator.

Usage Considerations:

• See these usage considerations in WRITE for Sequential Files:

° Action of the WRITE Statement

° File-Status Data Item

° Reel-Swap Sequence for Multiple-Reel Tape Files

° Buffered Cache

record-name

WRITE

FROM from-name END-WRITE

VST631.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-300

Procedure Division Verbs WRITE for Relative, Indexed, and Queue Files
 WRITE for Relative, Indexed, and Queue Files

record-name

is a logical record described in the File Section of the Data Division. The record-
name can be qualified by the name of the file with which the record is associated.

from-name

is the identifier of a data area whose contents are to be moved to the record
specified by record-name before the WRITE occurs. from-name must specify
a data area other than that specified by record-name. It also cannot specify an
index data item.

invalid-key

executes imperative-statement when an invalid-key condition arises. This
phrase is required if no USE statement is applicable for the file.

not-invalid-key

executes imperative-statement when no invalid-key condition arises.

WRITE record-name

FROM from-name

invalid-key

NOT not-invalid-key

END-WRITE

VST240.vsd

KEY

imperative-statementINVALID

VST239.vsd

KEY

imperative-statementINVALID

VST239.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-301

Procedure Division Verbs WRITE for Relative, Indexed, and Queue Files
END-WRITE

ends the scope of the WRITE statement, causing the WRITE to be a delimited-
scope statement. If the WRITE statement does not end with an END-WRITE
phrase, the presence of the INVALID KEY or the NOT INVALID KEY phrase
causes the WRITE statement to be a conditional statement, which ends at the next
period separator.

Usage Considerations:

• Action of the WRITE Statement

The write operation releases a logical record to the run-time routines for inclusion
in the file. For a file of relative or indexed organization, the order of the records in
the file is determined by the relative record number or the prime record key,
respectively.

In general, the logical record consists of the value of the data item specified by
record-name. Records in a relative, indexed, or queue file can be any length
from zero up to the maximum length specified when the file was created.

Release of a logical record does not necessarily imply immediate transmission to
the file. For example, the actual transmission of a logical record to the file can be
deferred until some time after completion of the WRITE statement.

• File-Status Data Item

If the file has an associated file-status data item, execution of the WRITE
statement always assigns an appropriate I-O status code. The value “00” reports a
successful write operation.

The I-O status codes that result from an unsuccessful write operation are:

I-O Status Code Unsuccessful Write Operation (page 1 of 2)

“21” The file is defined to have indexed organization and sequential
access mode, and the prime record key value of the logical
record is less than or equal to the prime record key value of the
most recently released record.

“22” One of:

• The relative record number to be associated with the logical
record equals that of a record that already exists in the file
(random access or dynamic access only).

• The prime record key value of the logical record equals that
of a record that already exists in the file (random access or
dynamic access only).

• An alternate record key value of the logical record equals
that of a record that already exists in the file and duplicate
values are not allowed for that key all access modes.

“24” A boundary violation exception exists when execution of a
WRITE statement would require exceeding the record storage
capacity of the file. The logical record is not released.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-302

Procedure Division Verbs WRITE for Relative, Indexed, and Queue Files
• Variable-Length Records

An Enscribe structured file can have variable-length records. See READ for
Sequential or Dynamic Access.

When you write to a file that is defined as having variable-length records, the
length of the record written depends on whether the file is declared with

RECORD CONTAINS rec-1 TO rec-2 CHARACTERS

or

RECORD IS VARYING IN SIZE FROM rec-1 TO rec-2 CHARACTERS
 DEPENDING ON rec-size

form of the RECORD CONTAINS clause.

In the former case, the length of the record specified in the WRITE statement is the
number of characters written to the file system file.

In the latter case, the length of the record written is the value present in the rec-
size data item specified in the DEPENDING clause at the time the WRITE
statement is executed.

• Sequential Access

For files of relative organization, records are released in relative number order,
beginning at 1. When the file has an associated relative key data item, that item is
set to the current record number at each successful release.

For files of indexed organization, the program is responsible for setting the prime
record key data item to a desired value prior to the execution of a WRITE
statement for that record. In the case of sequential access, the records must be
released in ascending order of prime record key value.

“30” The write operation failed due to non-COBOL causes. The
specified record might or might not have been written.

“44” When the file is described with the RECORD VARYING clause,
the logical record size must be neither greater than the maximum
nor less than the minimum number of character positions
specified in that clause. This requirement is not met, and the
logical record is not released.

“48” Either the file has sequential organization, and is not open in I-O,
OUTPUT, or EXTEND mode; or the open mode is I-O, and the file
device is not a terminal, process, or $RECEIVE.

I-O Status Code Unsuccessful Write Operation (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-303

Procedure Division Verbs WRITE for Relative, Indexed, and Queue Files
• Relative and Dynamic Access

For files of relative organization, the relative key data item must be set to the
desired record number before the WRITE occurs. This can be done in either of two
ways:

° Set the key item to the relative record number.

° Set the key item to -1 to have the record written at the end of the file or to -2 to
have the record written in any available file position.

When the second method is used, the relative key data item must be defined as a
signed integer numeric item; at the completion of the write operation, the relative
key data item is set to the file position number used.

For files of indexed organization, the program is responsible for setting the prime
record key data item to a desired value prior to the execution of a WRITE
statement for that record.

• Invalid-Key Conditions

This condition occurs for relative files when any of these conditions is true:

° The RELATIVE KEY item defines an existing record or the alternate key is
duplicated without DUPLICATES option (I-O status code “22”).

° The file is physically full or the relative key data item points outside the file’s
boundary (I-O status code “24”).

° The value intended for the RELATIVE KEY item does not fit into the RELATIVE
KEY item.

This condition occurs for indexed or queue files when any one of these is true:

° Keys are not in ascending order in sequential access (I-O status code “21”).

° The prime key is duplicated, or the alternate key is duplicated without
DUPLICATES option (I-O status code “22”).

° The file is physically full, or the key specifies a point outside the file’s boundary
(I-O status code “24”).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-304

Procedure Division Verbs WRITE for Relative, Indexed, and Queue Files
Example 9-76. INVALID KEY Phrase

ENVIRONMENT DIVISION.
 ...
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT MASTER-REL-FILE
 ASSIGN TO "$MARKT.PLATZ.DT"
 ORGANIZATION IS RELATIVE
 ACCESS MODE IS RANDOM
 RELATIVE KEY IS VKF-NR
 FILE STATUS IS M-R-STATUS.
...
DATA DIVISION.
FILE SECTION.
...
FD MASTER-REL-FILE
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 180 TO 250 CHARACTERS.
01 DOMESTIC-SALE PIC X(180).
01 FOREIGN-SALE PIC X(250).
 ...
WORKING-STORAGE SECTION.
01 VKF-NR PICTURE 97.
01 J-W-D.
 03 NATION PIC X(15).
 03 SUBDIVISION PIC X(15).
 03 CITY PIC X(15).
 ...
PROCEDURE DIVISION.
 ...
AUSLAND.
 ...
 ADD 1 TO VKF-NR
 WRITE FOREIGN-SALE FROM J-W-D
 INVALID KEY PERFORM RECOVER-M-R-BAD-KEY
 END-WRITE
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-305

Procedure Division Verbs WRITE for Relative, Indexed, and Queue Files
HP COBOL Manual for TNS and TNS/R Programs—522555-006
9-306

10 Source Text Manipulation
Source manipulation comprises the COPY statement, COPY libraries, and the
REPLACE statement. You can use the COPY and REPLACE statements in any
division of the source program.

The COPY statement summons source text from a COPY library and delivers merged
text to the compiler. Its optional REPLACING phrase replaces every occurrence of a
specified portion of library text with a specified portion of new text when it copies library
text into a source program. You can specify more than one such replacement pair in a
REPLACING phrase. With or without the REPLACING phrase, the COPY statement
does not change the COPY library or the source file.

The COPY statement appears in the listing unless a NOSHOWCOPY, NOLIST, or
SUPPRESS directive is active. The library text appears in the listing unless a NOLIST
or SUPPRESS directive is active.

In the Guardian environment, a COPY library is a file in the EDIT format. It contains
one or more sections of zero or more text lines, each preceded by a SECTION
directive line and succeeded by either another SECTION directive line or the end of the
file.

In the OSS environment, a COPY library is an ASCII text file.

The REPLACE statement replaces source program text. It is useful for establishing
names for constants and abbreviations for words and phrases and for overcoming the
introduction of new reserved words into the language.

Topics:

• COPY Statement

• REPLACING Phrase

• COPY Libraries

• REPLACE Statement
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-1

Source Text Manipulation COPY Statement
COPY Statement
COPY summons source text from a file set up as a COPY library. In many systems,
one section of code or data is common to several programs. Such a section can be
written once, kept in a COPY library, and inserted into each program at compile time by
COPY statements. In HP COBOL, the COPY statement is a mechanism for
summoning text that is managed by the Data Definition Language (DDL) compiler.
(Another such mechanism is the SOURCE directive.)

COPY

is a reserved word that cannot be split across source program lines.

text-name

is the name of a section in a COPY library file. It is a COBOL word (1 to 30 letters,
digits, and hyphens but not all digits) that appears in a SECTION directive in the
file.

library-name

is the name of the COPY library file that contains the text to be copied.

COPY

library-name

 REPLACING phrase

OF

IN

.text-name

VST244.vsd

system-file-name

define-name-literal

VST245.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-2

Source Text Manipulation COPY Statement
If library-name is not specified, a default library file is selected:

• In the Guardian environment:

1. If a COPY library is named in the COBOL85 command (see Starting a
Compilation), then that file is the default library file.

2. If the condition in Item 1 is not true and the file COPYLIB exists on the
current volume and subvolume, then that COPYLIB file is the default library
file.

3. If the conditions in Item 1 and Item 2 are not true and a DEFINE of class
SEARCH named =_SOURCE_SEARCH exists, then the default library file
is the first file named COPYLIB in the search list defined by
=_SOURCE_SEARCH. (See =_SOURCE_SEARCH.)

4. If none of the preceding conditions are true, the COPY statement is in
error.

• In the OSS environment, the -Wcopylib flag specifies the default COPY
library.

If library-name is specified, these definitions apply:

system-file-name

is the name of an EDIT file (code 101), OSS ASCII text file (code 180), or PC
file. If system-file-name is a PC file name or does not begin with a dollar
sign ($), backward slash (\), or number sign (#), then it must be enclosed in
quotation marks unless it forms a COBOL word. For more information about
operating system file names, see the Guardian Procedure Calls Reference
Manual.

define-name-literal

is a nonnumeric literal that represents the name of a DEFINE of class MAP
that is associated with an EDIT file. Quotation marks must enclose define-
name-literal. For more information on DEFINE names, see DEFINEs.

If the file-system file name identified by define-name-literal is qualified
(the subvolume and any other qualifiers are specified), then that specific file is
the COPY library. If the file-system file name identified is not qualified, the file
selected as the COPY library depends on the presence or absence of a
DEFINE of class SEARCH named =_SOURCE_SEARCH. If
=_SOURCE_SEARCH exists, the search list that it specifies is used to locate
the COPY library. If =_SOURCE_SEARCH does not exist, only the current
volume and subvolume is searched for the COPY library.

REPLACING phrase

specifies text-words for the compiler to replace with other specified text-words
when it copies text. See REPLACING Phrase.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-3

Source Text Manipulation COPY Statement
Usage Considerations:

• Where COPY Statements Can Be Used

With these exceptions, a COPY statement can occur anywhere in the source text
that a character-string or separator can occur:

° A COPY statement cannot appear within the body of another COPY statement.

° A COPY statement cannot appear within source text that is introduced by
another COPY statement or a REPLACE statement.

° If the word COPY appears either in a comment-entry or in a place where a
comment-entry can appear, it is considered part of the comment-entry, not as
the keyword that begins a COPY statement.

° The keyword COPY must be preceded by a space character, unless it
immediately follows the indicator field.

° A COPY statement cannot appear on the same line as an SQL/MP or SQL/MX
statement.

° All four characters of the keyword COPY must appear on the same source text
line. The remainder of the statement can extend across additional program text
lines, in accordance with the continuation conventions of the reference format.

• How the Compiler Processes a COPY Statement

The compiler processes a source program that includes COPY statements as
though the compiler included a preprocessor that performs these operations in this
order:

1. Locates each COPY statement

2. Replaces the COPY statement with the appropriate (and possibly edited)
library text

3. Passes the resulting text to the compiler proper

The effect of processing a COPY statement is to copy the specified library text into
the source program. The copied text logically replaces the entire COPY statement,
beginning with the keyword COPY and ending with the punctuation character
period.

If the source line on which the COPY statement begins contains other text
preceding the word COPY, the compiler attempts to combine that portion of the line
with the first library text line.

If the source line on which the COPY statement ends contains other text following
the terminating period, the compiler attempts to combine that portion of the line
with the last library text line.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-4

Source Text Manipulation COPY Statement
• Compiler Directives and the COPY Statement

A compiler directive line cannot appear between the keyword COPY and the period
separator that terminates the statement, unless it is part of pseudo-text (see
REPLACE Statement).

• Compiler Directives in Library Text

Library text can include compiler directives, which the compiler obeys when it
analyzes the copied text.

If a TANDEM or ANSI format directive occurs as a qualifier on the SECTION
directive in the library file, the specified formatting is active only for the copied text.
When the copying is complete, the previous formatting is again active.

If a TANDEM or ANSI format directive occurs within the library text, its effect (which
overrides the effect of any format directive that is a qualifier on the SECTION
directive) persists until the copying is complete.

• Debugging Lines and the COPY Statement

If the COPY statement itself begins on a debugging line (a line that has a D or d
in the indicator field), all text that the copy operation introduces into the source
program, except comment and compiler directive lines, appears on debugging
lines.

Because debugging lines and continuation lines are mutually exclusive, the
compiler cannot introduce a continued text-word into the source text when the
preceding rules require it to appear on debugging lines.

• Sensitivity to Reference Format

Because the compiler analyzes pseudo-text without the benefit of any contextual
information, you must observe the COBOL reference format rules carefully. In
particular, the compiler does not identify a comma, semicolon, or period character
as a separator unless it is followed by at least one space character.

Similarly, the compiler interprets the character sequence X/9 as one text-word
(presumably a PICTURE character-string) rather than as three text-words;
however, the compiler always considers a left parenthesis, right parenthesis, or
colon character to be a separator unless it appears within a nonnumeric literal.

Another reason to carefully observe the reference format rules is that, when the
compiler is performing replacement editing, it analyzes library text without the
benefit of any contextual information.

• Including COPY Statements in a Listing

The SHOWCOPY directive determines whether the COPY statement itself appears
in the listing (see SHARED). If you do not specify NOSHOWCOPY, NOLIST, or
SUPPRESS, the compiler lists the COPY statement as a comment followed by the
copied text.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-5

Source Text Manipulation COPY Statement
In Example 10-1, EMPLOYEE-DETAIL of the COPY statement is not qualified because
the COPY library is named COPYLIB and resides on the current volume and
subvolume for the compile process.

Example 10-1. COPY Statement

Contents of COPY library COPYLIB:

?SECTION EMPLOYEE-DETAIL
01 EMP-DATA-IN.
 05 EMP-NO PIC X(05).
 05 EMP-NAME PIC X(20).
 05 DEPT PIC X(03).
 05 JOB-CLASS PIC X(05).
 05 HOURLY-RATE PIC 9(3)V99.
 05 DEDUCTIONS PIC 9(3)V99.
 05 SALARY PIC 9(7)V99.

Source COBOL code:

 ...
DATA DIVISION.
FILE SECTION.
FD EMP-MASTER
COPY EMPLOYEE-DETAIL.
FD LIST-OUT
 ...

Source listing produced by compiler (lines from the COPY library are marked by < in the
compilation listing):

 ...
 DATA DIVISION.
 FILE SECTION.
 FD EMP-MASTER
 *COPY EMPLOYEE-DETAIL.
< 01 EMP-DATA-IN.
< 05 EMP-NO PIC X(05).
< 05 EMP-NAME PIC X(20).
< 05 DEPT PIC X(03).
< 05 JOB-CLASS PIC X(05).
< 05 HOURLY-RATE PIC 9(3)V99.
< 05 DEDUCTIONS PIC 9(3)V99.
< 05 SALARY PIC 9(7)V99.
 FD list-out
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-6

Source Text Manipulation REPLACING Phrase
REPLACING Phrase
The REPLACING phrase of the COPY statement directs the compiler to replace every
occurrence of a portion of library text with a replacement portion when it copies library
text into a source program.

You can specify more than one pair of such portions for the compiler to replace when it
executes a COPY statement. The compiler searches for each original portion in the
order in which you declared them in the REPLACING phrase.

original

new

.REPLACING

BYoriginal new

OFF

VST247.vsd

identifier-1

literal-1

word-1

pseudo-text-1

VST248.vsd

identifier-2

literal-2

word-2

pseudo-text-2

VST249.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-7

Source Text Manipulation REPLACING Phrase
pseudo-text-1

contains at least one text-word other than a comma or semicolon separator. A
character-string within pseudo-text-1 can continue on the next line, but both
characters of the pseudo-text delimiter (==) must be on the same line.

pseudo-text-2

can be null. A character-string within pseudo-text-2 can continue on the
next line, but both characters of the pseudo-text delimiter (==) must be on the
same line.

text-word

is any character-string or separator, except space.

identifier-1
identifier-2

are identifiers of data items.

literal-1
literal-2

are literals (but not national literals). Neither can be a concatenation
expression.

word-1
word-2

are COBOL words.

==== text-word

VST250.vsd

text-word

====

VST251.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-8

Source Text Manipulation REPLACING Phrase
Usage Considerations:

• Effect of REPLACE on Literals

The REPLACE statement does not affect literals; for example,

REPLACING ==Year== BY ==Month==

does not change the original text-word

"End of Year"

to the new text-word

"End of Month"

• Matching Text in a COPY Library

The compiler searches for portions of text in the order you specify in the
REPLACING phrase. If you want to replace a sequence of text-words with
something and a particular text-word with something else, specify the sequence
first. For example, if you want to replace all occurrences of “XXX” with “BALANCE”
and all occurrences of “XXX OF YYY” with “BALANCE OF BUDGET-REC,” the
REPLACING phrases must be in this order:

REPLACING "XXX OF YYY" BY "BALANCE OF BUDGET-REC"
 "XXX" BY "BALANCE"

If you specify “XXX” first, the compiler first changes the “XXX” to “BALANCE,”
producing “BALANCE OF YYY;” therefore, it can never find the sequence “XXX OF
YYY.”

For purposes of matching, the compiler handles identifier-1, word-1, and
literal-1 as pseudo-text containing only identifier-1, literal-1, or
word-1, respectively.

• Comparison Operation

The compiler determines which characters of source text to replace by comparing
pseudo-text-1, identifier-1, literal-l to text-words in the COPY
library. This is how the comparison operation works:

1. The compiler copies any separator comma, semicolon, and space that
precedes the leftmost library text-word into the source program.

2. Starting with the leftmost library text-word, the compiler compares all the text-
words in the first pseudo-text-1, identifier-1, literal-1, or word-1
to an equal number of contiguous text-words in the library. During the
comparison, the compiler handles each occurrence of a separator comma or
semicolon and each sequence of one or more space separators as a single
space. The compiler ignores any comment or directive line in the library text or
in pseudo-text-1. The REPLACING phrase operand matches the library
text if the two sequences of text-words are equal, character for character.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-9

Source Text Manipulation REPLACING Phrase
3. If no match occurs, the compiler repeats the comparison with each successive
pseudo-text-1, identifier-1, word-1, or literal-1, if any, in the
REPLACING phrase until a match occurs or until it has compared each
operand in the phrase to the leftmost library text-word or text-words.

4. If the compiler compares all the REPLACING phrase operands without finding
a match, it copies the leftmost library text-word into the source program. Then
the compiler uses the next successive library text-word as the leftmost text-
word and starts the comparison cycle again with the first pseudotext-1,
identifier-1, literal-1, or word-1 in the REPLACING phrase.

5. Whenever a match occurs between pseudo-text-1, identifier-1,
literal-1, or word-1, the compiler copies the corresponding pseudo-
text-2, identifier-2, literal-2, or word-2 into the source program.
The compiler places the text-words into the program according to the rules of
the reference format specified in the COPY statement or, if not specified, the
reference format active before the statement. Then the compiler uses the
library text-word immediately following the matching library text as the leftmost
text-word and starts the comparison cycle again with the first pseudo-text-
1, identifier-1, literal-1, or word-1 in the REPLACING phrase.

6. The comparison operation ends after the rightmost text-word in the library text
participates either in a match or as a leftmost text-word in a complete
comparison cycle.

• Comment Lines in Replacement Text

The compiler copies any comment line in pseudo-text-2 into the source
program unchanged.

• Debugging Lines

You can put debugging lines in library text and in pseudo-text-2 or in pseudo-
text-1. Text-words within a debugging line participate in the comparison cycle as
though the indicator area did not contain a D or d.

If a portion of the library text is replaced by a pseudo-text-2, any text-words of
the replacement text specified on debugging lines appear on debugging lines in the
resulting source text.

If a portion of the library text that begins on a debugging line is replaced, all text-
words of the replacement text appear on debugging lines in the resulting source
text.

If library text specified on debugging lines is copied without replacement, it appears
on debugging lines in the resulting source text.

A debugging line cannot contain embedded SQL/MP or SQL/MX statements.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-10

Source Text Manipulation COPY Libraries
COPY Libraries
A COPY library is either a file in the EDIT format or an OSS ASCII text file. Its text can
be merged into a source program during compilation using a COPY statement. If the
COPY statement contains a REPLACING phrase, specified portions of library text can
be replaced by specified new text when the COPY statement copies the library text into
the source program. With or without the REPLACING phrase, the COPY statement
does not change the COPY library.

Topics:

• Specifying Library Names

• Library Format

Specifying Library Names
There are three places you can specify the name of the library from which a COPY
statement is to collect text:

• The COPY statement itself can include an IN library-name phrase (see COPY
Statement), in which the name can be a file-system file name or (in the Guardian
environment) an alphanumeric literal containing a DEFINE name.

• The COBOL85 command that initiates the compilation can include a library name
to be used whenever a COPY statement does not include a library name (see
Starting a Compilation). On a command line, the library name parameter is either a
file-system file name or (in the Guardian environment) a DEFINE name, but neither
can be enclosed in quotation marks.

• In the OSS environment, you can specify the default COPY library with the
-Wcopylib flag.

If no name is specified on either the command line or the COPY statement, the
compiler uses the name COPYLIB.

If library-name is not fully qualified with volume and subvolume, the current default
volume or subvolume is used.

Example 10-2. COPY Statement With REPLACING Phrases

COPY CUSTOMER REPLACING ==FULL NAME== BY ==Able X. Baker==
 ADDRESS BY STREET-ADDRESS.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-11

Source Text Manipulation Library Format
Library Format

pre-text

is one or more text lines. These lines are never copied. When a library file begins
with pre-text, this text can be comments about the library’s sections. The
compiler examines pre-text only to look for a question mark (?) in column 1
followed by zero or more spaces followed by the directive COLUMNS (in any
combination of cases). If it finds such a directive, it attempts to translate and use it.

section-text

SECTION

is the SECTION directive described in SECTION.

text-name

is the name of the section, the name that identifies the portion of the library file
to be copied. It is a COBOL word (1 to 30 letters, digits, and hyphens but not
all digits).

format

is the keyword TANDEM or ANSI.

text-line

is a line of source text. There is no limit on the number of such lines. No text
line can begin with “?SECTION.”

pre-text

section-text

VST252.vsd

SECTION

format

text-name

,

?

text-line

VST253.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-12

Source Text Manipulation Library Format
Usage Considerations:

• COLUMNS Directive

The library can contain at most one COLUMNS directive. The COLUMNS directive
must precede all SECTION directives and must appear alone in its compiler
directive line. Furthermore, the line’s question mark must always be in column 1
(even if the ANSI source text format applies).

• SECTION Directive

Each SECTION directive must appear alone in a compiler directive line and the
line’s question mark must always be in column 1 (even if the ANSI source text
format applies). Each SECTION directive demarcates an individual text unrelated
to any other contents of the source library.

A SECTION directive cannot appear anywhere in the text of a COPY statement
(between the word COPY and its terminating period in the input stream) or a
REPLACE statement (between the word REPLACE and its terminating period in
the input stream); however, the compiler detects and reports its appearance within
pseudo-text only if that pseudo-text is introduced into the source as the result of
expanding the COPY statement or by the editing effects of the REPLACE
statement.

During program compilation, the compiler identifies a section by locating the
SECTION directive whose text-name matches the text-name specified in the
COPY statement. For more information, see SECTION.

• Copying Sections of Text

The compiler copies text starting at the line after the SECTION directive line and
continues until it recognizes another SECTION directive or reaches the end of the
file.

• No COPY Statements in COPY Library Sections

The COPY statement cannot be within a section of a COPY library.

• Reference Format

The compiler assumes that the reference format of the library text is the same as
that of the line containing the COPY statement, unless you specify a different
format in the SECTION directive. (For information on Tandem format, see
Reference Format for Source Program Lines. For information on ANSI format, see
Section 16, ANSI Reference Format.)

If you specify a reference format in a SECTION directive, that format is active only
during execution of the COPY statement. After the compiler copies a section, it
uses the reference format previously active.

• Compiler Directives in a COPY Library

Source text in a COPY library can contain compiler directives, which the compiler
obeys when it analyzes the copied text.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-13

Source Text Manipulation REPLACE Statement
• Compiler Builds a Directory of the COPY Library

The first time the compiler reads from a COPY library, it begins to build a directory
for itself that enables it to locate the individual sections. It reads through the library,
building its directory, until it finds the selected section. After copying it, it resumes
normal compilation. For subsequent COPY statements, it checks its directory. If the
chosen section is in the directory, the compiler can go right to it; otherwise, it
resumes reading the library where it left off, and continues as before. If you put
sections that most programs use in the front of the library and those that few
programs use at the end, compilation speed is improved.

• Adding Source Text to a COPY Library

Since COPY libraries are files in the EDIT format or OSS ASCII files, you can add
a section of source text to a library by editing it. You can put a SECTION directive
line and the source text that follows it before, between, or after sections already in
the library.

REPLACE Statement
REPLACE substitutes zero or more words of pseudo-text for one or more words of
pseudo-text.

REPLACE

is a reserved word that cannot be split across source program lines.

pseudo-text-1

contains at least one text-word other than a comma or semicolon separator. A
character-string within pseudo-text-1 can continue on the next line, but both
characters of the pseudo-text delimiter (==) must be on the same line.

REPLACE

OFF

pseudo-text-1 BY pseudo-text-2 .

VST254.vsd

==== text-word

VST250.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-14

Source Text Manipulation REPLACE Statement
pseudo-text-2

can be null. A character-string within pseudo-text-2 can continue on the next
line, but both characters of the pseudo-text delimiter (==) must be on the same
line.

text-word

is any character-string or separator except space. It cannot be a concatenation
expression.

OFF

marks the end of the scope of replacement of the most recent REPLACE
statement.

Usage Considerations:

• Comment Lines and Directive Lines in Pseudo-Text

Pseudo-text can contain comment lines and directive lines (that is, the text-words
in pseudo-text can be organized as comment lines and directive lines).

• Where REPLACE Statements Can Be Used

With these exceptions, a REPLACE statement can occur anywhere in the source
text that a character-string can occur:

° A REPLACE statement cannot appear within the body of another REPLACE
statement.

° A REPLACE statement cannot appear within source text introduced by another
REPLACE statement.

° If the word REPLACE appears either in a comment-entry or in a place where a
comment-entry can appear, it is considered part of the comment-entry, not as
the keyword that begins a REPLACE statement.

° The keyword REPLACE must be preceded by a period separator, except when
it begins the first statement of a separately compiled program.

° A REPLACE statement cannot appear on the same line as an SQL/MP or
SQL/MX statement.

All seven characters of the keyword REPLACE must appear on the same source
text line. The remainder of the statement can continue across additional program
text lines, in accordance with the continuation conventions of the reference format.

text-word

====

VST251.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-15

Source Text Manipulation REPLACE Statement
• Persistence

A given occurrence of the REPLACE statement is active from the point at which
you specify it until the next occurrence of a REPLACE statement or the end of the
separately compiled program, respectively.

• REPLACE Statements and the Listing

The listing the compiler produces shows the lines containing REPLACE statements
like any other lines. When any replacement occurs, the image in the listing is that
of the text after replacement.

• Order of Processing

Conceptually, the compiler processes any REPLACE statements in a source
program after it has processed any COPY statements.

• Comparison Operation

The compiler determines which sequences of text-words to replace by comparing
pseudo-text-1 to text-words in the source text. This is how the comparison
operation works:

1. Starting with the leftmost source program text-word and the first pseudo-
text-1, the compiler compares the word or words of pseudo-text-1 with
the equivalent number of contiguous text-words in the source program.

2. During the comparison, the compiler handles each occurrence of a separator
comma or semicolon and each sequence of one or more space separators as
a single space. The compiler ignores any comment or directive line in the
source text or in pseudo-text-1. The pseudo-text-1 matches the source
text if the two sequences of text-words are equal, character for character.

3. If no match occurs, the compiler repeats the comparison with each successive
occurrence of pseudo-text-1, if any, in the REPLACE statement until a
match occurs or until it has compared each operand in the pseudo-text-1
to the leftmost source program text-word or text-words.

4. If the compiler compares all the occurrences of pseudo-text-1 without
finding a match, it considers the next text-word of the source program as the
leftmost source program text-word and starts the comparison cycle again with
the first occurrence of pseudo-text-1.

5. Whenever a match occurs between pseudo-text-1 and the source program
text, the compiler replaces the matched text in the source program with the
corresponding pseudo-text-2. The compiler then considers the source
program text-word immediately following the rightmost text-word that
participated in the match to be the leftmost source program text-word, and
starts the comparison cycle again with the first occurrence of pseudo-
text-1.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-16

Source Text Manipulation REPLACE Statement
6. The compiler continues its comparison operation until either the rightmost text-
word in the source program text (within the scope of the REPLACE statement)
has participated in a match or has been considered as a leftmost text-word and
participated in a complete comparison cycle.

• Comment Lines and Blank Lines in Replacement Text

The matching operation ignores any comment lines or blank lines occurring in the
source program text. The compiler determines the sequence of text-words in the
source program text and in pseudo-text-1 by the rules for reference format.

The replacement operation copies comment lines or blank lines in pseudo-
text-2 into the source program text without change whenever it copies pseudo-
text-2 into the source program.

The compiler does replace a comment line or blank line in source program text if
that comment line or blank line appears within the sequence of text-words that
match pseudo-text-1.

• Debugging Lines

You can put debugging lines in pseudo-text-1 or in pseudo-text-2. text-
words within a debugging line participate in the comparison cycle as though the
indicator area did not contain a D or d.

If a portion of the apparent source text is replaced, any text-words of the
replacement text specified on debugging lines appear on debugging lines in the
final source text.

If a portion of the apparent source text that begins on a debugging line is replaced,
all text-words of the replacement text appear on debugging lines in the final source
text.

If the REPLACE statement itself begins on a debugging line, all replacement text,
except comment and compiler directive lines, appears on debugging lines.

Because debugging lines and continuation lines are mutually exclusive, the
compiler cannot introduce a continued text-word into the source text when the
preceding rules require it to appear on debugging lines.

• Sensitivity to Reference Format

Because, when a REPLACE statement is in force, the compiler analyzes pseudo-
text (and source text) without the benefit of any contextual information, you must
observe the COBOL reference format rules carefully. In particular, the compiler
does not identify a comma, semicolon, or period character as a separator unless it
is followed by at least one space character.

Similarly, the compiler interprets the character sequence X/9 as one text-word
(presumably a PICTURE character-string) rather than as three text-words;
however, the compiler always considers a left parenthesis, right parenthesis, or
colon character to be a separator unless it appears within a nonnumeric literal.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-17

Source Text Manipulation REPLACE Statement
The REPLACE statement in Example 10-3 enables you to declare a name for a
constant in your program, then use that name in various places in a program.
While OFFICES could have been declared as a data-item for this purpose, SQ-FT-
SIZE could not have.

Of course, with either EDIT or PS Text Edit (TEDIT), you could easily change all
instances of reserved words in a source program to another word; but if your data
dictionary contains any fields whose names have become reserved words, you
might find the REPLACE statement a handy tool. The REPLACE operation occurs
conceptually after the COPY operation, but before the remainder of the
compilation.

Example 10-3. REPLACE Statement

DATA DIVISION.
REPLACE ==OFFICES== BY ==10==
 ==SQ-FT-SIZE== BY ==5==.
...
01 OFFS.
 03 OFFICE-INFO OCCURS OFFICES TIMES.
 05 DISTRICT PICTURE 99.
 05 SQUARE-FEET PICTURE S9(SQ-FT-SIZE).
...
PROCEDURE DIVISION.
...
 PERFORM REPORT-OFFICE OFFICES TIMES.
...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
10-18

11 Program Compilation
Throughout this section, “compiler” means both the COBOL85 and NMCOBOL
compilers unless otherwise stated.

The compiler can run at a high PIN (a process identification number greater than 255)
and can be requested by other processes running at high PINs.

The compiler accepts one source file as input. That source file can use SOURCE
directives and COPY statements to read text from other source files. The source file
that is input to the compiler and the source files from which it reads text can contain
one or more source programs, each consisting of HP COBOL statements, comment
lines, and compiler directives (instructions to the compiler). Compiler directives can
also appear on the compiler command line.

Compiler directives specify the source format, control listing features, control selective
compilation of portions of the source code, and request compilation options; therefore,
they affect the output of the compiler. By default, if the source file has no errors, the
compiler outputs a listing and an object file.

The NOLIST and SUPPRESS directives can suppress all or parts of the listing file.

The COBOL85 compiler produces an object file that can be both executed and input to
the Bind utility. The NMCOBOL compiler produces an object file that can either be
input to the nld utility (the default), input to the ld utility, or executed.

The SYNTAX directive can suppress all or parts of the object file. Syntax errors in the
source file can also suppress all or parts of the object file:

The rest of this section applies primarily to the Guardian environment. If you are
compiling HP COBOL programs in the OSS environment, see Section 19, Using
HP COBOL in the OSS Environment.

Syntax errors are in: COBOL85 produces: NMCOBOL produces:

All programs in the compilation No object file No object file

Some programs in the compilation Partial object file No object file

No programs in the compilation Complete object file Complete object file
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-1

Program Compilation Compiler Input
Topics:

• Compiler Input

• Compilation Details

• Compiler Output

• Running the Compiler

• Compiler Directives

Compiler Input
Input to the compiler is always a single source file, but that source file can read text
from other source files (using SOURCE directives and COPY statements). The source
file that is input to the compiler and the source files from which it reads text can contain
one or more source programs. One of these source programs can be a main program.
The source programs can call each other, and, under some circumstances, they can
also call non-COBOL programs. The source file that is input to the compiler is also
called a compilation unit.

Topics:

• Main Programs

• Calling and Called Programs

• How an HP COBOL Program Calls a Non-COBOL Program

• Compilation Units

Figure 11-1. Compiler Input and Output

Source
File

Compiler

Object
File

Listing
File

(affected by NOLIST and
SUPPRESS directives)

(affected by SYNTAX
directives and errors)

VST515.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-2

Program Compilation Main Programs
Main Programs
A main program is either compiled with the MAIN directive (see MAIN) or it has no
Linkage Section (see Absent Linkage Section). A loadfile must contain exactly one
main program. It can also contain other programs. When the loadfile is executed, the
NonStop operating system calls the main program. Then the main program can call the
other programs and the other programs can call each other. The NonStop operating
system does not call the other programs.

In Example 11-1, the MAIN directive makes A-PROGRAM a main program. If
A-PROGRAM and A-FRIEND are compiled in the same compilation unit, A-FRIEND is
not a main program. If A-FRIEND is compiled alone, it is a main program, because it
does not have a Linkage Section.

Example 11-1. Main Program and Another Program

?MAIN A-PROGRAM
 IDENTIFICATION DIVISION.
 PROGRAM-ID. A-PROGRAM.
 ENVIRONMENT DIVISION.
 ...
 SPECIAL-NAMES.
 FILE "$SYSTEM.COBSYS.BFILES" IS B-FILE.
 DATA DIVISION.
 ...
 PROCEDURE DIVISION.
 ...
 CALL "A-FRIEND"
 ...
 CALL "B-FRIEND" IN B-FILE
 ...
 STOP RUN.
 END PROGRAM A-PROGRAM.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. A-FRIEND.
 ENVIRONMENT DIVISION.
 ...
 SPECIAL-NAMES.
 FILE "$SYSTEM.COBSYS.BFILES" IS B-FILE,
 FILE "$SYSTEM.TALSYS.TFILES" IS T-FILE.
 DATA DIVISION.
 ...
 PROCEDURE DIVISION.
 ...
 CALL "HOME" IN BFILE
 ...
 ENTER TAL "SPECIALIST" IN T-FILE
 ...
 STOP RUN.
 END PROGRAM A-FRIEND.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-3

Program Compilation Calling and Called Programs
Calling and Called Programs
Many languages have declarations that distinguish main programs from subprograms.
COBOL does not use the term “subprogram.” Instead, it defines a program as a
“calling program” if it contains a CALL or ENTER statement and defines a program as
a “called program” if it is the object of a CALL or ENTER statement. A program can be
both a calling program and a called program. The distinction is one of usage, not of
explicit declaration. In Example 11-1, A-PROGRAM is a calling program and A-
FRIEND is both a called program and a calling program.

If a called COBOL program is to receive parameters, it must have a Linkage Section
(see Linkage Section).

The statement a COBOL program uses to call another program depends on the
language in which the called program was written.

Called programs are not required to be in the main program’s compilation unit (see
Compilation Units).

How an HP COBOL Program Calls a Non-COBOL Program
Any HP COBOL program can call a non-COBOL program with the ENTER statement.
An HP COBOL program that runs in the CRE and was compiled with the PORT
directive can also call a non-COBOL program with the X/Open CALL statement. The
difference between the ENTER statement and the X/Open CALL statement is that the
ENTER statement attempts to coerce the actual parameters into the types of the
formal parameters, while the X/Open CALL statement reports an error if the types of
the actual and formal parameters do not match.

Just as HP COBOL object programs can be read from an object file and included in the
target file during the binding phase of COBOL85 compilation or the (optional) linking
phase of NMCOBOL compilation, object programs from other languages can also.

Table 11-1. Statements for Calling Programs

Language of Called Program Statement for Calling Program

HP COBOL CALL

HP C ENTER or X/Open CALL

HP C++ ENTER or X/Open CALL

FORTRAN* ENTER or X/Open CALL

Pascal* ENTER or X/Open CALL

pTAL ENTER or X/Open CALL

TAL* ENTER or X/Open CALL

* Native HP COBOL programs cannot call programs written in this language.

Note. You cannot put any combination of TNS, TNS/R, or TNS/E object files into a single
object file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-4

Program Compilation Compilation Units
Appendix B, Data Type Correspondence, shows the correspondence between
HP COBOL data items and those of the other languages with which an HP COBOL
program can interact. HP COBOL index names are entirely internal to their own
program; they cannot be written, read, or passed as parameters. Index data items in
HP COBOL correspond to 32-bit integers.

In Example 11-2, a TNS HP COBOL program calls a FORTRAN program to get the
base-10 logarithm of a value.

Compilation Units
The source file that is input to the compiler is also called a compilation unit. A
compilation unit contains one or more “separately compiled programs.”A separately
compiled program is a program whose source text can be submitted to the compiler
independently of any other source text. Each such program can include nested
programs, and any program can call other separately compiled programs.

Submitting a sequence of separately compiled programs to the compiler as a
compilation unit (in a single compilation step) is called “stacked compilation.”

The end of each separately compiled program is ordinarily marked by an END
PROGRAM statement, although it can be marked with an ENDUNIT compiler directive
with equivalent effect. The last (or only) program in a compilation unit does not require
an END PROGRAM statement or an ENDUNIT directive. Separately compiled
programs in a compilation unit can be in any order.

Example 11-2. TNS HP COBOL Program Calling FORTRAN Program

COBOL main program fragment:

 01 FTN-PARAMETERS.
* DOUBLEWORDS, SCALED UP BY 1000
 03 LOGARG PICTURE S9(8) COMP.
 03 LOGANS PICTURE S9(8) COMP.
 01 UNSCALED PICTURE 9(5)v9(3).
 ...
 MOVE 123.45 TO UNSCALED
 MULTIPLY UNSCALED BY 1000 GIVING LOGARG
 ENTER FORTRAN "LOGTEN" OF MATHS USING LOGARG
 GIVING LOGANS
 DIVIDE LOGANS BY 1000 GIVING UNSCALED

FORTRAN subprogram fragment:

 INTEGER*4 FUNCTION LOGTEN (IA)
 INTEGER*4 IA
 DOUBLE PRECISION DA
C SCALE BACK DOWN
 DA = DBLE (IA) / 1000
C GET DOUBLE PRECISION LOG, RESCALE, CONVERT TO INT
 LOGTEN = INT4 (DLOG10 (DA) * 1000.D0)
 RETURN
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-5

Program Compilation Compilation Units
If there are compilation errors in some, but not all, programs in a compilation unit, the
COBOL85 compiler produces object programs for the programs in which there were no
errors, but the NMCOBOL compiler produces no object file.

Example 11-3 shows a compilation unit in which a main program and two called
programs are included in the input file, contained in file CSOURCE. The command to
compile the compilation unit in Example 11-3 with the COBOL85 compiler is:

COBOL85 /IN CSOURCE/ COBJECT

The command to compile the compilation unit in Example 11-3 with the NMCOBOL
compiler is:

NMCOBOL /IN CSOURCE/ COBJECT

COBJECT is called the target file. It contains the object programs that the compiler
produces. Figure 11-2 illustrates the case for the COBOL85 compiler when no source
file in CSOURCE has compilation errors.

Example 11-3. Compilation Unit (page 1 of 2)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CPGM1.
* CALLED PROGRAM 1.
 ...
 DATA DIVISION.
 ...
 LINKAGE SECTION.
 01 LS-NAMES.
 03 LS-A-NAME PICTURE X(30).
 03 LS-B-NAME PICTURE X(30).
 ...
 END PROGRAM CPGM1.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CALLER.
* THE MAIN PROGRAM FOR THIS COMPILATION.
 ...
 DATA DIVISION.
 ...
 WORKING-STORAGE SECTION.
 01 WS-PARTS.
 03 WS-FIRST-PART PICTURE X(30).
 03 WS-SECOND-PART PICTURE X(30).
 01 WS-PRODUCER.
 03 WS-PRODUCER-NAME PICTURE X(60).
 03 WS-PRODUCER-ADDRESS PICTURE X(60).
 PROCEDURE DIVISION.
 CALL "CPGM1" USING WS-PARTS
 CALL "CPGM2" USING WS-PARTS WS-PRODUCER
 ...
 END PROGRAM CALLER.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-6

Program Compilation Compilation Units
Called programs are not required to be in the main program’s compilation unit. They
can reside in their own files and be compiled to produce separate object files. Such
object files need not be loadfiles. They can exist solely as resources for binding or
linking (see Object File Creation).

Example 11-4 calls program units that are in a separate file, C-ARCHIVE. When the
main program is compiled, the two called programs are included in the resulting target
file. Figure 11-3 shows the compilation of the program containing this fragment,
assuming that COBJECT is the object file produced by the compilation shown in
Example 11-3.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CPGM2.
* CALLED PROGRAM 2.
 ...
 DATA DIVISION.
 ...
 LINKAGE SECTION.
 01 LS-SUBASSY.
 03 LS-SUBASSY-1 PICTURE X(30).
 03 LS-SUBASSY-2 PICTURE X(30).
 01 LS-MFGR.
 03 LS-MFGR-NAME PICTURE X(60).
 03 LS-MFGR-ADDR PICTURE X(60).
 ...

Figure 11-2. TNS Compilation Unit, Listing File, and Object File

Example 11-3. Compilation Unit (page 2 of 2)

Copy
Library

Listing
File

SYMSERV

COBOL85

BINSERV

CSOURCE

CPGM1
CALLER

CPGM2

COBJECT

CPGM1
CALLER

CPGM2

VST517.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-7

Program Compilation Compilation Units
Example 11-4. Calling Programs That Are in a Separate File

PROGRAM-ID. CALLER.
 ...
SPECIAL-NAMES.
 FILE "$MYVOL.MYSUB.COBJECT" IS C-ARCHIVE.
 ...
 CALL "CPGM1" IN C-ARCHIVE
 ...
 CALL "CPGM2" IN C-ARCHIVE

Figure 11-3. TNS Compilation With Object-File Inclusion

Listing
File

SYMSERV

COBOL85

BINSERV

CPGM1

CALLER

CPGM2

Target
File

CPGM1

CPGM2

COBJECT

Object file
(input)

CSOURCE

Source
File

Copy
Library

VST518.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-8

Program Compilation Compilation Details
Compilation Details
• Processes Involved in Compilation

• Temporary File Placement

• CALL and ENTER Statement Processing: Overview

• CALL and ENTER Statement Processing: Detailed Explanation

• #RECEIVE Blocks

Processes Involved in Compilation
The processes involved in compilation differ for the COBOL85 and NMCOBOL
compilers.

Topics:

• COBOL85 Compiler

• NMCOBOL Compiler
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-9

Program Compilation Processes Involved in Compilation
COBOL85 Compiler
The COBOL85 compiler consists of one process, COBOL85. Two other processes,
SYMSERV and BINSERV, are present throughout the compilation.

SYMSERV collects symbol table information, puts it into structures in a temporary file,
and gives the temporary file to BINSERV. BINSERV writes the information from the
temporary file into the object file. BINSERV also performs binding.

The symbol table information in the object file can be used later by the symbolic
debuggers.

Figure 11-4. COBOL85 Compilation of Single Program Unit

Listing
File

SYMSERV

COBOL85

BINSERV

Source
Files

Copy
Libraries

Target
File

VST519.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-10

Program Compilation Temporary File Placement
NMCOBOL Compiler
The NMCOBOL compiler consists of a driver process, NMCOBOL, and a sequence of
subordinate processes.

For a successful compilation, the NMCOBOL compiler driver calls COBOLFE, UGEN,
and AS1 in turn, using temporary files to pass information between them. If you specify
the RUNNABLE or SEARCH directive when creating a non-PIC loadfile, the
NMCOBOL compiler also calls the nld utility. If you specify the RUNNABLE or
SEARCH directive when creating a PIC loadfile (CALL-SHARED) or a DLL library
(SHARED), the NMCOBOL compiler also calls the ld utility.

The symbol table information in the object file can be used later by the symbolic
debuggers.

Temporary File Placement
The COBOL85 and NMCOBOL compilers and their supporting processes create and
use temporary files. Default temporary file placement differs slightly for the two
compilers.

Topics:

• COBOL85 Compiler

• NMCOBOL Compiler

• Specifying a Volume for Temporary Files

Figure 11-5. NMCOBOL Compilation of Single Program Unit (Non-PIC)

Copy
Libraries

COBOLFE

Source
Files

NMCOBOL

UGEN

Loadfile

AS1

nld

Linkfile

Listing
File

VST727.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-11

Program Compilation CALL and ENTER Statement Processing: Overview
COBOL85 Compiler
By default, the COBOL85 compiler creates its temporary files on the current default
volume. The BINSERV and SYMSERV processes create their temporary files on the
volume where the target file is located, unless that volume is on another node. If the
volume is on another node, the BINSERV and SYMSERV processes create their
temporary files on the current default volume of the node on which they execute. For
example, suppose you are executing on \MYSYS and your default volume is $CURR. If
you execute the command:

COBOL85 /IN MYSRC, OUT $S.#MYLST/ \ALIEN.$FAR.XX.MYOBJ

the BINSERV and SYMSERV processes use $CURR for any temporary files, instead
of using volume $FAR on system \ALIEN.

NMCOBOL Compiler
By default, the NMCOBOL compiler creates its temporary files on the current default
volume. If called by the NMCOBOL compiler, the processes COBOLFE, UGEN, and
AS1 and the linker create their temporary files on the current default volume.

Specifying a Volume for Temporary Files
The PARAM SWAPVOL command specifies the volume on which the compiler and its
processes will create temporary files (if possible). It does not determine where the
operating system creates the compiler’s own swap file. For details, see PARAM
SWAPVOL.

The RUN option SWAP specifies one volume for both the temporary files that the
compiler and its processes will create and for the compiler’s own swap file. For more
information on SWAP and other RUN options, see the TACL Reference Manual.

CALL and ENTER Statement Processing: Overview
Any TNS HP COBOL program can call TNS HP COBOL programs with CALL
statements. Any TNS/R HP COBOL program can call TNS/R HP COBOL programs
with CALL statements. Any HP COBOL program can call non-COBOL programs with
ENTER statements. A HP COBOL program that runs in the CRE and was compiled
with the PORT directive can also call non-COBOL programs with X/Open CALL
statements.

In the CALL statement, the called program must be a COBOL program. It can be part
of the same compilation unit as the calling program, or it can be an external reference
to a COBOL program outside the compilation unit (but in the same object file). All
ENTER statements cause external references, because they call programs compiled
from source languages other than COBOL.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-12

Program Compilation CALL and ENTER Statement Processing: Overview
To generate the proper code to call a separately compiled program, the compiler needs
a description of the parameter list of that program. Each CALL or ENTER statement
can include qualification that specifies where the compiler must find the program.
Although the compiler must search for unqualified programs, qualification significantly
restricts the activity of the compiler.

Topics:

• Qualified References

• How the Compiler Resolves Unqualified References

Qualified References
Each CALL or ENTER statement can include a file-mnemonic that identifies the
object file where BINSERV or the linker must look for the called program, resolving the
external reference and including the called program’s object code in the target file. You
must associate this file-mnemonic with the object file’s file-system file name in the
SPECIAL-NAMES paragraph in the Environment Division that governs the calling
program. (Either the calling program is not nested, and contains an Environment
Division; or the calling program is nested, and its outermost containing program
contains an Environment Division.)

If the compiler does not find the program in the specified object file, it reports an error
and creates no code or data blocks for the program unit. Example 11-1 contains three
examples of qualified references.

How the Compiler Resolves Unqualified References
When a program name is not qualified and the program it names is not in the
compilation unit (such as the call to A-FRIEND in Example 11-1) the compiler resolves
the reference in one of these ways:

• If you provided one or more search lists, the compiler examines those files in
sequence for program names that correspond to the external references.

• If you did not provide search lists, or if the compiler did not find the necessary
external references on them:

° The COBOL85 compiler examines COBOLEXT for resolution of TAL external
references and does not resolve FORTRAN external references at all.

° The NMCOBOL compiler examines NMCOBEXT for resolution of external
references.

You create primary, secondary, and tertiary search lists with the SEARCH, LIBRARY,
and CONSULT directives, respectively. (The NMCOBOL compiler does not recognize
the LIBRARY directive or have a user library, the secondary search list.) You can also
use the predefined SEARCH DEFINEs to specify one or more subvolumes to be
searched for unqualified files (see Predefined SEARCH DEFINEs).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-13

Program Compilation CALL and ENTER Statement Processing: Overview
Topics:

• Primary Search List

• Secondary Search List (COBOL85 Compiler Only)

• Tertiary Search List

• COBOLEXT File

• COBOLEX0 and COBOLEX1 Files

• NMCOBEXT File

• NMCOBEX0 and NMCOBEX1 Files

Primary Search List
SEARCH directives define the primary search list, an ordered list of object files. Each
SEARCH directive adds one or more files to the primary search list. The compiler adds
files to the search list in the order that they appear in the SEARCH directives. When
trying to resolve unqualified external references, the compiler searches the files of the
primary search list in the order that they appear. If the compiler resolves an external
reference from the primary search list, the object program that the compiler finds is
bound into the target file.

Secondary Search List (COBOL85 Compiler Only)
The LIBRARY directive defines the secondary search list, which consists of one file.
Whenever the compiler encounters a LIBRARY directive, the object file named there
becomes the new secondary search list. If a program is compiled with more than one
LIBRARY directive, the one that applies to a specific ENTER statement is the last one
the compiler encountered prior to that ENTER statement. If the compiler resolves an
external reference from the secondary search list, the object program that the compiler
finds is not bound into the target file. Programs resolved from the secondary search list
are presumed to be in a user library.

Tertiary Search List
CONSULT directives define the tertiary search list. Each CONSULT directive adds one
or more files to the tertiary search list. The compiler adds files to the search list in the
order that they appear in the CONSULT directives. When trying to resolve unqualified
external references, the compiler searches the files of the tertiary search list in the
order that they appear. If the compiler resolves an external reference from the tertiary
search list, the object program that the compiler finds is not bound into the target file.
Programs resolved from the tertiary search list do not have to be in the system library.
They can be elsewhere and can be bound in later or can be referenced in a run-time
library.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-14

Program Compilation CALL and ENTER Statement Processing: Overview
COBOLEXT File
If you did not provide search lists, or if the compiler did not find the necessary external
references on them, it uses the COBOLEXT file to perform parameter validation, but
does not import any object code. Programs resolved from COBOLEXT are available to
the program at load time.

When you install the COBOL85 compiler, the COBOLEXT file is stored on the
subvolume $SYSTEM.SYSTEM. If you move the COBOLEXT file to another
subvolume, use the CONSULT directive to tell the compiler where to find it.

COBOLEX0 and COBOLEX1 Files
Each RVU of the COBOL85 compiler includes three files: COBOLEX0, COBOLEX1,
and COBOLEXT. These represent the most recent, next most recent, and third most
recent RVUs of the Guardian environment, respectively. If you need access to a
routine that was added (or to a parameter that was added to an existing routine) in the
most recent version of the Guardian environment, include a CONSULT directive
specifying COBOLEX0 in your compilation. The compiler then validates all calls of
Guardian system routines from COBOLEX0 instead of from COBOLEXT.

When you install the COBOL85 compiler, the COBOLEX0 and COBOLEX1 files are
stored on the subvolume $SYSTEM.SYSTEM. If you move either file to another
subvolume, use the CONSULT directive to tell the compiler where to find it.

NMCOBEXT File
If you did not provide search lists, or if the compiler did not find the necessary external
references on them, in ZCOBSRL, or in ZCRESRL, it uses the NMCOBEXT file to
perform parameter validation, but does not import any object code. Programs resolved
from NMCOBEXT are available to the program at load time.

When you install the NMCOBOL compiler, the NMCOBEXT file is stored on the
subvolume $SYSTEM.SYSTEM. If you move the NMCOBEXT file to another
subvolume, use the CONSULT directive to tell the compiler where to find it.

NMCOBEX0 and NMCOBEX1 Files
Each RVU of the NMCOBOL compiler includes three files: NMCOBEX0, NMCOBEX1,
and NMCOBEXT. These represent the most recent, next most recent, and third most
recent RVUs of the Guardian environment, respectively. If you need access to a
routine that was added (or to a parameter that was added to an existing routine) in the
most recent version of the Guardian environment, include a CONSULT directive
specifying NMCOBEX0 in your compilation. The compiler then validates all calls of
Guardian system routines from NMCOBEX0 instead of from NMCOBEXT.

Note. The preceding paragraph applies only to the NonStop system. For the locations of files
on the PC, see NonStop COBOL for TNS/R (ETK).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-15

Program Compilation CALL and ENTER Statement Processing: Detailed
Explanation
When you install the NMCOBOL compiler, the NMCOBEX1 and NMCOBEXT files are
stored on the subvolume $SYSTEM.SYSTEM. If you move either file to another
subvolume, use the CONSULT directive to tell the compiler where to find it.

CALL and ENTER Statement Processing: Detailed Explanation
In processing CALL and ENTER statements, the compiler attempts to:

1. Find the called program (see Finding the Called Program) or the entered program
(see Finding the Entered Program)

2. Validate the parameters in the calling program against those expected by the
called program (see CALL and ENTER)

3. Generate any necessary instructions to present the parameters from the calling
program in the form that the called program expects (see Presenting Parameters
to the Called Program)

4. Generate any necessary instructions to deliver a returned value (from the GIVING
clause of an ENTER statement) in the form that the calling program expects (see
Delivering the Returned Value)

5. Bind or link the object code for the called program into the target file or postpone
the binding or linking until the first time the loadfile is loaded for execution (see
Binding or Linking the Object Code)

Finding the Called Program
When the compiler reaches the end of a separately compiled program, it identifies all
program names that were explicitly referenced by CALL statements in that program. If
a CALL statement specified an identifier instead of an explicit name, the compiler
cannot validate the parameters and does not try to locate the program for that CALL.
You are responsible for the conformance of the parameters.

A compilation source text consists of one or more separately compiled HP COBOL
programs. Each such program can include nested programs. Suppose separately
compiled program S includes program P, which contains the statement CALL A. The
compiler follows this procedure:

1. If program P directly contains a program named A, the compiler always chooses
that program.

In Example 11-5, the compiler issues a warning if a file-mnemonic appears.

Note. The preceding paragraph applies only to the NonStop system. For the locations of files
on the PC, see NonStop COBOL for TNS/R (ETK).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-16

Program Compilation CALL and ENTER Statement Processing: Detailed
Explanation
2. If program S contains a common program named A, and also contains (directly or
indirectly) program P, then if P calls A, the compiler chooses the common program
A.

In Example 11-6, the compiler issues a warning if a file-mnemonic appears. If
common program A contains program P (directly or indirectly), the compiler leaves
P’s reference to A unresolved, and Item 4 applies.

3. If neither Item 1 or Item 2 applies, and a previously seen separately compiled
program has the name A, the compiler chooses that program.

4. If Item 1, Item 2, and Item 3 do not apply, the compiler conducts a search for
program A.

If file-mnemonic appears, the compiler tries to find a separately compiled
program unit in the file associated with the file-mnemonic. If the compiler
cannot find such a program unit, it reports an error and delivers no object code for
program S to the target file.

If no file-mnemonic appears, the COBOL85 compiler consults the search lists.

If the compiler finds no separately compiled program A in the object files of the
search lists, the compiler expects a separately compiled program A to appear
somewhere within the source text, and also expects all of program A’s parameters
to have EXTENDED-STORAGE access mode (the default).

If the compiler does find a program unit for A in the search lists, it resolves the
reference with the first such program unit in the list. If the compiler discovers a
separately compiled program A later in the source text, it replaces its previous
resolution with the new one. If the new program A and the original program A have
different numbers of parameters, or if their parameters have different access
modes, the compiler reports an error and delivers no object code for program A to
the target file.

5. When the compiler reaches the end of the source text, it issues a warning if it was
unable to resolve any program references. You must supply the missing programs
(using BIND or the linker) before you execute the loadfile.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-17

Program Compilation CALL and ENTER Statement Processing: Detailed
Explanation
Finding the Entered Program
When it encounters an ENTER or X/Open CALL statement, the compiler follows this
procedure:

1. If the compiler has already resolved the reference to the specified routine-name
during the current compilation, the compiler resolves the current reference to that
program.

2. If the compiler has not yet encountered the routine-name during the current
compilation, the compiler conducts a search for the program:

a. If file-mnemonic appears, the compiler tries to find a program with the
specified name in the file associated with file-mnemonic. If the compiler
finds the program, it verifies that language is the language in which the
program was written. If the compiler does not find such a program, it reports an
error.

Example 11-5. For Step 1 of Finding the Called Program

IDENTIFICATION DIVISION.
PROGRAM-ID. P. ...
PROCEDURE DIVISION. ...
CALL A ...
...
 IDENTIFICATION DIVISION.
 PROGRAM-ID. A.
 ...
 END PROGRAM A.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. B. ...
 END PROGRAM B.
END PROGRAM P.

Example 11-6. For Step 2 of Finding the Called Program

IDENTIFICATION DIVISION.
PROGRAM-ID. S. ...
PROCEDURE DIVISION. ...
 IDENTIFICATION DIVISION.
 PROGRAM-ID. A COMMON. ...
 END PROGRAM A.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. P. ...
 CALL A ...
 END PROGRAM P.
END PROGRAM S.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-18

Program Compilation CALL and ENTER Statement Processing: Detailed
Explanation
b. If no file-mnemonic appears:

The COBOL85 compiler looks for the program in the current search lists, in this
order:

1. Primary search list
2. Secondary search list
3. Tertiary search list

If the COBOL85 compiler does not find the program in any of the search lists,
and the language is TAL, the compiler searches the COBOLEXT file located
on the same volume and subvolume as the compiler. You can also use the
predefined SEARCH DEFINEs to specify one or more subvolumes to be
searched for unqualified files (see Predefined SEARCH DEFINEs). An
unqualified file is one that is not defined with a subvolume or additional
qualifiers.

The NMCOBOL compiler looks for the program in these files in this order:

1. Primary search list
2. Tertiary search list
3. ZCOBSRL
4. ZCRESRL
5. NMCOBEXT

c. If the compiler cannot find the program in any of the places discussed earlier, it
reports an error and delivers no object code for the calling program.

Table 11-2 through Table 11-4 summarize the preceding information.

Note. If routine-name specifies an HP C or HP C++ function whose name
includes lowercase letters, the call fails, because the compiler automatically converts
all names to uppercase.

Table 11-2. Resolution of External References
(COBOL85 Compiler With No Search List Defined) (page 1 of 2)

Form1

External reference found in ...

Target File
Created?MNEM

Current
Source File COBOLEXT

CALL “P” IN MNEM Yes Irrelevant Irrelevant Yes

No Irrelevant Irrelevant No, error reported

1. Bracketed items are optional.

2. For the COBOL85 compiler, language is HP C, FORTRAN, or Pascal. For the NMCOBOL compiler,
language is HP C or TAL.

3. This form must be qualified when no search list is defined and the called routine is not in COBOLEXT or
NMCOBEXT.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-19

Program Compilation CALL and ENTER Statement Processing: Detailed
Explanation
CALL “P” Irrelevant Yes Irrelevant Yes

Irrelevant No Irrelevant Yes, with unresolved
externals; warning
issued

ENTER language 2
“R” IN MNEM

Yes Impossible Irrelevant Yes

No Impossible Irrelevant No, error reported

ENTER language 2
“R”

Irrelevant Impossible Irrelevant No, error reported

ENTER [TAL] “R” IN
MNEM

Yes Impossible Irrelevant Yes

No Impossible Irrelevant No, error reported

ENTER [TAL] “R” 3 Irrelevant Impossible Yes Yes

Irrelevant Impossible No No, error reported

Table 11-3. Resolution of External References
(COBOL85 Compiler With Search List Defined) (page 1 of 2)

Form*

External reference found in ...

Target
File
Created?

Current
Source
File

Primary
Search
List

Secondary
Search
List

Tertiary
Search
List

COBOL-
EXT

CALL “P” IN
MNEM

Search list not used—CALL is qualified

CALL “P” Yes Irrelevant Irrelevant Irrelevant Irrelevant Yes

No Yes Irrelevant Irrelevant Irrelevant Yes

No No Irrelevant Irrelevant Irrelevant Yes, with
un-
resolved
externals;
warning
issued

* Bracketed keywords are optional.

Table 11-2. Resolution of External References
(COBOL85 Compiler With No Search List Defined) (page 2 of 2)

Form1

External reference found in ...

Target File
Created?MNEM

Current
Source File COBOLEXT

1. Bracketed items are optional.

2. For the COBOL85 compiler, language is HP C, FORTRAN, or Pascal. For the NMCOBOL compiler,
language is HP C or TAL.

3. This form must be qualified when no search list is defined and the called routine is not in COBOLEXT or
NMCOBEXT.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-20

Program Compilation CALL and ENTER Statement Processing: Detailed
Explanation
ENTER
language
“R” IN MNEM

Search list not used—ENTER is qualified

ENTER
[language]
“R”

Impossible Yes Irrelevant Irrelevant Irrelevant Yes

Impossible No Irrelevant Irrelevant Irrelevant No, error
reported

ENTER [TAL]
“R” IN MNEM

Search list not used—ENTER is qualified

ENTER [TAL]
“R”

Impossible Yes Irrelevant Irrelevant Irrelevant Yes

Impossible No Yes Irrelevant Irrelevant Yes

Impossible No No Yes Irrelevant Yes

Impossible No No No Yes Yes

Impossible No No No No No, error
reported

Table 11-4. Resolution of External References (NMCOBOL
Compiler) (page 1 of 2)

Form*

External reference found in ...

Target File
Created?

Current
Source
File

Primary
Search
List

Tertiary
Search
List

NMCOBEXT,
ZCOBSRL, or
ZCRESRL

CALL “P” IN MNEM Search list not used—CALL is qualified

CALL “P” Yes Irrelevant Irrelevant Irrelevant Yes

No Yes Irrelevant Irrelevant Yes

No No Irrelevant Irrelevant Yes, with
un-
resolved
externals;
warning
issued

ENTER language
“R” IN MNEM

Search list not used—ENTER is qualified

* Bracketed keywords are optional.

Table 11-3. Resolution of External References
(COBOL85 Compiler With Search List Defined) (page 2 of 2)

Form*

External reference found in ...

Target
File
Created?

Current
Source
File

Primary
Search
List

Secondary
Search
List

Tertiary
Search
List

COBOL-
EXT

* Bracketed keywords are optional.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-21

Program Compilation CALL and ENTER Statement Processing: Detailed
Explanation
Presenting Parameters to the Called Program
A formal parameter in the called program can have one of two attributes: value or
reference. Depending on the description of the actual parameter in the calling program
and the description of the formal parameter in the called program, the compiler
generates code to convert the value of the actual parameter to match the description of
the formal parameter

ENTER [language]
“R”

Impossible Yes Irrelevant Irrelevant Yes

Impossible No Irrelevant Irrelevant No, error
reported

ENTER [TAL] “R” IN
MNEM

Search list not used—ENTER is qualified

ENTER [TAL] “R” Impossible Yes Irrelevant Irrelevant Yes

Impossible No Yes Irrelevant Yes

Impossible No No Yes Yes

Impossible No No No No, error
reported

Parameter Explanation (page 1 of 2)

VALUE When a formal parameter in the called routine has the VALUE attribute
and is numeric, the compiler generates any code necessary to evaluate
the actual parameter, convert the value to the expected representation and
scaling, and pass the value to the called program.

When a formal parameter has the VALUE attribute but is nonnumeric, the
compiler generates code to pass the value to the called program.

When an actual parameter in the calling program is a literal or an
arithmetic expression, the corresponding formal parameter must have the
VALUE attribute.

Table 11-4. Resolution of External References (NMCOBOL
Compiler) (page 2 of 2)

Form*

External reference found in ...

Target File
Created?

Current
Source
File

Primary
Search
List

Tertiary
Search
List

NMCOBEXT,
ZCOBSRL, or
ZCRESRL

* Bracketed keywords are optional.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-22

Program Compilation CALL and ENTER Statement Processing: Detailed
Explanation
Delivering the Returned Value
When an ENTER statement has a GIVING phrase, the compiler generates code to
deliver the value that the program returns to a data item in the calling program. The
generated code performs any necessary scaling of the result value, then performs an
assignment according to the rules for an elementary move operation.

Binding or Linking the Object Code
When the compilation source text includes a separately compiled program, and the
compiler reports no error against that program, the target file includes the object code
for that program. The object code for nested programs is inseparable from the code for
their outermost separately compiled program.

When a separately compiled HP COBOL program or a non-COBOL program is
available in object form, and the compiler locates it using a file-mnemonic or
primary search list, the target file includes the object code for that program.

When the COBOL85 compiler finds a program in the secondary or tertiary search list,
or in the COBOLEXT file on the same volume and subvolume as the compiler, the
compiler validates parameters, but does not bind the object code into the target file.

When the NMCOBOL compiler finds a program in the ZCOBSRL, ZCRESRL, or
NMCOBEXT file, the compiler validates parameters, but does not bind the object code
into the target file.

REFERENCE When a formal parameter has the REFERENCE attribute, the actual
parameter supplies access to an object in the calling program.

When an actual parameter is an identifier, the compiler generates code to
pass the address of the associated data item to the called program. In this
case, the calling program and the called program must agree on the
interpretation of the data item value.

When an actual parameter is a file name, the compiler generates code to
pass the address of the file control block. Use this option only where
specified for a program supplied by HP.

OMITTED When the parameter in the calling program is specified by the reserved
word OMITTED, the compiler generates no code to convert or pass
anything. The calling program can use OMITTED only when the called
program has the EXTENSIBLE or VARIABLE attribute. The calling
program and the called program must agree on which operands can be
OMITTED.

Parameter Explanation (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-23

Program Compilation #RECEIVE Blocks
#RECEIVE Blocks
When BINSERV or the linker creates a run unit for the CRE, it compares the
#RECEIVE blocks of all the programs and determines which argument values are to be
used whenever another HP COBOL object file or a FORTRAN program opens
$RECEIVE.

The first HP COBOL external file or FORTRAN program to open $RECEIVE
determines the values of the #RECEIVE arguments. Subsequent opens of $RECEIVE
fail if they specify incompatible values.

Table 11-5. How Final Values of #RECEIVE Arguments Are Chosen

#RECEIVE Argument Final Value

TABLE OCCURS Maximum value specified by a TABLE OCCURS argument in any
#RECEIVE block

SYNCDEPTH Maximum value specified by a SYNCDEPTH argument in any
#RECEIVE block

REPLY CONTAINS Maximum value specified by a REPLY CONTAINS argument in any
#RECEIVE block

REPORT Logical OR

QUEUE DEPTH Maximum value specified by a QUEUE DEPTH argument in any
#RECEIVE block*

* HP COBOL does not have a QUEUE DEPTH argument, so the value is assumed to be 1. If FORTRAN
specifies a larger value, the larger value is used.

#RECEIVE Argument Subsequent value is incompatible with first value if …

TABLE OCCURS subsequent value > first value

SYNCDEPTH subsequent value > first value

REPLY CONTAINS subsequent value > first value

REPORT subsequent value <> first value

QUEUE DEPTH first value = 1 and subsequent value <>1
or
first value > 1 and
subsequent value <= 1 or subsequent value > first value
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-24

Program Compilation Compiler Output
If an internal file opens $RECEIVE, the values of the #RECEIVE arguments depend on
whether the program that describes the internal file has a RECEIVE-CONTROL
paragraph. If so, the #RECEIVE block associated with the program’s RECEIVE-
CONTROL paragraph is used as the internal file’s #RECEIVE block (even in a TNS
program whose RECEIVE-CONTROL paragraph is EXTERNAL). If the program does
not have a RECEIVE-CONTROL paragraph, the #RECEIVE arguments have these
default values:

If an external file opens $RECEIVE, its #RECEIVE block is the one associated with the
run unit, if one exists; otherwise, the #RECEIVE arguments have the default values.

When sharing $RECEIVE, be aware that:

• If one opener requests system messages and another does not, the one that does
not might get them anyway.

• The ERROR CODE and MESSAGE SOURCE phrases of the RECEIVE-
CONTROL paragraph are always local to the program unit. They apply to all READ
and WRITE requests in that program unit, even if $RECEIVE was opened in
another program unit.

• Opening a file that references $RECEIVE uses the #RECEIVE arguments
specified by the program that contains the OPEN statement, even if the file is
EXTERNAL. If the file is EXTERNAL, the ERROR CODE and MESSAGE
SOURCE clauses of the RECEIVE-CONTROL paragraph in other programs are
ignored.

Compiler Output
The output of a compilation can include a listing (to an existing file or spooler) and an
object file, but it always includes compilation statistics and a completion code. You can
manipulate the object file.

#RECEIVE Argument Default Value

TABLE OCCURS 1

SYNCDEPTH 1

REPLY CONTAINS 0

REPORT None

QUEUE DEPTH 1
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-25

Program Compilation Listing Creation
Topics:

• Listing Creation

• Object File Creation

• Manipulating Object Files

• Compilation Statistics

• Completion Codes

Listing Creation
The listing is added to the end of the listing (OUT) file. The listing file can be either a
disk file or nondisk file (see Starting a Compilation). If it is a disk file, it must exist
before you start the compilation.

To create a listing file, use the command:

disk-file-name

is a disk file name (see the Guardian Procedure Calls Reference Manual).

pages

is the number of extended segment pages.

TYPE E

specifies an entry-sequenced file.

REC 132

specifies 132-character records (partial lines are space-filled on the right through
column 132).

EXT pages

is necessary only if disk-file-name exceeds the standard number of allocated
segments.

For more information, see Source Program Listing.

FUP CREATE disk-file-name, TYPE E, REC 132[, EXT pages]
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-26

Program Compilation Object File Creation
Object File Creation
The object file that the compiler produces is either a linkfile or a loadfile.

Topics:

• COBOL85 Compiler

• NMCOBOL Compiler

• Binder Object File Builder

COBOL85 Compiler
The COBOL85 compiler produces a loadfile if the compilation unit contains exactly one
main program (see Main Programs). If the compilation unit contains no main program,
the COBOL85 compiler produces a linkfile. All object files that the COBOL85 compiler
produces can be input to the BIND utility (see Binder Object File Builder).

NMCOBOL Compiler
The NMCOBOL compiler produces a loadfile if you specify the directive RUNNABLE. If
the compilation unit contains no main program, executing the object file causes it to
terminate immediately with an error message. The NMCOBOL compiler produces a
linkfile by default (if you do not specify the RUNNABLE directive). Linkfiles that the
NMCOBOL compiler produces can be input to the nld or ld utility. Loadfiles that the
NMCOBOL compiler produces cannot be input to the nld or ld utility.

For information:

Binder Object File Builder
This topic applies only to TNS programs. For similar information on native object files,
see the nld Manual.

The Binder object file builder is an HP product that lets you create, examine, and
combine object files. Binder operates as either of two processes:

• BIND is an independent, interactive, command-driven binding utility program.
• BINSERV is the Binder server that compilers use to create object files.

Object files are composed of code blocks and data blocks. A block is the smallest unit
on which Binder operates. Using BINSERV, the COBOL85 compiler translates each
program unit into one code block and several data blocks. Each code block and each
data block is marked as having been compiled from HP COBOL source.

Topic Document

nld utility nld Manual

ld utility ld Manual
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-27

Program Compilation Manipulating Object Files
An object program is the portion of an object file produced from one program unit. An
object file contains one or more object programs. Within the object file, each object
program maintains its identity, but is discernible only as a family of code blocks and
data blocks.

Any object file produced by either BIND or BINSERV can serve as object-file input
either for BIND during an interactive session or for BINSERV during a COBOL85
compilation. This means that, using BINSERV, the COBOL85 compiler can include
object programs from object files created by previous COBOL compilations. To
distinguish between the object files that are input to BIND or BINSERV and the final
output object file, the final output object file is called the target file.

By including object programs from object files in a target file, you can construct
collections of blocks in object files that are then used as program libraries. Because the
term “library” as applied to object files has a particular meaning for NonStop systems,
this manual uses the terms “object file” and “target file” to refer to such collections of
object programs.

An HP COBOL program unit can also contain ENTER statements that call HP C,
HP C++ FORTRAN, Pascal, and TAL routines. BINSERV fetches these from object
files created by the HP C, HP C++, FORTRAN, Pascal, and TAL compilers (which also
use BINSERV as a Binder server process).

For more information on Binder, see the Binder Manual.

Manipulating Object Files
You can use a TNS HP COBOL, TNS HP C, TNS HP C++, FORTRAN, Pascal or TAL
object file as input to the BIND utility to create a new target file. Using BIND, you can
add, delete, or replace code blocks and data blocks compiled from HP C, HP C++,
FORTRAN, Pascal, or TAL source files. For details, see the Binder Manual.

You can use a TNS/R HP COBOL, TNS/R HP C, TNS/R HP C++, or pTAL object file as
input to the linker to create a new target file. Using the linker, you can add code blocks
and data blocks compiled from TNS/R HP COBOL, TNS/R HP C, TNS/R HP C++, or
pTAL source files. For details, see the nld Manual or ld Manual.

Note. In the non-CRE environment, if any object program in an object file is a COBOL
program, the main program of that object file must also be a COBOL program. Also, if any
object program in an object file was compiled by the COBOL85 compiler, the main program of
that object file must also have been compiled by the COBOL85 compiler.

In the CRE, if any HP COBOL object program in an object file was compiled with ENV
COMMON or ENV LIBRARY, you must compile all HP COBOL object programs in that object
file with ENV COMMON or ENV LIBRARY.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-28

Program Compilation Compilation Statistics
Compilation Statistics
Statistics are printed at the end of every compilation:

1. Binder or linker statistics (if an object file was produced)
2. Compiler statistics

Topics:

• Binder Statistics

• COBOL85 Compiler Statistics

• NMCOBOL Compiler and Linker Statistics

Binder Statistics

In Table 11-6, all numeric values are in decimal notation.

Example 11-7. Binder Statistics

Binder - OBJECT FILE Binder - T9621D05 - (12DEC91) SYSTEM \KIT
Copyright Tandem Computers Incorporated 1982-1992
Object file \KIT.$VOL1.PROJ3.UPDATE
TIMESTAMP 1992-01-16 15:50:34
 2 Code pages
 6 Primary data words
 50 Secondary data words
 64 Data pages
 0 Resident code pages
 0 Extended data pages
 56 Top of stack location in words
 1 Code segment
 0 Binder Warnings
 0 Binder Errors

Table 11-6. Meaning of Binder Statistics (page 1 of 2)

Statistic Meaning

Object file Complete disk file name of the target file created from the
compilation

Timestamp Date and time of creation of the object file

1. If you request an alphabetic load map listing, the code size appears after the load map for each code segment.
The total code size shown for each segment includes the XEP table size. For information about how to use
alphabetic load maps, see Load Maps.

2. A TNS word is 2 bytes (16 bits).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-29

Program Compilation Compilation Statistics
COBOL85 Compiler Statistics

Code pages1 Total number of words2 used for all Procedure Division code in the
loadfile, including TAL and FORTRAN routines

The code size is itemized regarding procedure entry-point (PEP)
table size, procedure code size, the gap at the 32K-word boundary
(see COMPACT and NOCOMPACT), and external entry-point (XEP)
table size. For each unresolved external reference, Binder reserves
code space for one XEP table entry. The total code size shown
excludes the XEP table size.

Primary data words Number of fixed global storage words used by the loadfile

Secondary data
words

Number of words of secondary global storage used for all Data
Division data in the loadfile

Data pages Minimum number of virtual memory data pages to be reserved when
the program is run

Resident code
pages

Number of pages of resident code

Extended data
pages

Number of pages of extended data area to be used when the
program is run

Top of stack location
in words

Location of the top of the stack

Code segment(s) Number of code segments a loadfile includes

Code area size Number of virtual memory code pages to be reserved when the
program is run

Binder warnings Number of warning messages Binder issued

Binder errors Number of error messages Binder issued

Example 11-8. COBOL85 Compiler Statistics

COBOL85 - T9257D00 - (12 DEC 91)
The object file is executable on an HP System
Number of compiler errors = 0
Number of compiler warnings = 0
Maximum symbol table size = 139578 bytes
Elapsed time - 00:00:21

Table 11-6. Meaning of Binder Statistics (page 2 of 2)

Statistic Meaning

1. If you request an alphabetic load map listing, the code size appears after the load map for each code segment.
The total code size shown for each segment includes the XEP table size. For information about how to use
alphabetic load maps, see Load Maps.

2. A TNS word is 2 bytes (16 bits).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-30

Program Compilation Compilation Statistics
In Table 11-8, all numeric values are in decimal notation.

NMCOBOL Compiler and Linker Statistics
Example 11-9, NMCOBOL Compiler Statistics, on page 11-32 is the result of a
compilation that did not specify the RUNNABLE directive.

Example 11-10, NMCOBOL Compiler and Linker Statistics, on page 11-32 is the result
of a compilation that specified the RUNNABLE directive.

Table 11-7. Meaning of COBOL85 Statistics Messages

Message Meaning

No object file produced. One of:

• Every separately compiled program in the compilation
either contained errors or was subject to the SYNTAX
directive.

• At least one separately compiled program in the
compilation contained one or more errors whose nature
creates doubt as to the proper disposition of any other
source programs in the compilation (for example, errors
associated with CALL or CANCEL statements).

The object file has no main
program.

No successfully compiled source program in the
compilation qualified as the main program.

The object file is executable
on an HP system.

The object file is executable on an HP system.

Table 11-8. Meaning of COBOL85 Statistics

Statistic Meaning

Number of compiler errors Number of error messages the compiler issued

Number of compiler warnings Number of warning messages compiler issued

Maximum symbol table size Number of bytes that the compiler needed for its symbol
table (rough estimate)

For information on how to increase the size available for the
symbol table, see PARAM SYMBOL-BLOCKS.

Last message on page nn Location of last error or warning message, if there were any

If there are other such messages, each includes
information on where to find its predecessor.

Elapsed Time Amount of real time, to the nearest second, that the
compilation took
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-31

Program Compilation Compilation Statistics
Example 11-9. NMCOBOL Compiler Statistics

COBOL - T8107D46 - (27 JUL 01)
 No failures detected.
 No errors detected.
 No warnings reported.
 No remarks issued.
 Maximum symbol table size = 6160 bytes

 Object file: opt2o
 Compiler driver: \SVLDEV.$SYSTEM.SYSTEM.NMCOBOL
 COBOL SRL: \SVLDEV.$SYSTEM.SYS00.ZCOBSRL
 CRE SRL: \SVLDEV.$SYSTEM.SYS00.ZCRESRL
 NMCOBEXT: \SVLDEV.$SYSTEM.SYSTEM.NMCOBEXT
 Compiler statistics
 phase CPU seconds elapsed time file name
 COBOLFE 0.1 00:00:04 \SVLDEV.$SYSTEM.SYSTEM.COBOLFE
 UGEN 0.1 00:00:01 \SVLDEV.$SYSTEM.SYSTEM.UGEN
 AS1 0.1 00:00:01 \SVLDEV.$SYSTEM.SYSTEM.AS1
 total 0.3 00:00:07
 All processes executed in CPU 03 (NSR-P)
 Swap volume: \SVLDEV.$SYSTEM

Example 11-10. NMCOBOL Compiler and Linker Statistics

COBOL - T8107D46 - (27 JUL 01)
 No failures detected.
 No errors detected.
 No warnings reported.
 No remarks issued.
 Maximum symbol table size = 6160 bytes

 NLD - NATIVE MODE LINKER - T6017D44 - 03JUL01
 Copyright Compaq Computer Corporation 2000

 NLD's command line was:
 \svldev.$system.system.nld -o opt2o opt2o \SVLDEV.$SYSTEM.SYS00.ZCOBSRL
 \SVLDEV.$SYSTEM.SYS00.ZCRESRL

 NLD reported 0 errors.
 NLD reported 0 warnings.
 NLD reported 0 informational messages.

 NLD created this type of object file:
 \SVLDEV.$COBOL.PTRCOBT.opt2o (ELF, executable)

 NLD Timestamp: 21NOV2003 14:34:32
 Elapsed Time: 00:00:01

 Object file: opt2o
 Compiler driver: \SVLDEV.$SYSTEM.SYSTEM.NMCOBOL
 COBOL SRL: \SVLDEV.$SYSTEM.SYS00.ZCOBSRL
 CRE SRL: \SVLDEV.$SYSTEM.SYS00.ZCRESRL
 NMCOBEXT: \SVLDEV.$SYSTEM.SYSTEM.NMCOBEXT
 Compiler statistics
 phase CPU seconds elapsed time file name
 COBOLFE 0.1 00:00:04 \SVLDEV.$SYSTEM.SYSTEM.COBOLFE
 UGEN 0.1 00:00:01 \SVLDEV.$SYSTEM.SYSTEM.UGEN
 AS1 0.1 00:00:01 \SVLDEV.$SYSTEM.SYSTEM.AS1
 NLD 0.0 00:00:01 \SVLDEV.$SYSTEM.SYSTEM.NLD
 total 0.3 00:00:07
 All processes executed in CPU 03 (NSR-P)
 Swap volume: \SVLDEV.$SYSTEM
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-32

Program Compilation Completion Codes
Completion Codes
The compiler reports an appropriate completion code when it terminates execution. An
HP COBOL program can set its own completion code at termination by calling either
the COBOL85^COMPLETION routine or COBOL_COMPLETION_ routine.

Running the Compiler
This topic explains how to run the compiler, including:

• PARAM Commands

• Predefined SEARCH DEFINEs

• Starting a Compilation

• Terminating a Compilation

Table 11-9. Completion Codes

Code Termination Explanation

0 Normal No diagnostic messages were issued. The object file is complete
and valid (unless a SYNTAX directive suppressed its creation).

1 Normal At least one compiler or Binder warning occurred. The object file is
complete and presumed to be valid (unless a SYNTAX directive
suppressed its creation).

2 Normal At least one compiler or Binder error occurred. No object file was
created.

3 Abnormal The compiler exhausted one of its internal resources (such as
symbol table space) or it was refused some external service (such
as access to a file) before it completed its task. No object file was
created.

5 Abnormal During internal consistency checking, the compiler discovered a
logic error, or else one of the compiler’s server processes reported a
failure and was terminated abnormally. No object file was created.

8 Normal At least one compiler or Binder warning occurred. The name
specified for the target (object) file could not be used, so another
name was chosen. This name is reported in the summary. The
object file is complete and presumed to be valid.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-33

Program Compilation PARAM Commands
PARAM Commands
If you want to use a PARAM command, you must enter it before you give the command
to run the compiler. When the compiler terminates execution, it reports an appropriate
completion code.

PARAM SAMECPU
The PARAM SAMECPU command causes the COBOL85, BINSERV, and SYMSERV
processes to run in the same processor, which improves interprocess communication.
This command does not affect the NMCOBOL compiler, whose subordinate processes
always execute in the same processor as the compiler does.

dummy-value

is a nonzero value. It does not specify the processor in which the processes are to
run; the CPU run option controls that.

Ordinarily, the COBOL85 and BINSERV processes run in one processor and the
SYMSERV process runs in the processor having the next higher number (modulo the
number of processors in the system); for example:

PARAM SAMECPU 3

Note. PARAM commands for files in a user library are ignored.

Table 11-10. PARAM Commands Accepted by Compiler

Command Description

PARAM SAMECPU* Directs the Guardian operating system to run the COBOL85
compiler and the BINSERV and SYMSERV processes in the
same processor.

PARAM SWAPVOL Specifies the volume on which the COBOL85 or NMCOBOL
compiler and its processes will create temporary files.

PARAM SYMBOL-BLOCKS Specifies the number of 256 KB blocks that the compiler
needs for its symbol dictionary and, for the COBOL85
compiler, the number of 2 KB blocks the compiler needs for a
local label table.

The number of lines allowed for each SQL/MP statement is
500 times the number specified by PARAM SYMBOL-
BLOCKS.

* COBOL85 compiler only

PARAM SAMECPU dummy-value

VST417.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-34

Program Compilation PARAM Commands
PARAM SWAPVOL
The PARAM SWAPVOL command specifies the volume on which the compiler and its
processes will create temporary files (if possible). It does not determine where the
operating system creates the compiler’s own swap file—the Kernel-Managed Swap
Facility (KMSF) does that. For more information, see the Kernel-Managed Swap
Facility (KMSF) Manual.

$volume

is a dollar sign ($) immediately followed by one to seven alphanumeric characters.
The first alphanumeric character must be alphabetic. The $volume is the name of
the volume on which the temporary files are to be created.

The $volume must exist on the system on which the compiler resides. If the
compiler cannot create its first temporary file on the specified volume, compilation
proceeds with temporary files created as though no PARAM SWAPVOL command
were active.

PARAM SYMBOL-BLOCKS
The PARAM SYMBOL-BLOCKS command specifies how much space the compiler
allocates for its symbol dictionary, embedded SQL/MP statements, and for the
COBOL85 compiler, its local label table.

The PARAM SYMBOL-BLOCKS command specifies how much space the compiler
allocates for its symbol dictionary, local label table, and embedded SQL/MP or
SQL/MX statements.

count

is an integer in the range 1 through 14 (for the COBOL85 compiler) or 1 through 25
(for the NMCOBOL compiler), which affects space allocation. The default value of
count is 2 for the COBOL85 compiler and 3 for the NMCOBOL compiler.

PARAM SWAPVOL $ volume
ns

VST418.vsd

PARAM SYMBOL-BLOCKS count

VST419.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-35

Program Compilation Predefined SEARCH DEFINEs
If the default value for count produces a failure in compilation, increase it by one. If
that still is not enough, increase it by one more, and so on. Be aware that high count
values cause the compilation to take longer to start and to use more disk space.

If the summary listing at the end of a compilation indicates that the maximum symbol
table size is less than 256 KB, you might be able to reduce the system resources
required for later compilations by specifying PARAM SYMBOL-BLOCKS 1.

For the COBOL85 compiler, if you allow count to default to 2, your program can have
a maximum of approximately 1000 procedure names (paragraph names and section
names). Changing count changes this limit.

Predefined SEARCH DEFINEs
The compiler recognizes two predefined DEFINEs with CLASS attribute SEARCH:

• =_SOURCE_SEARCH

• =_OBJECT_SEARCH

These allow you to specify one or more subvolumes for the compiler to search for
unqualified source text files and object files, respectively. (“Unqualified” means that the
file name does not contain a volume and subvolume.) If you use these predefined
DEFINEs, you do not need to specify DEFINEs in the compiler command or in the
source text.

To add a predefined SEARCH DEFINE, use the ADD DEFINE command. For example:

ADD DEFINE =_SOURCE_SEARCH, CLASS SEARCH, SUBVOL0
(=_DEFAULTS,$VOL1.SUB2,$VOL1.SUB3)

In this example, the compiler is to search the default subvolume first, then
$VOL1.SUB2, and finally $VOL1.SUB3.

Table 11-11. How the PARAM SYMBOL-BLOCKS Command Affects Space
Allocation

Item

Space Allocated for Item

When PARAM SYMBOL-BLOCKS
command is specified ... Default

Symbol dictionary count 256-KB blocks Two 256-KB blocks for the
COBOL85 compiler, three
256-KB blocks for the
NMCOBOL compiler

Local label table
(COBOL85
compiler only)

count 2-KB blocks Two 2-KB blocks

Embedded
SQL/MP
statements

count times 500 lines times number
of embedded SQL/MP statements, plus
extra space for REPLACE statements

500 lines of SQL/MP text per
statement
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-36

Program Compilation Predefined SEARCH DEFINEs
=_SOURCE_SEARCH
=_SOURCE_SEARCH tells the compiler where to search for unqualified source text
files specified by:

• COPY statements
• SOURCE directives
• The copy-library parameter of the compilation command

The =_SOURCE_SEARCH DEFINE does not affect compiler searches in these cases:

• When the source text file name is qualified
• When the program uses the default COPY library, COPYLIB, for COPY text

=_OBJECT_SEARCH
=_OBJECT_SEARCH tells the compiler where to search for unqualified object files
specified by:

• SPECIAL-NAMES paragraph
• CALL statements
• ENTER statements
• CONSULT directives
• LIBRARY directives
• SEARCH directives

The =_OBJECT_SEARCH DEFINE does not affect:

• The compiler search when the object file name is qualified

• The file COBOLEXT (for the COBOL85 compiler) or NMCOBEXT (for the
NMCOBOL compiler), which is assumed to be on the same subvolume as the
compiler
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-37

Program Compilation Starting a Compilation
Starting a Compilation
This section applies to the Guardian environment. To compile an HP COBOL program
in the OSS environment, see Section 19, Using HP COBOL in the OSS Environment.

To run the COBOL85 compiler, use this compiler command:

COBOL85

IN source-file

list-file

OUT

other-option

target-name

copy-library

compiler-directive

/

,

;

,

,

obj-1(obj-n,)

/

VST256.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-38

Program Compilation Starting a Compilation
To run the NMCOBOL compiler, use this compiler command:

source-file

is a file containing HP COBOL statements, comment lines, and compiler directives.
It must be a disk file, terminal, magnetic tape unit, or process. The compiler reads
source-file as 132-byte records. The default is the current command
interpreter IN file (usually the home terminal). For the NMCOBOL compiler,
source-file must be an EDIT file.

file-name-1

is a disk file name (if source-file is a disk file) or nondisk file name (if
source-file is a terminal, magnetic tape unit, or process). For syntax, see
the Guardian Procedure Calls Reference Manual.

define-name

is the name of a DEFINE established in the current run-time environment.

NMCOBOL

IN source-file

list-fileOUT

other-option

target-name

copy-library

compiler-directive

/

;

,

/

,

,

VST728.vsd

file-name-1

define-name

VST257.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-39

Program Compilation Starting a Compilation
list-file

is the destination to which the compiler directs its output. It must be a disk file,
terminal, magnetic tape unit, process, line printer, or spooler collector (possibly
qualified with a location name). It must already exist and meet the criteria in Listing
Creation. If list-file is unstructured, each record is 132 characters (partial
lines are space-filled on the right).

For the COBOL85 compiler, if OUT is present but list-file is omitted, no
listing is produced. If both OUT and list-file are omitted, the listing is directed
to the command interpreter OUT file (usually the home terminal).

file-name-2

is a disk file name (if list-file is a disk file) or nondisk file name (if list-
file is a terminal, magnetic tape unit, process, line printer, or spooler
collector). For syntax, see the Guardian Procedure Calls Reference Manual.

define-name

is the name of a DEFINE established in the current run-time environment.

other-option

is any other command interpreter RUN option (see the description of the RUN
command in the TACL Reference Manual).

Note. The NMCOBOL compiler listing has a significantly different format from the
COBOL85 compiler listing. The primary differences are:

• Every diagnostic message appears with the source line that caused it.

• Mnemonic code, if requested, immediately follows the source code from which it was
generated.

• There is no cross-reference listing.

file-name-2

define-name

VST259.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-40

Program Compilation Starting a Compilation
target-name

is the name of a disk file on which the single target object file is to be produced.
This name is used only if all of these are true:

• The compiler is instructed to produce a target file. This means that the
SYNTAX directive is not specified.

• The compilation and binding are successful.

• The source file contains only one main program. If it contains more than one,
you must specify an object file for each of them (target-name-1 through
target-name-n).

The default target-name is:

\default-system.$default-volume.default.subvolume.RUNUNIT

file-name-3

is a disk or nondisk file name. For syntax, see the Guardian Procedure Calls
Reference Manual.

define-name

is the name of a DEFINE established in the current run-time environment.

obj-1 ... obj-n

is a list of names of disk files on which the multiple target object files are to be
produced. Each has the same syntax as target-name. These restrictions apply:

• You must specify at least as many object file names as there are main
programs delivered to the compiler. You can specify more, but not fewer. If you
specify more, unused ones are ignored.

• The source-file must be an EDIT file.

• The list-file cannot be a magnetic tape file. list-file is opened and
closed for each separately compiled program. If list-file is a spooler, one
job exists for the compiler command and one for each separately compiled
program in the source-file.

file-name-4

define-name

VST261.vsd

file-name-4

define-name

VST261.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-41

Program Compilation Starting a Compilation
• Each directive that applies to more than one separately compiled program in
the source-file (for example, ICODE or NOBLANK) must be specified as a
compiler-directive in the compiler command.

• Each separately compiled program in the source-file must end with an
END PROGRAM statement or an ENDUNIT compiler directive.

• In the source-file, compiler directives must be contained in separately
compiled programs. They cannot appear before, between, or after them.

• A COPY or SOURCE statement cannot bring in the beginning or end of a
separately compiled program.

file-name-3

is a disk or nondisk file name. For syntax, see the Guardian Procedure Calls
Reference Manual. The default file-id of file-name-3 is COPYLIB.

define-name

is the name of a DEFINE established in the current run-time environment.

copy-library

is the name of a COPY library, a disk file in EDIT format, which is to be the default
COPY library (for any COPY statement in the source program that does not specify
a library from which to copy).

file-name-4

is a disk file name. For syntax, see the Guardian Procedure Calls Reference
Manual. The default file-id of file-name-3 is COPYLIB.

define-name

is the name of a DEFINE established in the current run-time environment.

compiler-directive

is any directive described in Compiler Directives.

file-name-4

define-name

VST261.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-42

Program Compilation Starting a Compilation
Usage Considerations:

• Compiler on D-Series System and Other Files on C-Series System

If the COBOL85 compiler is running on a D-series system and any other file that
the program uses (such as the source-file, a COPY or SOURCE library, a
search or consult file, the OUT file, the home terminal, or the target file) is on a
C-series system, then compiling with the HIGHPIN directive causes a compilation
error.

• COBOL85 Compiler’s Construction of Target File

The COBOL85 compiler (through BINSERV) constructs the target file in a
temporary file of its own creation. If the compilation is successful, BINSERV purges
any existing copy of the named file and then renames the temporary file with the
chosen name. If the old copy was in use when BINSERV tried this, that old copy is
renamed, and the temporary file is renamed with the chosen name.

If a file exists with the same name as target-name (or RUNUNIT, if applicable),
the compilation tries to purge the old file. If it cannot purge the old file, its behavior
depends on whether the purge fails because the old object file is then executing
(Guardian file-system error 12).

° If the old object is not executing, the compilation tries to rename the temporary
file OBJECT. If that renaming operation fails (because there already is a file
named OBJECT), the compilation creates a special name of the form
ZZBInnnn, where nnnn is a random number.

° If the old object is executing, the compilation renames the old object file to the
special name of the form ZZBInnnn and renames the temporary file with the
value of target-name.

Examples of Commands That Run the Compilers
Each of these commands initiates compilation of the program contained in MYSRC (on
the default system, volume, and subvolume), directing the listing to $SPOOL (a spooler
collector):

COBOL85 /IN MYSRC,OUT $SPOOL,PRI 140/MYPROG;ICODE;LMAP *

NMCOBOL /IN MYSRC,OUT $SPOOL,PRI 140/MYPROG;INNERLIST

The compiler is to run at a priority of 140. The name of the target file, if the compilation
succeeds, is to be MYPROG on the default system, volume, and subvolume. Two
directives specify that a listing of the mnemonic version of the generated code and a
complete set of load-map listings are to be produced.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-43

Program Compilation Terminating a Compilation
The next command initiates compilation of the program contained in file COBOLPRG
on system \MM, volume $DEV, subvolume PYRL and directs that the listing output be
discarded:

COBOL85 /IN \MM.$DEV.PYRL.COBOLPRG,OUT/; SETTOG 3

NMCOBOL /IN \MM.$DEV.PYRL.COBOLPRG,OUT/; SETTOG 3

If the compilation succeeds, the loadfile is to be named RUNUNIT. The directive sets a
compilation toggle that presumably governs the inclusion or exclusion of certain
portions of the source text.

Terminating a Compilation
There are two ways to terminate a compilation before normal completion:

• Press Break and type STOP.

• Press Break and type:

STATUS *, TERM

Find the processor (cpu) and process number (process) for the compiler. Type:

STOP cpu,process

With either method, the supporting processes stop when the compiler stops.

For possible values of the system completion code upon the termination of a
compilation, see Completion Codes.

Compiler Directives
Compiler directives are used to specify the source format, to control listing features, to
control selective compilation of portions of the source code, and to request compilation
options.

Topics:

• Where Compiler Directives Are Allowed

• Categories of Compiler Directives

• One for each compiler directive, listed alphabetically, beginning with ANSI

Note. If you expect to have multiple compilations active at one time, give each COBOL85 or
NMCOBOL process a different name with the command interpreter NAME parameter. Then
you can stop the named compilation process of your choice using the second method.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-44

Program Compilation Where Compiler Directives Are Allowed
Where Compiler Directives Are Allowed
In general, one or more directives can be entered in the directive field of the TACL
command to run the compiler (see Starting a Compilation) or can be included in the
source text on lines beginning with a question mark (?) in the indicator area.
Restrictions on these general rules are:

• Each of the directives ENDUNIT, IF, IFNOT, and ENDIF must be either on a
directive line of its own or be the last of a sequence of directives.

• The SECTION directive must always be on a line of its own.

• The NMCOBOL compiler accepts the SQL directive on the compiler command line,
but not in the source program.

• Some directives are recognized by only one compiler (COBOL85 or NMCOBOL).
For details, see the topics on individual directives.

Directives in the source text override directives on the command line.

The general form of compiler directives is:

?

is a source text format indicator (like the asterisk and the slash) and is not part of
the compiler directive.

The question mark must be in the indicator area (column 1 for Tandem format and
column 1 or 7 for ANSI format).

On the compiler command line:

In the program source text:

directive

directive;

,

VST263.vsd

? directive

directive;

,

VST264.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-45

Program Compilation Where Compiler Directives Are Allowed
directive

is one of the directives listed in this section.

With these exceptions, compiler directive lines can appear at any point in the source
text, including those portions that a COPY statement retrieves from a source library
file.

• Compiler directive lines cannot occur between the elements of a multiline COPY
statement. The syntax of the COPY statement, without the REPLACING phrase, is:

If, for example, the word COPY is on one source line and text-name is on a
subsequent source line, no compiler directive lines can occur on any intervening
source line.

• These directives have restrictions on their location within the source text:

° COMPILE
° ENV
° FLOAT
° LD
° MAIN
° NLD
° NONSTOP
° OPTIMIZE
° SYMBOLS
° SYNTAX
° UL

• The COLUMNS directive can appear in a COPY library, but only once, before the
first SECTION directive.

• The SQL directive cannot appear in a source program that is to be compiled with
the NMCOBOL compiler.

COPY

library-nameOF

IN

.text-name

VST265.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-46

Program Compilation Categories of Compiler Directives
Categories of Compiler Directives
Compiler directives fall into these categories:

• Table 11-12, Source Text Manipulation Directives, on page 11-47

• Table 11-13, Input Format Control Directives, on page 11-47

• Table 11-14, Listing Control Directives, on page 11-48

• Table 11-15, Code-Generation Control Directives, on page 11-49

• Table 11-16, Resolution and Binding Control Directives, on page 11-51

• Table 11-17, Miscellaneous Control Directives, on page 11-51

• Table 11-18, ENDUNIT Directive, on page 11-52

Table 11-12. Source Text Manipulation Directives

Directive(s) Default Action

SECTION Marks beginning of portion of text in
an EDIT file, which compiler reads in
response to COPY statements and
SOURCE directives

SHOWFILE and NOSHOWFILE NOSHOWFILE Switches identification of source file in
compiler listing on or off

SOURCE* Reads an entire EDIT file, or one or
more sections of an EDIT file

SETTOG* Turns toggles on

RESETTOG* Turns toggles off

IF and IFNOT* Enables or suppresses compilation of
subsequent lines if a specified toggle
has been set; disables it otherwise

ENDIF* Marks end of toggle block

* Must be the last directive on its line.

Table 11-13. Input Format Control Directives

Directive Default Action

COLUMNS Specifies logical length of source lines when TANDEM directive
is present

TANDEM TANDEM Specifies Tandem source format

ANSI TANDEM Specifies ANSI source format
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-47

Program Compilation Categories of Compiler Directives
Table 11-14. Listing Control Directives

Directive(s) Default Action

CODE and NOCODE1 NOCODE Enables or suppresses octal code listing

CROSSREF and
NOCROSSREF1

NOCROSSREF Enables or suppresses cross-reference
listing of identifiers

DIAGNOSE-74 and
NODIAGNOSE-74

NODIAGNOSE-74 Enables or suppresses warnings about
statements that might behave differently
for HP COBOL and COBOL 74

DIAGNOSE-85 and
NODIAGNOSE-852

NODIAGNOSE-85 Enables or suppresses warnings about
source constructs that might behave
differently for COBOL85 compiler and
NMCOBOL compiler

DIAGNOSEALL and
NODIAGNOSEALL

NODIAGNOSEALL Enables or suppresses warnings for
multiple references to undefined identifiers
(instead of the first one only)

FIPS and NOFIPS NOFIPS Enables or suppresses identification of
statements as required by the Federal
Information Processing Standard (FIPS)

FMAP2 Enables listing of source file map with fully
qualified name and timestamp for IN file
and every SOURCE and COPY file

HEADING Specifies page heading text.
IICODE and
NOICODE1

NOICODE Enables or suppresses mnemonic code
listing after source program listing

INNERLIST and
NOINNERLIST2

NOINNERLIST Enables or suppresses mnemonic code
listing after each source program
statement

LINES Specifies lines per page

LIST and NOLIST NOLIST Enables or suppresses compiler listing

LMAP and NOLMAP1 LMAP Enables or suppresses load map of object
file

MAP and NOMAP NOMAP Enables or suppresses symbol map

SHOWCOPY and
NOSHOWCOPY2

SHOWCOPY Enables or suppresses listing of COPY
statements as comments

SUBSET Enables or suppresses flags on extensions
or obsolete elements

SUPPRESS and
NOSUPPRESS

NOSUPPRESS Suppresses or enables all but leader,
diagnostics, and trailer text in compiler
listing

WARN and NOWARN WARN Enables or suppresses warnings

1. The NMCOBOL compiler ignores and issues warnings for these directives.

2. The COBOL85 compiler reports errors for these directives.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-48

Program Compilation Categories of Compiler Directives
Table 11-15. Code-Generation Control Directives (page 1 of 2)

Directive(s) Default Action
BLANK and NOBLANK2 BLANK for COBOL85

compiler, NOBLANK
for NMCOBOL
compiler

Enables or suppresses default
initialization of data-items whose
declarations lack VALUE clauses

CALL-SHARED3 NON-SHARED Generates shared code [position-
independent code (PIC)] (see
also SHARED)

CANCEL and NOCANCEL CANCEL Controls whether code is
generated to initialize data for a
program that does not have the
INITIAL attribute

CHECK Controls the level of run-time
checking included in the loadfile

COMPACT and NOCOMPACT1 COMPACT Enables or suppresses code
compaction by procedure
relocation

COMPILE COMPILE Generates object code (compare
to SYNTAX)

FLOAT and NOFLOAT1 FLOAT Generates code for either
floating-point or decimal
arithmetic

INSPECT and NOINSPECT INSPECT Selects the debugger to be used
if the program is initiated with
RUND or if the DEBUG
command is issued against it

LARGEDATA2 Allocates specified data items in
extended memory without
requiring that their definitions be
moved to the Extended-Storage
Section (for COBOL85 compiler)
or large data areas (for
NMCOBOL compiler)

LESS-CODE1 Controls generation of object
code that initializes the
Extended-Storage Section

NON-SHARED NON-SHARED Generates nonshared code (non-
PIC) (compare to CALL-SHARED
and SHARED)

1. The NMCOBOL compiler ignores and issues warnings for these directives.

2. The COBOL85 and NMCOBOL compilers handle these directives differently.

3. The COBOL85 compiler reports an error for this directive.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-49

Program Compilation Categories of Compiler Directives
OPTIMIZE2 Specifies the level of object code
optimization the compiler must
provide

PORT and NOPORT NOPORT Causes
BINARY/COMPUTATIONAL
items to be byte-aligned and
allows the CALL statement to
behave as it does in X/Open and
XPG4

RUNNABLE Causes the NMCOBOL compiler
to produce a loadfile

SAVEABEND and
NOSAVEABEND

NOSAVEABEND Specifies that if the program
terminates abnormally, its state is
saved for future examination with
the selected debugger

SHARED NON-SHARED Generates shared code (PIC) for
a DLL (see also CALL-SHARED)

SYMBOLS and NOSYMBOLS NOSYMBOLS Controls whether a symbol table
is included in the target file

SYNTAX COMPILE Suppresses generation of object
code

TRAP2 and NOTRAP21 TRAP2 Suppresses all arithmetic
overflow trapping

TRAP2-74 and NOTRAP2-741 TRAP2-74 Suppresses arithmetic overflow
trapping in called COBOL 74
programs only

UL3 Specifies that the resulting object
code will be in a user library

Table 11-15. Code-Generation Control Directives (page 2 of 2)

Directive(s) Default Action

1. The NMCOBOL compiler ignores and issues warnings for these directives.

2. The COBOL85 and NMCOBOL compilers handle these directives differently.

3. The COBOL85 compiler reports an error for this directive.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-50

Program Compilation Categories of Compiler Directives
Table 11-16. Resolution and Binding Control Directives

Directive(s) Default Action

CONSULT and
NOCONSULT2

NOCONSULT1 Specifies a list of object files from which
the compilation can resolve unqualified
external references, but not bind in the
specified routines

LD3 Passes one or more linker options to
the ld utility

LIBRARY1 Specifies a user library file from which
the compilation can resolve unqualified
external references, but not bind in the
specified routines

NLD Passes one or more linker options to
the nld utility

SEARCH and NOSEARCH2 NOSEARCH1 Specifies a list of object files from which
the compilation can resolve unqualified
external references and bind or link in
the specified routines

1. The NMCOBOL compiler ignores and issues a warning for this directive.

2. The COBOL85 and NMCOBOL compilers handle the CONSULT and SEARCH directives differently.

3. The COBOL85 compiler does not accept this directive.

Table 11-17. Miscellaneous Control Directives (page 1 of 2)

Directive(s) Default Action

ENV2 Selects the environment in which the
program runs

ERRORFILE Specifies a file that is to contain information
about any compilation errors or warnings (it
can be used with the FIXERRS TACL
macro)

ERRORS Specifies maximum number of errors
allowed

HEAP3 Specifies heap space size in the CRE in the
Guardian environment

HIGHPIN3 Sets the HIGHPIN flag in a D-series object
file, allowing it to run at a high PIN (a
process identification number greater than
255)

1. These directives are not available in the OSS environment.

2. The NMCOBOL compiler accepts this directive with the COMMON option (the default for this compiler), reports
an error for the OLD option, and issues a warning for the LIBRARY option.

3. The NMCOBOL compiler ignores and issues warnings for these directives.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-51

Program Compilation Categories of Compiler Directives
HIGHREQUESTERS3 Allows the program to run as a server that
communicates with requesters running at
high PINs (greater than 255)

MAIN Specifies the main program in an input
stream

NONSTOP1 Specifies program is to run as a process
pair

PERFORM-TRACE Provides additional information if run-time
error 148 occurs.

RUNNAMED Specifies that the run unit is to be run as a
named process

SAVE1 Specifies which initialization message
information is saved

SQL and NOSQL NOSQL3 Tells the compiler to expect SQL/MP
statements in the compilation unit

SQLMEM3 Tells the compiler whether to declare
SQL/MP data structures in the Working-
Storage Section (user data segment) or the
Extended-Storage Section (extended data
segment)

SUBTYPE1 Specifies that the program runs as a
process with the designated subtype
number

Table 11-18. ENDUNIT Directive

Directive Action

ENDUNIT Marks the end of the Procedure Division in a source file that
contains multiple, separately compiled COBOL programs.*

* This directive must be the last or the only directive on its line. If any other directive appears on the line after it,
the compiler reports an error and ignores the additional directives.

Note. In the list of directives, “Default:” identifies the default for the compiler directive itself,
not for its optional parameter(s). This default applies if a program does not contain the compiler
directive at all.

Table 11-17. Miscellaneous Control Directives (page 2 of 2)

Directive(s) Default Action

1. These directives are not available in the OSS environment.

2. The NMCOBOL compiler accepts this directive with the COMMON option (the default for this compiler), reports
an error for the OLD option, and issues a warning for the LIBRARY option.

3. The NMCOBOL compiler ignores and issues warnings for these directives.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-52

Program Compilation ANSI
ANSI

ANSI

specifies that subsequent source text is in ANSI reference format, which is
described in Section 16, ANSI Reference Format.

TANDEM

specifies that subsequent source text is in Tandem reference format, which is
described in Reference Format for Source Program Lines.

Default: TANDEM

Placement: Anywhere

Scope: ANSI or TANDEM within a section of text obtained from a copy library or
source library is effective only for the length of that text section. When
the compiler reverts to the source file where it found the COPY verb or
SOURCE directive, the previously active reference format applies.

Dependencies: None

References: TANDEM

ANSI

TANDEM

VST266.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-53

Program Compilation BLANK and NOBLANK
BLANK and NOBLANK

BLANK

adds an implicit VALUE SPACES clause to the description of:

• Every data item in the Working-Storage Section and Extended-Storage
Section, except those to which an explicit VALUE clause or an EXTERNAL
clause applies

• Every data item in the File Section, except those to which an EXTERNAL
clause applies

BLANK increases the size of the object file and can increase execution time.

NOBLANK

prevents the addition of implicit VALUE SPACES clauses.

Program units compiled with BLANK (or for which BLANK is the default) include code
that performs implicit and explicit initializations. Program units compiled with
NOBLANK (or for which NOBLANK is the default) do not provide this automatic
initialization, and any data item without a VALUE clause has an undefined initial value.

NOBLANK is recommended for initial programs and programs that declare very large
data items that do not have initial values assigned, because it saves significant
amounts of compilation time, object program storage space on disk, and run-time
initialization time. If you must initialize very large data items to spaces, use VALUE
clauses, INITIALIZE statements, or MOVE statements of the form

MOVE SPACES TO X

VALUE clauses are recommended.

Default: BLANK for the COBOL85 compiler
NOBLANK for the NMCOBOL compiler

Placement: Anywhere

Scope: The last BLANK or NOBLANK in the program is applies.

Dependencies: None

BLANK

NOBLANK

VST267.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-54

Program Compilation CALL-SHARED
CALL-SHARED

CALL-SHARED

generates shared code (PIC).

NON-SHARED

generates nonshared code (non-PIC).

SHARED

generates shared code (PIC) for a DLL.

Note. The COBOL85 compiler does not recognize this directive.

Note. You cannot link PIC and non-PIC object files into a single object file.

Default: NON-SHARED

Placement: Anywhere

Scope: The last CALL-SHARED, NON-SHARED, or SHARED in the compilation
unit applies to the entire compilation unit.

Dependencies: • If RUNNABLE is active, CALL-SHARED uses the linker to create a
PIC executable object file; otherwise, CALL-SHARED creates a PIC
linkfile.

• Do not use with UL.

References: • NON-SHARED

• SHARED

• RUNNABLE

• UL

CALL-SHARED

NON-SHARED

SHARED

VST802.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-55

Program Compilation CANCEL and NOCANCEL
CANCEL and NOCANCEL

CANCEL

generates code that initializes the program the first time the program is called after
being canceled by a CANCEL statement.

NOCANCEL

prevents the generation of code that initializes the program the first time the
program is called after being canceled by a CANCEL statement.

If a program is not an initial program and is never referenced by a CANCEL statement,
specify NOCANCEL to reduce the size of the program’s object code. Do not specify
NOCANCEL for a program that is referenced by a CANCEL statement. If you do, the
program might not execute in the manner expected.

CHECK
CHECK controls the level of run-time checking that a program performs.

check-level

is an integer in the range 0 through 15. For the meanings of the different values of
check-level, see Table 11-19.

Default: CANCEL

Placement: Anywhere

Scope: Applies to the program that contains it. CANCEL and NOCANCEL do not
apply to initial programs, which are initialized every time they are called.

Dependencies: None

CANCEL

NOCANCEL

VST383.vsd

check-levelCHECK

VST268.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-56

Program Compilation CHECK
At run time, if the subscript or reference modifier used in a statement is out of range,
an error is reported, and the execution terminates.

Default: CHECK 1

Placement: Anywhere

Scope: In each separately compiled program, the last CHECK in the program
unit determines the check level for the code block being produced.

Dependencies: None

Table 11-19. CHECK Levels

check-level What is Checked Comments

0 Nothing CHECK 0 results in the fastest
execution time.

1 (default) Nothing CHECK 1 might have a different
meaning in future versions of
HP COBOL. For the fastest execution
(and no subscript checking) in current
and future versions of HP COBOL,
specify CHECK 0.

2 Validity of subscripts and indexes*

3 Validity of subscripts, indexes, and
reference modifiers*

Specifies the maximum level of
checking that HP COBOL currently
provides.

4-15 Validity of subscripts, indexes, and
reference modifiers*

4-15 might have different meanings in
future versions of HP COBOL. For the
maximum level of checking that
HP COBOL currently provides, specify
CHECK 3. For maximal checking,
specify CHECK 15 (which could
increase the program’s run-time
overhead in future versions of
HP COBOL if additional checking
levels are implemented).

* The compiler generates extra code in order to check the validity of these items.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-57

Program Compilation CODE and NOCODE
CODE and NOCODE

CODE

lists an octal image of the compiled code following successful compilation of a
program unit.

The octal image appears after the symbol table listing produced by MAP (if any)
and before the mnemonic code produced by ICODE (if any).

NOCODE

suppresses the octal image of the compiled code.

Note. The NMCOBOL compiler issues warnings for these directives.

Default: NOCODE

Placement: Anywhere

Scope: In each separately compiled program, the last CODE or NOCODE in the
program unit applies to the entire program unit.

Dependencies: CODE works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

CODE

NOCODE

VST269.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-58

Program Compilation COLUMNS
COLUMNS
COLUMNS causes the compiler to ignore any text beyond a certain column in
subsequent input records.

COLUMNS applies only to text being read under Tandem reference format. Text being
read under ANSI reference format ignores any text beyond column 72.

length

is an integer whose value is at least 12. Any value greater than 132 is considered
to equal 132.

Default: COLUMNS 132

Placement: • On a directive line, COLUMNS must begin with a question mark (?)
in column 1, regardless of any active ANSI.

• In a COPY library or a source library, COLUMNS must be the only
directive on its line and must precede all SECTION directives in that
library.

• The COBOL85 compiler accepts at most one COLUMNS for each
source file (that is, one for the primary source file and one for each
COPY library or source library called by the primary source file).

Scope: When the compiler shifts from reading the primary source file to reading
a COPY library (in compliance with a COPY statement) or a source
library (in compliance with a SOURCE directive), it saves the current
(default or specified) logical length for source lines. That length applies
to all source lines in the COPY library or source library, unless a
COLUMNS directive occurs in the COPY library file (as mentioned in the
preceding item). In this case, the compiler reverts to the saved logical
length when it resumes reading text from the primary source file.

Dependencies: COLUMNS works only if TANDEM is active.

References: • ANSI

• SOURCE

• TANDEM

lengthCOLUMNS

VST270.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-59

Program Compilation COMPACT and NOCOMPACT
COMPACT and NOCOMPACT

COMPACT

causes BINSERV to attempt to compact the code space of the target file.

NOCOMPACT

prevents BINSERV from compacting the code space of the target file.

Compacting the target file also decreases the space required by the executing
program.

Memory consists of a data area and a code area. COMPACT affects only the code
area.

The object code HP compilers produce is composed of blocks. Code-space blocks
(code blocks and read-only arrays) can never span from one code segment to another,
so they can never exceed a size of 128 KB. Object code for an HP COBOL routine can
straddle a 64 KB boundary only when a block exceeds 64 KB. A code-space block can
be as large as 126,998 bytes, leaving 1002 bytes for the procedure entry point (PEP)
table and the external entry point (XEP) table. Object code for routines written in other
languages cannot straddle the 64 KB boundary in a 128 KB code segment.

If you specify NOCOMPACT, BINSERV allocates code-space blocks strictly in the
order in which they are presented by the compiler. This can leave gaps between the
64 KB boundary and the last code-space block below it, and between the 128 KB
boundary and the last code-space block below it.

If you specify only COMPACT, or omit both COMPACT and NOCOMPACT, BINSERV
checks each succeeding code-space block to determine whether it will fit into either
current gap. When a code-space block that fits in a gap is found, BINSERV allocates it
in the gap, thereby compressing both the target file and the object program.

Note. The NMCOBOL compiler, which does not use BINSERV, issues warnings for these
directives.

Default: COMPACT

Placement: Anywhere

Scope: The last COMPACT or NOCOMPACT in the compilation unit applies.

Dependencies: None

COMPACT

NOCOMPACT

VST271.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-60

Program Compilation COMPILE
Suppose the compiler presents these code-space blocks to BINSERV in this order:

Because no block exceeds 64 KB, none can span the 64 KB boundary. When they are
bound with NOCOMPACT active, they occupy 116 KB. Each nonspace character
below represents 2 KB:

AAAAAAAAAABBBBBBBBBBBB---------CCCCCCCCCCCCCCCCDDDDEEEEE--
 ^10 ^22 ^32 ^48 ^52 ^58

When the blocks are bound with COMPACT active, they fit into 48K words:

AAAAAAAAAABBBBBBBBBBBBDDDDEEEEE-CCCCCCCCCCCCCCCC-
 ^10 ^22 ^26 ^32 ^48

COMPILE

COMPILE

compiles the program unit and includes its code and data blocks in the target file
being created.

SYNTAX

checks the syntax of the source text. No target file is produced.

Program A Program B Program C Program D Program E

20 KB 24 KB 32 KB 8 KB 10 KB

Default: COMPILE

Placement: Outside the boundaries of a separately compiled program; that is, not
between the Identification Division header of a separately compiled
program and its end, which is marked by one of:

• The corresponding END PROGRAM statement
• ENDUNIT
• The end of the source file

Scope: The last COMPILE or SYNTAX in the compilation unit applies to the
entire compilation unit.

Dependencies: None

References: ENDUNIT

COMPILE

SYNTAX

VST272.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-61

Program Compilation CONSULT and NOCONSULT
CONSULT and NOCONSULT

CONSULT

adds the files that object-name-list specifies to the tertiary search list. (See
Tertiary Search List.)

object-name-list

can be continued onto subsequent lines, but the left parenthesis must appear on
the same directive line as the keyword CONSULT. Each continuation line for a
CONSULT directive must have a question-mark (?) in the indicator area. If a
CONSULT directive spans multiple lines, they must be consecutive (no blank lines,
comment lines, or program text lines can intervene).

object-name

is the name of an object file. It can be either a file-system file name or (in the
Guardian environment) a DEFINE name. If the file-system file name is not fully
qualified with system, volume, and subvolume names, the compiler uses the
current default system, volume, and subvolume names to complete the
qualification. If object-name is in the OSS environment, it is an OSS
pathname.

For the NMCOBOL compiler, object-name must specify either:

• A linkfile

• An archive file

Note. The NMCOBOL compiler ignores and issues a warning for the NOCONSULT directive.

object-name-list

object-name-list

CONSULT

NOCONSULT

()

VST273.vsd

object-name,

object-name

VST274.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-62

Program Compilation CROSSREF and NOCROSSREF
When object-name is an archive file, the entire archive file is generally not
linked into the target object file. Only those member files are linked that contain
procedures named either in the statement CALL or in the statement ENTER in
the COBOL program being compiled. Whenever a procedure is needed from a
member file, the entire member file is linked.

If a native HP COBOL program references object-name either in the
statement CALL or in the statement ENTER, object-name must have been
compiled with the SYMBOLS directive (see SYMBOLS and NOSYMBOLS).

NOCONSULT

clears the tertiary search list for the COBOL85 compiler, but is ignored by the
NMCOBOL compiler.

If more than one CONSULT is present, the object names are appended to the list in the
order they are read; however, if any object name specified is already in the list, it
retains its current position in the list.

CROSSREF and NOCROSSREF

CROSSREF and NOCROSSREF determine the classes of symbols included in the
cross-reference listing.

For TNS HP COBOL programs, the CROSSREF directive duplicates some of the
capabilities provided by the CROSSREF utility program. The CROSSREF utility is
recommended over the CROSSREF directive because it is more efficient and more
flexible, enabling you to include or exclude specific identifiers rather than only identifier
classes. For information on the CROSSREF utility, see the CROSSREF Manual.

Default: NOCONSULT

Placement: Anywhere

Dependencies: None

Note. The NMCOBOL compiler issues warnings for these directives and does not produce a
cross-reference listing. If you need one, use the noft utility with the XREFPROC flag (see the
noft Manual).

CROSSREF

class-list

NOCROSSREF

VST275.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-63

Program Compilation CROSSREF and NOCROSSREF
CROSSREF

without a class-list sets the class list to all classes except LITERALS and
UNREFS and triggers the collection and reporting of cross-reference information
for all classes currently in the class list (see the list under class).

class-list

specifies the classes to be cross-referenced.

ONLY

sets the class list to only the specified classes and triggers the collection of
information on all classes, but reports information for only the specified
classes.

INCLUDE

adds the specified classes to the current class list and triggers the collection of
information on all classes.

EXCLUDE

removes the specified classes from the current class list and triggers collection
of information on all classes.

class

is one of the reserved words in the left column of this table:

Class COBOL Identifiers Selected (page 1 of 2)

ALL All classes

CONDITIONS * Condition-names

DATANAMES (or VARIABLES) * Data-names (FILLER not included)

FILES * (COBOL) file names

FUNCTIONS * Routine-names of functions (routines that return
a value)

INDEXES * Index-names

LITERALS Literals (numeric and nonnumeric)

MNEMONICS * File-mnemonics

class

ONLY

INCLUDE

EXCLUDE

, class

VST276.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-64

Program Compilation CROSSREF and NOCROSSREF
The classes marked with an asterisk in the preceding table are, by default,
selected for inclusion, but reporting of cross-reference information about them
is suspended until a CROSSREF directive is encountered.

NOCROSSREF

switches collection off but leaves the class list as it is. A subsequent CROSSREF
directive can switch collection back on without respecifying the list.

Here are some examples of CROSSREF directives in use:

• CROSSREF by itself as the only cross-referencing directive applied to a program
unit causes the collection of cross-reference information about all identifiers and
the reporting of information about those identifiers in the default class list.

• CROSSREF at the beginning of a program unit, followed by CROSSREF
INCLUDE LITERALS at the beginning of the Procedure Division, causes cross-
reference information about all classes to be collected and causes reporting of all
the default classes plus literals for the entire program (not just for the Procedure
Division).

• CROSSREF EXCLUDE MNEMONICS starts (or continues) collecting cross-
reference information for all classes, but removes the MNEMONIC class from the
current class list and establishes reporting of the classes in the revised class list.

• CROSSREF PROCNAMES removes all classes from the current class list, installs
PROCNAMES as the only class, and starts the collection of information for all
classes and the reporting of only PROCNAMES.

PROCNAMES (or LABELS) * Procedure-names (paragraph-names, section-
names)

PROGRAMS * Program-names, routine-names

UNREFS Items defined but not referenced (technically,
not a class but a generalized request for all such
items)

Default: NOCROSSREF

Placement: Anywhere

Scope: CROSSREF applies to all separately compiled program units, regardless
of nesting; that is, all programs within a nest appear in the same cross-
reference listing. You need not repeat CROSSREF for each program unit
in a compilation unit; the class list active at the end of one program unit
applies to the next program unit until explicitly altered by
NOCROSSREF.

Dependencies: CROSSREF works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

Class COBOL Identifiers Selected (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-65

Program Compilation DIAGNOSE-74 and NODIAGNOSE-74
• CROSSREF at the beginning of a program unit, followed by NOCROSSREF at the
beginning of a SECTION, followed by CROSSREF after the end of the SECTION,
collects cross-reference information for all of the program unit; it does not suppress
the collection or reporting of data in the delimited section.

If LIST is active, any cross-reference information collected during the compilation of a
given program unit is sent to the output file before subsequent program units in the
compilation unit are compiled.

The COBOL85 compiler cannot create “global” cross-reference listings because each
COBOL program unit is completely self-contained. To obtain a “global” cross-reference
listing of an entire compilation unit containing multiple program units, use the
CROSSREF utility. For an example of a COBOL cross-reference listing produced by
the CROSSREF utility and information on how to use CROSSREF, see Section 24,
Issues Related to Binding and Linking.

DIAGNOSE-74 and NODIAGNOSE-74

DIAGNOSE-74

causes the compiler to issue warnings when it encounters source constructs that
could cause the program to produce different results than it would if it were
compiled with the HP COBOL 74 compiler.

NODIAGNOSE-74

prevents the compiler from issuing warnings when it encounters source constructs
that could cause the program to produce different results than it would if it were
compiled with the HP COBOL 74 compiler.

The warning messages issued begin with:

Logic may differ from COBOL 74 -

Default: NODIAGNOSE-74

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: None

DIAGNOSE-74

NODIAGNOSE-74

VST277.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-66

Program Compilation DIAGNOSE-74 and NODIAGNOSE-74
The possible suffixes, explained in Usage Considerations:, are:

• Size of index data item
• Implied value of Figurative Constant
• Precision of division operation
• Action when program not found
• Search algorithm
• Size of receiving operand
• Identification of statement operand
• Assignment order of PERFORM operands
• Alphanumeric sender

Usage Considerations:

• Size of Index Data Item

A data item within a record description has an explicit USAGE INDEX clause.
Indexes occupied two bytes in COBOL 74, but occupy four bytes in HP COBOL.

You must convert any files that include records in which index data items occur.

• Implied Value of Figurative Constant

A MOVE statement attempts to assign a value of

ALL literal

to a numeric or numeric-edited item, or a relation condition involves such a value.

You must change the literal to deliver the expected value. If X has a picture of 99.9,
COBOL 74 handled

MOVE ALL "6" TO X

as meaning

MOVE 6 TO X

HP COBOL handles the same MOVE as meaning

MOVE 66.0 TO X

• Precision of Division Operation

The division operator (/) occurs in an arithmetic expression. In COBOL 74, a
division could discard high-level digits without producing a diagnostic. In
HP COBOL, a fatal arithmetic overflow can occur.

• Action When Program Not Found

The OVERFLOW clause is present in a CALL statement. HP COBOL accepts
EXCEPTION and NOT EXCEPTION in the CALL statement.

You must replace the OVERFLOW clauses in CALL statements with EXCEPTION
clauses.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-67

Program Compilation DIAGNOSE-74 and NODIAGNOSE-74
• Search Algorithm

The SEARCH ALL statement in COBOL 74 performed a linear search. In
HP COBOL, it performs a binary search.

You must verify that the table being searched is properly organized (strictly
ascending or descending order) so that a binary search is feasible.

• Size of Receiving Operand

The logic of COBOL 74 and HP COBOL differ in some cases when a value is
being assigned to a data structure that contains an item described with an
OCCURS DEPENDING phrase.

One instance is that of an UNSTRING statement assigning a value through an
INTO phrase that does not include a DELIMITER phrase, where the DEPENDING
item is within the receiving data structure. COBOL 74 uses the computed size of
the receiving item, but HP COBOL uses the maximum size.

Another, more general case is when a MOVE, UNSTRING, or some other value-
delivering statement stores a value into a data structure that contains an item
described with an OCCURS DEPENDING clause, where the DEPENDING item is
not part of the receiving (group) item. COBOL 74 used the maximum size of the
receiving item in performing the storage operation in all cases but the one
mentioned in the previous paragraph. HP COBOL uses the computed size in all
cases where the DEPENDING item is not part of the receiving item.

You must check that the value-assigning statement will do what you want it to do.

• Identification of Statement Operand

In COBOL 74, STRING and UNSTRING statements deferred some subscript
evaluations until just before the subscripted item was used. HP COBOL evaluates
all subscripts once at the beginning of the statement’s execution.

You must check that the STRING and UNSTRING statements do what you want
them to do.

• Assignment Order of PERFORM Operands

In COBOL 74, when a PERFORM VARYING statement controlled multiple loops by
using the AFTER phrase, the inner loop base was set before the outer loop index
was incremented (or decremented). In HP COBOL, these steps are reversed.
When the inner loop logic uses the value of the outer loop’s index, the behavior is
different. For example, the statement:

PERFORM p1 VARYING x FROM 1 BY 1 UNTIL x = 5
 AFTER y FROM x BY 1 UNTIL y = 5.

Under COBOL 74 rules, the preceding statement performs these steps in this
order:

1. Sets x to 1, sets y to 1
2. Runs y from 1 through 4
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-68

Program Compilation DIAGNOSE-74 and NODIAGNOSE-74
3. Sets y to the value of x (still 1), sets x to 2
4. Runs y from 1 through 4
5. Sets y to the value of x (now 2), sets x to 3
6. Runs y from 2 through 4
7. Sets y to the value of x (now 3), sets x to 4
8. Runs y from 3 through 4
9. Terminates

In HP COBOL, the same statement performs these steps in this order:

1. Sets x to 1, sets y to 1
2. Runs y from 1 through 4
3. Sets x to 2, sets y to the value of x (now 2)
4. Runs y from 2 through 4
5. Sets x to 3, sets y to the value of x (now 3)
6. Runs y from 3 through 4
7. Sets x to 4, sets y to the value of x (now 4)
8. Runs y with the value 4
9. Terminates

You must revise the logic of any PERFORM VARYING containing an AFTER
phrase that is controlled by the index of the outer loop. The simplest maneuver is
probably to separate the PERFORM into two separate PERFORM statements,
because you cannot use an arithmetic expression in the FROM phrase.

• Alphanumeric Sender

When left-justified numbers with trailing spaces are moved from an alphanumeric
data item to a numeric data item described as USAGE DISPLAY or to a numeric
edited data item, the result differs between COBOL 74 and HP COBOL. For
example, given these descriptions:

01 ITEM-A PIC X(5) VALUE "05 ".
01 ITEM-B PIC 9(5).

The statement

MOVE ITEM-A TO ITEM-B

results in

"00005"

in ITEM-B for COBOL 74 and

"05 "

in ITEM-B for HP COBOL.

If you cannot avoid moving left-justified numbers with trailing spaces between
these data types, use an UNSTRING statement with a DELIMITED BY SPACES
phrase rather than a MOVE statement.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-69

Program Compilation DIAGNOSE-85 and NODIAGNOSE-85
DIAGNOSE-85 and NODIAGNOSE-85

DIAGNOSE-85

causes the NMCOBOL compiler to issue warnings when it encounters source
constructs that could cause the program to produce different results than it would if
it were compiled with the COBOL85 compiler.

NODIAGNOSE-85

prevents the NMCOBOL compiler from issuing warnings when it encounters
source constructs that could cause the program to produce different results than it
would if it were compiled with the COBOL85 compiler.

Note. The COBOL85 compiler does not recognize these directives.

Default: NODIAGNOSE-85

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: None

DIAGNOSE-85

NODIAGNOSE-85

VST719.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-70

Program Compilation DIAGNOSEALL and NODIAGNOSEALL
DIAGNOSEALL and NODIAGNOSEALL

DIAGNOSEALL

causes the compiler to issue a warning each time it encounters an undefined
identifier, even if it already issued a warning for a previous use of that identifier.

NODIAGNOSEALL

causes the compiler to issue a warning the first time it encounters an undefined
identifier, but not if it already issued a warning for a previous use of that identifier.

ENDIF
ENDIF terminates the effect of a preceding IF or IFNOT directive.

toggle-number

is the toggle-number specified in a preceding IF or IFNOT directive.

Default: NODIAGNOSEALL

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: None

Default: None

Placement: Must be either on a directive line of its own or be the last of a sequence
of directives.

Dependencies: Requires a preceding IF or IFNOT directive with the same toggle-
number

References: IF and IFNOT

DIAGNOSEALL

NODIAGNOSEALL

VST470.vsd

toggle-numberENDIF

VST278.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-71

Program Compilation ENDUNIT
ENDUNIT
ENDUNIT signals the end of a program unit. Each independent HP COBOL program
must end with either an ENDUNIT directive or an END PROGRAM statement;
otherwise, programs appear to be nested but lacking their required END PROGRAM
statement.

ENV

COMMON
LIBRARY
OLD

See Table 11-20.

Default: The compiler detects the end of a Procedure Division by encountering
either an END PROGRAM statement or the end of the file.

Placement: Must be either on a directive line of its own or be the last of a sequence
of directives.

Scope: Applies to program unit

Dependencies: None

Note. This directive is useful only for the COBOL85 compiler. The NMCOBOL compiler
accepts this directive with the COMMON option (the default for this compiler), reports an error
for the OLD option, and issues a warning for the LIBRARY option.

Default: ENV OLD

Placement: Must appear before any source code lines

Scope: Applies to all programs in its source file

Dependencies: None

ENDUNIT

VST279.vsd

COMMON

LIBRARY

OLD

ENV

VST280.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-72

Program Compilation ENV
Topics:

• Library Programs

• ENV and Compatible Programs

Library Programs

If you are using the non-CRE or OSS environment, you cannot put an HP COBOL
routine in the user library (because you cannot compile it with the ENV LIBRARY
directive).

If you are using the CRE, you can compile an HP COBOL program with the ENV
LIBRARY directive and put it into a user library if the program satisfies these criteria:

• It is not a main program.
• It is an initial program (its PROGRAM-ID paragraph specifies INITIAL).
• It is a separately compiled program (it is not embedded in another program).
• It does not contain any other programs.
• It does not specify the GLOBAL phrase on any level-01 record descriptions.
• It does not reference any external data items or external files.
• It does not have an Extended-Storage Section.
• It does not have a PROGRAM COLLATING SEQUENCE clause.
• It does not contain SQL/MP statements.

Table 11-20. Effects of ENV Directive Options

ENV Option

COBOL85 Compiler

NMCOBOL Compiler
Guardian
Environment OSS Environment

COMMON Selects CRE Selects CRE (required) Accepted but
unnecessary (CRE is the
default)

LIBRARY Selects CRE and
allows program to be
put in a user library.
Program must satisfy
the criteria in Library
Programs

Not accepted Ignored, warning issued *

OLD Selects non-CRE
environment

Not accepted Not accepted

* To build a user library, use UL.

Note. This topic applies only to the COBOL85 compiler.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-73

Program Compilation ENV
If a program does not meet the preceding criteria and you try to compile it with the ENV
LIBRARY directive, the compiler reports an error.

If you compile a program with the ENV LIBRARY directive:

• ASSIGN and PARAM commands for the files in the program are ignored.

• The compiler does not create data blocks or references to data blocks for the
program. Instead, the operating environment creates these at run time. The
program requires more overhead when called and might execute slightly more
slowly.

ENV and Compatible Programs
Two programs are compatible if one can call the other. A program can call another
program if both programs run in the CRE or if both programs run in language-specific
environments that allow them to call each other.

Table 11-21. ENV Directive and TNS Program Compatibility

TNS program compiled with ... Is compatible with TNS programs compiled with ...

ENV COMMON ENV COMMON
ENV LIBRARY

ENV LIBRARY ENV COMMON
ENV LIBRARY

ENV OLD ENV OLD
No ENV directive

No ENV directive ENV OLD
No ENV directive
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-74

Program Compilation ERRORFILE
ERRORFILE
ERRORFILE specifies an error-logging file that is to contain information about any
compilation errors or warnings. The error-logging file is not an EDIT file. You can use it
only with the FIXERRS Macro.

file-name

is the name of the error-logging file. It must be a disk file name.

define-name

is the name of a MAP DEFINE that refers to a disk file. The compiler uses this file
as the error-logging file.

If the specified file does not already exist, the compiler creates an entry-sequenced file
using the specified file name and the file code 106.

If the specified file is an existing error file identified by file code 106, the compiler
replaces the contents of the existing file with the new error file.

If the specified file is an existing file but is not an error file, the compiler terminates
compilation and displays the message

ERRORFILE not created

The error file contains one record for each error or warning message that the compiler
found during compilation. Each error record contains this information:

• The fully qualified, local file name of the file in which the compiler found the error or
warning

If you specified a DEFINE name for the name of the source file, the name of the
file to which the DEFINE evaluated appears in this entry.

• The EDIT line number in which the error or warning occurred

• The column number in the line where the compiler detected the error or warning

• The error or warning message text

Default: None

Placement: Either on the compiler command line or in the source file before the
Identification Division.

Scope: Applies to the compilation unit

Dependencies: None

ERRORFILE file-name

define-name

VST281.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-75

Program Compilation ERRORS
ERRORS
ERRORS sets the maximum number of severe errors allowed during compilation. If
this limit is exceeded, the compilation terminates.

error-limit

is an integer in the range 0 through 32767.

FIPS and NOFIPS
FIPS and NOFIPS determine whether the compiler identifies language elements as
required by the Federal Information Processing Standard (FIPS).

FIPS

identifies the language elements specified by flag-option-list.

NOFIPS

prevents identification of language elements which violate the FIPS.

flag-option-list

Default: ERRORS 100

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: None

ERRORS error-limit

VST282.vsd

FIPS flag-option-list

NOFIPS

()flag-option-list

VST468.vsd

flag-option

flag-option,

VST469.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-76

Program Compilation FIPS and NOFIPS
flag-option

Value Elements Identified

OBSOLETE Obsolete language elements

ABOVEMIN Language elements above the minimum subset

ABOVEINTER Language elements above the intermediate subset

LEVEL1COM * Communication language elements

ABOVELEVEL1COM * Communication language elements above level 1 of
communication

LEVEL1DEB Debug language elements

ABOVELEVEL1DEB * Debug language elements above level 1 of Debug

REPORTWRITER * Report Writer language elements

LEVEL1SEG Segmentation language elements

ABOVELEVEL1SEG Segmentation language elements above level 1 of
segmentation

NONSTANDARDEXT Nonstandard extensions to HP COBOL

* This option does not affect compilation because the compiler does not support this module. If you
use this option, the compiler issues a warning and ignores the option.

Default: NOFIPS

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: None
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-77

Program Compilation FLOAT and NOFLOAT
FLOAT and NOFLOAT

FLOAT

allows the compiler to use floating-point arithmetic for certain complex expressions.

NOFLOAT

prevents the compiler from using floating-point arithmetic for certain complex
expressions.

FMAP

FMAP causes the NMCOBOL compiler to produce a source file map, which shows the
fully qualified name and timestamp of the IN file and each file specified by a SOURCE
directive or COPY statement.

Note. The NMCOBOL compiler ignores this directive and issues a warning.

Default: FLOAT

Placement: Outside the boundaries of any program

Scope: Applies to all subsequent programs

Dependencies: None

Note. The COBOL85 compiler does not recognize this directive.

Default: The NMCOBOL compiler does not produce a source file map.

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: NOLIST and SUPPRESS do not suppress the source file map that
FMAP produces.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

FLOAT

NOFLOAT

VST818.vsd

FMAP

VST731.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-78

Program Compilation HEADING
HEADING
HEADING replaces or sets to spaces the heading portion of the standard top-of-page
line that appears on each page of the compilation listing.

character-string

is a string of one or more ASCII characters. If a quotation mark character is part of
the string, it must be represented as two contiguous quotation marks. The string is
used in all subsequent top-of-page lines.

If character-string is omitted, the heading portion of the top-of-page lines is
set to all spaces.

Default: Standard top-of-page line

Placement: Anywhere

Scope: Applies until another HEADING overrides it

Dependencies: None

character-string

HEADING

" "

VST283.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-79

Program Compilation HEAP
HEAP

HEAP specifies heap space size in the CRE. HEAP is useful only in the Guardian
environment and only if the program calls HP C functions that allocate heap space.

size

is an integer in the range 2048 through 2,147,483,684 that represents the number
of bytes to allocate for the CRE user heap.

HIGHPIN

HIGHPIN sets the HIGHPIN flag in an object file so that the object file can run at a high
PIN.

Note. The NMCOBOL compiler ignores this directive and issues a warning.

Default: Guardian environment: the heap is nonexistent by default.

PC and OSS environments: the heap is large by default and cannot be
made larger.

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: Program must run in the CRE

Note. The NMCOBOL compiler ignores this directive and issues a warning. A native
HP COBOL program always runs at a high PIN.

HEAP size

VST738.vsd

HIGHPIN

VST284.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-80

Program Compilation HIGHPIN
For your object file to run at a high PIN, these conditions must be met:

• Your object file and user library, if any, have the HIGHPIN flag set.
• Your object file runs in the CRE (see ENV).
• Your processor is configured for more than 256 process control blocks (PCBs).
• High PINs are available on your processor.
• The TACL HIGHPIN built-in variable or the HIGHPIN run-time parameter is set.

If the above conditions are met, your object file can create another process to run at
high PIN by calling the CLU_PROCESS_CREATE_ procedure.

This sequence of examples shows how to run an object file at high PIN from the TACL
prompt. The examples show how to check your processor configuration and high-PIN
availability, set the HIGHPIN flag, and override the TACL HIGHPIN setting if it is off.

Examples:

1. To check the number of PCBs configured in your processor and to see if high PINs
are available, run the Peek product. For example, if you want to run your object file
on processor 1:

PEEK / CPU 1 /

This display excerpt shows example values for the information you need to check:

 ... CURRENT USAGE # CONFIGURED ...
PCB 127: 48 255: 244

The processor is configured for high PINs if the sum of the two values displayed for
PCBs under “# CONFIGURED” is 256 or greater. In this example, the processor is
configured for high PINs, because 255 + 244 = 499.

The processor has high PINs available if the right-hand value under “CURRENT
USAGE” is less than the right-hand value under “# CONFIGURED.” In this
example, the processor has high PINs available, because 48 is less than 244.

Default: TNS program runs with a low PIN (less than or equal to 255).

Placement: Any of:

• Anywhere in the source program (but it is good practice to put it
before the first program in a compilation unit)

• On the compiler command line

• In a stand-alone Binder session

Scope: Applies to the program in which or before which it appears and to all
subsequent programs in the compilation unit

Dependencies: Program must be compiled with ENV COMMON.

References: ENV
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-81

Program Compilation HIGHPIN
2. You can set the HIGHPIN flag of an object file during compilation by including the
HIGHPIN directive in the compilation command:

COBOL85 /IN cobsrc,OUT $s.#coblst,NOWAIT/ cobobj; HIGHPIN

3. Alternatively, you can set the HIGHPIN flag of an object file after compilation by
typing this Binder command:

BIND CHANGE HIGHPIN ON IN cobobj

4. Before you run the object file, you can check the current setting of the TACL
HIGHPIN built-in variable by typing:

#HIGHPIN

5. If #HIGHPIN returns a NO value, you can set the HIGHPIN run-time parameter
(and run your object file at a high PIN):

RUN cobobj / HIGHPIN ON /

6. If #HIGHPIN returns a YES value, you can simply run your object file at a high PIN:

RUN cobobj
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-82

Program Compilation HIGHREQUESTERS
HIGHREQUESTERS

HIGHREQUESTERS allows the program to run as a server that communicates with
requesters running at high PINs (process identification numbers greater than 255).

IICODE and NOICODE

ICODE

lists an mnemonic image of the compiled code following successful compilation of
a program unit.

The mnemonic listing appears after the symbol table listing produced by MAP (if
any) and after the octal image produced by CODE (if any).

Note. The NMCOBOL compiler ignores this directive and issues a warning. A native
HP COBOL program always runs at a high PIN.

Default: Program cannot run as a server that accepts requesters running with
high PINs (greater than 255).

Placement: Any of:

• Anywhere in the source program (but it is good practice to put it in
the main program, because that is the only program it affects—that
is, Binder assumes that a run unit can accept high PIN requesters
only if HIGHREQUESTERS is specified for the main program in the
run unit)

• On the compiler command line

• In a stand-alone Binder session

Scope: Applies to the main program in which or before which it appears in the
compilation unit

Dependencies: Program must be compiled with ENV COMMON and HIGHPIN.

References: • ENV

• HIGHPIN

Note. The NMCOBOL compiler ignores these directives and issues warnings. For the
NMCOBOL compiler, use INNERLIST and NOINNERLIST instead.

HIGHREQUESTERS

VST285.vsd

ICODE

NOICODE

VST286.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-83

Program Compilation IF and IFNOT
NOICODE

suppresses the mnemonic image of the compiled code.

IF and IFNOT

IF

enables compilation of subsequent source text if the toggle with toggle-number
is set; disables it otherwise.

IFNOT

suppresses compilation of subsequent source text if the toggle with toggle-
number is set; enables it otherwise.

toggle-number

is an integer in the range 1 through 15.

The toggles are turned on and off by use of the SETTOG and RESETTOG directives. If
no SETTOG directive has been issued, a toggle is off.

Default: NOICODE

Placement: Anywhere

Scope: Last ICODE or NOICODE applies to program unit.

Dependencies: ICODE works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

• MAP and NOMAP

• CODE and NOCODE

Default: None

Placement: Must be either on a directive line of its own or be the last of a sequence
of directives

Dependencies: Requires a preceding IF or IFNOT directive with the same toggle-
number

References: IF and IFNOT

IF

IFNOT

toggle-number

VST287.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-84

Program Compilation IF and IFNOT
COPY and REPLACE statements are not affected by this directive; they are still
processed and expanded. In contrast, a SOURCE directive is ignored when it is part of
the ignored text.

If a given toggle is not set, any directives between an IF for that toggle and its
subsequent ENDIF are parsed but are not acted upon; if a given toggle is set, any
directives between an IFNOT for that toggle and its subsequent ENDIF are parsed but
are not acted upon.

In Example 11-11, if toggle 1 is turned on, the ADD statement is compiled; if toggle 1 is
turned off, the COMPUTE statement is compiled.

Example 11-11. IF Directive

?IF 1
 ADD A B C GIVING D
?ENDIF 1
?IFNOT 1
 COMPUTE D = A + B + C
?ENDIF 1

Note. The IFNOT directive does not behave like an ELSE clause of the IF directive. Each IF
and each IFNOT must have its own ENDIF directive.

Example 11-12. Nested IF and IFNOT Directive Scopes

IF and IFNOT scopes can be nested. Given this program fragment:

 01 MASTER-RECORD.
 03 HEADER PICTURE X(30).
?IF 1
 03 ACCOUNT-ID PICTURE X(50).
?IF 2
 03 ACCOUNT-ID-REDEF REDEFINES ACCOUNT-ID.
 05 ACCOUNT-GROUP PICTURE X(20).
 05 ACCOUNT-CLASS PICTURE X(10).
 05 ACCOUNT-NUMBER PICTURE X(20).
?ENDIF 2
 03 TRAILER PICTURE X(100).
?ENDIF 1
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-85

Program Compilation IF and IFNOT
The compiler sees this, depending on the setting of toggles 1 and 2:

Lines whose compilation IF or IFNOT suppresses still appear in the compiler listing. To
keep them from appearing, use NOLIST and LIST directives as the code fragments in
Example 11-13 show.

Toggles On Source Lines Compiled

None 01 MASTER-RECORD.
 03 HEADER PICTURE X(30).

1 only 01 MASTER-RECORD.
 03 HEADER PICTURE X(30).
 03 ACCOUNT-ID PICTURE X(50).
 03 TRAILER PICTURE X(100).

2 only 01 MASTER-RECORD.
 03 HEADER PICTURE X(30).

1 and 2 01 MASTER-RECORD.
 03 HEADER PICTURE X(30).
 03 ACCOUNT-ID PICTURE X(50).
 03 ACCOUNT-ID-REDEF REDEFINES ACCOUNT-ID.
 05 ACCOUNT-GROUP PICTURE X(20).
 05 ACCOUNT-CLASS PICTURE X(10).
 05 ACCOUNT-NUMBER PICTURE X(20).
 03 TRAILER PICTURE X(100).

Example 11-13. Omitting Uncompiled Lines from Compiler Listing

?IF n
?NOLIST
?ENDIF n

?IFNOT n
* Lines compiled if toggle n is not set go here
?ENDIF n

?IF n
?LIST
?ENDIF n

?IFNOT n
?NOLIST
?ENDIF n

?IF n
* Lines compiled if toggle n is set go here
?ENDIF n

?IFNOT n
?LIST
?ENDIF n
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-86

Program Compilation INNERLIST and NOINNERLIST
INNERLIST and NOINNERLIST

INNERLIST

lists, immediately after each source statement, the generated machine instructions
in mnemonic form.

NOINNERLIST

suppresses the listing of generated machine instructions.

Note. The COBOL85 compiler does not recognize these directives. For the COBOL85
compiler, use IICODE and NOICODE instead.

Default: NOINNERLIST

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: INNERLIST works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

INNERLIST

NOINNERLIST

VST724.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-87

Program Compilation INSPECT and NOINSPECT
INSPECT and NOINSPECT

INSPECT

turns on the Inspect attribute for the debugging tool for the compilation unit.

NOINSPECT

turns off the Inspect attribute for the debugging tool for the compilation unit.

The Inspect attribute partially determines the debugger for the compilation unit. For
more information, see Debugger Selection.

LARGEDATA

LARGEDATA determines where individual data items are located in memory—in the
user data space or the user extended space (for the COBOL85 compiler) or in the
small data area or large data area (for the NMCOBOL compiler).

Access to data items in the user data space is faster than access to data items in the
user extended space, but the user data space is limited to approximately 50K
characters. Similarly, access to data items in the small data area is faster than access
to data items in the large data area, but the small data area is limited to approximately
32,768 characters.

Default: INSPECT

Placement: Anywhere

Scope: The last INSPECT or NOINSPECT in the compilation unit applies to the
compilation unit.

Dependencies: NOINSPECT and SAVEABEND override each other (whichever is last is
active).

References: SAVEABEND and NOSAVEABEND

Note. This directive is useful only in the CRE.

INSPECT

NOINSPECT

VST288.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-88

Program Compilation LARGEDATA
item

is one of:

• An unsigned integer constant between 0 and 32767
• A filename
• A level-01 data name
• A level-77 data name

If LARGEDATA is specified without item, the COBOL85 compiler uses the value
256 and the NMCOBOL compiler uses the value 64. If the LARGEDATA directive is
not specified, the COBOL85 compiler uses LARGEDATA 0 and the NMCOBOL
compiler uses LARGEDATA 64.

If item is a constant:

• If item is zero, the COBOL85 compiler allocates space for data items whose
definitions are not in the Extended-Storage Section in user data space unless
the item is directly or indirectly specified by name in a LARGEDATA directive.
An item is indirectly specified if it is a file record area and the filename is
specified in a LARGEDATA directive (it is as if the LARGEDATA directive were
never specified with a constant). The NMCOBOL compiler allocates all such
data items in the small data area.

• If item is less than the default, the compiler uses the default instead.

• If item is greater than or equal to the default, the COBOL85 compiler
allocates space for data items and record areas that are at least item bytes in
the user extended area, and the NMCOBOL compiler allocates space for them
in the large data area. If a file description entry is followed by more than one
record description entry and the length of any record description entry other
than the first is greater than or equal to item, allocation depends on the first
record or on the filename.

LARGEDATA

item

(item

,

)

item

VST725.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-89

Program Compilation LARGEDATA
If item is a data name, the COBOL85 compiler allocates space for it in the user
extended area; the NMCOBOL compiler allocates space for it in the large data
area. If the data name is a file record area, the same thing occurs only if all of
these conditions are true:

• The data name is that of the first record area for the file.

• The filename is specified in a SAME RECORD AREA clause.

• The filename is the first one in the file section of all of the names specified in
the clause.

If the data name is a file record area and not all of the preceding are true, the
compiler ignores the LARGEDATA directive.

If item is a filename, the associated record area is allocated in the user extended
space unless both:

• The filename is specified in a SAME RECORD AREA clause.

• A file description entry for another file in the SAME RECORD AREA clause has
been processed already and a LARGEDATA directive does not apply to it.

You can compile a program with more than one LARGEDATA directive.

Default: None

Placement: Anywhere

Scope: If LARGEDATA specifies constants, or has no item, and precedes the
PROCEDURE DIVISION header in the program that contains it, then it
applies to the program that contains it and to subsequent programs. If
LARGEDATA specifies constants, or has no item, and follows the
PROCEDURE DIVISION header in the program that contains it, then it
applies only to subsequent programs.

Dependencies: Program must be compiled with ENV COMMON or ENV LIBRARY.

References: ENV
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-90

Program Compilation LD
LD

 option

is an ld option to be passed to the ld utility. For information about ld options, see
the ld Manual.

LESS-CODE

LESS-CODE determines whether the program generates code that initializes the
Working-Storage Section or Extended-Storage Section or uses a system call to
initialize the Extended-Storage Section. Using a system call reduces the size of the
program’s object code, but takes a significantly longer time to execute because it must
perform a read operation. Use LESS-CODE only for a program that is rarely called.

Note. The COBOL85 compiler does not accept this directive.

Default: None

Placement: In the command line

Scope: Applies to the compilation unit

Dependencies: None

Note. The compiler ignores this directive and issues a warning.

LD ()option

VST111.vsd

LESS-CODE bits-to-set

VST384.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-91

Program Compilation LESS-CODE
bits-to-set

is an integer in the range 0 through 7, which is interpreted:

Value of bits-to-set

ResultDecimal Binary

0 000 Compiler generates code to initialize all areas.

1 001 Compiler generates code to initialize all areas except the
Extended-Storage Section in:

• Main programs

• Other programs that are not initial programs and have
NOCANCEL directives active

Size of object file increases significantly, amount of code
generated decreases significantly, and execution time decreases
slightly.

2 010 Compiler generates code to initialize all areas except the
Extended-Storage Section in:

• Programs that are not main programs and are either initial
programs or do not have NOCANCEL directives active

Size of object file decreases significantly and amount of code
generated decreases significantly.

Execution time increases under either of these conditions:

• The program is an initial program and is called more than
once

• The program is not an initial program and is cancelled
several times

Execution time decreases under either of these conditions:

• The program is an initial program and is only called once

The program is not an initial program and is never cancelled

3 011 Same as 1 and 2 combined

4 100 Compiler generates code to initialize all areas except the
Working-Storage Section in:

• Main programs

• Programs that are not main programs and are either initial
programs or do not have NOCANCEL directives active

Size of object file can increase by a maximum of 65,536 bytes for
each program to which the conditions apply. Amount of code
generated and execution time can decrease.

5 101 Same as 1 and 4 combined

6 110 Same as 2 and 4 combined

7 111 Same as 1, 2, and 3 combined
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-92

Program Compilation LIBRARY
LIBRARY

LIBRARY specifies the name of a TNS user library for resolving unqualified external
references.

file-name

is a name that designates an object file. It cannot be a DEFINE name or a file
name on another system. If file-name is not qualified with volume and
subvolume names, the compiler uses the current default volume and subvolume
names to complete the qualification.

Specification of the LIBRARY directive affects the way in which the compilation
resolves unqualified references in ENTER statements. The user library is searched
after the primary search list, and prior to the tertiary search list. See How the Compiler
Resolves Unqualified References.

Default: None

Placement: The compiler accepts it anywhere, but to be effective, it must be before
the main program.

Scope: Applies to the compilation unit

Dependencies: None

Note. The NMCOBOL compiler ignores this directive and issues a warning. To specify a user
library, see Specifying a User Library.

Default: None

Placement: Anywhere, but the COBOL85 compiler and the Binder do not propagate
LIBRARY from called to calling programs; therefore, calling programs
cannot reference library objects in called programs unless you use one
of these methods:

• Use a separate bind step on the final object with a SET LIBRARY
file-name command.

• Use the LIB parameter on the RUN command.

• Specify the LIBRARY directive on the main compilation.

Scope: The last LIBRARY applies to the loadfile produced by the compilation.

Dependencies: None

LIBRARY file-name

VST289.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-93

Program Compilation LINES
LINES
LINES determines the number of lines to be listed on each page of the output file.
Whenever the next line of a listing would cause a page to exceed the specified line
count, the compiler ejects the page and begins a new listing page. It prints the
standard page heading at the top of the new page, followed by two blank lines, and
then the next line of the listing.

lines-per-page

is an integer in the range 10 through 32767.

Default: LINES 60

Placement: Anywhere

Scope: Applies until another LINES overrides it

Dependencies: LINES works only if paging applies to the compilation list device.

LINES lines-per-page

VST290.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-94

Program Compilation LIST and NOLIST
LIST and NOLIST

LIST

lists each source image in the output file.

NOLIST

suppresses the listing of each source image in the output file.

Default: LIST

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: SUPPRESS overrides LIST (and therefore CODE, CROSSREF, ICODE,
LMAP, MAP, SHOWCOPY, and SQL).

NOLIST suppresses INNERLIST.

References: • SUPPRESS and NOSUPPRESS

• CODE and NOCODE

• CROSSREF and NOCROSSREF

• IICODE and NOICODE

• INNERLIST and NOINNERLIST

• LMAP and NOLMAP

• MAP and NOMAP

• SHARED

• SQL and NOSQL

LIST

NOLIST

VST291.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-95

Program Compilation LMAP and NOLMAP
LMAP and NOLMAP

LMAP

requests from BINSERV the load maps specified by lm-option-list.

NOLMAP

suppresses the load maps specified by lm-option-list.

lm-option-list

whether enclosed in parentheses or not, lm-option list cannot be continued
onto subsequent lines.

lm-option

Note. The NMCOBOL compiler, which does not use BINSERV, ignores these directives and
issues warnings.

Value Load Map Requested (by LMAP) or Suppressed (by NOLMAP)

ALPHA Programs and subprograms sorted by procedure-name

LOC Programs and subprograms sorted by starting address

XREF Cross-reference listing of entry-point and data-block names

LMAP

lm-option-list

NOLMAP

(lm-option-list

*

lm-option-list

lm-option-list(

)

)

VST292.vsd

lm-option

, lm-option

VST293.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-96

Program Compilation LMAP and NOLMAP
*

requests all load maps.

The possible combinations of LMAP and NOLMAP and their effects are:

Directive Specified Effect

None LMAP ALPHA

LMAP without lm-option-list LMAP ALPHA

LMAP with lm-option-list LMAP lm-option-list

NOLMAP without lm-option-list NOLMAP ALPHA, LOC, XREF

NOLMAP with lm-option-list If they were on, the load maps that
lm-option-list specifies are turned off

Default: LMAP ALPHA

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: LMAP works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-97

Program Compilation MAIN
MAIN
MAIN identifies the main program unit.

program-name

is the program-name (specified in the PROGRAM-ID paragraph) of the program
that is the main entry point of the target file being produced by the compilation.

When MAIN appears, only the program unit indicated (the one beginning with a
PROGRAM-ID paragraph that specifies the same program-name) is compiled as a
main program. All other program units in the compilation unit are compiled as called
programs, whether or not they include a Linkage Section.

If no PROGRAM-ID paragraph in the compilation unit specifies the same program-
name as that specified in MAIN, the compiler reports that the resulting target file has
no main program. It is therefore not executable.

Default: Every program unit that does not have a Linkage Section is compiled as
a main program. If more than one program unit of a compilation unit
qualifies as a main program, the compiler reports this as an error,
compiles the first qualifying program unit as the main program, and
produces multiple object files.

Placement: Before the Identification Division header of the first program unit in the
compilation unit.

Scope: Applies to the program that contains it

Dependencies: None

MAIN program-name

VST294.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-98

Program Compilation MAP and NOMAP
MAP and NOMAP

MAP

lists a symbol table listing, which appears after the source program listing for the
program unit (see Symbol Table Listing).

NOMAP

suppresses the symbol table listing.

NLD

option

is an nld option to be passed to the nld utility. For information about nld options,
see the nld Manual.

Default: NOMAP

Placement: Anywhere

Scope: The last MAP or NOMAP applies.

Dependencies: MAP works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

Default: None

Placement: In the command line

Scope: Applies to the compilation unit

Dependencies: None

MAP

NOMAP

VST295.vsd

NLD ()option

VST082.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-99

Program Compilation NONSTOP
NONSTOP

NONSTOP causes the compiler to accept the STARTBACKUP verb. The
STARTBACKUP and CHECKPOINT verbs enable you to run a program as a process
pair.

When a program is compiled without this directive, a PARAM NONSTOP command is
not enough to make the program run as a process pair.

If NONSTOP is absent, the compiler reports an error if it finds a STARTBACKUP verb.

Note.

• Do not use this directive in the OSS environment.

• Before RVU D46.00 and G06.00, software product revision T8107AAT (run-time library
T8108AAR), the NMCOBOL compiler ignores this directive and issues a warning.

Default: The program cannot run as a process pair (even if it contains a PARAM
NONSTOP ON command).

Placement: Must appear before the Identification Division of the first program unit in
the source text.

Scope: Applies to the program unit

Dependencies: PARAM NONSTOP OFF command overrides NONSTOP.

References: PARAM Command

Note. Section 32, Fault-Tolerant Processes, explains how to use the HP fault-tolerant facility. It
is your responsibility to design the program to make use of the CHECKPOINT and
STARTBACKUP statements to operate in a fault-tolerant manner. The presence of the
NONSTOP directive and CHECKPOINT and STARTBACKUP statements do not guarantee
fault tolerance.

NONSTOP

VST296.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-100

Program Compilation NON-SHARED
NON-SHARED

CALL-SHARED

generates shared code (PIC).

NON-SHARED

generates nonshared code (non-PIC).

SHARED

generates shared code (PIC) for a DLL.

Note. The COBOL85 compiler does not recognize this directive.

Note. You cannot link PIC and non-PIC object files into a single object file.

Default: NON-SHARED

Placement: Anywhere

Scope: The last NON-SHARED, CALL-SHARED, or SHARED in the compilation
unit applies to the entire compilation unit.

Dependencies: If RUNNABLE is active, NON-SHARED creates a non-PIC executable
object file; otherwise, NON-SHARED creates a non-PIC nonexecutable
object file.

References: • CALL-SHARED

• SHARED

• RUNNABLE

CALL-SHARED

NON-SHARED

SHARED

VST803.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-101

Program Compilation OPTIMIZE
OPTIMIZE
OPTIMIZE specifies the extent to which the compiler attempts to optimize the code it
emits.

level

is 0, 1, or 2. Optimization level has only a small effect on compilation speed. The
effect of each level is:

Level

Effect

COBOL85 Compiler NMCOBOL Compiler

0 Code is not optimized. Provided in
case other optimization levels
cause errors. Supports symbolic
debugging; data is always in
memory.

Code is not optimized. Provided in
case other optimization levels cause
errors. Supports symbolic debugging;
data is always in memory.

1
(default)

Code is optimized within
statements, but not across
statement boundaries. Appropriate
for application programs still being
developed and tested. Supports
symbolic debugging; data is not
always in memory.

Code is optimized within statements
and across statement boundaries. The
resulting code is more efficient than
that produced by lower levels of
optimization. Supports symbolic
debugging; data is not always in
memory.

2 Code is optimized within
statements and across statement
boundaries, and the resulting code
is more efficient than code
produced by lower levels.

Uses level 1 instead.

Note. For TNS HP COBOL programs, code generated under OPTIMIZE 2 is more difficult
to debug than code generated under OPTIMIZE 0 or OPTIMIZE 1. For NMCOBOL
programs, code generated under OPTIMIZE 1 is more difficult to debug than code
generated under OPTIMIZE 0. Optimization under OPTIMIZE 2 obscures statement
boundaries. Before you attempt to use a symbolic debugger to debug a program, do
either:

• For a TNS HP COBOL program, be certain that the program was compiled with
OPTIMIZE 1; for an NMCOBOL program, be certain that the program was compiled
with OPTIMIZE 0.

• Use the output generated by the CODE, ICODE, or INNERLIST directive to be certain
of statement boundaries.

OPTIMIZE level

VST297.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-102

Program Compilation PERFORM-TRACE
PERFORM-TRACE
PERFORM-TRACE gives additional information if run-time error 148, “PERFORM
nesting too deep,” occurs.

If the program was compiled with the PERFORM-TRACE directive and run-time error
148 occurs, this additional information is given:

Line numbers of PERFORMs from latest to earliest
Line Number File Number
llllll.lll nnn
...

The file number nnn is the number of the source file. The source-file specified in
the compilation command has file number 001. A file number is shown for each file
referenced by the directive SOURCE or a COPY Statement. To see the file numbers,
compile the program with SHOWFILE directive (see SHOWFILE and NOSHOWFILE).

Default: OPTIMIZE 1

Placement: Outside the boundary of a separately compiled program

Scope: The optimization level active at the beginning of a separately compiled
program determines the level of optimization for that program and any
programs it contains.

Dependencies: None

Default: The compiler does not provide additional information if run-time error
148 occurs.

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: None

PERFORM-TRACE

VST800.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-103

Program Compilation PORT and NOPORT
PORT and NOPORT
PORT and NOPORT determine:

• How BINARY/COMPUTATIONAL data items are aligned

• Whether the CALL statement in a program running in the CRE behaves as defined
in X/Open and XPG4 specification.

PORT

aligns BINARY/COMPUTATIONAL data items on byte boundaries (unless they are
described with the SYNCHRONIZED clause, which aligns them on 2-byte
boundaries).

PORT also allows the CALL statement in a program running in the CRE to behave
as it does in X/Open and XPG4; that is, to call non-COBOL routines, pass
parameters by value, and return the values of functions.

1

• Allows CALL to call programs other than COBOL programs

• Prevents the compiler from issuing a warning when the Linkage Section
does not having a matching item in the PROCEDURE DIVISION header

• Causes the external variable RETURN-CODE to be automatically defined

2

prevents binary items from being aligned on word boundaries.

3

does what both PORT 1 and PORT 2 do. PORT 3 is equivalent to PORT.

NOPORT

aligns BINARY/COMPUTATIONAL data items according to standard alignment
rules and prevents the CALL statement in a program running in the CRE from
calling non-COBOL routines, passing parameters by value, and returning the
values of functions.

PORT

NOPORT

1

2

3

VST600.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-104

Program Compilation PORT and NOPORT
Usage Considerations:

• NATIVE-n Data Items and Pointers

The PORT directive does not affect the alignment of NATIVE-n data items or
pointers.

• Run-Time Performance

The PORT directive can severely impact n HP COBOL program’s run-time
performance.

• Passing Parameters to Programs Not Compiled With PORT

If a program compiled with the PORT directive calls and passes parameters to a
program not compiled with the PORT directive (or compiled with the NOPORT
directive), serious problems can arise from differences in the way
BINARY/COMPUTATIONAL data items are aligned in the two programs.

Default: NOPORT

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: None
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-105

Program Compilation RESETTOG
RESETTOG
RESETTOG turns off all specified toggles, which are used by the IF directive.

toggle-number-list

toggle-number

is an integer in the range 1 through 15. If toggle-number is omitted, all
toggles are turned off.

Default: None

Placement: Must be either on a directive line of its own or be the last of a sequence
of directives

Scope: Applies until SETTOG overrides it

Dependencies: SETTOG overrides it.

References: SETTOG

RESETTOG

toggle-number-list

VST298.vsd

toggle-number

, toggle-number

VST299.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-106

Program Compilation RUNNABLE
RUNNABLE

RUNNABLE causes the NMCOBOL compiler to use the linker to produce a loadfile if
there are no compilation errors.

If you run the NMCOBOL compiler without the directive RUNNABLE or SYNTAX and
no compilation errors occur, you can produce a loadfile by running the nld utility
separately (see the nld Manual). If you do so, you must specify that the COBOL85
shared run-time library (ZCOBSRL) and CRE shared run-time library (ZCRESRL)
reside on the subvolume $SYSTEM.SYSnn.

If you run the NMCOBOL compiler with the CALL-SHARED or SHARED directive, and
without the directive RUNNABLE or SYNTAX, and no compilation errors occur, you can
produce a loadfile by running the ld utility separately (see the ld Manual).

Note. The COBOL85 compiler does not recognize this directive.

Default: The NMCOBOL compiler does not use the linker to produce a loadfile if
there are no compilation errors.

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: SYNTAX overrides RUNNABLE.

You must specify RUNNABLE to use RUNNAMED, SAVEABEND,
NOSAVEABEND, or SUBTYPE in the NMCOBOL compiler.

Without CALL-SHARED or SHARED, RUNNABLE uses the linker to
produce a non-PIC loadfile.

With CALL-SHARED, RUNNABLE uses the linker to produce a PIC
loadfile.

With SHARED, RUNNABLE uses the linker to produce a PIC library file
(DLL).

References: • SYNTAX

• RUNNAMED

• SAVEABEND and NOSAVEABEND

• SUBTYPE

• CALL-SHARED

• SHARED

RUNNABLE

VST729.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-107

Program Compilation RUNNAMED
RUNNAMED
RUNNAMED specifies that the run unit is to be run as a named process.

If your program is not compiled with the RUNNAMED directive and you run the
program with the command

RUN ru

the process has no process name. If your program is compiled with the RUNNAMED
directive or you run the program with the command

RUN ru/NAME/

the operating environment gives it a timestamp name. The RUNNAMED directive
causes the operating environment to give the process a timestamp name without your
having to include “/NAME/” in the RUN command.

Naming the process allows any requester that uses this run unit as a server to use the
old method of process handling. The old method of process handling does not work for
processes that run with a high PIN.

You can specify RUNNAMED for any run unit, regardless of its environment. It need
not run in the CRE.

Default: None

Placement: Any of:

• Anywhere in a source program
• In a stand-alone Binder session
• In a linker session (specify -change)

Scope: Applies to the program in which or before which it appears, to all
subsequent programs in the compilation unit, and to all target files

Dependencies: For the NMCOBOL compiler, RUNNAMED is appropriate only if the
program was compiled with RUNNABLE (because a linkfile is not a run
unit).

References: RUNNABLE

RUNNAMED

VST300.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-108

Program Compilation SAVE
SAVE

SAVE directive specifies which initialization messages are stored for possible program
manipulation.

save-option-list

save-option-list cannot be continued onto subsequent lines, even if it is
enclosed in parentheses.

save-option

PARAM

specifies that the PARAM message is to be saved.

STARTUP

specifies that the startup message is to be saved.

ASSIGNS

specifies that all ASSIGN messages are to be saved.

Note. Do not use this directive in the OSS environment.

SAVE save-option-list

()save-option-list

VST301.vsd

save-option

, save-option

VST302.vsd

PARAM

count

STARTUP

ASSIGNS

ALL

VST303.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-109

Program Compilation SAVE
count

is an unsigned integer in the range 1 through 100, an estimate of the
number of messages to be saved. The default is 19.

The compiler uses count to estimate process data-space requirements
for the saved ASSIGN messages. In the non-CRE environment, the saved
ASSIGN messages are in the data block #HIGHBUF. (See Code and Data
Blocks). In the CRE, the saved ASSIGN messages are in the data block
#CRE_HEAP. If there is not enough space for all the ASSIGN messages
held by the command interpreter, the program terminates with a run-time
error message.

ALL

specifies that all messages are to be saved.

Whenever an HP COBOL program begins execution, its creator sends it a series of
initialization messages:

• A startup message (always)
• One PARAM message (if any parameters are active)
• An ASSIGN message for each assignment active

In the non-CRE environment, space is reserved for 19 ASSIGN messages. If your
program will have more than 19 assignments active at one time, include a MEM option
in the RUN or RUND Command. Allow approximately one page of memory for every
19 ASSIGN messages.

You cannot directly manipulate saved messages as COBOL data items, but you can
use utility routines to retrieve and modify their contents (see Saved Message Utility
(SMU) Overview).

All combinations of SAVE options are legal, as are multiple SAVE directives.
Redundant options are ignored, except that the last-seen count overrides any previous
ones. The directive

SAVE ALL 17, ASSIGNS 10

is equivalent to

SAVE ALL, ASSIGNS 10

Default: The compiler does not save initialization messages.

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: None
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-110

Program Compilation SAVEABEND and NOSAVEABEND
SAVEABEND and NOSAVEABEND

SAVEABEND

generates a saveabend file if the process terminates abnormally. Sets the Inspect
attribute.

NOSAVEABEND

does not generate a saveabend file if the process terminates abnormally.

Default: NOSAVEABEND

Placement: Anywhere

Scope: The last SAVEABEND or NOSAVEABEND in the compilation unit
applies to the entire compilation unit.

Dependencies: SAVEABEND and NOINSPECT override each other (whichever is last is
active).

For the NMCOBOL compiler, SAVEABEND and NOSAVEABEND are
appropriate only if the program was compiled with RUNNABLE.

References: • INSPECT and NOINSPECT

• RUNNABLE

SAVEABEND

NOSAVEABEND

VST304.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-111

Program Compilation SEARCH and NOSEARCH
SEARCH and NOSEARCH

SEARCH

adds the files that object-name-list specifies to the primary search list. (See
Primary Search List.)

NOSEARCH

clears the primary search list for the COBOL85 compiler, but is ignored by the
NMCOBOL compiler.

object-name-list

can be continued onto subsequent lines, but the left parenthesis must appear on
the same directive line as the keyword SEARCH. Each continuation line for a
SEARCH directive must have a question-mark (?) in the indicator area. If a
SEARCH directive spans multiple lines, they must be consecutive (no blank lines,
comment lines, or program text lines can intervene).

Note. The NMCOBOL compiler ignores the NOSEARCH directive and issues a warning.

SEARCH object-name-list

NOSEARCH

()object-name-list

VST305.vsd

object-name

, object-name

VST306.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-112

Program Compilation SEARCH and NOSEARCH
object-name

is a name that designates an TNS/R object file—either a file-system file name
or (in the Guardian environment) a DEFINE name. In the OSS environment,
object-name must be an OSS pathname. If the file-system file name is not
fully qualified with system, volume, and subvolume names, the compiler uses
the current default system, volume, and subvolume names or those specified
by an =_OBJECT_SEARCH DEFINE (see =_OBJECT_SEARCH).

For the COBOL85 compiler, BINSERV binds only the object code for programs
that the program it is compiling actually calls, not necessarily the entire file
designated by object-name. For the NMCOBOL compiler, the linker links the
entire file designated by object-name.

For the NMCOBOL compiler, object-name must designate either a linkfile or
an archive file.

When an archive file is searched, the entire archive file is generally not linked
into the target object file. Only those member files are linked that contain
procedures named in CALL or ENTER statements in the COBOL program
being compiled. Whenever a procedure is needed from a member file, the
entire member file is linked.

If a native HP COBOL program references the object in a CALL or ENTER
statement, the object must have been compiled with symbols.

If more than one SEARCH directive appears, the file names are appended to the list in
the order read.

Default: NOSEARCH

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: None

References: • RUNNABLE

• CONSULT and NOCONSULT
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-113

Program Compilation SECTION
SECTION
SECTION identifies a section of text to be copied from either a COPY library by a
COPY statement or from a source library by a SOURCE directive.

text-name

is a COBOL word (see COBOL Words).

TANDEM

specifies that subsequent source text is in Tandem reference format, which is
described in Reference Format for Source Program Lines.

ANSI

specifies that subsequent source text is in ANSI reference format, which is
described in Section 16, ANSI Reference Format.

If you do not specify TANDEM or ANSI in the SECTION directive, the compiler
assumes that the format of the library text is the same as the current source-text
format. Although you can override this by inserting a compiler directive as the first line
following the SECTION directive, the input format control directive (ANSI or TANDEM)
of the SECTION directive is usually more convenient for this purpose. In either case,
selecting Tandem or ANSI format as an option has an effect only for the duration of the
fetching of that portion of library text. Upon completion of the fetching operation, the
compiler reverts to the previous format. (See COPY Statement and SOURCE).

If two or more SECTION directives in a text library contain the same text-name, the
text following the first one in the library (the one on the edit line that has the lowest line
number) is the text fetched by a COPY statement or SOURCE directive.

If any SECTION directive in a text library contains a text-name that is not a legal
COBOL word, the first time the compiler attempts to fetch any member from the library,
the compiler reports an error, even if the offending text-name is not the one sought.

Default: None

Placement: Must be on a directive line of its own. If it appears in the text of the
compilation source file (the IN file), it is ignored.

Scope: Applies only to the section of text that it specifies

Dependencies: None

SECTION text-name

TANDEM

ANSI

,

VST307.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-114

Program Compilation SETTOG
SETTOG
SETTOG turns on all specified toggles, which the IF directive uses.

toggle-number-list

If toggle-number-list is omitted, all toggles are turned on.

toggle-number

is an integer in the range 1 through 15.

SETTOG or RESETTOG on the command line does not override any such directives
within the source stream. Command line directives are the exact equivalent of a
directive in the source stream immediately before the first line of the source.

Default: None

Placement: Must either be on a directive line of its own or be the last of a sequence
of directives.

Scope: Applies until RESETTOG overrides it

Dependencies: None

References: RESETTOG

SETTOG

toggle-number-list

VST308.vsd

toggle-number

, toggle-number

VST299.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-115

Program Compilation SHARED
SHARED

SHARED

generates shared code (PIC) for a DLL.

CALL-SHARED

generates shared code (PIC).

NON-SHARED

generates nonshared code (non-PIC).

Note. The COBOL85 compiler does not recognize this directive.

Note. You cannot link PIC and non-PIC object files into a single object file.

Default: NON-SHARED

Placement: Anywhere

Scope: The last SHARED, CALL-SHARED, or NON-SHARED in the compilation
unit applies to the entire compilation unit.

Dependencies: • If RUNNABLE is active, SHARED uses the linker to create a PIC
library file (DLL); otherwise, SHARED creates a PIC linkfile.

• Do not use with CALL-SHARED, NON-SHARED, or UL.

References: • CALL-SHARED

• NON-SHARED

• RUNNABLE

• UL

CALL-SHARED

NON-SHARED

VST804.vsd

SHARED
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-116

Program Compilation SHOWCOPY and NOSHOWCOPY
If you put an HP COBOL program in a DLL, you must export the program name when
you build the DLL; otherwise, other programs cannot call the HP COBOL program. To
export the HP COBOL program name, use one of these ld commands:

SHOWCOPY and NOSHOWCOPY

SHOWCOPY

displays COPY statements as comments in the listing before the copied text.

NOSHOWCOPY

suppresses the display of COPY statements.

Environment ld Commands

Guardian ld (-export program-name)
or
ld (-export_all)

OSS or PC -Wld="-export program-name "
or
-Wld="-export_all"

Default: SHOWCOPY

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: SHOWCOPY works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

SHOWCOPY

NOSHOWCOPY

VST310.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-117

Program Compilation SHOWFILE and NOSHOWFILE
SHOWFILE and NOSHOWFILE

SHOWFILE

displays the identity of the file from which source text is being read under the
control of the SOURCE directive.

NOSHOWFILE

suppresses the display of the identity of the file from which source text is being
read under the control of the SOURCE directive.

SHOWFILE applies only to source file transitions due to the effect of SOURCE
directives. The compiler does not generate lines to report transitions caused by COPY
statements.

Whenever the compiler begins reading a different source file in response to a
SOURCE directive and whenever it resumes reading from the prior source file after a
SOURCE directive’s effect terminates, it inserts a line of this format into the listing:

n

is the file ordinal assigned by the compiler to the source file. Every time the
compiler encounters a SOURCE directive, it increments the value of n by 1.

file-name

is the fully qualified source file name.

yyyy-mm-dd

is the date when the source file was last modified.

hh:mm:ss

is the time when the source file was last modified.

Default: NOSHOWFILE

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: None

Source file: [n] file-name yyyy-mm-dd hh:mm:ss

SHOWFILE

NOSHOWFILE

VST311.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-118

Program Compilation SOURCE
SOURCE
SOURCE causes the compiler to begin accepting source text from a different EDIT file.
The compiler can read either the entire file or one or more sections of the file
(demarcated by SECTION directives). You can also use the predefined SEARCH
DEFINEs to specify one or more subvolumes to be searched for unqualified files (see
Predefined SEARCH DEFINEs).

edit-file-name

is a file-system file name that identifies an accessible EDIT file. If any of the
system, volume, or subvolume components are omitted, the compiler supplies the
missing ones from its process defaults. edit-file-name can be the name of a
DEFINE of the class MAP.

section-name-list

section-name-list can be continued onto subsequent lines, provided that the
edit-file-name and the left parenthesis appear on the same directive line as
the keyword SOURCE. Each continuation line for a SOURCE directive must have
a question-mark (?) in the indicator area. If a SOURCE directive spans multiple
lines, they must be consecutive (no blank lines, comment lines, or program text
lines can intervene).

The default for section-name-list is the entire file.

section-name

is the name of a section in an EDIT file (a text-name in the directive
SECTION).

Default: None

Placement: Must be the last directive on its line.

Dependencies: None

SOURCE edit-file-name

()section-name-list

VST312.vsd

,

section-name

section-name

VST313.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-119

Program Compilation SOURCE
When the compiler encounters a SOURCE directive, it suspends reading of the current
source file and begins reading lines from the specified file. If no section-name list
appears, the compiler incorporates the entire file into its stream of source text lines. If a
section-name list does appear, the compiler incorporates text from the designated
sections only, in the order in which the sections appear within the specified file (not in
the order of the list). When the compiler reaches the end of the file specified in the
SOURCE directive, or has copied all specified sections, it resumes reading from the
prior source file.

Usage Considerations:

• Effect on Compilation Output Listing

If a SHOWFILE directive is active, when the compilation encounters an input line
containing a SOURCE directive, (assuming that the LIST and NOSUPPRESS
directives are active) the compiler lists the directive line, then a line showing the
fully qualified name of the new source file and the date and time it was last
modified.

When no SHOWFILE directive is active (the default condition), the directive line
containing the SOURCE directive appears in the output, but the additional line
does not.

The text from the section summoned by the SOURCE directive is listed, subject
only to the LIST and SUPPRESS directives.

• Nesting of SOURCE Directives

The text introduced by a SOURCE directive can include one or more SOURCE
directives. The compiler processes nested SOURCE directives when it encounters
them. The maximum nesting depth is three; that is, at most three source files can
be open at any given time as a consequence of SOURCE directives (source files
open in response to COPY statements are not counted in this respect).

• Relationship Between SOURCE Directive and COPY Statement

The effect of the SOURCE directive is neither a subset nor a superset of the effect
of the COPY statement; they are completely independent.

The SOURCE directive does not provide a REPLACING capability.

The text that a COPY statement delivers can include one or more SOURCE
directives. The text that a SOURCE directive delivers can include one or more
COPY statements. A COPY statement is not permitted to deliver a SOURCE
directive that delivers another COPY statement, because this would create the
effect of nested COPY statements.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-120

Program Compilation SOURCE
A SOURCE directive cannot appear anywhere in the text of a COPY statement
(between the word COPY and its terminating period in the input stream) or a
REPLACE statement (between the word REPLACE and its terminating period in
the input stream); however, the compiler detects and reports its appearance within
pseudo-text only if that pseudo-text is introduced into the source as the result of
expanding the COPY statement or by the editing effects of the REPLACE
statement.

• SOURCE Directive Behavior in IF/IFNOT/ENDIF Sequences

The compiler ignores a SOURCE directive specified within conditional text (within
the scope of an IF or IFNOT directive) if the controlling condition is false.

• Interaction of SOURCE and COLUMNS Directives

When a COLUMNS directive applies to the line or lines containing a SOURCE
directive, the same logical line length attribute is the default for the lines introduced
in response to that directive; however, a COLUMNS directive appearing within the
designated file overrides the default. In this circumstance, the compiler honors the
“inner” logical line length for the remainder of the text imported by the SOURCE
directive, after which the “outer” logical line length becomes active again.

• Effect of ANSI and TANDEM Format Specifying Directives

The source text format (ANSI or Tandem) which applies to the line or lines
containing a SOURCE directive is the default for the lines introduced in response
to that directive; however, ANSI or TANDEM directives appearing within lines read
from the file (or ANSI or TANDEM options specified in SECTION directives) take
effect when encountered. These then apply to subsequent lines until they are
overridden, the end of the source file is reached, or the end of a selected section is
reached (which causes the compiler to revert to the default source format before it
resumes reading the next selected section). In all cases the “outer” source format
attribute becomes active again after processing of the SOURCE directive
completes.

• Diagnostic Messages and SOURCE Directives

If the compiler cannot at least minimally process a SOURCE directive (because the
edit-file-name specified is invalid, or the file cannot be accessed, or the file is not
an EDIT file, and so forth), the compilation terminates.

If the compiler is unable to access a section specified in the SOURCE directive
(because the section-name is invalid or the section is not in the file) the compiler
issues a diagnostic message, but does not terminate the compilation.

• Format of a Source Library

A source library has the same format as a COPY library; in fact, the only difference
between a source library and a COPY library is context—a source library is
referenced by a SOURCE directive and a COPY library is referenced by a COPY
statement. For the syntax of a source library, see Library Format.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-121

Program Compilation SQL and NOSQL
During program compilation, the compiler identifies a section by locating the
SECTION directive whose text-name matches the section-name specified in
the SOURCE directive.

SQL and NOSQL

SQL

tells the compiler to expect SQL/MP statements in the compilation unit.

NOSQL

tells the COBOL85 compiler not to expect SQL/MP statements in the compilation
unit. This is the default. The NMCOBOL compiler ignores it.

sql-option-list

tells the compiler how much memory to allocate to the SQL/MP compiler interface
and what SQL/MP information to print to the listing file.

sql-option

Note. The NMCOBOL compiler ignores the NOSQL directive and issues a warning.

SQL

sql-option-list

NOSQL

()sql-option-list

VST315.vsd

sql-option

, sql-option

VST316.vsd

RELEASE1

PAGES

SQLMAP

WHENEVERLIST

num-pages

RELEASE2

VST317.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-122

Program Compilation SQL and NOSQL
RELEASE1

is for the COBOL85 compiler only, and causes it to accept only SQL/MP
Release1 features; however, the resulting object file can be executed with
SQL/MP Release 1, Release 2, or 300 (or later)..

RELEASE2

causes the compiler to accept only SQL/MP Release 2 features; however,
the resulting object file can be executed with SQL/MP Release 2 or 300 (or
later).

If you do not specify RELEASE1 or RELEASE2, the COBOL85 compiler
selects SQL/MP Release 2 and the NMCOBOL selects the latest SQL/MP
product version (300 or later).

PAGES

allocates num-pages of memory to the SQL compiler interface for
processing SQL/MP statements. Each page is 2048 bytes.

num-pages

has a minimum (and default) value of 560 and the maximum value of 1000.
If you allocate too few pages, an error results.

SQLMAP

includes information about SQL/MP statements in the listing file so that
they can be matched with MEASURE output. MEASURE output identifies
each SQL/MP statement by its Run-Time Data Unit (RTDU) name and SLT
index. An RTDU is an internal SQL/MP data structure residing in the code
file. An SLT index maps a single SQL/MP statement to a table in the
RTDU. By default, the SQLMAP option is off.

WHENEVERLIST

lists the WHENEVER options that are active for each embedded SQL/MP
statement printed to the listing file. WHENEVER options are a feature of
SQL/MP. For information on them, see the SQL/MP Reference Manual or
the SQL/MX Programming Manual for C and COBOL. By default, the
WHENEVERLIST option is off.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-123

Program Compilation SQLMEM
SQLMEM

USER

declares SQL/MP data structures in the Working-Storage Section (user data
segment). This option is not recommended, because SQL/MP data structures can
exhaust the Working-Storage Section.

EXT

declares SQL/MP data structures in the Extended-Storage Section (extended data
segment), which is created for every HP COBOL program at run time whether it
declares one or not. This option is recommended.

Default: None. If the program contains SQL/MP statements, the SQL directive is
required; otherwise, it is unnecessary.

Placement: The COBOL85 compiler accepts SQL and NOSQL in either the source
code (before the first Identification Division in the program) or the
compiler command line; the NMCOBOL compiler accepts them only in
the compiler command line.

Scope: Applies to the compilation unit

Dependencies: SQL works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

Note. The NMCOBOL compiler ignores this directive and issues a warning. The concept of
extended memory does not exist for TNS/R processes.

Default: SQLMEM EXT

Placement: The first SQLMEM in a program must be preceded by SQL. Subsequent
SQLMEMs can appear anywhere in the program.

Scope: Applies to all SQL/MP statements between it and the next SQLMEM

Dependencies: SQLMEM is allowed only in programs that also contain SQL.

References: SQL and NOSQL

SQLMEM USER

EXT

VST318.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-124

Program Compilation SUBSET
SUBSET
SUBSET causes the compiler to report in the output listing any source statement that
contains syntax that is obsolete or does not conform to the restrictions of a specified
subset.

parameter-list

You cannot continue parameter-list onto subsequent lines, even if you
enclose it in parentheses.

parameter

HIGH

reports syntax not defined in the High subset of ISO/ANSI COBOL (NUC 2,
SEQ 2, REL 2, INX 2, IPC 2, STM 2), with respect to the required
functional modules.

EXTENDED

accepts all defined syntax without comment (HP extensions plus those of
HIGH), with respect to the required functional modules.

SUBSET parameter-list

()parameter-list

VST319.vsd

parameter

, parameter

VST320.vsd

HIGH

EXTENDED

DEB1

SEG1

SEG2

OBSOLETE

VST321.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-125

Program Compilation SUBSET
DEB1

accepts all syntax defined in level 1 of the Debug module without
comment.

If DEB1 is not specified, the compiler reports syntax defined in level 1 of
the Debug functional module (DEB 1).

Syntax defined in level 2 of the Debug module causes the compiler to
report an error, because HP COBOL does not support level 2 of this
module.

SEG1

accepts all syntax defined in level 1 of the Segmentation module (SEG 1)
without comment, but reports syntax defined in level 2 (SEG 2).

If SEG1 is not specified, the compiler reports syntax defined in the
Segmentation functional module.

Although HP COBOL does not support the Segmentation functional
module, syntax that has no semantic effect is not diagnosed. This behavior
simplifies the conversion of existing programs to HP COBOL.

SEG2

accepts all syntax defined in the Segmentation module without comment.

If SEG2 is not specified, the compiler reports syntax defined in level 2 of
the Segmentation functional module.

OBSOLETE

accepts all obsolete syntax without comment unless it fails to conform to
the specified subset; in that case, the compiler reports nonconformance
rather than obsolescence.

If OBSOLETE is not specified, the compiler reports syntax classified as
obsolete, regardless of whether it conforms to the specified subset in other
respects.

The specified parameters can appear in any order. If two or more parameters
are mutually incompatible, the last one overrides the others (redundancy is
permitted). If neither HIGH nor EXTENDED is specified, EXTENDED is
assumed by default.

Default: None

Placement: Must appear before the first COBOL source program (that is, before the
first Identification Division header).

Scope: The last valid SUBSET in the program applies.

Dependencies: None
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-126

Program Compilation SUBSET
Usage Considerations:

• Invalid SUBSET Directives

If a SUBSET directive appears in an invalid context, the compiler issues an
appropriate message and, after analyzing the directive, ignores it and cancels the
effect of any previously accepted SUBSET directive (since an error has occurred).

Upon the occurrence of any error, the compiler cancels any active SUBSET
directive and discards any messages not yet issued.

• Messages

After the compiler has processed a separately compiled program that contains
unauthorized syntax (but no actual errors), it displays the message

*** The preceding program does not conform to the specified subset ***

and then describes each nonconforming element.

Each reported instance of nonconformance or obsolescence identifies the context
of the syntax, describes its location in the source text, and characterizes the syntax
as “obsolete” or “nonconforming.” If an instance is both obsolete and
nonconforming, only “obsolete” is reported. A message has either of these forms:

context

is a header (such as “Data Division header”), statement (such as “ADD
statement”), clause (such as “LINAGE clause”), or the general phrase “Source
text.”

nnnnn

is a five-digit line number.

xx

is a two-digit column number.

level

is HIGH, EXTENDED, DEB1, SEG1, or SEG2, as appropriate.

Syntax on line nnnnn at column xx is defined in level

includes the location phrases only if they differ from the information in the first line.

context on line nnnnn at
 column xx contains obsolete syntax
Syntax on line nnnnn at column xx is defined in level

context on line nnnnn at
 column xx contains nonconforming syntax
Syntax on line nnnnn at column xx is defined in level
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-127

Program Compilation SUBTYPE
The messages generated in accordance with the SUBSET directive are issued as a
block after each separately compiled program.

SUBTYPE

SUBTYPE causes the main program created by the current compilation to execute as
a process of a specified subtype.

subtype-number

is an integer in the range 0 through 63.

You can define the meaning and behavior of process subtypes 48 through 63.

HP defines the meaning and behavior of process subtypes 1 through 47 (see the
Guardian Programmer’s Guide).

The compiler installs the value of subtype-number in the object file header. When
the object file executes as a named process, it is assigned the process subtype
specified by the value of subtype-number. Any user can create a named process
that has a subtype in this range.

To report ... Use the directive ...

Obsolete syntax SUBSET EXTENDED, DEB1, SEG2

Syntax unlikely to be portable SUBSET HIGH, DEB1, SEG2, OBSOLETE

Note. Do not use this directive in the OSS environment.

Default: SUBTYPE 0

Placement: Anywhere

Scope: The last SUBTYPE in the program applies.

Dependencies: For the NMCOBOL compiler, SUBTYPE works only with RUNNABLE.

References: RUNNABLE

SUBTYPE subtype-number

VST323.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-128

Program Compilation SUPPRESS and NOSUPPRESS
SUPPRESS and NOSUPPRESS

SUPPRESS

overrides the LIST directive, suppressing all compiler listing output except the
compiler leader text, diagnostic messages, and the compiler trailer text.

NOSUPPRESS

overrides the SUPPRESS directive.

Default: NOSUPPRESS

Placement: Accepted anywhere, but to suppress the compiler listing without altering
the source text, put SUPPRESS on the command line

Scope: Applies until its opposite overrides it

Dependencies: SUPPRESS overrides LIST (and therefore, it also overrides CODE,
CROSSREF, ICODE, LMAP, MAP, SHOWCOPY, and SQL).

References: • LIST and NOLIST

• CODE and NOCODE

• CROSSREF and NOCROSSREF

• IICODE and NOICODE

• LMAP and NOLMAP

• MAP and NOMAP

• SHOWCOPY and NOSHOWCOPY

• SQL and NOSQL

SUPPRESS

NOSUPPRESS

VST324.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-129

Program Compilation SYMBOLS and NOSYMBOLS
SYMBOLS and NOSYMBOLS

SYMBOLS

includes a symbol table in the object file used by a symbolic debugger.

NOSYMBOLS

excludes the symbol table from the object file used by a symbolic debugger.

You can include or exclude the symbol table from the object file on a program-unit-by-
program-unit basis.

If the SYMBOLS directive is active, the compiler does not perform certain object code
optimizations, so the object program might execute slightly more slowly and be slightly
larger in size.

Default: NOSYMBOLS

Placement: Accepted anywhere, but to affect a program other than the first program
in a compilation unit, SYMBOLS must follow either an ENDUNIT
directive or an END PROGRAM statement, which signals the end of the
preceding program’s Procedure Division.

If you want a symbol table for a given separately compiled program, put
SYMBOLS before its Identification Division header. If the compiler
encounters a subsequent SYMBOLS or NOSYMBOLS directive within
the text of that separately compiled program, it issues a warning and
ignores that directive.

Scope: Applies until its opposite overrides it

Dependencies: SYMBOLS does not work when SYNTAX is active.

References: • ENDUNIT

• SYNTAX

SYMBOLS

NOSYMBOLS

VST325.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-130

Program Compilation SYNTAX
SYNTAX

SYNTAX

checks the syntax of the source text. No target file is produced.

COMPILE

compiles the program unit and included its code and data blocks in the target file
being created.

Default: COMPILE

Placement: Outside the boundaries of a separately compiled program; that is, not
between the Identification Division header of a separately compiled
program and its end, which is marked by one of:

• The corresponding END PROGRAM statement
• ENDUNIT
• The end of the source file

Scope: The last COMPILE or SYNTAX in the compilation unit applies to the
entire compilation unit.

Dependencies: SYNTAX overrides RUNNABLE.

References: • ENDUNIT

• RUNNABLE

SYNTAX

COMPILE

VST326.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-131

Program Compilation TANDEM
TANDEM

TANDEM

specifies that subsequent source text is in Tandem reference format, which is
described in Reference Format for Source Program Lines.

ANSI

specifies that subsequent source text is in ANSI reference format, which is
described in Section 16, ANSI Reference Format.

TRAP2 and NOTRAP2

TRAP2

specifies that the compiler expects the operating environment to trap arithmetic
overflow (trap 2). (By default, the COBOL85 compiler expects this and the
HP COBOL 74 compiler does not.)

Default: TANDEM

Placement: Anywhere

Scope: TANDEM or ANSI within a section of text obtained from a copy library or
source library is effective only for the length of that text section. When
the compiler reverts to the source file where it found the COPY verb or
SOURCE directive, the previously active reference format applies.

Dependencies: None

References: ANSI

Note. The NMCOBOL compiler, which has traps set by default, ignores these directives and
issues warnings.

Use the NOTRAP2 directive only during the process of conversion from COBOL 74 to
HP COBOL. It is provided to enable programs that do not include SIZE ERROR phrases to be
compiled and executed in HP COBOL without investing programmer time in analyzing the
potential for overflow problems. The availability of this directive might be discontinued.

TANDEM

ANSI

VST327.vsd

TRAP2

NOTRAP2

VST328.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-132

Program Compilation TRAP2 and NOTRAP2
NOTRAP2

specifies that the compiler does not expect the operating environment to trap
arithmetic overflow in the current program. If the current program was called from
an environment in which trapping was enabled, however, programs that the current
program calls will have trapping enabled (unless overridden by the NOTRAP2-74
directive).

In object code produced by the HP COBOL 74 compiler, if a size error condition occurs
in an arithmetic operation for which no SIZE ERROR phrase is present, the
computation produces an undefined result (unpredictable value).

In object code produced by the COBOL85 compiler, if a size error condition occurs in
an arithmetic operation that is not within a statement that has a SIZE ERROR phrase,
the program suspends execution with a trap 2 (arithmetic overflow) condition. In the
CRE, if the command PARAM INSPECT ON is active, the process enters the selected
debugger (see Debugger Selection); if PARAM INSPECT OFF is active, it does not. In
the non-CRE environment, the process enters the selected debugger unless the
program calls the COBOL85^ARMTRAP routine.

Trapping behavior is governed by the trap-enable bit in the environment register of
each process. The process uses this bit to direct the hardware whether or not to trap
arithmetic overflows. The initialization routines of HP COBOL (executed by the main
program when the process is starting up) request the trapping; those of a COBOL 74
main program suppress the trapping. When there are no TRAP2 or TRAP2-74
directives present, nothing in the generated code or the run-time routines changes the
trap-enable bit.

When an HP COBOL program is compiled with the NOTRAP2 directive active, the
compiler generates code at the beginning of each HP COBOL program (including
nested programs) to record the value of the trap-enable bit, and to clear that bit if it was
set. Furthermore, it localizes the trap suppression to just the current routine. Before
each CALL or ENTER that the program executes, if the recorded setting is “use
trapping,” the compiler generates code to set the bit before executing the call and to
clear the bit again when control returns to the current program.

Default: TRAP2

Placement: Anywhere

Scope: The last TRAP2 or NOTRAP2 before the END PROGRAM statement for
the outermost program applies to the entire separately compiled
program (the outermost program of a compilation and any programs
contained within it).

Dependencies: NOTRAP2-74 overrides TRAP2.

References: TRAP2-74 and NOTRAP2-74
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-133

Program Compilation TRAP2-74 and NOTRAP2-74
If you compile the main program with the COBOL85 compiler, and include the
NOTRAP2 directive, the compiler does not activate the arithmetic overflow trapping
mechanism. This then approximates the behavior of COBOL 74, although any
undefined results could have values that are different from those a COBOL 74 program
would produce.

An example of this behavior is a counter that the program increments by 1 until the
value of the counter exceeds its maximum value, and rolls over to zero.

TRAP2-74 and NOTRAP2-74

TRAP2-74

overrides the NOTRAP2-74 directive.

NOTRAP2-74

specifies that if the current HP COBOL program traps arithmetic overflow, then the
HP COBOL code must suspend arithmetic overflow trapping before calling a
COBOL 74 program and restore trapping upon return from the COBOL 74
program.

In object code produced by the HP COBOL 74 compiler, if a size error condition occurs
in an arithmetic computation for which no SIZE ERROR phrase is present, the
computation produces an undefined result (unpredictable value).

Note. The NMCOBOL compiler, which cannot call COBOL 74 programs, ignores these
directives and issues warnings.

Use the NOTRAP2-74 directive only during the process of conversion from COBOL 74 to
HP COBOL. It is provided to enable programs that do not include SIZE ERROR phrases to be
compiled and executed in HP COBOL without investing programmer time in analyzing the
potential for overflow problems. The availability of this directive might be discontinued.

Default: TRAP2-74

Placement: Anywhere

Scope: The last TRAP2-74 or NOTRAP2-74 before the END PROGRAM
statement for the outermost program applies to the entire separately
compiled program (the outermost program of a compilation and any
programs contained within it).

Dependencies: NOTRAP2-74 overrides TRAP2.

References: TRAP2 and NOTRAP2

TRAP2-74

NOTRAP2-74

VST329.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-134

Program Compilation UL
In object code produced by the COBOL85 compiler, if a size error condition occurs in
an arithmetic computation for which no SIZE ERROR phrase is present, the program
suspends execution and enters the selected debugger with a trap 2 (arithmetic
overflow) condition.

When a set of separately compiled COBOL programs constitute a run unit, if any of the
programs is the product of compilation by the COBOL85 compiler, the main program
must be a product of the COBOL85 compiler. Also, although an HP COBOL program
can call a COBOL 74 program, a COBOL 74 program cannot call an HP COBOL
program. During conversion from COBOL 74 to HP COBOL, it can occur that the main
program has been converted to HP COBOL, but some of the subprograms are in
COBOL 74. When that is the case, if an arithmetic overflow occurs in the COBOL 74
code, the program drops into the debugger. If the program is working correctly, this is
obviously an awkward situation.

If you compile the main program with the COBOL85 compiler, and include the
NOTRAP2 directive, the compiler does not activate the arithmetic overflow trapping
mechanism. This then approximates the behavior of COBOL 74, although the
undefined result might have a different value.

If you want the HP COBOL program to have overflow trapping, but you want the
COBOL 74 programs it calls not to have the trapping, include the NOTRAP2-74
directive in the COBOL85 compilation.

UL

UL directive tells the NMCOBOL compiler that the resulting object code will be in a
native library. The NMCOBOL compiler does not put any data in the small data area,
and it tells the linker to export the entry point names of all separately compiled
programs in the compilation unit.

Note. The COBOL85 compiler does not recognize this directive.

Default: None

Placement: Before the first IDENTIFICATION DIVISION header of the first program
in the compilation unit

Scope: Applies to the compilation unit

Dependencies: • If RUNNABLE is active, UL uses the linker to create a PIC library file
(DLL); otherwise, UL creates a PIC linkfile.

• Do not use with CALL-SHARED, NON-SHARED, or SHARED.

References: • CALL-SHARED

• SHARED

UL

VST735.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-135

Program Compilation WARN and NOWARN
For instructions on building and specifying native user libraries, see User Library.

WARN and NOWARN

WARN

reports compilation and Binder warnings in the listing.

NOWARN

suppresses compilation and Binder warnings in the listing.

Default: WARN

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: If LIST is not enabled, the last line of source text processed is also listed
to provide a point of reference for each warning message.

References: LIST and NOLIST

WARN

NOWARN

VST330.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
11-136

12 Program Execution
This section applies to the Guardian environment. If you are executing HP COBOL
programs in the OSS environment, see Running HP COBOL Programs.

Topics:

• TACL commands related to program execution:

° RUN or RUND Command

° ASSIGN Command

° PARAM Command

° CLEAR Command

° DEFINEs

• Initial State

• Status of Internal Entities During Program Execution

• Status of External Entities During Program Execution

• Called Program Termination

For detailed information about the TACL commands, see the TACL Reference Manual.
For more information about running COBOL programs in the Guardian environment,
see Section 25, Executing and Debugging HP COBOL Programs.

When a system executes a loadfile, the running program is called a process.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-1

Program Execution RUN or RUND Command
RUN or RUND Command
Both the RUN and RUND commands run a loadfile as a process. The RUND command
calls the selected debugger (see Debugger Selection)before beginning execution.

RUN

runs the program without the debugger.

RUND

runs the program with the debugger.

program-file

is the name of the loadfile to run. program-file can be represented as a file-
system file name or (in the Guardian environment) a DEFINE name.

run-option-list

run-option

is an option of the RUN command, described in the TACL Reference Manual.
For COBOL programs, two of the run options, IN and OUT, have special
significance:

/ run-option-list /

program-parameter-list

VST331.vsd

program-fileRUND

RUN

run-option

, run-option

VST332.vsd

IN

OUT

accept-device

display-device

VST333.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-2

Program Execution RUN or RUND Command
accept-device

has a value that designates a terminal or a process and can be a file-
system file name or (in the Guardian environment) a DEFINE name.
accept-device specifies the device from which an unqualified ACCEPT
statement retrieves input. If you omit this option, unqualified ACCEPT
statements retrieve input from the home terminal (unless PARAM
EXECUTION-LOG specifies a different device).

display-device

can be a file-system file name or (in the Guardian environment) a DEFINE
name. Its value designates a terminal, line printer, process, existing entry-
sequenced disk file, or operator console to which unqualified DISPLAY
statements are to deliver output. If you omit display-device, unqualified
DISPLAY statements deliver output to the home terminal (unless PARAM
EXECUTION-LOG specifies a different device).

program-parameter-list

program-parameter

is a parameter of the program that is to be run.

Usage Considerations:

• Effect of Commands on Run-Time Environment

Certain run-time commands establish an environment in which the running process
operates. For example, the ASSIGN command stores logical file assignments, the
PARAM command stores string values and associates them with parameter
names, the CLEAR command clears assignments and parameter values, and a
group of commands handle DEFINEs.

Example 12-1. RUN Commands

RUN PROG1
RUN RUNUNIT /IN $TERM1/
RUN MYPROG /OUT =CHECKS-PRINTER/

program-parameter

program-parameter

VST806.vsd

,

HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-3

Program Execution ASSIGN Command
When a process begins executing, it obtains the current ASSIGN and PARAM
values from the Guardian environment, and can act on the information they
contain. See ASSIGN Command and PARAM Command. For additional
information on TACL run-time commands, see the TACL Reference Manual or the
Guardian User’s Guide.

If no run-time commands are specified, the file-control entries in the program are
used to associate the COBOL file names with file-system file names, and all
external switches but one are set to OFF. The only exception is the NONSTOP
parameter, which defaults to ON if the program was compiled with the NONSTOP
directive in the Guardian environment.

• When Commands Take Effect

Commands take effect when encountered and can be overridden by subsequent
commands. Keywords, file names, and numbers cannot be continued from one line
to the next.

• COMMENT Run-Time Command

A COMMENT run-time command is available to include documentation in the
TACL command stream.

ASSIGN Command
This section applies to programs that were not compiled with the ENV LIBRARY or UL
directive. Programs compiled with the ENV LIBRARY or UL directive ignore ASSIGN
commands.

The ASSIGN command creates an ASSIGN message in your current run-time
environment. A process can use the information in an ASSIGN message to override
the file-system file name, or other attributes, of a file specified in the source program.
This command is fully discussed in the TACL Reference Manual.

When a process begins to execute, it can request its ASSIGN messages and use their
contents to modify the information it possesses about its files before opening them.
During the initialization of any process compiled from a COBOL source, the run-time
routines automatically handle any ASSIGN messages made available by the Guardian
environment.

Note. ASSIGN commands for files in a user library are ignored.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-4

Program Execution ASSIGN Command
This partial syntax diagram of the ASSIGN command describes features of greatest
interest to the COBOL programmer:

program-name

is the program-name in the PROGRAM-ID paragraph in the Identification
Division, for which the file assignment is to take effect. This is distinct from the
name of the loadfile. Do not specify program-name for an external file.

*

means that the file assignment applies to all programs in the loadfile. In the non-
CRE environment, you must specify * for an external file. In the CRE, you must not
specify * for an external file.

If neither program-name nor * is present, then cobol-file-name must be
unique among all programs in the loadfile.

cobol-file-name

is the COBOL file name in a SELECT clause, also called the fd-name.

system-file

ASSIGN

program-name

*

, system-file

, characteristic

.

cobol-file-name

VST334.vsd

name

#IN

#OUT

#TERM

#TEMP

$RECEIVE

VST335.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-5

Program Execution ASSIGN Command
name

is a spooler location or the name of a disk file, disk volume, tape device,
DEFINE, process, or terminal.

#IN
#OUT
#TERM
#TEMP
$RECEIVE

are explained in the usage considerations. They must be uppercase.

When only system-file is present, and all other clauses are omitted, the
current file for cobol-file-name is assigned.

characteristic

size-list

specifies the extent size for disk file creation. Extent sizes are specified as a
number of file pages to be allocated for one extent of the file. A file page is
2048 bytes of storage.

pri-extent-size

is an unsigned integer specifying the primary extent size. If EXT is omitted,
pri-extent-size defaults to 4.

EXT

CODE

REC

BLOCK

size-list

file-code

record-size

block-size

EXCLUSIVE

SHARED

PROTECTED

INPUT

OUTPUT

I-O

VST336.vsd

,

pri-extent-size(

sec-extent-size

pri-extent-size

)

VST337.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-6

Program Execution ASSIGN Command
sec-extent-size

is an unsigned integer specifying the secondary extent size. If EXT is
omitted, sec-extent-size defaults to 20. If sec-extent-size is
omitted, the secondary extent size defaults to the primary extent size.

file-code

is 101 (for an EDIT file) or an unsigned integer in the range 0 through 99 or in
the range 1000 through 32767, which specifies a file code for disk file creation.
If the CODE clause is omitted, a file-code of 0 is used.

EXCLUSIVE
SHARED
PROTECTED

specify an exclusion mode for disk file reading or writing. This can override an
implied exclusion mode, but not an explicit exclusion mode specification in the
OPEN statement.

I-O
INPUT
OUTPUT

specify an access mode for the disk file; however, the run-time routines ignore
the value. The COBOL OPEN statement controls the access mode entirely.

record-size

is an integer accepted by TACL as specifying record length, but the run-time
routines ignore the value. The record declaration in the COBOL program
controls the record size entirely.

block-size

is an integer accepted by TACL as specifying block size. In the non-CRE
environment, the run-time routines ignore the value and the BLOCK
CONTAINS clause in the COBOL program controls the block size entirely. In
the CRE, block-size determines the block size.

Usage Considerations:

• Places for ASSIGN Commands

You can give ASSIGN commands individually at the TACL prompt before you enter
the RUN command, or you can place the ASSIGN commands in an EDIT-format
file and use the OBEY command to execute all the commands in the file. You could
also include the RUN command in the OBEY command file.

Note. To see what ASSIGN commands are currently in force, enter just ASSIGN followed by a
carriage return.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-7

Program Execution ASSIGN Command
• Special COBOL Names for Operating System Files

See Operating system file names and Special names for operating system files.

• Interaction Between ASSIGN Command and OPEN Statement

The interaction between the exclusion-specification of the ASSIGN
command and the exclusion-mode of the OPEN statement is:

° If an exclusion-mode is given in the OPEN statement, that value is used
regardless of any ASSIGN command settings.

° If the OPEN statement has no exclusion-mode but the ASSIGN command
for the file does give an exclusion-specification, the ASSIGN
command value is used.

° If neither the exclusion-mode of the OPEN statement nor the exclusion-
specification of the ASSIGN command is present, the COBOL default
mode is active (see OPEN).

The temporary file in Example 12-3 is purged when it is closed.

Example 12-2. #TEMP

17>ASSIGN temp-file,#TEMP
18>RUN program
...
* File created on run-time default volume
OPEN I-O temp-file
...
* File purged
CLOSE temp-file
...
* New empty file created
OPEN I-O temp-file
...
* File automatically closed and purged
STOP RUN.
...

Example 12-3. ASSIGN Command With Special COBOL Names (page 1 of 2)

11>ASSIGN REPORT-OUT, $TERM4
12>RUN MYPROG

13>ASSIGN IN-MASTER,$DATA.ZZ.INFILE
14>RUN MYPROG1

15> == FD INPUT-FILE is the
16>ASSIGN INPUT-FILE, #IN == file named in the
17> == IN option.

18> == FD WORK-FILE is to be
19>ASSIGN WORK-FILE, #TEMP == a temporary disk file
20> == on the default volume.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-8

Program Execution PARAM Command
PARAM Command
The PARAM command creates a PARAM message in your current environment.

When a process compiled by the compiler begins to execute, the run-time routines
automatically request the PARAM message and use its contents to set the options
defined for HP COBOL. Application code within the program can also use the SMU
procedures to copy the PARAM message into the Working-Storage area and examine
it for additional parameters that apply to the program. Further, the program can
manipulate the saved parameters and cause them to be passed to any processes it
initiates using the CREATEPROCESS or CLU_PROCESS_CREATE_ routine.

21> == FD OUTPUT-FILE is the
22>ASSIGN OUTPUT-FILE, #OUT == file named in the
23> == OUT option.

24>ASSIGN RECEIVE-FILE, $RECEIVE

25> == Run the loadfile,
26> == designating NEWINP as
27> == the IN file (thus

28>RUN PROG3 /IN NEWINP,OUT NEWOUT/ == equating it with the
29> == fd-name INPUT-FILE)
30> == and NEWOUT as the OUT
31> == file (thus equating it
32> == with the fd-name
33> == OUTPUT-FILE).

Note. PARAM commands for files in a user library are ignored.

Example 12-3. ASSIGN Command With Special COBOL Names (page 2 of 2)

name-value-pair

PARAM

, name-value-pair

VST338.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-9

Program Execution PARAM Command
name-value-pair

is one of the name-value pairs recognized by the run-time routines, or a user-
defined parameter name and value:

SWITCH-nn

sets (ON) or clears (OFF) the specified switch. In the Guardian environment,
the value of nn can be a one-digit integer between 1 and 9 or a two-digit
integer between 01 and 15. In the OSS environment, the value of nn can be a
one-digit integer between 1 and 9 or a two-digit integer between 10 and 15.
(For an explanation of these switches, see SPECIAL-NAMES Paragraph. In
the absence of a PARAM SWITCH-nn ON command, SWITCH-nn is off.

DEBUG

is used only if the program was compiled with the DEBUGGING clause and
contains USE DEBUGGING sections. When set to ON, the program executes
debug code (declaratives). In the absence of a PARAM DEBUG ON command,
the debugging declaratives are not executed.

DEBUG

ON

system-file-name

NONSTOP

INSPECT

EXECUTION-LOG

PRINTER-CONTROL

OFF

define-name

*

cobol-file-name

parameter-name parameter-value

WAITED-IO

TAPE-DIALOGUE ON

OFF

SWITCH-nn

VST339.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-10

Program Execution PARAM Command
NONSTOP

controls whether or not a process runs as a process pair, provided that the
NONSTOP directive was included in the compilation of the program. For
information on using process pairs, see Section 32.

If the program was compiled with the NONSTOP directive, the process runs as
a process pair unless you use the PARAM NONSTOP OFF command.

If this switch is set OFF, no checkpointing or backup creation occurs, and
PROGRAM-STATUS is always set to “0000.”

INSPECT

determines what the run unit does after reporting fatal errors. If INSPECT is
OFF, the run unit calls ABEND. If INSPECT is ON, the run unit calls the
selected debugger (see Debugger Selection).

WAITED-IO

when set to ON, causes the HP COBOL program to do all its input-output in
wait mode (allowing you to use AWAITIO with -1). The program cannot execute
an OPEN statement that specifies TIME LIMITS or references $RECEIVE.
Attempts to do so cause the program to terminate abnormally with a run-time
error message.

EXECUTION-LOG

specifies the destination of messages issued by the HP COBOL run-time
library routines, which are:

• Diagnostic messages

• DISPLAY messages that do not specify a mnemonic-name when the
default OUT device is the home terminal

The default EXECUTION-LOG is the home terminal.

system-file-name

is the name of the file to which run-time messages are directed. It must be an
existing entry-sequenced (TYPE E) file (that is, a file-system file name). If
system-file-name does not begin with a dollar sign ($), backward slash (\),
or number sign (#), then it must be enclosed in quotation marks unless it forms
a COBOL word. For more information about operating system file names, see
the Guardian Procedure Calls Reference Manual.

define-name

is the name of a DEFINE associated with the file to which run-time messages
are directed. It is not enclosed in quotation marks.

Note. WAITED-IO works only in the non-CRE environment. The CRE ignores it.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-11

Program Execution PARAM Command
*

specifies that all run-time messages are to be discarded.

TAPE-DIALOGUE

applies only to the non-CRE environment, in which it sets (ON) or clears (OFF)
the tape dialogue. If the tape dialogue is cleared, the tape assigned in either
the SELECT clause, TACL ASSIGN directive, or DEFINE is assumed to be the
correct tape. No dialogue appears for any tape, whether or not NO REWIND is
specified; however, if a reel swap occurs, the tape dialog appears for that file
connector.

PRINTER-CONTROL

specifies that the operating environment must return control to the program
when the printer specified by the cobol-file-name is not ready or is out of
paper.

cobol-file-name

is the FD name of a file in a COBOL program (not the operating system file
name or a DEFINE name).

When the PRINTER-CONTROL parameter is absent, the HP COBOL run-time
routines provide automatic handling for printer fault conditions, without control
returning to the program until the printer is again made ready.

parameter-name

is a parameter to be handled through the SMU. For information on the SMU,
see Saved Message Utility (SMU) Overview.

parameter-value

is the value to be given to parameter-name.

Usage Considerations:

• WAITED-IO and HP COBOL Fast I-O

If a program for which WAITED-IO was specified attempts to open a file for
HP COBOL Fast I-O, sequential block buffering of buffered cache is used instead,
degrading performance by a factor of five to ten.

Note. To see what parameters are currently defined, enter just PARAM followed by a
carriage return.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-12

Program Execution PARAM Command
• EXECUTION-LOG Parameter

There are three circumstances in which a COBOL program can interact with the
home terminal without your explicitly instructing it to do so:

° A DISPLAY statement does not include an UPON phrase, so it defaults to the
OUT file, which itself is defaulted to the home terminal.

° An ACCEPT statement does not include a FROM phrase, so it defaults to the
IN file, which itself is defaulted to the home terminal.

° A run-time routine needs to report an error or to engage in dialog with the
system operator, and normally does so through the home terminal.

The EXECUTION-LOG parameter provides a means of redirecting such
unintentional input-output activity from the home terminal to another device, called
the execution log file.

In the CRE, the EXECUTION-LOG parameter can also redirect unintentional input-
output activity from #IN and #OUT to the execution log file.

In the absence of an EXECUTION-LOG parameter, the execution log file is the
home terminal.

If the EXECUTION-LOG parameter specifies asterisk (*), such output is discarded.
In this case, whenever the program attempts to engage the operator in dialog,
such as for:

° Tape mount
° Device not ready
° No write ring
° Printer is out of paper

The run-time routines return I-O status code “30” to the program. The special
register GUARDIAN-ERR then contains a code indicating what action is expected.

If a program has its EXECUTION-LOG parameter set to asterisk (*), and the
program attempts to execute an ACCEPT statement that defaults to the home
terminal, the run unit terminates abnormally.

If the EXECUTION-LOG parameter specifies a file name, the processing of the
designated file depends on the device-type assigned to the file:

Device Type

Exclusion

AccessIn CRE In Non-CRE Environment

0 (process) Exclusive Shared Read/write

1 (operator console) Shared Shared Write

3 (disk) Exclusive Shared (file must exist) Write

4 (magnetic tape) Exclusive Shared Write

5 (line printer) Exclusive Shared Write

6 (terminal) Shared Shared Read/write
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-13

Program Execution PARAM Command
The file is opened the first time the run unit attempts to write a message. This
means that it will not be opened at all for most jobs. If the open operation fails, no
messages can be written anywhere and run unit execution terminates abnormally.
Once opened, the file remains open for the duration of the run unit.

If any error occurs during a write or read operation on the execution log file, no
messages can report this problem and the run unit terminates abnormally.

If the access mode is read/write, the run-time routines use the WRITEREAD
system routine to send messages requiring a response and WRITE for messages
not requiring a response.

If the access mode is write, the run-time routines use a WRITE request for all
messages. Those requiring a response are assumed to have a response of end of
file.

If the device is a process, the process is responsible for analyzing the messages to
determine if an operator response is needed. If the process is also a COBOL run
unit, it can do this by using the MESSAGE-SOURCE option in its (the process’s)
RECEIVE-CONTROL paragraph to get the appropriate information to use in an
ENTER RECEIVEINFO call. If RECEIVEINFO returns a nonzero value for the
read-count, a reply is expected. In this case, the process can return an appropriate
string value (such as would be supplied by an operator) indicating what action to
take.

If a reply is null or the access mode of the execution log is write, the run-time
routines assume that no action is desired and, if the operation is a file processing
statement, return I-O Status 30 to the program (GUARDIAN-ERR contains the
code indicating what action is expected). If the operation is an ACCEPT statement,
the default values are returned to the receiving item. In the case of tape mount
messages, the run unit terminates abnormally.

• PRINTER-CONTROL Parameter

When an application program is writing to a printer, and the printer leaves the
ready state (perhaps it is out of paper or it is off line), the program does not
automatically regain control. The HP COBOL run-time library issues a message to
the home terminal to report the printer fault, and waits for the printer to be restored
to the ready state.

In certain circumstances, the application program needs to regain control and take
some action when an active printer leaves the ready state. For example, the
program might be printing checks and keeping record of the preprinted check
numbers issued to each payee. The program asks the operator for the first check
number in the sequence, then processes checks depending on the number to
increase by 1 each time. When the printer comes to the end of a box of check
forms (or suffers a paper jam and destroys some checks), the program needs to be
informed that a particular write operation was not completed routinely so that it can
ask the operator for the number of the next check it will be printing on.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-14

Program Execution PARAM Command
The PRINTER-CONTROL parameter provides a way for the program to respond to
printer faults. Suppose a PRINTER-CONTROL parameter specifies the file name
CHEX. This causes the run-time library to keep track of each elementary control
function or write request that it sends to the operating environment for the file
CHEX. If one of those operations fails because the printer to which CHEX is
assigned is not ready, the WRITE statement completes with I-O status code “30”
(permanent error condition) and a GUARDIAN-ERR value of 100 (not ready) or
102 (out of paper).

To make use of the PRINTER-CONTROL parameter, the application program must
use a declarative procedure, preferably one of the form

USE AFTER STANDARD ERROR PROCEDURE ON CHEX

that responds only to errors on the printer file.

The procedure receives control when the operating environment detects the printer
problem. The procedure determines that the printer’s I-O status code is “30” and
handles the GUARDIAN-ERR values of 100 and 102. It might notify the operator of
which problem has occurred.

Although the record area still contains the record that was being written, there is no
way for the procedure to determine whether or not the record actually has been
written to the printer. For example, if “WRITE a-rec BEFORE ADVANCING PAGE”
was specified, perhaps the printer was off line before the write operation began, or
perhaps the record was written but the printer reached the end of the paper before
it could position to the top of a new sheet.

There is, however, a way to assure that the record does get written only once and
that any related control operations occur only once. The program must reissue
exactly the same form of the WRITE statement (same record name, same
ADVANCING clause, and so on). The run-time library does not repeat any control
function or system write request that successfully completed the first time, and re-
issues the control function or system write request that caused the status to occur,
plus any subsequent operations that were not completed.

One easy way to use this mechanism is to have the declarative respond to the
combination of I-O status code “30” and GUARDIAN-ERR value of 100 or 102 by
moving a FALSE value to a condition variable (associated to the condition-name
PRINT-OK) and conducting the dialog with the operator, then instead of coding just
a WRITE statement, code the sequence:

PERFORM UNTIL PRINT-OK
 SET PRINT-OK TO TRUE
 WRITE CHEX BEFORE ADVANCING 10
END-PERFORM
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-15

Program Execution PARAM Command
• Additional Considerations

° A parameter value that contains any embedded commas or leading or trailing
spaces must be enclosed in quotation marks. Between the delimiting quotation
marks, two consecutive quotation marks ("") represent any one quotation mark
(") that is part of the value. The delimiting quotation marks are not stored.

° TACL provides internal storage for 1024 bytes of parameters. Each parameter
occupies a number of bytes equal to:

2 +
number-of-characters-in-parameter-name +
number-of-characters-in-parameter-value

° Multiple PARAM name and value pairs must be delimited by commas.

° The compiler makes use of certain parameters and their values in performing
the compilation (see PARAM Commands).

For more information on the PARAM command, see the TACL Reference Manual.

Example 12-4. PARAM Command

85> == Set the DEBUG switch, and set SWITCH-02
86> PARAM DEBUG ON, SWITCH-02 ON
87> == Set user parameter THEDATE
88> PARAM THEDATE 1991DEC02
89> == Route home terminal messages to a file

90> PARAM EXECUTION-LOG $ARK.GKH.D0289
91> == Return control when the file that "myprog"
92> == calls PRINT-FL leaves the ready state
93> PARAM PRINTER-CONTROL PRINT-FL
94> RUN myprog
...
99> CLEAR ALL PARAM
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-16

Program Execution CLEAR Command
CLEAR Command
Use the CLEAR command to revoke a specific ASSIGN or PARAM command, all of
the ASSIGN commands, all of the PARAM commands, or all of both commands.

ALL

means clear all currently active ASSIGN and PARAM references.

ALL ASSIGN

means clear all currently active ASSIGN references.

ALL PARAM

means clear all currently active PARAM references.

ASSIGN

means clear the reference to the specified COBOL file name.

CLEAR ALL

ASSIGN

PARAM

ASSIGN

PARAM

DEBUG

NONSTOP

parameter-name

EXECUTION-LOG

INSPECT

WAITED-IO

assignation

PRINTER-CONTROL

SWITCH-nn

VST340.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-17

Program Execution CLEAR Command
assignation

specifies what is to be cleared.

COBOL-file-name

is the COBOL name of a file.

program-name

is the name of the COBOL program that contains COBOL-file-name.

*

means all programs in the object file.

PARAM

means clear the reference to the specified parameter.

DEBUG
EXECUTION-LOG
INSPECT
NONSTOP
PRINTER-CONTROL
SWITCH-nn
WAITED-IO
parameter-name

are parameters of the PARAM command (see PARAM Command).

Example 12-5. CLEAR Command

43>CLEAR ALL { Clears all ASSIGN and PARAM values }
44>CLEAR ALL ASSIGN { Clears all ASSIGN values }
45>CLEAR ALL PARAM { Clears all PARAM values }
46>CLEAR ASSIGN in-file { Clears assignment for in-file only }
47>CLEAR PARAM DEBUG { Clears the DEBUG switch }

COBOL-file-name

program-name

*

.

VST638.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-18

Program Execution DEFINEs
DEFINEs
A DEFINE is a named set of attribute/value pairs. DEFINEs are similar to ASSIGN
messages, but more versatile. DEFINEs involve too many commands to be described
completely here.

Topics:

• DEFINE and ASSIGN

• Controlling the Propagation of DEFINEs

• DEFINE Names

• DEFINE Attributes

• ADD DEFINE Command

For more information on DEFINEs:

DEFINE and ASSIGN
Both DEFINEs and ASSIGN messages allow you to specify information about a file
before you start the process that uses that file.

Topics Sources

Full documentation TACL Reference Manual

Programmatic use Guardian Programmer’s Guide

Further information Guardian User’s Guide

Table 12-1. Differences Between DEFINE and ASSIGN

DEFINE ASSIGN

Processed by Operating environment HP COBOL program

Propagated to Any process that your HP COBOL
program creates, unless the new
process specifies DEFMODE OFF

Processes that your
HP COBOL program creates
and to which it explicitly
passes ASSIGNs

Accepted for
compiler input and
output files

Yes No for HP COBOL, HP C,
and HP C++; yes for
FORTRAN, Pascal, and TAL

Not accepted by FastSort SQL/MP or SQL/MX

Available from OSS
environment

Yes, but it can be used only to
access a Guardian disk file, tape
device, or spooler location

No
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-19

Program Execution Controlling the Propagation of DEFINEs
The statements of a COBOL program refer to files through a COBOL file name. The
ASSIGN clause in each file-control entry associates the COBOL file name with a
system-file-name, the name by which a file is known to the operating environment.
In the Guardian environment, the TACL command ASSIGN can override that
association and DEFINEs provide a different form of name redirection.

Suppose a program PROG1 includes a file-control entry for an fd-name of
MAJORACCT, and associates it with a system-file-name:

SELECT MAJORACCT
 ASSIGN TO "\AKRON.$SLB.MAJ.ACC"

If you execute PROG1, when it opens MAJORACCT, the file it actually opens is
\AKRON.$SLB.MAJ.ACC.

If, when you execute the program, you want to redirect the assignment to a different
file, you can issue a command interpreter ASSIGN command such as

ASSIGN PROG1.MAJORACCT,\NICE.$FRNC.SIGNIF.CUST

and then run PROG1. When the COBOL program opens MAJORACCT, it opens the
file \NICE.$FRNC.SIGNIF.CUST.

If, however, the program had associated MAJORACCT with a define-name with a file-
control entry of the form

SELECT MAJORACCT
 ASSIGN TO "=BIGGY"

then you would need to have a DEFINE named “=BIGGY” established at execution
time; otherwise, any OPEN statement would fail.

Controlling the Propagation of DEFINEs
You control whether or not the Guardian environment allows the creation and
processing of DEFINEs. Use the DEFMODE ON/OFF command to enable or disable
DEFINE creation and processing. Similarly, when one process starts another process,
the creator can specify a DEFMODE setting for the new process; if it does not specify
one, the new process inherits the DEFMODE setting of the creator.

DEFINE Names
Every DEFINE has a name. A name you give to a DEFINE must:

• Consist of at least 2 and no more than 24 characters

• Begin with an equals sign (=) followed by a letter

• Continue with any combination of letters, digits, hyphens (-), underscores (_), and
carets (^).

HP has reserved the set of DEFINE names beginning with equals sign followed by
underscore (_) for future use.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-20

Program Execution DEFINE Attributes
Uppercase and lowercase letters are equivalent in DEFINE names.

Wherever a DEFINE name can appear in the text of a COBOL source program, it must
appear in quotation marks. Wherever a DEFINE name appears in commands to the
command interpreter, such as on the command line that initiates a COBOL
compilation, the DEFINE name must appear without quotation marks.

DEFINE Attributes
The CLASS attribute determines which other attributes a DEFINE can have.

Example 12-6. DEFINE Names

=A
=The_chosen_file
=Long--but-not-too-long
=The-File-of-The-Week
=X_-^-_-_-^-_-_-^

Table 12-2. DEFINE Attributes (page 1 of 2)

CLASS Attribute Value

Other Attributes of DEFINE

Required Optional

CATALOG SUBVOL

DEFAULTS VOLUME SWAP

MAP (default) FILE

SEARCH SUBVOL n

SORT BLOCK
CPU
CPUS
MODE
NOTCPUS
PRI
PROGRAM
SCRATCH
SEGMENT
SUBSORTS
SWAP

* Required only if you specify the optional USE attribute with IN.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-21

Program Execution DEFINE Attributes
To create a DEFINE, you must:

1. Set the value of its CLASS attribute (use the SET DEFINE CLASS command in
your command interpreter)

2. Give values to its other attributes

For details, see the TACL Reference Manual.

SPOOL LOC BATCHID
BATCHNAME
COPIES
FORM
HOLDAFTER
MAXPRINTLINES
MAXPRINTPAGES
OWNER
PAGESIZE
REPORT
SELPRI

SUBSORT SCRATCH BLOCK
CPU
PRI
PROGRAM
SEGMENT
SWAP

TAPE VOLUME* BLOCKLEN
DENSITY, DEVICE
EBCDIC, EXPIRATION
FILEID, FILESECT, FILESEQ
GEN
LABELS
OWNER
MOUNTMSG
RECFORM, RECLEN
REELS, RETENTION
SYSTEM
TAPEMODE

USE

VERSION

Table 12-2. DEFINE Attributes (page 2 of 2)

CLASS Attribute Value

Other Attributes of DEFINE

Required Optional

* Required only if you specify the optional USE attribute with IN.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-22

Program Execution ADD DEFINE Command
Usage Considerations:

• TAPE DEFINE Provides the Only Way to Use Labeled Tapes

For details, see Section 25, Executing and Debugging HP COBOL Programs, and
the Guardian User’s Guide.

• You Can Use SPOOL DEFINES instead of COBOLSPOOLOPEN

• Special DEFAULTS DEFINE: =_DEFAULTS DEFINE

Processes can use the =_DEFAULTS DEFINE without referring to it explicitly. The
file system uses this DEFINE whenever it needs the values stored in the DEFINE’s
attributes. You cannot delete the =_DEFAULTS DEFINE or change its name.

ADD DEFINE Command
Your COBOL program can, in the ASSIGN clause of a file-control entry, associate a
DEFINE name with a COBOL file name, just as it would associate a file-system file
name with a COBOL file name. When the process compiled from that source attempts
to open that file, the file system looks for the stored set of attribute/value pairs and
uses them to complete the specification of the file before making it available to the
process. If it cannot make a file available (based on what it finds, or fails to find), the
open operation fails.

To create and name a DEFINE, you use the ADD DEFINE command. Suppose that
your current CLASS attribute has the value MAP. If your COBOL program includes this
file-control entry:

SELECT MARKET-ANALYSIS
 ASSIGN TO "=MARKT"
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS PRODUCT-CODE
 FILE STATUS IS M-STAT.

Before executing your program, you must issue a command of this form:

>ADD DEFINE =MARKT, FILE \MAG.$EAST.APRIL.SALES

to associate the file SALES in subvolume APRIL on volume $EAST on system \MAG
with the name =MARKT.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-23

Program Execution Initial State
Initial State
Every program in a run unit has an initial state in which a process places it at certain
times while the run unit executes.

When a program is in its initial state:

• Each data item in the Linkage Section has the value specified by the calling
program.

• Each Working-Storage or Extended-Storage data item that is described with a
VALUE clause (except level-88 condition-names) has the specified value.

• The value of each data item in the Working-Storage Section or the Extended-
Storage Section that is not described with a VALUE clause depends on whether
the NOBLANK directive was active during compilation. If not, each data item has a
space character (octal 40) in each character position or (for a COMPUTATIONAL,
COMPUTATIONAL-3, or COMPUTATIONAL-5 data item) a value consisting of a
series of space characters interpreted as a binary number. If the NOBLANK
directive was active during compilation, the value of each data item is
unpredictable.

• The open mode of each internal file connector is either Closed or Locked. The
other dynamic attributes of the file connector (such as the file position indicator
setting) and the contents of the record area for the file associated with the file
connector are undefined.

• The control mechanisms for all PERFORM statements in the program are set to
their initial state (inactive).

• GO TO statements whose destinations can be modified by ALTER statements are
restored to the forms specified in the source program.

A program is placed in its initial state at these times:

• The first time the program is executed in a run unit. For a main program, this is at
the beginning of each separate execution of the run unit. For a called program, this
is the first time it is called by a CALL statement during each execution of the run
unit.

• The first time the program is called after a CANCEL statement cancels it.

• For an initial program, each time it is called.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-24

Program Execution Status of Internal Entities During Program Execution
Status of Internal Entities During Program
Execution

During the execution of a program, each internal entity retains the status in which it
was left by the execution of the last statement that affected its status:

• Each internal data item retains the last value assigned to it. If no new value has
been assigned since the last time the program was placed in its initial state, its “last
value” is its initial value.

• Each internal file connector retains the open-mode state and other dynamic
attributes, such as the file position indicator, set or assigned by execution of the
last statement that affects them. The record area for a file associated with an
internal file connector retains whatever contents were last assigned to it. If the file
has not been opened since the last time the program was placed in its initial state,
the file is closed (and perhaps locked), and the other dynamic attributes are
undefined. In this case, the record area contents are also undefined.

• Each GO TO statement that was modified by execution of an ALTER statement
retains the last destination procedure specified.

• A PERFORM statement is active if it has been executed during the current
execution of the program it is in, and the termination conditions for its control
mechanism have not yet occurred (see PERFORM); otherwise, the statement is
inactive, and its control mechanism is in the initial state.

Status of External Entities During Program
Execution

The values of external data items and the statuses of external file connectors are not
affected by the actions performed for individual programs. When a program is called,
placed in its initial state, terminated by its own execution logic, or cancelled, the status
of each external entity remains unchanged. Of course, the execution of a statement
that makes reference to an external data item or an external file connector changes its
status as the topic on that statement in Section 9, Procedure Division Verbs, describes.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-25

Program Execution Called Program Termination
Called Program Termination
A called program terminates its own execution either by executing an EXIT PROGRAM
statement or by allowing control to pass beyond the end of its Procedure Division. The
completion of the program’s execution implicitly completes the execution of all of its
statements; therefore, if any PERFORM statement contained in the program is still
active, it is rendered inactive by the program’s resetting its control mechanism to the
initial state. The final status of any other internal entity depends on whether or not the
program has the initial attribute.

When a called program that has the initial attribute terminates its own execution, an
implicit CANCEL statement referencing the program is executed just after control
passes from the called program. This causes the value of each internal data item to
become undefined and performs an implicit close operation for each internal file
connector that is not closed (with or without lock). The implicit close operations
proceed as if a CLOSE statement without any of the optional phrases were executed
for each of the affected files. If the program is called again, it is placed in its initial
state.

When a called program that does not have the initial attribute terminates its own
execution, each internal entity (except a data item described in the Linkage Section)
retains its status:

• Each internal data item (except those described in the Linkage Section) retains its
current value.

• Each internal file connector retains all of its current dynamic attributes; therefore, if
it is open in some mode, it remains open in that mode and the record area for the
file associated with the internal file connector retains its current contents.

• Each GO TO statement modified by execution of an ALTER statement retains the
last destination procedure specified.

If the program is called again during this execution of the run unit, its state upon entry
is normally unchanged from the state in which its termination logic left it, except that
those data items described in the Linkage Section have whatever values are supplied
by the calling program; however, if a CANCEL statement designating the program is
executed after the program terminates, it causes the value of each internal data item to
become undefined and performs an implicit close operation for each internal file
connector that is neither closed nor locked. The implicit close operations proceed as if
a CLOSE statement without any of the optional phrases were executed for each of the
affected files. In this case, the program is placed in its initial state the next time it is
called.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
12-26

13 Libraries and Utility Routines
Utility routines are object programs that your HP COBOL program can call. Utility
routines are in libraries.

TNS libraries are categorized by the memory area in which their routines execute:

If a TNS HP COBOL program calls a utility routine, the routine must be bound into the
program’s target file. The files COBOLEX0, COBOLEX1, COBOLEXT, CBL85UTL,
COBOLLIB, and CLULIB contain utility routines that are to be configured into either the
system library or TNS user library or made available to Binder to enable you to bind
them into your own object files. Among these utility routines are FastSort interface
routines and Saved Message Utility (SMU) routines. As Figure 13-1 shows, FastSort
interface routines are in CBL85UTL, SMU routines for the non-CRE environment are in
COBOLLIB, and SMU routines for the CRE are in CLULIB (Figure 13-1 is not to scale).

For native HP COBOL programs, utility routines are in public shared run-time libraries
(SRLs) named ZCOBSRL and ZCRESRL. (You can also create a user library for a
native HP COBOL program.) If a program calls a utility routine, the NMCOBOL
compiler automatically searches the SRLs for the routine, but the routine is not bound
into the program’s target file. As Figure 13-2 shows, ZCOBSRL contains native
versions of the routines in CBL85UTL and COBOLLIB, and ZCRESRL contains
routines that are in CLULIB. ZCOBSRL and ZCRESRL also contain routines that were
in the system library for TNS HP COBOL programs (Figure 13-2 is not to scale).

Library Type Memory Area Where Routines Execute

Private object library
(linkfile)

User code space

System library System code space

TNS user library User library space

Figure 13-1. TNS Libraries and Their Utility Routines

CBL85UTL COBOLLIB CLULIB

CRECOBOL85
Environment

SMU Routines

Other
Routines

CLU_PROCESS_CREATE
_

Other
Routines

FastSort
Routines

CLU_PROCESS_FILE_NAME_

VST619.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-1

Libraries and Utility Routines
PIC programs (native HP COBOL programs that are compiled with the NMCOBOL
compiler and the directive CALL-SHARED or SHARED) can call dynamic-link libraries
(DLLs), which you can build.

SRLs can call DLLs, but DLLs cannot call SRLs.

Topics:

• Memory Areas

• Linkfiles as Libraries

• System Library

• TNS User Library

• User Library

• Dynamic-Link Libraries (DLLs)

• Files of Dummy Routines

• CBL85UTL Overview

• FastSort Interface Overview

• COBOLLIB Overview

• ZCOBSRL Overview

• CLULIB Overview

• Saved Message Utility (SMU) Overview

Figure 13-2. Native SRLs and Their Utility Routines

Note. In this section, references to $SYSTEM apply only to the NonStop system. For the
locations of files on the PC, see NonStop COBOL for TNS/R (ETK).

ZCOBSRL ZCRESRL

SMU Routines

Other
CBL85UTL

routines

FastSort
Routines

CLU_PROCESS_CREATE_
Other

COBOLLIB
routines

Routines whose TNS versions
are in the system library

Routines whose TNS versions
are in the system library

VST730.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-2

Libraries and Utility Routines
• ZCRESRL Overview

• CBL85UTL and ZCOBSRL Routines

• COBOLLIB, CLULIB, and ZCOBSRL Routines

• Saved Message Utility (SMU) Routines

• Guardian Environment Level 3 Spooling Routines

Table 13-1. All TNS and TNS/R Utility Routines (page 1 of 3)

Utility Routines Environments Libraries

ALTERPARAMTEXT Non-CRE COBOLLIB

CHECKLOGICALNAME Non-CRE COBOLLIB

CHECKMESSAGE Non-CRE COBOLLIB

CLU_PROCESS_CREATE_ Non-CRE
and CRE

CLULIB and ZCRESRL

CLU_PROCESS_FILE_NAME_ Non-CRE
and CRE

CLULIB

COBOL85^ARMTRAP Non-CRE CBL85UTL

COBOL85^COMPLETION Non-CRE CBL85UTL

COBOL85^RETURN^SORT^ERRORS Non-CRE CBL85UTL

COBOL85^REWIND^SEQUENTIAL Non-CRE CBL85UTL

COBOL85^SET^SORT^PARAM^TEXT Non-CRE CBL85UTL

COBOL85^SET^SORT^PARAM^VALUE Non-CRE CBL85UTL

COBOL85^SPECIAL^OPEN2 Non-CRE CBL85UTL

COBOL_ASSIGN_ CRE/Guardian COBOLLIB and ZCOBSRL

COBOL_COMPLETION_ CRE CBL85UTL and ZCOBSRL

COBOL_CONTROL_ CRE CBL85UTL and ZCOBSRL

COBOL_FILE_INFO_ CRE COBOLLIB and ZCOBSRL

COBOL_GETENV_ CRE CBL85UTL and ZCOBSRL

COBOL_PUTENV_ CRE CBL85UTL and ZCOBSRL

COBOL_RETURN_SORT_ERRORS_ CRE/Guardian CBL85UTL and ZCOBSRL

COBOL_REWIND_SEQUENTIAL_ CRE CBL85UTL and ZCOBSRL

COBOL_SET_SORT_PARAM_TEXT_ CRE/Guardian CBL85UTL and ZCOBSRL

COBOL_SET_SORT_PARAM_VALUE_ CRE CBL85UTL and ZCOBSRL

COBOL_SETMODE_ CRE CBL85UTL and ZCOBSRL

1. Routines for the non-CRE environment are available only in the Guardian environment. Most routines for the
CRE are available in the Guardian and OSS environments; those whose environment is specified
“CRE/Guardian” are available only in the Guardian environment.

2. This routine replaces the COBOLSPOOLOPEN routine (for level 2 spooling) and Guardian environment
routines (for level 3 spooling).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-3

Libraries and Utility Routines
COBOL_SPECIAL_OPEN_2 CRE/Guardian CBL85UTL and ZCOBSRL

COBOLASSIGN Non-CRE COBOLLIB

COBOLFILEINFO Non-CRE
and CRE
(Guardian)

COBOLLIB and ZCOBSRL

COBOLSPOOLOPEN Non-CRE COBOLLIB

CREATEPROCESS Non-CRE COBOLLIB

DELETEASSIGN Non-CRE COBOLLIB

DELETEPARAM Non-CRE COBOLLIB

DELETESTARTUP Non-CRE COBOLLIB

GETASSIGNTEXT Non-CRE COBOLLIB

GETASSIGNVALUE Non-CRE COBOLLIB

GETBACKUPCPU Non-CRE COBOLLIB

GETPARAMTEXT Non-CRE COBOLLIB

GETSTARTUPTEXT Non-CRE COBOLLIB

PUTASSIGNTEXT Non-CRE COBOLLIB

PUTASSIGNVALUE Non-CRE COBOLLIB

PUTPARAMTEXT Non-CRE COBOLLIB

PUTSTARTUPTEXT Non-CRE COBOLLIB

SMU_Assign_CheckName_ CRE CLULIB and ZCRESRL

SMU_Assign_Delete_ CRE CLULIB and ZCRESRL

SMU_Assign_GetText_ CRE CLULIB and ZCRESRL

SMU_Assign_GetValue_ CRE CLULIB and ZCRESRL

SMU_Assign_PutText_ CRE CLULIB and ZCRESRL

SMU_Assign_PutValue_ CRE CLULIB and ZCRESRL

SMU_Message_CheckNumber_ CRE CLULIB and ZCRESRL

SMU_Param_Delete_ CRE CLULIB and ZCRESRL

SMU_Param_GetText_ CRE CLULIB and ZCRESRL

SMU_Param_PutText_ CRE CLULIB and ZCRESRL

Table 13-1. All TNS and TNS/R Utility Routines (page 2 of 3)

Utility Routines Environments Libraries

1. Routines for the non-CRE environment are available only in the Guardian environment. Most routines for the
CRE are available in the Guardian and OSS environments; those whose environment is specified
“CRE/Guardian” are available only in the Guardian environment.

2. This routine replaces the COBOLSPOOLOPEN routine (for level 2 spooling) and Guardian environment
routines (for level 3 spooling).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-4

Libraries and Utility Routines
For information about individual routines:

SMU_Startup_Delete_ CRE CLULIB and ZCRESRL

SMU_Startup_GetText_ CRE CLULIB and ZCRESRL

SMU_Startup_PutText_ CRE CLULIB and ZCRESRL

Library Source

CBL85UTL CBL85UTL and ZCOBSRL Routines

COBOLLIB
CLULIB

COBOLLIB, CLULIB, and ZCOBSRL Routines

ZCOBSRL CBL85UTL and ZCOBSRL Routines

COBOLLIB, CLULIB, and ZCOBSRL Routines

ZCRESRL CRE Programmer’s Guide

Table 13-1. All TNS and TNS/R Utility Routines (page 3 of 3)

Utility Routines Environments Libraries

1. Routines for the non-CRE environment are available only in the Guardian environment. Most routines for the
CRE are available in the Guardian and OSS environments; those whose environment is specified
“CRE/Guardian” are available only in the Guardian environment.

2. This routine replaces the COBOLSPOOLOPEN routine (for level 2 spooling) and Guardian environment
routines (for level 3 spooling).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-5

Libraries and Utility Routines Memory Areas
Memory Areas
The memory a COBOL process uses is divided into distinct areas, each holding code
blocks or data blocks for the COBOL run unit or for Guardian environment routines that
serve the run unit.

Table 13-2. Memory Area Characteristics (page 1 of 2)

Memory
Area Purpose Size Comments

User code
space

Holds code blocks
produced by the
compilation

For TNS processes,
up to 16 segments
of up to 128 KB
each with a user
library; up to 32K
segments without a
user library

For native
processes, 32
megabytes

Routines from loadfiles execute
here.

In the non-CRE environment, run
units that include HP COBOL
routines must have an HP COBOL
main program and can occupy
almost 16 x 128 KB.

For TNS processes, an individual
HP COBOL program (in any
environment) that contains no
nested programs cannot exceed
128 KB. A nest of HP COBOL
programs (the outermost, plus all
programs nested within it) can
exceed 128 KB, but no single

User
library
space1

Holds additional
user code
(HP COBOL and
non-COBOL
routines called by
the HP COBOL
program)

Up to 16 segments
of up to 128 KB
each

TNS user library routines execute
here.

User data
space1

Holds data blocks
produced by the
compilation

128 KB Only the lower 64 KB of the 64K
space are available for user data.
The upper 64 KB are reserved for
buffers and run-time data
structures.

1. TNS processes only

2. Native processes only
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-6

Libraries and Utility Routines Memory Areas
User
extended
space1

Holds data blocks
of data declared in
Extended-Storage
Sections of COBOL
programs and
compiler-generated
tables

One segment of
extended memory
(134,217,726 bytes)

Run-time routines
can allocate
additional segments
for EDIT files and
HP COBOL Fast
I-O

The maximum data item size is
134,217,726 bytes.

Small
data
area2

Holds data blocks
produced by the
compilation

32,768 characters See LARGEDATA.

Large
data
area2

Holds data blocks
produced by the
compilation

1.1 GB for native
processes on G05
and later systems

See LARGEDATA.

System
code
space

Holds code for the
system routines
that service the run
unit in the user
code space

System library routines execute
here.

System
code
extension

Provides more
space for execution
of system library
routines

System
data
space

Holds data for the
system routines
that service the run
unit in the user
code space

128 MB for TNS
processes, D-series
systems, and pre-
G05 systems

1.1 GB for native
processes on G05
and later systems

Table 13-2. Memory Area Characteristics (page 2 of 2)

Memory
Area Purpose Size Comments

1. TNS processes only

2. Native processes only
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-7

Libraries and Utility Routines Linkfiles as Libraries
Linkfiles as Libraries
A linkfile can serve as your TNS user library (for the COBOL85 compiler) or user library
(for the NMCOBOL compiler). A link file cannot be executed as a process, due to its
lack of a main program; however, the code in the file can be executed.

To call utility routines from a user library, use CALL or ENTER statements (see CALL
and ENTER). CALL and ENTER statements allow you to specify the user library that
contains the routine you want to call. If you do not specify the user library in the CALL
or ENTER statement, the compilers resolves the references to the external routines as
explained in How the Compiler Resolves Unqualified References.

System Library
System library content is determined at system generation (SYSGEN). System library
routines run in the system code space.

For a TNS program, the file COBOLLIB can be configured into the system library.
(Alternatively, it can be configured into the user library or made available to Binder to
enable you to bind it into your own object files.)

TNS User Library
This section applies only to the COBOL85 compiler. A native HP COBOL program
uses a user library (see User Library).

A TNS user library contains routines that the operating environment binds to the
loadfile (run unit) at run time. Run-time binding does not include copying the routines
from the TNS user library into the loadfile. A loadfile can have only one TNS user
library associated with it.

An HP COBOL program can call routines contained in a user library that are written in
HP C, HP C++, FORTRAN, Pascal, and TAL. In the CRE, programs written in
HP COBOL can also be called.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-8

Libraries and Utility Routines User Library
The language in which a routine is written determines whether it can execute in user
library space:

A CRE HP COBOL program can be put in a TNS user library if it satisfies the criteria
listed in Library Programs.

A loadfile can include as many as 32 code segments—16 in user code space and 16 in
user library space, or all 32 segments in user code space. Each code segment consists
of up to 128 KB.

HP COBOL enables you to write COBOL programs nested within other COBOL
programs. No individual HP COBOL program can produce a program unit of more than
128 KB. No nested set of HP COBOL programs can produce a program unit of more
than 128 KB, in which no program but the outermost can exceed 64 KB. The program
units that make up a run unit can total no more than 32 x 128 KB (16 x 128 KB if it calls
any TNS user library routines).

You can specify a TNS user library in the LIB option of the RUN command. For
information on the LIB option, see the TACL Reference Manual. For more information
on user libraries, see the Binder Manual.

User Library

A user library contains routines that the operating environment links to the loadfile (run
unit) at run time. Run-time linking does not include copying the routines into the
loadfile. A loadfile can have only one user library associated with it.

Topics:

• Building a User Library

• Specifying a User Library

Language
in Which
Routine is
Written Routine Can Execute in User Library Space

HP COBOL Yes, if the ENV LIBRARY directive is specified

HP C Yes, if the ENV EMBEDDED directive is specified

HP C++ Yes, if the ENV EMBEDDED directive is specified

FORTRAN Yes, but then it cannot have any COMMON, DATA, or SAVE statements

Pascal No

TAL Yes, if no global blocks are defined

Note. ASSIGN and PARAM commands for files in a TNS user library are ignored.

Note. This topic applies only to the NMCOBOL compiler. A TNS program uses a TNS user
library (see TNS User Library).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-9

Libraries and Utility Routines Building a User Library
Building a User Library
A program can be put in a user library if:

• It is not a main program.

• It does not contain embedded SQL/MP or SQL/MX statements.

• It does not contain external objects (data or files that are to be shared with code
that is outside the library).

From a Single Source File
To build a user library from a single source file (which can contain one or more source
programs), compile the source file with these directives:

• RUNNABLE

• UL

The resulting loadfile is a user library. If you use this method of building a user library,
each object file that is to be included in the library must be referenced with either a
file-mnemonic (see CALL and ENTER) or a SEARCH directive (see SEARCH and
NOSEARCH) so that the compiler can find it.

From Multiple Source Files
To build a user library from multiple source files (each of which can contain one or
more source programs), compile each source file with the UL directive but without the
RUNNABLE directive. Link the resulting linkfiles, using the linker with the -ul flag. The
-ul flag causes the linker to link the object files into a single loadfile, which is a user
library.

Specifying a User Library
At compilation time, you must specify the user library that you want your program to
use in a CONSULT directive (see CONSULT and NOCONSULT). At run time, you must
specify the same user library by using the LIB option of the RUN command (in the
Guardian environment) or the -lib flag of the run command (in the OSS
environment).

Note. ASSIGN and PARAM commands for files in a user library are ignored.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-10

Libraries and Utility Routines Dynamic-Link Libraries (DLLs)
Dynamic-Link Libraries (DLLs)

A DLL is a library of shared code [PIC] that contains functions or data for other PIC
loadfiles. (For more information about PIC and DLLs, see the DLL Programmer’s
Guide for TNS/R Systems.)

You can put a program in a DLL if:

• It is not a main program.

• It does not contain embedded SQL/MP or SQL/MX statements.

• It does not contain external objects (data or files that are to be shared with code
that is outside the library).

If you put an HP COBOL program in a DLL, you must export the program name when
you build the DLL; otherwise, other programs cannot call the HP COBOL program. To
export the HP COBOL program name, use either the LD directive (Guardian) or the
-Wld option (OSS and PC), with one of the linker options in Table 13-3.

Topics:

• Building a DLL From a Single Source File

• Building a DLL from Multiple Source Files

• Specifying a DLL

Building a DLL From a Single Source File
The single source file from which you build the DLL can contain one or more source
programs.

You can build a DLL from a single source file in either one step or two: either compile
the source file and have the compiler call the linker, or compile the source file and call
the linker yourself. (For linker instructions, see the ld Manual.)

Note. This topic applies only to the NMCOBOL compiler. A TNS program uses a TNS user
library (see TNS User Library).

Note. ASSIGN and PARAM commands for files in a DLL are ignored.

Table 13-3. Linker Options That Export Program Names

Environment

Option exports ...

All program names
in the source file Only the specified program name

Guardian LD (-export_all) LD (-export program-name)

OSS and PC -Wld="-export_all" -Wld="-export program-name "
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-11

Libraries and Utility Routines Building a DLL From a Single Source File
Topics:

• Guardian Environment: One-Step Method

• Guardian Environment: Two-Step Method

• OSS Environment: One-Step Method

• OSS Environment: Two-Step Method

• PC Environment: One-Step Method

• PC Environment: Two-Step Method

Guardian Environment: One-Step Method
Compile the source file with these directives:

• SHARED

• RUNNABLE

• LD with either of these options:

° -export_all, which exports all program names in the source file

° -export program-name, which exports only the specified program name.
You must repeat this option for every program name that you want to export.

The resulting loadfile is a DLL.

The command in Example 13-1 compiles the source file LIB1 and links the resulting
object file, creating a DLL named MYDLL.

Guardian Environment: Two-Step Method
1. Compile the source file with the directive SHARED.

The result is a linkfile.

Example 13-1. Building a DLL From a Single Source File in One Step (Guardian)

NMCOBOL /IN LIB1/ MYDLL; SHARED; RUNNABLE; &
&LD(-export_all)

Note. Do not use the RUNNABLE directive.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-12

Libraries and Utility Routines Building a DLL From a Single Source File
2. Link the linkfile, using the ld utility with these options:

• Either:

° -export_all, which exports all program names in the source file

° -export program-name, which exports only the specified program
name. You must repeat this option for every program name that you want
to export.

• -optional_lib -l ZCOBSRL -l ZCRESRL, which links your file with the
SRLs named ZCOBSRL and ZCRESRL

The resulting loadfile is a DLL.

In Example 13-2, the first command compiles the source file LIB1, creating the linkable
object file LIB1O. The second command links LIB1O with the SRLs named ZCOBSRL
and ZCRESRL, creating a DLL named MYDLL.

OSS Environment: One-Step Method
Compile the source file with these options:

• -Wshared

• -Wld with either of these arguments:

° -export_all, which exports all program names in the source file

° -export program-name, which exports only the specified program name.
You must repeat this option for every program name that you want to export.

The resulting loadfile is a DLL.

The command in Example 13-3 compiles the source file lib1.cob and links the
resulting object file, creating a DLL named mydll.

Example 13-2. Building a DLL From a Single Source File in Two Steps (Guardian)

NMCOBOL /IN LIB1/ LIB1O; SHARED

LD LIB1O -SHARED -EXPORT_ALL -optional_lib -l ZCOBSRL -l ZCRESRL
-o MYDLL

Note. Do not use -c.

Example 13-3. Building a DLL From a Single Source File in One Step (OSS)

nmcobol lib1.cob -Wshared -Wld="-export_all
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-13

Libraries and Utility Routines Building a DLL From a Single Source File
OSS Environment: Two-Step Method
1. Compile the source file with these options:

• -Wshared
• -c

The result is a linkfile.

2. Link the linkfile, using the ld utility with these options:

• Either:

° -export_all, which exports all program names in the source file

° -export program-name, which exports only the specified program
name. You must repeat this option for every program name that you want
to export.

• -optional_lib -l ZCOBSRL -l ZCRESRL, which links your file with the
SRLs named ZCOBSRL and ZCRESRL

The resulting loadfile is a DLL.

In Example 13-4, the first command compiles the source file lib1.cob, creating the
linkable object file lib1.o. The second command links lib1.o with the SRLs named
ZCOBSRL and ZCRESRL, creating a DLL named mydll.

PC Environment: One-Step Method
Compile the source file with these options:

• -Wshared

• -Wld with either of these arguments:

° -export_all, which exports all program names in the source file

° -export program-name, which exports only the specified program name.
You must repeat this option for every program name that you want to export.

The resulting loadfile is a DLL.

The command in Example 13-5 compiles the source file lib1.cob and links the
resulting object file, creating a DLL named mydll.

Example 13-4. Building a DLL From a Single Source File in Two Steps (OSS)

nmcobol lib1.cob -Wshared -c

ld lib1.o -shared -export_all -optional_lib -l ZCOBSRL
-l ZCRESRL -o mydll

Note. Do not use -c.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-14

Libraries and Utility Routines Building a DLL from Multiple Source Files
PC Environment: Two-Step Method
1. Compile the source file with these options:

• -Wshared
• -c

The result is a linkfile.

2. Link the linkfile, using the ld utility with these options:

• Either:

° -export_all, which exports all program names in the source file

° -export program-name, which exports only the specified program
name. You must repeat this option for every program name that you want
to export.

• -optional_lib followed by:

° -L lib-directory -lcob, which links your file with the SRL named
ZCOBSRL

° -obey lib-directory\libc.obey, which links your file with the SRL
named ZCRESRL

lib-directory is the name of the directory of libraries.

The resulting loadfile is a DLL.

In Example 13-6, the first command compiles the source file lib1.cob, creating the
linkable object file lib1.o. The second command links lib1.o with the SRLs named
ZCOBSRL and ZCRESRL, creating a DLL named mydll.

Building a DLL from Multiple Source Files
Each source file from which you build the DLL can contain one or more source
programs.

Building a DLL from multiple source files takes two steps:

1. Compile the source files.

Example 13-5. Building a DLL From a Single Source File in One Step (PC)

nmcobol lib1.cob -Wshared -Wld="-export_all" -o mydll

Example 13-6. Building a DLL From a Single Source File in Two Steps (PC)

nmcobol lib1.cob -Wshared -c

ld lib1.o -shared -export_all -optional_lib -L lib-directory
-lcob -obey lib-directory\libc.obey -o mydll
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-15

Libraries and Utility Routines Building a DLL from Multiple Source Files
2. Link the resulting linkfiles into a single loadfile.

Topics:

• Guardian Environment

• OSS Environment

• PC Environment

Guardian Environment
1. Compile each source file with the directive SHARED.

The result of each compilation is a linkfile.

2. Link the linkfiles into a single loadfile, using the ld utility with these options:

• Either:

° -export_all, which exports all program names in the source file

° -export program-name, which exports only the specified program
name. You must repeat this option for every program name that you want
to export.

• -shared, which links the linkfiles into a single loadfile that is a DLL

• -optional_lib -l ZCOBSRL -l ZCRESRL, which links your file with the
SRLs named ZCOBSRL and ZCRESRL

In Example 13-7, the first four commands compile four source files (LIB1, LIB2, LIB3,
and LIB4), creating four linkable object files (LIB1O, LIB2O, LIB3O, and LIB4O). The
last command links the four linkable object files with the SRLs named ZCOBSRL and
ZCRESRL, creating the DLL named MYDLL.

Note. Do not use the RUNNABLE directive.

Example 13-7. Building a DLL From Multiple Source Files (Guardian)

NMCOBOL /IN LIB1/ LIB1O;SHARED

NMCOBOL /IN LIB2/ LIB2O;SHARED

NMCOBOL /IN LIB3/ LIB3O;SHARED

NMCOBOL /IN LIB4/ LIB4O;SHARED

LD LIB1O LIB2O LIB3O LIB4O -shared -export_all -optional_lib
-l ZCOBSRL -l ZCRESRL -o MYDLL
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-16

Libraries and Utility Routines Building a DLL from Multiple Source Files
OSS Environment
1. Compile each source file with these options:

• -Wshared
• -c

The result of each compilation is a linkfile.

2. Link the linkfiles into a single loadfile, using the ld utility with these options:

• Either:

° -export_all, which exports all program names in the source file

° -export program-name, which exports only the specified program
name. You must repeat this option for every program name that you want
to export.

• -shared, which links the linkfiles into a single loadfile that is a DLL

• -optional_lib -l ZCOBSRL -l ZCRESRL, which links your file with the
SRLs named ZCOBSRL and ZCRESRL

In Example 13-8, the first four commands compile four source files (lib1.cob,
lib2.cob, lib3.cob, and lib4.cob), creating four linkable object files (lib1.o,
lib2.o, lib3.o, and lib4.o). The last command links the four linkable object files
with the SRLs named ZCOBSRL and ZCRESRL, creating a DLL named mydll.

PC Environment
1. Compile each source file with these options:

• -Wshared
• -c

The result of each compilation is a linkfile.

Example 13-8. Building a DLL From Multiple Source Files (OSS)

nmcobol lib1.cob -Wshared -c

nmcobol lib2.cob -Wshared -c

nmcobol lib3.cob -Wshared -c

nmcobol lib4.cob -Wshared -c

ld lib1.o lib2.o lib3.o lib4.o -shared -export_all -optional_lib
-l ZCOBSRL -l ZCRESRL -o mydll
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-17

Libraries and Utility Routines Building a DLL from Multiple Source Files
2. Link the linkfiles into a single loadfile, using the ld utility with these options:

• Either:

° -export_all, which exports all program names in the source file

° -export program-name, which exports only the specified program
name. You must repeat this option for every program name that you want
to export.

• -shared, which links the linkfiles into a single loadfile that is a DLL

• -optional_lib followed by:

° -L lib-directory -lcob, which links your file with the SRL named
ZCOBSRL

° -obey lib-directory\libc.obey, which links your file with the SRL
named ZCRESRL

lib-directory is the name of the directory of libraries.

In Example 13-9, the first four commands compile four source files (lib1.cob,
lib2.cob, lib3.cob, and lib4.cob), creating four linkable object files (lib1.o,
lib2.o, lib3.o, and lib4.o). The last command links the four linkable object files
with the SRLs named ZCOBSRL and ZCRESRL, creating a DLL named mydll.

Example 13-9. Building a DLL From Multiple Source Files (PC)

nmcobol lib1.cob -Wshared -c

nmcobol lib2.cob -Wshared -c

nmcobol lib3.cob -Wshared -c

nmcobol lib4.cob -Wshared -c

ld lib1.o lib2.o lib3.o lib4.o -shared -export_all -optional_lib
-L lib-directory -lcob -obey lib-directory\libc.obey -o mydll
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-18

Libraries and Utility Routines Specifying a DLL
Specifying a DLL
To use an existing DLL, you must specify it to both the compiler and the linker. You can
do this in either one step or two.

Topics:

• Guardian Environment: Compile and Link in One Step

• Guardian Environment: Compile and Link in Two Steps

• OSS Environment: Compile and Link in One Step

• OSS Environment: Compile and Link in Two Steps

• PC Environment: Compile and Link in One Step

• PC Environment: Compile and Link in Two Steps

Guardian Environment: Compile and Link in One Step
Compile the program that uses the DLL with these directives:

• CALL-SHARED

• CONSULT with the name of the DLL as an object-name (see CONSULT and
NOCONSULT)

• LD with these options:

° -L (which is similar to the nmcobol option -L)
° -l or -lib (which is similar to the nmcobol option -l)

For more information about the ld options -l or -lib, see the ld Manual.

The result is a loadfile.

The command in Example 13-10 compiles the source file MAIN and links the resulting
object file with the DLL named MYDLL, creating a loadfile named MAINO.

Guardian Environment: Compile and Link in Two Steps
1. Compile the program that uses the DLL with these directives:

• CALL-SHARED

• CONSULT with the name of the DLL as an object-name (see CONSULT
and NOCONSULT)

The result is a linkfile.

Example 13-10. Specifying a DLL When the Compiler Calls the Linker (Guardian)

NMCOBOL /IN MAIN/ MAINO; CALL-SHARED; CONSULT MYDLL; RUNNABLE;&
&LD(-L $VOL.SUBVOL -l MYDLL)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-19

Libraries and Utility Routines Specifying a DLL
2. Link the linkfile, using the ld utility with these ld options:

• -L (which is similar to the nmcobol option -L)

• -l or -lib (which is similar to the nmcobol option -l)

• -optional_lib -l ZCOBSRL -l ZCRESRL, which links your file with the
SRLs named ZCOBSRL and ZCRESRL

For more information about the ld options -l or -lib, see the ld Manual.

In Example 13-11, the first command compiles the source file MAIN, specifying the
DLL named MYDLL and creating the linkable object file MAINO. The second command
links MAINO with MYDLL and the SRLs named ZCOBSRL and ZCRESRL, creating a
loadfile named MYPROG.

OSS Environment: Compile and Link in One Step
Compile the program that uses the DLL with these options:

• -Wcall_shared
• -L
• -l

The result is a loadfile.

The command in Example 13-12 compiles the source file main.cob and links the
resulting object file with the DLL named mydll, creating the loadfile main.exe.

OSS Environment: Compile and Link in Two Steps
1. Compile the program that uses the DLL with these options:

• -Wcall_shared
• -c

The result is a linkfile.

Example 13-11. Specifying a DLL When You Compile and Then Link (Guardian)

NMCOBOL /IN MAIN/ MAINO; CALL-SHARED; CONSULT MYDLL

LD MAINO -CALL_SHARED -L $VOL.SUBVOL -l MYDLL -optional_lib
-l ZCOBSRL -l ZCRESRL -O MYPROG

Note. Do not use -c.

Example 13-12. Specifying a DLL When the Compiler Calls the Linker (OSS)

nmcobol main.cob -Wcall_shared -Wcobol="CONSULT MYDLL" -L /usr/xxx/yyy
-l mydll -o main.exe
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-20

Libraries and Utility Routines Specifying a DLL
2. Link the linkfile, using the ld utility with these ld options:

• -L (which is similar to the nmcobol option -L)

• -l or -lib (which is similar to the nmcobol option -l)

• -optional_lib -l ZCOBSRL -l ZCRESRL, which links your file with the
SRLs named ZCOBSRL and ZCRESRL

For more information about the ld options -l or -lib, see the ld Manual.

In Example 13-13, the first command compiles the source file main.cob, specifying
the DLL named mydll and creating the linkable object file main.o. The second
command links main.o with mydll and the SRLs named ZCOBSRL and ZCRESRL,
creating the loadfile main.exe.

PC Environment: Compile and Link in One Step
Compile the program that uses the DLL with these nmcobol flags:

• -Wcall_shared
• -Wcobol with the argument “CONSULT MYDLL”
• -L, where directory is the name of the directory of libraries
• -l, where library is the name of the DLL

The result is a loadfile.

The command in Example 13-14 compiles the source file main.cob and links the
resulting object file with the SRLs named ZCOBSRL and ZCRESRL and the DLL
named mydll, creating the loadfile main.exe. MYDLL is in dll-location. (An
example of dll-location is C:\xxx\yyy.)

Example 13-13. Specifying a DLL When You Compile and Then Link (OSS)

nmcobol main.cob -Wcall_shared -Wcobol="CONSULT MYDLL" -c

ld main.o -call_shared -L /usr/xxx/yyy -l mydll -optional_lib
-l ZCOBSRL -l ZCRESRL -o main.exe

Note. Do not use -c.

Example 13-14. Specifying a DLL When the Compiler Calls the Linker (PC)

nmcobol main.cob -Wcall_shared -Wcobol="CONSULT MYDLL" -L dll-location
-l mydll -optional_lib -L lib-directory -l ZCOBSRL -l ZCRESRL
-o main.exe
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-21

Libraries and Utility Routines Specifying a DLL
PC Environment: Compile and Link in Two Steps
1. Compile the program that uses the DLL with these options:

• -Wcall_shared
• -c
• -Wcobol, with the argument “CONSULT MYDLL”

The result is a linkfile.

2. Link the linkfile, using the ld utility with these ld options:

• -l or -lib (which is similar to the nmcobol option -l), where library is
the name of the DLL

• -optional_lib followed by:

° -L lib-directory -lcob, which links your file with the SRL named
ZCOBSRL

° -obey lib-directory\libc.obey, which links your file with the SRL
named ZCRESRL

lib-directory is the name of the directory of libraries.

For more information about the ld options -l or -lib, see the ld Manual.

In Example 13-15, the first command compiles the source file main.cob, specifying
the DLL named MYDLL and creating the linkable object file main.o. The second
command links main.o with mydll and the SRLs named ZCOBSRL and ZCRESRL,
creating the loadfile main.exe. MYDLL is in dll-location. (An example of dll-
location is C:\xxx\yyy.)

Example 13-15. Specifying a DLL When You Compile and Then Link (PC)

nmcobol main.cob -Wcall_shared -c -Wcobol="CONSULT MYDLL"

ld main.o -call_shared -L dll-location -l mydll -optional_lib
-L lib-directory -lcob -obey lib-directory\libc.obey -o main.exe
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-22

Libraries and Utility Routines Files of Dummy Routines
Files of Dummy Routines
Files of dummy routines enable the compiler to accept ENTER statements that are to
be resolved at program load time rather than by Binder during compilation (in the case
of the COBOL85 compiler) or by the linker (in the case of the NMCOBOL compiler).

When you install the compiler, the files of dummy routines are stored on the subvolume
$SYSTEM.SYSTEM. If you move any of them to another subvolume, use the
CONSULT directive to tell the compiler where to find the files you moved.

CBL85UTL Overview
CBL85UTL routines fall into two functional categories:

• FastSort interface routines
• Other routines

The CBL85UTL file is only for the COBOL85 compiler. Its CRE routines are also in the
ZCOBSRL file, which is for the NMCOBOL compiler.

Table 13-4. Files of Dummy Routines

File Name

Description of File (as released by HP)
COBOL85
Compiler

NMCOBOL
Compiler

COBOLEX0 NMCOBEX0 Contains one dummy routine for each operating system
routine in the EXTDECS0 file. Represents the latest
RVU.

COBOLEX1 NMCOBEX1 Contains one dummy routine for each operating system
routine in the EXTDECS1 file. Represents the next-to-
latest RVU.

COBOLEXT NMCOBEXT Contains one dummy routine for each operating system
routine in the EXTDECS file. Represents the second-
next-to-latest RVU.

CBLIBEXT Contains one dummy routine for each COBOLLIB
routine. Your system manager can bind all the
CBLIBEXT routines into COBOLEXT.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-23

Libraries and Utility Routines CBL85UTL Overview
Table 13-5. CBL85UTL Routines

Utility Routine Environments

COBOL85^ARMTRAP COBOL

COBOL85^COMPLETION COBOL

COBOL85^RETURN^SORT^ERRORS COBOL

COBOL85^REWIND^SEQUENTIAL COBOL

COBOL85^SET^SORT^PARAM^TEXT COBOL

COBOL85^SET^SORT^PARAM^VALUE COBOL

COBOL85^SPECIAL^OPEN2 COBOL

COBOL_COMPLETION_ CRE

COBOL_CONTROL_ CRE

COBOL_FILE_INFO_ COBOL and CRE

COBOL_GETENV_ CRE

COBOL_PUTENV_ CRE

COBOL_RETURN_SORT_ERRORS_ CRE/Guardian

COBOL_REWIND_SEQUENTIAL_ CRE

COBOL_SET_MAX_RECORD_ COBOL and CRE

COBOL_SETMODE_ CRE

COBOL_SET_SORT_PARAM_TEXT_ CRE/Guardian

COBOL_SET_SORT_PARAM_VALUE_ CRE

COBOL_SPECIAL_OPEN_2 CRE/Guardian

1. Routines for the non-CRE environment are available only in the Guardian environment. Most routines for the
CRE are available in the Guardian and OSS environments; those whose environment is specified
“CRE/Guardian” are available only in the Guardian environment.

2. This routine replaces the COBOLSPOOLOPEN routine (for level 2 spooling) and Guardian environment
routines (for level 3 spooling).

Topics Sources

FastSort interface routines FastSort Interface Overview

ZCOBSRL file ZCOBSRL Overview

Descriptions of individual CBL85UTL and
ZCOBSRL routines (including FastSort
interface routines)

CBL85UTL and ZCOBSRL Routines
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-24

Libraries and Utility Routines FastSort Interface Overview
FastSort Interface Overview
The FastSort interface routines (in the CBL85UTL and ZCOBSRL files) give your
HP COBOL program access to the FastSort utility program, which provides more
extensive sorting features than HP COBOL has (such as parallel sorting).

Use the FastSort interface routines only with FastSort. If you use them with SORT, the
sort process might terminate abnormally.

To use FastSort routines, you must establish a set of parameters and then execute a
statement that uses those parameters. You can establish the set of parameters with
either FastSort interface routines or the =_SORT_DEFAULTS DEFINE.

Topics:

• Establishing Parameters With FastSort Interface Routines

• Establishing Parameters With =_SORT_DEFAULTS DEFINE

For descriptions of individual FastSort interface routines, see CBL85UTL and
ZCOBSRL Routines.

Establishing Parameters With FastSort Interface Routines
One way to establish FastSort parameters is with the FastSort interface routines. Each
FastSort interface routine has a version for the non-CRE environment and a version for
the CRE.

At run time, HP COBOL routines collect these parameters into a storage area called
the option block. When a SORT or MERGE verb is executed, other HP COBOL run-
time routines pass these parameters to FastSort.

If you do not establish FastSort parameters with FastSort interface routines (and
certain other conditions are true), FastSort uses the attributes of the
=_SORT_DEFAULTS DEFINE). For details, see Establishing Parameters With
=_SORT_DEFAULTS DEFINE.

Table 13-6. FastSort Interface Routines*

COBOL-Environment Routine
CRE Routine for Guardian Environment Purpose

COBOL85^RETURN^SORT^ERRORS
COBOL_RETURN_SORT_ERRORS_

Specifies the data item to which FastSort will
report error messages

COBOL85^SET^SORT^PARAM^TEXT
COBOL_SET_SORT_PARAM_TEXT_

Establishes an alphanumeric parameter
(which must be a data item described in any
section of the Data Division)

COBOL85^SET^SORT^PARAM^VALUE
COBOL_SET_SORT_PARAM_VALUE_

Establishes a numeric parameter, specifying
that it is a literal, an identifier, or an arithmetic
expression

* In the CBL85UTL file for the COBOL85 compiler and the ZCOBSRL file for the NMCOBOL compiler.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-25

Libraries and Utility Routines Establishing Parameters With =_SORT_DEFAULTS
DEFINE
For explanations of individual FastSort interface routines, see CBL85UTL and
ZCOBSRL Routines.

Establishing Parameters With =_SORT_DEFAULTS DEFINE
Another way to establish FastSort parameters is with the default SORT DEFINE
=_SORT_DEFAULTS. This method is recommended when it would be difficult to
modify existing applications.

When an HP COBOL program calls FastSort, FastSort uses the attributes of
=_SORT_DEFAULTS if all of these conditions are true:

• No user DEFINEs have been specified
• No FastSort parameters are set
• DEFMODE is on

You can create a =_SORT_DEFAULTS DEFINE by using the ALTER DEFINE
statement in your command interpreter. You can use the command

22> INFO DEFINE =_SORT_DEFAULTS, DETAIL

to determine whether the DEFINE exists and what its current settings are.

You cannot use =_SORT_DEFAULTS to alter the FastSort parameters SCRATCH and
MODE, because the compiler sets these itself whenever it executes a COBOL SORT
statement. (It sets SCRATCH to the file that the SD entry specifies. It sets MODE to
AUTOMATIC.)

If you specify any FastSort options with FastSort interface routines, you can only use
=_SORT_DEFAULTS to alter the parameters CPU, NOTCPUS, and SUBSORTS;
however, if you specify CPU-MASK, NO-CPU-MASK, or SUBSORT-COUNT with a
FastSort interface, routine, it overrides the respective parameter that you specified with
=_SORT_DEFAULTS.

For more information on the =_SORT_DEFAULTS DEFINE, see the FastSort Manual.

COBOLLIB Overview
The COBOLLIB file is a COBOL object file that contains utility routines supplied by HP.
These routines support COBOL applications that must obtain file information or use
operations not available through the normal language constructs.

COBOLLIB routines fall into two categories:

• Saved Message Utility (SMU) routines for the non-CRE environment
• Other routines

Most COBOLLIB routines have a non-CRE version and a CRE version.

The COBOLLIB file is only for the COBOL85 compiler, and primarily for the non-CRE
environment. The CRE and native versions of the COBOLLIB routines are in other
files, as Table 13-7 shows.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-26

Libraries and Utility Routines COBOLLIB Overview
The material in this COBOLLIB overview applies to SMU and non-SMU routines.

Table 13-7. Where Versions of COBOLLIB Routines Are

Routine
Category

COBOL85 Compiler

NMCOBOL Compiler
Non-CRE
Environment CRE

SMU COBOLLIB CLULIB ZCRESRL

Other COBOLLIB COBOLLIB ZCOBSRL

Table 13-8. COBOLLIB Routines

Utility Routine Environments* In ZCOBSRL

ALTERPARAMTEXT COBOL No

CHECKLOGICALNAME COBOL No

CHECKMESSAGE COBOL No

COBOL_ASSIGN_ COBOL Yes

COBOL_FILE_INFO_ COBOL Yes

COBOLASSIGN COBOL Mapped to COBOL_ASSIGN_

COBOLFILEINFO COBOL
and CRE

Yes

COBOLSPOOLOPEN COBOL No

CREATEPROCESS COBOL No

DELETEASSIGN COBOL No

DELETEPARAM COBOL No

DELETESTARTUP COBOL No

GETASSIGNTEXT COBOL No

GETASSIGNVALUE COBOL No

GETBACKUPCPU COBOL No

GETPARAMTEXT COBOL No

GETSTARTUPTEXT COBOL No

PUTASSIGNTEXT COBOL No

PUTASSIGNVALUE COBOL No

PUTPARAMTEXT COBOL No

PUTSTARTUPTEXT COBOL No

* Routines for the non-CRE environment are available only in the Guardian environment. COBOLFILEINFO is
available in the CRE but only in the Guardian environment.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-27

Libraries and Utility Routines COBOLLIB Routines in User Code Space
You can put the routines that are in the file COBOLLIB in any one of these places:

• COBOLLIB Routines in User Code Space

• COBOLLIB Routines in User Library Space

• COBOLLIB Routines in a Special TNS User Library

• COBOLLIB Routines in System Code Space

COBOLLIB Routines in User Code Space
When you want to use a routine from the COBOLLIB file, you can have it bound into
your loadfile to run in your user code space. Include a SEARCH directive that specifies
$SYSTEM.SYSTEM.COBOLLIB (or the volume and subvolume where your installation
has stored the COBOLLIB file).

COBOLLIB Routines in User Library Space
You can set up the routines from the COBOLLIB file to run in the user library space. To
do this, include a LIBRARY directive of the form

?LIBRARY $SYSTEM.SYSTEM.COBOLLIB

during your compilation. The compiler must be able to validate your ENTER statement,
which requires the CBLIBEXT file—see Files of Dummy Routines. For more
information on user libraries, see the Binder Manual.

COBOLLIB Routines in a Special TNS User Library
You can use Binder to create a special TNS user library of your own that includes
whichever routines you need from the COBOLLIB file, and use the LIBRARY directive
to make that your user library. For more information on TNS user libraries, see the
Binder Manual.

Topics Sources

SMU routines in general Saved Message Utility (SMU) Overview

Descriptions of individual SMU routines Saved Message Utility (SMU) Overview

ZCOBSRL file ZCOBSRL Overview

ZCRESRL file ZCRESRL Overview

Descriptions of non-SMU individual
COBOLLIB and ZCOBSRL routines

COBOLLIB, CLULIB, and ZCOBSRL Routines
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-28

Libraries and Utility Routines COBOLLIB Routines in System Code Space
COBOLLIB Routines in System Code Space
If you want the routines from the COBOLLIB file to run as part of the system library,
and hence in the system code space, then your system manager must have
incorporated the routines in the system library at system generation time. The
COBOL85 compiler must be able to validate your ENTER statement, which requires
the file CBLIBEXT.

CBLIBEXT is part of every HP COBOL product version. It contains empty declarations
of the COBOLLIB routines. Your system manager can bind all the CBLIBEXT routines
into COBOLEXT.

If you want the COBOLLIB routines to execute outside your user code space, you can
arrange this. The COBOL85 compiler does not accept ENTER statements unless the
compilers can verify that the parameters in the statement correspond to those
expected by the routine being called.

ZCOBSRL Overview
ZCOBSRL, a native SRL, is the native HP COBOL run-time library. It contains the
HP COBOL run-time routines which, for the COBOL85 compiler, reside in either the
system library, CBL85UTL, or COBOLLIB. ZCOBSRL routines are not bound into a
user object file.

The NMCOBOL compiler consults ZCOBSRL automatically. ZCOBSRLs resides on the
subvolume $SYSTEM.SYSnn.

Table 13-9. ZCOBSRL Routines (page 1 of 2)

Utility Routine

COBOL_ASSIGN_

COBOL_COMPLETION_

COBOL_CONTROL_

COBOL_FILE_INFO_

COBOL_GETENV_

COBOL_PUTENV_

COBOL_RETURN_SORT_ERRORS_

COBOL_REWIND_SEQUENTIAL_

COBOL_SETMODE_

COBOL_SET_SORT_PARAM_TEXT_

1. Replaces COBOLSPOOLOPEN routine (for level 2 spooling) and Guardian environment routines (for level 3
spooling)

2. Guardian environment only
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-29

Libraries and Utility Routines CLULIB Overview
For descriptions of individual ZCOBSRL routines, see:

• CBL85UTL and ZCOBSRL Routines

• COBOLLIB, CLULIB, and ZCOBSRL Routines.

 CLULIB Overview
The Common Language Utility library (CLULIB) contains functions that provide
common services to two or more language products. Specifically, Common Language
Utility (CLU) functions provide services that enable:

• HP COBOL and FORTRAN routines to locate and identify file connectors
(CLU_PROCESS_FILE_NAME_ routine)

• HP COBOL and FORTRAN routines to create processes using the conventions of
the TACL command RUN (CLU_PROCESS_CREATE_ routine)

• HP COBOL, FORTRAN, and TAL routines to save and manipulate messages that
the operating environment sends to processes (see Saved Message Utility (SMU)
Overview)

CLU functions differ from CRE functions in that:

• CLU functions are in the file CLULIB, while CRE functions are in the file CRELIB

• CLU functions must be explicitly bound into programs that use them, while CRE
functions are configured into the system library

• CLU functions work in certain language-specific run-time environments as well as
the CRE, while CRE functions work only in the CRE

CLULIB routines must be used in the Guardian environment.

COBOL_SET_SORT_PARAM_VALUE_

COBOL_SPECIAL_OPEN_1

COBOLFILEINFO2

Table 13-10. CLULIB Routines (page 1 of 2)

Utility Routine Environments

CLU_PROCESS_CREATE_ COBOL and CRE

CLU_PROCESS_FILE_NAME_ COBOL and CRE

SMU_Assign_CheckName_ CRE/Guardian

Table 13-9. ZCOBSRL Routines (page 2 of 2)

Utility Routine

1. Replaces COBOLSPOOLOPEN routine (for level 2 spooling) and Guardian environment routines (for level 3
spooling)

2. Guardian environment only
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-30

Libraries and Utility Routines Saved Message Utility (SMU) Overview
The CLULIB file is only for the COBOL85 compiler. Its routines are also in the
ZCRESRL file, which is for the NMCOBOL compiler.

Saved Message Utility (SMU) Overview
The Saved Message Utility (SMU) consists of several routines that manipulate saved
ASSIGN, PARAM, and startup messages. SMU routines can be used only in the
Guardian environment. The Open System Services environment does not have
ASSIGN, PARAM, or startup messages.

The internal data structures of the saved ASSIGN, PARAM, and startup messages
differ from COBOL data structures. SMU routines retrieve, replace, alter, or delete
components of saved messages and reformat them either to or from a specific external
representation. (For descriptions of the ASSIGN, PARAM, and startup messages, see
the Guardian Programmer’s Guide.)

SMU_Assign_Delete_ CRE/Guardian

SMU_Assign_GetText_ CRE/Guardian

SMU_Assign_GetValue_ CRE/Guardian

SMU_Assign_PutText_ CRE/Guardian

SMU_Assign_PutValue_ CRE/Guardian

SMU_Message_CheckNumber_ CRE/Guardian

SMU_Param_Delete_ CRE/Guardian

SMU_Param_GetText_ CRE/Guardian

SMU_Param_PutText_ CRE/Guardian

SMU_Startup_Delete_ CRE/Guardian

SMU_Startup_GetText_ CRE/Guardian

SMU_Startup_PutText_ CRE/Guardian

Topics Sources

CLU_PROCESS_CREATE_ routine
CLU_PROCESS_FILE_NAME_ routine

CRE Programmer’s Guide

ZCRESRL file ZCRESRL Overview

Table 13-10. CLULIB Routines (page 2 of 2)

Utility Routine Environments
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-31

Libraries and Utility Routines Saved Message Utility (SMU) Overview
Programs compiled with the COBOL85 compiler can call all of the SMU routines listed
in Table 13-1. Programs compiled with the NMCOBOL compiler can call only the new
routines.

Figure 13-3. Effect of Saved Message Utility (SMU) Routines

Table 13-11. Saved Message Utility (SMU) Routines (page 1 of 2)

Original Routine1 New Routine2

ALTERPARAMTEXT None

CHECKLOGICALNAME SMU_Assign_CheckName_

CHECKMESSAGE SMU_Message_CheckNumber_

DELETEASSIGN SMU_Assign_Delete_

DELETEPARAM SMU_Param_Delete_

DELETESTARTUP SMU_Startup_Delete_

GETASSIGNTEXT SMU_Assign_GetText_

1. In the COBOLLIB file. Extension to the HP COBOL and FORTRAN 77 products, except as noted.

2. In the CLULIB file for the COBOL85 compiler and the ZCRESRL file for the NMCOBOL compiler.

3. In the OSS environment, you can also use the HP C getenv function. SMU_Param_GetText_ returns only
PARAM equivalents, but the HP C getenv function returns other environment variables as well.

4. Not an extension to the HP COBOL and FORTRAN 77 products

Descendent
Process

"Parent" COBOL process

Saves the messages

Modifies the messages

Uses CREATEPROCESS to launch
a new process that has custom-
tailored ASSIGN, PARAM, and
startup messages

Startup Message (IN, OUT, default volume and subvolume)

ASSIGNs (fd-name = actual-file-name)

PARAMs (name and associated value)

Saved
Messages

VST521.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-32

Libraries and Utility Routines Saved Message Utility (SMU) Overview
GETASSIGNVALUE SMU_Assign_GetValue_

GETBACKUPCPU None

GETPARAMTEXT SMU_Param_GetText_3

GETSTARTUPTEXT SMU_Startup_GetText_

PUTASSIGNTEXT SMU_Assign_PutText_

PUTASSIGNVALUE SMU_Assign_PutValue_

PUTPARAMTEXT4 SMU_Param_PutText_

PUTSTARTUPTEXT SMU_Startup_PutText_

Table 13-12. Message Operated Upon by Saved Message Utility (SMU) Routines

Function

Messages Operated Upon

STARTUP ASSIGN PARAM

CHECK CHECKLOGICALNAME

SMU_Assign_CheckName_

CHECKMESSAGE

SMU_Message_CheckNumber_

GET GETSTARTUPTEXT

SMU_Startup_GetText_

GETASSIGNTEXT

SMU_Assign_GetText_

GETASSIGNVALUE

SMU_Assign_GetValue_

GETPARAMTEXT

SMU_Param_GetText_

GETBACKUPCPU

PUT PUTSTARTUPTEXT

SMU_Startup_PutText_

PUTASSIGNTEXT

SMU_Assign_PutText_

PUTASSIGNVALUE

SMU_Assign_PutValue_

PUTPARAMTEXT

SMU_Param_PutText_

DELETE DELETESTARTUP

SMU_Startup_Delete_

DELETEASSIGN

SMU_Assign_Delete_

DELETEPARAM

SMU_Param_Delete_

ALTER ALTERPARAMTEXT

Table 13-11. Saved Message Utility (SMU) Routines (page 2 of 2)

Original Routine1 New Routine2

1. In the COBOLLIB file. Extension to the HP COBOL and FORTRAN 77 products, except as noted.

2. In the CLULIB file for the COBOL85 compiler and the ZCRESRL file for the NMCOBOL compiler.

3. In the OSS environment, you can also use the HP C getenv function. SMU_Param_GetText_ returns only
PARAM equivalents, but the HP C getenv function returns other environment variables as well.

4. Not an extension to the HP COBOL and FORTRAN 77 products
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-33

Libraries and Utility Routines Saved Message Utility (SMU) Overview
The SMU consists of these routines. For complete descriptions of these routines, see
Saved Message Utility (SMU) Routines.

Routine Description

ALTERPARAMTEXT Creates or replaces the value for a specific parameter
name, in the saved PARAM message (enables you to
include trailing spaces in the new value, unlike the
PUTPARAMTEXT routine)

CHECKLOGICALNAME

SMU_Assign_CheckName_

Checks whether a saved ASSIGN message with a given
logical file name exists

CHECKMESSAGE

SMU_Message_CheckNumber_

Checks whether a specific saved message exists

DELETEASSIGN

SMU_Assign_Delete_

Deletes either a portion or all of a saved ASSIGN
message

DELETEPARAM

SMU_Param_Delete_

Deletes either a portion or all of the saved PARAM
message

DELETESTARTUP

SMU_Startup_Delete_

Deletes the entire saved startup message

GETASSIGNTEXT

SMU_Assign_GetText_

Retrieves a portion of a saved ASSIGN message as text
and assigns it to a string variable

GETASSIGNVALUE

SMU_Assign_GetValue_

Retrieves a portion of a saved ASSIGN message as an
integer and assigns it to an integer variable

GETBACKUPCPU Retrieves a backup processor number from the saved
PARAM message

GETPARAMTEXT

SMU_Param_GetText_

Retrieves a portion of the saved PARAM message as
text and assigns it to a string variable

GETSTARTUPTEXT

SMU_Startup_GetText_

Retrieves a portion of the saved startup message as text
and assigns it to a string variable

PUTASSIGNTEXT

SMU_Assign_PutText_

Creates or replaces a portion of a saved ASSIGN
message with text from a string variable

PUTASSIGNVALUE

SMU_Assign_PutValue_

Creates or replaces a portion of a saved ASSIGN
message with a value from an integer variable

PUTPARAMTEXT

SMU_Param_PutText_

Creates or replaces a portion of the saved PARAM
message with text from a string variable

PUTSTARTUPTEXT

SMU_Startup_PutText_

Creates or replaces a portion of the saved startup
message with text from a string variable
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-34

Libraries and Utility Routines Checkpoint Lists for Process Pairs
These routines operate upon copies of the process-creation messages that establish
the execution environment of the program. Copies of these messages are not saved
automatically and must be requested by a SAVE directive in the main program. For
information on the SAVE directive, see SAVE.

Topics:

• Checkpoint Lists for Process Pairs (non-CRE environment only)

• Defined Portions of Saved Messages

Checkpoint Lists for Process Pairs
This topic applies only to non-CRE SMU routines, as CRE SMU routines do not
support checkpointing.

In an HP COBOL program, the saved message storage space is not part of the direct
variable space. When a program designed to run as a process pair needs to change or
delete saved messages, it needs a checkpoint list.

A checkpoint list is a COBOL record with a specific structure in which the message
changes are recorded. (Examples of checkpoint lists are given in the individual routine
descriptions in Saved Message Utility (SMU) Routines where required.)

The information in a checkpoint list must be transmitted to the backup member of a
process pair, just as values of critical HP COBOL program variables must. This is the
purpose of the CHECKPOINT statement. When a checkpoint list appears in a
CHECKPOINT statement, the reserved word QUEUE must precede its name.
Checkpoint lists can be mixed with any of the other items that are legal in a
CHECKPOINT statement, as in this example:

CHECKPOINT ITEM-1, QUEUE CP-LIST-1, ITEM-2, FILE ITEM-3.

The compiler interprets CP-LIST-1 as a checkpoint list and checkpoints the information
it contains and the values of the other items. It then resets CP-LIST-1 to empty so that
its information storage space is available to record further message changes.

Caution. An HP COBOL program must not modify the contents of a checkpoint list directly.
The execution logic of the routines and the CHECKPOINT statement maintain checkpoint lists
without any other program action.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-35

Libraries and Utility Routines Defined Portions of Saved Messages
Defined Portions of Saved Messages
The SMU routines operate on the ASSIGN, PARAM, and startup messages, which
have standard sets of defined portions.

The PARAM message portions consist of the set of parameter names and their values.
A legal parameter name identifier is any combination of letters, digits, hyphens, and
circumflexes. It can contain a maximum of 30 characters.

Table 13-13. Portions of the ASSIGN Message

Portion What It Identifies Portion Type

LOGICALNAME Logical unit name Text message portion

TANDEMNAME File-system file name Text message portion

PRIEXT Primary extent size Integer message portion

SECEXT Secondary extent size Integer message portion

FILECODE File code Integer message portion

EXCLUSION Exclusion mode Integer message portion

ACCESS Access mode Integer message portion

RECSIZE Record size Integer message portion

BLKSIZE Block size Integer message portion

Table 13-14. Portions of the Startup Message

Portion What It Identifies Portion Type

VOLUME Default volume and subvolume names Text message portion

IN Input file name Text message portion

OUT Output file name Text message portion

STRING Message’s parameter string Text message portion

Table 13-15. Portions of the PARAM Message

Portion What It Identifies Portion Type

Parameter name Associated parameter value Text message portion
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-36

Libraries and Utility Routines ZCRESRL Overview
ZCRESRL Overview
ZCRESRL, a native SRL (public shared run-time library), is the native CRE run-time
library. It contains the CRE routines which, for the COBOL85 compiler, resided in either
the system library or CLULIB—that is, the CRE versions of the SMU routines.
ZCRESRL routines are not bound into a user object file. The NMCOBOL compiler
consults ZCRESRL automatically.

ZCRESRL resides on the subvolume $SYSTEM.SYSnn.

The ZCRESRL routines are:

• CLU_PROCESS_CREATE_
• SMU_Assign_CheckName_
• SMU_Assign_Delete_
• SMU_Assign_GetText_
• SMU_Assign_GetValue_
• SMU_Assign_PutText_
• SMU_Assign_PutValue_
• SMU_Message_CheckNumber_
• SMU_Param_Delete_
• SMU_Param_GetText_
• SMU_Param_PutText_
• SMU_Startup_Delete_
• SMU_Startup_GetText_
• SMU_Startup_PutText_

CLU_PROCESS_CREATE_ is available in the Guardian and OSS environments, but
the SMU routines are available only in the Guardian environment.

Topics Sources

CLU_PROCESS_CREATE_ routine CRE Programmer’s Guide

Other ZCRESRL routines Saved Message Utility (SMU) Routines
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-37

Libraries and Utility Routines CBL85UTL and ZCOBSRL Routines
CBL85UTL and ZCOBSRL Routines
This topic explains the individual routines in the CBL85UTL file, which is for the
COBOL85 compiler. The CRE routines are also in the ZCOBSRL file, which is for the
NMCOBOL compiler.

Corresponding COBOL-environment and CRE routines have the same parameters,
with this exception: COBOL85^COMPLETION has the parameter text-length, but
COBOL_COMPLETION_ does not (the CRE gets the text length from the specified text
instead).

If you omit an optional parameter when you call a CBL85UTL or ZCOBSRL routine,
you must put the keyword OMITTED in its position if you specify subsequent
parameters. Trailing OMITTEDs are not required. (The syntax diagrams do not reflect
this, because it would make them much harder to read.)

Table 13-16. CBL85UTL and ZCOBSRL Routines

COBOL-Environment Routine1 CRE Routine2

COBOL85^ARMTRAP None (unnecessary)

COBOL85^COMPLETION COBOL_COMPLETION_

None COBOL_CONTROL_

None COBOL_GETENV_

None COBOL_PUTENV_

COBOL85^RETURN^SORT^ERRORS3 COBOL_RETURN_SORT_ERRORS_3

COBOL85^REWIND^SEQUENTIAL COBOL_REWIND_SEQUENTIAL_

COBOL85^SET^SORT^PARAM^TEXT3 COBOL_SET_SORT_PARAM_TEXT_3

COBOL85^SET^SORT^PARAM^VALUE3 COBOL_SET_SORT_PARAM_VALUE_3

None COBOL_SET_MAX_RECORD_

None COBOL_SETMODE_

COBOL85^SPECIAL^OPEN2 COBOL_SPECIAL_OPEN_4

1. These routines are only in CBL85UTL, not in ZCOBSRL.

2. These routines are in both CBL85UTL and ZCOBSRL.

3. FastSort interface routine.

4. This routine replaces the COBOLSPOOLOPEN routine (for level 2 spooling) and Guardian environment
routines (for level 3 spooling). The COBOLSPOOLOPEN routine is in the COBOLLIB library.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-38

Libraries and Utility Routines COBOL85^ARMTRAP
Topics:

• COBOL85^ARMTRAP

• COBOL85^COMPLETION and COBOL_COMPLETION_

• COBOL_CONTROL_

• COBOL_GETENV_

• COBOL_PUTENV_

• COBOL85^RETURN^SORT^ERRORS and COBOL_RETURN_SORT_ERRORS_

• COBOL85^REWIND^SEQUENTIAL and COBOL_REWIND_SEQUENTIAL_

• COBOL85^SET^SORT^PARAM^TEXT and COBOL_SET_SORT_PARAM_TEXT_

• COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_

• COBOL_SET_MAX_RECORD_

• COBOL_SETMODE_

• COBOL85^SPECIAL^OPEN and COBOL_SPECIAL_OPEN_

COBOL85^ARMTRAP
The COBOL85^ARMTRAP routine stops a process when an arithmetic overflow
occurs. Without COBOL85^ARMTRAP, the process would enter the selected debugger
(see Debugger Selection). Use the COBOL85^ARMTRAP routine in the Guardian
environment.

If an arithmetic overflow occurs, COBOL85^ARMTRAP either stops the process in
which the overflow occurred or enters the selected debugger. In either case, it also
writes a run-time diagnostic message to the output device. COBOL85^ARMTRAP is
unavailable and unnecessary in the CRE and native HP COBOL.

Topics Sources

Debugger selection Debugger Selection

Run-time diagnostic messages Section 48, Run-Time Diagnostic Messages

ENTER COBOL85^ARMTRAP" "
ns ns

VST341.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-39

Libraries and Utility Routines COBOL85^COMPLETION and
COBOL_COMPLETION_
COBOL85^COMPLETION and COBOL_COMPLETION_
The COBOL85^COMPLETION and COBOL_COMPLETION_ routines pass completion
parameters to either the STOP or ABEND routine in the operating environment
(depending on the abend-or-stop parameter).

USING

library-reference

abend-or-stop

ENTER COBOL85^COMPLETION" "
TAL

OF

completion-code

termination-info

subsys-id

text-length

text

ns ns

VST342.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-40

Libraries and Utility Routines COBOL85^COMPLETION and
COBOL_COMPLETION_
The CRE equivalent of COBOL85^COMPLETION is COBOL_COMPLETION_. Unlike
COBOL85^COMPLETION, COBOL_COMPLETION_ does not accept the parameter
text-length.

library-reference

is a mnemonic-name in the SPECIAL-NAMES paragraph. For the COBOL85
compiler, this mnemonic-name is associated with either
$SYSTEM.SYSTEM.CBL85UTL or some other object file containing an object
copy of COBOL85^COMPLETION. For the NMCOBOL compiler, this mnemonic-
name is associated with either $SYSTEM.SYSnn.ZCOBSRL or some other object
file containing an object copy of COBOL_COMPLETION_.

abend-or-stop

is a numeric operand that specifies either the STOP or ABEND routine. abend-
or-stop is evaluated and truncated to produce an integer result with a value in
the range of -32,768 through 32,767. The value 0 specifies the STOP routine; all
other values specify the ABEND routine. The default is 0.

completion-code

is a numeric operand, the evaluation of which includes truncation as necessary to
an integer result with a value in the range of -32,768 through 32,767. If this
parameter is present, the value is passed to STOP or ABEND as the
completion-code parameter for that routine.

USING

library-reference

abend-or-stop

ENTER COBOL_COMPLETION_" "
TAL

OF

completion-code

termination-info

subsys-id

text

ns ns

VST343.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-41

Libraries and Utility Routines COBOL85^COMPLETION and
COBOL_COMPLETION_
termination-info

is a numeric operand, the evaluation of which includes truncation as necessary to
an integer result with a value in the range of -32,768 through 32,767. If this
parameter is present, the value is passed to STOP or ABEND as the
termination-info parameter for that routine.

subsys-id

is a data item occupying at least twelve character positions. If this parameter is
present, a reference to the data item is passed to STOP or ABEND as the
subsys-id parameter for that routine.

text-length

is a numeric operand, the evaluation of which includes truncation as necessary to
an integer result. If this parameter is present, the value is passed to STOP or
ABEND as the length parameter for that routine.

text

is an alphanumeric data item containing at least as many characters as specified
by the value of text-length (alphabetic and alphanumeric-edited data items are
also permissible). If this parameter is present, a reference to the data item is
passed to STOP or ABEND as the text parameter for that routine.

Usage Considerations:

• Parameters Are Not Validated

When the run unit calls COBOL85^COMPLETION or COBOL_COMPLETION_, the
HP COBOL run-time routines terminate execution of the run unit in an orderly
fashion. The final step in the termination logic is to call either the STOP or the
ABEND routine of the operating environment (as specified by the implicit or explicit
abend-or-stop parameter value). All other parameters are made available to the
STOP or ABEND routine as described previously. It is the application’s
responsibility to verify that the combination of supplied parameters and their values
meet the expectations of the STOP or ABEND routine. Neither the
COBOL85^COMPLETION routine, the COBOL_COMPLETION_ routine, nor the
HP COBOL run-time routines validate the parameters.

• Calling COBOL85^COMPLETION or COBOL_COMPLETION_ From the CRE

A CRE HP COBOL program can call either COBOL85^COMPLETION (the
COBOL-environment routine) or COBOL_COMPLETION_ (the equivalent CRE
routine). If it calls COBOL85^COMPLETION, it actually calls
COBOL_COMPLETION_ indirectly.

COBOL85^COMPLETION has the parameter text-length, but
COBOL_COMPLETION_ does not (the CRE gets the text length from the specified
text instead).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-42

Libraries and Utility Routines COBOL_CONTROL_
COBOL_CONTROL_
The COBOL_CONTROL_ routine controls device-dependent I-O operations through a
call to the Guardian environment routine CONTROL.

If a no-waited, input-output request is active when the COBOL_CONTROL_ routine is
called, the request is completed before the CONTROL routine is called. If the file is
closed when the call is made, the request is queued until the next OPEN request for
the file is issued.

library-reference

is a mnemonic-name in the SPECIAL-NAMES paragraph. For the COBOL85
compiler, this mnemonic-name is associated with either
$SYSTEM.SYSTEM.CBL85UTL or some other object file containing an object
copy of COBOL_CONTROL_. For the NMCOBOL compiler, this mnemonic-name
is associated with either $SYSTEM.SYSnn.ZCOBSRL or some other object file
containing an object copy of COBOL_CONTROL_.

file-name

is a COBOL file name associated with a file that is not $RECEIVE and that is not
open for HP COBOL Fast I-O. If the file is not open, the call to the Guardian
environment routine CONTROL is made during the next successful open request
for the file.

operation

is a numeric data item or arithmetic expression that is the operation parameter
of the Guardian environment routine CONTROL. For more information, see the
Guardian Procedure Calls Reference Manual.

Caution. The HP COBOL run-time library does not attempt to validate calls to CONTROL. To
avoid interfering with the operation of the HP COBOL run-time library, use
COBOL_CONTROL_ only if absolutely necessary.

USING file-name operation param

cpinfo

GIVING error-return

OF library-reference

VST610.vsd

ns ns
ENTER " "COBOL_CONTROL_
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-43

Libraries and Utility Routines COBOL_CONTROL_
param

is a numeric data item or arithmetic expression that is the param parameter of the
Guardian environment routine CONTROL. For more information, see the Guardian
Procedure Calls Reference Manual.

cpinfo

is a checkpoint list in which the routine records the changes to the message
storage data space, for example:

01 CP-LIST-1.
 05 MAX-COUNT PIC 9999 COMP VALUE IS 100.
 05 CURRENT-COUNT PIC 9999 COMP VALUE IS 0.
 05 ELEMENT PIC 9(9) COMP OCCURS 100 TIMES.

The initial value of MAX-COUNT must be the same as the number of occurrences
of ELEMENT.

In the non-CRE environment, the initial value of MAX-COUNT is the maximum
number of elements that cpinfo can contain. In the CRE, the maximum number
of elements that cpinfo can contain is the initial value of MAX-COUNT divided
by 2.5. The cpinfo in the preceding example can contain 100 elements in the
non-CRE environment, but only 40 in the CRE.

The required number of table elements depends on the number of operations the
list must record. The worst-case situation uses six elements.

A complete checkpoint list is required only when a program has a backup that must
be kept current. When a record of changes is not required, a null checkpoint list
can be used. This is an example description:

03 CP-LIST-1 PIC 9(9) COMP VALUE IS 0.

error-return

is a numeric data item that has one of these values upon completion:

Value Meaning (page 1 of 2)

n The call to CONTROL caused Guardian file error n.

0* No error occurred.

1 A required parameter is missing.

*error-return is 0 for a deferred call (that is, one that is held until the file is open). If an error occurs at
that time, a run-time diagnostic is issued.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-44

Libraries and Utility Routines COBOL_GETENV_
Usage Consideration: In a fault-tolerant program, put the CHECKPOINT statement that
specifies cpinfo immediately before the call to COBOL_CONTROL_; otherwise, the
queued information can be lost if a backup process takes over.

COBOL_GETENV_
The COBOL_GETENV_ routine returns the value of a specified environment variable.
This routine is available only to programs compiled for the CRE.

env-var

is the name of the environment variable whose value is to be returned. It cannot
have trailing spaces or a zero-byte terminator.

return-value

is the name of the variable that will hold the returned value of env-var. It must be
large enough to hold the maximum possible value of env-var.

length

is the number of characters that return-value contains. If length is zero,
env-var was not found.

2 file-name is not a COBOL file name.

5 One of:

• file-name specifies an open file that is either $RECEIVE or is open for
Fast I-O.

• file-name specifies a closed file and there is not enough control space
to allocate the queued information for the next open request.

• The program is running in the non-CRE environment and cpinfo has
too few entries.

Value Meaning (page 2 of 2)

*error-return is 0 for a deferred call (that is, one that is held until the file is open). If an error occurs at
that time, a run-time diagnostic is issued.

ENTER

USING env-var

COBOL_GETENV_" "

lengthGIVING

ns ns

return-value

VST722.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-45

Libraries and Utility Routines COBOL_PUTENV_
COBOL_PUTENV_
The COBOL_PUTENV_ routine sets a specified environment variable to a specified
value. This routine is available only to programs compiled for the CRE.

env-var

is the name of the environment variable whose value is to be set. It cannot have
trailing spaces or a zero-byte terminator.

return-value

is zero if the value of env-var was successfully set, nonzero if the value of env-
var was not set because of insufficient heap space.

COBOL85^RETURN^SORT^ERRORS and
COBOL_RETURN_SORT_ERRORS_

The COBOL85^RETURN^SORT^ERRORS and COBOL_RETURN_SORT_ERRORS_
routines return any error message from the FastSort utility program.

ENTER

USING env-var

COBOL_PUTENV_" "

GIVING

ns ns

return-value

VST723.vsd

ENTER

USING

library-reference

sd-name

COBOL85^RETURN^SORT^ERRORS" "

OF

error-report

return-code

COBOL_RETURN_SORT_ERRORS_

GIVING

ns ns

VST344.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-46

Libraries and Utility Routines COBOL85^RETURN^SORT^ERRORS and
COBOL_RETURN_SORT_ERRORS_
library-reference

is a mnemonic-name in the SPECIAL-NAMES paragraph. For the COBOL85
compiler, this mnemonic-name is associated with either
$SYSTEM.SYSTEM.CBL85UTL or some other object file containing an object
copy of COBOL85^RETURN^SORT^ERRORS. For the NMCOBOL compiler, this
mnemonic-name is associated with either $SYSTEM.SYSnn.ZCOBSRL or some
other object file containing an object copy of
COBOL_RETURN_SORT_ERRORS_.

sd-name

is the COBOL name of a file defined in an SD entry. The specification of the
remaining parameter is applied to any subsequent SORT or MERGE statements
that refer to this file name. If a subsequent call to the same routine refers to the
same sd-name, that call resets the specifications for any subsequent SORT or
MERGE statements that refer to the same file name.

error-report

is an 01 level item with this structure:

01 error-info
 02 error-message-text PIC X(64).
 02 error-message-length NATIVE-2.
 02 error-code.
 03 file-system-code NATIVE-2.
 03 input-file-index NATIVE-2.
 03 sort-code NATIVE-2.
 02 error-source NATIVE-2.
 02 subsort-index NATIVE-2.
 02 subsort-id NATIVE-2

For the meaning of these fields, see the FastSort Manual discussion of
SORTERRORSUM. The input-file-index and sort-code are partial word
fields in that section, but are full word fields in the above record. If this parameter is
omitted, any previously set error reporting is cleared.

return-code

is an identifier of a numeric data item in which an error value will be returned. The
expected values and their respective meanings are:

Value Meaning

0 The call was correct.

1 file-name does not name a sort-merge file.

2 error-report is not the correct length.

5 Space for the options block cannot be allocated.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-47

Libraries and Utility Routines COBOL85^RETURN^SORT^ERRORS and
COBOL_RETURN_SORT_ERRORS_
Usage Considerations:

• Error Detection and Reporting

If the process calls COBOL85^RETURN^SORT^ERRORS or
COBOL_RETURN_SORT_ERRORS_ before it executes a SORT or MERGE
statement, the HP COBOL run-time library returns the appropriate values in
error-info after execution of a a RELEASE, RETURN, SORT, or MERGE
statement.

If the sort/merge routines do not detect errors during the execution of one of the
above statements, sort-code is set to 0 and the contents of the other data items
is undefined (unpredictable).

If the sort/merge routines do detect an error, the HP COBOL run-time routines
terminate execution of the sort process and return to the program with the fields of
error-info set to the values returned by the sort/merge routines. The
HP COBOL run-time routines do not produce error messages of their own (they
typically go to the home terminal), and no recovery is possible.

It is your responsibility to determine whether the operation is successful, and to
determine how to proceed. If the error happened during execution of a RELEASE
or RETURN statement, execution should proceed to the end of the input or output
procedure, at which point it continues after the SORT or MERGE statement.

If an error occurs without the process ever having made a call to
COBOL85^RETURN^SORT^ERRORS or COBOL_RETURN_SORT_ERRORS_
(or if the error-report parameter was omitted, cancelling further error reporting), the
HP COBOL run-time library processes sort errors, prints a message on the error
file (normally the home terminal) that has all of the above information, and
abnormally terminates the run unit.

• Calling COBOL85^RETURN^SORT^ERRORS or
COBOL_RETURN_SORT_ERRORS_ From the CRE in the Guardian Environment

In the Guardian environment, a CRE HP COBOL program can call either
COBOL85^RETURN^SORT^ERRORS (the COBOL-environment routine) or
COBOL_RETURN_SORT_ERRORS_ (the equivalent CRE routine). If it calls
COBOL85^RETURN^SORT^ERRORS, it actually calls
COBOL_RETURN_SORT_ERRORS_ indirectly.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-48

Libraries and Utility Routines COBOL85^REWIND^SEQUENTIAL and
COBOL_REWIND_SEQUENTIAL_
COBOL85^REWIND^SEQUENTIAL and
COBOL_REWIND_SEQUENTIAL_

The COBOL85^REWIND^SEQUENTIAL and COBOL_REWIND_SEQUENTIAL_
routines enable you to reposition a sequential disk or single-file tape file to its
beginning without closing and reopening it.

library-reference

is a mnemonic-name in the SPECIAL-NAMES paragraph. For the COBOL85
compiler, this mnemonic-name is associated with either
$SYSTEM.SYSTEM.CBL85UTL or some other object file containing an object
copy of COBOL85^REWIND^SEQUENTIAL. For the NMCOBOL compiler, this
mnemonic-name is associated with either $SYSTEM.SYSnn.ZCOBSRL or some
other object file containing an object copy of COBOL_REWIND_SEQUENTIAL_.

file-name

is the name of a COBOL data file; that is, a file described in a File Description
entry. It must be an FD name associated with a file name that specifies an
unstructured or entry sequenced file.

return-code

is an identifier of a numeric data item in which an error value will be returned. The
expected values and their respective meanings are:

Value Meaning

0 Successful execution

1 file-name is missing or is invalid.

5 An operation error occurred (for example, the file could not be rewound).

USING

library-reference

file-name

ENTER " "

OF

return-codeGIVING

COBOL85^REWIND^SEQUENTIAL

COBOL_REWIND_SEQUENTIAL_

ns ns

VST345.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-49

Libraries and Utility Routines COBOL85^REWIND^SEQUENTIAL and
COBOL_REWIND_SEQUENTIAL_
Usage Considerations:

• File Criteria

file-name must be a valid COBOL file name, the file associated with file-
name must be open at the time of the call and the file-control entry for file-name
must specify ORGANIZATION SEQUENTIAL.

If these criteria are not met, return-code (if specified) is set to 1, I-O Status for
file-name is set to “30” (if file-name is a COBOL file name), GUARDIAN-
ERR is set to 0, and no action is taken on the file (the rewind operation is
considered to be unsuccessful, but execution of the run unit continues).

• Successful Rewind Operation

If the rewind operation is successful, the run-time routine rewinds the file if
rewinding or the concept of rewinding applies to the file, I-O Status is set to “00,”
and GUARDIAN-ERR is set to 0.

• If Rewind Does Not Apply to the File

If rewinding does not apply to the file (a printer for example), I-O Status is set to
“07,” GUARDIAN-ERR is set to 0, and the operation is a “no-op.”

• File Position Indicator

For all files, the file position indicator is set as if the file were newly opened. If
alternate keys are specified for the file, the key of reference is set to the prime key.

• Calling COBOL85^REWIND^SEQUENTIAL or COBOL_REWIND_SEQUENTIAL_
From the CRE

A CRE HP COBOL program can call either COBOL85^REWIND^SEQUENTIAL
(the COBOL-environment routine) or COBOL_REWIND_SEQUENTIAL_ (the
equivalent CRE routine). If it calls COBOL85^REWIND^SEQUENTIAL, it actually
calls COBOL_REWIND_SEQUENTIAL_ indirectly.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-50

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^TEXT and
COBOL_SET_SORT_PARAM_TEXT_
COBOL85^SET^SORT^PARAM^TEXT and
COBOL_SET_SORT_PARAM_TEXT_

The COBOL85^SET^SORT^PARAM^TEXT and COBOL_SET_SORT_PARAM_TEXT_
routines establish alphanumeric parameters in the option block (the local list of
parameters that HP COBOL passes to FastSort for the next sort or merge operation).

library-reference

is a mnemonic-name in the SPECIAL-NAMES paragraph. For the COBOL85
compiler, this mnemonic-name is associated with either
$SYSTEM.SYSTEM.CBL85UTL or some other object file containing an object
copy of COBOL85^SET^SORT^PARAM^TEXT. For the NMCOBOL compiler, this
mnemonic-name is associated with either $SYSTEM.SYSnn.ZCOBSRL or some
other object file containing an object copy of
COBOL_SET_SORT_PARAM_TEXT_.

Note. COBOL85 only: COBOL85^SET^SORT^PARAM^TEXT and
COBOL_SET_SORT_PARAM_TEXT_ use a protocol different from that used for normal TAL
procedures. The ENTER verb must not be followed by the keyword TAL.

ENTER COBOL85^SET^SORT^PARAM^TEXT" "
COBOL_SET_SORT_PARAM_TEXT_

USING

library-reference

sd-name

OF

return-codeGIVING

param-id param-text

subsort-number

ns ns

VST346.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-51

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^TEXT and
COBOL_SET_SORT_PARAM_TEXT_
sd-name

is the COBOL name of a file defined in an SD entry. The specification of the
remaining parameter is applied to any subsequent SORT or MERGE statements
that refer to this file name. If a subsequent call to a FastSort routine refers to the
same sd-name and to the same parameter, that call resets the specifications for
any subsequent SORT or MERGE statements that refer to the same file name.
Certain parameters can be reset to their default values, as indicated in the
discussion of the parameters below.

param-id

is one of:

CPU-MASK
SCRATCH-FILE
SWAP-FILE
NO-CPU-MASK
SORT-PROGRAM

param-text

is the identifier of an alphanumeric data item whose contents is used for the
parameter specified by param-id. If this parameter is omitted, any text previously
set for this value of param-id is reset to its default value.

The value of param-text depends on the value of param-id and sometimes
on the value of subsort-number (see Table 13-17).

subsort-number

is a numeric operand whose value specifies the sort process to which the
parameter pertains. The number of subsorts must have been set previously, and
the specified subsort-number must be in the range 0 to that number.

The value of subsort-number depends on the value of param-id
(seeTable 13-17).

return-code

is an identifier of a numeric data item in which an error value will be returned. The
expected values and their respective meanings are:

Value Meaning

0 The call was correct.

1 file-name does not name a sort-merge file.

2 param-id is not one of the allowed values.

3 param-text does not conform to the expected values.

4 subsort-number was not within the range of the specified number of
subsorts.

5 Space for the options block cannot be allocated.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-52

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^TEXT and
COBOL_SET_SORT_PARAM_TEXT_
Table 13-17. Relationship Between param-id, subsort-number, and param-
text (page 1 of 2)

param-id subsort-number param-text

CPU-MASK Unspecified or 0 Contains a string of zeros and ones, with a
maximum of 16 characters. The value of each
character indicates whether a processor is to be
used for subsort processes for a parallel sort. The
leftmost character corresponds to processor 0, the
next to 1, and so on, up to processor 15. If there
are fewer than 16 characters, the unspecified
ones are assumed to be 0.

If the value of the data item is “0” (ASCII zero),
that processor will not be used. If the value is “1,”
that processor is a candidate for use. Any other
value is an error.

Default: All processors on the system are
candidates for use.

NO-CPU-MASK Unspecified or 0 Contains a string of zeros and ones, with a
maximum of 16 characters. The value of each
character indicates whether a processor is to be
used for subsort processes for a parallel sort. The
leftmost character corresponds to processor 0, the
next to 1, and so on, up to processor 15. If there
are fewer than 16 characters, the unspecified
ones are assumed to be 0.

If the value of the data item is “0” (ASCII zero),
that processor will not be used. If the value is “1,”
that processor is a candidate for use. Any other
value is an error.

NO-CPU-MASK overrides CPU-MASK.

SCRATCH-FILE File system name of file to be used by sort as a
scratch file. If only a volume name is specified,
FastSort assigns a scratch file on that volume;
otherwise, a legal file name must be specified.
ASSIGN commands that specify that file name are
ignored.

Unspecified or 0 File in the ASSIGN clause for the SD used is
used.

Greater than 0 Scratch file is assigned on $SYSTEM for that
subsort.

SORT-PROGRAM Unspecified or 0 File-system file name of the file that contains the
SORTPROG program. If SORTPROG is not
specified or is specified with a value of all spaces,
FastSort uses $SYSTEM.SYSTEM.SORTPROG.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-53

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^TEXT and
COBOL_SET_SORT_PARAM_TEXT_
Usage Consideration: In the Guardian environment, a CRE HP COBOL program can
call either COBOL85^SET^SORT^PARAM^TEXT (the COBOL-environment routine) or
COBOL_SET_SORT_PARAM_TEXT_ (the equivalent CRE routine). If it calls
COBOL85^SET^SORT^PARAM^TEXT, it actually calls
COBOL_SET_SORT_PARAM_TEXT_ indirectly.

SWAP-FILE File-system file name of the file to be used for the
extended memory swap file (must be on the local
system).

If the name is all spaces (the default value) or is
not specified, the swap file is created on the same
volume as the scratch file.

If the scratch file is not local, the swap file is
assigned on $SYSTEM.

If param-id is omitted (param-text and
subsort-number must also be omitted in this
case), all values and text previously set for sd-
name will be reset to their default values. This
option releases the option block (about 700
characters long), so you might want to use it if the
SD will not be referenced again in this program.

Unspecified or 0 If subsort-number is not specified or is 0, the
scratch file for the distributor/collector is implied.

If SUBSORT-COUNT is 0, the swap file for the
normal sort process in assigned.

Greater than 0 If SUBSORT-COUNT is greater than 0, the
subsort-number indicates the subsort to which the
swap file applies.

Table 13-17. Relationship Between param-id, subsort-number, and param-
text (page 2 of 2)

param-id subsort-number param-text
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-54

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_
COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_

The COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_ routines establish numeric parameters in the
option block. These parameters affect any subsequent SORT statement execution.

library-reference

is a mnemonic-name in the SPECIAL-NAMES paragraph. For the COBOL85
compiler, this mnemonic-name is associated with either
$SYSTEM.SYSTEM.CBL85UTL or some other object file containing an object
copy of COBOL85^SET^SORT^PARAM^VALUE. For the NMCOBOL compiler, this
mnemonic-name is associated with either $SYSTEM.SYSnn.ZCOBSRL or some
other object file containing an object copy of
COBOL_SET_SORT_PARAM_VALUE_.

Note. COBOL85^SET^SORT^PARAM^VALUE and COBOL_SET_SORT_PARAM_VALUE_
use a protocol different from that used for normal TAL procedures. The ENTER verb must not
be followed by the keyword TAL.

ENTER COBOL85^SET^SORT^PARAM^VALUE" "
COBOL_SET_SORT_PARAM_VALUE_

USING

library-reference

sd-name

OF

return-codeGIVING

param-id

param-value subsort-or-file-number

ns ns

VST347.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-55

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_
sd-name

is the COBOL name of a file defined in an SD entry. The specification of the
remaining parameter is applied to any subsequent SORT statements that refer to
this file name. If a subsequent call to a FastSort routine refers to the same file
name and to the same parameter, that call resets the specifications for any
subsequent sort operations that refer to the same file name. Certain parameters
can be reset to their default values, as indicated in the discussion of the
parameters below.

param-id

is an alphanumeric data item whose contents identify the parameter whose value is
to be set. The values param-id might contain are:

Any letter in the value can be either uppercase or lowercase.

If param-id, param-value, and subsort-or-file-number are all omitted,
the run-time routines reset all values and texts previously set for sd-name to their
default values. This option releases the option block (about 700 characters long),
so you may wish to use it if the SD will not be referenced again in this program.

param-value

is a numeric operand whose value gives the value to be used for the parameter
specified by param-id. If this parameter is omitted, any value previously set for
this value of param-id will be reset to its default value.

In the case where a value may be zero or nonzero, the nonzero value must be
greater than -2,147,483,648 and less than 2,147,483,648. If it is outside this range,
an arithmetic overflow will result when the ENTER statement executes.

The value of param-value depends on the value of param-id. See Usage
Considerations:.

BUFFER-SIZE MINSPACE SAVE-SCRATCH

CPU MINTIME SCRATCH-BLOCK

CREATE-NEW-OUTPUT NOPURGE-OUTPUT SCRATCH-CHECK

CREATE-NEW-SCRATCH NOWAIT-IO SECOND-BUFFER

DATA-SLACK OUT-FILE-EXCL SEGMENT

IN-FILE-COUNT OUT-FILE-FORMAT SUBSORT-COUNT

IN-FILE-EXCL PRIORITY OUT-FILE-EXCL

INDEX-SLACK REMOVE-DUPLICATES SYSTEM
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-56

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_
subsort-or-file-number

is a numeric operand whose value is the sort process to which the parameter
pertains or, if the parameter applies to a file, it is a file ordinal.

If a subsort-number is being supplied, the number of subsorts must have been
set previously (with the SUBSORT-COUNT parameter) and subsort-number
must be in the range 1 to that number. Subsort-number must be 0 if the parameter
applies to the distributor/collector process or if the number of subsorts has been
set to zero (a normal sort is implied). In the latter case, the parameter applies to
the normal sort.

return-code

is an identifier of a numeric data item in which an error value will be returned. The
expected values and their respective meanings are:

Usage Considerations:

• Calling COBOL85^SET^SORT^PARAM^VALUE or
COBOL_SET_SORT_PARAM_VALUE_ in the CRE

A CRE HP COBOL program can call either
COBOL85^SET^SORT^PARAM^VALUE (the COBOL-environment routine) or
COBOL_SET_SORT_PARAM_VALUE_ (the equivalent CRE routine). If it calls
COBOL85^SET^SORT^PARAM^VALUE, it actually calls
COBOL_SET_SORT_PARAM_VALUE_ indirectly.

Value Meaning

0 The call was correct.

1 The file-name does not name a sort-merge file.

2 The param-id does not have one of the allowed values.

3 The param-value is outside the allowed range.

4 If subsort-or-file-number is used to specify subsort-number, one of
these is true:

• subsort-number was not within the range of the specified number of
subsorts.

• subsort-number was required but not specified.

• subsort-number was specified, was nonzero and a subsort-number
was not legal for this parameter.

If subsort-or-file-number is used to specify file-number, then
file-number is not within the range 1 through 32.

5 Space for the options block cannot be allocated.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-57

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_
• Value of param-value Depends on Value of param-id

The default for each param-value is the same as the default for its param-id.
For example, if you do not specify BUFFER-SIZE, you get the same result as you
do if you specify BUFFER-SIZE with no param-value : you get 8192.

° BUFFER-SIZE

specifies the size of the buffer used for processing records when an input
procedure or an output procedure is specified.

The value of param-value must be greater than 4095 and less than 8193.
The default is 8192.

subsort-or-file-number must not be specified or must be 0.

° CPU

specifies a processor in which the sort or subsort is to occur.

Allowable
Value for
param-value Meaning

-1 If the param-value associated with SUBSORT-COUNT is 0 or
has not been specified, the sort process selects a processor.

If the param-value associated with SUBSORT-COUNT is
greater than 1, the selection of a processor depends on subsort-
or-file-number:

• If subsort-or-file-number is 0 or not specified, the
processor for the distributor/collector process will be the
same as that in which the run unit is executing.

• If subsort-or-file-number is greater than 0, the sort
process will select a processor for the specified subsort
depending on CPU-MASK and NO-CPU-MASK.

0 - maximum
processor
number of the
system

Specifies a specific processor. If the param-value associated
with SUBSORT-COUNT is 0 or not specified the processor
selected will be used for the distributor/collector process. If
subsort-or-file-number is specified, it indicates which
subsort will use the specified processor.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-58

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_
° CREATE-NEW-OUTPUT

specifies whether the output (GIVING) file is to be created anew or the existing
output file is to be used.

subsort-or-file-number must not be specified or must be 0.

° CREATE-NEW-SCRATCH

specifies whether the scratch file is to be created anew or the existing scratch
file is to be used.

subsort-or-file-number must not be specified or must be 0.

° DATA-SLACK

specifies a percentage of slack space in each data block for an indexed output
file. It is applicable only if one GIVING file is specified and that file is an
indexed file.

The value of param-value is in the range 0 through 99. The default is 0.

subsort-or-file-number must not be specified or must be 0.

° IN-FILE-COUNT

specifies the number of records that will be sorted from each input file or that
will be supplied by an input procedure. FastSort uses it to determine the size of
the scratch file.

Allowable Value
for param-value Meaning

0 (default) If the output file exists and is large enough for the sort, the data
is purged from the file. If the file is too small, the file is purged
and a new one is created.

nonzero The file is purged and a new one is created.

Allowable Value
for param-value Meaning

0 (default) If the scratch file exists and is large enough for the sort, the
data is purged from the file. If the file is too small, the file is
purged and a new one is created.

nonzero The file is purged and a new one is created.

Allowable Value for
param-value Meaning

-1 (default) FastSort uses a default based on the file assigned. For disk
files, FastSort calculates a number based on the file size.
For tape files or if an input procedure is used, the default is
50K.

1 - 2,147,483,647 Number of records that will be sorted from each input file or
that will be supplied by an input procedure.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-59

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_
Large sorts (greater than 50K records) may terminate abnormally with the
scratch file being too small if record-count is not used for sorts using tapes
or sorts using an input procedure. Small sorts may use more system resources
than necessary.

If subsort-or-file-number specifies a file number, it must be in the range
1 through 32. The number is the ordinal number of a USING file (from left to
right in the USING phrase of the next SORT statement that is executed). If an
input procedure is to be used, subsort-or-file-number should be
omitted or should be one.

° IN-FILE-EXCL

specifies the exclusion mode with which the sort opens a USING file.

If subsort-or-file-number specifies a file-number, it must be in the
range 1 through 32. The number is the ordinal number of a USING file (from
left to right in the USING phrase of the next SORT statement that is executed).

If subsort-or-file-number is omitted, the first file is assumed.

° INDEX-SLACK

specifies a percentage of slack space in each index block for an indexed
output file. It is applicable only if one GIVING file is specified and that file is an
indexed file.

The value of param-value is in the range 0 through 99. The default is 0.

subsort-or-file-number must not be specified or must be 0.

° MINSPACE

specifies whether FastSort is to operate in the MINSPACE mode; that is,
whether FastSort should attempt to restrict the use of physical memory at the
expense of sort time.

Allowable
Value for
param-value Meaning

-1 Default (exclusive for disk or tape, shared for any other file type)

 0 Shared

 1 Exclusive

 3 Protected

Allowable Value
for param-value Meaning

0 (default) FastSort uses up to 50% of the available physical memory. This
may result in loss of overall system performance if the system is
busy.

nonzero FastSort uses a 64-page extended memory area.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-60

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_
See the FastSort Manual for details.

subsort-or-file-number must not be specified or must be 0.

° MINTIME

specifies whether FastSort is to operate in the MINTIME mode; that is, whether
FastSort should attempt to reduce execution time at the expense of physical
memory.

See the FastSort Manual for details.

subsort-or-file-number must not be specified or must be 0.

° NOPURGE-OUTPUT

specifies whether FastSort is to purge an existing output (GIVING) file if it
seems too small.

subsort-or-file-number must not be specified or must be 0.

• NOWAIT-IO

specifies whether FastSort performs NOWAIT I-O in passing records to and
from the HP COBOL run-time interface (for input and output procedures, for
example).

subsort-or-file-number must not be specified or must be 0. If param-
value is nonzero, you must also specify SECOND-BUFFER.

NOWAIT-IO is ignored if the file if being read or written by FastSort. If
SECOND-BUFFER is not specified, FastSort error 74 occurs. If SECOND-
BUFFER cannot be allocated, run-time error 123 occurs, followed by FastSort
error 74.

Allowable Value
for param-value Meaning

0 (default) Operation is similar to MINSPACE mode.

nonzero Up to 70% of the available memory will be used.

Allowable Value for
param-value Meaning

0 (default) FastSort purges an existing GIVING file that seems too
small before writing the new data to it.

nonzero FastSort does not purge an existing GIVING file that seems
too small unless it has the wrong file type or wrong record
length.

Allowable Value for
param-value Meaning

0 (default) FastSort must use waited I-O.

nonzero FastSort must use NOWAIT I-O.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-61

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_
° OUT-FILE-EXCL

specifies the exclusion mode with which the sort opens a GIVING file.
Allowable values are:

subsort-or-file-number must not be specified or must be 0.

° OUT-FILE-FORMAT

specifies the format of the output file.

Allowable values are 0, 1, 2, and 3. The default value is 0. See the FastSort
Manual for details.

This parameter may cause problems if the record area is not large enough or
too large. Use it with caution.

subsort-or-file-number must not be specified or must be 0.

° PRIORITY

specifies the desired execution priority of the sort or subsort process.

If the param-value associated with SUBSORT-COUNT is 0 or not specified,
PRIORITY applies to the normal process and subsort-or-file-number
must be omitted or 0.

If the param-value associated with SUBSORT-COUNT is greater than 0,
subsort-or-file-number specifies the subsort to which the priority
applies; 0 refers to the distributor/collector process.

Value Exclusion Mode Specified

-1 Default (exclusive for disk or tape, shared for any other file type)

 0 Shared

 1 Exclusive

 3 Protected

Allowable Value
for param-value Meaning

-1 (default) The process is to have the same priority as the calling
process.

1 - 199 Specifies the desired priority.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-62

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_
° REMOVE-DUPLICATES

specifies whether FastSort should remove records with duplicate keys during
the sort operation.

subsort-or-file-number must not be specified or must be 0.

° SAVE-SCRATCH

specifies whether FastSort should save the scratch file after a sort run.

subsort-or-file-number must not be specified or must be 0.

° SCRATCH-BLOCK

specifies the size of the input and output blocks for the scratch file.

See the FastSort Manual for a description of this parameter.

subsort-or-file-number must not be specified or must be 0.

Allowable Value for
param-value Meaning

0 (default) Duplicates are not to be removed.

nonzero FastSort must remove every record whose keys duplicate
those of a previous record.

Allowable Value
for param-value Meaning

0 (default) FastSort must purge the scratch file after the sort run.

nonzero FastSort must save the scratch file, if it has an explicit name
(provided by a call to COBOL85^SET^SORT^PARAM^TEXT
or COBOL_SET_SORT_PARAM_TEXT_ with the
SCRATCH-FILE parameter).

Allowable Value
for param-value Meaning

-1 (default) FastSort chooses a default block size depending on the type
of disk on which the scratch file resides.

Any multiple of
512 in the range
512 through
32768

Size of the input and output blocks for the scratch file
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-63

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_
° SCRATCH-CHECK

specifies whether FastSort must check the size of each named scratch file to
see whether it is large enough.

Nonzero is the default for HP COBOL—the default for the FastSort product by
itself is 0).

subsort-or-file-number must not be specified or must be 0.

When the param-value associated with SUBSORT-COUNT is nonzero,
each subsort requires a scratch file. You must first call
COBOL85^SET^SORT^PARAM^TEXT or
COBOL_SET_SORT_PARAM_TEXT_ once for each subsort, specifying a
param-id of SCRATCH-FILE, a param-text giving a name for the scratch
file (usually just a volume name), and a subsort-number.

° SECOND-BUFFER

specifies whether FastSort must use a second buffer.

subsort-or-file-number must not be specified or must be 0.

° SEGMENT

specifies the size of the extended memory area, in pages.

Allowable Value
for param-value Meaning

0 FastSort must check scratch file size.

nonzero (default) FastSort must not check scratch file size.

Allowable Value for
param-value Meaning

0 (default) FastSort does not use a second buffer.

nonzero FastSort uses a second buffer, which is allocated in user
data space.

SECOND-BUFFER is ignored under any of these conditions:

• There is not enough space for a second buffer.

• NOWAIT-IO is not specified.

• The operation is a merge and none of the USING files
are magnetic tape files.

Allowable Value for
param-value Meaning

-1 (default) Segment size is controlled by the MINSPACE and MINTIME
parameters. The size cannot be more than 90% of the
processor’s physical memory not locked down by the
NonStop operating system.

64 - 8192(16 MB) Size of the extended memory area, in pages.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-64

Libraries and Utility Routines COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_
If subsort-or-file-number is specified, SEGMENT applies to the
indicated subsort.

If subsort-or-file-number is 0, SEGMENT applies to the
distributor/collector process.

If the param-value associated with SUBSORT-COUNT is 0 or not specified,
SEGMENT applies to the normal sort, and subsort-or-file-number must
be omitted or 0.

° SUBSORT-COUNT

specifies the number of parallel sorts that FastSort is to use to improve
performance.

subsort-or-file-number must not be specified or must be 0. An error
occurs if SUBSORT-COUNT has the value 1.

° SYSTEM

specifies the system on which the sorting is to occur.

A value other than -1 specifies that a particular other system will be used
(which may result in very poor performance).

subsort-or-file-number must not be specified or must be 0.

If the param-value associated with SUBSORT-COUNT is greater than 1,
SYSTEM is ignored (the current system is used).

Allowable Value for
param-value Meaning

0 (default) FastSort uses normal, non-parallel sort.

2 - 8 FastSort uses parallel sort, and the value of param-value
is the number of processes to be used. (A parallel sort
might be faster, but it uses more system resources. In a
busy system, this might cause an overall loss in system
throughput.)

Allowable Value for
param-value Meaning

-1 (default) Sorting occurs on the current system.

valid system number Sorting occurs on the system specified by param-value.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-65

Libraries and Utility Routines COBOL_SET_MAX_RECORD_
COBOL_SET_MAX_RECORD_
The COBOL_SET_MAX_RECORD_ routine sets the maximum record size in the
COBOL internal file block.

This routine is typically used to allow one file description (FD) to be used to write and
read files whose maximum record lengths are less than or equal to that specified in the
COBOL program. Without the use of this routine, if the file has a maximum record
length that is shorter than that specified in the program, you can open the file in INPUT
mode, but not in EXTEND or I-O mode.

file-name

is the COBOL file name of the file to be affected. It must be the name of a file
defined by an FD, not a sort-merge file description (SD). In the non-CRE
environment, the FD cannot contain the EXTERNAL phrase. At the time the
ENTER statement is executed, the file connector referenced by file-name must
not be open.

new-length

is the new maximum record size. It must be less than 4096 and must not be larger
than the length specified in the RECORD clause in the FD; if no RECORD clause
is specified, new-length must not be larger than the largest record description
associated with the FD. The compiler cannot determine if the new size is too large;
improper use can cause corruption when reading the file. It is your responsibility to
ensure this does not happen.

If you omit new-length, the run-time system queries the file that will be assigned
when the file is opened and uses the maximum record length from that file.

ENTER COBOL_SET_MAX_RECORD_"

USING

new-length

resultGIVING

"
ns ns

file-name

VST737.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-66

Libraries and Utility Routines COBOL_SETMODE_
return

is a variable into which the routine places a value indicating the success of the
operation:

Usage Consideration: If you use COBOL_ASSIGN_ or another method to assign the
physical file before the OPEN occurs, that assignment must take place before you call
COBOL_SET_MAX_RECORD_.

COBOL_SETMODE_
The COBOL_SETMODE_ routine sets device-dependent functions using a call to the
Guardian environment routine SETMODE.

If a NOWAIT input-output request is active when the COBOL_SETMODE_ routine is
called, the request is completed before the SETMODE routine is called. If the file is
closed when the call is made, the request is queued until the next OPEN request for
the file is issued.

Value Meaning

0 The operation was successful.

1 The first parameter is missing.

2 One of these occurred:

• The first parameter is not a file-name of an FD.
• The second parameter is greater than 4095.
• For the non-CRE environment: the FD is external.

3 The second parameter has been omitted and no file exists from which to obtain
the record length.

5 The file is not closed.

Caution. The HP COBOL run-time library does not attempt to validate calls to SETMODE. To
avoid interfering with the operation of the HP COBOL run-time library, use
COBOL_SETMODE_ only if absolutely necessary.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-67

Libraries and Utility Routines COBOL_SETMODE_
library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.CBL85UTL or some other object file containing an object
copy of COBOL_SETMODE_.

file-name

is a COBOL file name associated with a file that is not $RECEIVE and is not open
for HP COBOL Fast I-O. If the file is not open, the call to the Guardian environment
routine SETMODE is made during the next successful open request for the file.

function

is a numeric data item or arithmetic expression that is the function parameter of
the Guardian environment routine SETMODE. For more information, see the
Guardian Procedure Calls Reference Manual.

param-1
param-2

are numeric data items or arithmetic expressions that are the param1 and
param2 parameters of the Guardian environment routine SETMODE. For more
information, see the Guardian Procedure Calls Reference Manual.

USING file-name function

param-1

cpinfo

GIVING error-return

param-2

lastparams

OF library-reference

VST611.vsd

"
ns

ENTER "
ns

COBOL_SETMODE_
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-68

Libraries and Utility Routines COBOL_SETMODE_
lastparams

is a data item at least four characters long that corresponds to the last-params
parameter of the Guardian environment routine SETMODE. For best results, define
it as a group with two NATIVE-2 data items immediately subordinate to it; for
example:

01 LASTPARAMS
 02 PARAM1 NATIVE-2
 02 PARAM2 NATIVE-2

cpinfo

is a checkpoint list in which the routine records the changes to the message
storage data space. Example:

01 CP-LIST-1.
 05 MAX-COUNT PIC 9999 COMP VALUE IS 100.
 05 CURRENT-COUNT PIC 9999 COMP VALUE IS 0.
 05 ELEMENT PIC 9(9) COMP OCCURS 100 TIMES.

The initial value of MAX-COUNT must be the same as the number of occurrences
of ELEMENT.

In the non-CRE environment, the initial value of MAX-COUNT is the maximum
number of elements that cpinfo can contain. In the CRE, the maximum number
of elements that cpinfo can contain is the initial value of MAX-COUNT divided
by 2.5. The cpinfo in the preceding example can contain 100 elements in the
non-CRE environment, but only 40 in the CRE.

The required number of table elements depends on the number of operations the
list must record. The worst-case situation uses six elements.

A complete checkpoint list is required only when a program has a backup that must
be kept current. When a record of changes is not required, a null checkpoint list
can be used. This is an example description:

03 CP-LIST-1 PIC 9(9) COMP VALUE IS 0.

error-return

is a numeric data item that has one of these values upon completion:

Value Meaning (page 1 of 2)

n The call to SETMODE caused Guardian file error n.

0* No error occurred.

1 A required parameter is missing.

2 file-name is not a COBOL file name.

*error-return is 0 for a deferred call (that is, one that is held until the file is open). If an error occurs at
that time, a run-time diagnostic is issued.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-69

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
Usage Consideration: In a fault-tolerant program, put the CHECKPOINT statement that
specifies cpinfo immediately before the call to COBOL_SETMODE_; otherwise, the
queued information can be lost if a backup process takes over.

COBOL85^SPECIAL^OPEN and COBOL_SPECIAL_OPEN_
The COBOL85^SPECIAL^OPEN and COBOL_SPECIAL_OPEN_ routines open these:

• Printers or Spoolers

• System Log Files

• Partitioned Disk Files

• Tape Files in the CRE

The COBOL file-control entry, file description entry, and OPEN statement do not
provide a way to specify these attributes.

Usage Considerations:

• Calling COBOL85^SPECIAL^OPEN or COBOL_SPECIAL_OPEN_ From the CRE
in the Guardian Environment

In the Guardian environment, a CRE HP COBOL program can call either
COBOL85^SPECIAL^OPEN (the COBOL-environment routine) or
COBOL_SPECIAL_OPEN_ (the equivalent CRE routine). If it calls
COBOL85^SPECIAL^OPEN, it actually calls COBOL_SPECIAL_OPEN_ indirectly.

5 One of:

• file-name specifies an open file that is either $RECEIVE or is open for
HP COBOL Fast I-O.

• file-name specifies a closed file and there is not enough control space
to allocate the queued information for the next open request.

• The program is running in the non-CRE environment and cpinfo has
too few entries.

Value Meaning (page 2 of 2)

*error-return is 0 for a deferred call (that is, one that is held until the file is open). If an error occurs at
that time, a run-time diagnostic is issued.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-70

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
• Acceptable Values for the Parameter open-type

The value of the open-type parameter determines what type of device the
COBOL85^SPECIAL^OPEN or COBOL_SPECIAL_OPEN_ routine opens.
Acceptable values for open-type (after truncation to an integer value, if
necessary) and their meanings are:

Any other value for open-type causes an error.

Printers or Spoolers
When the parameter open-type has the value 1, the COBOL85^SPECIAL^OPEN or
COBOL_SPECIAL_OPEN_ routine opens a line printer or a print spooler collector.
Unlike the COBOLSPOOLOPEN routine, COBOL85^SPECIAL^OPEN or
COBOL_SPECIAL_OPEN_ allows parameters to be defined in the Extended-Storage
Section. Furthermore, COBOL85^SPECIAL^OPEN or COBOL_SPECIAL_OPEN_
provides the only mechanism for suppressing the initial page ejection that COBOL
always provides for jobs destined for printing.

Value Meaning

1 Open a printer or spooler.

2 Open a system log file.

3 Open a partitioned disk file.

4 Open a tape file in the CRE.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-71

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
library-reference

is a mnemonic-name in the SPECIAL-NAMES paragraph. For the COBOL85
compiler, this mnemonic-name is associated with either
$SYSTEM.SYSTEM.CBL85UTL or some other object file containing an object
copy of COBOL85^SPECIAL^OPEN. For the NMCOBOL compiler, this mnemonic-
name is associated with either $SYSTEM.SYSnn.ZCOBSRL or some other object
file containing an object copy of COBOL_SPECIAL_OPEN_.

ENTER COBOL85^SPECIAL^OPEN" "
COBOL_SPECIAL_OPEN_

USING

library-reference

file-name

OF

return-codeGIVING

exclusion sync-depth

no-eject

level-3 location

form-name

report-name copies

page-size

flags owner

max-lines

max-pages code-129

form-feed

ns ns

open-type= 1

VST348.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-72

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
file-name

is the name of a COBOL data file; that is, a file described in a File Description
entry. It must be an FD name associated with a file-system file name that specifies
a line printer (device type 5) or a spooler collector (device type 0, subdevice type
31).

open-type

is a numeric operand whose value (after truncation to an integer value, if
necessary) is 1. The value 1 (the default) signifies the opening of a line printer or a
spooler collector.

exclusion

is a numeric operand that specifies the exclusion attribute for the open operation.
The evaluation of this operand includes truncation to an integer value if necessary.
If exclusion is present, its value must be 0 (shared), 1 (exclusive), or 3
(protected). If it is omitted, the routine determines the exclusion attribute from a
command interpreter ASSIGN command if one applies to the specified FD-name;
otherwise, it assumes the value 1 (exclusive).

sync-depth

is a numeric operand that specifies the sync-depth attribute for the open operation.
The evaluation of this operand includes, if necessary, truncation to an integer
value. If this parameter is present, it must be in the range 0 through 255; if it is
omitted, the value assumed depends on the nature of the file. For a line printer, the
routine uses a value of 1; for a spooler collector, it uses a value of 3.

no-eject

is a numeric operand that specifies whether a page ejection must precede the first
record delivered to the file. The evaluation of this operand includes, if necessary,
truncation to an integer value. A value of 0 requests that a page ejection be done;
a nonzero value requests that there be no initial ejection. If no value is specified,
the routine uses a value of zero.

no-eject does not apply if file-name has LINAGE specified.

level-3

is a numeric operand that specifies whether level-2 or level-3 spooling is to be
used. The evaluation of this operand includes, if necessary, truncation to an integer
value. Any nonzero value requests level-3 spooling; the value zero requests level-2
spooling. If no value is specified, the routine uses a value of zero. This parameter
applies only to spooler collectors.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-73

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
location

is a 16-character alphanumeric, PIC X(16), that identifies the string passed to the
spooler as its location parameter. The data item must be at least 16 characters.
If longer, only the first 16 characters are passed to the spooler. The spooler
expects a two-part location name in the format

#gggggggdddddddd

where #ggggggg is the group name and dddddddd is the destination name. The
pound sign (#) is required. All remaining characters can be letters, digits, or
spaces.

The access mode (see Linkage Section) of location must be STANDARD.

form-name

is an alphanumeric or equivalent data item that specifies the spooler job form
name.

form-name must not:

• Start with a number or a space character
• Contain any special characters or embedded blanks

Any value provided is adjusted to a length of 16 characters (by extending with
spaces or truncating). If no value is specified, the routine uses a value of all
spaces. This parameter applies only to spooler collectors.

report-name

is an alphanumeric or equivalent data item that specifies the spooler job report
name. Any value provided is adjusted to a length of 16 characters (by extending
with spaces or truncating). The first character cannot be a space. No character can
be a hyphen (-). If no value is specified, the routine uses the user name associated
with the calling process. This parameter applies only to spooler collectors.

copies

is a numeric operand that specifies the number of copies of the job the spooler
must print. The evaluation of this operand includes, if necessary, truncation to an
integer value. If no value is specified, the routine uses a value of 1. This parameter
applies only to spooler collectors.

page-size

is a numeric operand that specifies the number of lines the spooler interface
program is to consider as a page. The evaluation of this operand includes, if
necessary, truncation to an integer value. If no value is specified, the routine uses
the value 60. This parameter applies only to spooler collectors.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-74

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
flags

is a numeric operand that specifies certain attributes of the job. The evaluation of
this operand includes, if necessary, truncation to an integer value. The value is
represented as a 16-bit integer:

If no value is specified, the routine uses a value of 4 (job priority = 4; all other bits
off).

This parameter applies only to spooler collectors.

owner

is an alphanumeric or equivalent data item that specifies a user name; the job is
created in the spooler as belonging to that user. Any value provided is adjusted to
a length of 16 characters (by extending with spaces or truncating). If no value is
specified, the routine uses the user name associated with the calling process. This
parameter applies only to spooler collectors.

max-lines

is a numeric operand in the range 0 through 65534 that specifies the maximum
number of lines that can be printed. If max-lines is 0 or omitted, no maximum
number is enforced.

max-pages

is a numeric operand in the range 0 through 65534 that specifies the maximum
number of pages that can be printed. If max-lines is 0 or omitted, no maximum
number is enforced.

Bits Contents

0 Reserved

1 ASCII compression flag (0 = OFF, 1 = ON). Ignored if code-129 is omitted.
See the description of code-129 for more information.

2-8 Reserved

9 HOLD flag (0 = OFF, 1 = ON)

10 HOLDAFTER flag (0 = OFF, 1 = ON)

11 Specifies whether the output routines of the interface should exit before writing
a level-3 buffer to the collector process, so that you can checkpoint (0 = not
exit, 1 = exit). The run-time library always sets bit 11 to 0 because you cannot
control checkpointing of the level-3 buffer.

12 Purge existing data flag for spooler job files (0 = append new data to existing
data, 1 = purge existing data). Ignored if code-129 is omitted. See the
description of code-129 for more information.

13-15 Job priority
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-75

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
code-129

is a numeric operand that specifies whether a code 129 file (spooler job file) is to
be created or a regular spooler file is to be created. A nonzero value indicates that
the run-time library is to call SPOOLSTART with file-name reflecting the name
specified in the ASSIGN phrase of the SELECT clause for the file or by an
ASSIGN TACL command. See the description of SPOOLSTART in the Guardian
Procedure Calls Reference Manual for details on spooler job files. The resulting file
must be a disk file and must be a code 129 spooler job file if it exists. The file-
system file name must be a name acceptable in the non-CRE environment. For
example, the volume name cannot exceed seven characters. If the actual file is
incorrect, an error is reported and the program terminates abnormally. If the value
of code-129 is 0, it is assumed that the actual file assigned will be a normal
spooler process. You can use flags to control whether the file is compressed
and whether old data in the file is deleted or new data is appended. If code-129
is specified, these parameters are ignored:

form-feed

is a numeric operand that specifies whether a form feed (CONTROL (file, 1, 0)) is
to be used to position to the top of a new page rather than using spacing when
LINAGE is specified for the file. A value of 0 (the default) indicates that spacing is
to be used; a nonzero value indicates that a form feed is to be used. If form-feed
is nonzero, the sizes of the pages may not conform to that specified in the LINAGE
clause for the file. The size depends on the forms control mechanism of the printer.

return-code

is an identifier of a numeric data item in which an error value will be returned. The
expected values and their respective meanings are:

Parameter Value Used

exclusion Protected

sync-depth 1

level-3 Level 3

location The file specified in the SELECT clause

Value Meaning

0 Successful execution

1 file-name is missing or is invalid, or an extraneous parameter is present.

2 The value of the open-type, exclusion, or sync-depth parameter is
invalid.

3 The value of the owner parameter is invalid.

4 The device-type of the file specified is not compatible with the value
specified for open-type.

5 An operation error occurred (for example, the file could not be opened).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-76

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
In the Guardian environment, all the functions of this form of
COBOL85^SPECIAL^OPEN or COBOL_SPECIAL_OPEN_ except those provided by
the parameters no-eject, code-129, and form-feed can also be provided by a
DEFINE of class SPOOL, but COBOL85^SPECIAL^OPEN or
COBOL_SPECIAL_OPEN_ brings the functionality into the program, while the DEFINE
solution leaves it out in the run-time environment.

A file assigned to a printer or to a spooler collector process (identified at run time by its
subdevice type of 31) is handled as a printer, in that calls to Guardian environment
routines CONTROL and SETMODE are used to initialize the file’s state, to suppress
automatic forms skipping, and to handle ADVANCING clauses, and the writing of a
given record is deferred until the next record is ready to be written (or the file is to be
closed) to minimize the number of Guardian procedure calls involved in writing.

When a file is assigned to a process that is not a spooler collector, the records are
written immediately, with no optimization attempted and no SETMODE or CONTROL
procedure involvement.

System Log Files
When the parameter open-type has the value 2, the COBOL85^SPECIAL^OPEN or
COBOL_SPECIAL_OPEN_ routine does one of:

• Opens the EMS device ($0) or an alternate collector so that it can receive EMS
events

• Opens the SPI device ($0.#ZSPI) so that it can receive SPI commands.

Note. To send an ASCII text message (rather than an EMS event) to a collector, open the
collector with an OPEN statement, not with the COBOL85^SPECIAL^OPEN or
COBOL_SPECIAL_OPEN_ routine.

Note. To send SPI commands to an alternate collector, open the collector with an OPEN
statement, not with the COBOL85^SPECIAL^OPEN or COBOL_SPECIAL_OPEN_
routine.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-77

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
library-reference

is a mnemonic-name in the SPECIAL-NAMES paragraph. For the COBOL85
compiler, this mnemonic-name is associated with either
$SYSTEM.SYSTEM.CBL85UTL or some other object file containing an object
copy of COBOL85^SPECIAL^OPEN. For the NMCOBOL compiler, this mnemonic-
name is associated with either $SYSTEM.SYSnn.ZCOBSRL or some other object
file containing an object copy of COBOL_SPECIAL_OPEN_.

file-name

is the name of a COBOL data file; that is, a file described in a File Description
entry. It must be an FD name associated with a file-system file name that specifies
a system log (device type 1, subdevice type 0 or 1).

open-type

is a numeric operand whose value (after truncation to an integer value, if
necessary) is 2. The value 2 signifies the opening of a system log file.

exclusion

is a numeric operand that specifies the exclusion attribute for the open operation.
The evaluation of this operand includes, if necessary, truncation to an integer
value. If the parameter is present, its value must be 0 (shared), 1 (exclusive), or 3
(protected); if it is omitted, the routine determines the exclusion attribute from a
command interpreter ASSIGN command (when one applies to the specified FD-
name, or assumes the value 0 (shared) for a system log file otherwise.

ENTER COBOL85^SPECIAL^OPEN" "
COBOL_SPECIAL_OPEN_

USING

library-reference

file-name

OF

return-codeGIVING

open-type = 2

exclusion

sync-depth time-limits

ns ns

VST349.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-78

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
sync-depth

is a numeric operand that specifies the sync-depth attribute for the open operation.
The evaluation of this operand includes, if necessary, truncation to an integer
value. If this parameter is present, it must be in the range 0 through 255; if it is
omitted, the value assumed depends on the nature of the file. For a system log file,
the routine uses a value of 1.

time-limits

is a numeric operand that specifies the TIME-LIMITS attribute for a system log file
only when the subdevice type is other than 0; if the subdevice type is 0, this
parameter is ignored. The evaluation of this operand includes, if necessary,
truncation to an integer value. If this parameter is present and its value is not zero,
LOCKFILE and READ statements that refer to the system log file can include the
TIME LIMIT wait-time phrase, indicating the maximum time a process waits for a
request to complete. If the parameter is omitted, the routine uses a value of zero.

return-code

is an identifier of a numeric data item in which an error value will be returned. The
expected values and their respective meanings are:

Usage Considerations:

• Sending a Message to $0

To send an EMS event or ASCII text message to the EMS device ($0) or an
alternate collector, use the WRITE statement.

• Sending an SPI command to $0.#ZSPI

To send an SPI command to the SPI device ($0.#ZSPI), use the READ statement
with a PROMPT phrase.

Value Meaning

0 Successful execution

1 file-name is missing or is invalid, or an extraneous parameter is present.

2 The value of the open-type, exclusion, or sync-depth parameter is
invalid.

4 The device-type of the file specified is not compatible with the value
specified for open-type.

5 An operation error occurred (for example, the file could not be opened).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-79

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
Partitioned Disk Files
When the parameter open-type has the value 3, the COBOL85^SPECIAL^OPEN or
COBOL_SPECIAL_OPEN_ routine opens a partitioned disk file even though some
partitions cannot be accessed. (The OPEN statement requires all partitions to be
accessible.)

library-reference

is a mnemonic-name in the SPECIAL-NAMES paragraph. For the COBOL85
compiler, this mnemonic-name is associated with either
$SYSTEM.SYSTEM.CBL85UTL or some other object file containing an object
copy of COBOL85^SPECIAL^OPEN. For the NMCOBOL compiler, this mnemonic-
name is associated with either $SYSTEM.SYSnn.ZCOBSRL or some other object
file containing an object copy of COBOL_SPECIAL_OPEN_.

file-name

is the name of a COBOL data file; that is, a file described in a File Description
entry. It must be an FD name associated with a file-system file name that specifies
a disk file (device type 3).

open-type

is a numeric operand whose value (after truncation to an integer value, if
necessary) is 3. The value 3 signifies the opening of a partitioned disk file, even
though some partitions cannot be accessed.

ENTER COBOL85^SPECIAL^OPEN" "
COBOL_SPECIAL_OPEN_

USING

library-reference

file-name

OF

return-codeGIVING

exclusion

sync-depth time-limits

open-mode

ns ns

open-type= 3

VST350.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-80

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
exclusion

is a numeric operand that specifies the exclusion attribute for the open operation.
The evaluation of this operand includes, if necessary, truncation to an integer
value. If the parameter is present, its value must be 0 (shared), 1 (exclusive), or 3
(protected); if it is omitted, the routine determines the exclusion attribute from a
command interpreter ASSIGN command (when one applies to the specified FD-
name); otherwise the routine assumes the value 3 (protected) when the open
mode is Input or assumes the value 1 (exclusive) for any other open mode.

sync-depth

is a numeric operand that specifies the sync-depth attribute for the open operation.
The evaluation of this operand includes, if necessary, truncation to an integer
value. If this parameter is present, it must be in the range 0 through 255; if it is
omitted, the value assumed depends on the nature of the file. For a disk file, the
routine uses a value of 1.

time-limits

is a numeric operand that specifies the TIME-LIMITS attribute for the open
operation. The evaluation of this operand includes, if necessary, truncation to an
integer value. The presence of a nonzero value for this parameter is equivalent to
the presence of a TIME LIMITS phrase with a nonzero value in an ordinary OPEN
statement. If the parameter is omitted, the routine uses a value of zero, which has
no effect.

open-mode

is a numeric operand that specifies the open mode attribute for the open operation.
The evaluation of this operand includes, if necessary, truncation to an integer
value. If this parameter is supplied, its value must be 0 (open mode is Input),
1 (I-O), 2 (Output), or 3 (Extend). If the parameter is omitted, the routine uses a
value of 0 (Input).

return-code

is an identifier of a numeric data item in which an error value will be returned. The
expected values and their respective meanings are:

Value Meaning

0 Successful execution

1 file-name is missing or is invalid, or an extraneous parameter is present.

2 The value of the open-type, exclusion, or sync-depth parameter is
invalid.

4 The device-type of the file specified is not compatible with the value
specified for open-type.

5 An operation error occurred (for example, the file could not be opened).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-81

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
When the COBOL85^SPECIAL^OPEN or COBOL85_SPECIAL_OPEN_routine with an
open-type of 3 has performed a successful open operation, the special register
GUARDIAN-ERR contains the value 3 (failure to open a partition) if the operating
environment reports that file code. In this case, the I-O status code is “00.”

If a subsequent input-output statement attempts to make reference to a logical record
which resides in an unavailable partition of the file, the HP COBOL run-time routines
assign a value of 72 (attempt to access unmounted partition) to the special register
GUARDIAN-ERR, because that is the file code reported by the operating environment.
The I-O status code in this case is “30” (COBOL permanent error). This, in turn, causes
the run-time routines to abnormally terminate the execution of the run unit, unless an
applicable Declarative procedure is specified in the Procedure Division of the program
unit that contains the statement whose execution failed.

Tape Files in the CRE
When the parameter open-type has the value 4, the COBOL_SPECIAL_OPEN_
routine opens a tape file in the CRE.

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.CBL85UTL or some other object file containing an object
copy of COBOL_SPECIAL_OPEN_.

ENTER " "COBOL_SPECIAL_OPEN_

USING

library-reference

file-name

OF

mount-messages

exclusion

sync-depth time-limits

open-mode

ns

return-codeGIVING

end-of-tape-process

ns

open-type= 4

VST614.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-82

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
file-name

is the name of a COBOL data file; that is, a file described in a File Description
entry. It must be an FD name associated with a file-system file name that specifies
a tape file.

open-type

is a numeric operand whose value (after truncation to an integer value, if
necessary) is 4. The value 4 signifies the opening of a tape file.

exclusion

is a numeric operand that specifies the exclusion attribute for the open operation.
The evaluation of this operand includes, if necessary, truncation to an integer
value. If the parameter is present, its value must be 0 (shared), 1 (exclusive), or 3
(protected). If it is omitted, the routine determines the exclusion attribute from a
command interpreter ASSIGN command (when one applies to the specified FD-
name); otherwise the routine assumes the value 3 (protected) when the open
mode is Input or assumes the value 1 (exclusive) for any other open mode.

sync-depth

is a numeric operand that specifies the sync-depth attribute for the open operation.
The evaluation of this operand includes, if necessary, truncation to an integer
value. If this parameter is present, it must be in the range 0 through 255. If it is
omitted, the value assumed depends on the nature of the file.

time-limits

is a numeric operand that specifies the TIME-LIMITS attribute for the open
operation. The evaluation of this operand includes, if necessary, truncation to an
integer value. The presence of a nonzero value for this parameter is equivalent to
the presence of a TIME LIMITS phrase with a nonzero value in an ordinary OPEN
statement. If the parameter is omitted, the routine uses a value of zero, which has
no effect.

open-mode

is a numeric operand that specifies the open mode attribute for the open operation.
The evaluation of this operand includes, if necessary, truncation to an integer
value. If this parameter is supplied, its value must be one of:

Value Open Mode

0 Input (default)

1 Input-Output

2 Output

3 Extend
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-83

Libraries and Utility Routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_
mount-messages

is the name of a data item that describes the name of the file to be used for tape
mount messages. The file name must be left-justified and in Guardian external
format with no trailing spaces. Reference modification can give the length of the
name. The file must be a process or terminal.

If mount-messages is omitted, tape mount messages are written to the
execution log file.

end-of-tape-process

is an alphanumeric data item of at least seven characters, whose value specifies
the action to be taken if the file operation causes a reel swap.

If the value is “RETURN ” (in any combination of uppercase and lowercase letters
and with a space after N), a read or write operation returns an I-O status code of
“97” and a GUARDIAN-ERR of 150 when a reel swap occurs. If the reel swap
occurs during a WRITE statement, the record that was just written and several of
the records previously written might or might not be on the tape just completed.

If the value is not “RETURN ” or end-of-tape-process is omitted, a read or
write operation does not return anything to the program when a reel swap occurs.

return-code

is an identifier of a numeric data item in which an error value will be returned. The
expected values and their respective meanings are:

Value Meaning

0 Successful execution

1 file-name is missing or is invalid, or an extraneous parameter is present.

2 The value of the open-type, exclusion, sync-depth, or mount-
messages parameter is invalid.

4 The device-type of the file specified is not compatible with the value
specified for open-type.

5 An operation error occurred (for example, the file could not be opened).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-84

Libraries and Utility Routines COBOLLIB, CLULIB, and ZCOBSRL Routines
COBOLLIB, CLULIB, and ZCOBSRL Routines
This topic explains the individual routines in the COBOLLIB and ZCOBSRL files that
are not Saved Message Utility (SMU) routines. Not all of the CRE equivalents are in
the COBOLLIB file (see the table notes).

Programs compiled with the COBOL85 compiler can call all of the routines listed in
Table 13-18. Programs compiled with the NMCOBOL compiler can call only the new
routines.

An HP COBOL program that was compiled to run in the non-CRE environment can call
only the COBOL-environment routines. An HP COBOL program that was compiled to
run in the CRE can call only the CRE routines.

Topics:

• COBOLASSIGN

• COBOL_ASSIGN_

• COBOLFILEINFO

• COBOL_FILE_INFO_

• COBOLSPOOLOPEN

• CREATEPROCESS

Table 13-18. Non-SMU COBOLLIB Routines

Original Routine New Routine(s)

COBOLASSIGN COBOL_ASSIGN_1, 2

COBOLFILEINFO COBOLFILEINFO2

COBOL_FILE_INFO_3, 4

COBOLSPOOLOPEN COBOL_SPECIAL_OPEN_4

CREATEPROCESS CREATEPROCESS5

CLU_PROCESS_CREATE1, 6

1. In the CLULIB file for the COBOL85 compiler and the ZCOBSRL file for the NMCOBOL compiler

2. For the Guardian environment

3. For the OSS environment

4. In the CBL85UTL file for the COBOL85 compiler and the ZCOBSRL file for the NMCOBOL compiler

5. Cannot create a high-PIN process

6. Can create a high-PIN process

Note. If you omit an optional parameter when you call a COBOLLIB routine, you must put the
keyword OMITTED in its position if you specify subsequent parameters. Trailing OMITTEDs
are not required. (The syntax diagrams do not reflect this, because it would make them much
harder to read.)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-85

Libraries and Utility Routines COBOLASSIGN
COBOLASSIGN
The COBOLASSIGN routine enables an HP COBOL program to perform an ASSIGN-
like statement while the program is executing. It associates a COBOL file name
(fd-name) with a file-system file name.

You must declare the COBOL file name as dynamically assignable in a file-control
entry in the Input-Output Section. The syntax for this declaration is:

This form of the ASSIGN clause specifies only that fd-name is dynamically
assignable; unlike the other forms of the ASSIGN clause (or of the command
interpreter ASSIGN command), it does not associate fd-name with any file-system
file name.

After fd-name is declared as dynamically assignable, the HP COBOL program can
use ENTER to call COBOLASSIGN. The general form of the ENTER statement to use
COBOLASSIGN is:

Note. COBOLASSIGN uses a protocol different from that used by normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

SELECT

OPTIONAL

fd-name

ASSIGN #DYNAMIC

TO

VST355.vsd

ENTER COBOLASSIGN"

USING

library-reference

system-file-name

OF

error-numberGIVING

"

fd-name

ns ns

VST354.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-86

Libraries and Utility Routines COBOLASSIGN
library-reference

is a mnemonic-name associated, in the SPECIAL-NAMES paragraph, with either
COBOLLIB or some other object file containing an object copy of COBOLASSIGN.
See Files of Dummy Routines.

fd-name

is the fd-name of a file connector. The file specified in the ASSIGN phrase of the
SELECT clause that references fd-name will be replaced by system-file-
name. If the program was compiled in OSS, the file will be an OSS file unless it
was defined as a Guardian file by an ASSIGN command; for example:

ASSIGN TO "GUARDIAN #DYNAMIC"

system-file-name

is a data item holding the file-system file name of the file to be assigned. On a
C-Series system, system-file-name can have a maximum of 34 bytes; on a
D-Series system, it can have a maximum of 35 bytes. The file name is in external
form.

The unused part of the data item must contain spaces.

If system, volume, or subvolume is not specified, the respective default value is
used.

The access mode (see Linkage Section) of system-file-name must be
STANDARD.

error-number

is a numeric data item, PIC 9(4) COMPUTATIONAL or DISPLAY, in which an error
code produced by COBOLASSIGN is returned. Possible values for error-
number and their respective meanings are:

The access mode (see Linkage Section) of error-number must be STANDARD.

COBOLASSIGN does not determine whether the assigned file actually exists or is
accessible. This checking is done by the OPEN statement. COBOLASSIGN can be
called repeatedly for one fd-name.

An attempt to open a file using a dynamically assignable fd-name before
COBOLASSIGN has been used on it is an attempt to open $volume.#DYNAMIC
(where $volume is the default volume). This causes a run-time error.

Value Meaning

0 No error occurred.

1 Invalid syntax is in the specified file-system file name.

2 Cannot change the file-system file name of a COBOL file that is open.

3 fd-name has not been declared as #DYNAMIC.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-87

Libraries and Utility Routines COBOLASSIGN
A CLOSE LOCK on a file using a dynamic fd-name closes the file but does not lock
it. If locking were allowed, it would only prevent the reuse of the fd-name for the
remainder of the run unit’s existence; the file would still be accessible through another
dynamic fd-name.

A command interpreter ASSIGN command cannot designate an fd-name as
dynamically assignable—you must do this in the source program. ASSIGN can,
however, assign a default value to the previously designated dynamic file name. The
effect is the same as having an ENTER COBOLASSIGN statement as the first
statement in the program. See ASSIGN Command.

A CRE HP COBOL program can call either COBOLASSIGN (the COBOL-environment
routine) or COBOL_ASSIGN_ (the equivalent CRE routine). If it calls COBOLASSIGN,
it actually calls COBOL_ASSIGN_ indirectly. There are advantages to calling
COBOL_ASSIGN_ directly (see COBOL_ASSIGN_).

Example 13-16. COBOLASSIGN Routine

IDENTIFICATION DIVISION.
 ...
ENVIRONMENT DIVISION.
 ...
SPECIAL-NAMES.
 FILE "$SYSTEM.SYSTEM.COBOLLIB" IS COBOLLIB.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT PARTNO ASSIGN #DYNAMIC.
DATA DIVISION.
 ...
WORKING-STORAGE SECTION.
01 PART-FILE-NAME PICTURE X(35).
01 ASSIGN-ERROR COMP PICTURE 9999.
PROCEDURE DIVISION.
SETUP.
 DISPLAY "ENTER CHOSEN PART FILE NAME"
 ACCEPT PART-FILE-NAME
 ENTER "COBOLASSIGN" OF COBOLLIB USING PARTNO
 PART-FILE-NAME
 GIVING ASSIGN-ERROR
 IF ASSIGN-ERROR = 0
 OPEN INPUT PARTNO
 ELSE IF ASSIGN-ERROR = 1
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-88

Libraries and Utility Routines COBOL_ASSIGN_
COBOL_ASSIGN_
COBOL_ASSIGN_ is the CRE-equivalent of the COBOL-environment routine
COBOLASSIGN. If a CRE HP COBOL program calls COBOLASSIGN, it actually calls
COBOL_ASSIGN_ indirectly. The advantages to calling COBOL_ASSIGN_ directly
are:

• You can pass all parameters from the Extended-Storage Section or Linkage
Section.

• You can specify temporary file names.

• You can specify two additional parameters, file-code and file-type.

library-reference

is a mnemonic-name associated, in the SPECIAL-NAMES paragraph, with either
COBOLLIB or some other object file containing an object copy of
COBOL_ASSIGN_. See Files of Dummy Routines.

fd-name

is the fd-name of a file connector. The file specified in the ASSIGN phrase of the
SELECT clause that references fd-name will be replaced by system-file-
name. If the program was compiled in the OSS environment, the file will be an OSS
file, unless it was defined as a Guardian file by an ASSIGN such as:

ASSIGN TO "GUARDIAN #DYNAMIC"

ENTER COBOL_ASSIGN_"

USING

library-reference

system-file-name

OF

"

fd-name

error-numberGIVING

file-code

file-type

ns ns

VST356.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-89

Libraries and Utility Routines COBOL_ASSIGN_
system-file-name

is an alphanumeric data item holding the file-system file name of the file to be
assigned. system-file-name is in external form. It must be left-justified in the
data item and any unused portion of the name must contain spaces.

If the program identifies system-file-name as an OSS file system name, then
the program assumes that fd-name is an OSS file; otherwise, the program
assumes that fd-name is a Guardian file.

If system, volume, or subvolume of a Guardian file is not specified, the respective
default value is used ($volume.file is no longer allowed.)

If system-file-name is omitted, COBOL_ASSIGN_ does not change the
original file-system file name.

For more information on OSS file system names, see Files in the OSS
Environment.

file-code

can be specified in the Guardian environment only. It is a numeric data item or a
numeric literal whose value is a file code acceptable to the file system. For
example, file code 101 indicates that the file is an EDIT file and file code 180
indicates that the file is an OSS ASCII text file.

If file-code is omitted, COBOL_ASSIGN_ does not change the original file
code.

file-type

can be specified in the Guardian environment only. It is a numeric data item whose
content, or a numeric literal whose value, is either 0 (for an unstructured file) or 2
(for an entry-sequenced file). You can specify file-type only for a file whose
organization is sequential. For other file organizations, the organization determines
the file type (relative for ORGANIZATION RELATIVE and key sequenced for
ORGANIZATION INDEXED).

If file-type is omitted, COBOL_ASSIGN_ and does not change the original file
type.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-90

Libraries and Utility Routines COBOLFILEINFO
error-number

is a numeric data item in which COBOL_ASSIGN_ returns an error code. Possible
values for error-number and their respective meanings are:

COBOLFILEINFO
The COBOLFILEINFO routine is for the Guardian environment. In the OSS
environment, use the COBOL_FILE_INFO_ routine.

The COBOLFILEINFO routine is for these situations:

• An application needs to perform some operation not defined in HP COBOL on a
file normally managed by the HP COBOL run-time routines. This application must
obtain the file system file number assigned when the file was opened.

• An application that manages a file through TAL routines can operate as a process
pair, letting HP COBOL perform the open, close, and checkpoint operations with
the run-time routines. This application must be able to obtain the file system file
number assigned when the file is opened.

• An application can put the file-system file name of a file into an application-
generated error message.

As with any ENTER statement, you must either qualify the name COBOLFILEINFO
with the library-reference COBOLLIB or include a SEARCH directive specifying

Value Meaning

0 No error occurred.

1 system-file-name has invalid syntax or the name has no length (such as
a group containing an OCCURS DEPENDING whose length is 0).

2 system-file-name is open and cannot be changed.

4 There is not enough system space to add the new name.

5 file-type is not 0 or 2, file-type is specified for a file whose
organization is not sequential, or file-type or file-code is specified for
an OSS file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-91

Libraries and Utility Routines COBOLFILEINFO
COBOLLIB to provide automatic resolution of the reference. The general form of the
ENTER statement to use COBOLFILEINFO follows.

library-reference

is a mnemonic-name associated, in the SPECIAL-NAMES paragraph, with either
COBOLLIB or some other object file containing an object copy of
COBOLFILEINFO.

fd-name

is the COBOL name of the file in the FD entry.

error-code

is a numeric data item described as USAGE COMPUTATIONAL PICTURE 9999
(or S9999)or USAGE NATIVE-2. The COBOLFILEINFO routine returns the last file
system file-system error code to this data item. The value returned is always
positive.

The access mode (see Linkage Section) of error-code must be STANDARD.

file-name

is a DISPLAY data item of at least 24 characters where the actual 24-byte internal
file name is returned. The internal form of the file name is three 8-character fields
containing the three portions of the file name, with trailing spaces inserted and with
no period (.) separators.

ENTER COBOLFILEINFO"

USING

library-reference

fd-name

OF

TAL

error-code

file-name

file-number

ns

"
ns

VST357.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-92

Libraries and Utility Routines COBOL_FILE_INFO_
In the CRE, if file-name is composed entirely of spaces or has an 8-character
volume name, it cannot be converted to internal form. To convert it to internal form,
use the COBOL_FILE_INFO_ routine.

The access mode (see Linkage Section) of file-name must be STANDARD.

file-number

is a numeric data item described as USAGE COMPUTATIONAL PICTURE S99.
The COBOLFILEINFO routine returns the file’s open number to this data item.

file-number has the value -1 in each of these cases:

• The file is not open.

• The file is OPTIONAL and not present (even if it is open).

• After the file was opened, the I-O status code was “05,” rather than “00” (see
Nonexistent Files).

The access mode (see Linkage Section) of file-number must be STANDARD.

Usage Consideration: Do not use COBOLFILEINFO to obtain the operating
environment error number associated with the failure of any input-output operation that
is performed simply with COBOL input-output verbs (such as READ). The HP COBOL
special register GUARDIAN-ERR was created for that purpose. Certain operations,
such as a READ statement operating on the $RECEIVE file, deliver meaningful values
to GUARDIAN-ERR, but a call to COBOLFILEINFO would return an inappropriate
value of zero or an arbitrary, undefined value.

COBOL_FILE_INFO_
The COBOL_FILE_INFO_ routine is for both the OSS and Guardian environments. In
the Guardian environment, it works only in the CRE (in the non-CRE environment, use
the routine COBOLFILEINFO).

The COBOL_FILE_INFO_ routine is for these situations:

• An application needs to perform some operation not defined in HP COBOL on a
file normally managed by the HP COBOL run-time routines. This application must
obtain the file system file number assigned when the file was opened.

• An application can put the file-system file name of a file into an application-
generated error message.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-93

Libraries and Utility Routines COBOL_FILE_INFO_
As with any ENTER statement, you must either qualify the name COBOL_FILE_INFO_
with the library-reference COBOLLIB or include a SEARCH directive specifying
COBOLLIB to provide automatic resolution of the reference. The general form of the
ENTER statement to use COBOL_FILE_INFO_ follows.

library-reference

is a mnemonic-name associated, in the SPECIAL-NAMES paragraph, with either
COBOLLIB or some other object file containing an object copy of
COBOL_FILE_INFO_.

file-name

is the COBOL name of the file in the FD entry.

name-buffer

is the buffer in which the file name is returned. To accommodate the maximum file
name size, name-buffer must hold at least 1023 characters. To accommodate
the largest Guardian file name, name-buffer must be at least 35 characters. If
name-buffer is too short for the file name, the file name is truncated. If the file
name is an OSS file, the terminating zero byte is included in the name and in the
name size.

name-size

is the data item in which the size of the file name is returned. If the file name was
truncated, name-size contains the actual size, not the truncated size.

ENTER COBOL_FILE_INFO_"

USING

library-referenceOF

"
TAL

name-buffer

name-size

error

file-name

file-number

VST636.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-94

Libraries and Utility Routines COBOLSPOOLOPEN
file-number

is the Guardian or OSS file number. If the file is not open, file-number is 0.

If, after the file was opened, the I-O status code was “05,” rather than “00” (see
Nonexistent Files), file-number is -1.

error

is the last Guardian error number. If the file is an OSS file, error is 0.

Usage Consideration: Do not use COBOL_FILE_INFO_ to obtain the operating
environment error number associated with the failure of any input-output operation that
is performed simply with COBOL input-output verbs (such as READ). The HP COBOL
special register GUARDIAN-ERR was created for that purpose. Certain operations,
such as a READ statement operating on the $RECEIVE file, deliver meaningful values
to GUARDIAN-ERR, but a call to COBOL_FILE_INFO_ would return an inappropriate
value of zero or an arbitrary, undefined value.

COBOLSPOOLOPEN
COBOLSPOOLOPEN is available to COBOL-environment HP COBOL programs, but it
is recommended that they use COBOL_SPECIAL_OPEN_ instead. CRE programs
cannot use COBOLSPOOLOPEN and must use COBOL_SPECIAL_OPEN_ instead.
Similar functionality is also available through use of a DEFINE of class SPOOL. This
documentation is included for historical reasons.

COBOLSPOOLOPEN provides Level 2 access to the HP spooler product from an
HP COBOL program, enabling you to set various job parameters, such as report title
and number of copies, from within the program.

Topics:

• Level 2 Spooler Protocol

• Establishing a Declarative-File Connection

• Error Code

Level 2 Spooler Protocol
Access to the HP spooler for Level 2 operation requires a special protocol that is not
supported directly in HP COBOL.

To open the spooler for Level 2 operation, an HP COBOL program must use an
ENTER statement that calls COBOLSPOOLOPEN in place of the HP COBOL OPEN
statement. This routine’s parameters do not include analogs of the open mode (for
example, OUTPUT) or the REVERSED and NO REWIND phrases of the OPEN
statement. Instead, OUTPUT is always assumed, and other options have no meaning
for the spooler.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-95

Libraries and Utility Routines COBOLSPOOLOPEN
COBOLSPOOLOPEN accepts an fd-name associated with either a process or a
printer. If the file referred to is a process, it is assumed to be an HP spooler. If the
designated file is a printer, COBOLSPOOLOPEN ignores all spooler-specific
parameters and produces the same results as a HP COBOL OPEN statement.

The general form of the ENTER statement to use COBOLSPOOLOPEN is:

ENTER COBOLSPOOLOPEN" "

USING

library-reference

fd-name

OF

error-codeGIVING

«file-status»

exclusion

sync-depth

level-3

location

form-name

report-name

copies

page-size

flags

owner

TAL

VST358.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-96

Libraries and Utility Routines COBOLSPOOLOPEN
library-reference

is a mnemonic-name associated, in the SPECIAL-NAMES paragraph, with either
COBOLLIB or some other object file containing an object copy of
COBOLSPOOLOPEN. The mnemonic-name must be left-justified and can have
trailing spaces.

fd-name

is a file name that identifies the COBOL logical file, described by the FD entry
associated with the spooler. The file name must be left-justified and can have
trailing spaces.

file-status

In HP COBOL, the I-O status data item associated with the fd-name is always
used.

The access mode (see Linkage Section) of file-status must be STANDARD.

location

is a 16-character alphanumeric, PIC X(16), that identifies the string passed to the
spooler as its location parameter. The data item must be at least 16 characters.
If longer, only the first 16 characters are passed to the spooler. The spooler
expects a two-part location name in the format

#gggggggdddddddd

where #ggggggg is the group name, and dddddddd is the destination name.
The # is required. All remaining characters can be letters, digits, or spaces. The
value of location must be left-justified and can have trailing spaces.

The access mode (see Linkage Section) of location must be STANDARD.

form-name

is a 16-character alphanumeric, PIC X(16), that identifies the string passed to the
spooler as its form-name parameter. The data item must be left-justified and be
at least 16 characters. If longer, only the first 16 characters are passed to the
spooler. The only spaces allowed are trailing spaces.

The access mode (see Linkage Section) of form-name must be STANDARD.

Note. The 1985 COBOL standard classifies this parameter as obsolete, so you are
advised not to use it.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-97

Libraries and Utility Routines COBOLSPOOLOPEN
report-name

is a 16-character alphanumeric, PIC X(16), that identifies the string passed to the
spooler as its report-name parameter. The data item must be at least 16
characters. If longer, only the first 16 characters are passed to the spooler. Only
letters, digits, and spaces are acceptable to the spooler. The first character cannot
be a space. No character can be a hyphen.

The access mode (see Linkage Section) of report-name must be STANDARD.

copies

is a numeric item (COMPUTATIONAL or DISPLAY), a numeric literal, or a
parenthetical expression, the value of which is passed to the spooler as its
number-of-copies parameter. The value must evaluate to a positive integer in
the range 1 through 32767.

page-size

is a numeric item (COMPUTATIONAL or DISPLAY), a numeric literal, or a
parenthetical expression, the value of which is passed to the spooler as its page-
size parameter. The value must evaluate to a positive integer in the range 1
through 32767.

flags

is a numeric item (COMPUTATIONAL or DISPLAY), a numeric literal, or a
parenthesized expression, the value of which is passed to the spooler as its flags
parameter. The value must evaluate to a positive integer whose value is consistent
with the specifications below.

The appropriate value of flags is the sum of the values associated with the
defined options, which follow:

HOLD 64 (decimal)
HOLDAFTER 32 (decimal)
PRIORITY 0, 1, 2, 3, 4, 5, 6, or 7

exclusion

is a numeric item (COMPUTATIONAL or DISPLAY), a numeric literal, or a
parenthetical expression, the value of which is used as the exclusion attribute
of the file open operation (for the purpose of this parameter, see OPEN).
exclusion must evaluate to a positive integer consistent with these
specifications.

The defined options for exclusion and their associated values are:

Value Meaning

SHARED 0

EXCLUSIVE 1

PROTECTED 3 (equivalent to SHARED in this context)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-98

Libraries and Utility Routines COBOLSPOOLOPEN
sync-depth

is a numeric item (COMPUTATIONAL or DISPLAY), a numeric literal, or a
parenthetical expression that evaluates to a positive integer, which is used as the
sync-depth of the spooler file. Its default value is 3. A value greater than 32 results
in a file-system error 28 from the spooler. The sync-depth specifies the number of
write requests whose completion status the file system is to remember.

owner

is an alphanumeric data item, PIC X(16), that specifies the owner of the spooler job
in this format:

gggggggguuuuuuuu

The value gggggggg is a file-security system group name, and uuuuuuuu is a
file-security system user name. Each of these names must be eight characters
long, with trailing spaces inserted if necessary. The item does not include a period
between the names.

If you specify an invalid combination of names for this parameter,
COBOLSPOOLOPEN returns error code 102.

If you omit the owner parameter, the spooler uses the owner ID of the executing
process.

level-3

is a numeric item (COMPUTATIONAL or DISPLAY), a numeric literal, or a
parenthesized expression. If its value is other than zero, the output to the spooler is
done using level-3 spooling, which enhances performance by sending records to
the spooler in blocks.

If you omit the level-3 parameter, or if it has a value of zero, the output records are
sent one at a time.

error-code

is a numeric data item, PIC 9(4) COMPUTATIONAL, that identifies the data item
into which COBOLSPOOLOPEN returns an error code value. USAGE DISPLAY is
permitted in place of USAGE COMPUTATIONAL; however, in this case the data
item’s PICTURE character-string should be 9(4), so it is capable of containing the
full range of potential values. The error code value returned for success is 0; a
nonzero value implies failure to open the file.

The access mode (see Linkage Section) of error-code must be STANDARD.

All the parameters except fd-name are optional. If a parameter is omitted, but one or
more following ones are present, its position in the USING phrase must be occupied by
the reserved word OMITTED (for details, see ENTER). Although the GIVING phrase is
optional, it is recommended for error analysis.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-99

Libraries and Utility Routines COBOLSPOOLOPEN
Establishing a Declarative-File Connection
The HP COBOL compilers find the connection between generic file declarative
sections and logical files by examining the context of OPEN statements. A declarative
section preceded by a USE AFTER EXCEPTION PROCEDURE ON OUTPUT
statement is implicitly associated with each file whose name appears in an OPEN
OUTPUT statement. In such cases, the section is called whenever an exception occurs
during execution of an I-O statement for a file that is currently open for output. The
section is not called if the exception occurs in conjunction with a file that could be open
for output but is actually open in some other mode.

The HP COBOL compilers do not find such a connection from the occurrence of an
ENTER COBOLSPOOLOPEN statement; however, an application can instruct the
compiler to establish a declarative-file connection in either of two ways:

• A declarative section preceded by a USE AFTER EXCEPTION PROCEDURE
file-name-list is explicitly associated with each file whose name appears in
the list.

• A declarative section preceded by a USE AFTER EXCEPTION PROCEDURE ON
OUTPUT can be associated with a given logical file by inserting an OPEN
OUTPUT file-name statement in a portion of the program that is never
executed.

Although both methods establish the connection in conjunction with WRITE,
LOCKFILE, and CLOSE statements, a failure of the ENTER COBOLSPOOLOPEN
statement does not call the declarative section. The error detection must be
programmed explicitly by including the GIVING error-code phrase in the ENTER
statement and testing the value returned. If the file-status item is present in the
parameter list, a simple success-failure test can be made by examining its value.

Error Code
The error code returned by COBOLSPOOLOPEN can originate in either
COBOLSPOOLOPEN or the spooler. In most cases, it is generated by the spooler and
merely passed on by COBOLSPOOLOPEN.

• All spooler error codes have a value of at least 512 (%1000). For more information,
see the Guardian Procedure Calls Reference Manual.

• COBOLSPOOLOPEN returns error code values in the range 1 through 511
(1-%777). For values in the range 1 through 99, refer to the corresponding number
in Section 48, Run-Time Diagnostic Messages.

• If no fd-name is present, 100 is returned. If the associated file is neither a
process nor a printer, 101 is returned. All nonzero codes imply the open operation
failed.

• If the owner parameter does not specify a valid group/user combination, 102 is
returned.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-100

Libraries and Utility Routines CREATEPROCESS
CREATEPROCESS
The CREATEPROCESS routine starts a new process according to parameters you
specify. It can also send process-creation messages that might have been altered by
SMU routines to the new process according to the option parameter specifications.

The CREATEPROCESS routine is available only in the Guardian environment. In the
OSS environment, use the OSS process create function fork() or tdm_fork(2)
(see the Open System Services Programmer’s Guide).

The CREATEPROCESS routine cannot create a high-PIN process. To do this, use the
CLU_PROCESS_CREATE_ routine (see CLULIB Overview).

The general form of the ENTER statement to use CREATEPROCESS is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of CREATEPROCESS.

Note. CREATEPROCESS uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

program-file

OF

resultGIVING

process-name

option

priority

processor

memory

process-id

ENTER " "
ns

CREATEPROCESS
ns

VST359.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-101

Libraries and Utility Routines CREATEPROCESS
program-file

is an alphanumeric data item containing the file-system file name of the loadfile to
be executed. Any trailing spaces are ignored. Example:

05 PROGRAM-FILE PIC X(35)
- VALUE "\CENTRAL.$CRPMIS.DEVELOP.AMR1459".

The access mode (see Linkage Section) of program-file must be STANDARD.

process-name

is an alphanumeric data item containing the name for the new process. Normally,
the first six characters are significant and must be in the format defined by
NEWPROCESS: the first character must be a dollar sign ($), and the second
character must not be a space. The minimum number of characters allowed is two.
The value can be all spaces to indicate that no name is supplied.

The process-name parameter can be omitted by supplying the keyword OMITTED
instead of an alphanumeric data item. OMITTED indicates that no name is
supplied. Example:

03 PROCESS-NAME PIC X(6) VALUE "$A1459".

The access mode (see Linkage Section) of process-name must be STANDARD.

option

is a DISPLAY or COMPUTATIONAL numeric data item, a numeric literal, or an
expression enclosed in parentheses. option indicates which saved process
creation messages are required by the new process. The value must evaluate to 0,
1, 2, 3 or 8, 9, 10, 11.

The option parameter can be omitted by supplying the keyword OMITTED.
OMITTED implies a 0 option value. Example:

07 OPTION PIC 9999 COMPUTATIONAL.

The option values are interpreted like this:

Value Meaning

0 Send copies of all saved ASSIGN, PARAM, and startup messages from the
creator process. If no saved startup message exists, send a standard
message where the volume and subvolume, IN-file, and OUT-file are those
of the creator process, and the message parameter string is a null string.

1 Send a copy of the saved startup message from the creator process. If no
saved startup message exists, send a standard message as described
above.

2 Send a standard startup message.

3 Send no messages. The creator process does not open the new process.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-102

Libraries and Utility Routines CREATEPROCESS
Normally, if NEWPROCESS reports a class one error, undefined externals, the
new process stops. An application can force new process creation by adding 8 to
the normal option value (8 instead of 0, 9 instead of 1, …, 11 instead of 3).
CREATEPROCESS returns the class one error result even though the new
process is created. The value 8 indicates the undefined externals are not
considered an error.

priority

is the NEWPROCESS priority parameter. Priority can be either a DISPLAY or
COMPUTATIONAL numeric data item, a numeric literal, or an expression enclosed
in parentheses. Its value is passed to NEWPROCESS. If its value is 0,
NEWPROCESS assigns the new process the same priority as that of the creator
process. The first bit of the priority parameter is used to signal that the new
process is to start in debug mode.

The priority parameter can be omitted by supplying the keyword OMITTED.
OMITTED implies a 0 priority value. Example:

77 PRIORITY PIC S9999 COMPUTATIONAL.

processor

is the NEWPROCESS processor parameter. processor can be a DISPLAY or
COMPUTATIONAL numeric data item, a numeric literal, or an expression enclosed
in parentheses. A nonnegative value is passed to NEWPROCESS. A negative
value is replaced by the processor value of the creator process, so the new
process executes in the same processor as the creator process.

processor can be omitted by supplying the keyword OMITTED. OMITTED
implies a value of -1. Example:

02 PROCESSOR PIC S9999 COMPUTATIONAL.

memory

is the NEWPROCESS memory parameter. memory can be a DISPLAY or
COMPUTATIONAL numeric data item, a numeric literal, or an expression enclosed
in parentheses. Its value is passed to NEWPROCESS. If 0, NEWPROCESS
assigns the number of memory pages indicated by the new process. memory can
be omitted by supplying the keyword OMITTED. OMITTED implies a value of 0.
Example:

06 MEMORY-PAGES PIC 9999 COMPUTATIONAL.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-103

Libraries and Utility Routines CREATEPROCESS
process-id

is a numeric data item to be assigned the process identification of the new
process. The process-id data item must be COMPUTATIONAL or NATIVE-8
and described with 10 through 18 nines.

process-id can be omitted by supplying the keyword OMITTED instead of a
numeric data item. OMITTED indicates that no process identification is returned.
Example:

08 PROCESS-ID PIC S9(18) COMPUTATIONAL.

result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by CREATEPROCESS. Example:

11 RESULT PIC S9999 COMPUTATIONAL.

CREATEPROCESS returns an integer value that indicates whether the new process
creation completed or failed. The integer values and their meanings are:

Value Meaning

0 Process creation completed successfully

1 Required parameter missing or illegal

2 Illegal loadfile name

3 Infile name, outfile name, or default volume name cannot be converted
to network form

10 through 255 A file management error value that CREATEPROCESS received in
attempting to transmit the startup message to the new process

Greater than 255 A value greater than 255 is an error value returned from
NEWPROCESS (see the information on process control in the
Guardian Programmer’s Guide)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-104

Libraries and Utility Routines Saved Message Utility (SMU) Routines
Saved Message Utility (SMU) Routines
This topic explains the individual Saved Message Utility (SMU) routines in the
COBOLLIB file, which are:

• ALTERPARAMTEXT

• CHECKLOGICALNAME

• CHECKMESSAGE

• DELETEASSIGN

• DELETEPARAM

• DELETESTARTUP

• GETASSIGNTEXT

• GETASSIGNVALUE

• GETBACKUPCPU

• GETPARAMTEXT

• GETSTARTUPTEXT

• PUTASSIGNTEXT

• PUTASSIGNVALUE

• PUTPARAMTEXT

• PUTSTARTUPTEXT

Note. The presence of the keyword TAL in an ENTER statement causes COBOL to use the
TAL protocol when passing the ENTER statement’s parameters to a routine. Most of these
routines require a protocol different from that used for normal TAL procedures. The keyword
TAL must not follow the ENTER verb in statements used to access these routines. A reminder
of this requirement is included in each routine description to which it applies.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-105

Libraries and Utility Routines ALTERPARAMTEXT
ALTERPARAMTEXT
Use the ALTERPARAMTEXT routine to create or replace a parameter value for the
specified parameter name in the saved PARAM message with text from a string
variable. Unlike the PUTPARAMTEXT routine, ALTERPARAMTEXT provides for
parameter values with trailing spaces. The general form of the ENTER statement to
use ALTERPARAMTEXT follows.

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of ALTERPARAMTEXT.

portion

is an alphanumeric data item that supplies the identifier for the particular part of the
message to be changed. The identifier must be a parameter name defined for the
PARAM message. The first unused character position of portion, if any, must be
a space. Example:

03 PORTION PIC X(30) VALUE "POSTINGDATE".

text

is an alphanumeric data item from which the parameter’s new value is obtained.
Example:

03 TEXT-VALUE PIC X(120) VALUE "910401".

Note. ALTERPARAMTEXT uses a protocol different from that used for normal TAL
procedures. The ENTER verb must not be followed by the keyword TAL.

ENTER ALTERPARAMTEXT"

USING

library-reference

portion

OF

resultGIVING

text

"

cplist size

ns ns

VST351.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-106

Libraries and Utility Routines ALTERPARAMTEXT
cplist

is a checkpoint list in which the routine records the changes to the message
storage data space. Example:

01 CP-LIST-1.
 05 MAX-COUNT PIC 9999 COMP VALUE IS 100.
 05 CURRENT-COUNT PIC 9999 COMP VALUE IS 0.
 05 ELEMENT PIC 9(9) COMP OCCURS 100 TIMES.

The initial value of MAX-COUNT must be the same as the number of occurrences
of ELEMENT.

In the non-CRE environment, the initial value of MAX-COUNT is the maximum
number of elements that cplist can contain. In the CRE, the maximum number
of elements that cplist can contain is the initial value of MAX-COUNT divided
by 2.5. The cplist in the preceding example can contain 100 elements in the
non-CRE environment, but only 40 in the CRE.

The required number of table elements depends on the number of operations the
list must record. The worst-case situation uses six elements.

A complete checkpoint list is required only when a program has a backup that must
be kept current. When a record of changes is not required, a null checkpoint list
can be used. This is an example description:

03 CP-LIST-1 PIC 9(9) COMP VALUE IS 0.

size

is the number of characters from text to be used as the new parameter value.
size can be a DISPLAY or COMPUTATIONAL numeric data item, a numeric
literal, or an expression enclosed in parentheses.

The value must evaluate to a nonnegative integer not greater than 255. Example:

05 TEXT-SIZE PIC 9999 COMPUTATIONAL.

result

is a DISPLAY or COMPUTATIONAL numeric data item that is assigned the result
returned by ALTERPARAMTEXT. Example:

05 RESULT PIC S9999 COMPUTATIONAL.

ALTERPARAMTEXT operates on the saved PARAM message. The program must
have included a SAVE directive to save the message.

Altering the saved PARAM message has no effect on the current process. Any
DEBUG, SWITCH-nn, NONSTOP, or other named parameters are permanently
established for a given process by the initialization code that the process executes
before the first statement of the COBOL program. Any process initiated by the current
process inherits the modified PARAM message.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-107

Libraries and Utility Routines CHECKLOGICALNAME
ALTERPARAMTEXT returns one of these integer values to report the routine’s success
or failure:

CHECKLOGICALNAME
The CHECKLOGICALNAME routine checks whether a saved ASSIGN message with
the given logical file name exists. The general form of the ENTER statement to use
CHECKLOGICALNAME is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of CHECKLOGICALNAME.

Value Meaning

0 or greater A nonnegative value, equal to the number of characters in the new parameter
value, indicates that size characters of text value is assigned as the new
parameter value.

-1 Failure due to a logic error. The message is unchanged. These are possible
logic errors:

• The portion identifier is not correct.
• The size value is negative or exceeds 255 characters.
• The total length of the new PARAM message exceeds the maximum.
• The contents of the checkpoint list parameter are inconsistent.

-2 Insufficient checkpoint list space is available to complete the operation. The
message is unchanged.

-3 Insufficient storage space to complete the operation. The message is
unchanged.

Note. CHECKLOGICALNAME uses a protocol different from that used by normal TAL
procedures. The ENTER verb must not be followed by the keyword TAL.

ENTER " "
ns ns

USING

library-referenceOF

resultGIVINGlogical-name

CHECKLOGICALNAME

VST352.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-108

Libraries and Utility Routines CHECKLOGICALNAME
logical-name

program-unit

is an alphanumeric data item that specifies the name of the program unit.

file-name

is an alphanumeric data item that specifies the logical file name. program-
unit and file-name together, or file-name alone, compose the logical
file name. The logical file name can have a maximum of 63 characters
(including the period). Any trailing spaces are ignored. Example:

02 LOGICAL-NAME PIC X(64).

*

means that the file assignment applies to all programs in the object file.

result

is either a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by CHECKLOGICALNAME. Example:

03 RESULT PIC S9999 COMPUTATIONAL.

CHECKLOGICALNAME operates on the saved ASSIGN messages. The program must
have included a SAVE directive to save the message.

CHECKLOGICALNAME returns one of these integer values to report whether the
requested message exists:

• A 0 indicates that no saved ASSIGN message contains a matching logical file
name text.

• A positive value is the message number of the saved ASSIGN message having a
logical file name text that matches the one supplied.

• A negative value is the negative message number of the saved ASSIGN message
having a logical file name text that conflicts with the one supplied. The names can
conflict when only one is qualified or when one is qualified by an asterisk (*) and
the other is qualified by a program name. If there is more than one conflicting
saved ASSIGN message, the message number of the first ASSIGN message
located is returned as a negative value.

.

*

file-name

program-unit

VST639.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-109

Libraries and Utility Routines CHECKMESSAGE
CHECKMESSAGE
The CHECKMESSAGE routine determines whether a specific message exists or
reports the greatest message number of the saved ASSIGN messages.
CHECKMESSAGE operates on the saved messages. The program must have
included a SAVE directive to save the message.

The general form of the ENTER statement to use CHECKMESSAGE is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of CHECKMESSAGE.

message-number

identifies a specific message. message-number can be a DISPLAY or
COMPUTATIONAL numeric data item, a numeric literal, or an expression enclosed
in parentheses. The value for message-number must be -3, -1, 0, or a
nonnegative integer. The values of message-number have these meanings:

Because each saved ASSIGN message is identified by a positive integer,
message-number refers to the integer value of the specific message. The set of
numbers associated with the ASSIGN messages are integers from 1 to N, where N
is normally the number of ASSIGN messages saved during the initial process
creation. Example:

03 MESSAGE-NUMBER PIC S9999 COMPUTATIONAL.

Value of message-number Meaning

-3 Checks for the presence of a saved PARAM message

-1 Checks for the presence of a saved startup message

0 Requests the greatest message number in the set of
saved ASSIGN messages

Nonnegative integer Checks for the presence of a saved ASSIGN message
with that message number

ENTER "
TAL

"
ns

USING

library-referenceOF

resultGIVINGmessage-number

CHECKMESSAGE
ns

VST353.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-110

Libraries and Utility Routines DELETEASSIGN
result

is either a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by CHECKMESSAGE. Example:

08 RESULT PIC S9999 COMPUTATIONAL.

Under these conditions, result has these values:

DELETEASSIGN
The DELETEASSIGN routine deletes either specific parts of a saved ASSIGN
message or an entire saved ASSIGN message. The general form of the ENTER
statement to use DELETEASSIGN is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of DELETEASSIGN.

Condition Value of result

Value of message-number is not 0
and requested message exists

Value of message-number

Value of message-number is not 0
and requested message does not exist

0

Value of message-number is 0 and
no saved ASSIGN messages exist.

0

All others Nonzero integer value associated with the
highest numbered saved ASSIGN message

Note. DELETEASSIGN uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

resultGIVING

message-numbercplist

ENTER " "
ns

DELETEASSIGN
ns

VST360.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-111

Libraries and Utility Routines DELETEASSIGN
portion

is an alphanumeric data item that supplies the identifier for the particular part of the
saved message to be deleted. The identifier must be one defined for the ASSIGN
message (see Table 13-13). The first unused character position of portion, if any,
must be a space. Any message part except the LOGICALNAME can be deleted
individually. Example:

03 PORTION PIC X(30) VALUE "TANDEMNAME".

There is a special portion identifier, *ALL*, accepted by this routine. The *ALL*
identifier directs the DELETEASSIGN routine to delete the entire saved ASSIGN
message.

cplist

is a checkpoint list in which the routine records the changes to the message
storage data space. Example:

01 CP-LIST-1.
 05 MAX-COUNT PIC 9999 COMP VALUE IS 100.
 05 CURRENT-COUNT PIC 9999 COMP VALUE IS 0.
 05 ELEMENT PIC 9(9) COMP OCCURS 100 TIMES.

The initial value of MAX-COUNT must be the same as the number of occurrences
of ELEMENT.

In the non-CRE environment, the initial value of MAX-COUNT is the maximum
number of elements that cplist can contain. In the CRE, the maximum number
of elements that cplist can contain is the initial value of MAX-COUNT divided
by 2.5. The cplist in the preceding example can contain 100 elements in the
non-CRE environment, but only 40 in the CRE.

The required number of table elements depends on the number of operations the
list must record. The worst-case situation uses six elements.

A complete checkpoint list is required only when a program has a backup that must
be kept current. When a record of changes is not required, a null checkpoint list
can be used. This is an example description:

08 CP-LIST-1 PIC 9(9) COMP VALUE IS 0.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-112

Libraries and Utility Routines DELETEASSIGN
message-number

identifies a specific saved ASSIGN message. message-number can be a
DISPLAY or COMPUTATIONAL numeric data item, a numeric literal, or an
expression enclosed in parentheses. The value must evaluate to a positive integer.
Example:

14 MESSAGE-NUMBER PIC S9999 COMPUTATIONAL.

Because each saved ASSIGN message is identified by a positive integer,
message-number refers to the integer value of the specific message. The set of
numbers associated with the saved ASSIGN messages are integers from 1 to N,
where N is normally the number of ASSIGN messages saved during the initial
process creation.

result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by DELETEASSIGN. Example:

02 RESULT PIC S9999 COMPUTATIONAL.

DELETEASSIGN operates on the saved ASSIGN messages. The program must have
included a SAVE directive to save the message.

Deleting the saved ASSIGN message has no effect on the current process. Any file
assignments are permanently established for a given process by the initialization code
that the process executes before the first statement of the COBOL program. Any
process initiated by the current process after the execution of the DELETEASSIGN
routine lacks the corresponding ASSIGN message.

DELETEASSIGN returns an integer value that indicates the outcome of this operation.
The integer values and their meanings are:

Value Meaning

0 The specified message or message portion is deleted.

-1 Failure due to a logic error; nothing is deleted. These are possible logic errors:

• The portion identifier is not correct or does not identify a part of the ASSIGN
message that can be deleted.

• The contents of the checkpoint list parameter are inconsistent.

-2 Insufficient checkpoint list space is available to complete the deletion. The
message is unchanged.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-113

Libraries and Utility Routines DELETEPARAM
DELETEPARAM
The DELETEPARAM routine deletes either specific parts of a PARAM message or the
entire PARAM message. The general form of the ENTER statement to use
DELETEPARAM is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of DELETEPARAM.

portion

is an alphanumeric data item that supplies the identifier for the particular part of the
message to be deleted. The identifier must be a parameter name defined for the
PARAM message. The first unused character position of portion, if any, must be
a space. Example:

21 PORTION PIC X(30) VALUE "MALEFACTOR".

There is a special portion identifier, *ALL*, accepted by DELETEPARAM. The
ALL identifier directs the DELETEPARAM routine to delete the entire PARAM
message.

cplist

is a checkpoint list in which the routine records the changes to the message
storage data space. Example:

01 CP-LIST-1.
 05 MAX-COUNT PIC 9999 COMP VALUE IS 100.
 05 CURRENT-COUNT PIC 9999 COMP VALUE IS 0.
 05 ELEMENT PIC 9(9) COMP OCCURS 100 TIMES.

Note. DELETEPARAM uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

resultGIVING

cplist

ENTER " "
ns

DELETEPARAM
ns

VST361.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-114

Libraries and Utility Routines DELETEPARAM
The initial value of MAX-COUNT must be the same as the number of occurrences
of ELEMENT.

In the non-CRE environment, the initial value of MAX-COUNT is the maximum
number of elements that cplist can contain. In the CRE, the maximum number
of elements that cplist can contain is the initial value of MAX-COUNT divided
by 2.5. The cplist in the preceding example can contain 100 elements in the
non-CRE environment, but only 40 in the CRE.

The required number of table elements depends on the number of operations the
list must record. The worst-case situation uses six elements.

A complete checkpoint list is required only when a program has a backup that must
be kept current. When a record of changes is not required, a null checkpoint list
can be used. This is an example description:

06 CP-LIST-1 PIC 9(9) COMP VALUE IS 0.

result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by DELETEPARAM. Example:

03 RESULT PIC S9999 COMPUTATIONAL.

DELETEPARAM operates on the saved PARAM message. The program must have
included a SAVE directive to save the message.

Deleting all or part of the saved PARAM message has no effect on the current process.
Any DEBUG, SWITCH-nn, NONSTOP, or other named parameters are permanently
established for a given process by the initialization code that the process executes
before the first statement of the COBOL program. Any process initiated by the current
process after the execution of the DELETEPARAM routine lacks all or part of the
PARAM message.

DELETEPARAM returns an integer value that indicates the outcome of this operation.
The integer values and their meanings are:

Value Meaning

0 The specified message or message portion is deleted.

-1 Failure due to a logic error; nothing is deleted. These are possible logic errors:

• The portion identifier is not correct.
• The contents of the checkpoint list parameter are inconsistent.

-2 Insufficient checkpoint list space is available to complete the deletion. The
message is unchanged.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-115

Libraries and Utility Routines DELETESTARTUP
DELETESTARTUP
The DELETESTARTUP routine deletes an entire startup message. The general form of
the ENTER statement to use DELETESTARTUP is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of DELETESTARTUP.

portion

is an alphanumeric data item that supplies the identifier for the particular part of the
message to be deleted. For DELETESTARTUP this must be the special portion
identifier *ALL*. The first unused character position of portion, if any, must be a
space. Example:

05 PORTION PIC X(30) VALUE "*ALL*".

cplist

is a checkpoint list in which the routine records the changes to the message
storage data space. Example:

01 CP-LIST-1.
 05 MAX-COUNT PIC 9999 COMP VALUE IS 100.
 05 CURRENT-COUNT PIC 9999 COMP VALUE IS 0.
 05 ELEMENT PIC 9(9) COMP OCCURS 100 TIMES.

The initial value of MAX-COUNT must be the same as the number of occurrences
of ELEMENT.

Note. DELETESTARTUP uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

resultGIVING

cplist

ENTER " "
ns

DELETESTARTUP
ns

VST362.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-116

Libraries and Utility Routines DELETESTARTUP
In the non-CRE environment, the initial value of MAX-COUNT is the maximum
number of elements that cplist can contain. In the CRE, the maximum number
of elements that cplist can contain is the initial value of MAX-COUNT divided
by 2.5. The cplist in the preceding example can contain 100 elements in the
non-CRE environment, but only 40 in the CRE.

The required number of table elements depends on the number of operations the
list must record. The worst-case situation uses six elements.

A complete checkpoint list is required only when a program has a backup that must
be kept current. When a record of changes is not required, a null checkpoint list
can be used. This is an example description:

04 CP-LIST-1 PIC 9(9) COMP VALUE IS 0.

result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by DELETESTARTUP. Example:

04 RESULT PIC S9999 COMPUTATIONAL.

DELETESTARTUP operates on the entire saved startup message. The program must
have included a SAVE directive to save the message.

Deleting the saved startup message has no effect on the current process. The IN and
OUT files, the other run-command options, and any command-line parameters are
permanently established for a given process by the initialization code that the process
executes before the first statement of the COBOL program. Any process initiated by
the current process after the execution of the DELETESTARTUP routine does not
receive a startup message.

DELETESTARTUP returns an integer value that indicates the outcome of this
operation. The integer values and their meanings are:

Value Meaning

0 The specified message or message portion is deleted.

-1 Failure due to a logic error; nothing is deleted. These are possible logic errors:

• The portion identifier is not correct.
• The contents of the checkpoint list parameter are inconsistent.

-2 Insufficient checkpoint list space is available to complete the deletion. The
message is unchanged.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-117

Libraries and Utility Routines GETASSIGNTEXT
GETASSIGNTEXT
The GETASSIGNTEXT routine gets part of an ASSIGN message as text and assigns it
to a string variable. The general form of the ENTER statement to use
GETASSIGNTEXT is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of GETASSIGNTEXT.

portion

is an alphanumeric data item that supplies the identifier for the particular text part
of the message to be retrieved. The identifier must be one defined for the ASSIGN
message (see Table 13-13). The first unused character position of portion, if any,
must be a space. Example:

06 PORTION PIC X(30) VALUE "LOGICALNAME".

There is a special portion identifier, *ALL*, accepted by this routine. The *ALL*
identifier indicates that the routine must get the entire ASSIGN message. The
maximum size of the ASSIGN message is 108 characters. If you use a smaller
parameter, the routine truncates the message on the right. If you use a larger
parameter, the routine pads it on the right with spaces.

text

is an alphanumeric data item into which the retrieved text is placed. If this data item
is described with a JUSTIFIED clause, that clause is ignored. If the variable and
the retrieved text differ in length, the retrieved text is truncated or extended with
spaces as required. Example:

05 TEXT-VALUE PIC X(120).

Note. GETASSIGNTEXT uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

resultGIVING

text message-number

ENTER " "
ns

GETASSIGNTEXT
ns

VST363.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-118

Libraries and Utility Routines GETASSIGNTEXT
The text returned from a specific part of an ASSIGN message is:

message-number

identifies a specific ASSIGN message. message-number can be a DISPLAY or
COMPUTATIONAL numeric data item, a numeric literal, or an expression enclosed
in parentheses. The value must evaluate to a positive integer. Example:

03 MESSAGE-NUMBER PIC S9999 COMPUTATIONAL.

Because each saved ASSIGN message is identified by a positive integer,
message-number refers to the integer value of the specific message. The set of
numbers associated with the ASSIGN messages are integers from 1 to N, where N
is normally the number of ASSIGN messages saved during the initial process
creation.

result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the text returned
by GETASSIGNTEXT. Example:

03 RESULT PIC S9999 COMPUTATIONAL.

GETASSIGNTEXT operates on the saved ASSIGN messages. The program must
have included a SAVE directive to save the message.

LOGICALNAME The text contains the program unit name and
the logical file name, formatted like this, with
a maximum of 63 characters:

programunit.filename

If the logical name does not include the
program unit name, the text contains only
this, with no qualifier:

filename

TANDEMNAME The text is the file-system file name and can
have a maximum of 34 characters. The file
name can be all spaces.

Note. The text parameter must be declared as alphanumeric. Binder cannot detect the
nuances between the various forms of byte-addressed COBOL data (such as numeric or
alphanumeric edited data items that are not COMPUTATIONAL). The utility stores the
characters it receives into the data item specified by text, ignoring COBOL MOVE rules.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-119

Libraries and Utility Routines GETASSIGNVALUE
GETASSIGNTEXT returns an integer value that indicates the outcome of this
operation. The integer values and their meanings are:

GETASSIGNVALUE
The GETASSIGNVALUE routine retrieves a specified part of an ASSIGN message as
an integer and assigns it to a numeric variable. The general form of the ENTER
statement to use GETASSIGNVALUE is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of GETASSIGNVALUE.

Value Meaning

0 or greater A string of value characters, before truncation or padding, is assigned to
text. If the file-system file name is all spaces and the TANDEMNAME is
requested, a 0 is returned.

-1 Failure due to a logic error; nothing is assigned to text. These are possible
logic errors:

• The message number is not a positive integer.

• The specified message does not exist.

• The portion identifier is not correct, does not identify the defined text part
of an ASSIGN message, or identifies a part that does not exist in the
specified message.

Note. GETASSIGNVALUE uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

resultGIVING

val message-number

ENTER " "
ns

GETASSIGNVALUE
ns

VST364.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-120

Libraries and Utility Routines GETASSIGNVALUE
portion

is an alphanumeric data item that supplies the identifier for the particular integer
part of the message to be retrieved. The identifier must be one defined for the
ASSIGN message (see Table 13-13). The first unused character position of
portion, if any, must be a space. Example:

05 PORTION PIC X(30) VALUE "SECEXT".

val

is a numeric data item into which the retrieved value is placed. This data item must
be COMPUTATIONAL and described with one to four nines. Example:

04 VAL PIC S9999 COMPUTATIONAL.

message-number

identifies a specific ASSIGN message. message-number can be a DISPLAY or
COMPUTATIONAL numeric data item, a numeric literal, or an expression enclosed
in parentheses. The value must evaluate to a positive integer. Example:

08 MESSAGE-NUMBER PIC S9999 COMPUTATIONAL.

Because each saved ASSIGN message is identified by a positive integer,
message-number refers to the integer value of the specific message. The set of
numbers associated with the ASSIGN messages are integers from 1 to N, where N
is normally the number of ASSIGN messages saved during the initial process
creation.

result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by GETASSIGNVALUE. Example:

05 RESULT PIC S9999 COMPUTATIONAL.

GETASSIGNVALUE operates on the saved ASSIGN messages. The program must
have included a SAVE directive to save the message.

GETASSIGNVALUE returns an integer value that indicates the outcome of this
operation. The integer values and their meanings are:

Value Meaning

0 The specified portion value was assigned to val.

-1 Failure due to a logic error; nothing is assigned to val. These are possible logic
errors:

• The message number is not a positive integer.

• The specified message does not exist.

• The portion identifier is not correct. It does not identify a defined integer part
of an ASSIGN message, or it identifies a part that does not exist in the
specified message.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-121

Libraries and Utility Routines GETBACKUPCPU
GETBACKUPCPU
The GETBACKUPCPU routine retrieves a backup processor number from the PARAM
message of a COBOL program. Its operation depends on the existence of a saved
PARAM message containing the parameter name BACKUPCPU with a digit string
parameter value. GETBACKUPCPU is especially intended for TS/MP users. The
general form of the ENTER statement to use GETBACKUPCPU is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other loadfile containing an object copy
of GETBACKUPCPU.

result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by GETBACKUPCPU. Example:

06 RESULT PIC S9999 COMPUTATIONAL.

GETBACKUPCPU operates on the saved PARAM message. The program must have
included a SAVE directive to save the message.

GETBACKUPCPU returns an integer value that indicates the outcome of this
operation. If a BACKUPCPU parameter exists and contains an integer string value in
the range 0 through 99, that value is returned; otherwise, the integer value 99 is
returned.

ENTER GETBACKUPCPU" "

library-referenceOF

resultGIVING

TAL

ns ns

VST365.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-122

Libraries and Utility Routines GETPARAMTEXT
GETPARAMTEXT
The GETPARAMTEXT routine gets a specified part of the PARAM message as text
and assigns it to a string variable.

The general form of the ENTER statement to use GETPARAMTEXT is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of GETPARAMTEXT.

portion

is an alphanumeric data item that supplies the identifier for the particular part of the
message to be retrieved. The identifier must be a parameter name defined for the
PARAM message. The first unused character position of portion, if any, must be
a space. Example:

04 PORTION PIC X(30) VALUE "SITE".

There is a special portion identifier, *ALL*, accepted by this routine. The *ALL*
identifier indicates that the routine must get the entire PARAM message. The
maximum size of the PARAM message is 1028 characters. If you use a smaller
parameter, the routine truncates the message on the right. If you use a larger
parameter, the routine pads it on the right with spaces.

Note. GETPARAMTEXT uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

resultGIVING

text

ENTER " "
ns

GETPARAMTEXT
ns

VST366.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-123

Libraries and Utility Routines GETPARAMTEXT
text

is the alphanumeric data item in which the retrieved text is placed. If this data item
is described with a JUSTIFIED clause, that clause is ignored. If the variable and
the retrieved text differ in length, the retrieved text is truncated or extended with
spaces as required. Example:

13 TEXT-VALUE PIC X(120).

The text returned from a specific PARAM message parameter is the parameter
value associated with that parameter name. It can have a maximum of 255
characters.

result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by GETPARAMTEXT. Example:

04 RESULT PIC S9999 COMPUTATIONAL.

GETPARAMTEXT operates on the saved PARAM message. The program must have
included a SAVE directive to save the message.

GETPARAMTEXT returns an integer value that indicates the outcome of this operation.
The integer values and their meanings are:

Note. The text parameter MUST be declared as alphanumeric. Binder cannot detect
the nuances between the various forms of byte-addressed COBOL data (such as numeric
or alphanumeric edited data that is not COMPUTATIONAL). The utility stores the
characters it receives into the data item specified by text, ignoring COBOL MOVE rules.

Value Meaning

0 or greater A string of value characters, before truncation or padding, is assigned to
text. If the parameter value is a null string, a 0 is returned.

-1 Failure due to a logic error; nothing is assigned to text. These are possible
logic errors:

• The PARAM message does not exist.

• The portion identifier is not correct or identifies a parameter that does not
exist in the PARAM message.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-124

Libraries and Utility Routines GETSTARTUPTEXT
GETSTARTUPTEXT
The GETSTARTUPTEXT routine gets a specified part of the startup message as text
and assign it to a string variable. The general form of the ENTER statement to use
GETSTARTUPTEXT is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of GETSTARTUPTEXT.

portion

is an alphanumeric data item that supplies the identifier for the particular part of the
message to be retrieved. The identifier must be one defined for the startup
message (see Table 13-14). The first unused character position of portion, if any,
must be a space. Example:

02 PORTION PIC X(30) VALUE "OUT".

text

is an alphanumeric data item into which the retrieved text is placed. If this data item
is described with a JUSTIFIED clause, that clause is ignored. If the variable and
the retrieved text differ in length, the retrieved text is truncated or extended with
spaces as required. Example:

04 TEXT-VALUE PIC X(120).

Note. The ENTER verb must not be followed by the keyword TAL, because
GETSTARTUPTEXT uses a protocol different from that of normal TAL procedures.

USING

library-reference

portion

OF

resultGIVING

text

ENTER " "
ns

GETSTARTUPTEXT
ns

VST367.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-125

Libraries and Utility Routines GETSTARTUPTEXT
The text values returned from specific startup message parts are:

result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by GETSTARTUPTEXT. Example:

77 RESULT PIC S9999 COMPUTATIONAL.

GETSTARTUPTEXT operates on the saved startup message. The program must have
included a SAVE directive to save the message.

GETSTARTUPTEXT returns an integer value that indicates the outcome of this
operation. The integer values are interpreted:

VOLUME The text contains the default system, volume, and subvolume
names, formatted like this, with a maximum of 25 characters:

\system.$volume.subvol

If the volume part does not include the system name component,
the text contains only this, with no system qualifier:

$volume.subvol

IN The text is the file system name of the input file and can have a
maximum of 35 characters. The file name can be all spaces.

OUT The text is the file system name of the output file name and can
have a maximum of 35 characters. The file name can be all
spaces.

STRING The text is the startup message’s parameter string, not including
trailing null characters, and can have a maximum of 526
characters.

Note. The text parameter MUST be declared as alphanumeric. Binder cannot detect
the nuances between the various forms of byte-addressed COBOL data (such as numeric
or alphanumeric edited data that is not COMPUTATIONAL). The utility stores the
characters it receives into the data item specified by text, ignoring COBOL MOVE rules.

Value Meaning

0 or greater A string of value characters, before truncation or padding, is assigned to
text. If the file system name of the file is all spaces, a 0 is returned for IN or
OUT. If the value is all spaces or a null string, a 0 is returned for STRING.

-1 Failure due to a logic error; nothing is assigned to text. These are possible
logic errors:

• The startup message does not exist.

• The portion identifier is not correct or does not identify a defined part of
the startup message.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-126

Libraries and Utility Routines PUTASSIGNTEXT
PUTASSIGNTEXT
The PUTASSIGNTEXT routine either creates or replaces a specified part of an
ASSIGN message with text obtained from a string variable. The general form of the
ENTER statement to use PUTASSIGNTEXT is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of PUTASSIGNTEXT.

portion

is an alphanumeric data item that supplies the identifier for the particular text part
of the message to be changed. The identifier must be one defined for the ASSIGN
message (see Table 13-13). The first unused character position of portion, if any,
must be a space. Example:

03 PORTION PIC X(30) "TANDEMNAME".

text

is an alphanumeric data item containing the new value of the specified message
part. Any trailing spaces are ignored. Example:

07 TEXT-VALUE PIC X(120).

Note. PUTASSIGNTEXT uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

text

message-number

GIVING

cplist

result

ENTER " "
ns

PUTASSIGNTEXT
ns

VST368.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-127

Libraries and Utility Routines PUTASSIGNTEXT
Appropriate text values for ASSIGN message parts are

cplist

is a checkpoint list in which the routine records the changes to the message
storage data space. Example:

01 CP-LIST-1.
 05 MAX-COUNT PIC 9999 COMP VALUE IS 100.
 05 CURRENT-COUNT PIC 9999 COMP VALUE IS 0.
 05 ELEMENT PIC 9(9) COMP OCCURS 100 TIMES.

The initial value of MAX-COUNT must be the same as the number of occurrences
of ELEMENT.

In the non-CRE environment, the initial value of MAX-COUNT is the maximum
number of elements that cplist can contain. In the CRE, the maximum number
of elements that cplist can contain is the initial value of MAX-COUNT divided
by 2.5. The cplist in the preceding example can contain 100 elements in the
non-CRE environment, but only 40 in the CRE.

The required number of table elements depends on the number of operations the
list must record. The worst-case situation uses six elements.

A complete checkpoint list is required only when a program has a backup that must
be kept current. When a record of changes is not required, a null checkpoint list
can be used. This is an example description:

03 CP-LIST-1 PIC 9(9) COMP VALUE IS 0.

message-number

identifies a specific ASSIGN message. message-number can be a DISPLAY or
COMPUTATIONAL numeric data item, a numeric literal, or an expression enclosed
in parentheses. The value must evaluate to a positive integer. Example:

05 MESSAGE-NUMBER PIC S9999 COMPUTATIONAL.

LOGICALNAME The text contains the program unit name and the logical
file name, formatted like this, with a maximum of 63
characters:

programunit.filename

If the logical name does not include the program unit
name, the text contains only this, with no qualifier:

filename

TANDEMNAME The text is the file-system file name and can have a
maximum of 35 characters. The file name can be all
spaces.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-128

Libraries and Utility Routines PUTASSIGNTEXT
Because each saved ASSIGN message is identified by a positive integer,
message-number refers to the integer value of the specific message. The set of
numbers associated with the ASSIGN messages are integers from 1 to N, where N
is normally the number of ASSIGN messages saved during the initial process
creation.

result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by PUTASSIGNTEXT. Example:

04 RESULT PIC S9999 COMPUTATIONAL.

PUTASSIGNTEXT operates on the saved ASSIGN messages. The program must have
included a SAVE directive to save the message.

Changing a saved ASSIGN message has no effect on the current process. Any file
assignments (except for dynamic assignments, as explained under COBOLASSIGN)
are permanently established for a given process by the initialization code that the
process executes before the first statement of the COBOL program. Any process
initiated by the current process after execution of the PUTASSIGNTEXT routine
inherits the changed ASSIGN message.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-129

Libraries and Utility Routines PUTASSIGNTEXT
PUTASSIGNTEXT returns an integer value that indicates the outcome of this
operation. If the specified ASSIGN message does not exist, the PUTASSIGNTEXT
routine attempts to create one containing the supplied text portion and default values
for all other message parts. If this operation fails, a -1, -2, or -3 value is returned. The
integer values and their meanings are:

The ASSIGN message creation is successful if both message space and cplist
space are available, the requested portion is the logical name, and the requested
logical file name does not conflict with that of another saved ASSIGN message. All
other parts are marked “not present in this message.

Value Meaning

0 or greater A string of that many characters is assigned as the new message part value.
A 0 is returned for TANDEMNAME if the file name supplied is all spaces.

-1 Failure due to a logic error. The message is unchanged. These are possible
logic errors:

• The portion identifier is not correct or does not identify a defined text part
of the ASSIGN message.

• The text string is not acceptable because either the logical file name or
the file system name of the file is incorrect.

• The message number is not a positive integer.

• The requested logical file name conflicts with the logical file name of
another saved ASSIGN message.

• The contents of the checkpoint list parameter are inconsistent.

• The specified ASSIGN message does not exist, and the portion identifier
is not LOGICALNAME

-2 Insufficient checkpoint list space is available to complete the operation. The
message is unchanged.

-3 Insufficient stack space to create or replace message. The message is
unchanged. Moving large data items from the Working-Storage Section to the
Extended-Storage Section, either manually or with the LARGEDATA directive,
might solve the problem.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-130

Libraries and Utility Routines PUTASSIGNVALUE
PUTASSIGNVALUE
The PUTASSIGNVALUE routine either creates or replaces a specified part of an
ASSIGN message with the value obtained from an integer variable. The general form
of the ENTER statement to use PUTASSIGNVALUE is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other loadfile containing an object copy
of PUTASSIGNVALUE.

portion

is an alphanumeric data item that supplies the identifier for the particular integer
part of the message to be changed. The identifier must be one defined for the
ASSIGN message (see Table 13-13). The first unused character position of
portion, if any, must be a space. Example:

06 PORTION PIC X(30) VALUE "BLKSIZE".

val

is the new value of the message part. val can be a DISPLAY or
COMPUTATIONAL numeric data item, a numeric literal, or an expression enclosed
in parentheses. The value must evaluate to an integer consistent with the message
part to be created or replaced. Example:

07 VAL PIC S9999 COMPUTATIONAL.

Note. PUTASSIGNVALUE uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

val

message-number

cplist

resultGIVING

ENTER " "
ns

PUTASSIGNVALUE
ns

VST369.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-131

Libraries and Utility Routines PUTASSIGNVALUE
cplist

is a checkpoint list in which the routine records the changes to the message
storage data space. Example:

01 CP-LIST-1.
 05 MAX-COUNT PIC 9999 COMP VALUE IS 100.
 05 CURRENT-COUNT PIC 9999 COMP VALUE IS 0.
 05 ELEMENT PIC 9(9) COMP OCCURS 100 TIMES.

The initial value of MAX-COUNT must be the same as the number of occurrences
of ELEMENT.

In the non-CRE environment, the initial value of MAX-COUNT is the maximum
number of elements that cplist can contain. In the CRE, the maximum number
of elements that cplist can contain is the initial value of MAX-COUNT divided
by 2.5. The cplist in the preceding example can contain 100 elements in the
non-CRE environment, but only 40 in the CRE.

The required number of table elements depends on the number of operations the
list must record. The worst-case situation uses six elements.

A complete checkpoint list is required only when a program has a backup that must
be kept current. When a record of changes is not required, a null checkpoint list
can be used. This is an example description:

77 CP-LIST-1 PIC 9(9) COMP VALUE IS 0.

message-number

identifies a specific ASSIGN message. message-number can be a DISPLAY or
COMPUTATIONAL numeric data item, a numeric literal, or an expression enclosed
in parentheses. The value must evaluate to a positive integer. Example:

22 MESSAGE-NUMBER PIC S9999 COMPUTATIONAL.

Because each saved ASSIGN message is identified by a positive integer,
message-number refers to the integer value of the specific message. The set of
numbers associated with the ASSIGN messages are integers from 1 to N, where N
is normally the number of ASSIGN messages saved during the initial process
creation.

result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by PUTASSIGNVALUE. Example:

05 RESULT PIC S9999 COMPUTATIONAL.

PUTASSIGNVALUE operates on the saved ASSIGN messages. The program must
have included a SAVE directive to save the message.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-132

Libraries and Utility Routines PUTPARAMTEXT
Changing a saved ASSIGN message has no effect on the current process. Any file
assignments (except for dynamic assignments, as explained under COBOLASSIGN)
are permanently established for a given process by the initialization code that the
process executes before the first statement of the COBOL program. Any process
initiated by the current process after execution of PUTASSIGNVALUE routine inherits
the changed ASSIGN message.

PUTASSIGNVALUE returns an integer value that indicates the outcome of this
operation. The integer values and their meanings are:

PUTPARAMTEXT
The PUTPARAMTEXT routine either creates or replaces a specified part of the PARAM
message with text obtained from a string variable. The general form of the ENTER
statement to use PUTPARAMTEXT is:

Value Meaning

0 Value of val is assigned as the new value of the requested message part.

-1 Failure due to a logic error. Nothing is changed. These are possible logic errors:

• The portion identifier is not correct or does not identify a defined text part of
the ASSIGN message.

• The integer value supplied is not acceptable for the specified part of the
ASSIGN message.

• The message number is not a positive integer.

• The specified message does not exist. A nonexistent ASSIGN message must
be created by the PUTASSIGNTEXT routine with the specified part of the
logical name.

-2 Insufficient checkpoint list space is available to complete the operation. The
message is unchanged.

-3 Insufficient stack space to create or replace message. The message is
unchanged. Moving large data items from the Working-Storage Section to the
Extended-Storage Section, either manually or with the LARGEDATA directive,
might solve the problem.

USING

library-reference

portion

OF

text

resultGIVING

cplist

ENTER " "
ns

PUTPARAMTEXT
ns

VST370.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-133

Libraries and Utility Routines PUTPARAMTEXT
library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of PUTPARAMTEXT.

portion

is an alphanumeric data item that supplies the identifier for the particular part of the
message to be changed. The identifier must be a parameter name defined for the
PARAM message. The first unused character position of portion, if any, must be
a space. Example:

04 PORTION PIC X(30) VALUE "CONTINENT".

text

is an alphanumeric data item containing the new value for the parameter. Any
trailing spaces are ignored. Example:

01 TEXT-VALUE PIC X(120) VALUE "ANTARCTICA".

cplist

is a checkpoint list in which the routine records the changes to the message
storage data space. Example:

01 CP-LIST-1.
 05 MAX-COUNT PIC 9999 COMP VALUE IS 100.
 05 CURRENT-COUNT PIC 9999 COMP VALUE IS 0.
 05 ELEMENT PIC 9(9) COMP OCCURS 100 TIMES.

The initial value of MAX-COUNT must be the same as the number of occurrences
of ELEMENT.

In the non-CRE environment, the initial value of MAX-COUNT is the maximum
number of elements that cplist can contain. In the CRE, the maximum number
of elements that cplist can contain is the initial value of MAX-COUNT divided
by 2.5. The cplist in the preceding example can contain 100 elements in the
non-CRE environment, but only 40 in the CRE.

The required number of table elements depends on the number of operations the
list must record. The worst-case situation uses six elements.

A complete checkpoint list is required only when a program has a backup that must
be kept current. When a record of changes is not required, a null checkpoint list
can be used. This is an example description:

04 CP-LIST-1 PIC 9(9) COMP VALUE IS 0.

Note. PUTPARAMTEXT uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-134

Libraries and Utility Routines PUTPARAMTEXT
result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by PUTPARAMTEXT. Example:

04 RESULT PIC S9999 COMPUTATIONAL.

PUTPARAMTEXT operates on the saved PARAM message. The program must have
included a SAVE directive to save the message.

Changing the saved PARAM message has no effect on the current process. Any
DEBUG, SWITCH-nn, NONSTOP, or other named parameters are permanently
established for a given process by the initialization code that the process executes
before the first statement of the COBOL program. Any process initiated by the current
process after execution of the PUTPARAMTEXT routine inherits the modified PARAM
message.

PUTPARAMTEXT returns an integer value that indicates the outcome of this operation.
If the PARAM message does not exist, the PUTPARAMTEXT routine attempts to
create one containing the supplied parameter name and value. If this operation fails, a
-1, -2, or -3 value is returned. The integer values are interpreted:

The PARAM message creation is successful if both message space and cplist
space are available, and the new message contains only the parameter name and
value supplied to PUTPARAMTEXT.

Value Meaning

0 or positive integer A string of value characters is assigned as the new parameter
value. If the string is all spaces, a 0 is returned.

-1 Failure due to a logic error. Nothing is changed. These are possible
logic errors:

• The portion identifier is not correct.

• The new parameter value string exceeds 255 characters.

• The total length of the new PARAM message exceeds the
maximum.

• The contents of the checkpoint list parameter are inconsistent.

-2 Insufficient checkpoint list space is available to complete the
operation. The message does not change.

-3 Insufficient stack space to create or replace message. The message
is unchanged. Moving large data items from the Working-Storage
Section to the Extended-Storage Section, either manually or with the
LARGEDATA directive, might solve the problem.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-135

Libraries and Utility Routines PUTSTARTUPTEXT
PUTSTARTUPTEXT
The PUTSTARTUPTEXT routine either creates or replaces a specified part of the
startup message with text obtained from a string variable. The general form of the
ENTER statement to use PUTSTARTUPTEXT is:

library-reference

is a mnemonic-name associated in the SPECIAL-NAMES paragraph with either
$SYSTEM.SYSTEM.COBOLLIB or some other object file containing an object
copy of PUTSTARTUPTEXT.

portion

is an alphanumeric data item that supplies the identifier for the particular part of the
message to be changed. The identifier must be one defined for the startup
message (see Table 13-14). The first unused character position of portion, if any,
must be a space. Example:

03 PORTION PIC X(30) VALUE "VOLUME".

text

is an alphanumeric data item containing the new value for the specified message
part. Any trailing spaces are ignored. Example:

04 TEXT-VALUE PIC X(120).

Note. PUTSTARTUPTEXT uses a protocol different from that used for normal TAL
procedures. The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

text

resultGIVING

cplist

ENTER " "
ns

PUTSTARTUPTEXT
ns

VST371.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-136

Libraries and Utility Routines PUTSTARTUPTEXT
Appropriate text values for startup message parts are:

cplist

is a checkpoint list in which the routine records the changes to the message
storage data space. Example:

01 CP-LIST-1.
 05 MAX-COUNT PIC 9999 COMP VALUE IS 100.
 05 CURRENT-COUNT PIC 9999 COMP VALUE IS 0.
 05 ELEMENT PIC 9(9) COMP OCCURS 100 TIMES.

The initial value of MAX-COUNT must be the same as the number of occurrences
of ELEMENT.

In the non-CRE environment, the initial value of MAX-COUNT is the maximum
number of elements that cplist can contain. In the CRE, the maximum number
of elements that cplist can contain is the initial value of MAX-COUNT divided
by 2.5. The cplist in the preceding example can contain 100 elements in the
non-CRE environment, but only 40 in the CRE.

The required number of table elements depends on the number of operations the
list must record. The worst-case situation uses six elements.

A complete checkpoint list is required only when a program has a backup that must
be kept current. When a record of changes is not required, a null checkpoint list
can be used. This is an example description:

08 CP-LIST-1 PIC 9(9) COMP VALUE IS 0.

result

is a DISPLAY or COMPUTATIONAL numeric data item assigned the result
returned by PUTSTARTUPTEXT. Example:

04 RESULT PIC S9999 COMPUTATIONAL.

VOLUME The text is the new default system, volume, and subvolume
names, formatted like this, with a maximum of 26 characters:

\system.$volume.subvol

If the new volume part does not include the system name
component, the text is just this, with no system qualifier.

$volume.subvol

IN The text is the file system name of the new input file and can have
a maximum of 35 characters. The file name can be all spaces.

OUT The text is the file system name of the new output file and can
have a maximum of 35 characters. The file name can be all
spaces.

STRING The text is the new message parameter string, not including trailing
null characters, and can have a maximum of 526 characters.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-137

Libraries and Utility Routines PUTSTARTUPTEXT
PUTSTARTUPTEXT operates on the saved startup message. The program must have
included a SAVE directive to save the message.

Changing the saved startup message has no effect on the current process. The IN and
OUT files, the other run-command options, and any command-line parameters are
permanently established for a given process by the initialization code that the process
executes before the first statement of the COBOL program. Any process initiated by
the current process after execution of the PUTSTARTUPTEXT routine receives the
changed startup message.

PUTSTARTUPTEXT returns an integer value that indicates the outcome of this
operation. If the startup message does not exist, PUTSTARTUPTEXT attempts to
create one containing the requested text portion and default values for all other
message parts. If this operation fails, a -1, -2, or -3 value is returned. The integer
values and their meanings are:

The startup message creation is successful if both message space and cplist space
are available, and the new message contains the message part requested. All other
message parts are set to their default values. The default values for VOLUME, IN, and
OUT are taken from those of the current program. The default value for the message
parameter string is a null string.

Value Meaning

0 or greater A string of value characters is assigned as the new message part value. If
the file name supplied is all spaces, a 0 is returned for IN or OUT. If the value
supplied is all spaces, a 0 is returned for STRING.

-1 Failure due to a logic error. The message is unchanged. These are possible
logic errors:

• The portion identifier is not correct or does not identify a defined text part
of the startup message

• The text string value is not acceptable: there is an illegal system, volume,
or subvolume name; an illegal file name; or a message parameter string
that exceeds 526 characters.

• The contents of the checkpoint list parameter are inconsistent.

-2 Insufficient checkpoint list space is available to complete the operation. The
message does not change.

-3 Insufficient stack space to create or replace message. The message is
unchanged. Moving large data items from the Working-Storage Section to the
Extended-Storage Section, either manually or with the LARGEDATA directive,
might solve the problem.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-138

Libraries and Utility Routines Guardian Environment Level 3 Spooling Routines
Guardian Environment Level 3 Spooling
Routines

Before the CBL85UTL file included the routines COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_, the Guardian environment routines in Table 13-19 were
used for level 3 spooling. They were called with the ENTER verb.

For information on these routines, see the Guardian Procedure Calls Reference
Manual.

Table 13-19. Guardian Environment Level 3 Spooling Routines

Routine Action

CLOSE Closes the spooler collector

OPEN Opens the spooler collector

SPOOLCONTROL Handles VFU channel skipping

SPOOLCONTROLBUF Handles the loading of programmable VFU for the model 5220
printer

SPOOLEND Signals the end of a spooler job and can change attributes before
a new spooler job starts without closing and reopening the
spooler collector

SPOOLSETMODE Sets automatic perforation skipping, system spacing control,
baud rate, form length, vertical tabs, automatic-answer or control-
answer mode, horizontal pitch, pre- or post-spacing, get device
status, or reset to configured values

SPOOLSTART Establishes the Level 3 buffer, location name, form name, report
name, number of copies, page size, and attributes such as HOLD
and PRIORITY

SPOOLWRITE Writes text to the spooler
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-139

Libraries and Utility Routines Guardian Environment Level 3 Spooling Routines
HP COBOL Manual for TNS and TNS/R Programs—522555-006
13-140

14 Intrinsic Functions
An intrinsic function is a function that your program can use, but does not need to
declare. It returns a value that is computed at the time of reference during the
execution of the object program.

Like an identifier, an intrinsic function has a class and category, and you can use an
intrinsic function wherever you can use an identifier of the same class and category as
a sending data item. An intrinsic function call, which has the format

FUNCTION function_name (arguments)

is considered an identifier. For example, this is allowed:

MOVE FUNCTION NUMVAL (STRING-ITEM) TO NUM-ITEM.

You cannot use an intrinsic function as a receiving data item (in a CALL statement, for
example). (For explanations of class and category, see Data Levels, Classes, and
Categories.)

Topics:

• Intrinsic Function Types

• Argument Types

• The intrinsic functions themselves in alphabetic order:

° ACOS Function

° ANNUITY Function

° ASIN Function

° ATAN Function

° CHAR Function

° COS Function

° CURRENT-DATE Function

° DATE-OF-INTEGER Function

° DAY-OF-INTEGER Function

° FACTORIAL Function

° INTEGER Function

° INTEGER-OF-DATE Function

° INTEGER-OF-DAY Function

° INTEGER-PART Function

° LENGTH Function
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-1

Intrinsic Functions
° LOG Function

° LOG10 Function

° LOWER-CASE Function

° MAX Function

° MEAN Function

° MEDIAN Function

° MIDRANGE Function

° MIN Function

° MOD Function

° NUMVAL Function

° NUMVAL-C Function

° ORD Function

° ORD-MAX Function

° ORD-MIN Function

° PRESENT-VALUE Function

° RANDOM Function

° RANGE Function

° REM Function

° REVERSE Function

° SIN Function

° SQRT Function

° STANDARD-DEVIATION Function

° SUM Function

° TAN Function

° UPPER-CASE Function

° VARIANCE Function

° WHEN-COMPILED Function
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-2

Intrinsic Functions Intrinsic Function Types
Intrinsic Function Types
The type of an intrinsic function is the type of the value it returns. An intrinsic function
can be:

• Alphanumeric Intrinsic Functions

• Numeric Intrinsic Functions

• Integer Intrinsic Functions

• Variable-Type Intrinsic Functions

You can use an integer function wherever you can use a numeric operand, but you
cannot use a numeric function where an integer operand is required, even if a
particular reference to the numeric function returns an integer value.

You can nest intrinsic functions; that is, you can use one intrinsic function as the
argument of another. The function that is used as the argument must be of the type
required for that argument.

For example,

FUNCTION MAX (FUNCTION INTEGER(X) FUNCTION INTEGER-PART(X))

is allowed because the functions INTEGER and INTEGER-PART are integer functions
and the function MAX accepts integer arguments.

FUNCTION UPPER-CASE (FUNCTION FACTORIAL(5))

is not allowed because the function FACTORIAL is an integer function and the function
UPPER-CASE requires an alphanumeric argument.

Alphanumeric Intrinsic Functions
An alphanumeric intrinsic function returns an alphanumeric value (a string of one or
more alphanumeric characters).

Table 14-1. Alphanumeric Intrinsic Functions

Function Name Value Returned

CHAR Function Character in specified position of program
collating sequence

CURRENT-DATE Function Current date and time and difference from
Greenwich mean time

LOWER-CASE Function Its argument with all letters set to lowercase

REVERSE Function Its argument with characters in reverse order

UPPER-CASE Function Its argument with all letters set to uppercase

WHEN-COMPILED Function Date and time when program was compiled
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-3

Intrinsic Functions Numeric Intrinsic Functions
Numeric Intrinsic Functions
A numeric intrinsic function returns a numeric value.

Table 14-2. Numeric Intrinsic Functions

Function Name Value Returned

ACOS Function Arccosine of argument

ANNUITY Function Ratio of annuity paid for a specified
number of periods at a specified
interest rate to initial investment of
one

ASIN Function Arcsine of argument

ATAN Function Arctangent of argument

COS Function Cosine of argument

LOG Function Natural logarithm of argument

LOG10 Function Logarithm to base 10 of argument

MEAN Function Arithmetic mean of arguments

MEDIAN Function Median of arguments

MIDRANGE Function Midrange of arguments

NUMVAL Function Numeric value of simple numeric
string

NUMVAL-C Function Numeric value of numeric string with
optional commas and currency sign

PRESENT-VALUE Function Present value of a specified series of
future period-end amounts at a
specified discount rate

RANDOM Function Pseudorandom number

REM Function Remainder when one argument is
divided by the other

SIN Function Sine of argument

SQRT Function Square root of argument

STANDARD-DEVIATION Function Standard deviation of arguments

TAN Function Tangent of argument

VARIANCE Function Variance of arguments
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-4

Intrinsic Functions Integer Intrinsic Functions
Integer Intrinsic Functions
An integer intrinsic function returns an integer value.

Table 14-3. Integer Intrinsic Functions

Function Name Value Returned

DATE-OF-INTEGER Function Standard date equivalent of integer date
(YYYYMMDD)*

DAY-OF-INTEGER Function Julian date equivalent of integer date
(YYYYDDD)*

FACTORIAL Function Factorial of argument

INTEGER Function Greatest integer not greater than argument

INTEGER-OF-DATE Function Integer date equivalent of standard date
(YYYYMMDD)*

INTEGER-OF-DAY Function Integer date equivalent of Julian date
(YYYYDDD)*

INTEGER-PART Function Integer part of argument

LENGTH Function Length of argument

MOD Function First argument modulo second argument

ORD Function Ordinal position of argument in program
collating sequence

ORD-MAX Function Ordinal position of maximum argument

ORD-MIN Function Ordinal position of minimum argument

* Date conversion functions use the Gregorian calendar.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-5

Intrinsic Functions Variable-Type Intrinsic Functions
Variable-Type Intrinsic Functions
The type of some intrinsic functions depends on the type(s) of its arguments.

Argument Types
Table 14-6 lists the types of arguments that intrinsic functions can have, tells you what
you must specify for an argument of each type, and tells you what is used in
determining the function’s value.

Table 14-4. Variable-Type Intrinsic Functions

Function Name Value Returned

MAX Function Value of maximum argument

MIN Function Value of minimum argument

RANGE Function Value of maximum argument minus value of minimum
argument

SUM Function Sum of arguments

Table 14-5. How Argument Type Determines Variable-Type Intrinsic Function
Type

Argument Type Function Type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

Integer Integer

Numeric (some can be integer) Numeric

Note. Not every function in Table 14-4 can have arguments of every type in Table 14-5. For
valid argument types for a particular function, see the description of that function later in this
section.

Note. Not every intrinsic function can have arguments of every type in Table 14-6. For valid
argument types for a particular function, see the description of that function later in this section.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-6

Intrinsic Functions Argument Types
An arithmetic expression used as an argument can include subscripts, and any
subscript can be the keyword ALL. When ALL is a subscript, the effect is as if each
table element associated with that subscript position were specified. The order of the
implicit specification of each occurrence is from left to right. The leftmost specification
is the identifier with each subscript specified by the word ALL replaced by one. The
next specification is the same identifier with the rightmost subscript specified by the
word ALL incremented by one. This process continues with the rightmost ALL subscript
being incremented by one for each implicit specification until the rightmost ALL
subscript has been incremented through its range of values. If there are additional ALL
subscripts, the ALL subscript immediately to the left of the rightmost ALL subscript is
incremented by one, the rightmost ALL subscript is set to one, and the process of
varying the rightmost ALL subscript is repeated. The ALL subscript to the left of the
rightmost ALL subscript is incremented by one through its range of values. For each
additional ALL subscript, this process is repeated until the leftmost ALL subscript has
been incremented by one through its range of values. If the ALL subscript is associated
with an OCCURS DEPENDING clause, the object of the OCCURS DEPENDING
clause determines the range of values. The evaluation of an ALL subscript must result
in at least one argument, or the result of the reference to the function-identifier is
undefined.

An invalid argument causes a run-time error. In the non-CRE environment, it is error
130 (“Invalid function parameter”). In the CRE, it is error 40 (“Invalid function
parameter”). If you are executing an old object file on a newer system, the error might
be “Corrupted environment.”

Table 14-6. Argument Types

Argument
Type What You Must Specify

What is Used in Determining the
Function’s Value

Numeric Arithmetic expression Value of arithmetic expression,
including operational sign

Integer Arithmetic expression that
always results in integer value

Value of arithmetic expression,
including operational sign

Alphabetic Elementary data item of the
class alphabetic, or nonnumeric
literal containing only alphabetic
characters

Value of argument and possibly its size

Alphanumeric Data item of the class alphabetic
or alphanumeric, or nonnumeric
literal

Value of argument and possibly its size
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-7

Intrinsic Functions ACOS Function
ACOS Function
ACOS, a numeric function, returns a value in radians that approximates the arccosine
of its argument.

argument

is a numeric argument whose value is in the range -1 to +1.

The returned value approximates the arccosine of the value of argument. It is a
floating-point number in the range zero to pi. It has no implied decimal point and is
precise to approximately 14 digits.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Example 14-1. ACOS Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 A PICTURE S9V99.

PROCEDURE DIVISION.
 MOVE FUNCTION ACOS (-1) TO A.
 DISPLAY A.
 MOVE FUNCTION ACOS (.25) TO A.
 DISPLAY A.
 MOVE FUNCTION ACOS (.5) TO A.
 DISPLAY A.
 MOVE FUNCTION ACOS (.75) TO A.
 DISPLAY A.
 MOVE FUNCTION ACOS (1) TO A.
 DISPLAY A.

Output:

3.14
1.31
1.04
0.72
0.00

()ACOSFUNCTION argument

VST421.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-8

Intrinsic Functions ANNUITY Function
ANNUITY Function
ANNUITY, a numeric function, returns a value that approximates the ratio of an annuity
paid at the end of each period for a specified number of periods at a specified interest
rate to an initial investment of one. Interest is applied at the end of the period, before
the payment (annuity immediate).

interest-rate

is a numeric argument whose value is greater than or equal to zero.

number-of-periods

is a positive integer.

When the value of interest-rate is zero, the returned value is approximately:

When the value of interest-rate is not zero, the returned value is approximately:

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

()

ANNUITYFUNCTION

interest-rate number-of-periods

VST422.vsd

1
number-of-periods

interest-rate

interest-rate+) number-of-periods–
--
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-9

Intrinsic Functions ANNUITY Function
Example 14-2. ANNUITY Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 A PICTURE 9V99.

PROCEDURE DIVISION.
 MOVE FUNCTION ANNUITY (1 12) TO A.
 DISPLAY A.
 MOVE FUNCTION ANNUITY (1 6) TO A.
 DISPLAY A.
 MOVE FUNCTION ANNUITY (2 6) TO A.
 DISPLAY A.
 MOVE FUNCTION ANNUITY (5 2) TO A.
 DISPLAY A.
 MOVE FUNCTION ANNUITY (0 5) TO A.
 DISPLAY A.

Output:

1.00
1.01
2.00
5.14
0.20
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-10

Intrinsic Functions ASIN Function
ASIN Function
ASIN, a numeric function, returns a value in radians that approximates the arcsine of
its argument.

argument

is a numeric argument whose value is in the range -1 to +1.

The returned value approximates the arcsine of the value of argument. It is a floating-
point number in the range -pi/2 to +pi/2. It has no implied decimal point and is precise
to approximately 14 digits.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Example 14-3. ASIN Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 A PICTURE S9V99.

PROCEDURE DIVISION.
 MOVE FUNCTION ASIN (-1) TO A.
 DISPLAY A.
 MOVE FUNCTION ASIN (.25) TO A.
 DISPLAY A.
 MOVE FUNCTION ASIN (.5) TO A.
 DISPLAY A.
 MOVE FUNCTION ASIN (.75) TO A.
 DISPLAY A.
 MOVE FUNCTION ASIN (1) TO A.
 DISPLAY A.

Output:

-1.57
0.25
0.52
0.84
1.57

()ASINFUNCTION argument

VST423.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-11

Intrinsic Functions ATAN Function
ATAN Function
ATAN, a numeric function, returns a value in radians that approximates the arctangent
of its argument.

argument

is a numeric argument.

The returned value approximates the arctangent of the value of argument. It is a
floating-point number in the range -pi/2 to +pi/2, excluding the endpoints. It has no
implied decimal point and is precise to approximately 14 digits.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Example 14-4. ATAN Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 A PICTURE S9V99.

PROCEDURE DIVISION.
 MOVE FUNCTION ATAN (-10) TO A.
 DISPLAY A.
 MOVE FUNCTION ATAN (0) TO A.
 DISPLAY A.
 MOVE FUNCTION ATAN (.25) TO A.
 DISPLAY A.
 MOVE FUNCTION ATAN (15.5) TO A.
 DISPLAY A.
 MOVE FUNCTION ATAN (45) TO A.
 DISPLAY A.

Output:

-1.47
0.00
0.24
1.50
1.54

()ATANFUNCTION argument

VST424.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-12

Intrinsic Functions CHAR Function
CHAR Function
CHAR, an alphanumeric function, returns a character whose ordinal number in the
program collating sequence is the value of its argument.

argument

is an integer greater than zero and less than or equal to n, where n is the number
of positions in the program collating sequence.

If more than one character has the same position in the program collating sequence,
the returned character is the first character that the ALPHABET clause specifies for
that character position. If the current program collating sequence was not specified by
an ALPHABET clause, HP COBOL uses the ASCII program collating sequence.

Example 14-5. CHAR Function Without ALPHABET Clause

Code:

DISPLAY FUNCTION CHAR (36)
DISPLAY FUNCTION CHAR (43)
DISPLAY FUNCTION CHAR (54)
DISPLAY FUNCTION CHAR (69)
DISPLAY FUNCTION CHAR (99)

Output:

#
*
5
D
b

()CHARFUNCTION argument

VST425.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-13

Intrinsic Functions CHAR Function
Example 14-6. CHAR Function With ALPHABET Clause

Code:

ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 ALPHABET CAPITAL-LETTERS IS 66 THRU 91.
 SOURCE-COMPUTER. ABD.
 OBJECT-COMPUTER. ABD
 PROGRAM COLLATING SEQUENCE IS CAPITAL-LETTERS.

PROCEDURE DIVISION.
 Startt.
 DISPLAY FUNCTION CHAR (1)
 DISPLAY FUNCTION CHAR (2)
 DISPLAY FUNCTION CHAR (13)
 DISPLAY FUNCTION CHAR (20)
 DISPLAY FUNCTION CHAR (25)

Output:

A
B
M
T
Y

HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-14

Intrinsic Functions COS Function
COS Function
COS, a numeric function, returns a value that approximates the cosine of the angle or
arc (in radians) specified by its argument.

argument

is a numeric argument.

The returned value approximates the cosine of the value of argument. It is a floating-
point number in the range -1 to +1. It has no implied decimal point and is precise to
approximately 14 digits.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Example 14-7. COS Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 A PICTURE S9V99.

PROCEDURE DIVISION.
 MOVE FUNCTION COS (-10) TO A.
 DISPLAY A.
 MOVE FUNCTION COS (0) TO A.
 DISPLAY A.
 MOVE FUNCTION COS (.25) TO A.
 DISPLAY A.
 MOVE FUNCTION COS (15.5) TO A.
 DISPLAY A.
 MOVE FUNCTION COS (45) TO A.
 DISPLAY A.

Output:

-0.83
1.00
0.96
-0.97
0.52

()COSFUNCTION argument

VST426.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-15

Intrinsic Functions CURRENT-DATE Function
CURRENT-DATE Function
CURRENT-DATE, an alphanumeric function, returns a 21-character string that
represents the calendar date, time of day, and local time differential factor provided by
the operating environment.

The returned value represents the current date this way (where character position 1 is
the leftmost character position):

The date in Example 14-8 is April 11, 1997 (19970411). The time is 16:52:22.24 or
4:52:22.24 PM (16522224), which is 7 hours behind Greenwich mean time (-0700).

Character
Positions Date Part Represented Represented by

1-4 Year in Gregorian calendar Four digits

5-6 Month of the year Two digits in the range 01 through 12

7-8 Day of the month Two digits in the range 01 through 31

9-10 Hours past midnight Two digits in the range 00 through 23

11-12 Minutes past the hour Two digits in the range 00 through 59

13-14 Seconds past the minute Two digits in the range 00 through 59

15-16 Hundredths of seconds past
the second

Two digits in the range 00 through 99

17 Relationship to Greenwich
mean time

Minus (-) if the reported time is behind
Greenwich mean time, plus (+) if it is the
same as or ahead of Greenwich mean
time

18-19 Hours behind or ahead of
Greenwich mean time

If character position 17 is minus (-), two
digits in the range 00 through 12; if
character position 17 is plus (+), two digits
in the range 00 through 13

20-21 Additional minutes from
Greenwich mean time

Two digits in the range 00 through 59

Example 14-8. CURRENT-DATE Function

Code:

DISPLAY FUNCTION CURRENT-DATE

Output:

1997041116522224-0700

CURRENT-DATEFUNCTION

VST427.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-16

Intrinsic Functions DATE-OF-INTEGER Function
DATE-OF-INTEGER Function
DATE-OF-INTEGER, an integer function, converts a date in the Gregorian calendar
from integer date form to standard date form (YYYYMMDD).

argument

is a positive integer that represents a number of days since December 31, 1600, in
the Gregorian calendar.

The returned value is of the form YYYYMMDD, where YYYY represents the year in the
Gregorian calendar, MM represents the month of that year, and DD represents the day
of that month.

Example 14-9. DATE-OF-INTEGER Function

Code:

DISPLAY FUNCTION DATE-OF-INTEGER (1)
DISPLAY FUNCTION DATE-OF-INTEGER (365)
DISPLAY FUNCTION DATE-OF-INTEGER (36500)
DISPLAY FUNCTION DATE-OF-INTEGER (12345)
DISPLAY FUNCTION DATE-OF-INTEGER (100000)

Output:

16010101
16011231
17001207
16341019
18741016

()DATE-OF-INTEGERFUNCTION argument

VST428.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-17

Intrinsic Functions DAY-OF-INTEGER Function
DAY-OF-INTEGER Function
DAY-OF-INTEGER, an integer function, converts a date in the Gregorian calendar from
integer date form to Julian date form (YYYYDDD).

argument

is a positive integer that represents a number of days since December 31, 1600, in
the Gregorian calendar.

The returned value is of the form YYYYDDD, where YYYY represents the year in the
Gregorian calendar and DDD represents the day of that year.

Example 14-10. DAY-OF-INTEGER Function

Code:

DISPLAY FUNCTION DAY-OF-INTEGER (1)
DISPLAY FUNCTION DAY-OF-INTEGER (365)
DISPLAY FUNCTION DAY-OF-INTEGER (36500)
DISPLAY FUNCTION DAY-OF-INTEGER (12345)
DISPLAY FUNCTION DAY-OF-INTEGER (100000)

Output:

1601001
1601365
1700341
1634292
1874289

()DAY-OF-INTEGERFUNCTION argument

VST429.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-18

Intrinsic Functions FACTORIAL Function
FACTORIAL Function
FACTORIAL, an integer function, returns the factorial of its argument.

argument

is an integer greater than or equal to zero.

When argument is zero, the returned value is 1; when argument is positive, the
returned value is its factorial.

Example 14-11. FACTORIAL Function

Code:

DISPLAY FUNCTION FACTORIAL (0)
DISPLAY FUNCTION FACTORIAL (1)
DISPLAY FUNCTION FACTORIAL (4)
DISPLAY FUNCTION FACTORIAL (6)
DISPLAY FUNCTION FACTORIAL (10)

Output:

0000000000000000001
0000000000000000001
0000000000000000024
0000000000000000720
0000000000003628800

()FACTORIALFUNCTION argument

VST430.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-19

Intrinsic Functions INTEGER Function
INTEGER Function
INTEGER, an integer function, returns the greatest integer that is less than or equal to
its argument.

argument

is a numeric argument.

The returned value is the greatest integer that is less than or equal to the value of
argument.

Example 14-12. INTEGER Function

Code:

DISPLAY FUNCTION INTEGER (-3.5)
DISPLAY FUNCTION INTEGER (-3)
DISPLAY FUNCTION INTEGER (3)
DISPLAY FUNCTION INTEGER (3.5)

Output:

-4
-3
3
3

()INTEGERFUNCTION argument

VST431.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-20

Intrinsic Functions INTEGER-OF-DATE Function
INTEGER-OF-DATE Function
INTEGER-OF-DATE, an integer function, converts a date in the Gregorian calendar
from standard date form (YYYYMMDD) to integer date form.

argument

is an integer of the form YYYYMMDD, whose value is calculated from the equation
(YYYY * 10,000) + (MM * 100) + DD where:

The returned value is an integer that is the number of days that the date represented
by argument succeeds December 31, 1600, in the Gregorian calendar.

Example 14-14 uses the INTEGER-OF-DATE and REM functions to find the day of the
week for dates in standard date form (YYYYMMDD). For a description of the REM
function, see REM Function.

Factor Date Part Represented Represented by

YYYY Year in Gregorian calendar Integer in the range 1,601 through 9,999

MM Month of the year Integer in the range 1 through 12

DD Day of the month Integer in the range 1 through 31 that is a valid
day for the month specified by MM

Example 14-13. INTEGER-OF-DATE Function

Code:

DISPLAY FUNCTION INTEGER-OF-DATE (16010101)
DISPLAY FUNCTION INTEGER-OF-DATE (16011231)
DISPLAY FUNCTION INTEGER-OF-DATE (17001207)
DISPLAY FUNCTION INTEGER-OF-DATE (16341019)
DISPLAY FUNCTION INTEGER-OF-DATE (18741016)

Output:

00000001
00000365
00036500
00012345
00100000

()INTEGER-OF-DATEFUNCTION argument

VST432.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-21

Intrinsic Functions INTEGER-OF-DATE Function
Example 14-14. INTEGER-OF-DATE Function

Code:

?ENV COMMON
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TESTT.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. ABD.
 OBJECT-COMPUTER. ABD.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 D PICTURE 9 USAGE COMPUTATIONAL.
 01 STD-DATE PICTURE 9(8) USAGE COMPUTATIONAL.
 PROCEDURE DIVISION.
 STARTT.
 PERFORM VARYING STD-DATE FROM 19970618 BY 1
 UNTIL STD-DATE > 19970624
 DISPLAY STD-DATE
 MOVE FUNCTION REM (FUNCTION INTEGER-OF-DATE (STD-DATE) 7)
 TO D
 IF D = 0 THEN DISPLAY " SUNDAY" ELSE
 IF D = 1 THEN DISPLAY " MONDAY" ELSE
 IF D = 2 THEN DISPLAY " TUESDAY" ELSE
 IF D = 3 THEN DISPLAY " WEDNESDAY" ELSE
 IF D = 4 THEN DISPLAY " THURSDAY" ELSE
 IF D = 5 THEN DISPLAY " FRIDAY" ELSE
 IF D = 6 THEN DISPLAY " SATURDAY" END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-PERFORM.
 STOP RUN.

Output:

19970618
 WEDNESDAY
19970619
 THURSDAY
19970620
 FRIDAY
19970621
 SATURDAY
19970622
 SUNDAY
19970623
 MONDAY
19970624
 TUESDAY
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-22

Intrinsic Functions INTEGER-OF-DAY Function
INTEGER-OF-DAY Function
INTEGER-OF-DAY, an integer function, converts a date in the Gregorian calendar from
Julian date form (YYYYDDD) to integer date form.

argument

is an integer of the form YYYYDDD, whose value is calculated from the equation
(YYYY * 1000) + DD where:

The returned value is an integer that is the number of days that the date represented
by argument succeeds December 31, 1600, in the Gregorian calendar.

Factor Date Part Represented Represented by

YYYY Year in Gregorian calendar Integer in the range 1,601 through 9,999

DD Day of the year Integer in the range 1 through 366 that is a
valid day for the year specified by YYYY

Example 14-15. INTEGER-OF-DAY Function

Code:

DISPLAY FUNCTION INTEGER-OF-DAY (1601001)
DISPLAY FUNCTION INTEGER-OF-DAY (1601365)
DISPLAY FUNCTION INTEGER-OF-DAY (1700341)
DISPLAY FUNCTION INTEGER-OF-DAY (1634292)
DISPLAY FUNCTION INTEGER-OF-DAY (1874289)

Output:

00000001
00000365
00036500
00012345
00100000

()INTEGER-OF-DAYFUNCTION argument

VST433.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-23

Intrinsic Functions INTEGER-PART Function
INTEGER-PART Function
INTEGER-PART, an integer function, returns the integer part of its argument.

argument

is a numeric argument.

The returned value is determined as shown in this table:

Value of argument Returned Value

Zero Zero

Positive Greatest integer less than or equal to the value of argument

Negative Least integer greater than or equal to the value of argument

Example 14-16. INTEGER-PART Function

Code:

DISPLAY FUNCTION INTEGER-PART (-1.5)
DISPLAY FUNCTION INTEGER-PART (-1)
DISPLAY FUNCTION INTEGER-PART (0)
DISPLAY FUNCTION INTEGER-PART (1)
DISPLAY FUNCTION INTEGER-PART (1.5)

Output:

-1
-1
0
1
1

()INTEGER-PARTFUNCTION argument

VST434.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-24

Intrinsic Functions LENGTH Function
LENGTH Function
LENGTH, an integer function, returns the length of its argument (the number of
character positions it has, regardless of its current value).

argument

is a nonnumeric literal or data item of any class or category.

The returned value is determined as shown in this table. It includes any implicit FILLER
characters.

argument Returned Value

nonnumeric literal or
elementary data item or
data structure that does not
contain a variable occurrence
data item

Length of the value of argument.

data structure containing a
variable occurrence data item

Length of the current value of the data item specified in the
DEPENDING phrase of the OCCURS clause for the variable
occurrence data item. The current value is determined as if
the data item were a sending data item.

Example 14-17. LENGTH Function

Code:

01 STUFF-1 PIC XXXX.
01 STUFF-2 PIC 9999.

MOVE "AB" TO STUFF-1.
MOVE 12 TO STUFF-2.

DISPLAY FUNCTION LENGTH(STUFF-1).
DISPLAY STUFF-2.
DISPLAY FUNCTION LENGTH(STUFF-2).
DISPLAY FUNCTION LENGTH("ABC").

Output:

4
0012
4
3

()LENGTHFUNCTION argument

VST435.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-25

Intrinsic Functions LOG Function
LOG Function
LOG, a numeric function, returns a value that approximates the logarithm to the base e
(natural logarithm) of its argument.

argument

is a numeric argument greater than zero.

The returned value is approximately the logarithm to the base e of the value of
argument.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Example 14-18. LOG Function

Code:

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 A PICTURE S9V99.

 PROCEDURE DIVISION.
 MOVE FUNCTION LOG (1) TO A.
 DISPLAY A.
 MOVE FUNCTION LOG (10) TO A.
 DISPLAY A.
 MOVE FUNCTION LOG (100) TO A.
 DISPLAY A.
 MOVE FUNCTION LOG (1000) TO A.
 DISPLAY A.
 MOVE FUNCTION LOG (10000) TO A.
 DISPLAY A.

Output:

0.00
2.30
4.60
6.90
9.21

()LOGFUNCTION argument

VST436.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-26

Intrinsic Functions LOG10 Function
LOG10 Function
LOG10, a numeric function, returns a value that approximates the logarithm to the
base 10 of its argument.

argument

is a numeric argument greater than zero.

The returned value is approximately the logarithm to the base 10 of the value of
argument.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Example 14-19. LOG10 Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 A PICTURE S9V99.

PROCEDURE DIVISION.
 MOVE FUNCTION LOG10 (1) TO A.
 DISPLAY A.
 MOVE FUNCTION LOG10 (10) TO A.
 DISPLAY A.
 MOVE FUNCTION LOG10 (100) TO A.
 DISPLAY A.
 MOVE FUNCTION LOG10 (1000) TO A.
 DISPLAY A.
 MOVE FUNCTION LOG10 (10000) TO A.
 DISPLAY A.

Output:

0.00
1.00
2.00
3.00
4.00

()LOG10FUNCTION argument

VST437.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-27

Intrinsic Functions LOWER-CASE Function
LOWER-CASE Function
LOWER-CASE, an alphanumeric function, returns a character-string that is the same
as its argument, except that each uppercase letter is replaced by the corresponding
lowercase letter.

string

is an alphabetic or alphanumeric string at least one character in length.

The returned value is the same as the value of string, except that each uppercase
letter is replaced by the corresponding lowercase letter. If the value of string
contains no uppercase letters, or if an ALPHABET clause specifies a collating
sequence that contains no lowercase letters, the returned value is the same as the
value of string.

Example 14-20. LOWER-CASE Function

Code:

DISPLAY FUNCTION LOWER-CASE ("HEWLETT-PACKARD COMPANY 2003")
DISPLAY FUNCTION LOWER-CASE ("Hewlett-packard Company 2003")
DISPLAY FUNCTION LOWER-CASE ("hewlett-packard company 2003")

Output:

hewlett-packard company 2003
hewlett-packard company 2003
hewlett-packard company 2003

()LOWER-CASEFUNCTION string

VST438.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-28

Intrinsic Functions MAX Function
MAX Function
MAX is a function that returns the value of its maximum argument. Its type depends on
the type of its arguments, as this table shows:

argument

is an alphabetic, alphanumeric, integer, or numeric argument. If you specify more
than one argument, they must all be of the same class. Integer and numeric
arguments can be mixed, because integers are of the class numeric.

argument can be an array; for example,

FUNCTION MAX (ARRAY1(ALL))

returns the largest element of the array ARRAY1.

The returned value is the argument with the greatest value (according to the rules for
evaluating simple conditions). If the function type is alphanumeric, the size of the
returned value is the same as that of the argument with the greatest value. If two
arguments have the same greatest value, the value of the leftmost argument is
returned.

Argument Type Function Type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

Integer Integer

Numeric (some can be integer) Numeric

()MAXFUNCTION argument

VST439.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-29

Intrinsic Functions MAX Function
Example 14-21. MAX Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 NUMERIC-ARRAY.
 05 PICTURE 9(1) VALUE 4.
 05 PICTURE 9(1) VALUE 9.
 05 PICTURE 9(1) VALUE 3.
 05 PICTURE 9(1) VALUE 7.
 05 PICTURE 9(1) VALUE 5
 01 NUM-ARRAY REDEFINES NUMERIC-ARRAY.
 05 NUM OCCURS 5 TIMES PICTURE 9(1).
 01 ALPHABETIC-ARRAY.
 05 PICTURE X(5) VALUE "dog".
 05 PICTURE X(5) VALUE "cat".
 05 PICTURE X(5) VALUE "horse".
 05 PICTURE X(5) VALUE "sheep".
 05 PICTURE X(5) VALUE "goat".
 01 ALPHA-ARRAY REDEFINES ALPHABETIC-ARRAY.
 05 ALPHA OCCURS 5 TIMES PICTURE X(5).

PROCEDURE DIVISION.
 ...
 DISPLAY FUNCTION MAX (NUM(ALL))
 DISPLAY FUNCTION MAX (ALPHA(ALL))
 DISPLAY FUNCTION MAX (NUM(1) NUM(4))
 DISPLAY FUNCTION MAX (ALPHA(3) "bird" "fish")
 DISPLAY FUNCTION MAX (3.4 5 6.2 9)

Output:

9
sheep
7
horse
9.0
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-30

Intrinsic Functions MEAN Function
MEAN Function
MEAN, a numeric function, returns the arithmetic mean (average) of its arguments.

argument

is a numeric argument.

argument can be an array; for example,

FUNCTION MEAN (ARRAY1(ALL))

returns the arithmetic mean of the elements of the array ARRAY1.

The returned value is the arithmetic mean (average) of the argument series; that is

where n is the number of arguments.

()MEANFUNCTION argument

VST440.vsd

argumenti

i 1=

n

∑
n

HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-31

Intrinsic Functions MEDIAN Function
MEDIAN Function
MEDIAN, a numeric function, returns the value that would be the middle value in a list
formed by sorting its arguments numerically.

argument

is a numeric argument.

argument can be an array; for example,

FUNCTION MEDIAN (ARRAY1(ALL))

returns the median element of the array ARRAY1.

Example 14-22. MEAN Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 NUMERIC-ARRAY.
 05 PICTURE 9(1) VALUE 4.
 05 PICTURE 9(1) VALUE 9.
 05 PICTURE 9(1) VALUE 3.
 05 PICTURE 9(1) VALUE 7.
 05 PICTURE 9(1) VALUE 5
 01 NUM-ARRAY REDEFINES NUMERIC-ARRAY.
 05 NUM OCCURS 5 TIMES PICTURE 9(1).
 01 A PICTURE S9V9.

PROCEDURE DIVISION.
 MOVE FUNCTION MEAN (NUM(ALL)) TO A.
 DISPLAY A.
 MOVE FUNCTION MEAN (NUM(1) NUM(3) NUM(5)) TO A.
 DISPLAY A.
 MOVE FUNCTION MEAN (3.4 5 6.2 9) TO A.
 DISPLAY A.

Output:

5.6
4.0
5.9

()MEDIANFUNCTION argument

VST441.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-32

Intrinsic Functions MEDIAN Function
The returned value is the value that would be in the middle of the list if the arguments
were sorted numerically (according to the rules for comparing simple conditions). If
there are an odd number of arguments, at least half of them are less than or equal to
the returned value, and at least half of them are greater than or equal to the returned
value. If there are an even number of arguments, the returned value is the arithmetic
mean of the two middle arguments. (For the definition of arithmetic mean, see MEAN
Function).

Example 14-23. MEDIAN Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 NUMERIC-ARRAY.
 05 PICTURE 9(1) VALUE 4.
 05 PICTURE 9(1) VALUE 9.
 05 PICTURE 9(1) VALUE 3.
 05 PICTURE 9(1) VALUE 7.
 05 PICTURE 9(1) VALUE 5
 01 NUM-ARRAY REDEFINES NUMERIC-ARRAY.
 05 NUM OCCURS 5 TIMES PICTURE 9(1).
 01 A PICTURE S9V9.

PROCEDURE DIVISION.
 MOVE FUNCTION MEDIAN (NUM(ALL)) TO A.
 DISPLAY A.
 MOVE FUNCTION MEDIAN (NUM(1) NUM(3) NUM(5)) TO A.
 DISPLAY A.
 MOVE FUNCTION MEDIAN (4 1 7 5 2 3 6) TO A.
 DISPLAY A.
 MOVE FUNCTION MEDIAN (4 1 6 5 2 3) TO A.
 DISPLAY A.

Output:

5.0
4.0
4.0
3.5
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-33

Intrinsic Functions MIDRANGE Function
MIDRANGE Function
MIDRANGE, a numeric function, returns the arithmetic mean (average) of its minimum
and maximum arguments.

argument

is a numeric argument.

argument can be an array; for example,

FUNCTION MIDRANGE (ARRAY1(ALL))

returns the arithmetic mean of the minimum and maximum elements of the array
ARRAY1.

The returned value is the arithmetic mean (average) of the least argument and the
greatest argument (according to the rules for comparing simple conditions).

Example 14-24. MIDRANGE Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 NUMERIC-ARRAY.
 05 PICTURE 9(1) VALUE 4.
 05 PICTURE 9(1) VALUE 9.
 05 PICTURE 9(1) VALUE 3.
 05 PICTURE 9(1) VALUE 7.
 05 PICTURE 9(1) VALUE 5
 01 NUM-ARRAY REDEFINES NUMERIC-ARRAY.
 05 NUM OCCURS 5 TIMES PICTURE 9(1).
 01 A PICTURE S9V9.

PROCEDURE DIVISION.
 MOVE FUNCTION MIDRANGE (NUM(ALL)) TO A.
 DISPLAY A.
 MOVE FUNCTION MIDRANGE (NUM(1) NUM(3) NUM(5)) TO A.
 DISPLAY A.
 MOVE FUNCTION MIDRANGE (8 1 3 6) TO A.
 DISPLAY A.

Output:

6.0
4.0
4.5

()MIDRANGEFUNCTION argument

VST442.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-34

Intrinsic Functions MIN Function
MIN Function
MIN is a function that returns the value of its minimum argument. Its type depends on
the type of its arguments, as this table shows:

argument

is an alphabetic, alphanumeric, integer, or numeric argument. If you specify more
than one argument, they must all be of the same class. Integer and numeric
arguments can be mixed, because integers are of the class numeric.

argument can be an array; for example,

FUNCTION MIN (ARRAY1(ALL))

returns the smallest element of the array ARRAY1.

The returned value is the argument with the least value (according to the rules for
evaluating simple conditions). If the function type is alphanumeric, the size of the
returned value is the same as that of the argument with the least value. If two
arguments have the same least value, the value of the leftmost argument is returned.

Argument Type Function Type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

Integer Integer

Numeric (some can be integer) Numeric

()MINFUNCTION argument

VST443.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-35

Intrinsic Functions MIN Function
Example 14-25. MIN Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 NUMERIC-ARRAY.
 05 PICTURE 9(1) VALUE 4.
 05 PICTURE 9(1) VALUE 9.
 05 PICTURE 9(1) VALUE 3.
 05 PICTURE 9(1) VALUE 7.
 05 PICTURE 9(1) VALUE 5
 01 NUM-ARRAY REDEFINES NUMERIC-ARRAY.
 05 NUM OCCURS 5 TIMES PICTURE 9(1).
 01 ALPHABETIC-ARRAY.
 05 PICTURE X(5) VALUE "dog".
 05 PICTURE X(5) VALUE "cat".
 05 PICTURE X(5) VALUE "horse".
 05 PICTURE X(5) VALUE "sheep".
 05 PICTURE X(5) VALUE "goat".
 01 ALPHA-ARRAY REDEFINES ALPHABETIC-ARRAY.
 05 ALPHA OCCURS 5 TIMES PICTURE X(5).

PROCEDURE DIVISION.
 DISPLAY FUNCTION MIN (NUM(ALL))
 DISPLAY FUNCTION MIN (ALPHA(ALL))
 DISPLAY FUNCTION MIN (NUM(1) NUM(4))
 DISPLAY FUNCTION MIN (ALPHA(3) "bird" "fish")
 DISPLAY FUNCTION MIN (3.4 5 6.2 9)

Output:

3
cat
4
bird
3.4
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-36

Intrinsic Functions MOD Function
MOD Function
MOD, an integer function, returns the value that is argument-1 modulo
argument-2.

argument-1

is an integer.

argument-2

is a nonzero integer.

The returned value is argument-1 modulo argument-2, which is defined:

Example 14-26. MOD Function

Code:

DISPLAY FUNCTION MOD (11 5)
DISPLAY FUNCTION MOD (-11 5)
DISPLAY FUNCTION MOD (11 -5)
DISPLAY FUNCTION MOD (-11 -5)

Output:

00001
00004
-00004
-00001

()MODFUNCTION argument-1 argument-2

VST444.vsd

argument-1 argument-2 FUNCTION INTEGER
argument-1
argument-2

 ×
 –
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-37

Intrinsic Functions NUMVAL Function
NUMVAL Function
NUMVAL, a numeric function, returns the numeric value represented by its argument,
which is a character-string. NUMVAL ignores leading and trailing spaces.

string

sp

is a string of zero or more space characters.

number

If the program contains the DECIMAL POINT COMMA phrase in the SPECIAL-
NAMES paragraph, use a comma instead of a decimal point in number.

digits

is a string of one to 18 digits. The total number of digits in string cannot
exceed 18.

()NUMVALFUNCTION string

VST445.vsd

sp

+
-

number

+
-
CR

DB

number

sp

sp

sp

"

"

VST446.vsd

digits

.

digits

digits.

ns

ns

ns

VST447.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-38

Intrinsic Functions NUMVAL Function
The returned value is the numeric value represented by string. The format of the
value depends on the size of string. If the length of string is fewer than 10
characters, the equivalent PICTURE is S9(n)V9(n-1), where n is the number of
characters. Any size greater than 9 characters results in an equivalent PICTURE of
S9(19)V9(18). This is a special internal item that cannot be expressed by the user.
Using it is inefficient, so it is best to avoid using a string that is longer than 9
characters.

If the NUMVAL function is moved to an alphanumeric item, the results might not be
what is expected because of the implied PICTURE described previously. For string
sizes greater than 10, the result is changed to S9(18).

Example 14-27. NUMVAL Function

Code:

DATA DIVISION
 WORKING-STORAGE SECTION.
 01 A PICTURE S99V99.

PROCEDURE DIVISION.
 MOVE FUNCTION NUMVAL ("35") TO A.
 DISPLAY A.
 MOVE FUNCTION NUMVAL ("35.") TO A.
 DISPLAY A.
 MOVE FUNCTION NUMVAL ("35.75") TO A.
 DISPLAY A.
 MOVE FUNCTION NUMVAL (".35") TO A.
 DISPLAY A.
 MOVE FUNCTION NUMVAL (" - 35.75 ") TO A.
 DISPLAY A.
 MOVE FUNCTION NUMVAL (" 35.75 CR") TO A.
 DISPLAY A.

Output:

35.00
35.00
35.75
00.35
-35.75
-35.75
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-39

Intrinsic Functions NUMVAL-C Function
NUMVAL-C Function
NUMVAL-C, a numeric function, returns the numeric value of a specified character-
string, ignoring any currency sign or commas preceding the decimal point.

value-1

value-2

spaces

is a string of zero or more space characters.

NUMVAL-CFUNCTION

()value-1

currency-signvalue-2

VST448.vsd

spaces +

-

spaces

currency-sign

number

spaces spaces

VST450.vsd

spaces

number

spaces

spaces spacescurrency-sign

+
-

CR

DB

VST385.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-40

Intrinsic Functions NUMVAL-C Function
currency-sign

is a nonnumeric literal or alphanumeric data item; a string of one or two
characters that specifies the currency sign. The default is the currency sign
specified for the program.

number

If the program contains the DECIMAL POINT COMMA phrase in the SPECIAL-
NAMES paragraph, use a comma instead of a decimal point in number.

digits

is a string of one to 18 digits. The total number of digits in string cannot
exceed 18.

The returned value is the numeric value represented by string. The format of the
value depends on the size of string. If the length of string is fewer than 10
characters, the equivalent PICTURE is S9(n)V9(n-1), where n is the number of
characters. Any size greater than 9 characters results in an equivalent PICTURE of
S9(19)V9(18). This is a special internal item that cannot be expressed by the user.
Using it is inefficient, so it is best to avoid using a string that is longer than 9
characters.

If the NUMVAL-C function is moved to an alphanumeric item, the results might not be
what is expected because of the implied PICTURE described previously.

digits

digits.
ns

digits

digits

.
ns

ns

ns

ns

VST451.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-41

Intrinsic Functions NUMVAL-C Function
Example 14-28. NUMVAL-C Function

Code:

DATA DIVISION
 WORKING-STORAGE SECTION.
 01 A PICTURE S99V99.

PROCEDURE DIVISION.
 MOVE FUNCTION NUMVAL-C ("35") TO A.
 DISPLAY A.
 MOVE FUNCTION NUMVAL-C ("$35") TO A.
 DISPLAY A.
 MOVE FUNCTION NUMVAL-C ("35$") TO A.
 DISPLAY A.
 MOVE FUNCTION NUMVAL-C ("35.75") TO A.
 DISPLAY A.
 MOVE FUNCTION NUMVAL-C (".35") TO A.
 DISPLAY A.
 MOVE FUNCTION NUMVAL-C (" - 35.75 ") TO A.
 DISPLAY A.
 MOVE FUNCTION NUMVAL-C (" 35.75 CR") TO A.
 DISPLAY A.

Output:

35.00
35.00
35.00
35.75
00.35
-35.75
-35.75
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-42

Intrinsic Functions ORD Function
ORD Function
ORD, an integer function, returns the ordinal number of its argument in the program
collating sequence.

argument

is a one-character alphabetic or alphanumeric argument.

The returned value is the ordinal number of argument in the program collating
sequence. It is at least one.

ORD-MAX Function
ORD-MAX, an integer function, returns the ordinal number of its maximum argument.

argument

is an alphabetic, alphanumeric, integer, or numeric argument. If you specify more
than one argument, they must all be of the same class. Integer and numeric
arguments can be mixed, because integers are of the class numeric.

argument can be an array; for example,

FUNCTION ORD-MAX (ARRAY1(ALL))

returns the ordinal number of the largest element of the array ARRAY1.

Example 14-29. ORD Function

Code:

DISPLAY FUNCTION ORD ("A")
DISPLAY FUNCTION ORD ("b")
DISPLAY FUNCTION ORD ("3")
DISPLAY FUNCTION ORD ("%")

Output:

066
099
052
038

()ORDFUNCTION argument

VST452.vsd

()ORD-MAXFUNCTION argument

VST435.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-43

Intrinsic Functions ORD-MAX Function
The returned value is the ordinal number of the argument with the greatest value
(according to the rules for evaluating simple conditions). If more than one argument
has the same greatest value, the returned value is the ordinal number of the leftmost
argument with that value. The returned value is at least one.

Example 14-30. ORD-MAX Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 NUMERIC-ARRAY.
 05 PICTURE 9(1) VALUE 4.
 05 PICTURE 9(1) VALUE 9.
 05 PICTURE 9(1) VALUE 3.
 05 PICTURE 9(1) VALUE 7.
 05 PICTURE 9(1) VALUE 5
 01 NUM-ARRAY REDEFINES NUMERIC-ARRAY.
 05 NUM OCCURS 5 TIMES PICTURE 9(1).
 01 ALPHABETIC-ARRAY.
 05 PICTURE X(5) VALUE "dog".
 05 PICTURE X(5) VALUE "cat".
 05 PICTURE X(5) VALUE "horse".
 05 PICTURE X(5) VALUE "sheep".
 05 PICTURE X(5) VALUE "goat".
 01 ALPHA-ARRAY REDEFINES ALPHABETIC-ARRAY.
 05 ALPHA OCCURS 5 TIMES PICTURE X(5).

PROCEDURE DIVISION.
 DISPLAY FUNCTION ORD-MAX (NUM(ALL))
 DISPLAY FUNCTION ORD-MAX (ALPHA(ALL))
 DISPLAY FUNCTION ORD-MAX (NUM(1) NUM(4))
 DISPLAY FUNCTION ORD-MAX (ALPHA(3) "bird" "fish")
 DISPLAY FUNCTION ORD-MAX (3.4 5 6.2 9)

Output:

0000000002
0000000004
0000000002
0000000001
0000000004
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-44

Intrinsic Functions ORD-MIN Function
ORD-MIN Function
ORD-MIN, an integer function, returns the ordinal number of its minimum argument.

argument

is an alphabetic, alphanumeric, integer, or numeric argument. If you specify more
than one argument, they must all be of the same class. Integer and numeric
arguments can be mixed, because integers are of the class numeric.

argument can be an array; for example,

FUNCTION ORD-MIN (ARRAY1(ALL))

returns the ordinal number of the smallest element of the array ARRAY1.

The returned value is the ordinal number of the argument with the least value
(according to the rules for evaluating simple conditions). If more than one argument
has the same least value, the returned value is the ordinal number of the leftmost
argument with that value. The returned value is at least one.

()ORD-MINFUNCTION argument

VST454.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-45

Intrinsic Functions ORD-MIN Function
Example 14-31. ORD-MIN Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 NUMERIC-ARRAY.
 05 PICTURE 9(1) VALUE 4.
 05 PICTURE 9(1) VALUE 9.
 05 PICTURE 9(1) VALUE 3.
 05 PICTURE 9(1) VALUE 7.
 05 PICTURE 9(1) VALUE 5
 01 NUM-ARRAY REDEFINES NUMERIC-ARRAY.
 05 NUM OCCURS 5 TIMES PICTURE 9(1).
 01 ALPHABETIC-ARRAY.
 05 PICTURE X(5) VALUE "dog".
 05 PICTURE X(5) VALUE "cat".
 05 PICTURE X(5) VALUE "horse".
 05 PICTURE X(5) VALUE "sheep".
 05 PICTURE X(5) VALUE "goat".
 01 ALPHA-ARRAY REDEFINES ALPHABETIC-ARRAY.
 05 ALPHA OCCURS 5 TIMES PICTURE X(5).

PROCEDURE DIVISION.
 DISPLAY FUNCTION ORD-MIN (NUM(ALL))
 DISPLAY FUNCTION ORD-MIN (ALPHA(ALL))
 DISPLAY FUNCTION ORD-MIN (NUM(1) NUM(4))
 DISPLAY FUNCTION ORD-MIN (ALPHA(3) "bird" "fish")
 DISPLAY FUNCTION ORD-MIN (3.4 5 6.2 9)

Output:

0000000003
0000000002
0000000001
0000000002
0000000001
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-46

Intrinsic Functions PRESENT-VALUE Function
PRESENT-VALUE Function
PRESENT-VALUE, a numeric function, returns a value that approximates the present
value of a specified series of future period-end amounts at a specified discount rate.

discount-rate

is a numeric argument whose value is greater than -1.

period-end-amount

is a numeric argument.

period-end-amount can be an array; for example,

FUNCTION PRESENT-VALUE (DISCOUNT-RATE ARRAY1(ALL))

uses the elements of the array ARRAY1 as a series of numeric arguments.

The returned value is approximately

where n is the number of period-end-amount s.

()

PRESENT-VALUEFUNCTION

period-end-amountdiscount-rate

VST455.vsd

period-end-amounti

1 discount-rate+()i

i 1=

n

∑

HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-47

Intrinsic Functions PRESENT-VALUE Function
Example 14-32. PRESENT-VALUE Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 NUMERIC-ARRAY.
 05 PICTURE 9V99 VALUE 0.05.
 05 PICTURE 9V99 VALUE 1.15.
 05 PICTURE 9V99 VALUE 2.50.
 05 PICTURE 9V99 VALUE 3.75.
 05 PICTURE 9V99 VALUE 4.55.
 01 NUM-ARRAY REDEFINES NUMERIC-ARRAY.
 05 N OCCURS 5 TIMES PICTURE 9V99.
 01 A PICTURE S99V99.

PROCEDURE DIVISION.
 MOVE FUNCTION PRESENT-VALUE (0 NUM(ALL) TO A) TO A
 DISPLAY A.
 MOVE FUNCTION PRESENT-VALUE (1 NUM(ALL) TO A) TO A
 DISPLAY A.
 MOVE FUNCTION PRESENT-VALUE (2.5 NUM(ALL) TO A) TO A
 DISPLAY A.
 MOVE FUNCTION PRESENT-VALUE (0 3) TO A
 DISPLAY A.
 MOVE FUNCTION PRESENT-VALUE (1.5 3.6 7.8 4.9) TO A
 DISPLAY A.

Output:

12.00
01.00
00.20
03.00
03.00
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-48

Intrinsic Functions RANDOM Function
RANDOM Function
RANDOM, a numeric function, returns a pseudorandom number from a rectangular
distribution.

argument

is zero or a positive integer.

The first time a run unit calls RANDOM, RANDOM generates a series of
pseudorandom numbers and returns the first number in the series. If argument is
specified, RANDOM uses the value of argument as the seed; if not, it uses the
default seed, one.

Each subsequent time that the run unit calls RANDOM without specifying argument,
RANDOM returns the next pseudorandom number in the series. If the run unit calls
RANDOM again and specifies argument, RANDOM generates a new series of
pseudorandom numbers and returns the first number in the new series.

The same value of argument always generates the same sequence of
pseudorandom numbers. The returned value is always greater than or equal to 0 and
less than 1.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Example 14-33. RANDOM Function

Code:

DISPLAY FUNCTION RANDOM (0)
DISPLAY FUNCTION RANDOM (15)
DISPLAY FUNCTION RANDOM (253)
DISPLAY FUNCTION RANDOM (4067)
DISPLAY FUNCTION RANDOM (32767)

Output:

0.000000000
0.707956564
0.007660018
0.886242720
0.792491424

()

RANDOMFUNCTION

argument

VST456.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-49

Intrinsic Functions RANGE Function
RANGE Function
RANGE is a function that returns the difference between its maximum and minimum
arguments. Its type depends on the type of its arguments, as this table shows:

argument

is an integer or numeric argument. Integer and numeric arguments can be mixed,
because integers are of the class numeric.

argument can be an array; for example,

FUNCTION RANGE (ARRAY1(ALL))

returns the difference between the largest and smallest elements of the array
ARRAY1.

The returned value is the value of the greatest argument minus the value of the least
argument (where the greatest and least arguments are determined according to the
rules for evaluating simple conditions). If two arguments have the same greatest value,
the leftmost of the two is considered the greatest. If two arguments have the same
least value, the leftmost of the two is considered the least.

Argument Type Function Type

Integer Integer

Numeric (some can be integer) Numeric

()RANGEFUNCTION argument

VST457.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-50

Intrinsic Functions RANGE Function
Example 14-34. RANGE Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 NUMERIC-ARRAY.
 05 PICTURE 9V99 VALUE 0.05.
 05 PICTURE 9V99 VALUE 1.15.
 05 PICTURE 9V99 VALUE 2.50.
 05 PICTURE 9V99 VALUE 3.75.
 05 PICTURE 9V99 VALUE 4.55.
 01 NUM-ARRAY REDEFINES NUMERIC-ARRAY.
 05 NUM OCCURS 5 TIMES PICTURE 9V99.

PROCEDURE DIVISION.
 DISPLAY FUNCTION RANGE (NUM(ALL))
 DISPLAY FUNCTION RANGE (9 2 5 3.5)
 DISPLAY FUNCTION RANGE (1.5 3.6 7.8 4.9)

Output:

4.50
7.0
6.3
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-51

Intrinsic Functions REM Function
REM Function
REM, a numeric function, returns the remainder that results from dividing its first
argument by its second argument.

dividend

is a numeric argument.

divisor

is a nonzero numeric argument.

If ARRAY1 has only two elements, the first of which satisfies the requirements for
dividend and the second of which satisfies the requirements of divisor, then

FUNCTION REM (ARRAY1(ALL))

returns the remainder that results from dividing ARRAY1(1) by ARRAY1(2).

The returned value is the remainder of dividend divided by divisor, which is
defined:

dividend - (divisor * FUNCTION INTEGER-PART (dividend / divisor))

Example 14-35. REM Function

Code:

DISPLAY FUNCTION REM (11 5)
DISPLAY FUNCTION REM (-11 5)
DISPLAY FUNCTION REM (11 -5)
DISPLAY FUNCTION REM (-11 -5)

Output:

01
-01
01
-01

()REMFUNCTION dividend divisor

VST458.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-52

Intrinsic Functions REVERSE Function
REVERSE Function
REVERSE, an alphanumeric function, returns a string that is the same as its argument,
except that the characters are in reverse order.

argument

is an alphabetic or alphanumeric argument at least one character in length.

The returned value is the same as argument, except that the characters are in
reverse order. That is, if argument has n characters, then the i th character of
argument is the (n - i +1)th character of the returned value.

Example 14-36. REVERSE Function

Code:

DISPLAY FUNCTION REVERSE ("A")
DISPLAY FUNCTION REVERSE ("1234567")
DISPLAY FUNCTION REVERSE ("stressed")
DISPLAY FUNCTION REVERSE ("ABC 123")

Output:

A
7654321
desserts
321 CBA

()REVERSEFUNCTION argument

VST459.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-53

Intrinsic Functions SIN Function
SIN Function
SIN, a numeric function, returns a value that approximates the sine of the angle or arc
(in radians) specified by its argument.

argument

is a numeric argument.

The returned value approximates the sine of the value of argument. It is a floating-
point number in the range -1 to +1. It has no implied decimal point and is precise to
approximately 14 digits.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Example 14-37. SIN Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 A PICTURE S9V99.

PROCEDURE DIVISION.
 MOVE FUNCTION SIN (-10) TO A.
 DISPLAY A.
 MOVE FUNCTION SIN (0) TO A.
 DISPLAY A.
 MOVE FUNCTION SIN (.25) TO A.
 DISPLAY A.
 MOVE FUNCTION SIN (15.5) TO A.
 DISPLAY A.
 MOVE FUNCTION SIN (45) TO A.
 DISPLAY A.

Output:

0.54
0.00
0.24
0.20
0.85

()SINFUNCTION argument

VST460.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-54

Intrinsic Functions SQRT Function
SQRT Function
SQRT, a numeric function, returns a value that approximates the square root of its
argument.

argument

is a numeric argument whose value is zero or positive.

The returned value is approximately:

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Example 14-38. SQRT Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 A PICTURE S9V99.

PROCEDURE DIVISION.
 MOVE FUNCTION SQRT (0) TO A.
 DISPLAY A.
 MOVE FUNCTION SQRT (25) TO A.
 DISPLAY A.
 MOVE FUNCTION SQRT (100) TO A.
 DISPLAY A.
 MOVE FUNCTION SQRT (47) TO A.
 DISPLAY A.
 MOVE FUNCTION SQRT (7.923) TO A.
 DISPLAY A.

Output:

00.000
05.000
10.000
06.855
02.814

()SQRTFUNCTION argument

VST461.vsd

argument
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-55

Intrinsic Functions STANDARD-DEVIATION Function
STANDARD-DEVIATION Function
STANDARD-DEVIATION, a numeric function, returns a value that approximates the
standard deviation of its arguments.

argument

is a numeric argument.

argument can be an array; for example,

FUNCTION STANDARD-DEVIATION (ARRAY1(ALL))

returns a value that approximates the standard deviation of the elements of the
array ARRAY1.

The returned value is the approximation of the standard deviation of the argument
series.

If there is only one argument, or if every argument is a variable occurrence data
item and the total number of occurrences for all of them is one, the returned value is
zero; otherwise, the returned value is approximately

where n is the number of arguments.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

()STANDARD-DEVIATIONFUNCTION argument

VST462.vsd

argumenti FUNCTION MEAN argument1 … argument, n(,)–()2

i 1=

n

∑
n

HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-56

Intrinsic Functions STANDARD-DEVIATION Function
Example 14-39. STANDARD-DEVIATION Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 NUMERIC-ARRAY
 05 PICTURE 9V99 VALUE 0.05.
 05 PICTURE 9V99 VALUE 1.15.
 05 PICTURE 9V99 VALUE 2.50.
 05 PICTURE 9V99 VALUE 3.75.
 05 PICTURE 9V99 VALUE 4.55.
 01 NUM-ARRAY REDEFINES NUMERIC-ARRAY.
 05 NUM OCCURS 5 TIMES PICTURE 9V99.
 01 A PICTURE S9V99.

PROCEDURE DIVISION.
 MOVE FUNCTION STANDARD-DEVIATION (NUM(ALL)) TO A.
 DISPLAY A.
 MOVE FUNCTION STANDARD-DEVIATION (9 2 5 3.5) TO A.
 DISPLAY A.
 MOVE FUNCTION STANDARD-DEVIATION (1.5 3.6 7.8 4.9) TO A.
 DISPLAY A.

Output:

1.64
2.60
2.28
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-57

Intrinsic Functions SUM Function
SUM Function
SUM is a function that returns the sum of its arguments. Its type depends on the type
of its arguments, as this table shows:

argument

is an integer or numeric argument.

argument can be an array; for example,

FUNCTION SUM (ARRAY1(ALL))

returns the sum of the elements of the array ARRAY1.

The returned value is

where n is the number of arguments.

Argument Type Function Type

Integer Integer

Numeric (some can be integer) Numeric

()SUMFUNCTION argument

VST463.vsd

argumenti

i 1=

n

∑

HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-58

Intrinsic Functions SUM Function
Example 14-40. SUM Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 NUMERIC-ARRAY
 05 PICTURE 9V99 VALUE 0.05.
 05 PICTURE 9V99 VALUE 1.15.
 05 PICTURE 9V99 VALUE 2.50.
 05 PICTURE 9V99 VALUE 3.75.
 05 PICTURE 9V99 VALUE 4.55.
 01 NUM-ARRAY REDEFINES NUMERIC-ARRAY.
 05 NUM OCCURS 5 TIMES PICTURE 9V99.

PROCEDURE DIVISION.
 DISPLAY FUNCTION SUM (NUM(ALL))
 DISPLAY FUNCTION SUM (9 2 5 3)
 DISPLAY FUNCTION SUM (1.5 3.6 7.8 4.9)

Output:

012.00
19
17.8
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-59

Intrinsic Functions TAN Function
TAN Function
TAN, a numeric function, returns a value that approximates the tangent of the angle or
arc (in radians) specified by its argument.

argument

is a numeric argument.

The returned value approximates the tangent of the value of argument. It is a floating-
point number with no implied decimal point, precise to approximately 14 digits.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Example 14-41. TAN Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 A PICTURE S9V99.

PROCEDURE DIVISION.
 MOVE FUNCTION ATAN (-10) TO A.
 DISPLAY A.
 MOVE FUNCTION ATAN (0) TO A.
 DISPLAY A.
 MOVE FUNCTION ATAN (.25) TO A.
 DISPLAY A.
 MOVE FUNCTION ATAN (15.5) TO A.
 DISPLAY A.
 MOVE FUNCTION ATAN (45) TO A.
 DISPLAY A.

Output:

-0.64
0.00
0.25
-0.21
1.61

()TANFUNCTION argument

VST464.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-60

Intrinsic Functions UPPER-CASE Function
UPPER-CASE Function
UPPER-CASE, an alphanumeric function, returns a character-string that is the same
as its argument, except that each lowercase letter is replaced by the corresponding
uppercase letter.

string

is an alphabetic or alphanumeric string at least one character in length.

The returned value is the same as the value of string, except that each lowercase
letter is replaced by the corresponding uppercase letter. If the value of string
contains no lowercase letters, or if the ALPHABET clause specifies a collating
sequence that contains no uppercase letters, the returned value is the same as the
value of string.

Example 14-42. UPPER-CASE Function

Code:

DISPLAY FUNCTION UPPER-CASE ("HEWLETT-PACKARD COMPANY 2003")
DISPLAY FUNCTION UPPER-CASE ("Hewlett-packard Company 2003")
DISPLAY FUNCTION UPPER-CASE ("hewlett-packard company 2003")

Output:

HEWLETT-PACKARD COMPANY 2003
HEWLETT-PACKARD COMPANY 2003
HEWLETT-PACKARD COMPANY 2003

()UPPER-CASEFUNCTION string

VST465.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-61

Intrinsic Functions VARIANCE Function
VARIANCE Function
VARIANCE, a numeric function, returns a value that approximates the variance of its
arguments.

argument

is a numeric argument.

argument can be an array; for example,

FUNCTION VARIANCE (ARRAY1(ALL))

returns a value that approximates the variance of the elements of the array
ARRAY1.

The returned value is the approximation of the variance of the argument series.

If there is only one argument, or if every argument is a variable occurrence data
item and the total number of occurrences for all of them is one, the returned value is
zero; otherwise, the returned value is the square of the standard deviation of the
argument series; that is:

()VARIANCEFUNCTION argument

VST466.vsd

argumenti FUNCTION MEAN argument1 … argument, n(,)–()2

i 1=

n

∑
n

2

HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-62

Intrinsic Functions WHEN-COMPILED Function
WHEN-COMPILED Function
WHEN-COMPILED, an alphanumeric function, returns a 21-character string that
represents the date and time the program was compiled, according to the system on
which the program was compiled.

The returned value is the date and time of compilation of the source program that calls
the WHEN-COMPILED function. If the program is a contained program, the returned
value is the date and time of the separately compiled program that contains it.

Example 14-43. VARIANCE Function

Code:

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 NUMERIC-ARRAY
 05 PICTURE 9V99 VALUE 0.05.
 05 PICTURE 9V99 VALUE 1.15.
 05 PICTURE 9V99 VALUE 2.50.
 05 PICTURE 9V99 VALUE 3.75.
 05 PICTURE 9V99 VALUE 4.55.
 01 NUM-ARRAY REDEFINES NUMERIC-ARRAY.
 05 NUM OCCURS 5 TIMES PICTURE 9V99.
 01 A PICTURE 9V99.

PROCEDURE DIVISION.
 MOVE FUNCTION VARIANCE (NUM(ALL)) TO A
 DISPLAY A..
 MOVE FUNCTION VARIANCE (9 2 5 3) TO A.
 DISPLAY A.
 MOVE FUNCTION VARIANCE (1.5 3.6 7.8 4.9) TO A.
 DISPLAY A.
 MOVE FUNCTION VARIANCE (5) TO A.
 DISPLAY A.

Output:

2.70
7.18
5.21
0.00

WHEN-COMPILEDFUNCTION

VST467.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-63

Intrinsic Functions WHEN-COMPILED Function
The returned value represents the current date this way (where character position 1 is
the leftmost character position):

The returned value matches the compilation time and date on the listing and object
code files (if they have it), but the representation and precision may differ.

The date in Example 14-44 is April 15, 1997 (19970415). The time is 16:10:49.53 or
4:10:49.53 PM (16104953), which is 7 hours behind Greenwich mean time (-0700).

Character
Positions Date Part Represented Represented by

1-4 Year in Gregorian calendar Four digits

5-6 Month of the year Two digits in the range 01 through 12

7-8 Day of the month Two digits in the range 01 through 31

9-10 Hours past midnight Two digits in the range 00 through 23

11-12 Minutes past the hour Two digits in the range 00 through 59

13-14 Seconds past the minute Two digits in the range 00 through 59

15-16 Hundredths of seconds past the
second

Two digits in the range 00 through 99

17 Relationship to Greenwich mean
time

Minus (-) if the reported time is behind
Greenwich mean time, plus (+) if it is the
same as or ahead of Greenwich mean
time

18-19 Hours behind or ahead of
Greenwich mean time

If character position 17 is minus (-), two
digits in the range 00 through 12; if
character position 17 is plus (+), two
digits in the range 00 through 13

20-21 Additional minutes from
Greenwich mean time

Two digits in the range 00 through 59

Example 14-44. WHEN-COMPILED Function

Code:

DISPLAY FUNCTION WHEN-COMPILED

Output:

1997041516104953-0700
HP COBOL Manual for TNS and TNS/R Programs—522555-006
14-64

15 Debugging Tools
This section briefly describes the HP debugging tools and refers you to appropriate
sources for more information.

Topics:

• Standard COBOL Debugging Tools

• Run-Time Debuggers

• CROSSREF Utility Program

• FIXERRS Macro

Standard COBOL Debugging Tools
COBOL offers two batch-oriented debugging tools:

Debugging lines and debugging declaratives are compiled only if the source program
includes a DEBUGGING MODE clause (see SOURCE-COMPUTER Paragraph);
otherwise, they are handled as comments.

Debugging Lines
You can put debugging lines anywhere in a source program. You usually use them to
report values of data items at strategic points in the program.

A debugging line has the letter D or d in the indicator area (column 1 in Tandem
reference format, column 7 in ANSI reference format). If a debugging line contains a
COPY statement, every line that the COPY statement introduces inherits the D or d in
its indicator column.

Tool Applies to ...

Debugging Lines Individual source program lines

Debugging Declaratives Sections to be called when your program calls a
particular procedure or calls any procedure

Note. The code that the compiler generates when it compiles debugging lines and debugging
declaratives is not the same as the code that it generates when it ignores them. The additional
code that the compiler generates for the debugging lines and debugging declaratives can alter
the alignment of data items and cause the program to behave differently.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
15-1

Debugging Tools Standard COBOL Debugging Tools
Debugging Declaratives
Debugging declaratives are sections in the Declaratives Portion of the Procedure
Division. A debugging declarative consists of a USE DEBUGGING statement followed
by a procedure to be executed under the circumstances specified in the USE
DEBUGGING statement.

The circumstances under which a procedure in a debugging declarative can be called
are:

• A particular procedure call
• Any procedure call

Debugging declaratives are only executed if you execute a PARAM DEBUG ON
command before executing your program (see Enabling Debugging Declaratives).

When a program uses debugging declaratives, it can access the special register
DEBUG-ITEM. Whenever control passes to a debugging declarative, the contents of
DEBUG-ITEM reflect the status of the item that caused the declarative to be called.
DEBUG-ITEM is a data structure that is defined as in Figure 15-1.

Note. The 1985 COBOL standard classifies USE DEBUGGING as obsolete, so you are
advised not to use it, even in TNS HP COBOL programs. The NMCOBOL compiler does not
recognize it.

Figure 15-1. Definition of the DEBUG-ITEM Special Register

01 DEBUG-ITEM.
 05 DEBUG-LINE PIC X(6).
 05 FILLER PIC X VALUE SPACE.
 05 DEBUG-NAME PIC X(30).
 05 FILLER PIC X VALUE SPACE.
 05 DEBUG-SUB-1 PIC S9999 SIGN IS LEADING
 SEPARATE CHARACTER.
 05 FILLER PIC X VALUE SPACE.
 05 DEBUG-SUB-2 PIC S9999 SIGN IS LEADING
 SEPARATE CHARACTER.
 05 FILLER PIC X VALUE SPACE.
 05 DEBUG-SUB-3 PIC S9999 SIGN IS LEADING
 SEPARATE CHARACTER.
 05 FILLER PIC X VALUE SPACE.
 05 DEBUG-CONTENTS PIC X(n).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
15-2

Debugging Tools Standard COBOL Debugging Tools
The contents of the elementary items within DEBUG-ITEM are:

The contents of DEBUG-CONTENTS depends on the nature of the called procedure:

Elementary Item Contents

DEBUG-LINE Number of source line that called the procedure being traced

DEBUG-NAME First 30 characters of the name of the called procedure (including
any section-name qualifier if the procedure is a paragraph)

DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3

Not used

DEBUG-CONTENTS Nonnumeric string varying in size and value (see next table)

Contents of DEBUG-CONTENTS The called procedure is ...

START PROGRAM The first procedure in the program

A procedure name The destination in an ALTER statement

Spaces The destination in a GO TO statement

PERFORM LOOP In a PERFORM loop

SORT INPUT In a SORT input procedure

SORT OUTPUT In a SORT output procedure

USE PROCEDURE In a USE procedure

FALL THROUGH Being executed as a result of fall-through from the
previous procedure

Example 15-1. Use of the DEBUG-ITEM Special Register

 ...
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP WITH DEBUGGING MODE.
 ...
PROCEDURE DIVISION.
DECLARATIVES.
TRACE-PROGRAM SECTION.
 USE FOR DEBUGGING ON ALL PROCEDURES.
DISPLAY-DEBUG-ITEM.
 DISPLAY DEBUG-ITEM.
END DECLARATIVES.
BEGIN-PROCESSING.
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
15-3

Debugging Tools Run-Time Debuggers
Run-Time Debuggers
The HP run-time debuggers are:

Except for Debug, the HP run-time debuggers are interactive, and symbolic. If you
compile your program with the SYMBOLS directive (described in SYMBOLS and
NOSYMBOLS), the symbolic debuggers allow you to debug the program using the
names you assigned to the procedures and data items of the source program, rather
than the addresses that the compiler and the Binder or linker ultimately assigned to
them. If you do not compile your program with the SYMBOLS directive, you can use
only the low-level commands of a symbolic debugger.

Any mechanism that calls the debugging facility calls the selected run-time debugger.
Examples of such mechanisms are:

• The RUND command
• An explicit call to the Debug debugger by the process
• A command interpreter DEBUG command

Topics:

• Visual Inspect

• Inspect

• Debug

• Debugger Selection

Visual Inspect

• The most powerful of the HP debuggers
• For PIC and non-PIC programs
• Symbolic
• Interactive
• PC-based

For more information, see:

• Debugging

• Visual Inspect’s online help

Debugger For PIC For Non-PIC

Visual Inspect * Yes Yes

Inspect No Yes

Debug No Yes

* PC-based

Note. When you have debugged the program, recompile it without the SYMBOLS directive to
decrease the size of the object file and decrease program compilation time.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
15-4

Debugging Tools Inspect
Inspect

• For non-PIC programs

• Symbolic

• Interactive

• Its LOW command allows you to reach machine code (the Inspect debugger in
low-level mode is similar to the Debug debugger but more convenient)

• Handles TNS and native HP COBOL programs differently—see Using the Inspect
and Visual Inspect Debuggers

For more information, see the Inspect Manual.

Debug

• Precursor to the Inspect debugger

• For non-PIC programs

• Low-level—you must use the addresses, rather than the names, of procedures and
data items

To obtain the addresses, you must compile your program with these directives:

This is what each directive lists, in the order the information appears in the listing:

Compiler Directives References

COBOL85 ICODE

LMAP

MAP

IICODE and NOICODE

LMAP and NOLMAP

MAP and NOMAP

NMCOBOL INNERLIST

MAP

INNERLIST and NOINNERLIST

MAP and NOMAP

Directive Information Provided

ICODE For each source statement:

• Instruction codes generated
• Code block relative address

An asterisk marks the beginning of each source statement.

INNERLIST Immediately after each source statement:
Generated machine instructions in mnemonic form

LMAP Base addresses of code and data blocks
(located in column headed “BASE”)

MAP For each paragraph and section header:
Code block relative address

For each data item:
Summary of storage attributes (including data block relative address
HP COBOL Manual for TNS and TNS/R Programs—522555-006
15-5

Debugging Tools Debugger Selection
More information:

Debugger Selection

Topic Source

Debug Debug Manual

Load map listings Binder Manual

Figure 15-2. Debugger Selection for a TNS or Non-PIC Native Process

Start

INSPECT
attribute

on?

Select
Debug

End

Visual
Inspect

session?

Select
Visual Inspect

Inspect
available?

Select
Inspect

Yes

No

Yes Yes

No No

VST195.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
15-6

Debugging Tools Debugger Selection
Figure 15-3. Debugger Selection for a PIC Native Process

Start

INSPECT
attribute

on?

Select
Debug

End

Visual
Inspect

session?

Select
Visual Inspect

Yes

No

Yes

No

VST024.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
15-7

Debugging Tools CROSSREF Utility Program
Regarding Figure 15-3 and Figure 15-3:

• You can turn on the INSPECT attribute in any of these ways:

° Compile the program without a NOINSPECT directive (described in INSPECT
and NOINSPECT).

° Compile the program with a SAVEABEND directive (described in SAVEABEND
and NOSAVEABEND).

° Set the INSPECT attribute in the Binder or linker.

° Use the PARAM INSPECT ON command in the command interpreter
environment before running the process

° Specify INSPECT ON as a run option in the RUN command that initiates the
process.

• Visual Inspect is available if you established a connection to it before the process
entered debugging mode.

CROSSREF Utility Program

The CROSSREF utility, with the help of the COBOL85 compiler, produces a cross-
reference listing of selected types of identifiers (including literals), showing where they
occur in a program and how the program uses them. The CROSSREF utility is
interactive, and is more efficient and flexible than the CROSSREF directive, which also
produces a cross-reference listing.

The CROSSREF directive produces one cross-reference listing for each program unit
in a source file. The CROSSREF utility allows you to generate a listing of the identifiers
from one or more program units. Both the CROSSREF directive and the CROSSREF
utility allow you to restrict the types of identifiers to be reported, but only the
CROSSREF utility allows you to explicitly include and exclude individual data names.

Topics:

• Running the CROSSREF Utility

• Specifying Directives and a Default COPY Library

• Specifying Certain Identifier Types Only

For complete information about the CROSSREF utility, see the CROSSREF Manual.
For information about the CROSSREF directive, see CROSSREF and
NOCROSSREF.

Note. This topic applies only to the COBOL85 compiler. You cannot use the CROSSREF utility
program with the NMCOBOL compiler, because the NMCOBOL compiler does not produce a
cross-reference listing. If you need a cross-reference listing for a native HP COBOL program,
use the noft utility with the XREFPROC flag (see the nld Manual).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
15-8

Debugging Tools CROSSREF Utility Program
Running the CROSSREF Utility
You can run the CROSSREF utility interactively or with an OBEY command file. The
command to run the CROSSREF utility interactively is:

CROSSREF

The command to run the CROSSREF utility with an OBEY command file (named
XREFCMDS in this example) is:

CROSSREF /IN XREFCMDS/

This explanation assumes that you are running CROSSREF interactively. If you run
CROSSREF with an OBEY command file, put the CROSSREF commands in that file.

The CROSSREF prompt is an ampersand (&).

Example 15-2 creates a print file ($S.#CROS) containing a cross-reference listing of
the program in Example 31-13. The SET LANGUAGE command informs CROSSREF
that it is cross-referencing an HP COBOL source file. The SCAN command directs
CROSSREF to collect information about all identifiers (except literals, which, by
default, are not recorded). The GENERATE command directs CROSSREF to format
the information collected and put it in the file $S.#CROS. The EXIT command ends the
CROSSREF session.

Specifying Directives and a Default COPY Library
Because CROSSREF uses the COBOL85 compiler to collect the identifier information,
you might need to pass directives and the name of a default COPY library from
CROSSREF to the compiler. (The default COPY library is for COPY statements that do
not specify file names.)

In Example 15-3, the SET LIBRARY MYLIB command sets the default COPY library
name to MYLIB (it would have been COPYLIB otherwise), and the SET DIRECTIVES
“ANSI;SETTOG 1” command sets the ANSI formatting directive and a conditional
compilation toggle.

Example 15-2. CROSSREF Utility Program

CROSSREF - CROSS-REFERENCE PROGRAM - T9622D20 - (8JUN92) ...
&SET LANGUAGE COBOL85
&SCAN PROBE
&GENERATE /OUT $S.#CROS/
&EXIT
HP COBOL Manual for TNS and TNS/R Programs—522555-006
15-9

Debugging Tools FIXERRS Macro
Specifying Certain Identifier Types Only
You can instruct CROSSREF to collect information about only certain types of
identifiers. This example instructs CROSSREF to report only identifiers of conditions
and procedure (section and paragraph) names:

CROSSREF - CROSS-REFERENCE PROGRAM - T9622D20 - (8JUN92) ...
&SET LANGUAGE COBOL85
&SET CLASS CONDITIONS, PROGLABELS
&SCAN PROBE
&GENERATE /OUT $S.#CROS/
&EXIT

FIXERRS Macro
FIXERRS is a TACL macro that helps you find and fix syntax errors in your source file.

To use the FIXERRS TACL macro to fix errors in a source file, you must compile your
program with the directive ERRORFILE. You can then use FIXERRS with the error-
logging file produced by that directive.

The FIXERRS TACL macro starts a two-window TEDIT session and displays an error
message on the top line of the screen with the corresponding source text in the
remaining lines. When you start FIXERRS, the cursor is positioned at the first error in
the source text.

To start FIXERRS enter:

error-file

is the name of the error file produced by the compiler. This file has a file code of
106.

Example 15-3. Setting the Default COPY Library

CROSSREF - CROSS-REFERENCE PROGRAM - T9622D20 - (8JUN92) ...
&SET LANGUAGE COBOL85
&SET LIBRARY MYLIB
&SET DIRECTIVES "ANSI;SETTOG 1"
&SCAN PROBE
&GENERATE /OUT $S.#CROS/
&EXIT

FIXERRS

tedit-command;

error-file

VST372.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
15-10

Debugging Tools FIXERRS Macro
tedit-command

is the TEDIT command that you want to execute at the start of the FIXERRS
session.

You can move from error to error using the NEXTERR and PREVERR commands on
the TEDIT command line. NEXTERR displays the error following the currently
displayed error; PREVERR displays the error preceding the currently displayed error.

When you enter PREVERR at the beginning of the error file or NEXTERR at the end of
the error file, FIXERRS displays the message:

There are no more errors

When you enter PREVERR after you have corrected errors in the file, the compiler
positions you at the line and column on which the error was originally reported. This
line and column number might be invalid after you correct the error.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
15-11

Debugging Tools FIXERRS Macro
HP COBOL Manual for TNS and TNS/R Programs—522555-006
15-12

16 ANSI Reference Format
In ANSI reference format, each line has 80 characters (columns). Five margins divide
each line into five areas.

To ensure that each line has 80 characters, the COBOL compiler truncates lines that
are too long and space-pads lines that are too short. The topics of this section explain
the five areas that Figure 16-1 shows, which are:

• Sequence Number Area

• Indicator Area

• Area A

• Area B

• Identification Field

Sequence Number Area
The Sequence Number Area begins at Margin L and uses columns 1 through 6. It can
be empty, or it can contain a line number (up to six digits) or a line label (a combination
of letters and numbers).

No sequence number area exists for compiler directive lines.

Figure 16-1. ANSI Reference Format

Column:

Margin:

Area BArea A

87 9 10 11 12 72 73 ... 80

Line

Indicator Field

C A B R

...

Identification Field

1 2 3 4 5 6

L

Sequence
Number
Area

VST524.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
16-1

ANSI Reference Format Indicator Area
Indicator Area
The indicator area begins at Margin C and uses only column 7. It can be empty, or it
can contain a single character that describes the type of information on the line.

Compiler Directive
A compiler directive has a question mark (?) in the indicator area. If the question mark
is in column 1 instead of column 7, the compiler treats the line as if it begins with the
indicator area.

A compiler directive is an instruction to the COBOL compiler, and a compiler directive
line has no sequence number area. (For more information on compiler directives, see
Compiler Directives.)

Ordinary Comment
An ordinary comment has an asterisk (*) in the indicator area. A comment can appear
anywhere in a program. The compiler ignores it.

Comment for Top of Page
A comment to be printed at the top of the next page has a slash (/) in the indicator
area. Like an ordinary comment, this comment can appear anywhere in a program.
The compiler advances to the top of the next page and prints the comment at the top of
that page.

Debugging Line
A debugging line has D or d in the indicator area. If you run the program with
DEBUGGING MODE, the line is part of the program; otherwise, the line is a comment.
A debugging line cannot contain embedded SQL/MP or SQL/MX statements. For
information on DEBUGGING MODE, see SOURCE-COMPUTER Paragraph.

Table 16-1. Valid Indicator Area Characters (ANSI Reference Format)

Valid Character Character Name Indicates that the line is a …

? Question mark Compiler Directive

* Asterisk Ordinary Comment

/ Slash Comment for Top of Page

D Uppercase D Debugging Line

d Lowercase d Debugging Line

- Hyphen Continuation Line
HP COBOL Manual for TNS and TNS/R Programs—522555-006
16-2

ANSI Reference Format Continuation Line
Continuation Line
A continuation line has a hyphen (-) in the indicator area. It is a continuation of the
previous line. Always leave area A of a continuation line blank.

You can continue any word or literal. If you continue a numeric literal, a reserved word,
or a user-defined word, the compiler ignores the trailing spaces of the previous line and
initial spaces of the continuation line.

The ANSI rules for continuing a nonnumeric literal are:

• The nonnumeric literal contains all trailing spaces present in area B (through
column 72) in the previous line.

• The first character in area B of the continuation line that is not a space must be a
quotation mark. The continuation begins with the character immediately following
that quotation mark.

The ANSI rules for continuing a national literal are:

• The national literal contains all trailing spaces present in area B in the previous
line.

• The first character in area B of the continuation line that is not a space must be an
N or n followed by a quotation mark. The N or n must be in an odd-numbered
column. The continuation begins with the character immediately following the
quotation mark.

• The literal string must end on the previous line before the internal character count
(the number of bytes) reaches 73. If you are counting the national characters as
you type them, remember that each national character represents two bytes
internally. The number of characters allowed on the line depends on the column in
which the character-string begins. It might take a few compilations before you have
the literal string divided properly over multiple lines.

Example 16-1. Continuation of Nonnumeric Literal in ANSI Format

+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
 DISPLAY "THIS IS AN EXAMPLE OF CONTINUING A LITERAL IN ANSI S
 - "TANDARD FORMAT."
HP COBOL Manual for TNS and TNS/R Programs—522555-006
16-3

ANSI Reference Format Area A
Area A
Area A begins at Margin A and uses columns 8 through 11. These must begin in area
A:

• Division names

• Section headers

• Paragraph headers

• These level indicators and level numbers for the Data Division:

° FD (file descriptions)
° SD (sort-merge file descriptions)
° Level-numbers 01 and 77

Level-numbers 02 through 49, 66, and 88 can begin in either area A or area B.

Area B
Area B begins at Margin B and uses columns 12 through 72. Sentences within a
paragraph must begin in area B. Level-numbers 02 through 49, 66, and 88 can begin
in either area A or area B.

Identification Field
The identification field begins at Margin R and uses columns 73 through 80. The
identification field can contain any ASCII characters. The compiler treats it as a
comment.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
16-4

17
HP Extensions to ISO COBOL

This section lists the HP extensions to ISO/ANSI COBOL, grouping them according to
the sections of this manual that explain them; that is:

• Source Program Organization and Format

• Language Elements

• Data Fundamentals

• Environment Division

• Data Division

• Procedure Division Verbs

These HP extensions are explained in other sections, and are not repeated in this
section:

• HP Reserved Words

• Section 18, HP COBOL CRE Support

• Section 48, Run-Time Diagnostic Messages

All Compiler Directives are HP extensions to ISO COBOL.

HP extensions for using SQL/MP with HP COBOL are explained in the SQL/MP
Programming Manual for COBOL.

HP extensions for using SQL/MX with HP COBOL are explained in the SQL/MX
Programming Manual for C and COBOL.

Source Program Organization and Format
The only HP extension to ISO/ANSI COBOL that affects source program organization
or format is Tandem reference format, which features:

• 132 columns
• Continuation of a nonnumeric literal without including trailing spaces
• No sequence number area or identification field (comment lines instead)

For more information on Tandem reference format, see Reference Format for Source
Program Lines.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
17-1

HP Extensions to ISO COBOL Language Elements
Language Elements
The HP extensions to ISO/ANSI COBOL that are language elements are:

• HP COBOL requires at least one character in a COBOL word to be either a letter
or a hyphen; COBOL requires a letter.

• In HP COBOL, using a COBOL word as a library-name does not interfere with its
concurrent use as the name of an entity in another category; however, library-
names must be unique among themselves.

• COBOL limits the forms of system-names to those permitted for user-defined
names. HP COBOL relaxes this restriction. The use of each particular system-
name is limited to contexts appropriate for its category. The few minor restrictions
on duplicate usages of system-names are discussed in SPECIAL-NAMES
Paragraph.

• HP COBOL allows you to qualify status condition-names.

• COBOL does not permit the decimal point as the rightmost (last) character of a
numeric literal; HP COBOL relaxes this restriction somewhat:

° If the apparent last character of a numeric literal qualifies as a decimal point
and the immediately following character is not a space (but is a semicolon,
comma, or right parenthesis), the compiler interprets that last character as the
decimal point.

° If the apparent last character qualifies as a decimal point but the immediately
following character is a space, the compiler interprets that last character and
the space together as the separator that follows the literal.

Data Fundamentals
The only HP extension to ISO/ANSI COBOL that affects data fundamentals is byte
alignment of binary data items (see PORT and NOPORT).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
17-2

HP Extensions to ISO COBOL Environment Division
Environment Division
These HP extensions to ISO/ANSI COBOL are elements of the Environment Division:

• CHARACTER-SET Clause

• Special system-names:

° CONSOLE for the operator’s console
° MYTERM for the home terminal of a process
° CHANNEL-1 through CHANNEL-12 for carriage-control tape channels

See System-Name Clause.

• File-Control Entries in General

• RECEIVE-CONTROL Paragraph

Data Division
These HP extensions to ISO/ANSI COBOL are elements of the Data Division:

• Extended-Storage Section

• ACCESS MODE Clause

• These additional data formats (see USAGE Clause):

° COMPUTATIONAL-3 (COMP-3)
° COMPUTATIONAL-5 (COMP-5)
° NATIVE-2
° NATIVE-4
° NATIVE-8
° PACKED-DECIMAL
° POINTER
HP COBOL Manual for TNS and TNS/R Programs—522555-006
17-3

HP Extensions to ISO COBOL Procedure Division Verbs
Procedure Division Verbs
These HP extensions to ISO/ANSI COBOL involve Procedure Division verbs:

• For developing fault-tolerant programs to run as process pairs:

° CHECKPOINT

° STARTBACKUP

° SYNCDEPTH phrase of OPEN

• To mark the beginning of a parameter list, the USING phrase of ENTER

• To specify a data item that stores the value a function returns, the GIVING phrase
of ENTER

• To control file access and maintain the integrity of data bases in transaction-
processing applications or other applications that allow multiple access to files:

° LOCKFILE

° UNLOCKFILE

° UNLOCKRECORD

° TIME LIMITS phrase of these statements:

° OPEN

° READ

° START

° EXCLUSIVE, SHARED, and PROTECTED phrases of OPEN

° LOCK phrase of READ

° UNLOCK phrase of REWRITE

• To display a prompt before a read operation, PROMPT phrase of READ

• REVERSED phrase of READ

• To specify an object file that contains a program unit, the OF or IN phrase of these
statements:

° CALL

° CANCEL

° ENTER)

• Parameters of CALL can be at levels other than 01 or 77 and, under some
conditions, can be subscripted

• Specification of any type of conditional expression in the WHEN phrase of
SEARCH ALL (at the cost of not being able to use binary searching in that case)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
17-4

HP Extensions to ISO COBOL Procedure Division Verbs
• To enable different methods of positioning files, the POSITION, GENERIC, and
APPROXIMATE phrases of START

• PARAGRAPH, SECTION, and PERFORM CYCLE options of EXIT, which transfer
control to the end of the paragraph, section, and PERFORM cycle, respectively

• The GUARDIAN-ERR special register is updated each time a file-manipulating
statement is executed. The value of GUARDIAN-ERR usually provides more
specific information about the cause of an unsuccessful completion signaled by the
file-status data item. For example, if the file status is 30 (permanent error),
GUARDIAN-ERR contains the file system error number identifying the cause. See
Diagnosing Input-Output Errors.

• Additional special registers:

° PROGRAM-STATUS
° PROGRAM-STATUS-1
° PROGRAM-STATUS-2
° RETURN-CODE

• If the program is compiled with the PORT directive and runs in the CRE, CALL
behaves like the X/OPEN CALL statement, which is not an element of COBOL
(see PORT and NOPORT).

• SET TO statement for pointers

In COBOL, identifier-3 is a data item in the Linkage Section of any level
except 66 or 88; in HP COBOL, it is any data item in the Linkage Section or Data
Division of any level except 88.

• MOVE TO statement with sender with decimal digits

The 1985 COBOL standard does not allow decimal positions in a numeric item
used as sender in a MOVE TO statement. HP COBOL does allow decimal
positions in such an item. The decimal point is ignored and sender is handled as
if it were an alphanumeric item whose size is equal to the number of 9s in the
PICTURE clause. If its USAGE is not DISPLAY, it is converted to DISPLAY for the
move operation.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
17-5

HP Extensions to ISO COBOL Procedure Division Verbs
HP COBOL Manual for TNS and TNS/R Programs—522555-006
17-6

18
HP COBOL CRE Support

This section:

• Briefly describes the Common Run-time Environment (CRE)
(see Introducing the CRE)

• Summarizes the changes to HP COBOL that allow HP COBOL programs to run in
the CRE. These changes involve:

° Compiler Directives

° Volume Names

° Shared File Operations

° $RECEIVE Processing

° Arithmetic Overflow Processing

° TNS HP COBOL Programs in TNS User Libraries

° CHECKPOINT Access to Extended-Storage Section

° CBL85UTL Routines

° COBOLLIB Routines

A TNS HP COBOL program that runs in the CRE can call and be called by CRE
programs written in HP C, HP C++, FORTRAN, Pascal, and TAL, even if the main
program is not written in COBOL. In the non-CRE environment, this is possible only if
the main program is written in COBOL.

All native programs run in the CRE. Native HP COBOL programs can call and be
called by programs written in native HP C, native HP C++, and pTAL, even if the main
program is not written in HP COBOL.

This section uses these terms:

For more information:

CRE program A program that runs in the CRE

Non-CRE program A program that runs in the non-CRE environment

Topics Sources

Writing HP COBOL programs for the CRE CRE Programmer’s Guide

Converting non-CRE HP COBOL
programs to CRE programs

Guardian Application Conversion Guide
HP COBOL Manual for TNS and TNS/R Programs—522555-006
18-1

HP COBOL CRE Support Introducing the CRE
Introducing the CRE
On C-series systems, the HP C, HP C++, HP COBOL, FORTRAN, Pascal, and TAL
programming languages each have their own unique run-time environments defined by
their respective run-time libraries. These language-specific run-time environments are
often incompatible with each other because each language’s run-time library is
unaware of other run-time libraries. This incompatibility severely limits the potential for
creating useful mixed-language programs.

On D-series systems, the Common Run-Time Environment (CRE) is a set of services
that supports mixed-language programs. The CRE library is a collection of routines that
implements the CRE. The CRE library enables the language-specific run-time libraries
to coexist peacefully with each other. User routines and run-time libraries call CRE
library routines to access shared resources managed by the CRE, such as the
standard files (input, output, and log) and the user heap, regardless of language.

The CRE does not support all possible operations. For example, the CRE supports file
sharing only for the three standard files: standard input, standard output, and standard
log. The language-specific run-time libraries access all other files by calling operating
environment procedures directly, whether or not a program uses the CRE.

If one program in a run unit runs in the CRE, every program in that run unit must run in
the CRE.

If a program runs in the CRE, each routine in the program appears to be running in its
own language-specific run-time environment, regardless of the language of the main
routine. For example, if the main routine of a mixed-language program is written in
HP COBOL, an HP C routine has complete access to the HP C run-time library.

If a program does not use the CRE, routines written in languages other than that of the
main routine have limited access to their run-time libraries. For example, if the main
routine of a mixed-language program is written in HP COBOL, an HP C routine has
limited access to the HP C run-time library.

Table 18-1. Run-Time Environments

Language TNS Programs Native Programs

HP C CRE CRE

HP C++ CRE CRE

HP COBOL CRE or
COBOL environment

CRE

FORTRAN CRE or
FORTRAN environment

Not applicable

Pascal CRE Not applicable

pTAL CRE CRE

TAL CRE or
TAL environment

Not applicable
HP COBOL Manual for TNS and TNS/R Programs—522555-006
18-2

HP COBOL CRE Support Compiler Directives
D-series HP C, HP C++, and Pascal run-time libraries always call CRE library routines
for services managed by the CRE; they can run in the CRE only. D-series HP COBOL
and FORTRAN run-time libraries call CRE library routines if you compile all of the
routines in a program to run in the CRE. In contrast, TAL routines call CRE library
routines directly.

Refer to the CRE Programmer’s Guide for more information on writing programs that
use the services provided by the CRE.

Compiler Directives
These directives support the CRE:

• ENV

• HIGHPIN

• HIGHREQUESTERS

• RUNNAMED

Volume Names
A CRE HP COBOL program can have eight-character volume names (the dollar sign
followed by one to seven characters) in these contexts:

• SELECT clause
• FILE clause

It must have seven-character volume names (the dollar sign followed by one to six
characters) in these contexts:

• USING or GIVING files in SORT or MERGE statements

• Files being read or written with HP COBOL Fast I-O

If you use an eight-character volume name in this context, you do not get an error
or warning message, but you get normal I-O instead of HP COBOL Fast I-O.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
18-3

HP COBOL CRE Support Shared File Operations
Shared File Operations
A CRE HP COBOL program shares certain file operations with other programs in its
run unit. The shared file operations are associated with these files. Other file
operations are not shared.

• Standard Output File

For DISPLAY statements, it is the default file (no UPON phrase is specified).

• Standard Input File

For ACCEPT statements, it is the default file (no FROM phrase is specified). This
file can be a disk file, including an EDIT file.

• Execution Log File

The HP COBOL run-time diagnostic messages are written to this file. It is normally
the home terminal, but can be selected by PARAM EXECUTION-LOG.

• $RECEIVE File

It is specified in the RECEIVE-CONTROL paragraph or by a TACL ASSIGN
command.

Any program in the run unit can read from or write to the preceding files and there is
only one shared file connector. In the case of the $RECEIVE File, HP COBOL has
high-level interface to it, but programs written in other languages must make special
calls to CRE routines to share it. In the case of the other files listed previously, sharing
is done by concurrent opens of the file.

$RECEIVE Processing
$RECEIVE processing in the non-CRE environment and the CRE differ in:

• EXTERNAL Clause

• MESSAGE SOURCE Clause

• REPORT Clause

• Message Format

• Message Replies

The material in this topic applies only to CRE HP COBOL programs that read and write
$RECEIVE. It does not apply to non-CRE programs, even if they read and write
$RECEIVE.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
18-4

HP COBOL CRE Support EXTERNAL Clause
EXTERNAL Clause
The EXTERNAL clause of the RECEIVE-CONTROL paragraph enables HP COBOL
external files to share communication with $RECEIVE and to share $RECEIVE
properly with FORTRAN. For more information, see RECEIVE-CONTROL Paragraph
and #RECEIVE Blocks.

MESSAGE SOURCE Clause
If you specify the MESSAGE SOURCE clause in the RECEIVE-CONTROL paragraph,
the last items in the message sender format change:

The overall data length is the same, but the process identification is different. In the
CRE, the process handle (PHANDLE) has no processor or PIN. Do not write code to
extract pieces of the process handle, because its format can change at any time. In the
Guardian environment, if you must know the values of the processor and PIN, call the
Guardian routine PROCESSHANDLE_DECOMPOSE_. For instructions on how to use
PROCESSHANDLE_DECOMPOSE_, see the Guardian Application Conversion Guide.

REPORT Clause
The message types specified in the REPORT clause are different in the non-CRE
environment and the CRE.

These old message types have been eliminated in the CRE, because they are covered
by other message types:

The CRE has many new message types and some new message type codes for old
message types. In the CRE, the message type SYSTEM includes all messages except
LOGICAL-CLOSE and LOGICAL-OPEN. For details, see Table 6-9.

Non-CRE Environment CRE

02 PROCESS-ID.
 02 PROCESS-NAME PIC X(6).
 02 CPU-PIN PIC X(2).
02 FILLER PIC X(16).

02 PHANDLE PIC X(20).
02 FILLER PIC X(4).

Old Message Type Corresponding CRE Messages

ABEND PROCESS-DELETION

STOP PROCESS-DELETION

NETWORK NODE-DOWN
NODE-UP
REMOTE-CPU-DOWN
REMOTE-CPU-UP
HP COBOL Manual for TNS and TNS/R Programs—522555-006
18-5

HP COBOL CRE Support Message Format
Message Format
Most of the SYSTEM messages in the CRE are longer than those in the non-CRE
environment. If your CRE program is to process SYSTEM messages, make the record
area of the $RECEIVE file at least 256 characters long.

Message Replies
The replies to some messages have changed, particularly the replies to the messages
OPEN and CLOSE. In the non-CRE environment, you can reply to these messages
with anything; in the CRE, you must reply correctly or (in the Guardian environment)
operating environment error 2 results. For correct replies, see the Guardian User’s
Guide.

Arithmetic Overflow Processing
When an arithmetic overflow condition occurs that is not covered by ON SIZE ERROR,
the CRE traps the error. Then, if the program specifies PARAM INSPECT ON, the CRE
causes the program to enter the selected debugger (see Debugger Selection). If the
program specifies PARAM INSPECT OFF, the CRE causes the program to terminate
abnormally with a run-time diagnostic message and a trace to the offending statement.

TNS HP COBOL Programs in TNS User
Libraries

The CRE allows TNS HP COBOL programs in TNS user libraries if the programs
satisfy the criteria listed in Library Programs.

CHECKPOINT Access to Extended-Storage
Section

The CHECKPOINT statement can access Extended-Storage Section data items. For
the NMCOBOL compiler, the CHECKPOINT statement is available for the RVU D46.00
and G06.00 or later, software product revision T8107AAT (run-time library T8108AAR).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
18-6

HP COBOL CRE Support CBL85UTL Routines
CBL85UTL Routines
Every CBL85UTL routine has a non-CRE version and a CRE version (except one,
which is unnecessary in the CRE). The CBL85UTL file is for the COBOL85 compiler.
Its CRE routines are also in the ZCOBSRL file, which is for the NMCOBOL compiler.

A non-CRE HP COBOL program can call only the non-CRE routines, but a TNS
HP COBOL program that runs in the CRE can call any routine. If a TNS HP COBOL
program that runs in the CRE calls a non-CRE routine, it actually calls the
corresponding CRE routine indirectly. If a CRE HP COBOL program calls
COBOL^ARMTRAP, it is ignored. A native HP COBOL program can only call the native
routines in ZCOBSRL.

Corresponding non-CRE and CRE routines have the same parameters, with this
exception: COBOL85^COMPLETION has the parameter text-length, but
COBOL_COMPLETION_ does not (the CRE gets the text length from the specified text
instead).

For more information on the routines listed in Table 18-2, see CBL85UTL and
ZCOBSRL Routines.

Table 18-2. Old and New Utility Routine Names

COBOL-Environment Routine Name1 CRE Routine Name2

COBOL85^ARMTRAP3 No equivalent (unnecessary)

COBOL85^COMPLETION COBOL_COMPLETION_

None COBOL_CONTROL_3

COBOL85^RETURN^SORT^ERRORS COBOL_RETURN_SORT_ERRORS_

COBOL85^REWIND^SEQUENTIAL COBOL_REWIND_SEQUENTIAL_

COBOL85^SET^SORT^PARAM^TEXT COBOL_SET_SORT_PARAM_TEXT_

COBOL85^SET^SORT^PARAM^VALUE COBOL_SET_SORT_PARAM_VALUE_

None COBOL_SETMODE_3

COBOL85^SPECIAL^OPEN COBOL_SPECIAL_OPEN_

1. These routines are only in CBL85UTL, not in ZCOBSRL.

2. These routines are in both CBL85UTL and ZCOBSRL.

3. These routines are not in ZCOBSRL. Using them causes errors.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
18-7

HP COBOL CRE Support COBOLLIB Routines
COBOLLIB Routines
These COBOLLIB routines are affected by CRE support:

• COBOLASSIGN

• COBOLFILEINFO

• COBOLSPOOLOPEN

COBOLASSIGN
In the CRE, the routine COBOL_ASSIGN_ has replaced the non-CRE routine
COBOLASSIGN. If either a TNS HP COBOL program that runs in the CRE or a native
HP COBOL program calls COBOLASSIGN, it actually calls COBOL_ASSIGN_
indirectly. The advantages to calling COBOL_ASSIGN_ directly are:

• Any of the parameters that you can pass can be loaded in the Extended-Storage
Section or Linkage Section.

• The system-file-name in the SELECT clause need not be #DYNAMIC.

• You can specify temporary file names.

• You can specify two additional parameters, file-code and file-type.

For more information, see COBOLASSIGN and COBOL_ASSIGN_.

COBOLFILEINFO
In the CRE, COBOLFILEINFO always returns a fully-qualified file name (that is, the
first character is backward slash (\) and the second character is the system number,
even if the file is on a local system). In the non-CRE environment, COBOLFILEINFO
does not always return a fully-qualified file name.

The native version of COBOLFILEINFO is in the file ZCRESRL.

For more information, see COBOLFILEINFO.

COBOLSPOOLOPEN
A CRE COBOL program cannot call the routine COBOLSPOOLOPEN. Instead, it can
call the routine COBOL_SPECIAL_OPEN_, which has all the facilities of
COBOLSPOOLOPEN and more.

COBOLSPOOLOPEN is in the COBOLLIB file, the TNS version of
COBOL_SPECIAL_OPEN_ is in the CBL85UTL file, and the native version of
COBOL_SPECIAL_OPEN_ is in the ZCOBSRL file. For more information, see
COBOLSPOOLOPEN and COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
18-8

19
Using HP COBOL in the OSS
Environment

The NonStop operating system offers two operating environments:

• Guardian environment
• OSS environment

Open System Services provides industry-standard application program interfaces
(APIs) and utilities to enable you to port existing applications quickly and easily to
NonStop systems. The NonStop operating system continues to support Guardian
services. HP has enhanced many tools from the Guardian environment so that they
also operate in the OSS environment. For example, the Binder and linker now identify
OSS object files as well as Guardian object files.

Most features of the HP COBOL language and library are available in the OSS
environment, and most of them operate as they do in the Guardian environment. This
section explains the few exceptions. It also describes line sequential files (also called
OSS ASCII files), which are available in the OSS environment. For complete
information about the OSS environment, see the Open System Services Programmer’s
Guide.

Topics:

• Running the COBOL85 Compiler

• Running the NMCOBOL Compiler

• Running HP COBOL Programs

• Calling OSS Functions From HP COBOL Programs

• Mixed-Language Programs

• Changing Default Pathnames and Disk Volume

• Files in the OSS Environment

• Line Sequential Files

• Features Unavailable in the OSS Environment

• Features That Operate Differently in the OSS Environment

To terminate a compilation in the OSS environment, press Control-C (that is, press
Control and C—not c—simultaneously).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-1

Using HP COBOL in the OSS Environment Running the COBOL85 Compiler
Running the COBOL85 Compiler
In the OSS environment, the OSS utility cobol calls the COBOL85 compiler, optionally
followed by the Binder (BIND), Accelerator (AXCEL), and SQL/MP compiler
(SQLCOMP). The flags and the types of files in the operands determine which
processes operate on the files in the operands.

The cobol utility generates programs that run in the OSS environment. To generate
programs that run in the Guardian environment, use the COBOL85 command in the
Guardian environment (see Starting a Compilation).

Text file inputs to the compiler can be OSS ASCII text files (code 180) or Guardian
EDIT files (code 101).

The command to run the COBOL85 compiler in the OSS environment is:

cobol

must be typed as shown, in lowercase letters.

flag

is as described in the Open System Services Shell and Utilities Reference Manual.

operand

pathname

cobol

flag operand

pathname

operand

VST621.vsd

-l

pathname

library

VST622.vsd

a

file

o

cbl

srl

.
ns ns

cob

VST623.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-2

Using HP COBOL in the OSS Environment Running the NMCOBOL Compiler
Successful compilation always creates object files. If the -c flag is specified, the object
files created for source files of the form file.cbl have the form file.o. For
example, for a source file named main.cbl, successful compilation creates an object
file named main.o in the current directory.

Running the NMCOBOL Compiler
In the OSS environment, the OSS utility nmcobol calls the native HP COBOL compiler
(NMCOBOL), optionally followed by the linker and SQLCOMP compiler (for SQL/MP)
or MXCMP compiler (for SQL/MX). The flags and the types of files in the operands
determine which processes operate on the files in the operands.

The nmcobol utility generates programs that run in the OSS environment. To generate
programs that run in the Guardian environment, use either the -Wsystype=guardian
flag in the OSS environment or the NMCOBOL command in the Guardian environment
(see Starting a Compilation).

Text file inputs to the compiler can be OSS ASCII text files (code 180) or Guardian
EDIT files (code 101).

The command to run the NMCOBOL compiler in the OSS environment is:

nmcobol

must be typed as shown, in lowercase letters.

flag

is as described in the Open System Services Shell and Utilities Reference Manual.

operand

Note. If you compile more than one source file in a single compilation with the cobol utility,
the COBOL85 compiler creates an object file for each source file for which there were no
compilation errors.

flag operand

pathname

operand

nmcobol

VST733.vsd

-l

pathname

library

VST622.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-3

Using HP COBOL in the OSS Environment Running HP COBOL Programs
pathname

Running HP COBOL Programs
After successfully compiling your HP COBOL program in the OSS environment, you
have a loadfile. Its name is either a.out (by default) or the name you gave it with the
-o flag. If the current directory is in your search path, you can run your program by
typing the name of the loadfile and pressing Return. For example, if the name of the
loadfile is a.out, enter:

a.out

To run the program with the selected debugger (see Debugger Selection), enter:

run -debug a.out

If the current directory is not in your search path, add it with this command:

export PATH=$PATH:.

Calling OSS Functions From HP COBOL
Programs

An HP COBOL program can call an OSS function with either the X/Open CALL
statement or the ENTER statement. The ENTER statement is easier.

Note. The file suffixes (cbl, cob, and so on) are not case-sensitive.

ns ns

ecbl

ecob

cbl

cob

.file

o

srl

VST623.vsd

a

m

HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-4

Using HP COBOL in the OSS Environment Mixed-Language Programs
Mixed-Language Programs
In the OSS environment, you can write mixed-language programs.

Topics:

• TNS Programs

• Native Programs

TNS Programs
A TNS HP COBOL program can call programs written in TNS HP COBOL, TNS HP C,
TNS HP C++, or TAL, but not programs written in FORTRAN or Pascal.

To produce a TNS HP COBOL program that contains TNS HP COBOL and TNS HP C
modules, follow these steps:

1. Using the /usr/nonnative/c89 utility, compile the HP C modules, but do not
bind them.

2. Using the cobol utility, compile the HP COBOL modules, specifying any
necessary binding, accelerating, or SQL-compiling flags.

For example, suppose that you want to produce a loadfile from the HP COBOL
modules cobol1.cbl and cobol2.cbl and the HP C modules c1.c and c2.c.

First you use the c89 utility to compile the HP C modules without binding them:

c89 -c -o cprog.o c1.c c2.c

The resulting object file is cprog.o.

Then you use the cobol utility to do this:

• Compile the HP COBOL modules

• Bind the COBOL85 compiler output, the object file cprog.o, and the standard
HP C library

• Run the Accelerator and produce the loadfile myprog:

cobol -o myprog cprog.o cobol1.cbl cobol2.cbl
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-5

Using HP COBOL in the OSS Environment Native Programs
Native Programs
Native HP COBOL programs can call programs written in native HP COBOL, native
HP C, native HP C++, or pTAL.

To produce a native HP COBOL program that contains native HP COBOL and native
HP C modules, follow these steps:

1. Using the c89 utility, compile the HP C modules, but do not link them.

2. Using the nmcobol utility, compile the HP COBOL modules, specifying any
necessary linking or SQL-compiling flags.

For example, suppose that you want to produce a loadfile from the native HP COBOL
modules cobol1.cbl and cobol2.cbl and the native HP C modules c1.c and
c2.c.

First you use the c89 utility to compile the HP C modules without linking them:

c89 -c -o cprog.o c1.c c2.c

The resulting object file is cprog.o.

Then you use the nmcobol utility to do this:

• Compile the HP COBOL modules

• Link the nmcobol compiler output, the object file cprog.o, and the native HP C
library.

• Produce the loadfile myprog:

nmcobol -o myprog cprog.o cobol1.cbl cobol2.cbl

The nmcobol utility automatically links the HP C SRLs to myprog.

Changing Default Pathnames and Disk Volume
The “Default” column of Table 19-1 shows the default pathnames of the programs that
the cobol and nmcobol commands call and the default disk volume on which they
create temporary files.

To change one or more of these defaults before executing the cobol or nmcobol
command, use the export command.

To execute a cobol or nmcobol command with a specified set of environment
variables, use the OSS env function with the environment variables that Table 19-1
lists and explains. For the syntax of the env function, see the env(1) command
reference page either online or in the Open System Services System Calls Reference
Manual.

The effect of the export command lasts until you explicitly change it. The effect of the
env function applies only to the cobol or nmcobol command with which you use it.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-6

Using HP COBOL in the OSS Environment Changing Default Pathnames and Disk Volume
Table 19-1. Environment Variables

Variable Effect Default

COBOL Determines the pathname of the
COBOL85 compiler that the
cobol utility calls

/G/system/system/cobol85

NMCOBOL Determines the pathname of the
NMCOBOL compiler that the
nmcobol utility calls

/G/system/system/cobolfe

BIND1 Determines the pathname of the
Binder that the cobol utility calls

/G/system/system/bind

AXCEL1 Determines the pathname of the
Accelerator that the cobol utility
calls

/G/system/system/axcel

SWAPVOL1 Determines the disk volume on
which the COBOL85 compiler,
Binder, Accelerator, and SQL/MP
compiler create temporary files

Same as in the Guardian environment—
see PARAM SWAPVOL

SQLCOMP Determines the pathname of the
SQL/MP compiler that the cobol
or nmcobol utility calls

/G/system/system/sqlcomp

MXSQLCO2 Determines the pathname of the
alternate COBOL SQL/MX
preprocessor that the nmcobol
utility calls

/usr/tandem/sqlmx/bin/

MXCMP2 Determines the pathname of the
alternate SQL/MX compiler that
the nmcobol utility calls

/G/system/system/

SQLCLIO2 Determines the pathname of the
object file that describes the
SQL/MX API to the nmcobol
utility

/usr/tandem/sqlmx/lib/sqlcli.o

1. For the COBOL85 compiler only.

2. For the NMCOBOL compiler only.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-7

Using HP COBOL in the OSS Environment Files in the OSS Environment
Files in the OSS Environment
In the OSS environment, you can use both OSS and Guardian files. OSS files are
either line sequential files (see Line Sequential Files) or sequential files with fixed-
length records and no alternate keys. Guardian files are all types of files that
HP COBOL programs can access in the Guardian environment. In the OSS
environment, both OSS and Guardian files must have OSS pathnames.

Topics:

• OSS Pathnames

• OSS Pathnames in HP COBOL Source Programs

• OSS Files in HP COBOL Source Programs

• #IN and #OUT

OSS Pathnames
In the OSS environment, both OSS files and Guardian files must have OSS
pathnames. These two topics briefly describe these pathnames. For further
information, see the Open System Services Programmer’s Guide and the
filename(5) reference page either online or in the Open System Services System
Calls Reference Manual.

OSS Pathnames for OSS Files
The OSS pathname of an OSS file has this format:

OSS

specifies that the file is an OSS file (the default). If OSS is specified, the entire
pathname must be enclosed in quotation marks.

node

specifies the name of a remote node. The operating system on the node must be
version D40.00 or later, and the node must have a compatible OSS name server.

/ /

/E/OSS
ns ns

ns ns ns

node

directory

filename

VST634.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-8

Using HP COBOL in the OSS Environment OSS Pathnames
/

specifies the root directory when it appears at the beginning of a pathname;
elsewhere, it separates directory names and file names.

directory

is the name of a directory. A directory name can contain any characters except
slash (/) and the NULL character (zero). Its first character cannot be a hyphen (-).
Its maximum length is NAME_MAX characters, as defined by the limitsh header
file. If directory contains special characters, the entire pathname must be
enclosed in quotation marks.

These directory names have special meanings:

file-name

is the name of a file. A file name can contain any characters except slash (/) and
the NULL character (zero). Its first character cannot be a hyphen (-). Its maximum
length is NAME_MAX characters, as defined by the limitsh header file. If file-
name contains special characters, the entire pathname must be enclosed in
quotation marks.

OSS Pathnames for Guardian Files
The OSS pathname of a Guardian file has this format:

Directory Name Meaning

. OSS current working directory

.. Parent directory of the OSS current working directory

Example 19-1. OSS Pathnames for OSS Files

file2
vol1/file2
usr/vol1/file2
/usr/vol1/file2
/usr/vol1/part3/file2
"OSS /usr/vol1/file2"
/E/qa2/usr/vol1/file2
"OSS /E/qa2/usr/vol1/file2"

GUARDIAN

/E/

OSS
ns

ns
"

node

file-id-1

device

file-id-2
ns

"
ns

ns

VST734.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-9

Using HP COBOL in the OSS Environment OSS Pathnames in HP COBOL Source Programs
device

specifies a Guardian device or either of the special names #DYNAMIC or #TERM.

file-id-1

node.volume.subvolume.file_id

node

specifies the name of a remote node. The operating system on the node must be
version D40.00 or later, and the node must have a compatible OSS name server.

file-id-2

/G/volume/subvolume/file_id

OSS Pathnames in HP COBOL Source Programs
Within an HP COBOL source program, OSS pathnames are allowed as system-
file-name parameters in these contexts:

• In the File-Mnemonic clause of the SPECIAL-NAMES paragraph, for example:

SPECIAL-NAMES.
 FILE "OSS /usr/test/fileID" IS A-FILE.
 FILE "GUARDIAN $MYVOL.SUBVOL.FILEID" IS B-FILE.
 FILE "OSS /G/MYVOL/SUBVOL/FILEID" IS C-FILE.

• In the ASSIGN clause of a file-control entry, for example:

FILE-CONTROL.
 SELECT A-FILE ASSIGN TO "OSS /usr/test/fileID".
 SELECT B-FILE ASSIGN TO "GUARDIAN $MYVOL.SUBVOL.FILEID".
 SELECT C-FILE ASSIGN TO "OSS /G/MYVOL/SUBVOL/FILEID".

Within an HP COBOL program, the maximum length of an OSS pathname is the
maximum length of a literal (160 characters).

Example 19-2. OSS Pathnames for Guardian Files

"GUARDIAN \qa.tests.cobol85.release4"
"GUARDIAN S.#PRNT2"
"OSS /G/tests.cobol85.release4"
"OSS /E/qa/G/$tests.cobol85.release4"

Note. If system-file-name is an OSS file, it cannot be a DEFINE name. If system-
file-name is a Guardian file, it can be DEFINE name.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-10

Using HP COBOL in the OSS Environment OSS Files in HP COBOL Source Programs
OSS Files in HP COBOL Source Programs
The only OSS files that an HP COBOL program can use are line sequential files (see
Line Sequential Files) and sequential files with fixed-length records and no alternate
keys. Relative files, indexed files, and sequential files with keys or variable-length
records must be Guardian files (Enscribe files), and their OSS pathnames must include
“/G” or “GUARDIAN” (see OSS Pathnames for Guardian Files). If the OSS pathname of
a sequential file does not include “/G” or “GUARDIAN,” then that file is an OSS
unstructured file. It has fixed-length records of the maximum record size. In contrast,
the default Guardian sequential file is entry-sequenced and can have variable-length
records.

#IN and #OUT
In the OSS environment, #IN and #OUT are the default input device (FD 0) and the
default output device (FD 1), respectively. You cannot use #IN and #OUT in SELECT
clauses or the SPECIAL-NAMES paragraph as you can in the Guardian environment.

Line Sequential Files
Line sequential files (code 180) are available only in the OSS environment. Their
organization is line sequential. They are compatible with the system text editor of the
OSS environment; therefore, they can also be called OSS ASCII text files. (The
X/Open CAE specification defines an OSS ASCII text file as one that is compatible with
the system text editor.)

Line sequential files have these characteristics:

• Every character in a record is printable.

• Every record ends with a line-feed character, which is appended by a write
operation and removed by a read operation. (This characteristic distinguishes line
sequential files from sequential files.)

• After a read operation, the record area from the last character of the actual record
to the end of the record area is filled with space characters (ASCII character code
SP).

• If the record area is shorter than the record in the file, the next read operation
starts after the last character moved to the record area. (The length of the record
area is determined by the RECORD clause if it exists; otherwise it is determined by
the largest of the record descriptions.)

Note. The operating system does not check for this.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-11

Using HP COBOL in the OSS Environment File-Control Entries
These topics explain these items with respect to line sequential files:

• File-Control Entries

• File Description Entries

• I-O-CONTROL Paragraph

• OPEN Statement

• READ Statement

• REWRITE Statement

• WRITE Statement

File-Control Entries
The syntax for a file-control entry for a line sequential file is:

SELECT clause

OPTIONAL

makes the file optional, which means that an OPEN statement with an INPUT,
I-O, or EXTEND phrase can open the file regardless of whether the file exists.
If the file exists, its I-O status code is “00”; if not, its I-O status code is “05.”
OPTIONAL does not affect the OPEN statement with an OUTPUT phrase.

When you open a nonexistent optional file for input, the first READ statement
for that file calls the AT END option (or USE procedure if the READ statement
has no AT END phrase).

.SELECT clause ASSIGN clause

RESERVE clause

ORGANIZATION clause

ACCESS MODE clause

FILE STATUS clause

VST624.vsd

.FILE-CONTROL file-control-entry

VST036.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-12

Using HP COBOL in the OSS Environment File-Control Entries
file-name

is the COBOL file name (the file-name in a file description entry).

ASSIGN clause

associates file-name with system-file-name. Only the first system-file-
name has meaning. The compiler ignores subsequent names and literals and
issues a warning.

system-file-name

is the name of a file as it is known to the file system. It must be enclosed in
quotation marks unless it forms a COBOL word. For more information about
Guardian file names, see the Guardian Procedure Calls Reference Manual.
For more information about OSS file names, see the filename(5) reference
page either online or in the Open System Services System Calls Reference
Manual.

RESERVE clause

is ignored.

ORGANIZATION clause

makes the organization of the file line sequential.

ACCESS MODE clause

makes the access mode of the file sequential (the default).

ASSIGN

TO

system-file-name

VST640.vsd

SEQUENTIALLINE

ISORGANIZATION

VST625.vsd

ACCESS

IS

SEQUENTIAL

MODE

VST044.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-13

Using HP COBOL in the OSS Environment File Description Entries
FILE STATUS clause

defines filestat as the file-status data item for the file. When a COBOL run-
time I-O routine completes an operation on the file, it stores the status code in
filestat before returning control to your program (see I-O Status Code).

filestat

is an alphanumeric, nonnational data item defined in the Working-Storage
Section, Extended-Storage Section, or Linkage Section.

File Description Entries
The syntax for a file description entry for a line sequential file is:

STATUS

ISFILE

filestat

VST000.vsd

file-name .

RECORD CONTAINS clause

«LABEL RECORDS clause»

«VALUE OF clause»

«DATA RECORDS clause»

REPORT clause

EXTERNAL clause

GLOBAL clause

VST633.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-14

Using HP COBOL in the OSS Environment I-O-CONTROL Paragraph
file-name

is the highest-level qualifier for both a file description entry and its data
descriptions; therefore, the name must be unique within a program.

EXTERNAL clause
GLOBAL clause
RECORD CONTAINS clause
«LABEL RECORDS clause»
«VALUE OF clause»
«DATA RECORDS clause»
REPORT clause

are described in File Description Entries.

I-O-CONTROL Paragraph
The syntax for an I-O-CONTROL paragraph for a line sequential file is:

«RERUN clause»

rerun-file
system-name

are handled as comments.

Note. The 1985 COBOL standard classifies RERUN as obsolete, so you are advised not
to use it.

.I-O-CONTROL

«RERUN clause»

SAME AREA clause

.

VST632.vsd

RERUN

ON rerun-file

system-name

EVERY

units CLOCK-UNITS

condition

rerun-file-2-phrase

VST058.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-15

Using HP COBOL in the OSS Environment I-O-CONTROL Paragraph
rerun-file-2-phrase

units
condition

are handled as comments.

SAME AREA clause

specifies the files that share the same memory during program execution. These
files do not share disk space or tape space.

The SAME AREA clause has different meanings for I-O files (sequential, relative,
indexed) than for sort-merge files.

same-file

is a file name.

recs RECORDS

END OF

REEL

UNIT

OF rerun-file-2

VST059.vsd

AREA

RECORD

FOR

SAME

same-file

MERGE

SORT

VST060.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-16

Using HP COBOL in the OSS Environment OPEN Statement
OPEN Statement
The OPEN statement has this file-specification:

INPUT

specifies that the file or files in input-file-description are being opened for
reading only.

input-file-description

infile

is the file description file name of a file to open in INPUT mode, for read
operations only.

SHARED

allows other processes to read or write the file while this process is open.
SHARED is the default for terminals.

PROTECTED

allows other processes to read but not write the file while this process is open.
PROTECTED is the default for input files that are not terminals.

INPUT input-file-description

OUTPUT output-file-description

I-O i-o-file-description

EXTEND extend-file-description

VST187.vsd

infile

SHARED

PROTECTED

EXCLUSIVE

VST627.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-17

Using HP COBOL in the OSS Environment OPEN Statement
EXCLUSIVE

prevents other processes from reading or writing the file while this process is
open. EXCLUSIVE is the default for all other files.

OUTPUT

specifies that the file or files in output-file-description are being opened
for writing only.

output-file-description

outfile

is the file description file name of a file to open in OUTPUT mode, for write
operations only.

SHARED
PROTECTED
EXCLUSIVE

are the same as described earlier for infile.

I-O

specifies that the file or files in i-o-file-description are being opened for
reading and writing.

i-o-file-description

iofile

is the file description file name of a file to open in I-O mode, for both read and
write operations.

outfile

SHARED

PROTECTED

EXCLUSIVE

VST628.vsd

iofile

SHARED

PROTECTED

EXCLUSIVE

VST626.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-18

Using HP COBOL in the OSS Environment OPEN Statement
SHARED
PROTECTED
EXCLUSIVE

are the same as described earlier for infile.

EXTEND

specifies that the file or files in extend-file-description are being opened
for writing additional data following any existing data.

extend-file-description

extfile

is the file description file name of a sequential file to open in EXTEND mode,
for write operations that append records to the file. The file is positioned after
the last logical record when opened. All operations on the file must be write
operations, as if the file had been opened in OUTPUT mode. If the file is an
Enscribe unstructured file, its size must be a multiple of the record size.

SHARED
PROTECTED
EXCLUSIVE

are the same as described earlier for infile.

extfile

SHARED

PROTECTED

EXCLUSIVE

VST629.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-19

Using HP COBOL in the OSS Environment READ Statement
READ Statement
The READ statement for a line sequential file has this syntax:

file-name

is the file description name of the file to retrieve a record from.

data-name

is the identifier of the data area defined by your program to which the contents of
the record area are transferred after the read operation is complete.

data-name cannot be an index-name or the identifier of an index data item. The
transfer is conducted as if it were a move from an alphanumeric item to an
alphanumeric item.

The INTO phrase is allowed only when either:

• All records associated with file-name are defined as data structures or as
elementary alphanumeric items and data-name is either a data structure or
an elementary alphanumeric item.

• Only one record is associated with file-name.

LOCK

keeps other programs from gaining access to the record retrieved until an
UNLOCKFILE or UNLOCKRECORD statement is executed. The file specified by
file-name must be associated with a disk device.

file-nameREAD

END-READ

data-nameINTO

NOT

AT

END imperative-stmt-2

AT

END imperative-stmt-1

VST630.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-20

Using HP COBOL in the OSS Environment REWRITE Statement
imperative-stmt-1

is an imperative statement to be performed when the end of the file is encountered
at the beginning of the read operation. This phrase is required if no USE statement
is applicable for the file. If both a USE statement and an AT END phrase are
present, only the AT END phrase is used.

imperative-stmt-2

is an imperative statement to be performed when the end of the file is not
encountered at the beginning of the read operation.

END-READ

ends the scope of the READ statement, causing the READ to be a delimited-scope
statement. If the READ statement does not end with an END-READ phrase, the
presence of the AT END or the NOT AT END phrase causes the READ statement
to be a conditional statement, which ends at the next period separator.

REWRITE Statement
The REWRITE statement for a line sequential file has this syntax:

record-name

is the record-name in an file description entry whose current contents replaces a
record in the file. The file must be open in I-O mode.

data-name

is the identifier of the item that contains the new record instead of record-name.
When this phrase is used, an implicit MOVE statement occurs to copy the data to
record-name before the rewrite operation occurs. data-name cannot specify
an index-name or an index data item. data-name cannot specify a data item
allocated within the record area in which record-name is located.

REWRITE

END-REWRITE

record-name

FROM data-name

VST721.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-21

Using HP COBOL in the OSS Environment WRITE Statement
END-REWRITE

ends the scope of the REWRITE statement, causing the REWRITE to be a
delimited-scope statement. If the REWRITE statement does not end with an END-
REWRITE phrase, the presence of the INVALID KEY or the NOT INVALID KEY
phrase causes the REWRITE statement to be a conditional statement, which ends
at the next period separator.

WRITE Statement
The WRITE statement for a line sequential file has this syntax:

record-name

is a logical record described in the File Section of the Data Division. The record-
name can be qualified by the name of the file with which the record is associated.
The data written is the current contents of record-name.

from-name

is the identifier of a data area whose contents are to be moved to the record
specified by record-name before the WRITE occurs. from-name must specify
a data area other than that specified by record-name. It cannot specify an index
data item.

END-WRITE

ends the scope of the WRITE statement, causing the WRITE to be a delimited-
scope statement.

record-name

WRITE

FROM from-name END-WRITE

VST631.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-22

Using HP COBOL in the OSS Environment Features Unavailable in the OSS Environment
Features Unavailable in the OSS Environment
Features that are available in the Guardian environment but not in the OSS
environment fall into these categories:

• ASSIGN Commands

• PARAM Commands

• Compiler Directives

• Process Pairs

ASSIGN Commands
ASSIGN commands are not available in the OSS environment, You can use DEFINEs
for some ASSIGN functions, but because DEFINEs do not accept OSS pathnames,
they cannot perform the ASSIGN function of overriding file assignments made at
compilation time.

PARAM Commands
PARAM commands are not directly available in the OSS environment, but analogous
OSS environment variables exist for the PARAM commands in Table 19-2.

Table 19-2. Analogous PARAM Commands and OSS Environment Variables

PARAM Command OSS Environment Variable1

PARAM DEBUG ON export DEBUG=ON

PARAM DEBUG OFF export DEBUG=OFF

PARAM EXECUTION-LOG None—STDERR is used

PARAM INSPECT ON export INSPECT=ON

PARAM INSPECT OFF export INSPECT=OFF

PARAM NONSTOP ON export NONSTOP=ON

PARAM NONSTOP OFF export NONSTOP=OFF

PARAM PRINTER-CONTROL name export PRINTER_CONTROL=name

PARAM SWITCH-n ON2 export SWITCH_n =ON2

PARAM SWITCH-n OFF2 export SWITCH_n =OFF2

PARAM WAITED-IO Not applicable to CRE

1. Type nonvariables with the cases and spacing shown.

2. n is “1” through “9” or “10” through “15” (without quotes).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-23

Using HP COBOL in the OSS Environment Compiler Directives
Compiler Directives
These compiler directives are not allowed in the OSS environment:

Process Pairs
The OSS environment does not support HP COBOL process pairs; therefore, the
CHECKPOINT and STARTBACKUP statements return error 7000 in the special
register PROGRAM-STATUS.

Features That Operate Differently in the OSS
Environment

Features that operate differently in the Guardian and OSS environments fall into these
categories:

• ACCEPT and DISPLAY Statements

• Utility Routines that require or return file names

ACCEPT and DISPLAY Statements
These are true in the OSS environment but not in the Guardian environment:

• No prompt is given for an ACCEPT statement.

• If a DISPLAY statement includes mnemonic-name, it must be the OSS pathname
of either a Guardian file or a pipe to a terminal or device.

• If an ACCEPT statement includes mnemonic-name, it must be the OSS pathname
of a Guardian process or terminal. If mnemonic-name is an OSS device, a
diagnostic is issued and the default input device (#IN) is used instead.

Directive Reason

ENV OLD
ENV LIBRARY

In the OSS environment, HP COBOL programs run in the CRE.

NONSTOP The OSS environment does not support HP COBOL process pairs.

SAVE The OSS environment does not have initialization messages.

SUBTYPE The OSS environment does not support the concept of subtypes.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-24

Using HP COBOL in the OSS Environment Utility Routines
Utility Routines
These utility routines accept only Guardian file names:

• COBOL_RETURN_SORT_ERRORS_
• COBOL_SET_SORT_PARAM_TEXT_
• COBOL_SPECIAL_OPEN_

If a program passes a file name to the utility routine COBOL_ASSIGN_, then
COBOL_ASSIGN_ assumes that the file name is a Guardian file name unless the
calling program identified the file name as an OSS file name.

The utility routine COBOLFILEINFO does not return useful information in the OSS
environment. Use the routine COBOL_FILE_INFO_ instead.

When using #DYNAMIC in the OSS environment to dynamically assign Guardian file
names or Guardian spooler process names, you must use "GUARDIAN #DYNAMIC" in
the file-control entry. The file name passed by the COBOL_ASSIGN_ utility is a
standard Guardian name.

Example 19-3. “GUARDIAN #DYNAMIC” in a File-Control Entry

SELECT ASGN ASSIGN TO "GUARDIAN #DYNAMIC"
FILE STATUS IS FILE-STATUS.
...
MOVE "$S.#TEST" TO FILENAM
ENTER "COBOL_ASSIGN_" USING ASGN, FILENAM GIVING asn-error
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-25

Using HP COBOL in the OSS Environment Utility Routines
HP COBOL Manual for TNS and TNS/R Programs—522555-006
19-26

20 HP COBOL Limits
The HP architecture and the method of implementation of the HP COBOL compilers,
COBOL85 and NMCOBOL, impose these kinds of limits on HP COBOL programs:

• Size

• Number

• Callability

• External Names

• Ranges of Values

• Ignored Elements

Size
• Block size of record in a data file

The maximum block size of a record in a data file is 32,767 characters.

• Buffer size for reading (HP COBOL Fast I-O)

2 * number * dbs, where number is specified in the RESERVE clause for the file
being read, and dbs is the data block size of the file being read.

• Buffer size for writing (buffered cache or HP COBOL Fast I-O)

29K characters per block, regardless of the number in the RESERVE clause.

• Buffer space needed for files

The sum of the buffer space needed for files cannot exceed 62 KB.

• Code

° Single TNS HP COBOL program

A single TNS HP COBOL program (in which no other HP COBOL programs
are nested) can occupy up to 128 KB of user code space. A program that
contains nested programs can be much larger than 128 KB, but no single
program can exceed 128 KB.

° Single TNS/R HP COBOL program

The code space limit for a native HP COBOL program is 32 megabytes.

° C, FORTRAN, Pascal, and TAL programs in TNS processes

For a TNS process, an individual C, FORTRAN, Pascal, or TAL program unit
can occupy up to 64 KB of user code space or user library space (but
FORTRAN programs in user library space cannot use DATA, COMMON, or
SAVE statements).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
20-1

HP COBOL Limits Size
° TNS COBOL run unit

A COBOL run unit can have up to 32 segments of code, each segment
including up to 128 KB.

If the program calls any code in user library space, the user code space can
contain a maximum of 16 segments of COBOL, FORTRAN, TAL, C, and
Pascal code, and the user library space can contain an additional 16 segments
of COBOL, FORTRAN and TAL code.

If the program does not call any routines in user library space, the user code
space can contain up to 32 segments of COBOL, FORTRAN, TAL, C, and
Pascal code.

The procedure entry-point (PEP) table, up to 1024 bytes, is part of each code
segment. If any program unit exceeds 64 KB, the PEP table for its segment is
exactly 1024 bytes.

If any program in a segment calls an external routine (a routine in another code
segment), an external entry-point (XEP) table is also part of the segment. The
size of the XEP table depends upon the number of external routines called.
The Binder object-file builder reserves space for one XEP table entry for each
unresolved external reference.

° TNS/R COBOL run unit

On a D-series or pre-G05 system, individual segments are limited to 128 KB.

On a G05 or later system, a native run unit has an overall address space of
just under 1.1 GB.

° Contained program

The object code generated for a contained program cannot exceed 65,536
bytes.

° Separately compiled program

The object code generated for a separately compiled program cannot exceed
131 KB.

• Composite of Operands

The composite of operands for an arithmetic statement other than COMPUTE must
not exceed a size of 18 decimal digits. For arithmetic expressions or COMPUTE
statements, the composite of operands does not apply.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
20-2

HP COBOL Limits Size
• Data in a run unit

° TNS HP COBOL

The total size of all the items in the File Sections and Working-Storage
Sections of all the programs of a run unit cannot exceed approximately 63,400
bytes. The upper 64 KB of the 128 KB of user data space is reserved for
buffers and run-time data structures. Declare very large data items in the
Extended-Storage Section.

The total size of all the items in the Extended-Storage Sections of all the
programs of a run unit cannot exceed 133,693,440 bytes (127.5K).

° TNS/R HP COBOL

The Working-Storage Section and the Extended-Storage Section are the same
in native HP COBOL. The small data area has a maximum size of 32,768
characters.

On a D-series or pre-G05 system, individual segments are limited to 128 KB.

On a G05 or later system, a native run unit has an overall address space of
just under 1.1 GB.

• Data item to be operated on by the INSPECT, STRING, or UNSTRING
statement

For the COBOL85 compiler, a data item to be operated on by the INSPECT,
STRING, or UNSTRING statement cannot exceed 32,767 characters, even if it is
described in the Extended-Storage Section.

• File-control entry with multiple keys

In a file-control entry with multiple keys, the sum of the lengths of the keys cannot
exceed 253 characters.

• Index

An index (index-name or index data item) occupies four bytes, in any section: File,
Working-Storage, or Extended-Storage.

• Length of a numeric literal

A numeric literal has a maximum length of 18 digits.

• Length of a nonnumeric literal or OSS path name

A nonnumeric literal or OSS path name has a maximum length of 160 characters.

• Logical page

When a file definition includes a LINAGE clause, the size of its logical page is
limited to 9,999 lines.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
20-3

HP COBOL Limits Number
• Record or table

• Relative record number

For software RVUs G06.00 and D46.00 and later, the maximum relative record
number for a relative file is 64 bits for NMCOBOL and in the CRE for COBOL85.

• Tables allocated by the RECEIVE-CONTROL paragraph

The maximum size of the tables allocated by the RECEIVE-CONTROL paragraph
is 62 KB (65,400 characters). Anything larger causes a compilation error. Smaller
sizes can cause Binder errors (depending on the number of files specified in the
programs that comprise the run unit and other factors).

Number
These items, whose number in a program is limited, are in alphabetic order.

• AFTER phrases in a PERFORM statement

The maximum number of AFTER phrases in a PERFORM statement is 6.

• Characters written to an Edit-format file

A HP COBOL program can write at most 239 characters to a record of an Edit-
format file

• CONSULT and SEARCH files for NMCOBOL program

For RVUs D46 and G06 and later, the number of CONSULT and SEARCH files
(including NMCOBEXT, ZCRESRL, and ZCOBSRL) for an NMCOBOL program
cannot exceed 64.

• Digits in a hexadecimal numeric literal

The minimum number of hexadecimal digits in a hexadecimal numeric literal is 2
(1 pair); the maximum is 16 (8 pairs).

Location of Record or Table Maximum Record or Table Size

Extended-Storage Section No explicit limit—one record of 134,217,726
characters is possible

File assigned to $RECEIVE 32 KB

File assigned to another device Operating environment limits for the device apply

File Section 32,767 characters

Linkage Section 134 megabytes

Working-Storage Section For a TNS program: 32,767 characters.

For a native program: no explicit limit—one record of
134,217,726 characters is possible
HP COBOL Manual for TNS and TNS/R Programs—522555-006
20-4

HP COBOL Limits Number
• File names

° In a MULTIPLE FILE TAPE clause

HP COBOL supports 31 file names within a single MULTIPLE FILE TAPE
clause.

° In the GIVING or USING phrase of a MERGE or SORT statement

HP COBOL supports a maximum of 31 file names within the USING or GIVING
phrase of a SORT or MERGE statement.

• Keys

HP COBOL supports a maximum of 31 alternate record keys for a file, 31 key
references in an OCCURS clause, and 31 keys in a SORT or MERGE statement.

• Maximum number of concurrent statement names in SQL/MP

Without Extended Dynamic SQL (EDS), the maximum number of concurrent
statement names in SQL/MP is 20. With EDS, you need not prespecify the
maximum number of concurrent statement names.

• MULTIPLE FILE TAPE clauses

HP COBOL supports a maximum of 8 MULTIPLE FILE TAPE clauses within a
source program.

• Nesting depth

° OCCURS clauses

The maximum depth of OCCURS clauses in a table is 7.

° Programs

Programs can be nested within other programs to a depth of 7.

° HP COBOL PERFORM stack

The maximum depth varies from 0 to approximately 15,000, depending on the
space available on the stack.

° NMCOBOL PERFORM stack

The maximum depth is 50.

• Parameters

The maximum number of parameters that can be passed by a HP COBOL program
or to a HP COBOL program is 126.

• Prime key offset

For indexed files, the maximum offset of a prime key from the beginning of a
record is 2,034, which is an Enscribe record manager limitation.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
20-5

HP COBOL Limits Number
• Procedure names in a program (COBOL85 compiler only)

The default maximum number of procedure names (paragraph names and section
names) in a program is approximately 1K. You can change the default with the
PARAM SYMBOL-BLOCKS command (see PARAM SYMBOL-BLOCKS).

• Records

° External (COBOL85 compiler only)

A record (or file) that has the EXTERNAL attribute belongs to the run unit itself,
and is available to any program in the run unit that declares it consistently.

Up to 24 Extended-Storage Section records can have the EXTERNAL
attribute. Each such record consumes 2 units of allocation. Call the number of
such records actually used N.

The allocation units remaining for EXTERNAL records of Working-Storage
Section, EXTERNAL records of File Section, and the EXTERNAL files
associated with those records is:

240 - (2 * N)

Each Working-Storage Section EXTERNAL record (together with any
redefinitions of it) consumes one unit of allocation. Each File-Section
EXTERNAL file consumes one unit of allocation for its record area (together
with any redefinitions of it).

° Internal

There is no explicit limit on the number of internal records (records that do not
have the EXTERNAL attribute) in a main program, a called program, or a run
unit.

• Receivers

° In an INITIALIZE Statement

The maximum number of receivers in an INITIALIZE statement is 127.

° In a MOVE statement

The maximum number of receivers in a MOVE statement is 255.

• References to level-88 condition-names in a program (NMCOBOL only)

A condition-name can be defined in the Environment Division (associated with an
external switch) or in the Data Division (as a level-88 item). The Procedure Division
of a program can have a maximum of 32,767 references to level-88 condition-
names. There is no limit to the number of references to condition-names for
external switches.

• Subjects in an EVALUATE statement

The maximum number of receivers in an EVALUATE statement is 127.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
20-6

HP COBOL Limits Callability
• Subscripts

See Nesting depth.

Callability
TNS HP COBOL programs can call programs written in:

• TNS HP C
• TNS HP C++
• TNS HP COBOL
• FORTRAN
• Pascal
• TAL

In the non-CRE environment, if a run unit contains any HP COBOL program, then its
main program must be a HP COBOL program.

Native HP COBOL programs can call programs written in:

• Native HP C
• Native HP C++
• Native HP COBOL
• pTAL

External Names
Within a run unit, no external data item can have the same name as any external file
connector or any program.

Ranges of Values
The ranges of values for types NATIVE-2, NATIVE-4, and NATIVE-8 are:

Type Lower Bound Upper Bound

NATIVE-2 -32768 +32767

NATIVE-4 -2147483648 +2147483647

NATIVE-8 -9223372036854775808 +9223372036854775807
HP COBOL Manual for TNS and TNS/R Programs—522555-006
20-7

HP COBOL Limits Ignored Elements
The ranges of values for the type COMPUTATIONAL-5 are. Bracketed items are
optional.

Ignored Elements
HP COBOL compilers ignore these elements of COBOL because they are
unnecessary in the HP implementation:

• In the entire source program: In ANSI format, columns 1 through 6 and beyond
72

• Environment Division:

° In the SOURCE-COMPUTER paragraph: Source computer name

° In the OBJECT-COMPUTER paragraph:

° Object computer name
° MEMORY SIZE clause
° SEGMENT-LIMIT clause

° In the INPUT-OUTPUT section:

° In the FILE-CONTROL paragraph: in the file-control-entry :

° In the ASSIGN clause: multiple file names

° In the SELECT clause: RECORD DELIMITER and PADDING
CHARACTER clauses

° In the I-O-CONTROL paragraph:

° RERUN clause
° SAME AREA clause
° SAME SORT AREA clause

• Procedure Division

° In independent segments: SEGMENT-LIMIT
° ENTER COBOL statement

PICTURE
Clause

NATIVE-n
Equivalent

Range

Signed Unsigned

PIC [S]9(1) -
PIC [S]9(4)

NATIVE-2 -32,768 through 32,767 0 through 65,535

PIC [S]9(5) -
PIC [S]9(9)

NATIVE-4 -2,147,483,648 through
2,147,483,647

0 through 4,294,967,295

PIC [S]9(10) -
PIC [S]9(18)

NATIVE-8 -9,223,372,036,854,775,808
through
9,223,372,036,854,775,807

0 through
18,446,744,073,709,551,615
HP COBOL Manual for TNS and TNS/R Programs—522555-006
20-8

21 Reserved Words
This section contains these alphabetized lists:

• All Reserved Words

• HP Reserved Words

All Reserved Words
This is an alphabetic list of all reserved words in HP COBOL. It includes new
HP COBOL reserved words (additions to COBOL 74) and reserved words found only in
HP COBOL (HP additions to COBOL).

A B C D E F G H I J K L M N O P Q R S T U V W Z Special Characters

A

ACCEPT
ACCESS
ADD
ADDRESS
ADVANCING
AFTER
ALL
ALPHABET
ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
ALPHANUMERIC
ALPHANUMERIC-EDITED
ALSO
ALTER
ALTERNATE
AND
ANY
APPROXIMATE
AREA

Figure 21-1. How Lists of Reserved Words Are Related

New COBOL
Reserved Words

HP-Only
Reserved Words

All Reserved Words
in HP COBOL

VST522.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
21-1

Reserved Words All Reserved Words
AREAS
ASCENDING
ASSIGN
AT
AUTHOR

B
BEFORE
BINARY
BLANK
BLOCK
BOTTOM
BY

C
CALL
CANCEL
CD
CF
CH
CHARACTER
CHARACTERS
CHARACTER-SET
CHECKPOINT
CLASS
CLOCK-UNITS
CLOSE
COBOL
CODE
CODE-SET
COLLATING
COLUMN
COMMA
COMMON
COMMUNICATION
COMP
COMP-3
COMP-5
COMPUTATIONAL
COMPUTATIONAL-3
COMPUTATIONAL-5
COMPUTE
CONFIGURATION
CONTAINS
CONTENT
CONTINUE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
21-2

Reserved Words All Reserved Words
CONTROL
CONTROLS
CONVERTING
COPY
CORR
CORRESPONDING
COUNT
CURRENCY

D
DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DAY-OF-WEEK
DE
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DEBUG-NAME
DEBUG-SUB-1
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DESTINATION
DETAIL
DISABLE
DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC

E
EGI
ELSE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
21-3

Reserved Words All Reserved Words
EMI
ENABLE
END
END-ADD
END-COMPUTE
END-DELETE
END-DIVIDE
END-EVALUATE
END-IF
END-MULTIPLY
END-OF-PAGE
END-PERFORM
END-READ
END-RECEIVE
END-RETURN
END-REWRITE
END-SEARCH
END-START
END-STRING
END-SUBTRACT
END-UNSTRING
END-WRITE
ENTER
EOP
EQUAL
ERROR
ESI
EVALUATE
EVERY
EXCEPTION
EXCLUSIVE
EXIT
EXTEND
EXTENDED-STORAGE
EXTERNAL

F
FALSE
FD
FILE
FILE-CONTROL
FILLER
FINAL
FIRST
FOOTING
FOR
HP COBOL Manual for TNS and TNS/R Programs—522555-006
21-4

Reserved Words All Reserved Words
FROM
FUNCTION

G
GENERATE
GENERIC
GIVING
GLOBAL
GO
GREATER
GROUP
GUARDIAN-ERR

H
HEADING
HIGH-VALUE
HIGH-VALUES

I
I-O
I-O-CONTROL
IDENTIFICATION
IF
IN
INDEX
INDEXED
INDICATE
INITIAL
INITIALIZE
INITIATE
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO
INVALID
IS

J
JUST
JUSTIFIED
HP COBOL Manual for TNS and TNS/R Programs—522555-006
21-5

Reserved Words All Reserved Words
K
KEY

L
LABEL
LAST
LEADING
LEFT
LENGTH
LESS
LIMIT
LIMITS
LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINKAGE
LOCK
LOCKFILE
LOW-VALUE
LOW-VALUES

M
MEMORY
MERGE
MESSAGE
MODE
MODULES
MOVE
MULTIPLE
MULTIPLY

N
NATIVE
NEGATIVE
NEXT
NO
NOT
NULL
NULLS
NUMBER
NUMERIC
NUMERIC-EDITED
HP COBOL Manual for TNS and TNS/R Programs—522555-006
21-6

Reserved Words All Reserved Words
O
OBJECT-COMPUTER
OCCURS
OF
OFF
OMITTED
ON
OPEN
OPTIONAL
OR
ORDER
ORGANIZATION
OTHER
OUTPUT
OVERFLOW

P
PACKED-DECIMAL
PADDING
PAGE
PAGE-COUNTER
PERFORM
PF
PH
PIC
PICTURE
PLUS
POINTER
POSITION
POSITIVE
PRINTING
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID
PROGRAM-STATUS
PROGRAM-STATUS-1
PROGRAM-STATUS-2
PROMPT
PROTECTED
PURGE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
21-7

Reserved Words All Reserved Words
Q
QUEUE
QUOTE
QUOTES

R
RANDOM
RD
READ
RECEIVE
RECEIVE-CONTROL
RECORD
RECORDS
REDEFINES
REEL
REFERENCE
REFERENCES
RELATIVE
RELEASE
REMAINDER
REMOVAL
RENAMES
REPLACE
REPLACING
REPLY
REPORT
REPORTING
REPORTS
RERUN
RESERVE
RESET
RETURN
REVERSED
REWIND
REWRITE
RF
RH
RIGHT
ROUNDED
RUN

S
SAME
SD
SEARCH
HP COBOL Manual for TNS and TNS/R Programs—522555-006
21-8

Reserved Words All Reserved Words
SECTION
SECURITY
SEGMENT
SEGMENT-LIMIT
SELECT
SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET
SHARED
SIGN
SIZE
SORT
SORT-MERGE
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STANDARD-1
STANDARD-2
START
STARTBACKUP
STATUS
STOP
STRING
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUBTRACT
SUM
SUPPRESS
SYMBOLIC
SYNC
SYNCDEPTH
SYNCHRONIZED

T
TABLE
TAL
TALLYING
TAPE
TERMINAL
HP COBOL Manual for TNS and TNS/R Programs—522555-006
21-9

Reserved Words All Reserved Words
TERMINATE
TEST
TEXT
THAN
THEN
THROUGH
THRU
TIME
TIMES
TO
TOP
TRAILING
TRUE
TYPE

U
UNIT
UNLOCK
UNLOCKFILE
UNLOCKRECORD
UNSTRING
UNTIL
UP
UPON
USAGE
USE
USING

V
VALUE
VALUES
VARYING

W
WHEN
WITH
WORDS
WORKING-STORAGE
WRITE

Z
ZERO
ZEROES
HP COBOL Manual for TNS and TNS/R Programs—522555-006
21-10

Reserved Words HP Reserved Words
Special Characters
+
-
*
/
**
<
>
=

HP Reserved Words
This is an alphabetic list of reserved words found only in HP COBOL (HP additions to
COBOL).

A C E G L N P R S T U

A
ADDRESS
APPROXIMATE

C
CHARACTER-SET
CHECKPOINT
COMP-3
COMP-5
COMPUTATIONAL-3
COMPUTATIONAL-5

E
EXCLUSIVE
EXTENDED-STORAGE

G
GENERIC
GUARDIAN-ERR

L
LOCKFILE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
21-11

Reserved Words HP Reserved Words
N
NULL
NULLS

P
PROGRAM-STATUS
PROGRAM-STATUS-1
PROGRAM-STATUS-2
PROMPT
PROTECTED

R
RECEIVE-CONTROL
REPLY

S
SHARED
STARTBACKUP
SYNCDEPTH

T
TAL

U
UNLOCK
UNLOCKFILE
UNLOCKRECORD
HP COBOL Manual for TNS and TNS/R Programs—522555-006
21-12

Part II.
Programming in HP COBOL
Title

Section 22, Creating and Compiling HP COBOL Source Programs

Section 23, Calling Other Programs and Routines

Section 24, Issues Related to Binding and Linking

Section 25, Executing and Debugging HP COBOL Programs

Section 26, Input and Output Concepts

Section 27, Tape Input and Output

Section 28, Disk Input and Output

Section 29, Terminal Input and Output

Section 30, Printer and Spooler Output

Section 31, Process Initiation, Communication, and Management

Section 32, Fault-Tolerant Processes

Section 33, Migrating TNS Programs to Native Programs

Section 34, Native COBOL Cross Compiler on PC
HP COBOL Manual for TNS and TNS/R Programs—522555-006

Part II. Programming in HP COBOL
HP COBOL Manual for TNS and TNS/R Programs—522555-006

22
Creating and Compiling HP COBOL
Source Programs

Topics:

• Using the TACL Command Log

• Creating or Altering an HP COBOL Source Program

• Compiling an HP COBOL Source Program

• Using COPY and SOURCE Libraries

• Creating or Altering a COPY or SOURCE Library

• Including Text From a COPY Library

• Including Text From a SOURCE Library

• Replacing Text-Words in an HP COBOL Source Program

• Understanding and Controlling the Compiler Listing

If you want to include SQL/MP or SQL/MX commands in your HP COBOL program,
see the SQL/MP Programming Manual for COBOL or the SQL/MX Programming
Manual for C and COBOL.

Note. This section applies primarily to the Guardian environment. If you are compiling
HP COBOL programs in the OSS environment, see Section 19, Using HP COBOL in the OSS
Environment.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-1

Creating and Compiling HP COBOL Source
Programs

Using the TACL Command Log
Using the TACL Command Log
When you log onto an HP system, the HP Tandem Advanced Command Language
(TACL) prompt appears. The TACL prompt includes the command number, which
starts at 1:

1>

Topics:

• Displaying Previous Commands

• Reexecuting Previous Commands

• Editing and Reexecuting Previous Commands

Displaying Previous Commands
TACL maintains a chronological log of previously entered commands, which you can
display with the HISTORY command. Suppose that you have entered these TACL
commands (notice the command number in each of the prompts):

1> who
2> fileinfo
3> view myfile
4> history

Command 4, history, displays:

1> who
2> fileinfo
3> view myfile
4> history
5>

If you enter a question mark (?), TACL displays the last command:

5> ?
5> history
5>

If you enter a question mark followed by a number, TACL displays the command with
that number:

5> ?2
5> fileinfo
5>

If you enter a question mark followed by text, TACL displays the most recent command
that begins with that text:

5> ?v
5> view myfile
5>
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-2

Creating and Compiling HP COBOL Source
Programs

Reexecuting Previous Commands
Reexecuting Previous Commands
If you enter an exclamation mark (!), TACL displays and executes the last command:

5> !
5> history
1> who
2> fileinfo
3> view myfile
4> history
5> history
6>

If you enter an exclamation mark followed by a number, TACL displays and executes
the command with that number:

6> !4
6> history
1> who
2> fileinfo
3> view myfile
4> history
5> history
6> history
7>

If you enter an exclamation mark followed by text, TACL displays and executes the
most recent command that begins with that text:

7> !v
7> view myfile
8>
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-3

Creating and Compiling HP COBOL Source
Programs

Editing and Reexecuting Previous Commands
Editing and Reexecuting Previous Commands
If you enter the command FC, TACL displays the last command so that you can edit it:

8> fc
8> view myfile
8...

You can edit the displayed command (view myfile) with the commands D (delete),
I (insert), and R (replace). When you press Return, TACL displays the edited
command. You can continue to edit the command or press Return. When you press
Return without editing the command, TACL executes the command.

8> fc
8> view myfile
8.. dd
8> view file
8.. isrc
8> view srcfile
8.. r1
8> view srcfil1
8.. e1
8> view srcfile1
8...

The absence of a D, I, or R command is handled as an R command (last change in
the preceding example).

If you enter the FC command followed by a number, TACL displays the command with
that number so that you can edit it:

9> fc 2
9> fileinfo
9...

If you enter the FC command followed by text, TACL displays the most recent
command that begins with that text so that you can edit it:

10> fc view
10> view srcfile1
10...

TACL also allows you to program the function keys on your terminal and write macros.
For more information about TACL, see the TACL Reference Manual.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-4

Creating and Compiling HP COBOL Source
Programs

Creating or Altering an HP COBOL Source Program
Creating or Altering an HP COBOL Source
Program

The compiler accepts source lines from any sequential file. On NonStop systems, the
most common way to create or alter a HP COBOL source program is to use an HP
editor or Starbase Corporation’s Codewright smart language editor with HP Extensions
for Codewright.

HP offers two editors, EDIT and PS TEXT EDIT (abbreviated “TEDIT”). Both editors
create and allow you to alter the same type of file, the EDIT format file (abbreviated
“EDIT file”).

Both HP editors and Codewright smart language editor allow you to:

• Create a new file
• Enter lines in a file
• Copy lines from one file into another file
• Move lines from one place in a file to another place in the same file
• Duplicate lines from one place in a file to another place in the same file
• Delete lines from a file
• Change one portion of text to another throughout a range of lines in a file
• List the lines that a file contains

Whether or not you use an HP editor, your HP COBOL source file must conform to a
reference format that the compiler accepts.

Topics:

• EDIT Files

• Reference Format

• EDIT Editor

• TEDIT Editor

• HP Tandem Extensions for Codewright (TEC)

EDIT Files
An EDIT format file (abbreviated “EDIT file”) is a specially formatted disk file. It is the
only type of file that the EDIT and TEDIT editors create or alter. The file-code value
that the EDIT or TEDIT editor assigns to an EDIT file is 101.

To use the EDIT or TEDIT editor on the contents of a non-EDIT file, create a new EDIT
file and copy the text of the non-EDIT file into it.

For more information about EDIT files, see the EDIT User’s Guide and Reference
Manual.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-5

Creating and Compiling HP COBOL Source
Programs

Reference Format
Reference Format
Individual source program lines must follow a reference format that the compiler
accepts. There are two choices of reference format: Tandem and ANSI. Tandem
format, an HP extension to COBOL, is less restrictive than ANSI. The principal
differences between the Tandem and ANSI formats are in:

• Margin locations
• Permitted line lengths
• Absence of sequence number and identification field in Tandem format
• Continuation lines

You can write a COBOL source program entirely in either format or in a mixture of
both. The default is Tandem format. Unless you direct the compiler to accept ANSI
format, the compiler assumes the entire program is in Tandem format.

Figure 22-1. Tandem Reference Format

Figure 22-2. ANSI Reference Format

Column:

Margin:

Area BArea A

Line

n <= 13221 3 4 5 6 7 8 9 10 ... n

Indicator Area

C A B R

VST500.vsd

Column:

Margin:

Area BArea A

87 9 10 11 12 72 73 ... 80

Line

Indicator Field

C A B R

...

Identification Field

1 2 3 4 5 6

L

Sequence
Number
Area

VST524.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-6

Creating and Compiling HP COBOL Source
Programs

EDIT Editor
EDIT Editor
The EDIT editor is not as powerful as the TEDIT editor, but it has some useful abilities
that TEDIT either lacks or does not perform as simply. Examples of both cases are in
this explanation.

To call the EDIT editor, type its name at the TACL prompt (case is unimportant):

93> EDIT

The EDIT editor identifies itself (including version and RVU date) and prompts you with
an asterisk:

TEXT EDITOR - T9601D10 - (08JUN92)
*

To retrieve an EDIT file to work on (in this example, PAYROLS), use the GET
command:

*GET PAYROLS
CURRENT FILE IS \NODE1.$VOL3.SUBVOL2.PAYROLS

You can also call the EDIT editor with a file name:

94> EDIT PAYROLS
TEXT EDITOR - T9601D10 - (08JUN92)
CURRENT FILE IS \NODE1.$VOL3.SUBVOL2.PAYROLS

To retrieve lines from a non-EDIT file (in this example, PAYROLXX) and put them into
an EDIT file (in this example, PAYROLS), use the GET and PUT commands together:

*GET PAYROLXX PUT PAYROLS

(With the TEDIT editor, you cannot combine the GET and PUT commands.)

If the file PAYROLS already exists, the EDIT editor asks you whether it should purge
the old PAYROLS (that is, overwrite its current text with the new text from PAYROLXX,
keeping the name PAYROLS for the file):

*GET PAYROLXX PUT PAYROLS
SHALL I PURGE THE OLD \NODE1.$VOL3.SUBVOL2.PAYROLS?

If you tell the EDIT editor not to delete PAYROLS, the EDIT editor asks you for a new
name for the EDIT file:

SHALL I PURGE THE OLD \NODE1.$VOL3.SUBVOL2.PAYROLS? NO
NAME THE NEW FILE: PAYROLS2
CURRENT FILE IS \NODE1.$VOL3.SUBVOL2.PAYROLS2

Caution. The EDIT editor works on your original file, not on a copy of it. If you want to provide
for the possibility of discarding an entire editing session, you must make a backup copy
yourself; that is, the EDIT editor does not automatically create a backup file. You can make the
backup copy with the EDIT command PUT.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-7

Creating and Compiling HP COBOL Source
Programs

TEDIT Editor
If you are sure that you want to overwrite PAYROLS, you can avoid the question-and-
answer routine by following PAYROLS with an exclamation mark:

*GET PAYROLXX PUT PAYROLS!
CURRENT FILE IS \NODE1.$VOL3.SUBVOL2.PAYROLS

Another convenience the EDIT editor provides that the TEDIT editor lacks is the ability
to list all lines that contain two or more combinations of text characters in any order.
Although the TEDIT editor has some powerful pattern-matching abilities, it is much
easier to find all lines containing both ABC and XYZ, in any order, using the EDIT
editor.

The EDIT editor has a line editor and a full-screen editor. The full-screen editor is
named VS. If VS terminates abnormally, it creates a recovery file whose name is of the
form ZZVSnnnn (where nnnn is a four-digit number chosen by VS to make a unique
file name). To detect these ZZVSnnnn files, use the TACL command FILES. Purge
any ZZVSnnnn files that you do not need.

To exit the EDIT editor, type “exit” in response to the asterisk prompt (case is
unimportant):

*EXIT
95>

For complete information about the EDIT editor, see the EDIT User’s Guide and
Reference Manual.

TEDIT Editor
The TEDIT editor is a full-screen editor with a command line. Overall, the TEDIT editor
is more powerful than the EDIT editor. The TEDIT commands SEARCH and REPLACE
have powerful pattern-matching abilities, with single-character, multicharacter, and set-
of-characters wild cards.

To call the TEDIT editor, type its name at the TACL prompt (case is unimportant):

81> TEDIT

The TEDIT editor clears the screen and displays a help screen that explains its
function. At the bottom of the help screen, it asks you for a file name:

(To EXIT press CTRL-Y) File: PAYROLS

You can also call the TEDIT editor with a file name:

82> TEDIT PAYROLS

Caution. The TEDIT editor works on your original file, not on a copy of it. If you want to
provide for the possibility of discarding an entire editing session, you must make a backup
copy yourself. You can make the backup copy before editing the file, with the File Utility
Program (FUP) DUP command, or you can use the WRITE command from within the TEDIT
editor to make a copy at any time.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-8

Creating and Compiling HP COBOL Source
Programs

TEDIT Editor
If you call the TEDIT editor with a file name, it does not display the help screen. If the
file you specified exists, the TEDIT editor clears the screen and displays the first 24
lines of the file and a banner on line 25. The banner contains:

• The window number (you can open a second window)

• The file name, fully qualified with node, volume, and subvolume names

• The range of lines displayed (with “(BOF)” if you are at the beginning of the file and
“(EOF)” if you are at the end of the file)

• The version of the TEDIT editor you are using

If the TEDIT editor cannot find the PAYROLS file, it clears the screen and displays:

\NODE1.$VOL3.SUBVOL2.PAYROLS doesn’t exist.
OK to create? Respond Y or N:

To exit the TEDIT editor, press Shift and F16 simultaneously.

These topics briefly describe the TEDIT editor’s second window, commands, and
customizing. For complete information about the TEDIT editor, see the PS TEXT EDIT
Reference Manual and the PS TEXT EDIT and PS TEXT FORMAT User’s Guide.

Topics:

• Second Window

• TEDIT Commands

• Customizing the TEDIT Editor

Second Window
The TEDIT editor allows you to open a second window. Some of the tasks that the
TEDIT editor allows you to do with two windows are:

• Display two parts of the same file (such as the first 10 lines and the last 10 lines)
• Display two different files (such as the source text and a COPY library)
• Copy text from one window to the other
• Display only window 1, only window 2, or both windows
• Close one window and open it to a third file

Example 22-1. TEDIT Banner

1) \NODE1.$VOL3.SUBVOL2.PAYROLS 1/24 (BOF) 1:79 D20.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-9

Creating and Compiling HP COBOL Source
Programs

TEDIT Editor
TEDIT Commands
Most TEDIT commands consist of a noun (such as LINE, SENTENCE, WINDOW,
BALANCED-EXPRESSION, or REGION) and a verb (such as INSERT, MOVE, COPY,
DELETE, FORWARD, BACKWARD, SEARCH, REPLACE, or UNDO). Some TEDIT
commands also include a repeat count or parameters. Many nouns and verbs are
persistent—that is, you can specify a noun (such as LINE) and apply a series of verbs
to it (such as COPY, MOVE, DELETE), or you can specify a verb and apply a series of
nouns to it; for example, the command

DELETE; LINE; LINE; LINE

deletes the line the cursor is on and the two lines after it.

You execute TEDIT commands in two ways:

• Press predefined command keys and key combinations (see the TEDIT keyboard
template for your terminal).

• Type the commands on the command line and press Return (to access the
command line, press Shift and Return simultaneously, or use the key specified by
the TEDIT keyboard template for your terminal).

If a command requires parameters and you do not supply them, the TEDIT editor
prompts you for them. SEARCH and REPLACE are examples of TEDIT commands
that require parameters.

Customizing the TEDIT Editor
Some ways in which you can customize the TEDIT editor are:

• You can write macros that perform complex tasks with few keystrokes.

• With the RECONFIGURE KEYS command, you can redefine the default keys.

• With the RECONFIGURE OPTIONS command, you can do such things as reset
your tab stops and define delimiter pairs.

You can define up to 10 delimiter pairs, such as left and right parentheses and the
commonly used HP COBOL keyword pairs, such as IF and END-IF. If you establish
IF and END-IF as the delimiters of a balanced expression, you can use FORWARD
BALANCE-EXPRESSION to move the cursor from an IF to its corresponding END-
IF.

• You can save your redefined option set in your TEDIT user profile and recall it
whenever you want it with the TEDIT command USEPROFILE.

• You can define different option sets for distinct programming tasks.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-10

Creating and Compiling HP COBOL Source
Programs

HP Tandem Extensions for Codewright (TEC)
HP Tandem Extensions for Codewright (TEC)
Starbase Corporation’s Codewright is a smart language editor that allows you to edit
source code and issue compiler, version-control, and operating-system commands.
The base editor facilitates source code creation with keyword chromacoding, search
and replace mechanisms, function execution, undo and redo commands, and general
editing capabilities. Codewright blends a command shell with its own tools, and you
can easily extend it to work with other third-party tools or dynamic link libraries that you
build with your own compiler language. HP has taken advantage of this extensibility to
create HP Tandem Extensions for Codewright (TEC).

The main features of TEC are:

• Language-Sensitive Programming Support

• Dictionaries and Templates

• Chromacoding

• Project Definition

• Viewing Source Files

• Comment Headers and Parameter Documentation

More information on TEC is available through its online help.

Language-Sensitive Programming Support
TEC provides language-specific menus to support the coding of these HP languages:

• HP C and HP C++
• COBOL
• pTAL and TAL
• TACL

When you open a source file, the appropriate language-specific menu appears on the
menu bar.

For all languages, you can search (GREP) commands in the file, keywords are
chromacoded (see Chromacoding), and you can save function call parameters in the
dictionary for later use (see Dictionaries and Templates).

For HP C and HP C++, you can create or insert modules or work with #PRAGMAS and
#INCLUDES. For HP C++, you have additional support for creating classes and class
members.

For COBOL, you can view source code by paragraph and search (GREP) by
paragraph.

For pTAL and TAL, you can generate HP C prototypes from TAL procedures by
pointing and clicking; insert ?PROC, ?SECTION, or ?PAGE; and check references.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-11

Creating and Compiling HP COBOL Source
Programs

HP Tandem Extensions for Codewright (TEC)
Dictionaries and Templates
TEC maintains four project dictionaries: user, parameter, class, and system.
Information can be stored and retrieved from these dictionaries and used in
conjunction with comment generation (see Comment Headers and Parameter
Documentation).

You can define text templates that contain values for function parameters. The values
are defined when you insert the template into the dictionary. When you direct TEC to
call a function, TEC calls it with the parameter values that you specified.

Chromacoding
Language-dependent chromacoding enables you to select colors to enhance the
visibility of comments, keywords, strings, numbers, preprocessor commands, changed
lines, and braces. You can set the colors you select in Document Preferences in TEC
version 3.0.

Project Definition
In addition to the basic project information supplied by Codewright itself, TEC allows
you to define and change a set of dictionary specifications and search directories to
facilitate locating source files.

Viewing Source Files
TEC allows you to view or collapse source files by function, #PRAGMA, paragraph, or
normal view. This feature helps you to locate code quickly by higher-level code
segments and to provide a call map of the selected module. After you have located the
code, you can return the source program to its normal expanded view.

Comment Headers and Parameter Documentation
TEC allows you to automatically create and maintain information in comment boxes,
particularly for the beginning and end of each module. After you have entered
parameters into the parameter/comment dictionary (by pointing and clicking), TEC
automatically retrieves their definitions for building other parameter list comment
boxes.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-12

Creating and Compiling HP COBOL Source
Programs

Compiling an HP COBOL Source Program
Compiling an HP COBOL Source Program
The COBOL85 and NMCOBOL compilers translate HP COBOL source programs into
machine language.

The COBOL85 compiler interacts with Binder, which collects any additional object
programs needed to satisfy external references and validates any calls to routines that
are part of the operating environment or are to be executed in a TNS user library.

The NMCOBOL compiler does not interact with the ld utility, but if you specify the
CALL-SHARED and RUNNABLE directives, and there are no compilation errors, the
NMCOBOL compiler calls the ld utility, which produces a PIC loadfile. If you specify
the SHARED and RUNNABLE directives, and there are no compilation errors, the
NMCOBOL compiler calls the ld utility, which produces a DLL.

From the user’s viewpoint, compilation is a single-step process. (If you are interested
in the details of the compilation process, see Compilation Details.

Topics:

• Running the Compiler

• Naming the Object File

• Specifying the Default COPY Library

• Specifying Compiler Directives

• Specifying Subvolumes to Be Searched for Unqualified Files

• Changing the Compilation Environment

• Improving Compilation Speed

• Launching Compilations to Run Unattended

Running the Compiler
To run the COBOL85 or NMCOBOL compiler, use the COBOL85 or NMCOBOL
command. Specify the name of the file containing the source program or programs that
you want to compile; for example:

23> COBOL85 /IN XYZ/
23> NMCOBOL /IN XYZ/

Caution. (This applies only to the COBOL85 compiler.) If the file C8LIB, the run-time library, is
present in the same subvolume as the compiler, the run-time routines are bound into the
object. This feature can cause the object to be as much as 10 times larger than it would
otherwise be; it can also cause failures and other serious problems when running on systems
other than the one on which the program was compiled. This feature is intended for use by
HP COBOL developers and support groups only.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-13

Creating and Compiling HP COBOL Source
Programs

Running the Compiler
The preceding NMCOBOL command produces a loadfile only if the source file, XYZ,
contains a RUNNABLE directive. If it does not, the command that produces a loadfile
is:

23> NMCOBOL /IN XYZ/; RUNNABLE

The file XYZ must be an EDIT or entry-sequenced file.

24> COBOL85 /IN XYZ/
24> NMCOBOL /IN XYZ/; RUNNABLE

The preceding commands deliver the compiler listing to your terminal. To send the
compiler listing to spooler collector $SPX for printing instead, you must specify the
OUT parameter:

25> COBOL85 /IN XYZ, OUT $SPX/

25> NMCOBOL /IN XYZ, OUT $SPX/; RUNNABLE

The preceding commands send the compiler listing to the default location of spooler
collector $SPX. To specify another location, such as #LPPR, include the location in the
OUT parameter:

26> COBOL85 /IN XYZ, OUT $SPX.#LPPR/
26> NMCOBOL /IN XYZ, OUT $SPX.#LPPR/; RUNNABLE

If spooler collector $SPX recognizes location #LPPR, the compiler listing is queued for
printing. If you want to examine the compiler listing before printing it, specify a fictitious
location, such as #XYZLST:

27> COBOL85 /IN XYZ, OUT $SPX.#XYZLST/
27> NMCOBOL /IN XYZ, OUT $SPX.#XYZLST/; RUNNABLE

Using the PERUSE utility, list the last page of the compiler listing (the last page is a
compilation summary). If the summary reports errors, use an HP editor to fix the
source program and then recompile it (remember to delete the compiler listing from the
spooler collector). If the summary does not report errors, change its location to an
existing printer. You delete the compiler listing from the spooler collector or change its
location to an existing printer from within the PERUSE utility. For information about the
PERUSE utility, see Using PERUSE and the Guardian User’s Guide.

If you want to compile a source program without producing a listing file, specify an
empty OUT file for the COBOL85 compiler:

28> COBOL85 /IN XYZ, OUT /

The preceding commands cause any listing lines that the compiler generates to be
discarded. The NMCOBOL compiler does not accept an empty OUT file.

Note. For easier ways to check a program for syntax errors, see Directives for Syntax
Checking Only.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-14

Creating and Compiling HP COBOL Source
Programs

Running the Compiler
To specify a file for information about any compilation errors or warnings, use the
ERRORFILE directive:

29> COBOL85 /IN XYZ, OUT $SPX.#XYZLST/; ERRORFILE EFILE
29> NMCOBOL /IN XYZ, OUT $SPX.#XYZLST/; RUNNABLE; ERRORFILE EFILE

The error logging file is not an EDIT file. You can use it only with the FIXERRS TACL
macro. For more information about the FIXERRS macro, see FIXERRS Macro. For
more information about the ERRORFILE directive, see ERRORFILE.

IN and OUT are options of the TACL command RUN. Other RUN command options
that you might find useful when compiling HP COBOL programs are:

• NOWAIT

If you specify

COBOL85 /IN XYZ, OUT $SPX.#LPPR, NOWAIT/

or

NMCOBOL /IN XYZ, OUT $SPX.#LPPR, NOWAIT/; RUNNABLE

the TACL program does not wait while the compiler runs, but returns a TACL
prompt after starting the compiler. (The compiler runs in the background.)

• CPU

If you specify

COBOL85 /IN XYZ, OUT $SPX.#LPPR, CPU 7/

or

NMCOBOL /IN XYZ, OUT $SPX.#LPPR, CPU 7/; RUNNABLE

the compiler runs in processor seven (processors are numbered from 0 through
15).

For more information about these and additional RUN commands, see the TACL
Reference Manual.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-15

Creating and Compiling HP COBOL Source
Programs

Naming the Object File
Using an HP editor, you can create OBEY command files. OBEY command files
contain TACL commands, such as the COBOL85 or NMCOBOL commands, which are
executed when you specify the name of the OBEY command file in an OBEY
command. Here is a sample session:

45> EDIT CFILE1
TEXT EDITOR - T9601D10 - (08JUN92)
$VOL3.SUBVOL2.CFILE1 DOES NOT EXIST. SHALL I CREATE IT? Y
CURRENT FILE IS $VOL3.SUBVOL2.CFILE1
*ADD
 1 COBOL85 /IN XYZ,OUT $SPX.#HOLD/
 2 //
*EXIT
46> OBEY CFILE1

The command OBEY CFILE1 causes execution of the command:

COBOL85 /IN XYZ,OUT $SPX.#HOLD/

An OBEY command file can contain more than one command. If another OBEY
command file, CFILE2, contains the commands

COBOL85 /IN XYZ,OUT $SPX.#HOLD/
PERUSE

the command OBEY CFILE2 is equivalent to the command series

47> COBOL85 /IN XYZ,OUT $SPX.#HOLD/
48> PERUSE

For more information about OBEY command files, see the Guardian User’s Guide.

Naming the Object File
To simplify the compilation examples in the preceding topic, no name is specified for
the object file that the compiler produces. In these examples, the object file is given the
default name RUNUNIT. To specify a name for the object file, type the name after the
final slash, as in this example, which names the object file XYZOBJ:

88> COBOL85 /IN XYZ, OUT $SPX/ XYZOBJ
88> NMCOBOL /IN XYZ, OUT $SPX/ XYZOBJ; RUNNABLE

Although program compilation is a single-step process from the user’s viewpoint,
producing a loadfile actually involves Binder (for the COBOL85 compiler) or the linker
(for the NMCOBOL compiler). Binder or the linker resolves the external references in
CALL and ENTER statements and the implicit calls to HP COBOL run-time library
routines that many HP COBOL statements cause.

During most of the time that the COBOL85 compiler executes, Binder runs as a
separate process called BINSERV. The COBOL85 compiler communicates with
BINSERV through interprocess messages.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-16

Creating and Compiling HP COBOL Source
Programs

Naming the Object File
If you specify the CALL-SHARED and RUNNABLE directives, and there are no
compilation errors, the NMCOBOL compiler calls the ld utility, which produces a PIC
loadfile. If you specify the SHARED and RUNNABLE directives, and there are no
compilation errors, the NMCOBOL compiler calls the ld utility, which produces a DLL.

Binder does the actual building of the object file. If there are no compilation or binding
or linking errors, and file XYZOBJ either does not exist or is secured such that Binder
can purge it, Binder puts the new version of XYZOBJ on the disk. If you do not specify
a name for the object file, Binder or the compiler uses the default name RUNUNIT.

Binder tries these names, in this order:

1. ZZBInnnn, where nnnn is a sequence of randomly chosen alphanumeric
characters

2. OBJECT

Binder can name the new object file OBJECT only if no file named OBJECT
already exists. If a file named OBJECT already exists, Binder names the new
object file ZZBInnnn.

The NMCOBOL compiler:

1. If the object file already exists and it is not a code 700 file, the compiler attempts to
create the file named OBJECT. If this file exists or is open by another process, the
compiler creates a file named ZZNCnnnn, where nnnn is a sequence of randomly
chosen alphanumeric characters.

2. If the object file already exists and is a code 700 file and is not open by another
process, it is purged and a new one is created.

3. If the object file is open by another process, the compiler renames the existing file,
giving it the name ZZNCnnnn where nnnn is a sequence of randomly chosen
alphanumeric characters. The specified object file is then created. If the existing
object file cannot be renamed, the compilation terminates.

The NMCOBOL compiler tries the name ZZNCnnnn, where nnnn is a sequence of
randomly chosen alphanumeric characters. If the ZZNCnnnn name that the
NMCOBOL compiler tries already exists, the compiler tries another one (with a
different sequence of randomly chosen alphanumeric characters). The compiler tries
several different ZZNCnnnn names if necessary, but does not keep trying indefinitely.
If the compiler stops trying to name the object file, verify that you have create access to
the designated subvolume.

Suppose that you specify the name OBJFILE for the object file, but the operating
environment is executing a process from a file named OBJFILE. Binder or the
NMCOBOL compiler cannot replace the executing version of OBJFILE, so Binder or
the linker renames the old object file ZZBInnnn or ZZNCnnnn, respectively, and
names the new object file OBJFILE as you specified. The next user who executes the
object program named OBJFILE executes the new object file, even if another user is
still executing the old, renamed one.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-17

Creating and Compiling HP COBOL Source
Programs

Specifying the Default COPY Library
Use the TACL command FILES to detect ZZBInnnn or ZZNCnnnn files and the TACL
command PURGE to purge the unwanted ones.

Specifying the Default COPY Library
The default COPY library is the library from which COPY statements read text when no
library name is specified in the COPY statement. If you do not specify the default
COPY library (as in the compilation examples in the preceding topic), then COPYLIB is
the default COPY library. To specify a different default COPY library, such as COPLIB2,
include its name in the compilation command:

89> COBOL85 /IN XYZ, OUT $SPX/ XYZOBJ, COPLIB2
89> NMCOBOL /IN XYZ, OUT $SPX/ XYZOBJ, COPLIB2

For more information about COPY libraries, see Using COPY and SOURCE Libraries.

Specifying Compiler Directives
Compiler directives can be included in the source program or specified in the
compilation command. To specify compiler directives (such as NOFIPS and NOWARN)
in the compilation command, put them at the end of the compilation command, as in
this example (note the semicolons):

90> COBOL85 /IN XYZ, OUT $SPX/ XYZOBJ, COPLIB2;NOFIPS;NOWARN
90> NMCOBOL /IN XYZ, OUT $SPX/ XYZOBJ, COPLIB2;NOFIPS;NOWARN

Compiler directives specified in this way are considered to be on line zero of the
source program. Most of them stay active until the compiler encounters a conflicting
directive later in the source program, but it depends on the directive. For information
about specific directives, see Compiler Directives.

Directives for Syntax Checking Only
If you compile your program with the SYNTAX directive, the compiler only checks its
syntax and does not generate object code. Because the compiler does not generate
object code, it runs much faster (but only if there are no errors).

90> COBOL85 /IN XYZ, OUT $SPX/ XYZOBJ, COPLIB2; SYNTAX
90> NMCOBOL /IN XYZ, OUT $SPX/ XYZOBJ, COPLIB2; SYNTAX

Another way to find syntax errors in your program is with the FIXERRS macro, which
requires that you compile your program with the ERRORFILE directive. For more
information about the FIXERRS macro, see FIXERRS Macro. For more information
about the ERRORFILE directive, see ERRORFILE.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-18

Creating and Compiling HP COBOL Source
Programs

Specifying Subvolumes to Be Searched for
Unqualified Files
Directive for Specifying the Program’s Run-Time
Environment

For TNS programs in the Guardian environment, you have a choice of run-time
environments: the non-CRE environment or the CRE. The CRE is recommended for
mixed-language programs, because it puts fewer restrictions on them and they execute
more efficiently (see Run-Time Environment).

By default, the COBOL85 compiler produces object code that executes in the non-CRE
environment. To make the COBOL85 compiler produce object code that executes in
the CRE, use the compiler directive ENV with the option COMMON, like this:

90> COBOL85 /IN XYZ, OUT $SPX/ XYZOBJ, COPLIB2; ENV COMMON

Specifying Subvolumes to Be Searched for Unqualified Files
In your HP COBOL source program, an unqualified file is a file whose name does not
contain a volume and subvolume. It can be a source file (as in a COPY statement) or
an object file (as in an ENTER statement).

Two DEFINEs allow you to specify one or more subvolumes for the compiler to search
for unqualified files:

• =_SOURCE_SEARCH (for unqualified source files)
• =_OBJECT_SEARCH (for unqualified object files)

These DEFINEs have CLASS attribute SEARCH. Use them by entering ADD DEFINE
commands before compiling your program, as in this example. (An ampersand at the
end of a line means that the TACL command continues on the next line.)

91> ADD DEFINE =_SOURCE_SEARCH, CLASS SEARCH, SUBVOL0&
91> (=_DEFAULTS,$VOL1.SUB2,$VOL1.SUB3)
92> ADD DEFINE =_OBJECT_SEARCH, CLASS SEARCH, SUBVOL0&
92> (=_DEFAULTS,$VOL2.SUB1,$VOL2.SUB2)
93> COBOL85 /IN XYZ, OUT $SPX/ XYZOBJ
93> NMCOBOL /IN XYZ, OUT $SPX/ XYZOBJ

In the preceding example, the compiler will search for unqualified source files on the
default subvolume first, then on $VOL1.SUB2, and finally on $VOL1.SUB3. The
compiler will search for unqualified object files on the default subvolume first, then on
$VOL2.SUB1, and finally on $VOL2.SUB2.

Suppose that you want to add the subvolume $VOL3.SUB1 to the
_SOURCE_SEARCH list. Use an ADD DEFINE command whose SUBVOLn
parameter has n greater than 0 (the value of n in the preceding example):

94> ADD DEFINE =_SOURCE_SEARCH, CLASS SEARCH, SUBVOL1&
94> ($VOL3.SUB1)

Now the compiler will search for unqualified source files on these subvolumes in this
order: default subvolume, $VOL1.SUB2, $VOL1.SUB3, $VOL3.SUB1.

Note. This topic applies only to TNS programs. Native programs always run in the CRE.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-19

Creating and Compiling HP COBOL Source
Programs

Changing the Compilation Environment
Changing the Compilation Environment
You can change these aspects of the compilation environment:

• Processors the Compilation Processes Use

• Volume(s) for Temporary Files

• Compiler Space Allocation

Processors the Compilation Processes Use

Although program compilation is a single-step process from the user’s viewpoint, a
COBOL85 compilation consists of three processes:

The compilation environment is the environment in which the COBOL85, BINSERV,
and SYMSERV processes run. By default, COBOL85 and BINSERV run in the same
processor, and SYMSERV runs in the processor with the next higher number (for
example, if COBOL85 and BINSERV run in processor 7, then SYMSERV runs in
processor 8). If there is no processor with the next higher number, then SYMSERV
runs in the processor with the lowest number.

The PARAM SAMECPU command causes COBOL85, BINSERV, and SYMSERV to
run in the same processor. Using PARAM SAMECPU can improve compilation speed if
either or both of the processors that the compilation would use by default are very
busy. The processors that the compilation would use by default are determined by the
TACL option CPU, which is explained in the Guardian User’s Guide.

The PARAM SAMECPU command requires a dummy-value parameter, which must
be a nonzero value. dummy-value does not determine the processor; like the default
processor, this processor is determined by the TACL option CPU.

In this example, dummy-value is 7. The processes COBOL85, BINSERV, and
SYMSERV will run in the same processor, but it will not necessarily be processor 7.

91> PARAM SAMECPU 7
92> COBOL85 /IN XYZ, OUT $SPX/ XYZOBJ

Note. This topic applies only to the COBOL85 compiler.

Process Description

COBOL85 Reads the source program (processing any COPY statements and
SOURCE directives), produces listings, and generates object code for
binding

BINSERV Binds object code and generates Binder listings

SYMSERV Builds a symbol table that a symbolic debugger, CROSSREF directive, and
Crossref utility can use
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-20

Creating and Compiling HP COBOL Source
Programs

Changing the Compilation Environment
If you have given the command PARAM SAMECPU and decide that you do not want it,
you can clear it with the CLEAR command before running the compiler; for example:

91> PARAM SAMECPU 7
92> CLEAR PARAM SAMECPU
93> COBOL85 /IN XYZ, OUT $SPX/ XYZOBJ

Volume(s) for Temporary Files
By default, the COBOL85 compiler creates its temporary files on the current default
volume. The BINSERV and SYMSERV processes create their temporary files on the
volume where the target file is located, unless that volume is on another node. If the
volume is on another node, the BINSERV and SYMSERV processes create their
temporary files on the current default volume of the node on which they execute. For
example, suppose you are executing on \MYSYS and your default volume is $CURR. If
you execute the command:

COBOL85 /IN MYSRC, OUT $S.#MYLST/ \ALIEN.$FAR.XX.MYOBJ

the BINSERV and SYMSERV processes use $CURR for any temporary files, instead
of using volume $FAR on system \ALIEN.

By default, the NMCOBOL compiler creates its temporary files on the current default
volume. If called by the NMCOBOL compiler, the processes COBOLFE, UGEN, and
AS1 and the linker create their temporary files on the current default volume.

The PARAM SWAPVOL command specifies the volume on which the compiler and its
processes will create temporary files (if possible). It does not determine where the
operating system creates the compiler’s own swap file—the Kernel-Managed Swap
Facility (KMSF) does that. For more information, see the Kernel-Managed Swap
Facility (KMSF) Manual.

If you have given the command PARAM SWAPVOL and decide that you do not want it,
you can clear it with the CLEAR command before running the compiler; for example:

94> PARAM SWAPVOL $COBVOL
95> CLEAR PARAM SWAPVOL
96> COBOL85 /IN XYZ, OUT $SPX/ XYZOBJ

Compiler Space Allocation
The PARAM SYMBOL-BLOCKS command specifies how much space the compiler
allocates for its symbol dictionary, embedded SQL/MP statements, and for the
COBOL85 compiler, its local label table—see PARAM SYMBOL-BLOCKS.

If you have given the command PARAM SYMBOL-BLOCKS and decide that you do
not want it, you can clear it before running the compiler with the CLEAR command; for
example:

98> PARAM SYMBOL-BLOCKS 1
99> CLEAR PARAM SYMBOL-BLOCKS
100> COBOL85 /IN XYZ, OUT $SPX/ XYZOBJ
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-21

Creating and Compiling HP COBOL Source
Programs

Improving Compilation Speed
If you have given several PARAM commands, you can clear all of them before running
the compiler with the command CLEAR ALL PARAM; for example:

101> PARAM SAMECPU 7
102> PARAM SWAPVOL $COBVOL
103> PARAM SYMBOL-BLOCKS 1
104> CLEAR ALL PARAM
105> COBOL85 /IN XYZ, OUT $SPX/ XYZOBJ

Improving Compilation Speed
Under these conditions, these actions can improve compilation speed:

Launching Compilations to Run Unattended
You can launch a compilation to run unattended with NetBatch, a job management
system. For details, see the NetBatch Manual.

Using COPY and SOURCE Libraries
A COPY or SOURCE library is an EDIT file that contains one or more blocks of text.
Each block is preceded by a SECTION directive that specifies its name and (optionally)
its reference format (ANSI or Tandem, the default being Tandem). The section name in
the SECTION directive is the one to use in a COPY statement or SOURCE directive.

Condition Action

Either or both of the processors that the
COBOL85, BINSERV, and SYMSERV
processes would use by default are very
busy.*

Use the PARAM SAMECPU command (see
Processors the Compilation Processes Use).

The volumes on which COBOL85,
BINSERV, and SYMSERV would create
their temporary files by default are accessed
often.*

Use the PARAM SWAPVOL command (see
Volume(s) for Temporary Files).

The compilation summary shows that the
maximum symbol table size is less than
256 KB.

Use the PARAM SYMBOL-BLOCKS 1
command (see Compiler Space Allocation).

You only want the compiler to check the
program’s syntax (not generate object
code).

Use the SYNTAX directive (see Specifying
Compiler Directives).

* Applies only to the COBOL85 compiler.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-22

Creating and Compiling HP COBOL Source
Programs

Using COPY and SOURCE Libraries
The only difference between a COPY library and a SOURCE library is context—a
library that is referenced by a COPY statement is called a COPY library, and a library
that is referenced by a SOURCE directive is called a SOURCE library. The important
differences between the COPY statement and the SOURCE directive are:

• The COPY statement can replace specified text-words in the library text with
different text-words; the SOURCE directive cannot.

• The SOURCE directive requires the name of the library file; the COPY statement
does not, as it can use the default COPY library.

• The SOURCE directive can be in library text (that is, SOURCE directives can be
nested); the COPY statement cannot.

To use the library in Example 22-2 as a COPY library, include a line like this in your
source program:

01 STARTING-EMPLOYEE COPY EMPLOYEE-NUM-PIC.

The COPY statement and the period (.) that follows it are replaced. The effect is the
same as including this line in your source program:

Example 22-2. COPY or SOURCE Library

?SECTION NAMEREC
 01 NAME-REC.
 03 LAST-NAME PICTURE X(15).
 03 M-I PICTURE X(1).
 03 FIRST-NAME PICTURE X(15).
 03 TITLE PICTURE X(5).

?SECTION STANDARD-LINAGE
 LINAGE IS 55 LINES
 WITH FOOTING AT 45
 LINES AT TOP 5
 LINES AT BOTTOM 6

?SECTION ZOO-FILE
 ASSIGN TO "$A0101.ZOO.ROSTER"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS ANIMAL-NUMBER
 ALTERNATE RECORD KEY IS SPECIES WITH DUPLICATES
 ALTERNATE RECORD KEY IS HABITAT WITH DUPLICATES
 FILE STATUS IS ZOO-STAT

?SECTION EMPLOYEE-NUM-PIC
 PICTURE 9(6).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-23

Creating and Compiling HP COBOL Source
Programs

Creating or Altering a COPY or SOURCE Library
01 STARTING-EMPLOYEE PICTURE 9(6).

To use the library in Example 22-2 as a SOURCE library, include a line like this in your
source program:

?SOURCE file-name (NAMEREC,ZOO-FILE)

where file-name is the name of the file containing the library text in Example 22-2.
The effect is the same as including these lines in your source program:

01 NAME-REC.
 03 LAST-NAME PICTURE X(15).
 03 M-I PICTURE X(1).
 03 FIRST-NAME PICTURE X(15).
 03 TITLE PICTURE X(5).

 ASSIGN TO "$A0101.ZOO.ROSTER"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS ANIMAL-NUMBER
 ALTERNATE RECORD KEY IS SPECIES WITH DUPLICATES
 ALTERNATE RECORD KEY IS HABITAT WITH DUPLICATES
 FILE STATUS IS ZOO-STAT

Creating or Altering a COPY or SOURCE
Library

You can create a COPY or SOURCE library with an HP editor or with Data Definition
Language (DDL). You can alter a COPY or SOURCE library with an HP editor unless it
was created with DDL, in which case you must alter it with DDL.

Topics:

• Using an HP Editor

• Using Data Definition Language (DDL)

Using an HP Editor
To create or alter a COPY or SOURCE library with either HP editor, EDIT or TEDIT,
use the same method as you would use to create or alter a HP COBOL source
program (see Creating or Altering an HP COBOL Source Program). Follow the library
format described in Library Format (see Example 22-2).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-24

Creating and Compiling HP COBOL Source
Programs

Using Data Definition Language (DDL)
Using Data Definition Language (DDL)
Data Definition Language (DDL) is a language with which you describe the data
structures of a database. The DDL compiler reads your description and generates a
data declaration library (a COPY library) for the database and a File Utility Program
(FUP) command file for building the database files. DDL also lets you create and
maintain a data dictionary for your database. Because DDL can create data
declarations for other programming languages, it facilitates sharing data structures in
mixed-language programs.

Topics:

• Describing the Data Structures

• Data Declaration (COPY) Library

• File Utility Program (FUP) Commands

• Data Dictionary

Describing the Data Structures
You describe the data structures of your database with DEFINE statements. Each data
item can be an elementary item or a data structure. A data item can be composed of
explicit, COBOL-like definitions or it can refer to data items defined earlier in the data
dictionary. In the latter case, you define records with RECORD statements. A record
definition can include both explicitly defined data items and data items defined earlier
in the data dictionary.

In Example 22-3, note the absence of the level number 01.

Figure 22-3. DDL Input and Output

Your
Description

DDL
Compiler

Data Declaration
(COPY) Library

FUP
Command File

Data
Dictionary

VST700.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-25

Creating and Compiling HP COBOL Source
Programs

Using Data Definition Language (DDL)
Data Declaration (COPY) Library
Example 22-4 shows the data declaration (COPY) library that the DDL compiler
produces from the input shown in Example 22-3. The DDL compiler has assigned (or
reassigned) appropriate level numbers—for example:

Example 22-3. Input to the DDL Compiler

DEFINE NAME.
 02 LAST-NAME PIC X(15).
 02 MIDDLE-INITIAL PIC X(1).
 02 FIRST-NAME PIC X(15).
END

DEFINE ADDRESS.
 02 STREET-NUMBER PIC X(6).
 02 STREET-NAME PIC X(25).
 02 FLAT-NUMBER PIC X(8).
 02 MUNICIPALITY PIC X(25).
 02 STATE-OR-PROVINCE PIC X(25).
 02 NATION PIC X(25).
 02 POSTAL-CODE PIC X(11).
END

DEFINE NAME-AND-ADDRESS.
 05 NAME TYPE *.
 05 ADDRESS TYPE *.
END

RECORD PERSON-RECORD. FILE IS "folks" Entry-Sequenced.
 02 NAME-AND-ADDRESS TYPE *.
 02 OCCUPATION-NUMBER PIC 9(6).
 02 OCCUPATION-NAME PIC X(35).
 02 EMPLOYER-NAME PIC X(35).
 02 EMPLOYER-ADDRESS TYPE address.

KEY "PN" IS NAME-AND-ADDRESS.NAME.
KEY "EN" IS EMPLOYER-NAME.

END

Data Item Level Number

NAME 01

STREET-NUMBER in the record ADDRESS 02

STREET-NUMBER in the record NAME-AND-ADDRESS 03

STREET-NUMBER in the record PERSON-RECORD 04
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-26

Creating and Compiling HP COBOL Source
Programs

Using Data Definition Language (DDL)
Example 22-4. COPY Library Produced by the DDL Compiler (page 1 of 2)

* SCHEMA PRODUCED DATE - TIME : 2/28/93 12:01:42

?SECTION NAME,HP
* Definition NAME created on 02/28/93 at 12:01
 01 NAME.
 02 LAST-NAME PIC X(15).
 02 MIDDLE-INITIAL PIC X(1).
 02 FIRST-NAME PIC X(15).

?SECTION ADDRESS,HP
* Definition ADDRESS created on 02/28/93 at 12:01
 01 ADDRESS.
 02 STREET-NUMBER PIC X(6).
 02 STREET-NAME PIC X(25).
 02 FLAT-NUMBER PIC X(8).
 02 MUNICIPALITY PIC X(25).
 02 STATE-OR-PROVINCE PIC X(25).
 02 NATION PIC X(25).
 02 POSTAL-CODE PIC X(11).

?SECTION NAME-AND-ADDRESS,HP
* Definition NAME-AND-ADDRESS created on 02/28/93 at 12:01
 01 NAME-AND-ADDRESS.
 02 NAME.
 03 LAST-NAME PIC X(15).
 03 MIDDLE-INITIAL PIC X(1).
 03 FIRST-NAME PIC X(15).
 02 ADDRESS.
 03 STREET-NUMBER PIC X(6).
 03 STREET-NAME PIC X(25).
 03 FLAT-NUMBER PIC X(8).
 03 MUNICIPALITY PIC X(25).
 03 STATE-OR-PROVINCE PIC X(25).
 03 NATION PIC X(25).
 03 POSTAL-CODE PIC X(11).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-27

Creating and Compiling HP COBOL Source
Programs

Using Data Definition Language (DDL)
File Utility Program (FUP) Commands
Example 22-5 shows the FUP command file that the DDL compiler produces from the
input shown in Example 22-3. Assuming that the name of the FUP command file is
FUPSRC, you create the file FOLKS with this command:

110> FUP /IN FUPSRC/

The name of the FUP command file is specified in the DDL command FUP; for details,
see the Data Definition Language (DDL) Reference Manual.

?SECTION PERSON-RECORD,HP
* Record PERSON-RECORD created on 02/28/93 at 12:01
 01 PERSON-RECORD.
 02 NAME-AND-ADDRESS.
 03 NAME.
 04 LAST-NAME PIC X(15).
 04 MIDDLE-INITIAL PIC X(1).
 04 FIRST-NAME PIC X(15).
 03 ADDRESS.
 04 STREET-NUMBER PIC X(6).
 04 STREET-NAME PIC X(25).
 04 FLAT-NUMBER PIC X(8).
 04 MUNICIPALITY PIC X(25).
 04 STATE-OR-PROVINCE PIC X(25).
 04 NATION PIC X(25).
 04 POSTAL-CODE PIC X(11).
 02 OCCUPATION-NUMBER PIC 9(6).
 02 OCCUPATION-NAME PIC X(35).
 02 EMPLOYER-NAME PIC X(35).
 02 EMPLOYER-ADDRESS.
 03 STREET-NUMBER PIC X(6).
 03 STREET-NAME PIC X(25).
 03 FLAT-NUMBER PIC X(8).
 03 MUNICIPALITY PIC X(25).
 03 STATE-OR-PROVINCE PIC X(25).
 03 NATION PIC X(25).
 03 POSTAL-CODE PIC X(11).

Example 22-4. COPY Library Produced by the DDL Compiler (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-28

Creating and Compiling HP COBOL Source
Programs

Including Text From a COPY Library
Data Dictionary
A data dictionary is a set of files that documents the structure and location of each file
in your database. You can use the DDL compiler to translate DDL source statements
into a data dictionary, and then you can use the DDL compiler to modify the data
dictionary and re-create the data declaration (COPY) library. Alternatively, you can
keep the DDL source statements in a disk file, and when you want to change a data
description, you can recompile the data dictionary. The former procedure is faster
(because you are not recompiling the entire data dictionary); the latter procedure is
more straightforward.

For complete information about DDL, see the Data Definition Language (DDL)
Reference Manual.

Including Text From a COPY Library
Text from a COPY library is included in a HP COBOL source program with a COPY
statement. Although a COPY statement can appear anywhere in a HP COBOL source
program that a character-string or separator can appear, its most common uses are:

• To copy descriptions of records or data structures into the Data Division

• To copy the same small piece of code into several different programs (where
“small” means too small to merit being a separately compiled program)

• To copy the occurrence number in an OCCURS clause into more than one data
description entry, as if it were a constant

Example 22-5. FUP Command File Produced by the DDL Compiler

< SCHEMA PRODUCED DATE - TIME : 2/28/93 12:01:41
< SECTION PERSON-RECORD
< Record PERSON-RECORD created on 02/28/93 at 12:01
RESET
 SET ALTKEY ("PN", KEYOFF 0, KEYLEN 31, FILE 0)
 SET ALTKEY ("EN", KEYOFF 197, KEYLEN 35, FILE 0)
 SET NO ALTCREATE
 SET ALTFILE (0, folks0)
 SET TYPE E
 SET REC 357
 SET BLOCK 512
CREATE folks
 RESET
 SET TYPE K
 SET KEYLEN 41
 SET REC 41
 SET BLOCK 512
 SET IBLOCK 512
CREATE folks0
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-29

Creating and Compiling HP COBOL Source
Programs

Including Text From a COPY Library
Topics:

• Simple Copying

• Copying With Replacement

• Replacing Substrings

• Copying Into Debugging Lines

• Using Multiple COPY Libraries

• Using COPY Libraries Efficiently

Simple Copying
Simple copying means copying text from a COPY library into a source program. This
example uses simple copying to copy the occurrence number in an OCCURS clause
into more than one data description entry, as if it were a constant.

Suppose that the present number of sales offices is 24, but you expect it to change.
Put this text into a COPY library:

?SECTION OFFICES
 24

In every table whose length must be the same as the number of sales offices, use a
COPY statement; for example:

01 RENT RATE PICTURE 9(6) OCCURS COPY OFFICES. TIMES.
01 EMPLOYEES OCCURS COPY OFFICES. TIMES.
 03 MANAGEMENT PICTURE 9(3).
 03 ADMINISTRATIVE PICTURE 9(3).
 03 SALES PICTURE 9(3).
 03 SUPPORT PICTURE 9(3).
 03 OTHER PICTURE 9(3).

Each COPY statement ends with a period. The COPY statement and its period are
replaced by the library text:

01 RENT RATE PICTURE 9(6) OCCURS 24 TIMES.
01 EMPLOYEES OCCURS 24 TIMES.
 03 MANAGEMENT PICTURE 9(3).
 03 ADMINISTRATIVE PICTURE 9(3).
 03 SALES PICTURE 9(3).
 03 SUPPORT PICTURE 9(3).
 03 OTHER PICTURE 9(3).

If the section OFFICES had been empty, the COPY statements would have been
replaced with spaces. If there had been no section named OFFICES, the compiler
would have reported an error 72 (Expected section-name).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-30

Creating and Compiling HP COBOL Source
Programs

Including Text From a COPY Library
Copying With Replacement
Copying with replacement means copying text from a COPY library, modifying it, and
then writing it into a source program. Copying with replacement is achieved with the
REPLACING phrase.

Using the preceding example, suppose that the number of sales offices increases from
24 through 27. You have two choices:

• In the COPY library, change 24 to 27:

?SECTION OFFICES
 27

• In the HP COBOL source program, add REPLACING phrases to the appropriate
COPY statements:

01 RENT RATE PICTURE 9(6) OCCURS COPY OFFICES
 REPLACING 24 BY 27. TIMES.
01 EMPLOYEES OCCURS COPY OFFICES
 REPLACING 24 BY 27. TIMES.
...03 MANAGEMENT PICTURE 9(3).
...03 ADMINISTRATIVE PICTURE 9(3).
...03 SALES PICTURE 9(3).
...03 SUPPORT PICTURE 9(3).
...03 OTHER PICTURE 9(3).

The resulting source code is:

01 RENT RATE PICTURE 9(6) OCCURS 27 TIMES.
01 EMPLOYEES OCCURS 27 TIMES.
...03 MANAGEMENT PICTURE 9(3).
...03 ADMINISTRATIVE PICTURE 9(3).
...03 SALES PICTURE 9(3).
...03 SUPPORT PICTURE 9(3).
...03 OTHER PICTURE 9(3).

(This COPY library itself does not change.)

Copying with replacement is not the only way to replace text-words in source code; the
REPLACE statement is another way. See Replacing Text-Words in an HP COBOL
Source Program.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-31

Creating and Compiling HP COBOL Source
Programs

Including Text From a COPY Library
Replacing Substrings
The REPLACING phrase can only replace entire text-words (DAILY-TOTAL but not just
TOTAL, for example); however, parenthesized words within pseudo-text are recognized
as text-words, allowing you to write statements such as:

COPY SUM-IT REPLACING ==(PREFIX)== BY ==DAILY==.

Suppose that you want to declare several identifiers that begin with the same prefix
(such as DAILY-TOTAL, DAILY-MINIMUM, and DAILY-MAXIMUM), several identifiers
that end with the same suffix (such as DAILY-TOTAL, WEEKLY-TOTAL, and
MONTHLY-TOTAL), and several identifiers that contain the same strings (such as
AVG-DAILY-COST, AVG-MONTHLY-COST, and AVG-ANNUAL-COST).

Example 22-6. Replacing Substrings

Lines in COPY library:

?SECTION PREFIX
 77 (PREFIX)-TOTAL PIC S9(8).99.
 77 (PREFIX)-MINIMUM PIC S9(8).99.
 77 (PREFIX)-MAXIMUM PIC S9(8).99.
?SECTION SUFFIX
 77 DAILY-(SUFFIX) PIC S9(8).99.
 77 WEEKLY-(SUFFIX) PIC S9(8).99.
 77 MONTHLY-(SUFFIX) PIC S9(8).99.
?SECTION PRESUF
 77 (PRE)-DAILY-(SUF) PIC S9(8).99.
 77 (PRE)-MONTHLY-(SUF) PIC S9(8).99.
 77 (PRE)-ANNUAL-(SUF) PIC S9(8).99.

Lines in HP COBOL source program:

COPY PREFIX REPLACING ==(PREFIX)== BY ==DAILY==.
COPY SUFFIX REPLACING ==(SUFFIX)== BY ==TOTAL==.
COPY PRESUF REPLACING ==(PRE)== BY ==AVG==
 ==(SUF)== BY ==COST==.

HP COBOL source program effectively contains these lines:

77 DAILY-TOTAL PIC S9(8).99.
77 DAILY-MINIMUM PIC S9(8).99.
77 DAILY-MAXIMUM PIC S9(8).99.
77 DAILY-TOTAL PIC S9(8).99.
77 WEEKLY-TOTAL PIC S9(8).99.
77 MONTHLY-TOTAL PIC S9(8).99.
77 AVG-DAILY-COST PIC S9(8).99.
77 AVG-MONTHLY-COST PIC S9(8).99.
77 AVG-ANNUAL-COST PIC S9(8).99.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-32

Creating and Compiling HP COBOL Source
Programs

Including Text From a COPY Library
Copying Into Debugging Lines
When the source line containing the word COPY is a debug line (has a D or d in the
indicator area), the compiler changes each library line that has a space in its indicator
area to a debug line.

Using Multiple COPY Libraries
There is no limit to the number of COPY libraries the compiler can use in a single
compilation. To specify a nondefault COPY library, use an OF or IN phrase in the
COPY statement; for example:

COPY RECORD1 OF LIBRARY3.

(where LIBRARY3 is on the default volume and subvolume) or:

COPY RECORD1 IN \NODE4.$VOL2.SUBVOL1.LIBRARY2.

(where LIBRARY3 is fully qualified).

Using COPY Libraries Efficiently
You can reduce the time the compiler spends searching for items in COPY libraries by
putting the most frequently used items in the front of their COPY libraries. The reason
is that the first time the compiler encounters a COPY statement, the compiler opens
the default or specified COPY library and reads until it finds the specified item, building
a temporary directory of items as it reads them.

Subsequent COPY statements search the directory for items before searching libraries
for them; therefore, COPY statements that reference items already entered in the
directory compile faster than COPY statements that reference items not yet entered in
the directory. If a specified item is not yet in the directory, the compiler resumes
reading the library after the last item in the directory, continuing to build the directory.

Example 22-7. Copying Into Debugging Lines

Source line:

D COPY DEB-DISP.

Library lines:

?SECTION DEB-DISP
 DISPLAY KINGDOM PHYLUM CLASS ORDER
 FAMILY GENUS SPECIES.

Compiled as:

D DISPLAY KINGDOM PHYLUM CLASS ORDER
D FAMILY GENUS SPECIES.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-33

Creating and Compiling HP COBOL Source
Programs

Including Text From a SOURCE Library
Including Text From a SOURCE Library
Text from a SOURCE library is included in a HP COBOL source program with a
SOURCE directive. A SOURCE directive must be the last directive on its line.

When the compiler reads a SOURCE directive, it suspends reading from its primary
source file and begins reading (entire lines) from a specified section of a SOURCE
library. The SOURCE directive does not have anything like the COPY statement’s
REPLACING phrase; it cannot replace library text-words with different text-words.

The SOURCE directive’s most common uses are:

• To copy File Descriptions into the Environment Division
• To copy record or group descriptions into the Data Division
• To copy blocks of code lines into the Procedure Division

Example 22-8. Including Text From a Source File

Library file, SRCFILE:

?SECTION NAMEREC
 01 NAME-REC.
 03 LAST-NAME PICTURE X(15).
 03 M-I PICTURE X(1).
 03 FIRST-NAME PICTURE X(15).
 03 TITLE PICTURE X(5).
?SECTION ADDRREC
 01 ADDR-REC.
 03 NUMBER PICTURE X(5).
 03 STREET PICTURE X(15).
 03 APT-NUM PICTURE X(3).
 03 CITY PICTURE X(15).
 03 STATE PICTURE X(2).
 03 ZIPCODE PICTURE X(5).
?SECTION DATEREC
 01 DATE-REC.
 03 MONTH PICTURE X(9).
 03 DAY PICTURE X(2).
 03 YEAR PICTURE X(4).

Line in HP COBOL source program:

?SOURCE SRCFILE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-34

Creating and Compiling HP COBOL Source
Programs

Including Text From a SOURCE Library
If the HP COBOL source program in Example 22-8 contains the line

?SOURCE SRCFILE (NAMEREC,DATEREC)

then only the sections NAMEREC and DATEREC are included in the resulting source
code, which is:

 01 NAME-REC.
 03 LAST-NAME PICTURE X(15).
 03 M-I PICTURE X(1).
 03 FIRST-NAME PICTURE X(15).
 03 TITLE PICTURE X(5).
 01 DATE-REC.
 03 MONTH PICTURE X(9).
 03 DAY PICTURE X(2).
 03 YEAR PICTURE X(4).

Resulting source code:

 01 NAME-REC.
 03 LAST-NAME PICTURE X(15).
 03 M-I PICTURE X(1).
 03 FIRST-NAME PICTURE X(15).
 03 TITLE PICTURE X(5).
 01 ADDR-REC.
 03 NUMBER PICTURE X(5).
 03 STREET PICTURE X(15).
 03 APT-NUM PICTURE X(3).
 03 CITY PICTURE X(15).
 03 STATE PICTURE X(2).
 03 ZIPCODE PICTURE X(5).
 01 DATE-REC.
 03 MONTH PICTURE X(9).
 03 DAY PICTURE X(2).
 03 YEAR PICTURE X(4).

Example 22-8. Including Text From a Source File
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-35

Creating and Compiling HP COBOL Source
Programs

Replacing Text-Words in an HP COBOL Source
Program
Replacing Text-Words in an HP COBOL Source
Program

You can replace text-words with other text-words in a HP COBOL source file with a
REPLACE statement. A REPLACE statement is active from the time the compiler
encounters it until the compiler encounters either another, overriding REPLACE
statement or the end of a separately compiled program.

The two Data Divisions in Example 22-9 are equivalent.

For restrictions on the use of the REPLACE statement and a detailed explanation of
the comparison operation that it uses, see REPLACE Statement.

Topics:

• Replacing Substrings

• Replacing Text-Words From COPY Libraries

• Replacing Text-Words From SOURCE Libraries

Example 22-9. Replacing Text-Words in an HP COBOL Source Program

DATA DIVISION.
REPLACE ==OFFICES== BY ==10==
 ==SQ-FT-SIZE== BY ==5==
01 OFFS.
 03 OFFICE-INFO OCCURS OFFICES TIMES.
 05 DISTRICT PICTURE 99.
 05 SQUARE-FEET PICTURE S9(SQ-FT-SIZE)
PROCEDURE DIVISION.
PERFORM REPORT-OFFICE OFFICE TIMES.
REPLACE OFF.

DATA DIVISION.
01 OFFS.
 03 OFFICE-INFO OCCURS 10 TIMES.
 05 DISTRICT PICTURE 99.
 05 SQUARE-FEET PICTURE S9(5)
PROCEDURE DIVISION.
PERFORM REPORT-OFFICE 10 TIMES.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-36

Creating and Compiling HP COBOL Source
Programs

Replacing Substrings
Replacing Substrings
The REPLACE statement can only replace entire text-words (DAILY-TOTAL but not just
TOTAL, for example); however, parenthesized words within pseudo-text are recognized
as text-words, allowing you to write statements such as:

REPLACE ==(PREFIX)== BY ==DAILY==.

Suppose that you want to declare several identifiers that begin with the same prefix
(such as DAILY-TOTAL, DAILY-MINIMUM, and DAILY-MAXIMUM), several identifiers
that end with the same suffix (such as DAILY-TOTAL, WEEKLY-TOTAL, and
MONTHLY-TOTAL), and several identifiers that contain the same strings (such as
AVG-DAILY-COST, AVG-MONTHLY-COST, and AVG-ANNUAL-COST).

The two sets of source code in Example 22-10 are equivalent.

Compare the preceding example to the example in Replacing Substrings.

Example 22-10. Replacing Substrings in an HP COBOL Source Program

REPLACE ==(PREFIX)== BY ==DAILY==.
 ==(SUFFIX)== BY ==TOTAL==.
 ==(PRE)== BY ==AVG==
 ==(SUF)== BY ==COST==.
77 (PREFIX)-TOTAL PIC S9(8).99.
77 (PREFIX)-MINIMUM PIC S9(8).99.
77 (PREFIX)-MAXIMUM PIC S9(8).99.
77 DAILY-(SUFFIX) PIC S9(8).99.
77 WEEKLY-(SUFFIX) PIC S9(8).99.
77 MONTHLY-(SUFFIX) PIC S9(8).99.
77 (PRE)-DAILY-(SUF) PIC S9(8).99.
77 (PRE)-MONTHLY-(SUF) PIC S9(8).99.
77 (PRE)-ANNUAL-(SUF) PIC S9(8).99.

77 DAILY-TOTAL PIC S9(8).99.
77 DAILY-MINIMUM PIC S9(8).99.
77 DAILY-MAXIMUM PIC S9(8).99.
77 DAILY-TOTAL PIC S9(8).99.
77 WEEKLY-TOTAL PIC S9(8).99.
77 MONTHLY-TOTAL PIC S9(8).99.
77 AVG-DAILY-COST PIC S9(8).99.
77 AVG-MONTHLY-COST PIC S9(8).99.
77 AVG-ANNUAL-COST PIC S9(8).99.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-37

Creating and Compiling HP COBOL Source
Programs

Replacing Text-Words From COPY Libraries
Replacing Text-Words From COPY Libraries
The compiler processes REPLACE statements after it has processed any COPY
statements. REPLACE statements do not change COPY libraries.

In Example 22-11, the compiler substitutes OFFICES for COPY OFFNUM and SQ-FT-
SIZE for COPY AREA first and then substitutes 10 for OFFICES and 5 for SQ-FT-
SIZE.

If the COPY statement has a REPLACING phrase, the compiler applies the
REPLACING phrase before applying the REPLACE statement. For an example of a
COPY statement with a REPLACING phrase, see Copying With Replacement.

Example 22-11. Replacing Text-Words From a COPY Library

Source code:

REPLACE ==OFFICES== BY ==10==
 ==SQ-FT-SIZE== BY ==5==
01 OFFS.
 03 OFFICE-INFO OCCURS COPY OFFNUM. TIMES.
 05 DISTRICT PICTURE 99.
 05 SQUARE-FEET PICTURE S9(COPY AREA.)
REPLACE OFF

Lines in default COPY library:

?SECTION OFFNUM
 OFFICES
?SECTION AREA
 SQ-FT-SIZE

Resulting source code (COPY library is unchanged):

01 OFFS.
 03 OFFICE-INFO OCCURS 10 TIMES.
 05 DISTRICT PICTURE 99.
 05 SQUARE-FEET PICTURE S9(5).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-38

Creating and Compiling HP COBOL Source
Programs

Replacing Text-Words From SOURCE Libraries
Replacing Text-Words From SOURCE Libraries
If a REPLACE statement is active when the compiler encounters a SOURCE directive,
the REPLACE statement applies to the copy of the library text that the compiler
includes in the HP COBOL source program (but not to the original text in the SOURCE
library).

Understanding and Controlling the Compiler
Listing

By default, the compiler produces a listing that includes:

• Compilation Banner

• Source Program Listing

• Load Maps

• Compilation Summary

With compiler directives, you can include one or more of these in the compiler listing:

• Symbol Table Listing

• Octal Code Listing

• Symbolic Code Listing

• Cross-Reference Listing

Example 22-12. Replacing Text-Words From a SOURCE Library

Source code:

REPLACE ==OFFICES== BY ==10==
 ==SQ-FT-SIZE== BY ==5==
?SOURCE SRCFILE
REPLACE OFF

Lines in SOURCE library:

01 OFFS.
 03 OFFICE-INFO OCCURS OFFICES TIMES.
 05 DISTRICT PICTURE 99.
 05 SQUARE-FEET PICTURE S9(SQ-FT-SIZE).

Resulting source code (SOURCE library is unchanged):

01 OFFS.
 03 OFFICE-INFO OCCURS 10 TIMES.
 05 DISTRICT PICTURE 99.
 05 SQUARE-FEET PICTURE S9(5).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-39

Creating and Compiling HP COBOL Source
Programs

Understanding and Controlling the Compiler Listing
Compiler directives also allow you to:

• Request different or additional load maps
(see Load Maps)

• Suppress parts of the compiler listing
(see Table 22-1)

The minimum compiler listing, produced when you compile a program with the
SUPPRESS directive, includes only a banner, any diagnostics and the source lines
that caused them, and a summary.

To discard the COBOL85 compiler listing entirely—including any diagnostics—specify
the RUN command’s OUT option with no file name; for example:

17> COBOL85 /IN PERFECT, OUT/

(The NMCOBOL compiler does not accept an empty OUT file.)

When you compile several separately compiled programs at once (each of which could
include nested programs), the listing includes one banner, one set of load maps, and
one summary. Between the banner and the first load map, the listing includes a source
program listing, symbol table, octal code listing,symbolic code listing, and cross-
reference listing for each program that requested them (by default or directive).

In Table 22-2, the compiler listing parts are in the order in which they appear in the
compiler listing.

Note. The NMCOBOL compiler does not produce an octal code listing or a cross-reference
listing. To display a native object file, use the noft utility. To produce a cross-reference listing
for a native program, use the noft utility with the XREFPROC flag. (See the noft Manual.)

Table 22-1. Compiler Listing Parts and the Directives That Control
Them (page 1 of 2)

Compiler Listing Part Directive That Lists Part Directives That Suppress Part

Compilation banner None—always listed None

Source program listing LIST (default) NOLIST or SUPPRESS

COPY statements SHOWCOPY (default) NOSHOWCOPY, NOLIST, or
SUPPRESS

Diagnostic messages1 WARN (default) NOWARN for warning messages,
none for error and failure
messages

1. Included in source program listing

2. If an object program was produced

3. NMCOBOL compiler ignores this directive

4. COBOL85 compiler does not recognize this directive
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-40

Creating and Compiling HP COBOL Source
Programs

Compilation Banner
For further information about any compiler listing part, see the appropriate following
topic. The topics are in the order that they appear in Table 22-2.

Compilation Banner
The COBOL85 compilation banner consists of this information:

• Page number of compiler listing, date and time at which compilation began (line 1)
• Version of the compiler (line 4)
• Default options (line 5)
• Copyright information (line 6)

Symbol table MAP • NOMAP
• NOLIST
• SUPPRESS

Octal code listing CODE3 • NOCODE3

• NOLIST
• SUPPRESS

Symbolic code listing ICODE3, INNERLIST4 • NOICODE3

• NOINNERLIST4

• NOLIST
• SUPPRESS

Cross-reference listing CROSSREF3 • NOCROSSREF3

• NOLIST
• SUPPRESS

Load maps2 LMAP3 (default) • NOLMAP3

• NOLIST
• SUPPRESS

Compilation summary None—always listed None

Example 22-13. COBOL85 Compilation Banner

PAGE 1 \ALPHA.$BETA.TESTS.ACOS Tandem COBOL85

COBOL85 - T9257D32 - (29 MAY 97)
Default options: On (LIST,LMAP,SHOWCOPY,WARN) Off (CODE,ICODE,MAP)
Copyright Tandem Computers Incorporated 1986-1997

Table 22-1. Compiler Listing Parts and the Directives That Control
Them (page 2 of 2)

Compiler Listing Part Directive That Lists Part Directives That Suppress Part

1. Included in source program listing

2. If an object program was produced

3. NMCOBOL compiler ignores this directive

4. COBOL85 compiler does not recognize this directive
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-41

Creating and Compiling HP COBOL Source
Programs

Source Program Listing
The NMCOBOL compilation banner consists of this information:

• Page number of compiler listing, date and time at which compilation began (line 1)
• Version of the compiler (line 4)
• Copyright information (line 5)
• Directives included on compiler command line, if any (line 7)

Source Program Listing
The compiler lists your entire source program, unless you specify otherwise. The
format of the listing depends in part on the current reference format, ANSI or Tandem.
Figure 22-4 compares the two listing formats.

The two formats are aligned such that, even if your program mixes ANSI and Tandem
formats, the COPY and comment indicators and areas A and B are aligned.

Example 22-14. NMCOBOL Compilation Banner

Page 1 1997 May 6, 16:07:20

COBOL - T8107D99 - (30 APR 97)
Copyright Tandem Computers Incorporated 1986-1997

 Directives: RUNNABLE

Figure 22-4. Source Program Listing Formats

ANSI Format

Line
Number

Identification
Field (cols 72
through 80 of

input line)

Sequence
Number

Text summoned by
COPY

marked here with "<".

Line Number Area A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ...

Tandem Format

Text summoned by
COPY

marked here with "<".

Indicator
Field

Area A Area B

Indicator
Field

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ...

Area B

VST701.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-42

Creating and Compiling HP COBOL Source
Programs

Source Program Listing
Topics:

• Identification Field

• Line Number

• Sequence Number

• Indicator Area and Beyond

• Text Altered by REPLACE Statement

• Text Retrieved by COPY Statement

• Text Retrieved by SOURCE Directive

• SQL/MP and SQL/MX Statements

Identification Field
The identification field is copied from columns 72 through 80 of ANSI format source
lines. Some installations use these columns for marking revisions to the program.

Line Number
When the file being listed is an EDIT file, the line number in the listing is the EDIT file
line number. If the file is in ANSI format, the fractional part of the number, if any, is
omitted.

When the file being listed is not an EDIT file, the line number in the listing is a
“synthetic” line number (an integer that the compiler generates). Every time the
compiler reads a line of input from the file, it increments a counter by 1.

Sequence Number
When the file is in ANSI format, the compiler copies columns 1 through 6 of the input
line to this field. Some COBOL implementations use this field as a sequence number,
and if the values are not in ascending order, these implementations report a diagnostic.
HP COBOL does no such reporting.

Indicator Area and Beyond
Beginning with the indicator area, the two formats are the same. If, in Tandem format,
the input line exceeds 120 characters, it will not fit on the 132-character print line. The
compiler wraps such lines onto the next line, beginning at print column 1.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-43

Creating and Compiling HP COBOL Source
Programs

Source Program Listing
Text Altered by REPLACE Statement
Each REPLACE statement is listed as the compiler encounters it. Each line on which a
REPLACE statement has made a change is listed after the change has been made. If
the line is too long, the compiler truncates it after a reasonable token and writes as
many additional lines (with the same line number) as are necessary to deliver the
entire replaced text.

Text Retrieved by COPY Statement
The compiler marks any line containing text that it copied from a COPY library by
displaying a less than (>) character in printer column 9.

The compiler directives SHOWCOPY and NOSHOWCOPY determine how the
compiler lists lines containing COPY statements. The default, SHOWCOPY, causes the
compiler to list both the line containing the COPY statement (as a comment) and the
line that results from the COPY statement. The alternative, NOSHOWCOPY, causes
the compiler to list only the line that results from the COPY statement.
NOSHOWCOPY makes it hard to determine from the listing where the copied lines
came from.

The HP COBOL COPY logic attempts to keep your listings readable by combining the
original source text line with the copied library text. HP COBOL COPY logic handles
these cases:

• Column Position of Library Text Characters

The compiler preserves the column position of library text characters; it does not
shift text to the left or right when it attempts this combining operation; for example:

Source line: MOVE COPY SOURCE1. TO X.

Library lines: ?SECTION SOURCE1
 ABLE

Printed line: MOVE ABLE TO X.

If “ABLE” in the library line begins in column 1, you get:

Printed lines: MOVE
 ABLE TO X.

If “ABLE” in the library line begins in column 22, you get:

Printed lines: MOVE ABLE

 TO X.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-44

Creating and Compiling HP COBOL Source
Programs

Source Program Listing
• Text Before the Word COPY

If the source line on which the COPY statement begins has text before the word
COPY, the compiler tries to combine the original source line with the first line of the
library text. This strategy succeeds only if at least one space separates the first
nonspace character of the library text line from the last nonspace character of the
source line. The combined line retains the line number of the source line that
contains the COPY statement.

• Text After the Word COPY

If the source line on which the COPY statement ends has text following the
terminating period, the compiler tries to combine the last line of library text with the
text that follows the COPY statement’s period. This strategy succeeds only if at
least one space separates the last nonspace character of the library line from the
first nonspace character of the remainder of the source line. The combined line
retains the line number of the source line that contains the COPY statement.

• ANSI Reference Format

If the current reference format is ANSI, the listed line begins with the identification
field of the appended source line. Example 22-16 shows this behavior.

The compiler does not attempt to combine:

• Lines of different reference formats
• Debug and nondebugging lines
• Library text lines that do not contain a space, D, or d in the indicator area

When the NOSHOWCOPY directive is absent, the compiler lists the line containing a
COPY statement as a comment before listing the line that results from the COPY
statement substitution. The error-reporting mechanism can sometimes report a syntax
error against the copied text and point to the COPY statement in the comment, as in
Example 22-15.

Example 22-15. Diagnostic Reported Against a Copied Line

 35 * MOVE COPY SOURCE1. TO X.
** LINE 35 ^
** ERROR 240 ** SYNTAX ERROR DETECTED AT TOKEN: ABLE

 35 MOVE ABLE TO X.
** LINE 35 ^
** WARNING 244 ** PARSING RESUMED AT TOKEN: X
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-45

Creating and Compiling HP COBOL Source
Programs

Source Program Listing
Example 22-16. ANSI Format COPY Expansion (page 1 of 2)

Source Program Lines:

PD0023 A.
ANSIFMT
PD0024 COPY MOVE1.
ANSIFMT
PD0024 COPY MOVE2.
ANSIFMT
PD0026 MOVE COPY SOURCE1. TO X.
ANSIFMT
PD0027 MOVE COPY SOURCE2. TO X.
ANSIFMT
PD0028 MOVE COPY SOURCE3. TO X.
ANSIFMT
PD0029 ADD COPY ADD1. COPY ADD2. COPY ADD3. COPY ADD4. TO ANSR.
ANSIFMT
PD0030D DISPLAY COPY SHOW-LIST OF SOMELIB. .
ANSIFMT
PD0031 STOP RUN.
ANSIFMT
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-46

Creating and Compiling HP COBOL Source
Programs

Source Program Listing
COPY Library Lines:

?SECTION MOVE1,ANSI
 MOVE ABLE TO BAKER. MOVE1
?SECTION MOVE2,HP
 MOVE ABLE TO BAKER.
?SECTION SOURCE1,ANSI
 ABLE
SOURCE1
?SECTION SOURCE2,ANSI
 ABLE
SOURCE2
?SECTION SOURCE3,ANSI
 ABLE
SOURCE3
?SECTION ADD1,ANSI
000001 ANDY ADD1
?SECTION ADD2,ANSI
000101 BARBARA ADD2
?SECTION ADD3,ANSI
?SECTION ADD4
 CAL

Listing:

ANSIFMT 33 PD0023 A.
ANSIFMT 34 PD0024* COPY MOVE1.
MOVE1 < 34 MOVE ABLE TO BAKER.
ANSIFMT 35 PD0024* COPY MOVE2.
 < 13 MOVE ABLE TO BAKER.
ANSIFMT 36 PD0026* MOVE COPY SOURCE1. TO X.
ANSIFMT < 36 PD0026 MOVE ABLE TO X.
ANSIFMT 37 PD0027* MOVE COPY SOURCE2. TO X.
ANSIFMT 37 PD0027 MOVE
ANSIFMT < 38 ABLE TO X.
ANSIFMT 39 PD0028* MOVE COPY SOURCE3. TO X.
SOURCE3 < 39 PD0028 MOVE ABLE
ANSIFMT 40 PD0028 TO X.
ANSIFMT 41 PD0029* ADD COPY ADD1. COPY ADD2. COPY ADD3. COPY ADD4. TO
ANSR.
ANSIFMT 41 PD0029 ADD
ANSIFMT < 42 000001* ANDY COPY ADD2. COPY ADD3. COPY ADD4. TO
ANSR.
ANSIFMT < 42 000001 ANDY
ANSIFMT < 43 000101* BARBARA COPY ADD3. COPY ADD4. TO
ANSR.
ANSIFMT < 43 000101* BARBARA COPY ADD4. TO
ANSR.
ANSIFMT < 43 000101 BARBARA CAL TO
ANSR.
ANSIFMT 44 PD0030* DISPLAY COPY SHOW-LIST OF SOMELIB. .
SHOWLIST< 44 PD0030D DISPLAY ABLE BAKER CHARLENE DELTA
ANSIFMT < 45 D ANDY BARBARA .
ANSIFMT 46 PD0031 STOP RUN.

Example 22-16. ANSI Format COPY Expansion (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-47

Creating and Compiling HP COBOL Source
Programs

Source Program Listing
Text Retrieved by SOURCE Directive
The compiler does not mark lines containing text that it copied from a SOURCE library.

The compiler directives SHOWFILE and NOSHOWFILE determine whether the
compiler listing indicates when the compiler stops reading from one source file and
starts reading from another. The default, NOSHOWFILE, prevents the compiler from
reporting when it switches from one source file to another. The alternative, SHOWFILE,
causes the compiler to report each time it starts reading from a new source file by
printing a line of the form:

Source file: [n] filename yyyy-mm-dd hh:mm:ss

The n is the ordinal number that the compiler assigned to the source file. Initially, n is
1, and the compiler increments n by 1 every time it encounters a SOURCE directive.
The filename is the fully qualified name of the new source file. The remainder of the
line is the date and time when that file was last modified.

SQL/MP and SQL/MX Statements
SQL/MP or SQL/MX statements embedded in your HP COBOL program always
appear in the compiler listing, but their format depends on whether you used the
preprocessor to produce the object file.

For SQL/MP statements, using the preprocessor is optional (see the SQL/MP
Programming Manual for COBOL).

For embedded SQL/MX statements, you always use the preprocessor to produce the
object file (see the SQL/MX Programming Manual for C and COBOL).

If you used the preprocessor, the SQL/MP or SQL/MX commands in your HP COBOL
source program appear in the compiler listing in their processed form (that is, as
SQL/MP or SQL/MX data structures, PERFORM statements, and calls to TAL
routines). If the compiler detects an error in a processed SQL/MP or SQL/MX
statement, it prints the error message after the offending SQL/MP or SQL/MX data
structure, PERFORM statement, or TAL routine call.

If you do not use the preprocessor, the SQL/MP or SQL/MX commands in your
HP COBOL source program appear in the compiler listing exactly as they appear in the
source program. SQL/MP or SQL/MX data structures, PERFORM statements, or calls
to TAL routines that the compiler generated do not appear in the compiler listing
(except called or included data structures). If the compiler detects an error in an
embedded SQL/MP or SQL/MX statement, it prints the error message after the
offending SQL/MP or SQL/MX statement itself.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-48

Creating and Compiling HP COBOL Source
Programs

Diagnostic Messages
Diagnostic Messages

Topics:

• Compiler Warning Messages

• Compiler Error Messages

• Compiler Failure Messages

• INSPCI Error Messages

• Binder Messages

• Error Files

Table 22-2. Diagnostic Messages in the Compiler Listing

Diagnostic
Message
Category Subcategory Numbered Suppressable

When
Printed

Can Be
Documented
in Error File

Compiler Warning Yes Yes After
detection

Yes

Error Yes No After
detection

Yes

Failure Yes No After
detection

No

INSPCI1 No No After all
compiler
diagnostic
messages
have been
printed

No

Binder1 Yes No After all
INSPCI
diagnostic
messages
have been
printed

No

Linker2 Informational Yes Yes After all
compiler
diagnostic
messages
have been
printed

No

Warning Yes Yes No

Error Yes No No

1. COBOL85 compiler only

2. NMCOBOL compiler only, and only if it calls a linker
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-49

Creating and Compiling HP COBOL Source
Programs

Diagnostic Messages
For a list of all the compiler diagnostic messages and their probable causes, see
Section 47, Compiler Diagnostic Messages. For a list of all the Binder messages and
their probable causes, see the Binder Manual.

Compiler Warning Messages
A warning message reports a questionable condition. A warning does not prevent the
generation of code. You can suppress warning messages with the NOWARN directive.

For more information about the directives in Table 22-3, see Compiler Directives.

Compiler Error Messages
An error message reports a serious violation of HP COBOL syntax or semantics. At the
first error message, the compiler stops generating code for the current program unit
and deletes any code that it has already generated for that program unit. You cannot
suppress error messages.

Like many error messages, this example reports the identifier that the compiler was
processing or seeking when it detected the error (in this case, COUNTER).

Example 22-17. Warning Message

** Warning 25 ** Blank continuation line

Table 22-3. Compiler Directives That Produce Optional Warnings

Directive Produces warnings for ...

DIAGNOSE-74 Statements that might behave differently in HP COBOL and COBOL 74

DIAGNOSE-85* Statements that might behave differently when compiled by the
COBOL85 and NMCOBOL compilers

DIAGNOSEALL Multiple references to undefined identifiers (instead of the first one
only)

FIPS Statements as required by the Federal Information Processing
Standard (FIPS)

SUBSET HP extensions to ANSI COBOL and obsolete elements

* For NMCOBOL compiler only.

Example 22-18. Error Message

** Error 44 ** Syntax error detected at token COUNTER
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-50

Creating and Compiling HP COBOL Source
Programs

Diagnostic Messages
Although the compiler stops generating code when it encounters the first error, it
continues with the compilation, reporting as many diagnostic messages as it can.
Because an error can leave the compiler with incorrect or incomplete information, the
compiler might report errors in later statements that are actually correct. (The later
errors are side effects of the earlier ones.) If you do not understand certain error
messages, fix the errors you do understand and the others might disappear or be
expressed in an understandable way in the next compilation.

For the COBOL85 compiler, if the IN file contains more than one separately compiled
program, errors in one program do not prevent the others from being compiled. The
object file will contain only the object programs for the programs that compiled without
errors. You can recompile the entire set of programs, or you can fix the erroneous
statements, recompile only the programs that did not compile the first time, and use the
BIND utility to combine the two object files into one.

If the NMCOBOL compiler finds errors in any program in the IN file, it does not produce
any object programs (that is, it produces no object file).

Compiler Failure Messages
A failure message reports a condition so severe that the compiler is unable to continue.
Any code that the compiler has already generated during the current compilation
session is lost. You cannot suppress failure messages.

INSPCI Error Messages
A message of the form

**** INSPCI ERROR AT P=%nnnnn ...

or

PCI FATAL ERROR: nnn AT P = %nnnnnn ...

(where n is a digit) means that an error occurred in the communication mechanism
between the COBOL85 compiler and Binder (the PDT-compiler interface, or PCI).
Report the error to your service provider.

Example 22-19. Failure Message

For the COBOL85 compiler:

** Failure message-number ** message-text

For the NMCOBOL compiler:

*** Failure:
--> message-text [Warning message-number]

The brackets are part of the message, not indicators that the bracketed material is optional.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-51

Creating and Compiling HP COBOL Source
Programs

Diagnostic Messages
Binder Messages
A Binder message begins with one of these strings:

**** Binder WARNING nnn ****
**** Binder ERROR nnn ****
**** Binder FATAL ERROR nnn ****

(where n is a digit). For information about specific Binder messages, see the Binder
Manual.

Error Files
The compiler directive ERRORFILE causes the compiler to document its warning and
error messages in an error file. For each compiler warning or error message, the
compiler writes one record to the error file. Each record contains this information:

• The fully qualified, local file name of the source file in which the warning or error
occurred

If you specified a DEFINE name for the name of the source file, then this entry is
the file name that the DEFINE produced.

• The line number that the HP editor (EDIT or TEDIT) assigned to the line in which
the warning or error occurred

• The column number in which the warning or error occurred

• The warning or error message text

The error file is not an EDIT file; it is of type 106. You can use it only with the TACL
macro FIXERRS. For information about the FIXERRS macro, see FIXERRS Macro.

In this example, the error file is ERRORS on the default volume and subvolume:

90> COBOL85 /IN XYZ, OUT $SPX/ XYZOBJ; ERRORFILE ERRORS
90> NMCOBOL /IN XYZ, OUT $SPX/ XYZOBJ; ERRORFILE ERRORS

If the file ERRORS does not exist, the compiler creates an entry-sequenced file of type
106 and names it ERRORS. If ERRORS does exist, and is of type 106, the compiler
replaces its contents with the new error file. If ERRORS exists but is not of type 106,
the compiler terminates with the message:

ERRORFILE not created
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-52

Creating and Compiling HP COBOL Source
Programs

Symbol Table Listing
Symbol Table Listing
The compiler lists the symbol table if you explicitly request it with the MAP directive.
The symbol table lists, in alphabetic order, each identifier in the program. For each
identifier, the listing shows:

• The group(s) of which it is a member
• The type of entity it identifies (its level number)
• The address (including possible offset) with which it is associated
• The size of the entity it identifies, if applicable
• The category of the entity it identifies (such as numeric or alphanumeric)
• The usage of the entity it identifies (such as COMPUTATIONAL or DISPLAY)

Most identifiers in a program identify data items. Example 22-20 and Example 22-21
show a few lines of a symbol table listing of the program in Example 14-14 on
page 14-22.

Example 22-20. Symbol Table Listing (COBOL85 Compiler)

...

CPU OF CPU-PIN 05 L+006,S 0 2 NM COMP

CPU-PIN 01 L+006,S 0 8 AN GROUP

CREATOR-ACCESSOR-ID 01 L+011 0 2 NM COMP

CREATOR-EDITED 01 L+013,S 0 1 AN GROUP

CREATOR-GROUP OF CREATOR-EDITED 05 L+013,S 6 3 NME DISPLY

CREATOR-MEMBER OF CREATOR-EDITED 05 L+013,S 18 3 NME DISPLY

ERROR-RETURN 01 L+022 0 2 NM DISPLY

EXPLAIN-MYSELF PARAGRAPH %000413

HOME-TERMINAL 01 L+020,S 0 24 AN DISPLY

HOME-TERMINAL-LEN 01 L+021 0 2 NM NATIVE

LEFT-BYTE OF CONSECUTIVE-BYTES 05 L+007,I 0 1 AN DISPLY

...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-53

Creating and Compiling HP COBOL Source
Programs

Octal Code Listing
Octal Code Listing

The COBOL85 compiler lists the octal instructions of the object program if you explicitly
request it with the CODE directive. Example 22-22 shows a few lines of an octal code
listing of the program in Example 31-13.

Example 22-21. Symbol Table Listing (NMCOBOL Compiler)

...
CPU 05 NM COMP OF CPU-PIN
 H"350 H"2
CPU-PIN 01 AN GROUP
 H"350 H"8
CREATOR-ACCESSOR-ID 01 NM COMP
 H"350 H"2
CREATOR-EDITED 01 AN GROUP
 H"350 H"15
CREATOR-GROUP 05 NME DISPLY OF CREATOR-EDITED
 H"356 H"3
CREATOR-MEMBER 05 NME DISPLY OF CREATOR-EDITED
 H"362 H"3
ERROR-RETURN 01 NM DISPLY
 H"350 H"2
EXPLAIN-MYSELF PARAGRAPH
 H"34F H"FFFFFFFF
HOME-TERMINAL 01 AN DISPLY
 H"350 H"18
HOME-TERMINAL-LEN 01 NM NATIVE
 H"350 H"2
LEFT-BYTE 05 AN DISPLY OF CONSECUTIVE-BYTES
 H"350 H"1
...

Note. This topic applies only to the COBOL85 compiler. The NMCOBOL compiler does not
produce an octal code listing. If you need to display a native object file, use the noft utility
(see the nld Manual).

Example 22-22. Octal Code Listing
...

00160 024700 127002 000100 000266 170424 020014 117566 170424 00170 020011 117564 000264 ...
00200 010460 001770 001050 070740 003001 044006 002023 040006 00210 100023 074006 000130 ...
00220 051511 047106 047440 071145 072165 071156 062544 020141 00230 067040 062562 071157 ...
00240 000025 003754 100023 026040 100046 005002 024722 170424 00250 100002 005310 024722 ...
00260 002747 027005 100005 024700 117531 100006 024700 117527 00270 070740 003001 044006 ...
00300 010410 000406 044440 060555 020160 071157 061545 071563 00310 020233 000025 003770 ...
00320 020030 100001 005001 024722 170411 100004 020023 024722 00330 020022 100001 005001 ...
00340 020013 100001 005001 024722 040006 100004 074006 000130 00350 010412 024233 160040 ...
00360 067141 066545 062040 000025 003773 100004 026040 100010 00370 005002 024722 170410 ...
00400 100000 100777 024722 027004 002735 070740 003001 044006 00410 002015 040006 100015 ...
00420 046571 020143 071145 060564 067562 020141 061543 062563 00430 071557 071040 044504 ...
00440 026040 100032 005002 024722 170417 100025 100000 024722 00450 100002 100000 100777 ...
00460 044006 002015 040006 100015 074006 000130 010415 046571 00470 020160 071157 061545 ...
00500 071040 044504 020151 071440 000025 003762 100015 026040 00510 100032 005002 024722 ...
00520 100000 100777 024722 027004 002755 070740 003001 044006 00530 002010 040006 100010 ...
00540 071151 067562 064564 074440 064563 020171 000025 003767 00550 100010 026040 100017 ...
00560 024722 100002 100000 100777 024722 027004 002762 070740 00570 003001 044006 002014 ...

...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-54

Creating and Compiling HP COBOL Source
Programs

Symbolic Code Listing
Symbolic Code Listing
The COBOL85 compiler lists the instructions of the object program in symbolic
(mnemonic) form after the source program listing if you explicitly request it with the
ICODE directive (see Example 22-23).

The NMCOBOL compiler lists the instructions of the object program in symbolic
(mnemonic) form after each source statement if you explicitly request it with the
INNERLIST directive (see Example 22-24).

Note. In a symbolic code listing for a very large program, lines at the end of the program have
asterisks in place of line numbers.

Example 22-23. Symbolic Code Listing (COBOL85 Compiler) (page 1 of 3)

 1 ?ENV COMMON;ICODE
 2 IDENTIFICATION DIVISION.
 3 PROGRAM-ID. TESTT.
 4 ENVIRONMENT DIVISION.
 5 CONFIGURATION SECTION.
 6 SOURCE-COMPUTER. ABD.
 7 OBJECT-COMPUTER. ABD.
 8 DATA DIVISION.
 9 WORKING-STORAGE SECTION.
 10 01 D PICTURE 9 USAGE COMPUTATIONAL.
 11 01 STD-DATE PICTURE 9(8) USAGE COMPUTATIONAL.
 12 PROCEDURE DIVISION.

 13 STARTT.
 14 PERFORM VARYING STD-DATE FROM 19970618 BY 1
 UNTIL STD-DATE > 19970624
 15 DISPLAY STD-DATE
 16 MOVE FUNCTION REM (FUNCTION INTEGER-OF-DATE (STD-DATE) 7)
 TO D
 17 IF D = 0 THEN DISPLAY " SUNDAY" ELSE
 18 IF D = 1 THEN DISPLAY " MONDAY" ELSE
 19 IF D = 2 THEN DISPLAY " TUESDAY" ELSE
 20 IF D = 3 THEN DISPLAY " WEDNESDAY" ELSE
 21 IF D = 4 THEN DISPLAY " THURSDAY" ELSE
 22 IF D = 5 THEN DISPLAY " FRIDAY" ELSE
 23 IF D = 6 THEN DISPLAY " SATURDAY" END-IF
 24 END-IF
 25 END-IF
 26 END-IF
 27 END-IF
 28 END-IF
 29 END-IF
 30 END-PERFORM.
 31 STOP RUN.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-55

Creating and Compiling HP COBOL Source
Programs

Symbolic Code Listing
 * 000000 7 CON %000000 7 CON %000040 7 CON %020040 ...
 000006 7 CON %000000 7 CON %000000 0 LDI +000 ...
 000014 7 PCAL 000 0 LWP -007 7 STAR 7 ...
 000022 7 BAZ +007 0 LDI +177 2 ZERD ...
 000030 7 PCAL 000 7 PCAL 000 7 ADDS +007 ...
000036 2 LDI +007 7 MOVW 047 0 LADR L+000 ...
 000044 3 LDA 3 DLRS 01 2 STAR 2 ...
 000052 2 LDLI +040 2 ORRI 040 3 LDRA 1 ...
 000060 2 EXCH 3 LDI +001 1 MOVW 001 ...
 000066 0 LOAD G+000,7 1 LDLI +264 0 LOR ...

STARTT
 14. 000072 0 LDLI +001 0 ORRI 060 1 LDLI +272 ...
 000100 2 LDLI +001 2 ORRI 060 3 LDLI +272 ...
 15. 000106 0 LDI +000 1 LADR S-000 1 LADI +001 ...
 000114 3 LDD L+007,I 5 CDQ 6 LDRA 1 ...
 000122 0 LDI +010 2 ONED 3 LDLI +350 ...
 000130 7 ADDS -004
 16. 000131 1 LDD L+007,I 2 LDI +002 7 PUSH 722 ...
 000137 3 PUSH 333 1 DDIV 3 POP 331 ...
 000145 1 DSUB 3 DDUP 4 LDI +000 ...
 000153 5 LDI +012 3 DMPY 1 DSUB ...
 000161 7 STOR L+006

 17. 000162 0 LOAD L+006 7 BANZ +030
 17. 000164 0 LDI +000 1 LADR S-000 1 LADI +001 ...
 000172 1 BUN +004 1 CON %020040 1 CON %051525 ...
 000200 2 LADI -005 2 LLS 01 3 LDI +010 ...
 000206 3 LDLI +350 4 LDI -005 7 PUSH 744 ...
 18. 000214 0 LOAD L+006 7 CMPI +001 7 BNEQ +030
 18. 000217 0 LDI +000 1 LADR S-000 1 LADI +001 ...
 000225 1 BUN +004 1 CON %020040 1 CON %046517 ...
 000233 2 LADI -005 2 LLS 01 3 LDI +010 ...
 000241 3 LDLI +350 4 LDI -005 7 PUSH 744 ...

 19. 000247 0 LOAD L+006 7 CMPI +002 7 BNEQ +032
 19. 000252 0 LDI +000 1 LADR S-000 1 LADI +001 ...
 000260 1 BUN +005 1 CON %020040 1 CON %052125 ...
 000266 2 RDP 2 LADI -006 2 LLS 01 ...
 000274 2 ONED 3 LDLI +350 4 LDI -005 ...
 000302 7 BUN +162 7 INDC %000167 w
 20. 000304 0 LOAD L+006 7 CMPI +003 7 BNEQ +032
 20. 000307 0 LDI +000 1 LADR S-000 1 LADI +001 ...
 000315 1 BUN +006 1 CON %020040 1 CON %053505 ...
 000323 1 CON %054440 Y 2 RDP 2 LADI -007 ...
 000331 0 LDI +013 2 ONED 3 LDLI +350 ...

Example 22-23. Symbolic Code Listing (COBOL85 Compiler) (page 2 of 3)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-56

Creating and Compiling HP COBOL Source
Programs

Symbolic Code Listing

 21. 000341 0 LOAD L+006 7 CMPI +004 7 BNEQ +032
 21. 000344 0 LDI +000 1 LADR S-000 1 LADI +00 ...
 000352 1 BUN +005 1 CON %020040 1 CON %052110 ...
 000360 2 RDP 2 LADI -006 2 LLS 01 ...
 000366 2 ONED 3 LDLI +350 4 LDI -005 ...
 000374 7 BUN +070 7 INDC %000070 8
 22. 000376 0 LOAD L+006 7 CMPI +005 7 BNEQ +031
 22. 000401 0 LDI +000 1 LADR S-000 1 LADI +001 ...
 000407 1 BUN +004 1 CON %020040 1 CON %043122 ...
 000415 2 LADI -005 2 LLS 01 3 LDI +010 ...
 000423 3 LDLI +350 4 LDI -005 7 PUSH 744 ...
 000431 7 INDC %000034

 23. 000432 0 LOAD L+006 7 CMPI +006 7 BNEQ +030
 23. 000435 0 LDI +000 1 LADR S-000 1 LADI +001 ...
 000443 1 BUN +005 1 CON %020040 1 CON %051501 ...
 000451 2 RDP 2 LADI -006 2 LLS 01 ...
 000457 2 ONED 3 LDLI +350 4 LDI -005 ...
 30. 000465 1 LDD L+007,I 3 ONED 1 DADD ...
 31. 000472 7 PCAL 000 7 PCAL 000 7 INDC %177403

Example 22-24. Symbolic Code Listing (NMCOBOL Compiler) (page 1 of 6)

 1. ?ENV COMMON;INNERLIST
 2. IDENTIFICATION DIVISION.
 2. 00000000 27bdffb0 addiu sp,sp,0xffffffb0
 2. 00000004 afbf0014 sw ra,0x14(sp)
 2. 00000008 3c010000 lui at,0
 2. 0000000c 24260000 addiu a2,at,0
 2. 00000010 3c04c000 lui a0,0xc000
 2. 00000014 0c00fffa jal COBLIB_INITIALIZER_
 2. 00000018 00002825 move a1,zero
 2. 0000001c 8fbf0014 lw ra,0x14(sp)
 2. 00000020 00000000 nop
 2. 00000024 03e00008 jr ra
 2. 00000028 27bd0050 addiu sp,sp,0x50

 3. PROGRAM-ID. TESTT.
 4. ENVIRONMENT DIVISION.
 5. CONFIGURATION SECTION.
 6. SOURCE-COMPUTER. ABD.
 7. OBJECT-COMPUTER. ABD.
 8. DATA DIVISION.
 9. WORKING-STORAGE SECTION.
 10. 01 D PICTURE 9 USAGE COMPUTATIONAL.
 11. 01 STD-DATE PICTURE 9(8) USAGE COMPUTATIONAL.

Example 22-23. Symbolic Code Listing (COBOL85 Compiler) (page 3 of 3)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-57

Creating and Compiling HP COBOL Source
Programs

Symbolic Code Listing
 12. PROCEDURE DIVISION.
 12. 00000000 27bdfe38 addiu sp,sp,0xfffffe38
 12. 00000004 3c010000 lui at,0
 12. 00000008 3c0f0000 lui t7,0
 12. 0000000c 25ef0014 addiu t7,t7,0x14
 12. 00000010 242e0000 addiu t6,at,0
 12. 00000014 afbf001c sw ra,0x1c(sp)
 12. 00000018 afae0058 sw t6,0x58(sp)
 12. 0000001c afaf0054 sw t7,0x54(sp)
 12. 00000020 0c00ffec jal COBLIB_INITIALIZATION_COMPLETE_
 12. 00000024 00002025 move a0,zero
 12. 00000028 3c010000 lui at,0
 12. 0000002c 9438001e lhu t8,0x1e(at)
 12. 00000030 afa00080 sw zero,0x80(sp)
 12. 00000034 33198000 andi t9,t8,0x8000

 12. 00000038 13200008 beq t9,zero,0x5c
 12. 0000003c 00000000 nop
 12. 00000040 3c048000 lui a0,0x8000
 12. 00000044 2405007f li a1,0x7f
 12. 00000048 00003025 move a2,zero
 12. 0000004c 0c00ffe1 jal COBLIB_ERROR_
 12. 00000050 00003825 move a3,zero
 12. 00000054 0c00ffdf jal COBLIB_ABEND_
 12. 00000058 00002025 move a0,zero
 12. 0000005c 3c010000 lui at,0
 12. 00000060 9428001e lhu t0,0x1e(at)
 14. + 00000064 3c0a0130 lui t2,0x130
 14. + 00000068 354aba3a ori t2,t2,0xba3a
 12. 0000006c 3509b400 ori t1,t0,0xb400
 12. 00000070 a429001e sh t1,0x1e(at)

 13. STARTT.
 14. PERFORM VARYING STD-DATE FROM 19970618 BY 1
 UNTIL STD-DATE > 19970624
 14. 00000074 af8a0004 sw t2,0x4(gp)
 14. 00000078 8f8b0004 lw t3,0x4(gp)
 14. 0000007c 3c010130 lui at,0x130
 14. 00000080 3421ba41 ori at,at,0xba41
 14. 00000084 0161082a slt at,t3,at
 14. 00000088 102000a2 beq at,zero,0x314
 14. 0000008c afab0044 sw t3,0x44(sp)

Example 22-24. Symbolic Code Listing (NMCOBOL Compiler) (page 2 of 6)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-58

Creating and Compiling HP COBOL Source
Programs

Symbolic Code Listing
 15. DISPLAY STD-DATE
 15. 00000090 afa0002c sw zero,0x2c(sp)
 15. 00000094 8fae002c lw t6,0x2c(sp)
 15. 00000098 8f8d0004 lw t5,0x4(gp)
 15. 0000009c afae0034 sw t6,0x34(sp)
 15. 000000a0 afad0030 sw t5,0x30(sp)
 15. 000000a4 8faf0030 lw t7,0x30(sp)
 15. 000000a8 8fb80034 lw t8,0x34(sp)
 15. 000000ac 27ac0040 addiu t4,sp,0x40
 15. 000000b0 afac003c sw t4,0x3c(sp)
 15. 000000b4 07010007 bgez t8,0xd4
 15. 000000b8 afaf0038 sw t7,0x38(sp)

 15. 000000bc 2419002d li t9,0x2d
 15. 000000c0 a1990000 sb t9,0(t4)
 15. 000000c4 8fa8003c lw t0,0x3c(sp)
 15. 000000c8 00000000 nop
 15. 000000cc 25090001 addiu t1,t0,0x1
 15. 000000d0 afa9003c sw t1,0x3c(sp)
 15. 000000d4 8faa0034 lw t2,0x34(sp)
 15. 000000d8 8fab0038 lw t3,0x38(sp)
 15. 000000dc afaa002c sw t2,0x2c(sp)
 15. 000000e0 afab0030 sw t3,0x30(sp)
 15. 000000e4 8fa50030 lw a1,0x30(sp)
 15. 000000e8 8fa4002c lw a0,0x2c(sp)
 15. 000000ec 8fa6003c lw a2,0x3c(sp)

 15. 000000f0 0c00ffb8 jal $n_CQA_T1
 15. 000000f4 24070008 li a3,0x8
 15. 000000f8 8fad003c lw t5,0x3c(sp)
 15. 000000fc 27af0040 addiu t7,sp,0x40
 15. 00000100 25ae0008 addiu t6,t5,0x8
 15. 00000104 afae003c sw t6,0x3c(sp)
 15. 00000108 01cf3023 subu a2,t6,t7
 15. 0000010c 01e02825 move a1,t7
 15. 00000110 3c04d000 lui a0,0xd000
 15. 00000114 00003825 move a3,zero
 15. 00000118 0c00ffae jal COBLIB_DISPLAY_
 15. 0000011c afa00010 sw zero,0x10(sp)

 16. MOVE FUNCTION REM
 (FUNCTION INTEGER-OF-DATE (STD-DATE) 7) TO D
 16. 00000120 8f980004 lw t8,0x4(gp)
 16. 00000124 3c04c000 lui a0,0xc000
 16. 00000128 24060002 li a2,0x2
 16. 0000012c afb80038 sw t8,0x38(sp)
 16. 00000130 0c00ffa8 jal COBLIB_FUNC_DATES_
 16. 00000134 03002825 move a1,t8
 16. 00000138 afa20034 sw v0,0x34(sp)
 16. 0000013c 8fb90034 lw t9,0x34(sp)
 16. 00000140 24010007 li at,0x7
 16. 00000144 0321001a div t9,at

Example 22-24. Symbolic Code Listing (NMCOBOL Compiler) (page 3 of 6)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-59

Creating and Compiling HP COBOL Source
Programs

Symbolic Code Listing
 16. 00000148 2401000a li at,0xa
 16. 0000014c 240c0007 li t4,0x7
 16. 00000150 afac003c sw t4,0x3c(sp)
 16. 00000154 afb90040 sw t9,0x40(sp)
 16. 00000158 00004012 mflo t0
 16. 0000015c 000848c0 sll t1,t0,3
 16. 00000160 01284823 subu t1,t1,t0
 16. 00000164 03295023 subu t2,t9,t1
 16. 00000168 0141001a div t2,at
 16. 0000016c afaa0044 sw t2,0x44(sp)
 16. 00000170 00005812 mflo t3
 16. 00000174 000b6880 sll t5,t3,2

 16. 00000178 01ab6821 addu t5,t5,t3
 16. 0000017c 000d6840 sll t5,t5,1
 16. 00000180 014d7023 subu t6,t2,t5
 16. 00000184 05c10002 bgez t6,0x190
 16. 00000188 01c07825 move t7,t6
 16. 0000018c 000e7823 subu t7,zero,t6
 17. + 00000190 000fc400 sll t8,t7,16
 17. + 00000194 00186403 sra t4,t8,16
 17. + 00000198 1580000a bne t4,zero,0x1c4
 16. 0000019c a78f0000 sh t7,0(gp)

 17. IF D = 0 THEN DISPLAY " SUNDAY" ELSE
 17. 000001a0 3c010000 lui at,0
 17. 000001a4 24250028 addiu a1,at,0x28
 17. 000001a8 3c04d000 lui a0,0xd000
 17. 000001ac 24060008 li a2,0x8
 17. 000001b0 00003825 move a3,zero
 17. 000001b4 0c00ff87 jal COBLIB_DISPLAY_
 17. 000001b8 afa00010 sw zero,0x10(sp)
 17. 000001bc 1000004d b 0x2f4
 17. 000001c0 00000000 nop

 18. IF D = 1 THEN DISPLAY " MONDAY" ELSE
 18. 000001c4 87880000 lh t0,0(gp)
 18. 000001c8 24010001 li at,0x1
 18. 000001cc 1501000a bne t0,at,0x1f8
 18. 000001d0 a7a80044 sh t0,0x44(sp)
 18. 000001d4 3c010000 lui at,0
 18. 000001d8 24250030 addiu a1,at,0x30
 18. 000001dc 3c04d000 lui a0,0xd000
 18. 000001e0 24060008 li a2,0x8
 18. 000001e4 00003825 move a3,zero
 18. 000001e8 0c00ff7a jal COBLIB_DISPLAY_
 18. 000001ec afa00010 sw zero,0x10(sp)
 18. 000001f0 10000040 b 0x2f4
 18. 000001f4 00000000 nop

Example 22-24. Symbolic Code Listing (NMCOBOL Compiler) (page 4 of 6)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-60

Creating and Compiling HP COBOL Source
Programs

Symbolic Code Listing
 19. IF D = 2 THEN DISPLAY " TUESDAY" ELSE
 19. 000001f8 87990000 lh t9,0(gp)
 19. 000001fc 24010002 li at,0x2
 19. 00000200 1721000a bne t9,at,0x22c
 19. 00000204 a7b90044 sh t9,0x44(sp)
 19. 00000208 3c010000 lui at,0
 19. 0000020c 24250038 addiu a1,at,0x38
 19. 00000210 3c04d000 lui a0,0xd000
 19. 00000214 24060009 li a2,0x9
 19. 00000218 00003825 move a3,zero
 19. 0000021c 0c00ff6d jal COBLIB_DISPLAY_
 19. 00000220 afa00010 sw zero,0x10(sp)
 19. 00000224 10000033 b 0x2f4
 19. 00000228 00000000 nop

 20. IF D = 3 THEN DISPLAY " WEDNESDAY" ELSE
 20. 0000022c 87890000 lh t1,0(gp)
 20. 00000230 24010003 li at,0x3
 20. 00000234 1521000a bne t1,at,0x260
 20. 00000238 a7a90044 sh t1,0x44(sp)
 20. 0000023c 3c010000 lui at,0
 20. 00000240 24250044 addiu a1,at,0x44
 20. 00000244 3c04d000 lui a0,0xd000
 20. 00000248 2406000b li a2,0xb
 20. 0000024c 00003825 move a3,zero
 20. 00000250 0c00ff60 jal COBLIB_DISPLAY_
 20. 00000254 afa00010 sw zero,0x10(sp)
 20. 00000258 10000026 b 0x2f4
 20. 0000025c 00000000 nop

 21. IF D = 4 THEN DISPLAY " THURSDAY" ELSE
 21. 00000260 878b0000 lh t3,0(gp)
 21. 00000264 24010004 li at,0x4
 21. 00000268 1561000a bne t3,at,0x294
 21. 0000026c a7ab0044 sh t3,0x44(sp)
 21. 00000270 3c010000 lui at,0
 21. 00000274 24250050 addiu a1,at,0x50
 21. 00000278 3c04d000 lui a0,0xd000
 21. 0000027c 2406000a li a2,0xa
 21. 00000280 00003825 move a3,zero
 21. 00000284 0c00ff53 jal COBLIB_DISPLAY_
 21. 00000288 afa00010 sw zero,0x10(sp)
 21. 0000028c 10000019 b 0x2f4
 21. 00000290 00000000 nop

Example 22-24. Symbolic Code Listing (NMCOBOL Compiler) (page 5 of 6)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-61

Creating and Compiling HP COBOL Source
Programs

Symbolic Code Listing
 22. IF D = 5 THEN DISPLAY " FRIDAY" ELSE
 22. 00000294 878a0000 lh t2,0(gp)
 22. 00000298 24010005 li at,0x5
 22. 0000029c 1541000a bne t2,at,0x2c8
 22. 000002a0 a7aa0044 sh t2,0x44(sp)
 22. 000002a4 3c010000 lui at,0
 22. 000002a8 2425005c addiu a1,at,0x5c
 22. 000002ac 3c04d000 lui a0,0xd000
 22. 000002b0 24060008 li a2,0x8
 22. 000002b4 00003825 move a3,zero
 22. 000002b8 0c00ff46 jal COBLIB_DISPLAY_
 22. 000002bc afa00010 sw zero,0x10(sp)
 22. 000002c0 1000000c b 0x2f4
 22. 000002c4 00000000 nop

 23. IF D = 6 THEN DISPLAY " SATURDAY" END-IF
 23. 000002c8 878d0000 lh t5,0(gp)
 23. 000002cc 24010006 li at,0x6
 23. 000002d0 15a10008 bne t5,at,0x2f4
 23. 000002d4 a7ad0044 sh t5,0x44(sp)
 23. 000002d8 3c010000 lui at,0
 23. 000002dc 24250064 addiu a1,at,0x64
 23. 000002e0 3c04d000 lui a0,0xd000
 23. 000002e4 2406000a li a2,0xa
 23. 000002e8 00003825 move a3,zero
 23. 000002ec 0c00ff39 jal COBLIB_DISPLAY_
 23. 000002f0 afa00010 sw zero,0x10(sp)

 24. END-IF
 25. END-IF
 26. END-IF
 27. END-IF
 28. END-IF
 29. END-IF
 30. END-PERFORM.
 30. 000002f4 8f8e0004 lw t6,0x4(gp)
 30. 000002f8 00000000 nop
 30. 000002fc 25cf0001 addiu t7,t6,0x1
 30. 00000300 05e10002 bgez t7,0x30c
 30. 00000304 01e0c025 move t8,t7
 30. 00000308 000fc023 subu t8,zero,t7
 30. 0000030c 1000ff5a b 0x78
 30. 00000310 af980004 sw t8,0x4(gp)

 31. STOP RUN.
 31. 00000314 0c00ff2f jal COBLIB_STOP_
 31. 00000318 00000000 nop
 31. 0000031c 0c00ff2d jal COBLIB_STOP_
 31. 00000320 00000000 nop
 31. 00000324 8fbf001c lw ra,0x1c(sp)
 31. 00000328 00000000 nop
 31. 0000032c 03e00008 jr ra
 31. 00000330 27bd01c8 addiu sp,sp,0x1c8

Example 22-24. Symbolic Code Listing (NMCOBOL Compiler) (page 6 of 6)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-62

Creating and Compiling HP COBOL Source
Programs

Cross-Reference Listing
Cross-Reference Listing

The COBOL85 compiler lists a cross-reference if you explicitly request it with the
CROSSREF directive; however, generating a cross-reference this way slows down the
compilation and, if the program has errors, the cross-reference listing might also have
errors. A better way to get the cross-reference listing is by using the CROSSREF utility,
after you rid the program of errors. For information about the CROSSREF utility, see
the CROSSREF Manual.

Load Maps

The compiler lists the load maps (also called Binder maps) if you explicitly request
them with the LMAP directive. With options, you can select any or all of these load
maps (to select all, specify LMAP):

The LMAP or NOLMAP directive that is active when the compiler detects the end of a
source program and starts creating an object program is the one that determines which
load maps appear in the compiler listing.

Note. This topic applies only to the COBOL85 compiler. The NMCOBOL compiler does not
produce a cross-reference listing. If you need one, use the noft utility with the XREFPROC flag
(see the nld Manual).

Example 22-25. Cross-Reference Listing

...

 EXPLAIN-MYSELF PARA %000262
PROBE[1] 86
 PROBE[1] 80 M

 FILE-NAME OF PROGRAM-FILE-NAME 05 AN DISP WSS SIZE=8 OFFSET=16
PROBE[1] 58
 PROBE[1] 134

 HOME-TERMINAL 01 AN DISP WSS SIZE=24 OFFSET=0
PROBE[1] 59
 PROBE[1] 76 M 104

 LEFT-BYTE OF SEPARATED-BYTES 05 AN GROUP WSS SIZE=2 OFFSET=0
PROBE[1] 32
 PROBE[1] 35 M
...

Note. This topic applies only to the COBOL85 compiler. The LMAP and NOLMAP directives
determine which load maps the compiler obtains from BINSERV. The NMCOBOL compiler
does not use BINSERV.

LMAP Option Load Map

ALPHA Programs and subprograms, sorted alphabetically by program name

LOC Programs and subprograms, sorted by location (starting address)

XREF Cross-reference listing of entry-point and data-block names
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-63

Creating and Compiling HP COBOL Source
Programs

Compilation Summary
Example 22-26 is an ALPHA load-map for the program in Example 31-13.

Compilation Summary
The compilation summary is the last page of every compiler listing.

The COBOL85 and NMCOBOL compilers produce different compilation summaries:

• COBOL85 Compiler

• NMCOBOL Compiler

Example 22-26. Load-Map (ALPHA)

 PAGE 10 $MYDSC.PROBSBV.PROBE Tandem COBOL85

ENTRY POINT MAP BY NAME

SP PEP BASE LIMIT ENTRY ATTRS NAME DATE TIME LANGUAGE SOURCE FILE

00 002 000003 002243 000051 M PROBE 1/02/93 13:14 COBOL
$MYDSC.PROBSBV.PROBE

- - - - - - - - - - - - - new page -

 PAGE 11 $MYDSC.PROBSBV.PROBE

DATA BLOCK MAP BY NAME

 BASE LIMIT TYPE MODE NAME DATE TIME LANGUAGE SOURCE FILE

 000000 000017 SPECIAL WORD #G0 1/02/93 13:14 COBOL
$MYDSC.PROBSBV.PROBE

 100222 SPECIAL WORD #HIGHBUF 1/02/93 13:14 COBOL
$MYDSC.PROBSBV.PROBE

 100000 100114 SPECIAL WORD #RUCB 1/02/93 13:14 COBOL
$MYDSC.PROBSBV.PROBE

 000127 000153 SPECIAL WORD #STACK 1/02/93 13:14 COBOL
$MYDSC.PROBSBV.PROBE

 000020 000126 OWN STRING PROBE 1/02/93 13:14 COBOL
$MYDSC.PROBSBV.PROBE

 100115 100221 SPECIAL WORD PROBE# 1/02/93 13:14 COBOL
$MYDSC.PROBSBV.PROBE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-64

Creating and Compiling HP COBOL Source
Programs

Compilation Summary
COBOL85 Compiler

These lines show that the program that produced Example 22-27 had no compilation
errors or warnings:

Number of compiler errors = 0
Number of compiler warnings = 0

These lines show that the program that produced Example 22-27 had no Binder errors:

Number of Binder errors = 0
Number of Binder warnings = 0

If the COBOL85 compiler or Binder had reported any errors, the summary would have
contained lines like these:

COBOL85 - T9257D20 - (8JUN92)
No object file produced *****
Number of COBOL errors = 6
Number of COBOL warnings = 2
Last message on page 2
Number of source lines read = 57
Maximum symbol table size = 840 words
Elapsed time - 0:00:29

Example 22-27. COBOL85 Compilation and BINSERV Summary

Binder - OBJECT FILE Binder - T9621D20 - (8JUN92) SYSTEM \BACH
Object file name is $SECOND.AA9210.OWOMBAT
Number of Binder errors = 0
Number of Binder warnings = 0
Code size = 118 words
Primary data = 16 words
Secondary data = 61 words
Code area size = 1 pages
Resident code size = 0 pages
Data area size = 33 pages
Number of code spaces = 1 space

COBOL85 - T9257D20 - (8JUN92)
The object file is executable on a TNS or a TNS/II
Number of COBOL errors = 0
Number of COBOL warnings = 0
Number of source lines read = 56
Maximum symbol table size = 864 words
Elapsed time - 0:00:19
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-65

Creating and Compiling HP COBOL Source
Programs

Compilation Summary
NMCOBOL Compiler

These lines show that the program that produced the Example 22-28 had no
compilation errors or warnings:

No errors detected.
No warnings detected.

This line shows that, in Example 22-28, the FIPS directive identified no language
elements:

No remarks issued.

Example 22-28. NMCOBOL Compilation Summary

COBOL - T8107D99 - (30 APR 97)
No failures detected.
No errors detected.
No warnings reported.
No remarks issued.
Maximum symbol table size = 135998 bytes

NLD - NATIVE MODE LINKER - T6017D42 - 03JUN96
Copyright Tandem Computers Incorporated 1993-1996

NLD's command line was:
 \node1.$system.sys01.nld -o RUNUNIT RUNUNIT \NODE1.$SYSTEM.SYS01.ECOBSRL

 \NODE1.$SYSTEM.SYS01.ECRESRL

NLD reported 0 errors.
NLD reported 0 warnings.
NLD reported 0 informational messages.

NLD created this type of object file:
 RUNUNIT (ELF, executable)

NLD Timestamp: 16APR97 16:34:34
Elapsed time: 00:00:03

Object file: RUNUNIT
Compiler driver: \NODE1.$SYSTEM.SYS01.NMCOBOL
COBOL SRL: \NODE1.$SYSTEM.SYS01.ZCOBSRL
CRE SRL: \NODE1.$SYSTEM.SYS01.ZCRESRL
NMCOBEXT: \NODE1.$SYSTEM.SYS01.NMCOBEXT
Compiler statistics
 phase CPU seconds elapsed time file name
 COBOLFE 0.1 00:00:04 \NODE1.$SYSTEM.SYS01.COBOLFE
 UGEN 0.1 00:00:03 \NODE1.$SYSTEM.SYS01.UGEN
 AS1 0.1 00:00:04 \NODE1.$SYSTEM.SYS01.AS1
 total 0.4 00:00:11
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-66

Creating and Compiling HP COBOL Source
Programs

Compilation Summary
If the NMCOBOL compiler had reported any errors, the summary would have
contained lines like these:

COBOL - T8107D99 - (01 APR 97)
No object file produced *****
Number of COBOL errors = 6
Number of COBOL warnings = 2
Last message on page 2
Number of source lines read = 57
Maximum symbol table size = 840 words
Elapsed time - 0:00:29
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-67

Creating and Compiling HP COBOL Source
Programs

Compilation Summary
HP COBOL Manual for TNS and TNS/R Programs—522555-006
22-68

23
Calling Other Programs and
Routines

Your TNS HP COBOL program can call other TNS programs and routines, and your
native HP COBOL program can call other native programs and routines. TNS and
native programs cannot call each other.

A HP COBOL program that calls one or more non-COBOL routines is called a mixed-
language program (as is a non-COBOL program that calls one or more COBOL
programs). Mixed-language programs are less restricted and execute more efficiently
in the CRE.

The CRE is available in the Guardian environment and the OSS environment.

A HP COBOL program’s mode and operating environment determine what types of
non-COBOL routines it can call, as Table 23-1 shows.

A called routine can have an ordinary, VARIABLE, or EXTENSIBLE parameter list.

Topics:

• Run-Time Environment

• Calling Other COBOL Programs

• Calling Non-COBOL Routines

• Passing Parameters

To call your HP COBOL program from a non-COBOL program, use the non-COBOL
language’s method of calling an external routine. The method varies from language to
language; see the reference manual for the appropriate non-COBOL language.

Note. This section applies to the Guardian environment. For information on mixed-language
programming in the OSS environment, see Mixed-Language Programs and Utility Routines.

Table 23-1. Effect of Mode and Environment on Calling Non-COBOL Programs

Mode Environment HP COBOL program can call programs written in ...

TNS Guardian TNS HP C, TNS HP C++, FORTRAN, Pascal, TAL

OSS TNS HP C, TNS HP C++, TAL

Native Guardian or
OSS

Native HP C, native HP C++, pTAL
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-1

Calling Other Programs and Routines Run-Time Environment
Run-Time Environment
Native programs (compiled with the NMCOBOL compiler) always run in the CRE.
Programs compiled with the COBOL85 compiler can run in either the CRE or the non-
CRE (COBOL-specific) environment.

The non-CRE environment is the default for nonnative HP COBOL programs, but with
the compiler directive ENV COMMON, you can request the CRE instead.

HP COBOL programs running in the non-CRE environment can call non-COBOL
routines, but the non-COBOL routines run in the unique run-time environments defined
by their respective run-time libraries. These language-specific run-time environments
are often incompatible with each other, because each language’s run-time library is
unaware of other run-time libraries. This incompatibility severely limits the potential for
creating useful mixed-language programs. In the non-CRE environment, the non-
COBOL routines that your HP COBOL program calls have limited access to their run-
time libraries.

In the CRE, each routine in the program appears to be running in its own language-
specific run-time environment, regardless of the language of the main routine. For
example, if the main routine of a mixed-language program is written in HP COBOL, an
HP C routine still has complete access to the HP C run-time library.

All routines in a program must be compiled to run in the same environment (either their
own language-specific run-time environment or the CRE). Table 23-2 lists the run-time
environments available for the TNS version of each language. All native languages run
only in the CRE.

The CRE library, a collection of routines that implements the CRE, enables the
language-specific run-time libraries to coexist peacefully with each other. User routines
and run-time libraries call CRE library routines to access shared resources managed
by the CRE, such as the standard files (input, output, and log) and the user heap,
regardless of language.

The CRE does not support all possible operations. For example, the CRE supports file
sharing only for the three standard files: standard input, standard output, and standard
log. The language-specific run-time libraries access all other files by calling run-time
procedures directly, whether or not a program uses the CRE.

Table 23-2. Run-Time Environments for TNS Languages

TNS Language Environments Available

HP C CRE

HP COBOL CRE or HP COBOL run-time environment

FORTRAN CRE or FORTRAN run-time environment

Pascal CRE

TAL CRE or TAL run-time environment
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-2

Calling Other Programs and Routines Calling Other COBOL Programs
For more information about writing programs that use the services provided by the
CRE, see the CRE Programmer’s Guide.

Calling Other COBOL Programs
A HP COBOL program calls another HP COBOL program with a CALL statement. The
called program can be either a separately compiled HP COBOL program or a nested
HP COBOL program. A nested program is usually accessible to more calling programs
if it is a common program.

If a called program is an initial program, its program state is initialized whenever it is
called.

The CALL statement can call another program statically (with the program specified at
compilation time) or dynamically (with the program specified at run time). The former is
more efficient; the latter is more flexible.

The CALL statement can pass parameters from the calling program to the called
program either by reference (the default) or by content.

Topics:

• Separately Compiled HP COBOL Programs

• Nested HP COBOL Programs

• Common Programs

• Initial Programs

• Static Calls

• Dynamic Calls

Separately Compiled HP COBOL Programs
A separately compiled program is an HP COBOL source program that is not nested
within any other program. A compilation unit—a collection of source statements
presented to a compiler in one compilation—contains one or more separately compiled
programs. Separately compiled programs in the same compilation unit can call each
other.

Any separately compiled program with no Linkage Section can be a main program
(that is, the program with which execution begins). If more than one of the programs in
a compilation unit has no Linkage Section, one program must include a MAIN directive
to identify it as the main program.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-3

Calling Other Programs and Routines Nested HP COBOL Programs
Nested HP COBOL Programs
Nested HP COBOL programs are contained in other HP COBOL programs. Nested
programs can be directly or indirectly contained. In Figure 23-1, the compilation unit
contains two separately compiled programs (Mane and Sub), which contain nested
programs, and the programs have these relationships:

The program ... Directly contains ... And indirectly contains ...

Mane Aaa, Bbb Ccc, Ddd

Aaa Nothing Nothing

Bbb Ccc Ddd

Ccc Ddd Nothing

Ddd Nothing Nothing

Sub Nothing Nothing

Figure 23-1. Directly Contained Programs and Indirectly Contained Programs

Program: Mane

Program: Sub

One
separately compiled
program

Another
separately compiled
program

Program: Bbb

Program: Ccc

Program: Ddd

One run unit

Program: Aaa

VST501.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-4

Calling Other Programs and Routines Common Programs
An HP COBOL program can call any program directly contained within itself and any
other separately compiled program. It cannot call a program indirectly contained within
itself. The programs in Figure 23-1 can call each other:

Common Programs
If a program has the COMMON clause in its Identification Division, it is called a
common program, and it can be called by any program directly or indirectly contained
in the program that directly contains it. In Figure 23-1, if Aaa, Bbb, and Ccc are
common, the programs in Figure 23-1 can call each other:

You gain no performance benefits by making Ddd common.

Initial Programs
If a program has the INITIAL clause in its Identification Division, it is an initial program.
Its program state is initialized whenever it is called. The data in its Working-Storage
Section is allocated when it is called rather than being statically allocated. For more
information about initial programs, see Initial Programs.

Static Calls
A static call is achieved with the statement CALL program-name, where program-
name is an alphanumeric literal whose value is known at compilation time. program-
name is the PROGRAM-ID of the called program, and it can be qualified with the
phrase OF file-mnemonic or IN file-mnemonic.

The program ...

Can call the program ...

Mane Aaa Bbb Ccc Ddd Sub

Mane X X X

Aaa X

Bbb X X

Ccc X X

Ddd X

Sub X

The program ...

Can call the program ...

Mane Aaa Bbb Ccc Ddd Sub

Mane X X X

Aaa X X

Bbb X X X

Ccc X X X X

Ddd X X X X

Sub X
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-5

Calling Other Programs and Routines Dynamic Calls
Quotation marks around program-name are not required, but are recommended. If,
in some eventual program maintenance, someone adds a variable named APROG to a
program that already calls a program named APROG, and the name APROG is not in
quotation marks, the compiler assumes that APROG refers to the variable.

At run time, if the variable APROG does not contain the name of a valid program that is
included in the object file, the program terminates with the error message “Called
program not found.” If APROG is enclosed in quotes, the compiler recognizes it as a
program name rather than a variable.

A static call is more efficient than a dynamic call, but a dynamic call is more flexible.

Dynamic Calls
To perform a dynamic call, use the statement CALL identifier, where identifier
is an alphanumeric data item whose value is not known until run time. The value of
identifier is the PROGRAM-ID of the called program, but it cannot be qualified
with the phrase OF file-mnemonic or IN file-mnemonic.

Example 23-1 shows a CALL identifier statement in context. The identifier is
ROUTINE, and at run time its value will be either POSRTN or NEG0RTN, depending
on the value of TALLY.

A program that is to be called with a CALL identifier statement cannot use
standard (16-bit) addressing.

The compilation is unable to validate the parameters of dynamic calls (that is, to
determine whether the actual parameters of the calling program correspond to the
formal parameters of the called program).

Every program that a dynamic call could possibly call (in the preceding example, the
programs POSRTN and NEG0RTN) must be bound or linked into the run unit or user
library before you execute the program (see Binding or Linking Programs to Be Called
Dynamically).

Example 23-1. CALL Identifier Statement

DATA DIVISION.
01 ROUTINE PICTURE X(7).
...
PROCEDURE DIVISION.
...
IF TALLY IS GREATER THAN 0 MOVE "POSRTN" TO ROUTINE
ELSE MOVE "NEG0RTN" TO ROUTINE
CALL ROUTINE
...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-6

Calling Other Programs and Routines Calling Non-COBOL Routines
If you want an HP COBOL program to be entirely free to call any other COBOL
program that is prepared to be called, make the programs separate processes.
Separate processes communicate through the file process $RECEIVE—the sender
writes to a named process, and the receiver reads a file named $RECEIVE. For more
information about $RECEIVE, see $RECEIVE.

Calling Non-COBOL Routines
The way an HP COBOL program can call a non-COBOL routine depends on its
environment and whether the calling program was compiled with the PORT directive.
An HP COBOL program that was not compiled with the PORT directive calls a non-
COBOL routine with the ENTER statement. An HP COBOL program that was compiled
with the PORT directive and runs in the CRE calls a non-COBOL routine with either the
ENTER statement or the CALL statement, which behaves like an X/Open CALL
statement.

Topics:

• ENTER Statement

• X/Open CALL Statement

• Functions (Routines That Return Values)

• Operating System Routines

• HP COBOL Run-Time Routines

• COBOL Utility Routines

• ENFORM Programs

• Restrictions on Calling Non-COBOL Routines

ENTER Statement
Topics:

• TNS Programs

• Native Programs

Note. If the types of the actual and formal parameters do not match, the ENTER statement
attempts to convert the actual parameters to the types of the formal parameters; the X/Open
CALL statement reports an error instead.

Applying a CANCEL statement to a non-COBOL routine that was called with an X/Open CALL
statement terminates the run unit.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-7

Calling Other Programs and Routines ENTER Statement
TNS Programs
If a TNS HP COBOL program is not compiled with the PORT directive, it can call
routines written in TNS HP C, TNS HP C++, FORTRAN, Pascal, and TAL by using the
ENTER statement.

In the ENTER statement, you can specify the language of the called routine. Although
you can specify the language COBOL, the COBOL85 compiler ignores any ENTER
COBOL statements it encounters (to call another COBOL program, use the CALL
statement).

The COBOL85 compiler reports an error if the called routine was not written in the
specified language, except when the specified language is HP C and the routine was
written in HP C++, which the COBOL85 compiler handles as if it were HP C.

The COBOL85 compiler has no way to declare that it is calling a routine that is written
in an unspecified language. If you do not specify a language in the ENTER statement,
you are declaring that the called routine is a TAL procedure that uses FORTRAN
protocol for passing string parameters (that is, a routine that can be called by both
COBOL and FORTRAN programs). The Saved Message Utility (SMU) routines are in
this category.

Any non-COBOL routine called by an HP COBOL program must have already been
compiled, and its object program forms must be available to the COBOL85 compiler
through one of the standard library files or through the SEARCH, LIBRARY, or
CONSULT directive.

In the non-CRE environment, if any program or routine in a loadfile is an HP COBOL
program, the main program must be an HP COBOL program. In the CRE, the main
program can be written in any language that runs in the CRE (that is, HP COBOL,
HP C, FORTRAN, Pascal, or pTAL).

Native Programs
If a native HP COBOL program is not compiled with the PORT directive, it can call
routines written in native HP C, native HP C++, and pTAL by using the ENTER
statement.

In the ENTER statement, you do not need to specify the language of the called routine,
because the NMCOBOL compiler can determine the language in which the program is
written. If you do specify the language, it must be C or TAL. If you specify TAL, the
NMCOBOL compiler expects a pTAL program (it does not accept TAL programs). If
you specify FORTRAN or Pascal, the NMCOBOL compiler reports an error. If you
specify C, the compiler expects a routine written in either HP C or HP C++. Although a
native HP COBOL program can use the ENTER statement to call HP C++ and pTAL
programs, you cannot specify the language C++ or pTAL.

Any non-COBOL routine called by an HP COBOL program must have already been
compiled, and its object program forms must be available to the NMCOBOL compiler
through an SRL or object file, specified through the SEARCH or CONSULT directive.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-8

Calling Other Programs and Routines X/Open CALL Statement
X/Open CALL Statement
If an HP COBOL program is compiled with the PORT directive and runs in the CRE, it
can call non-COBOL routines with the CALL statement, which behaves like an X/Open
CALL statement.

If the called program is a function and it was compiled either by the COBOL85 compiler
with the ENV COMMON directive or by the NMCOBOL compiler, the X/Open CALL
statement returns its value in the special register RETURN-CODE. For more
information, see Special Register RETURN-CODE.

Functions (Routines That Return Values)
A function is a routine that returns a value to the calling program. COBOL has no
mechanism for returning a function’s value to the calling program, but HP COBOL has
two:

• GIVING Phrase

• Special Register RETURN-CODE

GIVING Phrase
The GIVING phrase allows you to specify a data item, return-value, to hold the
value that the function returns. The storage operation is performed after any necessary
scaling and follows the rules for an elementary MOVE TO statement (for these rules,
see MOVE TO).

Special Register RETURN-CODE
The special register RETURN-CODE is accessible to an HP COBOL program that was
compiled with the PORT directive and uses the X/Open CALL statement to call a
function if either:

• The HP COBOL program and the function are TNS programs that run in the CRE,
and the HP COBOL program was compiled with the ENV COMMON directive (not
the LIBRARY directive).

• The HP COBOL program and the function are native programs.

The value of the function is returned in the special register RETURN-CODE, whose
description is:

01 RETURN-CODE EXTERNAL PICTURE S9(5) COMPUTATIONAL.

If the value of the function is greater than 99,999, arithmetic overflow occurs.

Caution. If a program compiled with the PORT directive calls a program not compiled with the
PORT directive, differences in the way BINARY/COMPUTATIONAL/COMP data items are
aligned in the two programs can cause data to be misread.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-9

Calling Other Programs and Routines Operating System Routines
If the calling program cannot access RETURN-CODE, the value of RETURN-CODE is
unchanged.

Operating System Routines
Operating system routines are written in TAL, pTAL, HP C, and HP C++. The language
in which an operating system routine is written does not matter to the HP COBOL
program that calls it. Operating system routines execute in system code space, using
both system data space (for system tables) and user data space (for temporary
storage). When an HP COBOL program calls an operating system routine, it uses the
ENTER statement.

Some operating system routines never need to be called by HP COBOL programs—
file system routines, for example. File system routines are called by the HP COBOL
run-time routines to do their input and output operations. Although it is possible to call
file system routines explicitly from an HP COBOL program, you are advised not to
apply both HP COBOL I-O statements and explicit calls to file system routines to the
same file, as the HP COBOL run-time routines do significant preprocessing and
postprocessing.

Examples of operating system routines that are useful to an HP COBOL program are
ABEND, which signals an abnormal termination, and PURGEDATA, which erases all
data in a file but does not purge the file itself.

Topics:

• Parameters

• Resolution

• Extensible and Variable Parameter Lists

• Generations of Operating System Routines

Parameters
Guardian operating system routines are documented in the Guardian Procedure Calls
Reference Manual. When calling system routines from an HP COBOL program, use
Table 23-3 to determine the appropriate form for the COBOL parameters.

Note. If you use operating system routines to do nowait I-O (you call a routine to do an input
or output operation and then call AWAITIO to wait for the operation to finish), be aware that the
HP COBOL run-time routines perform nowait I-O in some cases. The AWAITIO routine can
wait for any I-O operation to complete, or wait for the I-O operation on a specific file to
complete. It is best to apply AWAITIO to a specific file. Using the command PARAM WAITED-
IO ON allows you some latitude, however.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-10

Calling Other Programs and Routines Operating System Routines
You must verify that the actual parameters in the ENTER statement (including
return-value in the GIVING phrase) are of the HP COBOL types that correspond
to the TAL types of the formal parameters in the operating system routine. The
compiler performs the necessary conversions of sending parameters. Parameters
passed by reference must match exactly. The HP COBOL data type INDEX does not
correspond to any TAL or pTAL data type.

Table 23-3. HP COBOL and TAL or pTAL Parameter
Correspondence (page 1 of 2)

COBOL Data Category

TAL or pTAL Data Type

Passed by Reference Passed by Value

Alphabetic STRING Not applicable
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-11

Calling Other Programs and Routines Operating System Routines
Numeric COMP 9 (1) - 9 (4) INT INT
INT(32)
FIXED
REAL
REAL(64)

COMP 9 (5) - 9 (9) INT(32) INT
INT(32)
FIXED
REAL
REAL(64)

COMP 9 (10) - 9 (18) FIXED INT
INT(32)
FIXED
REAL
REAL(64)

NATIVE-2 INT INT
INT(32)
FIXED
REAL
REAL(64)

NATIVE-4 INT(32) INT
INT(32)
FIXED
REAL
REAL(64)

NATIVE-8 FIXED INT
INT(32)
FIXED
REAL
REAL(64)

DISPLAY STRING INT
INT(32)
FIXED
REAL
REAL(64)

INDEX Not applicable Not applicable

Numeric Edited STRING Not applicable

Alphanumeric Edited STRING Not applicable

Alphanumeric STRING Not applicable

Table 23-3. HP COBOL and TAL or pTAL Parameter
Correspondence (page 2 of 2)

COBOL Data Category

TAL or pTAL Data Type

Passed by Reference Passed by Value
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-12

Calling Other Programs and Routines Operating System Routines
Resolution
The compiler leaves operating system routines unresolved, and the loader resolves
them during fixup (see Fixup). The compiler is able to leave references to operating
system routine calls unresolved because a file named COBOLEXT (for the COBOL85
compiler) or NMCOBEXT (for the NMCOBOL compiler), which is part of every
HP COBOL RVU, contains dummy versions of all the operating system routines.
Another file, EXTDECS, contains TAL or pTAL external declarations for the
environment routines and is part of every operating environment RVU. A third file,
ZSYSCOB, contains HP COBOL source declarations of data items and structures for
Guardian procedures and operating environment messages.

There are two reasons to have your system manager change the files COBOLEXT (for
the COBOL85 compiler) or NMCOBEXT (for the NMCOBOL compiler) and EXTDECS:

• You have additional routines that you want to be left unresolved until fixup (ask
your system manager to add dummy versions of them to the COBOLEXT,
NMCOBEXT, or EXTDECS file).

• The formal parameter list of one or more system routines changes from extensible
to variable, in which case the EXTDECS file and the COBOLEXT or NMCOBEXT
file must also change.

For more information on the ZSYSCOB file, see the Guardian Application Conversion
Guide.

Extensible and Variable Parameter Lists
An operating system routine can have an extensible or a variable parameter list. Both
extensible and variable parameter lists allow you to omit unnecessary actual
parameters in the ENTER statement. The difference between extensible and variable
parameter lists is in what happens when new formal parameters are added to the
routine, as sometimes happens to operating system routines with a new RVU of the
operating environment.

When new formal parameters are added to an operating system routine that has an
extensible parameter list, you do not have to recompile programs that call the routine.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-13

Calling Other Programs and Routines Operating System Routines
If an operating system routine’s formal parameter list changes from variable to
extensible, the code that was compiled to expect a variable parameter list can usually
call the new version of the routine that has an extensible parameter list (at a slight
performance penalty). For more information about variable and extensible parameter
lists, see the TAL Reference Manual (for TNS programs) or the pTAL Reference
Manual (for native programs).

Generations of Operating System Routines
 Like the file COBOLEXT and NMCOBEXT, the files COBOLEX1, COBOLEX0,
NMCOBEX1, and NMCOBEX0 are part of every HP COBOL RVU. Like the file
EXTDECS, the files EXTDECS1 and EXTDECS0 are part of every operating
environment RVU. This table shows the relationship between these files.

Different generations of the same operating system routine might have different formal
parameter lists (see Extensible and Variable Parameter Lists). Because of this,
programs compiled with COBOLEX0 or NMCOBEX0 might execute only on the very
latest RVU of the operating environment, programs compiled with COBOLEX1 or
NMCOBEX1 might execute only on the two most recent RVUs of the operating
environment, and programs compiles with COBOLEXT or NMCOBEXT might execute
only on the three most recent RVUs of the operating environment.

Your system manager must verify that the appropriate file has the name COBOLEXT
or NMCOBEXT when you compile your program. Any of the files COBOLEX0,
COBOLEX1, or COBOLEXT can be named COBOLEXT. Any of the files NMCOBEX0,
NMCOBEX1, or NMCOBEXT can be named NMCOBEXT.

If you need to use a version of the COBOLEXT or NMCOBEXT file that is available on
your system under a name other than COBOLEXT or NMCOBEXT, there are two ways
to do it:

• Create a subvolume containing the COBOL85 or NMCOBOL compiler and all the
files it needs. Install the appropriate version of COBOLEXT or NMCOBEXT in that
subvolume, under the name COBOLEXT or NMCOBEXT. Use this subvolume for
your compilations; that is, instead of using a compilation command like

COBOL85 /IN XYZ/

or

NMCOBOL /IN XYZ/

File of Operating
System Routine
Declarations

Generation of
Operating System
Routines

File of Dummy Versions of
operating system routines

COBOL85
Compiler

NMCOBOL
Compiler

EXTDECS0 Latest COBOLEX0 NMCOBEX0

EXTDECS1 Next-to-latest COBOLEX1 NMCOBEX1

EXTDECS Second-next-to-latest COBOLEXT NMCOBEXT
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-14

Calling Other Programs and Routines HP COBOL Run-Time Routines
use a compilation command like

RUN MYCOBVOL.COBOL85 /IN XYZ/

or

RUN MYCOBVOL.NMCOBOL /IN XYZ/

where MYCOBVOL is the subvolume you created.

• Use the system volume for your compilations, but use a CONSULT directive to tell
the compiler to resolve external references from a file other than COBOLEXT or
NMCOBEXT.

HP COBOL Run-Time Routines
Your HP COBOL program calls HP COBOL run-time routines implicitly, not with
ENTER statements. For TNS programs, HP COBOL run-time routines are in the
system library. Their names begin with “C85LIB^” or “C85LIB_.” They execute in the
system library. For native programs, HP COBOL run-time routines are in the shared
run-time library ZCOBSRL. Their names begin with “COBLIB_.” They execute in SRL
code space.

COBOL Utility Routines
HP provides many COBOL utility routines that your COBOL program can call with the
ENTER statement. These routines are described in Section 13, Libraries and Utility
Routines.

ENFORM Programs
ENFORM, a component of the Encompass distributed database management system,
is a powerful nonprocedural language for querying or developing reports on a relational
database.

If your database is described in the Data Definition Language (DDL), you can write an
ENFORM query to specify the records you want from the database and the order in
which you want ENFORM to deliver them. You then compile that ENFORM query into
a disk file and include code in a COBOL program to start ENFORM as a separate
process.

The operating environment procedure ENFORMSTART initiates the query processor.
Each time the ENFORMRECEIVE procedure executes, it accepts either a record that
ENFORM built and transmitted to the program through the interprocess message
system or an error value. The ENFORMFINISH procedure terminates the processing
with the query processor. This mechanism is called the host-language interface and is
documented in the ENFORM User’s Guide. You cannot use this mechanism from a
Pathway server if the ENFORM routines use $RECEIVE.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-15

Calling Other Programs and Routines Restrictions on Calling Non-COBOL Routines
Restrictions on Calling Non-COBOL Routines
TNS HP COBOL programs can call only TNS programs, and native HP COBOL
programs can call only native routines. This means that a TNS HP COBOL program
can call routines written in TNS HP C, FORTRAN, Pascal, and TAL, and that a native
HP COBOL program can call routines written in native HP C, native HP C++, and
pTAL.

These topics explain the restrictions on calling non-COBOL routines from HP COBOL.
For information about passing HP COBOL parameters to such routines, see Passing
Parameters to Non-COBOL Routines.

Topics:

• HP C Routines

• HP C++ Function Name Consideration

• FORTRAN Routines

• Pascal Routines

• TAL Routines

HP C Routines
An HP COBOL program running in the non-CRE environment cannot call any HP C
function that directly or indirectly allocates or deallocates memory or performs HP C
input-output operations. Similarly, an HP COBOL program must not call an HP C
function that directly or indirectly accesses the HP C function getenv.

An HP COBOL program running in the CRE indirectly calls HP C functions that allocate
and deallocate memory and perform HP C input-output operations. Do not directly call
the HP C function getenv from an HP COBOL program.

If a program has a COBOL MAIN program, and calls HP C or HP C++ functions that
perform HP C or HP C++ I/O operations on the standard files stdin, stdout, or
stderr, the HP C library function fopen_std_file must be called before any such
operations take place. You need fopen_std_file (0,x) for input,
fopen_std_file (1,x) for output, and fopen_std_file (2,x) for the stderr.
This function must be called from an HP C or HP C++ routine. Also, the HP C program
must be compiled “with extensions” if you are going to call this function. See the
Guardian Native C Library Calls Reference Manual for more information on the
fopen_std_file function.

In both the non-CRE environment and the CRE, an HP COBOL program cannot call an
HP C function that has these characteristics:

• Has lowercase letters in its name, if the HP C function is called by ENTER (the
compiler upshifts them). This restriction does not apply to HP C functions called by
CALL.

• Has a variable parameter list.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-16

Calling Other Programs and Routines Restrictions on Calling Non-COBOL Routines
• Returns a structured value.

• Specifies a formal parameter whose type has no corresponding HP COBOL type
(to see which HP C types have corresponding HP COBOL types, see Appendix B,
Data Type Correspondence.

A HP COBOL program and an HP C program can share data under these conditions:

• The HP COBOL and HP C programs are compiled with compilers of RVU D20.00
or later.

• The HP COBOL and HP C programs run in the CRE.

• If the HP COBOL program is compiled with the COBOL85 compiler (as opposed to
the NMCOBOL compiler), its external data is in the Extended-Storage Section.

• Level-01 HP COBOL data items are described with the EXTERNAL clause.

• HP C data names that the HP COBOL program references have no lowercase
letters or underscores.

• For TNS processes, the HP C program uses the large memory model (because
HP COBOL passes all parameter addresses in 32 bits). (All native languages pass
parameter addresses in 32 bits.)

• If the HP COBOL and HP C programs are sharing strings, the strings end in the
zero byte that HP C expects.

In Example 23-2, the HP COBOL and HP C programs share the data item MYVAR.

Example 23-2. HP COBOL and HP C Programs Sharing Data

HP COBOL Code:

* The SEARCH directive references the HP C object file.
?SYMBOLS; ENV COMMON; SEARCH SHOWEXTO
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TEST-EXTERNAL.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES. SYMBOLIC NULLCHAR IS 1.
 DATA DIVISION.
 EXTENDED-STORAGE SECTION.
 01 MYVAR EXTERNAL.
 05 DATA-01 PIC X(20).
 05 NULL-TERM PIC X.
 PROCEDURE DIVISION.
 STARTIT.
 MOVE "abcdefghijlmnopqrstu" TO DATA-01.
 MOVE NULLCHAR TO NULL-TERM.
 ENTER C "SHOWEXT".
 DISPLAY "Back in COBOL: " DATA-01.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-17

Calling Other Programs and Routines Restrictions on Calling Non-COBOL Routines
HP C++ Function Name Consideration
When a COBOL program calls a function compiled by HP C++, the function definition
must include the extern "C" specification for the function name to be used in its original
form. HP C++, by default, adjusts function names to accommodate generic functions
and class methods. For example, a definition such as:

void EXT(char *p) {}

results in the creation of an entry point called EXT_FPc; however, a definition of the
form:

extern "C" void EXT(char *p) {}

produces an entry point called EXT.

This is true for both COBOL85 and NMCOBOL, in both the Guardian environment and
the OSS environment.

FORTRAN Routines
Only TNS HP COBOL programs in the Guardian environment can call FORTRAN
routines. If you want your native HP COBOL program to call a FORTRAN routine,
convert the FORTRAN routine to native HP COBOL, native HP C, native HP C++, or
pTAL.

In the non-CRE environment, if an HP COBOL program calls a FORTRAN routine,
process termination must be handled by an HP COBOL routine. If execution terminates
in FORTRAN code, the run-time routines do not have a chance to complete any
possible pending input-output operations, and lines of printer or terminal output are
likely to be lost. This restriction does not apply in the CRE, because HP COBOL and
FORTRAN routines can share IN, OUT, and $RECEIVE.

HP C Code:

#include <stdio.h> nolist
extern char MYVAR[21];

void SHOWEXT(void){
int i;

/* In the Guardian environment, the call to fopen_std_file
is needed because the main program is in HP COBOL.
In the OSS environment, comment out or delete the call to fopen_std_file */
fopen_std_file(1, 1); /* stdout, die_on_error = TRUE */

printf(" Input value: %s\n", MYVAR);
for (i=0; i < 20; i++) MYVAR[i] -= 32; /* shift case */
printf(" Output value: %s\n", MYVAR);
}

Example 23-2. HP COBOL and HP C Programs Sharing Data
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-18

Calling Other Programs and Routines Passing Parameters
In both the non-CRE environment and the CRE, if a program includes both HP COBOL
and FORTRAN routines, all input-output operations done on a particular file must be
performed within one language, or by routines provided by HP.

Pascal Routines
Only TNS HP COBOL programs in the Guardian environment can call Pascal routines.
If you want your native HP COBOL program to call a Pascal routine, convert the
Pascal routine to native HP COBOL, native HP C, native HP C++, or pTAL.

In the non-CRE environment, an HP COBOL program must not call any Pascal
procedure or function that directly or indirectly allocates or deallocates controlled
storage or performs Pascal input-output operations.

In both the non-CRE environment and the CRE, in order for an HP COBOL program to
call a Pascal routine, the Pascal routine must be exported (declared in an EXPORT list
in its own Pascal module).

TAL Routines
Only TNS HP COBOL programs can call TAL routines. If you want your native
HP COBOL program to call a TAL routine, convert the TAL routine to pTAL (see the
pTAL Conversion Guide).

In the non-CRE environment, if a TAL routine is available to both COBOL and
FORTRAN programs (as the SMU routines before RVU D20.00 are), do not specify the
language (TAL) after the keyword ENTER. By omitting the language specifier, you
declare that you are calling a routine that was compiled by the TAL compiler but uses
FORTRAN protocol for passing string parameters.

In the CRE, specifying “TAL” after the keyword ENTER is recommended.

Passing Parameters
Topics:

• TNS Addressing Modes

• Native Addressing Modes

• What HP COBOL Can Pass by Content

• What HP COBOL Can Pass by Reference

• What HP COBOL Can Pass by Value.

• Passing Parameters to COBOL Programs

• Passing Parameters to Non-COBOL Routines
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-19

Calling Other Programs and Routines TNS Addressing Modes
TNS Addressing Modes
TNS HP COBOL programs use standard (16-bit) addressing for all items in the File
Section, all items in the Working-Storage Section, and items in the Linkage Section for
which standard access mode is specified. HP COBOL programs use extended (32-bit)
addressing for all items in the Extended-Storage Section and all items in the Linkage
Section for which the standard access mode is not specified. Programs written in
languages other than COBOL use both 16-bit and 32-bit addressing, with certain data
structures always using 32-bit addressing.

When a formal reference parameter (in the called routine) is 16-bit-addressed, the
corresponding actual parameter (in the calling routine) can be any HP COBOL data
item except a special register or an item declared in the Linkage Section or Extended-
Storage Section.

When a formal reference parameter (in the called routine) is 32-bit-addressed, the
corresponding actual parameter (in the calling routine) can be any HP COBOL data
item except a special register.

When an HP COBOL program passes a 32-bit-addressed parameter to a routine that
expects a 16-bit-addressed parameter, the COBOL85 compiler performs the necessary
conversion. The passed data item must begin in the leftmost byte of a word. If the data
item begins (or can begin) in a byte other than the leftmost byte, the compiler delivers
a warning, and it is your responsibility to verify that the addressing is correct.

In a called routine, the code that handles actual parameters from the calling routine is
generated according to the addressing mode that the called routine specifies for the
formal parameters. This code can include both instructions that use 16-bit addressing
and instructions that use 32-bit addressing. Instructions that use 16-bit addressing
execute faster, but cannot address items in extended memory.

Native Addressing Modes
Native programs use 32-bit addressing for all data items. Many HP COBOL data items
are byte-addressed. Some data items in other languages are 2-byte addressed. When
you pass a byte-addressed item to a routine that expects a 2-byte-addressed
parameter, the data item must be aligned on a 2-byte boundary; otherwise, problems
can arise, because the called routine is expecting an aligned parameter.

Special registers are not addressable data items. If passed as parameters, they must
be passed by value.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-20

Calling Other Programs and Routines What HP COBOL Can Pass by Content
What HP COBOL Can Pass by Content
An HP COBOL program can pass these types of items to non-COBOL routines by
content:

• Elementary Data Items

• Tables

• Numeric Literals

• Values of Arithmetic Expressions

• HP COBOL File Names

Elementary Data Items
The most practical categories and sizes for elementary data item parameters to be
passed by content are:

The names of elementary data item parameters can be qualified, subscripted, or both,
but cannot include reference modifiers.

Passing a COMPUTATIONAL numeric data item as a parameter is not recommended.
Although a data item described as

PICTURE S9(4) USAGE COMPUTATIONAL

is allocated 2 bytes, the value that can be stored in them must be in the
COMPUTATIONAL range -9999 through 9999. Anything outside that range is truncated
on the left by the MOVE operation.

The compiler generates any code necessary to convert numeric actual parameters to
the form required by the external routine, including scaling and conversion to the
required storage size and data type. Similarly, the compiler generates any code that is
necessary to convert the numeric value that an external routine returns to the form
required by the data item in the GIVING phrase of the HP COBOL program’s ENTER
statement.

The other CRE languages handle nonnumeric data items as strings.

Parameter Category and Size USAGE

Numeric 2-byte NATIVE-2

Numeric 4-byte NATIVE-4

Numeric 8-byte NATIVE-8

Alphanumeric PICTURE X(n)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-21

Calling Other Programs and Routines What HP COBOL Can Pass by Content
Tables
To pass a table (an array) by content, you must create a data structure that consists
solely of the array elements and pass the name of that data structure. The
corresponding formal parameter must be defined to use a content parameter. For
example, to pass the table of Cs in Example 23-3, you must pass the name C-ARRAY.

HP COBOL handles any data structure as a stream of characters, so the compiler
does not perform numeric conversions on table elements. If you have a table of
elements whose descriptions do not match those of their corresponding formal
parameters, you must create a new table whose element descriptions match exactly,
copy the values form the original table to the new table, and pass the name of the new
table as the actual parameter.

Numeric Literals
HP COBOL can pass numeric literals, but not nonnumeric literals, as content
parameters. The compiler generates any code that is necessary to convert them to the
form required by the external routine.

Values of Arithmetic Expressions
TNS HP COBOL can pass the value of an arithmetic expression to HP C, Pascal, and
TAL (but not FORTRAN) routines by content. Native HP COBOL can pass the value of
an arithmetic expression to native HP C, native HP C++, and pTAL routines by content.
The compiler generates any code that is necessary to convert the value of an
arithmetic expression to the form required by the external routine.

HP COBOL File Names
HP COBOL can pass COBOL file names to COBOLLIB and ZCOBSRL routines that
accept them. The COBOL file name is the file name recognized by the HP COBOL
program’s input-output statements, not the file name recognized by the operating
environment. The data structures that enable the COBOLLIB and ZCOBSRL routines
to accept COBOL file names are proprietary to HP and are not available to users.

Example 23-3. Record Containing a Table

01 A-RECORD.
 03 A PIC S999V99.
 03 B PIC S999V99.
 03 C-ARRAY.
 05 C OCCURS 7 TIMES USAGE NATIVE-2.
 03 D PIC X(15).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-22

Calling Other Programs and Routines What HP COBOL Can Pass by Reference
What HP COBOL Can Pass by Reference
An HP COBOL program can pass these to non-COBOL routines by reference:

• Elementary Data Items

• Records

Elementary Data Items
The only elementary data items that HP COBOL programs can always pass by
reference are NATIVE-2, NATIVE-4, NATIVE-8, and PICTURE X (n) data items. If an
external routine stores an integer value in a COMPUTATIONAL numeric data item, and
that value exceeds HP COBOL’s limits (4 decimal digits for 16 bits of storage, 9
decimal digits for 32 bits of storage, and 18 decimal digits for 64 bits of storage),
results from using the contents of that data item are unpredictable—the program might
work as expected, not work as expected, or terminate abnormally.

HP COBOL programs can also pass by reference a numeric data item with a PICTURE
containing V or P, but only if the corresponding formal parameter is the equivalent of
an 8-byte integer and the HP COBOL program and external routine agree on an
interpretation.

Some values on NonStop systems that fit into a HP COBOL data item described as
PICTURE S9(n -s)V9(s) COMPUTATIONAL exceed HP COBOL’s limits. More
importantly, HP COBOL generates computational code based on the descriptions of
data items, so if an external routine installs a value in a PICTURE S9(n -s)V9(s)
COMPUTATIONAL field that HP COBOL could not have stored, the computational
results could be invalid.

Records
HP COBOL programs must pass record parameters by reference.

What HP COBOL Can Pass by Value
A HP COBOL program can pass these types of items to non-COBOL routines by
value:

• Numeric literals
• Numeric data items
• Special registers
• Arithmetic expressions

If a parameter is passed by value, it is evaluated, scaled, and converted to the storage
size and type of the formal parameter. The resulting value is passed to the called
routine. This conversion might cause an arithmetic overflow.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-23

Calling Other Programs and Routines Passing Parameters to COBOL Programs
Passing Parameters to COBOL Programs
A COBOL program can pass parameters to another COBOL program with the CALL
statement.

A non-COBOL routine can pass parameters to a COBOL program with the non-
COBOL language’s method of calling an external routine. The method varies from
language to language; see the reference manual for appropriate non-COBOL
language.

Topics:

• From HP COBOL Programs

• From Non-COBOL Routines

From HP COBOL Programs
By default, the CALL statement passes parameters by reference. This means that the
called program can change the value of the parameter that is stored in the calling
program.

You can specify that the CALL statement is to pass a parameter by content instead of
by reference. This means that the called program cannot change the value of the
parameter that is stored in the calling program. To specify that a parameter is to be
passed by content, specify CONTENT in a USING phrase in the CALL statement.

A COBOL program can pass a program name (a program-name in a PROGRAM-ID
paragraph) as a parameter to another COBOL program (see Dynamic Calls).

From Non-COBOL Routines
When calling a COBOL program from a non-COBOL program, remember that:

• A non-COBOL program must pass any parameters to COBOL program by
reference.

• A non-COBOL program cannot pass a program name (a program-name for a
PROGRAM-ID paragraph) to a COBOL program as a parameter.

• COBOL has no single-byte numeric data type that corresponds to:

° HP C and C++ data types char and unsigned char

° Pascal data type BYTE

° pTAL data types UNSIGNED(8) and STRING

Enabling HP COBOL to obtain a numeric value from a single byte requires a work-
around in the HP COBOL program. In your HP COBOL program, define a
corresponding parameter and a temporary storage area, as in Example 23-4.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-24

Calling Other Programs and Routines Passing Parameters to Non-COBOL Routines
In Example 23-4, when a non-COBOL routine (or a READ statement) has delivered a
value to STRUCT-M, the HP COBOL program must move a numeric zero to ONE-
WORD-NUMERIC and move the single-byte numeric value from either Y or Z into
LOW-HALF. Then the HP COBOL program can use ONE-WORD-NUMERIC as a
numeric value. For example, this code tests whether the value of Y is greater than 9:

MOVE ZEROS TO ONE-WORD-NUMERIC.
MOVE Y TO LOW-HALF
IF ONE-WORD-NUMERIC > 9
...

Passing Parameters to Non-COBOL Routines
Whether the ENTER statement passes parameters by reference or by value depends
on what the called routine requires. The compiler determines whether the called
routine requires a reference parameter or a value parameter. If the called routine
requires a reference parameter, the compiler generates code that passes an address;
if the called routine requires a value parameter, the compiler generates code that
passes a value. (A called program can change the value of a reference parameter but
not a value parameter.)

If the compiler cannot locate the object form of the called program or routine, or at least
a dummy version that describes the expected parameters, then it cannot determine
whether the parameters are to be passed by reference; therefore, it cannot generate
the appropriate code, so it reports an error and does not produce an object program.

Example 23-4. TAL/pTAL Structures for Passing Parameters to COBOL Program

TAL or pTAL declaration:

STRUCT M;
 BEGIN
 INT X;
 STRING Y;
 UNSIGNED(8) Z;
 END;

Corresponding HP COBOL parameter:

01 STRUCT-M.
 03 X USAGE NATIVE-2.
 03 YZ.
 05 Y PIC X.
 05 Z PIC X.

HP COBOL temporary storage area:

01 TEMP-COMP.
 03 ONE-WORD-NUMERIC USAGE NATIVE-2.
 03 CHEATER REDEFINES ONE-WORD-NUMERIC.
 05 FILLER PIC X.
 05 LOW-HALF PIC X.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-25

Calling Other Programs and Routines Passing Parameters to Non-COBOL Routines
If a parameter is passed by reference so that the called routine can return a value to
the calling program, the parameter declaration must match the expectation of the
called routine, because HP COBOL code does not convert the values upon return from
the routine.

A COBOL program cannot pass a program name (a program-name in a PROGRAM-
ID paragraph) to a non-COBOL routine as a parameter.

Topics:

• HP C or HP C++

• FORTRAN

• Pascal

• TAL and pTAL

HP C or HP C++
In the large-memory model and the wide-data model, all pointers are 32 bits.

In both the non-CRE environment and the CRE:

• A HP COBOL program can pass numeric arguments to an HP C or HP C++ routine
either by reference or by value.

• A HP COBOL program must pass nonnumeric arguments to an HP C or HP C++
routine by reference.

• If the data type of a value parameter differs from the data type of the corresponding
formal parameter, the compiler converts the value of the value parameter to the
data type of the formal parameter. If the value is outside the range of values
allowed for the HP C or HP C++ data type, an arithmetic trap occurs.

• The compiler cannot convert reference parameters to different data types.

• A HP COBOL program can pass an integer (NATIVE-2, NATIVE-4, or NATIVE-8)
data item to an HP C or HP C++ routine either as a reference parameter or by an
external declaration. In both cases, the HP C or HP C++ routine receives the
integer as a pointer type.

• The GIVING phrase cannot be specified in an ENTER statement that accesses an
HP C or HP C++ function whose type is a pointer or whose type designation
includes the modifier “unsigned.” The type “char” is included in this prohibition,
because both the HP C compiler and the HP C++ compiler interpret it as
equivalent to the type “unsigned char.” The type “signed char” is acceptable.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-26

Calling Other Programs and Routines Passing Parameters to Non-COBOL Routines
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-27

Calling Other Programs and Routines Passing Parameters to Non-COBOL Routines
• When the formal parameter for an HP C or HP C++ function is a scalar variable, its
type designation cannot include the modifier “unsigned.” When the COBOL
parameter is numeric, the type “char” is included in this prohibition, because the
HP C or HP C++ compiler interprets it as equivalent to the type “unsigned char.”
The type “signed char” is acceptable. When the COBOL parameter is not numeric,
the type “char” is acceptable.

For more information about HP C or HP C++ routines and modules, see the C/C++
Programmer’s Guide and the Guardian Native C Library Calls Reference Manual.

In Example 23-5, an HP COBOL program uses reference parameters to pass integer
data items to a C routine. On return from the ENTER statement in the HP COBOL
code, SQ contains the product of PAR1, PAR2, and PAR3, and the value of PAR3 is
25.

In Example 23-6, an HP COBOL program uses external declarations to pass integer
data items to a C routine. If the C routine was compiled for the small memory model,
the values are manipulated with explicit casts to pointers.

Example 23-5. Using Reference Parameters to Pass Integers to C Routine

HP COBOL code:

01 PARAMS.
 03 PAR1 USAGE IS NATIVE-2.
 03 PAR2 USAGE IS NATIVE-4.
 03 PAR3 USAGE IS NATIVE-8.
01 SQ USAGE IS NATIVE-8.
...
 ENTER C "blog" USING PAR1 PAR2 PAR3 GIVING SQ
...

C code:

long long blog (int *a, long *b, long long *c)
{
 long long result;
...
 result = *a * *b * *c;
 c = 25;
 return result;
}

Example 23-6. Using External Declarations to Pass Integers to C
Routine (page 1 of 2)

External declarations in HP COBOL:

01 FLIP USAGE IS NATIVE-2 EXTERNAL.
01 FLAP USAGE IS NATIVE-4 EXTERNAL.
01 FLOP USAGE IS NATIVE-8 EXTERNAL.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-28

Calling Other Programs and Routines Passing Parameters to Non-COBOL Routines
FORTRAN

By default, FORTRAN routines use 16-bit addressing for parameters. You can specify
32-bit addressing using either of two FORTRAN compiler directives: EXTENDEDREF
or LARGECOMMON (LARGECOMMON also specifies that common blocks are to be
allocated in extended memory). Each FORTRAN routine uses the same addressing
mode for all parameters it receives or passes. All FORTRAN routines bound into one
object file must use the same addressing mode.

You must pass parameters to FORTRAN routines by reference. To pass a noninteger
numeric value to a FORTRAN routine, an HP COBOL program must pass a
COMPUTATIONAL item of 2, 4, or 8 bytes and either pass a scale factor (power of 10)
as a separate parameter or have an agreed-upon scale factor for the item. The
FORTRAN program must receive the parameter as an integer of the appropriate size
and perform the corresponding scaling operation explicitly.

C code:

char *work; /* global to share with HP COBOL program */
int x;
...
work = (char*)malloc(2);
...
x = *(int*)flip;
(int)flip++;
y = ...

Example 23-7. Passing a String to a C Routine

HP COBOL code:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 A-STRING PICTURE X(25).
...
PROCEDURE DIVISION.
...
ENTER C "FUNCT1" USING A-STRING

C routine:

FUNCT1 (char *d)
...
return void;

Note. This topic applies only to TNS HP COBOL programs. Native HP COBOL programs
cannot call FORTRAN routines. If you want your native HP COBOL program to call a
FORTRAN routine, convert the FORTRAN routine to native HP C, native HP C++, or pTAL.

Example 23-6. Using External Declarations to Pass Integers to C
Routine (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-29

Calling Other Programs and Routines Passing Parameters to Non-COBOL Routines
In both the non-CRE environment and the CRE:

• An HP COBOL program cannot pass anything to a formal FORTRAN parameter of
the type COMPLEX.

• FORTRAN stores multidimensional arrays in column-major order and HP COBOL
stores them in row-major order. To illustrate, FORTRAN declares the array

DIMENSION X (3,2)

and allocates memory for its elements in this order:

X(1,1), X(2,1), X(3,1), X(1,2), X(2,2), X(3,2)

HP COBOL would allocate memory for the same array (table) elements in this
order:

X(1,1), X(1,2), X(2,1), X(2,2), X(3,1), X(3,2)

For more information about FORTRAN routines, see the FORTRAN Reference
Manual.

Example 23-8. Passing Parameters to a FORTRAN Routine

COBOL95 code:

 ...
* DOUBLEWORDS, SCALED BY 1000, SO THAT THE VALUE DELIVERED
* IS THE NUMBER OF THOUSANDTHS
01 THE-PARAMETER USAGE IS COMPUTATIONAL.
 03 BASE PICTURE S9(5)V9(3).
 03 POWER PICTURE S9(5)V9(3).
 03 RAISED PICTURE S9(5)V9(3).
...
MOVE 89 TO BASE.
MOVE .5 TO POWER
ENTER FORTRAN "ROUTINEX"
 USING BASE
 POWER
 GIVING RAISED.
...

FORTRAN code:

 INTEGER*4 FUNCTION ROUTINEX (IA, IB)
 INTEGER*4 IA, IB
 DOUBLE PRECISION DA, DB
C SCALE DOWN
 DA = DBLE (IA) / 1000
 DB = DBLE (IB) / 1000
C RAISE TO POWER AND SCALE UP BEFORE GOING ON
 ROUTINEX = INT4 ((DA ** DB) * 1000.D0)
 RETURN
 END
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-30

Calling Other Programs and Routines Passing Parameters to Non-COBOL Routines
Pascal

By default, Pascal routines use 16-bit addressing for parameters and pointer allocation
(the “small-memory model”). You can specify 32-bit addressing by using the Pascal
compiler directive XMEM (the “large memory model”), but whatever the addressing
mode is, it applies to the entire Pascal module. All Pascal modules that are bound into
one object file must use the same addressing mode.

In both the non-CRE environment and the CRE:

• The default addressing mode is extended (32-bit) in HP COBOL but 16-bit in
Pascal. You can specify standard (16-bit) addressing in HP COBOL with an
ACCESS MODE clause, and you can obtain 32-bit addressing (among other
things) in Pascal with an XMEM directive. Verify that each actual HP COBOL
parameter uses the same addressing mode as its corresponding formal Pascal
parameter.

• In HP Pascal for NonStop systems (“HP Pascal”), if you declare a routine itself to
be EXTENSIBLE, then in its routine header, you can explicitly declare each formal
parameter to be optional (meaning that the calling program need not supply an
actual parameter for it). If an HP COBOL program calls an extensible Pascal
routine, the HP COBOL program must use the keyword OMITTED in place of each
omitted optional parameter, except in the case of trailing omitted optional
parameters. For example, if the Pascal routine header is

MY_PROC (R : INTEGER; OPTIONAL O1, O2 : INTEGER);

an HP COBOL program can call the Pascal routine with any of these statements:

ENTER PASCAL "MY_PROC" USING A
ENTER PASCAL "MY_PROC" USING A B
ENTER PASCAL "MY_PROC" USING A B C
ENTER PASCAL "MY_PROC" USING A OMITTED C

Note. This topic applies only to TNS HP COBOL programs. Native HP COBOL programs
cannot call Pascal routines. If you want your native HP COBOL program to call a FORTRAN
routine, convert the Pascal routine to native HP C, native HP C++, or pTAL.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-31

Calling Other Programs and Routines Passing Parameters to Non-COBOL Routines
TAL and pTAL
Every TAL or pTAL procedure specifies, for each of its parameters, whether the
parameter is to be passed by value or by reference and, for TAL, whether it is to be
accessed using a 16-bit or 32-bit address.

If a TAL or pTAL parameter is to be passed by value, an HP COBOL program can pass
a numeric literal, a numeric data item, or the value of an arithmetic expression. The
compiler generates code that evaluates, scales, and converts the value to the form that
the called TAL or pTAL procedure expects.

If a TAL or pTAL parameter is to be passed by reference, an HP COBOL program can
pass an FD file name (to pass the address of the file control block) or a data item (to
pass the address of the data item).

An HP COBOL program that calls a TAL or pTAL procedure can omit any optional
parameters, substituting the keyword OMITTED for each omitted optional parameter.

In both the non-CRE environment and the CRE:

• In HP COBOL, the default addressing mode is extended (32-bit). In TAL or pTAL,
the addressing mode is explicitly declared for each reference parameter. Standard
indirect addressing is indicated by type.identifier ; for example:

INT .i;

Example 23-9. Passing Parameters to a Pascal routine

HP COBOL code:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ONE-WORD USAGE NATIVE-2.
01 TWO-WORD USAGE NATIVE-4.
01 FOUR-WORD USAGE NATIVE-8.
01 A-STRING PICTURE X(25).
...
PROCEDURE DIVISION.
...
ENTER PASCAL "FUNCT1" USING ONE-WORD
 TWO-WORD
 FOUR-WORD
 A-STRING

Pascal routine:

FUNCT1 (a: integer,
 b: longint,
 c: int64,
 d: fstring (25));
begin
...
end;
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-32

Calling Other Programs and Routines Passing Parameters to Non-COBOL Routines
Extended indirect addressing is indicated by type.EXT identifier ; for
example:

INT .EXT i;

You can specify standard (16-bit) addressing in HP COBOL with an ACCESS
MODE clause. Verify that each actual HP COBOL parameter uses the same
addressing mode as its corresponding formal TAL or pTAL parameter.

• In TAL or pTAL, if you declare a routine to be EXTENSIBLE or VARIABLE, its
formal parameters are optional (meaning that the calling program need not supply
the actual parameters). If an HP COBOL program calls an extensible or variable
TAL or pTAL routine, the HP COBOL program must use the keyword OMITTED in
place of each omitted optional parameter, except in the case of trailing omitted
optional parameters. For example, if the TAL procedure declaration is:

PROC my_proc (a, b, c) VARIABLE;
 INT .EXT a;
 INT .EXT b;
 INT .EXT c;
BEGIN
...
END;

Then an HP COBOL program can call the TAL routine with any of these
statements:

ENTER TAL "MY_PROC" USING A
ENTER TAL "MY_PROC" USING A B
ENTER TAL "MY_PROC" USING A B C
ENTER TAL "MY_PROC" USING A OMITTED C

• TAL and pTAL have a parameter type called string:length that is defined:

a^proc (a^string:length)
 string .ext a^string
 int length;

An HP COBOL program that calls a TAL or pTAL routine that has a
string :length parameter only passes one parameter, the string part. The
compiler computes the length of the string and passes it to the TAL or pTAL
routine.

For example, suppose that your HP COBOL program calls the TAL or pTAL routine
FILE_GETINFOBYNAME_, which has the parameter file-name :maxlen. To
have your HP COBOL program pass the entire item, you can use this code:

01 A-FILENAME PIC X(20)
...
ENTER "FILE_GETINFOBYNAME_" USING A-FILENAME ...

To have your HP COBOL program pass part of the item, you can use either
reference modification or an OCCURS clause.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-33

Calling Other Programs and Routines Passing Parameters to Non-COBOL Routines
The code for reference modification is:

01 A-FILENAME PIC X(20)
...
MOVE 0 TO A-COUNT
INSPECT FUNCTION REVERSE (A-FILENAME) TALLYING A-COUNT
 FOR LEADING SPACES
ENTER "FILE_GETINFOBYNAME_"
 USING A-FILENAME
 (1: FUNCTION LENGTH (A-FILENAME) - A-COUNT) ...

The code for using an OCCURS clause is:

01 A-FILENAME.
 02 PIC X OCCURS 1 TO 20 TIMES DEPENDING ON
 A-FILENAME-LENGTH.
01 A-FILENAME-LENGTH PIC 99 COMP.

Set A-FILENAME-LENGTH to the right length and call FILE_GETINFOBYNAME_
without using reference modification.

For more information about TAL procedures, see the TAL Programmer’s Guide. For
more information about pTAL procedures, see the pTAL Reference Manual.

Example 23-10. Passing Parameters to a TAL Routine

HP COBOL code:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ONE-WORD USAGE NATIVE-2.
01 TWO-WORD USAGE NATIVE-4.
01 FOUR-WORD USAGE NATIVE-8.
01 A-STRING PICTURE X(25).
...
PROCEDURE DIVISION.
...
ENTER TAL "proc1" USING ONE-WORD
 TWO-WORD
 FOUR-WORD
 A-STRING

TAL routine:

PROC proc1 (a, b, c, d);
INT a;
INT(32) b;
FIXED(0) c;
STRING .d; -- pointer to array
BEGIN
...
END;
HP COBOL Manual for TNS and TNS/R Programs—522555-006
23-34

24
Issues Related to Binding and
Linking

Topics:

• Concepts and Terms

• Binding or Linking HP COBOL Programs

• Binding or Linking Mixed-Language Programs

• Accelerating TNS HP COBOL Programs

• Designing Programs With Large Amounts of Code

• Designing Programs With Large Amounts of Data

• COBOL Segmentation

Concepts and Terms
These the concepts and terms are relevant to binding and linking:

• Memory Areas

• Code and Data Blocks

• Binding or Linking

• Loadfiles, Linkfiles, and Processes

• Fixup

Code and Data Blocks
The compiler accepts HP COBOL source code and produces code and data blocks.
The code blocks can call each other.

Topics:

• How the Compiler Produces Code and Data Blocks

• How One Code Block Calls Another

Note. Most of this section applies to the Guardian environment. If you are binding HP COBOL
programs in the OSS environment, see Section 19, Using HP COBOL in the OSS Environment
and Mixed-Language Programs.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-1

Issues Related to Binding and Linking Code and Data Blocks
How the Compiler Produces Code and Data Blocks
To understand how the compiler produces code and data blocks from HP COBOL
source code, you must know about separately compiled programs and compilation
units.

A separately compiled program is an HP COBOL source program that is not nested
within any other program. It can have other HP COBOL source programs nested within
it.

A compilation unit is a collection of source statements presented to a compiler in one
compilation. It contains one or more separately compiled programs.

For each compilation unit, the compiler produces a single object file. For each
separately compiled program in the compilation unit, the object file contains one
relocatable code block for the outermost source program, one relocatable code block
for each program nested inside the outermost source program, and one or more data
blocks. Each nest of programs produces an indivisible nest of code blocks. In the
object file, the code and data blocks exist solely as named code blocks and data
blocks; they do not have a collective identity.

Figure 24-1. Code and Data Blocks

Compiler

Separately compiled program A

Separately compiled program B

Nested program C

Nested program D

Code
Block

B

Code
Block

C

Code
Block

D

Code
Block

A

Data
Block

Data
Block

Data
Block

Data
Block

Data
Block

VST702.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-2

Issues Related to Binding and Linking Code and Data Blocks
These compilers also produce one object file per compilation unit:

• TNS HP C
• TNS HP C++
• FORTRAN
• Pascal
• TAL
• Native (TNS/R and TNS/E) HP C
• Native (TNS/R and TNS/E) HP C++
• pTAL

The object file contains one relocatable code block for each procedure and zero or
more data blocks.

How One Code Block Calls Another
At the source program level, one program calls another with a CALL or ENTER
statement; at the object program level, the calling program’s code block calls the called
program’s code block.

A CALL statement calls another COBOL program. Each CALL statement in a
compilation unit makes either an internal reference (calling another program in the
compilation unit) or an external reference (calling a program that is not part of the
compilation unit). In Figure 24-2, the first CALL statement makes an internal reference,
and the second CALL statement makes an external reference.

An ENTER statement calls a non-COBOL program. Each ENTER statement makes an
external reference.

Figure 24-2. Internal and External References

COBOL Source File

IDENTIFICATION DIVISION.
 PROGRAM-ID. X.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
 . . .
 CALL "Y".
 CALL "Z".

IDENTIFICATION DIVISION.
 PROGRAM-ID. Y.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

Code
X

Data Data

COBOL Object File

Code
Y

Data Data≡

Internal ReferenceCompiler

≡

External Reference (to Z)

VST703.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-3

Issues Related to Binding and Linking Binding or Linking
When external references in two code blocks are resolved to entry points in each other,
the two code blocks are called “crossbound.” The system code block and the system
library blocks are all crossbound—a routine in any of these blocks can call a routine in
any other of these blocks. The blocks of a multiblock user code space are all
crossbound, as are the blocks of user library space.

Binding or Linking
Binding (the TNS term) or linking (the native term) is the operation of examining,
collecting, and modifying code and data blocks from one or more object files to
produce a single object file. Two important aspects of binding or linking a program are:

• Validating references to other programs or routines—determining whether the
actual parameters of the calling program or routine correspond to the formal
parameters of the called program or routine.

• Resolving references to other programs or routines—generating the code that will
transfer control from the calling program or routine to the called program or routine
at execution time.

A typical compilation resolves some references and leaves others unresolved. (In
Figure 24-2, the reference to program Y is resolved, and the reference to program Z is
unresolved.)

Topics:

• Binder

• BINSERV

• BIND

• Linker

• How the Compiler Validates and Resolves References

• Unresolved References

Binder

The COBOL85 compiler validates and resolves internal and external references with
the help of Binder, the HP object file building utility. Binder accepts commands that
direct it to read, operate on, and produce object files. Binder has two forms, BINSERV
and BIND.

Note. This topic applies only to the COBOL85 compiler. The NMCOBOL compiler does not
use Binder, it uses the Linker.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-4

Issues Related to Binding and Linking Binding or Linking
BINSERV
BINSERV, which runs as a separate process during a compilation, performs these
tasks:

• Builds lists of references that must be resolved

• Tries to locate the required code blocks and reports its success or failure to do so

• Gives the compiler information about the code blocks it finds. This information
enables the compiler to verify that:

° The list of actual parameters that the calling program is passing to the called
program is appropriate

° The language attribute of the code block matches the language specification in
the CALL or ENTER statement

• Either creates an object file or reports its failure to do so

BIND
BIND, which is interactive, allows you to examine, modify, and combine object files.
Suppose you have an object file containing blocks from several programs and you
want to replace one version of program Q with another version. Using BIND, you can
copy all blocks but those of program Q into a new object file and then copy the new set
of blocks for the new version of Q into the new object file.

For more information on Binder, see the Binder Manual.

Linker

The NMCOBOL compiler validates and resolves internal and external references with
the help of the COBOLFE process and the linker. The linker accepts commands that
direct it to read, operate on, and produce object files.

The linker links one or more object files to produce either a loadfile or a linkfile.

The linker that the NMCOBOL compiler uses depends on the CALL-SHARED, NON-
SHARED, and SHARED directives:

Note. This topic applies only to the NMCOBOL compiler. The COBOL85 compiler does not
use the linker, it uses Binder.

Directive Linker Linker Documentation

NON-SHARED nld utility nld Manual

CALL-SHARED
SHARED

ld utility ld Manual
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-5

Issues Related to Binding and Linking Binding or Linking
How the Compiler Validates and Resolves References
The compiler translates each CALL statement and each ENTER statement in an
HP COBOL source program into an external reference. When the compiler generates
an implicit call to a routine that is to execute in another memory area, the parameters
match those expected by the routine. When you explicitly call a routine that is to
execute in another memory area (with an ENTER or X/Open CALL statement), the
compiler must verify that the parameters in the ENTER or X/Open CALL statement
match those expected by the external routine. To verify this, the compiler searches for
the routine (and as Figure 24-3 illustrates):

• If the ENTER or X/Open CALL statement identifies the file that contains the routine
with a mnemonic name, the compiler searches that file only. If the compiler does
not find the routine in that file, it reports an error.

• If the compiler does not identify the file that contains the routine, it searches for the
routine in the files on the primary search list if one exists. (One or more SEARCH
directives build the primary search list; see Putting an Object File on the Primary
Search List.)

• If the compiler does not find the routine in a file on the primary search list, it
searches for the routine in the user library, if one exists; see Making an Object File
the User Library.

• If the compiler does not find the routine in the user library, it searches for the
routine in the files on the tertiary search list if one exists. (One or more CONSULT
directives build the tertiary search list; see Putting an Object File on the Tertiary
Search List.)

• If the compiler does not find the routine in a file on the tertiary search list, it
searches for the routine in the file COBOLEXT (for a TNS program) or
NMCOBEXT, ZCOBSRL, and ZCRESRL (for a native program).

• If the compiler does not find the routines in COBOLEXT or NMCOBEXT, it reports
an error.

If the compiler cannot validate the parameters of an ENTER statement in a program
unit, it does not produce an object file for that program unit.

When the compiler generates an implicit reference to one of its own run-time routines
or to an operating system routine, the compiler leaves these references unresolved so
that the code of the corresponding routines will execute in system code space.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-6

Issues Related to Binding and Linking Binding or Linking
Figure 24-3. How External References Are Resolved

Enter

Exit

Primary
search list?

User library?

Tertiary
search list?

Search files on
primary search

list in order

Search user
library

Search files on
tertiary search

list in order

Search
COBOLEXT,
NMCOBEXT,

ZCOBSRL, or
ZCRESRL

Mnemonic
name?

TRUE Search specified
file

Find
 routine?

FALSE

TRUE

TRUE

FALSE

TRUE

TRUE

FALSE

TRUE

TRUE

FALSE

TRUE

TRUE

FALSE Issue error
message

FALSE

FALSE

FALSE (always false for native programs)

FALSE

Issue error
message

Find
 routine?

Find
 routine?

Find
 routine?

Find
 routine?

VST704.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-7

Issues Related to Binding and Linking Loadfiles, Linkfiles, and Processes
Unresolved References
If an external reference in an object file refers to an entry point that is not among the
code blocks in that object file, the external reference is called unresolved. Unresolved
external references cause warning messages, but are allowed. They are expected to
be resolved by the fixup operation of the system loader. If the compiler cannot resolve
an external reference to a non-COBOL routine, it must at least be able to validate it.

When the compiler processes a CALL statement that calls another COBOL program,
but cannot find the other COBOL program, it delivers a warning message and
produces an object file.

When the compiler processes an ENTER statement that calls a routine, but cannot find
the routine, it delivers an error message and does not produce object code for the
calling program. The reason that the compiler cannot produce object code for the
calling program is that the compiler is unable to verify that the parameters of the call
match those expected by the routine (and, where necessary, to generate code that
converts parameters in the HP COBOL program into the form required by the routine).

For more information, see:

• How the Compiler Resolves Unqualified References

• How the Compiler Resolves Unqualified References.

Loadfiles, Linkfiles, and Processes
The single object file that results from binding or linking is a loadfileloadfile if exactly
one program in it is a main program; otherwise, it is a linkfile

A single execution of a loadfileloadfile is called a process. The operating environment
creates a process by loading a loadfileloadfile into memory, creating entries for the
process in various operating environment tables, and transferring control to the entry
point of the main routine of the process.

In memory, a process occupies code spaces, data spaces, and a process file segment.
The code spaces and data spaces (memory areas) are described in Table 13-2. The
process file segment is an extended data segment available only to the operating
environment, which uses it for things such as managing the status of communication
with files.

Fixup
The first time you instruct the operating environment to execute a loadfile as a process,
the system loader performs a fixup operation on the file and attempts to resolve all
unresolved external references.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-8

Issues Related to Binding and Linking Binding or Linking HP COBOL Programs
External references call routines in:

• Other code blocks in the same user code space or user library space
• Code blocks in user library space
• The system code space
• Code blocks in system code extension

To enable the system loader to fix up references to routines in user library space, you
must provide the name of the user library file. The three ways to do this, in order of
preference, are:

1. Designate the file in a LIBRARY directive in the compilation.

2. Designate the file in a LIB option in the RUN command.

3. Designate the file as the second file name in the first parameter (file-names) of
a call to the NEWPROCESS routine.

If the system loader cannot resolve an external reference, it reports that there are still
unresolved externals (?EXT: name). The process executes until it attempts to call an
unresolved external procedure, and then it calls the selected debugger (see Debugger
Selection).

The fixup operation is the reason that the first execution of a newly compiled program
is less efficient than subsequent executions. After the system loader has performed the
fixup, subsequent executions of the program do not need this operation until the
contents of the loadfile are changed or the operating environment is changed.

This run-time resolution helps to reduce object file size and compilation times. It also
reduces the likelihood that you will have to recompile an HP COBOL program when a
run-time routine that it calls is enhanced or corrected.

Binding or Linking HP COBOL Programs
A TNS HP COBOL program can be bound automatically, as part of compilation, or with
BIND, after compilation.

A native HP COBOL program can be linked automatically, as part of compilation: If you
specify the RUNNABLE or SEARCH directive when creating a non-PIC loadfile, the
NMCOBOL compiler also calls the nld utility. If you specify the RUNNABLE or
SEARCH directives when creating a PIC loadfile (CALL-SHARED) or when creating a
DLL library (SHARED), the NMCOBOL compiler also calls the ld utility. If you do not
link the program automatically, you must use the nld or ld utility to link it after
compilation.

Topics:

• Binding or Linking Automatically

• Binding or Linking Programs to Be Called Dynamically

• Binding With BIND
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-9

Issues Related to Binding and Linking Binding or Linking Automatically
Binding or Linking Automatically
By default, the COBOL85 compiler automatically binds the program, interacting with
the BINSERV process as explained under Binder.

If you specify the RUNNABLE directive but not the CALL-SHARED or SHARED
directive, the NMCOBOL compiler automatically links the program, interacting with the
COBOLFE process and the nld utility.

If you specify the RUNNABLE directive and either the CALL-SHARED or SHARED
directive, the NMCOBOL compiler automatically links the program, interacting with the
ld utility.

For simplicity, this explanation attributes actions of BINSERV, COBOLFE, and the nld
utility to the compiler.

Unless all the external routines that your program calls are in the file COBOLEXT (for
TNS programs) or NMCOBEXT, ZCOBSRL, or ZCRESRL (for native programs), you
must tell the compiler which object files contain the external routines that your program
calls. There are several ways to tell the compiler about a specific object file:

• Establish a mnemonic name for the object file and use it in CALL or ENTER
statements.

• Put the object file’s name on the primary search list.

If the COBOL85 compiler finds an external routine in an object file on the primary
search list, it validates the routine’s parameters and includes the routine in your
program’s object file.

If the NMCOBOL compiler finds an external routine in an object file on the primary
search list, it validates the routine’s parameters and includes the entire object file in
your program’s object file.

• For a TNS program, make the object file the TNS user library (the only file on the
secondary search list). For a native program, make the object file the user library.

If the COBOL85 compiler finds an external routine in the user library, it validates
the routine’s actual parameters but does not include the routine in your program’s
object file. The system loader resolves the routine at fixup.

You can only specify one user library, so if your program calls external routines
from more than one object file (excluding COBOLEXT or NMCOBEXT), you must
establish mnemonic names for the other object files or put each of them on a
search list.

• Put the object file’s name on the tertiary search list.

If the compiler finds an external routine in an object file on the tertiary search list, it
validates the routine’s actual parameters but does not include the routine in your
program’s object file. The system loader resolves the routine at fixup.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-10

Issues Related to Binding and Linking Binding or Linking Automatically
You can use a predefined DEFINE, =_OBJECT_SEARCH, to specify one or more
subvolumes for the compiler to search for unqualified object files (see Specifying
Subvolumes to Be Searched for Unqualified Files).

Topics:

• Establishing a Mnemonic Name for an Object File

• Putting an Object File on the Primary Search List

• Making an Object File the User Library

• Putting an Object File on the Tertiary Search List

Establishing a Mnemonic Name for an Object File
If a CALL or ENTER statement contains a mnemonic name that specifies the object file
that contains the called program, the compiler searches that file (and only that file) for
the specified routine. If the compiler does not find the routine, it reports an error.

You establish a mnemonic name for an object file with a File-Mnemonic clause in the
SPECIAL-NAMES paragraph of the Environment Division. Suppose that the object file
has the system file name MYLIB and you want to give it the mnemonic name HERLIB.
The File-Mnemonic clause is:

FILE "MYLIB" IS HERLIB.

Suppose that MYLIB contains a COBOL program named APROG. Your HP COBOL
program can call APROG with the statement:

CALL "APROG" OF HERLIB.

Suppose that MYLIB is a TNS HP COBOL program and it contains a FORTRAN
program named APROG. Your HP COBOL program can call APROG with the
statement:

ENTER FORTRAN "APROG" OF HERLIB.

Quotation marks around the program name (APROG) are not required, but are
recommended. If, in some eventual program maintenance, someone adds a variable
named APROG to a program that already calls a program named APROG, and the
name APROG is not in quotation marks, the compiler assumes that APROG refers to
the variable. At run time, if the variable APROG does not contain the name of a valid
program that is included in the object file, the program terminates with the error
message “Called program not found.” If APROG is enclosed in quotes, the compiler
recognizes it as a program name rather than a variable.

Note. MYLIB must be a PIC file if the object file being created will be a PIC file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-11

Issues Related to Binding and Linking Binding or Linking Automatically
Putting an Object File on the Primary Search List
If a CALL or ENTER statement does not contain a mnemonic name that specifies the
object file that contains the called program, the compiler searches for the called routine
in the object files on the primary search list. If the COBOL85 compiler finds the routine,
it validates the routine’s actual parameters and includes the routine in your object file. If
the NMCOBOL compiler finds the routine, it validates the routine’s actual parameters
and includes the entire object file (from the primary search list) in the object file that it is
creating.

You can put one or more object files on the primary search list with one or more
SEARCH directives. The first SEARCH directive establishes the primary search list
and adds files to it in the specified order. Subsequent SEARCH directives append files
to the primary search list in the specified order. The compiler searches the object files
of the primary search list in order. If the compiler finds the routine, it stops searching for
it.

Suppose that the object code for most of the external routines that your TNS
HP COBOL program calls is in four different object libraries: CBLRTNS, an HP COBOL
object file; CRTNS, an HP C object file; FTNRTNS, a FORTRAN object file; and
PSCRTNS, a Pascal object file. Suppose that most of the external routines that your
program calls are in CBLRTNS, almost equal numbers are in FTNRTNS and CRTNS,
and very few are in PSCRTNS. For greatest efficiency, put CBLRTNS first on the
primary search list, then FTNRTNS and CRTNS (in either order), and finally
PSCRTNS. You can use the directive:

?SEARCH CBLRTNS,FTNRTNS,CRTNS,PSCRTNS

Alternatively, you can use multiple SEARCH directives, which can appear anywhere in
your HP COBOL program. This code produces the same primary search list as the
preceding directive:

?SEARCH CBLRTNS
?SEARCH FTNRTNS,CRTNS
?SEARCH PSCRTNS

If you put a SEARCH directive on the compilation command line when you compile
your program, the compiler sees that SEARCH directive first, so the primary search list
begins with that SEARCH directive’s object files.

Making an Object File the User Library
If the compiler does not find an external routine in any of the files on the primary
search list, it searches for the routine in the user library. A loadfile can have only one
user library.

If the compiler finds the routine in the user library, it validates the routine’s actual
parameters but does not include the routine in your object file. The system loader
resolves the routine at fixup. If the compiler finds the routine in the user library, it stops
searching for it.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-12

Issues Related to Binding and Linking Binding or Linking Automatically
To make a TNS object file the user library, see LIBRARY. To make a native object file
the user library, see Specifying a User Library.

Putting an Object File on the Tertiary Search List
If the compiler does not find an external routine in the user library, it searches for the
routine in the object libraries on the tertiary search list. If the compiler finds the routine
in a library on the tertiary search list, it validates the routine’s actual parameters but
does not include the routine in your object file. The system loader resolves the routine
at fixup.

You can put one or more object libraries on the tertiary search list with one or more
CONSULT directives. The first CONSULT directive establishes the tertiary search list,
adding files to it in the specified order. Subsequent CONSULT directives append
libraries to the tertiary search list in the specified order. The compiler searches the
libraries of the tertiary search list in order. If the compiler finds the routine, it stops
searching for it. Object libraries on the tertiary search list are not bound into the
loadfile.

Suppose that the files RTNS1985 and RTNS1988 contain object code for external
routines that your HP COBOL program calls, and that most of the external routines that
your program calls are in RTNS1988. For greatest efficiency, put RTNS1988 first on
the tertiary search list. You can use the directive:

?CONSULT RTNS1988,RTNS1985

You could also use multiple CONSULT directives, which can be anywhere in your
HP COBOL program. This code produces the same tertiary search list as the
preceding directive:

?CONSULT RTNS1988
?CONSULT RTNS1985

If you also put a CONSULT directive on the compilation command line when you
compile your program, the compiler sees it first, so the tertiary search list begins with
the object libraries in the CONSULT directive on the compilation command line.

If the compiler does not find the routine in any object file on the tertiary search list, it
searches for the routine in the file COBOLEXT (for TNS programs) or NMCOBEXT,
ZCOBSRL, or ZCRESRL (for native programs). If BINSERV or the NMCOBOL
compiler does not find the routine in COBOLEXT, NMCOBEXT, ZCOBSRL, or
ZCRESRL, the compiler reports an error.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-13

Issues Related to Binding and Linking Binding or Linking Programs to Be Called
Dynamically
Binding or Linking Programs to Be Called Dynamically
A dynamic call is one in which the name of the called program is not known until run
time (see Dynamic Calls). Every program that a dynamic call could possibly call must
be bound into the run unit or user library before you execute the program. There are
several ways to do this:

• Compile all the programs in the run unit from a single source file.

• For a TNS program, use BIND to build the required program units into the run unit
or user library (see the Binder Manual).

• For a native program, use the linker to build the required program units into the run
unit.

• Refer to each possible called program explicitly in the source program—in a
paragraph that is not executed—and then call the ones you want with CALL
identifier statements.

At run time, if identifier specifies the name of a program that is unavailable, the
run-time routines raise an exception.

Binding With BIND

You can also bind a TNS HP COBOL program with BIND (the interactive form of
Binder, the HP object file building utility). One of the most common reasons to use
BIND is to replace one version of a program within an object file with a different version
of that program.

Topics:

• Two Ways to Run BIND

• Replacing a Code Block With One From Another Language

• Replacing a Code Block With One With Different Parameters

Two Ways to Run BIND
Suppose you have an object file, BIGOBJ, made up of 15 separately compiled
HP COBOL programs. You have recompiled one of them, PART7, into the object file
OPART7. You want to create a new copy of BIGOBJ in which the old PART7 is
replaced by the new PART7.

You can run BIND interactively, giving BIND commands from a terminal (as in
Example 24-1), or you can run BIND noninteractively, letting it read its commands from
an OBEY command file (as in Example 24-2). The BIND prompt is @.

Note. This topic applies only to TNS programs. For native programs, see the nld Manual or
the ld Manual.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-14

Issues Related to Binding and Linking Binding With BIND
In Example 24-2, the ADD command adds all the code and data blocks from BIGOBJ
to the BIND lists, the REPLACE command replaces all the code and data blocks in the
BIND lists that match blocks in OPART7, the BUILD command builds a new object file
named NUBIGOBJ, and the EXIT command exits BIND.

To direct BIND to use an OBEY command file, either start the BIND process with a
RUN command that specifies the OBEY command file as the IN file, or use an OBEY
command that specifies the OBEY command file to the executing BIND process. For
more information about OBEY command files, see the Guardian User’s Guide.

Replacing a Code Block With One From Another Language
BIND allows you to replace one code block with another without regard for the
language attribute of either. This is a potential source of problems, because not all
languages have the same protocol for passing string parameters.

HP COBOL uses the TAL protocol for passing string parameters; that is, HP COBOL
passes only the character-string (by reference), not its length. FORTRAN uses its own
FORTRAN protocol, passing a CHARACTER parameter and its length.

If you use BIND to replace an HP COBOL code block (or any code block that uses TAL
protocol) with a FORTRAN code block, any CHARACTER parameters will not have the
associated lengths that the FORTRAN routine expects.

The reverse case—replacing a FORTRAN code block with an HP COBOL code block
(or any code block that uses TAL protocol)—is not a significant problem. The additional
stack locations used for string-length values waste some stack space, but are ignored.

Example 24-1. Interactive BIND Session

:BIND
Binder - OBJECT FILE Binder - T9621D20 - (8JUN92) SYSTEM \AB
@ADD * FROM BIGOBJ
@REPLACE * FROM OPART7
@BUILD NUBIGOBJ
@EXIT

Example 24-2. OBEY File Equivalent of Example 24-1

1 ADD * FROM BIGOBJ
2 REPLACE * FROM OPART7
3 BUILD NUBIGOBJ
4 EXIT
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-15

Issues Related to Binding and Linking Binding or Linking Mixed-Language Programs
Replacing a Code Block With One With Different Parameters
Unless you have explicitly disabled parameter checking, BIND reports an error if you
try to replace one code block with a code block that:

• Expects a different number of parameters

• Has has parameters that do not match those of the calling code block in size or
mode (content or reference)

For more information about the preceding topics and the many other features of BIND,
see the Binder Manual.

Binding or Linking Mixed-Language Programs
If you intend to bind or link routines written in different languages into a single object
file, you must either compile all the routines for the CRE or compile all the routines to
use their own language-specific environments. The former strategy is highly
recommended.

Before binding a mixed-language program, see these documents:

Accelerating TNS HP COBOL Programs

The Accelerator enables you to increase the execution speed of programs that run on
TNS/R systems. The Accelerator optimizes TNS programs to take advantage of the
TNS/R architecture. Most TNS object code that has been accelerated runs faster on
TNS/R systems than TNS object code that has not been accelerated. Most programs
written for TNS systems do not require changes to run on TNS/R systems, either with
or without acceleration.

The Accelerator takes a TNS loadfile as input and produces an accelerated object file
as output. The accelerated object file contains both the original TNS code and the
logically equivalent optimized RISC instructions—accelerated object code.

Program Type Document

TNS Binder Manual

Native non-PIC nld Manual

Native PIC ld Manual

Note. This topic applies only to TNS programs. Native HP COBOL programs do not need to
be (and cannot be) accelerated. Consider converting your TNS HP COBOL program to TNS/R
native mode rather than accelerating it—see Section 33, Migrating TNS Programs to Native
Programs.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-16

Issues Related to Binding and Linking Designing Programs With Large Amounts of Code
To accelerate an HP COBOL program, follow these steps:

1. Compile and bind the program.

2. Debug the program.

3. Run the Accelerator. If the Accelerator reports an error, the Accelerator does not
produce an output file. Correct the error and run the Accelerator again.

4. If the program contains embedded SQL/MP or SQL/MX statements, run the
SQL/MP or SQL/MX compiler.

5. Perform final testing on the accelerated program.

See the Accelerator Manual for a complete description of accelerating programs for
TNS/R systems. Topics covered include:

• Determining which programs to accelerate
• Preparing programs for the Accelerator
• Specifying Accelerator AXCEL command line syntax
• Setting Accelerator options
• Increasing the execution speed of accelerated programs
• Debugging accelerated programs

Designing Programs With Large Amounts of
Code

A TNS run unit that includes HP COBOL code blocks consists of up to 16 code
segments of up to 128 KB each. Each code segment contains one or more code
blocks, a PEP table, and a block of space reserved for the XEP table, as Figure 24-4
illustrates. (Figure 24-4 is not drawn to scale; it shows components, not relative sizes.)

Note. This topic applies only to TNS programs. The code space limit for a native HP COBOL
program cannot be changed (it is 32 megabytes).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-17

Issues Related to Binding and Linking Separate Programs
The maximum size of a code block depends on the language. The maximum size of an
HP COBOL code block is 128 KB minus the number of bytes that the PEP and XEP
tables occupy. If any HP COBOL code block in a segment exceeds 64 KB, the PEP
table for that segment is automatically allocated 1024 bytes.

If your program does not fit in one code block, do one or more of:

• Design the program as a family of Separate Programs

• Design the program as a family of Separate Processes

• Put eligible routines into a file, compile it, and declare it the TNS User Library

• Compile the program with the directive LESS-CODE 1
(see LESS-CODE Directive)

It is easier to design a program as a family of separate programs or processes than it
is to design a large, monolithic program only to find that it does not fit into one code
block, and you must break it into separate programs or processes.

Separate Programs
If you can divide your programming task into a group of HP COBOL programs, one
program can use the CALL statement to call others, and the programs can share
resources. (For information about how programs share resources, see How Programs
Share Resources.)

You can compile the individual programs as separately compiled programs in a single
compilation, or you can compile them in multiple compilations and then use BIND to
bind them.

Figure 24-4. Run Unit Containing HP COBOL Code Blocks

Code Block

PEP Table

XEP Table

Code Segment

Code Block

PEP Table

XEP Table

Code Segment

Code Block

PEP Table

XEP Table

Code Segment

Up to 16

... Up to 64K
words

Code Block

Code Block
Code Block

VST705.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-18

Issues Related to Binding and Linking Separate Processes
Separate Processes
You can break a batch program into a requester and one or more servers. In a
Pathway environment, servers can have their own servers. A Pathway server can
create another process and communicate with it through a READ statement with a
PROMPT phrase (an HP COBOL extension).

For information about COBOL85 requester-server pairs, see Simple Server Example.

TNS User Library
If your program does not fit in user code space, you can put some of the routines in the
TNS user library. The routines will then execute in an additional code space called user
library space. User library space consists of one or more (a maximum of 16) separate
user library code segments of 128 KB each.

The system loader resolves references to routines in user library space at fixup. To
enable the system loader to fix up references to routines in user library space, you
must provide the name of the user library file (see Fixup).

Topics:

• Routines That Can Be Placed in the TNS User Library

• Best Candidates for the TNS User Library

• Putting Routines in the TNS User Library

Routines That Can Be Placed in the TNS User Library
The language in which a routine is written determines whether you can place it in the
TNS user library (whether it can execute in user library space):

Language in
Which Routine
is Written

Routine Can Be Placed in the TNS User Library
(Routine Executes in TNS User Library Space)

HP COBOL Yes, if the ENV LIBRARY directive is specified

HP C Yes, if the ENV LIBRARY pragma is specified

FORTRAN Yes, but then it cannot have any COMMON, DATA, or SAVE statements

Pascal No

TAL Yes, if no global blocks are defined
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-19

Issues Related to Binding and Linking TNS User Library
You can compile an HP COBOL routine with the ENV LIBRARY directive and put it into
the user library if the program satisfies these criteria:

• It is not a main program.
• It is an initial program (its PROGRAM-ID paragraph specifies INITIAL).
• It is a separately compiled program (it is not embedded in another program).
• It does not contain any other programs.
• It does not specify the GLOBAL phrase on any level-01 record descriptions.
• It does not reference any external data items or external files.
• It does not have an Extended-Storage Section.
• It does not have a PROGRAM COLLATING SEQUENCE clause.

If a routine does not meet the preceding criteria and you try to compile it with the ENV
LIBRARY directive, the compiler issues a diagnostic message.

If you compile a routine with the ENV LIBRARY directive:

• ASSIGN and PARAM commands for the files in the routine are ignored.

• The compiler does not create data blocks or references to data blocks for the
routine. Instead, the operating environment creates these at run time. The routine
requires more time to start when called and might execute slightly more slowly.

• The routine, which executes in user library space, cannot call routines that execute
in user code space.

Best Candidates for the TNS User Library
Of the routines that you can place in the TNS user library (see Routines That Can Be
Placed in the TNS User Library), the best candidates are the routines that many
programs share. Putting commonly used routines in the TNS user library packages
them neatly and can reduce the storage space required for object code on disk and in
main memory.

Putting Routines in the TNS User Library
To put routines in TNS user library space:

1. Put the source code for the routines in a file.

2. Compile the file of routines with the directive ENV LIBRARY.

3. Either make the resulting object file the user library (see Making an Object File the
User Library), or use BIND to bind the resulting object file to the existing TNS user
library (see the Binder Manual).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-20

Issues Related to Binding and Linking Designing Programs With Large Amounts of Data
Designing Programs With Large Amounts of
Data

For TNS programs, the address-space limitation is 128 KB. TNS HP COBOL reserves
the upper 64 KB of the address space for its own use and reserves some of the lower
64 KB also. If the space reserved for your program data (user data space) is not
enough, you can put some data in the Extended-Storage Section (user extended
space). You can also reduce code size with the directive LESS-CODE 1, but at the
expense of program execution time.

The data space limit of approximately 60 KB sections of a TNS process does not apply
to native HP COBOL programs. The Working-Storage Section and the Extended-
Storage Section are the same in native HP COBOL. There is a limit on what is called
the “small data space,” but you can avoid that limit by using the directive LARGEDATA.

Topics:

• Extended-Storage Section

• LESS-CODE Directive

Extended-Storage Section

For TNS programs, data declared in the Extended-Storage Section is stored in user
extended space. The main HP COBOL program statically allocates a single segment of
user extended space in which the Extended-Storage Sections of the component
HP COBOL programs are consolidated. The size of user extended space is the sum of
the sizes of the Extended-Storage Sections of the component programs, plus some
space that the HP COBOL run-time environment allocates and manages. The
maximum size of the segment that the main HP COBOL program allocates is
134,217,726 bytes.

When declaring data in the Extended-Storage Section, be aware that:

• Instructions that operate on items in the Extended-Storage Section take somewhat
more execution time and storage space.

• An individual data item in the Extended-Storage Section (including a record)
cannot exceed 134,217,726 bytes.

• A table in the Extended-Storage Section cannot exceed 134,217,726 bytes,
because it must be contained within a record.

Note. This topic applies only to TNS programs.

Native HP COBOL does not need an Extended-Storage Section. The NMCOBOL compiler
handles any data items that are described in the Extended-Storage Section as if they were
described in the Working-Storage Section.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-21

Issues Related to Binding and Linking LESS-CODE Directive
• Records declared in the File Section are allocated in user data space, but you can
move them to the Extended-Storage Section (user extended space) and back
again with the MOVE statement, the INTO clause of the READ statement, or the
FROM clause of the WRITE or REWRITE statement.

• In the HP COBOL environment, the CHECKPOINT statement cannot process data
items declared in the Extended-Storage Section.

• The default access mode for data items in the Extended-Storage Section is
EXTENDED-STORAGE (extended, or 32-bit, addressing). If these data items are
passed as parameters, the corresponding formal parameters must also be 32-bit-
addressed.

• If an HP COBOL program calls a routine (COBOL or non-COBOL) that uses the
environment routines ALLOCATESEGMENT and USESEGMENT to alter user
extended space, then any extended-storage context the HP COBOL program had
is lost upon return from the called program.

If you call USESEGMENT, you must save the value of the segment ID number of
the segment previously in use (USESEGMENT returns this value) and restore that
value before returning to the COBOL code.

LESS-CODE Directive
When a compiled program is larger than 128 KB, you can recompile it with the directive
LESS-CODE 1 to reduce its object code. Because the directive LESS-CODE 1 also
slows program execution speed, however, LESS-CODE 1 is recommended only for
infrequently called programs.

The LESS-CODE directive applies to every program that it precedes it and every
program that contains it.

If the LESS-CODE directive applies to a main program, the compiler does not generate
code to initialize the Working-Storage Section or Extended-Storage Section. The object
program executes faster, but the object file is significantly larger because it includes
the data for the Working-Storage Section and Extended-Storage Section.

If the LESS-CODE directive applies to a subprogram, the compiler generates code to
initialize the Working-Storage Section, but not the Extended-Storage Section, when the
program is initialized. (An initial program is initialized every time it is called; a noninitial
program is initialized only if it is canceled with a CANCEL statement and then called
with a CALL statement.) To initialize the Extended-Storage Section, the program calls
the operating system routine RESETMEMORY. The program executes more slowly
because calling RESETMEMORY (which requires input-output) takes longer than
executing code to initialize the Extended-Storage Section. The object program is also
larger.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-22

Issues Related to Binding and Linking COBOL Segmentation
COBOL Segmentation

HP COBOL ignores segment numbers, but issues warning messages for transfers of
control forbidden by the segmentation rules of the ANSI COBOL Standard. HP COBOL
also issues warning messages for altered GO TO statements in independent
segments, because such alterations will not be restored when control returns to the
independent segments.

Note. The 1985 COBOL Standard classifies the segmentation module as obsolete, so you
are advised not to use it.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-23

Issues Related to Binding and Linking COBOL Segmentation
HP COBOL Manual for TNS and TNS/R Programs—522555-006
24-24

25
Executing and Debugging
HP COBOL Programs

After you have compiled and bound your program, you can execute and, if necessary,
debug it.

Topics:

• Preparing to Execute an HP COBOL Program

• Executing an HP COBOL Program

• Getting a Program to Enter Debugging Mode

Preparing to Execute an HP COBOL Program
If your program has certain characteristics, or if you want certain things from a
particular execution of your program, you must prepare appropriately before you
execute your program.

Note. This section applies to the Guardian environment. If you are compiling HP COBOL
programs in the OSS environment, see Running HP COBOL Programs.

Table 25-1. Conditions Requiring Pre-Execution Preparation (page 1 of 2)

Condition Preparation Required Before Program Execution

Program assigns HP COBOL file
names to DEFINE names.

Add DEFINEs that have those DEFINE names (see
Adding DEFINEs).

Program assigns HP COBOL file
names to system file names and
you want to override those
assignments.

Override those assignments (see Overriding File
Assignments Made at Compilation Time).

Program creates some of the
files it uses and you want to
specify their characteristics.

Specify their characteristics (see Specifying
Characteristics of Files That a Program Creates).

Program has a DEBUGGING
MODE clause and debugging
declaratives.

Enable the debugging declaratives (see Enabling
Debugging Declaratives).

Program was compiled with a
NONSTOP directive that you
want to override.

Override the NONSTOP directive (see Overriding the
NONSTOP Directive).

You do not want your home
terminal to be the default input-
output device.

Specify the default input-output device that you want
(see Specifying a Default Input-Output Device).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-1

Executing and Debugging HP COBOL Programs Adding DEFINEs
Preparation commands stay active until you override them, clear them, or end your
TACL session.

Adding DEFINEs
If your program assigns COBOL file names to DEFINE names, you must add DEFINEs
that have those DEFINE names before executing your program. You add a DEFINE
with the TACL command ADD DEFINE. Before you can add DEFINEs, you must set
your TACL process DEFMODE attribute to ON (the default is OFF) with the TACL
command:

SET DEFMODE ON

Topics:

• DEFINE Names

• DEFINE Attributes

You want the operating
environment to return control to
your program if a certain printer
is unavailable or out of paper.

Specify this preference (see Providing for an
Unavailable Printer).

Program declares external
switches in the SPECIAL-
NAMES paragraph and you want
some of them to be ON when
your program begins to execute.

Turn on switches (see Turning On External Switches).

You want the program to call a
debugger, rather than ABEND,
after printing any fatal error
messages.

Specify this preference (see Requesting a Debugger
Instead of ABEND).

You want the program to do all of
its input-output in wait mode.

Specify this preference (see Specifying Waited Input-
Output).

You want to establish one or
more sets of preparation
commands for your program and
put a set into effect with a single
command.

Put each set of preparation commands into an OBEY
command file and execute the appropriate OBEY
command file (see Using OBEY Files to Prepare for
Execution).

You want to know what
preparation commands are
already active.

Find out what these commands are (see Finding Out
What Preparation Commands Are Already Active).

You want to change or clear
active preparation commands.

Clear commands (see Changing or Clearing Unwanted
Preparation Commands).

Table 25-1. Conditions Requiring Pre-Execution Preparation (page 2 of 2)

Condition Preparation Required Before Program Execution
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-2

Executing and Debugging HP COBOL Programs Overriding File Assignments Made at Compilation
Time
DEFINE Names
A DEFINE name begins with an equal sign (=) followed by a letter and up to 22
additional characters, which can be letters, digits, hyphens (-), underscores (_), and
circumflexes (^).

DEFINE Attributes
Every DEFINE has a CLASS attribute, which determines its other attributes. For
details, see the section of this manual that explains input-output for the system file that
you want to associate with the DEFINE name:

Overriding File Assignments Made at Compilation Time
To override a file assignment made at compile time—an assignment of a COBOL file
name to a system file name—you use an ASSIGN command.

Suppose that your program, PROG1, assigns the COBOL file name MAJORACCT to
the system file name \AKRON.$SLB.MAJ.ACC with this SELECT clause:

SELECT MAJORACCT ASSIGN TO "\AKRON.$SLB.MAJ.ACC"

When you execute PROG1 and it opens MAJORACCT, the file it actually opens is
\AKRON.$SLB.MAJ.ACC. Suppose that you want MAJORACCT to be another file,
\NICE.$FRNC.SIGNIF.CUST, instead. You can override the original file assignment
before executing PROG1 with the command:

ASSIGN PROG1.MAJORACCT,\NICE.$FRNC.SIGNIF.CUST

When you execute PROG1 and it opens MAJORACCT, the file it actually opens is
\NICE.$FRNC.SIGNIF.CUST rather than \AKRON.$SLB.MAJ.ACC.

Example 25-1. DEFINE Names

=NEWFILE
=FILE25
=TAPE-FILE
=FTEST_RESULTS
=JEFFS^FILE

System file is a ... Section Number and Name

Tape file Section 27, Tape Input and Output

Disk file Section 28, Disk Input and Output

Terminal Section 29, Terminal Input and Output

Printer or spooler Section 30, Printer and Spooler Output
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-3

Executing and Debugging HP COBOL Programs Specifying Characteristics of Files That a Program
Creates
The number of ASSIGN commands the command interpreter can store is limited by the
amount of memory allocated to the command interpreter. The default amount of
memory allocated to the command interpreter is 8 pages, which accommodates up to
19 ASSIGN commands. To allocate more memory to the command interpreter, use the
MEM option in the RUN command that you use to run the command interpreter. Each
additional page of memory allocated to the command interpreter accommodates an
additional 19 ASSIGN commands.

Specifying Characteristics of Files That a Program Creates
If your program is to create a file, you can specify these characteristics of that file with
an ASSIGN command:

• The actual file name with which the COBOL file name is to be associated

• The size of the file (extent size)

• A file code

• An exclusion mode (EXCLUSIVE, SHARED, or PROTECTED) for reading and
writing (but it does not override any exclusion mode that the program explicitly
specifies)

The ASSIGN command Example 25-2 specifies that the file that the program calls
NEWFILE has the system file name \AKRON.$SLB.MAJ.NEWFILE, is allocated five
file pages, is an EDIT file (type 101), and EXCLUSIVE exclusion mode (unless the
OPEN statement that opens the file specifies a different exclusion mode).

You can also specify file characteristics with a DEFINE. For details on specifying file
characteristics with either the ASSIGN command or DEFINEs, see ASSIGN Command
and DEFINEs.

Enabling Debugging Declaratives
If your program has a DEBUGGING MODE clause and debugging declaratives, you
must execute the command PARAM DEBUG ON before executing your program, or
your program will not execute the procedures specified in its debugging declaratives.
The PARAM DEBUG ON command is:

PARAM DEBUG ON

For an explanation of debugging declaratives, see Debugging Declaratives.

Example 25-2. ASSIGN Command

ASSIGN PROG1.NEWFILE,
 \AKRON.$SLB.MAJ.NEWFILE,
 EXT 5,
 CODE 101,
 EXCLUSIVE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-4

Executing and Debugging HP COBOL Programs Overriding the NONSTOP Directive
Overriding the NONSTOP Directive
If your program was compiled with a NONSTOP directive (which causes it to execute
as a process pair), and you want to override the NONSTOP directive (until you have
debugged the program, for example), you must execute the command PARAM
NONSTOP OFF before executing your program. The PARAM NONSTOP OFF
command is:

PARAM NONSTOP OFF

You can use a single PARAM command to do several things; for example, this PARAM
command overrides the NONSTOP directive and enables USE DEBUGGING
SECTIONS:

PARAM NONSTOP OFF, DEBUG ON

For another example of a PARAM command that does several things, see Specifying
Waited Input-Output.

Specifying a Default Input-Output Device
First, verify that you want to specify a default input-output device. The alternative is to
specify separate default input and output devices.

The default input device (or the default input-output device) provides input to
unqualified ACCEPT statements (those without FROM clauses).

The default output device (or the default input-output device) displays run-time
diagnostic messages and output from unqualified DISPLAY statements (those without
UPON clauses).

If a program has unqualified ACCEPT statements, the default input device (or the
default input-output device) must be a disk file, terminal, or process. If a program has
unqualified DISPLAY statements, the default output device (or the default input-output
device) must be a disk file, terminal, process, or printer. If a program has both
unqualified ACCEPT statements and unqualified DISPLAY statements, the default
input-output device must be a terminal or process.

If you want separate default input and output devices, do not specify a default input-
output device. See Specifying Default Input and Output Devices.

In the non-CRE environment, if you want a default input-output device other than your
home terminal, specify it before executing your program with the command PARAM
EXECUTION-LOG. The new default input-output device can be a system file name, a
DEFINE name, or an asterisk (*). In the CRE, specify the default input-output device as
explained in the CRE Programmer’s Guide.

If default input-output device is a system file name, the file must exist before you
execute the program. If the default input-output device is a DEFINE name, you must
add it before you execute the program (see Adding DEFINEs). If default input-output
device is an asterisk, all run-time messages are discarded.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-5

Executing and Debugging HP COBOL Programs Providing for an Unavailable Printer
This command specifies the default input-output device \AKRON.$SLB.MAJ.ERRMSG:

PARAM EXECUTION-LOG \AKRON.$SLB.MAJ.ERRMSG

This command specifies the DEFINE name =ERRORS as the default input-output
device. You must add the DEFINE name =ERRORS before you execute the program.

PARAM EXECUTION-LOG =ERRORS
ADD DEFINE =ERRORS, FILE \AKRON.$SLB.MAJ.ERRMSG

This command causes all run-time messages to be discarded:

PARAM EXECUTION-LOG *

Providing for an Unavailable Printer
If you want the operating environment to return control to your program if a certain
printer is unavailable or out of paper, you must execute a PARAM PRINTER-
CONTROL command before executing your program.

This command specifies that control is to return to the program if the printer assigned
to THE-PRINTER is unavailable or out of paper:

PARAM PRINTER-CONTROL THE-PRINTER

Turning On External Switches
If your program declares external switches in the SPECIAL-NAMES paragraph and
you want any of them to be in the ON position when your program begins to execute,
you must turn them on with PARAM SWITCH-nn commands before executing your
program. You can turn on several switches with a single PARAM SWITCH-nn
command or use multiple PARAM SWITCH-nn commands.

This command turns on SWITCH-1, SWITCH-4, and SWITCH-15:

PARAM SWITCH-1 ON, SWITCH-4 ON, SWITCH-15 ON

This series of commands is equivalent to the previous command:

PARAM SWITCH-1 ON
PARAM SWITCH-4 ON
PARAM SWITCH-15 ON

Requesting a Debugger Instead of ABEND
If you want your program to call a debugger, rather than ABEND, after printing any fatal
error messages, you must execute a PARAM INSPECT ON command before
executing your program. The PARAM INSPECT ON command is:

PARAM INSPECT ON
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-6

Executing and Debugging HP COBOL Programs Specifying Waited Input-Output
Specifying Waited Input-Output
To cause your HP COBOL program to do all its input-output in the wait mode, execute
the command PARAM WAITED-IO ON before you execute the program. For more
information, see PARAM Command.

Using OBEY Files to Prepare for Execution
If you expect to have to enter the same set of preparation commands repeatedly, you
can save time by putting those commands in an OBEY command file. You can create
an OBEY command file with an HP editor (see the example in Running the Compiler).

Suppose that you almost always need to execute these preparation commands before
executing your program, PROG1, so you put them into an OBEY command file named
PREP1:

ADD DEFINE =BIGCUST, FILE \AKRON.$SLB.MAJ.ACC
ASSIGN PROG1.NEWFILE,&
 \AKRON.$SLB.MAJ.NEWFILE,&
 EXT 5, CODE 101, EXCLUSIVE
PARAM NONSTOP OFF
PARAM INSPECT ON
PARAM EXECUTION-LOG \AKRON.$SLB.MAJ.ERRMSG
PARAM PRINTER-CONTROL THE-PRINTER
PARAM SWITCH-1 ON, SWITCH-2 ON

Then you can execute all of the preceding commands with the single command:

OBEY PREP1

Suppose that you occasionally want to execute PROG1 with the file
\NICE.$FRNC.SIGNIF.CUST in place of the file \AKRON.$SLB.MAJ.ACC, have
PROG1 create the file \NICE.$FRNC.SIGNIF.NEWFILE instead of the file
\AKRON.$SLB.MAJ.NEWFILE, and send run-time library routine messages to the file
\NICE.$FRNC.SIGNIF.ERRMSG instead of the file \AKRON.$SLB.MAJ.ERRMSG. You
can put these commands in an OBEY command file named PREP1A:

DELETE DEFINE =BIGCUST
ADD DEFINE =BIGCUST, FILE \NICE.$FRNC.SIGNIF.CUST
ASSIGN PROG1.NEWFILE,&
 \NICE.$FRNC.SIGNIF.NEWFILE,&
 EXT 5, CODE 101, EXCLUSIVE
PARAM EXECUTION-LOG \NICE.$FRNC.SIGNIF.ERRMSG

Then you can execute the commands in PREP1 (some of which you still want) and
override them with the commands in PREP1A with this command series:

OBEY PREP1
OBEY PREP1A
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-7

Executing and Debugging HP COBOL Programs Finding Out What Preparation Commands Are
Already Active
You can achieve the same result with one command, OBEY PREP2, by putting these
commands in an OBEY command file named PREP2:

ADD DEFINE =BIGCUST, FILE \NICE.$FRNC.SIGNIF.CUST
ASSIGN PROG1.NEWFILE,&
 \NICE.$FRNC.SIGNIF.NEWFILE,&
 EXT 5, CODE 101, EXCLUSIVE
PARAM NONSTOP OFF
PARAM INSPECT ON
PARAM EXECUTION-LOG \NICE.$FRNC.SIGNIF.ERRMSG
PARAM PRINTER-CONTROL THE-PRINTER
PARAM SWITCH-1 ON, SWITCH-2 ON

An equivalent command sequence with the PARAM commands combined is:

ADD DEFINE =BIGCUST, FILE \NICE.$FRNC.SIGNIF.CUST
ASSIGN PROG1.NEWFILE,&
 \NICE.$FRNC.SIGNIF.NEWFILE,&
 EXT 5, CODE 101, EXCLUSIVE
PARAM NONSTOP OFF, INSPECT ON, SWITCH-1 ON, SWITCH-2 ON,&
 EXECUTION-LOG \NICE.$FRNC.SIGNIF.ERRMSG,&
 PRINTER-CONTROL THE-PRINTER

Finding Out What Preparation Commands Are Already Active
To find out if any DEFINEs are active, use this TACL command:

INFO DEFINE =*

To find out the characteristics of a DEFINE that you know is active, such as DEFINE
FILE $BEA.LEACH.HYER, use either of these commands:

SHOW DEFINE FILE
SHOW DEFINE *

To find out what ASSIGN commands are active, give the ASSIGN command with no
parameters:

ASSIGN

To find out what PARAM commands are active, give the PARAM command with no
parameters:

PARAM

Note. The maximum number of DEFINES, ASSIGN commands, and PARAM commands that
can be active at one time depends on the amount of memory allocated to the TACL command
interpreter. For more information, see the TACL Reference Manual.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-8

Executing and Debugging HP COBOL Programs Changing or Clearing Unwanted Preparation
Commands
Changing or Clearing Unwanted Preparation Commands
To change or clear a DEFINE, you must use these TACL commands:

For details on the preceding TACL commands, see the TACL Reference Manual.

To change or clear an ASSIGN or PARAM command, you use the TACL command
CLEAR. Some examples of the CLEAR command follow.

Executing an HP COBOL Program
You can start your program executing either from a TACL prompt (that is, from your
TACL process) or from any other process. In either case, the operating environment
creates a new process—your executing program—and that process is affected by any
ASSIGN commands, PARAM commands, and DEFINEs that are active when the
process is created (see Preparing to Execute an HP COBOL Program).

Like every new process, your executing HP COBOL program receives a startup
message from the operating environment. The startup message contains names for
the IN file, the OUT file, the home terminal, and the default volume and subvolume. As
an HP COBOL application programmer, you need not get involved with the startup
message itself. If you need to manipulate the startup message, you can use Saved
Message Utility (SMU) routines.

Topics:

• Starting an HP COBOL Program From a TACL Prompt

• Specifying Default Input and Output Devices

• Specifying the Home Terminal

• Specifying the debugger: see Debugger Selection

• Naming the New Process

TACL Command Function

ALTER DEFINE Changes the attribute values of an active DEFINE

DELETE DEFINE Clears (deletes) an active DEFINE

Active Command TACL Command That Clears It

ASSIGN PROG1.MAJORACCT,&
\NICE.$FRNC.SIGNIF.CUST

CLEAR ASSIGN PROG1.MAJORACCT

PARAM NONSTOP OFF CLEAR PARAM NONSTOP

One or more ASSIGN commands CLEAR ALL ASSIGN

One or more PARAM commands CLEAR ALL PARAM

One or more ASSIGN or PARAM commands CLEAR ALL
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-9

Executing and Debugging HP COBOL Programs Starting an HP COBOL Program From a TACL
Prompt
• Running the New Process in the Background

• Run-Time Errors

Starting an HP COBOL Program From a TACL Prompt
To start an HP COBOL program from the TACL prompt, use the TACL command RUN.
In the simplest case, the program retrieves input for unqualified ACCEPT statements
from your home terminal and displays run-time diagnostic messages and the output of
unqualified DISPLAY statements on your home terminal. If the file ID of your loadfile is
$SYSTEM3.COBOL85.PROG1, you can execute your program with this command:

RUN $SYSTEM3.COBOL85.PROG1

You can omit the keyword RUN and the subvolume that your program is on if a default
subvolume is specified on #PMSEARCHLIST. To specify $VOLUME.SUBVOL as a
default on #PMSEARCHLIST, execute this TACL command before starting your
program:

#SET #PMSEARCHLIST #DEFAULTS $VOLUME.SUBVOL $SYSTEM.SYSTEM

Then you can start the program whose file ID is $VOLUME.SUBVOL.PROG1 from the
TACL prompt with this command:

PROG1

The RUN command has many options, some of which allow you to specify these
program attributes:

• Default input and output devices
• Home terminal
• Debugger
• Process name (required if program is to run as a process pair)
• Ability to run in the background

For more information about the RUN command and its options, see the TACL
Reference Manual.

To start an HP COBOL program from another HP COBOL program, see Initiating a
Process From an HP COBOL Program.

Specifying Default Input and Output Devices
If you want your program to retrieve input for unqualified ACCEPT statements from a
device other than your home terminal, you must specify that device.

If you want your program to display run-time diagnostic messages and output from
unqualified DISPLAY statements to a device other than your home terminal, you must
specify that device.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-10

Executing and Debugging HP COBOL Programs Specifying the Home Terminal
If you want the default input device to be the same as the default output device, you
can specify a default input-output device with a PARAM EXECUTION-LOG command
before you execute your program (see Specifying a Default Input-Output Device) and
ignore the remainder of this topic.

If you want separate default input and output devices, you must specify them with the
IN and OUT options of the RUN command and must not use a PARAM EXECUTION-
LOG command (because the PARAM EXECUTION-LOG command takes precedence
over the IN and OUT options of the RUN command).

The default input and output devices can be system files (including disk files) or
DEFINE names that you have already associated with system files. The default input
file must be a terminal, disk file, or process; the default output file must be a terminal,
disk file, line printer, or process.

This command specifies the default input device INFILE and the default output device
OUTFILE for the program PROG1. (Assume that PROG1, INFILE, and OUTFILE are
on the default subvolume.)

PROG1 /IN INFILE, OUT OUTFILE/

This command specifies the default input device INFILE for the program PROG1 but
no default output device. The default output device will be the home terminal.

PROG1 /IN INFILE/

This command specifies the default output device OUTFILE for the program PROG1
but no default input device. The default input device will be the home terminal.

PROG1 /OUT OUTFILE/

Specifying the Home Terminal
By default, the home terminal for your executing HP COBOL program is the same as
the home terminal for your TACL process. This is a problem if all of these conditions
are true:

• The default input-output device, default input device, or default output device is the
home terminal.

• The TACL process has control of the home terminal, causing HP COBOL run-time
routines to wait for the terminal to become available.

• One of the waiting routines is a Pathway server.

If the suspended Pathway server’s requester is also suspended, the performance of
the Pathway application is degraded.

If your program has the previously described problem, specify a different home
terminal for your COBOL85 or NMCOBOL process with the TERM option of the RUN
command. Verify that the new home terminal is available.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-11

Executing and Debugging HP COBOL Programs Naming the New Process
This command specifies the home terminal $TE1.#E02 for the program PROG1.
Because the default input and output devices are not specified, they will be the home
terminal, $TE1.#E02, unless an earlier PARAM EXECUTION-LOG command specified
a default input-output device.

PROG1 /TERM $TE1.#E02/

This command specifies the default input device INFILE for the program PROG1, no
default output device, and the home terminal $TE1.#E02. The default output device will
be the home terminal, $TE1.#E02.

PROG1 /IN INFILE, TERM $TE1.#E02/

To find the name of a terminal, use the TACL command WHO. Example:

223> WHO
Home terminal: $TE1.#E02
...

Naming the New Process
If your HP COBOL program is to run as a process pair, it must have a process name. If
your program is not to run as a process pair, a process name is optional but useful: it
allows you to stop the process by name, which is easier than determining its processor
and Process Identification Number (PIN) and then stopping it with those.

You verify that your program has a process name in either of these two ways:

• Include the NAME Option in the RUN command.

• Compile the program with the RUNNAMED Directive.

NAME Option
The NAME option of the RUN command verifies that the program is run as a named
process. You can specify the process name or not. If you do, it must begin with a dollar
sign ($). (For the syntax of a process name, see the Guardian Programmer’s Guide.) If
you do not specify the process name, the operating environment assigns a timestamp
process name to the new process.

This command assigns the process name “$PROG1” to the process created when you
run $VOL1.SUB2.PROG1:

RUN $VOL1.SUB2.PROG1 /NAME $PROG1/

This command causes the operating environment to assign a timestamp process name
to the process created when you run $VOL1.SUB2.PROG1:

RUN $VOL1.SUB2.PROG1 /NAME/

This command runs the program $VOL1.SUB2.PROG1 as an unnamed process
(unless you specified RUNNAMED in the object file).

RUN $VOL1.SUB2.PROG1
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-12

Executing and Debugging HP COBOL Programs Running the New Process in the Background
RUNNAMED Directive
If you compile your program with the RUNNAMED directive, the operating environment
assigns it a timestamp process name when you execute it. You do not need to include
the NAME option in the RUN command (but you can, if you want to give it a specific
name).

The RUNNAMED directive works for the NMCOBOL compiler only if the RUNNABLE
directive is active.

Running the New Process in the Background
By default, your TACL process suspends itself while your HP COBOL program
executes. You can prevent this by running your program in the background with the
NOWAIT option of the RUN command.

Beware of using the NOWAIT option if your program has ACCEPT and DISPLAY
statements that use the home terminal. With NOWAIT, your HP COBOL program
cannot accept input from, or display output to, the home terminal until you pause the
terminal. Without NOWAIT, you can access your TACL process by pressing Break
when you are certain that the COBOL-created process is done with the home terminal.

This command runs the program PROG1 in the background:

PROG1 /NOWAIT/

Run-Time Errors
Run-time errors are errors that arise during the execution of a process. Examples of
their causes are:

• The process tries to open a nonexistent file.

• The process tries to open a file that is inaccessible because another process has it
open exclusively.

• The process tries to call a non-COBOL program that is not in the process’s own
loadfile, the system library, or the TNS or user library.

Topics:

• Diagnostic Messages

• Error-Handling Procedures
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-13

Executing and Debugging HP COBOL Programs Run-Time Errors
Diagnostic Messages
When a run-time error occurs, the run-time routine that detects it sends a run-time
diagnostic message to the default output device. The run-time routine that detects the
error is either a HP COBOL run-time routine (if the program is running in the non-CRE
environment) or a CRE run-time routine (if the program is running in the CRE). The
default output device is the home terminal unless you changed it with the PARAM
EXECUTION-LOG command (see Specifying a Default Input-Output Device) or the
OUT option of the RUN command (see Specifying Default Input and Output Devices).

A run-time diagnostic message identifies the error, the process in which the error
occurred, and the loadfile from which the process was loaded. The error number and
format of a run-time diagnostic message depend on the run-time environment. For
details, see Section 48, Run-Time Diagnostic Messages.

One category of run-time diagnostic messages is not reported to the default output
device: input-output exceptions with I-O status codes less than “30” that your program
handles with its own error-handling procedures.

Error-Handling Procedures
In your HP COBOL program, you can define error-handling procedures with USE
AFTER EXCEPTION statements. When a file system error occurs, control passes to a
USE AFTER EXCEPTION statement, which can access two values to determine what
action to take. The first value is the I-O status code, which identifies the error; the
second value is that of the special register GUARDIAN-ERR, which identifies the
cause of the error.

One I-O error can have several possible causes; therefore, one I-O code status value
can be associated with several GUARDIAN-ERR values. For example, a WRITE
statement error (I-O code status value “24”) can be caused by a relative key that is out
of bounds (GUARDIAN-ERR value 23), a full file (GUARDIAN-ERR value 45), or an
invalid key (GUARDIAN-ERR value 46). The USE AFTER EXCEPTION statement can
interpret the value of GUARDIAN-ERR and act accordingly.

After a USE AFTER EXCEPTION statement executes, it returns control to the routine
that called it, except when the I-O status code is “4x ” or “90,” in which case the
process terminates abnormally.

For more information about the USE AFTER EXCEPTION statement and diagnosing
input-output errors, see USE AFTER EXCEPTION.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-14

Executing and Debugging HP COBOL Programs Getting a Program to Enter Debugging Mode
Getting a Program to Enter Debugging Mode
You can get a program to enter debugging mode (that is, to enter the debugger for
which you compiled the program) at any of these times:

• Before Execution

• During execution:

° Programmatically

° Forcefully

For information on specific debuggers, see Section 15, Debugging Tools.

Before Execution
To have an ordinary HP COBOL program (as opposed to one that is a Pathway server)
enter debugging mode before executing any instructions, start it with the RUND
command instead of the RUN command. Use the same options that you would use
with the RUN command (see Executing an HP COBOL Program).

To have a Pathway server enter debugging mode before executing any instructions,
use the PATHCOM command SET SERVER DEBUG ON. For considerations
regarding errors that can occur when you are debugging a Pathway server, see the
TS/MP Pathsend and Server Programming Manual.

Programmatically
To cause a program to put itself into debugging mode, put this statement at the point in
the program where you want to start debugging:

ENTER "DEBUG"

The process prompts you for debugging commands at its home terminal.

Forcefully
To force an HP COBOL program to enter debugging mode while it is executing, use the
TACL command DEBUG. If you do not have a TACL prompt on your terminal (because
you are not running the HP COBOL program in the background), press Break to get a
TACL prompt. If you include the TERM option in the RUN command with which you
start your program, you can debug the program from a terminal other than the one the
program is running on.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-15

Executing and Debugging HP COBOL Programs Forcefully
If the HP COBOL program is a Pathway server process, you can use the TACL
DEBUG command only from a terminal that is connected to a command interpreter, not
from a terminal that is configured to run a SCREEN COBOL terminal program. The
reason is that you must be able to tell the debugger which process to debug. For
considerations regarding errors that can occur when you are debugging a Pathway
server, see the TS/MP Pathsend and Server Programming Manual.

Note. If you press Break too soon after you start a process, you get the messages:

WARNING - STARTUP MESSAGE NOT READ
ABENDED: nn,nnn

followed by a TACL prompt. The process that you started was not able to complete its
initialization and was terminated.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
25-16

26 Input and Output Concepts
Input and output are involved in virtually every HP COBOL program. The typical batch
HP COBOL program obtains data (input), manipulates it, and produces a report
(output). The typical interactive HP COBOL program is a server that obtains a request,
collects data (input), and sends a reply (output).

Input and output always involve files. Input for an HP COBOL program comes from a
disk file or nondisk file (such as a terminal); output from an HP COBOL program goes
to a disk file or nondisk file (such as a terminal or printer).

Process communication involves files—one process calls another by handling it as a
file—and operating system messages. An HP COBOL process ignores operating
environment messages unless you arrange to have it intercept them.

Topics:

• Files

• Processes Handled as Files

• Intercepting Operating System Messages

Files
Files of alphanumeric data are ASCII files; that is, they are encoded in American
National Standard Code for Information Interchange (ASCII).

Files are controlled by a file system, a combination of input-output hardware and
operating system routines that mediate between the hardware and application
programs. The NonStop operating system supports two file systems: the Guardian file
system and the OSS file system.

Both file systems recognize a file by its system file name; an HP COBOL program
recognizes a file by its COBOL file name, a name that the program defines. For an
HP COBOL program to access or manipulate an actual file, the file’s COBOL file name
must be associated with a system file name.

Under certain conditions, the HP COBOL run-time routines preread file records
(starting the read for record n +1 when returning record n to the program), saving
execution time by overlapping reading and processing.

Topics:

• System File Names

• COBOL File Names

• Associating COBOL File Names With System File Names

• Prereading File Records

For information about creating files, see the Guardian Programmer’s Guide.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
26-1

Input and Output Concepts System File Names
System File Names
A system file name is the name by which the Guardian or OSS file system recognizes
a system file. That name is unique, not only on the system where the file is physically
located, but also within that system’s network.

These rules and the remainder of this topic apply to all system file names in the
Guardian file system. For information about system file names in the OSS file system,
see Files in the OSS Environment.

• System file names are composed of alphanumeric characters and these special
characters, which are used as delimiters:

° Backward slash (\)
° Dollar sign ($)
° Number sign (#)
° Colon (:)
° Period (.)

• System file names are not case-sensitive; \NODE1.$VOLUME1.SUBVOL1.FILE1
and \node1.$volume1.subvol1.file1 refer to the same file.

Other rules depend on the category of the system file name. The categories are:

• Permanent Disk File Names

• Temporary Disk File Names

• Nondisk File (Device) Names

For information about process file names, see Processes Handled as Files.

Permanent Disk File Names
Permanent disk files are named when they are created. After being created, a
permanent disk file remains on the disk until explicitly purged.

node-name

is a backward slash (\) followed by an alphabetic character and up to six
alphanumeric characters. Example: \mynode. Default: default node.

.node-name

file-id

.subvolume-name

.volume-name

ns ns

ns ns

ns ns

VST617.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
26-2

Input and Output Concepts System File Names
volume-name

is a dollar sign ($) followed by an alphabetic character and up to six alphanumeric
characters. Example: $volume3. Default: default volume.

subvolume-name

is an alphabetic character followed by up to seven alphanumeric characters.
Example: subvol10. Default: default subvolume.

file-id

is an alphabetic character followed by up to seven alphanumeric characters.
Example: file1234.

An example of a permanent disk file name is \mynode.$volume3.subvol10.file1234. If
\mynode.$volume3.subvol10 is the default subvolume, then these are equivalent:

\mynode.$volume3.subvol10.file1234
$volume3.subvol10.file1234
subvol10.file1234
file1234

The default node, volume, and subvolume are established with the =_DEFAULTS
DEFINE and can be changed with TACL commands. For details, see the TACL
Reference Manual.

Temporary Disk File Names
The two ways to create a temporary disk file are:

• In the file-control entry, with the clause SELECT … ASSIGN #TEMP
• With the TACL command ASSIGN … #TEMP

Temporary disk files are named by the file system when a program creates them. The
program cannot specify a system file name for a temporary file. When the program
closes a temporary disk file, the file system purges it. For more information about
temporary disk files, see the Guardian Programmer’s Guide.

Nondisk File (Device) Names
Nondisk files are devices such as terminals, printers, magnetic tape drives, and data
communications lines. A nondisk file can be accessed by its name (the recommended
method) or its logical device number, both of which are assigned by system
management.

node-name .

ldev-number

device-name

qualifier

VST641.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
26-3

Input and Output Concepts COBOL File Names
node-name

is a backward slash (\) followed by an alphabetic character and up to six
alphanumeric characters. Example: \mynode.

ldev-number

is a dollar sign ($) followed by an integer whose value is less than or equal to
34492. Example: $12345.

device-name

is a dollar sign ($) followed by an alphabetic character and up to six alphanumeric
characters. Example: $printr2.

qualifier

is a number sign (#) followed by one to seven alphanumeric characters. Example:
#PRINTR2.

An example of a nondisk file name is \mynode.$printer2.#S. If \mynode is the default
node, then these are equivalent:

\mynode.$printer2.#S
$printer2.#S

COBOL File Names
A COBOL file name is the name by which a particular HP COBOL program recognizes
a system file. It is unique within the HP COBOL program. A COBOL file name is the
file-name in the file-control entry (in the Environment Division) and the file
description entry (in the Data Division). A file-name must meet these criteria:

• Consist of one or more (a maximum of 30) alphanumeric characters (letters, digits,
and hyphens)

• Contain at least one nonnumeric character (letter or hyphen)

• Not begin or end with a hyphen

Letters can be uppercase or lowercase.

Note. HP COBOL requires a file-name to contain at least one nonnumeric character;
COBOL requires a file-name to contain at least one letter.

Example 26-1. COBOL File Names

MAJRACCT
MAJOR-ACCOUNT
MajorAccount-3
HP COBOL Manual for TNS and TNS/R Programs—522555-006
26-4

Input and Output Concepts Associating COBOL File Names With System File
Names
Associating COBOL File Names With System File Names
The file-control entry for a file associates its COBOL file name with one of:

• System File Name

• Special Name

• DEFINE Name

If you want to associate the COBOL file name with a system file name at run time, see
#DYNAMIC.

System File Name
The most straightforward way to associate a COBOL file name with a system file name
is to use the file-control entry to assign a COBOL file name (the file-name in the
SELECT clause) to a system file name (the system-file-name in the ASSIGN
clause).

These SELECT and ASSIGN clauses associate the COBOL file name MAJRACCT
with the system file name \AKRON.$SLB.MAJ.ACC:

SELECT MAJRACCT ASSIGN TO "\AKRON.$SLB.MAJ.ACC"

When the HP COBOL program opens MAJRACCT, the file it actually opens is
\AKRON.$SLB.MAJ.ACC.

In the Guardian environment, you can override the file assignment that you made at
compilation time before executing the program (see Overriding File Assignments Made
at Compilation Time). You cannot do this in the OSS environment.

For the syntax of a system file name in the Guardian environment, see the Guardian
Programmer’s Guide. For the syntax of a system file name in the OSS environment,
see Files in the OSS Environment.

Special Name
A special name is a place holder for a specific file whose system file name is
determined at run time.

Table 26-1. Special Names for System Files (page 1 of 2)

Special System File Name Place holder for ...

#IN In the Guardian file system, the file named in the IN
parameter of startup message of current process

In the OSS file system, the default input device (FD 0)—
do not use it in SELECT clauses or the SPECIAL-NAMES
paragraph as you can in the Guardian environment
HP COBOL Manual for TNS and TNS/R Programs—522555-006
26-5

Input and Output Concepts Associating COBOL File Names With System File
Names
In the Guardian environment, you can override the file assignment that you made at
compilation time before executing the program (see Overriding File Assignments Made
at Compilation Time). The new system-file-name in the overriding ASSIGN
command can also be a special name—any special name except #DYNAMIC.

#IN
In the Guardian environment, #IN represents the file specified as the IN parameter in
the startup message of the current process. If you started the current process from a
TACL prompt, #IN refers to the file specified by the IN option of the RUN command (or
its default). (See Specifying Default Input and Output Devices.)

In the program PROG1, these SELECT and ASSIGN clauses associate the COBOL
file name MAJRACCT with the special system file name #IN:

SELECT MAJRACCT ASSIGN TO #IN

Equivalently, these ASSIGN command associates the COBOL file name MAJRACCT
with the special system file name #IN:

ASSIGN PROG1.MAJRACCT, #IN

If you run the program PROG1 with this command, the special name #IN represents
the system file INFILE, so INFILE is associated with the COBOL file name
MAJRACCT.

PROG1 /IN INFILE/

In the OSS environment, #IN is the default input device (FD 0). You cannot use it in
SELECT clauses or the SPECIAL-NAMES paragraph as you can in the Guardian
environment.

#OUT In the Guardian file system, the file named in the OUT
parameter of startup message of current process

In the OSS file system, the default output device (FD 1)—
do not use it in SELECT clauses or the SPECIAL-NAMES
paragraph as you can in the Guardian environment

#TERM Home terminal of current process

#TEMP Temporary disk file on default volume

#DYNAMIC File name specified with the run-time library routine
COBOLASSIGN (in the non-CRE environment) or
COBOL_ASSIGN_ (in the CRE) during the execution of
the current process

Table 26-1. Special Names for System Files (page 2 of 2)

Special System File Name Place holder for ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
26-6

Input and Output Concepts Associating COBOL File Names With System File
Names
#OUT
In the Guardian environment, #OUT represents the file specified as the OUT
parameter in the startup message of the current process. If you started the current
process from a TACL prompt, #OUT refers to the file specified by the OUT option of
the RUN command (or its default). (See Specifying Default Input and Output Devices.)

In the program PROG1, these SELECT and ASSIGN clauses associate the COBOL
file name REPORT with the special name #OUT:

SELECT REPORT ASSIGN TO #OUT

Equivalently, these ASSIGN command associates the COBOL file name REPORT with
the special name #OUT:

ASSIGN PROG1.REPORT, #OUT

If you run the program PROG1 with this command, the special name #OUT represents
the system file OUTFILE, so OUTFILE is associated with the COBOL file name
REPORT.

PROG1 /OUT OUTFILE/

In the OSS environment, #OUT is the default output device (FD 1). You cannot use it in
SELECT clauses or the SPECIAL-NAMES paragraph as you can in the Guardian
environment.

#TERM
The special name #TERM represents the home terminal of the current process. If you
started the current process from a TACL prompt, #TERM refers to the file specified in
the TERM option of the RUN command (or its default). (See Specifying the Home
Terminal.)

In the program PROG1, these SELECT and ASSIGN clauses associate the COBOL
file name HOME-TERMINAL with the special name #TERM:

SELECT HOME-TERMINAL ASSIGN TO #TERM

Equivalently, these ASSIGN command associates the COBOL file name HOME-
TERMINAL with the special name #TERM:

ASSIGN PROG1.HOME-TERMINAL, #TERM

If you run the program PROG1 with this command, the system file $TE1.#E02 is
associated with the special name #TERM and, therefore, with the COBOL file name
HOME-TERMINAL.

PROG1 /TERM $TE1.#E02/
HP COBOL Manual for TNS and TNS/R Programs—522555-006
26-7

Input and Output Concepts Associating COBOL File Names With System File
Names
#TEMP
The special name #TEMP represents a temporary disk file on the default volume
(which is specified by the program’s startup message). When the program opens a file
that is assigned to #TEMP, the HP COBOL run-time routines create a disk file on the
default volume. When the program closes a temporary disk file, the file system purges
it. For more information about temporary disk files, see the Guardian Programmer’s
Guide.

In the program PROG1, these SELECT and ASSIGN clauses associate the COBOL
file name TEMPFILE with the special name #TEMP, which stands for the system file
name that the file system gave the temporary file.

SELECT TEMPFILE ASSIGN TO #TEMP

Equivalently, this ASSIGN command associates the COBOL file name TEMPFILE with
the special name #TEMP:

ASSIGN PROG1.TEMPFILE, #TEMP

#DYNAMIC
The special name #DYNAMIC represents the file specified with the run-time library
routine COBOLASSIGN (in the non-CRE environment) or COBOL_ASSIGN_ (in the
CRE) during the execution of the current process.

If you want your HP COBOL program to accept or construct a file name and then open
the file with that name, you must:

1. Assign the COBOL file name to #DYNAMIC (in the file-control entry).

2. Associate #DYNAMIC with a system file name by calling the routine
COBOLASSIGN (in the non-CRE environment) or COBOL_ASSIGN_ (in the CRE).

3. Open the file (using its COBOL file name).

Suppose that you want your program to use a file that the user specifies at run time.
Following Step 1, you assign the COBOL file name (ADJUSTABLE in this example) to
the special name #DYNAMIC in the file-control entry:

SELECT ADJUSTABLE ASSIGN TO #DYNAMIC.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
26-8

Input and Output Concepts Associating COBOL File Names With System File
Names
To follow Step 2, you must declare Working-Storage data items to hold the name and
the error value returned by the COBOLASSIGN or COBOL_ASSIGN_ routine, prompt
the user for a file name, and then call the COBOLASSIGN or COBOL_ASSIGN_
routine:

01 ADJUSTABLE-STUFF.
 03 ADJUSTABLE-NAME PICTURE X(34).
 03 ADJUSTABLE-ERROR PICTURE S9(4).
. .
DISPLAY "What file shall I read?".
ACCEPT ADJUSTABLE-NAME.
ENTER "COBOLASSIGN" USING ADJUSTABLE
 ADJUSTABLE-NAME
 GIVING ADJUSTABLE-ERROR.
IF ADJUSTABLE-ERROR = ZERO
 OPEN INPUT ADJUSTABLE
ELSE
 PERFORM ADJUSTABLE-ERROR-ROUTINE
 ...

To lock a file that has been opened with dynamic assignment, use the LOCKFILE
statement. You cannot perform a CLOSE WITH LOCK operation on such a file.

For further information about the COBOLASSIGN and COBOL_ASSIGN_ routines, see
COBOLASSIGN and COBOL_ASSIGN_.

DEFINE Name

If the file-control entry assigns the COBOL file name (the file-name in the SELECT
clause) with a DEFINE name (the define-name-literal in the ASSIGN clause),
then you must associate the DEFINE name with a system file name before executing
the program (see Adding DEFINEs). Even when the program executes in the OSS
environment, the DEFINE must specify a Guardian file name, tape device, or spooler.

These SELECT and ASSIGN clauses associate the COBOL file name MAJRACCT
with the DEFINE name =BIGCUST:

SELECT MAJRACCT
 ASSIGN TO "=BIGCUST"

This command associates =BIGCUST with the system file \AKRON.$SLB.MAJ.ACC:

ADD DEFINE =BIGCUST, FILE \AKRON.$SLB.MAJ.ACC

Note. Do not use #DYNAMIC in the TACL command ASSIGN. You will get an error when you
try to assign a system file name to the associated COBOL file name with the COBOLASSIGN
or COBOL_ASSIGN_ routine.

Note. This topic applies only to the Guardian file system. DEFINEs do not accept OSS
pathnames.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
26-9

Input and Output Concepts Prereading File Records
Prereading File Records
To save execution time by overlapping reading and processing, the HP COBOL run-
time routines perform record prereading (starting the read for record n +1 when
returning record n to the program) when all of these conditions are true:

• File access mode is SEQUENTIAL.

• File open mode is INPUT.

• File exclusion mode is PROTECTED (for a disk file) or EXCLUSIVE (for a disk or
nondisk file).

• The process is not running as a process pair.

• The file is not open for timed I-O.

Verify that the prereading requirements are not met when the HP COBOL process
does any of:

• Enters a TAL routine to do input or output

• Executes the read operation as part of a TMF transaction (enters
BEGINTRANSACTION, executes a READ statement, then enters
ENDTRANSACTION)

• Executes a CLOSE NO REWIND statement on a tape file and subsequently
executes an OPEN NO REWIND statement on the same file to continue from the
previous position

Processes Handled as Files
One process calls another by handling it as a file. If the calling process is an
HP COBOL program, it refers to the called process by a COBOL file name. Like
COBOL file names of files that are not processes, the COBOL file name of a process
must be associated with a file name that the operating environment recognizes (the
process name or process descriptor). For more information about processes, see
Section 31, Process Initiation, Communication, and Management.

Intercepting Operating System Messages
The operating system sends messages to processes, reporting such things as:

• Break was pressed on a terminal.

• A descendant process has terminated (normally or abnormally).

• Another process with which you are communicating has opened you or closed you.

• ASSIGN, PARAM, and startup messages were sent to you from your parent
process (Guardian environment only).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
26-10

Input and Output Concepts Intercepting Operating System Messages
An HP COBOL process ignores operating system messages unless you arrange to
have it intercept them. To have an HP COBOL process intercept operating system
messages, you must include REPORT and MESSAGE SOURCE clauses in its
RECEIVE-CONTROL paragraph.

The MESSAGE SOURCE clause provides a mechanism through which a COBOL
program can discover the sender of each message received. During the successful
execution of a read operation on $RECEIVE, the $RECEIVE mechanism places a set
of values into the storage space designated in the MESSAGE SOURCE clause.

If the value of SYSTEM-FLAG is -1, the message came from the operating system.

For more information about the MESSAGE SOURCE phrase, see MESSAGE
SOURCE Phrase. For more information about the Receive-Control paragraph, see
Section 31, Process Initiation, Communication, and Management.

Figure 26-1. MESSAGE SOURCE Format

Non-CRE Environment

01 SOURCE-MESSAGE.
 05 SYSTEM-FLAG PICTURE S9
 USAGE IS COMPUTATIONAL.
 05 ENTRY-NUMBER PICTURE 999
 USAGE IS COMPUTATIONAL.
 05 FILLER PICTURE X(4).
 05 PROCESS-ID.
 10 PROCESS-NAME PICTURE X(6).
 10 CPU-PIN PICTURE X(2).
 05 FILLER PICTURE X(16).

CRE

01 SOURCE-MESSAGE.
 05 SYSTEM-FLAG PICTURE S9
 USAGE IS COMPUTATIONAL.
 05 ENTRY-NUMBER PICTURE 999
 USAGE IS COMPUTATIONAL.
 05 FILLER PICTURE X(4).
 05 PHANDLE PICTURE X(20).
 05 FILLER PICTURE X(4).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
26-11

Input and Output Concepts Intercepting Operating System Messages
HP COBOL Manual for TNS and TNS/R Programs—522555-006
26-12

27 Tape Input and Output
HP COBOL batch programs must often read or write files that are on magnetic tape
(tape files).

Topics:

• Reading and Writing Tape Files

• Adding DEFINEs for Tape Files

• Executing HP COBOL Programs That Use Tape Files

If you need further information on reading and writing tape files, see the Guardian
Programmer’s Guide.

If you want to archive disk files on magnetic tape, use the operating environment’s
BACKUP utility. To restore archived disk files from a tape back to a disk (which you
must do before an HP COBOL program can read them), use the operating
environment’s RESTORE utility. For information on the BACKUP and RESTORE
utilities, see the Guardian User’s Guide.

Reading and Writing Tape Files
An HP COBOL program can read and write unlabeled tape files, labeled tape files, and
tape files of types other than HP.

Topics:

• Preventing Prereading

• Saving Tape and Time

• Unlabeled Tape Files

• Labeled Tape Files

• Tape Files of Types Other Than HP

By default, the shortest record an HP COBOL program can write to a tape file is 24
bytes. If you need shorter records, use the COBOL_SETMODE_ routine to set function
52 (see the Guardian User’s Guide).

Preventing Prereading
HP COBOL prereads tapes; that is, it initiates a new read operation after processing
the last (or only) record in a block. Prereading can overlap I-O with program
processing. If you do not want this to happen, verify that the records of a tape file will
not be preread by opening the file for timed I-O (include a TIME LIMITS phrase in the
OPEN statement or use the command PARAM WAITED-IO). For an explanation of
prereading file records, see Prereading File Records. You cannot give a tape file the
access mode I-O or the exclusion mode PROTECTED or SHARED.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-1

Tape Input and Output Saving Tape and Time
Saving Tape and Time
You can save both tape and time by blocking tape file records efficiently—that is, by
specifying that each physical record is to contain more than one logical record (the
default is one logical record per physical record).

Because consecutive physical records are separated by an interrecord gap, longer
physical records mean fewer interrecord gaps (less wasted tape). Because the tape
drive must start and stop each time you read or write a physical record, having fewer
interrecord gaps save time.

Interrecord gap size depends on tape drive model, but the typical interrecord gap is
about 0.6 inch (1.5 cm). If you are writing 1,600 bytes per inch—19,200 bytes, or
characters, per foot (30 cm) of tape—then each interrecord gap occupies 960 bytes
(1,600 bytes per inch*0.6 inch = 960 bytes).

Suppose that each logical record is 80 bytes. If each physical record contains only one
logical record (the default), you can write 18.5 physical records (18.5 logical records)
per foot of tape (19,200 bytes/(80 bytes per physical record + 960 bytes per physical
record) = 18.5 records). If, instead, you specify 10 logical records per physical record,
giving each physical record 800 bytes, you can write 10.9 physical records (109 logical
records) per foot of tape. If you specify 50 logical records per physical record, giving
each physical record 4 KB, you can write 3.87 physical records (193.5 logical records)
per foot of tape.

You specify the number of logical records or characters per physical record (block) with
a BLOCK CONTAINS clause in the file description entry of the file associated with the
tape drive. The BLOCK CONTAINS clause works if these conditions are met:

• The file’s organization is sequential.

• The file has fixed-length records.

• When the block size is specified in characters, it is a multiple of the number of
characters in the logical record size. Also, when a RECORD CONTAINS clause
extends the record size, the block size expressed is a multiple of the number of
characters in that specified record size.

• The file description entry does not have a LINAGE or ALTERNATE RECORD KEY
clause.

On NonStop systems, physical record (block) sizes for tapes range from 24 through
32,767 bytes. The recommended maximum tape block sizes for application programs
are:

Density (bytes per inch) Block Size (bytes)

800 4,096

1,600 8,192

6,250 32,767
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-2

Tape Input and Output Unlabeled Tape Files
For further information on the BLOCK CONTAINS clause, see BLOCK CONTAINS
Clause.

Unlabeled Tape Files
An unlabeled tape file is a tape file that does not have standard ANSI or IBM labels.

If a HP COBOL program creates a tape file, the tape file is unlabeled, and any other
HP COBOL program can easily read or write it. If a system that is not an HP system
creates a tape file, a HP COBOL program can still read it, but might encounter features
that are not HP features.

The first five steps for reading or writing an unlabeled tape file are the same:

1. In the file-control entry:

a. Assign the COBOL file name of the tape to either:

• The device name of the tape drive that holds the tape that you want to read
or write (established when the system was configured)

• A DEFINE name

b. In the ORGANIZATION clause, declare SEQUENTIAL organization.

c. In the ACCESS MODE clause, declare SEQUENTIAL access.

2. If you used dynamic file assignment in Step 1a, then in the Procedure Division, use
the COBOLASSIGN or COBOL_ASSIGN_ routine to establish the system file
name of the tape at run time (see #DYNAMIC) and go to Step 4.

3. If you used a DEFINE name inStep 1a, add the appropriate DEFINE before
executing your program (see Adding DEFINEs for Tape Files) and go to Step 4.

4. Open the file with the appropriate file-specification in the OPEN
statement. To prevent prereading of file records, include a TIME LIMITS phrase in
the OPEN statement or use the command PARAM WAITED-IO.

(You cannot open a tape with the keyword I-O, which allows both input and output.)

5. If you opened the file for input, read it with the READ statement; if you opened it for
output or extension, write it with the WRITE statement.

After Step 5, the instructions depend on whether you are reading or writing one file on
one tape, several files on one tape, or one file that spans several tapes.

file-specification Effect

INPUT Opens the tape for input so you can read it

OUTPUT Opens the tape for output so you can write it, starting with its first
record

EXTEND Opens the tape for extension so you can write it, starting
immediately after its last record
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-3

Tape Input and Output Unlabeled Tape Files
Topics:

• How to read or write One File on One Tape

• How to read or write Several Files on One Tape

• How to read or write One File on Several Tapes

• Mount Messages

One File on One Tape
To read or write one file on one tape, follow Step 1 through Step 5 under Unlabeled
Tape Files and then execute this step:

Close the file with the CLOSE statement. Do not use a NO REWIND phrase. Use a
LOCK phrase if the file was not dynamically assigned and you want to prevent the
tape from being reopened (the run-time tape routine ignores LOCK for a
dynamically assigned file).

Example 27-1 assigns the COBOL file name TAPE1 to the system file name $DRIVE2
(a name that the system administrator assigned to a tape drive) and declares its
organization and access modes to be sequential; then it opens TAPE1 for exclusive
input, reads, closes, and locks it.

Example 27-1. One File on One Tape

...
ENVIRONMENT DIVISION.
...
INPUT-OUTPUT SECTION.
...
FILE-CONTROL
 SELECT TAPE1 ASSIGN $DRIVE2
 ORGANIZATION SEQUENTIAL
 ACCESS MODE SEQUENTIAL.
...
PROCEDURE DIVISION.
...
OPEN INPUT TAPE1 EXCLUSIVE
READ TAPE1 . .
CLOSE TAPE1 LOCK
...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-4

Tape Input and Output Unlabeled Tape Files
Several Files on One Tape
To read or write more than one file on one tape, follow Step 1 through Step 5 under
Unlabeled Tape Files and then execute these steps:

1. Close the file with the CLOSE statement, specifying NO REWIND. The NO
REWIND phrase prevents the run-time routines from rewinding the tape, so that
you can read or write the file that immediately follows the file you just closed.

2. Reopen the file specifying NO REWIND (see Step 4 under Unlabeled Tape Files).

3. Read or write the file again (see Step 5 under Unlabeled Tape Files).

4. Close the file with the CLOSE statement. Do not use a NO REWIND phrase. Use a
LOCK phrase if the file was not dynamically assigned and you want to prevent the
tape from being reopened (the run-time tape routine ignores LOCK for a
dynamically assigned file).

Example 27-2 writes two files on one tape and then closes and locks the tape.

Example 27-2. Several Files on One Tape

 ...

 ENVIRONMENT DIVISION.
 ...

 INPUT-OUTPUT SECTION.
 ...

 FILE-CONTROL
 SELECT TAPE1 ASSIGN $DRIVE2
 ORGANIZATION SEQUENTIAL
 ACCESS MODE SEQUENTIAL.
 ...

 PROCEDURE DIVISION.
 ...

*WRITE FIRST FILE
 OPEN OUTPUT TAPE1 EXCLUSIVE
 WRITE TAPE1 ...
 CLOSE TAPE1 NO REWIND

*WRITE SECOND FILE
 OPEN OUTPUT TAPE1 EXCLUSIVE NO REWIND
 WRITE TAPE1 ...
 CLOSE TAPE1 LOCK
 ...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-5

Tape Input and Output Unlabeled Tape Files
One File on Several Tapes
To read or write one file that spans several tapes, follow Step 1 through Step 5 under
Unlabeled Tape Files and then execute these steps:

1. Close the file with the CLOSE statement, specifying REEL FOR REMOVAL (or
UNIT FOR REMOVAL). The REMOVAL phrase rewinds the tape for removal so
that you can remove it from the tape drive and replace it with the next tape.

2. Read or write the file again (see Step 5 under Unlabeled Tape Files).

3. Repeat Step 4 and Step 5 under Unlabeled Tape Files and Step 1 above for each
tape that contains part of the file.

4. Close the file with the CLOSE statement. Do not use a NO REWIND phrase. Use a
LOCK phrase if the file was not dynamically assigned and you want to prevent the
tape from being reopened (the run-time tape routine ignores LOCK for a
dynamically assigned file).

Mount Messages
When a run-time routine needs to have a reel of tape mounted, it sends a message to
the process’ home terminal.

Respond to the message sent to the home terminal after the next tape reel is mounted.
If the next reel is ready on the device named in the mount message, press Return. If
the next reel is ready on a different tape device, type that device name (beginning with
$) before you press Return.

If you do not want to continue with the next reel of tape, type “NO” in response to the
message. If the program is reading the tape, the next READ statement will discover an
end of file.

For example, suppose that a file is stored on three tapes. Its COBOL file name is
HUGEFILE. If HP COBOL end-of-tape sequences were used when the tapes were
created, HP COBOL automatically asks for each reel; otherwise, you must read and
then close each reel.

Table 27-1. Mount Messages

For an input file:

Mount the next reel of fd-name = device-name in sequence

For an output file:

Mount the next reel of fd-name = device-name, with a write ring

Message sent to the home terminal:

Type return or $volume (or 'NO' to end input)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-6

Tape Input and Output Unlabeled Tape Files
Example 27-3 assigns the COBOL file name HUGEFILE to the system file name
$DRIVE2 (a name that the system administrator assigned to a tape drive) and declares
its organization and access modes to be sequential. The first tape is on the tape drive
$DRIVE2. The program opens HUGEFILE for exclusive input, reads it, and closes it,
rewinding it for removal. You replace the first tape with the second tape, and the
program reads it and closes it, rewinding it for removal. You replace the second tape
with the third tape, and the program reads, closes and locks it, having now read the
entire file.

Avoid having an HP COBOL program read a multitape file that was created by a File
Utility Program (FUP). HP COBOL and FUP mark the ends of nonfinal reels of a
multiple-reel tape file differently: an HP COBOL program writes an end-of-file (EOF)
mark, a trash record, and a pair of consecutive EOF marks; a FUP writes only a pair of
consecutive EOF marks.

Example 27-3. Multitape File

...

 ENVIRONMENT DIVISION.
...

 INPUT-OUTPUT SECTION.
...

 FILE-CONTROL
 SELECT HUGEFILE ASSIGN $DRIVE2
 ORGANIZATION SEQUENTIAL
 ACCESS MODE SEQUENTIAL.
...

 PROCEDURE DIVISION.
...

 OPEN INPUT HUGEFILE EXCLUSIVE.

*READ FIRST TAPE
 READ HUGEFILE...
 CLOSE HUGEFILE REEL FOR REMOVAL.

*READ SECOND TAPE
 READ HUGEFILE...
 CLOSE HUGEFILE REEL FOR REMOVAL.

*READ THIRD TAPE
 READ HUGEFILE...
 CLOSE HUGEFILE LOCK.
...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-7

Tape Input and Output Labeled Tape Files
If your HP COBOL program must read a FUP-created multitape file, try this:

1. In the SELECT clause of the file-control entry, declare the file to be OPTIONAL.

2. Have the program close and reopen the file when it detects EOF.

3. Have the operator mount the next tape. When the program detects EOF
immediately after an OPEN statement, the last reel has been read.

4. When all tapes have been read, have the operator respond NO to the tape mount
message to signal the actual end of the file.

Labeled Tape Files
A labeled tape file is a tape file that has standard ANSI or IBM labels. If a tape file has
labels of any other type, an HP COBOL program must bypass them, handling the tape
file as unlabeled.

Labeled-tape processing on NonStop systems involves these software elements:

• ANSI or IBM standard tape labels (which catalog tape files)

• HP COBOL statements and clauses that describe labeled tape files and operate on
them

• The TACL command DEFINE (which associates the COBOL file name of a labeled
tape file with its system file name and defines its attributes)

• Tape processes (which control tape drives)

• $ZSVR, the operating environment server for tape processes

• For D-series software RVUs, the tape utility program TAPECOM, which monitors
tape drives; for G-series software RVUs, the MEDIACOM utility is used instead

• File-system procedures and functions that support labeled-tape processing
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-8

Tape Input and Output Labeled Tape Files
To use a labeled tape file with an HP COBOL program, you must:

1. Describe the labeled tape file in a file-control entry in the HP COBOL program,
assigning the file’s COBOL file name to a DEFINE name.

2. Enable the creation of DEFINEs with the TACL command SET DEFMODE ON.

3. Add a DEFINE that has the name assigned to the file in Step 1 and the appropriate
attributes (see Adding DEFINEs for Tape Files).

4. Execute the program (see Executing HP COBOL Programs That Use Tape Files).

Topics:

• Describing Labeled Tape Files in a HP COBOL Program (Step 1)

• Consistency Checking of Labeled Tape Information

• Converting HP COBOL Programs to Use Labeled Tape Files

Figure 27-1. Software Involved in Labeled-Tape Processing

Command
Interpreter
Process

COBOL
Process

TAPECOM
Process

COBOL
Mount

Messages

Operator's
Console

($0) Tape Operation
 Messages

Operator Responses
and Commands

Home
Terminal

File System

$ZSVR Server
for Tape

Processes

Tape
Process

Tape
Process

VST706.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-9

Tape Input and Output Labeled Tape Files
Describing Labeled Tape Files in a HP COBOL Program
In the file-control entry for a labeled tape file, assign the COBOL file name of the
labeled tape file to a DEFINE name (for the syntax of a DEFINE name, see DEFINE
Names).

In the file description entry for a labeled tape file, include a RECORD CONTAINS
clause to specify whether the file’s records are of fixed or variable length and to define
their size.

Example 27-4 assigns the COBOL file name SEQ-FILE to the DEFINE name
=PROG1D1 (giving it sequential organization and access mode as required for a tape
file) and then describes SEQ-FILE as having fixed-length records of 30 characters
each.

Consistency Checking of Labeled Tape Information
HP COBOL run-time routines check that the HP COBOL program specifications are
consistent with these DEFINE attributes:

• LABELS
• RECFORM
• BLOCKLEN
• RECLEN
• FILESEQ
• USE

If a program specification is inconsistent with an attribute, an HP COBOL run-time
routine takes one of these actions, depending on the attribute:

• Allows the DEFINE attribute to override the program specifications
• Issues an open error because of inconsistency

Example 27-4. Labeled Tape File

ENVIRONMENT DIVISION.
...

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT SEQ-FILE ASSIGN TO "=PROG1D1"
 ORGANIZATION SEQUENTIAL
 ACCESS MODE SEQUENTIAL.
...

DATA DIVISION.
FILE SECTION.
FD SEQ-FILE
 RECORD CONTAINS 30 CHARACTERS
01 SEQ-RECORD PIC X(30).
...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-10

Tape Input and Output Labeled Tape Files
The system label-processing software checks that the DEFINE attributes are
consistent with the tape label specifications; if they are not, the operating environment
issues an open error.

If the tape label and the data on the tape are inconsistent (for example, if the tape label
specifies fixed-length records but the tape contains variable-length records), results are
unpredictable.

Converting HP COBOL Programs to Use Labeled Tape Files
To convert an HP COBOL program to use a labeled tape file, set up an OBEY
command file that:

1. Assigns the file-name in the file description entry to a DEFINE name

2. Enables the creation of DEFINEs

3. Deletes any existing DEFINE that has the name selected in Step 1

4. Creates the DEFINE

5. Runs the program

6. Clears the assignment (from Step 1) and the DEFINE (from Step 4) to prevent their
affecting other processes created by the same TACL process

In Example 27-5, the commands in the OBEY command file commands convert the
HP COBOL program to use a labeled tape file. The file-name in the file description
entry is MONTHLY-SALES, the DEFINE name is =SALES^JAN86, and the program
name is QUOTAS.

The DEFINE in Example 27-5 is for a tape file with ANSI standard labels and fixed-
length records 80 characters long. Because the file description entry contains the
clause LABEL RECORDS ARE OMITTED, the HP COBOL run-time library sets the file
status code, STATUS-KEY, to “97.” If the program does not contain code that takes
specific action when STATUS-KEY is “97.” the program can use a labeled tape file
without changes to the source code or recompilation.

Example 27-5. Converting a COBOL95 Program to Use Labeled Tape
Files (page 1 of 2)

HP COBOL file-control entry:

SELECT MONTHLY-SALES ASSIGN TO $TAPE2
 ORGANIZATION SEQUENTIAL
 ACCESS MODE SEQUENTIAL
 FILE STATUS IS STATUS-KEY.
...

HP COBOL file description entry for a tape file:

FD MONTHLY-SALES
 RECORD CONTAINS 80 CHARACTERS
 LABEL RECORDS ARE OMITTED.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-11

Tape Input and Output Tape Files of Types Other Than HP
Tape Files of Types Other Than HP
If a system that is not an HP system creates a tape file, a HP COBOL program can still
read it, but might encounter features that are not HP features, such as:

• Labels
• Extended Binary Coded Decimal Interchange Code (EBCDIC)
• Packed-decimal or floating-point binary data
• Variable-length records

Labels are explained in Labeled Tape Files.

Topics:

• EBCDIC Files

• Converting Other Data Types to HP COBOL Data Types

• Handling Variable-Length Records

EBCDIC Files
To read an EBCDIC file, an HP COBOL program must include a CODE-SET clause in
the file description entry. The CODE-SET clause causes translation between the native
USASCII character code convention and the EBCDIC code convention for all input-
output operations. For more information about the CODE-SET clause—including
restrictions—see CODE-SET Clause.

If you cannot include a CODE-SET clause in the file description entry for an EBCDIC
file, you must copy the EBCDIC file to an ASCII file with the File Utility Program (FUP)
COPY command. The ASCII file can be a tape file or an existing disk file. To create a
disk file, use the FUP CREATE command.

The FUP command in Example 27-6 copies the EBCDIC tape file on tape drive
$DRIVE1 to a tape file on tape drive $DRIVE2, converting it to ASCII in the process.

OBEY command file commands:

ASSIGN MONTHLY-SALES, =SALES^JAN86
SET DEFMODE ON
DELETE DEFINE =SALES^JAN86
ADD DEFINE =SALES^JAN86, CLASS TAPE, LABELS ANSI,&
 VOLUME SLS1Q86, RECFORM F, RECLEN 80,&
 BLOCKLEN 4000
RUN QUOTAS
CLEAR ASSIGN MONTHLY-SALES
DELETE DEFINE =SALES^JAN86

Example 27-5. Converting a COBOL95 Program to Use Labeled Tape
Files (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-12

Tape Input and Output Tape Files of Types Other Than HP
The FUP command in Example 27-7 copies the EBCDIC tape file on tape drive
$DRIVE1 to the existing disk file $TEN.APP3.PQ5, converting it to ASCII in the
process.

The FUP command in Example 27-8 creates the disk file $TEN.APP3.PQ5 from an
EBCDIC tape file composed of 10K records of 80 characters each. Your HP COBOL
program can access $TEN.APP3.PQ5 sequentially.

The preceding discussion does not completely explain FUP. There are many
considerations involved in choosing parameters for the COPY and CREATE
commands. For details, see the Guardian Programmer’s Guide.

Converting Other Data Types to HP COBOL Data Types
If your HP COBOL program must use packed-decimal or floating-point binary data from
a tape file that was not created on an HP system, be aware that the data from the tape
file might be represented differently from HP COBOL packed-decimal and floating-
point binary data. For details on HP COBOL packed-decimal and floating-point binary
data representation, see USAGE Clause.

Example 27-6. Copying an EBCDIC File to a New ASCII File

FUP COPY $DRIVE1,$DRIVE2,EBCDICIN

Example 27-7. Copying an EBCDIC File to an Existing ASCII File

FUP COPY $DRIVE1,$TEN.APP3.PQ5,EBCDICIN

Example 27-8. Copying an EBCDIC File to an Existing ASCII File

FUP CREATE $TEN.APP3.PQ5, TYPE E, &
EXT (1000 RECS,1000 RECS), REC 80

Caution. The EBCDIC-to-ASCII conversion mechanism described in this topic handles data of
the type DISPLAY, but not data of the type COMPUTATIONAL. If an EBCDIC file does not
have a character format, do not use FUP or CODE-SET to change EBCDIC to ASCII, because
this disturbs the stored numeric values. Instead, convert directly from the foreign EBCDIC
representation to a HP COBOL representation. (See Converting Other Data Types to
HP COBOL Data Types.)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-13

Tape Input and Output Tape Files of Types Other Than HP
HP COBOL data types:

• BINARY or COMPUTATIONAL

BINARY and COMPUTATIONAL are synonyms. HP COBOL stores a
COMPUTATIONAL data item as a 2-byte, 4-byte, or 8-byte binary value,
depending on the number of digits in its picture:

• DISPLAY

 HP COBOL stores a DISPLAY data item as a sequence of ASCII characters, one
for each digit. If the data description entry specifies that the sign is separate from
the value, a separate byte is allocated for the sign, which is stored as an explicit
plus (+) or a minus (-) character.

If the data description entry does not specify that the sign is separate from the
value, the sign is stored by setting the high-order bit of one byte of the data item—
the high-order byte if the sign is specified as LEADING; the low-order byte
otherwise.

The value zero has neither a positive nor a negative sign.

Some examples of data descriptions and their corresponding stored values are:

Picture Storage

S9(01) - S9(04) 1 byte

S9(05) - S9(09) 2 bytes

S9(10) - S9(18) 4 bytes

Data Description Binary Value Stored

PIC S99 VALUE 5 00110000 00110101

PIC S99 VALUE -5 00110000 10110101

PIC S99 VALUE 0 00000000 00000000

PIC S99 SIGN LEADING VALUE 5 00110000 00110101

PIC S99 SIGN LEADING VALUE -5 10110000 00110101

PIC S99 SIGN LEADING VALUE -0 00000000 00000000

PIC S99 SIGN TRAILING VALUE 5 00110000 00110101

PIC S99 SIGN TRAILING VALUE -5 00110000 10110101

PIC S99 SIGN TRAILING VALUE 0 00000000 00000000
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-14

Tape Input and Output Adding DEFINEs for Tape Files
• NATIVE-n

HP COBOL stores a NATIVE-n data item as a signed, numeric, twos-complement,
binary integer. A NATIVE-n data type is stored in n bytes:

Handling Variable-Length Records
Software for systems other than NonStop systems sometimes provides a mechanism
for writing variable-length blocked records on tape—usually a block-length field at the
beginning of each block and a record-length field at the beginning of each record. HP
software does not have a similar mechanism. If your HP COBOL program must read a
file tape that has variable-length blocked records and was not created on an HP
system, you must write HP COBOL or TAL code to deblock the records. It might be
easier to produce another tape with fixed-length records (blocked or not) on the system
on which the file was created.

Adding DEFINEs for Tape Files
If your HP COBOL program assigns a tape file to a DEFINE name (which is optional
for an unlabeled tape file, but required for a labeled tape file), then you must add that
DEFINE name before executing your program, or the program will not be able to open
the file.

The values of the DEFINE attributes must match corresponding values in the tape
label. The tape process compares corresponding values when the program tries to
open the tape file, and if any corresponding values do not match, the tape process
issues an error message, and the open operation fails (see Consistency Checking of
Labeled Tape Information).

These topics explain the attributes of DEFINEs for:

• Unlabeled Tape Files

• Labeled Tape Files

In the Guardian environment, you must enable the creation of DEFINEs with the TACL
command SET DEFMODE ON before you can add them. In the OSS environment, you
can add DEFINEs with the command add_define.

An HP COBOL program running in the OSS environment can assign a file to
“GUARDIAN tape-device” or “GUARDIAN define-name.” In the latter case, you must
use the add_define command to create a TAPE DEFINE before running the
program.

Data Type Storage

NATIVE-2 2 bytes

NATIVE-4 4 bytes

NATIVE-8 8 bytes
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-15

Tape Input and Output Unlabeled Tape Files
Unlabeled Tape Files
The attributes of unlabeled tape files are:

• CLASS Attribute (Required)

• DEVICE Attribute (Required)

• BLOCKLEN Attribute (Conditional)

• LABELS Attribute (Optional)

• RECFORM Attribute (Optional)

• RETENTION or EXPIRATION Attribute (Optional)

CLASS Attribute (Required)
The value of the CLASS attribute must be TAPE. The CLASS attribute must be the first
attribute in the ADD DEFINE command, because it determines what other attributes
the DEFINE can have and clears any existing attribute settings, including any that
precede it in the ADD DEFINE command.

DEVICE Attribute (Required)
The value of the DEVICE attribute must be the system file name of a tape drive.

On a D-series system: Before the HP COBOL process can use the tape, the operator
must use the Tape Utility Program (TAPECOM) command ACCEPT to approve
opening the tape. Alternatively, the operator uses the TAPECOM command CLEAR
NLCHECK to set the system so that processes can open unlabeled tapes without
approval. Anyone using TAPECOM from a super-group user ID (255,nnn) can act as
an operator.

BLOCKLEN Attribute (Conditional)
The BLOCKLEN attribute is required if the tape file has fixed-length records; that is, if
the RECORD CONTAINS clause in the file description entry is of the form

RECORD CONTAINS length-fixed CHARACTERS

the value of the BLOCKLEN attribute must be the same as:

• The block size that the tape label specifies

• The value of blk-2 in the BLOCK CONTAINS clause (if the tape file description
entry has one)

If the tape file has variable-length records, omit the BLOCKLEN attribute from the
DEFINE. HP COBOL programs cannot process blocked variable-length records.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-16

Tape Input and Output Unlabeled Tape Files
LABELS Attribute (Optional)
The LABELS attribute must have the value OMITTED. With LABELS OMITTED, the
system checks the mounted tape for standard ANSI or IBM labels; if the tape has
them, the system rewinds and unloads the tape.

The LABELS attribute of the DEFINE overrides any LABEL RECORDS clause in your
HP COBOL program.

RECFORM Attribute (Optional)
The value of the RECFORM attribute must correspond to the RECORD CONTAINS
clause in the file description entry in the program.

Note. The 1985 COBOL Standard classifies the LABEL RECORDS clause as obsolete, so
you are advised not to use it.

Table 27-2. Effect of LABELS Attribute and LABEL RECORDS Clause on
Unlabeled Tape File

LABELS Attribute Value

LABEL RECORDS Clause

LABEL RECORDS
STANDARD

LABEL RECORDS
OMITTED

OMITTED HP COBOL sets file status
code to 97* and execution
proceeds

Execution proceeds

None (no LABELS attribute) Open error Execution proceeds

* File status code 97 means that the statement executed successfully, but the circumstances were not entirely as
expected.

Table 27-3. Correspondence Between RECORD CONTAINS Clause and
RECFORM Attribute Value

Record Length RECORD CONTAINS Clause RECFORM Attribute Value

Variable
(undefined)

RECORD CONTAINS min-length TO
max-length CHARACTERS

U

Fixed RECORD CONTAINS length-fixed
CHARACTERS

F

HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-17

Tape Input and Output Labeled Tape Files
RETENTION or EXPIRATION Attribute (Optional)
Use the RETENTION or EXPIRATION attribute when you want to save a file for any
period of time, even part of a day; otherwise, the file expires as soon as you write it,
and the system might overwrite the file.

The value of the RETENTION or EXPIRATION attribute is an integer, the number of
days before the file expires.

Example 27-9 adds a DEFINE for an unlabeled tape file with variable-length records.
The file is on the tape on the tape drive named $DRIVE.

Example 27-10 adds a DEFINE for an unlabeled tape file with fixed-length records.
The file is on the tape on the tape drive named $DRIVE, and it will not expire for five
days.

Labeled Tape Files
The attributes of labeled tape files are:

• CLASS Attribute (Required)

• LABELS Attribute (Required)

• RECFORM Attribute (Conditional)

• BLOCKLEN Attribute (Conditional)

• RECLEN Attribute (Conditional)

• DEVICE Attribute (Conditional)

• FILESEQ Attribute (Conditional)

• USE Attribute (Optional)

• VOLUME Attribute (Optional)

• RETENTION or EXPIRATION Attribute (Optional)

Caution. On a multiple-file volume, the system might overwrite an unexpired file that follows
an expired one; a volume on which the first file has expired is a scratch volume.

Example 27-9. DEFINE for Unlabeled Tape File With Variable-Length Records

ADD DEFINE =ABC, CLASS TAPE, DEVICE $DRIVE

Example 27-10. DEFINE for Unlabeled Tape File With Fixed-Length Records

ADD DEFINE =DEF, CLASS TAPE, DEVICE $DRIVE,&
BLOCKLEN 132, RETENTION 5
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-18

Tape Input and Output Labeled Tape Files
CLASS Attribute (Required)
The value of the CLASS attribute must be TAPE. The CLASS attribute must be the first
attribute in the ADD DEFINE command, because it determines what other attributes
the DEFINE can have and clears any existing attribute settings, including any that
precede it in the ADD DEFINE command.

Figure 27-2. DEFINE Names and COBOL File Names

COBOL Source Program

 .
 .
 .
SELECT SALES1Q
 ASSIGN TO " =SALES-1Q86"
 .
 .
 .
FD SALES1Q
 RECORD CONTAINS 60 CHARACTERS
 BLOCK CONTAINS 3900 CHARACTERS
 LABEL RECORDS ARE STANDARD
 .
 .
 .
 OPEN INPUT SALES1Q.
 .
 .
 .

System Software

Automatic Volume
Recognition

DEFINEs Enabled for the
Process

=SALES-1Q86
 CLASS TAPE, LABELS ANSI,
 VOLUME SLS86, USE IN,
 RECFORM F, RECLEN 60,
 BLOCKLEN 3900
=ACCTS-RECEIVABLE
 . . .

ACCTPY SLS86 ACCTRC

COBOL Process

VST707.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-19

Tape Input and Output Labeled Tape Files
LABELS Attribute (Required)
The value of the LABELS attribute for a labeled tape file must reflect the type of labels
the tape has:

BYPASS tells the system to handle a labeled tape file like an unlabeled tape file. The
labels are interpreted as data. Use BYPASS if either of these is true:

• The tape has labels that are not ANSI or IBM standard.
• The HP COBOL program does its own label processing.

The LABELS attribute of the DEFINE overrides any LABEL RECORDS clause in your
HP COBOL program.

Labels LABELS Attribute Value

ANSI standard ANSI

IBM standard IBM

Any other BYPASS

Table 27-4. Effect of LABELS Attribute and LABEL RECORDS Clause on Labeled
Tape File

LABELS
Attribute
Value

LABEL RECORDS Clause

LABEL RECORDS STANDARD LABEL RECORDS OMITTED

ANSI or IBM Execution proceeds HP COBOL sets file status code to
97* and execution proceeds

BYPASS HP COBOL sets file status code to
97*, execution proceeds, and
HP COBOL handles any labels as
data

Execution proceeds and HP COBOL
handles any labels as data

* File status code 97 means that the statement executed successfully, but the circumstances were not entirely as
expected.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-20

Tape Input and Output Labeled Tape Files
RECFORM Attribute (Conditional)
The RECFORM attribute is required unless you are bypassing labels (the value of the
LABELS attribute is BYPASS). The value of the RECFORM attribute must reflect the
type of records the tape has and must correspond to the RECORD CONTAINS clause
in the file description entry in the program.

BLOCKLEN Attribute (Conditional)
The BLOCKLEN attribute is required if the tape file has variable-length records (the
value of the RECFORM attribute is U) or if the tape file has fixed-length records (the
value of the RECFORM attribute is F), and the file description entry does not have a
BLOCK CONTAINS clause that specifies that the number of records per block is an
integer greater than one.

If the tape file has variable-length records, the value of the BLOCKLEN attribute
depends on the file’s maximum record size and open mode. If the open mode is
INPUT, the value of the BLOCKLEN attribute must be less than or equal to the
maximum record size; if the open mode is OUTPUT or EXTEND, the value of the
BLOCKLEN attribute must be greater than or equal to the maximum record size.

If the file has fixed-length records, the value of the BLOCKLEN attribute must be the
maximum record size, which is obtained from the BLOCK CONTAINS clause or from
the record description entry for the largest record.

RECLEN Attribute (Conditional)
The RECLEN attribute is required if the file has fixed-length records. Its value must be
the same as the value of the BLOCKLEN attribute (that is, the maximum record size).

If the record has variable-length records, the RECLEN attribute is unnecessary; if you
use it, its value is ignored.

Table 27-5. Correspondence Between RECORD CONTAINS Clause and
RECFORM Attribute Value

Record Length RECORD CONTAINS Clause RECFORM Attribute Value

Variable
(undefined)

RECORD CONTAINS min-length TO
max-length CHARACTERS

U

Fixed RECORD CONTAINS length-fixed
CHARACTERS

F

HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-21

Tape Input and Output Labeled Tape Files
DEVICE Attribute (Conditional)
The DEVICE attribute is required if you are bypassing labels (the value of the LABELS
attribute is BYPASS); otherwise, it is optional.

When the DEVICE attribute is required, its value must be the system file name of a
tape drive.

On a D-series system: Before the HP COBOL process can use the tape, the operator
must use the Tape Utility Program (TAPECOM) command ACCEPT to approve
opening the tape. Alternatively, the operator uses the TAPECOM command CLEAR
NLCHECK to set the system so that processes can open unlabeled tapes without
approval. Anyone using TAPECOM from a super-group user ID (255,nnn) can act as
an operator.

When the DEVICE attribute is optional, its value overrides the system’s automatic
volume recognition. You cannot specify a different device in response to the system
mount message.

FILESEQ Attribute (Conditional)
The FILESEQ attribute is required if the file you want to use is not first on the tape or if
your HP COBOL program has a MULTIPLE FILE clause. If you omit FILESEQ and the
COBOL program does have a MULTIPLE FILE clause, the open operation fails.

The value of the FILESEQ attribute specifies the position of a labeled tape file on a
multiple-file tape. It must be an integer in the range 1 through 9999 (relative file
positions are consecutive integers from 1 through 9999) and must match the value in
the corresponding field of the tape label.

USE Attribute (Optional)
The USE attribute prevents inadvertent overwriting of a tape file. The value of the USE
attribute must correspond to the tape file’s open mode.

The values IN, OUT, and EXTEND have the same meanings as the corresponding
open modes; OPENFLAG means that the file can be opened in any mode that the
OPEN statement specifies.

Note. The 1985 COBOL standard classifies the MULTIPLE FILE clause as obsolete, so you
are advised not to use it.

Table 27-6. Corresponding Open Modes and USE Attribute Values

Open Mode USE Attribute Value

INPUT IN or OPENFLAG

OUTPUT OUT or OPENFLAG

EXTEND EXTEND or OPENFLAG
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-22

Tape Input and Output Labeled Tape Files
VOLUME Attribute (Optional)
The VOLUME attribute identifies the tape. The value of the VOLUME attribute must be
the name of the tape volume as it appears in the tape label. This automatic volume
recognition enables you or the operator to mount the labeled tape on any available
tape drive before or after you start your HP COBOL program.

After locating the tape volume on a device, the operating environment passes the
DEFINE to the tape process that controls the device. The tape process checks the
values in the tape labels against the values of the DEFINE attributes. If the values do
not match, the operating environment rejects the open request and issues an error
message. If the values match, the operating environment approves the open request,
and the HP COBOL process can use the tape file.

RETENTION or EXPIRATION Attribute (Optional)
Use the RETENTION or EXPIRATION attribute when you want to save a file for any
period of time, even part of a day; otherwise, the file expires as soon as you write it,
and the operating environment might overwrite the file.

The value of the RETENTION or EXPIRATION attribute is an integer, the number of
days before the file expires.

Example 27-11 adds a DEFINE for a labeled tape file with variable-length records
whose labels are to be bypassed. The file is on the tape on the tape drive named
$DRIVE.

Example 27-12 adds a DEFINE for a labeled tape file with standard IBM labels and
variable-length records. The file is on the tape on the tape whose volume ID is 45329,
and it will not expire for 100 days.

Example 27-13 adds a DEFINE for a labeled tape file with standard ANSI labels and
fixed-length records. The file is the second file on the tape, and it will not expire for 10
days.

Caution. On a multiple-file volume, the operating environment might overwrite an unexpired
file that follows an expired one; a volume on which the first file has expired is a scratch volume.

Example 27-11. DEFINE for Labeled Tape File With Variable-Length Records and
Labels to Be Bypassed

ADD DEFINE =ABC, CLASS TAPE, LABELS BYPASS,&
BLOCKLEN 132, DEVICE $DRIVE

Example 27-12. DEFINE for Labeled Tape File With Variable-Length Records and
Standard IBM Labels

ADD DEFINE =DEF, CLASS TAPE, LABELS IBM, RECFORM U,&
BLOCKLEN 132, VOLUME 45329, RETENTION 100
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-23

Tape Input and Output Executing HP COBOL Programs That Use Tape
Files
Executing HP COBOL Programs That Use Tape
Files

During execution of an HP COBOL program that uses tape files, the operating
environment software and the HP COBOL run-time library monitor:

• Tape mounting

• Adherence to rules for using DEFINEs

• For labeled tapes, consistency of labeled-tape information in the HP COBOL
program, DEFINE, and tape label

You can mount tapes yourself or have an operator mount them.

On a D-series system: To act as the operator, you must use the Tape Utility Program
(TAPECOM) from a super-group user ID (255,nnn).

Topics:

• Mount Messages

• Run-Time Errors

Mount Messages
Mount messages for unlabeled tape files (and labeled tapes files being handled as
such) are issued by an HP COBOL run-time routine; mount messages for labeled tape
files are issued by the labeled-tape processing software.

Example 27-13. DEFINE for Labeled Tape File With Fixed-Length Records and
Standard ASCII Labels

ADD DEFINE =DEF, CLASS TAPE, LABELS ANSI, RECFORM F,&
BLOCKLEN 132, RECLEN 132, FILESEQ 2, EXPIRATION 10

Table 27-7. Effect of LABELS Attribute on Mount Messages

LABELS Attribute Value Software That Issues Mount Messages

None (no LABELS attribute) HP COBOL run-time routine

OMITTED HP COBOL run-time routine

BYPASS HP COBOL run-time routine

ANSI Labeled-tape processing software

IBM Labeled-tape processing software
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-24

Tape Input and Output Mount Messages
Topics:

• Unlabeled Tapes

• Labeled Tapes

Unlabeled Tapes
Without labels, the operating environment cannot use automatic volume recognition to
locate the tape, so the mount message from the HP COBOL run-time routine specifies
the tape drive on which to mount the tape—the tape drive specified by the DEVICE
attribute of the file’s DEFINE.

If the mount message appears on a terminal display, you can specify a different tape
drive on which to mount the tape. Respond to the mount message by typing the device
name of the new tape drive after the colon:

TYPE RETURN OR $DEVICE (OR 'NO' TO END INPUT): $TAPE

HP COBOL opens the tape drive you specify.

If a DEFINE exists for the tape file and you specify a different device in response to an
HP COBOL mount message, the HP COBOL run-time library alters the DEVICE
attribute of the file’s DEFINE.

If no DEFINE exists for the tape file, the HP COBOL run-time library creates a DEFINE
with the required attributes (including the DEVICE attribute).

The new DEVICE attribute value or the new DEFINE remains active until one of these
occurs:

• The HP COBOL process terminates.

• The HP COBOL process uses a DEFINE procedure to change the value of the
DEVICE attribute or to delete the DEFINE.

• The HP COBOL run-time library changes the value of the DEVICE attribute when
you specify a different device for the file in response to another HP COBOL mount
message.

Labeled Tapes
A mount message from the labeled-tape processing software usually does not specify
a device on which to mount the tape. The labeled-tape processing software uses
automatic volume recognition to find a tape volume on one of the system’s tape drives,
so you or the operator can mount the tape on any available tape drive. For a
continuation reel of a multitape file, however, a mount message from the labeled-tape
processing software specifies the same device as the first reel.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-25

Tape Input and Output Run-Time Errors
Run-Time Errors

Input-output errors that are not specific to tape files can also occur. For a complete list
of HP COBOL run-time errors and suggestions for recovering from them, see
Section 48, Run-Time Diagnostic Messages.

Table 27-8. Run-Time Errors Specific to Tape File Use

Message Number

Text of Message (in Non-CRE Environment)Non-CRE CRE

045 170 MULTIPLE FILE TAPE file not on tape

046 171 OPEN positioning for MULTIPLE FILE TAPE failed

093 214 OPEN I-O for file not on input-output device

094 215 Wrong or missing LABELS attribute

095 216 Wrong or missing USE attribute

096 217 Wrong or missing RECFORM attribute

097 218 Wrong or missing RECLEN attribute

098 219 Wrong or missing BLOCKLEN attribute

099 220 Wrong or missing FILESEQ attribute

100 221 Wrong or missing DEVICE attribute

101 222 A DEFINE procedure failed with error nnn

102 223 DEFINE required for LABEL RECORDS STANDARD
HP COBOL Manual for TNS and TNS/R Programs—522555-006
27-26

28 Disk Input and Output
Both batch programs and transaction-supporting servers use disk files.

Topics:

• Common Disk File Topics

• Types of HP Disk Files

• Creating and Using HP COBOL Sequential Files

• Creating and Using HP COBOL Relative Files

• Creating and Using HP COBOL Indexed Files

• Creating and Using Queue Files

• Establishing Starting Points in Files

• Optimizing Disk File Processing

• Optimizing Disk File Storage

• Avoiding Deadlock

• Using Enscribe and Operating System Routines

Common Disk File Topics
These topics apply to all disk files:

• Allocation

• Partitioned Files

• Purging Files or Their Data

• Locking

• Ownership and Security

• Fixed-Length and Variable-Length Records

• Exclusion Modes

• Time Limits

• Reading Files From Called Programs

• Sharing Files Among HP COBOL Programs

• Sharing Files Among Different-Language Modules

• Modification

• Maximum Number of Files
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-1

Disk Input and Output Allocation
Allocation
The file system allocates physical storage for a disk file in the form of file extents. A file
extent is a contiguous block of storage, starting on a disk sector boundary and
containing a multiple of 2,048 bytes (up to 134,215,680 bytes). The file system permits
a disk file to have up to 978 extents—one primary extent and up to 977 secondary
extents. The primary extent can be a size different from that of the secondary extents.
The file system allocates extents only when needed. The file extents that constitute a
file are not necessarily contiguous. When all extents are allocated, writing to the file
causes I-O file status code “34.”

HP COBOL has no mechanism for specifying extents. If an HP COBOL program
creates a disk file, it allocates a primary extent of 4 x 2,048 bytes and a secondary
extent of 20 x 2,048 bytes. An HP COBOL program can call the routine
COBOL_CONTROL_ to allocate and deallocate extents.

If you create a disk file outside of HP COBOL and do not specify extents, the file
system allocates a primary extent of 2,048 bytes. If you do not explicitly specify a
secondary extent, the file system allocates secondary extents, as needed, that are the
same size as the primary extent.

Partitioned Files
An Enscribe disk file can be composed of up to 16 partitions. Every partition consists of
a primary extent plus up to 977 secondary extents. Each partition must reside on a
different volume. If your system is connected to a network, either through Expand or
through the fiber optic extension (FOX) of the interprocessor bus, the partitions can
even reside on different systems (at a performance penalty). For information about
Expand, see the Expand Network Management and Troubleshooting Guide.

An HP COBOL program can read or write a partitioned file but cannot create one. You
must use FUP to create a partitioned file; for details, see the Guardian Programmer’s
Guide.

Partitioned files have these significant advantages:

• They can be up to 16 times as large as nonpartitioned files.
• They can be accessed faster because separate read heads are used.
• The loss of access to a disk need not mean the loss of access to the entire file.

Purging Files or Their Data
You can purge a file from the disk from your TACL session with the TACL command
PURGE. An HP COBOL program can purge a file from the disk by calling the operating
system routine PURGE. Purging a file from the disk merely removes the disk file from
the directory and frees the disk space for use by other files; it does not erase the data
on the disk.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-2

Disk Input and Output Locking
You can erase the contents of a file without purging the file with the FUP command
PURGEDATA. An HP COBOL program erases the contents of a file without purging the
file simply by opening the file for output. An HP COBOL program can erase the
contents of a file by calling routine COBOL_CONTROL_. The data remains on the
disk—only the current-record, next-record, and EOF pointers are reset, and the EOF
pointer in the file label on the disk are changed to indicate that the file is logically
empty.

To erase the data on the disk, you must:

1. Use either the FUP SECURE command with its CLEARONPURGE option or call
the routine COBOL_SETMODE_ to set function 52 (see the Guardian User’s
Guide).

2. After setting the CLEARONPURGE flag, call the PURGE routine (directly or
through FUP).

The CLEARONPURGE flag has no effect on the outcome of a PURGEDATA operation
performed through FUP or through the CONTROL routine.

Locking
An HP COBOL program can lock and unlock an entire file with the LOCKFILE and
UNLOCKFILE statements. Batch programs lock entire files more often than transaction
processing programs do.

An HP COBOL program can lock individual records in a file with the LOCK phrase of
the READ statement and unlock them with either the UNLOCKRECORD statement or
the REWRITE statement with UNLOCK.

You must lock files when one process needs exclusive access to a record, a set of
records, or an entire file for some logical operation to complete successfully (as in the
case of TMF). For more information, see Avoiding Deadlock).

Ownership and Security
Each disk file on the HP system has an owner and a file security. Initially, the owner is
the user who creates the file and the security is the default file security. The owner can
transfer ownership to another user with the FUP GIVE command. The owner of a file
can change the file’s security with the FUP SECURE command.

The security system recognizes a file owner by the user ID, which consists of a group
number and a user number. The operating environment obtains the group number and
user number from the group name and user name when the user logs on; for example,
if you log on as PROJECT3.SANDY, your group name is PROJECT3 and your user
name is SANDY, and the operating environment translates these names to their
corresponding group number and user number.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-3

Disk Input and Output Ownership and Security
Topics:

• Security Attributes

• Default File Security

• Accessing Files on Other Nodes

Security Attributes
Security attributes of a disk file allow the owner to control access to the file. If you own
a file, you can change its security at any time with the FUP SECURE command:

The value of each security attribute determines the class of user who has permission
to perform the corresponding operation on the file (see Table 28-1).

To display a file’s current security attributes, use the FUP INFO command.

To alter a file’s security from an HP COBOL program, call the routine
COBOL_SETMODE_.

Suppose that your HP system is part of an Expand network and you own the disk file
FILE3. The command in Table 28-1 prevents everyone but you from reading, writing,
executing, or purging FILE3, but you can only read, write, execute, or purge the file on
your local system.

FUP SECURE file-name,"RWEP"

Security Attribute Meaning

R Reading

W Writing

E Executing

P Purging

Table 28-1. Security Attributes for Disk Files1

Who Can Perform the
Corresponding Operation on the File

On Local
System Only

From Anywhere on Expand
Network2

Owner only O U

Any member of owner’s user group G C

Any user A N

Local super ID only - Not applicable

1. Uppercase letters are shown, but the corresponding lowercase letters are equivalent.

2. If your HP system is part of an Expand network.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-4

Disk Input and Output Ownership and Security
The command in Table 28-2 is the same as the command in Table 28-1, except that
you can read, write, execute, or purge FILE3 from anywhere on the Expand network.

The command in Table 28-3 allows any member of your user group to read or execute
FILE3 from anywhere on the Expand network, but allows only you to write or purge it,
and only from your local system.

The command in Table 28-4 allows any user to read FILE3, only you to write or purge
it, and only a local super ID user to execute it—and these rules apply from anywhere
on the Expand network.

Default File Security
A newly created file has the default file security. You can set the default file security for
the duration of your TACL session with the TACL command VOLUME; you can set it
until further notice with the TACL command DEFAULT (further notice being another
DEFAULT command).

The command in Example 28-5 sets the default file security to “UUUU” until you
override it with a VOLUME command or another DEFAULT command.

The command in Example 28-6 sets the default file security to “CUCU” for the duration
of your TACL session. If you log off and log back on, the default file security reverts to
“UUUU.”

Example 28-1. File Accessible Only to Owner and Only Locally

FUP SECURE FILE3,"OOOO"

Example 28-2. File Accessible Only to Owner

FUP SECURE FILE3,"UUUU"

Example 28-3. File Readable and Executable to Owner’s User Group

FUP SECURE FILE3,"COCO"

Example 28-4. File Readable to Any User

FUP SECURE FILE3,"NU-U"

Example 28-5. Setting Default File Security to “UUUU”

DEFAULT, "UUUU"

Example 28-6. Setting Default File Security to “CUCU”

VOLUME, "CUCU"
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-5

Disk Input and Output Fixed-Length and Variable-Length Records
If a Pathway server written in HP COBOL creates a file, the security of the file is that of
the DEFAULT command active when the monitor process (PATHMON process)
governing the server class starts to execute.

Accessing Files on Other Nodes
For you, as a user on one node, to have any access at all to a file on another node,
even when the file’s security attributes permit it, you must have two remote passwords
declared on each node. The TACL command REMOTEPASSWORD enables you to
set the remote passwords on your own node. You must arrange with the system
manager of the other node to have the same two passwords established on that node.
For further information about remote passwords, see the Guardian User’s Guide.

Fixed-Length and Variable-Length Records
A file has variable-length records if its file description entry has either:

• A RECORD CONTAINS m TO n CHARACTERS clause
• A RECORD IS VARYING FROM m TO n clause
• No RECORD clause and different-sized record descriptions

If your source program does not explicitly describe a file as having variable-length
records, the HP COBOL run-time write routine writes fixed-length physical records. The
length of each physical record in the file is the larger of:

• The length of the longest record description entry for the file

• The maximum record length explicitly stated in the RECORD clause of the file
description entry

If a file contains records of different lengths, your program must declare it as having
variable-length records to be able to read it. If the program declares the file (explicitly
or implicitly) as having fixed-length records, and the program then tries to read a record
shorter than the declared length, the read operation succeeds with a file status code
“04.”

Unstructured files must have fixed-length records.

Exclusion Modes
The exclusion mode is a feature of a file that determines whether other processes can
read or write to the file being opened. If two separate processes are both writing to the
same file, it is possible that both will attempt to write the same record and thereby
corrupt the database.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-6

Disk Input and Output Time Limits
The exclusion mode can be specified in the OPEN statement or in an ASSIGN
command. The exclusion mode in an OPEN statement takes precedence over the
exclusion mode in an ASSIGN command. If neither the OPEN statement or ASSIGN
command specifies an exclusion mode, the exclusion mode is PROTECTED if the file
is being opened for input; EXCLUSIVE otherwise.

Most server files have the exclusion mode SHARED so that several servers of the
same class can all access the file. The servers use record locking to prevent conflicting
write operations to the file.

If you have a batch program that needs to open a file that one or more servers have
opened for shared access, give careful consideration to whether the batch program
should open the file for shared, protected, or exclusive access. If the batch program is
doing something that affects the servers, it should probably open the file for exclusive
access and thus fail if any server has it open. If the batch program cannot affect the
servers, and the activity of the servers does not affect the activity of the batch program,
then the batch program can open the file for shared access.

Time Limits
If you include a TIME LIMITS phrase in an OPEN statement, you can then include a
TIME LIMIT phrase in a LOCKFILE, READ, or START statement to cause the
statement to be abandoned if it does not finish executing in a certain amount of time.
The TIME LIMIT phrase in a LOCKFILE, READ, or START statement sets the file’s
status code so that the requester can tell that the data is not currently accessible. This
action helps avoid deadlock.

Reading Files From Called Programs
Two separately compiled programs cannot share files; that is, if one program opens the
file and then calls another separately compiled program, the caller cannot pass the file
(or access to the file) to the called program. A pair of separately compiled calling and
called programs can both have the same disk file open, but each has its own record
area, its own current record pointer, its own file status data item, and so on.

Table 28-2. Exclusion Modes and Their Meanings

Exclusion Mode While the process that opened the file has it open ...

EXCLUSIVE No other process can read or write the file.

PROTECTED Any other process can read the file, but no other process can write the
file.

SHARED Any other process can read or write the file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-7

Disk Input and Output Sharing Files Among HP COBOL Programs
When a HP COBOL run unit opens a file, the file remains open until one of these
happens:

• The run unit explicitly closes the file.

• The calling program cancels the called program that has the file open (with the
CANCEL statement).

• The run unit terminates execution.

A well-structured program unit has all the file activity for a certain file within one called
program. The other programs in the run unit call that program to open, read, write,
position, or close the file.

In the called program, include a data item whose initial value indicates that the file is
not open. When the program opens the file, set the data item to a value that indicates
that the file is open. When the program closes the file, set the data item to a value that
indicates that the file is closed. The value of the data item is retained between calls to
that program unless a CANCEL statement intervenes.

Sharing Files Among HP COBOL Programs
Two programs in a run unit can refer to common file connectors in these
circumstances:

• Any program that has described an external file connector can refer to that file
connector.

• If a program G is contained within another program H, both programs can refer to a
common file connector. They do so by referring to an associated global file name
(or associated global record-name, in the case of the WRITE statement) described
in either:

° The containing program H
° Any program that directly or indirectly contains H

If several programs define a file connector as external (causing its storage location to
be a single location outside all programs) and they also define the file connector as
having a global name, then all such programs and all programs nested within each of
them have access to the file connector.

Sharing Files Among Different-Language Modules
If your program consists of modules written in different languages, the modules can
share the standard files—the predefined files called “standard input,” “standard output,”
and “standard log” (except that FORTRAN modules cannot share “standard log”
because FORTRAN does not support it).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-8

Disk Input and Output Modification
If you want to do mixed-language programming, compiling your program to run in the
CRE is highly recommended. Although mixed-language programming is possible in the
non-CRE environment, it is very limited because of incompatibilities between different
languages’ run-time libraries. The CRE supports the languages HP C, HP COBOL,
FORTRAN, Pascal, and TAL. For more information about the CRE in general and on
mixed-language programs sharing standard files in particular, see the CRE
Programmer’s Guide.

Modification
With the ENABLE utility, you can build a file-maintenance application that allows you to
modify a disk file. ENABLE uses a Data Definition Language (DDL) file description to
create a Pathway application that you can use to read and change the data in the disk
file. For details, see the ENABLE User’s Guide.

Maximum Number of Files
The maximum number of files on a volume is determined during system configuration.
The maximum number of files that a single process can have open concurrently
depends on the amount of space available for file control blocks and buffers in the
upper 64 KB of the process’s user data space.

Types of HP Disk Files
NonStop systems provide two types of disk files:

• Unstructured (Sequential) Files

• Structured Files

Unstructured (Sequential) Files
An unstructured file consists of a stream of bytes, and Enscribe allows each byte to be
addressed directly. The organization of an unstructured file is the responsibility of the
program that uses it. An HP COBOL program can only use an unstructured file as a
sequential file.

Two examples of unstructured files are object code files (file code 100) and EDIT files
(file code 101).

An EDIT file can have variable-length records, but all other unstructured files must
have fixed-length records. No unstructured file can have alternate record keys.

A program written entirely in HP COBOL can open an EDIT file for both input and
output (or extension). The HP COBOL program cannot access the line numbers of the
EDIT file, only the text of the lines themselves.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-9

Disk Input and Output Structured Files
A program written entirely in HP COBOL can open unstructured files that are not in
EDIT format for input or output, but cannot create an unstructured file.

To use an existing unstructured file, your HP COBOL program must declare it:

• With ORGANIZATION SEQUENTIAL
• With ACCESS MODE SEQUENTIAL
• With fixed-length records (if the file is not an EDIT file)
• Without alternate keys

When using an unstructured file, an HP COBOL program still operates on the basis of
records, but they are strictly logical records. If one HP COBOL program writes an
unstructured file of 80-character records, another program can read it with any record
length. If the reading program expects 37-character records, the run-time routines
deliver 37-byte pieces of the continuous byte stream. You can rewrite a record with
another record of the same length, but you cannot delete a record.

The HP COBOL run-time routines that access unstructured disk files manage those
files directly. An unstructured file has no records, as far as Enscribe is concerned; the
declarations in your HP COBOL program determine how the HP COBOL run-time
routines manipulate the unstructured files.

Structured Files
Structured disk files are either entry-sequenced, relative, or key-sequenced.

The HP COBOL run-time routines that access structured disk files (entry-sequenced,
relative, and key-sequenced) do so with the help of the operating system routines that
are collectively called the Enscribe database record manager.

Table 28-3. Corresponding HP and HP COBOL Disk File Terms

HP Term HP COBOL Term

Relative Relative

Entry-sequenced Sequential

Key-sequenced Indexed
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-10

Disk Input and Output Structured Files
In HP COBOL, the DEPENDING phrase of the RECORD IS VARYING clause enables
you to designate a data item to receive the record length upon the successful
completion of a READ statement and to control the record length for a WRITE
statement.

HP COBOL allows writing and reading zero-length records. To write a zero-length
record, specify

RECORD IS VARYING FROM 0 TO ... DEPENDING ON data-name

and move the value zero into data-name before writing. After you read a file with the
same record description, data-name has the value zero. TMF writes zero-length
records when it backs out of transactions.

Table 28-4. Comparison of Structured File Characteristics

Characteristic

Type of Structured File

Entry-Sequenced
(Sequential) Relative

Key-Sequenced
(Indexed)

Records
ordered by ...

Order in which they
were entered

Record number Value of prime record
key

Access is by ... Record address or
alternate record key

Maximum alternate
record key length =
253 bytes (249 if not
unique)

Record number or
alternate record key

Maximum record
number = 1,048,575

Maximum alternate-
key length = 253 bytes
(249 if not unique).

Prime or alternate
record key

Maximum prime record
key length = 522 bytes

Maximum alternate
record key length = 253
bytes (253 minus prime
length if not unique)

Space occupied
by a record ...

Depends on length
specified when
record is written

Maximum logical
record length = 4,072
bytes

Is specified when file
is created

Maximum logical
record length = 4,072
bytes

Depends on length
specified when record
is written

Maximum logical record
length = 2,035 bytes

Record can be
shortened or
lengthened

No Yes Yes, and space freed
by shortening a record
can be reused within its
block

Record can be
deleted

No, but its space can
be used for another
record of the same
size

Yes, and its space can
be reused

Yes, and its space can
be reused within its
block
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-11

Disk Input and Output Structured Files
If an HP COBOL program describes fixed-length records, any zero-length records are
discarded when read. If an HP COBOL program describes variable-length records,
upon return from the READ statement, the entire record area is undefined. For this
reason, you are advised to specify the DEPENDING phrase when reading variable-
length records, and to process zero-length records appropriately (by ignoring them, for
example).

Under Enscribe, entry-sequenced files can have alternate keys. You must create these
files by calling Enscribe directly in one of these ways:

• From your TACL session, use FUP.
• From within an HP COBOL program, call the FILE_CREATE_ procedure.

Topics:

• Entry-Sequenced (Sequential) Files

• Relative Files

• Key-Sequenced (Indexed or Queue) Files

Entry-Sequenced (Sequential) Files
An entry-sequenced file created by an HP COBOL program is either a series of fixed-
length records or a series of variable-length records.

Your program ordinarily reads entry-sequenced files sequentially. You can read the
records in the order in which they appear in the file by opening the file for input and
reading record after record. You can append records to the file by opening the file with
an extension and writing records to the file.

Enscribe allows each physical record of an entry-sequenced file to have any length
from zero bytes (empty) to the maximum record length that was declared when the file
was created. HP COBOL allows each logical record to have any length from zero bytes
to the maximum record length declared explicitly in the file description entry or implicitly
in the record definitions following the file description entry.

If your source program describes the file as having variable-length records, each
physical record uses only as many bytes of disk space as needed; therefore, the
number of records for each block can vary according to the length of the records in
each block (although some space at the end of a block can be wasted).

If an entry-sequenced file has alternate keys, you can use a START statement to
specify the next record to read.

Relative Files
Relative files contain records that exist independent of each other. Each record is
associated with a unique relative record number—an ordinal number. The first record is
number 1, the second is number 2, and so forth. The number exists independent of the
contents of the record. You can read any record by number, but the record number is
not part of the record.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-12

Disk Input and Output Structured Files
The record numbers of a relative file need not be consecutive; Enscribe does not
require that there be a record for each ordinal number between that of the first record
and the highest number associated with any record in the file. If the HP COBOL run-
time routines ask Enscribe for the record associated with a certain number and there is
no such record in the file, Enscribe reports that no such record exists, and the
HP COBOL run-time routine raises the invalid-key condition (and, if you defined a file
status code data item, the run-time routine stores an appropriate value in it).

You can also read the file in record-number order. In this case, Enscribe does not
report absent records—it returns the records that exist. Enscribe can report the record
number of each record as it is read. When you read a relative file this way, the
HP COBOL run-time routines set the relative key data item to reflect the record
number.

Both Enscribe and HP COBOL (as an HP extension) provide two special record
numbers: -1 and -2. If you specify record number -1, a record is written at the end of
the file; if you specify record number -2, a record is written in the next available
position.

Enscribe allocates the same fixed amount of disk storage to each record. Each record
can vary in length from empty to that fixed limit. In HP COBOL terms, you can write
fixed-length records of any length up to the limit, or variable-length records of any
length up to the limit. If HP COBOL creates the file for you, that limit is the larger of:

• The length of the longest record description entry for the file

• The maximum record length explicitly stated in the RECORD clause of the file
description entry for the file

If a relative file has alternate keys, you can use a START statement not only to specify
the next record to read, but also to change the key of reference.

You can write anywhere in the file, replacing existing records or installing a record at an
ordinal position that had no record associated with it. You can replace an existing
record with a record of a different length. You can delete a record. A deleted record is
not the same as a record of length zero. A read operation with an invalid key leaves
the contents of the record area undefined (that is, unpredictable).

Key-Sequenced (Indexed or Queue) Files
Key-sequenced files contain records that are stored in independent positions on the
disk, but accessed in ascending sequence ordered by the unique value of a field within
each record. Enscribe calls this field the prime record key; HP COBOL calls it the
prime record key. You can read any record by specifying its key value.

A key-sequenced file can be incomplete; Enscribe does not require that there be a
record for each possible key value. If HP COBOL run-time routines ask Enscribe for
the record associated with a certain key value, and there is no such record in the file,
Enscribe reports that no such record exists and the HP COBOL run-time routine raises
the invalid-key condition (and, if you defined a file status code data item, stores an
appropriate value in it).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-13

Disk Input and Output Creating and Using HP COBOL Sequential Files
You can also read the file in key-value order. In this case, Enscribe does not report
absent records—it returns the records that exist. Because the key is part of the record,
you have access to the key value when you have read the record.

Enscribe allocates only as much space on disk as necessary for each key-sequenced
file record. Each record can vary in length from empty to the maximum record length
defined for the file. In HP COBOL terms, you can write fixed-length or variable-length
records (whichever the file was declared to have) of any length up to the limit. If
HP COBOL creates the file for you, that limit is the larger of:

• The length of the longest record description entry for the file
• The length declared in the RECORD CONTAINS clause

You can write records anywhere in the file, introducing new records or replacing
existing records. You can replace an existing record with a record of a different length.
You can delete a record. A deleted record is not the same as a record of length zero.

In HP COBOL, the DEPENDING phrase of the RECORD CONTAINS clause enables
you to designate a data item to receive the record length upon the successful
completion of a READ statement and to control the record length for a WRITE
statement. A read operation with an invalid key leaves the contents of the record area
undefined (that is, unpredictable).

Creating and Using HP COBOL Sequential
Files

In a sequential file—a file with sequential organization—records are arranged in a fixed
predecessor-successor relationship that is established as the records are entered in
the file.

HP COBOL sequential files fall into these categories:

• Entry-Sequenced Files

• Unstructured Files

• Unstructured EDIT Files

HP COBOL programs can create, read, write, and purge all of the preceding forms of
sequential file. To create an entry-sequenced file that has alternate keys, however, the
COBOL program must use the FILE_CREATE_ procedure (see Unstructured Files).

Entry-Sequenced Files
An HP COBOL program can create and write an entry-sequenced file that any other
HP product can later read. An HP COBOL program can read an entry-sequenced file
created by any HP product.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-14

Disk Input and Output Unstructured Files
An HP COBOL program can use the FILE_CREATE_ procedure to create an entry-
sequenced file that has alternate keys. An HP COBOL program cannot create an
entry-sequenced file that has alternate keys directly, because the operating
environment maintains the alternate keys in one or more separate files, whose names
are recorded with the operating environment information about the entry-sequenced
file (see Alternate Record Keys).

Outside an HP COBOL program, you can use the TACL command FUP CREATE to
create an entry-sequenced file that has alternate keys.

Unstructured Files
An HP COBOL program cannot create an unstructured file directly because the
HP COBOL language cannot describe a file as unstructured. To create an unstructured
file indirectly, an HP COBOL program calls the FILE_CREATE_ procedure.

An easier way to create an unstructured disk file is to use FUP outside of any
HP COBOL program. You can use the routine COBOL_ASSIGN_ to set file-code
to 101 (for an EDIT file) or to set file-type to 0 (for a non-EDIT file).

Suppose that your HP COBOL program needs an unstructured disk file named
MYTEMP on volume $MYVOL that accommodates 5K eighty-byte records in one
extent. Suppose that your HP COBOL program includes this data description:

01 WS-TEMP-NAME.
 03 WS-VOL-NAME PIC X(8).
 03 WS-SUBVOL-NAME PIC X(8).
 03 WS-FILE-NAME PIC X(8).

This HP COBOL code creates MYTEMP:

ENTER "COBOL_ASSIGN_" USING MYTEMP, OMITTED, 0

The value zero in the third parameter causes the file to be unstructured. The omitted
parameter is for the file code (which defaults to zero).

The FUP command that is equivalent to the preceding HP COBOL code that created
MYTEMP is:

FUP CREATE $MYVOL.MYTEMP, TYPE U

Additional FUP parameters enable you to specify these attributes:

• File code

• Primary extent size

• Secondary extent size

• Whether the file is audited by TMF

• Whether the file’s label is to be copied to the disk every time the file’s EOF value
changes

For more information about FUP, see the Guardian Programmer’s Guide.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-15

Disk Input and Output EDIT Files
EDIT Files
An EDIT file is a special form of unstructured file whose file code is 101. HP COBOL
programs can read, write, and create EDIT files. The file code 101 must be assigned to
the file in one of these ways before the HP COBOL program opens the file:

• Create the file outside the program (with an HP editor or FUP).

• Have the HP COBOL program create the file by calling the FILE_CREATE_
procedure.

• Before executing the HP COBOL program, use the TACL command ASSIGN to
associate the file’s name with the file code 101.

• If the program runs in the CRE, have the program call the routine
COBOL_ASSIGN_ to associate the file’s name with the file code 101.

Creating and Using HP COBOL Relative Files
In a relative file—a file with relative organization—records are accessed by their record
numbers. A record number is the position, relative to the beginning of the file, at which
the record is stored. It is not related to the order in which the records were entered in
the file. Record numbers need not be consecutive; for example, you can create a
relative file with only three records whose numbers are 12, 19435, and 237.

An HP COBOL program can create and write a relative file that any other HP product
can later read. An HP COBOL program can read a relative file created by any HP
product.

An HP COBOL program can create, read, write, and purge relative files. An
HP COBOL program must use the FILE_CREATE_ procedure to create a relative file
that has alternate keys.

An HP COBOL program cannot create a relative file that has alternate keys directly,
because the operating environment maintains the alternate keys in one or more
separate files whose names are recorded with the operating environment information
about the relative file (see Alternate Record Keys).

An HP COBOL program can create a relative file that does not have alternate keys
simply by describing the file as having relative organization (but without alternate keys)
and opening the file for OUTPUT, EXTEND, or I-O. The HP COBOL run-time routines
create the relative file.

There is one important difference between the way HP COBOL uses relative files and
the way many other HP utilities use them: HP COBOL calls the first record in a relative
file record 1, and the operating environment and most other HP software call the first
record in a relative file record 0.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-16

Disk Input and Output Creating and Using HP COBOL Indexed Files
The HP COBOL run-time routines that manipulate relative files convert HP COBOL
record numbers to Enscribe record numbers by subtracting 1 from the value of each
HP COBOL record number (except in the case of the two special record numbers -1
and -2 explained in Types of HP Disk Files).

If your HP COBOL program calls a TAL routine and passes a relative key to it or
receives a relative key from it, you must convert the record number appropriately.
Similarly, if a file contains numeric values that are to be used as record numbers, all
programs that use the file must use the same record numbering scheme.

These FUP commands declare the same relative file as the HP COBOL code in
Example 28-7:

SET TYPE R
SET EXT (1000 RECS, 2000 RECS)
SET REC 200
SET BLOCK 2048
CREATE $FIDDL.DEE.D

Creating and Using HP COBOL Indexed Files
In an indexed file—a file with indexed organization—records are accessed by the
values of a key field within each record.

An HP COBOL program can create and write an indexed file that any other HP product
capable of handling indexed files can later read. An HP COBOL program can read an
indexed file created by any HP product.

Example 28-7. Relative File Without Alternate Keys

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT RELFILE
 ASSIGN TO "$FIDDL.DEE.D"
 ORGANIZATION IS RELATIVE
 ACCESS MODE IS RANDOM
 RELATIVE KEY IS FIDLKEY.
...

DATA DIVISION.
FILE SECTION.
FD RELFILE
 RECORD CONTAINS 5 TO 200 CHARACTERS
 LABEL RECORDS ARE OMITTED.
01 REL-RECORD.
...

WORKING-STORAGE SECTION.
...

01 KEYS-GROUP.
 03 FIDLKEY PIC 9(8) COMPUTATIONAL.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-17

Disk Input and Output Creating and Using HP COBOL Indexed Files
An HP COBOL program can create, read, write, and purge indexed files. An
HP COBOL program must use the FILE_CREATE_ procedure to create an indexed file
that has alternate keys.

An HP COBOL program cannot directly create an indexed file that has alternate keys,
because the operating environment maintains the alternate keys in one or more
separate files, whose names are recorded with the operating environment information
about the indexed file (see Alternate Record Keys).

An HP COBOL program can create an indexed file that does not have alternate keys
simply by describing the file as having indexed organization (but without alternate
keys) and opening the file for OUTPUT, EXTEND, or I-O. The HP COBOL run-time
routines create the indexed file.

These FUP commands declare the same indexed file as the preceding HP COBOL
code:

SET TYPE K
SET EXT (1000 RECS, 2000 RECS)
SET REC 200
SET BLOCK 2048
CREATE $COBOL.PROGS.JAKE

Example 28-8. Indexed File Without Alternate Keys

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT INDFILE
 ASSIGN TO "$COBOL.PROGS.JAKE"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS JAKE-KEY.
...

DATA DIVISION.
FILE SECTION.
FD INDFILE
 RECORD CONTAINS 5 TO 200 CHARACTERS
 LABEL RECORDS ARE OMITTED.
01 IND-RECORD.
...

WORKING-STORAGE SECTION.
...

01 KEYS-GROUP.
 03 JAKE-KEY PIC X(18).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-18

Disk Input and Output Creating and Using Queue Files
Creating and Using Queue Files
A queue file is an indexed file (and therefore, a key-sequenced file) that can function
as a queue. Processes can queue and dequeue records in a queue file.

Queue files contain variable-length records that are accessed by values in designated
key fields. Unlike other key-sequenced files, queue files have prime keys but cannot
have alternate keys. The prime key for a queue file includes an 8-byte timestamp; you
can add a user key if desired. The disk process inserts the timestamp when each
record is inserted into the file, and maintains the timestamp during subsequent file
operations.

Topics:

• Creating a Queue File

• Opening a Queue File

• Reading a Queue File

• Writing to a Queue File

For more information about queue files, see the Enscribe Programmer’s Guide.

Creating a Queue File
Before you can use a queue file, you must create it (with the FUP CREATE command,
for example). Its prime key must have at least 8 bytes (for the timestamp). If you want
to add a user key, describe it before describing the timestamp, as in Example 28-9.

Opening a Queue File
Open a queue file for shared access and SYNCDEPTH 0; for example:

OPEN queue-file INPUT SHARED SYNCDEPTH 0

Example 28-9. Creating a Queue File With a Timestamp and a User Key

SELECT queue-file ASSIGN to queuef
 ORGANIZATION IS INDEXED
 ACCESS MODE IS SEQUENTIAL
 RECORD KEY IS queue-key

FD queue-file
 RECORD IS VARYING FROM 10 TO 100 CHARACTERS
 DEPENDING ON rec-len.

01 queue-rec.
 02 queue-key.
 03 user-key PIC XX.
 03 timestamp PIC X(8).
 02 the-rest PIC X(90).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-19

Disk Input and Output Reading a Queue File
Reading a Queue File
When you read a record of a queue file, you have a choice of:

• Removing the Record From the Queue

• Leaving the Record in the Queue

Removing the Record From the Queue
To read a record and remove it from the queue, use the READ ... NEXT WITH LOCK
statement. The compiler translates the READ ... NEXT WITH LOCK statement to a call
to the Guardian routine READUPDATELOCK[X].

Leaving the Record in the Queue
To read a record but leave it in the queue, use the READ ... NEXT statement (without
LOCK). The compiler translates the READ ... NEXT statement to a call to the Guardian
routine READ[X].

Writing to a Queue File
To write to a queue file, be sure that it exists and then open it for input and output; for
example:

OPEN queue-file I-O SHARED SYNCDEPTH 0

In the file-control entry, specify ACCESS MODE IS RANDOM.

After the file is open, use any form of the WRITE statement to write to it. The value that
you write to the timestamp field does not matter, because the system replaces that
value with its own timestamp.

Establishing Starting Points in Files
When you read a file using a key, you sometimes want to start at the record associated
with a given key value and continue to read successive records according to the value
of that key until you reach the record associated with a certain other value of that key.
The key can be the prime key of a file of relative or indexed organization or an
alternate key of any structured file.

Such a key is termed the key of reference. The mechanisms in HP COBOL that
implement this form of reading are the DYNAMIC access mode, the START statement,
and the sequential form of the READ statement (a READ statement with a NEXT
phrase).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-20

Disk Input and Output Key of Reference
Topics:

• Key of Reference

• Alternate Record Keys

• Positioning

• Repositioning to New Record With Same Alternate Key

Key of Reference
COBOL defines the “key of reference” as “the prime or alternate key currently being
used to access records within an indexed file.” HP COBOL extends that definition to
“the prime or alternate key currently being used to access records within an indexed or
relative file, or the alternate key currently being used to access records in an entry-
sequenced file.”

Enscribe uses the term “access path” for the sequence of records accessed by the key
of reference.

You establish the key of reference by executing a START statement or a READ
statement containing a KEY phrase. In a START statement, the key can specify the
identifier of an entire key field or the identifier of a leftmost subordinate of the key field.
For example, in the record in Example 28-10, if LAST-NAME, DEPARTMENT-
NUMBER, and JOB-TITLE are alternate keys, you can use LN5, LN10, LN15, DN3,
and J-T-PORTION as keys.

Example 28-10. Key of Reference

01 PERSONNEL-REC.
 03 NAME-FIELDS.
 05 LAST-NAME.
 07 LN1ST. PIC X.
 07 LN2ND. PIC X.
 ...
 07 LN25TH. PIC X.
 05 FIRST-NAME PIC X(25).
 05 M-I-NAME PIC X.
 03 DEPARTMENT-NUMBER PIC 9999.
 03 DN REDEFINES DEPARTMENT-NUMBER.
 05 DN3 PIC 999.
 05 FILLER PIC X.
 03 JOB-TITLE.
 05 J-T-PORTION.
 07 J-T PIC X OCCURS 1 TO 25 TIMES
 DEPENDING ON J-T-LENGTH.
 66 LN5 RENAMES LN1ST THRU LN5TH.
 66 LN10 RENAMES LN1ST THRU LN10TH.
 66 LN15 RENAMES LN1ST THRU LN15TH.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-21

Disk Input and Output Alternate Record Keys
After you have established the key of reference, you can execute sequential READ
statements (READ NEXT statements) to read successive records according to that
key: records in a relative file in ascending record-number order, records in an indexed
file in ascending prime-key order, or records in any structured (sequential) file in
ascending alternate-key order. You can also execute sequential READ REVERSED
statements to read records in reverse order.

The key-of-reference concept enables you to select one of several possible keys and
then use a single sequential READ statement to read a subset of records in a file.

Suppose that you have the personnel record in Example 28-10, and that the employee
number (which is not even part of the record) is the record number and therefore the
prime key. By selecting an alternate key as the key of reference, you can start reading
at the first “Adams” in the file, the first member of department 3141, or the first person
having the job “Clerk.” Then you can use a single READ statement to read successive
records for employees named “Adams,” successive records for employees whose
names follow “Adams” alphabetically, records of employees in the department number
3141 or higher, or records of employees whose job title is “Clerk” or follows “Clerk” in
collating sequence order.

Uppercase and lowercase letters are not equivalent in keys. When a data item with a
mixed-case value is to serve as a key, you have these choices:

• Leave the value alone, and accommodate any case differences.

• Shift the value into uppercase in the existing data item.

• Create an uppercase copy of the value in another data item in the record and use
the uppercase copy for key operations.

Alternate Record Keys
An alternate record key (or alternate key) is a data item, other than the prime record
key, whose value identifies a record in a structured file. COBOL restricts alternate keys
to indexed files. HP COBOL also allows alternate keys in entry-sequenced (sequential)
and relative files.

In HP COBOL, an alternate key can occur anywhere in a record. The DUPLICATES
phrase of the ALTERNATE RECORD KEY clause of the file-control entry determines
whether alternate key values must be unique. If unique, an alternate key can have up
to 253 characters; otherwise, it can have up to 253 characters minus the length of the
prime key. Alternate keys can overlap both each other and the prime key, but no two
alternate keys can start at the same character position (offset) in the record.

Enscribe implements alternate keys using one or more alternate-key files. For each file
with one or more alternate keys (primary file), Enscribe maintains at least one
alternate-key file. For each unique alternate key with a different key length, Enscribe
maintains a separate alternate-key file. You can refer to multiple unique alternate keys
of the same key length through a single alternate-key file. The directory entry for the
primary file with alternate keys includes the names and other attributes of the
associated alternate-key files.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-22

Disk Input and Output Positioning
Each record of an alternate-key file has three fields: the alternate key specifier, the
value of the alternate key, and the value of the prime key. An alternate key specifier is
a two-character code that identifies an alternate key defined for a primary file.

An alternate-key file is a key-sequenced file. For every record in the primary file, there
are at most as many records in the alternate-key file as there are alternate keys
declared for that alternate-key file.

Using FUP CREATE, you can specify a null-value character for each alternate key. Any
record with an alternate-key field composed entirely of the null-value character is not
represented in the alternate-key file. This strategy saves space when you have
alternate keys for which many records have the same value, such as zeros or spaces,
and you are not interested in locating these records by their alternate key.

If you have a structured file without alternate keys and you want it to have alternate
keys, you can use FUP to create the alternate-key file and to load the alternate-key file.

If you describe your database with DDL, the DDL compiler can produce the necessary
FUP commands to create prime-key and alternate-key files.

For more information about alternate keys, see the Guardian Programmer’s Guide.

Positioning
Enscribe provides three positioning modes: approximate, exact, and generic. Only
approximate positioning is available in COBOL; both approximate and generic
positioning are available in HP COBOL.

Neither COBOL nor HP COBOL supports exact positioning; it involves a variable-
length key. In using Enscribe directly, you specify a maximum key length for a key-
sequenced file’s prime key or for any alternate key. When you call the KEYPOSITION
routine (analogous to HP COBOL’s START statement), you can specify a length and a
value: a compare length that is shorter than or equal to the maximum key length, and a
value of that length for the key. Exact positioning means that the only records delivered
are those whose key is the same length as the compare length and whose value is the
same as the key value. If the key is unique, at most one such record exists in the file.

Caution. Because updating the alternate-key file can require multiple write operations, certain
types of failures can cause the operating environment to fail to record alternate keys. The
record and some of its alternate keys might be updated while other alternate keys might not be
updated. To prevent this, use TMF to verify that an update to a file with alternate keys is either
completed or aborted. For information about TMF, see Section 32, Fault-Tolerant Processes.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-23

Disk Input and Output Positioning
Approximate Positioning
With approximate positioning, you execute the START statement with a starting key,
and the next READ statement retrieves the next record in the access path that
contains a value in the corresponding data item that bears the stated relationship
(equal to, greater than, or not less than) to the starting key. Subsequent READ
statements receive the records that follow in the access path. An EOF condition arises
when the actual end of the file is reached.

Approximate positioning is the default, but you can include an APPROXIMATE phrase
in the START statement for documentation purposes if necessary.

Generic Positioning
Generic positioning is like approximate positioning except that you specify a starting
key that (usually) has a shorter length than the key data item in the record. Also, the
only relation permitted with the key is the equal relation. Subsequent READ statements
retrieve the records in the access path whose key values match the starting key for as
many characters as the start key has.

Suppose you want to read only the Adamses in the personnel file described in Key of
Reference. With the GENERIC phrase of the START statement (an HP extension to
COBOL), you specify that when a READ NEXT statement obtains a record with a
LAST-NAME value that does not begin with the five characters “Adams,” the statement
must raise the EOF condition and not deliver that record to the program.

You usually use generic positioning with partial keys. Using key values that include
trailing spaces, you can achieve an effect similar (but not identical) to exact positioning.
Consider the case of “Adams.” If you want to find only the Adamses (but not any
Adamsons), you can use a complete key of “Adams” plus enough spaces to fill out the
key.

Suppose that an HP COBOL program includes the code in Example 28-11.

Table 28-5. Enscribe File Positioning Modes

Positioning
Mode

Starting
Position Defined
by End of File Is Signaled

Available in
HP COBOL?

Exact
Positioning

Whole key value When key no longer identical
to start key

No

Approximate
Positioning

Whole or partial
key value

At physical end of file Yes

Generic
Positioning

Whole or partial
key value

When key or partial key no
longer identical to start key

Yes
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-24

Disk Input and Output Positioning
Example 28-11. Generic Positioning

INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT NAME-FILE ASSIGN TO "$JUICE.APPLE.NAME"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS KEY-NUMBER
 ALTERNATE RECORD KEY IS KEY-NAME WITH DUPLICATES
...

DATA DIVISION.
 FILE SECTION.
 FD NAME-FILE
 RECORD CONTAINS 5 TO 100 CHARACTERS
 LABEL RECORDS ARE OMITTED.
 01 NAME-FILE-REC.
 02 KEY-NUMBER PIC X(5).
 03 FILLER PIC X(3).
 02 KEY-NAME PIC X(35).
 02 REDEF-KEY REDEFINES KEY-NAME.
 04 FIRST-5 PIC X(5).
 04 FILLER PIC X(30).
...

 PROCEDURE DIVISION.
 THE-TOP.
 OPEN I-O NAME-FILE.
 PERFORM SHOW-NAMES.
 STOP RUN.
 SHOW-NAMES.
 DISPLAY "SHALL I START THE FILE GENERIC?".
 ACCEPT WHAT-FILE.
 IF WHAT-FILE = "Y"
 DISPLAY "WHAT FIRST 5 LETTERS SHALL I USE?"
 ACCEPT FIRST-5
 START NAME-FILE KEY = FIRST-5 GENERIC
 ELSE
 DISPLAY "WHAT APPROXIMATE NAME SHALL I START AT?"
 ACCEPT KEY-NAME
 START NAME-FILE KEY = KEY-NAME APPROXIMATE.
 PERFORM GET-AND-DISPLAY UNTIL NOT NAME-FILE-OK.
 GET-AND-DISPLAY.
 READ NAME-FILE NEXT;
 AT END MOVE "99999-----EOF" TO NAME-FILE-REC.
 DISPLAY KEY-NUMBER, "---", KEY-NAME.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-25

Disk Input and Output Repositioning to New Record With Same Alternate
Key
Suppose that NAME-FILE contains these records:

00005 ADAMS
00010 ADAMSKI
00121 JOHNSON
01010 ADAMS
12532 REITWIESNER
43132 SMITH
52353 ROTH
54116 ADAMS-JONES
54396 ADAMSSOHN

Without the GENERIC phrase, if the first key is “ADAMS” followed by 30 spaces, the
program displays:

00005---ADAMS
01010---ADAMS
54116---ADAMS-JONES
00010---ADAMSKI
54396---ADAMSSOHN
00121---JOHNSON
12532---REITWIESNER
52353---ROTH
43132---SMITH
99999-----EOF

With the GENERIC phrase, if the first key specifies that its first five characters must be
“ADAMS,” the program displays:

00005---ADAMS
01010---ADAMS
54116---ADAMS-JONES
00010---ADAMSKI
54396---ADAMSSOHN
99999-----EOF

Repositioning to New Record With Same Alternate Key
COBOL provides no mechanism for repositioning to one of several records having the
same alternate key. HP COBOL provides a mechanism: the POSITION phrase of the
START statement.

The POSITION phrase enables you to write context-free servers that must return large
sets of records to their requesters. Suppose you want your server to return one record
for each product that includes part number 1345-55433. To keep message length and
buffer space to a reasonable size, the server can return only 10 records. A server
should not retain a context from a requester. Each server should be able to serve any
requester.

The POSITION phrase can specify the prime key, a leftmost subordinate of the prime
key, an alternate key, or a leftmost subordinate of an alternate key in the KEY phrase.
The prime-key value is in a separate data item; it need not be inserted in the record
area of the file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-26

Disk Input and Output Repositioning to New Record With Same Alternate
Key
The POSITION phrase enables a server to pass the value of the prime key of the most
recently processed record back to a requester. The requester can then send the prime-
key value to a server with its next request, and the server can use that value in a
POSITION phrase of the START statement (and also as the alternate key in the KEY
phrase) to uniquely specify a record at which to resume processing.

The POSITION phrase includes the optional keyword, AFTER. Without AFTER, the
START statement establishes the current file position at the same record specified by
the prime-key value. With AFTER, the START statement establishes the current file
position at the next record (if any) after the record specified by the prime-key value in
the POSITION phrase.

The role of the POSITION phrase is to reestablish the environment after the last read
using a partial key. The execution of a START statement with a POSITION phrase
does not report an invalid-key condition—the next READ statement executed could
report an EOF condition.

To resume processing a file after an interruption, take the same START statement that
you used to initiate processing and add a POSITION phrase, specifying the key
relation EQUAL.

It might be possible to collapse the initial START statement and the repositioning
START statement into a single statement when it is not important for the initial
positioning operation to detect an invalid-key condition if no record matches the key
relation in a normal initial start operation. If this is acceptable, write the program for just
the continuation repositioning case and use LOW-VALUES for the prime record key (or
1 for the relative key) in the initial case. This strategy is especially useful for servers.
The server need only be implemented with a continuation request and can depend on
the requester to supply LOW-VALUES (or 1) for the prime key in the initial request.

Example 28-12 is a skeleton program for a server. It accepts several types of request,
one of which calls for a list of part records (beginning at a specified part name) to be
returned to the requester. If more than 10 such records must be returned, the requester
must accept 10 at a time and request the next portion by passing back the last part
number it received and the part name. This program is incomplete and is provided only
to illustrate the POSITION phrase of the START statement.

Example 28-12. Use of START With the POSITION Phrase (page 1 of 4)

IDENTIFICATION DIVISION.

 PROGRAM-ID. PART-LIST-SERVER.

 AUTHOR. KELLY COBOL.

ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. TXP.
 OBJECT-COMPUTER. TXP.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-27

Disk Input and Output Repositioning to New Record With Same Alternate
Key
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT MESSAGE-IN
 ASSIGN TO "$RECEIVE"
 FILE STATUS IS RECEIVE-FILE-STATUS.
 SELECT MESSAGE-OUT
 ASSIGN TO "$RECEIVE"
 FILE STATUS IS RECEIVE-FILE-STATUS.
 SELECT PART-FILE
 ASSIGN TO "PART"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS PART-NO OF PART-DATA-RECORD
 ALTERNATE RECORD KEY IS
 PART-NAME OF PART-DATA-RECORD WITH DUPLICATES
 FILE STATUS IS FILE-STAT.

 RECEIVE-CONTROL.
 TABLE OCCURS 5 TIMES
 SYNCDEPTH LIMIT IS 1
 REPLY CONTAINS 1100 CHARACTERS.

DATA DIVISION.
 FILE SECTION.
 FD MESSAGE-IN
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 1 TO 200 CHARACTERS.

 01 PART-DEL-GET-LIST-MSG.
 02 PRT-HEADER.
 03 REPLY-CODE PIC S9(4) COMP.
 03 APPLICATION-CODE PIC X(2).
 03 FUNCTION-CODE PIC X(02).
 03 TRANS-CODE PIC 9(2).
 03 TERM-NO PIC X(15).
 03 LOG-REQUEST PIC X(01).
 02 PART-NO PIC X(10).
 02 PART-NAME PIC X(50).

 FD MESSAGE-OUT
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 1 TO 1100 CHARACTERS.

 01 SERVER-REPLY.
 02 PRT-HEADER.
 03 REPLY-CODE PIC S9(4) COMP.
 ... {same as PRT-HEADER of PART-DEL-GET-LIST-MSG }
 02 ERROR-CODE PIC S9(4) COMP.
 02 GUARDIAN-ERR PIC S9(4) COMP.
 02 ERROR-MESSAGE.
 03 ERROR-FILE-NO PIC X(05).
 03 ERROR-TEXT PIC X(65).

 01 PART-GET-REPLY.
 02 PRT-HEADER.
 03 REPLY-CODE PIC S9(4) COMP.
 ... {same as PRT-HEADER of PART-DEL-GET-LIST-MSG }
 02 PART-DATA.
 03 PART.
 04 PART-NO PIC X(10).
 04 PART-NAME PIC X(50).
 ...

Example 28-12. Use of START With the POSITION Phrase (page 2 of 4)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-28

Disk Input and Output Repositioning to New Record With Same Alternate
Key
01 PART-LIST-REPLY.
 02 PRT-HEADER.
 03 REPLY-CODE PIC S9(4) COMP.
 ... {same as PRT-HEADER of PART-DEL-GET-LIST-MSG }
 02 LINE-COUNT PIC 9(04).
 02 ALL-PART-LINES.
 03 PART-LINE OCCURS 10 TIMES.
 04 PART-NO PIC X(10).
 04 PART-NAME PIC X(50).
 04 CUST-NUM PIC 9(06).
 ...

 FD PART-FILE
 LABEL RECORDS ARE OMITTED.
 01 PART-DATA-RECORD.
 02 PART.
 03 PART-NO PIC X(10).
 03 PART-NAME PIC X(50).
 ...
 WORKING-STORAGE SECTION.
 ...

PROCEDURE DIVISION.
MAIN SECTION.
BEGIN-COBOL-SERVER.
 PERFORM A-INIT.
 PERFORM B-TRANS UNTIL CLOSE-FROM-REQUESTER.
 PERFORM C-EOJ.
 STOP RUN.

A-INIT.
 OPEN INPUT MESSAGE-IN
 OUTPUT MESSAGE-OUT SYNCDEPTH 1
 INPUT PART-FILE SHARED.

C-EOJ.
 CLOSE MESSAGE-IN
 MESSAGE-OUT
 PART-FILE.

B-TRANS.
 MOVE SPACES TO PART-DEL-GET-LIST-MSG.
 PERFORM 920-GET-SERVER-MSG.
 IF NOT CLOSE-FROM-REQUESTER
 PERFORM B-TRANS-CASE.

B-TRANS-CASE.
 IF TRANS-CODE OF PART-DEL-GET-LIST-MSG = LIST-BY-NO-TRANS
 OR LIST-BY-NAME-TRANS
 PERFORM 200-GET-PART-LIST-RCD
 ELSE
 PERFORM 960-INVALID-T-CODE
 .

100-GET-PART-RCD.
 PERFORM 110-INIT-REPLY.
 PERFORM 120-READ-PART-INFO.

110-INIT-REPLY.
 ...

Example 28-12. Use of START With the POSITION Phrase (page 3 of 4)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-29

Disk Input and Output Repositioning to New Record With Same Alternate
Key
120-READ-PART-INFO.
 MOVE PART-NO OF PART-DEL-GET-LIST-MSG TO PART-NO OF PART-DATA-RECORD.
 PERFORM 945-READ-PART-KEY.
 IF NO-ERROR
 PERFORM 914-GET-REPLY
 ELSE
 PERFORM 990-BUILD-ERROR-REPLY
 PERFORM 910-SERVER-REPLY.

200-GET-PART-LIST-RCD.
 PERFORM 210-INIT-REPLY.
 PERFORM 220-BUILD-REPLY.

210-INIT-REPLY.
 MOVE SPACES TO SERVER-REPLY.
 MOVE PRT-HEADER OF PART-DEL-GET-LIST-MSG TO PRT-HEADER OF SERVER-REPLY.
 MOVE ZERO TO REPLY-CODE OF PART-LIST-REPLY
 LINE-COUNT OF PART-LIST-REPLY
 MOVE SPACES TO ALL-PART-LINES OF PART-LIST-REPLY.

220-BUILD-REPLY.
 MOVE PART-NO OF PART-DEL-GET-LIST-MSG TO PART-NO OF PART-DATA-RECORD.
 MOVE PART-NAME OF PART-DEL-GET-LIST-MSG TO PART-NAME OF PART-DATA-RECORD.
 PERFORM 935-START-PART-REPOSITIONED.
 IF NO-ERROR
 PERFORM 230-GET-PART VARYING I FROM 1 BY 1
 UNTIL I > MAXLIST OR FILE-ERROR
 IF NO-ERROR OR END-OF-FILE
 PERFORM 916-LIST-REPLY
 ELSE
 PERFORM 990-BUILD-ERROR-REPLY
 PERFORM 910-SERVER-REPLY
 ELSE
 PERFORM 990-BUILD-ERROR-REPLY
 PERFORM 910-SERVER-REPLY.

230-GET-PART.
 MOVE I TO LINE-COUNT OF PART-LIST-REPLY.
 PERFORM 940-READ-PART-NEXT.
 IF NO-ERROR
 MOVE PART-NO OF PART-DATA-RECORD TO PART-NO OF PART-LIST-REPLY (I)
 MOVE PART-NAME OF PART-DATA-RECORD TO PART-NAME OF PART-LIST-REPLY (I)
 ...
 ELSE
 IF END-OF-FILE
 MOVE PART-FILE-EOF TO REPLY-CODE OF PART-LIST-REPLY
 SUBTRACT 1 FROM LINE-COUNT OF PART-LIST-REPLY.

910-SERVER-REPLY.
 WRITE SERVER-REPLY.

914-GET-REPLY.
 WRITE PART-GET-REPLY.

916-LIST-REPLY.
 WRITE PART-LIST-REPLY.

935-START-PART-REPOSITIONED.
 START PART-FILE KEY IS = PART-NAME OF PART-DATA-RECORD
 POSITION PART-NO OF PART-DATA-RECORD APPROXIMATE.

960-INVALID-T-CODE.
 MOVE INVALID-TRANSACTION TO REPLY-CODE OF SERVER-REPLY.
 PERFORM 910-SERVER-REPLY.

Example 28-12. Use of START With the POSITION Phrase (page 4 of 4)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-30

Disk Input and Output Optimizing Disk File Processing
 Optimizing Disk File Processing
The features of Enscribe that protect the database from corruption also slow down the
Enscribe input and output routines. If you can afford less protection, you can improve
the performance of the HP COBOL disk input and output routines. You can afford less
protection when a process has exclusive access to a file, or when it is acceptable that
other processes that read the file might not receive the most recent copy of a changing
record.

These topics explain how to use these types of files to optimize disk file processing:

• Unstructured Files

• Structured Files

• Files With Alternate Keys

• Partitioned Files

Unstructured Files
A process can read and write unstructured files faster than it can read structured files,
whether the logical records of the unstructured file are blocked or not. A process can
read and write blocked unstructured files considerably faster than it can read and write
unblocked unstructured files.

HP COBOL performs record blocking (for write operations) and deblocking (for read
operations) of unstructured files when all of these conditions are met:

• The program describes the file’s organization as sequential.

• The program does not describe the file as being composed of variable-length
records (except in the case of EDIT files, which can be described as having
variable-length records).

• The program includes a BLOCK CONTAINS clause that specifies an even multiple
of the established record size.

• The program does not describe the file with a LINAGE clause or an ALTERNATE
RECORD KEY clause.

Structured Files
For structured files, the file system provides two independent record blocking
performance enhancements—cache buffering and sequential block buffering. In
addition, HP COBOL has Fast I-O, a faster enhancement built on top of sequential
block buffering.

The type of record blocking used for a file is determined by number in the RESERVE
clause of the file-control entry.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-31

Disk Input and Output Structured Files
In the non-CRE environment, the value of number must be in the range 1 through 8
and is interpreted:

In the CRE, the value of number must be in the range 1 through 32 and is interpreted:

The BLOCK CONTAINS clause has no effect when a RESERVE clause is present—
the block size of the existing file is used.

Topics:

• Cache Buffering

• Sequential Block Buffering

• HP COBOL Fast I-O

Cache Buffering
Cache buffering is a disk-process feature that speeds up the writing of structured disk
files. A cache, or buffer pool, is an area of system memory reserved for buffering
blocks of data for transfer to or from a disk.

If cache buffering is not used, each logical write operation causes the cache block
containing the record to be written immediately to the disk. This is called write-through
cache.

If cache buffering is used, the records are held in the cache (in system memory) and
not immediately written through to the disk. The blocks are written to disk only when
certain situations require it. This is called buffered cache.

Value of number Effect on Record Blocking

1 No buffering or HP COBOL Fast I-O

2 or greater HP COBOL Fast I-O if the assigned file qualifies; if not, sequential
block buffering for input and buffered cache for output if the assigned
file qualifies; otherwise, normal I-O. number is the number of blocks
to buffer

Value of number Effect on Record Blocking

1 No buffering or HP COBOL Fast I-O

2 Sequential block buffering on input and buffered cache on output if
the assigned file qualifies

3 or greater HP COBOL Fast I-O if the assigned file qualifies; if not, sequential
block buffering for input and buffered cache for output if the assigned
file qualifies; otherwise, normal I-O

number is the number of blocks to buffer
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-32

Disk Input and Output Structured Files
By default, files that are audited by TMF use cache buffering, and files that are not
audited do not.

When a file is opened, the call to the FILE_OPEN_ procedure includes a parameter
that determines whether or not cache buffering is used—that is, whether the file has
the attribute BUFFERED. You can give a file the BUFFERED attribute by using FUP
routines or the corresponding Enscribe routines through environment procedure calls;
then all output to the file is done with cache buffering.

Each disk has its own cache. Each cache is configured to have space for a certain
quantity of disk data. Each disk device has an associated disk process that performs
the physical operations of reading data from the disk into cache memory and writing
data from cache memory to the disk.

When a process requests a record from a given disk, the Enscribe record manager
checks that particular cache for the block that contains the record. If that block is not
present in the cache, Enscribe must perform a physical read from the disk and then
return the record to the application process. If the block is present, Enscribe does not
need to do the read operation; it can simply return the record to the application
process.

Sequential Block Buffering
Sequential block buffering (SBB) is an Enscribe feature that speeds the sequential
reading of a structured file by reading a block of records together into a memory buffer.
Enscribe allocates the buffer in the process file segment outside the data space of your
process.

If the file has no alternate keys, the size of the buffer is the block size of the file. If the
file has alternate keys, the alternate-key file (not the primary file) is buffered, because
the alternate-key file is being read sequentially, while the primary file is probably being
read randomly.

Caution. Do not use cache buffering with a program that requires that each record actually be
written on the disk before the next statement in the program is executed. If your program is
writing to a file that is opened with the exclusion mode SHARED or PROTECTED, give careful
consideration to the use of cache buffering, because other processes can read the file and
could read a record that your writing process has updated but which the file system has not yet
delivered to the disk.

Note. With the advent of the DP2 disk processing system, “normal” I/O could be faster than
sequential block buffering, depending on the number of records per block. For example, a file
containing eight 4K blocks and 1600 records requires one physical I/O operation and 1600
interprocess messages in normal mode, but eight physical I/O operations and only eight
interprocess messages in SBB mode; on the other hand, a file with eight 4K blocks and only
eight records requires one physical I/O and eight interprocess messages in normal mode, but
eight physical I/O operations and eight interprocess messages in SBB mode
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-33

Disk Input and Output Structured Files
Without sequential block buffering, every time an application program performs a read
operation, the HP COBOL run-time routines must call the READ routine, which causes
the file system to send a message to the disk process and causes the disk process to
return a message containing the record. With sequential block buffering, only entire
blocks are sent, and any records in the block after the first one are delivered from the
process file segment without any message traffic.

HP COBOL provides sequential block buffering for a file when all of these conditions
are met:

• The file is structured.

• The file’s open mode is INPUT or I-O.

• The program declares the file to have sequential access mode (although
organization can be sequential, relative, or indexed).

HP COBOL Fast I-O
Fast I-O is an HP COBOL enhancement in input-output performance beyond that of
sequential block buffering or buffered cache. With HP COBOL Fast I-O, the
HP COBOL run-time routines use an auxiliary block buffer and perform the blocking
and deblocking in local storage. This process operates 2 or 3 times faster than when
the operating environment performs the blocking and deblocking operations.

HP COBOL Fast I-O is available if the HP COBOL program and the structured file
upon which it is to operate meet these criteria:

• Either the program runs in the non-CRE environment and the file is organized
sequentially, or the program runs in the CRE (in which case the file can have any
organization).

• The file description includes a RESERVE clause with a number specifying the
number of blocks to buffer. In the non-CRE environment, the number must be
greater than 1; in the CRE, it must be greater than 2.

• The file description does not include a LINAGE clause or a CODE-SET clause.

• The file was not opened with time limits (as with the TIME LIMITS phrase in the
OPEN statement).

• The program is not compiled with the NONSTOP directive.

Caution. Do not use sequential block buffering for a file opened for shared access. If you do,
a process could read data that is not up to date while another process alters the file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-34

Disk Input and Output Files With Alternate Keys
• The specifications in the OPEN statement, or the attributes derived during the
open operation by some other means (such as from a TACL ASSIGN command),
conform to:

° The open mode is INPUT or OUTPUT.

° If the open mode is INPUT, the exclusion mode is PROTECTED or
EXCLUSIVE.

° If the open mode is OUTPUT, the exclusion mode is EXCLUSIVE.

If all of the preceding qualifications are satisfied at run time, HP COBOL Fast I-O is
used only if memory resources are available. For a file opened for output, the loader
creates the file. The loader is also used by FUP, SQL/MP, and other products. The
loader manages its own extended data segment to write the file. The loader requires
local storage, which is allocated by the run-time system. The amount of local storage is
approximately 800 bytes (the exact amount depends on the type of the file and other
factors). If the necessary storage is not available, the OPEN statement returns file
status “07” and buffered cache is used to write the file.

For a file opened for input, HP COBOL Fast I-O allocates space for double buffering
from a buffer pool that is in its own extended data segment and is of a fixed size. Buffer
size is determined by multiplying the number in the RESERVE clause by the data block
size of the file (to see this size, use the command FUP INFO file-name, DETAIL).
Then, based on various factors such as the maximum transfer allowed, a read buffer
size that is not larger than 30,720 bytes is selected. The total space allocated from the
buffer pool is twice the read buffer size. If there is not enough space (as when several
files are opened for input using HP COBOL Fast I-O at the same time), the OPEN
statement returns file status “07” and sequential block buffering is used for the file.

The buffer pool space returns to the pool when the file is closed. The SAME AREA
clause has no effect on allocation or deallocation from this buffer pool.

If the file is being created and the maximum file size is exceeded, the corrupt bit is set
in the file header and the program terminates abnormally. Attempting to open the file
causes a file system error. If the file is sequential, you can use FUP to clear the corrupt
bit and read what was written to the file (all of the records you released with WRITE will
probably not be there). If the file is relative or indexed, the file is unusable.

Files With Alternate Keys
You can improve the performance of alternate-key file access by:

• Declaring Null Values for Alternate Keys

• Making the Main File Entry-Sequenced or Relative

• Not Updating the Alternate-Key File Automatically

Note. HP COBOL Fast I-O is not recommended for an indexed file that has had many records
inserted or deleted since it was created. If you want to use HP COBOL Fast I-O on such a file,
first use FUP RELOAD to reorganize it.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-35

Disk Input and Output Files With Alternate Keys
Declaring Null Values for Alternate Keys
When you create an alternate-key file with FUP CREATE, you can declare a null value
for any alternate key. When you insert a record, if each byte in the alternate-key field
contains that null value, the alternate-key reference is not added to the alternate-key
file. This reduces both the size of the alternate-key file and the access time for the
records of a file being accessed according to that alternate key. It also makes the
records that have null values invisible when you read the file by an alternate key for
which a null value has been defined.

If you update a record in the file in such a way that the alternate-key field receives a
null value, the alternate-key reference for that record is deleted from the alternate-key
file.

If you read a file according to an alternate key for which a null value has been defined,
records containing the null value of the alternate key are not read.

The most common null values are the ASCII space and the binary zero.

Making the Main File Entry-Sequenced or Relative
If your main file has several keys defined but no one key is used substantially more
than any other keys, consider making that main file a relative or entry-sequenced file
rather than a key-sequenced file.

Every time you read a key-sequenced file by prime key, you cause two possible
physical read operations: one for the key and one for the record. Every time you read a
key-sequenced file by alternate key, you cause four possible physical read operations:
one for the alternate key, one for the alternate-key record, one for the prime key, and
one for the record. If the main file has two keys and the probability of reading the file by
any given key is about even, then half the time you could cause two physical read
operations and half the time you could cause four. For each logical read operation, you
average three physical read operations.

If the main file has two keys and the probability of reading the file by any given key is
about even, you also average three physical read operations for each logical read
operation if you choose entry-sequenced or relative organization for the main file;
however, if the main file has more than two keys, the average number of physical read
operations per logical read operation improves.

The average number of physical read operations per logical read operation improves
even further when several records in the alternate-key file or main file are in the same
physical block and no physical read is required, such as when you are reading
sequentially on an alternate key.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-36

Disk Input and Output Partitioned Files
Not Updating the Alternate-Key File Automatically
Another way to improve the performance of alternate-key file access is to specify that
the alternate-key file not be automatically updated by the operating environment when
the value of an alternate-key field changes (use the FUP parameter NOUPDATE). This
is appropriate when your only means of updating the file is a batch update program
that runs when no interactive processes are reading the file; you can run the batch
update, then re-create the alternate-key file and reload it. Do not use the NOUPDATE
parameter if the file is updated interactively, because the changed records do not
cause any changes in the alternate-key file until the next batch update.

Partitioned Files
Partitioned files can be accessed faster because separate read heads are used for
each partition. Loss of access to one disk need not mean loss of access to the entire
file.

You can divide an indexed file according to the value of the prime key and have, for
example, A through C on the first disk volume and U through Z on the last disk
volume. If one of the disks is taken offline for maintenance, or if one system of the
network is inaccessible due to communication problems, the remainder of the
partitioned file is still accessible.

To open a partitioned file when some partitions cannot be accessed, an HP COBOL
program must use the routine COBOL85^SPECIAL^OPEN (in the non-CRE
environment) or COBOL_SPECIAL_OPEN_ (in the CRE). If all partitions can be
accessed, an HP COBOL program can open a partitioned file with the OPEN
statement.

For more information about partitioned files, see Partitioned Files.

Optimizing Disk File Storage
You can specify at file creation time that an indexed or data file is to be compressed for
more space-efficient storage at a slight expense of speed. Enscribe compresses
records by eliminating duplicate leading characters from one record to the next and
replacing them with a one-byte count of the duplicate characters. If a file has a
significant amount of duplicated data, the storage saving can be substantial.

The prime key of a compressed file must be at the beginning of the record.

Compression is recommended for an indexed file in which the first records of
successive blocks have similar prime-key values. Compression is recommended for an
alternate-key file in which several alternate keys have the same value.

For more information about compressing indexed and data files, see the Guardian
Programmer’s Guide.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-37

Disk Input and Output Avoiding Deadlock
Avoiding Deadlock
Deadlock is a situation in which two processes are in contention for a single-user
resource. If both processes require exclusive use of both resources, they are
deadlocked. Neither can proceed until the other surrenders control of the resource it
has under its control. If two servers get into a deadlock, their respective requesters are
also deadlocked because neither requester receives a reply from its server.

One example of deadlock is when one process has opened a file (call it ABLE) and
needs to open another file (call it BAKER), while another process has opened BAKER
and now needs to open ABLE.

Another example of deadlock is when one process has locked a record in a file (call it
record n) and wants to read another record in the file (call it record m), while some
other process has locked record m and wants to read record n.

The ways to avoid deadlock are:

• Locking and Unlocking Files and Records

• Setting Time Limits on Input-Output Operations

Locking and Unlocking Files and Records
The most complete way for a process to lock a file is to open the file for exclusive
access (open it with the exclusion mode EXCLUSIVE). This strategy prevents all other
processes from reading or writing the file.

If it is not feasible for one process to have exclusive control of a file for when it has the
file open, there are alternatives.

One alternative is protected access. When a process opens a file for protected access
(opens it with the exclusion mode PROTECTED), other processes can read and write
the file while the opening process has it open, but cannot write the file until the opening
process closes the file.

Another alternative is shared access. When a process opens a file for shared access
(opens it with the exclusion mode SHARED), other processes can read and write the
file while the opening process has it open.

When a file is open for shared access and one process needs exclusive access to the
file temporarily, that process can lock the file with a LOCKFILE statement, operate on
it, and then unlock it with an UNLOCKFILE statement. If a process only needs
temporary exclusive access to a record of the file, the process can temporarily lock the
record with a READ statement with a LOCK phrase and then unlock it with an
UNLOCKRECORD statement.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-38

Disk Input and Output Setting Time Limits on Input-Output Operations
To avoid deadlock when processes share and lock files, have each process lock and
unlock records and files in the same sequence.

Setting Time Limits on Input-Output Operations
Even when each program that shares files carefully arranges to lock files and records
in the same order, a newly introduced program or a change to an existing program can
fail to conform and cause deadlock. In HP COBOL, you can prevent this deadlock by
using the TIME LIMITS phrase with the statements OPEN, START, READ, and
LOCKFILE.

Without the TIME LIMITS phrase, if your process attempts to open a file, establish a
starting position in a file, read a file, or lock a file and that file or the necessary record
in that file is already locked, the process suspends activity until the lock is removed.

With the TIME LIMITS phrase, you can specify a time limit on the suspension. If the
time expires before the inhibiting lock is removed, the file operation terminates with file
status code “30” and GUARDIAN-ERR special register value 40. The program can
diagnose the failure of the file operation and either retry the operation or abandon the
current group of operations to allow another process to complete its operations.

Suppose you have a file declared by these entries:

SELECT OAK-FILE ASSIGN TO "$OAK.ACORN.TREE"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL
 FILE STATUS IS OAK-STATUS.

FD OAK-FILE
 LABEL RECORDS ARE OMITTED.
01 OAK-RECORD.
 02 ...

Suppose that you open the file with this statement:

OPEN INPUT OAK-FILE WITH TIME LIMITS SHARED.

Suppose that your program includes a declaratives section such as:

DECLARATIVES.
 OAK-FILE-USE-SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON OAK-FILE.
 OAK-DECL.
 IF OAK-STATUS = "30"
 AND GUARDIAN-ERR = 40
 MOVE "Operation timed out on OAK file" TO REPORT
 MOVE TIME-OUT-CODE TO OAK-ERROR
 DISPLAY REPORT
 END-IF.
END DECLARATIVES.

Note. If a process is protected by TMF, all locks are retained (despite unlocking statements)
until the current transaction is completed or backed out.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-39

Disk Input and Output Using Enscribe and Operating System Routines
Suppose that you attempt to read the file OAK with a statement such as:

READ OAK-FILE RECORD TIME LIMIT 5 AT END PERFORM END-OAK.
IF OAK-ERROR = TIME-OUT-CODE
...

When the read operation cannot be completed within 5 seconds, control passes to the
USE procedure for the OAK file, which can adjust the program’s behavior
appropriately. The USE procedure displays a diagnostic to the OUT file. The program
could retry a certain number of times, or (if it is a server) report back to its requester
that the read operation could not be completed, which is another way to handle a file
that might be locked at the file or record level.

Using Enscribe and Operating System
Routines

Enscribe routines are a subset of operating system routines that function collectively as
the operating environment’s database record manager. All processes use Enscribe
routines to interact with records in disk files in the database. HP COBOL run-time
routines that perform input-output operations do so by calling Enscribe routines, but
they also handle HP COBOL-related processing that Enscribe does not, such as
declaratives and file status code data items.

An HP COBOL program can call an Enscribe or other operating system routine with
the ENTER statement. Some Enscribe and operating system routines are not safe to
use from an HP COBOL program; others are.

Topics:

• Physical File Names

• Obtaining File Numbers and Other File Attributes

• Determining Whether Two COBOL File Names Specify the Same Physical File

• Purging a File From an HP COBOL Program

• Purging the Contents of a File From an HP COBOL Program

• Renaming a File From an HP COBOL Program

• Creating a File Having Alternate Keys From an HP COBOL Program

Caution. Generally, it is not safe to mix HP COBOL input-output operations and direct calls to
Enscribe input-output routines for the same open file. Although you can use HP COBOL
statements to open, close, and checkpoint a file and also call Enscribe routines to perform
operations that HP COBOL does not provide, calling Enscribe routines disables useful
HP COBOL tools such as declaratives and file-status data items, causing corruption or loss of
data, abnormal termination, and other failures. Although such calls might work in one RVU of
the software, they are not guaranteed to work in subsequent RVUs.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-40

Disk Input and Output Physical File Names
Physical File Names
A physical file name is the file name by which the Enscribe disk file handling routines
recognize a file (as opposed to the COBOL file name, which is also called the internal
file name).

In the non-CRE environment, Enscribe disk file handling routines demand file names in
one of two rigid formats—one for local files and one for files on other nodes of the
Expand network. They correspond to these HP COBOL declarations:

01 Enscribe-LOCAL-FILE-NAME.
 03 VOLUME-SPECIFIER.
 05 FILLER PICTURE X VALUE IS "$".
 05 VOLUME-NAME PICTURE X(7).
 03 SUBVOLUME-NAME PICTURE X(8).
 03 FILE-NAME PICTURE X(8).

01 Enscribe-NETWORK-FILE-NAME.
 03 SYSTEM-SPECIFIER.
 05 FILLER PICTURE X VALUE IS "\".
 05 ONE-BYTE-SYSTEM-NUMBER PICTURE X.
 03 VOLUME-SPECIFIER.
 05 VOLUME-NAME PICTURE X(6).
 03 SUBVOLUME-NAME PICTURE X(8).
 03 FILE-NAME PICTURE X(8).

The data item ONE-BYTE-SYSTEM-NUMBER is a 1-byte integer whose value is in the
range 0 through 254. Each node in an Expand network has a unique system name and
a unique system number. The number and name of a node are established during
system generation.

Obtaining File Numbers and Other File Attributes
When a process opens a file, Enscribe assigns the file a number that is unique within
that process. File number zero is always set aside for $RECEIVE, regardless of
whether a process opens it or not. The first other file that a process opens is assigned
file number one. Enscribe always assigns the lowest available file number. After a
process closes a file, the associated file number becomes available.

Many Enscribe routines require file numbers instead of file names. Each of these
routines returns a file number:

• HP COBOL routine COBOLFILEINFO or COBOL_FILE_INFO_
• Enscribe routine FILE_GETINFO_

Each of the preceding routines can return other file attributes in addition to the file
number; use the routine best suited to your needs.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-41

Disk Input and Output Determining Whether Two COBOL File Names
Specify the Same Physical File
The HP COBOL routine COBOLFILEINFO or COBOL_FILE_INFO_ accepts a COBOL
file name and returns:

• The file number of the file
• The internal form of the file name associated with the file description
• The file-system error code of the last input-output operation attempted for that file

For more information about the COBOLFILEINFO routine, see COBOLFILEINFO. For
more information about the COBOL_FILE_INFO_ routine, see COBOL_FILE_INFO_.

The FILE_GETINFO_ procedure can return more attributes than the HP COBOL
routine COBOLFILEINFO can. For details, see the Guardian Procedure Calls
Reference Manual.

Determining Whether Two COBOL File Names Specify the Same
Physical File

Through programmer error or a TACL ASSIGN command, two COBOL file names in
the same run unit can refer to the same physical file. This situation is not forbidden; in
fact, it can be useful: you can develop a server by having the input come from a disk
file and the output go to a printer, and then putting the server into production with both
the input file and the output file assigned to $RECEIVE.

Having two COBOL file names refer to the same physical file can also cause problems.
If, for example, a program has two output files that are intended as two separate
reports, and both are assigned to the same printer (not a spooler collector but the
same mechanical device), then the program terminates abnormally. If both files have
the exclusion mode SHARED, the lines of the two reports are interspersed on the
paper.

To enable your HP COBOL program to detect that two of its HP COBOL file names
refer to the same external file, call operating system routine FILENAME_COMPARE_.
FILENAME_COMPARE_ accepts two file names in internal form and returns a numeric
value:

A negative value other than -1 represents a file-system error number having the
corresponding positive value; for example, if at least one of the parameters specifies
an illegal file name, the value returned is -13.

For more information about the FILENAME_COMPARE_ routine, see the Guardian
Procedure Calls Reference Manual.

Value
Returned Meaning

-1 The two internal file names do not refer to the same physical file.

0 The two internal file names refer to the same physical file.

1 The two internal file names refer to the same volume name, device name, or
process name, but the remainder of the two file names do not match (such as
two instances of the same spooler collector that specify different locations).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-42

Disk Input and Output Purging a File From an HP COBOL Program
Purging a File From an HP COBOL Program
The HP COBOL language provides no mechanism for deleting a file from the system
directory; an HP COBOL program can purge a file only through an explicit call to the
FILE_PURGE_ procedure. The file being purged must be closed.

The FILE_PURGE_ procedure accepts the internal form of a file name as a parameter.
To determine whether the purge operation was successful, call the HP COBOL routine
COBOLFILEINFO with the file name as its parameter. COBOLFILEINFO returns an
error value. If the purge operation was successful, the error value is zero.

One common reason for a purge operation to fail is that the process’s accessor ID was
not authorized to purge the file according to the security attributes of the file.

If the reason you want to purge a file is that you want to have a temporary file for the
duration of a single process and the name of the file is not of any real interest, use the
special name #TEMP in the ASSIGN clause of the file-control entry at compilation time
(or in a TACL ASSIGN command at execution time). When you specify #TEMP, the
run-time routines create a temporary file on the process’s default volume.

You can also create a temporary file on a specific volume by just assigning the
HP COBOL file to the volume name, specifying spaces. It is often useful to locate a
temporary file on a different volume to improve performance.

The TACL ASSIGN command enables you to allocate specific primary and secondary
extents for temporary and permanent disk files that a process is to create. If you do not
specify extents, the run-time routines use a primary extent size of 4 disk pages (each
page holds 2048 bytes) and a secondary extent size of 20 disk pages.

Example 28-13. Purging a File From an HP COBOL Program

WORKING-STORAGE SECTION.
01 FS-ERROR NATIVE-2
01 EXTERNAL-NAME PIC X(30).
01 INTERNAL-NAME.
 03 VOL-NAME PIC X(8).
 03 SUBVOL-NAME PIC X(8).
 03 FILE-NAME PIC X(8).
01 PURGE-RESULT PIC S9(4) COMP.
 88 PURGED-OK VALUE ZERO.
...
PROCEDURE DIVISION.
...
MOVE "$FIFTY.NIFTY.SHIFTY" TO EXTERNAL-NAME.
MOVE "$FIFTY" TO VOL-NAME.
MOVE "NIFTY" TO SUBVOL-NAME.
MOVE "SHIFTY" TO FILE-NAME.
 ENTER "FILE_PURGE_" USING EXTERNAL-NAME (1:19)
 GIVING FS-ERROR.
 ENTER TAL "COBOLFILEINFO" USING INTERNAL-NAME PURGE-RESULT
 IF PURGED-OK
...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-43

Disk Input and Output Purging the Contents of a File From an HP COBOL
Program
Unless the CLEARONPURGE flag is set for a file, purging the file does not obliterate
the data on the disk. If security is a major consideration, use one of these to set the
CLEARONPURGE flag:

• The FUP SECURE command with the CLEARONPURGE option
• The SETMODE routine

For more information about the FILE_PURGE_ and SETMODE routines, see the
Guardian Procedure Calls Reference Manual.

Purging the Contents of a File From an HP COBOL Program
It is sometimes convenient to purge the contents of a file but keep the file in the
directory for later use. The HP COBOL run-time routines do this when you open a file
for output (if you have read access to the file). You might choose (for security) to purge
the contents of a temporary work file when you have finished working with it, because
merely purging the file does not erase the data from the disk.

The HP COBOL library routine COBOL_CONTROL_ is a multipurpose routine that
calls the operating system routine CONTROL, and whose function is determined by an
operation code. The operation code 20 enables a process to purge only the contents of
a file if the process has write access to the file. The process can even purge the data
from a temporary file whose name was assigned by Enscribe because you specified
only a volume name or assigned it to #TEMP.

The COBOL_CONTROL_ routine call for purging data requires two parameters. The
first parameter is the file-name described in the SELECT clause of the file-control
entry for the file; the second is the number 20 (which causes the file system to purge
the data in the file). Example:

ENTER "COBOL_CONTROL_" USING MYFILE 20

For more information about the CONTROL routine, see the Guardian Procedure Calls
Reference Manual.

Renaming a File From an HP COBOL Program
The FILE_RENAME_ procedure enables a process to rename a closed disk file,
provided the process has purge access to the file. If the file is a temporary file, the
process can call FILE_RENAME_ to make the file a permanent file. For more
information about the RENAME or FILE_RENAME_ routine, see the Guardian
Procedure Calls Reference Manual.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-44

Disk Input and Output Creating a File Having Alternate Keys From an
HP COBOL Program
Creating a File Having Alternate Keys From an HP COBOL
Program

At times, it is necessary within an HP COBOL process to create and operate on a file
that has alternate keys. Suppose the file must be named and built during execution.
The only way to do this is through a series of steps involving a few Enscribe routines:

1. Declare the records of the file in a file description entry.

2. Use the FILE_CREATELIST_ procedure to create the primary file in conformance
with the specification in the file-control entry and the file description.

3. Use the FILE_CREATELIST_ procedure to create the alternate-key file in
conformance with the specification of the keys in the file-control entry and the
record description for the file.

4. Open the loadfile and use it.

Suppose you have a server process that must create a private, indexed file having one
alternate key.

The file-control entry and file description entry are:

SELECT T-file-1 ASSIGN TO "ISFILE"
 ORGANIZATION IS INDEXED
 RECORD KEY IS K1
 ALTERNATE RECORD KEY IS AK1
 ACCESS MODE IS DYNAMIC
 FILE STATUS IS Fs
...
FD T-file-1 LABEL RECORDS OMITTED.
 01 T-rec-1.
 02 K1.
 03 K1-fp PIC XX.
 03 FILLER PIC X.
 02 Ak1.
 03 Fp PIC X(5).
 03 Lp PIC X(5).
 02 FILLER PIC X(20).
 02 rw-flag PIC X(4).
 02 T-rec-no PIC 999.
...

Note. This explanation does not elaborate all the data definitions and all the code necessary
to manage the creation of an indexed file with an alternate key. Only the significant
declarations and code are shown. In some cases, the code mentions data items that are
presumed to have been defined and given values by statements not shown.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-45

Disk Input and Output Creating a File Having Alternate Keys From an
HP COBOL Program
Declare parameters to pass to the FILE_CREATELIST_ procedure to create the
indexed file (see the Guardian Procedure Calls Reference Manual for details on these
parameters):

• The file type (key-sequenced)
• The record length

• The prime record key parameters (key length = 16, key offset = 0, and index block
length = default):

01 Create-error NATIVE-2.
01 Error-item NATIVE-2.
01 File-name PIC X(128) VALUE "ISFILE".
01 File-name-len PIC 999 COMP VALUE 6.
01 Fs PIC XX.
01 Fp-chg PIC S9 COMP VALUE -1.

01 Item-list.
 02 File-type NATIVE-2 VALUE 41.
 02 Lrl NATIVE-2 VALUE 43.
 02 Key-offset NATIVE-2 VALUE 45.
 02 Key-length NATIVE-2 VALUE 46.
 02 Number-keys NATIVE-2 VALUE 100.
 02 Key-descriptor NATIVE-2 VALUE 101.
 02 Num-ak-files NATIVE-2 VALUE 102.
 02 Ak-file-name-len NATIVE-2 VALUE 103.
 02 Ak-file-name NATIVE-2 VALUE 104.

01 Number-of-items NATIVE-2 VALUE 9.

01 Values-array.
 02 File-type-v NATIVE-2 VALUE 3.
 02 Lrl-v NATIVE-2.
 02 Key-offset-v NATIVE-2 VALUE 0.
 02 Key-length-v NATIVE-2.
 02 Number-keys-v NATIVE-2 VALUE 1.
 02 Key-descriptor-v.
 03 A-key-spec PIC XX VALUE "AA".
 03 A-key-len NATIVE-2.
 03 A-key-off NATIVE-2.
 03 A-key-filenum NATIVE-2 VALUE 0.
 03 A-null-value NATIVE-2 VALUE 0.
 03 A-attributes NATIVE-2 VALUE H"4000".
 02 Num-ak-files-v NATIVE-2 VALUE 1.
 02 Ak-file-name-len-v NATIVE-2 VALUE 7.
 02 Ak-file-name-v PIC X(8) VALUE "ISFILEA ".
01 Values-length NATIVE-2.
01 Akf-rec-len NATIVE-2.
01 Akf-key-len NATIVE-2.

01 Create-error NATIVE-2.
01 Error-item NATIVE-2.
01 File-name PIC X(128) VALUE "ISFILE".
01 File-name-len PIC 999 COMP VALUE 6.
01 Fs PIC XX.
01 Fp-chg PIC S9 COMP VALUE -1.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-46

Disk Input and Output Creating a File Having Alternate Keys From an
HP COBOL Program

Example 28-14. Dynamic File Assignment

...
 MOVE FUNCTION LENGTH (T-rec-1) TO Lrl-v
 MOVE FUNCTION LENGTH (K1) TO Key-length-v, A-key-off
 MOVE FUNCTION LENGTH (AK1) TO A-key-len
 MOVE FUNCTION LENGTH (Values-array) TO Values-length

* Create the primary file
 ENTER "FILE_CREATELIST_" USING File-name,
 File-name-len,
 Item-list,
 Number-of-items,
 Values-array,
 Values-length,
 Error-item
 GIVING Create-error
 IF Create-error NOT = 0
 DISPLAY "Creation failed with error ", Create-error,
 " in parameter " Error-item
 STOP RUN
 END-IF

* Create the alternate key file
* The key length has to be 2 greater than the real one
 COMPUTE Akf-key-len = 2 + A-Key-len
* The record length has to be 5 greater than the real key length
 COMPUTE Akf-rec-len = 5 + A-Key-len
 ENTER "FILE_CREATE_" USING Ak-file-name-v,
 Ak-file-name-len-v,
 OMITTED,
 OMITTED,
 OMITTED,
 OMITTED,
 3,
 OMITTED,
 Akf-rec-len,
 OMITTED,
 Akf-key-len,
 0
 GIVING Create-error
 IF Create-error NOT = 0
 DISPLAY "AK creation failed with error ", Create-error,
 " in parameter " Error-item
 STOP RUN
 END-IF
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-47

Disk Input and Output Creating a File Having Alternate Keys From an
HP COBOL Program
HP COBOL Manual for TNS and TNS/R Programs—522555-006
28-48

29 Terminal Input and Output
Most interaction between users and an HP system is conducted through video display
terminals. The HP COBOL language has no mechanisms for full-screen block input-
output. On an HP system, a typical application uses Pathway/TS to write requester
programs in SCREEN COBOL to handle terminal input and output and uses
HP COBOL or TAL server programs to handle database input and output.
Occasionally, an HP COBOL process must communicate with a terminal directly.

For very small amounts of data transfer and for free-format collection and reporting of
numeric values, such processes can use the ACCEPT and DISPLAY statements. Each
ACCEPT or DISPLAY statement either specifies a mnemonic name of a device or
defaults to the process’s IN or OUT file, respectively (only if the IN and OUT files are
suitable for ACCEPT and DISPLAY statement use).

If a process needs uninterrupted access to a terminal or wants to determine at run time
which of several terminals to communicate with, the process must declare the terminal
process as a sequential file and operate on it with the usual OPEN, READ, WRITE,
and CLOSE statements.

The system generation process includes operations to define each terminal attached to
an HP system. Each terminal has a device name and a logical device number.

The file system supports transfers from terminals in both page mode and
conversational mode. Conversational mode is easy to use from an HP COBOL
process, but page mode is awkward. The normal way to use page-mode input and
output in conjunction with an HP COBOL process is to write a SCREEN COBOL
requester program and have it communicate with an HP COBOL server process.

Topics:

• Using ACCEPT and DISPLAY With a Terminal

• Using a Terminal as a File

• Prompting the Terminal Operator for Input

• Sharing a Terminal

• Getting Break Ownership

• Transferring Break Ownership

• Communicating With an Operator or Process

• Logging Program Activity Information to a Terminal
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-1

Terminal Input and Output Using ACCEPT and DISPLAY With a Terminal
Using ACCEPT and DISPLAY With a Terminal
ACCEPT and DISPLAY statements transfer small amounts of data between a device
and a process. The device is not a file; it is neither mentioned in the HP COBOL
program’s FILE-CONTROL paragraph nor described in the program’s File Section.

Whenever a process executes an ACCEPT or DISPLAY statement, the HP COBOL
run-time routines automatically open the device, perform the operation, and close the
device.

Any ACCEPT and DISPLAY statements that do not include a mnemonic name to
specify a device interact with the standard input and output devices of their process,
respectively.

Topics:

• Guardian Environment

• OSS Environment

Guardian Environment
In the Guardian environment, each process has an IN file, an OUT file, and a home
terminal file. You can specify these files in the RUN command, using the IN, OUT, and
TERM run options or with the PARAM EXECUTION-LOG command (see Section 25,
Executing and Debugging HP COBOL Programs). If you do not specify one or all of the
files in the RUN command, the process inherits the corresponding file of the command
interpreter that accepted the RUN command.

If you want a process’s ACCEPT and DISPLAY statements to interact with a terminal
other than that on which you issued the RUN command to start the process, you have
two alternatives:

• Use the SPECIAL-NAMES paragraph to associate a mnemonic name with the
other terminal and qualify the ACCEPT and DISPLAY statements with that name.

• Mention the other terminal in the RUN command IN and OUT options when you
initiate the process.

If a process needs to choose among several terminals for input or output, the use of
the mnemonic name requires that all device assignments be established at compile
time; therefore, several ACCEPT or DISPLAY statements, each associated with a fixed
device, must be present in the program, and the process must choose the ACCEPT or
DISPLAY to use.

Example 29-1 shows the use of ACCEPT and DISPLAY statements with the IN file and
the OUT file and with a terminal that is known to the file system as $TRM053.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-2

Terminal Input and Output Guardian Environment
Example 29-1. ACCEPT and DISPLAY Statements With a Terminal

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TERMINAL-ACCEPT-DISPLAY.
 AUTHOR. MO COBOL.
 DATE-WRITTEN. 29 FEBRUARY 1984.
 DATE-COMPILED.

**
* This program illustrates ACCEPT and DISPLAY with *
* and without mnemonic names. *
**

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.
 SPECIAL-NAMES.
 FILE "$TRM053" IS OUT-THERE.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 A-TEXT-LINE PICTURE X(30).

 PROCEDURE DIVISION.
 A.
* Deliver a value to the default terminal (the OUT file)
 DISPLAY "Who's there?".

* Get a line from the default terminal (the IN file)
 ACCEPT A-TEXT-LINE.

* Deliver the entered-line from the default terminal to
* OUT-THERE
 DISPLAY A-TEXT-LINE " is at the default terminal."
 UPON OUT-THERE.

* Deliver a value to a specific terminal
 DISPLAY "Who's there?" UPON OUT-THERE.

* Get a line from a specific terminal
 ACCEPT A-TEXT-LINE FROM OUT-THERE.

* Deliver the entered-line from OUT-THERE
 DISPLAY A-TEXT-LINE " is at terminal $TRM053".
 STOP RUN.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-3

Terminal Input and Output OSS Environment
OSS Environment
These are true in the OSS environment but not in the Guardian environment:

• No prompt is given for an ACCEPT statement.

• If a DISPLAY statement includes mnemonic-name, it must be either the OSS
pathname of a Guardian file or the name of an OSS text file.

• If an ACCEPT statement includes mnemonic-name, it must be the OSS pathname
of a Guardian process or terminal. If mnemonic-name is an OSS device, a
diagnostic is issued and the default input device (#IN) is used instead.

Using a Terminal as a File
All files that an HP COBOL process uses must be specified in the FILE-CONTROL
paragraph and described in the File Section of the Data Division of the source
program.

As with any other file, the process must explicitly open the terminal file, perform its
read and write operations, and close the file.

It is always advisable to declare a terminal file to have variable-length records by
including a RECORD CONTAINS or RECORD IS VARYING clause in the file
description of the file. If the file is not declared to have variable-length records, the
HP COBOL run-time routines expect each READ statement to receive a record of
exactly the length declared (explicitly or implicitly) in the file description, and they raise
a run-time error if too short a record is typed at the terminal. If a record of more than
the declared number of characters is typed at the terminal, the run-time routine does
not deliver the excess characters to the process.

When an HP COBOL process opens a file assigned to a terminal, it establishes
communication with that terminal. The default exclusion mode for terminals is
SHARED. If a process is to have private use of a terminal, with no command
interpreter assigned to the terminal, the OPEN statement should specify the exclusion
mode EXCLUSIVE.

Use the ASSIGN clause of the file-control entry for a given file to associate a COBOL
file name with a device name or logical device number of a terminal. You can override
this assignment at the start of a process’s execution by using the TACL command
ASSIGN. Establish the assignment dynamically during process execution by specifying
#DYNAMIC in the ASSIGN clause of the file-control entry and calling the
COBOLASSIGN routine (in the non-CRE environment) or the COBOL_ASSIGN_
routines (in the CRE) to associate the terminal device name or logical device number
with a COBOL file name.

Example 29-2 shows the use of terminal $TRM053 as a file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-4

Terminal Input and Output Using a Terminal as a File
Example 29-2. Using a Terminal as a File

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TERMINAL-READ-WRITE.
 AUTHOR. BO COBOL.
 DATE-WRITTEN. 29 FEBRUARY 1984.
 DATE-COMPILED.

* This program illustrates the use of a terminal as a *
* file *

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT A-TERM
 ASSIGN TO "$TRM053"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.

 DATA DIVISION.
 FILE SECTION.
 FD A-TERM
 RECORD CONTAINS 1 TO 79 CHARACTERS
 LABEL RECORDS ARE OMITTED.
* Using 80 characters causes a blank line after
* the WRITE
 01 A-TEXT-RECORD PICTURE X(79).

 PROCEDURE DIVISION.
 A.
* Open the terminal as a file, excluding other users.
 OPEN I-O A-TERM EXCLUSIVE.

 B.
* Read one 79-character record. If a CTRL/Y was entered,
* quit.
 READ A-TERM
 AT END GO TO HIT-EOF.
* Insert response.
 MOVE "So what?" TO A-TEXT-RECORD.
* Deliver response.
 WRITE A-TEXT-RECORD.
* Loop.
 GO TO B.
 HIT-EOF.
 STOP RUN.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-5

Terminal Input and Output Prompting the Terminal Operator for Input
Prompting the Terminal Operator for Input
This topic assumes that you are using the terminal as a file (see Using a Terminal as a
File).

HP COBOL has a useful extension that can be used with terminal input and output.
The HP COBOL READ statement is extended to include a PROMPT phrase. If you
want to enter a dialogue with a user at a terminal, just using alternate WRITE
statements for prompts and READ statements to collect the reply causes the prompt to
appear on one line of the screen and the reply to be collected from the next line. You
can achieve a more natural effect of having the prompt and its reply appear on the
same line by using the PROMPT phrase.

When an HP COBOL process executes a READ statement that includes a PROMPT
phrase, the HP COBOL run-time routine that performs terminal input and output first
delivers the characters in the data item whose name appears in the PROMPT phrase
to the terminal, leaving the terminal cursor at the next available character position.
Next, the routine clears the file’s record area to spaces. When the terminal operator
enters a sequence of zero or more characters, terminated by pressing Return, the
routine delivers the sequence of characters into the record area and returns control to
the process.

Example 29-3. READ Statement With PROMPT Phrase (page 1 of 2)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TERMINAL-READ-WRITE.
 AUTHOR. FLO COBOL.
 DATE-WRITTEN. 29 FEBRUARY 1984.
 DATE-COMPILED.

* This program illustrates the use of READ PROMPT *
* for a terminal file *

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT A-TERM
 ASSIGN TO "$TRM053"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-6

Terminal Input and Output Sharing a Terminal
Sharing a Terminal
For development, you normally use a terminal that is associated during system
generation with a command interpreter (such as TACL). That command interpreter
uses your terminal as its IN file, its OUT file, and its home terminal.

Most terminals on a production system do not have command interpreters associated
with them. Each production terminal is directly associated with a production process,
either as a terminal running under the control of a Pathway/TS terminal control process
(TCP) or as a terminal that can be accessed by a process.

Topics:

• Terminal Associated With a Command Interpreter

• Terminal Not Associated With a Command Interpreter

• Non-COBOL Modules

 DATA DIVISION.
 FILE SECTION.
 FD A-TERM
 RECORD CONTAINS 1 TO 79 CHARACTERS
 LABEL RECORDS ARE OMITTED.
* Using 80 characters causes a blank line after the
* WRITE.
 01 A-TEXT-RECORD PICTURE X(79).
 WORKING-STORAGE SECTION.
 01 TAUNT PIC X(17) VALUE "What do you want?".

 PROCEDURE DIVISION.
 A.
* Open the terminal as a file, excluding other users.
 OPEN I-O A-TERM EXCLUSIVE.
 B.
* Read one 79-character record. If a CTRL/Y was entered,
* quit.
 READ A-TERM WITH PROMPT TAUNT
 AT END GO TO HIT-EOF.
* Insert response.
 MOVE "So what?" TO A-TEXT-RECORD.
* Deliver response.
 WRITE A-TEXT-RECORD.
* Loop.
 GO TO B.
 HIT-EOF.
 STOP RUN.

Example 29-3. READ Statement With PROMPT Phrase (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-7

Terminal Input and Output Terminal Associated With a Command Interpreter
Terminal Associated With a Command Interpreter
When a command interpreter has a terminal open for its IN and OUT file, an
HP COBOL process can open that terminal as a file only if it opens it for shared access
(the default). It cannot open such a terminal for exclusive access, even if the command
interpreter does not accept messages from or send messages to that terminal for the
duration of the HP COBOL process’s execution. If you want an HP COBOL process to
have exclusive use of a terminal, no command interpreter can have the terminal open.

To free a terminal that is running TACL for use as a file by an HP COBOL program,
enter the TACL command PAUSE.

Terminal Not Associated With a Command Interpreter
When a terminal is not connected to a command interpreter, an HP COBOL process
can open it, read from it, write to it, or close it like any other file. See Using a Terminal
as a File.

Non-COBOL Modules
If your program consists of modules written in different languages, the modules can
share the standard files—the predefined files called “standard input,” “standard output,”
and “standard log” (except that FORTRAN modules cannot share “standard log”
because FORTRAN does not support it). The standard input, output, and log file can
be a terminal.

If you want to do mixed-language programming, compiling your program to run in the
CRE is highly recommended. Although mixed-language programming is possible in the
non-CRE environment, it is very limited because of incompatibilities between different
languages’ run-time libraries. The CRE supports the languages HP C, HP COBOL,
FORTRAN, Pascal, and TAL. For more information about the CRE in general and on
mixed-language programs sharing standard files in particular, see the CRE
Programmer’s Guide.

Getting Break Ownership
When you press Break on a terminal, the process that owns Break receives a system
message on $RECEIVE. A process discovers that Break has been pressed by reading
$RECEIVE. An HP COBOL process, lacking the ability to perform NOWAIT input and
output directly, must open $RECEIVE with an OPEN statement with a TIME LIMITS
phrase and then try to read $RECEIVE from time to time. If a READ statement fails
because it timed out, Break was not pressed.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-8

Terminal Input and Output Transferring Break Ownership
When a command interpreter starts a process, whether or not the process uses the
command interpreter’s terminal for any input or output, the command interpreter retains
ownership of Break unless another process explicitly obtains ownership of Break from
the operating environment. All a process needs to do to obtain that ownership is:

• Open the terminal for I-O (to get a stable file number, because DISPLAY and
ACCEPT open and close the terminal each time they are executed)

• Call the COBOL_SETMODE_ routine with:

° The file-name

° The function code 11

° The CPU, PIN (processor number, process number) of the process to receive
ownership as the first parameter

° Zero as the second parameter

If you start a process from the command interpreter, and that process takes ownership
of Break but does not return ownership before terminating, the command interpreter
does not regain title to Break. You might have to get a system operator to stop and
restart your command interpreter in order for it to regain Break ownership.

Transferring Break Ownership
For one process to pass ownership of Break to another process, the first process must
determine the CPU and PIN of the second process. Then the first process can transfer
Break ownership to the other process by calling the operating system routine
SETMODE with the appropriate values for parameters 1 and 2 (see Getting Break
Ownership).

The most common reason to transfer Break ownership to another process is to return it
to its previous owner after you have accessed it.

If the process will return Break ownership to its previous owner after a time, another
parameter must be included in the call to receive the 4-byte value of the restoration
parameters. This enables the process to call SETMODE with the 4 bytes as
parameters 1 and 2 when it surrenders the ownership of the Break, as Example 29-4
shows.

Because the message that Break has been pressed is a system message, a
nonprivileged process cannot directly transfer the message to another process. Some
other protocol must be established between the two processes.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-9

Terminal Input and Output Communicating With an Operator or Process
Communicating With an Operator or Process
A running HP COBOL program can use the DISPLAY statement to write to the
operator console (a write-only device). Likewise, a running HP COBOL program can
use the DISPLAY statement to write characters to any terminal or printer and can use
the ACCEPT statement to read characters from any terminal or process.

When a process includes code from an HP COBOL program and that HP COBOL code
reports a run-time error, it reports the error to the process’ home terminal. The home
terminal for a process must be chosen with care. Run-time diagnostic messages can
easily get lost if an unattended terminal is used for them.

Example 29-4. Transferring Break Ownership

WORKING-STORAGE SECTION.
01 FILE-NUMBER PIC S9(4).
01 PROCESS-HANDLE PIC X(20).
01 ERROR-NUMBER PIC S9(5) COMP.
01 PREV-BREAK-OWNER.
 03 PREV-OWNER NATIVE-2.
 03 PREV-ACCESS-MODE NATIVE-2.
...

PROCEDURE DIVISION.
...
 OPEN I-O A-TERM.
 ENTER TAL "COBOLFILEINFO" USING A-TERM
 OMITTED
 OMITTED
 FILE-NUMBER.

* Get ownership of Break, saving previous info.

 ENTER TAL "SETMODE" USING FILE-NUMBER,
 11,
 1,
 1,
 PREV-BREAK-OWNER.
...

... { HP COBOL program now owns Break }

...

* Restore Break ownership according to saved info.
 ENTER "COBOL_SETMODE_ " USING FILE-NUMBER,
 11,
 PREV-OWNER,
 PREV-ACCESS-MODE.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-10

Terminal Input and Output Writing to a Console
Topics:

• Writing to a Console

• Writing to a Terminal or Printer

• Reading From a Terminal or Process

• Reading and Writing Numeric Data

Writing to a Console
The system operator console terminal device on any HP system is named $0 (“dollar
zero”). It can be a hard-copy device or the Operations and Service Processor (OSP). In
either case, the system operator (any super group member) can redirect the messages
to another device or disable the delivery of messages entirely.

Minimize messages to the operator in both development programs and production
programs.

If your HP COBOL application needs to announce something to the system operator, it
must either associate a mnemonic name with $0 and use DISPLAY statements to
communicate with the operator (as Example 29-5 does) or assign a file to $0 in the
Environment Division and use WRITE statements.

Example 29-5. Using DISPLAY Statements to Write to a Console

IDENTIFICATION DIVISION.
 PROGRAM-ID. TELL-THE-LOG.
 AUTHOR. KILROY COBOL.
 INSTALLATION. TRANSACTIONS ANONYMOUS.
 DATE-WRITTEN. 29 FEBRUARY 1984.
 DATE-COMPILED.

* This program delivers a line to the system console. *

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.
 SPECIAL-NAMES.
 FILE "$0" IS RECORD-FOR-POSTERITY.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 ANNOUNCEMENT PICTURE X(16) VALUE "Kilroy was here".

 PROCEDURE DIVISION.
 A.
 DISPLAY "Program TELL-THE-LOG: "
 ANNOUNCEMENT
 UPON RECORD-FOR-POSTERITY.
 STOP RUN.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-11

Terminal Input and Output Writing to a Terminal or Printer
Each console terminal device on your node has a unique name. The names of
consoles other than the system operator console are determined by the system
generation. A program can contain any number of mnemonic names, each associated
with a terminal device. The syntax of the DISPLAY statement limits the name in the
UPON phrase to be a mnemonic name. The mnemonic name cannot be a data item;
therefore, if you have a message that must be displayed on several devices, you need
one DISPLAY statement for each device.

Writing to a Terminal or Printer
When a process includes code from an HP COBOL program having a DISPLAY
statement without a mnemonic name attached, the process delivers characters to its
OUT file. If no OUT file was specified in the initiation of the process, the process
inherits the OUT file of its parent (the command interpreter, if the process was initiated
with a RUN command). If the name of the specified OUT file is all spaces, the
characters are discarded.

To display characters to device $DDD or printer $PPP that is not the OUT file of the
process, use the qualified form of the DISPLAY statement; for example:

DISPLAY "Hello" UPON MY-NAME-FOR-DOLLAR-DDD.

The compiler accepts this form of the DISPLAY statement only if it has already
encountered an entry in the SPECIAL-NAMES paragraph associating MY-NAME-FOR-
DOLLAR-DDD with the device $DDD; for example:

SPECIAL-NAMES.
 FILE "$DDD" IS MY-NAME-FOR-DOLLAR-DDD.

Each time a DISPLAY statement in a process executes, the process opens the
terminal or printer, transmits the characters, and closes the terminal or printer. Some
other process could open the terminal or printer for exclusive use and hold it open,
causing the next DISPLAY or ACCEPT statement that tries to reach it to get a “device
in use” error.

Reading From a Terminal or Process
When a process includes code from an HP COBOL program having an ACCEPT
statement without a mnemonic name attached, the process reads characters from its
IN file; if no IN file was specified, the process reads characters from its home terminal.

To read characters from terminal $TTT or process $QQQ that is not the IN file of the
process, use the qualified form of the ACCEPT statement; for example:

ACCEPT ADVICE FROM MY-NAME-FOR-DOLLAR-QQQ.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-12

Terminal Input and Output Reading and Writing Numeric Data
The compiler accepts this form of the ACCEPT statement only if it has already
encountered an entry in the SPECIAL-NAMES paragraph associating MY-NAME-FOR-
DOLLAR-QQQ with some device or process; for example:

SPECIAL-NAMES.
 FILE "$QQQ" IS MY-NAME-FOR-DOLLAR-QQQ.

Each time an ACCEPT statement in a process executes, the process opens the
terminal or process, collects the characters, and closes the terminal or process. Some
other process could open the terminal or process for exclusive use and hold it open,
causing the next ACCEPT or DISPLAY statement that tries to reach it to get a “device
in use” error.

Reading and Writing Numeric Data
The ANSI standard is not very specific on the details of the behavior of ACCEPT. The
ACCEPT statement, as implemented in HP COBOL, allows you some flexibility in
entering numeric data that some other implementations do not.

HP COBOL allows you to enter a sequence of characters that correspond to a numeric
literal, such as would be legal in an HP COBOL source program. The ACCEPT run-
time routine converts this numeric representation into an appropriate form for storage
in the designated data item, only as if you had a MOVE statement that specified the
numeric literal as its source and the data item as its destination.

The DISPLAY statement is equally versatile, converting a stored data value to a
convenient external format. In Example 29-6, both ACCEPT and DISPLAY handle
signed and unsigned numeric, numeric edited, and computational items.

Example 29-6. Reading and Writing Numeric Data (page 1 of 2)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. FRIENDLY-ACCEPT.
 AUTHOR. KIT COBOL.
 INSTALLATION. TRANSACTIONS ANONYMOUS.
 DATE-WRITTEN. 29 FEBRUARY 1984.
 DATE-COMPILED.

**
* This program shows the flexibility of the ACCEPT *
* statement. *
**

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.
 SPECIAL-NAMES.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-13

Terminal Input and Output Logging Program Activity Information to a Terminal
A record of the output of one execution of the program in Example 29-6 follows. Each
ACCEPT statement interprets the characters entered at each prompt (?) the same way
as it would interpret those characters as a numeric literal in a source program. Each
DISPLAY statement converts the value of a data item to a character-string that
represents a numeric value for display.

?-1234.5678
01234
?-1234.5678
234.567
?-1234.5678
-234.567
?-1234.5678
234.567
?-1234.5678
1234.5678
?-1234.5678
-0001234.5678000

Logging Program Activity Information to a
Terminal

Whenever a process sends a message to the system operator console terminal device
($0), the operating environment can automatically duplicate the message to the
standard log file, which can be a terminal.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 A PICTURE 99999.
 01 B PICTURE 999V999.
 01 C PICTURE S999V999.
 01 D PICTURE 999.999.
 01 E PICTURE 9999V9999 USAGE IS COMPUTATIONAL.
 01 F PICTURE

 USAGE IS COMPUTATIONAL.

 PROCEDURE DIVISION.
 Z.
 ACCEPT A. DISPLAY A.
 ACCEPT B. DISPLAY B.
 ACCEPT C. DISPLAY C.
 ACCEPT D. DISPLAY D.
 ACCEPT E. DISPLAY E.
 ACCEPT F. DISPLAY F.
 STOP RUN.

Example 29-6. Reading and Writing Numeric Data (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-14

Terminal Input and Output Logging Program Activity Information to a Terminal
If you use the DISPLAY statement to send messages to the console, and therefore to
the standard log file terminal, you must associate a mnemonic name with $0 in the
SPECIAL-NAMES paragraph. This association is established at compilation time. Each
DISPLAY statement transmits characters to a single terminal or device.

If you use the WRITE statement to send messages to the console, and therefore to the
standard log file terminal, you can determine the assignment between the file and the
device in any one of these ways:

• During program compilation, through the SELECT clause of the FILE-CONTROL
paragraph

• Before program execution, through the ASSIGN or ADD DEFINE command

• During program execution, with the COBOLASSIGN routine (in the non-CRE
environment) or the COBOL_ASSIGN_ routine (in the CRE).

If your program consists of modules written in different languages, the modules can
share the standard log file terminal (except FORTRAN modules, because FORTRAN
does not support a standard log file).

If you want to do mixed-language programming, compiling your program to run in the
CRE is highly recommended. Although mixed-language programming is possible in the
non-CRE environment, it is very limited because of incompatibilities between different
languages’ run-time libraries. The CRE supports the languages HP C, HP COBOL,
FORTRAN, Pascal, and TAL. For more information about the CRE in general and on
mixed-language programs sharing standard files in particular, see the CRE
Programmer’s Guide.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-15

Terminal Input and Output Logging Program Activity Information to a Terminal
HP COBOL Manual for TNS and TNS/R Programs—522555-006
29-16

30 Printer and Spooler Output
There are two ways that a process can write a report to paper: it can write directly to a
printer or it can write to a spooler collector.

When a process writes directly to a printer, it has exclusive use of the printer from the
time it opens the file until the time it closes the file.

When a process writes to a spooler collector, the spooler collector accumulates the
lines of the report on a disk and does not engage a printer until the process closes the
file.

Some installations insist that processes write only to a spooler, because this can even
out the printer usage or speed up jobs that would be output bound if they had to wait
for a slow printer.

An installation can configure its spooler locations such that a printer is either
accessible only to the spooler and never by other processes or accessible to other
processes whenever the spooler is not using it.

HP has no file structure that is strictly for printer files. To establish a COBOL file for use
with a printer, declare it to have sequential organization and to be accessed
sequentially.

Topics:

• Using a Printer Directly

• Understanding Spoolers

• Using a Spooler

• Controlling Vertical Spacing in a Printed Report

• Formatting Pages of a Printed Report

• Logging Program Activity Information to a Printer

Using a Printer Directly
Each installation chooses names for its printers. To write to a printer, an HP COBOL
program declares a file with sequential organization and sequential access and
associates that file with the printer device name.

The HP COBOL process tries to open the printer file with the open mode OUTPUT or
EXTEND. If the printer is not available, the OPEN statement fails with file status code
“30” and a run-time error. The HP COBOL run-time routines deliver a diagnostic
message to the process’ home terminal. If no declarative procedure is available for the
printer file, the process terminates. If a declarative procedure is available for the printer
file, the declarative procedure can examine the special register, GUARDIAN-ERR, and
take appropriate action.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-1

Printer and Spooler Output Understanding Spoolers
GUARDIAN-ERR contains the file-system error number that specifies the reason the
printer was not available. Typical values for GUARDIAN-ERR are 14 (device does not
exist) and 12 (file in use). If the file is in use, the process can call the operating system
routine DELAY to let some time pass and then try the open operation again.

If the printer is available, the open operation succeeds, and the process can go ahead
and write to the printer. By default, an HP COBOL program opens a printer file with
exclusion mode EXCLUSIVE. All other processes that attempt to write to the printer
are excluded until the process that has the printer open closes it.

Understanding Spoolers
The HP spooler is a set of processes that acts as an interface between the print
devices of a system and the users and their application programs. A spooler receives
output from a process and stores it on disk, queued for delivery to a print process. This
unit of storage is called a job.

Topics:

• Spooler Components

• Jobs

For more information on spoolers, see the Spooler Programmer’s Guide.

Spooler Components
The spooler has these components:

• Supervisor Process

• Collector Process

• Print Process

• SPOOLCOM

• PERUSE

The two spooler components that you are most likely to use are SPOOLCOM and
PERUSE.

Unlike the supervisor, collectors, and print processes that run continuously and are
named processes, SPOOLCOM and PERUSE are processes you start when you need
one and they usually are not named. Both interact with the supervisor.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-2

Printer and Spooler Output Spooler Components
Supervisor Process
The supervisor process communicates with and monitors the other processes and
decides when and where to print output. The supervisor is an HP product and is
started and managed by the system manager. A system can have more than one
spooler supervisor; this can be useful for systems with vast numbers of print jobs or
systems with special reporting needs. If a system has only one supervisor, its name is
usually $SPLS.

Collector Process
The collector process receives the output. Your spooler system has one or more
collectors. Each installation chooses its own names, but typical process names for
spooler collectors are $S and $C.

Print Process
Each print device accessible to a spooler has an associated print process that
executes in coordination with the spooler supervisor. The print process provided by HP
reads the records stored on disk and delivers them to its associated print device. An
installation can provide its own print processes that read the stored records and
perform other operations on them, such as performing a statistical analysis of data in
the records or formatting the data for a special-purpose output device.

SPOOLCOM
SPOOLCOM is an HP product. It is a loadfile that can be started by an interactive user
or a system operator. System operators, who are members of the super group, can do
more with SPOOLCOM than application programmers can.

As an application programmer running SPOOLCOM interactively, you can examine the
job queue and the status of print devices and change attributes of jobs you own.

A system operator running SPOOLCOM can examine the queue and the status of
devices but can also create and initialize the other components of the spooler system
and make changes to the attributes of any job in the spooler.

For more information about SPOOLCOM, see the Spooler Programmer’s Guide.

PERUSE
HP provides a perusal program named PERUSE, with which you can control and
monitor your jobs in the spooler. PERUSE is oriented more to the interactive user than
to the system operator. When a member of the super group calls PERUSE, that user
must handle individual jobs rather than groups of jobs, and PERUSE does not give that
user the control over devices that SPOOLCOM does.

Your installation can write its own perusal processes. For more information about
PERUSE, see the Spooler Programmer’s Guide.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-3

Printer and Spooler Output Jobs
Jobs
A job is analogous to a file. When you write to the spooler, you are creating a job. The
spooler assigns each job a number. It starts at 1 and advances by 1 up to a maximum
(specified when the spooler was started), not to exceed 4095. When the spooler
reaches the maximum job number, it starts over with 1. If the job number the spooler
tries to use is currently being used, the spooler advances until it finds a job number
that is not being used.

Each job has an owner. When an application program opens the spooler collector for
output, the created job is marked as owned by the user number of the application
program. Unlike a file, a spooler job does not have four-fold security; only the individual
owner (or a system operator in the super-group) can print, delete, or otherwise
manipulate a job.

Using SPOOLCOM, you can transfer ownership of a job to another user. If one spooler
reroutes a job to another spooler on the same system or on a different system in an
Expand network, the owner of the job on the second spooler is the same as the owner
was on the first spooler (typically, the system operator; therefore, if your spooler
reroutes your job to another spooler, you are no longer the owner of the job.

Jobs have six primary attributes:

• Location

• State

• Number of Copies

• Priority

• Report Name

• Form Name

Location
A job’s location is the job’s logical destination. Its physical destination is governed by a
print process. A job’s location name consists of a group name and a destination name.
The format of a location name is:

.$ group-nameS #

. location-name

ns ns ns ns

ns ns

VST618.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-4

Printer and Spooler Output Jobs
Suppose your installation has 12 printers, of which 4 are stocked with narrow paper.
Three of them are at the other end of the building (in room 145), and one is near your
work place (in room 301). Suppose your spooler designates this group of printers as
NARROW, and within that group designates the printers as RM145A, RM145B,
RM145C, and RM301. If you do not care which narrow-paper printer your report is
printed on, you can assign the output file to $S.#NARROW. The spooler directs the job
to whichever of the four printers could finish it first. If you want the job printed on the
nearby printer, assign the output file to $S.#NARROW.RM301.

There are two ways that your system manager can configure the spooler to print jobs
that have only a group name but no destination name specified:

• On the printer that can finish the job first
• On all printers in the group

The latter configuration is called broadcast mode.

If you specify a location that is unknown to the spooler, your job sits in the spooler until
such a location is made known to the spooler or you or a system operator changes the
job’s location with PERUSE or SPOOLCOM.

You can send the job to a fictitious location and use PERUSE to examine the contents
of a report before it is printed. If there is any problem with the report, you can delete it
from the spooler, fix the program that produced the report, and re-create the report.

If you do not specify a location, the spooler uses the location #DEFAULT. Each
installation determines for itself the identity of the device or devices that compose the
default group.

State
A job is always in one of four states:

If the job is in PRINT state, the spooler stops printing the job as soon as you request
that the job be put into the HOLD state.

You can put a job into the HOLD state with PERUSE or SPOOLCOM. PERUSE has a
HOLD command; SPOOLCOM has a JOB command with a HOLD subcommand.

By default, the spooler deletes a job as soon as it has printed it. If you want the spooler
to put the job into the HOLD state after printing it instead, use the PERUSE command
HOLDAFTER or the SPOOLCOM command JOB with the subcommand HOLDAFTER.
You can issue the HOLDAFTER command for a job in any state.

State Meaning

OPEN A process is writing to the collector.

READY The originating process has closed its file and the job is ready to be printed, but
the device on which it is to print is not currently available or its location is not
associated with a device.

PRINT The job is being printed on the device associated with the job’s location.

HOLD The job is awaiting disposition.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-5

Printer and Spooler Output Jobs
A job in the HOLD state remains in the spooler until you or a system operator changes
the job’s state or deletes the job. Remember that the number of jobs the spooler can
hold is limited, as is the amount of disk space available for the text of those jobs.

Number of Copies
The default number of copies is 1. If you want several copies of your report, specify a
number of copies (a number in the range from 1 through 32,767). When the spooler
finds an available device for the job, it prints that many copies before freeing the device
for another job.

Your installation might have rules limiting how many copies you may run or how many
pages you may print with a single job; check with your operations staff.

Priority
A job’s priority determines when the job is printed in relation to other jobs queued for
the same device. The default priority is 4. The system operator can configure each
device known to the spooler to print jobs of the same priority in a first-come, first-
served order or in shorter-jobs-before-longer-jobs order.

Report Name
The spooler passes the report name to the print process. If your installation uses the
print process supplied by HP, the system operator can configure it to either leave a
blank page between jobs or print a header page. The header page displays the report
name in banner-head letters on the first page of the job, along with the location name.
In ordinary type at the bottom of the first page, the print process reports the date and
time, the job number, and the form name of the job.

A report name can have up to 16 characters. No character can be a hyphen. The
default report name is your group name and user name. You can use PERUSE or
SPOOLCOM to change the report name.

If you are using a different print process, that print process can do anything with the
report name.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-6

Printer and Spooler Output Using a Spooler
Form Name
If a job must be printed on a specific form, give the job a form name. Each device
known to the spooler can have a form name.

If your installation prints invoices, you might specify INVOICE as the form name for a
report. When the time comes to print the invoices, the operator loads the proper paper
forms on the chosen device and sets the device’s form name to INVOICE. When both
the location and form name of a spooler job match the location and form name of the
device, the spooler prints the job. You probably cannot expect the operator to notice
that a job is waiting for a form name to be associated with a device. Your facility might
have a forms schedule for regularly scheduled jobs, but you would have to alert the
operator for other spooler jobs that need special forms.

A form name can have up to 16 characters.

A form name must not:

• Start with a number or a space character
• Contain any special characters or embedded blanks

The default form name is blank (that is, no form name).

When a device has a nonblank form name associated with it, the spooler routes only
jobs with the same form name to that device. When a device has no form name
associated with it, the spooler can route any job with no form name to it.

Using a Spooler
There are two contexts in which you, as an HP COBOL application programmer, use a
spooler: compilation and execution. When you compile an HP COBOL program and
produce a listing, it can go to the spooler. When you execute an HP COBOL program,
it can send output to the spooler. There are three levels of spooling. You interact with
the spooler through the PERUSE and SPOOLCOM processes.

Topics:

• Spooling Compiler Listings

• Spooling Program Output

• Using PERUSE

• Using SPOOLCOM
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-7

Printer and Spooler Output Spooling Compiler Listings
Spooling Compiler Listings
To send your compiler listing to a spooler, specify a spooler collector and location for
your OUT file when you compile your HP COBOL program; for example:

COBOL85 /IN WHIZBANG, OUT $S.#WIZZ/;SYNTAX

The compiler uses level 3 spooling when the OUT file is a spooler collector (device
subtype 31).

Spooling Program Output
For its output, an HP COBOL program can use any of:

• Level-1 Spooling

• Level-2 Spooling

• Level-3 Spooling

Level-1 Spooling
Level-1 spooling uses the spooler collector as a simple output file: you assign the
COBOL file name of the output file to a system name that is a spooler collector (with or
without a location name) and operate on the file with the HP COBOL statements
OPEN, WRITE, REWRITE, and CLOSE. The LINAGE clause and the ADVANCING
phrase of the WRITE statement work as expected. All attributes of the spooler job
except the location name assume their default values: single copy, priority 4, report
name set to group name followed by user name, and no form name.

Example 30-1. Level-1 Spooling

SELECT SPOOLER-FILE
 ASSIGN TO "$S.#MYSTUF"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.

...
FD SPOOLER-FILE
 RECORD CONTAINS 80 TO 132 CHARACTERS
 LABEL RECORDS ARE OMITTED.
01 SPOOLER-SHORT-LINE PIC X(80).
01 SPOOLER-LONG-LINE PIC X(132).
...
PROCEDURE DIVISION.
...
 OPEN OUTPUT SPOOLER-FILE
...
 WRITE SPOOLER-SHORT-LINE
...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-8

Printer and Spooler Output Spooling Program Output
Level-2 Spooling
You use level-2 spooling the way you use level-1 spooling, except that instead of
opening the output file with the OPEN statement, you open it with the routine
COBOL85^SPECIAL^OPEN (in the non-CRE environment) or
COBOL_SPECIAL_OPEN_ (in the CRE), giving the first parameter, open-type, the
value 1, and either omitting the parameter level-3 or giving it the value 0.

The other parameters of the COBOL85^SPECIAL^OPEN or
COBOL_SPECIAL_OPEN_ routine enable you can specify:

• Exclusion mode

• Sync depth

• Whether a page-eject precedes the first page printed

• Location name

• Form name

• Report name

• Number of copies

• Page size

• Flags that set the job priority and the attributes HOLD and HOLDAFTER

• Owner

• Maximum number of lines

• Maximum number of pages

• Whether to create a regular or code-129 spooler file

• Whether a form feed is to be used to position the file at the top of a new page
rather than using spacing when LINAGE is specified for the file

• An error return code

For details, see COBOL85^SPECIAL^OPEN and COBOL_SPECIAL_OPEN_.

The preferred way to apply a declarative to a file that is used for level-2 spooling is to
explicitly name the file in a USE AFTER EXCEPTION statement. All ordinary
HP COBOL file-manipulating statements then transfer control to the declarative if an
exception arises. The statement ENTER “COBOL85^SPECIAL^OPEN” (in the non-
CRE environment) or ENTER COBOL_SPECIAL_OPEN_ (in the CRE) does not
transfer control if it encounters an exception, so include a GIVING phrase in the
ENTER statement and then test the file status code data item after the ENTER
statement executes.

Example 30-2 uses level-2 spooling in the non-CRE environment. In the CRE, use
COBOL_SPECIAL_OPEN_ instead of COBOL85^SPECIAL^OPEN.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-9

Printer and Spooler Output Spooling Program Output
Level-3 Spooling
Level-3 spooling causes the compiler to block output and minimizes the number of
interactions with the spooler. There are two ways to get level-3 spooling:

• The same way you get level-2 spooling, except that when you open the output file
with the COBOL85^SPECIAL^OPEN or COBOL_SPECIAL_OPEN_ routine, you
give the parameter level-3 a nonzero value.

• Instead of using HP COBOL output statements on the file, use ENTER statements
to call the Guardian environment routines listed in Table 30-1.

Example 30-2. Level-2 Spooling

SELECT SPOOLER-FILE
 ASSIGN TO "$S"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL
 FILE STATUS IS SPOOLER-FILE-STAT.
...
FD SPOOLER-FILE
 RECORD IS VARYING FROM 80 TO 132 CHARACTERS.
01 SPOOLER-SHORT-LINE PIC X(80).
01 SPOOLER-LONG-LINE PIC X(132).

WORKING-STORAGE SECTION.
01 SPOOLER-FILE-STAT PIC XX.
01 LOCATION-NAME PIC X(16) VALUE "#MYSTUF".
01 REPORT-NAME PIC X(16) VALUE "PRIVATE PROPERTY".
* Flag for HOLDAFTER (32), PRIORITY 2 (+2 = 34)
01 FLAGS PIC S9(4) VALUE 34.
01 ERROR-CODE PIC S9(4).
...
PROCEDURE DIVISION.
...
 ENTER TAL "COBOL85^SPECIAL^OPEN"
 USING SPOOLER-FILE
 1
 OMITTED
 OMITTED
 OMITTED
 0
 LOCATION-NAME
 OMITTED
 REPORT-NAME
 OMITTED
 OMITTED
 FLAGS
 GIVING ERROR-CODE
...
 WRITE SPOOLER-SHORT-LINE
...
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-10

Printer and Spooler Output Using PERUSE
For information about these routines, see the Spooler Programmer’s Guide.

Using PERUSE
If you direct a process’s output to a spooler location that is known to the spooler, the
job prints as soon as the device associated with that location becomes available. If the
location you chose is unknown to the spooler, the job sits in READY state until one of
these occurs:

• An operator (using SPOOLCOM) defines that location to the spooler.
• You or the operator changes the location attribute of the job to a known location.
• You or the operator deletes the job from the spooler.

The HP perusal process PERUSE enables you to examine the contents of the job,
change its attributes, or delete it from the spooler. To call PERUSE, run it like any other
process:

103> PERUSE

PERUSE introduces itself with a header. If any jobs in the spooler belong to you,
PERUSE lists them.

In Example 30-3, job 1171 is ready to be printed. It consists of three pages, one copy is
to be printed, its priority is 4, its HOLDAFTER attribute is not set, its location is
#EXCEP R01, and it belongs to DEVELOP.JAN. Job 2423 does have its HOLDAFTER
attribute set. The underscore (_) is the PERUSE prompt.

Table 30-1. Guardian Environment Routines for Level 3 Spooling

Routine Action

CLOSE Closes the spooler collector

OPEN Opens the spooler collector

SPOOLCONTROL Handles VFU channel skipping

SPOOLCONTROLBUF Handles the loading of programmable VFU for the model 5220
printer

SPOOLEND Signals the end of a spooler job and can change attributes
before a new spooler job starts without closing and reopening
the spooler collector

SPOOLSETMODE Sets automatic perforation skipping, system spacing control,
baud rate, form length, vertical tabs, automatic-answer or
control-answer mode, horizontal pitch, prespacing or post-
spacing, get device status, or reset to configured values

SPOOLSTART Establishes the level-3 buffer, location name, form name, report
name, number of copies, page size, and attributes such as
HOLD and PRIORITY

SPOOLWRITE Writes text to the spooler
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-11

Printer and Spooler Output Using PERUSE
Topics:

• Current Job

• Current Position

• Common PERUSE Operations

For more information about PERUSE, see the Spooler Programmer’s Guide.

Current Job
The current job is the job to which the spooler is currently devoting its attention. Almost
all commands that you give to PERUSE apply only to the current job. You cannot tell
the spooler to list job number 2423; you must establish job 2423 as the current job and
then tell the spooler to list the current job.

The current job is undefined when you first start the spooler and after a DELETE
command executes. To define the current job, use the JOB command.

If the first command you give to PERUSE is not a JOB command, any command
except DELETE establishes the job most recently added to the spooler (and owned by
the current user) as the current job.

Current Position
At any given time during your PERUSE session, the spooler has a current position
within its current job, just as a file in an HP COBOL program has a current record
position. If you press Return at the PERUSE prompt, PERUSE lists the next line of the
job and advances its current position.

Example 30-3. PERUSE Output

PERUSE - T9101D20 - (8JUN92) SYSTEM \LEO

 JOB STATE PAGES COPIES PRI HOLD LOCATION REPORT
 1171 READY 3 1 4 #EXCEP R01 DEVELOP JAN
 2423 READY 4 1 4 A #MURPHY DEVELOP JAN
_

Example Effect

JOB 1171 Establishes job 1171 as the current job

JOB * Establishes the job most recently added to the spooler (and owned by
the current user) as the current job

JOB #MURPHY Establishes the job most recently sent to location #MURPHY (and owned
by the current user) as the current job
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-12

Printer and Spooler Output Using PERUSE
Common PERUSE Operations
After you have established a current job, you can perform the operations such as those
listed in Table 30-2 (all operations apply to the current job unless otherwise specified).
Table 30-2 is not a complete list of PERUSE commands; for more information, see the
Guardian User’s Guide.

Here are some examples of spooler commands that involve the current job and the
current position. Suppose you have just started the spooler. The spooler always begins
by listing all jobs in its queues that belong to you. Suppose that the list is:

PERUSE - T9101D20 - (8JUN92) SYSTEM \LEO

 JOB STATE PAGES COPIES PRI HOLD LOCATION REPORT
 1171 READY 3 1 4 #EXCEP R01 DEVELOP JAN
 2423 READY 4 1 4 A #MURPHY DEVELOP JAN
_

To establish job 1171 as the current job, you enter:

_JOB 1171

Table 30-2. PERUSE Operations and Commands (Partial List)

Operation Command

Set number of copies COPIES

Set form name FORM

Set location LOC

Set report name REPORT

Set priority PRI

Put the job into the HOLD state HOLD or
HOLD ON

Remove the job from HOLD state HOLD OFF

Set the HOLDAFTER attribute HOLDAFTER or
HOLDAFTER ON

Clear the HOLDAFTER attribute HOLDAFTER OFF

List some or all of the current job at your screen or on a device or to
another job

LIST

List last page of the job (this is often a summary, showing any errors) LIST L

Set the current position as the first line of a chosen page in the job PAGE

Display the page number and line number of the current position PAGE

Find the next instance of a certain character-string in the job FIND

Delete the job DELETE

Give the job to a new owner OWNER

Get information about PERUSE commands HELP
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-13

Printer and Spooler Output Using PERUSE
Suppose that the last page of the listing contains a summary, and you want to check
that first. You enter:

_LIST L

The last page of the listing appears on your terminal screen. If it looks acceptable, you
can relocate the listing to a defined device by entering a command such as:

_LOC #LP5

If the printer associated with #LP5 is not busy, your job starts printing there. As soon as
the job is printed, the spooler deletes the job unless its HOLDAFTER attribute is set.

If you want to browse through your job, use the function keys to list groups of lines.
Function key n lists the next 2n lines, starting at the current position; for example,
function key 1 lists the next 2 lines, function key 2 lists the next 4 lines, function key 3
lists the next 8 lines, and function key 6 lists the next 64 lines (approximately a page in
a typical report).

To find certain texts in your job, use the FIND command. Suppose you compile an
HP COBOL program, sending its listing to a spooler location that is not associated with
a device. The job remains in the spooler in a READY state. If you list the last page of
the job (using the LIST L command), you can view the summary and see whether the
compiler found any errors. If it did find errors, you can use the FIND command to track
them down easily.

If you have a job in the PRINT state and you suddenly remember that you wanted to
make additional copies, you can issue a HOLDAFTER command to keep the spooler
from automatically deleting the job at the end of the printing operation. If the spooler
collects your HOLDAFTER command before it finishes listing the job, then after the job
finishes printing, it goes into the HOLD state. You can then request that three more
copies be sent to the same location:

_COPIES 3
_HOLD OFF

If you want a different banner on the additional copies, you can change the job’s report
name before setting the HOLD state to OFF. If you want to list the three extras copies
at a different location, you can use the LOC command to change the location before
setting the HOLD state to OFF.

If your current job is 300 pages, and you want to print 5 copies of pages 150 through
159 at the printer associated with location #LP2.A, you can issue the commands:

_LIST /OUT $S.#ABBREV/ 150/159 C
_JOB #ABBREV
_COPIES 5
_LOC #LP2.A

This creates a new spooler job with the location ABBREV, containing only the chosen
pages. The letter C in the LIST command transmits all CONTROL and SETMODE
commands embedded in the job to the new job. Without C, the pagination of the new
job does not match that of the old. The JOB command makes the job most recently
sent to #ABBREV the current job.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-14

Printer and Spooler Output Using SPOOLCOM
If you have a job in the HOLD or READY state, you can delete it by making it the
current job and issuing the DELETE command.

Using SPOOLCOM
Although most of your interaction with the spooler is likely to be through PERUSE or
another perusal process, there are a few things you might want to do for which
SPOOLCOM can be more helpful than PERUSE. The main value of SPOOLCOM is
that it shows you the date each job was created, and it also enables you to perform
operations on groups of jobs.

SPOOLCOM is intended primarily for system operators (members of the super group).
These users have privileged access to the system. If you do not have privileged
access, SPOOLCOM restricts the variety and complexity of operations available to
you.

SPOOLCOM does have the ability to accept commands on the (implicit) RUN
command line and to accept commands from an IN file specified as a RUN option, but
the way you are most likely to use SPOOLCOM is run it like any other process:

104> SPOOLCOM

SPOOLCOM introduces itself with this header:

SPOOLCOM - T9101C00 - (15JUL87) SYSTEM \LEO
)

The right parenthesis is the SPOOLCOM prompt. Table 30-3 lists some of the
commands available to you, but it is not a complete list of SPOOLCOM commands.
For more information, see the Guardian User’s Guide.

Table 30-3. SPOOLCOM Operations and Commands (Partial List) (page 1 of 2)

Operation Command

Report the status of a particular collector or all collectors COLLECT

Report the state of a device in the spooler system DEV

Skip pages on a report that a particular device is printing DEV

Restart a device that has been stopped by a device error DEV

Escape from SPOOLCOM EXIT or
Control-Y

Show proper syntax of all SPOOLCOM commands HELP

Operate on one or more of your jobs in the spooler, such as reporting their
status, changing their attributes or ownership, deleting them, starting them
(shifting them from HOLD state to READY state), and so on

JOB

Report the status of one or more locations (including their destinations) LOC

Report a cross-reference list of locations, devices, and print processes LOC
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-15

Printer and Spooler Output Using SPOOLCOM
The subcommands most useful to the application programmer are:

• JOB

• DEV

JOB
The SPOOLCOM command JOB is very powerful and flexible. Suppose that you are
user 5,40, and you give the command:

) JOB (OWNER 5,40)

You get a report like this:

JOB STATE FLAGS OWNER TIME COPY PAGE REPORT LOCATION
1203 HOLD 4 A 5,40 01/28 1 4 DEVELOP QUINN #ANON
1595 READY 4 A 5,40 01/20 1 59 DEVELOP QUINN #ANON
1671 HOLD 4 A 5,40 12/15 1 1 DEVELOP QUINN #LP3
1672 PRINT 4 A 5,40 12/15 1 1 DEVELOP QUINN #LP3
1737 READY 4 5,40 01/28 1 8 DEVELOP QUINN #ANON
1739 HOLD 4 5,40 01/11 1 1 DEVELOP QUINN #HT
1779 HOLD 4 5,40 01/28 1 1 DEVELOP QUINN #HT
2423 READY 4 A 5,40 01/20 1 4 DEVELOP QUINN #MURPHY

This is much like the report that PERUSE gives you at the beginning of its execution,
except that you have to ask for jobs belonging to user 5,40, or SPOOLCOM lists all its
jobs, not only yours.

Suppose that you want to delete the two jobs belonging to you that have been around
since December 15 (jobs 1671 and 1672). In PERUSE, you must establish 1671 as the
current job, delete it, establish 1672 as the current job, and delete it. With SPOOLCOM
you can give the command:

JOB (OWNER 5,40, DATE FROM DEC 15 1988 THRU DEC 15 1996)

SPOOLCOM reports only your jobs created on that date. When you are certain that the
jobs of 12/15 are the right ones, you can delete the chosen jobs with the command:

JOB (OWNER, DATE FROM DEC 15 1988 THRU DEC 15 1996), DELETE!

If you do not use the exclamation mark (!) SPOOLCOM asks you about each job. If you
use OWNER without a user ID, SPOOLCOM uses the creator accessor ID (your user
ID).

Specify a spooler supervisor with which SPOOLCOM is to communicate OPEN

Report the status of the spooler’s print processes PRINT

Report the status of the spooler SPOOLER

Table 30-3. SPOOLCOM Operations and Commands (Partial List) (page 2 of 2)

Operation Command
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-16

Printer and Spooler Output Using SPOOLCOM
For two jobs, SPOOLCOM requires more keystrokes than PERUSE, but suppose you
wanted to delete all your jobs created on or before January 11. The SPOOLCOM
command for that is:

JOB (OWNER, DATE THRU JAN 11 1997), DELETE!

Similarly, you can delete all jobs whose current location is #ANON by using the
command:

JOB (OWNER, LOC #ANON), DELETE!

You can delete all jobs whose current state is HOLD by using the command:

JOB (OWNER, STATE HOLD), DELETE!

If you want the spooler to print one copy each job in a certain set but direct them to
another user at another spooler location, and delete those jobs after they are printed,
you can give the command:

JOB (OWNER, LOC #ANON), HOLD, REPORT DEVELOP LEE, HOLDAFTER OFF, LOC #PRT.A,
START

DEV
The SPOOLCOM command DEV is useful for discovering what devices are configured
for your spooler, and for skipping pages on a spooler job. If you give SPOOLCOM a
simple DEV command with no parameters, you get a report like this:

DEVICE STATE FLAGS PROC FORM
$LP1 JOB 159 H $SPLP
$LP2 WAITING ET $SPLP RED
$SPECL.#TYPE1 WAITING H !T $SPLP
$SPECL.#TYPE2 WAITING H ! $SPLP
\ARIES.$S WAITING H $SPLX
\VIRGO.$S WAITING H $SPLX

This report shows:

• Two print devices, $LP1 (which is printing job 159) and $LP2 (which is free, but
has a form name established, so the spooler routes only jobs with the form name
RED to $LP2)

• Two print processes, $SPLP and $SPLX

• A device named $SPECL that apparently performs at least two distinct services
(selected by the specification #TYPE1 or #TYPE2, which the $SPECL process
obtains from its open message), which is free

• The spooler is configured to enable you to send jobs to spooler collectors on two
other systems—\ARIES and \VIRGO, which are free.

Suppose you have a 100-page report in the spooler and you want to print its last 3
pages on $LP1. First, use either PERUSE or the SPOOLCOM JOB command to get
the job printing on $LP1. Then use this form of the DEV command:

DEV $LP1, SKIPTO 98
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-17

Printer and Spooler Output Controlling Vertical Spacing in a Printed Report
This command tells the spooler to skip forward to page 98 of the job. The skipping
capability is related to the device, not to the job.

Skipping capability is useful is when the printer has jammed or the ribbon failed and
ruined part of your listing. If the spooler delivered 56 pages of the job, but the pages
from 50 onward are not usable, the job’s owner (or the system operator) can take the
printer offline, fix the mechanical problem, put the printer back online, and issue the
SPOOLCOM command:

DEV $LP1, SKIPTO 49

For the full syntax of the JOB and DEV commands, see the Guardian User’s Guide.
You can often get the information you need from SPOOLCOM command HELP; for
example, this command gives the syntax and capabilities of the JOB command:

HELP JOB

Controlling Vertical Spacing in a Printed
Report

When you write to a printer or to a spooler, you can transmit not only data but also
control information. Control information skips numbers of lines or skips to VFU
channels. Some printers supplied by HP use a punched paper tape to control vertical
formatting; others use an electronic device to perform that function.

The control information is not embedded in each print line but is transmitted separately
from your program to the device or to the spooler collector. The spooler stores the
information in a manner that enables it to generate the same image on paper as would
have been generated if your program had been writing directly to a printer.

You control vertical spacing in a report with the ADVANCING clause of the sequential
form of the WRITE statement.

Topics:

• Skipping Lines

• Overprinting Lines

• Skipping to a Printer Control Tape Channel Punch

• Skipping to a New Page

If you do not use an ADVANCING clause, the WRITE statement behaves as if it
contained the clause AFTER ADVANCING 1 LINE; that is, the printer prints the record
in the WRITE statement after advancing one record.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-18

Printer and Spooler Output Skipping Lines
Skipping Lines
To leave a blank line in your report before printing the record DETAIL-X, use this form
of the WRITE statement:

WRITE DETAIL-X AFTER ADVANCING 2 LINES

To print the record DETAIL-Y and then leave a blank line, use this form of the WRITE
statement:

WRITE DETAIL-Y BEFORE ADVANCING 1 LINE

Do not follow the preceding statement with another WRITE AFTER statement, or you
will not get a blank line.

Overprinting Lines
To overprint the record named HEADER-X for emphasis, print it three times on the
same line:

WRITE HEADER-X
WRITE HEADER-X AFTER ADVANCING 0 LINES
WRITE HEADER-X AFTER ADVANCING 0 LINES

This sequence also causes overprinting:

WRITE HEADER-X AFTER ADVANCING 0 LINES
WRITE HEADER-X BEFORE ADVANCING 0 LINES

To underline a line, print a string of underscore characters over it.

Skipping to a Printer Control Tape Channel Punch
If you are writing to a printer that has a VFU control feature, handled either by punched
paper tape or an electronic equivalent, you can specify that the printer is to advance to
a certain vertical position before (or after) the record delivered by the WRITE statement
is written on the paper. To do this, you must:

• Know what channels are defined for the printer

• Use the SPECIAL-NAMES paragraph of the Environment Division to associate
your own mnemonic name with the channel you plan to use

• Use a BEFORE or AFTER ADVANCING phrase having that mnemonic name

So, if you have a printer on which a skip to channel 6 puts you at line 50 of a page,
your program must specify something like:

SPECIAL-NAMES.
 CHANNEL-6 IS CH-6.

Then the WRITE statement to print the contents of record SUBTOTAL-Z on line 50 of
the current page is:

WRITE SUBTOTAL-Z AFTER ADVANCING CH-6
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-19

Printer and Spooler Output Skipping to a New Page
Skipping to a New Page
To have your program deliver a print line to the top of a new page, include an AFTER
ADVANCING PAGE phrase in the WRITE statement. If you want the program to deliver
a print line, then skip to the top of a page, include a BEFORE ADVANCING PAGE
phrase in the WRITE statement.

Formatting Pages of a Printed Report
By using the LINAGE clause in the file description of a report file and by including the
AT END-OF-PAGE phrase in each WRITE statement that adds lines to the report, you
can produce attractive reports with little effort. This technique requires you to use a bit
of structured programming.

The idea behind the LINAGE clause is that each page of the report has a top-margin
area and a bottom-margin area, where the program writes no characters, and a body
area, where the program does write characters. The body area ends with a footing
area, made up of zero or more lines, where the program can write when it detects that
the remainder of the body area is full. A typical use of this is for subtotals and totals for
columns of data in the remainder of the body.

A standard 11-inch page printed at 6 lines per inch can accommodate 66 lines. You
could establish 3 blank lines at the top, 3 blank lines at the bottom, and 60 lines of
body between them. If you establish a footing line at 55, then the end-of-page condition
arises after line 54 is written. If you want a one-line footing, use:

FOOTING AT 66

Figure 30-1. LINAGE Clause Layout

Top Margin

Body
(Includes Footing)

Footing

Bottom Margin

Top

Body

Bottom

VST708.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-20

Printer and Spooler Output Formatting Pages of a Printed Report
This file description illustrates the LINAGE clause for this type of page:

FD SHOW-LINAGE
 LABEL RECORDS ARE OMITTED
 LINAGE IS 60 LINES
 WITH FOOTING AT 55
 LINES AT TOP 3
 LINES AT BOTTOM 3.

One tenet of structured programming is that there be one WRITE procedure for each
output file; the program builds the line for delivery and then performs the write
procedure. This situation is a perfect basis for using the LINAGE clause.

If your code writes each text line before advancing one line, you can use AT END-OF-
PAGE phrase to detect that the program has already written the last line in the body of
the report page. If the page needs subtotals or column footings, you can specify a
number of footing lines in the LINAGE clause. This action causes the end-of-page
condition to arise when the process attempts to write into the footing area. You can
then use an AT END-OF-PAGE phrase in the main WRITE statement and specify that
when the end-of-page condition arises, a footing-area procedure is to be performed.
Example 30-4 illustrates this technique.

If you have trouble tracing the interactions of BEFORE phrases, AFTER phrases,
numbers of lines to advance, page advances, and channel skips, you can always
discover exactly what printer control commands are being used by following this
procedure:

1. Direct your output to a spooler collector with a fictitious location.

2. Use the PERUSE command LIST to specify that the lines for at least two pages be
listed to a printer or to the spooler collector in octal, showing all control codes:

LIST /OUT $S.#LPF/ 1/2 O C

This step lists each print line, each SETMODE operation, and each CONTROL
operation.

3. See the Spooler Programmer’s Guide to identify the codes in the SETMODE and
CONTROL operations.

Example 30-4. END-OF-PAGE Phrase

WRITE-PROCEDURE SECTION.
...
 WRITE SHOW-LINAGE-REC BEFORE ADVANCING 1
 AT END-OF-PAGE PERFORM DO-FOOTING.
...
DO-FOOTING.
 MOVE SUMMATION-LINES TO SHOW-LINAGE-REC.
 WRITE SHOW-LINAGE-REC BEFORE ADVANCING 2.
 PERFORM COLLECT-SUBTOTALS-TO-PRINT.
 WRITE SHOW-LINAGE-REC BEFORE ADVANCING PAGE.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-21

Printer and Spooler Output Logging Program Activity Information to a Printer
Logging Program Activity Information to a
Printer

To record a log of program activity to a printer, you can use either of these statements:

• DISPLAY

• WRITE (usually preferable)

DISPLAY
If you use the DISPLAY statement to send messages to a printer for shared access,
you must associate a mnemonic name with the printer device name (such as $LP) in
the SPECIAL-NAMES paragraph. This association is established at compilation time.
Each DISPLAY statement transmits characters to a single device—there is no
mechanism for changing the destination of a DISPLAY statement.

Every time your process executes a DISPLAY statement, it must open the printer, write
one line of characters, and close the printer. The printer is then available to other
processes until the next time your process executes a DISPLAY statement. You cannot
use the DISPLAY statement to deliver characters to a spooler.

In the OSS environment, if a DISPLAY statement includes mnemonic-name, it must
be either the OSS pathname of a Guardian file or the name of an OSS text file.

WRITE
If you use the WRITE statement to send messages to a printer, you can determine the
assignment between the file and the device:

• At compilation through the SELECT clause of the FILE-CONTROL paragraph

• At the beginning of execution with the TACL command ASSIGN or ADD DEFINE
(in the Guardian environment only)

• During execution through the invocation of the routine COBOLASSIGN (in the non-
CRE environment) or the routine COBOL_ASSIGN_ (in the CRE)

The WRITE statement has these advantages over the DISPLAY statement:

• If there are several printers and the one you expected to use is busy, you can
redirect the file to another printer.

• You can open the file for exclusive access (the default exclusion mode for printers)
and be certain that no other process can send characters to the device while you
are using it.

• You can recover from input-output errors by using declaratives.

• You can use the PARAM PRINTER-CONTROL command to handle the condition
of the printer’s being out of paper (in the Guardian environment only).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
30-22

31
Process Initiation, Communication,
and Management

On a NonStop system, a process is a running program. More specifically, it is the
unique executing entity created when someone runs object code from a loadfile in one
of these ways:

• By entering an explicit RUN command (for example, RUN COBOL85)
• By entering an implicit RUN command (for example, COBOL85)
• By calling the PROCESS_CREATE_ procedure from another process

If a user runs two separate programs, the operating environment creates two
processes. The operating environment also creates two processes if the user runs two
instances of the same program concurrently, or if two users run the same program
concurrently.

Physically, each process consists of at least:

• A shareable, unmodifiable code area containing instructions and constants

• An exclusive, modifiable data area called a stack

• An exclusive entry in the process control block (PCB), a system table that uniquely
defines the process within the system

This arrangement permits two users of the same loadfile to use only one code area.
Although two processes can share a code area, each process has its own data area
and PCB.

Although several processes in a particular processor module can share resources and
attempt to run, only one process actually executes in a given processor module at a
given instant. Actual process execution requires the use of the processor’s hardware
registers, which are allocated to the running process by the operating environment.
Before the running process yields the processor module to another process or to an
interrupt handler, the operating environment saves information about the current
executing environment in the process’s PCB entry. This strategy permits the operating
environment to restore that environment when the process resumes execution.

A process comes into being when the operating environment takes the code and data
produced by compilation and either binding or linking and combines them with the
memory and other resources of the computer system. The process exists until it
requests termination (or is terminated) and surrenders its resources.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-1

Process Initiation, Communication, and
Management

Memory and Virtual Memory
Topics:

• Memory and Virtual Memory

• Initiating a Process From an HP COBOL Program

• Communicating With a Process

• Managing a Process

Memory and Virtual Memory
Memory is one resource consumed by a process. Each processor in an HP system has
its own physical memory. Each processor in a system can have one to four increments
of memory, and different processors in the same system can have different amounts of
memory. The size of the increments depends on the type of processor—see the
system description manual for your processor.

The operating environment allows several processes to occupy different areas of
physical memory concurrently. It manages these processes with a virtual memory
mechanism. The active portions of a process reside in physical memory. The inactive
portions remain in physical memory only as long as the number of active processes
remains small. As the number of active processes grows, the inactive portions of
processes tend to remain on disk in virtual memory. The unit of memory allocation is
the page, whose size depends on the processor. See the system description manual
for your processor.

The virtual memory for process code consists of the loadfile.

The virtual memory for process data consists of temporary disk storage, allocated at
the time the process is created.

Figure 31-1. Process Creation, Execution, and Termination

Process Process Process

CPU
Memory
Tables

Resources
PCB Table Entry Resident Memory

Virtual Disk Space

Creation Execution Termination

Allocation Deallocation

Program
File

VST709.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-2

Process Initiation, Communication, and
Management

Initiating a Process From an HP COBOL Program
A process can modify its data but not its code; therefore, the operating environment
can fetch code pages needed from disk but does not need to restore them to disk; the
operating environment must rewrite data pages to disk when their physical memory is
surrendered.

The transfer of code and data pages between virtual memory on disk and physical
memory is directed by the memory manager process of the operating environment with
the help of the disk process.

The performance of any process is affected by the amount of time that is spent
managing memory instead of executing process instructions.

For more information about memory and its management, see the system description
manual for your processor.

Initiating a Process From an HP COBOL
Program

Suppose you want to make your running HP COBOL program start a new process.
This is different from having your HP COBOL program call another program with a
CALL or ENTER statement—you want to cause an entirely independent process to
execute asynchronously, perhaps on a different processor of the system or on a
different HP system. If your program is a TNS program, use either the
CREATEPROCESS routine (to start a low-PIN process) or the
CLU_PROCESS_CREATE_ routine (to start a high-PIN process), If your program is a
native program, use the CLU_PROCESS_CREATE_ routine.

For information on the CLU_PROCESS_CREATE_ routine, see the CRE
Programmer’s Guide.

You can use the CREATEPROCESS routine in various ways:

• To start several other processes

• To initiate a precompiled Enform query that returns records to your process from a
database

• To activate the File Utility Program (FUP) and cause it to create a disk file and load
data into it

You call CREATEPROCESS with the ENTER verb and pass these items to it:

• The name of the loadfile to be executed

• The name to be given to the process being created (optional)

• A code that specifies the process creation messages that are to be passed to the
new process (optional)

• The priority at which the new process is to execute (optional)

• The processor on which the new process is to execute (optional)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-3

Process Initiation, Communication, and
Management

Initiating a Process From an HP COBOL Program
• The number of memory pages the new process is to be allocated (optional)

• A numeric data item in which the operating environment is to return the process ID
(name, processor number, and number of process within that processor) after the
process is created (optional and of little use to the HP COBOL programmer)

• A numeric data item in which the operating environment is to return a diagnostic
code indicating the success of the process creation (optional, but recommended)

For a syntax diagram of the CREATEPROCESS routine and complete descriptions of
its parameters, see CREATEPROCESS.

In Example 31-1, CREATEPROCESS initiates two independent processes. Note the
mechanism used to decompose the 2-byte computational GIVING item into its two
single-byte portions.

Note. If the process is running at a high PIN, the process ID that the operating
environment returns is synthetic. For information about synthetic IDs of high-PIN
processes, see the Guardian Application Conversion Guide.

Example 31-1. CREATEPROCESS Routine (page 1 of 3)

?SEARCH $SYSTEM.SYSTEM.COBOLLIB
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LAUNCHER.
 AUTHOR. DANA COBOL.
 INSTALLATION. TRANSACTIONS ANONYMOUS.
 DATE-WRITTEN. 29 FEBRUARY 1988.
 DATE-COMPILED.

* This program initiates two other processes and then it terminates *

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 FAMILY.
 05 P PIC X(21).
 05 COB-PROC-1 PIC X(21) VALUE "$WONDER.TWEEDLE.DUM".
 05 COB-PROC-2 PIC X(21) VALUE "$WONDER.TWEEDLE.DEE".
 05 PROC-NAME PIC X(6).
 05 SEND-STD-STARTUP-MSG PIC S9(4) COMP VALUE 2.
 05 SU-ERROR PIC S9(4).
 05 NEWPROCESS-ERR-LEFT PIC 9(4).
 05 NEWPROCESS-ERR-RIGHT PIC 9(4).
 05 PROC-FAILED PIC X(16) VALUE "Failed to start ".
 05 PROC-ID PIC S9(18) COMP.

 PROCEDURE DIVISION.
 AA-1.

* Start $QUEEN process
 MOVE "$QUEEN" TO PROC-NAME.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-4

Process Initiation, Communication, and
Management

Initiating a Process From an HP COBOL Program
 ENTER "CREATEPROCESS"
 USING COB-PROC-2
 PROC-NAME
* Copy my IN, OUT, & default VOL/SUBVOL
 SEND-STD-STARTUP-MSG
* Default--same priority as me
 OMITTED
* Default--same processor as me
 OMITTED
* Default--use regular memory allocation
 OMITTED
* Report process ID of $QUEEN
 PROC-ID
 GIVING SU-ERROR.

* Report any startup problem.
 IF SU-ERROR NOT = 0
 MOVE COB-PROC-2 TO P
 PERFORM DISPLAY-STARTUP-FAILURE.

 DISPLAY "$QUEEN'S PROC ID IS " PROC-ID.

* Start $ALICE process
 MOVE "$ALICE" TO PROC-NAME.

 ENTER "CREATEPROCESS"
 USING COB-PROC-1
 PROC-NAME
* Default--send all creation messages
 OMITTED
* Set explicit priority
 43
* Default--use same processor as me
 OMITTED
* Default--use regular memory allocation
 OMITTED
* Don't report process ID of $ALICE
 OMITTED
 GIVING SU-ERROR.

* Report any startup problem.
 IF SU-ERROR NOT = 0
 MOVE COB-PROC-1 TO P
 PERFORM DISPLAY-STARTUP-FAILURE.
 STOP RUN.

 DISPLAY-STARTUP-FAILURE.
 IF SU-ERROR = 1
 DISPLAY PROC-FAILED
 " -- REQUIRED PARAMETER MISSING OR ILLEGAL"
 ELSE IF SU-ERROR = 2
 DISPLAY PROC-FAILED
 " -- ILLEGAL loadfile NAME ("
 P ")"
 ELSE IF SU-ERROR = 3
 DISPLAY PROC-FAILED
 " -- INFILE, OUTFILE, OR DEFAULT VOLUME"
 DISPLAY " NAME CANNOT BE CONVERTED TO NETWORK FORM"
 ELSE IF SU-ERROR < 256
 DISPLAY PROC-FAILED
 " -- File management error #"
 SU-ERROR

Example 31-1. CREATEPROCESS Routine (page 2 of 3)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-5

Process Initiation, Communication, and
Management

Communicating With a Process
Communicating With a Process
On an HP system, all processes communicate directly with one another through the
message system. The basic mechanism for access to the message system is
$RECEIVE.

Topics:

• $RECEIVE

• Process Names

• Example of Simple Interprocess Communication

• RECEIVE-CONTROL Paragraph

• At-End Condition

• Summary of $RECEIVE Rules

• Simple Server Example

$RECEIVE
$RECEIVE is like one end of a communications conduit. It is similar to a courier who
brings you a message and can be dismissed or sent back with a reply.

From the perspective of a process, $RECEIVE appears to be a sequential file. The
syntax for communicating with $RECEIVE in an HP COBOL program is, therefore,
based on the syntax for communicating with an ordinary HP COBOL sequential file.

To receive a message from another process (including the operating environment), a
process must read $RECEIVE.

To reply to a message, a process must write to $RECEIVE. The operating environment
delivers the reply to the originator of the message. The process does not need to
determine where the message came from to reply to it.

 ELSE
* -- Received raw error from NEWPROCESS system procedure.
* -- Decompose it into left byte and right byte values.
 DIVIDE SU-ERROR
 BY 256
 GIVING NEWPROCESS-ERR-LEFT
 REMAINDER NEWPROCESS-ERR-RIGHT.

 DISPLAY PROC-FAILED
 " -- NEWPROCESS error # = ("
 NEWPROCESS-ERR-LEFT
 ","
 NEWPROCESS-ERR-RIGHT
 ")"
...

Example 31-1. CREATEPROCESS Routine (page 3 of 3)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-6

Process Initiation, Communication, and
Management

$RECEIVE
As with any other read operation, a process waiting to receive a message on
$RECEIVE waits until a message is delivered, the process is stopped, or a timeout
occurs on the read operation.

Before a process can receive a message, some process must have sent a message to
it.

To send a message, a process must have the name of the process that is to receive
the message (see Process Names). The sending process opens a file having the same
name as the receiving process (using an OPEN statement). Then the sending process
can write to its file and cause the operating environment to deliver the message to the
receiving process. The receiving process then can read the message on its
$RECEIVE.

If a process tries to open a nonexistent process, both the operating environment and
the HP COBOL run-time routines issue error messages. If no declarative intercepts the
error, the process terminates.

The sender of a message specifies whether a reply is expected or not. An HP COBOL
process uses a WRITE statement to send a message to which no reply is expected
and a READ WITH PROMPT statement to send a message that requests a reply. The
READ WITH PROMPT statement reads the reply to the message that is transmitted as
the prompt. The READ WITH PROMPT statement lets you write a requester in
HP COBOL, because it enables you to send a request to a server and await a reply
from that server. For more information on READ WITH PROMPT, see PROMPT
phrase.

Topics:

• $RECEIVE as Separate Input and Output Files

• $RECEIVE as Input-Output File

$RECEIVE as Separate Input and Output Files
The most common way to use $RECEIVE is to open it in INPUT mode for one file, and
in OUTPUT or EXTEND mode for one or more other files.

Figure 31-2. $RECEIVE as Separate Input and Output Files

Requester Server

Reply Message through RESPONSE-OUT

Task Message through TASKS-IN

Reply Message through ERROR-MSG

VST710.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-7

Process Initiation, Communication, and
Management

$RECEIVE
All files are assigned to $RECEIVE; however, when testing your system, you can
assign all files to disk files and then reassign them to $RECEIVE when testing is
completed.

Example 31-2. Requester Code

 ...

 SELECT TRANSACTIONS ASSIGN TO "$BAL"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.

 ...

 FD TRANSACTIONS
 LABEL RECORDS ARE OMITTED
* Variable-length records
 RECORD CONTAINS 1 TO 8 CHARACTERS.
 01 BALANCE PICTURE 9(8).
 01 ERROR-ON-TASK.
 05 ERROR-CODE PICTURE 9.
 05 ERR-MSG PICTURE X(7).

 WORKING-STORAGE SECTION.
 01 TRAN-REQUEST.
 05 TRAN-CODE PICTURE 9.
 05 TRAN-ACCOUNT-NUMBER PICTURE 9(6).
 ...

 PROCEDURE DIVISION.
 ...

 OPEN I-O TRANSACTIONS SYNCDEPTH 2.
 ...

 MOVE TASK-CODE TO TRAN-CODE.
 MOVE ACCOUNT-IN TO TRAN-ACCOUNT-NUMBER.
 READ TRANSACTIONS RECORD
 WITH PROMPT TRAN-REQUEST
 ...

Example 31-3. Server Code (page 1 of 2)

...
 SELECT TASKS-IN
 ASSIGN TO "$RECEIVE"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.

 SELECT RESPONSE-OUT
 ASSIGN TO "$RECEIVE"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-8

Process Initiation, Communication, and
Management

$RECEIVE
 SELECT ERROR-MSG
 ASSIGN TO "$RECEIVE"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.

 RECEIVE-CONTROL.
 TABLE OCCURS 20 TIMES
 SYNCDEPTH LIMIT IS 2
 REPLY CONTAINS 8 CHARACTERS.
 ...

 DATA DIVISION.
 FILE SECTION.
 FD TASKS-IN
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 7 CHARACTERS.
 01 TASK.
 05 TCODE PICTURE 9.
 05 ACCOUNT PICTURE 9(6).
 FD RESPONSE-OUT
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 8 CHARACTERS.
 01 BALANCE PICTURE 9(8).
 FD ERROR-MSG
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 8 CHARACTERS.
 01 ERROR-ON-TASK.
 05 ERROR-CODE PICTURE 9.
 05 ERR-MSG PICTURE X(7).

 PROCEDURE DIVISION.
 ...
 OPEN INPUT TASKS-IN.
 OPEN OUTPUT RESPONSE-OUT
 ERROR-MSG.
 ...
 READ-A-TASK.
 READ TASKS-IN
 AT END CLOSE TASKS-IN
 OPEN INPUT TASKS-IN
 GO TO READ-A-TASK.
 IF TCODE = 1
 PERFORM ...
 IF WS-BALANCE > 0
 MOVE WS-BALANCE TO BALANCE
 WRITE BALANCE
 ELSE
 MOVE WS-ERR-CODE TO ERROR-CODE
 MOVE MESSAGE(WS-ERR-CODE) TO ERR-MSG
 WRITE ERROR-ON-TASK.
 ...

Example 31-3. Server Code (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-9

Process Initiation, Communication, and
Management

$RECEIVE
$RECEIVE as Input-Output File
In this case, $RECEIVE is opened in I-O mode to receive requests and reply to them
through the same file. Each request is acted upon and paired with a reply message
sent back in response to the task.

The requesting process follows the outline in Example 31-4.

Figure 31-3. $RECEIVE as Input/Output File

Example 31-4. Requester Code (page 1 of 2)

 ...

SELECT TRANSACTIONS ASSIGN TO "$BAL"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.

 ...

FD TRANSACTIONS
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 1 TO 8 CHARACTERS.

01 TRAN-RESPONSE.
 05 RESULT-CODE PICTURE 9.
 88 RESULT-OK VALUE IS 1.
 88 RESULT-ERROR VALUE IS 2.
 ...
 05 NEW-BALANCE PICTURE 9(7).
 ...

WORKING-STORAGE SECTION.
 ...
01 TRAN-REQUEST.
 05 TRAN-CODE PICTURE 9.
 88 TRAN-PMT VALUE IS 1.
 ...
 05 ACCOUNT-NUMBER PICTURE 9(6).
 ...

Requester Server
Task Message

Reply Message

VST711.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-10

Process Initiation, Communication, and
Management

$RECEIVE
The server process receives the account number and transaction code from
$RECEIVE and sends a response back to the requester, as Example 31-5 shows.

PROCEDURE DIVISION.
 ...
 OPEN I-O TRANSACTIONS SYNCDEPTH 1.
 ...
 MOVE TCODE TO TRAN-CODE.
 MOVE ACCOUNT-IN TO ACCOUNT-NUMBER.
 READ TRANSACTIONS WITH PROMPT TRAN-REQUEST.
 ...

Example 31-5. Server Code (page 1 of 2)

INPUT-OUTPUT SECTION.
FILE-CONTROL.
 ...
 SELECT TASKS-IN ASSIGN TO "$RECEIVE"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.
 ...

RECEIVE-CONTROL.
 TABLE OCCURS 20 TIMES
 SYNCDEPTH LIMIT IS 1
 REPLY CONTAINS 8 CHARACTERS.
 ...

DATA DIVISION.
 ...
FD TASKS-IN
 LABEL RECORDS ARE OMITTED
 RECORD CONTAINS 1 TO 8 CHARACTERS.
 01 TRAN-REQUEST.
 05 TRAN-CODE PICTURE 9.
 88 TRAN-PMT VALUE IS 1.
 ...
 05 ACCOUNT-NUMBER PICTURE 9(6).
 ...

 01 TRAN-RESPONSE.
 05 RESULT-CODE PICTURE 9.
 88 RESULT-OK VALUE IS 1.
 88 RESULT-ERROR VALUE IS 2.
 ...
 05 NEW-BALANCE PICTURE 9(7).
 ...

Example 31-4. Requester Code (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-11

Process Initiation, Communication, and
Management

Process Names
Process Names
A process that expects to receive messages must have a name by which the sending
process can designate it.

All processes running on an HP system, named and unnamed, have process file
names. If a process is not named explicitly—with the RUNNAMED directive,the NAME
option of the RUN command, or the name :length parameter of the
PROCESS_CREATE_ procedure—the operating environment issues it with a process
file name to an unnamed process.

A file name for an unnamed process consists of an optional node name, a dollar sign
($), a processor and PIN, and a process sequence number.

A file name for a named process consists of an optional node name, a process name
(whose first character is a dollar sign ($)), an optional sequence number, and optional
qualifiers.

To find the names of processes currently active, use the TACL command PPD.
NonStop systems maintain the list of process names in a destination control table
(DCT). The systems recognize the PPD command as a request for a tabulation of
information about named processes, not unnamed processes.

PROCEDURE DIVISION.
 ...
 OPEN I-O TASKS-IN.
 ...
 READ TASKS-IN.
 IF TRAN-PMT
 PERFORM ...
 IF SOME-ERROR
 MOVE 2 TO RESULT-CODE
 ELSE MOVE 1 TO RESULT-CODE
 MOVE WS-NEW-BALANCE TO NEW-BALANCE
 WRITE TRAN-RESPONSE
 ELSE
 ...

Example 31-6. Report Produced by PPD Command

NAME PID1 PID2 ANCESTOR

$Z000 00,022 01,021 00,021
$CRT2 00,021 01,022 $Z000
$NULL 07,004 00,024 00,025
$CMON 07,005 00,026 00,025
$IMON 00,031 01,025 06,010
$DM00 00,032 $IMON
$DM01 01,024 $IMON
...

Example 31-5. Server Code (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-12

Process Initiation, Communication, and
Management

Example of Simple Interprocess Communication
The report in Example 31-6 shows that the process-pair named $Z000 consists of a
primary process running in processor module 00 with the process identification number
(PIN) 022 and a backup process running in processor 01 with the PIN 021. The
processor and PIN of the process that started $Z000 (its ancestor) is 00,021. Notice
that not all processes are executing as process pairs—$DM00 and $DM01 (parts of
the Inspect symbolic debugger) are running as single processes.

Every disk volume name, device name, spooler collector name, and so on, begins with
a dollar sign. Each time you read from or write to one of them, you are reading from or
writing to the process controlling that entity.

Example of Simple Interprocess Communication
This example illustrates the principles of interprocess communication using named
processes and $RECEIVE (see Figure 31-4).

The program PITCHER accepts a line of text from its home terminal and transmits it to
the process $CATCH (the program named CATCHER). When it receives a line
beginning with the value “END,” PITCHER terminates after transmitting the line.

CATCHER displays each line on its home terminal. When the process that opened
CATCHER terminates, an HP COBOL run-time routine translates the closure as an
end of file (EOF) on $RECEIVE. The AT END phrase of the READ statement passes
control around the DISPLAY statement, the PERFORM terminates because its UNTIL
phrase is satisfied, and CATCHER terminates. (Use of an empty declarative would
eliminate the need for the END-TRANS paragraph and the AT END GO TO construct.)

The bold text in Example 31-7 is significant. Note that, in PITCHER, the file for
CATCHER is opened for I-O even though it is being used only for output. If you open a
process with the OUTPUT or EXTEND attribute, HP COBOL handles the process as a
printer device and tries to advance it to the next page—an operation that is
meaningless (and fatal) to CATCHER.

Figure 31-4. $RECEIVE From PITCHER to CATCHER

"PITCHER" $CATCH
text line

VST712.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-13

Process Initiation, Communication, and
Management

Example of Simple Interprocess Communication
Example 31-7. PITCHER Code

IDENTIFICATION DIVISION.
 PROGRAM-ID. PITCHER.
 AUTHOR. JO COBOL.
 INSTALLATION. TRANSACTIONS ANONYMOUS.
 DATE-WRITTEN. 29 FEBRUARY 1988.
 DATE-COMPILED.

* This program illustrates the transmission of messages to *
* another COBOL program, CATCHER, whose process name is *
* $CATCH. *
* *
* Records entered at this process's home terminal are sent *
* $CATCH. *

ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT REPORT-OUT
 ASSIGN TO "$CATCH"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL.

 DATA DIVISION.
 FILE SECTION.
 FD REPORT-OUT
 LABEL RECORDS ARE OMITTED.
 01 REPORT-LINE.
 05 REPORT-END PICTURE X(3).
 88 LAST-LINE-ARRIVED VALUE "END".
 05 REPORT-REST PICTURE X(77).

 PROCEDURE DIVISION.
 A.
 OPEN I-O REPORT-OUT.
 PERFORM TRANSPUT UNTIL LAST-LINE-ARRIVED.
 STOP RUN.
 TRANSPUT.
 ACCEPT REPORT-LINE.
 WRITE REPORT-LINE.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-14

Process Initiation, Communication, and
Management

Example of Simple Interprocess Communication
Example 31-8. CATCHER Code

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CATCHER.
 AUTHOR. SANDY COBOL.
 INSTALLATION. TRANSACTIONS ANONYMOUS.
 DATE-WRITTEN. 29 FEBRUARY 1988.
 DATE-COMPILED.

* This program illustrates the receipt of messages from *
* another COBOL program, PITCHER. *
* *
* This program must be run as a process named $CATCH. *
* *
* Records received are displayed on this program's home *
* terminal. *

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT PRINT-LINES-IN
 ASSIGN TO "$RECEIVE"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL
 FILE STATUS IS PRINT-STATUS.

 DATA DIVISION.
 FILE SECTION.
 FD PRINT-LINES-IN
 LABEL RECORDS ARE OMITTED.
 01 LINE-IN PICTURE X(80).
 WORKING-STORAGE SECTION.
 01 PRINT-STATUS PICTURE X(2).
 88 SENDER-DISAPPEARED VALUE "10".

 PROCEDURE DIVISION.
 A.
 OPEN INPUT PRINT-LINES-IN.
 PERFORM TRANSPUT THROUGH END-TRANS
 UNTIL SENDER-DISAPPEARED.
 STOP RUN.
 TRANSPUT.
 READ PRINT-LINES-IN
 AT END GO TO END-TRANS.
 DISPLAY LINE-IN.
 END-TRANS.
 EXIT.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-15

Process Initiation, Communication, and
Management

RECEIVE-CONTROL Paragraph
RECEIVE-CONTROL Paragraph
The RECEIVE-CONTROL paragraph of the Environment Division is an HP extension
to COBOL. The RECEIVE-CONTROL paragraph in process $XX serves these
purposes:

• It defines the receive-control table for process $XX. This specifies the maximum
number of other processes that can have process $XX open concurrently. When all
such other processes close process $XX, an HP COBOL run-time routine reports
an end of file (EOF) on $RECEIVE.

• It defines the reply table for process $XX. This specifies the number of replies (and
the length of a reply) to be saved for each requesting process. A process with a
fault-tolerant requester must allow for replies to be saved so that the fault-tolerant
facility can retransmit them to restore synchronization in the case of a takeover by
the requester’s backup process. (If the requester is not fault-tolerant, the reply
table is useless and wastes space.)

• It designates a data item to contain an error code to be returned to a requesting
process that is handling process $XX as a device. Every device in the system
returns an error code, a condition code, and a reply-message text.

• It designates a data item to contain the message source descriptor. This fixed-
format item is defined in RECEIVE-CONTROL Paragraph. When the HP COBOL
run-time routines complete a successful READ on $RECEIVE, they update this
data item to report:

° The message source (the operating environment or another user process)

° The entry number in the receive-control table

° The process ID of the requesting process (name, processor number, and
number of process in that processor)

• It specifies which classes of operating environment messages are to be passed to
process $XX.

An ordinary Pathway server uses only three entries of the RECEIVE-CONTROL
paragraph:

• TABLE OCCURS

Specifies how many requesters can have the server open at one time. Any
additional requesters attempting to open the server are refused. This value must
be greater than or equal to the MAXLINKS value in the PATHCOM command file
that created the PATHMON environment. A large value is recommended.

Note. If the process is running at a high PIN, the process ID that the operating
environment returns is synthetic. For information about synthetic IDs of high-PIN
processes, see the Guardian Application Conversion Guide.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-16

Process Initiation, Communication, and
Management

At-End Condition
• SYNCDEPTH

Usually set to 1 for Pathway servers unless they are multithreaded.

• REPLY CONTAINS

Specifies the length of the reply that the server sends back to the requester. It
specifies the name of the file containing the longest record that is used as a reply
or an explicit number of characters.

At-End Condition
An entry is made in the receive-control table when a requester executes an OPEN for
a file assigned to the server process. A requester can have more than one OPEN
issued to a server process at any given time. The receive-control table has a separate
entry for each of these OPENs.

An entry is deleted from the receive-control table whenever the requester issues a
CLOSE for the file assigned to the server process. A server continues to receive
requester messages through $RECEIVE if there is an entry in the table. When the last
entry is deleted, an at-end condition arises for the server’s READ statement.

This at-end condition is handled as an end of file for $RECEIVE. If a file status code
data item is defined, it is set to “10” (EOF). Control passes to the statement in the AT
END phrase or to a USE procedure if no AT END phrase is present. If the server is a
Pathway server, it must stop itself when it detects an at-end condition.

An attempt to read a file when it is at end of file causes a permanent error, setting the
file status code to “30.” Ordinarily, the program must close and reopen the file before
any further activity is possible on that file. For $RECEIVE, however, the run-time
routines simulate a close/open sequence, relieving the program of this responsibility;
however, such a READ after end of file should include a TIME LIMIT phrase, or the
READ could wait indefinitely. See READ for Sequential or Dynamic Access.

When a server process has just begun execution and no entries are yet in its receive-
control table, an at-end condition will never occur before the first OPEN message is
received.

Summary of $RECEIVE Rules
These rules apply to programs that use $RECEIVE:

• Files assigned to $RECEIVE must be sequentially organized and not described
with alternate keys or LINAGE clauses.

• A RECEIVE-CONTROL paragraph in the Input-Output Section of the Environment
Division is necessary to define two internal tables essential to the function of
$RECEIVE. (Although the RECEIVE-CONTROL paragraph is optional, the default
tables permit only the most limited use of $RECEIVE.)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-17

Process Initiation, Communication, and
Management

Simple Server Example
• The OPEN SYNCDEPTH value in the requester process that opens the server
process must not exceed the sync value in the RECEIVE-CONTROL paragraph of
the server process.

• Only one reply WRITE to each READ on $RECEIVE is allowed. If you fail to reply
to a message before you read the next one, the HP COBOL run-time routines send
a default reply. In this situation, you cannot reply to that earlier message.

• A program can use $RECEIVE whether or not the program runs as a process pair.

• The contents of the record area associated with $RECEIVE are subject to
modification by the HP COBOL run-time routines. Even if a process has not
requested delivery of system messages in the RECEIVE-CONTROL paragraph,
the run-time routines handle system messages in the $RECEIVE record area.
These unrequested messages are not delivered to the process. If a process
modifies the record area and then performs a read operation on $RECEIVE, the
portion of the record area beyond the actual received message can include residue
of such system messages.

• If you want to know the length of the record you read from $RECEIVE, identify
them with RECORD IS VARYING... DEPENDING, which enables you to determine
the length of the message that was sent to $RECEIVE by the requester.

Simple Server Example
The simple server in Example 31-9 looks up items in a telephone directory.

Example 31-9. Simple Server (page 1 of 4)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. BRIEF-EXAMPLE.
 AUTHOR. ZANE COBOL.
 DATE-WRITTEN. 29 February, 1988
 DATE-COMPILED.

**
* This simple server performs telephone-book lookups. *
* Given a name, it reports the name and a number. *
* Given a number, it reports the number and a name. *
* It assumes that no two persons have the same number or the same name. *
**

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP System.
 OBJECT-COMPUTER. HP TXP System.

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.

* Declaring MESSAGE-IN and MESSAGE-OUT separately allows us to
* redirect either or both for debugging during development.

 SELECT MESSAGE-IN
 ASSIGN TO $RECEIVE
 FILE STATUS IS RECEIVE-FILE-STATUS.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-18

Process Initiation, Communication, and
Management

Simple Server Example
 SELECT MESSAGE-OUT
 ASSIGN TO $RECEIVE
 FILE STATUS IS RECEIVE-FILE-STATUS.

 SELECT PHONE-BOOK
 ASSIGN TO "$AA.BB.PHONE"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS PH-EMPLOYEE-NUM
 ALTERNATE RECORD KEY IS PH-EMPLOYEE-NAME
 ALTERNATE RECORD KEY IS PH-EMPLOYEE-PHONE-NUM
 FILE STATUS IS PHONE-FILE-STATUS.

 RECEIVE-CONTROL.

* Up to five requesters can have this server open

 TABLE OCCURS 5 TIMES
 SYNCDEPTH LIMIT IS 1
 REPLY CONTAINS MESSAGE-OUT RECORD.

DATA DIVISION.
 FILE SECTION.
 FD MESSAGE-IN
 LABEL RECORDS ARE OMITTED.

 01 PHONE-QUERY-MSG.
 05 FILLER PIC S9(4) COMP.
 05 LOOKUP-CODE PIC X.
 88 NAME-LOOKUP VALUE "N".
 88 PHONE-LOOKUP VALUE "#".
 05 LOOKUP-NUM PIC X(10).
 05 LOOKUP-NAME PIC X(35).

 FD MESSAGE-OUT
 LABEL RECORDS ARE OMITTED
* record is variable length.
 RECORD CONTAINS 1 TO 200 CHARACTERS.

 01 PHONE-REPLY-MSG.
 05 REPLY-CODE PIC S9(4) COMP.
* 000 = OK, reply contains a value
* 900 = no match in phone book
 05 LOOKUP-CODE PIC X.
 88 NAME-LOOKUP VALUE "N".
 88 PHONE-LOOKUP VALUE "#".
 05 LOOKUP-NUM PIC X(10).
 05 LOOKUP-NAME PIC X(35).

 01 BAD-PHONE-REPLY-MSG.
 05 BAD-REPLY-CODE PIC S9(4) COMP.
* 001 = bad request, no code given
* 002 = start of lookup failed

 FD PHONE-BOOK
 LABEL RECORDS ARE OMITTED.
 01 PHONE-REC.
 05 PH-EMPLOYEE-NUM PIC X(5).
 05 PH-EMPLOYEE-NAME.
 10 PH-EMPLOYEE-NAME-LAST PIC X(15).
 10 PH-EMPLOYEE-NAME-REST PIC X(20).
 05 PH-EMPLOYEE-PHONE-NUM PIC X(10).

Example 31-9. Simple Server (page 2 of 4)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-19

Process Initiation, Communication, and
Management

Simple Server Example
 WORKING-STORAGE SECTION.

 01 REPLY-CODE-VALUES.
 05 OK-REPLY PIC 999 VALUE ZERO.
 05 BAD-REQUEST-REPLY PIC 999 VALUE 1.
 05 START-FAILED-REPLY PIC 999 VALUE 2.
 05 NONE-FOUND-REPLY PIC 999 VALUE 900.
 01 FILE-STATUSES.
 05 RECEIVE-FILE-STATUS.
 88 RECEIVE-FILE-OK VALUE IS ZEROS.
 88 CLOSE-FROM-REQUESTER VALUE IS "10".
 10 R-STAT-1 PIC X.
 10 R-STAT-2 PIC X.
 05 PHONE-FILE-STATUS.
 10 P-STAT-1 PIC X.
 10 P-STAT-2 PIC X.
 88 PHONE-FILE-OK VALUE IS ZEROS.

 PROCEDURE DIVISION.

 DECLARATIVES.

 UA-MESSAGE-IN SECTION.
 USE AFTER ERROR PROCEDURE ON MESSAGE-IN.

 UA-MESSAGE-IN-PROC.
 IF R-STAT-1 > 1
 DISPLAY " ERROR ON MESSAGE-IN FILE "
 " STAT-1 = " R-STAT-1
 " STAT-2 = " R-STAT-2.

 UA-PHONE-BOOK SECTION.
 USE AFTER ERROR PROCEDURE ON PHONE-BOOK.

 UA-PHONE-BOOK-PROC.
* Empty declarative--intercepts error conditions and allows
* PHONE-FILE-STATUS to reflect the success of a START or READ

 UA-MESSAGE-OUT SECTION.
 USE AFTER ERROR PROCEDURE ON MESSAGE-OUT.

 UA-MESSAGE-OUT-PROC.
 IF R-STAT-1 > 1
 DISPLAY " ERROR ON MESSAGE-OUT FILE "
 " STAT-1 = " R-STAT-1
 " STAT-2 = " R-STAT-2.

 END DECLARATIVES.

 MAIN SECTION.

* M A I N L O G I C *

 BEGIN-COBOL-SERVER.
 PERFORM A-INIT.
 PERFORM B-TRANS
 UNTIL CLOSE-FROM-REQUESTER.
 PERFORM C-EOJ.
 STOP RUN.

Example 31-9. Simple Server (page 3 of 4)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-20

Process Initiation, Communication, and
Management

Simple Server Example

 A-INIT.
 OPEN INPUT MESSAGE-IN SYNCDEPTH 1
 OUTPUT MESSAGE-OUT
 INPUT PHONE-BOOK SHARED.

 C-EOJ.
 CLOSE MESSAGE-IN
 MESSAGE-OUT
 PHONE-BOOK.

 B-TRANS.
 READ MESSAGE-IN.
* Declarative handles EOF
 IF RECEIVE-FILE-STATUS = "00"
 IF NAME-LOOKUP OF MESSAGE-IN
 PERFORM B-01-NAME-LOOKUP-PROC
 ELSE
 IF PHONE-LOOKUP OF MESSAGE-IN
 PERFORM B-01-PHONE-LOOKUP-PROC
 ELSE
 MOVE SPACES TO PHONE-REPLY-MSG
 MOVE BAD-REQUEST-REPLY TO BAD-REPLY-CODE OF MESSAGE-OUT
 ...

 IF RECEIVE-FILE-STATUS = "00"
 WRITE PHONE-REPLY-MSG
 ELSE
 WRITE BAD-REPLY-MSG.

 B-01-NAME-LOOKUP-PROC.
 MOVE LOOKUP-NAME OF MESSAGE-IN TO PH-EMPLOYEE-NAME
 START PHONE-BOOK KEY IS = PH-EMPLOYEE-NAME.
 IF NOT PHONE-FILE-OK
 MOVE START-FAILED-REPLY TO REPLY-CODE OF MESSAGE-OUT
 ELSE
 READ PHONE-BOOK
 IF PHONE-FILE-OK
 PERFORM B-02-COPY-TO-REPLY
 ELSE
 MOVE NONE-FOUND-REPLY TO REPLY-CODE OF MESSAGE-OUT
 ...

 B-01-PHONE-LOOKUP-PROC.
 MOVE LOOKUP-NUM OF MESSAGE-IN TO PH-EMPLOYEE-PHONE-NUM.
 START PHONE-BOOK KEY IS = PH-EMPLOYEE-PHONE-NUM.
 IF NOT PHONE-FILE-OK
 MOVE NONE-FOUND-REPLY TO REPLY-CODE OF MESSAGE-OUT
 ELSE
 READ PHONE-BOOK
 IF PHONE-FILE-OK
 PERFORM B-02-COPY-TO-REPLY
 ELSE
 MOVE NONE-FOUND-REPLY TO REPLY-CODE OF MESSAGE-OUT
 ...

 B-02-COPY-TO-REPLY.
 MOVE PH-EMPLOYEE-PHONE-NUM TO LOOKUP-NUM OF MESSAGE-OUT.
 MOVE PH-EMPLOYEE-NAME TO LOOKUP-NAME OF MESSAGE-OUT.
 MOVE OK-REPLY TO REPLY-CODE OF MESSAGE-OUT.

Example 31-9. Simple Server (page 4 of 4)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-21

Process Initiation, Communication, and
Management

Managing a Process
More information:

Managing a Process
Besides creating processes and communicating with processes, a process might need
to obtain information about itself or about some other process in the same system or
another system on the same Expand network.

Topics:

• Determining the Process Handle

• Determining the Node (System Number)

• Identifying the Message Source

• Determining the Status

• Identifying the Creator

• Monitoring Descendants’ Completion

• Changing the Creator ID

• Suspending a Process

Determining the Process Handle
If a process has a record of its process handle—process name, processor number, and
number of the process within that processor (also called process identification number
or PIN)—it can:

• Generate more useful diagnostic messages by including the process handle
information and the time and date

• Use its knowledge of its location (processor number) in creating other processes
with which it must communicate

• Obtain information from the operating system routines that require the processor
number and PIN as parameters

Topics Sources

Programming servers and Pathsend
requesters in the Pathway
environment

TS/MP Pathsend and Server Programming Manual

Programming SCREEN COBOL
requesters in the Pathway
environment

Pathway/TS TCP and Terminal Programming Guide

Configuring and managing servers in
the Pathway environment

TS/MP System Management Manual
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-22

Process Initiation, Communication, and
Management

Determining the Node (System Number)
A process can obtain its process ID by passing its process number to the
PROCESSHANDLE_DECOMPOSE_ procedure, which returns the processor and PIN
values as separate integer values. If you do not know the process number, you can get
it by calling the PROCESSHANDLE_GETMINE_ procedure.

Determining the Node (System Number)
When NonStop systems are linked together through Expand to constitute a network,
each system (or node) of the network has a system number. If copies of a process are
running on different nodes, the process might need to determine the system number of
the system on which it is running. The process might report diagnostic messages to a
central log and include its system name, number, or both.

A process can obtain the system number of the system on which it is running by calling
the routines PROCESSHANDLE_GETMINE_, PROCESSHANDLE_DECOMPOSE_,
and NODENUMBER_TO_NODENAME_, as Example 31-11 shows.

Example 31-10. PROCESSHANDLE_GETMINE_ and
PROCESSHANDLE_DECOMPOSE_ Procedures

WORKING-STORAGE SECTION.
01 PROCESS-HANDLE PIC X(20).
01 CPU-PIN.
 05 CPU PIC S9(2) COMPUTATIONAL.
 05 PIN NATIVE-2.
01 ERROR-NUMBER PIC S9(5) COMPUTATIONAL.
01 NULL-PH PIC X(20) VALUE ALL HIGH-VALUES.
...

PROCEDURE DIVISION.
...

ENTER TAL "PROCESSHANDLE_GETMINE_"
 USING PROCESS-HANDLE
 GIVING ERROR-NUMBER

ENTER TAL "PROCESSHANDLE_DECOMPOSE_"
 USING PROCESS-HANDLE
 CPU
 PIN
 GIVING ERROR-NUMBER

Example 31-11. Determining a Process’s Node (System Number) (page 1 of 2)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. WHERE-AM-I.
 AUTHOR. BECK COBOL.
 INSTALLATION. TRANSACTIONS ANONYMOUS.
 DATE-WRITTEN. 29 FEBRUARY 1988.
 DATE-COMPILED.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-23

Process Initiation, Communication, and
Management

Identifying the Message Source
Identifying the Message Source
To enable your process to determine the source of any message it receives, include a
MESSAGE SOURCE clause in the program’s RECEIVE-CONTROL paragraph. This
causes the HP COBOL run-time routines to automatically update the data item
designated in the MESSAGE SOURCE clause at every successful READ on
$RECEIVE.

* This program obtains and reports its own system number *
* and system name. *

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 PROCESS-HANDLE PIC X(20).
 01 CPU-PIN.
 05 CPU NATIVE-2.
 05 PIN NATIVE-2.
 01 ERROR-NUMBER PIC S9(5) COMP.
 01 SYSTEM-NAME PIC X(8).
 01 SYSTEM-NUMBER NATIVE-2.
 01 SYSTEM-NAME-LENGTH NATIVE-2.

 PROCEDURE DIVISION.
 WHERE-AM-I.
 ENTER TAL "PROCESSHANDLE_GETMINE_"
 USING PROCESS-HANDLE
 GIVING ERROR-NUMBER.

 ENTER TAL "PROCESSHANDLE_DECOMPOSE_"
 USING PROCESS-HANDLE
 CPU
 PIN
 GIVING ERROR-NUMBER.

 ENTER TAL "NODENUMBER_TO_NODENAME_"
 USING OMITTED
 SYSTEM-NAME
 SYSTEM-NAME-LENGTH
 GIVING ERROR-NUMBER.

 DISPLAY "I'm executing on system #"
 SYSTEM-NUMBER
 ", named """
 SYSTEM-NAME
 """".
 STOP RUN.

Example 31-11. Determining a Process’s Node (System Number) (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-24

Process Initiation, Communication, and
Management

Identifying the Message Source
The capability of identifying the source of a message allows a process to respond
differently to the same request coming from different processes or even to reject
certain requests from certain processes.

Example 31-12 uses the MESSAGE SOURCE clause to acquire the message-source
record. It reads messages on $RECEIVE and displays the processor/PIN, process
name, and message code of the message, then displays the message. WHO-SENT-
THAT detects whether the sender has an explicit process name. If the sender had an
explicit process name, the program determines the processor number and PIN and
displays them and the process name.

Example 31-12. MESSAGE-SOURCE Clause (page 1 of 2)

DATA DIVISION.

FILE SECTION.
 FD MESSAGE-IN-FILE
 RECORD CONTAINS 1 TO 82 CHARACTERS
 LABEL RECORDS ARE OMITTED.

01 MESSAGE-IN.
 05 SYS-MSG-CODE PIC S9(4) COMP.
 05 SYS-MSG-TEXT PIC X(80).

WORKING-STORAGE SECTION.

01 MESSAGE-SOURCE-REC.
 05 SYSTEM-FLAG PIC S9 COMP.
 05 ENTRY-NUMBER PIC 999 COMP.
 05 FILLER PIC X(4).
 05 PROCESS-HANDLE PIC X(20).
 05 CPU-PIN.
 06 CPU PIC S9(2) COMPUTATIONAL.
 06 PIN NATIVE-2.
 05 ERROR-NUMBER PIC S9(5) COMPUTATIONAL.
 05 NULL-PH PIC X(20) VALUE ALL HIGH-VALUES.

01 FILE-DATA.
 05 RECEIVE-FILE-STATUS PIC XX.
 88 RECEIVE-FILE-OK VALUE "00".
 88 RECEIVE-FILE-EOF VALUE "10".

01 PROCESS-NAME PIC X(8).
01 PROCESS-NAME-LEN NATIVE-2.

 PROCEDURE DIVISION.
 DECLARATIVES.
* --Declaratives are a more powerful way to handle file
* --errors than a simple AT END phrase, and one or the other
* --is required to be present.
 HANDLE-INFILE-ERRORS SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON MESSAGE-IN-FILE.
 INFILE-ERROR.
 IF NOT RECEIVE-FILE-EOF
 DISPLAY "RECEIVE FILE ERROR STATUS = " RECEIVE-FILE-STATUS .
 END DECLARATIVES.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-25

Process Initiation, Communication, and
Management

Determining the Status
Determining the Status
Using the ENTER verb, a process can call the PROCESS_GETINFO_ routine to obtain
information about any process. The PROCESS_GETINFO_ routine can return any or
all of:

• The process name, processor number, and number of the process within that
processor

• The creator accessor ID (group ID, user ID) of the process

• The process accessor ID (group ID, user ID) of the process

• The execution priority at which the process is running

• The name of the loadfile from which the process was loaded

• The device name of the process’s home terminal

AA SECTION.
 AA-1.
 OPEN INPUT MESSAGE-IN-FILE.
 MOVE ZERO TO SYS-MSG-CODE
 RECEIVE-FILE-STATUS.
 PERFORM WATCH
 UNTIL NOT RECEIVE-FILE-OK.
 STOP RUN.

 WATCH.
 READ MESSAGE-IN-FILE.
* The READ causes the MESSAGE-SOURCE-REC to be set.
 PERFORM CHECK-STATUS.

 CHECK-STATUS.
 MOVE SPACES TO PROCESS-NAME.
 ENTER TAL "PROCESSHANDLE_DECOMPOSE_"
 USING PROCESS-HANDLE
 CPU
 PIN
* No node number
 OMITTED
* No node name
 OMITTED
* No nodename length
 OMITTED
 PROCESS-NAME
 PROCESS-NAME-LEN
 GIVING ERROR-NUMBER.
 IF ERROR-NUMBER EQUAL TO 0
 PERFORM DISPLAY-PROCESS-NAME
 ELSE
 DISPLAY "ERROR " ERROR-NUMBER.

 DISPLAY-PROCESS-NAME.
 DISPLAY "MESSAGE WAS FROM CPU " CPU ", PIN " PIN.
 IF PROCESS-NAME-LEN > 0
 DISPLAY "PROCESS " PROCESS-NAME.
 DISPLAY "MESSAGE CODE " SYS-MSG-CODE.
 DISPLAY "MESSAGE CONTENTS: " SYS-MSG-TEXT.

Example 31-12. MESSAGE-SOURCE Clause (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-26

Process Initiation, Communication, and
Management

Determining the Status
• The system number (in a network of systems) on which the process is running

• An error value, indicating the success of (or the nature of the failure of) the request

Topics:

• Accessor IDs

• Search Mode

Accessor IDs
The creator accessor ID and process accessor ID are elements of the security system
of the operating environment. Every user has a unique user name and a corresponding
unique user ID. A user name is of the form:

groupname.username

where groupname is the name of the group to which the user belongs, and
username is a name identifying the individual user within the group. This is the same
user name you use when you log on. A user ID is the numeric equivalent of the user
name and is of the form:

group-id, user-id

where group-id and user-id are nonnegative integers in the range 0 through 255.
These are the numeric values reported by the WHO command of the command
interpreter or in the OWNER column of a FUP INFO report.

Every process on an HP system has two accessor IDs:

When you log on to a NonStop system, the operating environment gives your
command interpreter your user ID as its process accessor ID. Only a process having
the appropriate process accessor ID can read, write, execute, or purge a given file.

All processes that you start (using the explicit or implicit RUN command) ordinarily
inherit your process accessor ID as their process accessor ID and as their creator
accessor ID. If, however, the loadfile from which you created the process has been
designated appropriately (using the PROGID option of the FUP SECURE command or
using a SETMODENOWAIT or SETMODE call to set the file security), then the new
process adopts as its process accessor ID the loadfile’s owner ID, not your process
accessor ID.

This enables you to establish a loadfile, executable by other users, that can:

• Gain access to a file to which those users themselves cannot gain access
• Initiate processes which those users do not own

Accessor ID Description

Creator accessor ID (CAID) Identifies the user who initiated the creation of the process

Process accessor ID (PAID) Authority of the process to make requests to the operating
environment, such as to open a file or stop another process
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-27

Process Initiation, Communication, and
Management

Determining the Status
You can therefore provide a mechanism for passing nonsensitive data from a file
containing both sensitive and nonsensitive data to a class of users who should not
receive the sensitive data. For more information about these security features, see the
operating environment user’s guide for your system.

In Example 31-13, an HP COBOL program uses the PROCESS_GETINFO_ routine to
discover its environment and then reports the information to its home terminal.

Example 31-13. PROCESS_GETINFO_ Routine (page 1 of 3)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROBE.
 AUTHOR. TRACY COBOL.
 INSTALLATION. TRANSACTIONS ANONYMOUS.
 DATE-WRITTEN. 03 FEBRUARY 2000.
 DATE-COMPILED. 03 FEBRUARY 2000.

**
* This program obtains and reports its own process information *
* from PROCESSINFO. *
**

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 PROCESS-HANDLE PIC X(20).
 01 CPU-PIN.
 05 CPU PIC S9(2) COMPUTATIONAL.
 05 PIN NATIVE-2.
 05 FILLER PIC X(4).
 01 BYTE-PAIR PIC S9(4) COMP.
 01 CONSECUTIVE-BYTES REDEFINES BYTE-PAIR.
 05 LEFT-BYTE PIC X.
 05 RIGHT-BYTE PIC X.
 01 BYTE-AS-NUMBER PIC S9(4) COMP.
 01 BYTE-TO-NUMERIC REDEFINES BYTE-AS-NUMBER.
 05 NUMERIC-LEFT-BYTE PIC X.
 05 NUMERIC-RIGHT-BYTE PIC X.
 01 CREATOR-ACCESSOR-ID PIC S9(4) COMP.
 01 PROCESS-ACCESSOR-ID PIC S9(4) COMP.
 01 CREATOR-EDITED.
 05 FILLER PIC X(6) VALUE "Group ".
 05 CREATOR-GROUP PIC ZZ9.
 05 FILLER PIC X(9) VALUE ", Member ".
 05 CREATOR-MEMBER PIC ZZ9.
 01 PROCESS-EDITED.
 05 FILLER PIC X(6) VALUE "Group ".
 05 PROCESS-GROUP PIC ZZ9.
 05 FILLER PIC X(9) VALUE ", Member ".
 05 PROCESS-MEMBER PIC ZZ9.
 01 PRIORITY PIC S9(3) COMP.
 01 PROGRAM-FILE-NAME PIC X(36).
 01 PROGRAM-FILE-NAME-LEN NATIVE-2.
 01 HOME-TERMINAL PIC X(24).
 01 HOME-TERMINAL-LEN NATIVE-2.
 01 ERROR-RETURN PIC S9(2) VALUE ZERO.
 01 PROCESS-NAME PIC X(8).
 01 PROCESS-NAME-LEN NATIVE-2.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-28

Process Initiation, Communication, and
Management

Determining the Status
 PROCEDURE DIVISION.
 WHO.
 MOVE ZERO TO BYTE-AS-NUMBER.
 ENTER TAL "PROCESSHANDLE_GETMINE_"
 USING PROCESS-HANDLE
 GIVING ERROR-RETURN.
 ENTER TAL "PROCESS_GETINFO_"
* processhandle
 USING PROCESS-HANDLE
* proc-fname
 OMITTED
* proc-fname-len
 OMITTED
* priority
 PRIORITY
* moms-processhandle
 OMITTED
* hometerm
 HOME-TERMINAL
* hometerm-len
 HOME-TERMINAL-LEN
* process-time
 OMITTED
* creator-access-id
 CREATOR-ACCESSOR-ID
* process-access-id
 PROCESS-ACCESSOR-ID
* gmoms-processhandle
 OMITTED
* jobid
 OMITTED
* program-file
 PROGRAM-FILE-NAME
* program-len
 PROGRAM-FILE-NAME-LEN
* ... rest of params not used in this example
 GIVING ERROR-RETURN.
 IF ERROR-RETURN = 0
 PERFORM EXPLAIN-MYSELF
 ELSE
 DISPLAY "PROCESS_GETINFO_ returned an error code of " ERROR-RETURN
 .
 STOP RUN.

 EXPLAIN-MYSELF.
 MOVE SPACES TO PROCESS-NAME.
 ENTER TAL "PROCESSHANDLE_DECOMPOSE_"
 USING PROCESS-HANDLE
 CPU
 PIN
* No node number
 OMITTED
* No node name
 OMITTED
* No nodename length
 OMITTED
 PROCESS-NAME
 PROCESS-NAME-LEN
 GIVING ERROR-RETURN.

Example 31-13. PROCESS_GETINFO_ Routine (page 2 of 3)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-29

Process Initiation, Communication, and
Management

Determining the Status
Search Mode
The PROCESS_GETINFOLIST_ routine lets you search for a process that meets one
or more of these criteria:

• Has a specified process ID
• Has a specified creator accessor ID
• Has a specified process accessor ID
• Has a specified home terminal
• Has a priority not greater than a specified priority
• Came from a specified loadfile name

For example, you can search for a process that is running at a priority of less than 40,
has $THIRTY as its home terminal, and was loaded from loadfile
$MEDIUM.PEPPER.STEAK.

Using search mode, you can implement processes for such tasks as determining
whether a certain named process is running, identifying processes that are running at
inappropriate priorities, or determining whether a process is using a certain terminal.

The only required parameter is the 2-byte binary item containing a processor and PIN
value. The routine uses this to determine where to start its search. The remaining
parameters can be present or specified as OMITTED. The values to be matched in the
search are specified by the same parameters the operating environment is to use to
return the values appropriate to the process it finds.

In Example 31-14, an HP COBOL program finds and reports all processes on its
system that have the same process accessor ID as the program.

 DISPLAY "I am process (" CPU "," PIN "), named " PROCESS-NAME.
 PERFORM CAPTURE-ACCESSOR-IDS.
 DISPLAY "My creator accessor ID is " CREATOR-EDITED.
 DISPLAY "My process accessor ID is " PROCESS-EDITED.
 DISPLAY "My priority is " PRIORITY.
 DISPLAY "My loadfile name is " PROGRAM-FILE-NAME.
 DISPLAY "My home terminal is " HOME-TERMINAL.
 STOP RUN.

CAPTURE-ACCESSOR-IDS.

 MOVE CREATOR-ACCESSOR-ID TO BYTE-PAIR.
 MOVE LEFT-BYTE OF CONSECUTIVE-BYTES TO NUMERIC-RIGHT-BYTE.
 MOVE BYTE-AS-NUMBER TO CREATOR-GROUP.
 MOVE RIGHT-BYTE OF CONSECUTIVE-BYTES TO NUMERIC-RIGHT-BYTE.
 MOVE BYTE-AS-NUMBER TO CREATOR-MEMBER.

 MOVE PROCESS-ACCESSOR-ID TO BYTE-PAIR.
 MOVE LEFT-BYTE OF CONSECUTIVE-BYTES TO NUMERIC-RIGHT-BYTE.
 MOVE BYTE-AS-NUMBER TO PROCESS-GROUP.
 MOVE RIGHT-BYTE OF CONSECUTIVE-BYTES TO NUMERIC-RIGHT-BYTE.
 MOVE BYTE-AS-NUMBER TO PROCESS-MEMBER.

Example 31-13. PROCESS_GETINFO_ Routine (page 3 of 3)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-30

Process Initiation, Communication, and
Management

Determining the Status
Example 31-14. Reporting Processes With Program’s Accessor ID (page 1 of 3)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. WHAT-AM-I-DOING.
 AUTHOR. BRINDLEY COBOL.
 INSTALLATION. TRANSACTIONS ANONYMOUS.
 DATE-WRITTEN. 29 FEBRUARY 1988.
 DATE-COMPILED.

* This program hunts out and reports all processes owned by *
* the current user. *

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 PROCESS-HANDLE PIC X(20).
 01 CPU-PIN.
 05 CPU PIC S9(2) COMPUTATIONAL.
 05 PIN NATIVE-2.
 01 ERROR-NUMBER PIC S9(5) COMPUTATIONAL.
 01 NULL-PH PIC X(20) VALUE ALL HIGH-VALUES.
 01 NUMERIC-CPU PIC S9(2) COMPUTATIONAL.
 01 NUMERIC-PIN NATIVE-2.
 01 BYTE-PAIR PIC S9(4) COMP.
 01 CONSECUTIVE-BYTES REDEFINES BYTE-PAIR.
 05 LEFT-BYTE PIC X.
 05 RIGHT-BYTE PIC X.
 01 SEPARATED-BYTES.
 05 LEFT-BYTE.
 10 LEFT-HIGH-BYTE PIC X.
 10 LEFT-LOW-BYTE PIC X.
 05 NUMERIC-LEFT-BYTE PIC S9(2) COMP REDEFINES LEFT-BYTE.
 05 RIGHT-BYTE.
 10 RIGHT-HIGH-BYTE PIC X.
 10 RIGHT-LOW-BYTE PIC X.
 05 NUMERIC-RIGHT-BYTE PIC S9(2) COMP REDEFINES RIGHT-BYTE.
 01 PROCESS-ACCESSOR-ID PIC S9(4) COMP.
 01 PROCESS-EDITED.
 05 PROCESS-GROUP PIC ZZ9.
 05 FILLER PIC X(1) VALUE ",".
 05 PROCESS-MEMBER PIC 999.
 01 CREATOR-ACCESSOR-ID PIC S9(4) COMP.
 01 PRIORITY PIC S9(3) COMP.
 01 PROGRAM-FILE-NAME PIC X(34).
 01 HOME-TERMINAL PIC X(34).
 01 ERROR-RETURN PIC S9(2) VALUE ZERO.
 01 MASQUE PIC S9(4) COMP VALUE 8192.
* Bits: 0010 0000 0000 0000
* to request match on process accessor id.
 01 CURRENT-CPU PIC S9(4) COMP VALUE 0.
 01 BINARY-WORKTABLE PIC S9(4) COMP.
 01 INTERNAL-NAME PIC X(24).
 01 EXTERNAL-NAME PIC X(34).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-31

Process Initiation, Communication, and
Management

Determining the Status
 PROCEDURE DIVISION.
 WHATS-HAPPENING.
* Start with cpu-PIN of 0,0
 MOVE LOW-VALUES TO CPU-PIN.
* Get owner's process accessor id
 ENTER TAL "PROCESS_GETINFO_"
 USING PROCESS-HANDLE
 OMITTED
 OMITTED
 PRIORITY
 OMITTED
 HOME-TERMINAL
 OMITTED
 OMITTED
 CREATOR-ACCESSOR-ID
 PROCESS-ACCESSOR-ID
 OMITTED
 OMITTED
 PROGRAM-FILE-NAME
 OMITTED
 OMITTED
 GIVING ERROR-RETURN.
 PERFORM EDIT-ACCESSOR-ID.
 DISPLAY "CPU,PIN GRP,USR PRI loadfile "
 "HOMETERM".

* Hunt through all CPUs in system
 PERFORM INVESTIGATE-A-CPU
 UNTIL CURRENT-CPU > 16.
 STOP RUN.
 INVESTIGATE-A-CPU.
 ENTER TAL "PROCESS_GETINFO_"
 USING PROCESS-HANDLE
 OMITTED
 OMITTED
 PRIORITY
 OMITTED
 HOME-TERMINAL
 OMITTED
 OMITTED
 CREATOR-ACCESSOR-ID
 PROCESS-ACCESSOR-ID
 OMITTED
 OMITTED
 PROGRAM-FILE-NAME
 OMITTED
 OMITTED
 GIVING ERROR-RETURN.
 IF ERROR-RETURN < 2
* Found a match
 PERFORM REPORT-A-MATCH
 ADD 1 TO CPU-PIN
 ELSE
 IF ERROR-RETURN = 2
* No more on current CPU
 PERFORM INCREMENT-CPU-OR-QUIT
 ELSE
 IF ERROR-RETURN < 99
* CPU not configured or incommunicado
 PERFORM INCREMENT-CPU-OR-QUIT
 ELSE
 DISPLAY "INTERNAL ERROR IN PARAMETERS"
 STOP RUN.

Example 31-14. Reporting Processes With Program’s Accessor ID (page 2 of 3)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-32

Process Initiation, Communication, and
Management

Identifying the Creator
Identifying the Creator
A process can use the PROCESS_GETINFO_ routine to determine the identity of the
process that created it, which enables the process to be selective. It can terminate if it
was created by an inappropriate agent. It can open different files depending on the
identity of its creator. It can send messages to its creator explicitly. It can even suspend
or stop its creator if its process accessor ID matches its creator’s creator accessor ID.

When you issue a RUN command, such as RUN X, your TACL process initiates the
specified process. The process produced from loadfile X has the TACL process as its
creator.

In addition, suppose your process uses CREATEPROCESS or
CLU_PROCESS_CREATE_ to initiate a new process. The child process can discover
the identity of its parent process, if the child is not running as a process pair (in that
case, the parent of the primary process is the backup process).

Example 31-15 uses the PROCESS_GETINFO_ routine to report the identity of its
creator to its home terminal. To handle the possibility of an unnamed process, the
example uses the same mechanism to decipher its creator’s process name that is used
in WHO-SENT-THAT in Identifying the Message Source. After identifying its creator
process, the example determines whether it can stop its creator; if it can, it does.

REPORT-A-MATCH.
 PERFORM EDIT-CPU-PIN.
 DISPLAY "(" NUMERIC-CPU "," NUMERIC-PIN ") "
 PROCESS-EDITED " "
 PRIORITY " ".
 DISPLAY PROGRAM-FILE-NAME " "
 HOME-TERMINAL " ".
 EDIT-CPU-PIN.
 MOVE CPU-PIN TO BYTE-PAIR.
 PERFORM SEPARATE-BYTE-PAIR.
 MOVE NUMERIC-LEFT-BYTE TO NUMERIC-CPU.
 MOVE NUMERIC-RIGHT-BYTE TO NUMERIC-PIN.
 EDIT-ACCESSOR-ID.
 MOVE PROCESS-ACCESSOR-ID TO BYTE-PAIR.
 PERFORM SEPARATE-BYTE-PAIR.
 MOVE NUMERIC-LEFT-BYTE TO PROCESS-GROUP.
 MOVE NUMERIC-RIGHT-BYTE TO PROCESS-MEMBER.

 SEPARATE-BYTE-PAIR.
 MOVE LOW-VALUES TO SEPARATED-BYTES.
 MOVE LEFT-BYTE OF CONSECUTIVE-BYTES TO LEFT-LOW-BYTE OF SEPARATED-
BYTES.
 MOVE RIGHT-BYTE OF CONSECUTIVE-BYTES TO RIGHT-LOW-BYTE OF SEPARATED-
BYTES.
 INCREMENT-CPU-OR-QUIT.
 IF CURRENT-CPU < 15
 ADD 1 TO CURRENT-CPU
 MOVE CURRENT-CPU TO BINARY-WORKTABLE
 MULTIPLY 256 BY BINARY-WORKTABLE
 MOVE BINARY-WORKTABLE TO CPU-PIN
 ELSE
 DISPLAY "------------------------------"
 STOP RUN.

Example 31-14. Reporting Processes With Program’s Accessor ID (page 3 of 3)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-33

Process Initiation, Communication, and
Management

Identifying the Creator
Example 31-15. Identifying a Process’s Creator (page 1 of 2)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. WHOA-MOM.
 AUTHOR. KRIS COBOL.
 INSTALLATION. TRANSACTIONS ANONYMOUS.
 DATE-WRITTEN. 29 FEBRUARY 1988.
 DATE-COMPILED.

* This program obtains and reports the process ID of its creator, *
* then attempts to stop its creator. *

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 MOMS-PROCESS-ID.
 05 MOMS-PROCESS-NAME PIC X(6).
 05 MOMS-CPU-PIN PIC S9(4) COMP.
 05 CPU-PIN-REDEF REDEFINES MOMS-CPU-PIN.
 10 CPU-PART PIC X.
 10 PIN-PART PIC X.
 01 PNAME.
 05 PNAME-BYTES-1-2 PIC XX.
 05 PNAME-FIRST-WORD-NUM REDEFINES PNAME-BYTES-1-2
 PIC S9(3) COMP.
 05 FILLER PIC X(4).
 01 CPU-PIN-REWORK.
 05 ALPHA-CPU.
 10 CPU-HIGH-BYTE PIC X.
 10 CPU-LOW-BYTE PIC X.
 05 NUMERIC-CPU REDEFINES ALPHA-CPU
 PIC S9(2) COMP.
 05 ALPHA-PIN.
 10 PIN-HIGH-BYTE PIC X.
 10 PIN-LOW-BYTE PIC X.
 05 NUMERIC-PIN REDEFINES ALPHA-PIN
 PIC S9(3) COMP.
 01 MY-CPU-PIN PIC S9(4) COMP.
 01 MY-PAID PIC S9(4) COMP.
 01 MOMS-CAID PIC S9(4) COMP.
 01 INTERNAL-NAME PIC X(24).
 01 EXTERNAL-NAME PIC X(34).
 01 ERROR-RETURN PIC S9(2) VALUE ZERO.
 01 DISPLAY-BUFFER PIC X(79).

 PROCEDURE DIVISION.
 WHO.
* -- PROCESS_GETINFO_ delivers 4-word process-id to MOMS-PROCESS-ID
 ENTER TAL "PROCESS_GETINFO_"
 USING MOMS-PROCESS-ID.
* -- Report MOM's process name to my home terminal
 PERFORM DISPLAY-PROCESS-NAME.

* -- Take only the CPU-PIN from MOM, and ask for MOM's
* -- creator accessor id.
 ENTER TAL "PROCESS_GETINFO_"
 USING MOMS-CPU-PIN
 OMITTED
 MOMS-CAID
 GIVING ERROR-RETURN.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-34

Process Initiation, Communication, and
Management

Monitoring Descendants’ Completion
Monitoring Descendants’ Completion
The operating environment always sends messages about descendant processes to
parent processes. If your process starts another process, it might need to determine
whether the process ran to normal completion or terminated abnormally.

 IF ERROR-RETURN NOT = 0
 DISPLAY "Call to PROCESS_GETINFO_ returned an error code of "
 ERROR-RETURN
 STOP RUN.

* -- Get my process accessor id
 ENTER TAL "PROCESS_GETINFO_"
 USING PROCESS-HANDLE
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 MOMS-CAID
 MY-PAID
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 GIVING ERROR-RETURN.
 IF ERROR-RETURN NOT = 0
 DISPLAY "Call to PROCESS_GETINFO_ returned an error code of "
 ERROR-RETURN
 STOP RUN.
* -- If my process accessor id matches MOM's creator accessor id, I can
* -- stop MOM before continuing
 IF MY-PAID = MOMS-CAID
 ENTER TAL "PROCESS_STOP_" USING MOMS-PROCESS-ID.
* ...
 STOP RUN.
 DISPLAY-PROCESS-NAME.
 MOVE MOMS-PROCESS-NAME TO PNAME.
 IF PNAME-FIRST-WORD-NUM < 0
 MOVE MOMS-PROCESS-ID TO INTERNAL-NAME
 DISPLAY "My creator is ("
 NUMERIC-CPU "," NUMERIC-PIN ")-----"
 MOMS-PROCESS-NAME
...
 CAPTURE-CPU-PIN.
 MOVE CPU-PART TO CPU-LOW-BYTE.
 MOVE LOW-VALUES TO CPU-HIGH-BYTE.
 MOVE PIN-PART TO PIN-LOW-BYTE.
 MOVE LOW-VALUES TO PIN-HIGH-BYTE.

Example 31-15. Identifying a Process’s Creator (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-35

Process Initiation, Communication, and
Management

Monitoring Descendants’ Completion
The HP COBOL run-time routines report the receipt of system messages only when
the RECEIVE-CONTROL paragraph specifies it. If you want a process that creates
other processes to be notified about termination or failure of these descendant
processes:

• Include a REPORT SYSTEM MESSAGES entry in the RECEIVE-CONTROL
paragraph of the parent process.

• Have the parent process monitor $RECEIVE and watch for ABEND and STOP
messages.

A process other than the actual creator can intercept the STOP and ABEND messages
by using the PROCESS_SETINFO_ routine to become the creator of record. See
Changing the Creator ID.

Example 31-16 creates a FUP process and then watches for its termination.

Example 31-16. Monitoring Completion of Descendant Processes (page 1 of 3)

?ENV COMMON
?SAVE ALL
?SEARCH $SYSTEM.SYSTEM.COBOLLIB
 IDENTIFICATION DIVISION.
 PROGRAM-ID. FUPPERWARE.
 AUTHOR. TERRY COBOL.
 INSTALLATION. TRANSACTIONS ANONYMOUS.
 DATE-WRITTEN. 29 FEBRUARY 1988.
 DATE-COMPILED.

* This program creates a FUP process and watches for its termination. *

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.
 SPECIAL-NAMES.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT MESSAGE-IN-FILE
 ASSIGN TO "$RECEIVE"
 FILE STATUS IS RECEIVE-FILE-STATUS.
 I-O-CONTROL.
 RECEIVE-CONTROL.
 TABLE OCCURS 1 TIMES
 SYNCDEPTH LIMIT IS 1
 MESSAGE SOURCE IS MESSAGE-SOURCE-REC
 REPORT SYSTEM MESSAGES.

DATA DIVISION.
 FILE SECTION.
 FD MESSAGE-IN-FILE
 LABEL RECORDS ARE OMITTED.
 01 MESSAGE-IN.
 05 SYS-MSG-CODE PIC S9(4) COMP.
 88 SYS-MSG-STOP VALUE -101.
 05 SYS-MSG-PROCNAME PIC X(6).
 05 FILLER PIC X(66).
 05 SYS-MSG-STOP-FLAG NATIVE-2.
 05 FILLER PIC X(948).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-36

Process Initiation, Communication, and
Management

Monitoring Descendants’ Completion
 WORKING-STORAGE SECTION.
 01 MESSAGE-SOURCE-REC.
 05 SYSTEM-FLAG PIC S9 COMP.
 05 ENTRY-NUMBER PIC 999 COMP.
 05 FILLER PIC X(4).
 05 PROCESS-HANDLE
 10 CPU-PIN.
 15 CPU PIC S9(2) COMP.
 15 PIN NATIVE-2.
 05 FILLER PIC X(16).
 01 CPU-PIN-REDEF.
 05 ALPHA-CPU.
 10 CPU-HIGH-BYTE PIC X.
 10 CPU-LOW-BYTE PIC X.
 05 NUMERIC-CPU REDEFINES ALPHA-CPU
 PIC S9999 COMP.
 05 ALPHA-PIN.
 10 PIN-HIGH-BYTE PIC X.
 10 PIN-LOW-BYTE PIC X.
 05 NUMERIC-PIN REDEFINES ALPHA-PIN
 PIC S9999 COMP.
 01 FILE-DATA.
 05 RECEIVE-FILE-STATUS.
 10 STAT-1 PIC 9.
 88 CLOSE-FROM-REQUESTOR VALUE 1 THRU 3.
 10 STAT-2 PIC 9.
 01 SAVE-MESSAGE-STUFF.
 05 FUP PIC X(21) VALUE "$SYSTEM.SYSTEM.FUP".
 05 SU-ERROR PIC S9(4) VALUE ZERO COMP.
 05 NEWPROCESS-ERR-LEFT PIC 9(4).
 05 NEWPROCESS-ERR-RIGHT PIC 9(4).
 05 FUP-FAILED PIC X(19) VALUE "Failed to start FUP".
 05 STRING-PORTION PIC X(6) VALUE "STRING".
 05 INFO-COMMAND PIC X(6) VALUE "INFO *".
 05 STARTUP-RESULT PIC S9(4) VALUE ZERO COMP.
 05 NULL-CPLIST PIC S9(9) VALUE ZERO COMP.

 PROCEDURE DIVISION.
 DECLARATIVES.
 HANDLE-INFILE-ERRORS SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON MESSAGE-IN-FILE.
 INFILE-ERROR.
 IF STAT-1 = 1
 DISPLAY "EOF on $RECEIVE"
 ELSE
 DISPLAY "RECEIVE FILE ERROR STATUS = "
 RECEIVE-FILE-STATUS
 ...
 END DECLARATIVES.

 AA SECTION.
 AA-1.
 OPEN INPUT MESSAGE-IN-FILE.
 MOVE ZERO TO SU-ERROR
 SYS-MSG-CODE.

* Inject INFO command into startup message to pass to FUP
 ENTER "PUTSTARTUPTEXT"
 USING STRING-PORTION,
 INFO-COMMAND,
 NULL-CPLIST
 GIVING STARTUP-RESULT.

Example 31-16. Monitoring Completion of Descendant Processes (page 2 of 3)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-37

Process Initiation, Communication, and
Management

Monitoring Descendants’ Completion
* Start FUP
 ENTER "CREATEPROCESS"
 USING FUP
 GIVING SU-ERROR.

* Await termination of FUP, or report it never started
 IF SU-ERROR = 0
 PERFORM WATCH
 UNTIL SYS-MSG-STOP
 IF FUNCTION MOD (SYS-MSG-STOP-FLAG, 2) = 0
 DISPLAY "FUP terminated normally"
 ELSE
 DISPLAY "FUP aborted"
 END-IF
 ELSE
 PERFORM DISPLAY-STARTUP-FAILURE.
 STOP RUN.

 DISPLAY-STARTUP-FAILURE.
 EVALUATE SU-ERROR
 WHEN 1
 DISPLAY FUP-FAILED
 " -- REQUIRED PARAMETER MISSING OR ILLEGAL"
 WHEN 2
 DISPLAY FUP-FAILED
 " -- ILLEGAL loadfile NAME ("
 FUP ")"
 WHEN 3
 DISPLAY FUP-FAILED
 " -- INFILE, OUTFILE, OR DEFAULT VOLUME"
 DISPLAY " NAME CANNOT BE CONVERTED TO NETWORK FORM"
 WHEN OTHER
 IF SU-ERROR < 256
 DISPLAY FUP-FAILED
 " -- File management error #"
 SU-ERROR
 ELSE
* -- Received raw error from NEWPROCESS system procedure.
* -- Decompose it into left byte and right byte values.
 DIVIDE SU-ERROR
 BY 256
 GIVING NEWPROCESS-ERR-LEFT
 REMAINDER NEWPROCESS-ERR-RIGHT.

 DISPLAY FUP-FAILED
 " -- NEWPROCESS error # = ("
 NEWPROCESS-ERR-LEFT
 ","
 NEWPROCESS-ERR-RIGHT
 ")"
 END-IF
 END-EVALUATE
...

 WATCH.
 READ MESSAGE-IN-FILE.

Example 31-16. Monitoring Completion of Descendant Processes (page 3 of 3)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-38

Process Initiation, Communication, and
Management

Changing the Creator ID
Changing the Creator ID
One reason the operating environment keeps track of the creator of a process is to be
able to notify a creator when a descendant process terminates. If process $PARENT
starts process $CHILD, the operating environment notifies $PARENT through the
$RECEIVE mechanism when $CHILD terminates.

It is possible for a third process, $THIRD, to instruct the operating environment to alter
the system tables to make $THIRD the recorded parent of $CHILD. $THIRD does this
by calling the PROCESS_SETINFO_ procedure. This operation is legal only if $THIRD
has the same process accessor ID as $CHILD; the $THIRD process has no explicit
control other than that. The fault-tolerant facility uses PROCESS_SETINFO_ to enable
each member of a process pair to be notified if the other terminates.

After $THIRD has called PROCESS_SETINFO_, any notification of $CHILD’s
termination is sent to $THIRD, rather than to $PARENT. Also, if $CHILD calls
PROCESS_GETINFO_, the operating environment reports back to $CHILD that
$THIRD is $CHILD’s creator. For more information about PROCESS_GETINFO_ or
PROCESS_SETINFO_, see the Guardian Procedure Calls Reference Manual.

Suspending a Process
A process might need to automatically suspend its execution. It might be a sampling
routine that wakes up, takes and records some measurements, and suspends itself for
a time. It might be a monitoring routine that wakes up every 10 minutes and checks
whether a specified terminal or a certain program is in use.

By calling the DELAY routine, a process can suspend its execution for a number of
hundredths of a second.

Example 31-17 uses suspension to watch for a remote system to become available so
it can send a message to a routine on the remote system.

Example 31-17. Suspending a Process (page 1 of 2)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DOZER.
 AUTHOR. BUFFY COBOL.
 INSTALLATION. TRANSACTIONS ANONYMOUS.
 DATE-WRITTEN. 29 FEBRUARY 1988.
 DATE-COMPILED.

**
* This program sends one message to $BOSS on system \HQ. If that *
* process cannot be opened, the program tries again every five minutes. *
**

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP TXP.
 OBJECT-COMPUTER. HP TXP.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-39

Process Initiation, Communication, and
Management

Suspending a Process
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT REPORT-OUT
 ASSIGN TO "\HQ.$BOSS"
 ORGANIZATION IS SEQUENTIAL
 ACCESS MODE IS SEQUENTIAL
 FILE STATUS IS REPORT-STATUS.

 DATA DIVISION.
 FILE SECTION.
 FD REPORT-OUT
 LABEL RECORDS ARE OMITTED.
 01 REPORT-LINE PIC X(80).
 WORKING-STORAGE SECTION.
 01 REPORT-STATUS PIC XX VALUE " ".
 01 REPEAT-INTERVAL PIC S9(10) VALUE 30000.
* = 5 min * 60 sec * 100

 PROCEDURE DIVISION.
 DECLARATIVES.
 HANDLE-REPORT-ERRORS SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON REPORT-OUT.
 REPORT-ERROR.
* An empty declarative can be used to intercept error conditions
* and set the file status data item.

* Presence of a declarative does not prevent the run-time routine
* from delivering an error 019 to the home terminal of this
* process.
 END DECLARATIVES.
 PULLMAN SECTION.
 ZZZZ.
 PERFORM OPEN-IT
 UNTIL REPORT-STATUS = "00".
 MOVE "Having a wonderful time! Wish you were here."
 TO REPORT-LINE.
 WRITE REPORT-LINE.
 CLOSE REPORT-OUT.
 STOP RUN.

 OPEN-IT.
 OPEN OUTPUT REPORT-OUT.
 IF REPORT-STATUS NOT = "00"
* That is, error on file open.
 ENTER TAL "DELAY"
 USING REPEAT-INTERVAL.

Example 31-17. Suspending a Process (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
31-40

32 Fault-Tolerant Processes
A process is running in a fault-tolerant manner when no single point of failure can stop
the process or corrupt its data or the files it is manipulating. Processes are not
automatically fault tolerant—they must be designed and implemented to be fault
tolerant.

How might a single point of failure affect a process? Suppose a process is operating
an automated teller machine (ATM) for a financial institution. If you, as a customer,
come to the ATM and request $20 from your account:

• You want the ATM to service your request, not terminate before completing the
transaction.

• You want the ATM to record at most one debit of $20 from your account; the
institution wants the ATM to record at least one debit of $20 from your account.

• You want the ATM to dispense at least $20 to you; the institution wants the ATM to
dispense at most $20 to you.

If the process is not fully fault tolerant, a number of possible failures can interfere with
the preceding desires:

• A process might be running on a processor that fails (blows a fuse, is accidentally
unplugged, is stopped by an operator, or whatever), so the transaction does not
complete.

• A process might get part way through your withdrawal transaction, deducting the
$20 from your balance but not yet reaching the point of dispensing the cash to you.
If the process is automatically retried, it might deduct the $20 from your account
again and dispense you the cash; but the balance in your account would then be
down by $40.

• A process might fail during the transaction after disbursing the $20 to you, but
before recording the fact, and resume at the point of asking what you want. If you
again asked for $20, the process could disburse another $20 (total = $40) and
record only a $20 withdrawal.

• A process might disburse the $20 cash to you and fail before making a permanent
record of the transaction.

Topics:

• NonStop Operating System

• Fault-Tolerant Facility

• TMF
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-1

Fault-Tolerant Processes NonStop Operating System
NonStop Operating System
The NonStop operating system architecture is the underlying mechanism that enables
you to write fault-tolerant processes. The full redundancy of processors, devices,
controllers, and paths among them is the basis for the NonStop operating system’s
fault tolerance. But given that base, there are still two ways a process (particularly a
Pathway server process operating under TS/MP) can be designed to be fault tolerant:
by using the fault-tolerant facility or by using TMF.

Topics:

• Introduction to the Fault-Tolerant Facility

• Introduction to TMF

• Choosing the Fault-Tolerant Facility or TMF

When you have decided which of the two mechanisms to use, you can read more
about it in Fault-Tolerant Facility or TMF.

Introduction to the Fault-Tolerant Facility

To use the fault-tolerant facility, you must include the NONSTOP compiler directive in
your compilation and embed one STARTBACKUP statement and one or more
CHECKPOINT statements at strategic points in your program.

At the beginning of its execution, after opening its files, your process executes a
STARTBACKUP statement to instruct the operating environment to produce a backup
process in a different processor and to open the same files in the backup process. The
backup process is loaded from the same loadfile as the original (primary) process, but
the operating environment does not actually start it running.

At certain points in your program, you code CHECKPOINT statements, which instruct
the operating environment to copy a specific list of one or more of your data elements
into the backup process’s data space. If the primary process fails, the operating
environment activates the backup process. The backup process starts executing at the
code location following the last CHECKPOINT statement executed. At this point, the
backup process’s data space contains a copy of the part of the primary process’s data
space that was checkpointed at the time of the last CHECKPOINT statement.

Determining the proper sites and data-element lists for CHECKPOINT statements can
be a painstaking operation. One recommendation is that you checkpoint everything
involved in writing a record just before executing the WRITE statement.

Note. This topic does not apply to the OSS environment. It applies to the NMCOBOL compiler
only for RVU D46.00 and G06.00 or later, software product revision T8107AAT (run-time library
T8108AAR).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-2

Fault-Tolerant Processes Introduction to TMF
Introduction to TMF
The HP NonStop™ Transaction Management Facility (TMF) relies on the principle of
archiving and backing out transactions. Every transaction has a beginning and an end.
If the entire transaction cannot be completed (due to some single point of failure), any
changes made to the database must be backed out. This means that other processes
must be kept from using any of the records that a transaction has modified until the
transaction has been completed.

If you are writing a Pathway server in HP COBOL, and the Pathway application will use
TMF, your design is much simpler than it would be if you used the fault-tolerant facility.
All an HP COBOL server needs to do to be fault tolerant under these conditions is to
lock every record it is going to change before changing the record, and lock any record
it reads that affects the course of the transaction. All other coding for fault tolerance is
at the requester level—the SCREEN COBOL program includes BEGIN
TRANSACTION, END TRANSACTION, and ABORT TRANSACTION statements.

If you want an HP COBOL program that is not a Pathway server to run under TMF, you
must include ENTER statements to call the routines BEGINTRANSACTION,
ENDTRANSACTION, and so on.

Choosing the Fault-Tolerant Facility or TMF
If your program is updating unaudited files and you want it to be fault tolerant, you must
code it to use the fault-tolerant facility; otherwise, whether to use the fault-tolerant
facility or TMF is primarily a question of efficiency versus maintenance.

TMF is implemented with process pairs, so when you use TMF you are using the fault-
tolerant facility indirectly. Using the fault-tolerant facility directly makes the program run
more efficiently; however, maintenance is easier with TMF, because the programming
and debugging of the process pairs has already been done for you.

It is easier to configure the system for TMF and to design, implement, and maintain
servers that use TMF than it is to design, implement, and maintain process pairs. The
auditing operation takes processing time. The audit trails take disk space and require
tape operations. But just as Pathway/TS frees the application programmers from
having to produce and support multithreaded requesters, TMF frees them from having
to produce and maintain process pairs.

Fault-Tolerant Facility
The fault-tolerant facility is software that HP provides but that you must explicitly call to
cause a loadfile to be executed as a process pair.

You must include a NONSTOP directive in your compilation before the PROCEDURE
DIVISION header. You must include one STARTBACKUP statement to create the
backup process, and a number of CHECKPOINT statements to transmit restart
information to the backup process. Finally, you must run the program as a named
process (to learn how, see Process Names).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-3

Fault-Tolerant Processes Process Pairs
After you have done these things, the fault-tolerant facility does the remainder of the
work to assure fault-tolerant operation.

Topics:

• Process Pairs

• Checkpointing

• Using the Fault-Tolerant Facility

• Designing Programs for the Fault-Tolerant Facility

• Debugging Programs That Use the Fault-Tolerant Facility

The information in these topics is general. For specific details on checkpointing, see
the Guardian Programmer’s Guide. For details on the STARTBACKUP and
CHECKPOINT statements, see STARTBACKUP and CHECKPOINT.

Process Pairs
A process is the basic executable unit known to the operating environment—the
execution (in a processor) of a program. Specifically, the term program indicates a
group of instruction codes and initialized data—an HP COBOL run unit; the term
process denotes the changing states of an executing program. The same loadfile can
be executing concurrently a number of times, but each execution is a separate
process.

An application process can be designed to recover from any type of hardware failure
except one—a failure of the processor in which it is executing. One way to provide fault
tolerance is to establish the process as a process pair. A process pair consists of two
executions of the same loadfile: the primary process executes in one processor; the
backup process executes in another. Control in the program indicates whether the
process is executing in the primary mode to perform its task or in the backup mode to
monitor the primary process.

Figure 32-1. Process Pair

A A'
Checkpoint Messages

System MessagesOperating
 System

Primary
Process

(performs the work)

Backup
Process

(monitors the primary process)

VST716.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-4

Fault-Tolerant Processes Process Pairs
In this primary-plus-backup structure, the fault-tolerant facility (as directed by the
primary process) keeps the backup process informed of the executing state of the
primary process. At critical points in the processing, the primary process sends
checkpoint messages to the backup process to pass the current state of the data, the
file buffers, and the files to the backup process. When the backup process learns of the
failure of its primary process (by the receipt of a process-failure or processor-failure
system message through $RECEIVE), the backup process becomes the primary
process and continues with the application’s work (possibly starting a new backup
process for itself).

The fault-tolerant facility provides the means of writing application programs that can
recover from a processor module failure. When the primary process executes a
STARTBACKUP statement, a fault-tolerant facility routine in the primary process
directs the operating environment to start the backup process.

When the primary process executes a CHECKPOINT statement, a fault-tolerant facility
routine transmits pertinent data to the backup process. While the primary process is
operating, a fault-tolerant facility routine in the backup process automatically monitors
and accepts checkpoint information from the primary process. If the backup process is
notified of the failure of its primary process, the fault-tolerant facility causes the backup
process to begin executing at the statement following the latest CHECKPOINT
statement. (The notification to the backup process of the failure of the primary process
comes in the form of a processor-down, stop, or abend message delivered through
$RECEIVE and handled automatically by the HP COBOL fault-tolerant facility.)

Figure 32-2 illustrates the activity of a process pair. The backup process stays in
monitor state while the primary process is operating. If the primary fails, the backup
leaves the monitor state and begins executing at the point indicated by the last call to
CHECKPOINT by the primary.

Figure 32-2. Activity of a Process Pair

"backup"

monitor
primary

READ ...

READ ...

update ...

CHECKPOINT

WRITE ...

OPEN files

STARTBACKUP process

READ entry from terminal

READ record from disk

update record in memory

CHECKPOINT

WRITE updated record to disk

"primary"

VST717.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-5

Fault-Tolerant Processes Checkpointing
This sequence of actions occurs when a process pair runs:

1. The primary process opens any files required for its execution.

2. The primary process starts its backup process in another processor module by
executing a STARTBACKUP verb.

This action also opens the files for the backup process and checkpoints the state of
the primary process to the backup process. A process pair opens files in a manner
that permits both members of the pair to have a file open while retaining the ability
to exclude other processes from accessing a file. When a disk file has been
opened by a process pair in this manner, a record or file lock by the primary
process is also an equivalent lock by the backup process.

3. The backup process, at the beginning of its execution, automatically begins
monitoring the primary process. This is the extent to which the backup process
executes unless a failure of the primary process occurs.

4. The primary process begins executing its main processing loop. At critical points
through the execution loop, typically before each write to a disk file, the primary
process executes a CHECKPOINT statement to copy part of its environment and
pertinent file control information to the backup process (marking a restart point for
the backup process). Typically, a program contains several CHECKPOINT
statements, each of which checkpoints only a portion of the primary process’s
environment.

5. If the primary process fails, the backup process begins executing at the restart
point indicated by the latest execution of a CHECKPOINT statement. The backup
process is then considered to be the primary process.

6. If the reason the primary process failed was a processor failure (that is, the backup
process received a processor-down message), the fault-tolerant facility in the new
primary (former backup) process automatically starts a new backup process when
the failed processor has been repaired and brought back on line. This new backup
process is then ready to take over if the primary process fails.

Checkpointing
When the primary process executes a CHECKPOINT statement, one of its fault-
tolerant facility routines formats a message containing the information to be
checkpointed and sends it to the backup process in the form of an interprocess
message. A fault-tolerant facility routine in the backup process receives and acts upon
the message.

The two types of information you must usually checkpoint are data items and sync
blocks.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-6

Fault-Tolerant Processes Checkpointing
Topics:

• Data Items

• Sync Blocks

• General Rules

• Rules for Servers to Follow With Fault-Tolerant Requesters

Data Items
These are usually file record areas but can be any desired data items in the File
Section or the Working-Storage Section of the Data Division. You can only checkpoint
data items in the Extended-Storage Section if your program runs in the CRE or is a
native process. You must checkpoint any data items that are part of the program’s
state—specifically the disk record that is about to be written, the terminal or tape
record that was just read, and any data that is necessary to resume processing at the
site of the checkpoint statement.

The reason for checkpointing data items is to give the backup process all the
information it needs to reexecute an I-O request if the primary process fails. Usually,
you checkpoint a data item just before writing the data to disk. You can also use data-
item checkpointing to eliminate the need for the backup process to reexecute an I-O
request. An example of this is an entry received from a terminal. You checkpoint the
data item received from a terminal by a READ statement immediately after executing
the READ statement to minimize the possibility that the operator has to reenter data.

Sync Blocks
A sync block contains control information about the current state of a disk file (such as
the current value of the file pointers).

The purpose of checkpointing the sync block is twofold:

• To ensure that a write operation is not duplicated when a backup process takes
over from its primary process

• To pass the current file pointers’ values to the file system of the backup processor

When a process executes a checkpoint of a sync block, the operating environment
passes the information in the sync block to the file system of the backup processor.
The reason for preventing duplicate operations is illustrated in Figure 32-3. In
Figure 32-3, a primary process completes a sequential write operation (that is, append
to end of file) successfully, but fails before a subsequent checkpoint to its backup
process. On the takeover from the primary process, the backup process reexecutes
the operations just completed by the primary process. If the write operation was
performed as requested, it duplicates the record, but at the new end-of-file location.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-7

Fault-Tolerant Processes Checkpointing
To prevent such duplicate write operations by the backup process, you must specify a
nonzero SYNCDEPTH parameter in the OPEN statement. This action allows the file
system to record the completion status of each input-output operation. If the backup
process requests an operation already completed by the primary process, the file
system recognizes this condition. Then, instead of performing the operation, the file
system returns the recorded completion status of the operation to the backup process.
If, however, the requested operation has not been performed, it is performed and the
completion status is returned to the backup process. The course of action taken by the
file system is completely invisible to the backup process.

The file system can save the completion status of the latest 15 disk-file operations and
relate those completions with up to 15 operations requested by a backup process upon
takeover from a failed primary process. (For $RECEIVE or other processes handled as
files, the number of saved completion status values is 255.) Use the SYNCDEPTH
parameter to specify the maximum number of completion status values that the file
system is to save. The SYNCDEPTH value is typically the same as the maximum
number of operations that write to a file without an intervening checkpoint of the file’s
sync block. The default SYNCDEPTH value is 1. In a Pathway application, the
SYNCDEPTH value must be 1.

General Rules
You can checkpoint the entire data area of the program and checkpoint each file after
the execution of each statement in your program, but this places a tremendous burden
on the interprocess message system and degrades the performance of your process
and all processes executing on the same processors as your process pair.

Minimize the number of checkpoints in a processing loop and the amount of data
checkpointed for each CHECKPOINT statement. One approach is to checkpoint only
the items necessary to establish a restart point. Verify that you have captured all
necessary data items (you might want to group them in the Data Division). Also, if you
checkpoint the contents of a record area, verify that the remainder of the data storage
is still valid in case of a takeover by the backup process.

Figure 32-3. Duplication in Takeover

x

(c)Restart point Checkpoint data and sync block

Write log-rec

*** FAILURE OF PRIMARY PROCESS***

VST718.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-8

Fault-Tolerant Processes Using the Fault-Tolerant Facility
When your program performs a series of updates to one or more disk files, you can
combine checkpoints to reduce system overhead. Structure your program so that the
series of write operations necessary to update a file are performed in a group. For
each file to be checkpointed in this manner, the sync depth must equal the maximum
number of write operations that occur between checkpoint operations (CHECKPOINT,
OPEN, or CLOSE statements). Then, when a file is about to be updated by performing
that collection of write operations, the file’s sync block and its record areas must be
checkpointed. In any case, ensure the integrity of all data by checkpointing.

Rules for Servers to Follow With Fault-Tolerant Requesters
If a server is handling requests from a requester that is running as a process pair, there
is an important rule for the server to follow for checkpointing between a $RECEIVE
READ-WRITE pair for a nonretryable request. A nonretryable request is a task that
must not be automatically reexecuted if the requester’s backup process takes over. For
example, if a failure occurs after a request to deduct taxes from a paycheck is
executed, reexecution would cause double deduction. This operation must be done
only once for each calculation of the taxes; thus, it is a nonretryable request.

The rule for this case is: Have at least one of the CHECKPOINT statements include
the file-name (from name of the file description entry) of the output file assigned to
$RECEIVE—the file-name with which the write operation is associated.

Using the Fault-Tolerant Facility
To use the fault-tolerant facility, your source program must include a NONSTOP
directive and STARTBACKUP and CHECKPOINT statements and its process must
have a name.

Topics:

• NONSTOP Directive

• STARTBACKUP and CHECKPOINT Statements

• OPEN and CLOSE Statements

• PROGRAM-STATUS Data Item

NONSTOP Directive
To enable the fault-tolerant facility, you must specify the NONSTOP directive before the
Procedure Division of the first program unit in the source text.

STARTBACKUP and CHECKPOINT Statements
Normally, the STARTBACKUP statement is executed once at the beginning of run-unit
execution (after the opening of the files) to establish a process pair. A CHECKPOINT
statement is then executed at critical points during processing to pass (that is,
checkpoint) information to the backup process.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-9

Fault-Tolerant Processes Using the Fault-Tolerant Facility
OPEN and CLOSE Statements
If a process is executing as a process pair (that is, the primary process has executed a
STARTBACKUP statement), checkpointing occurs automatically when any OPEN or
CLOSE statement executes and when the backup process is established. The
execution of STARTBACKUP and CHECKPOINT statements sets the PROGRAM-
STATUS variable to indicate the outcome of the checkpointing operation. The
execution of OPEN and CLOSE statements (because they establish takeover points)
also sets the PROGRAM-STATUS variable.

Following an OPEN or CLOSE of a file by the primary process, the sync blocks of all
other files in the backup process become invalid. If the SYNCDEPTH exceeds 1, you
must checkpoint both the record and the sync block of each file other than the one that
was opened or closed before executing the next WRITE statement.

PROGRAM-STATUS Data Item
Each HP COBOL run unit contains a four-digit data item called PROGRAM-STATUS,
shown in Figure 32-4. When a process is running as a process pair, this item is set by
the HP COBOL fault-tolerant facility to indicate the outcome of the execution of a
STARTBACKUP, OPEN, CLOSE, or CHECKPOINT statement.

If one of options 0 through 2 of the STARTBACKUP statement is used (that is, if the
HP COBOL fault-tolerant facility monitors the backup process), then the possible
values of PROGRAM-STATUS for any execution of a STARTBACKUP, CHECKPOINT,
OPEN, or CLOSE statement and their meanings are as shown in Table 32-1.

Figure 32-4. PROGRAM-STATUS Data Item

01 PROGRAM-STATUS.
 05 PROGRAM-STATUS-1 PIC X.
 05 PROGRAM-STATUS-2 PIC X(3).

Table 32-1. Values for PROGRAM-STATUS
When STARTBACKUP Has Option 0, 1, or 2 (page 1 of 2)

PROGRAM-STATUS
Value Meaning

0000 No error

0100 Takeover by backup, primary stopped

0101 Takeover by backup, primary aborted

0102 Takeover by backup, primary processor module failed

0103 Takeover by backup, primary called CHECKSWITCH

1000 Backup processor down

2nnn Communication error; nnn = file system error number

3nnn CHECKOPEN failure; nnn = file system error number
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-10

Fault-Tolerant Processes Using the Fault-Tolerant Facility
If option 3 of the STARTBACKUP statement is specified (that is, if your program
monitors the backup process), then the possible values of PROGRAM-STATUS are as
shown in Table 32-2.

If the primary process fails and a proper takeover occurs, PROGRAM-STATUS is set to
a take-over status values (such as “01nn ”) when the backup process begins
executing. Successive checkpoints set PROGRAM-STATUS to other values (such as
“1000”).

4nnn In the non-CRE environment, 4nnn indicates a NEWPROCESS
failure. If nnn is less than or equal to 255, nnn is the file system
error associated with the disk file where the loadfile was to be found.
If nnn is one of these values, the cause of the failure is:

901 = Undefined externals
902 = No PCB available
904 = Unable to allocate map
905 = Unable to get virtual disk space
906 = Illegal file format
907 = Unlicensed privileged program
910 = Unable to communicate with system monitor process

Errors in the 900 range are not likely to occur and are generally
symptomatic of a system or fault-tolerant facility problem (typically, a
shortage of some resource).

In the CRE, 4nnn indicates a PROCESS_CREATE_ failure. For
more information, see the Guardian Procedure Calls Reference
Manual.

5000 Too many failure-restart cycles (takeovers by backup) or a logic
error in program

6000 Parameter or logic error

Table 32-2. Values for PROGRAM-STATUS When STARTBACKUP Has Option 3

Statement

First Digit of PROGRAM-STATUS

0 1 2 3 4 5 6

STARTBACKUP Yes Yes Yes Yes Yes No Yes

CHECKPOINT Yes Yes Yes No No No Yes

OPEN Yes Yes Yes Yes No No No

CLOSE Yes Yes Yes No No No No

Table 32-1. Values for PROGRAM-STATUS
When STARTBACKUP Has Option 0, 1, or 2 (page 2 of 2)

PROGRAM-STATUS
Value Meaning
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-11

Fault-Tolerant Processes Using the Fault-Tolerant Facility
The action your program should take in response to an exception status (a status other
than “0000”) depends upon your application and the location of the error in your
HP COBOL program. A takeover might need special processing. Most of the other
status values indicate a program coding problem or a system configuration problem.
Report the latter problem to the appropriate authority for your system.

How far and whether processing should continue following a nontakeover status is a
subject for careful analysis.

If a checkpoint failure occurs (that is, status “1000”, “2nnn ”, or “3nnn ”), the backup
process might remain in an invalid state; therefore, the HP COBOL fault-tolerant facility
stops the backup process if such a failure occurs. If the STARTBACKUP option 0, 1, or
2 was specified (signifying that the HP COBOL fault-tolerant facility is to monitor the
backup process), the facility tries to restart the backup process at the next execution of
the CHECKPOINT statement.

If the checkpoint failure persists for 10 restart cycles, the HP COBOL fault-tolerant
facility stops reestablishing a backup process and sets PROGRAM-STATUS to “5000.”

Example 32-1. Key Parts of Fault-Tolerant HP COBOL Program (page 1 of 2)

?NONSTOP
?SAVE PARAM

* Compiler directive specifies that the program is to be
* compiled for execution as a process pair.
 FILE SECTION.
 FD TEST-FILE
 LABEL RECORD IS OMITTED
 RECORD CONTAINS 100 CHARACTERS
 DATA RECORD IS TEST-REC.
 01 TEST-REC.
 05 REC-NUM PIC 9(4).
 05 ALTKEY-1 PIC X(5).
 05 ALTKEY-2 PIC X(5).
 ...

 WORKING-STORAGE SECTION.
 01 CKPT-DATA.
 * This defines pertinent control information that is
 * checkpointed to the backup process
 05 KEYNUM PIC 9 VALUE 0.
 05 CURR-REC PIC 9(4).
 05 CR REDEFINES CURR-REC.
 10 FILLER PIC XX.
 10 CR-1 PIC 9.
 10 CR-2 PIC 9.
 05 OLD-BASE PIC 9(4).
 05 NEW-BASE PIC 9(4) VALUE 0.

 77 BCPU PIC S9(4) COMP VALUE -1.

HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-12

Fault-Tolerant Processes Designing Programs for the Fault-Tolerant Facility
After the program is compiled and debugged, it must be run as a named process (see
Process Names).

Designing Programs for the Fault-Tolerant Facility
You must design a program to use the fault-tolerant facility. It is very difficult, if not
impossible, to retrofit the use of the fault-tolerant facility to an existing program.

A checkpoint is a location in the program at which processing resumes when a
takeover occurs. All data from the primary process that is part of the program state
must be checkpointed to the backup process if the takeover is to succeed.

You must checkpoint before any nonretryable operation, such as a write to disk. You
can (for operator convenience) checkpoint after a read from a terminal. You can (for
programming convenience) checkpoint after a read from tape.

 PROCEDURE DIVISION.
 CENTRAL SECTION.
 ...
 OPEN I-O TEST-FILE SHARED SYNCDEPTH 1.
 PERFORM GET-CPUNUM.

 STARTBACKUP BCPU, 1.

 IF PROGRAM-STATUS NOT = "0000"
 DISPLAY "STARTBACKUP UNSUCCESSFUL, STATUS = ",
 PROGRAM-STATUS.
 STOP RUN.

 PERFORM UPDATE-RECS
 UNTIL UPDATES-DONE.
 ...

GET-CPUNUM.
 ENTER "GETBACKUPCPU" IN COBOLLIB GIVING BCPU.
 IF BCPU < 0 OR BCPU > 15
 DISPLAY "BACKUP CPU INVALID, RUNNING WITHOUT BACKUP".
UPDATE-RECS.
 ...
 READ TEST-FILE WITH LOCK.
 ...
 CHECKPOINT TEST-FILE,
 TEST-REC,
 CKPT-DATA.
 IF PROGRAM-STATUS > "0000"
 AND PROGRAM-STATUS < "1000"
 DISPLAY "Backup took over".
 REWRITE TEST-REC WITH UNLOCK.
 ...

Example 32-1. Key Parts of Fault-Tolerant HP COBOL Program (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-13

Fault-Tolerant Processes Debugging Programs That Use the Fault-Tolerant
Facility
If your SYNCDEPTH exceeds one, and you open or close a file during checkpoint-
protected operation, you must checkpoint the sync blocks and record areas of all other
files before the next nonretryable operation.

If you need to checkpoint data that is in the Extended-Storage Section, you must
compile your program to run in the CRE.

Debugging Programs That Use the Fault-Tolerant Facility
Debugging a program that uses the fault-tolerant facility requires at least as careful an
analysis as designing the program. This list of suggestions is not exhaustive.

• Test the program thoroughly as a simple batch job. You might create files of
transactions that the job must successfully process before you try testing the fault-
tolerance mechanisms. You can have the program read the files instead of having
the program read from $RECEIVE.

• You can compile your program with STARTBACKUP and CHECKPOINT
statements in place, but disable them for batch testing by running the program with
the run-time parameter NONSTOP OFF. With NONSTOP OFF, the program does
not attempt to execute the STARTBACKUP and CHECKPOINT statements. To
establish the run-time parameter, use the TACL command PARAM (or the SMU
routine PUTPARAMTEXT or SMU_Param_PutText_ if you use a COBOL process
to start your batch test programs).

• When you are convinced that the program works without being fault tolerant, start
testing the fault tolerance. Execute the program as a process pair, and use a
symbolic debugger to set breakpoints at which you stop the primary process. You
can set different breakpoints in the primary and backup processes to determine
whether the backup process takes over properly.

• When all controlled testing is complete, obtain the use of a dedicated system and
try full integrated testing in which you run the application as a process pair and
stop one of the two processors on which the application is running.

TMF
TMF simplifies the task of maintaining data consistency for distributed databases that
are being updated by several independent processes.

TMF was developed to help solve two problems faced by designers of database
processing applications:

• What happens if a transaction starts to change a database and fails to complete all
of its changes?

• How can a database be recovered after a catastrophic, multicomponent system
failure?
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-14

Fault-Tolerant Processes Concepts
Before TMF was available, the answer to the first question was to write application
code to back out partial transactions and restore the affected parts of the database to
the condition they were in when the failed transaction began. Further, this application
code had to be fault tolerant to overcome possible single points of failure.

The answer to question two was to stop the system periodically and make tape or disk
backups. Then if a catastrophic failure occurred, you could restore the database from
the tape or disk and redo the transactions that had been done since the backup. This
required considerable design and coding effort, particularly if you had to do it for
several applications.

TMF has packaged the solution to these two questions of backout and recovery. TMF
automatically backs out incomplete transactions and provides a mechanism for
periodically taking online dumps and a roll-forward procedure to automate the
repetition of post-backup transactions.

Topics:

• Concepts

• Designing Programs for the TMF Subsystem

• The TMF Subsystem and Requester Screen Transactions

• The TMF Subsystem for Batch Jobs

• Debugging Programs That Use the TMF Subsystem

Concepts
The basic concepts of TMF are:

• Transactions in General

• Multiple-File Transactions

• Multiple Changes to a Single File

• Defining Transactions

• Audit Trails

• Online Dump and Roll-Forward Recovery

• Record Locking

Transactions in General
A transaction is a multistep operation that affects the consistency of a database by
transforming the database from one consistent state to a new consistent state. A
transaction is also a unit of recovery. During a transaction, the database can be
inconsistent. But either the entire transaction must happen, or none of it must happen.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-15

Fault-Tolerant Processes Concepts
Each transaction has a unique transaction identifier. The identifier includes information
about the starting time of the transaction.

If your transaction involves more than one file or if the single file it involves is available
to other transactions, you can introduce inconsistency into the database.

Multiple-File Transactions
Suppose your process is maintaining a corporate personnel system in which each
department has its own file of information. You want to move an employee’s record
from one file to another. It does not matter whether the process writes the record in the
new file before deleting it from the old file or the reverse. During the interval between
the two events, the database is inconsistent. The employee record is either absent
from the database or present in two places.

Multiple Changes to a Single File
Suppose that the corporate personnel system does not use multiple files, but a single
file. If you want to move an employee’s record from one department’s portion of the file
to another department’s portion of the file, the same problem arises as that with
multiple files. If the record is deleted from one place in the file and written to another
place in the file, there is an interval during which the database is inconsistent.

Defining Transactions
Because you, as the application programmer, are in the best position to define what
constitutes a transaction, TMF gives you the authority to specify the beginning and the
end of the transaction.

In a Pathway application, the SCREEN COBOL terminal program uses the BEGIN-
TRANSACTION and END-TRANSACTION statements for this purpose.

In TAL, FORTRAN, and HP COBOL programs outside of the Pathway environment,
you must call the operating system routines BEGINTRANSACTION and
ENDTRANSACTION explicitly.

If a terminal program determines that a transaction cannot or must not complete, it
uses the SCREEN COBOL ABORT-TRANSACTION statement to instruct TMF to back
it out and not retry it. If a process written in TAL, FORTRAN, or HP COBOL needs to
abort a transaction, it calls the ABORTTRANSACTION routine.

If a terminal program determines that a transaction should be aborted and retried as a
new transaction (because of a locking contention problem, for example), it can use the
SCREEN COBOL RESTART-TRANSACTION statement to initiate the operation. The
TAL, FORTRAN, or HP COBOL process must explicitly use the
ABORTTRANSACTION routine and handle its own restarting.

After TMF is informed of the boundaries of a transaction, it can assure that either the
entire transaction is performed or none of it is performed. TMF does this by using audit
trails.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-16

Fault-Tolerant Processes Concepts
Audit Trails
An audit trail is a set of disk files in which a record is kept of before-images and after-
images of all records changed by each transaction that occurs in a certain file. A file is
described as audited when it has an audit trail. In TMF, every disk file in which records
are to be changed can be audited. If a disk is involved in transactions whose failure
could leave the database in an inconsistent state, that disk file should be audited.

On NonStop systems, under DP2 (Disk Process 2), all disks permit TMF auditing. To
instruct TMF to audit a file, use the attribute AUDITED, which you set with the FUP
command SET or ALTER. The AUDITED attribute is an attribute of the disk file itself;
an HP COBOL program is unaware of and cannot affect this attribute.

Every disk operation that changes the contents of a database protected by TMF is
recorded in an audit trail. The before and after values of the information are both
recorded, and the database is changed. If the transaction does not complete, TMF
backs out the transaction—replaces the changed value with the previous value.

You can specify that some files in a transaction are audited and some are not audited;
however, this practice is risky. If a server updates an unaudited file having alternate
keys, a single-component failure can interrupt a transaction between the updating of
the prime key and alternate keys. In this case, the prime and alternate keys are
inconsistent. If you do not protect such a file with auditing, you must code the server as
a process pair to protect the consistency of the keys.

The TMF subsystem requires audit trails for both transaction backout and roll-forward
recovery. Eventually, the space required for audit trails can exceed available resources.
For this reason, the audit trails must periodically be dumped to tape and their disk
space thereby reclaimed. The system manager can configure TMF to automatically
dump the audit trails.

Even after a transaction is committed and its audit trail is no longer needed for
backout, you might need the audit trail for a roll-forward recovery; therefore, tapes
containing the dumped audit trails should be stored until you are certain that they are
no longer needed.

Online Dump and Roll-Forward Recovery
The TMF subsystem can perform an online dump of the database periodically. The
system manager is responsible for configuring TMF to do this at appropriate intervals.
In the event of a total system failure, the operator directs TMF to restore the database
from dump files. Then the operator directs TMF to conduct a roll-forward recovery to
repeat the transactions that have occurred since the last online dump. A roll-forward
recovery is the action of repeating each transaction that occurred to the database
between the time of the last online dump and the time of the system failure.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-17

Fault-Tolerant Processes Designing Programs for the TMF Subsystem
Record Locking
As a transaction progresses in TMF, these types of resources must be locked:

• Records that are changed or inserted into the database
• Records whose values affect the course of the transaction
• Keys of deleted records

If you are going to rewrite a record in an audited file, you must first lock it when you
read it. The TMF subsystem automatically locks records that are inserted and keys of
records that are deleted.

If a process attempts to rewrite a record in an audited file without that record being
locked, the operation terminates with a file system error 80 (invalid operation attempted
on audited file or non-audited disk volume) and file status code “30” (permanent error).

If the process executes an UNLOCK operation on a record that was locked and
modified in an audited file, TMF prevents the record from actually being unlocked until
the transaction is completed or aborted. The TMF subsystem automatically unlocks
these locked records at the end of a transaction, whether the process explicitly unlocks
them or not. If there is any chance that the same logic will be run on audited files at
some times and on non-audited files at other times, it is best to specify explicit
unlocking operations.

If you unlock a record in a nonaudited file in TMF or unlock a record that you locked
but did not modify, the unlock operation occurs immediately.

Designing Programs for the TMF Subsystem
Like any other programming task, the most important part of designing for TMF is
planning. Someone must plan the training, hardware, development, installation, testing,
and operation.

Before development can proceed, the designers must be trained in TMF. Eventually,
some training is necessary for everyone involved.

When the designers understand TMF, the project must be planned. Identify the
transactions in the system. Do all transactions need to be protected by TMF? Are the
transactions of appropriate size (number of SEND operations and number of screens
involved)?

The entire installation must be scheduled, whether you are converting to TMF, adding a
TMF project on a system that is already using TMF, or creating a new system.

Testing must be planned. Application code should be tested first without TMF, then with
TMF. Operations and development groups must practice recovery procedures.

Daily operation must be planned. Determine the frequency of online dumps and
whether the dump is to tape or disk. Determine how the archival tapes or disks are
transported to storage and how they are retrieved. Have a disaster recovery script.
Practice disaster recovery occasionally.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-18

Fault-Tolerant Processes The TMF Subsystem and Requester Screen
Transactions
The TMF Subsystem and Requester Screen Transactions
Because the server’s TMF protection is governed by the requester, you need to
coordinate the designs of the two. If the terminal user needs to traverse more than one
screen for each transaction, you must consider how to package the transaction.

Transactions that consist of several screens are easy and straightforward to program
but can be expensive. If a transaction spans several screens, it can keep records
locked for long periods; however, if you design for single-screen transactions, you
might have some problems when a series of screens makes up a single conceptual
transaction.

You recover from a failure during the series by adopting a strategy to protect records
by allocating a field to mark the record “in use.” Then other transactions can read the
record but agree not to attempt to change it. This mechanism puts more responsibility
on the designer and the maintenance staff. The “in-use” field identifies the terminal that
is using the record so that, in the event of major failure and recovery, the restored
system can resume properly.

You can also collect information from the database without locking records and pass
the information back to the requester. Then, when the requester makes its final request
to update the database, it can send the server the before and after versions of the
data, and the server can read and lock the records. Then the server can verify that the
records have not been changed and can rewrite the new records, or the server can
respond to the requester with the new information and have the requester ask the
terminal operator what to do with the record in its revised form. This strategy increases
the context that is carried by the requester, which affects performance.

The TMF Subsystem for Batch Jobs
The TMF subsystem is appropriate for any batch job where you cannot afford the time
to rerun it if it fails near its completion. Suppose your system must be available to
process interactive transactions daily from 6 AM to 9 PM, and overnight a 5-hour batch
job updates the database. There are only 9 hours between the suspension and
resumption of interactive work. In that 9 hours, you must dump the database to tape
and then update it. If the update fails, you must reload from the tape and repeat the
update. There is not enough time to do this if the failure occurs a few hours into the
batch update.

In such a batch update, the update cannot be one big transaction. Not only must the
audit trail for each transaction remain on disk until the transaction is complete, but
backing out the incomplete transaction takes about as long as the transaction had
been running at the time of the failure; however, the I-O overhead of making each
batch transaction a TMF transaction might be burdensome. It is best to cluster about
20 to 100 batch transactions as one TMF transaction.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-19

Fault-Tolerant Processes Debugging Programs That Use the TMF Subsystem
Debugging Programs That Use the TMF Subsystem
There are no debugging tools specific to TMF application debugging. You can use a
symbolic debugger, to set breakpoints in both SCREEN COBOL terminal programs
and in server programs. If the symbolic debugger that you use can accept its
commands from an OBEY command file, you can create a script that interrupts
transactions at various points in the requester and the server and tests the recovery
mechanisms.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
32-20

33
Migrating TNS Programs to Native
Programs

HP NonStop Series/RISC and HP NonStop Series/Itanium enable you to write
programs that are fully optimized for NonStop Series/RISC and NonStop
Series/Itanium systems such as HP NonStop systems. The term “native” means the
program uses the process, memory, and instruction set architectures that are native to
RISC and Itanium processors. A TNS program is “nonnative” in that it uses the
process, memory, and instruction set architectures of CISC processors. For further
explanation of native mode and native tools, see the introduction to either the TNS/R
Native Application Migration Guide or the TNS/E Native Application Conversion Guide.

HP provides these compilers for HP COBOL source programs:

The NMCOBOL and ECOBOL compilers are available both on NonStop systems and
on the PC. In this section, “NMCOBOL compiler” refers to both of the NMCOBOL
compilers and “ECOBOL compiler” refers to both of the ECOBOL compilers, unless
otherwise noted.

Taking an HP COBOL source program that was compiled with the COBOL85 compiler
and recompiling it with the NMCOBOL or ECOBOL compiler (so that the resulting
object program runs in native mode) is called “migrating to native mode.” Migrating to
native mode might require source program changes, both to the source code itself and
to the way you develop and manage the source code.

You can write HP COBOL source programs that can be compiled with any version of
the COBOL85 compiler after product version D32 and, without source program
changes, can also be compiled with any version of the NMCOBOL or ECOBOL
compiler.

Note. This section applies to migrating TNS HP COBOL programs to TNS/R or TNS/E
HP COBOL programs. To migrate TNS/R HP COBOL programs to TNS/E HP COBOL
programs, see the COBOL Manual for TNS/E Programs.

Compiler Objects Produced

COBOL85 TNS

NMCOBOL TNS/R

ECOBOL TNS/E
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-1

Migrating TNS Programs to Native Programs Reasons to Migrate
Topics:

• Reasons to Migrate

• Migrating HP COBOL Programs

• Data Alignment

• Source Program Changes

• Development and Management Changes

• Maintaining Common Source Code

• Using the Inspect and Visual Inspect Debuggers

Reasons to Migrate
A cost is associated with migrating from TNS HP COBOL to native HP COBOL, but in
most cases, it is minor. You must decide whether the long-term return justifies the
expense.

The reasons to migrate to native HP COBOL are:

• Native object code does not need to be accelerated

• More code space

The code space limit for a TNS HP COBOL program is 128 KB. For a native
HP COBOL program, it is 32 megabytes.

• More data space

The data space limit of approximately 60 KB for the sum of all of the Working-
Storage Sections and File Sections of a TNS process does not apply to native
HP COBOL programs. The Working-Storage Section and the Extended-Storage
Section are the same in native HP COBOL. The small data area is limited to
32,768 characters, but you can use the LARGEDATA directive to put additional
data items in the large data space.

• Native SRLs (for TNS/R) or DLLs (for TNS/E) are consulted automatically

If a TNS HP COBOL program calls utility routines, it must put the libraries that
contain those routines (one or more of COBOLLIB, CBL85UTL, and CLULIB) on
search lists (using the compiler directives SEARCH, LIBRARY, and CONSULT).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-2

Migrating TNS Programs to Native Programs Migrating HP COBOL Programs
For a native HP COBOL program, search lists are optional. If a program does not
have search lists, or if the compiler cannot find an external reference in the files on
the search lists:

• Native routines

Many new products and interfaces exist only in native mode (HP NonStop
TUXEDO Release 2, for example). If you want your HP COBOL programs to
interface with these products, you must migrate your HP COBOL programs to
native mode.

• Native COBOL cross compiler

The native COBOL cross compiler enables you to build applications for NonStop
systems on a personal computer (PC). The native COBOL cross compiler and
related companion tools have been integrated into this environment that targets
both the Guardian and OSS environments. For more information, see Section 34,
Native COBOL Cross Compiler on PC.

Migrating HP COBOL Programs
The recommended procedure for migration from TNS HP COBOL to native HP COBOL
is:

1. Change your program so that it runs in the CRE, if it does not already
(see Section 18, HP COBOL CRE Support).

2. Verify that you have adequate system resources for the migrated programs.

Native object files use approximately the same amount of disk space as
accelerated object files. Native processes use approximately the same amount of
processor memory as TNS processes running in accelerated mode.

TNS/R TNS/E

The NMCOBOL compiler automatically
searches the SRLs ZCOBSRL and
ZCRESRL and then the file NMCOBEXT
(the TNS/R equivalent of COBOLEXT).

The ECOBOL compiler automatically
searches the DLLs ZCOBDLL and
ZCREDLL and then the file ECOBEXT (the
TNS/E equivalent of COBOLEXT).

ZCOBSRL contains the COBOL utility
routines which, for TNS HP COBOL,
resided in the system library, COBOLLIB,
and CBL85UTL.

ZCOBDLL contains the COBOL utility
routines which, for TNS HP COBOL,
resided in the system library, COBOLLIB,
and CBL85UTL.

ZCRESRL contains the run-time routines
which, for TNS HP COBOL, resided in the
system library or in CLULIB.

ZCREDLL contains the run-time routines
which, for TNS HP COBOL, resided in the
system library or in CLULIB.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-3

Migrating TNS Programs to Native Programs Migrating HP COBOL Programs
3. If necessary, change your source program
(see Source Program Changes).

To learn whether you must change your source program, compile it with the
NMCOBOL or ECOBOL compiler, which will issue warnings when it encounters
source constructs that it does not accept. Running the NMCOBOL or ECOBOL
compiler with the new DIAGNOSE-85 directive is especially recommended. This
directive causes the NMCOBOL or ECOBOL compiler to issue warnings when it
encounters source constructs that could cause the program to produce different
results than it would if it were compiled with the COBOL85 compiler. For a
complete description of the DIAGNOSE-85 directive, see DIAGNOSE-85 and
NODIAGNOSE-85.

4. If your program calls TNS programs, migrate them to native mode.

Native programs cannot call TNS programs, and TNS/R and TNS/E programs
cannot call each other. Migrate your program and the programs that it calls to
either TNS/R or TNS/E, not a combination of the two.

For general migration information, see the TNS/R Native Application Migration
Guide

For this list of languages, follow these instructions. The last one, Data Alignment,
applies to several languages. “Native” means either TNS/R or TNS/E, whichever
you have chosen.

° HP C and HP C++

Recompile HP C and HP C++ programs with the native HP C and HP C++
compilers, respectively. Specify the SYMBOLS pragma when recompiling an
HP C or HP C++ program that your HP COBOL program references in a CALL
or ENTER statement (so that the native compiler can validate calls and
parameters to the HP C or HP C++ module). For information on tools that can
help you migrate HP C or HP C++ programs to native mode, see the C/C++
Programmer’s Guide.

° TAL

Convert TAL programs to pTAL (see the pTAL Conversion Guide). Some CRE
library routines might no longer exist, so you might have to change calls to
them. Also, if you want to reference an object in a CALL or ENTER statement,
you must compile your pTAL program with symbols.

If any of your TAL programs use the FORTRAN convention for determining the
length of a string parameter (that is, if they use the ENTER routine and do not
specify the language TAL), convert them to use another method (for example,
use the string :length convention or pass the length as a separate
parameter).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-4

Migrating TNS Programs to Native Programs Migrating HP COBOL Programs
° FORTRAN and Pascal

There are no native FORTRAN or Pascal compilers. Rewrite FORTRAN and
Pascal programs in native HP C, native HP C++, native HP COBOL, or pTAL.
You need not use the same language for all of them.

° Data Alignment

The COBOL85 and NMCOBOL compilers generate code with the same data
alignment. You need not change any data alignment directives before
migrating a TNS HP COBOL program to native HP COBOL. You need not
regenerate Data Definition Language (DDL) source files that TNS HP COBOL
and native HP COBOL programs share.

The ECOBOL compiler aligns each level-01 item and each level-77 item on a
physical 8-byte boundary, not on a physical 2-byte boundary as the COBOL85
and NMCOBOL compilers do. Offsets from the containing level-01 or level-77
item are the same in all three compilers. The difference in alignment of level-01
and level-77 items for the ECOBOL compiler will not affect a program unless
the program depends on the relative placement in memory of distinct level-01
or level-77 items. If your program depends on such relative placement, correct
it.

By default, the TNS compilers for HP C, HP C++, and TAL generate code with
different data alignment than the corresponding native compilers for HP C,
HP C++, and pTAL. To migrate a TNS HP C, TNS HP C++, or TAL program to
native mode, you must do one of:

° If DDL was not used, use SHARED2 pragmas in pTAL programs and
CSHARED2 pragmas in native HP C programs.

° If DDL was used, regenerate DDL source files that TNS and native
programs share.

DDL adds pragmas to ensure that all compilers generate code with the
same data alignment. For more information, see the TNS/R Native
Application Migration Guide.

See also Data Alignment.

5. (Optional) Put converted routines in a user library.

If you want to put the routines that you converted to native mode in Step 4 in a user
library (instead of in a TNS user library, which your program can no longer use),
follow the directions in User Library.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-5

Migrating TNS Programs to Native Programs Data Alignment
6. Compile your source program with the NMCOBOL or ECOBOL compiler.

For the Guardian environment, see Running the Compiler. For the OSS
environment, see Section 19, Using HP COBOL in the OSS Environment.

The NMCOBOL or ECOBOL compiler needs more symbol table space than the
COBOL85 compiler does. If the NMCOBOL or ECOBOL compilation fails due to
dictionary overflow, use the PARAM SYMBOL-BLOCKS command to increase the
space available for the symbol table and embedded SQL/MP statements and then
recompile.

7. Run the HP COBOL program that you compiled in Step 6.

8. If necessary, debug the program.

The debuggers handle native processes slightly differently than TNS processes.
The debuggers have environment registers for TNS processes, but not for native
processes; therefore, variables might remain in memory and never be written to
memory—it depends on compiler optimization level.

Data Alignment
On TNS systems, a word is 16 bits. The TNS instruction set includes data access
instructions that use 32-bit byte addresses that must be even-byte aligned (that is,
aligned 0 modulo 2) for correct operation. In TNS mode and accelerated mode,
addresses that are odd-byte aligned (that is, aligned 1 modulo 2) are called misaligned.
TNS processors consistently “round down” misaligned addresses (that is, they ignore
the low-order bit).

TNS/R and TNS/E processors handle the misaligned addresses of TNS programs
inconsistently, rounding down some but not others and behaving differently in TNS
mode and accelerated mode. Compilers cannot catch misaligned addresses that are
computed at run time.

The behavior of TNS programs with misaligned addresses on TNS/R and TNS/E
processors is almost impossible to predict. If you are not sure that your program has
only aligned addresses, you can use the tracing facility to detect whether programs are
using misaligned pointers and, if so, where. You should then change the programs to
avoid misalignment.

The round-downs occur only in TNS-compiled programs, not in TNS/R and TNS/E
native programs. In native mode, unexpected misalignments can slow down a
program, but they cannot cause errors.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-6

Migrating TNS Programs to Native Programs Misalignment Tracing Facility
In addition to HP COBOL, the data misalignment issue might affect programs that use
this NonStop software. If you use these products, see the appropriate document:

Topics:

• Misalignment Tracing Facility

• Misalignment Handling

• Causes of Misalignment in HP COBOL Programs

Misalignment Tracing Facility
The misalignment tracing facility is enabled or disabled on a system-wide basis (that is,
for all processors in the node). By default, it is enabled (set to ON). It can be disabled
(set to OFF) only by the persons who configure the system, using the Subsystem
Control Facility (SCF) attribute MISALIGNLOG. Instructions are in the SCF Reference
Manual for the Kernel Subsystem.

When a misaligned address causes an exception that TNS processor product versions
prior to G06.17 would have rounded down, the tracing facility traces the exception.

While a process runs, the tracing facility:

• Counts the number of misaligned-address exceptions that the process causes (the
exception count)

• Records the program address and code-file name of the instruction that causes the
first misaligned-address exception

Product T Number Document

Accelerator T9276 Accelerator Manual Data Alignment Addendum

TNS C T9255 C/C++ Programmer’s Guide

TNS C++ T9541

TNS c89 T8629

TNS/R pTAL T9248 pTAL Reference Manual

TNS TAL T9250 TAL Programmer’s Guide Data Alignment Addendum

Note. HP recommends that the MISALIGNLOG attribute be left ON (its default setting) so that
any process that is subject to rounding of misaligned addresses will generate log entries,
facilitating diagnosis and repair of the code. Only if the volume of misalignment events affects
performance should this attribute be turned OFF.

Note. The tracing facility does not count and trace every misaligned address, only those that
cause round-down exceptions. Other accesses that use misaligned addresses without
rounding them down do not cause exceptions and are not counted or traced. Also, only a
periodic sample of the counted exceptions is traced using its own EMS event messages.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-7

Migrating TNS Programs to Native Programs Misalignment Handling
Because a process can run for a long time, the tracing facility samples the process
(that is, checks its exception data) periodically (approximately once an hour). If the
process recorded an exception since the previous sample, the tracing facility records
an entry in the EMS log. If the process ends and an exception has occurred since the
last sample, the operating system produces a final Event Management Service (EMS)
event.

The EMS event includes:

• The process’s exception count

• Details about one misaligned-address exception, including the program address,
data address, and relevant code-file names

Sampling is short and infrequent enough to avoid flooding the EMS log, even for a
continuous process with many misaligned-address exceptions. One sample logs a
maximum of 100 events, and at most one event is logged for any process.

If misaligned-address exceptions occur in different periods of a process, the operating
system produces multiple EMS events for the same process, and these EMS events
might have different program addresses.

For more information about EMS events or the EMS log, see the EMS Manual.

Misalignment Handling
Misalignment handling is determined by these SCF attributes, which are set system-
wide (that is, for all processors in the node) by those who configure the system:

• MISALIGNLOG
• TNSMISALIGN
• NATIVEATOMICMISALIGN (does not apply to TNS HP COBOL programs)

MISALIGNLOG enables or disables the tracing facility (see Misalignment Tracing
Facility).

TNSMISALIGN applies to all programs running in TNS mode or accelerated mode.

NATIVEATOMICMISALIGN applies to calls to pTAL atomic functions in programs
running in TNS/R and TNS/E native mode. Nonatomic accesses in TNS/R and TNS/E
native mode are always NOROUND (for the definition of NOROUND, see Table 33-1).

Table 33-1 lists and describes the possible settings for TNSMISALIGN. Each setting
represents a different misalignment handling method. For more information about
TNSMISALIGN, see the SCF Reference Manual for the Kernel Subsystem.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-8

Migrating TNS Programs to Native Programs Misalignment Handling
The method that you choose does not apply to every misaligned address, only to those
that would have been rounded down in RVUs prior to G06.17.

Table 33-1. TNS Misalignment Handling Methods

Method Description

ROUND
(default)*

After rounding down a misaligned address, the system proceeds to access
the address, as done in G06.16 and earlier RVUs.

FAIL Instead of rounding down a misaligned address and proceeding to access
the target, the operating system considers the instruction to have failed.

For a Guardian process, this failure generates an Instruction Failure trap
(trap #1). By default, this trap causes the process to go into the debugger,
but the program can specify other behavior (for example, process
termination or calling a specified trap-handling procedure). For information
about trap handling, see the Guardian Programmer’s Guide.

For an OSS process, this failure generates a SIGILL signal (signal #4). By
default, this signal causes process termination, but the program can specify
other behavior (for example, entering the debugger or calling a specified
signal-handler procedure). The signal cannot be ignored. For information
about signal handling, see the explanation of the sigaction() function in
the Open System Services System Calls Reference Manual.

NOROUND The system uses the operand’s given odd address (not rounded down) to
complete the operation. If the operation is an atomic operation, atomicity is
no longer guaranteed.

* Use this method on production systems to avoid changing the semantics of old TNS programs. FAIL could
cause possibly fatal Instruction Failure traps in faulty TNS programs. NOROUND might change the semantics of
some faulty programs.

Note. ROUND and NOROUND misalignment handling are both intended as temporary
solutions, not as a substitute for changing your program to ensure that it has only aligned
addresses.

Programs that depend on NOROUND misalignment handling cannot be safely migrated to all
present and future NonStop platforms or to systems configured with ROUND or FAIL
misalignment handling.

Programs that depend on ROUND misalignment handling cannot be safely migrated “as is” to
future NonStop platforms or to systems configured with NOROUND or FAIL misalignment
handling.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-9

Migrating TNS Programs to Native Programs Causes of Misalignment in HP COBOL Programs
Causes of Misalignment in HP COBOL Programs
In native HP COBOL programs, misaligned addresses might slow down program
execution, but the misaligned addresses are never “rounded down” and do not cause
the program to terminate abnormally.

In TNS HP COBOL programs, reference parameters and the targets of pointers to
BINARY or COMPUTATIONAL data items must be aligned on 2-byte memory
boundaries for correct operation. The results of odd-byte addresses depend on the
specific NonStop server and the system configuration, but they might include erratic
“rounding down” and abnormal program termination.

In a TNS HP COBOL program, some actions that can cause misaligned addresses
are:

• Using the POINTER data type and explicit pointer operations

These are rarely used HP extensions to COBOL. Their potential problems are the
same as those of pointers and pointer operations in C/C++ and TAL (see C/C++
Programmer’s Guide and TAL Programmer’s Guide Data Alignment Addendum).

• Using incompatible descriptions of corresponding REFERENCE parameters in a
calling program and a called program

This situation is the most likely cause of misaligned addresses in HP COBOL
programs. If the called program's Linkage Section describes a REFERENCE
parameter as a group containing BINARY or COMPUTATIONAL data items, the
calling program must describe the corresponding actual parameter in an equivalent
way. If identical descriptions are not possible, the calling program must describe
the actual parameter as a level-01 or level-77 data item so that it is aligned. The
calling program must not describe the actual parameter as an unstructured
alphanumeric data item within a larger group, because then the compiler cannot
prealign the actual parameter as needed. See Example 33-1.

• Passing an alphanumeric data item or a reference modifier as an actual parameter

If the calling program passes an alphanumeric item or a reference modifier (that is,
a substring from a larger item) as an actual parameter, the called program has two
choices:

° Describe the corresponding formal parameter as an alphanumeric item (in the
Linkage Section)

° Copy the bytes of the actual parameter to an aligned group before accessing
any BINARY or COMPUTATIONAL data items

• Appending a sequence of objects inside an alphanumeric data item

If an HP COBOL program appends a sequence of objects within an alphanumeric
data item, it must ensure that BINARY or COMPUTATIONAL data items (and
records containing them) are aligned on even-byte boundaries; otherwise, the
program must move the objects back to an aligned record before using them.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-10

Migrating TNS Programs to Native Programs Causes of Misalignment in HP COBOL Programs
• Using an explicit number for the offset of a record or for the size of a record

This practice can cause misaligned addresses by overlooking the “implicit” filler
bytes that the COBOL85 compiler adds to records:

° Within records, to ensure that every BINARY or COMPUTATIONAL field begins
at an even-byte offset from the beginning of the structure

° At the end of any record that has an odd number of bytes, to give it an even
number of bytes

Example 33-1. Misalignment (page 1 of 2)

Separately Compiled Main Program:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-1.
 DATA DIVISION.
 EXTENDED-STORAGE SECTION.
 01 aligned-group.
* 7-word (14 byte) word-aligned group containing
* 1-word, 2-word, and 4-word binary numeric items:
 05 v16 PIC S9(4) COMP.
 05 v32 PIC s9(9) COMP.
 05 v64 PIC S9(18) COMP.
 01 group-2.
 05 aligned-buff PIC X(14).
 05 big-buff PIC X(100).
* aligned-buff and big-buff happen to start at even byte
 05 pad PIC X.
 05 unaligned-buff PIC X(14).
* unaligned-buff starts at odd byte

 PROCEDURE DIVISION.
 main.
 legal-ways-always-work.
 CALL "PROG-2" USING aligned-group.
 wrong-type-works-when-even.
 MOVE aligned-group TO aligned-buff.
 CALL "PROG-2" USING aligned-buff.
 MOVE aligned-group TO big-buff(21:14).
 CALL "PROG-2" USING big-buff(21:14).
 wrong-type-fails-when-odd.
 MOVE aligned-group TO unaligned-buff.
 CALL "PROG-2" USING unaligned-buff.
 MOVE aligned-group TO big-buff(22:14).
 CALL "PROG-2" USING big-buff(22:14).
 END PROGRAM PROG-1.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-11

Migrating TNS Programs to Native Programs Causes of Misalignment in HP COBOL Programs
The compiler’s PORT directive avoids misaligned address problems by inserting extra
run-time code that copies all potentially misaligned operands to aligned temporary data
items before using them.

The PORT directive also removes “implicit” filler bytes from records, aligning BINARY
or COMPUTATIONAL data items on any byte, except where the SYNCHRONIZED
clause appears. The SYNCHRONIZED clause aligns BINARY and COMPUTATIONAL
data items on 2-byte boundaries.

Because it changes the default record layout, the PORT directive must be applied to
either all or none of the modules and programs of all the compilation units of a single
program (that is, the run unit) and to all other run units with which it shares data
records.

Subprogram:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-2.
 DATA DIVISION.

 LINKAGE SECTION.
* Prog-2's reference parameter is a 16-bit-word-aligned group
* containing 1-word, 2-word, and 4-word binary numeric items:
 01 indirect-group.
 05 v16 PIC S9(4) COMP.
 05 v32 PIC s9(9) COMP.
 05 v64 PIC S9(18) COMP.

 PROCEDURE DIVISION USING indirect-group.
 main.
* This subprogram expects its "indirect-group" parameter to begin
* at an even-byte memory location, allowing use of TNS instructions
* for loading or storing binary numbers.
 MOVE 16 to v16.
 MOVE 32 to v32.
 MOVE 64 to v64.
* References to v16 and v64 misbehave if caller passes an
* alphanumeric string beginning at an odd-byte memory location.
* On TNS/R but not TNS, references to v32 usually behave as expected
* even when an incorrect odd address is given.
 END PROGRAM PROG-2.

Note. This extra run-time code can slow down the program significantly.

Example 33-1. Misalignment (page 2 of 2)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-12

Migrating TNS Programs to Native Programs Source Program Changes
Source Program Changes
Source program changes fall into these categories:

• General Migration Tasks

• Removal Required

• Possible Changes Required

• Removal Optional

• New Features (Optional)

General Migration Tasks
If your HP COBOL program calls obsolete or changed Guardian procedures, replace
them. Change any calls to procedures affected by either the Kernel Managed Swap
Facility (KMSF) or the native process architecture (for example, process creation calls).
For more information on the obsolete or changed procedures, seethe TNS/R Native
Application Migration Guide.

If your HP COBOL program calls COBOL-environment versions of Saved Message
Utility (SMU) routines, replace them with their CRE equivalents, which are listed in
Table 13-11.

Removal Required
Remove these directives, statements, and library references from your HP COBOL
source program before compiling it with the NMCOBOL or ECOBOL compiler.

• ENV OLD Directive

If you specify the ENV OLD directive, the NMCOBOL or ECOBOL compiler reports
an error. Native HP COBOL programs always run in the CRE.

• SQL Directive

If your program contains SQL/MP statements, include the SQL directive in the
NMCOBOL or ECOBOL compiler command line. Do not use the SQL option
RELEASE1.

• CHECKPOINT and STARTBACKUP Statements

If you are migrating to TNS/R and your NMCOBOL compiler is earlier than RVU
D46.00 or G06.00, software product revision T8107AAT (run-time library
T8108AAR), it does not support process pairs, so you must remove any
CHECKPOINT and STARTBACKUP statements. (In all other cases, you can leave
CHECKPOINT and STARTBACKUP statements in your program.)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-13

Migrating TNS Programs to Native Programs Removal Required
• USE DEBUGGING Statement

The 1985 COBOL standard classifies the USE DEBUGGING statement as
obsolete, so you are advised not to use it even in TNS HP COBOL programs. The
NMCOBOL and ECOBOL compilers do not recognize the USE DEBUGGING
statement, and the COBOL85 compiler no longer recognizes the names of the
debug items, which are:

° DEBUG-CONTENTS
° DEBUG-ITEM
° DEBUG-LINE
° DEBUG-NAME
° DEBUG-SUB-1
° DEBUG-SUB-2
° DEBUG-SUB-3

• GLOBAL Keyword in USE AFTER EXCEPTION Statement in Declaratives
Portion

Like the COBOL85 compiler, the NMCOBOL and ECOBOL compilers allow the
GLOBAL keyword in USE AFTER EXCEPTION in the Declaratives Portion;
however, if the GLOBAL keyword appears in that context and a nested program
implicitly references the declarative by means of an I/O statement, the NMCOBOL
or ECOBOL compiler issues an error message.

If your TNS program has GLOBAL in a USE AFTER EXCEPTION in the
Declaratives Portion—that is, if it has a global declarative exception procedure—
duplicate the global declarative exception procedure in each nested program. This
might require that you add the GLOBAL clause to each data item that the global
declarative exception procedure uses, so that the copy in the nested program
references it correctly.

Remove any references to these TNS libraries, which NMCOBOL and ECOBOL
compilers cannot use and do not need (see Native SRLs (for TNS/R) or DLLs (for
TNS/E) are consulted automatically):

• CBL85UTL
• COBOLLIB
• CLULIB

Make these substitutions:

Replace ...

With ...

TNS/R TNS/E

COBOLEX0 NMCOBEX0 ECOBEX0

COBOLEX1 NMCOBEX1 ECOBEX1

COBOLEXT NMCOBEXT ECOBEXT
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-14

Migrating TNS Programs to Native Programs Possible Changes Required
References to TNS libraries can appear in these contexts:

• CONSULT directive
• LIBRARY directive
• SEARCH directive
• File-mnemonic clause of the SPECIAL-NAMES paragraph
• OF or IN clause of the CALL or ENTER statement

Possible Changes Required
The COBOL85, NMCOBOL, and ECOBOL compilers handle these items differently:

• Checkpointing

• Directives

• ENTER Statement

• Floating-Point Arithmetic

Make any necessary changes to these items before compiling your HP COBOL source
program with the NMCOBOL or ECOBOL compiler.

Checkpointing
The COBOL85 compiler automatically checkpoints data items that are stored directly
on the stack in two or fewer bytes (that is, if they are level 01 or 77, in the Working-
Storage Section, and fewer than three characters long).

The D44 product version of the NMCOBOL compiler does not checkpoint data items
under any circumstances. If the D44 NMCOBOL compiler finds a CHECKPOINT
statement, it ignores it and issues a warning.

Beginning with the D46 and G06 product versions, software product revision
T8107AAT (run-time library T8108AAR), the NMCOBOL compiler checkpoints only
those data items that one or more CHECKPOINT statements specify explicitly.

For more information on the CHECKPOINT statement, see CHECKPOINT.

Directives

• BLANK and NOBLANK

For the COBOL85 compiler, BLANK is the default. For the NMCOBOL and
ECOBOL compilers, NOBLANK is the default.

For a complete description of these directives, see BLANK and NOBLANK.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-15

Migrating TNS Programs to Native Programs Possible Changes Required
• CONSULT

For the NMCOBOL compiler, each object-name in a CONSULT directive must
designate a TNS/R native object file (otherwise the compiler reports an error).

For the ECOBOL compiler, each object-name in a CONSULT directive must
designate a TNS/E native object file (otherwise the compiler reports an error).

If a native HP COBOL program references the object in a CALL or ENTER
statement, the object must have been compiled with symbols.

For a complete description of this directive, see CONSULT and NOCONSULT.

• LARGEDATA

For the COBOL85 compiler, the LARGEDATA directive determines whether
individual data items are located in the user data space or the user extended
space. The default value for the LARGEDATA directive’s parameter is 256.

For the NMCOBOL compiler, the LARGEDATA directive determines whether
individual data items are located in the small data area or the large data area. The
default value for the LARGEDATA directive’s parameter is 64.

The ECOBOL compiler ignores the LARGEDATA directive and issues a warning.

For a complete description of this directive, see LARGEDATA.

• LIBRARY

The NMCOBOL and ECOBOL compilers ignore the LIBRARY directive and issue a
warning.

Instead of the LIBRARY directive, specify the name of your user library as
explained in Specifying a User Library.

For a complete description of this directive, see LIBRARY.

• OPTIMIZE

The NMCOBOL compiler handles OPTIMIZE 2 as if it were OPTIMIZE 1, because
native COBOL does not support global optimization. The ECOBOL compiler
handles OPTIMIZE 2 as the COBOL85 compiler does.

OPTIMIZE 0 (no optimization) is recommended when you are debugging a
program using the NMCOBOL or ECOBOL compiler. OPTIMIZE 1 (most
optimizations) is recommended for production.

For a complete description of this directive, see OPTIMIZE.

• RUNNAMED

The RUNNAMED directive works in the NMCOBOL and ECOBOL compilers only if
you specify the new RUNNABLE directive (see RUNNABLE directive).

For a complete description of this directive, see RUNNAMED.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-16

Migrating TNS Programs to Native Programs Possible Changes Required
• SAVEABEND and NOSAVEABEND

The SAVEABEND and NOSAVEABEND directives work in the NMCOBOL and
ECOBOL compilers only if you specify the new RUNNABLE directive (see
RUNNABLE directive).

For a complete description of these directives, see SAVEABEND and
NOSAVEABEND.

• SEARCH

For the NMCOBOL compiler, each object-name in a SEARCH directive must
designate a TNS/R native object file (otherwise the compiler reports an error).

For the ECOBOL compiler, each object-name in a SEARCH directive must
designate a TNS/E native object file (otherwise the compiler reports an error).

If a native HP COBOL program references the object in a CALL or ENTER
statement, the object must have been compiled with symbols.

For a complete description of this directive, see SEARCH and NOSEARCH.

• SUBTYPE

The SUBTYPE directive works in the NMCOBOL and ECOBOL compilers only if
you specify the new RUNNABLE directive (see RUNNABLE directive).

For a complete description of this directive, see SUBTYPE.

ENTER Statement
The language parameter of the ENTER statement is unnecessary, because the
NMCOBOL and ECOBOL compilers can determine the language in which the program
is written. If you do specify language, it must be HP C or TAL. If you specify TAL, the
NMCOBOL or ECOBOL compiler requires a pTAL program (it does not accept TAL
programs). If you specify FORTRAN or Pascal, the NMCOBOL or ECOBOL compiler
gives an error message. (You must convert any FORTRAN, Pascal, or TAL programs
that your HP COBOL program calls to native languages, as Step 4 of Migrating
HP COBOL Programs explains.) Although a native HP COBOL program can use the
ENTER statement to call HP C++ or pTAL programs, language cannot have the
value HP C++ or pTAL.

Floating-Point Arithmetic
For floating-point arithmetic, the COBOL85 compiler can produce slightly different
results than the NMCOBOL and ECOBOL compilers produce. This is most likely to
cause problems for exponentiation with a negative or fractional exponent (such as
10**-3 or 2**0.3). You can avoid this problem by including the ROUNDED Phrase in
statements that perform floating-point arithmetic. With the ROUNDED phrase, both
compilers produce the same results.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-17

Migrating TNS Programs to Native Programs Removal Optional
Removal Optional
The NMCOBOL and ECOBOL compilers ignore these items, so you can (but need not)
remove them from your source program. The NMCOBOL and ECOBOL compilers give
a warning when they find these items, except as noted.

• CODE and NOCODE directives

The NMCOBOL and ECOBOL compilers do not produce an octal code listing. If
you need to display an object file, use one of these utilities:

• COMPACT and NOCOMPACT directives

These directives determine whether BINSERV attempts to compact the code
space of the target file. The NMCOBOL and ECOBOL compilers do not use
BINSERV.

• CROSSREF and NOCROSSREF directives

The NMCOBOL and ECOBOL compilers do not produce a cross-reference listing.
If you need one, use the appropriate utility from the table in CODE and NOCODE
directives with the XREFPROC flag.

• ENV COMMON directive

Native HP COBOL programs always run in the CRE. The NMCOBOL and
ECOBOL compilers do not issue a warning if you use this directive.

• ENV LIBRARY directive

Instead of using the ENV LIBRARY directive to build a TNS user library, use the
directive UL to build a user library or the directive SHARED to build a DLL.

• EXTENDED-STORAGE SECTION header

Native HP COBOL does not need an Extended-Storage Section. The NMCOBOL
and ECOBOL compilers handle any data items that are described in the Extended-
Storage Section as if they were described in the Working-Storage Section. The
NMCOBOL and ECOBOL compilers do not issue a warning if you use the
EXTENDED-STORAGE SECTION header.

• FLOAT and NOFLOAT directives

• HEAP directive

• HIGHPIN directive

Native HP COBOL programs always run at a high PIN.

Compiler Utility Documentation

NMCOBOL noft noft Manual

ECOBOL enoft enoft Manual
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-18

Migrating TNS Programs to Native Programs Removal Optional
• HIGHREQUESTERS directive

Native HP COBOL programs can always run as servers that communicate with
requesters running at high PINs.

• ICODE and NOICODE directives

The NMCOBOL and ECOBOL compilers ignore these directives, warning you that
they have done so. Use the INNERLIST and NOINNERLIST directives instead
(see INNERLIST and NOINNERLIST directives).

• LESS-CODE

For the COBOL85 and NMCOBOL compilers, the LESS-CODE directive
determines whether the program generates code that initializes the Working-
Storage Section or Extended-Storage Section or uses a system call to initialize the
Extended-Storage Section.

The ECOBOL compiler ignores the LESS-CODE directive and issues a warning.

• LMAP and NOLMAP directives

The LMAP and NOLMAP directives determine which load maps the compiler
obtains from BINSERV. The NMCOBOL and ECOBOL compilers do not use
BINSERV.

• NOCONSULT directive

• NONSTOP directive

For the NMCOBOL compiler, native HP COBOL programs cannot be process pairs
until RVU D46.00 and G06.00, software product revision T8107AAT (run-time
library T8108AAR).

• NOSEARCH directive

• NOSQL directive

This is the default for native HP COBOL programs.

• SQLMEM directive

The concept of extended memory does not exist in native mode.

• TRAP2 and NOTRAP2 directives

Native HP COBOL programs have traps set by default.

• TRAP2-74 and NOTRAP2-74 directives

Native HP COBOL programs cannot call COBOL 74 programs.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-19

Migrating TNS Programs to Native Programs New Features (Optional)
New Features (Optional)
You can (but need not) add these new features to your HP COBOL source program
before you compile it with the NMCOBOL or ECOBOL compiler.

• CALL-SHARED directive

The CALL-SHARED directive generates shared code (PIC). See CALL-SHARED.
For the ECOBOL compiler, this is the default.

• DIAGNOSE-85 directive

The DIAGNOSE-85 directive causes the NMCOBOL and ECOBOL compilers to
issue warnings when they encounter source constructs that could cause the
program to produce different results than it would if it were compiled with the
COBOL85 compiler.

For a complete description of the DIAGNOSE-85 directive, see DIAGNOSE-85 and
NODIAGNOSE-85.

• FMAP

The FMAP directive causes the NMCOBOL and ECOBOL compilers to produce a
source file map, which shows the fully qualified name and timestamp of the IN file
and each file specified by a SOURCE directive or COPY statement. For more
information, see FMAP.

• INNERLIST and NOINNERLIST directives

The INNERLIST and NOINNERLIST directives determine whether the NMCOBOL
or ECOBOL compiler lists the mnemonic version of each source statement
immediately after that source statement.

For a complete description of the INNERLIST and NOINNERLIST directives, see
INNERLIST and NOINNERLIST.

• RUNNABLE directive

The RUNNABLE directive causes the NMCOBOL or ECOBOL compiler to use one
of these linkers to produce a loadfile if there were no compilation errors:

Compiler Directive Linker Documentation

NMCOBOL NON-SHARED (default) nld nld Manual

CALL-SHARED or SHARED ld ld Manual

ECOBOL eld eld Manual
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-20

Migrating TNS Programs to Native Programs Development and Management Changes
This is not the default. If you run the NMCOBOL or ECOBOL compiler without the
RUNNABLE directive and no compilation errors occur, you can produce a loadfile
by running the appropriate linker separately. If you do this, you must specify these
libraries:

The libraries reside in the active subvolume $SYSTEM.SYSnn. For instructions for
determining the active subvolume, see the documentation.

You must compile your native program with the RUNNABLE directive if you use the
SAVEABEND, NOSAVEABEND, or SUBTYPE directive.

For a complete description of the RUNNABLE directive, see RUNNABLE.

• SHARED directive

The SHARED directive generates shared code (PIC) for a DLL. See SHARED.

Development and Management Changes
The NMCOBOL and ECOBOL compilers and the native environment do not support
these features of the COBOL85 compiler and the TNS environment. If your program
development or management procedures depend on any of these features, you must
change your procedures.

• Overriding libraries specified at compile time

In the TNS environment, you can specify libraries at compile time and then
override them at run time. In the native environment, if you specify libraries at
compile time, you cannot override them at run time. If you need to change the
libraries, you must change the source code and recompile it.

• Manipulating individual procedures and data blocks

In the TNS environment, Binder produces object files; in the native environment,
the nld, ld, or eld utility produces object files. Binder and the nld, ld, or eld
utility have different syntax and operate on different object file types. Binder can
replace individual procedures and data blocks in an object file or build an object file
from individual procedures and data blocks; the nld, ld, or eld utility cannot. The
nld, ld, or eld utility operates on procedures and data blocks, but only in terms of
an entire object file.

Linker Libraries Documentation

nld ZCOBSRL
ZCRESRL

nld Manual

ld ZCOBSRL
ZCRESRL

ld Manual

eld ZCOBDLL
ZCREDLL

eld Manual
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-21

Migrating TNS Programs to Native Programs Development and Management Changes
The nld, ld, or eld utility does not support the Binder product’s SELECT
SEARCH behavior. You can usually achieve similar results with the nld, ld, or
eld utility by using archive files (files created by the ar utility).

Because of this difference between Binder and the nld, ld, or eld utility, you
might need to change the way you specify files in CONSULT and SEARCH
directives.

More information:

• Embedding SQL/MP statements in user libraries

In the TNS environment, user libraries can contain embedded SQL/MP statements;
in the native environment, they cannot.

• Cross-reference listing

The COBOL85 compiler can produce a cross-reference listing (see CROSSREF
and NOCROSSREF), but the NMCOBOL and ECOBOL compilers cannot. If you
need a cross-reference listing for a native HP COBOL program, use the
appropriate utility from the table in CODE and NOCODE directives with the
XREFPROC flag.

Topic Source

nld utility
(including differences between Binder and the nld utility)

nld Manual

ld utility ld Manual

eld utility eld Manual
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-22

Migrating TNS Programs to Native Programs Maintaining Common Source Code
Maintaining Common Source Code
To maintain “common source code” that can be compiled with D32.00 and later RVUs
of the COBOL85 compilers, D44.01 and later RVUs of the NMCOBOL compiler, and
H06.01 and later RVUs of the ECOBOL compiler, follow these guidelines:

• Either do not use HP COBOL language features that are not supported by all
compilers, or use conditional compilation to isolate those features.

You can effect conditional compilation with these directives:

° IF and IFNOT

° ENDIF

° SETTOG

° RESETTOG

• Use separate build scripts to run TNS and native tools, including the COBOL85,
NMCOBOL, and ECOBOL compilers.

• For each compilation, use the appropriate file (or files) of dummy routines.

Files of dummy routines enable the compilers to accept ENTER statements that
are to be resolved at program load time (see Table 13-4).

Using the Inspect and Visual Inspect
Debuggers

The Inspect and Visual Inspect interactive symbolic debuggers handle TNS and native
HP COBOL programs differently. For a native HP COBOL program, the Inspect
debugger’s STEP command is line-oriented. If the current statement is on a single line,
the STEP command steps to the next statement (that is, the debugger works as the
command STEP 1 V works for a TNS HP COBOL program). If the current statement is
on the same line as another statement or statements, the STEP command steps to the
next line on which a new statement starts. The Inspect debugger cannot step one
sentence in a native HP COBOL program (that is, the command STEP 1 S does not
work).

Note. You must use Visual Inspect to debug PIC loadfiles.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-23

Migrating TNS Programs to Native Programs Using the Inspect and Visual Inspect Debuggers
HP COBOL Manual for TNS and TNS/R Programs—522555-006
33-24

34
Native COBOL Cross Compiler on
PC

The native COBOL cross compiler is an optional cross compiler that runs on the PC
platforms in Table 34-1.

Topics:

• Cross Compiler Features

• NonStop COBOL for TNS/R (ETK)

• Tandem COBOL (TDS)

• nmcobol (PC Command Line)

• Linking

• Debugging

• Tools and Utilities

• Documentation

Table 34-1. COBOL Cross Compiler Platforms

Platform
Cross Compiler
Name

Product
Number

Operating System

Windows
98

Windows
NT 4.0

Windows
2000

Windows
XP

TDS1 Tandem COBOL T0328 Yes Yes No No

ETK2 NonStop COBOL
for TNS/R

T2776 No Yes Yes Yes

PC
command
line3

nmcobol T2776 No Yes Yes Yes

1. HP Tandem Development Suite

2. HP Enterprise Toolkit—NonStop Edition

3. G06.14 and later RVUs
HP COBOL Manual for TNS and TNS/R Programs—522555-006
34-1

Native COBOL Cross Compiler on PC Cross Compiler Features
Cross Compiler Features
The native COBOL cross compiler allows you to:

• Write, compile, and link these kinds of NonStop RISC-based server applications on
the PC and transfer them to the OSS or Guardian platform for use in production:

° Executable programs
° Static libraries
° User libraries
° DLLs (ETK, RVU G06.20 and later)

Object files built on the PC platform using the native COBOL compiler are
compatible with object files built on the NonStop RISC-based server platform using
the NMCOBOL compiler.

• Link NMCOBOL, C/C++, and pTAL objects into a single object file.

• When multiple RVUs are installed, choose any installed RVUs of the cross
compilers, tools, and libraries.

• On the ETK and TDS platforms, enter ADD, MODIFY, SET, and DELETE
statements into a TACL DEFINE file [see TACL DEFINE Tool (ETK and TDS)].

• On the ETK and command-line platforms, compile SQL/MP or SQL/MX statements
embedded in native COBOL source code.

Your PC must be connected to the NonStop host to perform certain SQL/MP or
SQL/MX compile-time operations and to run your applications.

The native COBOL cross compiler is delivered on a separate independent product CD
using Scout for NonStop Servers, but it is not available on the site update tape (SUT)
for the NMCOBOL compiler.

Note. The native COBOL cross compiler version on your PC must be compatible with the
COBOL run-time library on your NonStop RISC-based server. For TDS, see the PC
COBOL file README. For ETK, see the softdoc for the RVU.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
34-2

Native COBOL Cross Compiler on PC NonStop COBOL for TNS/R (ETK)
NonStop COBOL for TNS/R (ETK)
The optional native COBOL cross compiler for use with the ETK is called NonStop
COBOL for TNS/R. The ETK is a GUI-based extension package to Visual Studio .NET
that provides full application development functions targeted for NonStop servers.
From the GUI, you can choose native COBOL cross-compiler options. Development,
editing, and building functions are very similar on Visual Studio .NET and the ETK.

NonStop COBOL for TNS/R components are:

The directory structure of NonStop COBOL for TNS/R is:

You can embed SQL/MP or SQL/MX statements in NonStop COBOL source code.
Valid NonStop COBOL for TNS/R source files have these extensions:

Your PC must be connected to the NonStop host to perform certain SQL/MP or
SQL/MX compile-time operations and to run your applications.

For PC and NonStop server hardware and software requirements, see the ETK online
help. For instructions for accessing the online help, see Documentation.

Component Name File

NonStop COBOL driver executable nmcobol.exe

NonStop COBOL driver DLL coboldvr.dll

NonStop COBOL front end cobol.dll

Directory Files

bin nmcobol.exe
nld.exe
ld.exe

cmplr coboldvr.dll
cobol.dll
ugen.dll
as1.dll
nld.dll
ld.dll

lib nmcobext.o
libcob.srl
libraries in libc.obey

Extension Meaning

.cob or .cbl COBOL source code with or without embedded SQL/MP or SQL/MX
statements

.ecob or .ecbl COBOL source code with embedded SQL/MP or SQL/MX statements
HP COBOL Manual for TNS and TNS/R Programs—522555-006
34-3

Native COBOL Cross Compiler on PC Tandem COBOL (TDS)
Tandem COBOL (TDS)
The optional native COBOL cross compiler for use with the TDS is called Tandem
NMCOBOL. TDS allows you to select Tandem NMCOBOL options from the TDS add-
on to the Borland integrated development environment (IDE) GUI. You can develop,
edit, and build COBOL applications from within the IDE.

You can embed SQL/MP or SQL/MX statements in Tandem NMCOBOL source code.
Valid Tandem NMCOBOL source files, with or without embedded SQL/MP or SQL/MX
statements, have the extension *.cob or *.cbl. Your PC must be connected to the
NonStop host to perform certain SQL/MP or SQL/MX compile-time operations and to
run your applications.

For PC and NonStop server hardware and software requirements, see the TDS online
help. For instructions for accessing the online help, see Documentation.

nmcobol (PC Command Line)
Beginning with RVU G06.14, you can invoke the native COBOL cross compiler,
nmcobol, at the command line (DOS prompt) on your PC.

nmcobol

must be typed as shown, in lowercase letters.

-c
-g
-o outfile

are as described in the Open System Services Shell and Utilities Reference
Manual.

nmcobol

-c -g -o outfile

cobol-opt comp-opt link-opt sqlmp-opt

sqlmx-opt nmcobol-opt file

VST820.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
34-4

Native COBOL Cross Compiler on PC nmcobol (PC Command Line)
cobol-opt

is one of these nmcobol flags:

comp-opt

is one of these nmcobol flags:

• -I directory
• -O [0 | 1]
• -Wcall_shared
• -Wcolumns=N
• -Werrors=N
• -W[no]innerlist
• -W[no]list
• -W[no]map
• -Wnon_shared
• -Woptimize={0|1} (The PC does not accept -Woptimize=2.)
• -Wshared
• -W[no]suppress
• -Wsyntax
• -Ww
• -Wsystype={guardian|oss}

-Wsystype={guardian|oss} determines whether nmcobol creates loadfiles
for the Guardian environment or for the OSS environment. The default is the
Guardian environment.

For descriptions of the other flags, see the Open System Services Shell and
Utilities Reference Manual.

link-opt

is one of these nmcobol flags:

• -L
• -l
• -s
• -Wansistreams
• -WBdllsonly
• -WBdynamic
• -WBstatic
• -Wheap
• -Whighpin
• -Whighrequesters
• -W[no]include_whole

cobol-opt Sources

-Wcobol="arguments " Using the Command-Line Cross Compilers on Windows
(see Documentation)

-Wcopylib=file Open System Services Shell and Utilities Reference Manual
HP COBOL Manual for TNS and TNS/R Programs—522555-006
34-5

Native COBOL Cross Compiler on PC nmcobol (PC Command Line)
• -W[no]inspect
• -Wld
• -Wld_obey
• -Wnld
• -Wnld_obey
• -Wnostdlib
• -W[no]optional_lib
• -Wr
• -W[no]reexport
• -Wrunnamed
• -W]no]saveabend
• -Wu
• -Wx

sqlmp-opt

is described in Using the Command-Line Cross Compilers on Windows (see
Documentation).

sqlmx-opt

is described in Using the Command-Line Cross Compilers on Windows (see
Documentation).

nmcobol-opt

is one of these nmcobol flags:

• -Wdryrun
• -Whelp
• -Wsavetemps
• -Wusage
• -Wv
• -Wverbose

file

is the source file name.

On the Guardian platform, you issue these
commands (if desired) before you issue the
compilation command:

On the PC, you put these arguments
in the -Wcobol flag in the
compilation command:

DEFINE1 DEFINE name [=] value

PARAM SYMBOL-BLOCKS count 2 SYMBOL-BLOCKS [=] count

1. For information about DEFINE, see DEFINEs

2. For information about PARAM SYMBOL-BLOCKS, see PARAM SYMBOL-BLOCKS.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
34-6

Native COBOL Cross Compiler on PC Linking
You can embed SQL/MP or SQL/MX statements in NonStop COBOL source code.
Valid NonStop COBOL source files have these extensions:

To complete SQL/MP or SQL/MX compilation, you must specify the host and the user
logon. Specifying the NonStop server location (Guardian subvolume or OSS directory)
is optional. For more information, see Using the Command-Line Cross Compilers on
Windows.

The command-line interface allows you to create batch scripts for use on multiple
platforms.

Linking
Native COBOL cross compiler linking is performed using either Windows nld (on the
ETK and the TDS) or Windows ld (on ETK). The ETK and the TDS provide a GUI-
based interface for you to select linking options. When you invoke nld or ld through
the command line, you must specify the run-time libraries to nld or ld. For information
about Windows nld and nld options, see the nld Manual. For information about
Windows ld and ld options, see the ld Manual.

Debugging
• ETK and TDS Platforms

• Command-Line Platform

• RUNV

ETK and TDS Platforms
On the ETK and TDS platform, debug native COBOL source code using Visual
Inspect. After it is installed on your workstation, you can either configure Visual Inspect
as an external tool (in the ETK) or configure the TDS so that you can invoke Visual
Inspect from the Tools menu.

Extension Meaning

.cob or .cbl COBOL source code with or without embedded SQL/MP statements

.ecob or .ecbl COBOL source code with embedded SQL/MX statements

Note. You cannot link PIC and non-PIC object files into a single object file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
34-7

Native COBOL Cross Compiler on PC Command-Line Platform
Command-Line Platform
On the command-line platform, debug loadfiles that were compiled with the native
COBOL cross compiler either with Visual Inspect on Windows (some restrictions might
apply for files containing SQL/MX statements) or by running Inspect on the NonStop
server. To use Inspect, you must copy the loadfiles and the source files to the host (see
PC-to-NonStop-Host Transfer Tools).

For information about Visual Inspect, see its online help. For information about Inspect,
see the Inspect Manual.

RUNV
RUNV, which is a TACL macro in the Guardian environment and a script in the OSS
environment, starts a program under the control of Visual Inspect.

RUNV

without program-file, displays the RUNV help.

program-file

is the name of the loadfile to run. program-file can be represented as a file-
system file name or (in the Guardian environment) a DEFINE name. program-
file is added to the list in Visual Inspect’s Application Control View. For
information about Visual Inspect, see its online help.

run-option-list

Note. You must use Visual Inspect to debug PIC loadfiles.

/ run-option-list /

program-parameter-list

VST805.vsd

RUNV

program-file

run-option

, run-option

VST332.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
34-8

Native COBOL Cross Compiler on PC RUNV
run-option

is an option of the RUN command, described in the TACL Reference Manual.
For COBOL programs, two of the run options, IN and OUT, have special
significance:

accept-device

has a value that designates a terminal or a process and can be a file-
system file name or (in the Guardian environment) a DEFINE name.
accept-device specifies the device from which an unqualified ACCEPT
statement retrieves input. If you omit this option, unqualified ACCEPT
statements retrieve input from the home terminal (unless PARAM
EXECUTION-LOG specifies a different device).

display-device

can be a file-system file name or (in the Guardian environment) a DEFINE
name. Its value designates a terminal, line printer, process, existing entry-
sequenced disk file, or operator console to which unqualified DISPLAY
statements are to deliver output. If you omit display-device, unqualified
DISPLAY statements deliver output to the home terminal (unless PARAM
EXECUTION-LOG specifies a different device).

program-parameter-list

program-parameter

is a parameter of the program that is to be run.

In the Guardian environment, the NonStop TCP/IP address of your workstation is
automatically detected when you invoke RUNV.

IN

OUT

accept-device

display-device

VST333.vsd

program-parameter

program-parameter

VST806.vsd

,

HP COBOL Manual for TNS and TNS/R Programs—522555-006
34-9

Native COBOL Cross Compiler on PC Tools and Utilities
In the OSS environment, you must either set the
_TANDEM_VISUALINSPECT_WSADDR environment variable in your $HOME/.profile
file or enter the workstation IP address as a command-line parameter. RUNV reads the
IP address from the environment variable or from the command line. If you have set
the environment variable but enter a different IP address on the RUNV command line,
the command-line entry overrides the environment variable definition. You define the
workstation IP address in your $HOME/.profile file only once unless the IP address
changes.

Tools and Utilities
These tools and utilities allow you to use the native COBOL cross compiler more
efficiently:

• NonStop ar Utility

• TACL DEFINE Tool (ETK and TDS)

• PC-to-NonStop-Host Transfer Tools

NonStop ar Utility
The NonStop ar utility creates and maintains archive libraries. The NonStop ar utility
can process a set of arguments that you enter, or you can use an OBEY command file
to supply arguments to the ar utility.

When an archive contains one or more TNS/R (native) object files, Windows nld can
use the archive as an object file library, replacing most functions provided by the
Binder SELECT SEARCH command. For information about Windows nld, see the nld
Manual.

The Windows-hosted ar utility does not differentiate between OSS and Guardian
target files. To avoid run-time errors, be sure that procedures in archives used for
resolving references work on the target platform.

TACL DEFINE Tool (ETK and TDS)
On the ETK and TDS platform, this GUI-based tool allows you to add ADD, MODIFY,
SET, and DELETE statements to a DEFINE file. The TACL DEFINE tool automatically
sets the first entry in the DEFINE command file to be SET DEFMODE ON. You can
leave this default or change it to SET DEFMODE OFF. Files created by the TACL
DEFINE tool have the extension .tdf.

Note. The ar utility can also use archives created from TNS/R PIC linkable files by the ld
utility. For information about the ld utility, see the ld Manual.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
34-10

Native COBOL Cross Compiler on PC PC-to-NonStop-Host Transfer Tools
PC-to-NonStop-Host Transfer Tools
The ETK allows you to transfer loadfiles and source files to the NonStop host using the
Deploy command or the Transfer Tool. Deploy builds and copies each project in the
active solution to the NonStop host. The Transfer Tool moves files to the NonStop host
for execution and debugging. The Transfer Tool is better for transferring very large,
complex applications to the NonStop host. For most applications, Deploy is more
convenient.

The TDS provides the FTP tool to move files to the NonStop host for execution and
debugging. To use the FTP tool, you must have the Winsock TCP/IP configured on
your PC.

From the PC command line, you can use any FTP application to transfer loadfiles and
source files to the NonStop host.

Documentation
The ETK and the TDS have online help that provides conceptual, reference, task-
oriented, and error message information, as well as a quick-start tutorial. To access the
online help, you can either:

• From the Help menu, choose Contents, Index, or Search.
• Click the Help in any ETK or TDS dialog box.

The command-line documentation, Using the Command-Line Cross Compilers on
Windows, is available:

• On the native COBOL cross compiler CD
• In the ETK online help under References

Syntax information for individual cross compilers is also available from the command-
line:

Cross Compiler Command

C/C++ c89 -Whelp

COBOL nmcobol -Whelp

pTAL ptal -Whelp
HP COBOL Manual for TNS and TNS/R Programs—522555-006
34-11

Native COBOL Cross Compiler on PC Documentation
HP COBOL Manual for TNS and TNS/R Programs—522555-006
34-12

Part III. Syntax Summary
Title

Section 35, Commands

Section 36, Compiler Directives

Section 37, Source Program Organization and Format

Section 38, Language Elements and Expressions

Section 39, Data References

Section 40, Identification Division

Section 41, Environment Division

Section 42, Data Division

Section 43, Procedure Division

Section 44, Intrinsic Function Calls

Section 45, CBL85UTL and ZCOBSRL Routine Calls

Section 46, COBOLLIB, CLULIB, and ZCRESRL Routine Calls
HP COBOL Manual for TNS and TNS/R Programs—522555-006

Part III. Syntax Summary
HP COBOL Manual for TNS and TNS/R Programs—522555-006

35 Commands

• Guardian Environment

• OSS Environment

• nmcobol (PC Command Line)

Guardian Environment
• Before Running the Compiler (Optional)

• Running the COBOL85 Compiler

• Running the NMCOBOL Compiler

• Running the Native Cross Compiler Under Visual Inspect

• Before Running the Compiled Program (Optional)

• Running the Compiled Program

Before Running the Compiler (Optional)

Note. The NMCOBOL compiler does not accept the PARAM SAMECPU command.

PARAM SAMECPU dummy-value

VST417.vsd

PARAM SWAPVOL $ volume
ns

VST418.vsd

PARAM SYMBOL-BLOCKS count

VST419.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-1

Commands Running the COBOL85 Compiler
Running the COBOL85 Compiler

source-file

list-file

target-name

COBOL85

IN source-file

list-file

OUT

other-option

target-name

copy-library

compiler-directive

/

,

;

,

,

obj-1(obj-n,)

/

VST256.vsd

file-name-1

define-name

VST257.vsd

file-name-2

define-name

VST259.vsd

file-name-4

define-name

VST261.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-2

Commands Running the NMCOBOL Compiler
obj-1 ... obj-n

copy-library

Running the NMCOBOL Compiler

source-file
list-file
target-name
obj-1 ... obj-n
copy-library

See source-file through copy-library.

file-name-4

define-name

VST261.vsd

file-name-4

define-name

VST261.vsd

NMCOBOL

IN source-file

list-fileOUT

other-option

target-name

copy-library

compiler-directive

/

;

,

/

,

,

VST728.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-3

Commands Running the Native Cross Compiler Under Visual
Inspect
Running the Native Cross Compiler Under Visual Inspect

run-option-list

run-option

program-parameter-list

/ run-option-list /

program-parameter-list

VST805.vsd

RUNV

program-file

run-option

, run-option

VST332.vsd

IN

OUT

accept-device

display-device

VST333.vsd

program-parameter

program-parameter

VST806.vsd

,

HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-4

Commands Before Running the Compiled Program (Optional)
Before Running the Compiled Program (Optional)

• ASSIGN

• CLEAR

• FIXERRS

• PARAM

ASSIGN

system-file

ASSIGN

program-name

*

, system-file

, characteristic

.

cobol-file-name

VST334.vsd

name

#IN

#OUT

#TERM

#TEMP

$RECEIVE

VST335.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-5

Commands Before Running the Compiled Program (Optional)
characteristic

size-list

EXT

CODE

REC

BLOCK

size-list

file-code

record-size

block-size

EXCLUSIVE

SHARED

PROTECTED

INPUT

OUTPUT

I-O

VST336.vsd

,

pri-extent-size(

sec-extent-size

pri-extent-size

)

VST337.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-6

Commands Before Running the Compiled Program (Optional)
CLEAR

assignation

FIXERRS

CLEAR ALL

ASSIGN

PARAM

ASSIGN

PARAM

DEBUG

NONSTOP

parameter-name

EXECUTION-LOG

INSPECT

WAITED-IO

assignation

PRINTER-CONTROL

SWITCH-nn

VST340.vsd

COBOL-file-name

program-name

*

.

VST638.vsd

FIXERRS

tedit-command;

error-file

VST372.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-7

Commands Before Running the Compiled Program (Optional)
PARAM

name-value-pair

name-value-pair

PARAM

, name-value-pair

VST338.vsd

DEBUG

ON

system-file-name

NONSTOP

INSPECT

EXECUTION-LOG

PRINTER-CONTROL

OFF

define-name

*

cobol-file-name

parameter-name parameter-value

WAITED-IO

TAPE-DIALOGUE ON

OFF

SWITCH-nn

VST339.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-8

Commands Running the Compiled Program
Running the Compiled Program

run-option-list

run-option

program-parameter-list

OSS Environment
• Before Running the Compiler (Optional)

• Running the cobol (COBOL85) Compiler

• Running the nmcobol Compiler

• Running the Compiled Program

/ run-option-list /

program-parameter-list

VST331.vsd

program-fileRUND

RUN

run-option

, run-option

VST332.vsd

IN

OUT

accept-device

display-device

VST333.vsd

program-parameter

program-parameter

VST806.vsd

,

HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-9

Commands Before Running the Compiler (Optional)
Before Running the Compiler (Optional)
To change one or more of the defaults in Table 35-1 before executing the cobol or
nmcobol command, use the OSS export command.

To execute a cobol or nmcobol command with a specified set of environment
variables, use the OSS env function with the environment variables in Table 35-1.

Table 35-1. Environment Variables

Variable Effect Default

COBOL Determines the pathname of the
COBOL85 compiler that the cobol
utility calls

/G/system/system/cobol85

NMCOBOL Determines the pathname of the
NMCOBOL compiler that the
nmcobol utility calls

/G/system/system/cobolfe

BIND1 Determines the pathname of the
Binder that the cobol utility calls

/G/system/system/bind

AXCEL1 Determines the pathname of the
Accelerator that the cobol utility calls

/G/system/system/axcel

SWAPVOL1 Determines the disk volume on which
the COBOL85 compiler, Binder,
Accelerator, and SQL/MP compiler
create temporary files

Same as in the Guardian
environment—see PARAM
SWAPVOL

SQLCOMP Determines the pathname of the
SQL/MP compiler that the cobol or
nmcobol utility calls

/G/system/system/sqlcomp

MXSQLCO2 Determines the pathname of the
alternate COBOL SQL/MX
preprocessor that the nmcobol utility
calls

/usr/tandem/sqlmx/bin/

MXCMP2 Determines the pathname of the
alternate SQL/MX compiler that the
nmcobol utility calls

/G/system/system/

SQLCLIO2 Determines the pathname of the
object file that describes the SQL/MX
API to the nmcobol utility

/usr/tandem/sqlmx/lib/sqlc
li.o

1. For the COBOL85 compiler only.

2. For the NMCOBOL compiler only.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-10

Commands Running the cobol (COBOL85) Compiler
Running the cobol (COBOL85) Compiler

flag

is as described in the Open System Services Shell and Utilities Reference Manual.

operand

pathname

Running the nmcobol Compiler

flag

is as described in the Open System Services Shell and Utilities Reference Manual.

cobol

flag operand

pathname

operand

VST621.vsd

-l

pathname

library

VST622.vsd

a

file

o

cbl

srl

.
ns ns

cob

VST623.vsd

flag operand

pathname

operand

nmcobol

VST733.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-11

Commands Running the Compiled Program
operand

pathname

Running the Compiled Program
Type the name of the loadfile and press Return; for example:

a.out

To run the program with the selected debugger, enter:

run -debug a.out

If the current directory is not in your search path, add it with this command:

export PATH=$PATH:.

Note. The file suffixes (cbl, cob, and so on) are not case-sensitive.

-l

pathname

library

VST622.vsd

ns ns

ecbl

ecob

cbl

cob

.file

o

srl

VST623.vsd

a

m

HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-12

Commands nmcobol (PC Command Line)
nmcobol (PC Command Line)
Beginning with RVU G06.14, you can invoke the native COBOL cross compiler,
nmcobol, from the command line (DOS prompt) on your PC.

-c
-g
-o
outfile
-cobol-opt
-comp-opt
-link-opt
-sqlmp-opt
-sqlmx-opt
-nmcobol-opt
file

See nmcobol (PC Command Line).

nmcobol

-c -g -o outfile

cobol-opt comp-opt link-opt sqlmp-opt

sqlmx-opt nmcobol-opt file

VST820.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-13

Commands nmcobol (PC Command Line)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
35-14

36 Compiler Directives

In the OSS environment, include compiler directives in the cobol or nmcobol
command line with the -Wcobol flag.

• ANSI

• BLANK and NOBLANK

• CALL-SHARED

• CANCEL and NOCANCEL

• CHECK

• CODE and NOCODE

• COLUMNS

• COMPACT and NOCOMPACT

• COMPILE

• CONSULT and NOCONSULT

• CROSSREF and NOCROSSREF

• DIAGNOSE-74 and NODIAGNOSE-74

• DIAGNOSE-85 and NODIAGNOSE-85

On the compiler command line:

In the program source text:

Note. “Default:” identifies the default for the compiler directive itself, not for its optional
parameter(s). This default applies if a program does not contain the compiler directive at all.

directive

directive;

,

VST263.vsd

? directive

directive;

,

VST264.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-1

Compiler Directives
• DIAGNOSEALL and NODIAGNOSEALL

• ENDIF

• ENDUNIT

• ENV

• ERRORFILE

• ERRORS

• FIPS and NOFIPS

• FLOAT and NOFLOAT

• FMAP

• HEADING

• HEAP

• HIGHPIN

• HIGHREQUESTERS

• ICODE and NOICODE

• IF and IFNOT

• INNERLIST and NOINNERLIST

• INSPECT and NOINSPECT

• LARGEDATA

• LD

• LESS-CODE

• LIBRARY

• LINES

• LIST and NOLIST

• LMAP and NOLMAP

• MAIN

• MAP and NOMAP

• NLD

• NLD

• NON-SHARED

• OPTIMIZE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-2

Compiler Directives
• PERFORM-TRACE

• PORT and NOPORT

• RESETTOG

• RUNNABLE

• RUNNAMED

• SAVE

• SAVEABEND and NOSAVEABEND

• SEARCH and NOSEARCH

• SECTION

• SETTOG

• SHARED

• SHOWCOPY and NOSHOWCOPY

• SHOWFILE and NOSHOWFILE

• SOURCE

• SQL and NOSQL

• SQLMEM

• SUBSET

• SUBTYPE

• SUPPRESS and NOSUPPRESS

• SYMBOLS and NOSYMBOLS

• SYNTAX

• TANDEM

• TRAP2 and NOTRAP2

• TRAP2-74 and NOTRAP2-74

• UL

• WARN and NOWARN
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-3

Compiler Directives ANSI
ANSI

BLANK and NOBLANK

Default: TANDEM

Placement: Anywhere

Scope: ANSI or TANDEM within a section of text obtained from a copy library or
source library is effective only for the length of that text section. When
the compiler reverts to the source file where it found the COPY verb or
SOURCE directive, the previously active reference format applies.

Dependencies: None

References: TANDEM

Default: BLANK for the COBOL85 compiler
NOBLANK for the NMCOBOL compiler

Placement: Anywhere

Scope: The last BLANK or NOBLANK in the program applies.

Dependencies: None

ANSI

TANDEM

VST266.vsd

BLANK

NOBLANK

VST267.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-4

Compiler Directives CALL-SHARED
CALL-SHARED

CANCEL and NOCANCEL

Note. The COBOL85 compiler does not recognize this directive.

Default: NON-SHARED

Placement: Anywhere

Scope: The last CALL-SHARED, NON-SHARED, or SHARED in the compilation
unit applies to the entire compilation unit.

Dependencies: • If RUNNABLE is active, CALL-SHARED uses the linker to create a
PIC executable object file; otherwise, CALL-SHARED creates a PIC
linkfile.

• Do not use with UL.

References: • NON-SHARED

• SHARED

• RUNNABLE

• UL

Default: CANCEL

Placement: Anywhere

Scope: Applies to the program that contains it. CANCEL and NOCANCEL do
not apply to initial programs, which are initialized every time they are
called.

Dependencies: None

CALL-SHARED

NON-SHARED

SHARED

VST802.vsd

CANCEL

NOCANCEL

VST383.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-5

Compiler Directives CHECK
CHECK

Default: CHECK 1

Placement: Anywhere

Scope: In each separately compiled program, the last CHECK in the program
unit determines the check level for the code block being produced.

Dependencies: None

check-level What is Checked Comments

0 Nothing CHECK 0 results in the fastest execution time.

1 (default) Nothing CHECK 1 might have a different meaning in
future versions of HP COBOL for HP NonStop
systems (“HP COBOL”). For the fastest execution
(and no subscript checking) in current and future
versions of HP COBOL, specify CHECK 0.

2 Validity of subscripts
and indexes

3 Validity of subscripts,
indexes, and reference
modifiers

Specifies the maximum level of checking that
HP COBOL currently provides.

4-15 Validity of subscripts,
indexes, and reference
modifiers

4 - 15 might have different meanings in future
versions of HP COBOL. For the maximum level of
checking that HP COBOL currently provides,
specify CHECK 3. For maximal checking, specify
CHECK 15 (which could increase the program’s
run-time overhead in future versions of
HP COBOL if additional checking levels are
implemented).

check-levelCHECK

VST268.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-6

Compiler Directives CODE and NOCODE
CODE and NOCODE
Note. The NMCOBOL compiler issues warnings for these directives.

Default: NOCODE

Placement: Anywhere

Scope: In each separately compiled program, the last CODE or NOCODE in the
program unit applies to the entire program unit.

Dependencies: CODE works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

CODE

NOCODE

VST269.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-7

Compiler Directives COLUMNS
COLUMNS

COMPACT and NOCOMPACT

Default: COLUMNS 132

Placement: • On a directive line, COLUMNS must begin with a question mark (?)
in column 1, regardless of any active ANSI directive.

• In a COPY library or a source library, COLUMNS must be the only
directive on its line and must precede all SECTION directives in that
library.

• The COBOL85 compiler accepts at most one COLUMNS for each
source file (that is, one for the primary source file and one for each
COPY library or source library called by the primary source file).

Scope: When the compiler shifts from reading the primary source file to reading
a COPY library (in compliance with a COPY statement) or a source
library (in compliance with a SOURCE directive), it saves the current
(default or specified) logical length for source lines. That length applies
to all source lines in the COPY library or source library, unless a
COLUMNS directive occurs in the COPY library file (as mentioned in the
preceding item). In this case, the compiler reverts to the saved logical
length when it resumes reading text from the primary source file.

Dependencies: COLUMNS works only if TANDEM is active.

References: • ANSI

• SOURCE

• TANDEM

Note. The NMCOBOL compiler, which does not use BINSERV, issues warnings for these
directives.

Default: COMPACT

Placement: Anywhere

Scope: The last COMPACT or NOCOMPACT in the compilation unit applies.

Dependencies: None

lengthCOLUMNS

VST270.vsd

COMPACT

NOCOMPACT

VST271.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-8

Compiler Directives COMPILE
COMPILE

CONSULT and NOCONSULT

object-name-list

Default: COMPILE

Placement: Outside the boundaries of a separately compiled program; that is, not
between the Identification Division header of a separately compiled
program and its end, which is marked by one of:

• The corresponding END PROGRAM statement
• ENDUNIT
• The end of the source file

Scope: The last COMPILE or SYNTAX in the compilation unit applies to the
entire compilation unit.

Dependencies: None

Note. The NMCOBOL compiler ignores the NOCONSULT directive and issues a warning.

Default: NOCONSULT

Placement: Anywhere

Dependencies: None

COMPILE

SYNTAX

VST272.vsd

object-name-list

object-name-list

CONSULT

NOCONSULT

()

VST273.vsd

object-name,

object-name

VST274.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-9

Compiler Directives CROSSREF and NOCROSSREF
CROSSREF and NOCROSSREF

class-list

class

Note. The NMCOBOL compiler issues warnings for these directives and does not produce a
cross-reference listing. If you need one, use the noft utility with the XREFPROC flag (see the
noft Manual).

Class COBOL Identifiers Selected

ALL All classes

CONDITIONS * Condition-names

DATANAMES (or VARIABLES) * Data-names (FILLER not included)

FILES * (COBOL) file names

FUNCTIONS * Routine-names of functions (routines that return
a value)

INDEXES * Index-names

LITERALS Literals (numeric and nonnumeric)

MNEMONICS * File-mnemonics

PROCNAMES (or LABELS) * Procedure-names (paragraph-names, section-
names)

PROGRAMS * Program-names, routine-names

UNREFS Items defined but not referenced (technically,
not a class but a generalized request for all
such items)

CROSSREF

class-list

NOCROSSREF

VST275.vsd

class

ONLY

INCLUDE

EXCLUDE

, class

VST276.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-10

Compiler Directives DIAGNOSE-74 and NODIAGNOSE-74
DIAGNOSE-74 and NODIAGNOSE-74

DIAGNOSE-85 and NODIAGNOSE-85

Default: NOCROSSREF

Placement: Anywhere

Scope: CROSSREF applies to all separately compiled program units, regardless
of nesting; that is, all programs within a nest appear in the same cross-
reference listing. You need not repeat the CROSSREF directive for each
program unit in a compilation unit; the class list active at the end of one
program unit applies to the next program unit until explicitly altered by a
NOCROSSREF directive.

Dependencies: CROSSREF works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

Default: NODIAGNOSE-74

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: None

Note. The COBOL85 compiler does not recognize these directives.

Default: NODIAGNOSE-85

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: None

DIAGNOSE-74

NODIAGNOSE-74

VST277.vsd

DIAGNOSE-85

NODIAGNOSE-85

VST719.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-11

Compiler Directives DIAGNOSEALL and NODIAGNOSEALL
DIAGNOSEALL and NODIAGNOSEALL

ENDIF

ENDUNIT

Default: NODIAGNOSEALL

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: None

Default: None

Placement: Must be either on a directive line of its own or be the last of a sequence
of directives

Dependencies: Requires a preceding IF or IFNOT directive with the same toggle-
number

References: IF and IFNOT

Default: The compiler detects the end of a Procedure Division by encountering
either an END PROGRAM statement or the end of the file.

Placement: Must be either on a directive line of its own or be the last of a sequence
of directives

Scope: Applies to program unit

Dependencies: None

DIAGNOSEALL

NODIAGNOSEALL

VST470.vsd

toggle-numberENDIF

VST278.vsd

ENDUNIT

VST279.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-12

Compiler Directives ENV
ENV

ERRORFILE

ERRORS

Note. This directive is useful only for the COBOL85 compiler. The NMCOBOL compiler
accepts this directive with the COMMON option (the default for this compiler), reports an error
for the OLD option, and issues a warning for the LIBRARY option.

Default: ENV OLD

Placement: Must appear before any source code lines

Scope: Applies to all programs in its source file

Dependencies: None

Default: None

Placement: Either on the compiler command line or in the source file before the
Identification Division

Scope: Applies to the compilation unit

Dependencies: None

Default: ERRORS 100

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: None

COMMON

LIBRARY

OLD

ENV

VST280.vsd

ERRORFILE file-name

define-name

VST281.vsd

ERRORS error-limit

VST282.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-13

Compiler Directives FIPS and NOFIPS
FIPS and NOFIPS

flag-option-list

flag-option

Value Identified

OBSOLETE Obsolete language elements

ABOVEMIN Language elements above the minimum subset

ABOVEINTER Language elements above the intermediate subset

LEVEL1COM * Communication language elements

ABOVELEVEL1COM * Communication language elements above level 1 of
communication

LEVEL1DEB Debug language elements

ABOVELEVEL1DEB * Debug language elements above level 1 of Debug

REPORTWRITER * Report Writer language elements

LEVEL1SEG Segmentation language elements

ABOVELEVEL1SEG Segmentation language elements above level 1 of
segmentation

NONSTANDARDEXT Nonstandard extensions to COBOL

* This option does not affect compilation because the compiler does not support this module. If you
use this option, the compiler issues a warning and ignores the option.

Default: NOFIPS

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: None

FIPS flag-option-list

NOFIPS

()flag-option-list

VST468.vsd

flag-option

flag-option,

VST469.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-14

Compiler Directives FLOAT and NOFLOAT
FLOAT and NOFLOAT

FMAP

Note. The NMCOBOL compiler ignores this directive and issues a warning.

Default: FLOAT

Placement: Outside the boundaries of any program

Scope: Applies to all subsequent programs

Dependencies: None

Note. The COBOL85 compiler does not recognize this directive.

Default: The NMCOBOL compiler does not produce a source file map.

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: NOLIST and SUPPRESS do not suppress the source file map that
FMAP produces.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

FLOAT

NOFLOAT

VST818.vsd

FMAP

VST731.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-15

Compiler Directives HEADING
HEADING

character-string

Default values is all spaces.

HEAP

Default: Standard top-of-page line

Placement: Anywhere

Scope: Applies until another HEADING overrides it

Dependencies: None

Note. The NMCOBOL compiler ignores this directive and issues a warning.

Default: Guardian environment: the heap is nonexistent by default.

PC and OSS environments: the heap is large by default and cannot be
made larger.

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: HEAP works only if the program runs in the CRE in the Guardian
environment and calls HP C functions that use heap space.

character-string

HEADING

" "

VST283.vsd

HEAP size

VST738.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-16

Compiler Directives HIGHPIN
HIGHPIN
Note. The NMCOBOL compiler ignores this directive and issues a warning. A native
HP COBOL program always runs at a high PIN.

Default: TNS program runs with a low PIN (less than or equal to 255).

Placement: Any of:

• Anywhere in the source program (but it is good practice to put it
before the first program in a compilation unit)

• On the compiler command line

• In a stand-alone Binder session

Scope: Applies to the program in which or before which it appears and to all
subsequent programs in the compilation unit

Dependencies: Program must be compiled with ENV COMMON.

References: ENV

HIGHPIN

VST284.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-17

Compiler Directives HIGHREQUESTERS
HIGHREQUESTERS

ICODE and NOICODE

Note. The NMCOBOL compiler ignores this directive and issues a warning. A native
HP COBOL program always runs at a high PIN.

Default: Program cannot run as a server that accepts requesters running with
high PINs (greater than 255).

Placement: Any of:

• Anywhere in the source program (but it is good practice to put it in
the main program, because that is the only program it affects—that
is, Binder assumes that a run unit can accept high PIN requesters
only if HIGHREQUESTERS is specified for the main program in the
run unit)

• On the compiler command line

• In a stand-alone Binder session

Scope: Applies to the main program in which or before which it appears in the
compilation unit

Dependencies: Program must be compiled with ENV COMMON and HIGHPIN.

References: • ENV

• HIGHPIN

Note. The NMCOBOL compiler ignores these directives and issues warnings. For the
NMCOBOL compiler, use INNERLIST and NOINNERLIST instead.

Default: NOICODE

Placement: Anywhere

Scope: Last ICODE or NOICODE applies to program unit.

Dependencies: ICODE works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

HIGHREQUESTERS

VST285.vsd

ICODE

NOICODE

VST286.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-18

Compiler Directives IF and IFNOT
IF and IFNOT

INNERLIST and NOINNERLIST

Default: None

Placement: IF must be either on a directive line of its own or be the last of a
sequence of directives.

IFNOT can be anywhere.

Scope: IF or IFNOT applies until matching ENDIF appears.

Dependencies: Requires a preceding IF or IFNOT directive with the same toggle-
number

References: IF and IFNOT

Note. The COBOL85 compiler does not recognize these directives. For the COBOL85
compiler, use ICODE and NOICODE instead.

Default: NOINNERLIST

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: INNERLIST works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

IF

IFNOT

toggle-number

VST287.vsd

INNERLIST

NOINNERLIST

VST724.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-19

Compiler Directives INSPECT and NOINSPECT
INSPECT and NOINSPECT

LARGEDATA

Default: INSPECT

Placement: Anywhere

Scope: The last INSPECT or NOINSPECT in the compilation unit applies to the
compilation unit.

Dependencies: NOINSPECT and SAVEABEND override each other (whichever is last is
active).

References: SAVEABEND and NOSAVEABEND

Note. This directive is useful only in the CRE.

Default: None

Placement: Anywhere

Scope: If LARGEDATA specifies constants, or has no item, and precedes the
PROCEDURE DIVISION header in the program that contains it, then it
applies to the program that contains it and to subsequent programs. If
LARGEDATA directive specifies constants, or has no item, and follows
the PROCEDURE DIVISION header in the program that contains it, then
it applies only to subsequent programs.

Dependencies: Program must be compiled with ENV COMMON or ENV LIBRARY.

References: ENV

INSPECT

NOINSPECT

VST288.vsd

LARGEDATA

item

(item

,

)

item

VST725.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-20

Compiler Directives LD
LD

LESS-CODE

Note. The COBOL85 compiler does not accept this directive.

Default: None

Placement: In the command line

Scope: Applies to the compilation unit

Dependencies: None

Note. The compiler ignores this directive and issues a warning. For the description of this
directive, see the COBOL85 Manual for TNS and TNS/R.

LD ()option

VST111.vsd

LESS-CODE bits-to-set

VST384.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-21

Compiler Directives LESS-CODE
bits-to-set

Value of bits-to-set

ResultDecimal Binary

0 000 Compiler generates code to initialize all areas.

1 001 Compiler generates code to initialize all areas except the
Extended-Storage Section in:

• Main programs

• Other programs that are not initial programs and have
NOCANCEL directives active

Size of object file increases significantly, amount of code
generated decreases significantly, and execution time decreases
slightly.

2 010 Compiler generates code to initialize all areas except the
Extended-Storage Section in:

• Programs that are not main programs and are either initial
programs or do not have NOCANCEL directives active

Size of object file decreases significantly and amount of code
generated decreases significantly.

Execution time increases under either of these conditions:

• The program is an initial program and is called more than
once

• The program is not an initial program and is cancelled
several times

Execution time decreases under either of these conditions:

• The program is an initial program and is only called once

The program is not an initial program and is never cancelled

3 011 Same as 1 and 2 combined

4 100 Compiler generates code to initialize all areas except the
Working-Storage Section in:

• Main programs

• Programs that are not main programs and are either initial
programs or do not have NOCANCEL directives active

Size of object file can increase by a maximum of 65,536 bytes for
each program to which the conditions apply. Amount of code
generated and execution time can decrease.

5 101 Same as 1 and 4 combined

6 110 Same as 2 and 4 combined

7 111 Same as 1, 2, and 3 combined
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-22

Compiler Directives LIBRARY
LIBRARY

LINES

Default: None

Placement: The compiler accepts it anywhere, but to be effective, it must be before
the main program.

Scope: Applies to the compilation unit

Dependencies: None

Note. The NMCOBOL compiler ignores this directive and issues a warning.

Default: None

Placement: Anywhere, but the COBOL85 compiler and the Binder do not propagate
LIBRARY from called to calling programs; therefore, calling programs
cannot reference library objects in called programs unless you use one
of these methods:

• Use a separate bind step on the final object with a SET LIBRARY
file-name command.

• Use the LIB parameter on the RUN command.

• Specify the LIBRARY directive on the main compilation.

Scope: The last LIBRARY applies to the loadfile produced by the compilation.

Dependencies: None

Default: LINES 60

Placement: Anywhere

Scope: Applies until another LINES overrides it

Dependencies: LINES works only if paging applies to the compilation list device.

LIBRARY file-name

VST289.vsd

LINES lines-per-page

VST290.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-23

Compiler Directives LIST and NOLIST
LIST and NOLIST

Default: LIST

Placement: Anywhere

Scope: Applies until overridden by its opposite

Dependencies: SUPPRESS overrides LIST (and therefore CODE, CROSSREF, ICODE,
LMAP, MAP, SHOWCOPY, and SQL).

NOLIST suppresses INNERLIST.

References: • SUPPRESS and NOSUPPRESS

• CODE and NOCODE

• CROSSREF and NOCROSSREF

• ICODE and NOICODE

• INNERLIST and NOINNERLIST

• LMAP and NOLMAP

• MAP and NOMAP

• SHOWCOPY and NOSHOWCOPY

• SQL and NOSQL

LIST

NOLIST

VST291.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-24

Compiler Directives LMAP and NOLMAP
LMAP and NOLMAP

lm-option-list

For LMAP, the default value for lm-option-list is ALPHA; for NOLMAP, it
is ALPHA, LOC, XREF.

lm-option

Note. The NMCOBOL compiler, which does not use BINSERV, ignores these directives and
issues warnings.

Value Load Map Requested (by LMAP) or Suppressed (by NOLMAP)

ALPHA Programs and subprograms sorted by procedure-name

LOC Programs and subprograms sorted by starting address

XREF Cross-reference listing of entry-point and data-block names

Default: LMAP ALPHA

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: LMAP works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

LMAP

lm-option-list

NOLMAP

(lm-option-list

*

lm-option-list

lm-option-list(

)

)

VST292.vsd

lm-option

, lm-option

VST293.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-25

Compiler Directives MAIN
MAIN

MAP and NOMAP

Note. Put this directive before the Identification Division header of the first program unit in the
compilation unit.

Default: Every program unit that does not have a Linkage Section is compiled as
a main program. If more than one program unit of a compilation unit
qualifies as a main program, the compiler reports this as an error,
compiles the first qualifying program unit as the main program, and
produces multiple object files.

Placement: Before the Identification Division header of the first program unit in the
compilation unit

Scope: Applies to the program that contains it

Dependencies: None

Default: NOMAP

Dependencies: MAP works only if LIST is active and SUPPRESS is not.

Scope: The last MAP or NOMAP applies.

Dependencies: MAP works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

MAIN program-name

VST294.vsd

MAP

NOMAP

VST295.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-26

Compiler Directives NLD
NLD

NONSTOP

Note. The compiler does not accept this directive. For the description of this directive, see the
COBOL85 Manual for TNS and TNS/R.

Default: None

Placement: In the command line

Scope: Applies to the compilation unit

Dependencies: None

Note.

• Do not use this directive in the OSS environment.

• Before RVU D46.00 and G06.00, software product revision T8107AAT (run-time library
T8108AAR), the NMCOBOL compiler ignores this directive and issues a warning.

Default: The program cannot run as a process pair (even if it contains a PARAM
NONSTOP ON command).

Placement: Must appear before the Identification Division of the first program unit in
the source text

Scope: Applies to the program unit

Dependencies: PARAM NONSTOP OFF command suppresses NONSTOP.

References: PARAM Command

NLD ()option

VST082.vsd

NONSTOP

VST296.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-27

Compiler Directives NON-SHARED
NON-SHARED
Note. The COBOL85 compiler does not recognize this directive.

Default: NON-SHARED

Placement: Anywhere

Scope: The last NON-SHARED, CALL-SHARED, or SHARED in the compilation
unit applies to the entire compilation unit.

Dependencies: If RUNNABLE is active, NON-SHARED creates a non-PIC executable
object file; otherwise, NON-SHARED creates a non-PIC nonexecutable
object file.

References: • CALL-SHARED

• SHARED

• RUNNABLE

CALL-SHARED

NON-SHARED

SHARED

VST803.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-28

Compiler Directives OPTIMIZE
OPTIMIZE

level

Level

Effect

COBOL85 Compiler NMCOBOL Compiler

0 Code is not optimized. Provided in
case other optimization levels
cause errors. Supports symbolic
debugging; data is always in
memory.

Code is not optimized. Provided in
case other optimization levels cause
errors. Supports symbolic debugging;
data is always in memory.

1
(default)

Code is optimized within
statements, but not across
statement boundaries. Appropriate
for application programs still being
developed and tested. Supports
symbolic debugging; data is not
always in memory.

Code is optimized within statements
and across statement boundaries. The
resulting code is more efficient than
that produced by lower levels of
optimization. Supports symbolic
debugging; data is not always in
memory.

2 Code is optimized within
statements and across statement
boundaries, and the resulting code
is more efficient than code
produced by lower levels.

Uses level 1 instead.

Default: OPTIMIZE 1

Placement: Outside the boundary of a separately compiled program

Scope: The optimization level active at the beginning of a separately compiled
program determines the level of optimization for that program and any
programs it contains.

Dependencies: None

OPTIMIZE level

VST297.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-29

Compiler Directives PERFORM-TRACE
PERFORM-TRACE

PORT and NOPORT

Default: The compiler does not provide additional information if run-time error
148 occurs.

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: None

Default: NOPORT

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: None

PERFORM-TRACE

VST800.vsd

PORT

NOPORT

1

2

3

VST600.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-30

Compiler Directives RESETTOG
RESETTOG

toggle-number-list

Default value is all toggles.

Default: None

Placement: Must be either on a directive line of its own or be the last of a sequence
of directives

Scope: Applies until SETTOG overrides it

Dependencies: SETTOG overrides it.

References: SETTOG

RESETTOG

toggle-number-list

VST298.vsd

toggle-number

, toggle-number

VST299.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-31

Compiler Directives RUNNABLE
RUNNABLE
Note. The COBOL85 compiler does not recognize this directive.

Default: The NMCOBOL compiler does not use the linker to produce a loadfile if
there were no compilation errors.

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: SYNTAX overrides RUNNABLE.

You must specify RUNNABLE to use RUNNAMED, SAVEABEND,
NOSAVEABEND, or SUBTYPE in the NMCOBOL compiler.

Without CALL-SHARED or SHARED, RUNNABLE uses the linker to
produce a non-PIC loadfile.

With CALL-SHARED, RUNNABLE uses the linker to produce a PIC
loadfile.

With SHARED, RUNNABLE uses the linker to produce a PIC library file
(DLL).

References: • SYNTAX

• RUNNAMED

• SAVEABEND and NOSAVEABEND

• SUBTYPE

• CALL-SHARED

• SHARED

RUNNABLE

VST729.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-32

Compiler Directives RUNNAMED
RUNNAMED

Default: None

Placement: Any of:

• Anywhere in a source program
• In a stand-alone Binder session
• In a linker session (specify -change)

Scope: Applies to the program in which or before which it appears, to all
subsequent programs in the compilation unit, and to all target files

Dependencies: For the NMCOBOL compiler, RUNNAMED is appropriate only if the
program was compiled with RUNNABLE (because a linkfile is not a run
unit)..

References: RUNNABLE

RUNNAMED

VST300.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-33

Compiler Directives SAVE
SAVE

save-option-list

save-option

Note. Do not use this directive in the OSS environment.

Default: The compiler does not save initialization messages.

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: None

SAVE save-option-list

()save-option-list

VST301.vsd

save-option

, save-option

VST302.vsd

PARAM

count

STARTUP

ASSIGNS

ALL

VST303.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-34

Compiler Directives SAVEABEND and NOSAVEABEND
SAVEABEND and NOSAVEABEND

Default: NOSAVEABEND

Placement: Anywhere

Scope: The last SAVEABEND or NOSAVEABEND in the compilation unit applies
to the entire compilation unit.

Dependencies: SAVEABEND and NOINSPECT override each other (whichever is last is
active).

For the NMCOBOL compiler, SAVEABEND and NOSAVEABEND are
appropriate only if the program was compiled with RUNNABLE.

References: • INSPECT and NOINSPECT

• RUNNABLE

SAVEABEND

NOSAVEABEND

VST304.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-35

Compiler Directives SEARCH and NOSEARCH
SEARCH and NOSEARCH

object-name-list

SECTION

If you do not specify TANDEM or ANSI, the compiler assumes that the format of the
text is the current source-text format.

Note. The NMCOBOL compiler ignores the NOSEARCH directive and issues a warning.

Default: NOSEARCH

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: Must be used with either RUNNABLE or CONSULT if you are creating a
PIC object file

References: • RUNNABLE

• CONSULT and NOCONSULT

Default: None

Placement: Must be on a directive line of its own. If it appears in the text of the
compilation source file (the IN file), it is ignored.

Scope: Applies only to the section of text that it specifies

Dependencies: None

SEARCH object-name-list

NOSEARCH

()object-name-list

VST305.vsd

object-name

, object-name

VST306.vsd

SECTION text-name

TANDEM

ANSI

,

VST307.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-36

Compiler Directives SETTOG
SETTOG

toggle-number-list

Default value is all toggles.

Note. The SETTOG directive must either be on a directive line of its own or be the last of a
sequence of directives.

Default: None

Placement: Must either be on a directive line of its own or be the last of a sequence
of directives.

Scope: Applies until RESETTOG overrides it

Dependencies: None

References: RESETTOG

SETTOG

toggle-number-list

VST308.vsd

toggle-number

, toggle-number

VST299.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-37

Compiler Directives SHARED
SHARED

SHOWCOPY and NOSHOWCOPY

Note. The COBOL85 compiler does not recognize this directive.

Default: NON-SHARED

Placement: Anywhere

Scope: The last SHARED, CALL-SHARED, or NON-SHARED in the compilation
unit applies to the entire compilation unit.

Dependencies: • If RUNNABLE is active, SHARED uses the linker to create a PIC
library file (DLL); otherwise, SHARED creates a PIC linkfile.

• Do not use with CALL-SHARED, NON-SHARED, or UL.

References: • CALL-SHARED

• NON-SHARED

• RUNNABLE

• UL

Default: SHOWCOPY

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: SHOWCOPY works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

CALL-SHARED

NON-SHARED

VST804.vsd

SHARED

SHOWCOPY

NOSHOWCOPY

VST310.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-38

Compiler Directives SHOWFILE and NOSHOWFILE
SHOWFILE and NOSHOWFILE

Default: NOSHOWFILE

Placement: Anywhere

Scope: Applies until its opposite overrides it

Dependencies: None

SHOWFILE

NOSHOWFILE

VST311.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-39

Compiler Directives SOURCE
SOURCE

section-name-list

Default value is entire file.

Format of a source library:

section-text

Default: None

Placement: Must be the last directive on its line.

Dependencies: None

SOURCE edit-file-name

()section-name-list

VST312.vsd

,

section-name

section-name

VST313.vsd

pre-text

section-text

VST252.vsd

SECTION

format

text-name

,

?

text-line

VST253.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-40

Compiler Directives SQL and NOSQL
SQL and NOSQL

sql-option-list

sql-option

Note. The NMCOBOL compiler ignores the NOSQL directive and issues a warning.

Default: None. If the program contains SQL/MP statements, the SQL directive is
required; otherwise, it is unnecessary.

Placement: The COBOL85 compiler accepts SQL and NOSQL in either the source
code (before the first Identification Division in the program) or the
compiler command line; the NMCOBOL compiler accepts them only in
the compiler command line.

Scope: Applies to the compilation unit

Dependencies: SQL works only if LIST is active and SUPPRESS is not.

References: • LIST and NOLIST

• SUPPRESS and NOSUPPRESS

SQL

sql-option-list

NOSQL

()sql-option-list

VST315.vsd

sql-option

, sql-option

VST316.vsd

RELEASE1

PAGES

SQLMAP

WHENEVERLIST

num-pages

RELEASE2

VST317.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-41

Compiler Directives SQLMEM
SQLMEM
Note. The NMCOBOL compiler ignores this directive and issues a warning. The concept of
extended memory does not exist for TNS/R processes.

Default: SQLMEM EXT

Placement: The first SQLMEM in a program must be preceded by SQL. Subsequent
SQLMEMs can appear anywhere in the program.

Scope: Applies to all SQL/MP tatements between it and the next SQLMEM

Dependencies: SQLMEM is allowed only in programs that also contain SQL.

References: SQL and NOSQL

SQLMEM USER

EXT

VST318.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-42

Compiler Directives SUBSET
SUBSET

parameter-list

parameter

Note. Put this directive before the Identification Division header of the first program unit in the
compilation unit.

Default: None

Placement: Must appear before the first COBOL source program (that is, before the
first Identification Division header).

Scope: The last valid SUBSET in the program applies.

Dependencies: None

SUBSET parameter-list

()parameter-list

VST319.vsd

parameter

, parameter

VST320.vsd

HIGH

EXTENDED

DEB1

SEG1

SEG2

OBSOLETE

VST321.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-43

Compiler Directives SUBTYPE
SUBTYPE

SUPPRESS and NOSUPPRESS

Note. Do not use this directive in the OSS environment.

Default: SUBTYPE 0

Placement: Anywhere

Scope: The last SUBTYPE in the program applies.

Dependencies: For the NMCOBOL compiler, SUBTYPE is appropriate only if the
program was compiled with RUNNABLE.

References: RUNNABLE

Default: NOSUPPRESS

Placement: Accepted anywhere, but to suppress the compiler listing without altering
the source text, put SUPPRESS on the command line.

Scope: Applies until its opposite overrides it

Dependencies: SUPPRESS overrides LIST (and therefore, it also overrides CODE,
CROSSREF, ICODE, LMAP, MAP, SHOWCOPY, and SQL).

References: • LIST and NOLIST

• CODE and NOCODE

• CROSSREF and NOCROSSREF

• ICODE and NOICODE

• LMAP and NOLMAP

• MAP and NOMAP

• SHOWCOPY and NOSHOWCOPY

• SQL and NOSQL

SUBTYPE subtype-number

VST323.vsd

SUPPRESS

NOSUPPRESS

VST324.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-44

Compiler Directives SYMBOLS and NOSYMBOLS
SYMBOLS and NOSYMBOLS

Default: NOSYMBOLS

Placement: Accepted anywhere, but to affect a program other than the first program
in a compilation unit, SYMBOLS must follow either an ENDUNIT
directive or an END PROGRAM statement, which signals the end of the
preceding program’s Procedure Division.

If you want a symbol table for a given separately compiled program, put
SYMBOLS before its Identification Division header. If the compiler
encounters a subsequent SYMBOLS or NOSYMBOLS directive within
the text of that separately compiled program, it issues a warning and
ignores that directive.

Scope: Applies until its opposite overrides it

Dependencies: SYMBOLS does not work when SYNTAX is active.

For SYMBOLS to affect a program other than the first program in a
compilation unit, it must be preceded by either an ENDUNIT directive or
an END PROGRAM statement, which signals the end of the preceding
program’s Procedure Division.

References: • ENDUNIT

• SYNTAX

SYMBOLS

NOSYMBOLS

VST325.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-45

Compiler Directives SYNTAX
SYNTAX

TANDEM

Default: COMPILE

Placement: Outside the boundaries of a separately compiled program; that is, not
between the Identification Division header of a separately compiled
program and its end, which is marked by one of:

• The corresponding END PROGRAM statement
• ENDUNIT
• The end of the source file

Scope: The last COMPILE or SYNTAX in the compilation unit applies to the
entire compilation unit.

Dependencies: SYNTAX overrides RUNNABLE.

References: • ENDUNIT

• RUNNABLE

Default: TANDEM

Placement: Anywhere

Scope: TANDEM or ANSI within a section of text obtained from a copy library or
source library is effective only for the length of that text section. When
the compiler reverts to the source file where it found the COPY verb or
SOURCE directive, the previously active reference format applies.

Dependencies: None

References: ANSI

SYNTAX

COMPILE

VST326.vsd

TANDEM

ANSI

VST327.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-46

Compiler Directives TRAP2 and NOTRAP2
TRAP2 and NOTRAP2
Note. The NMCOBOL compiler, which has traps set by default, ignores these directives and
issues warnings.

Use the NOTRAP2 directive only during the process of conversion from COBOL 74 to
HP COBOL. It is provided to enable programs that do not include SIZE ERROR phrases to be
compiled and executed in HP COBOL without investing programmer time in analyzing the
potential for overflow problems. The availability of this directive might be discontinued after a
period of time.

Default: TRAP2

Placement: Anywhere

Scope: The last TRAP2 or NOTRAP2 before the END PROGRAM statement for
the outermost program applies to the entire separately compiled
program (the outermost program of a compilation and any programs
contained within it).

Dependencies: NOTRAP2-74 overrides TRAP2.

References: TRAP2-74 and NOTRAP2-74

TRAP2

NOTRAP2

VST328.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-47

Compiler Directives TRAP2-74 and NOTRAP2-74
TRAP2-74 and NOTRAP2-74

UL

Note. The NMCOBOL compiler, which cannot call COBOL 74 programs, ignores these
directives and issues warnings.

Use the NOTRAP2-74 directive only during the process of conversion from COBOL 74 to
HP COBOL. It is provided to enable programs that do not include SIZE ERROR phrases to be
compiled and executed in HP COBOL without investing programmer time in analyzing the
potential for overflow problems. The availability of this directive might be discontinued after a
period of time.

Default: TRAP2-74

Placement: Anywhere

Scope: The last TRAP2-74 or NOTRAP2-74 before the END PROGRAM
statement for the outermost program applies to the entire separately
compiled program (the outermost program of a compilation and any
programs contained within it).

Dependencies: NOTRAP2-74 overrides TRAP2.

References: TRAP2 and NOTRAP2

Note. The COBOL85 compiler does not recognize this directive.

Default: None

Placement: Before the first IDENTIFICATION DIVISION header of the first program
in the compilation unit

Scope: Applies to the compilation unit

Dependencies: • If RUNNABLE is active, UL uses the linker to create a PIC library file
(DLL); otherwise, UL creates a PIC linkfile.

• Do not use with CALL-SHARED, NON-SHARED, or SHARED.

References: • CALL-SHARED

• SHARED

TRAP2-74

NOTRAP2-74

VST329.vsd

UL

VST735.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-48

Compiler Directives WARN and NOWARN
WARN and NOWARN

Default: WARN

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: If LIST is not enabled, the last line of source text processed is also listed
to provide a point of reference for each warning message.

References: LIST and NOLIST

WARN

NOWARN

VST330.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-49

Compiler Directives WARN and NOWARN
HP COBOL Manual for TNS and TNS/R Programs—522555-006
36-50

37
Source Program Organization and
Format

• Separately Compiled Source Program

• Reference Format

Separately Compiled Source Program

end-program-header

Division syntax:

• Section 40, Identification Division

• Section 41, Environment Division

• Section 42, Data Division

• Section 43, Procedure Division

Identification Division

Environment Division

Data Division

Procedure Division

end-program-header

COBOL85 source program

VST373.vsd

PROGRAM .program-nameEND

VST374.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
37-1

Source Program Organization and Format Reference Format
Reference Format
• TANDEM

• ANSI

TANDEM

Figure 37-1. Tandem Reference Format

Table 37-1. Valid Indicator Field Characters (Tandem Reference Format)

Valid Character Character Name Means that the line is a …

? Question mark Compiler directive

* Asterisk Ordinary comment

/ Slash Comment to be printed at the top of the next page

D Uppercase D Debugging line

d Lowercase d Debugging line

- Hyphen Continuation line

Space Text line

Column:

Margin:

Area BArea A

Line

n <= 13221 3 4 5 6 7 8 9 10 ... n

Indicator Area

C A B R

VST500.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
37-2

Source Program Organization and Format ANSI
ANSI

Figure 37-2. ANSI Reference Format

Table 37-2. Valid Indicator Area Characters (ANSI Reference Format)

Valid Character Character Name Indicates that the line is a …

? Question mark Compiler directive

* Asterisk Ordinary comment

/ Slash Comment to be printed at the top of a page

D Uppercase D Debugging line

d Lowercase d Debugging line

- Hyphen Continuation line

Column:

Margin:

Area BArea A

87 9 10 11 12 72 73 ... 80

Line

Indicator Field

C A B R

...

Identification Field

1 2 3 4 5 6

L

Sequence
Number
Area

VST524.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
37-3

Source Program Organization and Format ANSI
HP COBOL Manual for TNS and TNS/R Programs—522555-006
37-4

38
Language Elements and
Expressions

• COBOL Character Set

• Character-Strings

• Arithmetic Expressions

• Conditional Expressions

• Concatenation Expressions

See also Section 21, Reserved Words.

COBOL Character Set

• Table 38-1, Alphanumeric Characters (for COBOL Words), on page 38-2

• Table 38-2, Punctuation Characters, on page 38-2

• Table 38-3, Special Characters, on page 38-2

Figure 38-1. COBOL Character Set

COBOL Character Set

Alphanumeric Characters
(for COBOL words)

Letters
(A – Z

 a – z)

Digits
(0 – 9)

Hyphen
(–)

Special Characters

 Punctuation Characters

VST503.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-1

Language Elements and Expressions COBOL Character Set
Table 38-1. Alphanumeric Characters (for COBOL Words)

Characters Name of Character Set

0 through 9 Digits

A through Z Uppercase letters

a through z Lowercase letters

- Hyphen or minus sign

Table 38-2. Punctuation Characters

Character Name of Character

 Space

, Comma

; Semicolon

: Colon

. Period

" Quotation mark

(Left parenthesis

) Right parenthesis

= Equal sign

Table 38-3. Special Characters

Character Name of Character

+ Plus sign

- Hyphen or minus sign

* Asterisk

/ Stroke or slash

$ Dollar sign

> Greater than sign

< Less than sign
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-2

Language Elements and Expressions Character-Strings
Character-Strings
• COBOL Word

• Literals

• PICTURE Character-Strings

COBOL Word

Maximum length: 30 characters.

Literals

• Numeric Literals

° Decimal Numeric Literal

° Hexadecimal Numeric Literal

• Nonnumeric Literals

° Simple Nonnumeric Literal

° Hexadecimal Nonnumeric Literal

• National Literal

• Figurative Constants

Decimal Numeric Literal

Maximum number of digits in one decimal numeric literal: 18.

char-1

char-n
ns

ns

VST741.vsd

digits

digits

ns

digits
ns

+

-

dp

ns
dp

ns

VST743.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-3

Language Elements and Expressions Literals
Hexadecimal Numeric Literal

Maximum number of hexadecimal digits: 16 (8 pairs).

Simple Nonnumeric Literal

Maximum number of characters: 160.

Hexadecimal Nonnumeric Literal

Maximum number of hexadecimal digits: 320 (160 pairs).

National Literal

Maximum number of characters: 160.

VST612.vsd

"H hex-digit hex-digit "
nsns nsns

ns

VST744.vsd

" char "

"X hex-digit hex-digit "
ns ns ns ns

ns

VST613.vsd

" char "
N

n

VST745.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-4

Language Elements and Expressions Literals
Figurative Constants

Table 38-4. Figurative Constants

Figurative Constant * What It Represents

ZERO
ZEROS
ZEROES

One or more of the character zero (0), depending on the context

SPACE
SPACES

One or more spaces, depending on the context

HIGH-VALUE
HIGH-VALUES

One or more of the character that has the highest position in the
program collating sequence, except in the SPECIAL-NAMES
paragraph, where it represents the character that has the
highest position in the ASCII character set (the 256th character,
which is all binary ones) or in the national character set (default
is hexadecimal FFFF)

LOW-VALUE
LOW-VALUES

One or more of the character that has the lowest position in the
program collating sequence, except in the SPECIAL-NAMES
paragraph, where it represents the character that has the lowest
position in the ASCII character set (the first character, the NUL,
which is all binary zeros) or in the national character set (default
is hexadecimal 0000)

QUOTE
QUOTES

One or more of the character quotation mark (")

You cannot use either of these words instead of quotation marks
to enclose a nonnumeric literal.

symbolic-character One or more of the character specified as the value of
symbolic-character in the SYMBOLIC CHARACTERS
clause of the SPECIAL-NAMES paragraph

ALL literal The value of literal must contain one or more of:

• A nonnumeric literal

• A national literal

• A symbolic-character

• One of the other reserved words previously defined as
figurative constants (except that you cannot precede an ALL
literal form of figurative constant with another ALL)

When literal is a nonnumeric literal or a national literal, this
form implies repetition of the literal’s value to the extent required
by the context. For the other cases, the word ALL is redundant
and is used for readability only.

* Singular and plural forms are equivalent and can be used interchangeably.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-5

Language Elements and Expressions PICTURE Character-Strings
PICTURE Character-Strings

• PICTURE Character-String Editing Characters

• Precedence Rules for PICTURE Symbols

• Precedence Rules for PICTURE Symbols

Table 38-5. PICTURE Character-String Editing Characters

Character Editing Operation

B Space insertion

Z Zero suppression

0 Zero

+ Plus

- Minus

CR Credit

DB Debit

* Check protect

$ Currency sign

, Comma or decimal point

. Period or decimal point

/ Slash
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-6

Language Elements and Expressions PICTURE Character-Strings
Figure 38-2. Precedence Rules for PICTURE Symbols

Floating
Insertion
Symbols

Other
Symbols

cs = currency symbol

VST525.vsd

Non-
Floating
Insertion
Symbols

Second
Symbol B 0 / , .

+
–

cs
Z
*

Z
*

cs cs 9
A
X

S V P P
CR
DB

B

0

/

,

.

+ -

+ -

CR DB

cs

Z *

Z *

+ -

+ -

cs

cs

9

A X

S

V

P

P

Nonfloating
Insertion Symbols

Floating
Insertion Symbols

Other
Symbols

x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x x xx x

x x x x x x x x x x x xx x

x

x x x x x x

x x x x x x x x x

x

x

x x x x x x

x x x x x x x x x

x x x x x x

x x x x x x x x x

x x x x x x x x x x xxxxx

x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x

+
–

+
–

+
–

First
Symbol
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-7

Language Elements and Expressions Arithmetic Expressions
Arithmetic Expressions

• Table 38-6, Arithmetic Operators, on page 38-8

• Table 38-7, Hierarchy of Operators, on page 38-8

• Table 38-8, Precedence in Arithmetic Expressions, on page 38-9

• Table 38-9, Operator-Operand Combinations, on page 38-9

Table 38-6. Arithmetic Operators

Operator

MeaningSymbol Kind

+ Unary Multiplication by +1

Binary Addition

- Unary Multiplication by -1

Binary Subtraction

* Binary Multiplication

/ Binary Division

** Binary Exponentiation

Table 38-7. Hierarchy of Operators

Hierarchy Operators

1st Unary plus and minus

2nd Exponentiation

3rd Multiplication and division

4th Addition and subtraction

+
-

num-id

+

-

**

num-lit

arith-expr

()arith-expr

*

/

arith-expr

VST739.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-8

Language Elements and Expressions Conditional Expressions
Conditional Expressions
• Simple Relation Condition

• Simple Class Condition

• Simple Sign Condition

• Negated Condition

• Combined Condition

• Abbreviated Combined Relation Condition

Simple Relation Condition

• Nonpointer Operands

• Pointer Operands

Table 38-8. Precedence in Arithmetic Expressions

Ambiguous Interpretation

A / B * C (A / B) * C

A / B / C (A / B) / C

A ** B ** C (A ** B) ** C

A + B / C + D ** E * F - G ((A + (B / C)) + ((D ** E) * F)) - G

Table 38-9. Operator-Operand Combinations

First Element

Successor Element

Variable
Binary Operator
+ - * / **

Unary Operator
+ or - ()

Identifier or literal No Yes No No Yes

Binary Operator
+ - * / **

Yes No Yes Yes No

Unary Operator
+ or -

Yes No No Yes No

(Yes No Yes Yes No

) No Yes No No Yes
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-9

Language Elements and Expressions Simple Relation Condition
Nonpointer Operands

relationship

subject

IS

objectrelationship

VST118.vsd

GREATER

LESS

EQUAL

OR

TO

EQUAL

=

>=

<

>

<=

NOT THAN

TO

GREATER

LESS THAN

VST119.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-10

Language Elements and Expressions Simple Class Condition
Pointer Operands

pointer-subject
pointer-object

relationship

Simple Class Condition

pointer-subject

IS

pointer-objectrelationship

VST602.vsd

NULL

OFADDRESS identifier-1

identifier-2

NULLS

VST603.vsd

=

EQUAL

TONOTIS

VST604.vsd

identifier

NUMERIC

ALPHABETIC

ALPHABETIC-LOWER

ALPHABETIC-UPPER

class-name

IS NOT

VST120.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-11

Language Elements and Expressions Simple Sign Condition
Simple Sign Condition

Negated Condition

Combined Condition

Abbreviated Combined Relation Condition

combined-part

arithmetic-expression

POSITIVE

NEGATIVE

ZERO

IS NOT

VST121.vsd

NOT simple-condition

condition()

VST122.vsd

condition AND

OR

condition

VST123.vsd

rel-condition combined-part

VST124.vsd

NOT

AND

OR

object

rel-operator

VST125.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-12

Language Elements and Expressions Concatenation Expressions
Concatenation Expressions

Table 38-10. Maximum Length of Result of Concatenation Expression

Class of Operands Length of Result

Alphanumeric 160 alphanumeric character positions

National 80 national character positions

A figurative constant occupies one character position.

Table 38-11. Class of Result of Concatenation Expression

Number of Operands That
Are Figurative Constants Class of Result

0 Same class as the operands
(neither of which is a figurative constant)

1 Same class as the other operand
(which is not a figurative constant)

2 Alphanumeric

literal-1

figurative-constant

& literal-2

figurative-constant

concatenation-expr

VST801.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-13

Language Elements and Expressions Concatenation Expressions
HP COBOL Manual for TNS and TNS/R Programs—522555-006
38-14

39 Data References

• Qualified Condition-Name

• Qualified Data-Name

• Qualified Paragraph-Name

• Qualified Text-Name

• Qualified LINAGE-COUNTER

• Qualified Identifier

• Subscripted Table Element

• Reference Modifier

• OSS Pathname for OSS File

• OSS Pathname for Guardian File

Qualified Condition-Name

Qualified Data-Name

condition-name OF

IN

conditional-variable-name

mnemonic-name

VST001.vsd

data-name

OF

IN

file-name

OF

IN

data-name

VST002.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
39-1

Data References Qualified Paragraph-Name
Qualified Paragraph-Name

Qualified Text-Name

Qualified LINAGE-COUNTER

Qualified Identifier

paragraph-name OF

IN

section-name

VST003.vsd

OF

IN

text-name library-name

VST004.vsd

VST005.vsd

LINAGE-COUNTER OF

IN

file-name

data-name

OF

IN

(leftmost-character-position

)

length

qualified-name

subscript()

:

VST009.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
39-2

Data References Subscripted Table Element
Subscripted Table Element

subscript

Reference Modifier

OSS Pathname for OSS File

condition-name

data-name ()subscript

VST006.vsd

integer

qualified-name

index-name

+ offset

-

VST007.vsd

identifier

)leftmost-character-position

length

(:

VST008.vsd

/ /

/E/OSS
ns ns

ns ns ns

node

directory

filename

VST634.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
39-3

Data References OSS Pathname for Guardian File
OSS Pathname for Guardian File

GUARDIAN

/E/

OSS
ns

ns
"

node

file-id-1

device

file-id-2
ns

"
ns

ns

VST734.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
39-4

40 Identification Division

PROGRAM-ID paragraph

program-kind

.DIVISIONIDENTIFICATION

PROGRAM-ID paragraph

«AUTHOR paragraph»

«INSTALLATION paragraph»

«DATE-WRITTEN paragraph»

«DATE-COMPILED paragraph»

«SECURITY paragraph»

VST010.vsd

.PROGRAM-ID program-name

IS

program-type

.

PROGRAM

VST011.vsd

INITIAL

COMMON

COMMON

INITIAL

VST012.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
40-1

Identification Division
«AUTHOR paragraph»

«INSTALLATION paragraph»

«DATE-WRITTEN paragraph»

«DATE-COMPILED paragraph»

«SECURITY paragraph»

AUTHOR .

comment-entry

VST400.vsd

VST401.vsd

INSTALLATION .

comment-entry

DATE-WRITTEN .

comment-entry

VST402.vsd

DATE-COMPILED .

comment-entry

VST013.vsd

SECURITY .

comment-entry

VST404.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
40-2

41 Environment Division

• Configuration Section

• Input-Output Section

Configuration Section

• SOURCE-COMPUTER Paragraph

• OBJECT-COMPUTER Paragraph

• SPECIAL-NAMES Paragraph

DIVISIONENVIRONMENT

CONFIGURATION section

INPUT-OUTPUT section

.

VST014.vsd

VST015.vsd

.SECTIONCONFIGURATION

SPECIAL-NAMES paragraph

SOURCE-COMPUTER paragraph

OBJECT-COMPUTER paragraph
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-1

Environment Division SOURCE-COMPUTER Paragraph
SOURCE-COMPUTER Paragraph

OBJECT-COMPUTER Paragraph

«MEMORY-SIZE clause»

VST016.vsd

.SOURCE-COMPUTER

name

WITH

DEBUGGING MODE

.

.OBJECT-COMPUTER

name

«MEMORY-SIZE clause»

PROGRAM COLLATING SEQUENCE clause

«SEGMENT-LIMIT clause»

CHARACTER-SET clause

.

VST017.vsd

SIZE

MEMORY integer WORDS

MODULES

CHARACTERS

VST018.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-2

Environment Division OBJECT-COMPUTER Paragraph
PROGRAM COLLATING SEQUENCE clause

«SEGMENT-LIMIT clause»

CHARACTER-SET clause

PROGRAM

IS

alphabet-name

COLLATING

SEQUENCE

VST019.vsd

VST020.vsd

segment-numberSEGMENT-LIMIT

IS

character-set-typeCHARACTER-SET

IS

VST021.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-3

Environment Division SPECIAL-NAMES Paragraph
SPECIAL-NAMES Paragraph

System-Name clause

STATUS phrase

SPECIAL-NAMES

System-Name clause

File-Mnemonic clause

ALPHABET clause

SYMBOLIC CHARACTERS clause

CLASS clause

.

CURRENCY SIGN clause

DECIMAL-POINT clause

.

VST022.vsd

system-name IS mnemonic-name

STATUS phrase

VST023.vsd

on-phrase

off-phrase

off-phrase

on-phrase

VST746.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-4

Environment Division SPECIAL-NAMES Paragraph
on-phrase

off-phrase

File-Mnemonic clause

ALPHABET clause

ON

ISSTATUS

switch-on

VST025.vsd

switch-offOFF

ISSTATUS

VST026.vsd

FILE system-file-name

define-name-literal

file-mnemonic

system-file-name-word

IS

VST027.vsd

ALPHABET alphabet-name

STANDARD-1

STANDARD-2

NATIVE

EBCDIC

literal-phrase

IS

VST028.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-5

Environment Division SPECIAL-NAMES Paragraph
literal-phrase

SYMBOLIC-CHARACTERS clause

character-list

CLASS clause

literal-phrase

ALSO literal-3

THROUGH literal-2

THRU

literal-1

VST029.vsd

SYMBOLIC character-list

CHARACTERS

VST030.vsd

symbolic-char

IN

ARE

IS position

alphabet-name

VST031.vsd

CLASS class-name literal-phraseIS

VST032.vsd

THRU

THROUGH

literal-1

literal-2

VST033.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-6

Environment Division Input-Output Section
CURRENCY-SIGN clause

DECIMAL-POINT clause

Input-Output Section

• FILE-CONTROL Paragraph

• I-O-CONTROL Paragraph

• RECEIVE-CONTROL Paragraph

CURRENCY

SIGN IS

sign

VST034.vsd

DECIMAL-POINT

IS

COMMA

VST380.vsd

.SECTIONINPUT-OUTPUT

RECEIVE-CONTROL paragraph

I-O-CONTROL paragraph

FILE-CONTROL paragraph

VST035.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-7

Environment Division FILE-CONTROL Paragraph
FILE-CONTROL Paragraph

file-control-entry

• Sequential File

• Line Sequential File

• Relative File

• Indexed File

• Queue File

• Sort-Merge File

Sequential File

.FILE-CONTROL file-control-entry

VST036.vsd

.SELECT clause ASSIGN clause

RESERVE clause

ORGANIZATION clause

PADDING CHARACTER clause

RECORD DELIMITER clause

ACCESS MODE clause

ALTERNATE RECORD KEY clause

FILE STATUS clause

VST037.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-8

Environment Division FILE-CONTROL Paragraph
SELECT clause

ASSIGN clause

RESERVE clause

ORGANIZATION clause

PADDING CHARACTER clause

RECORD DELIMITER clause

SELECT file-name

OPTIONAL

VST038.vsd

ASSIGN

TO define-name-literal

system-file-name

VST039.vsd

RESERVE

AREAS

AREAnumber

VST040.vsd

ORGANIZATION IS

SEQUENTIAL

VST041.vsd

VST042.vsd

PADDING

CHARACTER IS

pad-char

RECORD DELIMITER

IS

STANDARD-1

rec-delim

VST043.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-9

Environment Division FILE-CONTROL Paragraph
ACCESS MODE clause

ALTERNATE RECORD KEY clause

FILE STATUS clause

Line Sequential File

ACCESS

IS

SEQUENTIAL

MODE

VST044.vsd

RECORD

KEY IS

alt-key

WITH DUPLICATES

ALTERNATE

VST045.vsd

STATUS

ISFILE

filestat

VST046.vsd

.

RESERVE clause

ORGANIZATION clause

ACCESS MODE clause

FILE STATUS clause

SELECT clause ASSIGN clause

VST624.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-10

Environment Division FILE-CONTROL Paragraph
SELECT clause

ASSIGN clause

RESERVE clause

Ignored.

ORGANIZATION clause

ACCESS MODE clause

FILE STATUS clause

SELECT file-name

OPTIONAL

VST038.vsd

ASSIGN

TO

system-file-name

VST640.vsd

SEQUENTIALLINE

ISORGANIZATION

VST625.vsd

ACCESS

IS

SEQUENTIAL

MODE

VST044.vsd

STATUS

ISFILE

filestat

VST046.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-11

Environment Division FILE-CONTROL Paragraph
Relative File

SELECT clause

ASSIGN clause

RESERVE clause

.SELECT clause ASSIGN clause

RESERVE clause

ORGANIZATION clause

ACCESS MODE clause

ALTERNATE RECORD KEY clause

FILE STATUS clause

VST047.vsd

SELECT file-name

OPTIONAL

VST038.vsd

ASSIGN

TO define-name-literal

system-file-name

VST039.vsd

RESERVE

AREAS

AREAnumber

VST040.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-12

Environment Division FILE-CONTROL Paragraph
ORGANIZATION clause

ACCESS MODE clause

RELATIVE KEY clause

ALTERNATE RECORD KEY clause

FILE STATUS clause

ORGANIZATION IS

RELATIVE

VST048.vsd

ACCESS

MODE

SEQUENTIAL

RANDOM RELATIVE KEY clause

IS

DYNAMIC

VST049.vsd

RELATIVE

KEY

rel-key

IS

VST050.vsd

RECORD

KEY IS

alt-key

WITH DUPLICATES

ALTERNATE

VST045.vsd

STATUS

ISFILE

filestat

VST046.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-13

Environment Division FILE-CONTROL Paragraph
Indexed File

SELECT clause

ASSIGN clause

RESERVE clause

SELECT clause ASSIGN clause

RESERVE clause

ORGANIZATION clause

.

ACCESS MODE clause

ALTERNATE RECORD KEY clause

FILE STATUS clause

RECORD KEY clause

VST051.vsd

SELECT file-name

OPTIONAL

VST038.vsd

ASSIGN

TO define-name-literal

system-file-name

VST039.vsd

RESERVE

AREAS

AREAnumber

VST040.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-14

Environment Division FILE-CONTROL Paragraph
ORGANIZATION clause

ACCESS MODE clause

RECORD KEY clause

ALTERNATE RECORD KEY clause

FILE STATUS clause

ORGANIZATION IS

INDEXED

VST052.vsd

ACCESS

MODE IS

SEQUENTIAL

RANDOM

DYNAMIC

VST053.vsd

RECORD

KEY IS

reckey

VST054.vsd

RECORD

KEY IS

alt-key

WITH DUPLICATES

ALTERNATE

VST045.vsd

STATUS

ISFILE

filestat

VST046.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-15

Environment Division FILE-CONTROL Paragraph
Queue File

For descriptions of clauses, see Indexed File.

Sort-Merge File

SELECT clause

ASSIGN clause

SELECT clause ASSIGN clause

RESERVE clause

ORGANIZATION clause

.

ACCESS MODE clause

FILE STATUS clause

RECORD KEY clause

VST740.vsd

SELECT clause ASSIGN clause .

VST055.vsd

SELECT sd-name

VST056.vsd

ASSIGN

TO define-name-literal

system-file-name

VST039.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-16

Environment Division I-O-CONTROL Paragraph
I-O-CONTROL Paragraph

• Line Sequential File

• All Other File Types

Line Sequential File

For descriptions of clauses, see All Other File Types.

All Other File Types

.I-O-CONTROL

«RERUN clause»

SAME AREA clause

.

VST632.vsd

.I-O-CONTROL

«RERUN clause»

SAME AREA clause

«MULTIPLE FILE clause»

.

VST057.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-17

Environment Division I-O-CONTROL Paragraph
«RERUN clause»

rerun-file-2-phrase

SAME AREA clause

Note. The 1985 COBOL standard classifies the RERUN clause as obsolete, so you are
advised not to use it.

RERUN

ON rerun-file

system-name

EVERY

units CLOCK-UNITS

condition

rerun-file-2-phrase

VST058.vsd

recs RECORDS

END OF

REEL

UNIT

OF rerun-file-2

VST059.vsd

AREA

RECORD

FOR

SAME

same-file

MERGE

SORT

VST060.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-18

Environment Division RECEIVE-CONTROL Paragraph
«MULTIPLE FILE clause»

RECEIVE-CONTROL Paragraph

TABLE OCCURS phrase

FILE

CONTAINS

MULTIPLE

TAPE

tape-file

POSITION position

VST061.vsd

.RECEIVE-CONTROL

TABLE OCCURS phrase

SYNCDEPTH LIMIT phrase

REPLY CONTAINS phrase

ERROR CODE phrase

MESSAGE SOURCE phrase

REPORT phrase

EXTERNAL .

VST063.vsd

TABLE table-lengthOCCURS

TIMESEXTENDED-STORAGE

VST064.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-19

Environment Division RECEIVE-CONTROL Paragraph
SYNCDEPTH LIMIT phrase

REPLY CONTAINS phrase

ERROR CODE phrase

MESSAGE SOURCE phrase

REPORT phrase

SYNCDEPTH

LIMIT

sync-id

IS

VST065.vsd

REPLY

CONTAINS

reply-length

file-name

CHARACTERS

RECORD

VST066.vsd

ERROR

CODE

error

IS

VST067.vsd

MESSAGE

SOURCE message

IS

VST068.vsd

REPORT message-type

MESSAGES

VST069.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-20

Environment Division RECEIVE-CONTROL Paragraph
message-type

Non-CRE environment:

CRE:

ABEND NEWPROCESSNOWAIT-COMPLETION

BREAK NODE-DOWN

CLOSE NODE-UP

CONTROL OPEN

CONTROLBUF POWER-ON

CPU-DOWN PROCESS-DELETION

CPU-UP PROCESS-TIME-SIGNAL

DEVICE-INFO REMOTE-CPU-DOWN

DEVICE-INFO-2-COMPLETION REMOTE-CPU-UP

JOB-PROCESS-CREATION RESETSYNC

LOGICAL-CLOSE SETMODE

LOGICAL-OPEN SETPARAM

MEMORY-LOCK-COMPLETION SETTIME

MEMORY-LOCK-FAILURE STATUS-3270

MESSAGE-CANCELLED STOP

MESSAGE-MISSED SYSTEM

NETWORK TIME-SIGNAL

NEWPROCESS-COMPLETION

BREAK NEWPROCESSNOWAIT-COMPLETION

CLOSE NODE-DOWN

CONTROL NODE-UP

CONTROLBUF OPEN

CPU-DOWN PATHSEND-DIALOG-ABORT

CPU-UP POWER-ON

DEVICE-INFO PROCESS-CREATE-COMPLETION

DEVICE-INFO-2-COMPLETION PROCESS-DELETION

FILE-GETINFOBYNAME-
COMPLETION

PROCESS-TIME-SIGNAL

FILE-FILENAME-COMPLETION REMOTE-CPU-DOWN

JOB-PROCESS-CREATION REMOTE-CPU-UP

LOGICAL-CLOSE RESETSYNC

LOGICAL-OPEN SETMODE

MEMORY-LOCK-COMPLETION SETPARAM
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-21

Environment Division RECEIVE-CONTROL Paragraph
MEMORY-LOCK-FAILURE SETTIME

MESSAGE-CANCELLED STATUS-3270

MESSAGE-MISSED SYSTEM

NETWORK TIME-SIGNAL

NEWPROCESS-COMPLETION
HP COBOL Manual for TNS and TNS/R Programs—522555-006
41-22

42 Data Division

FILE Section

FD-entry

SD-entry

.DATA DIVISION

LINKAGE Section

EXTENDED-STORAGE Section

WORKING-STORAGE Section

FILE Section

VST070.vsd

.FILE SECTION

SD-entry

66-or-88

66-or-88

FD-entry

66-or-88

VST071.vsd

file-descriptionFD 01-data-description

VST072.vsd

sort-merge-file-descriptionSD 01-data-description

VST073.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-1

Data Division
WORKING-STORAGE Section

EXTENDED-STORAGE Section

LINKAGE Section

.WORKING-STORAGE SECTION

01-data-description

77-data-description

66-or-88

VST094.vsd

EXTENDED-STORAGE .SECTION

01-data-description

77-data-description

66-or-88

VST095.vsd

LINKAGE .SECTION

01-data-description

77-data-description

66-or-88

VST096.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-2

Data Division File Descriptions
File Descriptions
• Sequential File

• Line Sequential File

• Relative, Indexed, or Queue File

• Sort-Merge File

Sequential File

file-name .

BLOCK CONTAINS clause

RECORD CONTAINS clause

«LABEL RECORDS clause»

«VALUE OF clause»

«DATA RECORDS clause»

LINAGE clause

CODE-SET clause

REPORT clause

EXTERNAL clause

GLOBAL clause

VST074.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-3

Data Division Sequential File
EXTERNAL clause

GLOBAL clause

BLOCK CONTAINS clause

RECORD CONTAINS clause

contains-fixed-phrase

EXTERNAL

IS

VST075.vsd

GLOBAL

IS

VST076.vsd

blk-1CONTAINS

BLOCK

RECORDS

TO

blk-2

CHARACTERS

VST077.vsd

RECORD contains-phrase-fixed

«contains-phrase-range»

VARYING phrase

VST078.vsd

length-fixed

CONTAINS CHARACTERS

VST079.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-4

Data Division Sequential File
«contains-phrase-range»

VARYING phrase

«LABEL RECORDS clause»

«VALUE OF clause»

TOlength-min length-max

CONTAINS

CHARACTERS

VST405.vsd

IS

VARYING

IN SIZE

FROM

length-min

DEPENDING length-var

TO length-max

ON

CHARACTERS

VST092.vsd

LABEL

OMITTED

STANDARD

RECORDS

RECORD

IS

ARE

VST083.vsd

VALUE OF label-name

OF

label-value

VST084.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-5

Data Division Sequential File
«DATA RECORDS clause»

LINAGE clause

CODE-SET clause

REPORT clause

DATA rec-name

RECORDS

RECORD

IS

ARE

VST085.vsd

LINAGE

IS

body

LINES

WITH

footFOOTING

AT

LINES

LINES

topTOP

AT

bottomBOTTOM

AT

VST086.vsd

CODE-SET

IS

alphabet-name

VST087.vsd

REPORTS

REPORT

ARE

report

IS

VST088.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-6

Data Division Line Sequential File
Line Sequential File

For descriptions of clauses, see Sequential File.

file-name .

RECORD CONTAINS clause

«LABEL RECORDS clause»

«VALUE OF clause»

«DATA RECORDS clause»

REPORT clause

EXTERNAL clause

GLOBAL clause

VST633.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-7

Data Division Relative, Indexed, or Queue File
Relative, Indexed, or Queue File

For descriptions of clauses, see Sequential File.

Sort-Merge File

RECORD CONTAINS clause

file-name .

BLOCK CONTAINS clause

RECORD CONTAINS clause

«LABEL RECORDS clause»

«VALUE OF clause»

«DATA RECORDS clause»

EXTERNAL clause

GLOBAL clause

VST637.vsd

.file-name

RECORD CONTAINS clause

DATA RECORDS clause

VST089.vsd

RECORD CONTAINS phrase

VARYING phrase

VST090.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-8

Data Division Data Descriptions
CONTAINS phrase

VARYING phrase

DATA RECORDS clause

Data Descriptions
• Record Item (Levels 01 through 49)

• Level-66 Item

• Level-77 Item

• Level-88 Item

• Clause for Data Descriptions in the Linkage Section

length-fixed

length-min TO length-max

CHARACTERS

CONTAINS

VST091.vsd

IS

VARYING

IN SIZE

FROM

length-min

DEPENDING length-var

TO length-max

ON

CHARACTERS

VST092.vsd

DATA

RECORDS

RECORD

IS

ARE

data-name

VST093.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-9

Data Division Record Item (Levels 01 through 49)
Record Item (Levels 01 through 49)

level

data-name-1

FILLER

USAGE clause

SIGN clause

OCCURS clause

SYNCHRONIZED clause

EXTERNAL clause

GLOBAL clause

PICTURE clause

JUSTIFIED clause

VALUE clause

REDEFINES clause

BLANK WHEN ZERO clause

.

VST098.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-10

Data Division Record Item (Levels 01 through 49)
USAGE clause

SIGN clause

BINARY

COMPUTATIONAL

COMP

DISPLAY

INDEX

NATIVE-2

NATIVE-4

NATIVE-8

PACKED-DECIMAL

USAGE IS

COMPUTATIONAL-3

COMP-3

COMPUTATIONAL-5

COMP-5

POINTER

VST099.vsd

LEADING

TRAILING

SEPARATE

CHARACTER

SIGN IS

VST100.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-11

Data Division Record Item (Levels 01 through 49)
OCCURS clause

For a fixed-size table:

For a variable-size table:

key-order

OCCURS

INDEXED

BY

index

key-order

max

TIMES

VST104.vsd

DEPENDING

min TO max

TIMES

ON

depend

INDEXED

BY

index

key-order

OCCURS

VST106.vsd

ASCENDING

DESCENDING KEY IS

key

VST105.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-12

Data Division Level-66 Item
SYNCHRONIZED clause

Level-66 Item

Level-77 Item

SYNCHRONIZED

SYNC LEFT

RIGHT

VST101.vsd

.

THRU

66

THROUGH

RENAMES

end-name

old-namenew-name

VST109.vsd

77 data-name-1

SIGN clause

OCCURS clause

SYNCHRONIZED clause

JUSTIFIED clause

VALUE clause

BLANK WHEN ZERO clause

INDEX

USAGE IS

PICTURE clause

REDEFINES data-name-2FILLER

VST110.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-13

Data Division Level-88 Item
Level-88 Item

Clause for Data Descriptions in the Linkage Section

88 condition-name VALUE

IS

VALUES

ARE

value-1

THRU

value-2THROUGH

VST112.vsd

ACCESS MODE IS EXTENDED-STORAGE

STANDARD

VST097.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
42-14

43 Procedure Division

declaratives-portion

USING

PROCEDURE

parameter

DIVISION

.
declaratives-portion

paragraph

section

VST113.vsd

section-name

use-sentence

DECLARATIVES .

DECLARATIVES .END

SECTION

segment-number

.

paragraph section

VST117.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-1

Procedure Division
section

paragraph

sentence

statement

See Statements:.

procedure

Statements:

• ACCEPT With Mnemonic-Name

• ACCEPT With DATE, DAY, DAY-OF-WEEK, or TIME Phrase

• ADD TO

• ADD GIVING

• ADD CORRESPONDING

section-name

sentence paragraph

SECTION

segment-number

.

VST116.vsd

paragraph-name .
sentence

VST115.vsd

statement .

VST114.vsd

section

paragraph

VST415.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-2

Procedure Division
• ALTER

• CALL

• CANCEL

• CHECKPOINT

• CLOSE for Sequential and Line Sequential Files

• CLOSE for Relative, Indexed, and Queue Files

• COMPUTE

• CONTINUE

• COPY

• DELETE

• DISPLAY

• DIVIDE INTO

• DIVIDE GIVING

• DIVIDE GIVING REMAINDER

• ENTER

• ENTER COBOL

• EVALUATE

• EXIT

• Unconditional GO TO

• Conditional GO TO

• Delimited-Scope IF

• Conditional IF

• INITIALIZE

• INSPECT TALLYING

• INSPECT REPLACING

• INSPECT TALLYING REPLACING

• INSPECT CONVERTING

• LOCKFILE

• MERGE

• MOVE TO
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-3

Procedure Division
• MOVE CORRESPONDING

• MULTIPLY BY

• MULTIPLY GIVING

• OPEN

• Unconditional PERFORM

• PERFORM TIMES

• PERFORM UNTIL

• PERFORM VARYING

• READ for Sequential or Dynamic Access

• READ for Line Sequential Access

• READ for Random or Dynamic Access

• RELEASE

• REPLACE

• RETURN

• REWRITE for Sequential, Relative, Indexed, and Queue Files

• REWRITE for Line Sequential Files

• SEARCH VARYING

• SEARCH ALL

• SET TO for Pointer Data Items

• SET TO for Nonpointer Data Items

• SET UP or SET DOWN for Pointer Data Items

• SET UP or SET DOWN for Nonpointer Data Items

• SORT

• START

• STARTBACKUP

• STOP

• STRING

• SUBTRACT FROM

• SUBTRACT GIVING

• SUBTRACT CORRESPONDING
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-4

Procedure Division ACCEPT With Mnemonic-Name
• UNLOCKFILE

• UNLOCKRECORD

• UNSTRING

• USE DEBUGGING

• USE AFTER EXCEPTION

• WRITE for Sequential Files

• WRITE for Line Sequential Files

• WRITE for Relative, Indexed, and Queue Files

ACCEPT With Mnemonic-Name

ACCEPT With DATE, DAY, DAY-OF-WEEK, or
TIME Phrase

FROM

ACCEPT accept-name

mnemonic-name

VST126.vsd

FROMACCEPT accept-name DATE

DAY

DAY-OF-WEEK

TIME

YYYYMMDD

YYYYDDD

VST127.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-5

Procedure Division ADD TO
ADD TO

ADD addend TO

result

ROUNDED

END-ADD

ON

SIZE ERROR

NOT

imperative-stmt-2

imperative-stmt-1

ON

SIZE ERROR

VST128.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-6

Procedure Division ADD GIVING
ADD GIVING

ADD addend

END-ADD

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

ROUNDED

result

TO

addend GIVING

VST129.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-7

Procedure Division ADD CORRESPONDING
ADD CORRESPONDING

ALTER

ADD CORRESPONDING

CORR

ON

SIZE ERROR

group-1 TO group-2

ROUNDED

ON

SIZE ERROR

imperative-stmt-1

NOT

imperative-stmt-2

END-ADD

VST130.vsd

ALTER paragraph-name TO

PROCEED TO

destination

VST131.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-8

Procedure Division CALL
CALL

called-entity

USING phrase

on-phrase

CALL called-entity

USING phrase

on-phrase

historical-on-phrase

END-CALL

not-on-phrase

VST132.vsd

identifier

program-name

OF

IN

file-mnemonic

VST133.vsd

USING

BY

REFERENCE

CONTENT

parameter-1

VALUE parameter-2

VST134.vsd

excp-imperative-statementEXCEPTION

ON

VST615.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-9

Procedure Division CANCEL
historical-on-phrase

not-on-phrase

CANCEL

excp-imperative-statementEXCEPTION

ON OVERFLOW

VST135.vsd

non-excp-imperative-statement

EXCEPTION

ON

NOT

VST528.vsd

CANCEL

identifier

program-name

OF

IN

file-mnemonic

VST136.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-10

Procedure Division CHECKPOINT
CHECKPOINT

CLOSE for Sequential and Line Sequential
Files

file-info

Note.

• Do not use this statement in the OSS environment.

• Before RVU D46.00 and G06.00, software product revision T8107AAT (run-time library
T8108AAR), the NMCOBOL compiler ignores this directive and issues a warning.

CHECKPOINT data-name-1

FILE data-name-2

FILE

file-name

QUEUE checkpoint-list-name

VST137.vsd

file-nameCLOSE file-info

VST138.vsd

UNIT

REEL FOR REMOVAL

WITH LOCK

NO REWIND

VST139.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-11

Procedure Division CLOSE for Relative, Indexed, and Queue Files
CLOSE for Relative, Indexed, and Queue Files

COMPUTE

CONTINUE

file-nameCLOSE

WITH LOCK

VST140.vsd

COMPUTE result

ROUNDED

END-COMPUTE

= expression

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imp-stmt-1

imp-stmt-2

VST141.vsd

CONTINUE

VST142.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-12

Procedure Division COPY
COPY

library-name

REPLACING phrase

original

COPY

library-name

 REPLACING phrase

OF

IN

.text-name

VST244.vsd

system-file-name

define-name-literal

VST245.vsd

.REPLACING

BYoriginal new

OFF

VST247.vsd

identifier-1

literal-1

word-1

pseudo-text-1

VST248.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-13

Procedure Division COPY
pseudo-text-1

new

pseudo-text-2

Format of a COPY Library

section-text

==== text-word

VST250.vsd

identifier-2

literal-2

word-2

pseudo-text-2

VST249.vsd

text-word

====

VST251.vsd

pre-text

section-text

VST252.vsd

SECTION

format

text-name

,

?

text-line

VST253.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-14

Procedure Division DELETE
DELETE

DISPLAY

DELETE file-name

RECORD

NOT

END-DELETE

INVALID

KEY

imperative-stmt-1

INVALID

KEY

imperative-stmt-2

VST143.vsd

DISPLAY identifier

literal

UPON

NO ADVANCING

mnemonic-name

WITH

VST144.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-15

Procedure Division DIVIDE INTO
DIVIDE INTO

DIVIDE divisor INTO

END-DIVIDE

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

dividend

ROUNDED

VST145.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-16

Procedure Division DIVIDE GIVING
DIVIDE GIVING

DIVIDE divisor

dividend

INTO dividend

BY divisor

GIVING

END-DIVIDE

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

quotient

ROUNDED

VST146.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-17

Procedure Division DIVIDE GIVING REMAINDER
DIVIDE GIVING REMAINDER

ENTER

DIVIDE

quotient

ROUNDED

divisor

dividend

REMAINDER remainder

END-DIVIDE

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

INTO dividend

BY divisor

GIVING

VST147.vsd

ENTER

OF

language

routine-name

USING parameter

IN

file-mnemonic

OMITTED

GIVING return-value

VST148.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-18

Procedure Division ENTER COBOL
parameter

ENTER COBOL

EVALUATE

subject-list

data-name

literal

arithmetic-expression

file-name

()

VST149.vsd

ENTER COBOL .

VST150.vsd

EVALUATE subject-list

WHEN OTHER

END-EVALUATE

object-listWHEN

no-match-imp-stmt

match-imp-stmt

VST151.vsd

subject

ALSO subject

VST616.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-19

Procedure Division EVALUATE
subject

object-list

object

range

identifier

literal

expression

FALSE

TRUE

VST152.vsd

object

ALSO object

VST153.vsd

condition

FALSE

TRUE

ANY

NOT

range

VST154.vsd

identifier-1

literal-1

arith-exp-1

THROUGH

THRU

identifier-2

literal-2

arith-exp-2

VST155.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-20

Procedure Division EXIT
EXIT

Unconditional GO TO

Conditional GO TO

Delimited-Scope IF

EXIT

SECTION

PERFORM

PARAGRAPH

CYCLE

PROGRAM

VST156.vsd

GO

procedure-nameTO

VST158.vsd

GO

DEPENDING ON depend

procedure-name

TO

VST159.vsd

ELSE statement-2

END-IF

IF

THEN

condition statement-1

VST160.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-21

Procedure Division Conditional IF
Conditional IF

INITIALIZE

replacement

IF

THEN

condition

statement-1

NEXT

ELSE statement-2

SENTENCE

NEXT SENTENCE

VST161.vsd

INITIALIZE

REPLACING

receiver

replacement

VST162.vsd

ALPHABETIC

ALPHANUMERIC

ALPHANUMERIC-EDITED

NUMERIC-EDITED

DATA

BY

NUMERIC

sender

literal

VST163.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-22

Procedure Division INSPECT TALLYING
INSPECT TALLYING

tallying-phrase

for-clause

position

INSPECT REPLACING

INSPECT source-string tallying-phrase

VST164.vsd

FORtallyTALLYING for-clause

VST165.vsd

CHARACTERS

ALL

LEADING

compare-string

position

position

VST166.vsd

BEFORE

AFTER INITIAL

delim-string

VST167.vsd

INSPECT source-string replacing-phrase

VST168.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-23

Procedure Division INSPECT REPLACING
replacing-phrase

absolute-replacement

position

matching-replacement

REPLACING absolute-replacement

matching-replacement

VST169.vsd

CHARACTERS BY replace-string

position

VST170.vsd

BEFORE

AFTER INITIAL

delim-string

VST167.vsd

ALL

FIRST

LEADING

BY replace-stringcompare-string

position

VST172.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-24

Procedure Division INSPECT TALLYING REPLACING
INSPECT TALLYING REPLACING

tallying-phrase

for-clause

position

replacing-phrase

INSPECT source-string tallying-phrase replacing-phrase

VST174.vsd

FORtallyTALLYING for-clause

VST165.vsd

CHARACTERS

ALL

LEADING

compare-string

position

position

VST166.vsd

BEFORE

AFTER INITIAL

delim-string

VST167.vsd

REPLACING absolute-replacement

matching-replacement

VST169.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-25

Procedure Division INSPECT TALLYING REPLACING
absolute-replacement

position

matching-replacement

CHARACTERS BY replace-string

position

VST170.vsd

BEFORE

AFTER INITIAL

delim-string

VST167.vsd

ALL

FIRST

LEADING

BY replace-stringcompare-string

position

VST172.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-26

Procedure Division INSPECT CONVERTING
INSPECT CONVERTING

match

position

LOCKFILE

INSPECT source-string CONVERTING match

VST175.vsd

TO replace-stringcompare-string

position

VST173.vsd

BEFORE

AFTER INITIAL

delim-string

VST167.vsd

LOCKFILE file-name

TIME LIMIT wait-time

VST176.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-27

Procedure Division MERGE
MERGE

key-specifier

COLLATING SEQUENCE phrase

USING phrase

MERGE merge-file

COLLATING SEQUENCE phrase

USING phrase output-specifier

key-specifier

VST177.vsd

ON

ASCENDING

DESCENDING KEY

key

VST178.vsd

COLLATING

SEQUENCE

IS

alphabet-name

VST179.vsd

USING merge-in-1 merge-in-2

merge-in-n

VST180.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-28

Procedure Division MOVE TO
output-specifier

MOVE TO

MOVE CORRESPONDING

PROCEDURE outproc-1OUTPUT

GIVING merge-out

THROUGH outproc-2

THRU

IS

VST181.vsd

senderMOVE receiverTO

VST182.vsd

group-1MOVE group-2TOCORRESPONDING

CORR

VST183.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-29

Procedure Division MULTIPLY BY
MULTIPLY BY

MULTIPLY

multiplier

BYmultiplicand

ROUNDED

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

END-MULTIPLY

VST184.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-30

Procedure Division MULTIPLY GIVING
MULTIPLY GIVING

VST185.vsd

MULTIPLY multiplicand multiplierBY GIVING

END-MULTIPLY

SIZE ERROR

NOT

ON

ERROR

imperative-stmt-2

imperative-stmt-1

SIZE

result

ROUNDED

ON
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-31

Procedure Division OPEN
OPEN

file-specification

input-file-description

For a sequential, relative, indexed, or queue file:

OPEN file-specification

VST186.vsd

INPUT input-file-description

OUTPUT output-file-description

I-O i-o-file-description

EXTEND extend-file-description

VST187.vsd

infile

WITH

TIME LIMITS

«REVERSED»

WITH

NO REWIND

SYNCDEPTH syncSHARED

PROTECTED

EXCLUSIVE

VST188.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-32

Procedure Division OPEN
For a line sequential file:

output-file-description

For a sequential, relative, indexed, or queue file:

For a line sequential file:

infile

SHARED

PROTECTED

EXCLUSIVE

VST627.vsd

outfile

WITH

TIME LIMITS

WITH

NO REWIND

SYNCDEPTH syncSHARED

PROTECTED

EXCLUSIVE

VST189.vsd

outfile

SHARED

PROTECTED

EXCLUSIVE

VST628.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-33

Procedure Division OPEN
i-o-file-description

For a sequential, relative, indexed, or queue file:

For a line sequential file:

extend-file-description

For a sequential, relative, indexed, or queue file:

iofile

WITH

TIME LIMITS

SYNCDEPTH syncSHARED

PROTECTED

EXCLUSIVE

VST190.vsd

iofile

SHARED

PROTECTED

EXCLUSIVE

VST626.vsd

extfile

WITH

TIME LIMITS

SYNCDEPTH syncSHARED

PROTECTED

EXCLUSIVE

VST191.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-34

Procedure Division Unconditional PERFORM
For a line sequential file:

Unconditional PERFORM

procedure-group

PERFORM TIMES

procedure-group

extfile

SHARED

PROTECTED

EXCLUSIVE

VST629.vsd

END-PERFORM

procedure-group

imperative-statement

PERFORM

VST192.vsd

proc-1

proc-2THROUGH

THRU

VST193.vsd

procedure-group

imperative-statement

PERFORM

count TIMES

END-PERFORM

count TIMES

VST194.vsd

proc-1

proc-2THROUGH

THRU

VST193.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-35

Procedure Division PERFORM UNTIL
PERFORM UNTIL

procedure-group

test-site

procedure-group

imperative-statement

PERFORM

UNTIL

test-site

condition

test-site

UNTIL condition

END-PERFORM

VST196.vsd

proc-1

proc-2THROUGH

THRU

VST193.vsd

WITH

TEST BEFORE

AFTER

VST197.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-36

Procedure Division PERFORM VARYING
PERFORM VARYING

procedure-group

test-site

varying-phrase

procedure-groupPERFORM

test-site

test-site

END-PERFORM

imperative-statement

varying-phrase after-phrase

varying-phrase

after-phrase

VST198.vsd

proc-1

proc-2THROUGH

THRU

VST193.vsd

WITH

TEST BEFORE

AFTER

VST197.vsd

VARYING vary-1 FROM base-1 BY step-1

UNTIL condition-1

VST199.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-37

Procedure Division READ for Sequential or Dynamic Access
after-phrase

READ for Sequential or Dynamic Access

AFTER vary-2 FROM base-2 BY step-2

UNTIL condition-2

VST200.vsd

file-nameREAD

NEXT

END-READ

data-nameINTO

LOCK

PROMPT prompt-item

TIME LIMIT wait-time

NOT

AT

END imperative-stmt-2

AT

END imperative-stmt-1

WITH

RECORD

REVERSED

VST201.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-38

Procedure Division READ for Line Sequential Access
READ for Line Sequential Access

file-nameREAD

END-READ

data-nameINTO

NOT

AT

END imperative-stmt-2

AT

END imperative-stmt-1

VST630.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-39

Procedure Division READ for Random or Dynamic Access
READ for Random or Dynamic Access

RELEASE

file-nameREAD

data-name

RECORD

INTO

WITH

TIME LIMIT wait-time

imperative-stmt-2

END-READ

LOCK

NOT INVALID

KEY

imperative-stmt-1INVALID

KEY

KEY key

IS

VST202.vsd

record-nameRELEASE

data-nameFROM

VST203.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-40

Procedure Division REPLACE
REPLACE

pseudo-text-1

pseudo-text-2

REPLACE

OFF

pseudo-text-1 BY pseudo-text-2 .

VST254.vsd

==== text-word

VST250.vsd

text-word

====

VST251.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-41

Procedure Division RETURN
RETURN

REWRITE for Sequential, Relative, Indexed,
and Queue Files

file-nameRETURN

END-RETURN

data-nameINTO

NOT

AT

END imperative-stmt-2

AT

END imperative-stmt-1

VST204.vsd

REWRITE

END-REWRITE

UNLOCK

imperative-stmt-2

NOT INVALID

KEY

imperative-stmt-1INVALID

KEY

record-name

data-nameFROM

WITH

VST205.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-42

Procedure Division REWRITE for Line Sequential Files
REWRITE for Line Sequential Files

SEARCH VARYING

REWRITE

END-REWRITE

record-name

FROM data-name

VST721.vsd

table indexerSEARCH VARYING

AT

WHEN condition

imperative-stmt-1

END-SEARCH

END

SENTENCE

imperative-stmt-2

NEXT

VST206.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-43

Procedure Division SEARCH ALL
SEARCH ALL

match-1
match-n

equal-part

tableSEARCH

AT

WHEN

imperative-stmt-1

END-SEARCH

END

SENTENCE

imperative-stmt-2

NEXT

ALL

match-1

AND match-n

VST207.vsd

identifier-1

condition-name-1

equal-part identifier-2

literal-2

arithmetic-expression-2

VST208.vsd

IS

EQUAL

TO

=

VST209.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-44

Procedure Division SET TO for Pointer Data Items
SET TO for Pointer Data Items

pointer

address

SET TO for Nonpointer Data Items

SET TOpointer address

VST605.vsd

OFADDRESS identifier-1

identifier-2

VST606.vsd

NULL

OFADDRESS identifier-3

identifier-4

NULLS

VST607.vsd

SET

TRUETOcondition-name

ONTOmnemonic-name

OFF

identifier-1

index-name-1

identifier-2

index-name-2

integer

TO

VST211.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-45

Procedure Division SET UP or SET DOWN for Pointer Data Items
SET UP or SET DOWN for Pointer Data Items

number-of-locations

SET UP or SET DOWN for Nonpointer Data
Items

SORT

SET BYpointer UP

DOWN

number-of-locations

VST608.vsd

identifier-1

integer

VST609.vsd

BYSET index-name UP identifier

integerDOWN

VST212.vsd

SORT sd-name key-specifier

COLLATING SEQUENCE phrase

DUPLICATES phrase

input-specifier-1

input-specifier-2

output-specifier-1

output-specifier-2

VST213.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-46

Procedure Division SORT
key-specifier

DUPLICATES phrase

COLLATING SEQUENCE phrase

input-specifier-1

input-specifier-2

ON

ASCENDING

DESCENDING KEY

key

VST214.vsd

WITH

DUPLICATES

IN ORDER

VST215.vsd

COLLATING

SEQUENCE

IS

alphabet-name

VST216.vsd

PROCEDURE

IS

inproc-1INPUT

THROUGH

THRU

inproc-2

VST217.vsd

USING infile

VST381.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-47

Procedure Division START
output-specifier-1

output-specifier-2

START

PROCEDURE

IS

outproc-1OUTPUT

THROUGH outproc-2

THRU

VST218.vsd

GIVING outfile

VST382.vsd

START file-name

KEY phrase

APPROXIMATE

GENERIC

TIME LIMIT wait-time

INVALID

KEY

imperative-stmt-1

END-START

NOT INVALID

KEY

imperative-stmt-2

VST219.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-48

Procedure Division START
KEY phrase

relationship

If position is present, relationship is limited to:

position

Note. BEFORE is available only for the NMCOBOL compiler.

KEY

IS

relationship

position

key

VST220.vsd

GREATER

THAN

EQUAL

TO

OR

=

<

>

NOT

LESS

THAN

>=

VST221.vsd

EQUAL

TO

=

VST223.vsd

POSITION position-key

VST222.vsd

AFTER

BEFORE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-49

Procedure Division STARTBACKUP
STARTBACKUP

options

STOP

Note.

• Do not use this statement in the OSS environment.

• Before RVU D46.00 and G06.00, software product revision T8107AAT (run-time library
T8108AAR), the NMCOBOL compiler ignores this directive and issues a warning.

0 The fault-tolerant facility is to read and process system messages, and the
primary process is to terminate abnormally if a trap condition occurs.

1 Same as option 0 except that if the primary process stops, the backup
process takes over processing of the application.

2 Same as option 1 except that if the primary process encounters a trap
condition, it enters the DEBUG procedure instead of being terminated
abnormally.

3 The primary process, rather than the fault-tolerant facility, reads the
$RECEIVE file and takes appropriate action for system messages. In
addition, if the primary process encounters a trap condition, it enters the
DEBUG procedure. When this option is in force and the backup process
fails, the primary process must re-execute the STARTBACKUP statement
to reestablish the backup.

STARTBACKUP cpu options backup-ext

VST224.vsd

STOP

«message»

RUN

VST225.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-50

Procedure Division STRING
STRING

STRING

part-1 DELIMITED

BY SIZE

INTO

ON

OVERFLOW

POINTER

END-STRING

delimiter

result

pointer

imperative-stmt-1

WITH

ON

OVERFLOWNOT imperative-stmt-2

VST226.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-51

Procedure Division SUBTRACT FROM
SUBTRACT FROM

SUBTRACT subtrahend FROM

minuend-result

END-SUBTRACT

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

ROUNDED

VST227.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-52

Procedure Division SUBTRACT GIVING
SUBTRACT GIVING

SUBTRACT subtrahend FROM

ROUNDED

END-SUBTRACT

ON

SIZE ERROR

minuend

GIVING

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

result

VST228.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-53

Procedure Division SUBTRACT CORRESPONDING
SUBTRACT CORRESPONDING

UNLOCKFILE

UNLOCKRECORD

Caution. SUBTRACT CORRESPONDING is not recommended, because minor changes to
one data structure can change the correspondence between its elements and those of the
other data structure, and this is difficult to detect.

SUBTRACT

FROM

END-SUBTRACT

ON

SIZE ERROR

NOT

ON

SIZE ERROR

imperative-stmt-2

imperative-stmt-1

group-1

group-2

CORRESPONDING

CORR

ROUNDED

VST229.vsd

UNLOCKFILE file-name

VST230.vsd

UNLOCKRECORD file-name

VST231.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-54

Procedure Division UNSTRING
UNSTRING

UNSTRING source

DELIMITED

BY

delim-1

ALL

ALL

OR delim-2

INTO result-list

WITH

POINTER pointer

TALLYING

IN

tally

OVERFLOW imperative-stmt-1

ON

OVERFLOWNOT imperative-stmt-2

ON

END-UNSTRING

VST232.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-55

Procedure Division USE DEBUGGING
result-list

USE DEBUGGING
Note. The 1985 COBOL standard classifies USE DEBUGGING as obsolete, so you are
advised not to use it, even in TNS HP COBOL programs. The NMCOBOL compiler does not
recognize it.

result

DELIMITER

IN

delimstore

VST233.vsd

COUNT

IN

count

DEBUGGING

FOR

USE

REFERENCES OF

ALL

ON

.

procedure

filename

PROCEDURESALL

name

VST234.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-56

Procedure Division USE AFTER EXCEPTION
USE AFTER EXCEPTION

WRITE for Sequential Files

Note. If you are using the NMCOBOL compiler, do not use GLOBAL in a USE AFTER
EXCEPTION statement in the declaratives-portion.

GLOBAL

USE

ON

file-name

EXTEND

I-O

PROCEDURE

INPUT

.

AFTER

STANDARD

EXCEPTION

ERROR

OUTPUT

VST235.vsd

WRITE record-name

FROM from-name

ADVANCING clause

END-WRITE

end-of-page clause

invalid-key-phrase

not-end-of-page clause

not-invalid-key-phrase

NOT

NOT

VST236.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-57

Procedure Division WRITE for Sequential Files
ADVANCING clause

end-of-page clause

not-end-of-page clause

invalid-key-phrase

not-invalid-key-phrase

BEFORE

AFTER ADVANCING

PAGE

mnemonic-name

no-of-lines LINE

LINES

VST237.vsd

AT

END-OF-PAGE

EOP

imperative-statement

VST238.vsd

AT

END-OF-PAGE

EOP

imperative-statement

VST238.vsd

KEY

imperative-statementINVALID

VST239.vsd

KEY

imperative-statementINVALID

VST239.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-58

Procedure Division WRITE for Line Sequential Files
WRITE for Line Sequential Files

WRITE for Relative, Indexed, and Queue Files

invalid-key

not-invalid-key

record-name

WRITE

FROM from-name END-WRITE

VST631.vsd

WRITE record-name

FROM from-name

invalid-key

NOT not-invalid-key

END-WRITE

VST240.vsd

KEY

imperative-statementINVALID

VST239.vsd

KEY

imperative-statementINVALID

VST239.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-59

Procedure Division WRITE for Relative, Indexed, and Queue Files
HP COBOL Manual for TNS and TNS/R Programs—522555-006
43-60

44 Intrinsic Function Calls

• ACOS

• ANNUITY

• ASIN

• ATAN

• CHAR

• COS

• CURRENT-DATE

• DATE-OF-INTEGER

• DAY-OF-INTEGER

• FACTORIAL

• INTEGER

• INTEGER-OF-DATE

• INTEGER-OF-DAY

• INTEGER-PART

• LENGTH

• LOG

• LOG10

• LOWER-CASE

• MAX

• MEAN

• MEDIAN

• MIDRANGE

• MIN

• MOD

• NUMVAL

• NUMVAL-C

• ORD

• ORD-MAX

• ORD-MIN
HP COBOL Manual for TNS and TNS/R Programs—522555-006
44-1

Intrinsic Function Calls ACOS
• PRESENT-VALUE

• RANDOM

• RANGE

• REM

• REVERSE

• SIN

• SQRT

• STANDARD-DEVIATION

• SUM

• TAN

• UPPER-CASE

• VARIANCE

• WHEN-COMPILED

ACOS

ANNUITY

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

()ACOSFUNCTION argument

VST421.vsd

()

ANNUITYFUNCTION

interest-rate number-of-periods

VST422.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
44-2

Intrinsic Function Calls ASIN
ASIN

ATAN

CHAR

COS

CURRENT-DATE

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

()ASINFUNCTION argument

VST423.vsd

()ATANFUNCTION argument

VST424.vsd

()CHARFUNCTION argument

VST425.vsd

()COSFUNCTION argument

VST426.vsd

CURRENT-DATEFUNCTION

VST427.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
44-3

Intrinsic Function Calls DATE-OF-INTEGER
DATE-OF-INTEGER

DAY-OF-INTEGER

FACTORIAL

INTEGER

INTEGER-OF-DATE

INTEGER-OF-DAY

()DATE-OF-INTEGERFUNCTION argument

VST428.vsd

()DAY-OF-INTEGERFUNCTION argument

VST429.vsd

()FACTORIALFUNCTION argument

VST430.vsd

()INTEGERFUNCTION argument

VST431.vsd

()INTEGER-OF-DATEFUNCTION argument

VST432.vsd

()INTEGER-OF-DAYFUNCTION argument

VST433.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
44-4

Intrinsic Function Calls INTEGER-PART
INTEGER-PART

LENGTH

LOG

LOG10

LOWER-CASE

MAX

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

()INTEGER-PARTFUNCTION argument

VST434.vsd

()LENGTHFUNCTION argument

VST435.vsd

()LOGFUNCTION argument

VST436.vsd

()LOG10FUNCTION argument

VST437.vsd

()LOWER-CASEFUNCTION string

VST438.vsd

()MAXFUNCTION argument

VST439.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
44-5

Intrinsic Function Calls MEAN
MEAN

MEDIAN

MIDRANGE

MIN

MOD

()MEANFUNCTION argument

VST440.vsd

()MEDIANFUNCTION argument

VST441.vsd

()MIDRANGEFUNCTION argument

VST442.vsd

()MINFUNCTION argument

VST443.vsd

()MODFUNCTION argument-1 argument-2

VST444.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
44-6

Intrinsic Function Calls NUMVAL
NUMVAL

string

number

()NUMVALFUNCTION string

VST445.vsd

sp

+
-

number

+
-
CR

DB

number

sp

sp

sp

"

"

VST446.vsd

digits

.

digits

digits.

ns

ns

ns

VST447.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
44-7

Intrinsic Function Calls NUMVAL-C
NUMVAL-C

value-1

value-2

number

NUMVAL-CFUNCTION

()value-1

currency-signvalue-2

VST448.vsd

spaces +

-

spaces

currency-sign

number

spaces spaces

VST450.vsd

spaces

number

spaces

spaces spacescurrency-sign

+
-

CR

DB

VST385.vsd

digits

digits.
ns

digits

digits

.
ns

ns

ns

ns

VST451.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
44-8

Intrinsic Function Calls ORD
ORD

ORD-MAX

ORD-MIN

PRESENT-VALUE

RANDOM

()ORDFUNCTION argument

VST452.vsd

()ORD-MAXFUNCTION argument

VST435.vsd

()ORD-MINFUNCTION argument

VST454.vsd

()

PRESENT-VALUEFUNCTION

period-end-amountdiscount-rate

VST455.vsd

()

RANDOMFUNCTION

argument

VST456.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
44-9

Intrinsic Function Calls RANGE
RANGE

REM

REVERSE

SIN

SQRT

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

()RANGEFUNCTION argument

VST457.vsd

()REMFUNCTION dividend divisor

VST458.vsd

()REVERSEFUNCTION argument

VST459.vsd

()SINFUNCTION argument

VST460.vsd

()SQRTFUNCTION argument

VST461.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
44-10

Intrinsic Function Calls STANDARD-DEVIATION
STANDARD-DEVIATION

SUM

TAN

UPPER-CASE

VARIANCE

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

Note. This function requires the CRE. To use this function in a TNS HP COBOL program,
compile the program with the directive ENV COMMON.

()STANDARD-DEVIATIONFUNCTION argument

VST462.vsd

()SUMFUNCTION argument

VST463.vsd

()TANFUNCTION argument

VST464.vsd

()UPPER-CASEFUNCTION string

VST465.vsd

()VARIANCEFUNCTION argument

VST466.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
44-11

Intrinsic Function Calls WHEN-COMPILED
WHEN-COMPILED

WHEN-COMPILEDFUNCTION

VST467.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
44-12

45
CBL85UTL and ZCOBSRL Routine
Calls

If you omit an optional parameter when you call a CBL85UTL or ZCOBSRL routine,
you must put the keyword OMITTED in its position if you specify subsequent
parameters. Trailing OMITTEDs are not required. (The syntax diagrams do not reflect
this, because it would make them much harder to read.)

• COBOL85^ARMTRAP

• COBOL85^COMPLETION

• COBOL_COMPLETION_

• COBOL_CONTROL_

• COBOL_GETENV_

• COBOL_PUTENV_

• COBOL85^RETURN^SORT^ERRORS and COBOL_RETURN_SORT_ERRORS_

• COBOL85^REWIND^SEQUENTIAL and COBOL_REWIND_SEQUENTIAL_

Table 45-1. CBL85UTL and ZCOBSRL Routines

COBOL-Environment Routine1 CRE Routine for Guardian Environment2

COBOL85^ARMTRAP None (unnecessary)

COBOL85^COMPLETION COBOL_COMPLETION_

None COBOL_CONTROL_

None COBOL_GETENV_

None COBOL_PUTENV_

COBOL85^RETURN^SORT^ERRORS3 COBOL_RETURN_SORT_ERRORS_3

COBOL85^REWIND^SEQUENTIAL COBOL_REWIND_SEQUENTIAL_

COBOL85^SET^SORT^PARAM^TEXT3 COBOL_SET_SORT_PARAM_TEXT_3

COBOL85^SET^SORT^PARAM^VALUE3 COBOL_SET_SORT_PARAM_VALUE_3

None COBOL_SET_MAX_RECORD_

None COBOL_SETMODE_

COBOL85^SPECIAL^OPEN2 COBOL_SPECIAL_OPEN_4

1. These routines are only in CBL85UTL, not in ZCOBSRL.

2. These routines are in both CBL85UTL and ZCOBSRL.

3. FastSort interface routine.

4. This routine replaces the COBOLSPOOLOPEN routine (for level 2 spooling) and Guardian environment
routines (for level 3 spooling). The COBOLSPOOLOPEN routine is in the COBOLLIB library.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
45-1

CBL85UTL and ZCOBSRL Routine Calls COBOL85^ARMTRAP
• COBOL85^SET^SORT^PARAM^TEXT and COBOL_SET_SORT_PARAM_TEXT_

• COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_

• COBOL_SET_MAX_RECORD_

• COBOL_SETMODE_

• COBOL85^SPECIAL^OPEN and COBOL_SPECIAL_OPEN_

COBOL85^ARMTRAP

COBOL85^COMPLETION

ENTER COBOL85^ARMTRAP" "
ns ns

VST341.vsd

USING

library-reference

abend-or-stop

ENTER COBOL85^COMPLETION" "
TAL

OF

completion-code

termination-info

subsys-id

text-length

text

ns ns

VST342.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
45-2

CBL85UTL and ZCOBSRL Routine Calls COBOL_COMPLETION_
COBOL_COMPLETION_

COBOL_CONTROL_
Caution. The HP COBOL run-time library does not attempt to validate calls to CONTROL. To
avoid interfering with the operation of the HP COBOL run-time library, use
COBOL_CONTROL_ only if absolutely necessary.

USING

library-reference

abend-or-stop

ENTER COBOL_COMPLETION_" "
TAL

OF

completion-code

termination-info

subsys-id

text

ns ns

VST343.vsd

USING file-name operation param

cpinfo

GIVING error-return

OF library-reference

VST610.vsd

ns ns
ENTER " "COBOL_CONTROL_
HP COBOL Manual for TNS and TNS/R Programs—522555-006
45-3

CBL85UTL and ZCOBSRL Routine Calls COBOL_GETENV_
COBOL_GETENV_

COBOL_PUTENV_

COBOL85^RETURN^SORT^ERRORS and
COBOL_RETURN_SORT_ERRORS_

ENTER

USING env-var

COBOL_GETENV_" "

lengthGIVING

ns ns

return-value

VST722.vsd

ENTER

USING env-var

COBOL_PUTENV_" "

GIVING

ns ns

return-value

VST723.vsd

ENTER

USING

library-reference

sd-name

COBOL85^RETURN^SORT^ERRORS" "

OF

error-report

return-code

COBOL_RETURN_SORT_ERRORS_

GIVING

ns ns

VST344.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
45-4

CBL85UTL and ZCOBSRL Routine Calls COBOL85^REWIND^SEQUENTIAL and
COBOL_REWIND_SEQUENTIAL_
COBOL85^REWIND^SEQUENTIAL and
COBOL_REWIND_SEQUENTIAL_

COBOL85^SET^SORT^PARAM^TEXT and
COBOL_SET_SORT_PARAM_TEXT_

Note. COBOL85 only: COBOL_SET_SORT_PARAM_TEXT_ use a protocol different from
that used for normal TAL procedures. The ENTER verb must not be followed by the keyword
TAL.

USING

library-reference

file-name

ENTER " "

OF

return-codeGIVING

COBOL85^REWIND^SEQUENTIAL

COBOL_REWIND_SEQUENTIAL_

ns ns

VST345.vsd

ENTER COBOL85^SET^SORT^PARAM^TEXT" "
COBOL_SET_SORT_PARAM_TEXT_

USING

library-reference

sd-name

OF

return-codeGIVING

param-id param-text

subsort-number

ns ns

VST346.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
45-5

CBL85UTL and ZCOBSRL Routine Calls COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_
COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_

 COBOL_SET_MAX_RECORD_

Note. COBOL85 only: COBOL85^SET^SORT^PARAM^VALUE and
COBOL_SET_SORT_PARAM_VALUE_ use a protocol different from that used for normal TAL
procedures. The ENTER verb must not be followed by the keyword TAL.

ENTER COBOL85^SET^SORT^PARAM^VALUE" "
COBOL_SET_SORT_PARAM_VALUE_

USING

library-reference

sd-name

OF

return-codeGIVING

param-id

param-value subsort-or-file-number

ns ns

VST347.vsd

ENTER COBOL_SET_MAX_RECORD_"

USING

new-length

resultGIVING

"
ns ns

file-name

VST737.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
45-6

CBL85UTL and ZCOBSRL Routine Calls COBOL_SETMODE_
COBOL_SETMODE_

COBOL85^SPECIAL^OPEN and
COBOL_SPECIAL_OPEN_

• For Spoolers and Printers

• For System Log Files

• For Partitioned Disk Files

• For Tape Files in the CRE

Caution. The HP COBOL run-time library does not attempt to validate calls to SETMODE. To
avoid interfering with the operation of the HP COBOL run-time library, use
COBOL_SETMODE_ only if absolutely necessary.

USING file-name function

param-1

cpinfo

GIVING error-return

param-2

lastparams

OF library-reference

VST611.vsd

"
ns

ENTER "
ns

COBOL_SETMODE_
HP COBOL Manual for TNS and TNS/R Programs—522555-006
45-7

CBL85UTL and ZCOBSRL Routine Calls For Spoolers and Printers
For Spoolers and Printers

ENTER COBOL85^SPECIAL^OPEN" "
COBOL_SPECIAL_OPEN_

USING

library-reference

file-name

OF

return-codeGIVING

exclusion sync-depth

no-eject

level-3 location

form-name

report-name copies

page-size

flags owner

max-lines

max-pages code-129

form-feed

ns ns

open-type= 1

VST348.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
45-8

CBL85UTL and ZCOBSRL Routine Calls For System Log Files
For System Log Files

For Partitioned Disk Files

ENTER COBOL85^SPECIAL^OPEN" "
COBOL_SPECIAL_OPEN_

USING

library-reference

file-name

OF

return-codeGIVING

open-type = 2

exclusion

sync-depth time-limits

ns ns

VST349.vsd

ENTER COBOL85^SPECIAL^OPEN" "
COBOL_SPECIAL_OPEN_

USING

library-reference

file-name

OF

return-codeGIVING

exclusion

sync-depth time-limits

open-mode

ns ns

open-type= 3

VST350.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
45-9

CBL85UTL and ZCOBSRL Routine Calls For Tape Files in the CRE
For Tape Files in the CRE

ENTER " "COBOL_SPECIAL_OPEN_

USING

library-reference

file-name

OF

mount-messages

exclusion

sync-depth time-limits

open-mode

ns

return-codeGIVING

end-of-tape-process

ns

open-type= 4

VST614.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
45-10

46
COBOLLIB, CLULIB, and ZCRESRL
Routine Calls

• SMU Routines

• Non-SMU Routines

SMU Routines
Programs compiled with the COBOL85 compiler can call all of the SMU routines listed
in Table 46-1. Programs compiled with the NMCOBOL compiler can call only the new
routines. For more information about the new SMU routines, see the CRE
Programmer’s Guide.

Note. If you omit an optional parameter when you call a COBOLLIB routine, you must put the
keyword OMITTED in its position if you specify subsequent parameters. Trailing OMITTEDs
are not required. (The syntax diagrams do not reflect this, because it would make them much
harder to read.)

Table 46-1. Saved Message Utility (SMU) Routines (page 1 of 2)

Original Routine1 New Routine2

ALTERPARAMTEXT None

CHECKLOGICALNAME SMU_Assign_CheckName_

CHECKMESSAGE SMU_Message_CheckNumber_

DELETEASSIGN SMU_Assign_Delete_

DELETEPARAM SMU_Param_Delete_

DELETESTARTUP SMU_Startup_Delete_

GETASSIGNTEXT SMU_Assign_GetText_

GETASSIGNVALUE SMU_Assign_GetValue_

GETBACKUPCPU None

GETPARAMTEXT SMU_Param_GetText_3

GETSTARTUPTEXT SMU_Startup_GetText_

PUTASSIGNTEXT SMU_Assign_PutText_

1. In the COBOLLIB file. Extension to the HP COBOL and FORTRAN 77 products, except as noted.

2. In the CLULIB file for the COBOL85 compiler and the ZCRESRL file for the NMCOBOL compiler.

3. In the OSS environment, you can also use the HP C getenv function. SMU_Param_GetText_ returns only
PARAM equivalents, but the HP C getenv function returns other environment variables as well.

4. Not an extension to the HP COBOL and FORTRAN 77 products.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-1

COBOLLIB, CLULIB, and ZCRESRL Routine Calls SMU Routines
• ALTERPARAMTEXT

• CHECKLOGICALNAME

• CHECKMESSAGE

• DELETEASSIGN

• DELETEPARAM

• DELETESTARTUP

• GETASSIGNTEXT

• GETASSIGNVALUE

• GETBACKUPCPU

• GETPARAMTEXT

• GETSTARTUPTEXT

• PUTASSIGNTEXT

• PUTASSIGNVALUE

• PUTPARAMTEXT

• PUTSTARTUPTEXT

PUTASSIGNVALUE SMU_Assign_PutValue_

PUTPARAMTEXT4 SMU_Param_PutText_

PUTSTARTUPTEXT SMU_Startup_PutText_

Table 46-1. Saved Message Utility (SMU) Routines (page 2 of 2)

Original Routine1 New Routine2

1. In the COBOLLIB file. Extension to the HP COBOL and FORTRAN 77 products, except as noted.

2. In the CLULIB file for the COBOL85 compiler and the ZCRESRL file for the NMCOBOL compiler.

3. In the OSS environment, you can also use the HP C getenv function. SMU_Param_GetText_ returns only
PARAM equivalents, but the HP C getenv function returns other environment variables as well.

4. Not an extension to the HP COBOL and FORTRAN 77 products.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-2

COBOLLIB, CLULIB, and ZCRESRL Routine Calls ALTERPARAMTEXT
ALTERPARAMTEXT

CHECKLOGICALNAME

logical-name

Note. ALTERPARAMTEXT uses a protocol different from that used for normal TAL
procedures. The ENTER verb must not be followed by the keyword TAL.

Note. CHECKLOGICALNAME uses a protocol different from that used by normal TAL
procedures. The ENTER verb must not be followed by the keyword TAL.

ENTER ALTERPARAMTEXT"

USING

library-reference

portion

OF

resultGIVING

text

"

cplist size

ns ns

VST351.vsd

ENTER " "
ns ns

USING

library-referenceOF

resultGIVINGlogical-name

CHECKLOGICALNAME

VST352.vsd

.

*

file-name

program-unit

VST639.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-3

COBOLLIB, CLULIB, and ZCRESRL Routine Calls CHECKMESSAGE
CHECKMESSAGE

DELETEASSIGN

Note. DELETEASSIGN uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

ENTER "
TAL

"
ns

USING

library-referenceOF

resultGIVINGmessage-number

CHECKMESSAGE
ns

VST353.vsd

USING

library-reference

portion

OF

resultGIVING

message-numbercplist

ENTER " "
ns

DELETEASSIGN
ns

VST360.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-4

COBOLLIB, CLULIB, and ZCRESRL Routine Calls DELETEPARAM
DELETEPARAM

DELETESTARTUP

Note. DELETEPARAM uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

Note. DELETESTARTUP uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

resultGIVING

cplist

ENTER " "
ns

DELETEPARAM
ns

VST361.vsd

USING

library-reference

portion

OF

resultGIVING

cplist

ENTER " "
ns

DELETESTARTUP
ns

VST362.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-5

COBOLLIB, CLULIB, and ZCRESRL Routine Calls GETASSIGNTEXT
GETASSIGNTEXT

GETASSIGNVALUE

Note. GETASSIGNTEXT uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

Note. GETASSIGNVALUE uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

resultGIVING

text message-number

ENTER " "
ns

GETASSIGNTEXT
ns

VST363.vsd

USING

library-reference

portion

OF

resultGIVING

val message-number

ENTER " "
ns

GETASSIGNVALUE
ns

VST364.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-6

COBOLLIB, CLULIB, and ZCRESRL Routine Calls GETBACKUPCPU
GETBACKUPCPU

GETPARAMTEXT

Note. GETPARAMTEXT uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

ENTER GETBACKUPCPU" "

library-referenceOF

resultGIVING

TAL

ns ns

VST365.vsd

USING

library-reference

portion

OF

resultGIVING

text

ENTER " "
ns

GETPARAMTEXT
ns

VST366.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-7

COBOLLIB, CLULIB, and ZCRESRL Routine Calls GETSTARTUPTEXT
GETSTARTUPTEXT

PUTASSIGNTEXT

Note. The ENTER verb must not be followed by the keyword TAL, because
GETSTARTUPTEXT uses a protocol different from that of normal TAL procedures.

Note. PUTASSIGNTEXT uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

resultGIVING

text

ENTER " "
ns

GETSTARTUPTEXT
ns

VST367.vsd

USING

library-reference

portion

OF

text

message-number

GIVING

cplist

result

ENTER " "
ns

PUTASSIGNTEXT
ns

VST368.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-8

COBOLLIB, CLULIB, and ZCRESRL Routine Calls PUTASSIGNVALUE
PUTASSIGNVALUE

PUTPARAMTEXT

Note. PUTASSIGNVALUE uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

Note. PUTPARAMTEXT uses a protocol different from that used for normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

USING

library-reference

portion

OF

val

message-number

cplist

resultGIVING

ENTER " "
ns

PUTASSIGNVALUE
ns

VST369.vsd

USING

library-reference

portion

OF

text

resultGIVING

cplist

ENTER " "
ns

PUTPARAMTEXT
ns

VST370.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-9

COBOLLIB, CLULIB, and ZCRESRL Routine Calls PUTSTARTUPTEXT
PUTSTARTUPTEXT

Non-SMU Routines
Programs compiled with the COBOL85 compiler can call all of the SMU routines listed
in Table 46-2. Programs compiled with the NMCOBOL compiler can call only the new
routines.

• COBOLASSIGN

• COBOL_ASSIGN_

• COBOLFILEINFO

• COBOL_FILE_INFO_

Note. PUTSTARTUPTEXT uses a protocol different from that used for normal TAL
procedures. The ENTER verb must not be followed by the keyword TAL.

Table 46-2. Non-SMU COBOLLIB Routines

Original Routine New Routine(s)

COBOLASSIGN COBOL_ASSIGN_1, 2

COBOLFILEINFO COBOLFILEINFO2

COBOL_FILE_INFO_3, 4

COBOLSPOOLOPEN COBOL_SPECIAL_OPEN_4

CREATEPROCESS CREATEPROCESS5

CLU_PROCESS_CREATE1, 6

1. In the CLULIB file for the COBOL85 compiler and the ZCOBSRL file for the NMCOBOL compiler

2. For the Guardian environment

3. For the OSS environment

4. In the CBL85UTL file for the COBOL85 compiler and the ZCOBSRL file for the NMCOBOL compiler

5. Cannot create a high-PIN process

6. Can create a high-PIN process

USING

library-reference

portion

OF

text

resultGIVING

cplist

ENTER " "
ns

PUTSTARTUPTEXT
ns

VST371.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-10

COBOLLIB, CLULIB, and ZCRESRL Routine Calls COBOLASSIGN
• COBOLSPOOLOPEN

• CREATEPROCESS

COBOLASSIGN

COBOL_ASSIGN_

Note. COBOLASSIGN uses a protocol different from that used by normal TAL procedures.
The ENTER verb must not be followed by the keyword TAL.

ENTER COBOLASSIGN"

USING

library-reference

system-file-name

OF

error-numberGIVING

"

fd-name

ns ns

VST354.vsd

ENTER COBOL_ASSIGN_"

USING

library-reference

system-file-name

OF

"

fd-name

error-numberGIVING

file-code

file-type

ns ns

VST356.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-11

COBOLLIB, CLULIB, and ZCRESRL Routine Calls COBOLFILEINFO
COBOLFILEINFO

COBOL_FILE_INFO_

ENTER COBOLFILEINFO"

USING

library-reference

fd-name

OF

TAL

error-code

file-name

file-number

ns

"
ns

VST357.vsd

ENTER COBOL_FILE_INFO_"

USING

library-referenceOF

"
TAL

name-buffer

name-size

error

file-name

file-number

VST636.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-12

COBOLLIB, CLULIB, and ZCRESRL Routine Calls COBOLSPOOLOPEN
COBOLSPOOLOPEN

ENTER COBOLSPOOLOPEN" "

USING

library-reference

fd-name

OF

error-codeGIVING

«file-status»

exclusion

sync-depth

level-3

location

form-name

report-name

copies

page-size

flags

owner

TAL

VST358.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-13

COBOLLIB, CLULIB, and ZCRESRL Routine Calls CREATEPROCESS
CREATEPROCESS

USING

library-reference

program-file

OF

resultGIVING

process-name

option

priority

processor

memory

process-id

ENTER " "
ns

CREATEPROCESS
ns

VST359.vsd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
46-14

Part IV. Error Message
Summary

Title

Section 47, Compiler Diagnostic Messages

Section 48, Run-Time Diagnostic Messages
HP COBOL Manual for TNS and TNS/R Programs—522555-006

Part IV. Error Message Summary
HP COBOL Manual for TNS and TNS/R Programs—522555-006

47 Compiler Diagnostic Messages
Topics:

• Message Indicator Line

• Warning Message Format

• Error Message Format

• Failure Message Format

• Message List

• Other Products’ Error Messages

Table 47-1. Warning, Error, and Failure Characteristics

Message
Type Reports

Compilation
Continues

Code Generation is
Suppressed

Object File is
Suppressed

Warning Questionable
condition

Yes No No

Error Serious syntactic
or semantic
violation

Yes For current separately
compiled program

In some cases

Failure Condition so
severe that
compilation
cannot continue

No Yes Yes
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-1

Compiler Diagnostic Messages Message Indicator Line
Message Indicator Line
A message indicator line precedes each compiler diagnostic message. If possible, the
message indicator line specifies the location of the problem or the unacceptable object
with one or more of these:

• A caret (^) showing where in the source line the compiler recognized the problem

• For the COBOL85 compiler, the phrase “Problem on line nnnnn ” where nnnnn is
the line number of the source line where the compiler recognized the problem

• The user-defined name of the object that the problem involves

The message indicator line cannot always tell you exactly where the problem is
because the problem might not be recognizable (and reportable) until the compiler is
past the source line that contains it.

Table 47-2. Problem Discovery Time, Message Indicator Line Contents, and
Problem Location

Problem Discovery Time
Message Indicator Line
Contents Problem Location

During textual or syntactic
analysis of a particular
source file line

Caret (^) (usually),
“Problem on line nnnnn ”
(maybe)

Language element marked by
caret, source file line number
nnnnn

During semantic analysis of
an operand phrase, clause,
or statement

“Problem on line nnnnn ”
(usually), caret (^)
(maybe)

In vicinity of source file line
number nnnnn, language
element marked by caret

After analyzing many source
lines, possibly an entire
source program

User-defined name of
object, “Problem on line
nnnnn ” (maybe)

With the named object, in
vicinity of source file line
number nnnnn

Example 47-1. Message Indicator Line (COBOL85 Compiler)

13 MOVE "" TO A.
 ^ Problem on line 13
** Error 30 ** Null literal

Example 47-2. Message Indicator Line (NMCOBOL Compiler)

 13 MOVE "" TO A.
*** Error: ^
--> Null literal [Error 30]
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-2

Compiler Diagnostic Messages Warning Message Format
Warning Message Format
For the COBOL85 compiler, a warning message has this format:

** Warning message-number ** message-text

For the NMCOBOL compiler, a warning message has this format:

*** Warning:
--> message-text [Warning message-number]

The brackets are part of the message, not indicators that the bracketed material is
optional.

Error Message Format
For the COBOL85 compiler, an error message has this format:

** Error ** message-number ** message-text

For the NMCOBOL compiler, an error message has this format:

*** Error:
--> message-text [Error message-number]

The brackets are part of the message, not indicators that the bracketed material is
optional.

Failure Message Format
For the COBOL85 compiler, a failure message has this format:

** Failure ** message-number ** message-text

For the NMCOBOL compiler, a failure message has this format:

*** Failure:
--> message-text [Failure message-number]

The brackets are part of the message, not indicators that the bracketed material is
optional.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-3

Compiler Diagnostic Messages Message List
Message List
Messages are listed in numeric order by message number, with message type
(warning, error, or failure) noted.

0 (Failure)

Cause. The compiler’s internal consistency checks found a logic error. Please report
this failure to your service provider.

1 (Failure)

Cause. The compiler cannot create one of its work files. file-name is the external
form of the file name. ddd is the file management error code returned by the operating
environment.

2 (Failure)

Cause. One of:

• The compiler cannot open the file named file-name.

• The file name parameter of the CONSULT, SEARCH, LIBRARY, or ERRORFILE
directive is either absent or does not have the form of a disk file name.

The xxxx parameter is the type of compiler file (source, copy, list, or work). file-
name is the external form of the file name. ddd is the file management error code that
the operating environment returned.

3 (Failure)

Cause. The compiler cannot use the file named file-name. xxxx is the type of
compiler file (source, SEARCH, COPY, or list). file-name is the external form of the
file name. Some causes of this failure are:

• The file file-name does not exist.

• The file file-name is not a disk file.

Compiler logic error

CREATE failure on work file (file-name): ddd

OPEN failure on xxxx file (file-name): ddd

Unable to use xxxx file (file-name)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-4

Compiler Diagnostic Messages Message List
• The file file-name is specified as the source file, but its attributes are
inappropriate for a source file (usually because the device type does support read
operations).

• The file file-name is specified as a SEARCH file, but it is not a code 700 object
file.

• The file file-name is specified as a SEARCH file, but it was not created by a
compilation with symbols specified.

• The file file-name is specified as a COPY library, but its attributes are
inappropriate for a COPY file (file-name is not an EDIT file or has been
modified since the start of the current compilation).

• The default COPY library named file-name in the command that called the
compiler has improper punctuation or its content does not have the form of a disk
file name.

• The file file-name is specified as the compiler listing, but it’s attributes ar
inappropriate for a compiler listing (the device type does support write operations,
the record length is too short, the file is an EDIT file or a keyed-access disk file,
and so on).

4 (Failure)

Cause. The compiler cannot initialize the indicated EDIT file for reading. xxxx is the
type of compiler file (source or copy). file-name is the external form of the file
name. ddd is the error code describing the problem. A negative ddd value indicates a
format error in the file. A nonnegative value indicates a Guardian file management
error.

5 (Failure)

Cause. The compiler cannot read a record from the EDIT file indicated. xxxx is the
type of compiler file (source or copy). file-name is the external form of the file
name. ddd is the Guardian file management error code describing the problem.

6 (Failure)

Cause. The compiler cannot read a record from the file named file-name. xxxx is
the type of compiler file (source or work). file-name is the external form of the file
name. ddd is the file management error code that the operating environment returned.

OPEN edit failure on xxxx file (file-name): ddd

READ edit failure on xxxx file (file-name): ddd

READ failure on xxxx file (file-name): ddd
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-5

Compiler Diagnostic Messages Message List
7 (Failure)

Cause. The compiler cannot write a record to the file named file-name. xxxx is the
type of compiler file (list or work). file-name is the external form of the file name.
ddd is the file management error code that the operating environment returned.

8 (Failure)

Cause. The compiler cannot perform a miscellaneous input-output operation on the
file named file-name. xxxx is the type of compiler file (list or work). file-name is
the external form of the file name. ddd is the file management error code that the
operating environment returned.

9 (Failure)

Cause. The compiler either cannot initiate or cannot terminate spooler processing for
its list file. file-name is the external form of the file name. ddd is the error code
describing the problem (explained in documentation of the SPOOLSTART and
SPOOLEND procedures).

10 (Failure)

Cause. The compiler cannot allocate its extended data segment. ddd is the error
code describing the problem (explained in the documentation of the
ALLOCATESEGMENT procedure).

11 (Failure)

Cause. A source file or COPY library file contains more than 132 characters.

WRITE failure on xxxx file (file-name): ddd

I/O failure on xxxx file (file-name): ddd

Spooler failure on list file (file-name): ddd

Unable to allocate compiler data space: ddd

Source line exceeds 132 characters
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-6

Compiler Diagnostic Messages Message List
12 (Failure)

Cause. One of:

• The reserved word COPY appears where it is not expected (for example, within
COPY library text).

• The reserved word REPLACE appears where it is not expected (for example,
within source text produced by the editing activities of a REPLACE statement).

13 (Failure)

Cause. The source program does not begin with an Identification Division header.

14 (Failure)

Cause. The compiler reached the end of the source file during an attempt to recover
from a syntax error. This usually occurs in one of these situations:

• A syntax error is near the end of the source file, so the remaining text does not
provide enough context for the compiler to decide how to recover.

• A syntax error is such that the compiler fails to discover an acceptable method of
recovery and flushes the remaining source text.

15 (Failure)

Cause. The compiler cannot continue execution because it has exhausted some
internal resource. The message can have one of these suffixes:

- statement nesting too deep
- editing space overflow
- too much pseudo text
- too many editable lines
- too many edited lines

If the message has the suffix

- statement nesting too deep

rewrite the statement, reducing the number of nested scopes.

Use PARAM SYMBOL-BLOCKS to allocate more space.

Improper context for source text directive

Expected IDENTIFICATION

End of file reached during error recovery

Compiler internal resource failure
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-7

Compiler Diagnostic Messages Message List
If PARAM SYMBOL-BLOCKS does not solve the problem, and the program uses
COPY, REPLACE, or both COPY and REPLACE:

• Reduce the size of the pseudotext or literal in the REPLACE statement or
REPLACING phrase.

• Use REPLACE OFF when replacement is no longer needed.

• Reduce the number of contiguous comment lines that can be read while COPY
LIBRARY or REPLACE is active.

• Avoid having COPY and REPLACE active at the same time.

16 (Failure)

Cause. The number of error messages exceeds the specified limit (100 unless
specified otherwise in an ERRORS directive).

17 (Failure)

Cause. The compiler’s symbol dictionary has insufficient space to describe all entities
defined in the current separately compiled program. Divide the program into two or
more separately compiled programs. Use PARAM SYMBOL-BLOCKS to allocate more
space.

The NMCOBOL compiler needs more symbol table space than the COBOL85 compiler
does, so you might need to allocate more while migrating to TNS/R native mode. See
Step 6 of Migrating HP COBOL Programs.

18 (Failure)

Cause. A format switch directive (ANSI or TANDEM) appears in text edited under the
control of a COPY or REPLACE statement. The compiler cannot process the source
text correctly.

19 (Failure)

Cause. The compiler cannot continue execution because one of its server processes
reported a failure or terminated abnormally.

Too many errors

Dictionary overflow

Format switch during editing

Server failure
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-8

Compiler Diagnostic Messages Message List
20 (Failure)

Cause. The processor in which the compiler is to run is not licensed for this compiler’s
execution.

21 (Failure)

Cause. The compiler ran out of storage space because the nesting of SOURCE
directives summoning text that includes other SOURCE directives is too deep.

25 (Warning)

Cause. A source line marked as a continuation line (having a hyphen in the indicator
area) contains only spaces as its text.

26 (Warning)

Cause. One of:

• The character in the indicator area of a source line is not minus (-), asterisk (*),
slash (/), question mark (?), d, D, or space.

• A continuation line is part of a comment-entry in a paragraph of the Identification
Division.

27 (Error)

Cause. The character indicated is not permitted in this context. Because the character
might not be printable, its internal (octal) value is appended to the message.

Assigned CPU is not licensed for this compiler

SOURCE nesting too deep

Blank continuation line

Improper indicator character

Improper character
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-9

Compiler Diagnostic Messages Message List
28 (Error)

Cause. One of:

• A division header is followed by other text on the same source line.

• A section header is followed by other text on the same source line (other than a
USE statement).

• The DECLARATIVES or END DECLARATIVES header is followed by other text on
the same source line.

• A compiler directive that must be the last one on its line is followed by other text on
the same directive line.

29 (Error)

Cause. The terminating quotation-mark character (") is missing from a nonnumeric
literal.

30 (Error)

Cause. A nonnumeric literal contains no characters (has no textual value).

31 (Error)

 A nonnumeric literal contains more than 160 characters.

32 (Error)

Cause. A character-string appears (to the compiler) to contain more than 160
characters. If the indicated text is intended to represent several consecutive language
elements, correct the problem by inserting space separators between them.

Text not permitted here

Missing quote character

Null literal

Literal exceeds 160 characters

Token exceeds 160 characters
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-10

Compiler Diagnostic Messages Message List
33 (Error)

Cause. A numeric literal contains more than 18 digits.

34 (Error)

Cause. A COBOL word contains more than 30 characters.

35 (Error)

Cause. The last character of the indicated COBOL word is a hyphen.

36 (Warning or Error)

Cause. Warning: A COBOL reserved word is the text-name or library-name in a
COPY statement.

Error: A COBOL reserved word is in an improper context. Usually this message
reports the use of a noncritical reserved word (one defined in an unsupported language
module) as a user-defined word.

37 (Error)

Cause. A PICTURE character-string is specified as a nonnumeric literal.

38 (Warning)

Cause. One of:

• A comma, semicolon, or period character is not followed by the space needed to
make it a separator.

• A character-string is not followed by an appropriate separator.

Numeric literal exceeds 18 digits

Word exceeds 30 characters

Word ends with '-'

Improper use of reserved word

Do not quote PICTURE string

Missing separator
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-11

Compiler Diagnostic Messages Message List
39 (Warning, Error or Failure)

Cause. Warning: The run unit file name (object file name) field in the command that
called the compiler has improper punctuation or its content does not have the form of a
disk file name. The compiler supplies RUNUNIT (with appropriate default volume and
subvolume components) as the run unit file name.

Error: A system-name is in a context where it must identify an actual file (for example,
in a File-Mnemonic clause), but it does not have the form of an actual file name.

Failure: A COPY or SOURCE file does not have the form of a disk file name.

40 (Error)

Cause. One of:

• The analysis of a COPY or REPLACE statement failed when it reached the
indicated element because of a syntactic problem (for example, a required
component is missing).

• The compiler found a syntactic problem in a Procedure Division statement after the
general syntax analysis completed with apparent success.

41 (Error)

Cause. The compiler found a syntax error at the indicated point and recovered by
replacing that token (a character-string or a separator) with the token xxxx (a different
character-string or separator). This replacement is probably just one of several
possible corrections. You must determine the proper correction through careful
examination of the text.

42 (Error)

Cause. The compiler found a syntax error at the indicated point and recovered by
inserting the token xxxx (a character-string or a separator) just prior to that point.
Inserting that token is probably just one of several possible corrections. You must
determine the proper correction through careful examination of the text.

Improper actual file name

Improper syntax

Syntax error - replacing unexpected token with xxxx

Syntax error - inserting missing token xxxx
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-12

Compiler Diagnostic Messages Message List
43 (Error)

Cause. The compiler found a syntax error at the token xxxx (a character-string or a
separator) and recovered by deleting that token. The problem could have been a
misspelled optional reserved word or an extraneous separator. Deleting the token is
probably just one of several possible corrections. You must determine the proper
correction through careful examination of the text.

44 (Error)

Cause. The compiler’s syntax analyzer cannot accept the token xxxx (a character-
string or a separator) and the recovery mechanism cannot find a simple correction. The
compiler tried to recover by discarding text following the token, along with as little text
preceding the token as is necessary, until the remaining text was syntactically
acceptable.

45 (Warning)

Cause. The compiler discarded all tokens from the one indicated in the message for
error 44 up to, but not including, the token xxxx. Also, the compiler might have
discarded some text prior to the point indicated in the preceding message. This error
correction usually is not the preferred one. You must determine the proper correction
through careful examination of the text at the point indicated by the preceding syntax
error message.

46 (Error)

Cause. The compiler expected to find a directive and did not. Directives are expected
in these places:

• At the beginning of a directive line
• After the punctuation following a completed directive

47 (Error)

Cause. The indicated word must be a directive keyword, but it is not.

Syntax error - deleting unexpected token xxxx

Syntax error detected at token xxxx

Parsing resumed at token xxxx

Expected directive

Unknown directive
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-13

Compiler Diagnostic Messages Message List
48 (Warning or Error)

Cause. Warning: The SYMBOLS or NOSYMBOLS directive is within a separately
compiled program. It is ignored in this context.

Error: One of:

• The indicated directive (MAIN or NONSTOP) cannot appear at this point in the
source text. It must precede the first source program’s Identification Division
header.

• The indicated directive (SYNTAX or COMPILE) cannot appear at this point in the
source text. It must appear before the first separately compiled program or
between separately compiled programs.

• The SECTION directive cannot appear at this point in the directive line. It must be
the first one on its directive line.

• The program contains the SQLMEM directive but not the SQL directive.

49 (Error)

Cause. The compiler did not find the directive parameter keyword that it expected in
one of these places:

• Following a directive keyword
• After the punctuation following a completed directive parameter

50 (Error)

Cause. The indicated word must be a parameter keyword of the current directive, but
is not.

51 (Error)

Cause. The HEADING directive has a parameter that is not a string surrounded by
quotation marks.

Improper context for this directive

Expected directive parameter

Unknown directive parameter

Expected quoted string
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-14

Compiler Diagnostic Messages Message List
52 (Error)

Cause. The MAIN directive has either no parameter or a parameter that is not a
COBOL word.

53 (Error)

Cause. One of:

• Multiple compiler directives appear on the same line but are not separated by
semicolons.

• Multiple parameters of a compiler directive are not separated by commas.

• A compiler directive parameter list begun with a left parenthesis is not terminated
by a right parenthesis.

54 (Warning)

Cause. One of:

• The compiler finds a SYMBOLS directive when a SYNTAX directive is active. The
compiler ignores the SYMBOLS directive.

• The compiler finds a SYNTAX directive when the SYMBOLS directive is active.
The compiler proceeds as if a NOSYMBOLS directive preceded the SYNTAX
directive.

55 (Error)

Cause. A NOCROSSREF directive is followed by directive parameters, which it
cannot have.

55 (Error)

Cause. A NOCROSSREF directive is followed by directive parameters, which it
cannot have.

Expected program-name

Expected comma or other delimiter valid for context

No symbol table generated

Parameters ignored

Parameters ignored
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-15

Compiler Diagnostic Messages Message List
56 (Warning)

Cause. The SQL directive must be specified on the command line. An SQL directive in
the source program will be ignored.

58 (Error)

Cause. The compiler could not convert a source line processed under the control of a
COPY or REPLACE statement to a debugging line (by putting D or d in the indicator
area) because the line is also a continuation line.

59 (Warning)

Cause. The compiler’s interpretation of the source program might differ from the
HP COBOL 74 compiler’s interpretation. tttt indicates which aspect of the program
is being reported. See DIAGNOSE-74 and NODIAGNOSE-74.

You must determine what effects the compiler’s interpretation has on the program’s
execution logic, decide if those effects are desired or not, and then revise the source
program as needed. The compiler reports potential logic differences only when the
DIAGNOSE-74 directive is specified.

60 (Warning or Error)

Cause. The compiler found an optional element of the COBOL language that
HP COBOL does not support.

Warning: Examples of language elements that cause this warning are:

• More than one system-name in an ASSIGN clause (the compiler ignores all
system-names after the first one)

• The VALUE clause of a file description entry (the compiler ignores the VALUE
clause)

Error: Use of an unsupported language element, for example:

• The OPEN … REVERSED option
• Elements defined in the Communications module
• Elements defined in the Report Writer module

This directive permitted only on the command line

Unable to convert continuation to debugging line

Logic may differ from COBOL 74 - tttt

Not supported
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-16

Compiler Diagnostic Messages Message List
61 (Warning)

Cause. The NMCOBOL compiler’s interpretation of the source program might differ
from the COBOL85 compiler’s interpretation. See DIAGNOSE-85 and NODIAGNOSE-
85.

You must determine what effects the NMCOBOL interpretation has on the program’s
execution logic, decide if those effects are desired, and then revise the source program
if needed. The NMCOBOL compiler reports potential logic differences only when the
DIAGNOSE-85 directive is specified.

If you suspect that the data item that caused this warning contains trailing spaces, use
the NUMVAL function; for example, change:

MOVE a TO b

To:

MOVE FUNCTION NUMVAL (a) TO b

62 (Error)

Cause. One of:

• The definition of a user-defined word conflicts with its prior definition as the name
of an object in another class.

• The definition of a user-defined word conflicts with its prior definition as the name
of an object in the same class, because all objects in that class must have unique
names.

• The name of a special register is specified as the name of a user-defined object.

63 (Error)

Cause. A reference has insufficient qualification to identify a unique entity.

64 (Error)

Cause. The indicated integer numeric literal has the value 0, which is not permitted in
this context.

Logic may differ from COBOL85 - move alphanumeric to numeric
with invalid data

Name conflict

Ambiguous reference

Zero not permitted in this context
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-17

Compiler Diagnostic Messages Message List
65 (Error)

Cause. One of:

• The value of an integer numeric literal is either too small or too large for its context.
The expected range can be absolute (for example, many literals cannot exceed
32,767) or relative (for example, the FOOTING value in a LINAGE clause cannot
exceed the number of lines in the page body).

• The value of an integer numeric literal used as a subscript is less than 1 or greater
than the maximum occurrence number defined by the appropriate OCCURS
clause.

66 (Error)

Cause. Only an unsigned integer numeric literal is permitted in this context, and the
compiler found something else.

67 (Error)

Cause. The indicated nonnumeric literal contains more than one character, which is
not allowed in this context.

69 (Error)

Cause. One of:

• The alphabet-name specified in the PROGRAM COLLATING SEQUENCE clause
is not defined.

• A reference that must identify an alphabet-name does not.

70 (Error)

Cause. A reference that must identify a file name does not.

Integer not within expected range

Expected unsigned integer

Expected single character

Expected alphabet-name

Expected file name
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-18

Compiler Diagnostic Messages Message List
71 (Error)

Cause. The indicated COBOL word appears in a context where a symbolic-character
is expected, but it does not identify one.

72 (Error)

Cause. One of:

• The section-name parameter is missing from a SECTION directive.

• The text-name specified in a COPY statement is not a section-name in the COPY
library.

• A section-name specified in a SOURCE directive is not in the source library.

73 (Error)

Cause. One of:

• The first value in a numeric range exceeds the last value (or is equal to the last
value in a context in which it must be less).

• The first value in a nonnumeric range is greater than the last value.

74 (Error)

Cause. One of:

• A CALL statement specifies more parameters in its USING phrase than
HP COBOL supports.

• An ENTER statement specifies more parameters in its USING phrase than the
routine expects.

Expected symbolic character

Expected section-name

Improper range

COBOL85 Compiler:

Too many or too few parameters

NMCOBOL Compiler:

Too many actual parameters
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-19

Compiler Diagnostic Messages Message List
• An ENTER statement specifies fewer parameters in its USING phrase than the
routine expects, and the routine is not defined as EXTENSIBLE or VARIABLE
(COBOL85 compiler only).

75 (Error)

Cause. The indicated language element does not appear in the proper position within
the source program.

76 (Error)

Cause. The indicated phrase duplicates the function of a preceding one.

77 (Error)

Cause. The indicated clause duplicates the function of a preceding one.

78 (Error)

Cause. The indicated paragraph header duplicates a preceding one.

79 (Error)

Cause. The indicated section header duplicates a preceding one.

80 (Error)

Cause. The indicated clause cannot appear in the current entry.

Out of order

Duplicate phrase

Duplicate clause

Duplicate paragraph

Duplicate section

Clause not permitted in this context
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-20

Compiler Diagnostic Messages Message List
81 (Error)

Cause. One of:

• The Configuration Section is within a contained program.

• The RECEIVE-CONTROL paragraph is within a contained program.

• A program is not terminated by an END PROGRAM statement or an ENDUNIT
directive.

82 (Error)

Cause. One of:

• A file has more than 31 alternate record keys.
• An OCCURS clause has more than 31 key references.
• A SORT or MERGE statement has more than 31 keys.

83 (Error)

Cause. The number of receiver items in the statement exceeds the maximum number
allowed. For the maximum number allowed, see Section 19, Using HP COBOL in the
OSS Environment.

84 (Error)

Cause. An ENTER statement specifies fewer parameters in its USING phrase than
the routine expects.

Not permitted within contained program

Too many keys

Too many receiver items

NMCOBOL Compiler:

Too few actual parameters
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-21

Compiler Diagnostic Messages Message List
85 (Warning)

Cause. An arithmetic expression was too complex to produce a correct answer,
probably because the intermediate result exceeded the capacity of the intermediate
data item (36 digits) or because there was more than one division operation.

The expression uses a floating-point, intermediate, data item, which might cause the
result to be slightly off in the rightmost positions. If you want exact results, break the
expression into more than one statement, using temporary data items that have the
precision you need.

86 (Error or Failure)

Cause. Error: Programs are nested deeper than the limit of 7. Failure: Program
nesting depth is too great.

87 (Error)

Cause. The Identification Division has no PROGRAM-ID paragraph (the compiler
generates a name for the source program).

88 (Error or Failure)

Cause. Within a separately compiled program, the same name identifies more than
one source program.

89 (Error)

Cause. The same name identifies both a separately compiled COBOL program and a
routine in the same run unit. The conflict arises because the name is the subject of
CALL or CANCEL statements in the current separately compiled program, and these
references must be resolved to another separately compiled COBOL program not yet
defined in the source text; however, the compiler has already found references to this
name as the identifier of a routine.

Arithmetic expression too complex - floating-point used

Program nesting too deep

Missing PROGRAM-ID paragraph

Duplicate program-name

Program-name conflicts with routine-name
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-22

Compiler Diagnostic Messages Message List
90 (Error)

Cause. The COMMON phrase appears somewhere other than within a contained
program.

91 (Error)

Cause. One of:

• The reference in the CHARACTER-SET clause is not one of the system-names
defined for that clause.

• The system-name in the ALPHABET clause is not EBCDIC, the only value that
HP COBOL supports.

• The standard system-name in the RECORD DELIMITER clause is not
STANDARD-1, the only value that HP COBOL supports.

• A reference in the REPORT clause of the RECEIVE-CONTROL paragraph is not
one of the system-names defined for that clause.

92 (Error)

Cause. A STATUS phrase appears somewhere other than in a system-name clause
whose subject is one of the supported external switch names.

93 (Warning)

Cause. A clause defining an alphabet-name does not begin with the keyword
ALPHABET.

94 (Error)

Cause. A symbolic-character appears within the definition of an alphabet-name or
class-name.

Permitted only within contained program

System-name not defined in this context

STATUS phrase permitted only for switch

Missing ALPHABET keyword

Symbolic character not permitted
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-23

Compiler Diagnostic Messages Message List
95 (Error)

Cause. One of:

• A character has more than one collating position in a character set.

• A character appears more than once in the first operand of the CONVERTING
phrase in an INSPECT statement.

• A section-name appears more than once in a SOURCE directive.

96 (Error)

Cause. The number of values in the SYMBOLIC CHARACTER clause differs from the
number of symbolic-characters being defined.

97 (Error)

Cause. Either the alternative currency symbol specified is not a single character or the
given character is not permitted in this context.

98 (Error)

Cause. A file-control entry does not have an ASSIGN clause.

99 (Error)

Cause. The description of a file with relative organization and either random or
dynamic access does not have a RELATIVE KEY clause.

100 (Error)

Cause. The description of a file with indexed organization does not have a RECORD
KEY clause.

Duplicates not permitted

Too many or too few values

Improper currency symbol

Missing ASSIGN clause

Missing relative key

Missing record key
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-24

Compiler Diagnostic Messages Message List
101 (Error)

Cause. A file that does not have relative organization has a RELATIVE KEY clause in
its file-control entry.

102 (Error)

Cause. A file that does not have indexed organization has a RECORD KEY clause in
its file-control entry.

103 (Error)

Cause. The program tried to access a file that was described with sequential
organization randomly or dynamically.

104 (Error)

Cause. A file that does not have sequential organization has a PADDING clause in its
file-control entry.

105 (Error)

Cause. A file that does not have sequential organization has a RECORD DELIMITER
clause in its file-control entry.

106 (Error)

Cause. The indicated name is not defined in a file-control entry of the current source
program.

Relative key permitted only for relative organization

Record key permitted only for indexed organization

Sequential organization requires sequential access

PADDING clause permitted only for sequential organization

RECORD DELIMITER clause permitted only for sequential
organization

Expected local file name
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-25

Compiler Diagnostic Messages Message List
107 (Warning)

Cause. A file name appears more than once in a single SAME AREA, SAME
RECORD AREA, or SAME SORT AREA clause.

108 (Error)

Cause. One of:

• A particular file name appears in more than one SAME AREA clause.

• A particular file name appears in more than one SAME RECORD AREA clause.

• A particular sort-merge file name appears in more than one SAME SORT AREA
clause.

109 (Warning or Error)

Cause. Warning: The SAME AREA, SAME RECORD AREA, or SAME SORT AREA
clause contains fewer than two file names.

Error: The USING phrase in a MERGE statement contains fewer than two file names.

110 (Error)

Cause. One of these rules was violated:

• When a file name that appears in a SAME AREA clause also appears in a SAME
RECORD AREA clause, every other file name in that SAME AREA clause must
also appear in the SAME RECORD AREA clause.

• When a file name that appears in a SAME AREA clause also appears in a SAME
SORT AREA clause, every other file name in that SAME AREA clause must also
appear in the SAME SORT AREA clause.

111 (Error)

Cause. A source program has more than 8 MULTIPLE FILE TAPE clauses.

Duplicate file-name in SAME clause

File name permitted in only one SAME clause

Expected two or more file names

Inconsistent with other SAME clause

Too many MULTIPLE FILE TAPE clauses
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-26

Compiler Diagnostic Messages Message List
112 (Error)

Cause. A source program has too many CONSULT, LIBRARY, and SEARCH files for
the available memory.

113 (Error)

Cause. The same file name appears more than once in a MULTIPLE FILE TAPE
clause or in more than one MULTIPLE FILE TAPE clause.

114 (Error)

Cause. A file name in a MULTIPLE FILE TAPE clause follows one or more other file
names that have explicit position numbers, but it does not have an explicit position
number.

115 (Error)

Cause. Two or more file names in a MULTIPLE FILE TAPE clause have the same
position number.

116 (Error)

Cause. A MULTIPLE FILE TAPE clause has a file name that is not described with
sequential organization.

Too many file names

file name permitted only once in MULTIPLE FILE TAPE clauses

File position required

Duplicate file position

MULTIPLE FILE TAPE clause requires sequential organization
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-27

Compiler Diagnostic Messages Message List
117 (Error)

Cause. The size of the receive control table as specified in the RECEIVE-CONTROL
paragraph exceeds 62 KB (65,400 characters). Reduce table-length in the TABLE
OCCURS phrase or reduce another factor in these formulas, which determine the size
of the receive control table:

• In the CRE:

((max_requesters + 1) * 26) +
((((max_reply + 1) / 2) + 4) * (max_requesters * sync)) +4

• In the non-CRE environment, when the receive control table is not in the Extended-
Storage Section:

((max_requesters + 1) * 11) +
((((max_reply + 1) / 2) + 4) * (max_requesters * sync)) +4

• In the non-CRE environment, when the receive control table is in the Extended-
Storage Section:

((max_requesters + 1) * 11) +
(4 * (max_requesters * sync)) + 4

121 (Error)

Cause. A level-number is not 66, 77, 88, or in the range 01 through 49. The compiler
converts the improper level-number to 50.

122 (Error)

Cause. A data description entry with a level-number from 02 through 49 inclusive is
not subordinate to a data description entry with level-number 01.

123 (Error)

Cause. A data description entry with level-number 66 is not preceded by a record
description. (Any intervening data description entries must also have level-number 66.)

Receive control table too large

Improper level-number

Missing 01 level entry

Not preceded by record
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-28

Compiler Diagnostic Messages Message List
124 (Error)

Cause. One of:

• A level-77 data item is defined in the File Section.

• A level-01 data item defined in the File Section is described with the REDEFINES
clause.

• The EXTERNAL clause for a data description entry is not within the Working-
Storage Section or Extended-Storage Section.

• The GLOBAL clause appears in descriptions that are not within the File Section,
Working-Storage Section, or Extended-Storage Section.

• The description of a data item defined within the File Section or Linkage Section
includes a VALUE clause.

125 (Error)

Cause. The definition of a condition-name (a name whose data description entry has
level-number 88) is not preceded by the entry for the data item whose value it tests.
(Any intervening data description entries must also have level-number 88.)

126 (Error)

Cause. A level-number is neither greater than the level-number of the preceding data
description entry nor equal to that of some preceding data description entry in the
same record description.

127 (Error)

Cause. Within a record description, a data description entry that includes an OCCURS
clause with the DEPENDING phrase is followed by a data description entry with a
lesser level-number.

Not permitted within this section

Not preceded by conditional variable

Inconsistent level-number

Not permitted after variable occurrence table
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-29

Compiler Diagnostic Messages Message List
128 (Error)

Cause. A record data item that has no name, or is a FILLER data name, is either
described with the EXTERNAL clause or is subordinate to a file description entry that
includes the EXTERNAL clause.

129 (Error)

Cause. A record data item that has no name, or is a FILLER data name, is either
described with the GLOBAL clause or is subordinate to a file description entry that
includes the GLOBAL clause.

130 (Error)

Cause. One of:

• A data description entry with level-number 66 or 77 does not include the data-
name.

• A data description entry with level-number 88 does not include the condition-name.

131 (Error)

Cause. The reference in a REDEFINES clause does not identify a data item. (When a
REDEFINES clause appears in a record description, only that record is searched for
the redefined item.)

132 (Error)

Cause. The data item to be redefined does not have the same level-number as the
redefinition data item.

FILLER not permitted for 01 level external data item

FILLER not permitted for 01 level global data-name

FILLER not permitted for this level-number

Redefined data item not found

Redefined data item has conflicting level-number
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-30

Compiler Diagnostic Messages Message List
133 (Error)

Cause. A redefined data item is a subordinate of a file description entry and/or one or
more data structure description entries, but the redefinition item is not a subordinate of
these entries.

134 (Error)

Cause. The program tried to redefine a data item that was described with a
REDEFINES clause. (A subordinate of a redefinition can be redefined unless it is also
described with a REDEFINES clause.)

135 (Error)

Cause. The data description entry of a redefinition was separated from the data
description entry of the redefined item by another data description entry with the same
level-number, and the intervening entry did not redefine the same data item.

136 (Error)

Cause. The program tried to redefine a table or a data structure with a variable size.

137 (Error)

Cause. Two different records in the same source program have the same record-
name and both have the EXTERNAL attribute. Only one can have the EXTERNAL
attribute.

138 (Error)

Cause. A record item described with a REDEFINES clause has the EXTERNAL
clause.

Redefined and redefinition data items not subordinate to same
levels

Redefined data item is a redefinition

Redefined data item not preceding item at this level

Redefined data item is table or has variable size

Name conflict with other 01 level external data item

Redefinition not permitted for 01 level external data item
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-31

Compiler Diagnostic Messages Message List
139 (Error)

Cause. A PICTURE character-string has more than 30 characters.

140 (Error)

Cause. The PICTURE character-string does not conform to the rules of the COBOL
language, possibly for one of these reasons:

• The characters are undefined in this context.
• The characters are combined improperly.
• The character-string has unmatched parentheses.
• The character-string has no positions for data characters.

141 (Error)

Cause. The PICTURE character-string for a numeric or numeric-edited data item has
more than 18 digit positions.

142 (Error)

Cause. The PICTURE character-string has more than 134,217,726 character
positions.

143 (Error)

Cause. The PICTURE clause describes a data item with USAGE INDEX, NATIVE-2,
NATIVE-4, or NATIVE-8.

144 (Error)

Cause. A data item that is subordinate to a data structure described with a USAGE
clause is described with a USAGE clause specifying a different usage.

Picture string exceeds 30 characters

Improper picture string

Too many digit positions

Too many character positions

PICTURE clause not permitted for specified usage

Subordinate usage conflicts with group usage
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-32

Compiler Diagnostic Messages Message List
145 (Error)

Cause. Only a numeric data item can be described with the specified usage.

146 (Error)

Cause. A data item that is either subordinate to a data structure described with a
VALUE clause or associated with condition-names does not have USAGE DISPLAY, as
it must.

147 (Error)

Cause. One of these items does not have USAGE DISPLAY, as it must:

• A data item described with a SIGN clause

• A signed numeric data item that is subordinate to a data structure described with a
SIGN clause

148 (Error)

Cause. A data item is described with a SIGN clause, but either its category is not
numeric or its PICTURE character-string does not contain S.

149 (Error)

Cause. A data item is described with a SYNCHRONIZED clause, but either the data
item is subordinate to a data structure described with a VALUE clause or the data item
is associated with condition-names.

Specified usage permitted only for numeric data item

Display usage required in group with value or condition-names

Display usage required when SIGN clause applies

Only signed numeric picture permitted when SIGN clause
specified

SYNCHRONIZED clause not permitted in group with value or
condition-names
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-33

Compiler Diagnostic Messages Message List
150 (Error)

Cause. A data item is described with a JUSTIFIED clause, but the data item does not
have USAGE DISPLAY, as it must.

151 (Error)

Cause. A numeric, numeric-edited, or alphanumeric-edited data item is described with
a JUSTIFIED clause.

152 (Error)

Cause. A data item is described with a JUSTIFIED clause, but either the data item is
subordinate to a data structure described with a VALUE clause or the data item is
associated with condition-names.

153 (Error)

Cause. A data item is described with a BLANK WHEN ZERO clause, but the data item
does not have USAGE DISPLAY, as it must.

154 (Error)

Cause. A data item is described with a BLANK WHEN ZERO clause, but the data item
is not numeric or numeric-edited, as it must be.

155 (Error)

Cause. A data item is described with both the BLANK WHEN ZERO clause and a
PICTURE character-string containing the asterisk symbol (*).

JUSTIFIED clause requires display usage

JUSTIFIED clause not permitted for numeric or edited data
item

JUSTIFIED clause not permitted in group with value or
condition-names

BLANK WHEN ZERO clause requires display usage

BLANK WHEN ZERO clause requires numeric or numeric-edited
picture

BLANK WHEN ZERO clause not permitted for picture with '*'
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-34

Compiler Diagnostic Messages Message List
156 (Error)

Cause. One of:

• A data item that is part or all of a redefinition is described with an ACCESS MODE
clause specifying a different mode than the data item it redefines.

• A data item that is subordinate to a data structure described with an ACCESS
MODE clause is described with an ACCESS MODE clause specifying a different
mode.

157 (Error)

Cause. A data item with USAGE INDEX is described with a VALUE clause.

158 (Error)

Cause. A data item that is part or all of a redefinition is described with a VALUE
clause.

159 (Error)

Cause. An external data item is described with a VALUE clause.

160 (Error)

Cause. A data item that is subordinate to a data structure described with a VALUE
clause is described with its own VALUE clause.

161 (Error)

Cause. The literals of a range in a VALUE clause are not both numeric or both
nonnumeric, as they must be.

Access mode conflict for redefinition or subordinate

VALUE clause not permitted for index data item

VALUE clause not permitted for redefinition

VALUE clause not permitted for external data item

VALUE clause not permitted in group with initial value

Numeric literal not compatible with nonnumeric literal
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-35

Compiler Diagnostic Messages Message List
162 (Error)

Cause. The VALUE clause describing a data item contains a range of literals.

163 (Error)

Cause. The VALUE clause describing a data item contains more than one value.

164 (Error)

Cause. A table has more than 7 OCCURS clauses.

165 (Error)

Cause. A data item subordinate to a table item is described with an OCCURS clause
that includes the DEPENDING phrase.

166 (Error)

Cause. A data item that is part or all of a redefinition is described with an OCCURS
clause that includes the DEPENDING phrase.

167 (Error)

Cause. The RENAMES clause does not refer to a data item.

168 (Error)

Cause. The RENAMES clause references a data item that was not defined within the
preceding record description.

Value range not permitted for initial value

Only one initial value permitted

Table nesting too deep

Variable occurrences not permitted for subordinate table

Variable occurrences not permitted in redefinition

Renamed object not data item

Renamed data item not subordinate of preceding record
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-36

Compiler Diagnostic Messages Message List
169 (Error)

Cause. The RENAMES clause references a 66-level item.

170 (Error)

Cause. The RENAMES clause references a table item, a subordinate of a table item,
or a data structure that has a variable size.

171 (Error)

Cause. One of:

• The second data item in a RENAMES clause contains no character positions that
are not contained in the first data item.

• The initial character position of the second data item in a RENAMES clause
precedes the initial character position of the first data item within their record item.

172 (Error)

Cause. An elementary data item that is described with neither USAGE INDEX nor a
PICTURE clause. It must be described with at least one of these.

173 (Error)

Cause. A data description entry with level-number 66 does not have a RENAMES
clause, as it must.

174 (Error)

Cause. A data description entry with level-number 88 does not have a VALUE clause,
as it must.

Renaming not permitted for 66 level data item

Renamed data item in table or has variable size

Improper range for renamed data items

Missing PICTURE clause

Missing RENAMES clause

Missing VALUE clause
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-37

Compiler Diagnostic Messages Message List
175 (Error)

Cause. The description of a data structure includes a BLANK WHEN ZERO,
JUSTIFIED, SYNCHRONIZED, or PICTURE clause.

176 (Warning)

Cause. A data structure described with a SIGN clause has no signed numeric
subordinate data items.

177 (Error)

Cause. A file description that includes the CODE-SET clause violates one of these
rules:

• All data items defined in the record descriptions must have USAGE DISPLAY.

• All signed numeric data items must be described as having the sign in a separate
character position.

178 (Error)

Cause. The redefinition is aligned to the first character position of the area it redefines.
HP COBOL does not permit a redefinition that requires allocation of an implicit FILLER
item to properly align the first elementary item.

179 (Error)

Cause. The number of character positions occupied by a redefinition exceeds the
number of character positions occupied by the redefined item, and the redefined item
is not an internal record item.

Elementary data item clause specified for group data item

Group with SIGN clause has no signed numeric subordinate item

Data item attributes not compatible with CODE-SET clause

Redefinition not properly aligned

Redefinition too large
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-38

Compiler Diagnostic Messages Message List
181 (Error)

Cause. A reference in the KEY phrase of an OCCURS clause identifies neither the
table item nor a data item defined in the table item that the clause describes.

182 (Error)

Cause. A table key data item is defined in, or as, a subordinate table item.

183 (Error)

Cause. A reference in the KEY phrase of an OCCURS clause identifies the table item
itself, and that reference is not the first reference in the KEY phrase.

184 (Error)

Cause. A literal in the VALUE clause describing a numeric data item or a condition-
name associated with a numeric data item is neither ZERO (or one of its equivalents)
nor a numeric literal, as it must be.

185 (Error)

Cause. A literal in the VALUE clause describing a nonnumeric data item or data
structure, or a condition-name associated with either type of item, is larger than the
data item itself.

186 (Error)

Cause. The VALUE clause describing a nonnumeric data item or data structure, or a
condition-name associated with either type of item, contains a numeric literal.

Key object not data item subordinate to its table

Key data item within subordinate table

Table item permitted only as first key data item

Nonnumeric literal not permitted for numeric data item

Nonnumeric literal exceeds item size

Numeric literal not permitted for nonnumeric or group data
item
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-39

Compiler Diagnostic Messages Message List
187 (Error)

Cause. The VALUE clause describing an unsigned numeric data item or a condition-
name associated with an unsigned numeric data item contains a signed numeric literal.

188 (Error)

Cause. The VALUE clause describing a numeric data item, or a condition-name
associated with a numeric data item, contains a literal that cannot be assigned to the
data item without truncating nonzero digits.

189 (Error)

Cause. The size of a data item exceeds the maximum size permitted for the Data
Division section in which it is defined.

190 (Error)

Cause. The file-control entry for a sort-merge file includes clauses other than the
SELECT and ASSIGN clauses.

191 (Error)

Cause. The file description entry of a file name that appears in a SAME AREA, SAME
RECORD AREA, or SAME SORT clause includes the EXTERNAL clause.

192 (Error)

Cause. The file description entry or a subordinate record description entry of a file
name that appears in a SAME RECORD AREA clause includes the GLOBAL clause.

Signed literal not permitted for unsigned numeric data item

Numeric literal value inconsistent with numeric data item

01 or 77 level data item too large for section

Described with clauses not permitted for sort-merge file

EXTERNAL clause not compatible with SAME clause

GLOBAL clause not compatible with SAME RECORD AREA clause
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-40

Compiler Diagnostic Messages Message List
193 (Error)

Cause. One of:

• A file description entry includes the LINAGE clause, but the file organization is not
sequential.

• A file description entry includes both the LINAGE clause and ALTERNATE
RECORD KEY clauses.

194 (Error)

Cause. The sum of the top margin, page body, and bottom margin of a logical page
exceeds 9999 lines.

195 (Error)

Cause. A file is described with the CODE-SET clause, but it does not have sequential
organization, as it must.

196 (Error)

Cause. One of:

• The alphabet-name specified in the CODE-SET clause is defined by a sequence of
literal phrases.

• The alphabet-name specified in the CODE-SET clause is defined by NATIVE,
STANDARD-1, or STANDARD-2 when the file’s description includes ALTERNATE
RECORD KEY clauses.

197 (Error)

Cause. A file description entry is not followed by any record description entries.

LINAGE permitted only for sequential organization with no
record keys

Logical page too large

CODE-SET permitted only for sequential organization

Referenced alphabet-name not permitted in this context

File description has no record descriptions
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-41

Compiler Diagnostic Messages Message List
198 (Warning)

Cause. At least one reference in the DATA RECORDS clause does not identify any
record-name defined by the record description entries.

199 (Error)

Cause. A record description entry describes a record longer or shorter than the
maximum or minimum specified in the RECORD clause.

200 (Error)

Cause. The maximum record size for the file exceeds the block size specified by the
BLOCK CONTAINS clause.

201 (Error)

Cause. A file described with the RECORD DELIMITER clause does not have variable-
size records, as it must.

202 (Error)

Cause. A block exceeds 32,767 characters.

203 (Error)

Cause. The reference in a RECORD KEY or ALTERNATE RECORD KEY clause does
not identify a data item defined in the file’s record description entries.

Record-names inconsistent with file description entry

Record sizes inconsistent with file description entry

Record size exceeds block size

Fixed-size records incompatible with RECORD DELIMITER clause

Block size too large

Record key not found within file record
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-42

Compiler Diagnostic Messages Message List
204 (Error)

Cause. The object referenced in a FILE STATUS clause either is not a fixed-size
alphanumeric data item or is a table.

205 (Error)

Cause. The first character position of one record key coincides with the first character
position of another record key.

206 (Error)

Cause. A file name introduced in a file-control entry is not defined in a file description
entry.

207 (Error)

Cause. The PADDING clause references an undefined name.

208 (Error)

Cause. The PADDING clause references either an object that is not a fixed-size one-
character alphanumeric data item or an object that is a table or special register.

209 (Error)

Cause. The PADDING clause for an external file references a data item that is not
external.

Record key not simple fixed-size alphanumeric item

Record key aligned with another record key

Missing file description entry for file name

Padding item not found

Padding item not simple one character alphanumeric

Padding item not external
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-43

Compiler Diagnostic Messages Message List
210 (Error)

Cause. The padding data item for a file is not defined in the Working-Storage,
Extended-Storage, or Linkage Section.

211 (Error)

Cause. The RELATIVE KEY clause references an undefined name.

212 (Error)

Cause. The RELATIVE KEY clause references an object about which one of these is
true:

• It is not an unsigned integer data item.
• It is described with P s in its PICTURE clause.
• It is a table or special register.

213 (Error)

Cause. The RELATIVE KEY clause for an external file references a data item that is
not external.

214 (Error)

Cause. The relative key data item for a file is defined in the file’s record description
entries.

215 (Error)

Cause. The FILE STATUS clause references an undefined name.

Padding item in improper section

Relative key item not found

Relative key item not simple unscaled integer

Relative key item not external

Relative key item within its file record

File status item not found
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-44

Compiler Diagnostic Messages Message List
216 (Error)

Cause. The FILE STATUS clause references either an object that is not a fixed-size
two-character alphanumeric data item or an object that is a table or special register.

218 (Error)

Cause. The FILE STATUS clause references a data item that is defined in the File
Section.

219 (Error)

Cause. The LINAGE clause references an undefined name.

220 (Error)

Cause. The LINAGE clause references either an object that is not an unsigned integer
data item or an object that is a table or special register.

221 (Error)

Cause. The LINAGE clause for an external file references a data item that is not
external.

222 (Error)

Cause. A name referenced in the DEPENDING phrase of an OCCURS or RECORD
clause is not defined.

File status item not simple two character alphanumeric

File status in improper section

Linage control item not found

Linage control item not simple unsigned integer

Linage control item not external

Depending item not found
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-45

Compiler Diagnostic Messages Message List
223 (Error)

Cause. The DEPENDING phrase of a RECORD clause references either an object
that is not an unsigned integer data item or an object that is a table or special register.

224 (Error)

Cause. The DEPENDING phrase of a OCCURS clause references either an object
that is not an integer data item or an object that is a table or special register.

225 (Error)

Cause. The data item referenced in the DEPENDING phrase of a RECORD clause is
not defined in the Working-Storage, Extended-Storage, or Linkage Section.

226 (Error)

Cause. The DEPENDING phrase of an OCCURS or RECORD clause for an external
data item or an external file references a data item that is not external.

227 (Error)

Cause. The data item in the DEPENDING phrase of an OCCURS clause controls the
number of occurrences of a table that has a global data-name, but the data item itself
does not have a global data-name, as it must.

228 (Error)

Cause. The data item in the DEPENDING phrase of an OCCURS clause is defined
within the space of the table whose number of occurrences it controls.

Depending item not simple unsigned integer

Depending item not simple integer

Depending item in improper section

Depending item not external

Depending item not global

Depending item within its table
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-46

Compiler Diagnostic Messages Message List
229 (Error)

Cause. The MESSAGE SOURCE references an undefined name.

230 (Error)

Cause. The MESSAGE SOURCE clause references an object about which one of
these is true:

• It is not a fixed-size alphanumeric data item.
• It is a table item.
• It has fewer than 32 character positions.
• It begins on an odd-character boundary within a record.

231 (Error)

Cause. The ERROR CODE references an undefined name.

232 (Error)

Cause. The ERROR CODE clause references either an object that is not an unsigned
integer data item or an object that is a table or special register.

233 (Warning or Error)

Cause. Warning: One of:

• The maximum value assignable to the data item referenced in the DEPENDING
phrase of an OCCURS clause is less than the maximum occurrence number of the
table.

• The maximum value assignable to the data item referenced in the DEPENDING
phrase of a RECORD clause is less than the maximum record size.

Message source item not found

Message source item not simple alphanumeric, has improper
size, or not word-aligned

Error code item not found

Error code item not simple unsigned integer

Permitted value exceeds data item size
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-47

Compiler Diagnostic Messages Message List
Error: One of:

• The maximum value assignable to the POINTER operand in a STRING statement
is less than or equal to the size of the receiving operand.

• The maximum value assignable to the POINTER operand in an UNSTRING
statement is less than or equal to the size of the sending operand.

234 (Error)

Cause. None of the file names in the SAME SORT AREA clause identifies a sort-
merge file.

235 (Error)

Cause. The program defines more external objects (files and records) than the
compiler can allocate.

236 (Error)

Cause. The program defines more internal files than the compiler can allocate.

237 (Error)

Cause. One of these is true about the identifier-1 parameter in an ADDRESS
OF clause:

• It is not a level-01 or level-77 data item in the Linkage Section.
• It has an ACCESS MODE STANDARD clause in its data description entry.

240 (Error)

Cause. The USING phrase specifies an operand that is not defined as a data-name in
the Linkage Section of the current program.

No sort-merge file name in SAME SORT clause

Too many external objects

Too many internal files

Improper target for ADDRESS OF clause

USING operand not linkage section data-name
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-48

Compiler Diagnostic Messages Message List
241 (Error)

Cause. The USING phrase specifies an operand about which one of these is true:

• It is not described as a level 01 or level 77 data-name.
• It is described as a redefinition of another data-name.

242 (Error)

Cause. An operand appears more than once in the USING phrase.

243 (Error)

Cause. The USING phrase has more than 126 operands.

244 (Warning or Error)

Cause. Warning: A data item defined in the Linkage Section is not referenced as a
USING operand. Any references to it, any subordinates, or any redefinitions will
produce unpredictable effects.

Error: The compiler found a data item in the Linkage Section but not in the USING
phrase of any CALL statement in the Procedure Division.

245 (Error)

Cause. The DECLARATIVES header does not precede all procedures in the
Procedure Division.

246 (Error)

Cause. A paragraph-name in the Declaratives Portion of the Procedure Division is not
subordinate to any section-name, as it must be.

USING operand subordinate or redefinition data-name

Data-name permitted only once as USING operand

Too many USING operands

Linkage section data item not found as USING operand

Improper context for DECLARATIVES

Declarative paragraph not within section
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-49

Compiler Diagnostic Messages Message List
247 (Error)

Cause. The USE sentence does not immediately follow a section header in the
Declaratives Portion of the Procedure Division, as it must.

248 (Error)

Cause. Not all debugging procedures precede all nondebugging procedures in the
Declaratives Portion of the Procedure Division.

249 (Error)

Cause. The indicated USE DEBUGGING statement cannot be resolved to any defined
entity.

250 (Error)

Cause. HP COBOL does not support debugging for this type of object.

251 (Error)

Cause. The COBOL language does not define debugging for this type of object.

252 (Error)

Cause. A USE DEBUGGING statement references a paragraph- name or section-
name that belongs to a debugging procedure.

Improper context for USE sentence

Debugging procedures must be first declaratives

Undefined debugging reference

Debugging not supported for this object

Debugging not permitted for this object

Debugging not permitted for debugging procedures
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-50

Compiler Diagnostic Messages Message List
253 (Error)

Cause. One of:

• A USE DEBUGGING statement specifies the same object more than once.

• More than one USE DEBUGGING statement in a source program specifies the
same object.

• The program has more than one USE DEBUGGING ALL PROCEDURES
statement.

• The program has a USE DEBUGGING ALL PROCEDURES statement and other
USE DEBUGGING statements that reference paragraph-names or section-names.

254 (Error)

Cause. One of:

• A USE AFTER EXCEPTION PROCEDURE statement specifies the same file
name more than once.

• More than one USE AFTER EXCEPTION PROCEDURE statement in a source
program specifies the same file name.

• More than one USE AFTER EXCEPTION PROCEDURE statement in a source
program specifies the same open mode (INPUT, OUTPUT, I-O, or EXTEND).

255 (Error)

Cause. The Procedure Division does not contain the END DECLARATIVES header
needed to terminate its Declaratives Portion.

256 (Error)

Cause. The Procedure Division contains an extraneous END DECLARATIVES
header.

Conflicting debugging declarative assignments

Conflicting exception declarative assignments

Missing END DECLARATIVES

Improper context for END DECLARATIVES
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-51

Compiler Diagnostic Messages Message List
257 (Error)

Cause. The Declaratives Portion exists, but contains no procedures.

258 (Error)

Cause. The current source program has an explicit Procedure Division, but its
nondeclarative portion is empty.

259 (Error)

Cause. An exception phrase corresponds to a statement with which it cannot be
associated. Possible reasons are:

• The statement references a file whose description is incompatible with the phrase.

• A READ statement specifies the NEXT phrase and the exception phrase is
INVALID KEY or NOT INVALID KEY.

• A READ statement does not specify the NEXT phrase and the exception phrase is
AT END or NOT AT END.

260 (Error)

Cause. There is no preceding statement with which the exception phrase can be
associated.

261 (Error)

Cause. There is no preceding statement with which the ELSE phrase can be
associated.

No declarative procedures

No nondeclarative procedures

Exception phrase not compatible with file description

Improper context for exception phrase

Improper context for ELSE phrase
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-52

Compiler Diagnostic Messages Message List
262 (Error)

Cause. There is no preceding statement with which the WHEN phrase can be
associated.

263 (Error)

Cause. There is no preceding statement with which the explicit scope delimiter can be
associated.

264 (Error)

Cause. A RETURN statement does not have an associated AT END phrase.

265 (Error)

Cause. A preceding EVALUATE or SEARCH statement does not include a WHEN
phrase.

266 (Error)

Cause. A statement appears in a context that requires an explicit scope delimiter, but
the appropriate scope delimiter is not specified.

267 (Error)

Cause. An EXIT or GO TO statement that does not specify a procedure-name is not
the only statement in its sentence, as it must be.

Improper context for WHEN phrase

Improper context for scope delimiter

Missing AT END phrase

Missing WHEN phrase

Missing scope delimiter

Improper context for EXIT or empty GO TO statement
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-53

Compiler Diagnostic Messages Message List
268 (Error)

Cause. NEXT SENTENCE is neither in an IF or SEARCH statement nor a
replacement for an imperative-statement.

269 (Error)

Cause. The prior statement appears in a sequence of statements, but is not the last
one in the sequence, as it must be.

270 (Error)

Cause. One of:

• Only an integer numeric literal can appear in this context.
• When a literal appears in this context, it must be an integer numeric literal.

271 (Error)

Cause. The reference cannot be resolved to any object that the current source
program can access. (Check the spelling of the object name and verify that all
qualifiers are correct and in the proper order.)

272 (Error)

Cause. Usually, a special register has been used as a receiving operand, which is not
allowed.

273 (Error)

Cause. References to the special register DEBUG-ITEM or any of its subordinates are
not in a debugging procedure in the Declaratives Portion of the Procedure Division, as
they must be.

Improper context for NEXT SENTENCE

Prior statement must be last in its sequence

Expected integer numeric literal

Undefined object reference

Improper context for special register

Improper context for debugging special register
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-54

Compiler Diagnostic Messages Message List
274 (Error)

Cause. The specified operand cannot appear in this context. (A data item with
appropriate attributes would be acceptable here. Other types of operands, such as
literals, might also be acceptable.)

275 (Error)

Cause. The data item does not have USAGE DISPLAY, as it must.

276 (Error)

Cause. Either the data item does not have USAGE DISPLAY (as it must), or it is a
numeric item with P s in its PICTURE character-string (which it must not have).

277 (Error)

Cause. One of is true about the data item:

• It does not have USAGE DISPLAY.
• It is an alphanumeric-edited or numeric-edited item.
• It is described with a JUSTIFIED clause.

278 (Error)

Cause. The data item is not alphanumeric, as it must be.

279 (Error)

Cause. The data item is neither numeric nor numeric-edited, as it must be.

Expected data item

Expected display data item

Expected display data item, no Ps if numeric

Expected display data item, not edited nor justified

Expected alphanumeric data item

Expected numeric or numeric-edited data item
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-55

Compiler Diagnostic Messages Message List
280 (Error)

Cause. The data item is not numeric, as it must be.

281 (Error)

Cause. The data item is not numeric without fraction digits, as it must be.

282 (Error)

Cause. Either the data item is not numeric without fraction digits, or it has Ps in its
PICTURE character-string.

283 (Error)

Cause. The data item does not have USAGE INDEX and is not a numeric item without
fraction digits.

284 (Error)

Cause. The data item is not a data structure, as it must be.

285 (Error)

Cause. The data item is not a level-01 item subordinate to a data file description entry
(level indicator FD), as it must be.

286 (Error)

Cause. The data item is not a level-01 item subordinate to a sort-merge file
description entry (level indicator SD), as it must be.

Expected numeric data item

Expected integer numeric data item

Expected unscaled numeric data item

Expected index data item or integer numeric data item

Expected group data item

Expected data file record data item

Expected sort-merge file record data item
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-56

Compiler Diagnostic Messages Message List
287 (Error)

Cause. One of:

• The FIPS directive specified NONSTANDARDEXT, but the data item is not a level-
01 item, a level-77 item, or an elementary item of a record.

• No FIPS directive specified NONSTANDARDEXT, but the data item is not
elementary, level-01, level-77, or at a level other than 01 or 77 and aligned on a
2-byte boundary.

If the data item is subscripted, its first occurrence must be on a 2-byte boundary and
the number of occurrences must be even.

288 (Error)

Cause. The data item is either defined in the Extended-Storage Section or described
with the ACCESS MODE EXTENDED-STORAGE clause.

289 (Error)

Cause. A reference to an index data item cannot appear in this context.

290 (Error)

Cause. The receiving data item is described as alphabetic when the data source for
an ACCEPT statement is DATE, DAY, DAY-OF-WEEK, or TIME.

291 (Error)

Cause. A numeric-edited data item is specified as an arithmetic operand.

Expected level 01 or level 77 or elementary data item

Extended storage data item not permitted

Index data item not permitted

Alphabetic data item not permitted

Numeric-edited data item not permitted
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-57

Compiler Diagnostic Messages Message List
292 (Error)

Cause. A subscript is in the specification of either the table operand in a SEARCH
statement or the key operand in a START statement.

293 (Error)

Cause. The reference to a table item or condition-name associated with a table item
does not have the correct number of subscripts.

294 (Error)

Cause. A reference to a table item appears as a subscript.

295 (Error)

Cause. The index-name appears in a reference whose subject is not described by the
OCCURS clause that defines the index-name.

296 (Error)

Cause. A reference modifier is specified, but the subject of the reference is not a data-
name described with USAGE DISPLAY.

297 (Error)

Cause. A reference modifier cannot be specified for the data item indicated.

Improper context for subscripts

Too many or too few subscripts

Table item not permitted in subscript

Index-name not associated with table level

Reference modifier permitted only for display data item

Improper context for reference modifier
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-58

Compiler Diagnostic Messages Message List
298 (Error)

Cause. The operand of an arithmetic operator is not a numeric literal, a numeric data
item, or an arithmetic expression, as it must be.

299 (Warning)

Cause. The value of a divisor is 0.

300 (Error)

Cause. The operand of a relational operator is not a literal, index-name, data item, or
arithmetic expression, as it must be.

301 (Error)

Cause. There is no implicit left-hand operand to complete the relation.

302 (Error)

Cause. One of:

• An arithmetic expression was compared with something other than another
arithmetic expression, a numeric data item, or a numeric literal.

• An index-name was compared with something other than another index-name, an
index data item, a numeric data item, or a numeric literal.

• An index data item was compared with something other than another index data
item or an index-name.

• A pointer (a data item with USAGE POINTER, or ADDRESS OF data-item, or
NULL) can be compared only with another pointer.

Expected arithmetic operand

Division by zero

Expected relation operand

Have no implicit operand for relation

Relation operands not compatible
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-59

Compiler Diagnostic Messages Message List
303 (Error)

Cause. A relation includes no references to data items; it is constructed solely from
literal operands.

304 (Error)

Cause. A name referenced in a context where it must identify a class-name does not.

305 (Error)

Cause. The subject of a class test is not an identifier, as it must be.

306 (Error)

Cause. The subject of a class-name such as ALPHABETIC or NOT ALPHABETIC is
numeric.

307 (Error)

Cause. The subject of a NUMERIC or NOT NUMERIC test is either alphabetic or is a
data structure that has a subordinate described with an embedded operational sign.

308 (Error)

Cause. The operand indicated appears in a context that requires a simple or complex
condition, such as the operand of an AND, OR, or NOT operator or the operand of a
WHEN phrase.

No variable among relation operands

Expected class-name

Improper operand for class test

Improper item for alphabetic or class-name test

Improper item for numeric test

Expected condition as operand
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-60

Compiler Diagnostic Messages Message List
309 (Error)

Cause. Only a file name defined in a data file description entry (level indicator FD) is
permitted in this context.

310 (Error)

Cause. Only a file name defined in a sort-merge file description entry (level indicator
SD) is permitted in this context.

311 (Warning)

Cause. The two data structures specified in a CORRESPONDING operation contain
no corresponding subordinates.

312 (Error)

Cause. One of these phrases is used on a file that does not have sequential
organization:

• ADVANCING
• NO REWIND
• PROMPT
• REEL
• UNIT

313 (Error)

Cause. The data item specified in the INTO or FROM phrase overlaps part of the file
record area.

Expected data file

Expected sort-merge file

No corresponding pairs

Phrase permitted only for sequential organization

FROM or INTO data item overlaps file record
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-61

Compiler Diagnostic Messages Message List
314 (Error)

Cause. The referenced operand is not a mnemonic-name associated with an external
file name in the SPECIAL-NAMES paragraph.

315 (Error)

Cause. The program has a CHECKPOINT or STARTBACKUP statement, but was not
compiled with the NONSTOP directive.

316 (Error)

Cause. ROUNDED appears in the REMAINDER phrase of a DIVIDE statement.

317 (Error)

Cause. The file name specified in a DELETE statement identifies a file with sequential
organization.

318 (Error)

Cause. The ALSO phrase appears in a SEARCH statement.

319 (Error)

Cause. A condition appears in an object that includes the THROUGH phrase.

320 (Error)

Cause. Operands in an object that includes the THROUGH phrase are not of the
same class (alphabetic, alphanumeric, numeric).

Expected mnemonic-name associated with a file name

Permitted only when NONSTOP directive specified

Improper context for ROUNDED

DELETE not permitted for sequential organization

Improper context for ALSO phrase

Improper context for condition

Range operands not compatible
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-62

Compiler Diagnostic Messages Message List
321 (Error)

Cause. An EVALUATE statement has more than 127 subjects.

322 (Error)

Cause. The number of objects in the WHEN phrase is greater than the number of
subjects in the EVALUATE statement.

323 (Error)

Cause. The number of objects in the WHEN phrase is less than the number of
subjects in the EVALUATE statement.

324 (Error)

Cause. The object in the WHEN phrase is incompatible with the corresponding subject
in the EVALUATE statement.

325 (Error)

Cause. Both the object in the WHEN phrase and the corresponding subject in the
EVALUATE statement contain only literal operands.

326 (Error)

Cause. One of:

• An OCCURS clause that includes the DEPENDING phrase appears in the
description of a receiving operand in the INITIALIZE statement or in the description
of any subordinate data item.

• A receiving operand of the INITIALIZE statement has level-number 66.

Too many subject operands

Too many object operands

Too few object operands

Corresponding operands not compatible

No variable among corresponding operands

Variable occurrences or 66 level data item not permitted
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-63

Compiler Diagnostic Messages Message List
327 (Error)

Cause. The receiving operand cannot be assigned a value derived from the sending
operand; for example:

• SPACE (or one of its equivalents), an alphabetic data item, or an alphanumeric-
edited data item cannot be assigned to a numeric or numeric-edited data item.

• ZERO (or one of its equivalents), a numeric literal, a numeric data item, or a
numeric-edited data item cannot be assigned to an alphabetic data item.

This message usually results from a MOVE statement. It can also result from
statements whose execution includes assignment operations that follow MOVE
statement rules.

328 (Error)

Cause. The attributes of the receiving operand do not permit assigning it a value
derived from the sending operand; for example:

• A numeric data item is being set to the value of a nonnumeric literal, nonnumeric
data item, or index data item.

• An index data item is being set to the value of a nonnumeric literal or nonnumeric
data item.

• A data item other than an index-name is being set UP or DOWN.

• A data item other than a mnemonic-name associated with an external switch is
being set ON or OFF.

• A data item other than a condition-name associated with a data item is being set to
TRUE or FALSE.

329 (Error)

Cause. One of:

• The replaced and replacing operands have incompatible sizes. When replacing
CHARACTERS or a figurative constant, the size of the replacing operand must be
one character. When replacing a numeric or nonnumeric literal or a data item, the
size of the replacing operand must be the same as that of the replaced operand.

• The CONVERTING phrase operands are not the same size.

Receiving category not compatible with sending category

Receiving operand not compatible with sending operand

INSPECT operand sizes not compatible
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-64

Compiler Diagnostic Messages Message List
330 (Error)

Cause. The NO REWIND phrase appears when the open mode is I-O or EXTEND.

331 (Error)

Cause. EXTEND mode is specified for a file access whose access is not sequential.

332 (Error)

Cause. EXTEND mode is specified for a file name that is specified in a MULTIPLE
FILE TAPE clause.

333 (Error)

Cause. EXTEND mode is specified for a file name that is described with a LINAGE
clause.

334 (Error)

Cause. A PERFORM statement has more than 6 AFTER phrases.

335 (Error)

Cause. The NEXT phrase is used with a READ statement that specifies a file name
described with random access.

336 (Error)

Cause. The data item specified in the PROMPT phrase overlaps the file record area,
but the data item and file record area do not begin at the same character position.

NO REWIND phrase not permitted for I-O or EXTEND mode

EXTEND mode permitted only for sequential access

EXTEND mode not permitted for MULTIPLE FILE TAPE file

EXTEND mode not permitted for LINAGE file

Too many AFTER phrases

NEXT/REVERSED not compatible with random access

PROMPT data item overlaps file record
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-65

Compiler Diagnostic Messages Message List
337 (Warning)

Cause. The size of the PROMPT phrase operand exceeds the maximum record size
for the file. (The excess characters will not appear in the prompt.)

338 (Error)

Cause. One of:

• The record descriptions of the file referenced in this statement require that the
INTO phrase operand be alphanumeric, and it is not.

• The record descriptions of the file referenced in this statement prohibit specification
of the INTO phrase.

339 (Warning)

Cause. The value of the INTO phrase operand is assigned according to the rules for a
group move; thus, no editing operations occur.

340 (Error)

Cause. The description of the table operand in a SEARCH statement has an
OCCURS clause that does not include the INDEXED phrase.

341 (Error)

Cause. The description of the table operand in a SEARCH ALL statement has an
OCCURS clause with no KEY phrases.

342 (Error)

Cause. The VARYING phrase is appears in a SEARCH ALL statement.

PROMPT data item exceeds record size

Operands not compatible for INTO assignment

No editing occurs for INTO assignment

Expected table item with index-names

Expected table item with keys

VARYING phrase not permitted with ALL
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-66

Compiler Diagnostic Messages Message List
343 (Error)

Cause. A SORT or a MERGE statement appears in the Declaratives Portion of the
Procedure Division.

344 (Error)

Cause. A reference in an ASCENDING KEY or DESCENDING key phrase identifies a
data item that has a variable size or is referenced by an OCCURS clause.

345 (Error)

Cause. A reference in an ASCENDING KEY or DESCENDING key phrase identifies a
data item defined in the record descriptions of the sort-merge file.

346 (Error)

Cause. The key data item is not completely contained within the shortest possible
record of the sort-merge file.

347 (Error)

Cause. A GIVING phrase specifies an indexed file, but the major sort-merge key does
not have the ASCENDING attribute or does not occupy the same character positions
within the sort-merge file records as the prime key item occupies within the indexed file
records.

Not permitted in declaratives

Key within table or has variable size

Key not found within sort-merge file record

Key not contained within minimum sort-merge file record

Prime record key inconsistent with major sort-merge key
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-67

Compiler Diagnostic Messages Message List
348 (Error)

Cause. One of:

• The longest possible record of a USING file exceeds the record capacity of the
sort-merge file.

• The longest possible record of the sort-merge file exceeds the record capacity of a
GIVING file.

349 (Error)

Cause. A MERGE, SORT, or START statement specifies a file name described with
random access.

350 (Error)

Cause. A SORT or MERGE statement specifies conflicting files. xxxx is one of these
phrases:

351 (Error)

Cause. The KEY phrase applies to a file whose access is not sequential.

Record size incompatible with sort-merge file description

Random access not permitted

File set conflict from xxxx

Phrase Meaning

duplicate file names The same file name appears more than once in a MERGE
statement.

SAME AREA clause Two or more file names specified in one SAME AREA
clause appear in a MERGE statement or in the GIVING
phrase of a SORT statement.

SAME RECORD clause Two or more file names specified in one SAME RECORD
clause appear in the USING phrase of a MERGE
statement.

MULTIPLE FILE TAPE clause Two or more file names specified in one MULTIPLE FILE
TAPE clause appear in a MERGE statement or in the
GIVING phrase of a SORT statement.

KEY phrase not permitted for sequential access
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-68

Compiler Diagnostic Messages Message List
352 (Error)

Cause. The KEY phrase appears with a NEXT phrase.

353 (Error)

Cause. The reference in the KEY phrase does not identify a key of the specified file.

354 (Error)

Cause. In a file-control entry with multiple keys, the sum of the lengths of the keys
exceeds 253 characters.

355 (Error)

Cause. The KEY phrase appears in a statement other than a START statement, and
the file is neither indexed nor described with a RELATIVE KEY phrase.

356 (Error)

Cause. One of:

• The operator in the KEY phrase is not equal sign (=), greater-than sign (>),
greater-than-or-equal sign (>=), or one of their equivalents.

• The POSITION or GENERIC phrase is present, and the operator in the KEY
phrase is not the equal sign (=) or EQUAL.

357 (Error)

Cause. The operand in the KEY phrase is neither a data item described as a file key,
nor a data item whose leftmost character position coincides with the leftmost character
position of a file key and whose length is less than or equal to the length of that file key.

KEY phrase not compatible with NEXT phrase

KEY item not found within file record

Length of combined keys exceeds 253 characters

File has no default prime key

Improper relation for this context

Expected file key or equivalent
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-69

Compiler Diagnostic Messages Message List
358 (Error)

Cause. The operand in the POSITION phrase is not the file’s prime key. (The prime
key of a relative file is defined by the RELATIVE KEY clause; the prime key of an
indexed file is defined by the RECORD KEY clause.)

359 (Error)

Cause. The ADVANCING mnemonic-name phrase is used for a file described with the
LINAGE clause.

360 (Error)

Cause. The size of the operand exceeds the maximum supported for its context.

361 (Error)

Cause. A reference to a routine or COBOL program specifies the object file from
which it must be selected, but the external file name associated with the specified
mnemonic-name does not identify a disk-resident file.

362 (Error)

Cause. One of:

• Not all of the CALL and CANCEL statements specifying a particular COBOL agree
about the object file from which it must be selected.

• Not all of the ENTER statements specifying a particular routine agree about the
object file from which it must be selected.

Position data item must be prime key

ADVANCING mnemonic-name not compatible with LINAGE

Operand too large

Improper object file name

Inconsistent object file reference
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-70

Compiler Diagnostic Messages Message List
363 (Error)

Cause. For the COBOL85 compiler, the language in an ENTER statement must be
C, FORTRAN, Pascal, or TAL. For the NMCOBOL compiler, it must be C or TAL.

364 (Error)

Cause. One of:

• The program-name does not conform to the spelling rules of COBOL.
• The routine-name does not conform to the spelling rules of its language.

365 (Error)

Cause. One of:

• Either the requested COBOL program does not exist in the specified object file, or
an entity identified by the program-name exists but is not a COBOL program.

• Either the requested routine does not exist in the specified object file, or an entity
identified by the routine-name exists but is not a routine of the proper language.

If the called program is a system routine, the called program might not be in the
COBOLEXT or NMCOBEXT file, and you must compile the program with the one of
these directives:

• CONSULT $SYSTEM.SYSTEM.COBOLEX0
• CONSULT $SYSTEM.SYSTEM.NMCOBEX0

366 (Error)

Cause. Not all of the ENTER statements specifying a particular routine agree about its
language.

367 (Error)

Cause. An called routine has an invalid parameter.

Improper language name

Improper unit-name for language

Unit of proper language not found

Inconsistent language reference for unit-name

Unit has invalid attribute
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-71

Compiler Diagnostic Messages Message List
368 (Error—COBOL85 compiler only)

Cause. One of:

• The requested program was compiled by an incompatible version of the compiler.
(Recompile it with the current version of the compiler.)

• The requested program was compiled to run in a language-specific environment
when it must run in the CRE. Recompile it to run in the CRE.

369 (Warning)

Cause. One of:

• The source text from which the indicated COBOL program was compiled included
the NONSTOP directive, but the current source text does not.

• The current source text includes a NONSTOP directive, but the source text from
which the indicated COBOL program was compiled did not.

Run-time problems might occur if proper operation of the program depends on the run
unit’s executing as a process pair.

370 (Error)

Cause. One of:

• Different CALL statements referencing the same COBOL program specify a
different number of parameters in their USING phrases.

• The number of parameters defined in the Procedure Division of a COBOL program
differs from the number of parameters expected by the callers.

• For one or more parameters of a COBOL program, the access mode (STANDARD
or EXTENDED-STORAGE) defined in the program differs from the access mode
expected by the callers.

371 (Error)

Cause. The formal parameter of the called routine is neither a data variable nor the
word OMITTED.

Compiler version attribute conflict

NONSTOP attribute conflict

Inconsistent parameter attributes

Formal parameter not a variable
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-72

Compiler Diagnostic Messages Message List
372 (Error)

Cause. The actual parameter of an ENTER statement is a file name (FD or SD), but it
does not correspond to a formal parameter that expects a 2-byte address (for the
COBOL85 compiler) or a struct (for the NMCOBOL compiler).

373 (Warning)

Cause. The compiler cannot determine if a problem exists. Verify that the correct
address is passed to the routine.

Most COBOL data items are referenced internally by byte addresses. When one of
these appears as the actual parameter corresponding to the formal parameter of a
routine that expects a 2-byte address, the compiler must convert the item’s byte
address to a 2-byte address. If the data item begins on an odd-byte boundary, that
information is lost by the conversion operation (thus the value space of the item
appears, to the called routine, to begin one byte before it actually does). If the data
item begins on an even-byte boundary, there is no problem.

374 (Error)

Cause. OMITTED appears as an actual parameter, but the called routine does not
have the EXTENSIBLE or VARIABLE attribute.

375 (Error)

Cause. An ENTER statement includes the GIVING phrase, but the called routine is
not a function (that is, it does not return a value).

COBOL85 Compiler:

Formal parameter for file name must have word address

NMCOBOL Compiler:

Actual parameter is a file, so formal parameter must be a
struct

Potential odd byte address converted to even byte address

OMITTED permitted only for extensible or variable routine

GIVING phrase permitted only for function routine
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-73

Compiler Diagnostic Messages Message List
376 (Error)

Cause. The routine returns a value of a type that HP COBOL does not support;
therefore, it cannot have a GIVING phrase.

377 (Warning)

Cause. References to a COBOL program specify an object file from which it should be
selected, but because the program-name identifies an accessible contained program,
the compiler resolves the references to that program. Examine the program logic to
verify that this result is acceptable.

378 (Warning)

Cause. A nonnumeric operand moved to a numeric operand has a value not
composed entirely of digits. The result of the assignment is not defined.

379 (Error)

Cause. One of:

• In the non-CRE environment, an ENTER statement passed a pointer to an HP C or
HP C++ program. (In the CRE, this is allowed.)

• A formal parameter has a type that is not supported.

• A value parameter was passed, but the corresponding formal parameter’s type is
not numeric or character.

• An actual parameter was omitted, but the corresponding formal parameter is not a
type that can be omitted.

380 (Error)

Cause. The number of procedure names in the statement exceeds the maximum
number allowed in the statement.

Routine type not supported

Reference with mnemonic-name resolved to contained program

Expected digit string as sending operand

Formal parameter type not supported

Too many procedure names
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-74

Compiler Diagnostic Messages Message List
381 (Error)

Cause. A READ statement with a REVERSED phrase also has a PROMPT or
LOCKED phrase.

382 (Error)

Cause. One of:

• The name indicated appears as a procedure reference, but does not identify a
paragraph-name or section-name defined within the Procedure Division of the
current source program.

• The name indicated appears in a procedure reference with a qualifier, but does not
identify a paragraph-name defined both as a subordinate of the section identified
by the qualifier and within the Procedure Division of the current source program.

383 (Error)

Cause. The name indicated appears in a procedure reference but does not identify a
unique object within the current source program.

384 (Error)

Cause. A procedure reference that appears as an ALTER statement subject does not
identify a paragraph or section containing only a single unconditional GO TO
statement.

385 (Warning or Error)

Cause. Warning: An ALTER statement modifies the GO TO statement of a paragraph
or section in an independent segment. HP COBOL does not support the semantics for
independent segments described in the ISO/ANSI COBOL standard (it does not
restore the original specification of the GO TO statement if control leaves the
independent segment and then returns to it later).

PROMPT/LOCK phrase cannot be specified with REVERSED

Undefined procedure reference

Ambiguous procedure reference

Improper ALTER subject

Improper ALTER context
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-75

Compiler Diagnostic Messages Message List
Error: An ALTER statement appearing in one independent segment modifies a GO TO
statement of a paragraph or section in another independent segment.

386 (Warning or Error)

Cause. Warning: One of:

• An ALTER statement in the nondeclarative portion of the Procedure Division
references a paragraph-name or section-name defined in a declarative procedure.

• An ALTER statement in a declarative procedure references a paragraph-name or
section-name defined in another declarative procedure.

• An ALTER statement modifies a GO TO statement so that its execution will transfer
control from one declarative procedure to another declarative procedure.

Error: One of:

• An ALTER statement in a declarative procedure references a paragraph-name or
section-name defined in the nondeclarative portion of the Procedure Division.

• An ALTER statement in a nondebugging declarative procedure references a
paragraph-name or section-name defined in a debugging declarative procedure.

• An ALTER statement modifies a GO TO statement so that its execution will transfer
control into or out of the Declaratives Portion the Procedure Division.

• An ALTER statement modifies a GO TO statement so that its execution will transfer
control between a debugging declarative procedure and a nondebugging
declarative procedure.

387 (Warning or Error)

Cause. Warning: A GO TO statement transfers control from one declarative
procedure to another declarative procedure.

Error: One of:

• A GO TO statement transfers control between the declarative and nondeclarative
portions of the Procedure Division.

• A GO TO statement transfers control between a debugging declarative procedure
and a nondebugging declarative procedure.

Improper ALTER scope

Improper GO TO scope
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-76

Compiler Diagnostic Messages Message List
388 (Warning or Error)

Cause. Warning: A PERFORM statement specifies a range that includes two
references. One identifies a paragraph-name or section-name defined in a declarative
procedure. The other identifies a paragraph-name or section-name defined in another
declarative procedure. It is recommended that both references identify items in the
same declarative procedure.

Error: One of:

• A PERFORM statement in an independent segment references a paragraph-name
or section-name defined in another independent segment.

• A PERFORM statement in a declarative procedure references a paragraph-name
or section-name defined in the nondeclarative portion of the Procedure Division.

• A PERFORM statement references a paragraph-name or section-name defined in
a debugging declarative procedure, but the statement itself is not in a debugging
declarative procedure.

• When the range specified in a PERFORM statement includes two references, they
must identify compatible paragraph-names or section-names. If one is defined in
the Declaratives Portion of the Procedure Division, the other must also be defined
in the Declaratives Portion. If one is defined in an independent segment, the other
must be defined in the same independent segment.

389 (Warning or Error)

Cause. Warning: An INPUT PROCEDURE or OUTPUT PROCEDURE phrase
specifies a range that includes two references. One identifies a paragraph-name or
section-name defined in a declarative procedure. The other identifies a paragraph-
name or section-name defined in a different declarative procedure.

Error: One of:

• An INPUT PROCEDURE or OUTPUT PROCEDURE phrase of a SORT or
MERGE statement in an independent segment references a paragraph-name or
section-name defined in a different independent segment.

• An INPUT PROCEDURE or OUTPUT PROCEDURE phrase of a SORT or
MERGE statement specifies a range that includes two references, and they identify
incompatible paragraph-names or section-names. Either one reference is defined
in the Declaratives Portion of the Procedure Division and the other is not, or one is
defined in one independent segment and the other is defined in another
independent segment.

Improper PERFORM scope

Improper SORT/MERGE scope
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-77

Compiler Diagnostic Messages Message List
390 (Warning)

Cause. A CALL or CANCEL statement referenced a program that the compiler could
not find in the source text or in any file on any search list. These programs must be
bound into the run unit before it is executed.

The COBOL85 compiler issues this warning only once: at the end of the compiler
listing, followed by the names of all the program units that it could not find.

The NMCOBOL compiler issues this warning at the point of reference to the program
unit (that is, at a CALL or CANCEL statement); however, for any given missing
program, the compiler issues the warning only at the first point of reference to that
program.

391 (Error)

Cause. One of:

• A CALL or CANCEL statement specifies the program-name of the separately
compiled program within which it appears.

• The END PROGRAM statement identifies a program that has already been
terminated.

392 (Error)

Cause. The END PROGRAM statement specifies a name that does not match any
program-name within the separately compiled program.

393 (Error)

Cause. No END PROGRAM statement appeared for the contained program whose
program-name is xxxx.

Referenced program not found by compiler

Improper program-name specified

Expected current program-name

Missing END PROGRAM: xxxx
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-78

Compiler Diagnostic Messages Message List
395 (Error)

Cause. Both the current COBOL program and a preceding one qualify for the MAIN
attribute. Because the compiler cannot determine which one should be the main
program, it does not produce an object file.

396 (Warning)

Cause. A condition-name has more values than the compiler can send to theInspect
debugger. The compiler sends only the first value. To make all of the values available
to theInspect debugger, replace the condition-name with several condition names,
each with a less demanding VALUE clause, and reference all of them wherever the
original condition-name is currently referenced.

397 (Error)

Cause. The data items defined in the File and Working-Storage Sections of a source
program need more program data space than is available for the entire run unit.

398 (Error)

Cause. The data items defined in the Extended-Storage Section of a source program
need more program extended data space than is available for the entire run unit.

399 (Error)

Cause. The objects defined in a source program need more run-time program control
space than is available for the entire run unit.

More than one implicit MAIN program

Condition-name has too many values to be referenced by
INSPECT

Program data space overflow

Program extended data space overflow

Program control space overflow
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-79

Compiler Diagnostic Messages Message List
400 (Error)

Cause. The object code generated for a separately compiled program exceeds 131
KB, which is the maximum size supported.

Recovery. Recompile the program without the CHECK directive and with the
NOBLANK and LESS-CODE 1 directives. If error 400 still occurs, change the source
program:

• Remove unused code.

• Break the program into two or more compilation units (see Compilation Units).

• Find sequences of code that occur several times and make each of them a
procedure (see Procedures and Procedure Execution). To transfer control to a
paragraph or procedure, use the statement PERFORM.

• Change level-77 data items and elementary level-01 data items that are numeric
from USAGE DISPLAY to USAGE COMP (see USAGE Clause).

401 (Error)

Cause. The object code generated for a contained program exceeds 65,534 bytes,
which is the maximum size supported.

402 (Error)

Cause. In a reference modifier, the value of the first character position exceeds the
size of the subject data item.

403 (Error)

Cause. In a reference modifier, the value of the last character position first-
character-position + length - 1 exceeds the size of the subject data item.

Program code exceeds 65500 words

Embedded program code exceeds 32767 words

Reference modifier first character out of range

Reference modifier length out of range
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-80

Compiler Diagnostic Messages Message List
404 (Warning)

Cause. The compiler has determined that this expression, composed solely of literal
operands, will always generate the size error condition during execution. If the
associated statement includes the SIZE ERROR clause, the program takes the size
error branch; otherwise, an arithmetic overflow can result, or (if the receiving item is of
USAGE COMPUTATIONAL) the program can store a number larger than the maximum
value allowed for the item, leading to an arithmetic overflow later in the execution.

405 (Warning)

Cause. The compiler has determined that the value of this relation condition will be
always TRUE or always FALSE. (Example: a literal is compared to a shorter data
item.) This message might point only to the statement in error, not to the erroneous line
of the statement.

406 (Warning)

Cause. A value of a numeric literal specified as the sending operand in a SET
statement is greater than the maximum occurrence number defined for assignment to
an index-name specified as a receiving operand. Execution of the statement will assign
an improper value to the index-name.

407 (Warning)

Cause. A SEARCH ALL statement specifies a condition that does not conform to the
rules of the COBOL language. HP COBOL employs a serial rather than a binary
search technique in this situation.

408 (Error)

Cause. The sum of the buffer space needed for files exceeds 62 KB. (Reduce the size
of blocks specified in the BLOCK CONTAINS clause in one or more File Description
entries or reduce the number of files.)

Size error on literal expression

Relation truth value is constant

SET statement literal not in subscript range

Improper SEARCH ALL condition - serial search used

Program buffer space exceeds 31000 words
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-81

Compiler Diagnostic Messages Message List
425 (Error)

Cause. A national data item contains a USAGE clause.

426 (Error)

Cause. A national data item contains a SYNCHRONIZED clause.

427 (Error)

Cause. A national data item or national literal appears where it is not permitted.

428 (Error)

Cause. A literal or data item that is not in the national class appears where all the
literals and data items must be in the national class.

429 (Error)

Cause. In a conditional statement, a national data item or national literal is compared
to something other than another national data item or national literal.

430 (Error)

Cause. A literal or data item that is not in the national class appears where all the
literals and data items must be in the national class.

440 (Error)

Cause. A program in a user library references an external file.

Usage clause not permitted with specified picture

Synchronized clause not permitted with specified picture

Multi-byte not permitted in this context

Literal and data item must both be multi-byte

Can only compare multi-byte type to multi-byte type

Expecting multi-byte data item or literal

External file not allowed in library object
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-82

Compiler Diagnostic Messages Message List
441 (Error)

Cause. A program in a user library references an external data item.

442 (Error)

Cause. A main program is in a user library.

443 (Error)

Effect. A program that is not an initial program is in a user library.

444 (Error)

Cause. An embedded program is in a user library.

445 (Error)

Cause. A data item with the GLOBAL attribute is in a user library.

446 (Error)

Cause. A program in a COPY library or user library has a PROGRAM COLLATING
SEQUENCE clause in its Environment Division.

447 (Error)

Cause. A file whose COBOL file name has the GLOBAL attribute is in a user library.

External data item not allowed in library object

Library object cannot contain a main program

Library object can only contain initial programs

Embedded programs are not allowed in library object

Global data item not allowed in library object

COLLATING SEQUENCE clause not allowed in library

Global file not allowed in library object
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-83

Compiler Diagnostic Messages Message List
448 (Error)

Cause. A program with an EXTENDED-STORAGE section is in a user library.

449 (Error)

Cause. An object file that was produced for the non-CRE environment (that is, the
corresponding source program was compiled with the directive ENV OLD) contains a
parameter that is not allowed in the non-CRE environment.

450 (Error)

Cause. An object file that was produced for the CRE environment (that is, the
corresponding source program was compiled with the directive ENV COMMON or ENV
LIBRARY) contains a call to the COBOLSPOOLOPEN routine.

461 (Error)

Cause. The compiler’s internal consistency checker discovered a logic error. Please
report this failure to your service provider.

462 (Error)

Cause. An SQL/MP or SQL/MX host variable has an improper USAGE clause.

463 (Error)

Cause. An SQL/MP or SQL/MX host variable’s PICTURE string contains P.

EXTENDED-STORAGE not allowed in library object

Parameter not allowed in old environment object

COBOLSPOOLOPEN allowed only in old environment

Internal SQL error

Improper usage clause for host variable

Host variable picture string cannot contain 'P'
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-84

Compiler Diagnostic Messages Message List
464 (Error)

Cause. An SQL/MP or SQL/MX host variable is in the wrong category.

465 (Error)

Cause. An SQL/MP or SQL/MX host variable’s PICTURE string contains an asterisk
(*).

466 (Error)

Cause. An SQL/MP or SQL/MX host variable contains a JUSTIFIED clause.

467 (Error)

Cause. An SQL/MP or SQL/MX host variable contains a OCCURS clause.

468 (Error)

Cause. An SQL/MP or SQL/MX host variable contains a RENAMES clause.

470 (Error)

Cause. The compiler processed the maximum number of SQL/MP or SQL/MX
statement lines without encountering the SQL/MP or SQL/MX statement terminator
END-EXEC.

471 (Error)

Cause. More than one SQLCA is declared in the program, and the SQLCA in this
statement is ambiguous in this context.

Improper category for host variable

Host variable's picture string cannot contain '*'

JUSTIFIED clause not allowed for host variables

OCCURS clause not allowed for host variables

The RENAMES is ignored

Missing END-EXEC

Ambiguous reference to SQLCA
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-85

Compiler Diagnostic Messages Message List
472 (Error)

Cause. SQLCA is declared incorrectly (it must be a data structure).

473 (Error)

Cause. More than one SQLCODEX is declared in the program, and the SQLCODEX
in this statement is ambiguous in this context.

474 (Error)

Cause. SQLCODEX is declared incorrectly (it must be a COMPUTATIONAL data item
with no editing characters).

475 (Error)

Cause. More than one SQLCODE is declared in the program, and the SQLCODE in
this statement is ambiguous in this context.

476 (Error)

Cause. SQLCODE is declared incorrectly (it must be a COMPUTATIONAL data item
with no editing characters).

477 (Error)

Cause. SQLCODE is required in the program, but is missing.

SQLCA is declared incorrectly

Ambiguous reference to SQLCODEX

SQLCODEX is declared incorrectly

Ambiguous reference to SQLCODE

SQLCODE is declared incorrectly

Program is missing SQLCODE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-86

Compiler Diagnostic Messages Message List
478 (Error)

Cause. More than one SQLSA is declared in the program, and the SQLSA in this
statement is ambiguous in this context.

479 (Error)

Cause. SQLSA is declared incorrectly (it must be a COMPUTATIONAL data item with
no editing characters).

480 (Error)

Cause. An SQL/MP or SQL/MX INCLUDE statement is outside of the Data Division. (It
must be inside.)

481 (Error)

Cause. A CHARACTER-SET clause appears somewhere other than the final clause in
an OBJECT-COMPUTER paragraph.

482 (Error)

Cause. A data structure appears where an elementary data item is expected.

490 (Error)

Cause. The ALL subscript applied to an argument to an intrinsic function is either not
allowed in this context or not allowed on any argument to this function.

Ambiguous reference to SQLSA

SQLSA is declared incorrectly

Improper context for INCLUDE

Improper context for CHARACTER SET clause

Expecting elementary data item

Improper context for ALL subscript
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-87

Compiler Diagnostic Messages Message List
491 (Error)

Cause. Functions are nested so deeply within a single statement that the compiler
cannot process them.

492 (Error)

Cause. A subscript appears on a function. (A subscript can only appear on a table.)

493 (Error)

Cause. An intrinsic function appears where it is not allowed (as a receiving item in a
statement, for example).

494 (Error)

Cause. The compiler does not recognize the function name.

495 (Error)

Cause. An expression is so complex that the compiler cannot process it.

496 (Error)

Cause. The argument has at least one wrong characteristic (such as type, class,
category, or length).

497 (Error)

Cause. More arguments have been supplied to the function than the function takes.

Function nesting too deep

Subscripting not allowed on a function

Improper context for function

Unknown function

Expression is too complex

Improper argument

Too many arguments
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-88

Compiler Diagnostic Messages Message List
498 (Error)

Cause. The literal being used as an argument to the function is outside the range
allowed for that argument.

499 (Error)

Cause. The function requires more arguments than have been supplied.

500 (Error)

Cause. A nonnumeric argument was supplied where a numeric argument is required.

501 (Error)

Cause. Functions appear in a program that does not run in the CRE. (To use
functions, a program must run in the CRE.)

502 (Error)

Cause. A nonalphabetic, nonalphanumeric argument was supplied where an
alphabetic or alphanumeric argument is required.

503 (Error)

Cause. A nonalphabetic argument was supplied where an alphabetic argument is
required.

Argument not within expected range

Too few arguments

Expecting nonnumeric item

This function is not allowed in old environment

Expected alphabetic or alphanumeric data item

Expected alphabetic data item
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-89

Compiler Diagnostic Messages Message List
504 (Error)

Cause. A reference modifier was applied to a function whose return type is not
alphanumeric.

510 (Error)

Cause. An EXIT PERFORM or EXIT PERFORM CYCLE statement appears in a
context other than within an inline PERFORM statement.

511 (Error)

Cause. The keyword PERFORM is followed by something other than the keyword
CYCLE or another verb.

512 (Error)

Cause. The keyword EXIT is followed by something other than the keyword
PARAGRAPH.

513 (Error)

Cause. An EXIT PARAGRAPH statement is not inside a paragraph. (You must be
within a paragraph to exit from one.)

514 (Error)

Cause. An EXIT SECTION statement is not inside a section. (You must be within a
section to exit from one.)

Reference modifier permitted only for alphanumeric functions

EXIT PERFORM [CYCLE] must be within an in-line perform

Expected key-word CYCLE or other verb

Expected key-word PARAGRAPH

An EXIT PARAGRAPH must be contained in a paragraph

An EXIT SECTION must be contained in a section
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-90

Compiler Diagnostic Messages Message List
515 (Error)

Cause. In the ACCEPT statement, either DATE appears followed by something other
than YYYYMMDD or DAY appears followed by something other than YYYYDDD.

520 (Error)

Cause. A data structure that could start on an odd byte was passed as a parameter to
a CALL statement. If the data structure actually does start on an odd byte, the wrong
address will be passed to the CALL statement. Certain subscript combinations cause
this problem.

521 (Error)

Cause. An ENTER statement tried to pass a parameter by value to a FORTRAN
routine. This parameter must be passed by reference.

522 (Error)

Cause. An ENTER statement tried to pass a parameter by value to an HP C function.
This parameter must be passed by reference.

525 (Error)

Cause. The program was compiled in the OSS environment with one of these
compiler directives:

• ENV
• NONSTOP
• SAVE
• SUBTYPE

Expected YYYYMMDD after DATE or YYYYDDD after DAY

Possible odd byte address for parameter

Parameter must be passed BY REFERENCE to a FORTRAN routine

Parameter must be passed BY REFERENCE to a C function

This directive is not permitted in the OSS environment
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-91

Compiler Diagnostic Messages Message List
526 (Error)

Cause. The source program applies one of these phrases to a LINE SEQUENTIAL
file:

• In a SELECT clause:

° ACCESS MODE IS DYNAMIC
° ACCESS MODE IS RANDOM
° ALTERNATE RECORD KEY
° PADDING CHARACTER
° RECORD DELIMITER

• In the I-O-CONTROL paragraph:

° MULTIPLE FILE

• In a file description entry:

° BLOCK CONTAINS
° CODE-SET
° LINAGE

• In an OPEN statement:

° I-O
° REVERSED
° SYNCDEPTH
° TIME LIMITS

• In a READ statement:

° PROMPT
° REVERSED
° TIME LIMITS

• ADVANCING in a WRITE statement

527 (Error)

Cause. The program contains a statement of the form

OPEN I-O i-o-file-description

where i-o-file-description is a LINE SEQUENTIAL file.

This phrase is not permitted for LINE SEQUENTIAL files

LINE SEQUENTIAL files may not be opened in I-O mode
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-92

Compiler Diagnostic Messages Message List
600 (Warning)

Cause. The NMCOBOL compiler ignores this directive.

601 (Warning)

Cause. The NMCOBOL compiler ignores this directive.

602 (Error)

Cause. A CALL or ENTER statement calls a program for which the object file contains
a name but not a symbol. (If a native HP COBOL program references an object in a
CALL or ENTER statement, the object must have been compiled with symbols.)

603 (Error)

Cause. The program called by a CALL or ENTER statement is not in the specified
object file (if an object file is specified) or is not in any object file on the search list(s).

604 (Error)

Cause. One of:

• A CALL or ENTER statement calls a program, specifying the object file that
contains the program, but that object file cannot be read.

• A CALL or ENTER statement calls a program without specifying the object file that
contains it, and one of the object files on the search list(s) cannot be read.

605 (Error)

Cause. The NMCOBOL compiler does not accept this directive, although it does
accept its opposite (for example, the NMCOBOL compiler accepts CONSULT,
SEARCH, and SQL, but not NOCONSULT, NOSEARCH, or NOSQL).

Defunct directive ignored

Feature not yet available -- directive ignored

No symbols for external name

External name not found

Error reading object file

The NO prefix is not allowed on this directive
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-93

Compiler Diagnostic Messages Message List
606 (Warning)

Cause. ACCESS MODE STANDARD is specified for a data item described in the
Linkage Section, and the data item is not referenced in the USING phrase of the
PROCEDURE DIVISION header. Delete the ACCESS MODE phrase.

607 (Error)

Cause. A hexadecimal literal has more than 64 bits (16 hexadecimal digits).

608 (Error)

Cause. A statement with a CORRESPONDING phrase has more than 255 matching
pairs. Simplify the data structures.

610 (Error)

Cause. A data item described as USAGE POINTER is specified where it is not
allowed.

611 (Error)

Cause. A statement (for example, SET) expects either an index data item or a pointer
data item as a sending or receiving operand.

612 (Error)

Cause. A statement expects a pointer data item as a sending or receiving operand.

ACCESS MODE STANDARD is ignored for a non-parameter data item
in the linkage section

Numeric hexadecimal literal exceeds 16 hex digits

More than 255 corresponding pairs

Pointer data item not permitted

Expected index or pointer data item

Expected pointer data item
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-94

Compiler Diagnostic Messages Other Products’ Error Messages
613 (Warning)

Cause. The compilation unit contains incompatible directives; for example, CALL-
SHARED and NON-SHARED.

Other Products’ Error Messages
Products that are merged with the compiler sometimes cause compile-time error
messages when you run the compiled program. Examples of such products are:

• NMCGEN, the “back end” of the NMCOBOL compiler

• SCI, the SQL/MP compiler interface

NMCGEN

Cause. The small data area is too large. The small data area is for relatively small
items that are referenced frequently. Access to items in the small data area is twice as
fast as access to other data items.

Recovery. Compile your program with the LARGEDATA directive, specifying a number
smaller than 64 (the default).

SCI

Cause. Too few pages of memory were allocated to the SQL compiler interface (SCI)
for processing SQL/MP statements.

Recovery. Compile your program with the directive SQL PAGES n, where n is
between 385 and 1000. If this error still occurs, recompile the program with a larger
value of n.

Directives: directive-1;directive-2
Duplicate setting, previous setting ignored

Example 47-3. NMCGEN Run-Time Error Message

*** Error detected by as1 phase gp-relative segments together
 exceed 64k bytes in source program file 'file-name' at source line n

Example 47-4. SCI Run-Time Error Message

*** Embedded SQL Fatal Error ***
*** ERROR 11998 - Embedded SQL memory exceeded during parsing --
 report to HP.
Problem on line nnn
** Failure 19 ** Server failure
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-95

Compiler Diagnostic Messages SCI
HP COBOL Manual for TNS and TNS/R Programs—522555-006
47-96

48
Run-Time Diagnostic Messages

This section explains the run-time diagnostic messages that can be reported if an
HP COBOL process encounters an error condition.

Topics:

• Sources of Run-Time Diagnostic Messages

• Where Messages Are Reported

• Standard Message Format—Non-CRE Environment

• Standard Message Format—CRE

• Input-Output Error Messages

• SORT Error Messages

• Guardian Abnormal Termination Messages

• How to Use the Message List

• Message List

Sources of Run-Time Diagnostic Messages
For TNS HP COBOL programs, the sources of run-time diagnostic messages are:

• The COBOL85 run-time library (if the COBOL85 process is running in the non-CRE
environment)

• The CRE (if the COBOL85 process is running in the CRE)

For TNS/R HP COBOL programs, run-time diagnostic messages are from the CRE.

Where Messages Are Reported
If an EXECUTION-LOG parameter is currently defined, run-time diagnostic messages
are reported to the destination that the EXECUTION-LOG parameter specifies (see
PARAM Command); otherwise, they are delivered to the home terminal of the process.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-1

Run-Time Diagnostic Messages Standard Message Format—Non-CRE Environment
Standard Message Format—Non-CRE
Environment

In the non-CRE environment, the standard format of a run-time diagnostic message is:

[]

surrounds optional material.

pn

is the process name or process ID of the process that caused the error report.

nnn

is the message number from the COBOL85 run-time library.

prog-id + %pppppp

is the specification of the code location of the error.

prog-id

is the name of the program (from the PROGRAM-ID paragraph) in which the error
occurred.

%pppppp

is the octal offset within the code block.

If a series of similar lines (without the word From) follows, it is a traceback of one
or more lines to show the CALL history, starting with the program in which the error
occurred, then its caller, and so on back to the main program.

message

is the error message text.

additional-message

is any additional information about the problem, such as the name of the file that
caused the error.

 pn - *** COBOL85 Library Error nnn ***
 pn - From prog-id + %pppppp
[pn - prog-id + %pppppp] ...
 pn - message
[pn - additional-message] ...
[pn - File COBOL-file-name, assigned-file-name: open-status]
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-2

Run-Time Diagnostic Messages Standard Message Format—Non-CRE Environment
COBOL-file-name

applies only to I-O errors and is the name of the file in error (the file-name in
the SELECT clause).

assigned-file-name

is the file system name of the file assigned to COBOL-file-name.

open-status

is an open mode (INPUT, OUTPUT, I-O, EXTEND or CLOSED).

In Example 48-1, The process running on system \HQSYS4, on processor 2, as
process 38, is not named.

The second through fifth lines are a traceback. The second line reports that the error
occurred at an offset of octal 166 in SUB2A, which is contained in SUB2, which is
contained in BUDG3A. The call to SUB2A occurred in SUB2, at an offset of octal 200.
The call to SUB2 occurred in SUB1, at an offset of octal 264. The call to SUB1
occurred in BUDG3A, at an offset of octal 123.

Example 48-1. Standard Run-Time Diagnostic Message (Non-CRE Environment)

\HQSYS4.02,038 - *** COBOL85 Library Error 009 ***
\HQSYS4.02,038 - From BUDG3A.SUB2.SUB2A + %166
\HQSYS4.02,038 - BUDG3A.SUB2 + %200
\HQSYS4.02,038 - BUDG3A.SUB1 + %264
\HQSYS4.02,038 - BUDG3A + %123
\HQSYS4.02,038 - Subscript out of range
\HQSYS4.02,038 - $AUTRY.BUDGET87.BUD3A - 30 Sep 86 13:42
ABENDED: 2,38

Element Value

pn \HQSYS4.02,038

nnn 009

prog-id BUDG3A.SUB2.SUB2A

offset %166

message Subscript out of range

program-file-name $AUTRY.BUDGET87.BUD3A

date-and-time 30 Sep 86 13:42

additional-message None
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-3

Run-Time Diagnostic Messages Standard Message Format—Non-CRE Environment
The last line (from the operating environment, not from COBOL85) reports that the
process terminated abnormally.

\SHEM.13,012 - *** COBOL85 Library Error 009 ***
\SHEM.13,012 - From TESTT + %75
\SHEM.13,012 - $NOAH.ZARK.TWO - 29 Feb 88 14:19
\SHEM.13,012 - *** ERROR [770]
 Message table $SYSTEM.SYSTEM.C8LIMEO
 cannot be used. File system error 11.
ABENDED: 13,12

When the text “File does not contain messages for this product” appears instead of
“Message table ...”, the file C8LIMEO does not contain the message text for the object.
Usually, the reason is that the object has an old version of the run-time library bound
into it, which resulted from the file C8LIB being in the same subvolume as the compiler.
Either remove C8LIB and recompile the program or use the BIND utility to delete all of
the code that starts with C8LIB^. Otherwise, contact support about getting a version of
C8LIMEO that contains the messages for the object.

Note. In the non-CRE environment, if the executing program delivers a message of this form,
the file containing the run-time diagnostic message texts is not available. Report this to the
appropriate system support personnel.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-4

Run-Time Diagnostic Messages Standard Message Format—CRE
Standard Message Format—CRE
In the CRE, the standard format of a run-time diagnostic message is:

 pn - *** Run-time Error nnn ***
 pn - message
[pn - File COBOL-file-name = assigned-file-name, open-status]
 pn - From prog-id + %pppppp, UC.00
[pn - prog-id + %pppppp] ...
[pn - additional-message] ...

[] surrounds optional material.

pn is the process name or process ID of the process that caused
the error report.

nnn is the message number from the CRE.

prog-id +
%pppppp

is the specification of the code location of the error.

prog-id is the name of the program (from the PROGRAM-ID
paragraph) in which the error occurred.

%pppppp is the octal offset within the code block.

If a series of similar lines (without the word From) follows, it is
a traceback of one or more lines to show the CALL history,
starting with the program in which the error occurred, then its
caller, and so on back to the main program.

message is the error message text.

additional-
message

is any additional information about the problem, such as the
name of the file that caused the error.

COBOL-file-
name

applies only to I-O errors and is the name of the file in error
(the file-name in the SELECT clause).

assigned-file-
name

is the file system name of the file assigned to COBOL-file-
name.

open-status is an open mode (INPUT, OUTPUT, I-O, EXTEND or
CLOSED).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-5

Run-Time Diagnostic Messages Input-Output Error Messages
Input-Output Error Messages
An input-output error message refers to a COBOL file or to a device specified in an
ACCEPT or DISPLAY statement. An input-output error message has additional
messages that report:

• A Guardian error number
• A line identifying the file that caused the error

In Example 48-2, the line

\BEANS.11,047 - OPEN operation failed with error 48

reports that the file could not be opened due to a Guardian error 48 (security violation).
The next line,

\BEANS.11,047 - File BWORK=$WILLIS.AUDITX3.GRIP: CLOSED

identifies the file that caused the error. Its COBOL file name is BWORK, and its
Guardian file name is $WILLIS.AUDITX3.GRIP.

SORT Error Messages
A SORT error message arises from a SORT, RELEASE, or RETURN statement. A
SORT error message is followed by a SORT diagnostic line. For explanation of the
SORT diagnostic line, see the FastSort Manual.

Example 48-2. Input-Output Error Message (Non-CRE Environment)

\BEANS.11,047 - *** COBOL85 Library Error 057 ***
\BEANS.11,047 - From MANE.BBB + %422
\BEANS.11,047 - MANE.AAA + %254
\BEANS.11,047 - MANE + %1234
\BEANS.11,047 - $MURPHY.AUDITX3.PRIVATE - 30 Sep 86 15:48
\BEANS.11,047 - OPEN operation failed with error 48
\BEANS.11,047 - File BWORK=$WILLIS.AUDITX3.GRIP: CLOSED
ABENDED: 11,47

Example 48-3. Input-Output Error Message (CRE)

\DRP12.$:0:622:163577460 - *** Run-time Error 181 ***
\DRP12.$:0:622:163577460 - OPEN operation failed with error 48
\DRP12.$:0:622:163577460 - File BWORK = \DRP12.$DATA4.PTR.GRIP, closed
\DRP12.$:0:622:163577460 - From COBLIB_IO_ERROR_ + 0x660 (DLL zcobdll)
\DRP12.$:0:622:163577460 - COBLIB_OPEN_ + 0x5120 (DLL zcobdll)
\DRP12.$:0:622:163577460 - .BBB + 0x1C0 (UCr)
\DRP12.$:0:622:163577460 - .AAA + 0x90 (UCr)
\DRP12.$:0:622:163577460 - MANE + 0x130 (UCr)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-6

Run-Time Diagnostic Messages Guardian Abnormal Termination Messages
Guardian Abnormal Termination Messages
A Guardian abnormal termination message results from circumstances that cause the
Guardian environment to terminate the execution of a run unit. The operating
environment delivers its own message—the Guardian abnormal termination
message—after (or instead of) delivering a COBOL run-time diagnostic message. A
Guardian abnormal termination message is more cryptic than a COBOL run-time
diagnostic message.

Here is a typical Guardian abnormal termination message in the non-CRE
environment:

INSPECT - SYMBOLIC DEBUGGER - T9673C00 - (10JUL89)
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1983, 1985-1989
INSPECT P=000102, E=000350 -TRAP 2- (arithmetic overflow)
175,09,028 PRODXXX #X + %77I
PRODXXX

Here is a typical Guardian abnormal termination message in the CRE:

ABENDED: 10,355
CPU time: 0:00:00.005
3: Premature process termination with fatal errors or
diagnostics

The run unit was operating in an environment with traps armed, and an arithmetic
overflow occurred. The Guardian environment placed the job into the selected
debugger. You can use the “#X + 77I” information to find out where in the source
program the problem arose.

The three most common causes of Guardian abnormal termination messages are:

• Abend (abnormal termination)

• Arithmetic Overflow

• Stack Overflow

These topics explain abnormal termination messages and describe what to do if they
occur.

Abend
Abend is short for “abnormal end.” It follows any fatal error message that the run-time
routines generate. If it appears without a run-time diagnostic message, you might want
to execute the run unit again with the SAVEABEND attribute set so that the selected
debugger makes a save file. You might also want to recompile with SYMBOLS and
INSPECT directives, and then execute with SAVEABEND so that you can make easier
use of the save file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-7

Run-Time Diagnostic Messages Arithmetic Overflow
Arithmetic Overflow
Arithmetic overflow means that an arithmetic operation resulted in an arithmetic
overflow. Typical causes include:

• Invalid data is associated with an item, such as an uninitialized USAGE
COMPUTATIONAL or index item.

• A receiving item in an arithmetic statement is too small.

• An intermediate result in a COMPUTE statement exceeds the 36-digit maximum.

• A USAGE COMPUTATIONAL operand in an arithmetic statement contains a
number larger than the number of digits specified in the PICTURE clause for that
item.

• A subscript or a reference modifier is too big.

You can determine the cause of arithmetic overflow in any of these ways:

• Without the Debugger

This method is recommended for production runs.

If the program calls the COBOL85^ARMTRAP routine (in the non-CRE
environment) or the PARAM INSPECT OFF command is active (in the CRE), the
process stops executing with a trace-back to the highest-level program. The first
item in the trace-back is the offset within the program of the statement that caused
the problem. To find the statement itself, compile the program with the ICODE
directive (for the COBOL85 compiler) or the INNERLIST directive (for the
NMCOBOL compiler). Except for adding the ICODE or INNERLIST directive,
compile the program with exactly the same directives as you did before the
problem occurred. (Some directives, such as SYMBOLS, can slightly change the
generated code.)

• With the Debugger

If the program does not call the COBOL85^ARMTRAP routine (in the non-CRE
environment) or the PARAM INSPECT ON command is active (in the CRE), the
process stops and enters the selected debugger (see Debugger Selection). You
can use the debugger to find the problem. If the selected debugger is symbolic,
using it is easier if you compiled the program with the SYMBOLS directive. If you
did not, you might have to recompile the program with SYMBOLS to find the
problem with the debugger.

• With a Saveabend File

If the program is compiled with the SAVEABEND directive, the process generates
a saveabend file if it terminates abnormally. You can determine the cause of the
problem by examining the saveabend file.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-8

Run-Time Diagnostic Messages Stack Overflow
Stack Overflow
Stack overflow means that the control and data stack has overflowed.

TNS Programs
In a TNS program, the most common cause is a shortage of data space in the user
data area. To determine whether this is the case, you need a data map of the run unit.
For a TNS program, you can use the BIND command

LIST LOC FROM fname

to create a data map for file fname. Examine the data block map to find the last
address less than 100000 octal. If this address is greater than 70000 octal, you might
not have enough room to execute. There are several ways to fix the problem:

• Move one or more large data items (such as large tables) from the Working-
Storage Section to the Extended-Storage Section.

• Reduce arrays to fewer elements.

• Eliminate unused data items (a cross-reference listing might help you find them).

• Make seldom-called programs initial programs (specify INITIAL in the PROGRAM-
ID paragraph).

If there appears to be enough room, but your program still terminates abnormally, your
run unit might have a loop in it. To determine the cause, compile the program with the
SYMBOLS and INSPECT directives, and run it in debug mode (with the RUND
command) by using the selected debugger to examine the contents of the variables
when the program terminates abnormally.

One likely cause of abnormal termination is a PERFORM loop that lacks proper
termination. If, during the execution of a procedure, control passes out of the
procedure and then control passes back through the PERFORM statement again, the
stack space dedicated to maintenance of the procedure is never freed.

Native Programs
For native programs, the most likely cause of stack overflow is calling one or more
initial programs that have large amounts of data declared in the Working-Storage
Section or Extended-Storage Section. Data in initial programs is allocated on the stack,
and the area of memory reserved for the stack is much smaller than the area reserved
for static data. There are several ways to fix this problem:

• Move one or more large data items (such as large tables) from the initial program
to a noninitial program that calls it, and pass the data items as parameters.

• Reduce arrays to fewer elements.

• Eliminate unused data items.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-9

Run-Time Diagnostic Messages How to Use the Message List
• Remove the INITIAL phrase from the program header and explicitly cancel the
program after every call to it (see CANCEL).

How to Use the Message List
This topic lists and explains all the run-time diagnostic messages that can be reported
for an HP COBOL program that either runs in the non-CRE environment or runs in the
CRE but does not call any non-COBOL routines.

If your HP COBOL program runs in the CRE and calls non-COBOL routines, errors in
those routines can cause additional messages to be reported. For a complete list of
CRE run-time diagnostic messages, see the CRE Programmer’s Guide.

The messages in Message List are in numeric order by CRE message number. The
corresponding COBOL message number is beneath the CRE message number, in
parentheses. If you know only the COBOL message number, use Table 48-1 to find its
corresponding CRE message number.

If a COBOL message number has no corresponding CRE message, Table 48-1 shows
“none.” Such messages are in numeric order by COBOL message number at the end
of “Message List.”

Some CRE error numbers correspond to multiple COBOL85 error message numbers
(for example, CRE error 26 corresponds to COBOL85 errors 015 and 106). The
reverse is true also (CRE errors 2 through 9 correspond to COBOL85 error 121).

When corresponding CRE and COBOL messages have identical message texts, they
are listed this way:

CRE Number (COBOL85 Number)

Cause. Cause of the error.

Effect. What the run-time routines did. For errors that do not involve input-output
operations, the run-time routines usually just report the message and terminate the
process. For input-output errors, the run-time routines:

• Report the message.

• Set the status code and the GUARDIAN-ERR special register.

• If the program contains a corresponding declarative section, perform the
declarative.

• Either terminate execution or continue, depending upon the value of the status
code.

Recovery. Suggestions for recovering from the error or preventing its recurrence.

Message text
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-10

Run-Time Diagnostic Messages How to Use the Message List
When corresponding CRE and COBOL messages have different texts, they are listed
this way:

CRE Number

(COBOL85 Number)

Cause. Cause of the error.

Effect. What the run-time routines did.

Recovery. Suggestions for recovering from the error or preventing its recurrence.

CRE message text

COBOL message text

Table 48-1. COBOL Message Mapping (page 1 of 5)

Msg. No.

Original Message TextOriginal CRE

001 125 OCCURS DEPENDING ON data item out of range

002 126 Extended address parameter passed where byte or 2-byte address
expected

003 127 CALL references an active program

004 128 Reference modifier out of range

005 129 Improper context for RELEASE statement

006 130 Improper context for RETURN statement

007 131 S location at end of paragraph not equal to that at beginning

008 132 SORT or MERGE statement executed while SORT or MERGE
active

009 133 Subscript out of range

010 134 GO TO statement not initialized

011 135 ACCEPT or DISPLAY requested for an unsupported device

012 17 Space allocation for ACCEPT or DISPLAY failed

013 136 Input-output error nnn on ACCEPT or DISPLAY device

014 25 File not uniquely identified in ASSIGN command

015 26 PARAM argument not recognized or not permitted

016 137 Called program not found

017 138 CANCEL references an active program

018 139 Cancelled program not found

* Original COBOL message 121 maps into CRE messages numbers one through nine.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-11

Run-Time Diagnostic Messages How to Use the Message List
019 142 RELEASE operation failed - SORTMERGE message follows

020 143 RETURN operation failed - SORTMERGE message follows

021 144 SORT or MERGE operation failed before end - SORTMERGE
message follows

022 145 SORT or MERGE operation failed at start - SORTMERGE

023 29 Run unit not compatible with COBOL85 library

024 150 Alternate key not present in file

025 151 DUPLICATES specification in SELECT does not match file

026 152 OPEN on a non-disk file that is specified with alternate

027 153 Create of new file failed with error nnn

028 154 Sequential DELETE must follow successful READ

029 155 DELETE positioning failed with error nnn

030 156 DELETE repositioning failed with error nnn

031 157 Wrong open mode for DELETE

032 158 DELETE operation failed with error nnn

033 77 OPEN on an EDIT file and EDITREADINIT failed with code -n

034 159 OPEN on an EDIT file and wrong open mode

035 160 OPEN on an EDIT file described with a record size that is too big

036 161 OPEN EXTEND positioning failed with error nnn

037 162 OPEN on a nonexistent file that is not OPTIONAL

038 163 OPEN page eject failed with error nnn

039 164 OPEN rewind failed with error nnn

040 165 OPEN requested for an unsupported device other illegal device

041 166 OPEN requested for a locked file

042 167 OPEN requested for an open file

043 168 LINAGE file not on printer or process

044 169 LOCK or UNLOCK operation failed with error nnn

045 170 MULTIPLE FILE TAPE file not on tape

046 171 OPEN positioning for MULTIPLE FILE TAPE failed

047 172 OPEN on a nonexistent file and alternate keys specified

048 75 Buffer space allocation failed

049 173 Indexed file not defined as ORGANIZATION INDEXED

050 174 OPEN INPUT when file not on input device

Table 48-1. COBOL Message Mapping (page 2 of 5)

Msg. No.

Original Message TextOriginal CRE

* Original COBOL message 121 maps into CRE messages numbers one through nine.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-12

Run-Time Diagnostic Messages How to Use the Message List
051 175 Operation other than OPEN on file that is not open

052 176 File is not opened for timed I/O

053 177 OPEN OUTPUT when file not on output device

054 178 Relative file not defined as ORGANIZATION RELATIVE

055 179 Sequential file not defined as ORGANIZATION SEQUENTIAL

056 180 Non-disk or unstructured file and not sequential organization

057 181 OPEN operation failed with error nnn

058 182 Prime key offset in program does not match file

059 183 Prime key size in program does not match file

060 184 Purge of file during OPEN failed with error nnn

061 185 Purge data from file during OPEN failed with error nnn

062 78 EDITREAD failed with code -n

063 186 READ operation failed with error nnn

064 187 READ WITH LOCK on file with read ahead or an OSS file

065 188 READ positioning failed with error nnn

066 189 Sequential READ requested when current position is undefined

067 190 Wrong open mode for READ

068 191 Reel swap failed with error nnn

069 192 Sequential REWRITE must follow successful READ

070 193 REWRITE positioning failed with error nnn

071 194 REWRITE repositioning failed with error nnn

072 195 Wrong open mode for REWRITE

073 196 Sequential REWRITE permitted only with same record size

074 197 REWRITE operation failed with error nnn

075 none CLOSE LOCK while same file open elsewhere in run unit

076 198 START operation failed with error nnn

077 199 START positioning failed with error nnn

078 200 Wrong open mode for START

079 201 System node not available or does not exist

080 202 LOCKFILE, UNLOCKFILE or UNLOCKRECORD on file that is not
open

081 203 OPEN on unstructured file described without fixed length records

082 204 Writing end of file failed with error nnn

Table 48-1. COBOL Message Mapping (page 3 of 5)

Msg. No.

Original Message TextOriginal CRE

* Original COBOL message 121 maps into CRE messages numbers one through nine.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-13

Run-Time Diagnostic Messages How to Use the Message List
083 205 Writing end of reel failed with error nnn

084 206 WRITE operation failed with error nnn

085 207 WRITE failed because file full

086 208 WRITE positioning failed with error nnn

087 209 WRITE repositioning failed with error nnn

088 210 Line skipping failed with error nnn

089 211 Wrong open mode for WRITE

090 212 Wrong length record specified for WRITE or REWRITE

091 none Descriptions for the same external file differ

092 213 OPEN EXTEND for file not on extend device

093 214 OPEN I-O for file not on input-output device

094 215 Wrong or missing LABELS attribute

095 216 Wrong or missing USE attribute

096 217 Wrong or missing RECFORM attribute

097 218 Wrong or missing RECLEN attribute

098 219 Wrong or missing BLOCKLEN attribute

099 220 Wrong or missing FILESEQ attribute

100 221 Wrong or missing DEVICE attribute

101 222 A DEFINE procedure failed with error nnn

102 223 DEFINE required for LABEL RECORDS STANDARD

103 none Blocking not permitted for odd length records

104 80 Spooler initialization failed with error nnn

105 none No space for PARAM EXECUTION-LOG file block

106 26 External file name in PARAM EXECUTION-LOG is invalid

107 none File referenced in PARAM EXECUTION-LOG is on an invalid
device

108 140 Record referenced in RELEASE statement not in SD in SORT or
MERGE statement

109 141 File referenced in RETURN statement not in SD in SORT or
MERGE statement

110 79 OpenEdit failed with error nnn

111 224 PositionEdit failed with error nnn

112 225 Size of unstructured file opened EXTEND not multiple of record
size

Table 48-1. COBOL Message Mapping (page 4 of 5)

Msg. No.

Original Message TextOriginal CRE

* Original COBOL message 121 maps into CRE messages numbers one through nine.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-14

Run-Time Diagnostic Messages Message List
Message List
The run-time diagnostic messages associated with COBOL85, in numeric order by
CRE message number, are:

1 (none)

Cause. The CRE trap processing function was called with an unknown trap number.

Effect. The run unit terminates abnormally.

Recovery. Check the program’s logic. Use the selected debugger to help isolate the
problem or consult your system administrator.

113 226 File attributes don’t match and file not opened OUTPUT or has
alternate keys

114 227 Loadclose failed with internal error mmm, GUARDIAN error nnn

115 228 Allocatesegment for fast i/o failed with error return nnn

116 229 Loadopen failed with internal error mmm, GUARDIAN error nnn

117 230 Loadwrite failed with internal error mmm, GUARDIAN error nnn

118 231 Initnewdatablock (Fast i-o) failed

119 232 An illegal operation was attempted on a fast i/o file

120 none The file name in PARAM PRINTER-CONTROL is not a legal
COBOL file name

121 * A hardware/software trap occurred—the type follows

122 233 OPEN OUTPUT SHARED and other process has disk open

123 75 Buffer allocation failed on SORT or MERGE

124 234 The CLOSE operation failed with Guardian error nnn

125 none A CRE routine was called from a non-CRE program

126 235 REVERSED not allowed for this file

127 146 Parameter mismatch for CALL identifier

128 none PARAM WAITED-IO ON specified and illegal OPEN attempted

129 83 Operation incompatible with file type or status (GE)

130 40 Invalid function parameter

131 11 or 13 Corrupted environment

Unknown trap

Table 48-1. COBOL Message Mapping (page 5 of 5)

Msg. No.

Original Message TextOriginal CRE

* Original COBOL message 121 maps into CRE messages numbers one through nine.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-15

Run-Time Diagnostic Messages Message List
2

(121)

Cause. An address was specified that was not within either the virtual code area or
the virtual data area allocated to the process. In most cases, a subscript or reference
modifier was out of bounds.

Effect. The run unit terminates abnormally.

Recovery. Try recompiling with the CHECK 3 directive.

3

(121)

Cause. An attempt was made to:

• Execute a code word that is not an instruction
• Execute a privileged instruction by a nonprivileged process
• Reference an illegal extended address

In most cases, a compiler error or a subscript or reference modifier was out of bounds.

Effect. The run unit terminates abnormally.

Recovery. Try recompiling with the CHECK 3 directive.

Illegal address reference

A hardware/software trap occurred - the type follows

Illegal address reference

Instruction failure

A hardware/software trap occurred - the type follows

Instruction failure
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-16

Run-Time Diagnostic Messages Message List
4

(121)

Cause. For a TNS program, the overflow bit in the environment-register, ENV.<10>,
was set to 1; for a native program, an arithmetic overflow occurred. This occurred for
one of these reasons:

• The result of a signed arithmetic operation could not be represented with the
number of bits available for the particular data type.

• A division operation was attempted with a zero divisor.

In most cases, a receiving item in an arithmetic statement is too small.

Effect. The run unit terminates abnormally.

Recovery. Check the statement in your program at the address given by offset and
correct it. Also, see Arithmetic Overflow for alternative ways to handle this problem.

5

(121)

Cause. A stack overflow fault occurs if:

• An attempt was made to execute a program whose dynamically allocated data did
not fit within the remaining area available for the stack.

• There was not enough remaining virtual data space for an operating environment
procedure to execute.

For a TNS program, the amount of virtual data space available is G[0] through
G[32767].

Operating environment procedures require approximately 700 bytes of user-data stack
space to execute.

Arithmetic fault

A hardware/software trap occurred - the type follows

Arithmetic fault

Stack overflow

A hardware/software trap occurred - the type follows

Stack overflow
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-17

Run-Time Diagnostic Messages Message List
Effect. The run unit terminates abnormally.

Recovery. See Stack Overflow for an explanation of this condition and recovery
information.

6

(121)

Cause. The new time limit specified in the latest call to SETLOOPTIMER has expired.

Effect. The run unit terminates abnormally.

Recovery. Report this error to your service provider.

7

(121)

Cause. An unrecoverable, read error occurred while the program was trying to bring in
a page from virtual memory.

Effect. The run unit terminates abnormally.

Recovery. Report this error to your service provider.

Process loop-timer timeout

A hardware/software trap occurred - the type follows

Process loop-timer timeout

Memory manager read error

A hardware/software trap occurred - the type follows

Memory manager read error
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-18

Run-Time Diagnostic Messages Message List
8

(121)

Cause. This fault occurs for one of these reasons:

• A page fault occurred, but there were no physical memory pages available for
overlay.

• Disk space could not be allocated while the program is using extensible segments.

Effect. The run unit terminates abnormally.

Recovery. Report this error to your service provider.

9

(121)

Cause. An uncorrectable memory error occurred.

Effect. The run unit terminates abnormally.

Recovery. Report this error to your service provider.

11 (131)

Cause. CRE or COBOL85 run-time library data is invalid.

Effect. The CRE or non-CRE environment calls PROCESS_STOP_, specifying the
ABEND variant and the text “Corrupted environment.”

Not enough physical memory

A hardware/software trap occurred - the type follows

Not enough physical memory

Uncorrectable memory error

A hardware/software trap occurred - the type follows

Uncorrectable memory error

Corrupted environment
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-19

Run-Time Diagnostic Messages Message List
Recovery.

• COBOL85 compiler

In the CRE, the program might have written data in the upper 64 KB of the user
data segment. The upper 64 KB are reserved for CRE and run-time library data.
Check the program’s logic. Use the selected debugger to help isolate the problem
or consult your system administrator.

In the non-CRE environment, one of these things might have happened:

° The pointer at location G[0] is not %100000.
° The value of the 2 bytes at %100000 is not %76.
° The value of the 2 bytes at %100027 is not zero.

To correct the problem, initialize uninitialized pointers.

• NMCOBOL compiler

The MCB is not at a fixed location. To find it, use the noft command EXTSYMTBL.
Then use the selected debugger to help isolate the problem. See Example 48-4.

12 (none)

Cause. The CRE or run-time library detected a logic error within its own domain. For
example, although each data item it is using is valid, the values of the data items are
mutually inconsistent.

Effect. The CRE calls PROCESS_STOP_, specifying the ABEND variant and the text
“Logic error.”

Recovery. The program might have written data in the upper 64 KB of the user data
segment. The upper 64 KB are reserved for CRE and run-time library data. Check the
program’s logic. Use the selected debugger to help isolate the problem or consult your
system administrator.

13 (131)

Cause. The pointer at location G[0] of the program’s user data segment (for TNS
programs) or symbolic location _MCB (for native programs) to its primary data
structure—the Master Control Block (MCB)—does not point to the MCB. Both the CRE
and run-time libraries can report this error.

Effect. The CRE attempts to restore the MCB pointer and to write a message to the
standard log file; however, because its environment might be corrupted, the CRE might
not be able to log a message. In that case, it calls PROCESS_STOP_, specifying the
ABEND variant and the text “Corrupted Environment.”

Logic error

MCB pointer corrupt
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-20

Run-Time Diagnostic Messages Message List
Recovery. If the program was compiled with the COBOL85 compiler, check the
program’s logic to see if it overwrote the MCB pointer at G[0]. Use the selected
debugger to help isolate the problem.

If the program was compiled with the NMCOBOL compiler: In a native object, the MCB
is not at a fixed location. To find it, use the noft command EXTSYMTBL. Then use the
selected debugger to help isolate the problem. The noft output can be very lengthy.
Example 48-4 shows the location of the MCB for the native object file DOMS1400 is
0x0800e3e0.

14 (none)

Cause. The backup process received a Guardian message that it had become the
primary process, but it had not yet received all of its initial checkpoint information from
its predecessor primary process.

Effect. The CRE calls PROCESS_STOP_, specifying the ABEND variant and the text
“Premature takeover.”

Recovery. If the takeover occurred because of faulty program logic, correct the
program’s logic. If the takeover occurred for other reasons, such as a hardware failure,
you might want to rerun the program, provided that doing so will not duplicate
operations already performed, such as updating a database a second time.

15 (none)

Cause. A list of checkpoint item descriptors that a run-time library or CRE maintains
for fault-tolerant processes was invalid.

Effect. The run unit terminates abnormally.

Recovery. The list of items to checkpoint is maintained in the program’s address
space. Check the program’s logic. The program might have overwritten the checkpoint
list. Use the selected debugger to help isolate the problem.

Example 48-4. Using noft to Find the MCB Pointer in a Native Object File

noft> FILE DOMS1400noft> EXTSYMTBL
....
4 0 _MCB 0x0800e3e0 Glob
....noft>

Premature takeover

Checkpoint list inconsistent
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-21

Run-Time Diagnostic Messages Message List
16 (none)

Cause. The CRE did not have enough room to store all of the checkpoint information
required by the program.

Effect. The run unit terminates abnormally unless the error occurred in an SMU
routine.

Recovery. If the error occurred in an SMU routine, increase the size of the checkpoint
list.

17

(012)

Cause. The CRE or a run-time library could not obtain space for all of its data. If the
offending statement is an ACCEPT or DISPLAY statement, its buffer could not be
allocated due to a lack of allocatable space.

Effect. The run unit terminates abnormally.

Recovery. Increase the available space. The program should close files as soon as it
is done using them.

If a TNS program does not close files as soon as it is done using them, you can rebind
or relink the object file and use the DATA PAGES option in the BUILD command to get
more space, or use the MEM parameter of the RUN command to increase the
available space.

20 (none)

Cause. A string, expected to be a valid file name, could not be interpreted as a
Guardian external file name.

Effect. The run unit terminates abnormally.

Recovery. Check that the file names in the program are valid Guardian file names.

Checkpoint list exhausted

Cannot obtain control space

Space allocation for ACCEPT or DISPLAY failed

Cannot utilize file name
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-22

Run-Time Diagnostic Messages Message List
21 (none)

Cause. During program initialization, the CRE could not read all of the messages
(start-up message, PARAM message, ASSIGN messages, and so forth) it expected
from the file system. error is the file system error number the CRE received when it
could not read an initialization message.

Effect. The run unit terminates abnormally.

Recovery. Consult your system administrator.

22 (none)

Cause. The CRE could not obtain the name of the loadfile from the Guardian
environment.

Effect. The run unit terminates abnormally.

Recovery. Consult your system administrator.

23 (none)

Cause. The CRE could not determine the physical file name associated with
program_name.logical_name.

Effect. The run unit terminates abnormally.

Recovery. Correct the program_name.logical_name and rerun your program. For
information on ASSIGN commands, see ASSIGN Command and the TACL Reference
Manual.

24 (none)

Cause. ASSIGN values in your TACL environment conflict with each other. For
example:

ASSIGN A, $B1.C.D
ASSIGN *.A, $B2.C.D

Cannot read initialization messages (error)

Cannot obtain executable file name

Cannot determine file name (error)

program_name.logical_name

Conflict in application of ASSIGN

program_name.logical_name
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-23

Run-Time Diagnostic Messages Message List
The first ASSIGN specifies that the logical name A can appear in no more than one
loadfile. The second assign specifies that the name A can appear in an arbitrary
number of loadfiles. The CRE cannot determine whether to use the file C.D on volume
$B1 or on volume $B2.

Effect. The run unit terminates abnormally.

Recovery. Correct the ASSIGNs in your TACL environment. For information on
ASSIGN commands, see ASSIGN Command and the TACL Reference Manual.

25

(014)

Cause. An unqualified file name (one without the program-name or the asterisk (*)
prefix) specified by an active ASSIGN command corresponds to more than one
COBOL file in the run unit.

Effect. The run unit terminates abnormally.

Recovery. Either qualify the file name or change the program to prevent duplicated
names.

26

(015)

(106)

Cause. A PARAM specifies a value that is not defined by the CRE. For example, the
value for a DEBUG PARAM must be either ON or OFF. The CRE reports this error if a
DEBUG PARAM has a value other than ON or OFF. error, if present, is a Guardian
file system error.

Ambiguity in application of ASSIGN

logical_name

File not uniquely identified in ASSIGN command

Invalid PARAM value text (error)

PARAM name 'value'

PARAM argument not recognized or not permitted

External file name in PARAM EXECUTION-LOG is invalid
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-24

Run-Time Diagnostic Messages Message List
Effect. The run unit terminates abnormally.

Recovery. Modify the PARAM text and rerun your program. For more information on
using PARAMs, see PARAM Command and the TACL Reference Manual.

27 (none)

Cause. A PARAM specifies a value that is ambiguous in the current context. For
example, the PARAM specification:

PARAM PRINTER-CONTROL A

is ambiguous if the program contains more than one logical file named A.

Effect. The run unit terminates abnormally.

Recovery. Correct the PARAM in your TACL environment. See the TACL Reference
Manual for more information on using PARAMs.

28 (none)

Cause. The run-time library for a module that is written in language is not available
to the program.

Effect. The run unit terminates abnormally.

Recovery. Consult your system administrator.

29

(023)

Cause. The run unit was compiled by a version of HP COBOL that is not compatible
with this version of the COBOL85 run-time library.

Effect. The run unit terminates abnormally.

Recovery. Recompile the main program.

Ambiguity in application of PARAM

PARAM name 'value'

Missing language run-time library -- language

Program incompatible with run-time library -- COBOL85

Run unit not compatible with COBOL85 library
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-25

Run-Time Diagnostic Messages Message List
40 (130)

Cause. A function detected a problem with its parameters.

Effect. Program behavior depends on the function that was called.

Recovery. Correct the parameter you are passing.

41 (none)

Cause. An arithmetic overflow or underflow occurred while evaluating an arithmetic
function.

Effect. Program behavior is language and application dependent. An HP COBOL
program cannot cause this error, so the problem must be in a non-COBOL program in
the same run unit.

Recovery. Modify the program to pass values to the arithmetic functions that do not
cause overflow.

42 (none)

Cause. The parameter passed to the ACOS function was not in the range -1 to +1.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a valid value to the ACOS function.

43 (none)

Cause. The parameter passed to the ASIN function was not in the range -1 to +1.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a valid value to the ASIN function.

Invalid function parameter

Range fault

Arccos domain fault

Arcsin domain fault
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-26

Run-Time Diagnostic Messages Message List
44 (none)

Cause. Both of the parameters to an ATAN function were zero. At least one of the
parameters must be nonzero.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass the correct value to the ATAN function.

46 (none)

Cause. The parameter passed to a logarithm function (LOG or LOG10) was less than
or equal to zero. The parameter to a logarithm function must be greater than zero.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a valid value to the logarithm function.

47 (none)

Cause. The value of the second parameter to the MOD function was zero. The second
parameter to the MOD function must be nonzero.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a nonzero value to the MOD function.

48 (none)

Cause. Parameters to the exponentiation operator were not acceptable. Given the
expression

x ** y

these parameter combinations produce this message:

x = 0 and y is not 0
x < 0 and y is not an integral value

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass values that do not violate the above
combinations.

Arctan domain fault

Logarithm function domain fault

Modulo function domain fault

Exponentiation domain fault
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-27

Run-Time Diagnostic Messages Message List
49 (none)

Cause. The parameter to the SQRT function was a negative number. The parameter
must be greater than or equal to zero.

Effect. Program behavior is language and application dependent.

Recovery. Modify the program to pass a nonnegative value to the SQRT function.

55 (none)

Cause. A required parameter is missing or too many parameters were passed.

Effect. Program behavior depends on the function that was called.

Recovery. Correct the program to pass a valid parameter.

56 (none)

Cause. The value passed as a procedure parameter was invalid.

Effect. Program behavior depends on the function that was called.

Recovery. Correct the program to pass a valid parameter value.

57 (none)

Cause. The value passed as a procedure parameter is not acceptable in the context in
which it is passed. For example, the number of bytes in a write request is greater than
the number of bytes per record in the file.

Effect. Program behavior depends on the function that was called.

Recovery. Correct the program to pass a valid parameter.

59 (none)

Cause. The Guardian file system reported an error when a routine tried to access the
standard input file. error is a Guardian file system error code.

Square root domain fault

Missing or invalid parameter

Invalid parameter value

Parameter value not accepted

Standard input file error (error)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-28

Run-Time Diagnostic Messages Message List
Effect. The CRE can report this error when it closes your input file. All other instances
are language and application dependent. An HP COBOL program terminates
abnormally.

Recovery. If the error was caused by a read request from your program, correct your
program. You might need to verify that your program handles conditions that are
beyond your control, such as losing a path to the device. Also refer to error handling in
this manual and in the language manual for the routine in your program that detected
the error.

If the error was caused by a read request from the CRE, consult your system
administrator.

60 (none)

Cause. The Guardian file system reported an error when the CRE called a file system
procedure to access standard output. error is the Guardian file system error.

Effect. The CRE can report this error when it closes your output file. All other
instances are language and application dependent. An HP COBOL program terminates
abnormally.

Recovery. If the error was caused by a write request from your program, correct your
program. You might need to verify that your program handles conditions that are
beyond your control such as losing a path to the device. Also refer to error handling in
this manual and in the language manual for the routine in your program that detected
the error.

If the error was caused by a write request from the CRE, consult your system
administrator.

61 (none)

Cause. The Guardian file system reported an error when the CRE called a file system
procedure to access the standard log file. error is the Guardian file system error.

Effect. The CRE terminates your program.

Recovery. Consult your system administrator.

Standard output file error (error)

Standard log file error (error)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-29

Run-Time Diagnostic Messages Message List
62 (none)

Cause. A value that is expected to be a Guardian file number is not the number of an
open file.

Effect. Program behavior is language and application dependent. An HP COBOL
program terminates abnormally.

Recovery. Consult your system administrator.

63 (none)

Cause. A parameter was not the number of a shared file where one was expected.

Effect. Program behavior is language and application dependent. An HP COBOL
program terminates abnormally.

Recovery. Consult your system administrator.

64 (none)

Cause. A request to open a file failed because the file device is not supported.

Effect. Program behavior is language and application dependent. An HP COBOL
program terminates abnormally.

Recovery. Consult your system administrator.

65 (none)

Cause. A parameter to an open operation was not a meaningful value. For example,
the CRE_File_Open sync_receive_depth parameter must be a nonnegative
number. This message might be reported if the sync_receive_depth parameter is
negative.

Effect. Program behavior is language and application dependent. An HP COBOL
program terminates abnormally.

Recovery. Consult your system administrator.

Invalid GUARDIAN file number

Undefined shared file

File not open

Invalid attribute value
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-30

Run-Time Diagnostic Messages Message List
66 (none)

Cause. The CRE received a request to access a device that it does not support.

Effect. Program behavior is language and application dependent. An HP COBOL
program terminates abnormally.

Recovery. Consult your system administrator.

67 (none)

Cause. The value of access to an open operation was not valid in the context in
which it was used. For example, it is invalid to open a spool file for input.

Effect. Program behavior is language and application dependent. An HP COBOL
program terminates abnormally.

Recovery. Consult your system administrator.

68 (none)

Cause. The value of no_wait to an open operation was not valid in the context in
which it was used. For example, it is invalid to specify a nonzero value for no_wait
for a device that does not support nowait operations.

Effect. Program behavior is language and application dependent. An HP COBOL
program terminates abnormally.

Recovery. Consult your system administrator.

69 (none)

Cause. The value of the sync_receive_depth parameter to an open operation
was not valid in the context in which it was used. For example, it is not valid to specify
a sync_receive_depth greater than one for a shared file.

Effect. Program behavior is language and application dependent. An HP COBOL5
program terminates abnormally.

Recovery. Consult your system administrator.

Unsupported file device

Access mode not accepted

Nowait value not accepted

Syncdepth not accepted
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-31

Run-Time Diagnostic Messages Message List
70 (none)

Cause. The value of an open operation options parameter was not valid in the
context in which it was used.

Effect. Program behavior is language and application dependent. An HP COBOL
program terminates abnormally.

Recovery. Consult your system administrator.

71 (none)

Cause. A routine requested a connection to a shared file that was already open, and
the attributes of the new open request conflict with the attributes specified when the file
was first opened.

Effect. Program behavior is language and application dependent. An HP COBOL
program terminates abnormally.

Recovery. If your program supplied the attribute values, correct and rerun your
program; otherwise, consult your system administrator.

75

(048)

Cause. An attempt to allocate buffer space failed. The possible reasons are:

• COBOL_SPECIAL_OPEN_, COBOL85^SPECIAL^OPEN, or
COBOLSPOOLOPEN attempted to get space for level 3 spooling or for at least
one record.

• An OPEN of a file assigned to $RECEIVE attempted to get space for various
tables.

• An OPEN of an EDIT file attempted to get space to process the file.

• An OPEN of other files attempted to get space for ADVANCING processing.

Options not accepted

Inconsistent attribute value

Cannot obtain buffer space

Buffer space allocation failed
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-32

Run-Time Diagnostic Messages Message List
Effect. The OPEN statement is unsuccessful with I-O status code “91.” The
COBOL_SPECIAL_OPEN_, COBOL85^SPECIAL^OPEN, or COBOLSPOOLOPEN
call is unsuccessful with I-O status code “30.”

Recovery. The program should close files as soon as it is done using them.

If a TNS program does not close files as soon as it is done using them, you can rebind
or relink the object file and use the DATA PAGES option in the BUILD command to get
more space, or use the MEM parameter of the RUN command to increase the
available space.

(123)

Cause. There was not enough buffer space to allocate buffer n for a SORT or
MERGE statement that was sending records to FastSort or getting records from
FastSort (as when an input or output procedure is specified). If n is 1, it was the
normal buffer that could not be allocated; if n is 2, it was the second buffer. The
second buffer is specified by the SECOND-BUFFER parameter of the
COBOL85^SET^SORT^PARAM^VALUE or COBOL85_SET_SORT_PARAM_VALUE_
routine.

Effect. The SORT or MERGE continues, but probably at a much slower pace.

Recovery. Specify the MEM parameter on the RUN (or RUND) command; for
example:

RUN RUNUNIT/MEM 64/

76 (none)

Cause. A value that was expected to be a Guardian external file name is not in the
correct format.

Effect. Program behavior is language and application dependent. An HP COBOL
program terminates abnormally.

Recovery. If you supplied an invalid file name, correct the file name and rerun your
program. Otherwise, consult your system administrator.

Buffer n allocation failed on SORT or MERGE

Invalid external file name (error)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-33

Run-Time Diagnostic Messages Message List
77

(033)

Cause. A call to EDITREADINIT failed. In CRE message 77, error, if present, gives
the reason for the failure. Possible values of error are:

In COBOL message 033, the program attempted to open an EDIT file, and the call to
EDITREADINIT failed. The returned code is -n.

Effect. The OPEN statement is unsuccessful with I-O status code “91.”

Recovery. If the code is -2, there was an input-output error; try the statement again. If
the code is -3, the file is not an EDIT file. Assign the correct file. If the code is -4 there
is a sequence number error. Use EDIT, TEDIT, or Codewright to correct the file.

78

(062)

Cause. A call to EDITREAD failed. In CRE message 78, error, if present, gives the
reason for the failure. Possible values of error are:

EDITREADINIT failed (error)

OPEN on an EDIT file and EDITREADINIT failed with code -n

Error Code Error Name

-1 End-of-file marker encountered

-2 I-O error

-3 Text file format error

-6 Invalid buffer address

EDITREAD failed (error)

EDITREAD failed with code -n

Error Code Error Name

-1 End-of-file marker encountered

-2 I-O error

-3 Text file format error

-4 Sequence number error

-5 Checksum error

-6 Invalid buffer address
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-34

Run-Time Diagnostic Messages Message List
In COBOL message 062, the program attempted to read an EDIT file, and the call to
EDITREAD failed. The returned code is -n.

Effect. The OPEN statement is unsuccessful with I-O status code “91.”

Recovery. If the code is -2, there was an input-output error; try the statement again. If
the code is -3, there is a text file format error. Re-create the file. If the code is -4, there
is a sequence number error. Use EDIT, TEDIT, or Codewright to correct the file. If the
code is -5, there is a checksum error. Re-create the file.

79

(110)

Cause. The call to OpenEdit made during the OPEN processing for an EDIT file failed
with Guardian error or nnn. A negative number is a format error. A positive number
is a Guardian file system error.

Effect. The OPEN statement is unsuccessful with I-O status code “30”.

Recovery. Use the command interpreter ERROR command to discover the meaning
of the Guardian error number. The message might suggest a corrective action.

80

(104)

Cause. A Guardian error or nnn was returned during the initialization of a spooler
file during a special OPEN operation.

Effect. The ENTER “COBOL85^SPECIAL^OPEN” or ENTER
"COBOL85_SPECIAL_OPEN_" is unsuccessful with I-O status code “30.”

Recovery. You can use the command interpreter ERROR command to discover the
meaning of the Guardian error number. The message might suggest a corrective
action.

OpenEdit failed (error)

OpenEdit failed with error nnn

Spooler initialization failed (error)

Spooler initialization failed with error nnn
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-35

Run-Time Diagnostic Messages Message List
81 (none)

Cause. A routine detected an end-of-file condition.

Effect. Program behavior is language and application dependent. An HP COBOL
program terminates abnormally.

Recovery. Correct your program to allow for an end-of-file condition or verify that your
program can determine when all of the data has been read.

82 (none)

Cause. A Guardian operating system routine returned error nnn. This error is usually
reported as a result of an event that is beyond program control (when a path or system
is not available, for example).

Effect. Program behavior is language and application dependent. An HP COBOL
program terminates abnormally.

Recovery. Consult your system administrator.

83 (129)

Cause. One of:

1. COBOL_CONTROL_ or COBOL_SETMODE_ was called, and one of these was
true:

a. The associated file was assigned to $RECEIVE.

b. HP COBOL Fast I-O was selected for the associated file.

c. The CONTROL or SETMODE call was rejected by the file system (“(GE)”
shows the error code).

2. An OSS file (probably described with ORGANIZATION IS LINE SEQUENTIAL)
was opened in a Guardian process.

Effect. The run unit terminates abnormally.

End of file

Guardian I/O error nnn

Operation incompatible with file type or status (GE)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-36

Run-Time Diagnostic Messages Message List
Recovery. One of these, depending on the cause number:

1. Either delete the call to COBOL_CONTROL_ or COBOL_SETMODE_ or correct it
(depending on the cause):

a. Change the file to a file other than $RECEIVE.
b. Change the RESERVE clause so that it does not use HP COBOL Fast I-O.
c. Take the action indicated by the Guardian error code “(GE).”

2. Correct the ASSIGN in the select clause or change LINE SEQUENTIAL to
SEQUENTIAL.

124 (none)

Cause. An NMCOBOL object is being run on a system that does not contain the run-
time library. Instead, a “stub” is installed and it produces the diagnostic.

Effect. The run unit terminates abnormally.

Recovery. Ensure that either T8107 or T8108 is licensed to the system and installed
correctly.

125 (001)

Cause. The data item referenced in an OCCURS DEPENDING clause is either less
than the minimum or greater than the maximum number of occurrences.

Effect. The run unit terminates abnormally.

Recovery. Either change the maximum or minimum number of occurrences in the
OCCURS clause or correct the program so that the DEPENDING data item has a legal
value.

126 (002)

Cause. A parameter is being passed in an ENTER statement to a routine that expects
a byte-addressed or 2-byte-addressed reference parameter; however, the parameter is
located in extended storage and cannot be passed this way. A parameter specified in
the Linkage Section is always referred to through an extended address, even if it is
described with the ACCESS MODE STANDARD clause (the compiler ignores this
clause).

Effect. The run unit terminates abnormally.

System not licensed for COBOL programs

OCCURS DEPENDING ON data item out of range

Extended address parameter passed where byte or word address
expected
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-37

Run-Time Diagnostic Messages Message List
Recovery. Copy the value from the Linkage Section data item to a data item in the
Working-Storage Section, and use the new data-name as the parameter in the ENTER
statement.

127 (003)

Cause. A CALL statement is recursive—it references a program that has been called
but has not executed an EXIT PROGRAM statement.

Effect. The run unit terminates abnormally.

Recovery. Correct the program.

128 (004)

Cause. Either the leftmost character position is out of range (negative, zero, or greater
than the number of characters in the data item), or the length is improper (negative,
zero, or greater than the sum of leftmost character position minus the original item size
plus 1).

Effect. The run unit is terminated abnormally.

Recovery. Correct the program.

129 (005)

Cause. A RELEASE statement was executed when a SORT input procedure was not
executing.

Effect. The run unit is terminated abnormally.

Recovery. Correct the program.

130 (006)

Cause. A RETURN statement was executed when a SORT or MERGE output
procedure was not executing.

Effect. The run unit is terminated abnormally.

Recovery. Correct the program.

CALL references an active program

Reference modifier out of range

Improper context for RELEASE statement

Improper context for RETURN statement
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-38

Run-Time Diagnostic Messages Message List
131 (007)

Cause. This message should never occur, because it indicates a compiler problem. It
signals that some code generated in the preceding paragraph changed the S register
setting and did not reset it.

Effect. The run unit terminates abnormally.

Recovery. Report it to your service provider.

132 (008)

Cause. A SORT or MERGE statement was executed while a SORT or MERGE input
or output procedure was being executed.

Effect. The run unit terminates abnormally.

Recovery. Correct the program.

133 (009)

Cause. A subscript is zero, negative, or exceeds the maximum number of occurrences
allowed for the data item.

Effect. The run unit terminates abnormally.

Recovery. Correct the program.

134 (010)

Cause. The program attempted to execute a paragraph consisting solely of a GO TO
statement that does not specify a procedure name, but no ALTER statement had as
yet been executed to establish the procedure name.

Effect. The run unit terminates abnormally.

Recovery. Correct the program.

S location at end of paragraph not equal to that at beginning

SORT or MERGE statement executed while SORT or MERGE active

Subscript out of range

GO TO statement not initialized
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-39

Run-Time Diagnostic Messages Message List
135 (011)

Cause. The device associated with the mnemonic-name specified in an ACCEPT
statement is not a process or a terminal; or the device associated with the mnemonic-
name specified in a DISPLAY statement is not a process, terminal, operator console,
printer, or existing disk file.

Effect. The home terminal or the device specified as the EXECUTION-LOG is used
instead. If the home terminal or the device specified as the EXECUTION-LOG cannot
be used, the run unit terminates abnormally.

Recovery. Change the program to assign a proper device. Use low-level debugging to
trap changes to zero (see the Inspect Manual).

136 (013)

Cause. A file system error with a Guardian error code of nnn occurred while the
process was accepting or displaying data.

Effect. For an ACCEPT statement, the run-time library returns spaces for a
nonnumeric destination or zeros for a numeric destination, and execution continues.
For a DISPLAY statement, the requested data is not displayed, and execution
continues.

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

137 (016)

Cause. The program referenced in a CALL statement with identifier specified could
not be located. It must be present in the run unit or in the TNS or user library, and must
be within the scope of the CALL statement.

Effect. If the OVERFLOW or EXCEPTION clause is specified in the CALL statement,
that path is taken. If not, the run unit is terminated abnormally.

Recovery. If the program is not bound or linked into the run unit, and it should be, use
BIND or a linker to be bind or link it in with the other programs. If the value of the data
item is incorrect or the program being called is not within the scope of the called
program, correct the program.

ACCEPT or DISPLAY requested for an unsupported device

Input-output error nnn on ACCEPT or DISPLAY device

Called program not found
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-40

Run-Time Diagnostic Messages Message List
138 (017)

Cause. The program referenced in a CANCEL statement has been called but has not
executed an EXIT PROGRAM (it is still active).

Effect. The run unit terminates abnormally.

Recovery. Correct the program. Reduce the number of files that are open
simultaneously.

139 (018)

Cause. The program referenced in a CANCEL statement with identifier specified could
not be located. It must be present in the run unit or in the TNS or user library, and must
be within the scope of the CANCEL statement.

Effect. The run unit continues.

Recovery. Correct the program. Reduce the number of files that are open
simultaneously.

140 (108)

Cause. The record-name referenced in a RELEASE statement is not associated with
the file name that was referenced in the currently active SORT or MERGE statement.

Effect. The run unit terminates abnormally.

Recovery. Correct the source program logic.

141 (109)

Cause. The file name referenced in a RETURN statement is not the file name that
was referenced in the currently active SORT or MERGE statement.

Effect. The run unit terminates abnormally.

Recovery. Correct the source program logic.

CANCEL references an active program

Cancelled program not found

Record referenced in RELEASE statement not in SD of SORT or
MERGE statement

File referenced in RETURN statement not in SD of SORT or
MERGE statement
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-41

Run-Time Diagnostic Messages Message List
142 (019)

Cause. During the execution of a RELEASE statement in a SORT input procedure,
the FastSort utility returned an error. The message from FastSort follows on the next
line.

Effect. The run unit terminates abnormally.

Recovery. Action depends on the message FastSort returns. See the FastSort
Manual for the meaning of these messages.

143 (020)

Cause. During the execution of a RETURN statement in a SORT or MERGE output
procedure, the FastSort utility returned an error. The message from FastSort follows on
the next line.

Effect. The run unit terminates abnormally.

Recovery. Action depends on the message FastSort returns. See the FastSort
Manual for the meaning of these messages.

144 (021)

Cause. At the end of the execution of a SORT or MERGE operation, the FastSort
utility returned an error. The message from FastSort follows on the next line.

Effect. The run unit terminates abnormally.

Recovery. Action depends on the message FastSort returns. See the FastSort
Manual for the meaning of these messages.

145 (022)

Cause. At the start of the execution of a SORT or MERGE operation, the FastSort
utility returned an error.

The second line of the message is the text of the SORT error message returned by the
FASTSORT procedure SORTERRORSUM.

RELEASE operation failed - SORTMERGE message follows

RETURN operation failed - SORTMERGE message follows

SORT or MERGE operation failed before end - SORTMERGE message
follows

SORT or MERGE operation failed at start - SORTMERGE message
follows
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-42

Run-Time Diagnostic Messages Message List
The third line is

Sort error code = mm - System error code = nn

where mm is the SORT error code defined in the FastSort Manual, and.nn is the high-
order 2 bytes of the error code return defined for SORTERRORSUM.

If the sort was a subsort, this text is appended to the message:

- Subsort index = oo, CPU,id = pp,qq

where oo is the subsort-index defined in the FastSort Manual under
SORTERRORSUM, and pp,qq is the subsort-id defined in the FastSort Manual
under SORTERRORSUM.

For some errors, one or more of these lines appear:

Error on following USING file file-name
Error on following GIVING file file-name
Error on following scratch file file-name
Error on the internal scratch file
Error on the internal free list file
Error in interprocess communication

where file-name is the name of the file where the error occurred. For “Error on
following scratch file,” file-name is the one in the SELECT for the sort-merge file
description.

Effect. The run unit terminates abnormally.

Recovery. Action depends on the message FastSort returns. See the FastSort
Manual for the meaning of these messages.

147 (126)

Cause. The number of parameters in the USING list of a CALL identifier
statement does not match the number of parameters specified in the called program’s
USING list in the Procedure Division.

Effect. The run unit terminates abnormally.

Recovery. Correct the USING list in either the CALL statement or Procedure Division.

148

Cause. The NMCOBOL PERFORM stack overflowed. The maximum nesting depth is
50.

Effect. The run unit terminates abnormally.

Parameter mismatch for CALL identifier

PERFORM nesting too deep
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-43

Run-Time Diagnostic Messages Message List
Recovery. Check PERFORM statements for proper termination or reduce the
complexity of the program. It might be helpful to recompile the program with the
directive PERFORM-TRACE.

150 (024)

Cause. During the execution of an OPEN statement, the description of an alternate
key in the COBOL program does not correspond to any alternate key in the physical
file that is assigned. That is, no key in the physical file matches the COBOL description
in length and offset.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Correct either the program or the FUP CREATE or other process that
created the file.

151 (025)

Cause. During the execution of an OPEN statement, the description of an alternate
key in the COBOL program includes the DUPLICATES phrase, and the key in the
physical file that is assigned does not allow duplicates, or the program does not include
DUPLICATES and the file allows duplicates.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Correct either the program or the FUP CREATE or other process that
created the file.

152 (026)

Cause. The physical file assigned by the OPEN statement is not a structured disk file,
but the COBOL program described it with alternate keys. Alternate keys are allowed
only on structured disk files.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Either correct the program or assign the proper file.

Alternate key not present in file

DUPLICATES specification in SELECT does not match file

OPEN on a non-disk file that is specified with alternate keys
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-44

Run-Time Diagnostic Messages Message List
153 (027)

Cause. During the attempt to create a new file during the execution of an OPEN
statement, Guardian error nnn was returned by the operating environment.

Effect. The OPEN statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

154 (028)

Cause. A DELETE statement was executed on a file with ACCESS MODE
SEQUENTIAL, and the preceding statement was not a successful READ statement.

Effect. The DELETE statement is unsuccessful with I-O status code “43.”

Recovery. Correct the program.

155 (029)

Cause. The file positioning request issued during the processing of a DELETE
statement was rejected with Guardian error nnn.

Effect. The DELETE statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

156 (030)

Cause. The file positioning request issued after deleting a record during the
processing of a DELETE statement was rejected with Guardian error nnn.

Effect. The DELETE statement is unsuccessful with I-O status code “30”.

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

Create of new file failed with error nnn

Sequential DELETE must follow successful READ

DELETE positioning failed with error nnn

DELETE repositioning failed with error nnn
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-45

Run-Time Diagnostic Messages Message List
157 (031)

Cause. A DELETE statement was executed, but the file was not open for I-O.

Effect. The DELETE statement is unsuccessful with I-O status code “49.”

Recovery. Correct the program.

158 (032)

Cause. The attempt to delete a record during the processing of a DELETE statement
was rejected with Guardian error nnn.

Effect. The DELETE statement is unsuccessful with I-O status code “30”.

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

159 (034)

Cause. An EDIT file is opened for other than INPUT. HP COBOL cannot write to an
EDIT file.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Correct the program, or assign other than an EDIT file. You can write to an
unstructured file or an entry sequenced file, then use the GET PUT operation of EDIT
to produce an EDIT file.

160 (035)

Cause. The maximum record size for an EDIT file is 4095 bytes.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Correct the program, or assign other than an EDIT file.

Wrong open mode for DELETE

DELETE operation failed with error nnn

OPEN on an EDIT file and wrong open mode

OPEN on an EDIT file described with a record size that is too
big
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-46

Run-Time Diagnostic Messages Message List
161 (036)

Cause. The attempt to position the file at the end during the processing of an OPEN
… EXTEND statement failed with Guardian error nnn.

Effect. The OPEN statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

162 (037)

Cause. The file referenced in an OPEN … EXTEND, I-O, or INPUT statement does
not exist, and OPTIONAL is not specified in the SELECT clause for the file.

Effect. The OPEN statement is unsuccessful with I-O status code “35.”

Recovery. If you want the file to be created for EXTEND or I-O, put OPTIONAL in the
SELECT clause; otherwise, verify that the file exists when the program is run.

163 (038)

Cause. The attempt to eject the first page during the processing of an OPEN
statement referencing a LINAGE file or during the process of
COBOL_SPECIAL_OPEN_, COBOL85^SPECIAL^OPEN, or COBOLSPOOLOPEN
failed with Guardian error nnn.

Effect. The OPEN statement or call to COBOL_SPECIAL_OPEN_,
COBOL85^SPECIAL^OPEN, or COBOLSPOOLOPEN is unsuccessful with I-O status
code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

164 (039)

Cause. The attempt to rewind the file during the processing of an OPEN statement
failed with Guardian error nnn.

Effect. The OPEN statement is unsuccessful with I-O status code “30.”

OPEN EXTEND positioning failed with error nnn

OPEN on a nonexistent file that is not OPTIONAL

OPEN page eject failed with error nnn

OPEN rewind failed with error nnn
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-47

Run-Time Diagnostic Messages Message List
Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

165 (040)

Cause. The device assigned to the COBOL file is not a legal device for COBOL input
or output.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Assign a file on a legal device.

166 (041)

Cause. The file referenced in an OPEN statement is locked (CLOSE LOCK was
executed). CLOSE LOCK is unrelated to LOCKFILE and UNLOCKFILE. A COBOL file
name associated with a disk file can become locked even if it is never opened. This
message appears when the disk file is also assigned to some other COBOL file name
with the same ASSIGN name in the same run unit, and a CLOSE LOCK is executed on
that file name.

Effect. The OPEN statement is unsuccessful with I-O status code “38.”

Recovery. Either do not close the file with lock or correct the program.

167 (042)

Cause. The file referenced in an OPEN statement is already open.

Effect. The OPEN statement is unsuccessful with I-O status code “41.”

Recovery. Correct the program.

168 (043)

Cause. The file referenced in an OPEN statement for a file with LINAGE specified is
not assigned to a printer or a process (a spooler, for example).

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

OPEN requested for an unsupported device

OPEN requested for a locked file

OPEN requested for an open file

LINAGE file not on printer or process
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-48

Run-Time Diagnostic Messages Message List
Recovery. Either assign the correct device or remove the LINAGE clause from the file
description (FD).

169 (044)

Cause. The attempt to lock or unlock a file or record with a LOCK or UNLOCK
statement failed with Guardian error nnn.

Effect. The statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

170 (045)

Cause. The device assigned to a file name associated with a MULTIPLE FILE TAPE
clause in the I-O CONTROL paragraph is not a magnetic tape device.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Either remove the MULTIPLE FILE TAPE clause or assign a magnetic tape
to the file.

171 (046)

Cause. The attempt to position to a file on a multiple file tape during the processing of
an OPEN statement failed with Guardian error nnn.

Effect. The OPEN statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

172 (047)

Cause. A file with alternate keys specified does not exist when the attempt is made to
open it. The file must have been created with a FUP CREATE or other means before it
can be opened.

Effect. The OPEN statement is unsuccessful with I-O status code “30.”

LOCK or UNLOCK operation failed with error nnn

MULTIPLE FILE TAPE file not on tape

OPEN positioning for MULTIPLE FILE TAPE failed with error nnn

OPEN on a nonexistent file and alternate keys specified
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-49

Run-Time Diagnostic Messages Message List
Recovery. Create the file correctly before running the program, assign the correct file,
or remove the alternate key specifications.

173 (049)

Cause. The file assigned is an indexed (key sequenced) file, but the COBOL loadfile
description does not specify ORGANIZATION INDEXED.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Assign the correct file or correct the file description in the program.

174 (050)

Cause. A file is being opened for INPUT, but the device assigned is an illegal device
or an output-only device (such as a printer).

Effect. The OPEN statement is unsuccessful with I-O status code “37.”

Recovery. Assign the correct device or file.

175 (051)

Effect. The program attempted an operation other than OPEN (such as READ or
WRITE) on a file that is not open.

Effect. The statement is unsuccessful with I-O status code “4x ” where x is
appropriate for the statement.

Recovery. Correct the program.

176 (052)

Cause. A TIME LIMIT operation (such READ … TIME LIMIT nn) was attempted on a
file that was not opened with TIME LIMITS specified.

Effect. The operation is unsuccessful with I-O status code “90.”

Recovery. Correct the program to do an OPEN … TIME LIMITS.

Indexed file not defined as ORGANIZATION INDEXED

OPEN INPUT when file not on input device

Operation other than OPEN on file that is not open

File is not opened for timed I/O
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-50

Run-Time Diagnostic Messages Message List
177 (053)

Cause. A file is being opened for OUTPUT, but the device assigned is an illegal device
or an input-only device (such as a card reader).

Effect. The OPEN statement is unsuccessful with I-O status code “37.”

Recovery. Assign the proper device or file.

178 (054)

Cause. The file assigned is a relative file, but the COBOL loadfile description does not
specify ORGANIZATION RELATIVE.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Assign the correct file or correct the file description in the program.

179 (055)

Cause. The file assigned is a sequential file (entry sequenced or unstructured), but the
COBOL loadfile description specifies an organization other than sequential.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Assign the correct file or correct the file description in the program.

180 (056)

Cause. The COBOL program describes the file as ORGANIZATION RELATIVE or
INDEXED, but the assigned file is not a structured disk file. Only structured disk files
can be assigned to RELATIVE or INDEXED COBOL files.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Assign the correct file or correct the file description in the program.

OPEN OUTPUT for file not on output device

Relative file not defined as ORGANIZATION RELATIVE

Sequential file not defined as ORGANIZATION SEQUENTIAL

Non-disk or unstructured file and not sequential organization
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-51

Run-Time Diagnostic Messages Message List
181 (057)

Cause. A Guardian error nnn was returned during OPEN,
COBOL_SPECIAL_OPEN_, COBOL85^SPECIAL^OPEN, or COBOLSPOOLOPEN
processing.

Effect. The OPEN statement or the call to COBOL_SPECIAL_OPEN_,
COBOL85^SPECIAL^OPEN, or COBOLSPOOLOPEN is unsuccessful with I-O status
code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

182 (058)

Cause. During the execution of an OPEN statement, the prime key offset in the
COBOL program does not correspond to the prime key in the physical file that is
assigned.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Correct either the program or the FUP CREATE or other process that
created the file.

183 (059)

Cause. During the execution of an OPEN statement, the prime key size in the COBOL
program does not correspond to the prime key in the physical file that is assigned.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Correct either the program or the FUP CREATE or other process that
created the file.

184 (060)

Cause. During the execution of an OPEN statement, the attempt to purge a file (the
purge is due to some attribute conflicts) failed with Guardian error nnn.

Effect. The OPEN statement is unsuccessful with I-O status code “30”.

OPEN operation failed with error nnn

Primary key offset in program does not match file

Primary key size in program does not match file

Purge of file during OPEN failed with error nnn
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-52

Run-Time Diagnostic Messages Message List
Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action. A value of “48,” for example, means that the program does
not have permission to purge an existing file that has an improper record size and
create a new one.

185 (061)

Cause. During the execution of an OPEN statement, the attempt to purge the data
from the file (the purge is due to an OPEN OUTPUT on a file that contains data) failed
with Guardian error nnn.

Effect. The OPEN statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

186 (063)

Cause. During the execution of a READ statement, the system read routine failed with
Guardian error nnn.

Effect. The READ statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

187 (064)

Cause. A READ … LOCK statement was attempted on an OSS file or a file that is
reading ahead. This can happen if the file is opened for INPUT and the organization is
sequential. A READ operation that is executed as part of a transaction (delimited by
ENTER “BEGINTRANSACTION” and ENTER “ENDTRANSACTION” statements)
requires such locking.

For the exact set of conditions under which the run-time routines try to preread
records, see OPEN.

Effect. The READ statement is unsuccessful with I-O status code “91.”

Recovery. For a Guardian file, either remove the LOCK or open the file for I-O. For an
OSS file, remove the LOCK.

Purge data from file during OPEN failed with error nnn

READ operation failed with error nnn

READ WITH LOCK on file with read ahead or an OSS file
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-53

Run-Time Diagnostic Messages Message List
188 (065)

Cause. An attempt to position the file for a READ statement failed with Guardian error
nnn.

Effect. The READ statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

189 (066)

Cause. The program attempted to execute a sequential READ statement when the
last operation was not a successful READ, OPEN, or START. One common cause is
attempting to do a READ after an at-end condition occurs.

Effect. The READ statement is unsuccessful with I-O status code “46.”

Recovery. Correct the program.

190 (067)

Cause. The program attempted to execute a READ statement, but the open mode for
the file is not INPUT or I-O.

Effect. The READ statement is unsuccessful with I-O status code “47.”

Recovery. Correct the program.

191 (068)

Cause. An attempt to do a tape reel swap failed. If the failure was due to a system
error, nnn is the Guardian error code. If the failure was due to the operator responding
incorrectly to the swap requests, nnn is 0.

Effect. The READ statement is unsuccessful with I-O status code “30.”

Recovery. Correct the cause of the problem.

READ positioning failed with error nnn

Sequential READ requested when current position is undefined

Wrong open mode for READ

Reel swap failed with error nnn
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-54

Run-Time Diagnostic Messages Message List
192 (069)

Cause. The program attempted to execute a REWRITE statement to a file for which
ACCESS MODE SEQUENTIAL is specified, and the last operation on the file was not
a successful READ statement (for example, an at-end condition resulted).

Effect. The REWRITE statement is unsuccessful with I-O status code “43.”

Recovery. Correct the program.

193 (070)

Cause. An attempt to position the file for a REWRITE statement failed with Guardian
error nnn.

Effect. The REWRITE statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

194 (071)

Cause. An attempt to reposition the file after the rewrite operation during execution of
a REWRITE statement failed with Guardian error nnn.

Effect. The REWRITE statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

195 (072)

Cause. The file referenced in a REWRITE statement is not opened in the I-O mode.

Effect. The REWRITE statement is unsuccessful with I-O status code “49.”

Recovery. Correct the program.

Sequential REWRITE must follow successful READ

REWRITE positioning failed with error nnn

REWRITE repositioning failed with error nnn

Wrong open mode for REWRITE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-55

Run-Time Diagnostic Messages Message List
196 (073)

Cause. At attempt to REWRITE a record on a file with sequential organization failed
because the new record is not the same size as the old one.

Effect. The REWRITE statement is unsuccessful with I-O status code “44.”

Recovery. Correct the program.

197 (074)

Cause. The attempt to rewrite the record during execution of a REWRITE statement
failed with Guardian error nnn.

Effect. The REWRITE statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

198 (076)

Cause. The attempt to read the selected record during execution of a START
statement failed with Guardian error nnn.

Effect. The START statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

199 (077)

Cause. The attempt to position the file during execution of a START statement failed
with Guardian error nnn.

Effect. The START statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

Sequential REWRITE permitted only with same record size

REWRITE operation failed with error nnn

START operation failed with error nnn

START positioning failed with error nnn
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-56

Run-Time Diagnostic Messages Message List
200 (078)

Cause. The file referenced in a START statement is not open for INPUT or I-O.

Effect. The START statement is unsuccessful with I-O status code “47.”

Recovery. Correct the program.

201 (079)

Cause. During the processing of an OPEN statement referencing a file that is
assigned to a system node (the ASSIGN phrase includes “\xxx ” in the file name),
Guardian indicated that the system is not up or does not exist.

Effect. The OPEN statement is unsuccessful with I-O status code “30.”

Recovery. Either assign to the correct system node or determine why the node is not
responding.

202 (080)

Cause. The file referenced in a LOCKFILE, UNLOCKFILE, or UNLOCKRECORD
statement is not open.

Effect. The statement is unsuccessful with I-O status code “42.”

Recovery. Correct the program.

203 (081)

Cause. An unstructured file is assigned to a COBOL file name whose RECORD
CONTAINS clause in the file description indicates that the records are variable.

Effect. The OPEN statement is unsuccessful with I-O status code “39.”

Recovery. Either correct the RECORD CONTAINS clause or assign the correct file.

Wrong open mode for START

System node not available or does not exist

LOCKFILE, UNLOCKFILE or UNLOCKRECORD on a file that is not
open

OPEN on unstructured file described without fixed length
records
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-57

Run-Time Diagnostic Messages Message List
204 (082)

Cause. The attempt to write an end of file on a tape during the execution of a CLOSE
statement failed with Guardian error nnn.

Effect. The CLOSE statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

205 (083)

Cause. The attempt to write an end of reel on a tape during the execution of a CLOSE
REEL or WRITE statement failed with Guardian error nnn.

Effect. The statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

206 (084)

Cause. The attempt to write the record during the execution of a WRITE statement or
the attempt to write a saved record during the execution of a CLOSE statement failed
with Guardian error nnn.

Effect. The statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action. For example, a Guardian error value of 21 is a File System
error that indicates “illegal count specified,” which could arise from a block size error in
the file description.

207 (085)

Cause. The attempt to write the record during the execution of a WRITE statement or
the attempt to write a saved record during the execution of a CLOSE statement failed
because the file is full.

Effect. The statement is unsuccessful with I-O status code “34.”

Writing end of file failed with error nnn

Writing end of reel failed with error nnn

WRITE operation failed with error nnn

WRITE failed because file is full
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-58

Run-Time Diagnostic Messages Message List
Recovery. Correct the program if it is in a loop, or increase the number of extents
allocated for the file. You can use a FUP CREATE command for this purpose.

208 (086)

Cause. The attempt to position the file during the execution of a random WRITE
statement failed with Guardian error nnn.

Effect. The statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

209 (087)

Cause. The attempt to reposition the file after writing a record during the execution of
a random WRITE statement failed with Guardian error nnn.

Effect. The statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

210 (088)

Cause. The attempt to skip lines on a file during the execution of a random WRITE
statement with ADVANCING specified failed with Guardian error nnn.

Effect. The statement is unsuccessful with I-O status code “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it might
indicate corrective action.

211 (089)

Cause. A WRITE statement was attempted on a relative or indexed on a file that does
not meet any one of these criteria:

• Its open mode is OUTPUT.
• Its open mode is EXTEND and its access mode is sequential.
• Its open mode is I-O and its access mode is not sequential.

WRITE positioning failed with error nnn

WRITE repositioning failed with error nnn

Line skipping failed with error nnn

Wrong open mode for WRITE
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-59

Run-Time Diagnostic Messages Message List
A WRITE statement was attempted on a sequential file that does not meet any of these
criteria:

1. Its open mode is EXTEND or OUTPUT.

2. Its open mode is I-O and the device assigned is a process, a terminal or
$RECEIVE.

Effect. The statement is unsuccessful with I-O status code “48” except for Item 2 for
sequential, in which the I-O status code is “90.”

Recovery. Correct the program or assign the correct device.

212 (090)

Cause. The record length specified in the program (either by an OCCURS
DEPENDING clause in the record description of the record being written or by the
DEPENDING identifier in the RECORD VARYING clause in the file description entry) is
shorter than the minimum or larger than the maximum length specified in the RECORD
clause.

Effect. The WRITE or REWRITE statement is unsuccessful with I-O status code “44.”

Recovery. Correct the program—in either the record length calculation or the
RECORD clause.

213 (092)

Cause. A file is being opened for EXTEND, but the device assigned is an illegal
device or an input-only device (such as a card reader).

Effect. The OPEN statement is unsuccessful with I-O status code “37.”

Recovery. Assign the proper device or file.

214 (093)

Cause. A file is being opened for I-O, but the device assigned is an illegal device or an
input- or output-only device (such as a magnetic tape).

Effect. The OPEN statement is unsuccessful with I-O status code “37.”

Recovery. Assign the proper device or file.

Wrong length record specified for WRITE or REWRITE

OPEN EXTEND for file not on extend device

OPEN I-O for file not on input-output device
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-60

Run-Time Diagnostic Messages Message List
215 (094)

Cause. A LABELS attribute in a DEFINE command that refers to the file contains
other than OMITTED, BYPASS, ANSI, or IBM.

Effect. The OPEN statement is unsuccessful with I-O status code “90.”

Recovery. Before running this program again, verify that the DEFINE in the
environment is correct.

216 (095)

Cause. A USE attribute in a DEFINE command that refers to a file contains other than
OPEN, IN, OUT, or EXTEND.

Effect. The OPEN statement is unsuccessful with I-O status code “90.”

Recovery. Before running this program again, verify that the DEFINE in the
environment is correct.

217 (096)

Cause. A RECFORM attribute in a DEFINE command that refers to a file contains
other than F or U, or F is specified and variable length records are specified in the File
Description for the file, or U is specified and fixed length records are specified for the
file.

Effect. The OPEN statement is unsuccessful with I-O status code “90.”

Recovery. Before running this program again, verify that the DEFINE in the
environment is correct or correct the file description.

218 (097)

Cause. A RECLEN attribute in a DEFINE command that refers to a file contains more
than 6 digits, is not correctly formed, is negative, or is not the record size for fixed
length records.

Effect. The OPEN statement is unsuccessful with I-O status code “90.”

Wrong or missing LABELS attribute

Wrong or missing USE attribute

Wrong or missing RECFORM attribute

Wrong or missing RECLEN attribute
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-61

Run-Time Diagnostic Messages Message List
Recovery. Before running this program again, verify that the DEFINE in the
environment is correct or correct the file’s record description.

219 (098)

Cause. A BLOCKLEN attribute in a DEFINE command that refers to a file contains
more than 6 digits, is not correctly formed, is negative, is omitted for tapes specified
with LABEL RECORDS STANDARD, is greater than the record length when BLOCK
CONTAINS is not specified, or does not match file File Definition.

Effect. The OPEN statement is unsuccessful with I-O status code “90.”

Recovery. Before running this program again, verify that the DEFINE in the
environment is correct or correct the file description.

220 (099)

Cause. A FILESEQ attribute in a DEFINE command that refers to a file contains more
than 4 digits, is not correctly formed, is negative, or does not match that specified in
the MULTIPLE FILE TAPE clause.

Effect. The OPEN statement is unsuccessful with I-O status code “90.”

Recovery. Before running this program again, verify that the DEFINE in the
environment is correct or correct the file’s MULTIPLE FILE TAPE clause.

221 (100)

Cause. A DEVICE attribute in a DEFINE command that refers to a file does not start
with a dollar sign ($) or backslash (\) or is not alphabetic.

Effect. The OPEN statement is unsuccessful with I-O status code “90.”

Recovery. Before running this program again, verify that the DEFINE in the
environment is correct.

222 (101)

Cause. A request to get DEFINE information failed with Guardian error nnn.

Effect. The OPEN statement is unsuccessful with I-O status code “90.”

Wrong or missing BLOCKLEN attribute

Wrong or missing FILESEQ attribute

Wrong or missing DEVICE attribute

A DEFINE procedure failed with error nnn
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-62

Run-Time Diagnostic Messages Message List
Recovery. You can use the command interpreter ERROR command to discover the
meaning of the Guardian error number. The message might suggest a corrective
action.

223 (102)

Cause. A DEFINE command is required if LABEL RECORDS STANDARD is specified
in the File Definition.

Effect. The OPEN statement is unsuccessful with I-O status code “90.”

Recovery. Before running this program again, verify that the DEFINE in the
environment is correct or correct the file description.

224 (111)

Cause. The call to PositionEdit made during the OPEN processing for an EDIT file
failed with Guardian error nnn.

Effect. The OPEN statement is unsuccessful with I-O status code “30.”

Recovery. You can use the command interpreter ERROR command to discover the
meaning of the Guardian error number. The message might suggest a corrective
action.

225 (112)

Cause. The end of file on an unstructured file being opened for EXTEND is not a
multiple of the record size.

Effect. The OPEN statement is unsuccessful with an I-O status code “30.”

Recovery. If an incorrect file was assigned, assign the correct one. Otherwise, you
must take some action to repair the file.

DEFINE required for LABEL RECORDS STANDARD

PositionEdit failed with error nnn

Size of unstructured file opened EXTEND not multiple of
record size
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-63

Run-Time Diagnostic Messages Message List
226 (113)

Cause. The file attributes of the existing file conflict with the file description in the
program and the file is not being opened for output, or (if it is being opened for output)
the file description specifies alternate record keys (COBOL cannot create a file with
alternate keys). The conflict is that the record sizes differ (the file description specifies
a larger maximum record than the existing file’s attributes), and the COBOL program
indicates that the records are fixed length.

Effect. The OPEN statement is unsuccessful with I-O status code “30.”

Recovery. Either correct the program descriptions or assign the correct file.

227 (114)

Cause. The HP COBOL Fast I-O routine loadclose returned the indicated error codes.

Effect. The CLOSE statement is unsuccessful. If the Guardian error is 43, the I-O
status code is "34"; otherwise it is "30".

Recovery. If you can resolve the Guardian error, do so; otherwise report the error to
your service provider.

228

(115)

Cause. An attempt to allocate an extended segment for use with HP COBOL Fast I-O
failed with the indicated error.

Effect. Instead of using HP COBOL Fast I-O (local buffering provided by HP COBOL),
the program uses standard I-O processing.

Recovery. The Guardian Procedure Calls Reference Manual documents the errors
that ALLOCATESEGMENT returns. Take the appropriate action.

File attributes don't match and file not opened OUTPUT or has
alt keys

Loadclose failed with internal error mmm, GUARDIAN error nnn

SEGMENT_ALLOCATE_ for fast i/o failed with error return nnn

Allocatesegment for fast i/o failed with error return nnn
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-64

Run-Time Diagnostic Messages Message List
229 (116)

Cause. The HP COBOL Fast I-O routine loadopen returned the indicated error codes.

Effect. The OPEN statement is unsuccessful with I-O status code “30.”

Recovery. If you can resolve the Guardian error, do so; otherwise report the error to
your service provider.

230 (117)

Cause. The HP COBOL Fast I-O routine loadwrite returned the indicated error codes.

Effect. The WRITE statement is unsuccessful with I-O status code “30.”

Recovery. If you can resolve the Guardian error, do so; otherwise report the error to
your service provider.

231 (118)

Cause. The HP COBOL Fast I-O routine initnewdatablock failed.

Effect. The READ statement is unsuccessful with I-O status code “30.”

Recovery. Report the error to your service provider.

232 (119)

Cause. The program attempted to execute a READ REVERSED, REWRITE, or
START statement to a file that is using HP COBOL Fast I-O.

Effect. The REWRITE statement is unsuccessful with I-O status code “40.”

Recovery. Change the program so that it does not attempt to use HP COBOL Fast
I-O. A program attempts to use HP COBOL Fast I-O on a sequential file that meets
these criteria:

• You are not creating an audited file (you can read an audited file, however).

• The file description includes a RESERVE clause with a number specifying the
number of blocks to buffer. In the non-CRE environment, number must be greater
than 1; in the CRE, it must be greater than 2.

Loadopen failed with internal error mmm, GUARDIAN error nnn

Loadwrite failed with internal error mmm, GUARDIAN error nnn

Initnewdatablock (Fast i-o) failed

An illegal operation was attempted on a fast i/o file
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-65

Run-Time Diagnostic Messages Message List
• The file description does not include a LINAGE clause or a CODE-SET clause.

• The file was not opened with time limits (as with the TIME LIMITS phrase in the
OPEN statement).

• The program is not compiled with the NONSTOP directive.

• The specifications in the OPEN statement, or the attributes derived during the
open operation by some other means (such as from an applicable command
interpreter ASSIGN command), conform to:

° The open mode is INPUT or OUTPUT.
° The exclusion mode is EXCLUSIVE if OPEN OUTPUT is specified.
° The exclusion mode is PROTECTED if OPEN INPUT is specified.

233 (122)

Cause. OPEN OUTPUT file name SHARED was specified, and another process had
the file open (in any exclusion mode).

Effect. The OPEN statement is unsuccessful with I-O status error 30 and
GUARDIAN-ERR 12.

Recovery. If you do not want to delete all of the information in the file, change the
OPEN statement to

OPEN I-O file-name SHARED

and if necessary, specify OPTIONAL in the SELECT clause for the file.

If you do want to delete all of the information in the file, add a null Declarative Portion
for this file to the program, recompile it (to allow the run unit to continue), and change
the code to something like this:

PERFORM WITH TEST AFTER UNTIL file-status (1: 1) = "0"
 OPEN OUTPUT the-file SHARED
 IF file-status (1: 1) NOT = "0"
 IF file-status = "30"
 AND GUARDIAN-ERR = 12
 (count these, send a message, or take other
 appropriate action)
 ENTER TAL "DELAY" USING some-time
 ELSE
 (issue some other error and terminate
 program)
 END-IF
 END-IF
END-PERFORM

where file-status appears in the FILE STATUS clause in the SELECT clause, and
some-time is the number of 0.01-second intervals to delay.

OPEN OUTPUT SHARED specified for open disk file
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-66

Run-Time Diagnostic Messages Message List
Each occurrence of this error produces a message on the home terminal or in the
execution log.

234

(124)

Cause. The Guardian file system reported error nnn during execution of a close
operation.

Effect. The CLOSE statement is unsuccessful with I-O status “30.”

Recovery. Type ERROR nnn to see the meaning of the Guardian error; it may
indicate corrective action.

235 (126)

Cause. The file name specified in a READ REVERSED statement is assigned to a
physical file that cannot be read in reverse; that is, one of:

• A nondisk file

• A disk file for which preread was selected

• A disk file that is an edit file for ENV OLD

• A disk file that is an edit file for ENV COMMON or for native HP COBOL with the
NONSTOP directive active

• An unstructured disk file that is blocked

Effect. The READ statement is unsuccessful with I-O status “30.”

Recovery. One of:

• If the physical file is not a disk file, use a disk file instead.

• If preread is selected, cancel it (for example, add SHARED to the OPEN statement
that opens the file, or open the file in I-O mode rather than INPUT mode).

• Use something other than an edit file.

• Remove BLOCK CONTAINS from the unstructured file FD.

CLOSE operation failed with error nnn

The CLOSE operation failed with Guardian error nnn

REVERSED not allowed for this file
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-67

Run-Time Diagnostic Messages Message List
none (075)

Cause. The program has two files open that are assigned to the same physical file
and is attempting to close one with the LOCK phrase.

Effect. The CLOSE statement is successful. The open file is not locked.

Recovery. Correct the program.

none (091)

Cause. The file-control entry for an external file in one program differs from that in
another. These entries must be the same.

Effect. The run unit terminates abnormally.

Recovery. Correct the file-control entry.

none (103)

Cause. Blocking is specified for a file (either through BLOCKLEN in a DEFINE for the
file or in the File Description for the file), and the records are not an even number of
characters in length.

Effect. The OPEN statement is unsuccessful with I-O status code “90.”

Recovery. Before running this program again, verify that the DEFINE in the
environment is correct or correct the file description.

none (105)

Cause. The initial processing of the PARAM EXECUTION-LOG was unable to obtain
space for its file block.

Effect. The run unit terminates abnormally.

Recovery. Rebind or relink the program using the DATA PAGES option in the BUILD
command to get more space. You can also use the MEM parameter of the RUN
command to increase the available space.

CLOSE LOCK while same file open elsewhere in run unit

Descriptions for the same external file differ

Blocking not permitted for odd length records

No space for PARAM EXECUTION-LOG file block
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-68

Run-Time Diagnostic Messages Message List
none (107)

Cause. The device assigned to the file specified in PARAM EXECUTION-LOG is not a
disk, terminal, or process.

Effect. The run unit terminates abnormally.

Recovery. Specify a file on the proper device.

none (120)

Cause. The file name specified in the PARAM PRINTER-CONTROL does not conform
to the rules for a COBOL file name.

Effect. The run unit terminates abnormally.

Recovery. Change the file name in PARAM PRINTER-CONTROL to a legal COBOL
file name (for the syntax of a legal COBOL file name, see the Guardian Procedure
Calls Reference Manual).

none (125)

Cause. A program that was compiled without the directive ENV COMMON or ENV
LIBRARY (a non-CRE program) called a routine that must run in the CRE. An example
of a routine that must run in the CRE is COBOL_ASSIGN_ (or any other COBOL utility
library routine with underscores in its name).

Effect. The run unit terminates abnormally.

Recovery. Either compile the calling program with ENV COMMON or change the
name of the called routine to its COBOL-environment equivalent (for example, change
COBOL_ASSIGN_ to COBOLASSIGN). For COBOL-environment equivalents of other
CRE routines, see Table 13-6, Table 13-16, Table 13-18, and Table 13-11.

File referenced in PARAM EXECUTION-LOG is an invalid device

The file name in PARAM PRINTER-CONTROL is not a legal COBOL
file name

An ENV COMMON routine called from an ENV OLD program
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-69

Run-Time Diagnostic Messages Message List
none (128)

Cause. PARAM WAITED-IO ON was specified, and one of these OPEN operations
was attempted:

• OPEN … TIME LIMITS
• OPEN file-name where file-name references $RECEIVE

Effect. The run unit terminates abnormally.

Recovery. Either correct the program or rerun it without the PARAM WAITED-IO
command COBOL_SETMODE_

PARAM WAITED-IO ON specified and illegal OPEN attempted
HP COBOL Manual for TNS and TNS/R Programs—522555-006
48-70

Part V. Appendixes
Title

Appendix A, ASCII Character Set

Appendix B, Data Type Correspondence
HP COBOL Manual for TNS and TNS/R Programs—522555-006

Part V. Appendixes
HP COBOL Manual for TNS and TNS/R Programs—522555-006

A ASCII Character Set
This appendix contains two tables of the ASCII character set, both of which use these
column headings:

Table A-1 is in numeric order and Table A-2 is in alphabetic order.

ASCII Character Set in Numeric Order
Table A-1 presents the ASCII character set in numeric order; that is, these columns are
in numeric order:

• Ord. (the character’s ordinal number in the ASCII character set)
• Octal (the character’s octal representation)
• Hex. (the character’s hexadecimal representation)
• Dec. (the character’s decimal representation)

If you know one of the preceding values for the character you want to look up, use
Table A-1; if you know only the character code or the character itself (such as “NUL” or
“A”), use Table A-2 instead.

Column Heading Meaning

Ord. Character’s ordinal number in the ASCII character set

Octal Character’s octal representation (with left and right bytes)

Hex. Character’s hexadecimal representation

Dec. Character’s decimal representation

Char Character code or character itself (such as NULL or A)

Meaning Meaning of character code (such as “Null” or “Uppercase A ”)

Table A-1. ASCII Character Set in Numeric Order (page 1 of 5)

Ord.

Octal

Hex. Dec. Char. MeaningLeft Right

1 000000 000000 00 0 NUL Null

2 000400 000001 01 1 SOH Start of heading

3 001000 000002 02 2 STX Start of text

4 001400 000003 03 3 ETX End of text

5 002000 000004 04 4 EOT End of transmission

6 002400 000005 05 5 ENQ Enquiry

7 003000 000006 06 6 ACK Acknowledge

8 003400 000007 07 7 BEL Bell

9 004000 000010 08 8 BS Backspace

10 004400 000011 09 9 HT Horizontal tabulation
HP COBOL Manual for TNS and TNS/R Programs—522555-006
A-1

ASCII Character Set ASCII Character Set in Numeric Order
11 005000 000012 0A 10 LF Line feed

12 005400 000013 0B 11 VT Vertical tabulation

13 006000 000014 0C 12 FF Form feed

14 006400 000015 0D 13 CR Carriage return

15 007000 000016 0E 14 SO Shift out

16 007400 000017 0F 15 SI Shift in

17 010000 000020 10 16 DLE Data link escape

18 010400 000021 11 17 DC1 Device control 1

19 011000 000022 12 18 DC2 Device control 2

20 011400 000023 13 19 DC3 Device control 3

21 012000 000024 14 20 DC4 Device control 4

22 012400 000025 15 21 NAK Negative acknowledge

23 013000 000026 16 22 SYN Synchronous idle

24 013400 000027 17 23 ETB End of transmission block

25 014000 000030 18 24 CAN Cancel

26 014400 000031 19 25 EM End of medium

27 015000 000032 1A 26 SUB Substitute

28 015400 000033 1B 27 ESC Escape

29 016000 016000 1C 28 FS File separator

30 016400 000035 1D 29 GS Group separator

31 017000 000036 1E 30 RS Record separator

32 017400 000037 1F 31 US Unit separator

33 020000 000040 20 32 SP Space

34 020400 000041 21 33 ! Exclamation point

35 021000 000042 22 34 " Quotation mark

36 021400 000043 23 35 # Number sign

37 022000 000044 24 36 $ Dollar sign

38 022400 000045 25 37 % Percent sign

39 023000 000046 26 38 & Ampersand

40 023400 000047 27 39 ' Apostrophe

41 024000 000050 28 40 (Opening parenthesis

42 024400 000051 29 41) Closing parenthesis

43 025000 000052 2A 42 * Asterisk

Table A-1. ASCII Character Set in Numeric Order (page 2 of 5)

Ord.

Octal

Hex. Dec. Char. MeaningLeft Right
HP COBOL Manual for TNS and TNS/R Programs—522555-006
A-2

ASCII Character Set ASCII Character Set in Numeric Order
44 025400 000053 2B 43 + Plus

45 026000 000054 2C 44 , Comma

46 026400 000055 2D 45 - Hyphen (minus)

47 027000 000056 2E 46 . Period (decimal point)

48 027400 000057 2F 47 / Slash

49 030000 000060 30 48 0 Zero

50 030400 000061 31 49 1 One

51 031000 000062 32 50 2 Two

52 031400 000063 33 51 3 Three

53 032000 000064 34 52 4 Four

54 032400 000065 35 53 5 Five

55 033000 000066 36 54 6 Six

56 033400 000067 37 55 7 Seven

57 034000 000070 38 56 8 Eight

58 034400 000071 39 57 9 Nine

59 035000 000072 3A 58 : Colon

60 035400 000073 3B 59 ; Semicolon

61 036000 000074 3C 60 < Less than

62 036400 000075 3D 61 = Equals

63 037000 000076 3E 62 > Greater than

64 037400 000077 3F 63 ? Question mark

65 040000 000100 40 64 @ Commercial at sign

66 040400 000101 41 65 A Uppercase A

67 041000 000102 42 66 B Uppercase B

68 041400 000103 43 67 C Uppercase C

69 042000 000104 44 68 D Uppercase D

70 042400 000105 45 69 E Uppercase E

71 043000 000106 46 70 F Uppercase F

72 043400 000107 47 71 G Uppercase G

73 044000 000110 48 72 H Uppercase H

74 044400 000111 49 73 I Uppercase I

75 045000 000112 4A 74 J Uppercase J

76 045400 000113 4B 75 K Uppercase K

Table A-1. ASCII Character Set in Numeric Order (page 3 of 5)

Ord.

Octal

Hex. Dec. Char. MeaningLeft Right
HP COBOL Manual for TNS and TNS/R Programs—522555-006
A-3

ASCII Character Set ASCII Character Set in Numeric Order
77 046000 000114 4C 76 L Uppercase L

78 046400 000115 4D 77 M Uppercase M

79 047000 000116 4E 78 N Uppercase N

80 047400 000117 4F 79 O Uppercase O

81 050000 000120 50 80 P Uppercase P

82 050400 000121 51 81 Q Uppercase Q

83 051000 000122 52 82 R Uppercase R

84 051400 000123 53 83 S Uppercase S

85 052000 000124 54 84 T Uppercase T

86 052400 000125 55 85 U Uppercase U

87 053000 000126 56 86 V Uppercase V

88 053400 000127 57 87 W Uppercase W

89 054000 000130 58 88 X Uppercase X

90 054400 000131 59 89 Y Uppercase Y

91 055000 000132 5A 90 Z Uppercase Z

92 055400 000133 5B 91 [Opening bracket

93 056000 000134 5C 92 \ Backslash

94 056400 000135 5D 93] Closing bracket

95 057000 000136 5E 94 ^ Circumflex

96 057400 000137 5F 95 _ Underscore

97 060000 000140 60 96 ` Grave accent

98 060400 000141 61 97 a Lowercase a

99 061000 000142 62 98 b Lowercase b

100 061400 000143 63 99 c Lowercase c

101 062000 000144 64 100 d Lowercase d

102 062400 000145 65 101 e Lowercase e

103 063000 000146 66 102 f Lowercase f

104 063400 000147 67 103 g Lowercase g

105 064000 000150 68 104 h Lowercase h

106 064400 000151 69 105 i Lowercase i

107 065000 000152 6A 106 j Lowercase j

108 065400 000153 6B 107 k Lowercase k

109 066000 000154 6C 108 l Lowercase l

Table A-1. ASCII Character Set in Numeric Order (page 4 of 5)

Ord.

Octal

Hex. Dec. Char. MeaningLeft Right
HP COBOL Manual for TNS and TNS/R Programs—522555-006
A-4

ASCII Character Set ASCII Character Set in Numeric Order
110 066400 000155 6D 109 m Lowercase m

111 067000 000156 6E 110 n Lowercase n

112 067400 000157 6F 111 o Lowercase o

113 070000 000160 70 112 p Lowercase p

114 070400 000161 71 113 q Lowercase q

115 071000 000162 72 114 r Lowercase r

116 071400 000163 73 115 s Lowercase s

117 072000 000164 74 116 t Lowercase t

118 072400 000165 75 117 u Lowercase u

119 073000 000166 76 118 v Lowercase v

120 073400 000167 77 119 w Lowercase w

121 074000 000170 78 120 x Lowercase x

122 074400 000171 79 121 y Lowercase y

123 075000 000172 7A 122 z Lowercase z

124 075400 000173 7B 123 { Opening brace

125 076000 000174 7C 124 | Vertical line

126 076400 000175 7D 125 } Closing brace

127 077000 000176 7E 126 ~ Tilde

128 077400 000177 7F 127 DEL Delete

Table A-1. ASCII Character Set in Numeric Order (page 5 of 5)

Ord.

Octal

Hex. Dec. Char. MeaningLeft Right
HP COBOL Manual for TNS and TNS/R Programs—522555-006
A-5

ASCII Character Set ASCII Character Set in Alphabetic Order
ASCII Character Set in Alphabetic Order
Table A-2 presents the ASCII character set in alphabetic order—that is, alphabetic
character codes (in the column labelled “Char.”) are in alphabetic order.

Table A-2. ASCII Character Set in Alphabetic Order (page 1 of 4)

Char. Meaning Ord.

Octal

Hex. Dec.Left Right

^ Circumflex 95 057000 000136 5E 94

~ Tilde 127 077000 000176 7E 126

! Exclamation point 34 020400 000041 21 33

" Quotation mark 35 021000 000042 22 34

Number sign 36 021400 000043 23 35

$ Dollar sign 37 022000 000044 24 36

% Percent sign 38 022400 000045 25 37

& Ampersand 39 023000 000046 26 38

' Apostrophe 40 023400 000047 27 39

(Opening parenthesis 41 024000 000050 28 40

) Closing parenthesis 42 024400 000051 29 41

* Asterisk 43 025000 000052 2A 42

+ Plus 44 025400 000053 2B 43

, Comma 45 026000 000054 2C 44

- Hyphen (minus) 46 026400 000055 2D 45

. Period (decimal point) 47 027000 000056 2E 46

/ Slash 48 027400 000057 2F 47

0 Zero 49 030000 000060 30 48

1 One 50 030400 000061 31 49

2 Two 51 031000 000062 32 50

3 Three 52 031400 000063 33 51

4 Four 53 032000 000064 34 52

5 Five 54 032400 000065 35 53

6 Six 55 033000 000066 36 54

7 Seven 56 033400 000067 37 55

8 Eight 57 034000 000070 38 56

9 Nine 58 034400 000071 39 57

: Colon 59 035000 000072 3A 58

; Semicolon 60 035400 000073 3B 59
HP COBOL Manual for TNS and TNS/R Programs—522555-006
A-6

ASCII Character Set ASCII Character Set in Alphabetic Order
< Less than 61 036000 000074 3C 60

= Equals 62 036400 000075 3D 61

> Greater than 63 037000 000076 3E 62

? Question mark 64 037400 000077 3F 63

@ Commercial at sign 65 040000 000100 40 64

[Opening bracket 92 055400 000133 5B 91

\ Backslash 93 056000 000134 5C 92

] Closing bracket 94 056400 000135 5D 93

_ Underscore 96 057400 000137 5F 95

` Grave accent 97 060000 000140 60 96

A Uppercase A 66 040400 000101 41 65

a Lowercase a 98 060400 000141 61 97

ACK Acknowledge 7 003000 000006 06 6

B Uppercase B 67 041000 000102 42 66

b Lowercase b 99 061000 000142 62 98

BEL Bell 8 003400 000007 07 7

BS Backspace 9 004000 000010 08 8

C Uppercase C 68 041400 000103 43 67

c Lowercase c 100 061400 000143 63 99

CAN Cancel 25 014000 000030 18 24

CR Carriage return 14 006400 000015 0D 13

D Uppercase D 69 042000 000104 44 68

d Lowercase d 101 062000 000144 64 100

DC1 Device control 1 18 010400 000021 11 17

DC2 Device control 2 19 011000 000022 12 18

DC3 Device control 3 20 011400 000023 13 19

DC4 Device control 4 21 012000 000024 14 20

DEL Delete 128 077400 000177 7F 127

DLE Data link escape 17 010000 000020 10 16

E Uppercase E 70 042400 000105 45 69

e Lowercase e 102 062400 000145 65 101

EM End of medium 26 014400 000031 19 25

ENQ Enquiry 6 002400 000005 05 5

Table A-2. ASCII Character Set in Alphabetic Order (page 2 of 4)

Char. Meaning Ord.

Octal

Hex. Dec.Left Right
HP COBOL Manual for TNS and TNS/R Programs—522555-006
A-7

ASCII Character Set ASCII Character Set in Alphabetic Order
EOT End of transmission 5 002000 000004 04 4

ESC Escape 28 015400 000033 1B 27

ETB End of transmission block 24 013400 000027 17 23

ETX End of text 4 001400 000003 03 3

F Uppercase F 71 043000 000106 46 70

f Lowercase f 103 063000 000146 66 102

FF Form feed 13 006000 000014 0C 12

FS File separator 29 016000 016000 1C 28

G Uppercase G 72 043400 000107 47 71

g Lowercase g 104 063400 000147 67 103

GS Group separator 30 016400 000035 1D 29

H Uppercase H 73 044000 000110 48 72

h Lowercase h 105 064000 000150 68 104

HT Horizontal tabulation 10 004400 000011 09 9

I Uppercase I 74 044400 000111 49 73

i Lowercase i 106 064400 000151 69 105

J Uppercase J 75 045000 000112 4A 74

j Lowercase j 107 065000 000152 6A 106

K Uppercase K 76 045400 000113 4B 75

k Lowercase k 108 065400 000153 6B 107

L Uppercase L 77 046000 000114 4C 76

l Lowercase l 109 066000 000154 6C 108

LF Line feed 11 005000 000012 0A 10

M Uppercase M 78 046400 000115 4D 77

m Lowercase m 110 066400 000155 6D 109

N Uppercase N 79 047000 000116 4E 78

n Lowercase n 111 067000 000156 6E 110

NAK Negative acknowledge 22 012400 000025 15 21

NUL Null 1 000000 000000 00 0

O Uppercase O 80 047400 000117 4F 79

o Lowercase o 112 067400 000157 6F 111

P Uppercase P 81 050000 000120 50 80

p Lowercase p 113 070000 000160 70 112

Table A-2. ASCII Character Set in Alphabetic Order (page 3 of 4)

Char. Meaning Ord.

Octal

Hex. Dec.Left Right
HP COBOL Manual for TNS and TNS/R Programs—522555-006
A-8

ASCII Character Set ASCII Character Set in Alphabetic Order
Q Uppercase Q 82 050400 000121 51 81

q Lowercase q 114 070400 000161 71 113

R Uppercase R 83 051000 000122 52 82

r Lowercase r 115 071000 000162 72 114

RS Record separator 31 017000 000036 1E 30

S Uppercase S 84 051400 000123 53 83

s Lowercase s 116 071400 000163 73 115

SI Shift in 16 007400 000017 0F 15

SO Shift out 15 007000 000016 0E 14

SOH Start of heading 2 000400 000001 01 1

SP Space 33 020000 000040 20 32

STX Start of text 3 001000 000002 02 2

SUB Substitute 27 015000 000032 1A 26

SYN Synchronous idle 23 013000 000026 16 22

T Uppercase T 85 052000 000124 54 84

t Lowercase t 117 072000 000164 74 116

U Uppercase U 86 052400 000125 55 85

u Lowercase u 118 072400 000165 75 117

US Unit separator 32 017400 000037 1F 31

V Uppercase V 87 053000 000126 56 86

v Lowercase v 119 073000 000166 76 118

VT Vertical tabulation 12 005400 000013 0B 11

W Uppercase W 88 053400 000127 57 87

w Lowercase w 120 073400 000167 77 119

X Uppercase X 89 054000 000130 58 88

x Lowercase x 121 074000 000170 78 120

Y Uppercase Y 90 054400 000131 59 89

y Lowercase y 122 074400 000171 79 121

Z Uppercase Z 91 055000 000132 5A 90

z Lowercase z 123 075000 000172 7A 122

{ Opening brace 124 075400 000173 7B 123

| Vertical line 125 076000 000174 7C 124

} Closing brace 126 076400 000175 7D 125

Table A-2. ASCII Character Set in Alphabetic Order (page 4 of 4)

Char. Meaning Ord.

Octal

Hex. Dec.Left Right
HP COBOL Manual for TNS and TNS/R Programs—522555-006
A-9

ASCII Character Set ASCII Character Set in Alphabetic Order
HP COBOL Manual for TNS and TNS/R Programs—522555-006
A-10

B Data Type Correspondence
These tables contain the return value size generated by HP language compilers for
each data type. Use this information when you need to specify values with the
Accelerator ReturnValSize option. These tables are also useful if your programs use
data from files created by programs in another language, or your programs pass
parameters to programs written in callable languages.

Refer to the appropriate SQL/MP or SQL/MX manual for a complete list of SQL data
type correspondence. Also note that the return value sizes given in these tables do not
correspond to the storage size of SQL data types.

If you are using the Data Definition Language (DDL) utility to describe your files, see
the Data Definition Language (DDL) Reference Manual for more information.

Note. COBOL includes COBOL 74, HP COBOL, and SCREEN COBOL unless otherwise
noted.

Table B-1. Integer Types, Part 1 (page 1 of 2)

8-Bit Integer 16-Bit Integer 32-Bit Integer

HP C and
HP C++

char1

unsigned char

signed char

int in the 16-bit data
model

short

unsigned

int in the 32-bit or wide
data model

long

unsigned long

COBOL Alphabetic

Numeric DISPLAY

Alphanumeric-Edited

Alphanumeric

Numeric-Edited

PIC S9(n) COMP or
PIC 9(n) COMP
without P or V,
1 <=n <= 4

Index Data Item2

NATIVE-23

PIC S9(n) COMP or
PIC 9(n) COMP
without P or V,
5 <=n <= 9

Index Data Item2

NATIVE-43

FORTRAN -- INTEGER4

INTEGER*2

INTEGER*4

1. Unsigned integer

2. Index Data Item is a 16-bit integer in COBOL 74 and a 32-bit integer in HP COBOL

3. HP COBOL only

4. INTEGER is normally equivalent to INTEGER*2. The INTEGER*4 and INTEGER*8 compiler directives
redefine INTEGER
HP COBOL Manual for TNS and TNS/R Programs—522555-006
B-1

Data Type Correspondence
Pascal BYTE

Enumeration,
unpacked,
<= 256 members

Subrange, unpacked,
n …m, 0 <= n and
m <= 255

INTEGER

INT16

CARDINAL1

BYTE or CHAR value
parameter

Enumeration, unpacked,
> 256 members

Subrange, unpacked,
n …m, -32768 <=n and
m <= 32767, but at least
n or m outside 0…255
range

LONGINT

INT32

Subrange, unpacked
n…m, –2147483648 <=n
and m <= 2147483647,
but at least n or m outside
-32768…32767 range

SQL/MP or
SQL/MX

CHAR NUMERIC(1)…
NUMERIC(4)

PIC 9(1) COMP…
PIC 9(4) COMP

SMALLINT

NUMERIC(5)…
NUMERIC(9)

PIC 9(5) COMP
…PIC 9(9) COMP

INTEGER

TAL

pTAL

STRING

UNSIGNED(8)

INT

INT(16)

UNSIGNED(16)

INT(32)

Return
Value Size
(Words)

1 1 2

Table B-1. Integer Types, Part 1 (page 2 of 2)

8-Bit Integer 16-Bit Integer 32-Bit Integer

1. Unsigned integer

2. Index Data Item is a 16-bit integer in COBOL 74 and a 32-bit integer in HP COBOL

3. HP COBOL only

4. INTEGER is normally equivalent to INTEGER*2. The INTEGER*4 and INTEGER*8 compiler directives
redefine INTEGER
HP COBOL Manual for TNS and TNS/R Programs—522555-006
B-2

Data Type Correspondence
Table B-2. Integer Types, Part 2

64-Bit Integer Bit Integer of 1 to 31 Bits Decimal Integer

HP C and
HP C++

long long -- --

COBOL PIC S9(n) COMP or
PIC 9(n) COMP
without P or V,
10 <= n <= 18

NATIVE-81

-- Numeric DISPLAY

FORTRAN INTEGER*8 -- --

Pascal INT64 UNSIGNED(n),
1 <= n <= 16

INT(n), 1 <= n <= 16

DECIMAL

SQL/MP or
SQL/MX

NUMERIC(10)…
NUMERIC(18)

PIC 9(10) COMP…
PIC 9(18) COMP
LARGEINT

-- DECIMAL (n,s)

PIC 9(n) DISPLAY

TAL

pTAL

FIXED(0), INT(64) UNSIGNED(n),
1 <= n <= 31

--

Return
Value Size
(Words)

4 1 or 2 in TAL, 1 in other
languages

1 or 2, depends on
declared pointer size

1. HP COBOL only
HP COBOL Manual for TNS and TNS/R Programs—522555-006
B-3

Data Type Correspondence
Table B-3. Floating, Fixed, and Complex Types

32-Bit
Floating

64-Bit
Floating 64-Bit Fixed Point

64-Bit
Complex

HP C and
HP C++

float double -- --

COBOL -- -- PIC S9(n–s)v9(s) COMP or
PIC 9(n–s)v9(s) COMP,
10 <= n <= 18

--

FORTRAN REAL DOUBLE
PRECISION

-- COMPLEX

Pascal REAL LONGREAL -- --

SQL/MP or
SQL/MX

-- -- NUMERIC (n,s)
PIC 9(n-s)v9(s) COMP

--

TAL

pTAL

REAL

REAL(32)

REAL(64) FIXED(s), -19 <= s <= 19 --

Return
Value Size
(Words)

2 4 4 4
HP COBOL Manual for TNS and TNS/R Programs—522555-006
B-4

Data Type Correspondence
Table B-4. Character Types

Character Character String
Varying Length
Character String

HP C and
HP C++

signed char
unsigned char

pointer to char struct {
 int len;
 char val [n]
 };

COBOL Alphabetic
Numeric DISPLAY
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

Alphabetic
Numeric DISPLAY
Alphanumeric-Edited
Alphanumeric
Numeric-Edited

01 name.
 03 len USAGE IS
 NATIVE-21

 03 val PIC X(n).

FORTRAN CHARACTER CHARACTER array
CHARACTER*n

--

Pascal CHAR or BYTE
value parameter

Enumeration, unpacked,
<= 256 members

Subrange, unpacked n…m,
0 <= n and m <= 255

PACKED ARRAY
OF CHAR

FSTRING(n)

STRING(n)

SQL/MP or
SQL/MX

PIC X
CHAR

CHAR(n)
PIC X(n)

VARCHAR(n)

TAL

pTAL

STRING STRING array --

Return
Value Size
(Words)

1 1 or 2, depends on
declared pointer
size

1 or 2, depends on
declared pointer
size

1. HP COBOL only
HP COBOL Manual for TNS and TNS/R Programs—522555-006
B-5

Data Type Correspondence
Table B-5. Structured, Logical, Set, and File Types

Byte-
Addresse
dStructur
e

Word-Addressed
Structure

Logical
(true or
false) Boolean Set File

HP C and
HP C++

-- struct -- -- -- --

COBOL -- 01-level RECORD -- -- -- --

FORTRAN RECORD -- LOGICAL1 -- -- --

Pascal RECORD,
byte-
aligned

RECORD, word-
aligned

-- BOOLEAN Set File

SQL/MP or
SQL/MX

-- -- -- -- -- --

TAL

pTAL

Byte-
addressed
standard
STRUCT
pointer

Word-addressed
standard STRUCT
pointer

-- -- -- --

Return
Value Size
(Words)

1 or 2,
depends
on
declared
pointer
size

1 or 2, depends on
declared pointer
size

1 or 2,
depends
on
compiler
directive

1 1 1

1. LOGICAL is normally defined as 2 bytes. The LOGICAL*2 and LOGICAL*4 compiler directives redefine
LOGICAL.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
B-6

Data Type Correspondence
Table B-6. Pointer Types

Procedure
Pointer Byte Pointer Word Pointer Extended Pointer

HP C and
HP C++

function
pointer

byte pointer word pointer extended pointer

COBOL -- -- -- --

FORTRAN -- -- -- --

Pascal Procedure
pointer

Pointer, byte-
addressed
BYTEADDR

Pointer, byte-
addressed
WORDADDR

Pointer, extended-
addressed EXTADDR

SQL/MP or
SQL/MX

-- -- -- --

TAL -- 16-bit pointer,
 byte-
addressed

16-bit pointer,
 word-addressed

32-bit pointer

pTAL PROCPTR 16-bit pointer,
 byte-
addressed

16-bit pointer,
 word-addressed

32-bit pointer

Return
Value Size
(Words)

1 or 2,
depends on
declared
pointer size

1 or 2,
depends on
declared
pointer size

1 or 2, depends
on declared
pointer size

1 or 2, depends on
declared pointer
size
HP COBOL Manual for TNS and TNS/R Programs—522555-006
B-7

Data Type Correspondence
Table B-7. Address Types1

Procedure
Pointer Byte Address Word Address Extended Address

HP C and
HP C++

-- -- -- --

COBOL -- -- -- --

FORTRAN -- -- -- --

Pascal -- -- -- --

SQL/MP or
SQL/MX

-- -- -- --

TAL -- -- -- --

pTAL PROCADDR BADDR

SGBADDR

SGXBADDR

CBADDR

WADDR

SGWADDR

SGXWADDR

CWADDR

EXTADDR

Return
Value Size
(Words)

1 or 2,
depends on
declared
pointer size

1 or 2,
depends on
declared
pointer size

1 or 2, depends
on declared
pointer size

1 or 2, depends on
declared pointer
size

1. Only the pTAL compiler supports address types
HP COBOL Manual for TNS and TNS/R Programs—522555-006
B-8

Glossary
16-bit addressing. Referencing a data item or parameter by using a 16-bit address (also

called standard addressing). Compare to 32-bit addressing.

32-bit addressing. Referencing a data item or parameter by using a 32-bit address (also
called extended addressing). Compare to 16-bit addressing.

abbreviated combined relation condition. A combined condition that results from the
explicit omission of a common subject, a common relational operator, or both in a
consecutive sequence of relation conditions.

accelerate. To speed up emulated execution of a TNS object file by applying the
Accelerator for TNS/R system execution or the TNS Object Code Accelerator (OCA)
for TNS/E system execution before running the object file.

accelerated mode. See TNS accelerated mode.

accelerated object file. A TNS object file that, in addition to its TNS instructions (in the
TNS region) and symbol information (in the symbol region), has been augmented by
the Accelerator with equivalent but faster MIPS RISC instructions (in the MIPS region),
the Object Code Accelerator (OCA) with equivalent but faster Intel® Itanium®
instructions (in the Itanium instruction region), or both.

Accelerator. A program optimization tool that processes a TNS object file and produces an
accelerated object file that also contains equivalent MIPS RISC instructions (called the
MIPS region). TNS object code that is accelerated runs faster on TNS/R processors
than TNS object code that is not accelerated. See also TNS Object Code Accelerator
(OCA).

access mode. The form of file access permitted for a user or process.

actual decimal point. The physical representation of the decimal point position in a data
item, as either a period (.) or a comma (,). Compare to assumed decimal point.

actual parameter. A data item that a calling program passes to a called program. Compare
to formal parameter.

aligned. In native mode, a data item is aligned if its address is a multiple of its size. For
example, a four-byte data item is aligned if its byte address is a multiple of four.

alphabet-name. A user-defined word assigned to a specific character set or collating
sequence or both in the SPECIAL-NAMES paragraph of the Environment Division.

alphabetic character. Any uppercase or lowercase letter or a space.

alphanumeric character. A letter, digit, or hyphen.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-1

Glossary alternate record key
alternate record key. A data item, other than the prime record key, whose value identifies a
record in a structured file.

API. See application program interface (API).

application program interface (API). A set of services (such as programming language
functions or procedures) that are called by an application program to communicate with
other software components. For example, an application program in the form of a client
might use an API to communicate with a server program.

archive file. A file that contains a collection of files. An archive file is built by using the ar
facility. For information about the ar facility, see the nld Manual.

arithmetic expression. One of:

• An identifier of a numeric elementary item

• A numeric literal

• Two or more such identifiers or literals separated by arithmetic operators

• Two arithmetic expressions separated by arithmetic operator

• An arithmetic expression enclosed in parentheses

arithmetic operation. The process caused by the execution of an arithmetic statement, or
the evaluation of an arithmetic expression, that results in a mathematically correct
solution to the arguments presented.

arithmetic operator. One of:

arithmetic statement. A statement that causes an arithmetic operation to be executed. The
arithmetic statements are the ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE
statements.

assumed decimal point. A logical decimal point position that does not occupy a character
position in a data item or have any physical representation. Compare to actual decimal
point.

Operator Meaning

+ Addition

– Subtraction

* Multiplication

/ Division

** Exponentiation
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-2

Glossary at-end condition
at-end condition. A condition that occurs at these times:

• During the execution of a READ statement for a sequential file, when no more
records exist

• During the execution of a RETURN statement, when no next logical record exists
for the associated sort file or merge file

• During the execution of a SEARCH statement, when the search ends without
satisfying a condition specified in any of the associated WHEN phrases

BIND. A program invoked during system generation that creates TNS object (file code 100)
system code files and system library files.

Binder. A programming utility that combines one or more compilation units’ TNS object
code files to create an executable TNS object code file for a TNS program or library.
Used only with TNS object files.

BINSERV. The form of Binder that the COBOL85 compiler uses.

block. A grouping of one or more system enclosures that an HP NonStop™ S-series
system recognizes and supports as one unit. A block can consist of either one
processor enclosure, one I/O enclosure, or one processor enclosure with one or more
I/O enclosures attached.

On disk, a block is a physical unit of data composed of one or more logical records and
their associated control information transferred between the file system and a disk
volume as a unit. A record cannot span blocks. See also data block and code block.

On tape, a block is a physical record.

body. See page body.

bottom margin. An empty area of a logical page that follows the page body.

C85LIB. The object file that contains the COBOL85 run-time routines that can be bound into
the executable object file built from a COBOL program.

called program. A program whose name appears in a CALL or ENTER statement in a
calling program.

calling program. A program that contains a CALL or ENTER statement.

character. The basic, indivisible unit of data or of source program text in the COBOL
language.

character position. The amount of physical storage required to store in standard data
format a single character of a data item whose usage is DISPLAY (one byte).

character-string. A sequence of contiguous characters that form a COBOL word, literal,
PICTURE character-string, or comment-entry.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-3

Glossary CISC
CISC. See complex instruction-set computing (CISC).

class condition. The proposition that a data item’s contents are all alphabetic or all
numeric. A process can determine whether a class condition is true or false.

clause. An ordered set of consecutive COBOL character-strings that specifies an attribute
of an entry.

CLIBOBJ. The object file containing the COBOL run-time routines that can be bound into
the executable object file built from a COBOL program.

client. A software process, hardware device, or combination of the two that requests
services from a server. Often, the client is a process residing on a programmable
workstation and is the part of an application that provides the user interface. The
workstation client might also perform other portions of the application logic.

A client that runs only in the Guardian environment using an interface defined by HP is
called a requester.

COBOL character set. One of:

Also, in a nonnumeric literal, comment, or comment-entry, any ASCII character.

COBOL file name. The name by which an HP COBOL program recognizes a file. Compare
to system file name.

COBOL word. A character-string up to 30 characters long that forms a user-defined word,
system file name, or reserved word.

COBOLEX0, COBOLEX1, COBOLEXT. The object files of dummy routines that enable the
COBOL compiler to accept ENTER statements whose references to system routines
are to be resolved at loading time. COBOLEX0 represents the latest RVU;
COBOLEX1, the next-to-latest; and COBOLEXT, the second-next-to-latest.

Characters Character Name Characters Character Name

0 ... 9 Digit , Comma (decimal point)

A ... Z Uppercase Letter ; Semicolon

a ... z Lowercase Letter . Period (decimal point)

Space (blank) " Quotation mark

+ Plus sign (Left parenthesis

– Minus sign (hyphen)) Right parenthesis

* Asterisk > Greater than symbol

/ Slash (slant, virgule) < Less than symbol

= Equal sign : Colon

$ Dollar sign
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-4

Glossary COBOLLIB
COBOLLIB. The object file of utility routines for HP COBOL, including
COBOLSPOOLOPEN, COBOLFILEINFO, CREATEPROCESS, and the Saved
Message Utility (SMU) routines.

code block. In COBOL, the object code that the compiler generates from a single source
program; in binding or linking, the smallest separately relocatable unit of code in an
object file.

collating sequence. The order of the characters of a character set, for the purpose of
sorting, merging, or comparing.

column. A character position within a print line. The leftmost character position is column 1.

combined condition. Two or more conditions connected by the logical operator AND or
OR.

comma separator. A comma (,) followed by one or more spaces.

command interpreter. The operating system’s primary user interface to an HP computer
system, through which you can use system utilities and run programs.

comment. A line in a source program that begins with an asterisk (*) or a slash (/) in the
indicator area and contains any combination of ASCII characters in area A and area B.

comment-entry. An entry in the Identification Division that can be any combination of ASCII
characters.

common program. A program that is directly contained in another program that can be
called from any program directly or indirectly contained in that other program.

Common Run-Time Environment (CRE). A set of services implemented by the CRE
library that supports mixed-language programs. Compare to non-CRE environment.

Common Run-Time Environment (CRE) library. A collection of routines that supports
requests for services managed by the CRE, such as I-O and heap management, math
and string functions, exception handling, and error reporting. CRE library routines can
be called by HP C, HP COBOL, FORTRAN, Pascal, and pTAL user routines and run-
time libraries.

compatible programs. Two programs are compatible if one can call the other. Compatible
programs must run in the same environment (the Common Run-Time Environment
(CRE) or the non-CRE environment) and on the same type of machine (TNS
architecture, TNS/R architecture, or TNS/E architecture).

compilation. The process of translating a source file to an object file; the joint activity of the
compiler and its processes.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-5

Glossary compilation unit
compilation unit. A set of source files compiled in one call to a compiler, including any
compiler directives in the command that starts the compiler but not including any object
files that the compiler summons to resolve external references; in COBOL, one or
more source programs.

compile time. The time at which a compiler translates a source file into an object file.

compiler directive. An instruction to a compiler.

complex condition. A condition in which one or more logical operators act upon one or
more conditions. See abbreviated combined relation condition, negated simple
condition, and combined condition.

complex instruction-set computing (CISC). A processor architecture based on a large
instruction set, characterized by numerous addressing modes, multicycle machine
instructions, and many special-purpose instructions. Compare to reduced instruction-
set computing (RISC) and explicitly parallel instruction set computing (EPIC).

condition. A proposition about the values of variables and literals of a program for which an
executing program can determine a truth value.

condition-name. One of these:

• A user-defined word assigned to a specific value, set of values, or range of values
within the complete set of values that a conditional variable can have

• A user-defined word assigned to the status of a switch

condition-name condition. A proposition that the value of a conditional variable is a
member of the set of values attributed to a condition-name associated with the
variable, for which an executing program can determine a truth value.

conditional expression. A simple condition or complex condition specified in an IF,
PERFORM, or SEARCH statement.

conditional statement. A statement that tells a process to determine the truth value of a
condition and to base subsequent execution of the object program on the truth value.

conditional variable. A data item that has one or more values to which the program
assigns a condition-name.

content parameter. A parameter that is passed by content (also called a value parameter).
A called program cannot permanently change the value of a content parameter.
Compare to reference parameter.

contiguous. See contiguous data items.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-6

Glossary contiguous data items
contiguous data items. Two or more data items that have a hierarchical relationship to
each other, which you describe by consecutive data description entries at the same
level (except consecutive level-01 entries) in the Data Division; for example:

01 ABLE.
 02 BAKER PIC X(2).
 02 CHARLIE PIC X(2).
 02 DOG.
 04 EASY PIC X(2).
 04 FOX PIC X(2).
 02 GOOSE PIC X(2).

BAKER, CHARLIE, DOG, and GOOSE are contiguous; EASY and FOX are
contiguous.

counter. A data item in which a process stores a number, or number representation, in a
way that the process can:

• Increase or decrease the number by the value of another number
• Change or reset the number to zero or to an arbitrary positive or negative value

CRE. See Common Run-Time Environment (CRE).

CRE library. See Common Run-Time Environment (CRE) library.

CRE program. A program that runs in the Common Run-Time Environment (CRE). If a
CRE program was compiled by the COBOL85 compiler, the directive ENV COMMON
or ENV LIBRARY was specified. Compare to non-CRE program.

CROSSREF utility program. The HP software product that produces cross-reference
listings of source programs. It can be used directly or initiated by a compiler directive.

currency sign. The character $.

currency symbol. The character defined by the CURRENCY SIGN clause in the SPECIAL-
NAMES paragraph or, if the program has no CURRENCY SIGN clause, the currency
sign.

current record. The record currently available in the record area associated with a file.

current record pointer. A conceptual entity that specifies the next record to be accessed in
a file.

data block. The smallest separately relocatable unit of data in an object file; in COBOL, a
collection of data that the COBOL compiler groups and names.

Data Definition Language (DDL). An HP language that describes the record and file
structures of a database. When a database is described in DDL, the DDL compiler can
create a COPY library for use in COBOL compilations and other libraries for other
languages.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-7

Glossary data item
data item. One of these:

• A unit of storage that can hold a character (or set of contiguous characters) or a
computational value defined as a unit of data by a COBOL program.

• The character, set of characters, or value that occupies such a unit of storage.

data-name. One of these:

• A user-defined word that names a data item described in a data description entry.

• In a syntax description, a word that you cannot subscript, index, or qualify unless
the explanation of the format says that you can.

data structure. A named contiguous set of data items (elementary items or other data
structures).

deadlock. One of these situations:

• Two processes cannot proceed because each is waiting for a reply from the other.

• Two transactions cannot proceed because each is waiting for the other to release a
lock.

• A block to data access caused by processes contending for the same data.

If two servers are deadlocked, their respective requesters are also deadlocked
because neither requester receives a reply from its server.

Debug. The HP machine-oriented, run-time debugging tool.

DEBUG-ITEM. An obsolete special register that the compiler generates when the debugger
is used.

debugging line. Any line that has a D or d in its indicator field, which line the compiler
handles as a comment unless you specify the DEBUGGING MODE clause of the
SOURCE-COMPUTER paragraph in the Environment Division.

debugging section. A section that contains a USE DEBUGGING statement.

declaratives. A set of one or more special-purpose sections at the beginning of the
Procedure Division preceded by the keyword DECLARATIVES and followed by the
keywords END DECLARATIVES, in which each section consists of a section header
followed by a USE statement and zero or more associated paragraphs. Other sections
without USE statements can appear in the declaratives portion and can be performed
by statements in the declarative sections.

de-edit. The logical removal of all editing characters from a numeric edited numeric-edited
item to determine that item’s unedited numeric value.

delimited-scope statement. Any statement that includes its explicit scope terminator.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-8

Glossary delimiter
delimiter. A character or sequence of contiguous characters that identify the beginning or
end of a string of characters but are not part of the string of characters.

digit position. The amount of physical storage required to store a single digit, an amount
that depends on the USAGE of the data item described to hold the digit.

directive. An instruction to a compiler (also called a compiler directive).

directive line. In HP COBOL, a line in a source program that begins with a question mark
(?) and contains one or more compiler directives, separated by semicolon separators.

division. A division header followed by zero or more sections or paragraphs formed
according to specific rules; any of the four major parts of a COBOL program—
Identification, Environment, Data, and Procedure divisions.

division header. A combination of words, followed by a period (.), that indicates the
beginning of a division; any of:

• IDENTIFICATION DIVISION.
• ENVIRONMENT DIVISION.
• DATA DIVISION.
• PROCEDURE DIVISION.

DLL. See dynamic-link library (DLL).

dynamic access. An access mode in which the process can read specific logical records
from a disk file sequentially or nonsequentially and write such records to the file
nonsequentially while the same OPEN statement is active for that file. Compare to
sequential access and random access.

dynamic file. A file whose COBOL file name is associated with its system file name at run
time.

dynamic-link library (DLL). A PIC library of functions or data for use by other PIC loadfiles.
In UNIX, this type of file is called a shared object file or dynamic shared object (DSO).

EDIT. The HP text file editor program.

EDIT file. In the Guardian file system, an unstructured file with file code 101. An EDIT file
can be processed by either the EDIT or PS Text Edit (TEDIT) editor. An EDIT file
typically contains source program or script code, documentation, or program output.
Open System Services (OSS) functions can open an EDIT file only for reading.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-9

Glossary editing characters
editing characters . One of:

eld utility. A utility that collects, links, and modifies code and data blocks from one or more
position-independent code (PIC) object files to produce a target TNS/E native object
file. See also ld utility and nld utility.

elementary item. A data item whose description has no logical subdivisions into other
items.

ENABLE. A utility that SCREEN COBOL uses to generate an interactive update application
under the Pathway/TS transaction processing software.

ENFORM. A query/report writer system that has an English-like relational query language; a
host-language interface allows a COBOL program to call a compiled ENFORM query
and receive a sequence of records collected or created by ENFORM.

enoft utility. A utility that reads and displays information from TNS/E native object files.
See also noft utility.

Enscribe. The HP database record manager; provides access to and manipulation of
records in disk files.

EPIC. See explicitly parallel instruction set computing (EPIC).

executable object file. See loadfile.

execution time. Denotes events that occur at the time a process executes an object
program (also called object time or run time).

Expand. The HP data communication network, an extension of the operating system.

explicit scope terminator. A reserved word that terminates the scope of a particular
Procedure Division statement.

explicitly parallel instruction set computing (EPIC). A processor architecture in which
the instruction stream encodes what can be done in parallel (so that the hardware
need not do this). Compare to complex instruction-set computing (CISC) and reduced
instruction-set computing (RISC).

expression. An arithmetic expression or conditional expression.

Character Meaning Character Meaning

B Space Z Zero suppress

0 Zero * Check protect

+ Plus $ Currency sign

- Minus , Comma (decimal point)

CR Credit / Slash (slant, virgule)

DB Debit
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-10

Glossary EXTEND mode
EXTEND mode. The state of a file after a process executes an OPEN statement including
an EXTEND phrase for the file and before the process executes a CLOSE statement
without the REAL or UNIT phrase for the file, allowing the process to extend the file by
appending additional records.

extended addressing. Data access through an extended (32-bit) pointer (also called 32-bit
addressing). Compare to standard addressing.

Extended-Storage Section. The section of the Data Division that describes data items that
the process stores in the segment of extended memory a program can address on an
HP system. (The items can be noncontiguous data items or records.)

extended storage. An additional segment of data storage available on NonStop systems.

external data. The data described in a program as external external data items and external
file connectors.

external data item. A data item that is described as part of an external record in one or
more programs of a run unit and that itself can be referenced from any program in
which it is described.

external data record. A logical record that is described in one or more programs of a run
unit and whose constituent data items can be referenced from any program in which
they are described.

external file connector. A file connector that is accessible to one or more object programs
in the run unit.

external reference. The call to a routine that is not present in the source file that a compiler
is translating.

external switch. A software device, defined and named by HP, that is used to indicate that
one of two alternate states exists.

Fast I-O. See HP COBOL Fast I-O.

fault-tolerant facility. The software provided by HP and used by a process to cause the
process to execute as a fault-tolerant process pair.

figurative constant. A compiler-generated value that you can reference by one or more
specific reserved words.

file. An object to which data can be written or from which data can be read. A file has
attributes such as access permissions and a file type. In the Open System Services
(OSS) environment, file types include regular file, character special file, block special
file, FIFO, and directory. In the Guardian environment, file types include disk files,
processes, and subdevices.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-11

Glossary file connector
file connector. A storage area that contains information about a file; the linkage between a
file name and a physical file and between a file name and its associated record area.

FILE-CONTROL. The name of an Environment Division paragraph that declares the data
files for the program.

file-control entry. An entry in the FILE-CONTROL paragraph in the Input-Output Section of
the Environment Division composed of a SELECT clause followed by one or more
clauses that declare the relevant physical attributes of a file.

file description entry. An entry in the File Section of the Data Division composed of the
level indicator FD followed by a file name and a set of file clauses, as required.

file name. A string of characters that uniquely identifies a file.

In the PC environment, file names for disk files normally have at least two parts (the
disk name and the file name); for example, B:MYFILE.

In the Guardian environment, disk file names include an Expand node name, volume
name, subvolume name, and file identifier; for example,
\NODE.$DISK.SUBVOL.MYFILE.

In the Open System Services (OSS) environment, a file is identified by a pathname; for
example, /usr/john/workfile. See also filename and file-name.

file-name. A user-defined word that names a file described in a file description entry or a
sort-merge file description entry in the File Section of the Data Division.

file organization. The permanent logical structure established for a file when a process
creates it.

file position indicator. A conceptual entity that either:

• Contains the value of the current key within the key of reference for an indexed file

• Contains the record number of the current record for a sequential file

• Contains the relative record number of the current record for a relative file

• Indicates that no next logical record exists

• Indicates that the number of significant digits in the relative record number is larger
than the size of the relative key

• Indicates that an optional input file is not present

• Indicates that no valid next record has been established

File Utility Program (FUP). The file utility program provided by HP.

filename. In the Open System Services (OSS) environment, a component of a pathname
containing any valid characters other than slash (/) or null. See also file-name and file
name.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-12

Glossary fixed attributes
fixed attributes. Information about a file that is established when a process creates a file
and that cannot subsequently be changed during the existence of the file. These
attributes include the organization of the file (sequential organization, relative
organization, or indexed organization), the prime record key, the alternate record keys,
the code set, the minimum and maximum record size, the record type (fixed-length
record or variable-length record), the collating sequence of the keys for an indexed file,
the blocking factor, the padding character, and the record delimiter.

fixed-length record. A record associated with a file whose file description entry or sort-
merge file description entry requires that all records contain the same number of
character positions.

fixup. A phase of the program-loading operation performed by the operating system in
which external references to entry points in other code segments are resolved.

flag. In a UNIX or Open System Services (OSS) command, a character sequence that
begins with a hyphen and is processed as a unit.

footing area. The part of the page body (of a logical page) adjacent to the bottom margin.

formal parameter. A parameter defined by a called program. Compare to actual parameter.

format. A specific arrangement of a set of data.

FUP. See File Utility Program (FUP).

global name. A name that is declared in only one program but that can be referenced from
that program and from any program directly or indirectly contained within that program.
These names can be global names: condition-names, data-names, file-names, record-
names, and some special registers. Compare to local name.

Guardian. An environment available for interactive or programmatic use with the
HP NonStop™ operating system. Processes that run in the Guardian environment
usually use the Guardian system procedure calls as their application program
interface. Interactive users of the Guardian environment usually use the HP Tandem
Advanced Command Language (TACL) or another HP product’s command interpreter.
Compare to Open System Services (OSS).

Guardian environment. The Guardian application program interface (API), tools, and
utilities.

GUARDIAN-ERR. A special register associated with a run unit, which the process updates
each time it executes an input-output statement. The contents of GUARDIAN-ERR is
the value delivered to the COBOL run-time routines by the Guardian operating system
upon its completion of the requested input-output statement.

high-order end. The leftmost character of a string of characters.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-13

Glossary high PIN
high PIN. A process identification number (PIN) that is greater than 255. Compare to low
PIN.

HP COBOL Fast I-O. A fast form of sequential block buffering in which run-time routines
handle the record deblocking.

HP COBOL program. A program written in the HP COBOL language. It can be compiled
with the COBOL85, NMCOBOL, or ECOBOL compiler.

HP NonStop™ operating system. The operating system for HP NonStop systems.

HP NonStop™ Transaction Management Facility (TMF). HP software that provides
transaction protection and database consistency in demanding online transaction
processing (OLTP) and decision-support environments. It gives full protection to
transactions that access distributed SQL/MP, SQL/MX, and Enscribe databases, as
well as recovery capabilities for transactions, online disk volumes, and entire
databases.

HP Tandem Advanced Command Language (TACL). The user interface to the NonStop
operating system. TACL is both a command interpreter and a command language.
Users can write programs in TACL that perform complex tasks simply or provide a
consistent user interface across independently programmed applications.

HP Transaction Application Language (TAL). A systems programming language with
many features specific to stack-oriented TNS systems.

identifier. A data name followed, as required, by the combination of qualifiers, subscripts,
and indexes necessary to make a unique reference to a data item.

imperative statement. A statement that either begins with an imperative verb and specifies
an unconditional action for a process to take or is a delimited-scope statement. An
imperative statement can consist of a sequence of imperative statements.

implicit scope terminator. A period (.) that terminates the scope of any preceding
unterminated statement, or a phrase of a statement that by its occurrence indicates the
end of the scope of any statement contained within the preceding phrase.

index. A computer storage position containing a value that identifies a particular table
element; an index-name and an index data item both designate such a storage
position.

index data item. A data item described with a USAGE INDEX phrase that a process uses
to hold a value associated with an index-name.

index-name. A user-defined word specified in an INDEXED clause of a table description to
refer to an index associated with the table.

indexed file. A file that has indexed organization.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-14

Glossary indexed organization
indexed organization. A permanent logical file structure in which a process can identify
each record by the value of one or more keys within the record.

IN file. The input file of a process, either specified explicitly at process start time or inherited
from the parent process.

initial program. A program that is placed into an initial state every time the program is
called in a run unit.

initial state. The state of a program when it is first called in a run unit.

input file. A file open in the INPUT mode.

INPUT mode. The state of a file after a process executes an OPEN statement including an
INPUT phrase for the file and before the process executes a CLOSE statement
(without the REEL or UNIT phrase for the file), allowing the process to read records
from the file.

input-output file. A file open in the I-O mode.

Input-Output Section. A section of the Environment Division that names the files and the
external media required by an object program and that provides information a process
needs for transmitting and handling data when it executes the object program.

input-output statement. A statement that causes files to be processed by performing
operations upon individual records or upon the file as a unit. The input-output
statements are: ACCEPT with mnemonic-name, CLOSE, DELETE, DISPLAY, OPEN,
READ, REWRITE, START, and WRITE.

input procedure. A Procedure Division section or group of sections executed during a
SORT operation; the statements of the section generate or obtain the records to be
sorted, and pass the records to the sort utility one at a time using the RELEASE
statement. When the input procedure terminates by passing through the end of its final
paragraph, that signals the end of the set of records to be sorted.

integer. A numeric literal or a numeric item that does not include any digit positions to the
right of the assumed decimal point; in syntax diagrams, an unsigned numeric literal
that does not equal zero, unless the explanation of a format says otherwise.

Intel® Itanium® instructions. Register-oriented Itanium instructions that are native to and
directly executed by a TNS/E system. Itanium instructions do not execute on TNS and
TNS/R systems. Compare to TNS instructions and MIPS RISC instructions.

TNS Object Code Accelerator (OCA) produces Itanium instructions to accelerate TNS
object code. A TNS/E native compiler produces native-compiled Itanium instructions
when it compiles source code.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-15

Glossary internal data
internal data. The data described in a program, including all internal data items and internal
file connectors. Items described in the Linkage Section of a program are handled as
internal data.

internal data item. A data item that is described in one program in a run unit. An internal
data item can have a global name.

internal file connector. A file connector that is accessible to only one object program in the
run unit.

invalid key condition. A condition caused at object time when the process determines that
a specific value of the key associated with a structured file is invalid—has a value to
which no record in the associated file corresponds, or has a value which exceeds the
bounds of the file, or specifies a value that would cause a duplicate key value in the file
where no duplicate key values are allowed.

I-O-CONTROL. The name of an Environment Division paragraph that specifies object
program requirements for specific input-output techniques, rerun points, several data
files sharing the same areas, and multiple file storage on a single input-output device.

I-O mode. The state of a file after a process executes an OPEN statement including an I-O
phrase for the file and before the process executes a CLOSE statement (without the
REEL or UNIT phrase for the file), allowing the process to read records from the file
and write records to the file.

I-O status. A conceptual entity that contains the two-character value indicating the resulting
status of an input-output operation. This value is made available to the program
through the use of the FILE STATUS clause in the file-control entry for the file.

job. The output from a process that a spooler receives and stores on a disk, queued for
delivery to a print process.

key. A data item that identifies either:

• The location of a record
• A set of data items whose values a process can use to order data

key of reference. The prime record key or alternate record key that a process is currently
using to access records in a structured file.

keyword. A character sequence recognized by a command process.

language-specific run-time environment. A set of services implemented by the run-time
library of each language; a non-CRE environment. Without the CRE, HP C,
HP COBOL, FORTRAN, Pascal, and pTAL programs each have their own
language-specific run-time environments. These language-specific run-time
environments are often incompatible with each other. Compare to Common Run-Time
Environment (CRE).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-16

Glossary language-specific run-time library
language-specific run-time library. A collection of routines outside the CRE that supports
requests from a specific language for services such as I-O and heap management,
math and string functions, exception handling, and error reporting.

ld utility. A utility that collects, links, and modifies code and data blocks from one or more
position-independent code (PIC) object files to produce a target TNS/R native object
file. See also eld utility and nld utility.

letter. A character belonging to one of these two sets:

level indicator. Two alphabetic characters that identify a specific type of entry in the Data
Division: file description entry or sort-merge file description entry.

level-number. A user-defined word that indicates the position of a data item in the
hierarchical structure of a logical record (a number in the range 1 through 49); a user-
defined word that indicates the special properties of a data description entry (the
numbers 66, 77, and 88).

library-name. A user-defined word that names a COPY library file for the compiler to copy
text from during a compilation.

LINAGE-COUNTER. A special register that the compiler generates for each file description
that has a LINAGE clause. At any given time, a LINAGE-COUNTER contains the value
of the current line number within the current page body.

line sequential file. A file that has line sequential organization (code 180) that is compatible
with the system text editor of the Open System Services (OSS) environment (also
called OSS ASCII text file).

LINE-COUNTER. A special register that is not available in HP COBOL.

Linkage Section. A section of the Data Division in a called program that describes data
items available from the calling program (the items to which both programs can refer).

linkfile. An object file that requires linking with other object files before execution (also
called a nonexecutable object file). Compare to loadfile.

linking. The operation of examining, collecting, connecting, and modifying code blocks and
data blocks from one or more object files to produce one target file.

literal. A character-string whose ordered set of characters implies its value.

loadfile. An object file that is ready for immediate execution (also called an executable
object file). Compare to linkfile. Program files, user libraries, shared run-time libraries,
and dynamic link libraries are loadfiles.

Uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

Lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-17

Glossary loading
loading. The operation of mapping an object file into the memory of a process.

local name. A name that is not global, and therefore, can be referenced only by the
program that declares it. Compare to global name.

logical page. A conceptual page of a report consisting of a top margin area, a body
(including a footing area), and a bottom margin; all governed by the LINAGE clause of
the file description entry.

logical operator. Any of these reserved words:

• AND (logical connector)
• OR (logical connector)
• NOT (logical negation)

logical record. The most inclusive data item, either an elementary item or data structure
that has a level number of 01; in the File Section, the unit of data read from, written to
or removed from a file by a single READ, WRITE, REWRITE, or DELETE statement.

low PIN. A process identification number (PIN) that ranges from 0 through 254. Compare to
high PIN.

main program. The first program to execute when a run unit is run. The main program
determines the run-time environment for a program.

man page. See reference page.

map. A tabular representation of the elements of a program.

merge file. A collection of records for a process to merge during execution of a MERGE
statement; a file declared in the sort-merge file description entry, and created and used
only by the merge function.

migrate. To take a source program that was compiled with one compiler and recompile it
with another compiler so that the resulting object program runs on another platform.

MIPS RISC instructions. Register-oriented 32-bit machine instructions in the MIPS-1 RISC
instruction set that are native to and directly executed on TNS/R systems. MIPS RISC
instructions do not execute on TNS systems and TNS/E systems. Compare to TNS
instructions and Intel® Itanium® instructions.

Accelerator-generated MIPS RISC instructions are produced by accelerating TNS
object code. Native-compiled MIPS RISC instructions are produced by compiling
source code with a TNS/R native compiler.

misaligned. In TNS mode and accelerated mode, an erroneous address that is odd-byte
aligned. In native mode, an inefficient address that is not aligned.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-18

Glossary mixed-language program
mixed-language program. A program made up of routines compiled from more than one
programming language. A program with HP C routines and TAL routines is an example
of a mixed-language program.

mnemonic-name. A user-defined word you associate with an implementor name in the
SPECIAL-NAMES paragraph of the Environment Division and use elsewhere in the
program to refer to the implementor name.

native character set. The ASCII character set.

native link editor. See nld utility.

native mode. TNS/R native mode or TNS/E native mode.

native object code. TNS/R native object code or TNS/E native object code.

native object file. TNS/R native object file or TNS/E native object file.

native object file tool. See noft utility.

native PIC linker. See ld utility.

native process. A TNS/R native process or TNS/E native process.

NATIVE-n data format. NATIVE-2, NATIVE-4, and NATIVE-8 data formats, collectively.

negated combined condition. A combined condition, within parentheses, immediately
preceded by the NOT logical operator.

negated simple condition. A simple condition immediately preceded by the NOT logical
operator.

next executable sentence. The next sentence to which the process is to transfer control
after it finishes executing the current statement.

next executable statement. The next statement to which the process is to transfer control
after it finishes executing the current statement.

next record. The record that logically follows the current record of a file; if the file is being
accessed sequentially, the next record in the file; if the file is being accessed randomly,
the record to which the key of reference refers; if the file is being accessed
dynamically, the next record according to the key of reference.

nibble. Half of a byte or computer character, four bits.

nld utility. A utility that collects, links, and modifies code and data blocks from one or more
object files to produce a target TNS/R native object file. See also ld utility.

noft utility. A utility that reads and displays information from TNS/R native object files.
See also to enoft utility.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-19

Glossary noncontiguous items
noncontiguous items. Elementary data items that bear no hierarchical relationship to other
items and that you describe in the Working-Storage, Extended-Storage, and Linkage
Sections of the Data Division:

• Level 77 items

• Level 01 items (each one of which is noncontiguous with respect to each other
one)

non-CRE environment. A set of services implemented by the COBOL85 run-time library.
Without the CRE, HP C, HP COBOL, FORTRAN, Pascal, or pTAL programs each have
their own language-specific run-time environments. These language-specific run-time
environments are often incompatible with each other. Compare to Common Run-Time
Environment (CRE).

non-CRE program. A program that runs in its own language-specific run-time environment
(as opposed to the CRE). If it is an HP COBOL program, it was compiled with the
COBOL85 compiler and the directive ENV OLD. Compare to CRE program.

nonexecutable object file. See linkfile.

nonnumeric literal. A character-string, delimited by quotation marks, that can include any
ASCII character (with any quotation mark within the character-string represented by
two contiguous quotation marks).

non-PIC. See position-dependent code (non-PIC).

nonshared code. See position-dependent code (non-PIC).

NonStop operating system. See HP NonStop™ operating system.

NonStop Series architecture. See TNS architecture.

NonStop Series/Itanium architecture. See TNS/E architecture.

NonStop Series/RISC architecture. See TNS/R architecture.

numeric character. Any of the digits 0 through 9.

numeric-edited item. A data item described to contain numeric characters and the special
editing signs, which are: B, P, Z, CR, DB, plus (+), minus (–), asterisk (*), slash (/),
dollar sign ($), period (.), and comma (,).

numeric item. A data item described to contain only numeric characters and, if signed, a
plus sign (+), minus sign (–), or other representation of an operational sign.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-20

Glossary numeric literal
numeric literal. A string of these characters:

• One or more digits (required)

• A decimal point in any character position except the rightmost (optional)

• An algebraic sign in the leftmost character position (optional)

OBEY command file. An EDIT file that contains a series of commands and serves as a
source of command input.

OBJECT-COMPUTER. The name of an Environment Division paragraph that describes the
computer environment in which you can execute the object program.

object file. A file generated by a compiler, binder, or linker that contains machine
instructions and other information needed to construct the executable code spaces and
initial data for a process. The file can be a complete program that is ready for
immediate execution (an executable object file), or it can be incomplete and require
binding or linking with other object files before execution (a nonexecutable object file).
An object file can contain more than one object program.

object library. An object file to be used as a source of object programs for binding or
linking.

object of entry. A set of operands and reserved words that immediately follows the subject
of a Data Division entry.

object program. A set or group of executable machine language instructions and other
material designed to interact with data to provide problem solutions; the machine
language result of the operation of a COBOL compiler on a source program.

open mode. The state of a file after a process executes an OPEN statement for the file and
before the process executes a CLOSE statement (without the REEL or UNIT phrase)
for the file, governing the types of operations a process can perform on the file; one of
these modes, which you can specify in an OPEN statement:

• INPUT mode

• OUTPUT mode

• I-O mode

• EXTEND mode

OSS ASCII text file. See line sequential file.

Open System Services (OSS). An open system environment available for interactive or
programmatic use with the NonStop operating system. Processes that run in the OSS
environment use the OSS application program interface; interactive users of the OSS
environment use the OSS shell for their command interpreter. Compare to Guardian.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-21

Glossary operand
operand. In syntax formats, any lowercase word or words that appear in a statement or
entry format; an implied reference to data or to a literal value.

operational sign. An algebraic sign associated with a numeric data item or a numeric literal
to indicate whether its value is positive or negative.

optional file. An input file that you declare is not necessarily present during each execution
of the object program, the presence or absence of which file the object program
determines during execution.

optional word. A reserved word that appears in a syntax diagram of a statement or entry
only to improve readability and that you can omit when you use the statement or entry
in a source program.

OSS environment. The application program interface (API), tools, and utilities of the Open
System Services (OSS).

OUT file. The output file of a process, either specified explicitly at process start time or
inherited from the parent process.

output file. A file open in either the output mode or the extend mode.

OUTPUT mode. The state of a file after a process executes an OPEN statement that
includes an OUTPUT phrase for that file and before the process executes a CLOSE
statement (without a REEL or UNIT phrase for that file); EXTEND mode includes the
capabilities of OUTPUT mode.

output procedure. A Procedure Division section or group of sections executed during
either SORT or MERGE statements; obtains the ordered records from the SORT or
MERGE operation by executing a RETURN statement, the end of the set of records
being signalled by the EOF condition, which can be tested for with the AT END phrase
of the RETURN statement; receives control (1) during execution of a SORT statement,
after the sort operation is complete, or (2) during execution of a MERGE statement,
after the merge function selects the next record in merged order.

padding character. An alphanumeric character used to fill the unused character positions
in a block. HP COBOL does not pad records.

page. One of these:

• On disk, a contiguous block of storage starting on a sector boundary and
containing 2,048 bytes; a unit of disk allocation.

• In memory, a division of memory consisting of 2,048 bytes; the 2-byte pages of
physical memory are numbered from 0 through 1,023.

page body. The part of a logical page in which you can put lines or spaces.

PAGE-COUNTER. A special register that is not available in HP COBOL.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-22

Glossary paragraph
paragraph. In the Procedure Division, a paragraph-name followed by a period (.) and zero,
one, or more sentences; in the Identification Division or Environment Division, a
paragraph header followed by zero, one, or more entries.

paragraph header. A reserved word, followed by a period (.), that indicates the beginning of
a paragraph in the Identification Division or Environment Division. The paragraph
headers in the Identification Division are:

• PROGRAM-ID
• AUTHOR
• INSTALLATION
• DATE-WRITTEN
• DATE-COMPILED
• SECURITY

The paragraph headers in the Environment Division are:

• SOURCE-COMPUTER
• OBJECT-COMPUTER
• SPECIAL-NAMES
• FILE-CONTROL
• I-O-CONTROL
• RECEIVE-CONTROL

paragraph-name. A user-defined word that identifies and begins a paragraph in the
Procedure Division.

parameter. A name specified in a prepared command for which the user substitutes a value
when executing the command.

pathname. In the Open System Services (OSS) file system and Network File System
(NFS), the string of characters that uniquely identifies a file within its file system. A
pathname can be either relative or absolute. See also ISO/IEC IS 9945-1:1990
(ANSI/IEEE Std. 1003.1-1990 or POSIX.1), Clause 2.2.2.57.

Pathway/TS. An HP product that provides tools for developing and interpreting screen
programs to support online transaction processing (OLTP) applications in the Guardian
environment on NonStop systems. Pathway/TS screen programs communicate with
terminals and intelligent devices. Pathway/TS includes the TCP, the SCREEN COBOL
compiler and run-time environment, and the SCREEN COBOL Utility Program (SCUP).
It requires the services of the identifier product.

period separator. A sequence of two or more characters where the first one is a period,
and the remaining ones are spaces.

phrase. An ordered set of one or more consecutive COBOL character-strings that form a
portion of a COBOL procedural statement or of a COBOL clause.

physical record. See block.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-23

Glossary PIC
PIC. See position-independent code (PIC).

PIN. See process identification number (PIN).

position-dependent code (non-PIC). Executable code that must be modified to run at
different virtual addresses. External reference addresses appear in non-PIC code.
Non-PIC is also called nonshared code.

position-independent code (PIC). Executable code that need not be modified to run at
different virtual addresses. External reference addresses appear only in a data area
that can be modified by the loader; they do not appear in PIC code. PIC is also called
shared code.

prime record key. A data item in the record description entry of an indexed file whose value
uniquely identifies the record; alternate record keys can be unique, but the prime
record key is the principal key by virtue of being explicitly declared the prime record
key in the RECORD KEY clause of the file-control entry for the file.

procedure. One of these:

• A paragraph, a group of logically successive paragraphs, a section, or a group of
logically successive sections in the Procedure Division

Such a procedure functions as a unit of code to be executed by a PERFORM,
SORT, MERGE, or USE statement. Although good programming practice dictates
that procedures be composed of physically successive paragraphs or sections,
execution of a GO TO statement can extend the scope of a procedure to
paragraphs or sections that are logically but not physically successive.

• Routines coded in TAL, as the routines of the operating system are, sometimes are
referred to as procedures.

procedure branching statement. A statement that causes the explicit transfer of control to
a statement other than the next executable statement in the sequence in which the
statements are written in the source program. The procedure branching statements
are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO, MERGE (with the OUTPUT
PROCEDURE phrase), PERFORM, and SORT (with the OUTPUT PROCEDURE
phrase).

procedure-name. A paragraph-name, a qualified paragraph-name, or a section-name in the
Procedure Division.

process.

1. A program that has been submitted to the operating system for execution, or a
program that is currently running in the computer.

2. An address space, a single thread of control that executes within that address
space, and the system resources required by that thread of control.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-24

Glossary process identification number (PIN)
process identification number (PIN). An unsigned integer that identifies a process in a
processor module. Internally, a PIN is used as an index into the process control block
table.

process pair. Two instances of the same executable object file (called the primary process
and the backup process) that are executing in separate processors of a NonStop
system. Only the primary process is active, performing its tasks and passing
information about its progress to the backup (checkpointing). If the primary process
fails, the backup process becomes the primary process, continuing the tasks from the
site of the last checkpoint.

program name. The name of an object program.

program-name. A user-defined word that identifies a COBOL source program.

PROGRAM-STATUS. A special register to which the STARTBACKUP statement assigns a
value that reflects the success or failure of the creation of the backup process.

program unit. A single source program or object program.

PS Text EDIT. An HP text-editing program, often abbreviated TEDIT.

pseudo-text. A sequence of text-words, comments, and separators, preceded and followed
by the pseudo-text pseudo-text delimiter (==).

pseudo-text delimiter. Two contiguous equal signs (==) that identify the beginning or end
of a pseudo-text, but are not part of the pseudo-text.

punctuation character. One of:

pTAL. A machine-independent systems programming language based on TAL. The pTAL
language excludes architecture-specific TAL constructs and includes new constructs
that replace the architecture-specific constructs. Compare to HP Transaction
Application Language (TAL).

qualified data-name. An identifier that consists of a data-name followed by one or more
sets of these:

• The connective OF and a data-name, file-name, or condition-name qualifier

• The connective IN and a data-name, file-name, or condition-name qualifier

Character Character Name Character Character Name

; Semicolon (Left parenthesis

: Colon) Right parenthesis

. Period Space

" Quotation mark = Equal sign
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-25

Glossary qualifier
qualifier. One of these:

• A data name or file name used in a reference, together with a data name that is at
a lower level in the same hierarchy.

• A section-name that you use in a reference together with a paragraph-name
specified in that section.

• A library name you use in a reference together with a text name associated with
that library.

queue file. An indexed file that can function as a queue.

 random access. An access mode in which the value that a program specifies for a key
identifies the logical record on which the process operates in a structured file.

RECEIVE-CONTROL. The name of an Environment Division paragraph that defines the
Receive-Control table and the Reply table used by a $RECEIVE process.

record. See logical record.

record area. A storage area the process allocates for processing a record described by a
record description entry in the File Section.

record description entry. The total set of data description entries associated with a
particular record.

record key. A data item whose value identifies a record in a structured file. See prime
record key, relative key, and alternate record key.

record-name. A user-defined word that names a record described by a record description
entry in the Data Division.

record number. The ordinal number of a record in a sequential file.

reduced instruction-set computing (RISC). A processor architecture based on a relatively
small and simple instruction set, a large number of general-purpose registers, and an
optimized instruction pipeline that supports high-performance instruction execution.
Compare to complex instruction-set computing (CISC) and explicitly parallel instruction
set computing (EPIC).

reference format. A format that provides a standard method for describing COBOL source
programs:

• Tandem reference format
• ANSI reference format

reference modifier. The leftmost character position and length used to establish and refer
to a data item.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-26

Glossary reference page
reference page. The online or hard-copy version of a file that provides reference
information for a software facility. Some UNIX documentation uses the term man page
instead, referring either to the online delivery mechanism used to display the file
(usually the shell man command) or to the nature of the file as part of the manual.

reference parameter. A parameter that is passed by reference (that is, its address is
passed). A called routine can permanently change the value of a reference parameter.
Compare to content parameter.

relation condition. The proposition, for which a process can determine a truth value, that
the value of an arithmetic expression or data item has a specific relationship to the
value of another arithmetic expression or data item.

relative file. A file that has relative organization.

relative key. A data item whose value identifies a logical record in a relative file.

relative organization. A permanent logical file structure in which an integer value greater
than zero uniquely identifies each record, specifying the record’s logical ordinal
position in the file.

relative record number. The ordinal number of a record in a relative file. This number is
handled as a integer numeric literal.

release version update (RVU). A collection of compatible revisions of NonStop operating
system software products, identified by an RVU ID, and shipped and supported as a
unit. An RVU consists of the object modules, supporting files, and documentation for
the product revisions. An RVU also includes a set of documentation for the overall
RVU.

requester. A client that runs only in the Guardian environment by using an interface defined
by HP.

reserved word. A COBOL word that you cannot use for a user-defined word or a system
name in a source program.

resource. A facility or service, controlled by the operating system, that an executing
program can use.

RISC. See reduced instruction-set computing (RISC).

RISC instructions. See MIPS RISC instructions.

routine-name. A user-defined word that identifies a procedure written in a language other
than COBOL.

run-time environment. The services provided by run-time library routines and data objects
(data blocks and pointers) to a program at run-time.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-27

Glossary run-time library
run-time library. A collection of routines that supports requests for I-O and heap
management, math and string functions, exception handling, and error reporting.

run-time routine. A subprogram, supplied as part of the COBOL product, which performs
some function needed in the course of executing a statement in the COBOL language
and which the object code produced by the COBOL compiler automatically calls when
needed.

run unit. A set of one or more object programs in the same object file.

RVU. See release version update (RVU).

Saved Message Utility (SMU). A set of utility routines, available to COBOL or FORTRAN
programs, that can be used to examine and modify portions of the initial process-
creation messages (ASSIGN, PARAM, and startup) in the environment of a process.

SCI. SQL Compiler Interface.

SCREEN COBOL. A procedural language developed by HP and based on COBOL that is
used to define and control screen displays on terminals and other input-output devices.
SCREEN COBOL allows programmers to write requester programs that communicate
with operator terminals and intelligent input-output devices and that send data to server
processes that manage application databases. SCREEN COBOL programs are
compiled into pseudocode form by the SCREEN COBOL compiler and are then
interpreted by the TCP.

section. A section header followed by a section body, which includes zero or more
paragraphs or entries.

section header. In the Procedure Division, a section-name followed by the reserved word
SECTION, a segment number (optional), a period, and a space; in the Environment
Division or Data Division, a combination of reserved words followed by a period (.). The
section headers in the Environment Division are:

• CONFIGURATION SECTION
• INPUT-OUTPUT SECTION

The section headers in the Data Division are:

• FILE SECTION
• WORKING-STORAGE SECTION
• EXTENDED-STORAGE SECTION
• LINKAGE SECTION

section-name. A user-defined word that names a section in the Procedure Division.

segment number. A user-defined word, expressed as a one- or two-digit number, that
classifies a Procedure Division section for segmentation.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-28

Glossary semicolon separator
semicolon separator. A sequence of two or more characters where the first one is a
semicolon, and the remaining ones are spaces.

sentence. A sequence of one or more statements, the last terminated by a period (.).

separately compiled program. A program that (together with its contained programs) is
compiled separately from all other programs. In the HP COBOL implementation,
several separately compiled programs can be presented to the compiler as a group;
each must be separated from its neighbor by an ENDUNIT directive or its end program
header.

separator. A string of one or two punctuation characters used to delimit character-strings.

sequential access. An access mode in which a process reads logical records from or
writes logical records to a file in a consecutive predecessor-to-successor sequence
determined by the order of the records in the file (or, in the case of sequential access
by an alternate record key, in a sequence governed by the value of the alternate key
selected in a START statement).

sequential block buffering. An Enscribe feature, enabled by the RESERVE clause of the
FILE-CONTROL paragraph, that speeds the reading of a sequential, relative, indexed,
or queue file by reading a block of records together into a memory buffer.

sequential file. A file that has sequential organization (includes entry-sequenced and
unstructured files).

sequential organization. A permanent logical file structure in which a process identifies a
record by a predecessor-successor relationship established when the same or another
process writes the record to the file.

server. A process that handles database input and output and related logical and
computational operations specified by a requester.

session. The period of time between a command interpreter LOGON command and the
next LOGON or LOGOFF command; certain environmental attributes, such as the
current default system, volume, and subvolume, selected debugger, and saved
ASSIGN and PARAM messages persist until you explicitly change them or issue the
LOGOFF command to end a command interpreter session.

shared code. See position-independent code (PIC).

shared run-time library (SRL). A collection of procedures whose code and data can be
loaded and executed only at a specific assigned virtual memory address (the same
address in all processes). SRLs use direct addressing and do not have run-time
resolution of links to and from the main program and other independent libraries.
Compare to dynamic-link library (DLL).
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-29

Glossary sign condition
sign condition. The proposition, for which a process can determine a truth value, that the
algebraic value of a data item or an arithmetic expression is less than, greater than, or
equal to zero.

signal. The method by which an environment notifies a process of an event. Signals are
used to notify a process when an error that is not related to input or output has
occurred. A signal is often an indication of a run-time event that requires immediate
attention. Many such events preclude continuing the interrupted instruction stream.
Signals are generated for TNS/R native Guardian processes. (TNS Guardian
processes receive traps instead.) A SIGILL signal indicates that an instruction cannot
be executed because the instruction or its data are invalid. Compare to trap.

simple condition. Any single condition that is either:

• Relation condition

• class condition

• condition-name condition

• switch-status condition

• sign condition

• Simple condition enclosed in parentheses

single-language program. A program in which all routines are written in the same
programming language.

sort file. One of:

• A collection of records for a process to sort during the execution of a SORT
statement

• A file declared in the sort-merge file description entry and created and used only by
the sort function

sort-merge file description entry. An entry in the File Section of the Data Division
composed of the level indicator SD followed by a file name and then a set of file
clauses, as required.

SOURCE-COMPUTER. The name of an Environment Division paragraph that describes the
computer environment in which you can compile the source program.

source file. A file that consists of one or more source programs.

source library file. A file containing source code that a compiler can copy into a source
program when specified by a COPY statement in COBOL.

source program. A set of COBOL statements, headers, entries, and comments that
includes the Identification Division, Environment Division, Data Division, and Procedure
Division, in that order, and optionally includes compiler directives.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-30

Glossary space separator
space separator. A sequence of one or more space characters (which are not part of some
other separator) used as a separator.

special character. One of:

special-character word. A reserved word that is an arithmetic operator or a relation
character.

SPECIAL-NAMES. The name of an Environment Division paragraph in which you can
assign mnemonic-names you choose to certain implementor-names, define a currency
symbol other than dollar sign ($), and exchange the function of commas and periods in
both PICTURE character-strings and numeric literals.

special register. Storage areas the compiler generates primarily to store information
produced by certain COBOL features.

spooler. A set of processes that act as an interface between a process and a print device.

SQL. Structured Query Language.

SQL Compiler Interface (SCI). Embedded SQL statement processor.

SRL. See shared run-time library (SRL).

standard addressing. Referencing a data item or parameter by using a 16-bit address
(also called 16-bit addressing). Compare to extended addressing.

standard data format. A way to express the characteristics or properties of data as it would
appear on a printed page of infinite length and breadth rather than as the form in which
the computer or a particular external medium stores the data.

statement. A syntactically valid combination of character-strings and separators beginning
with a verb.

Character Meaning Character Meaning

+ Plus sign ; Semicolon

- Minus sign . Period (decimal point)

* Asterisk " Quotation mark

/ Slash (slant, virgule) (Left parenthesis

= Equal sign) Right parenthesis

$ Currency sign > Greater than symbol

, Comma (decimal point) < Less than symbol
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-31

Glossary structured file
structured file. A disk file of fixed-length records or variable-length records, to which a
process gains access through the Enscribe record manager, that has one of three
organizations:

• Entry sequenced
• Key sequenced
• Relative

subprogram. See called program.

subscript. An occurrence number represented by either an integer, a data-name optionally
followed by an integer with the operator + or -, or an index-name optionally followed by
an integer with the operator + or -, that identifies a particular table element.

subvolume. A logical subdivision of a volume, used to group files on the volume.

switch-status condition. The proposition, for which a process can determine a truth value,
that an implementor-defined switch is set to ON or OFF.

symbolic-character. A user-defined word that specifies a user-defined figurative constant.

sync-id. A numeric identifier, assigned by the operating system to write requests in a fault-
tolerant process pair, used to keep track of the requests to prevent the repetition of
requests that cannot be tried again after a takeover by the backup process.

system file name. The name by which the operating system recognizes a file. Compare to
COBOL file name.

system-name. A COBOL word that a process uses to communicate with the operating
system.

system services. The tasks performed on behalf of the user or user programs by the
operating system, including formatting, process control, I-O support, performance
measurement, HP process pair support, standard security, and transaction
management.

table. A set of logically consecutive data items defined in the Data Division by a data
description entry that includes an OCCURS clause.

table element. A data item that belongs to a set of repeated items comprising a table.

TACL. See HP Tandem Advanced Command Language (TACL).

TAL. See HP Transaction Application Language (TAL).

target file. An object file that is output by the compiler or the Binder or nld utility or ld
utility (as opposed to an object file that is input to the Binder or linker).

TEDIT. An abbreviation for PS Text EDIT, an HP text-editing program.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-32

Glossary terminal
terminal. An input-output device.

terminal control process (TCP). A process used for terminal management and transaction
control, provided by HP as a part of the Pathway/TS product. A TCP is a multithreaded
process that interprets compiled SCREEN COBOL requester programs (screen
programs) in the user’s application, executing the appropriate program instructions for
each I-O device or process for which the TCP is configured. The TCP coordinates
communication between screen programs and server processes.

text-name. A user-defined word that identifies library text.

text-word. A character or a sequence of contiguous characters between margin A and
margin R in a COBOL library, source program, or in pseudo-text which is:

• A separator, except for: a space, a pseudo-text delimiter, and the opening and
closing delimiters for nonnumeric literals.

• The right parenthesis and left parenthesis characters, regardless of context within
the library, source program, or pseudo-text, are always considered text-words.

• A literal including, in the case of nonnumeric literals, the opening quotation mark
and the closing quotation mark that bound the literal

• Any other sequence of contiguous COBOL characters except comments and the
word COPY, bounded by separators, which is neither a separator nor a literal.

TMF. See HP NonStop™ Transaction Management Facility (TMF).

TNS. Refers to fault-tolerant HP computers that support the HP NonStop™ operating
system and are based on microcoded complex instruction-set computing (CISC)
technology. TNS systems run the TNS instruction set. Compare to TNS/R and TNS/E.

TNS accelerated mode. A TNS emulation environment on a TNS/R or TNS/E system in
which accelerated TNS object files are run. TNS instructions have been previously
translated into optimized sequences of MIPS or Intel® Itanium® instructions. TNS
accelerated mode runs much faster than TNS interpreted mode. Accelerated or
interpreted TNS object code cannot be mixed with or called by native mode object
code. See also TNS Object Code Accelerator (OCA). Compare to TNS mode and
native mode.

TNS architecture. NonStop Series architecture. HP computers that are based on CISC
technology. TNS architecture implements the TNS instruction set.

TNS compiler. A compiler in the TNS development environment that generates 16-bit TNS
object code following the TNS conventions for memory, stacks, 16-bit registers, and
call linkage. The COBOL85 compiler is an example of such a compiler. Contrast with
TNS/R native compiler and TNS/E native compiler.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-33

Glossary TNS instructions
TNS instructions. Stack-oriented, 16-bit machine instructions that are directly executed on
TNS systems by hardware and microcode. TNS instructions can be emulated on
TNS/E and TNS/R systems by using millicode, an interpreter, and either translation or
acceleration. Compare to MIPS RISC instructions and Intel® Itanium® instructions.

TNS interpreted mode. A TNS emulation environment on a TNS/R or TNS/E system in
which individual TNS instructions in a TNS object file are directly executed by
interpretation rather than permanently translated into MIPS or Intel® Itanium®
instructions. TNS interpreted mode runs slower than TNS accelerated mode. Each
TNS instruction is decoded each time it is executed, and no optimizations between
TNS instructions are possible. TNS interpreted mode is used when a TNS object file
has not been accelerated for that hardware system, and it is also sometimes used for
brief periods within accelerated object files. Accelerated or interpreted TNS object code
cannot be mixed with or called by native mode object code. Compare to TNS
accelerated mode, TNS/R native mode, and TNS/E native mode.

TNS mode. The operational environment in which unaccelerated TNS instructions execute.
Compare to TNS accelerated mode and native mode.

TNS object code. The TNS instructions that result from processing program source code
with a TNS compiler. TNS object code executes on TNS, TNS/R, and TNS/E systems.

TNS Object Code Accelerator (OCA). A program optimization tool that processes a TNS
object file and produces an accelerated file for the TNS/E architecture. OCA augments
a TNS object file with equivalent Intel® Itanium® instructions. TNS object code that is
accelerated runs faster on TNS/E systems than TNS object code that is not
accelerated.

TNS process. A process whose main program object file is a TNS object file, compiled
using a TNS compiler. A TNS process executes in interpreted or accelerated mode
while within itself, when calling a user library, or when calling into TNS system libraries.
A TNS process temporarily executes in native mode when calling into native-compiled
parts of the system library. Object files within a TNS process might be accelerated or
not, with automatic switching between accelerated and interpreted modes on calls and
returns between those parts. Compare to TNS/R native process and TNS/E native
process.

TNS user library. A user library available to TNS processes in the Guardian environment.

TNS/E. Refers to fault-tolerant HP computers that support the HP NonStop™ operating
system and are based on the Intel® Itanium® processor. TNS/E systems run the
Itanium instruction set and can run TNS object files by interpretation or after
acceleration. TNS/E systems include all HP NonStop™ systems that use NSE-x
processors. Compare to TNS and TNS/R.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-34

Glossary TNS/E architecture
TNS/E architecture. NonStop Series/Itanium architecture. HP computers that are based on
Itanium technology. TNS/E architecture implements the Itanium instruction set
[explicitly parallel instruction set computing (EPIC)] and are upwardly compatible with
the TNS and TNS/R system-level architectures.

TNS/E native compiler. A compiler in the TNS/E development environment that generates
TNS/E native object code, following the TNS/E native-mode conventions for memory,
stack, registers, and call linkage. The ECOBOL compiler is an example of such a
compiler. Contrast with TNS compiler and TNS/R native compiler.

TNS/E native mode. The primary execution environment on a TNS/E system, in which
native-compiled Intel® Itanium® object code executes, following TNS/E native-mode
compiler conventions for data locations, addressing, stack frames, registers, and call
linkage. Compare to TNS interpreted mode and TNS accelerated mode. See also
TNS/R native mode.

TNS/E native object code. The Intel® Itanium® instructions that result from processing
program source code with a TNS/E native compiler. TNS/E native object code
executes only on TNS/E systems, not on TNS systems or TNS/R systems.

TNS/E native object file. An object file created by a TNS/E native compiler that contains
Intel® Itanium® instructions and other information needed to construct the code
spaces and the initial data for a TNS/E native process.

TNS/E native process. A process initiated by executing a TNS/E native object file.
Compare to TNS process and TNS/R native process.

TNS/E native user library. A user library available to TNS/E native processes in both the
Guardian and Open System Services (OSS) environments. A TNS/E native user library
is implemented as a TNS/E native dynamic-link library (DLL).

TNS/R. Refers to fault-tolerant HP computers that support the HP NonStop™ operating
system and are based on 32-bit reduced instruction-set computing (RISC) technology.
TNS/R systems run the MIPS-1 RISC instruction set and can run TNS object files by
interpretation or after acceleration. TNS/R systems include all HP systems that use
NSR-x processors. Compare to TNS and TNS/E.

TNS/R architecture. NonStop Series/RISC architecture. HP computers that are based on
RISC technology. TNS/R architecture implements the RISC instruction set and are
upwardly compatible with the TNS system-level architecture.

TNS/R native compiler. A compiler in the TNS/R development environment that generates
TNS/R native object code, following the TNS/R native-mode conventions for memory,
stack, 32-bit registers, and call linkage. The NMCOBOL compiler is an example of
such a compiler. Contrast with TNS compiler and TNS/E native compiler.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-35

Glossary TNS/R native mode
TNS/R native mode. The primary execution environment on a TNS/R system, in which
native-compiled MIPS object code executes, following TNS/R native-mode compiler
conventions for data locations, addressing, stack frames, registers, and call linkage.
Compare to TNS interpreted mode and TNS accelerated mode. See also TNS/E native
mode.

TNS/R native object code. The MIPS RISC instructions that result from processing
program source code with a TNS/R native compiler. TNS/R native object code
executes only on TNS/R systems, not on TNS systems or TNS/E systems.

TNS/R native object file. An object file created by a TNS/R native compiler that contains
MIPS RISC instructions and other information needed to construct the code spaces
and the initial data for a TNS/R native process.

TNS/R native process. A process initiated by executing a TNS/R native object file.
Compare to TNS process and TNS/E native process.

TNS/R native shared run-time library (TNS/R native SRL). A shared run-time library
(SRL) available to TNS/R native processes in both the Guardian and Open System
Services (OSS) environments. TNS/R native SRLs can be either public or private. A
TNS/R native process can have multiple public SRLs but only one private SRL.

TNS/R native user library. A user library available to TNS/R native processes in both the
Guardian and Open System Services (OSS) environments. A TNS/R native user library
is implemented as a special private TNS/R native shared run-time library (TNS/R
native SRL).

top margin. An empty area of a logical page that precedes the page body.

trap. A software interrupt that provides a way of handling certain events, such as detection
of a hardware (or software) fault, a timer expiration, or a lack of system resources. A
trap is often an indication of a run-time event that requires immediate attention. Most
such events preclude continuing the interrupted instruction stream. Traps are
generated for TNS Guardian processes. (native Guardian processes and all OSS
processes receive signals instead.) An Instruction Failure trap indicates that an
instruction cannot executed because the instruction or its data are invalid. Compare to
signal.

truth value. The result of evaluating a condition to determine one of two values: TRUE or
FALSE.

unary operator. A plus sign (+) or minus sign (-) that precedes a variable or a left
parenthesis (but does not follow a variable, numeric literal, or right parenthesis) in an
arithmetic expression and that has the effect of multiplying the expression by +1 or -1,
respectively.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-36

Glossary unstructured file
unstructured file. A disk file organized as a byte stream. Each byte is directly addressable
by an application, which manages its own access to the file contents. In COBOL,
unstructured files are limited to sequential organization and access with fixed-length
records. The COBOL run-time routines handle any blocking and deblocking for
unstructured files, which can improve performance.

user-defined word. A COBOL word that you supply within the format of a clause or
statement.

user library.

1. An object code file that the operating system links to a program file at run time. A
program can have only one user library. See also TNS user library, TNS/R native
user library, and TNS/E native user library.

2. A library loadfile associated with a program so that it emulates the user library
feature of the operating system on TNS systems. For PIC programs on TNS/R and
TNS/E systems, the user library is a dynamic-link library (DLL). It is treated as if it
were the first library in the program's libList; thus it is searched first for symbols
required by the program. However, a user library does not appear in the program's
libList; instead, its name is recorded internally in the program's loadfile. A program
can be associated with at most one user library; the association can be specified
using the linker at link time or in a later change command, or at run time using the
process creation interfaces. (The /LIB …/ option to the RUN command in TACL
uses these interfaces.)

value parameter. See content parameter.

variable. A data item whose value a process can change.

variable-length record. A record associated with a file whose file description entry or sort-
merge file description entry permits records to contain a varying number of character
positions.

variable-occurrence data item. A table element which is repeated a variable number of
times. Such an item must contain an OCCURS DEPENDING ON clause in its data
description entry, or be subordinate to such an item.

verb. A word that expresses an action for the COBOL compiler or an object program to
take.

volume. A logical disk, which can be one or two magnetic disk drives. In HP NonStop™
S-series systems, volumes have names that begin with a dollar sign ($), such as
$DATA.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-37

Glossary word
word. An instruction-set-defined unit of memory that corresponds to the width of registers
and to the most common and efficient size of memory operations. A TNS word is 2
bytes (16 bits) wide, beginning on any 2-byte boundary in memory. A MIPS RISC word
is 4 bytes (32 bits) wide, beginning on any 4-byte boundary in memory. An Intel®
Itanium® word is also 4 bytes (32 bits) wide, beginning on any 4-byte boundary in
memory.

Working-Storage Section. The section of the Data Division that describes Working-Storage
data items, which can be noncontiguous data items or Working-Storage records or
both.

$RECEIVE. A pseudodevice from which a server reads its request messages and to which it
writes its replies; any process can read system messages from $RECEIVE by
declaring in the RECEIVE-CONTROL paragraph which messages it requires.
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Glossary-38

Index

Numbers
9 in PICTURE clause 7-57

A
A in PICTURE clause 7-55
Abbreviated combined relation
conditions 8-66
ABEND 25-6
Abnormal program termination 33-10
Accelerated mode 1-3
ACCEPT statement

description of 9-1/9-8
in OSS environment 19-24
terminals and 29-2/29-3, 29-13

Access mode
description of 4-8
heritability of 7-40
of parameters 9-27

ACCESS MODE clause
description of

brief 6-25
complete 7-39/7-40

file type and 6-24
for indexed file 6-49
for line sequential file 6-39, 19-13
for relative file 6-43
for sequential file 6-32

Access path 28-21
Accessor ID 31-27/31-30
ACOS function 14-8
ADD DEFINE command

how to use 12-23, 25-2/25-3
SEARCH DEFINEs and 11-36, 22-19

ADD statement
description of 9-9/9-16
precision of 8-49

Addition operator 8-46

Address misalignment
causes of

general 33-6
in HP COBOL
programs 33-10/33-11

handling 33-8/33-9
tracing facility for 33-7/33-8

Addressing modes
native 23-20
TNS 23-20

Addressing parameters 9-62
add_define command 27-15
AFTER phrase

in INSPECT CONVERTING
statement 9-114
in INSPECT REPLACING
statement 9-104
in INSPECT TALLYING REPLACING
statement 9-108, 9-110
in INSPECT TALLYING
statement 9-96, 9-99

Alignment
migrating to native mode and 33-5,
33-6/33-12
of data in data items 4-15
of data items in memory 4-15/4-16
of decimal point in data
conversion 8-43
READ statement and 9-181
REDEFINES clause and 7-51

ALL literal
description of 3-23
as subscript 14-7
DISPLAY statement and 9-49

ALLOCATESEGMENT routine 24-22
Allocation

See Storage allocation
ALPHABET clause 6-15/6-18
Alphabetic class and category 4-1
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-1

Index A
ALPHABETIC class test
in simple condition 8-60
with default character set 6-8
with nondefault character sets 6-9

Alphabetic data items
description of 7-61
ACCEPT statement and 9-3
alignment of data in 4-15
MOVE statements and 9-129

ALPHABETIC-LOWER class test
in simple condition 8-60
with default character set 6-8

ALPHABETIC-UPPER class test
in simple condition 8-60
with default character set 6-8

Alphabet-name 6-15/6-17
Alphanumeric class and category 4-1
Alphanumeric data items

description of 7-61
ACCEPT statement and 9-3
alignment of data in 4-15, 33-10
migration to native mode and 33-10
MOVE statement and 9-129

Alphanumeric edited category 4-1
Alphanumeric edited data items

description of 7-62
ACCEPT statement and 9-3
alignment of data in 4-15
MOVE statement and 9-129

Alphanumeric functions
description of 14-3
CHAR 14-13/14-14
CURRENT-DATE 14-16
LOWER-CASE 14-28
REVERSE 14-53
UPPER-CASE 14-61
WHEN-COMPILED 14-63/14-64

ALTER DEFINE command 25-9

ALTER statement
description of 9-16/9-18
paragraphs with 8-12

Altering programs 22-5/22-10
Alternate key files

alternate record keys and 28-22
creating and using 28-45/28-47
improving performance of 28-35/28-37

ALTERNATE RECORD KEY clause
description of 6-26/6-27
file type and 6-24
for indexed file 6-50
for relative file 6-44
for sequential file 6-32

Alternate record keys
description of 28-22/28-23
for entry-sequenced files 28-12
for indexed files 6-51, 28-18
for relative files 6-45, 28-16
for sequential files 6-34
for unstructured files 28-9
insertion order and 6-27
maximum number of 6-27
null values for 28-36
with duplicate values 6-26

ALTERPARAMTEXT
routine 13-106/13-108
Ampersand (&)

as CROSSREF prompt 15-9
in TACL command 22-19

ANNUITY function 14-9
ANSI directive 11-53
ANSI reference format

description of 16-1, 16-4
COLUMNS directive and 11-59
compiler listing and 22-42, 22-45
directive for 11-53
program creation and 22-6
text libraries and 22-22

ANSI standard labels 27-20
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-2

Index A
Apostrophe (')
in national literal 3-21
in simple nonnumeric literal 3-19

Approximate positioning 28-24
ar utility 34-10
Arccosine function 14-8
Archive files 34-10
Arcsine function 14-11
Arctangent function 14-12
Area A

in ANSI reference format 16-4
in Tandem reference format 2-6
paragraph headers and 8-12

Area B
in ANSI reference format 16-4
in Tandem reference format 2-6

Arithmetic expressions
description of 8-45, 8-48
as parameters 14-7, 23-22
precision of 8-51/8-53
summary of 38-8/38-9

Arithmetic mean function 14-31
Arithmetic operands 8-46
Arithmetic operations 8-42/8-53
Arithmetic operators 8-46
Arithmetic overflow

COBOL85^ARMTRAP and 13-39
COMPUTATIONAL data format
and 8-25
error messages for 48-8
in CRE 18-6
TRAP2 and NOTRAP2 and 11-132
TRAP2-74 and NOTRAP2-74
and 11-134

Arithmetic precision 8-48/8-53
Arithmetic statements

description of 8-42
common features of 8-43

ASCII character set
in alphabetic order A-6
in numeric order A-1

ASIN function 14-11
ASSIGN clause

description of 6-25
file type and 6-24
for indexed file 6-48
for line sequential file 6-39, 19-13
for relative file 6-41
for sequential file 6-29
for sort-merge file 6-55

ASSIGN command
description of 12-4/12-9
compared to DEFINE 12-19
for overriding file assignments 25-3
for specifying file characteristics 25-4
maximum number of 25-4
OSS environment and 19-23
showing active ones 25-8
#DYNAMIC and 26-9

ASSIGN message portions 13-36
Associating COBOL and system file
names 26-5/26-9
Asterisk (*)

as arithmetic operator 8-46
in ANSI reference format 16-2
in EXECUTION-L0G parameter 12-13
in PICTURE clause 3-24, 7-57, 7-67
in Tandem reference format 2-4

AT END phrase
See also At-end condition
in READ statement

for line sequential file 9-194, 19-21
for other files 9-180, 9-185, 9-187,
9-189

in RETURN statement 9-201
in SEARCH ALL statement 9-218
in SEARCH VARYING statement 9-212
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-3

Index B
AT END phrase (continued)
USE AFTER EXCEPTION procedures
and 9-288

ATAN function 14-12
Atomic functions (pTAL) 33-8
Attributes

CLASS 12-21
DEFINE

description of 12-21/12-23
for labeled tape files 27-18/27-24
for unlabeled tape files 27-16/27-18

security 28-4/28-6
At-end condition

See also AT END phrase
for READ statement

file position indicator and 9-182
multiple-reel tape files and 9-185
recoverable errors and 9-187

for SEARCH ALL statement 9-215,
9-218
for SEARCH VARYING
statement 9-210, 9-211, 9-212
input-output errors and 8-40
simulated 9-238
$RECEIVE and 31-17

Audited disk files
audit trails and 32-17
cache buffering and 28-33
HP COBOL Fast I-O and 6-36

AUTHOR paragraph 5-2
Averaging function 14-31
Avoiding deadlock 28-38/28-40

B
B in PICTURE clause 3-24, 7-55
Background processes 25-13
Backup processes

description of 32-4/32-6
CHECKPOINT statement and 9-34
STARTBACKUP statement and 9-253

Backward slash (\) 18-8
Banner, compilation 22-40, 22-41
Batch compilation 22-22
BEFORE phrase

in INSPECT CONVERTING
statement 9-114
in INSPECT REPLACING
statement 9-104
in INSPECT TALLYING REPLACING
statement 9-108, 9-110
in INSPECT TALLYING
statement 9-96, 9-99

Binary arithmetic operators 8-46
BINARY data format

description of 7-69, 7-73
PORT directive and 11-104
SYNCHRONIZED clause and 7-87
tape I-O and 27-14

BINARY data items 33-10, 33-11, 33-12
Binary searches 9-216
BIND utility

description of 11-27, 24-5
binding with 24-14/24-16
OBEY command files for 24-15

Binder messages 22-52
Binder object file builder

description of 11-27/11-28
in compilation 22-16
maps from 22-63
messages from 22-52
statistics from 11-29

Binder process 24-4
Binding

description of 24-1/24-23
called programs’ object code 11-23
directives for 11-51
HP COBOL programs

automatically 24-10/24-11
to be called dynamically 24-14
with BIND utility 24-14/24-16
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-4

Index C
Binding (continued)
mixed-language programs 24-16
process of 24-4

BINSERV process
description of 11-10, 11-12, 11-27,
11-43, 24-5
in compilation 24-10/24-13
selecting processor for 11-34

BLANK directive
description of 11-54
initializing data items and 7-36
migrating to native mode and 33-15

Blank lines
in replacement text 10-17
in Tandem reference format

anywhere 2-6
in continuation lines 2-5

BLANK WHEN ZERO clause
description of 7-88
for BINARY/COMPUTATIONAL data
item 7-73
for INDEX data item 7-76
for NATIVE-n data item 7-76
in record description entry 7-46

BLOCK CONTAINS clause
description of 7-15/7-17
for external file 7-12
for labeled tape file 27-21
for unlabeled tape file 27-2
HP COBOL Fast I-O and 6-36
sequential block buffering and 6-35

Blocked files
closing 9-39
creating 7-16

Blocked records
in structured files 28-31/28-35
in tape files 27-2

BLOCKLEN attribute of DEFINE
for labeled tape file 27-21
for unlabeled tape file 27-16

Blocks
code

description of 24-1/24-3
calling each other 24-3
replacing 24-15/24-16

data 24-1/24-3
Body of page 7-26
Borland integrated development
environment (IDE) 34-4
Break key 29-8/29-9
BREAK message 6-75
BUFFERED attribute 6-35
Buffering

cache
indexed files and 6-52
relative files and 6-45
sequential files and 6-35, 9-298
structured files and 28-32

HP COBOL Fast I-O 28-34/28-35
local

for indexed files 6-52
for relative files 6-46
for sequential files 6-36

sequential block
disk input-output and 28-33
for indexed files 6-52
for relative files 6-45
for sequential files 6-34
HP COBOL Fast I-O and 9-190

BUFFER-SIZE parameter 13-56, 13-58
Bypassing labels 27-20

C
C routines

calling 9-58
in TNS user library 24-19
migrating to native mode 33-4
passing parameters to 9-63,
23-26/23-29
restrictions on 9-63/9-64, 23-16
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-5

Index C
C routines (continued)
run-time environment for 23-2
sharing data with 23-17

C8LIB file 22-13
Cache buffering

See Buffering, cache
Cache, write-through 28-32
CALL statement

description of 9-18/9-31, 11-12/11-16
at object program level 24-3
detailed explanation of 11-16/11-23
dynamic 23-6, 24-14
EXTENDED access mode and 7-40
PIC loadfiles and 9-25
STANDARD access mode and 7-40
static 23-5
X/Open

See X/Open CALL statement
Called programs

description of 11-4
compilation units and 11-7/11-8
EXIT PROGRAM statement and 9-80
how compiler finds

COBOL programs 11-16/11-18
non-COBOL programs 11-18/11-22

limits on 20-7
non-COBOL 9-58
reading disk files from 28-7
termination of 12-26
that return values 9-61
utility routines 13-1/13-139

Calling programs and routines
description of 11-4, 23-1/23-34
COBOL 23-3/23-7
dynamically 23-6
in unspecified languages 23-8
non-COBOL 23-7/23-19

Calling programs and routines (continued)
operating system routines

description of 23-10/23-15
parameters for 23-10
resolution of 23-13/23-15

run-time routines 24-6
statically 23-5
that return values 23-9

CALL-SHARED directive
description of 11-55
migrating to native mode and 33-20

CANCEL directive 11-56
CANCEL statement

description of 9-32/9-33
X/Open CALL statement and 23-7

Caret (^) 12-20, 47-2
Case sensitivity

ACCEPT statement and 9-3
in HP COBOL 3-3
in record keys 28-22
in simple nonnumeric literals 3-19
in system file names 26-2
user-defined currency sign and 6-21

Categories of data
description of 4-1, 7-60
in Data Division 7-2

CBL85UTL file
overview of 13-23, 13-24
CRE and 18-7
descriptions of routines in 13-38/13-84
list of routines in 13-24
syntax summary of routines
in 45-1/45-10

CBLIBEXT file
description of 13-23
COBOLLIB routines in system code
space and 13-29

Changing the compilation
environment 22-20/22-22
CHAR function 14-13/14-14
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-6

Index C
Character sets
COBOL 3-2/3-3
nondefault 6-9

CHARACTER-SET clause 6-6, 6-8/6-9
Character-strings

description of 3-6/3-24
COBOL words 3-7/3-16
comments 3-24
literals 3-16/3-23
PICTURE

editing characters in 3-24
punctuation characters in 3-6
size of 7-55

CHECK directive 11-56/11-57
Check protect 3-24
CHECKLOGICALNAME
routine 13-108/13-109
CHECKMESSAGE routine 13-110
CHECKPOINT statement

description of 9-34/9-36
CRE and 18-6
Extended-Storage Section and 24-22
fault-tolerant facility and 32-2
migrating to native mode and 33-13

Checkpointing
description of 32-6
automatic 9-35
for data items

in Extended-Storage Section 7-38
in Working-Storage Section 7-36

for process pairs 13-35
for sync blocks 32-7
migration to native mode and 33-15
rules for 32-8, 32-9
STARTBACKUP statement and 9-254,
9-255
with multiple checkpoints 9-36

Circumflex(^) 12-20, 47-2

CLASS attribute
description of 12-21, 25-3
for labeled tape file 27-19
for unlabeled tape file 27-16

CLASS clause 6-19/6-21
Class conditions 8-59/8-61
Classes of data

description of 4-1
tests for

character sets and 6-8
numeric data and 8-61

user-defined 6-19
CLEAR command

description of 12-17/12-18
examples of 22-22, 25-9

CLOSE message 6-75
CLOSE routine 13-139
CLOSE statement

description of 9-37/9-41
fault-tolerant facility and 32-10
file connector and 4-11
implicit

CANCEL statement and 9-32
run unit termination and 9-38

Closed open mode 4-10
CLULIB file 13-30/13-31
CLU_PROCESS_CREATE_ routine 13-30
CLU_PROCESS_FILE_NAME_
routine 13-30
COBOL character set 3-2/3-3
COBOL file names

associating with system file
names 9-144, 26-5/26-9
characteristics of 26-4

COBOL language
HP

See HP COBOL
standard

See Standard COBOL
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-7

Index C
cobol utility (OSS)
running COBOL85 compiler
with 19-2/19-3

COBOL words
description of 3-7
qualified names 3-13/3-16
reserved words 3-9
system-names 3-10
user-defined names 3-10

COBOL85 compiler
See also cobol utility (OSS)
See also Compiler
description of 1-4
object files produced by 11-27

COBOL85^ARMTRAP routine 13-39
COBOL85^COMPLETION
routine 13-40/13-42
COBOL85^RETURN^SORT^ERRORS
routine 13-46/13-48
COBOL85^REWIND^SEQUENTIAL
routine 13-49/13-50
COBOL85^SET^SORT^PARAM^TEXT
routine 13-51/13-54
COBOL85^SET^SORT^PARAM^VALUE
routine 13-55/13-65
COBOL85^SPECIAL^OPEN routine

description of 13-70
for partitioned disk files 13-80/13-82
for printers and spoolers 13-71/13-77
for system log files 13-77/13-79
for tape files in CRE 13-82/13-84

COBOLASSIGN routine 13-86/13-88, 18-8
COBOLEX0 file 11-15, 13-23, 23-14
COBOLEX1 file 11-15, 13-23, 23-14
COBOLEXT file 11-15, 11-19, 11-23, 13-23,
23-13/23-15, 24-6
COBOLFILEINFO routine

description of 13-91/13-93
disk input-output and 28-42
in CRE 18-8
in OSS environment 19-25

COBOLLIB file
overview of 13-26, 13-29
CRE and 18-8
descriptions of routines
in 13-85/13-104
list of routines in 13-27

COBOLSPOOLOPEN routine
description of 13-95/13-100
error codes for 13-100
in CRE 18-8

COBOL_ASSIGN_ routine
description of 13-89/13-91
COBOL_SET_MAX_RECORD routine
and 13-67
in OSS environment 19-25

COBOL_COMPLETION_
routine 13-40/13-42
COBOL_CONTROL_ routine 13-43/13-45
COBOL_FILE_OPEN_ routine 13-93/13-95
COBOL_GETENV_ routine 13-45
COBOL_PUTENV_ routine 13-46
COBOL_RETURN_SORT_ERRORS_
routine

description of 13-46/13-48
in OSS environment 19-25

COBOL_REWIND_SEQUENTIAL_
routine 13-49/13-50
COBOL_SETMODE_ routine 13-67/13-70
COBOL_SET_MAX_RECORD_
routine 13-66/13-67
COBOL_SET_SORT_PARAM_TEXT_
routine

description of 13-51/13-54
in OSS environment 19-25

COBOL_SET_SORT_PARAM_VALUE_
routine 13-55/13-65
COBOL_SPECIAL_OPEN_ routine

description of 13-70
for partitioned disk files 13-80/13-82
for printers and spoolers 13-71/13-77
for system log files 13-77/13-79
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-8

Index C
COBOL_SPECIAL_OPEN_
routine (continued)

for tape files in CRE 13-82/13-84
in OSS environment 19-25

Code blocks
description of 11-27, 24-1/24-3
calling each other 24-3
replacing 24-15/24-16

CODE directive
description of 11-58
compiler listing and 22-41
migrating to native mode and 33-18
sample output from 22-54

Code generation control directives 11-49
Code segments 24-17/24-18
Codewright

See HP Tandem Extensions for
Codewright (TEC)

CODE-SET clause
description of 7-29
in external file 7-13

Collector process 30-3
Colon (:) 3-5
COLUMNS directive 10-13, 11-59
Combined conditions 8-65, 8-66
Comma (,)

See also Decimal point
as separator 3-5
in PICTURE clause 3-24, 7-57, 7-64

Command files
See OBEY command files

Command log, TACL 22-2/22-4
Command summary 35-1/35-12
Comments

description of 3-24
in ANSI reference format

for top of page 16-2
ordinary 16-2

in replacement text 10-10, 10-17

Comments (continued)
in Tandem reference format

for top of page 2-4
ordinary 2-4
restrictions on 2-7

punctuation characters in 3-6
COMMON attribute 9-25
Common phrases 8-22/8-27
Common programs 2-14, 9-25, 23-5
Common Run-Time Environment

See CRE
Common semantic rules 8-21
COMP data format

See COMPUTATIONAL data format
COMPACT directive

description of 11-60/11-61
migrating to native mode and 33-18

Comparisons
in EVALUATE statement 9-72
nonnumeric 8-55
numeric 8-55
of indexes 8-56
of national data items 8-56
of national literals 8-56

Compatible programs 11-74
Compilation

See also Compiler
banner 22-40, 22-41
batch 22-22
details of 11-9/11-25
environment for 22-20/22-22
for syntax checking only 22-18
in Guardian environment

description of 11-1/11-136,
22-13/22-22
with COBOL85 compiler 11-38
with NMCOBOL compiler 11-39

in OSS environment
with COBOL85 compiler 19-2/19-3
with NMCOBOL compiler 19-3/19-4
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-9

Index C
Compilation (continued)
statistics from 11-29/11-32
summary of

description of 22-41
for COBOL85 compiler 22-65
for NMCOBOL compiler 22-66

terminating
in Guardian environment 11-44
in OSS environment 19-1

units of
description of 11-5/11-7, 23-3
called programs and 11-7/11-8

with native COBOL cross
compiler 34-7

COMPILE directive 11-61
Compiler

See also Compilation
COBOL85 1-4
diagnostic messages from 47-1/47-93
directives for

See Compiler directives
errors

See Error messages, compiler
improving speed of 22-22
input to 1-5, 11-2/11-8
limits of 20-1/20-8
listing from

See Compiler listing
NMCOBOL 1-4
output from 1-6, 11-25/11-33
space allocation for 22-21
statistics from 11-30
terminating

in Guardian environment 11-44
in OSS environment 19-1

Compiler directives
description of 11-44/11-136
categories of 11-47/11-52
COPY statement and 10-5

Compiler directives (continued)
for code generation control 11-49
for CRE support 18-3
for listing control 11-48, 22-40
for miscellaneous control 11-51
for resolution and binding control 11-51
for warning messages 22-50
in ANSI reference format 16-2
in COPY libraries 10-13
in OSS environment 19-24
in Tandem reference format 2-4
locations for 11-45, 22-18
summary of 36-1/36-49

Compiler listing
banner 22-40
controlling 22-39/22-41
COPY statement and 10-5,
22-44/22-47
creation of 11-26
cross-reference 11-63, 33-22
diagnostic messages in

See Error messages, compiler
directives that control 22-40
discarding 22-40
embedded NonStop SQL/MP
and 22-48
empty 22-14
IF and IFNOT directives and 11-86
INNERLIST directive and 22-41
minimal 22-40
mnemonic codes in

COBOL85 compiler 11-83
NMCOBOL compiler 11-87

octal code in 11-58
reference format and 22-42
REPLACE statement and 10-16, 22-44
SOURCE libraries and 22-48
spooling 30-8
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-10

Index C
Compiler listing (continued)
summary

for COBOL85 compiler 22-65
for NMCOBOL compiler 22-66

uncompiled lines in 11-86
Completion codes 11-33
Complex conditions 8-64
Composites of arithmetic operands 8-43
COMPUTATIONAL data format

description of 7-69, 7-73
allocation for 4-14
arithmetic overflow and 8-25
compared to NATIVE-n data
format 7-77
PORT directive and 11-104
SYNCHRONIZED clause and 7-87
tape I-O and 27-14
value 8224 or 224 and 7-73

COMPUTATIONAL data items 33-10,
33-11, 33-12
COMPUTATIONAL-3 data
format 7-69/7-72, 7-74
COMPUTATIONAL-5 data format 7-70,
7-74, 7-77
COMPUTE statement 9-41/9-43
COMP-3 data format

See COMPUTATIONAL-3 data format
COMP-5 data format

See COMPUTATIONAL-5 data format
Concatenation expressions

description of 8-69/8-70
summary of of 38-13

Conditional compilation
description of 11-84
for maintaining common source
code 33-23

Conditional expressions
description of 8-53/8-69
summary of 38-9/38-12

Conditional statements
description of 8-6/8-7
EVALUATE 9-67/9-75
GO TO 9-82/9-83
IF 9-86/9-90

Conditional variables
description of 8-61
INDEX data items as 7-76

Conditions
abbreviated combined relation 8-66
at-end 8-40
class 8-59/8-61
combined 8-65, 8-66
complex 8-64
condition-name

See Conditional variables
error 8-40
evaluation rules for 8-68
invalid-key 8-40
negated 8-64
relation

See Relation conditions
sign 8-63
simple 8-53
switch-status 8-62

Condition-names
description of 4-25
description entries for 7-95
identical 3-16
in SET statement 9-224
qualified 3-13, 3-14
scope of 2-13

Configuration Section 6-3/6-22
Consistency checking of labeled tape
information 27-10
Consoles

See Terminals
Constants, figurative

See Figurative constants
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-11

Index C
CONSULT directive
description of 11-62/11-63
migrating to native mode and 33-15,
33-16, 33-17, 33-22

Content, passing parameters
by 23-21/23-22
Continuation lines

in ANSI reference format 16-3
in Tandem reference format 2-5

CONTINUE statement
explicit 9-44, 9-86, 9-211, 9-216
implicit 9-77

CONTROL message 6-75
CONTROLBUF message 6-75
Conversion

between EBCDIC and ASCII 27-12
for labeled tape files 27-11
from COBOL 74 to HP COBOL

TRAP2 and NOTRAP2
directives 11-132
TRAP2-74 and NOTRAP2-74
directives 11-134

of arithmetic operands 8-43
of other data types 27-13
to native mode

See Migrating to native mode
COPY libraries

description of 2-9, 10-11/10-14,
22-22/22-24
altering 22-24/22-29
copying from 22-30, 22-31
creating 22-24/22-29
debugging lines in 10-10
default, specifying 22-18
efficient use of 22-33
for CROSSREF utility 15-9
format of 10-12
from DDL compiler 22-26
including text from 22-29/22-33
matching text in 10-9

COPY libraries
multiple 22-33
names of, specifying 10-11
nondefault, specifying 22-33
REPLACE statement and 22-38

COPY statement
compared to SOURCE directive 22-23
compiler listing and 22-44/22-47
debugging lines and 22-33
diagnostic messages and 22-45/22-47
directives that control 22-40
IF directive and 11-85
REPLACING phrase of 10-7/10-11,
22-31
simple 22-30
SOURCE directive and 11-120
source manipulation and 10-2/10-6
substrings and 22-32

Correspondence
in DATA RECORDS clause 7-24
in EVALUATE statement 9-71
in MOVE CORRESPONDING
statement 9-132
of data items 8-22

CORRESPONDING phrase
description of 8-22
size error condition and 8-26

Corrupt bit 6-37
COS function 14-15
Cosine function 14-15
CPU option of RUN command 22-15
CPU utility routine parameter 13-56, 13-58
CPU-DOWN message 6-75
CPU-MASK parameter 13-53
CPU-UP message 6-75
CR (credit) 3-24, 7-57, 7-65
CRE (Common Run-Time Environment)

description of 23-2
HP COBOL support for 18-1/18-8
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-12

Index D
CRE (Common Run-Time
Environment) (continued)

library 23-2
structured files and 28-32

CREATEPROCESS routine 13-101/13-104
CREATE-NEW-OUTPUT parameter 13-56,
13-59
CREATE-NEW-SCRATCH
parameter 13-56, 13-59
Creating HP COBOL files

indexed 28-17/28-18
queue 28-19
relative 28-16/28-17
sequential 28-14/28-16

Creating programs 22-5/22-10
Creator ID, changing 31-39
Credit (CR) 3-24, 7-57, 7-65
CROSSREF directive

description of 11-63/11-66
compiler listing and 22-41
cross-reference listing and 22-63
migrating to native mode and 33-18

CROSSREF utility
description of 15-8/15-10
compared to CROSSREF
directive 11-63

Cross-reference listing
description of 22-63
compiler listing and 22-41
CROSSREF directive and 11-63
migrating to native mode and 33-18,
33-22

CURRENCY SIGN clause 6-21
Current position 30-12
Current spooler job 30-12
CURRENT-DATE function 14-16
Cursors 9-2
Customizing the PS TEXT EDIT (TEDIT)
editor 22-10

C++ routines
calling 9-58, 23-18
constructs peculiar to 9-64
ENTER statement and 9-58
migrating to native mode 33-4
passing parameters to 9-63,
23-26/23-29
restrictions on 9-63/9-64

D
D or d (the letters)

in ANSI reference format 16-2
in Tandem reference format 2-5

Data blocks 11-27, 24-1/24-3, 33-21
Data categories 7-60
Data declaration libraries 22-26
Data Definition Language (DDL)

description of 22-25/22-29
migrating to native mode and 33-5

Data description entries
for condition-names 7-95
for files 7-5/7-32
for independent data items 7-3
for records 7-2, 7-43/7-90
in Extended-Storage Section 7-37
in Linkage Section 7-39
in Working-Storage Section 7-34
level 66 7-91
level 77 7-93
level 88 7-95

Data dictionary 22-29
Data Division

description of 7-1/7-97
HP extensions affecting 17-3
summary of 42-1/42-14
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-13

Index D
Data items
alignment of

in memory 4-15/4-16
migrating to native mode and 33-5,
33-6/33-12
standard debugging tools and 15-1

alignment of data in 4-15
alphabetic 7-61
alphanumeric 7-61
alphanumeric edited 7-62
BINARY

See BINARY data format
categories of

description of 4-1
in Data Division 7-2

checkpointing 32-7
classes of 4-1
COMPUTATIONAL

See COMPUTATIONAL data format
COMPUTATIONAL-3

See COMPUTATIONAL-3 data
format

COMPUTATIONAL-5
See COMPUTATIONAL-5 data
format

corresponding 8-22
description entries for

See Data description entries
DISPLAY

See DISPLAY data format
elementary

See Elementary data items
external

See External objects
group

See Data structures
in File Section 7-46
in Linkage Section 7-46
independent 7-3

Data items (continued)
INDEX

See INDEX data format
initialization of

in Linkage Section 7-39
in Working-Storage Section 7-36
very large 11-54

intermediate 8-21, 8-44
internal

See Internal objects
levels of

description 4-1
level 01-49

See Records
level 66 7-91
level 77 7-3, 7-93
level 88 7-95

national
See National data items

NATIVE-n
See NATIVE-n data format

noncontiguous elementary 7-93
numeric

See Numeric data items
numeric edited 7-62
PACKED-DECIMAL

See PACKED-DECIMAL data
format

POINTER
See POINTER data format

qualifiers for 4-19
receiving 8-21
redefined 7-48/7-49, 7-81
references to 4-18/4-26
renaming 7-91
representation of 4-14
sending 8-21
shared 2-18/2-23, 23-17
size of 7-59
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-14

Index D
Data items (continued)
synchronized 7-86
that cannot have VALUE clauses 7-89

Data misalignment
See Address misalignment

DATA RECORDS clause 7-23, 7-32
Data structures

See also Files
See also Records
See also Tables
description of 4-2/4-14, 22-25
initializing 7-90, 9-93
MOVE statement and 9-130
redefined 7-49
storage allocation for 7-46
that cannot have VALUE clauses 7-89
USAGE clause and 7-72
VALUE clause and 7-90

Data type correspondence B-1
Data types other than HP 27-13
Databases

describing 22-25/22-29
NonStop SQL/MP, process pairs
and 9-36

Data-names
identical 3-16
qualified 3-13, 3-14
scope of 2-13

DATA-SLACK parameter 13-56, 13-59
DATE phrase 9-7
Date, current

ACCEPT statement and 9-7
CURRENT-DATE function 14-16

DATE-COMPILED paragraph 5-3, 5-5/5-6
DATE-OF-INTEGER function 14-17
DATE-WRITTEN paragraph 5-2, 5-3, 40-2
DAY phrase 9-7
DAY-OF-INTEGER function 14-18
DAY-OF-WEEK phrase 9-8
DB (debit) 3-24, 7-57, 7-65

DDL
See Data Definition Language (DDL)

Deadlock 28-38/28-40
DEB1 parameter 11-126
Debit (DB) 3-24, 7-57, 7-65
Deblocking files 7-16
Debug debugger 15-5/15-6
Debuggers

Debug 15-5/15-6
entering 25-15, 25-16
Inspect 15-5
native programs and 33-6
run-time 15-4
selecting 15-6/15-8
Visual Inspect 15-4

Debugging
batch-oriented 15-1/15-3
mode, entering 25-15/25-16
on native COBOL cross
compiler 34-7/34-10
position-independent code (PIC) 33-23,
34-8
programs

native 33-6
that use fault-tolerant facility 32-14
that use TMF 32-20

standard tools for 15-1/15-3
with debugging lines 15-1
with declaratives 15-2

Debugging lines
COPY statement and 10-5, 22-33
in ANSI reference format 16-2
in COPY libraries 10-10
in replacement text 10-17
in Tandem reference format 2-5

DEBUGGING MODE clause 6-4, 25-4
DEBUG-CONTENTS field 9-286
DEBUG-ITEM special register 9-285,
15-2/15-3
DEBUG-LINE field 9-286
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-15

Index D
DEBUG-NAME field 9-286
Decimal numeric literals 3-17/3-18
Decimal point

See also Comma
See also Period
in decimal numeric literal 3-17
in intermediate results 8-52
in PICTURE clause 3-24
placement in division 8-50

DECIMAL-POINT clause 6-22
Decision tables 9-67
Declarative procedures

conditional GO TO statement and 9-82,
9-83
for debugging 15-2/15-3
LOCKFILE statement and 9-117
unconditional GO TO statement
and 9-81

Declaratives Portion
execution of 8-20
syntax of 8-15/8-16

Declarative-file connections 13-100
Declaring parameters 9-27
Default misalignment handling
method 33-9
Defaults

ASSIGN command maximum 25-4
COPY library

for COPY statements 22-18
for CROSSREF utility 15-9

file security 28-5/28-6
function key 22-10
input device 25-10
object file name 22-16
output device 25-10
pathname, in OSS environment 19-6
processor for compilation
processes 22-20
reference format 22-6
run-time environment 22-19

Defaults (continued)
shortest record on tape file 27-1
subvolume 26-3
system 26-3
volume 19-6, 26-3

DEFINEs
description of 12-19/12-23
adding 25-2/25-3
attributes of 12-21/12-23, 25-3
characteristics of

changing 25-9
showing 25-8

clearing 25-9
compared to ASSIGNs 12-19
creating 12-22
deleting 25-9
for tape files

description of 27-15/27-24
labeled 27-18/27-24
unlabeled 27-16/27-18

maximum number of 25-8
names of 12-20, 25-3, 26-9
on PC 34-10
predefined 11-36, 22-19
propagation of 12-20

DELETE DEFINE command 25-9
DELETE statement 9-45/9-47
DELETEASSIGN routine 13-111/13-113
Deleted records 28-14
DELETEPARAM routine 13-114/13-115
DELETESTARTUP routine 13-116/13-117
Delimited-scope statements 8-7
Depending items 7-84
Deploy command 34-11
Descendants of processes 31-35
Describing databases 22-25/22-29
DEV subcommand of SPOOLCOM
utility 30-17
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-16

Index D
DEVICE attribute of DEFINE
for labeled tape file 27-22
for unlabeled tape file 27-16

DEVICEINFO2-COMPLETION
message 6-75
Devices

default input and output 25-10
default input-output 25-5
DISPLAY statement and 9-48
OPEN statement and 9-144
system file names of 26-3

DEVICE-INFO message 6-75
DIAGNOSEALL directive 11-71
DIAGNOSE-74 directive 11-66/11-69
DIAGNOSE-85 directive

description of 11-70
migrating to native mode and 33-20

Diagnostic messages
compiler

See Error messages, compiler
directives that control 22-40
reported against copied
lines 22-45/22-47
run-time

See Error messages, run-time
separately compiled programs
and 22-51

Dictionary overflow 33-6
Directives

See Compiler directives
Directly contained programs 2-10, 23-4
Disk files

See also Files
allocation of 28-2
audited 28-33
blocking and deblocking 7-17
entry-sequenced

description of 28-12
alternate keys and 28-36
creating and using 28-14

Disk files (continued)
establishing starting points
in 28-20/28-30
exclusion modes for 28-6
improving performance of 28-31/28-35
in TMF environment 32-17
indexed 28-13/28-14, 28-17/28-18
input-output with

description of 28-1/28-12
by called programs 28-7
Enscribe routines and 28-40/28-47
time limits on 28-7, 28-39

key-sequenced 28-13/28-14
locking 28-3
maximum number per volume 28-9
modifying 28-9
on other nodes 28-6
optimizing processing of 28-31/28-37
optimizing storage of 28-37
ownership of 28-3
partitioned 28-2, 28-37
permanent 26-2
purging 28-2
record blocking for 28-31/28-35
relative 28-12/28-13, 28-16/28-17
security of 28-3/28-6
sharing 28-8/28-9
structured

description of 28-10
entry-sequenced 28-12, 28-14
improving performance
of 28-31/28-35
indexed 28-13/28-14, 28-17/28-18
key-sequenced 28-13/28-14
record blocking for 28-31/28-35
relative 28-12/28-13, 28-16/28-17

temporary 26-3
types of 28-9
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-17

Index E
Disk files (continued)
unstructured

description of 28-9
creating and using 28-15
faster processing of 28-31

with fixed-length records 28-6
with variable-length records 28-6

DISPLAY data format
description of 7-70, 7-75
converting 27-14
SYNCHRONIZED clause and 7-87

DISPLAY statement
description of 9-47/9-50
in OSS environment 19-24
unqualified 25-10
with NO ADVANCING phrase 9-2
with printer 30-22
with terminal 29-2/29-3, 29-10, 29-13

Displaying
figurative constant values 9-49
large amounts of data 9-50
multiple values 9-49
nonnumeric values 9-49
numeric values 9-49
on devices 9-48
records 9-50
TACL commands 22-2

DIVIDE statement
description of 9-50/9-57
precision of 8-50/8-51

Division operator 8-24, 8-46
DLLs

See Dynamic-link libraries (DLLs)
Dollar sign ($) 3-24, 7-57, 7-66
Dummy routines, files of 13-23
Dumps, online 32-17
Duplicate operations 32-7/32-8
Duplicate replies 6-64
Duplicate requests 6-64

DUPLICATES phrase
description of 6-26
for indexed file 6-51
for relative file 6-45
for sequential file 6-34

Dynamic access mode
DELETE statement and 9-47
file organization and 4-8
file processing and 6-25

Dynamic calls 23-6, 24-14
Dynamic file assignments 26-8, 27-3
Dynamic-link libraries (DLLs) 13-11/13-22

E
EBCDIC code set 7-29
EBCDIC tape files 27-12
EDIT editor 22-7
EDIT files

description of 22-5
creating and using 28-16
FILE-CONTROL paragraph and 6-33
variable-length records in 28-9
writing to 9-296

Editing
in PICTURE clause

description of 3-24, 7-63/7-68
fixed insertion 7-65
floating insertion 7-66
simple insertion 7-64
special insertion 7-64
zero suppression 7-67

of source code
See Editors

of TACL commands 22-4
Editors

Codewright with TEC 22-11/22-12
EDIT 22-7
HP 22-24
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-18

Index E
Editors (continued)
PS TEXT EDIT (TEDIT) 22-8/22-10
VS full-screen 22-8

Elementary data items
description of 4-1
clauses restricted to 7-46
default USAGE for 7-75
initializing 9-93
passed by content 23-21
passed by reference 23-23
redefined 7-49
storage allocation for 7-46
that cannot have VALUE clauses 7-89
USAGE clause and 7-72

Elements
of HP COBOL language 3-1/3-24
of records 4-5
of tables 4-12

Embedded NonStop SQL/MP
compiler listing and 22-48
format restrictions on 2-7
in user libraries 33-22
migrating to native mode and 33-22

Embedded SQL/MP 1-2, 34-3, 34-4, 34-7
Embedded SQL/MX 1-2, 34-3, 34-4, 34-7
EMS

See Event Management Service (EMS)
ENABLE utility 28-9
END PROGRAM statement 2-2
ENDIF directive 11-71
ENDUNIT directive 11-72
ENFORM programs 23-15
Enscribe database record manager 6-34,
28-10
Enscribe routines 28-40/28-47
ENTER COBOL statement 9-67
ENTER statement

description of 9-58/9-66, 11-12/11-16,
23-7
at object program level 24-3

ENTER statement (continued)
detailed explanation of 11-16/11-23
migrating to native mode and 33-15,
33-17
X/Open CALL statement and 9-29,
23-7

Enterprise Toolkit (ETK)
debugging and 34-7
native COBOL cross compiler and 34-3
online help for 34-11
TACL DEFINE files and 34-2

Entry-sequenced files
description of 28-12
alternate keys and 28-36
creating and using 28-14

ENV directive 11-72
description of 11-72/11-74
migrating to native mode and 33-13,
33-18

Environment
compilation 22-20/22-22
run-time

description of 23-2
determining 11-73, 22-19
for various languages 18-2

Environment Division
description of 6-1/6-76
HP extensions affecting 17-3
summary of 41-1/41-22
syntax of 6-2

Environment variables 19-7, 35-10
Equal sign

as operator 8-54
in pseudo-text delimiter 3-5

EQUAL TO operator 8-54
ERROR CODE phrase 6-67, 6-72, 11-25
Error codes for COBOLSPOOLOPEN
routine 13-100
Error conditions 8-40
Error files 22-52
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-19

Index E
Error messages
Binder 22-52
compiler

description of 22-49/22-52
See also Failure messages
See also Warning messages
characteristics of 47-1
ERROR directive and 11-76
ERRORFILE directive and 11-75,
22-15
format of 47-3
from other products 47-95
list of 47-4/47-93

run-time
description of 25-14, 48-1
associated with tape files 27-26
external 8-34/8-39
fatal 8-42
format of

CRE 48-5
non-CRE 48-2/48-4

Guardian abnormal
termination 48-7/48-10
input-output 8-33/8-39, 48-6
list of 48-10/48-70
procedures for handling 25-14
program logic 8-33
SORT 48-6

ERRORFILE directive 11-75, 22-52
Errors

See Error messages
ERRORS directive 11-76
Error-handling procedures 25-14
Establishing starting points in disk
files 28-20/28-30
ETK

See Enterprise Toolkit (ETK)
EVALUATE statement 9-67/9-75

Event Management Service (EMS)
devices

opening 13-77
sending events to 13-79

tracing facility and 33-8
Exact positioning 28-23
EXCEPTION phrase 9-22
Exclamation mark (!) 22-3, 30-16
Exclusion modes 4-10, 9-155, 28-6
EXCLUSIVE exclusion mode 4-10, 9-155,
28-38
Executable files

See Loadfiles
Execution

of Declaratives Portion 8-20
of loadfiles 1-8
of paragraphs 8-17
of Procedure Division 8-16/8-20
of procedures 8-20
of programs

description of 27-24/27-26
in Guardian
environment 12-1/12-26,
25-9/25-14
in OSS environment 19-4
that use tape files 27-24/27-26

of sections 8-18
of sentences 8-17
of statements 8-16

Execution modes 1-3
EXECUTION-LOG parameter 12-13
EXIT statement 9-76/9-80
EXPIRATION attribute of DEFINE

for labeled tape file 27-23
for unlabeled tape file 27-18

Expired time limit 8-41
Explicit scope terminators 8-7
Explicit transfer of control 8-18
Exponentiation operator

description of 8-24, 8-46
migrating to native mode and 33-17
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-20

Index F
Expressions
arithmetic

See Arithmetic expressions
concatenation

description of 8-69/8-70
summary of 38-13

conditional
description of 8-53/8-69
summary of 38-9/38-12

EXTDECS file 23-13, 23-14
EXTDECS0 file 23-14
EXTDECS1 file 23-14
Extend open mode 4-10
Extended addressing 7-40
Extended entry point (XEP) table 24-17
EXTENDED parameter 11-125
EXTENDED-STORAGE access mode 7-40
Extended-Storage Section

description of 7-37/7-38
backing up 9-255
checkpointing and 9-35
data description entries in 7-37
large amounts of data and 24-21
LESS-CODE 1 directive and 24-22
migrating to native mode and 33-18

Extensible parameter lists 23-13
Extensions to ISO/ANSI COBOL 17-1/17-5
Extents, file 28-2
EXTERNAL clause

description of 7-11/7-13, 7-52/7-53
CRE and 18-5
heritability of 7-12
in record description entry 7-45
initializing data items and 7-36
REDEFINES clause and 7-50

External errors 8-34/8-39

External objects
description of 2-17, 7-2
files

connectors for 4-11
consistency of 7-12
keys in 7-12
names of 28-41
#RECEIVE blocks for 11-25

global 2-18
initialization of 7-36
items required to be 7-12
native user library and 13-10
records 7-52
sharing with C programs 23-17
status during program execution 12-25
switches 8-62, 9-224, 25-6

External references 24-3

F
FACTORIAL function 14-19
FAIL misalignment handling method 33-9
Failure messages

format of 47-3
in compiler listing 22-51
list of 47-4/47-93

FALL THROUGH field 9-286
FALSE value 8-54
Fast I-O

See HP COBOL Fast I-O
FastSort interface routines 13-25/13-26
Fatal errors 8-42
Fault-tolerant facility

description of 32-3/32-14
debugging programs for 32-14
designing programs for 32-13
example of 32-12/32-13

FC command 22-4
FD entries

See File description entries
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-21

Index F
Federal Information Processing Standard
(FIPS) 11-76
Figurative constants

description of 3-21
defined by SYMBOLIC CHARACTERS
clause 6-18
displaying values of 9-49
length associated with 3-22
program collating sequence and 6-18
where allowed 3-22

File assignments
at compilation time 25-3
dynamic 26-8, 27-3

File attributes 28-41/28-42
File connectors

description of 4-11
CANCEL statement and 9-32
external and internal 2-17
shared 7-11

File description entries
description of 7-5/7-30
for line sequential files 19-14
record description entries and 7-47

File extents 28-2
File names

COBOL
associating with system file
names 9-144, 26-5/26-9
characteristics of 26-4

HP, for permanent disk files 26-2
multiple, for one physical file 28-42
physical 28-41
scope of 2-13
special 26-5
system

description of 26-2/26-4
for devices 26-3
for nondisk files 26-3
for temporary disk files 26-3

unqualified 11-36, 22-19

File numbers 28-41/28-42
File position indicators

description of 4-11
OPEN statement and 9-146
timed input-output and 8-42

File Section 7-3/7-32
FILE STATUS clause

description of 6-26
file type and 6-24
for indexed file 6-51
for line sequential file 6-40, 19-14
for relative file 6-44
for sequential file 6-33

File system 26-1
File system routines 23-10
File Utility Program (FUP)

DDL compiler and 22-28
multiple-tape files and 9-40, 27-7

FILENAME-FINDNEXT-COMPLETION
message 6-75
Files

description of 4-6/4-12, 26-1/26-10
access modes of 4-8
assigned to disk devices 9-150
assigned to processes 9-149
assigned to tape devices 9-154
assigned to terminals 9-149
attributes of 28-41/28-42
audited 6-36, 32-17
blocking and deblocking 7-16
closing blocked 9-39
code 180

See Line sequential files
command

See OBEY command files
created by programs 25-4
disk

See Disk files
EDIT

See EDIT files
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-22

Index F
Files (continued)
error 22-52
exclusion modes of 4-10
executable

See Loadfiles
external 7-12

See External objects, files
in OSS environment 19-8/19-11
indexed

See Indexed files
internal

See Internal objects, files
key-sequenced

See Indexed files
labeled

See Labeled tape files
line sequential

See Line sequential files
locking 9-37, 9-115/9-118, 26-9, 28-38
nonexistent 9-148, 9-151/9-152
numbers of 28-41/28-42
OBEY command 22-16
object

See Object files
of dummy routines 13-23
open modes of 4-10
opening 9-138/9-156
organization of 4-7
OSS 19-11
partitioned 28-37
positioning

description of 28-23/28-30
approximate 28-24
exact 28-23
generic 28-24/28-26
to record with same alternate
key 28-26/28-30

prereading records of 26-10, 27-1
processes treated as 26-10

Files (continued)
purging

description of 28-2
contents only 28-44
entire 28-43/28-44

queue
See Queue files

reading 9-177/9-200
relative

See Relative files
renaming 28-44
saveabend 11-111
scratch

See Scratch file
sequential

See Sequential files
shared 2-24
sort-merge

See Sort-merge files
swap

See Swap file
TACL DEFINE 34-2
tape

See Tape files
target 11-10

in single program unit
compilation 11-11

temporary
See Temporary files

terminals as 29-4/29-5
type 101

See EDIT files
type 106 22-52
unaudited 32-3
unqualified 22-19
updating 9-202
writing 9-292/9-305

FILES command 22-18
FILESEQ attribute of DEFINE 27-22
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-23

Index F
File-control entries
generally 6-23/6-27
for indexed files 6-47/6-53
for line sequential files 6-38/6-40,
19-12/19-14
for queue files 6-54
for relative files 6-40/6-46
for sequential files 6-28/6-37
for sort-merge files 6-55/6-56

FILE-CONTROL paragraph 6-23/6-56
FILE-GETINFOBYNAME-COMPLETION
message 6-75
File-Mnemonic clause

description of 6-14/6-15
migrating to native mode and 33-15

File-status data item
description of 6-26
CLOSE statement and 9-38
UNLOCKRECORD statement
and 9-271

FILE_GETINFO_ routine 28-42
FILLER bytes 4-16/4-18, 33-11, 33-12
FILLER keyword

in DATA RECORDS clause 7-24
in record description entry 7-44, 7-48

FIPS directive 11-76
Fixed insertion editing 7-65
Fixed-length records

description of 4-5, 7-20
in entry-sequenced files 28-12
in indexed files 28-14
in key-sequenced files 28-14
in relative files 28-13
in unstructured files 28-9

Fixed-size tables 7-79
FIXERRS macro 15-10, 22-52
Fixup operation 24-8/24-9
Flags (OSS)

cobol utility 19-2
nmcobol utility 19-3

FLOAT directive 11-78
Floating insertion editing 7-66
FMAP directive

description of 11-78
migrating to native mode and 33-20

Footing of page 7-26
Form names for spooler jobs 30-7
Formal parameters, adding 23-13
Format

reference
See ANSI reference format
See Tandem reference format

report 30-20/30-21
source program 2-1/2-24
standard COBOL 8-13

FORTRAN routines
calling 9-58
in TNS user library 24-19
migrating to native mode 33-5
passing CHARACTER parameters to
TAL routines 9-65
passing parameters to 9-62,
23-29/23-30
restrictions on 9-64, 23-18
run-time environment for 23-2

FROM phrase 8-27
FTP tool 34-11
Functions

C and C++ 9-63/9-64
GIVING phrase and 9-61
intrinsic

See Intrinsic functions
Pascal 9-64
TAL 9-65
X/Open CALL statement and 9-19,
23-9

FUP
See File Utility Program (FUP)
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-24

Index G
G
GENERIC phrase 9-238
Generic positioning 28-24/28-26
GETASSIGNTEXT routine 13-118/13-120
GETASSIGNVALUE routine 13-120/13-121
GETBACKUPCPU routine 13-122
getenv (C function) 9-64
GETPARAMTEXT routine 13-123/13-124
GETSTARTUPTEXT
routine 13-125/13-126
GIVING phrase

description of 9-61, 23-9
C functions and 9-64

GLOBAL clause 7-14, 7-53
Global names 2-16
GO TO statement

description of 9-81/9-83
ALTER statement and 9-16
initial state of program and 12-24
PERFORM cycle and 9-158
program termination and 12-26
status during program execution 12-25

GREATER THAN operator 8-54
GREATER THAN OR EQUAL TO
operator 8-54
Group data items

See Data structures
Guardian environment
features 19-23/19-24
GUARDIAN-ERR special register 9-187,
13-82, 13-84, 13-93, 13-95

H
HEADING directive 11-79
HEAP directive 11-80
Heritability

of access mode 7-40
of EXTERNAL clause 7-12
of global attribute 7-54

Heritability (continued)
of global names 2-16
of internal file access 9-28

Hexadecimal literals
nonnumeric 3-20
numeric 3-18

Hierarchy
of arithmetic operators 8-47
of qualified names 3-14

HIGH parameter 11-125
HIGHPIN directive

description of 11-80/11-82
migrating to native mode and 33-18

HIGHREQUESTERS directive
description of 11-83
migrating to native mode and 33-19

High-PIN requester servers 11-83
HIGH-VALUE or HIGH-VALUES figurative
constant 3-23
HISTORY command 22-2
Home terminal 25-11
HP COBOL language

description of 1-1/1-2
addressing parameters in 9-62
CRE support in 18-1/18-8
elements of 3-1/3-24
limits of 20-1/20-8
modules of 1-2

HP extensions to ISO/ANSI
COBOL 17-1/17-5
HP NonStop Transaction Management
Facility (TMF)

description of 32-3, 32-14/32-20
debugging programs that use 32-20
designing programs for 32-18
requester screen transactions
and 32-19

HP NonStop TS/MP system servers 32-3
HP Tandem Advanced Command
Language

See TACL
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-25

Index I
HP Tandem Extensions for Codewright
(TEC) 22-11/22-12
HP COBOL Fast I-O

description of 28-34/28-35
audited files and 6-36
for indexed files 6-52
for relative files 6-46
for sequential files 9-190
WAITED-IO and 12-12

HP COBOL programs
altering 22-5/22-10
called

description of 11-4
reading disk files from 28-7

calling 11-4
common 2-14, 9-25, 23-5
compiling

See Compilation
creating 22-5/22-10
designed for fault-tolerant facility 32-13
designed for TMF 32-18
directly contained 23-4
divisions of 2-2
executing

See Execution
for both COBOL85 and NMCOBOL
compilers 33-23
format and organization of 2-1/2-24
in same run unit 2-14
in TNS user library 18-6, 24-19
indirectly contained 23-4
initial

See Initial programs
initial state of 9-26
libraries of 11-73
logging activity of 30-22
main

See Main programs
migrating to native mode 33-1/33-23

HP COBOL programs (continued)
nested

See Nested programs
non-COBOL characters in 3-3
OSS files in 19-11
OSS pathnames in 19-10
segmentation of 24-23
separately compiled

See Separately compiled programs
text manipulation in 10-1/10-18
with large amounts of
code 24-17/24-20
with large amounts of data 24-21/24-22
with same name 9-25

Hyphen (-)
See also Minus sign (-)
in ANSI reference format 16-3
in COBOL words 3-7
in Tandem reference format 2-5

I
IBM standard labels 27-20
ICODE directive

description of 11-83
compiler listing and 22-41
migrating to native mode and 33-19
sample output from 22-55

IDE
See Borland integrated development
environment (IDE)

Identification Division
description of 5-1/5-6
summary of 40-1/40-2

Identification field 16-4, 22-43
Identifiers 4-24/4-25
IF directive 11-84
IF sentences 9-87
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-26

Index I
IF statement
description of 9-83/9-90
nested

conditional 9-87
delimited-scope 9-84

IFNOT directive 11-84
Imperative statements 8-5
Implicit CLOSE statement 9-32
Implicit FILLER bytes 4-16/4-18, 33-11,
33-12
Implicit MOVE statement 9-93/9-94
Implicit transfer of control 8-18
Improving compilation speed 22-22
IN option of RUN command 22-13, 25-11,
26-6
Independent segments

description of 8-14, 24-23
ALTER statement and 9-18

INDEX data format
See also Indexes
description of 7-70, 7-76

Indexed files
description of 4-7
access modes of 4-9
closing 9-40
creating 28-17/28-18
determining key value of last record
of 9-248
file description entries for 7-10
file-control entries for 6-24, 6-47/6-53
opening 9-138
poorly organized 6-52
rewriting 9-202/9-207
with alternate keys 28-18
writing 9-301/9-305
description of 28-13

INDEXED phrase 7-80
Indexes

as parameters 9-28
converting to occurrence numbers 4-21

Indexes (continued)
instead of subscripts 4-21, 7-82
MOVE statement and 9-128

Index-names
description of 7-80
applied to different tables 7-82
as parameters 9-28
assigning values to 9-221/9-224
comparisons of 8-56
in Linkage Section 7-42
incrementing and decrementing 9-226
scope of 2-14
searching tables and 9-218
SET TO statement for 9-221/9-224
SET UP or SET DOWN statement
for 9-226

INDEX-SLACK parameter 13-56, 13-60
Indicator area

description of 22-43
in ANSI reference format 16-2
in Tandem reference format 2-4/2-6

Indirectly contained programs 2-10, 23-4
Initial programs

description of 2-14, 23-5
CALL statement and 9-26
CANCEL statement and 9-32
storage allocation for 9-27

Initial state of program 9-26, 12-24
Initialization

messages caused by 11-109, 11-128
of data items

in Linkage Section 7-39
in Working-Storage Section 7-36
very large 11-54
when it occurs 7-36

of STRING statement 9-259
tallying and 9-99

INITIALIZE statement 9-91/9-94
Initiating processes 31-3/31-6
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-27

Index I
INNERLIST directive
description of 11-87
compiler listing and 22-41
migrating to native mode and 33-20
sample output from 22-55

Input
See also Input-output
description of 26-1/26-11
default device for 25-10
from disk files 28-1/28-47
from tape 27-1/27-26
from terminals 29-1/29-15
open mode 4-10
to compiler 1-5, 11-2/11-8

Input-output
See also Input
See also Output
description of 8-28/8-42
default device for 25-5
errors

diagnosing 8-33/8-39
messages for 48-6
recovering from 8-39/8-41

mixing COBOL and FORTRAN
operations in 9-64
open mode 4-10
statements 9-148
status codes

description of 8-28/8-42
DELETE statement and 9-46
GUARDIAN-ERR and 8-35/8-39
LOCKFILE statement and 9-116
OPEN statement and 9-144

timed 8-41/8-42
Input-Output Section 6-22/6-76
INSERTIONORDER parameter 6-27, 6-34,
6-51
INSPCI error messages 22-51

Inspect debugger
description of 15-5
native COBOL cross compiler and 34-8
native programs and 33-6
symbol table for 11-130

INSPECT directive 11-88
INSPECT statement 9-95/9-115
INSTALLATION paragraph 5-2
Instruction Failure trap (trap 1) 33-9
Integer date format

converting
to Julian date format 14-18
to standard date format 14-17

obtaining
from Julian date format 14-23
from standard date format 14-21

INTEGER function 14-20
Integer functions

description of 14-5
DATE-OF-INTEGER 14-17
DAY-OF-INTEGER 14-18
FACTORIAL 14-19
INTEGER 14-20
INTEGER-OF-DATE 14-21
INTEGER-OF-DAY 14-23
INTEGER-PART 14-24
LENGTH 14-25
MOD 14-37
ORD 14-43
ORD-MAX 14-43/14-44
ORD-MIN 14-45/14-46

INTEGER-OF-DATE function 14-21
INTEGER-OF-DAY function 14-23
INTEGER-PART function 14-24
Intermediate data items 8-21, 8-44
Intermediate results 8-51
Internal objects

description of 2-17, 7-2
CANCEL statement and 9-32, 12-26
file connectors 4-11
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-28

Index I
Internal objects (continued)
files, #RECEIVE blocks for 11-25
initialization of 7-36
status during program execution 12-25

Internal references 24-3
Interprocess communication
example 31-13/31-15
Interrecord gaps 27-2
INTO phrase 8-27
Intrinsic functions

description of 14-1/14-64
alphanumeric

description of 14-3
CHAR 14-13/14-14
CURRENT-DATE 14-16
LOWER-CASE 14-28
REVERSE 14-53
UPPER-CASE 14-61
WHEN-COMPILED 14-63/14-64

arguments of 14-6
integer

description of 14-5
DATE-OF-INTEGER 14-17
DAY-OF-INTEGER 14-18
FACTORIAL 14-19
INTEGER 14-20
INTEGER-OF-DATE 14-21
INTEGER-OF-DAY 14-23
INTEGER-PART 14-24
LENGTH 14-25
MOD 14-37
ORD 14-43
ORD-MAX 14-43/14-44
ORD-MIN 14-45/14-46

nested 14-3
numeric

description of 14-4
ACOS 14-8
ANNUITY 14-9
ASIN 14-11

Intrinsic functions (continued)
numeric (continued)

ATAN 14-12
COS 14-15
LOG 14-26
LOG10 14-27
MEAN 14-31
MEDIAN 14-32
MIDRANGE 14-34
NUMVAL 14-38/14-39
NUMVAL-C 14-40/14-42
PRESENT-VALUE 14-47/14-48
RANDOM 14-49
REM 14-52
SIN 14-54
SQRT 14-55
STANDARD-
DEVIATION 14-56/14-57
TAN 14-60
VARIANCE 14-62/14-63

summary of 44-1/44-12
types of 14-3
variable-type

description of 14-6
MAX 14-29/14-30
MIN 14-35/14-36
RANGE 14-50/14-51
SUM 14-58/14-59

INVALID KEY phrase
in DELETE statement 9-45
in READ statement 9-197
in REWRITE statement 9-203, 9-207
in START statement 9-242, 9-244,
9-245
in WRITE statement 9-294
USE AFTER EXCEPTION procedures
and 9-288

Invalid-key condition
description of 8-40
for READ statement 9-199
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-29

Index J
Invalid-key condition (continued)
for REWRITE statement 9-207
for START statement 9-244

IN-FILE-COUNT parameter 13-56, 13-59
IN-FILE-EXCL parameter 13-56, 13-60
In-line PERFORM statement 9-159
I-O

See Input-output
I-O-CONTROL paragraph 6-57/6-63
I/O

See Input-output

J
JOB subcommand of SPOOLCOM
utility 30-16
Jobs, spooler

See Spooler jobs
JOB-PROCESS-CREATION message 6-75
Julian date format

converting to integer date format 14-23
obtaining from integer date
format 14-18

JUSTIFIED clause
description of 7-87
for INDEX data item 7-76
for NATIVE-n data item 7-76

K
Key of reference

OPEN statement and 9-146
READ statement and 9-199

KEY phrase 7-81
Keys

alternate record
for indexed files 6-51
for relative files 6-45
for sequential files 6-34

in external files 7-12
in START statement 9-244
locking 32-18

Keys (continued)
merge 9-122
of reference 28-21/28-22
record 6-51
relative 6-45
sort 9-231
Status Key 1 8-29
Status Key 2 8-30

Key-sequenced files
See Indexed files

L
LABEL RECORDS clause

description of 7-22
for labeled tape file 27-20
for unlabeled tape file 27-17
in external file 7-13

Labeled tape files
description of 27-8/27-12
bypassing labels of 27-20
consistency checking of 27-10
converting programs to use 27-11
DEFINEs for 27-18/27-24
describing 27-10
mount messages for 27-25
OPEN statement and 9-146

LABELS attribute of DEFINE
for labeled tape file 27-20
for unlabeled tape file 27-17

Language elements
HP extensions affecting 17-2
ignored 20-8
summary of 38-1/38-6

Large data area
description of 13-7
LARGEDATA directive and 11-88

LARGEDATA directive
description of 11-88/11-90
migrating to native mode and 33-16
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-30

Index L
Large-memory model 9-63
LD directive 11-91
ld utility

native COBOL cross compiler and 34-7
NMCOBOL compiler and 33-21

Leading characters 9-97
LEFT keyword 7-87
LENGTH function 14-25
LESS THAN operator 8-54
LESS THAN OR EQUAL TO operator 8-54
LESS-CODE directive 11-91/11-93, 24-22
Level 2 spooler protocol 13-95/13-99
Level 66 data items 7-91
Level 77 data items 7-3, 7-93
Level 88 data items 7-95
Levels of data 4-1
Level-1 spooling 30-8
Level-2 spooling 30-9/30-10
Level-3 spooling 30-10
Level-numbers

description of 4-2/4-3
in redefined data items 7-50
OCCURS clause and 7-81

LIB option of RUN command 24-9
Libraries

description of 13-1/13-139
COPY

See COPY libraries
data declaration 22-26
dynamic-link (DLLs)

See Dynamic-link libraries (DLLs)
linkfiles as 13-8
migrating to native mode and 33-14,
33-21
native shared run-time

See Native SRLs
programs in 11-73
public shared run-time 13-1

Libraries (continued)
shared run-time

See Dynamic-link libraries (DLLs)
See Native SRLs

system 13-8
TNS 13-1
user

See User library
LIBRARY directive

description of 11-93
migrating to native mode and 33-15,
33-16

Library programs 11-73
Limits of HP COBOL 20-1/20-8
LINAGE clause

description of 7-24/7-25
in external files 7-13

LINAGE-COUNTER special register
description of 7-28
qualified 3-14, 3-15

Line sequential files
description of 4-7, 19-11/19-12
access modes of 4-8
closing 9-37/9-40
file description entries for 7-9/7-10
file-control entries for 6-24,
19-12/19-14
opening 19-17/19-19
reading 9-193/9-194, 19-20/19-21
repositioning 9-40
rewriting 9-208, 19-21/19-22
writing 9-300, 19-22

LINES directive 11-94
Linkage Section

description of 7-38/7-42
absence of 7-42
data description entries in 7-39
initializing data items in 7-39
types of items in 7-41
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-31

Index L
Linkfiles
as libraries 13-8
combining into one DLL 13-16
when COBOL85 compler
produces 11-27
when NMCOBOL compler
produces 11-27

Linking
called programs’ object code 11-23
HP COBOL programs

automatically 24-10/24-13
to be called dynamically 24-14
with nld utility 24-14

native COBOL cross compiler and 34-7
PIC and non-PIC object files 11-55,
11-101, 11-116

LIST directive
description of 11-95, 22-40
overriding 11-129

Listing
cross-reference 22-41, 22-63, 33-22
directives that control 11-48
octal code 22-41, 22-54
symbol table 22-53
symbolic code 22-41, 22-55

Literals
description of 3-16/3-23
national

See National literals
NATIVE-8 data format and 7-76
nonnumeric

See Nonnumeric literals
numeric

See Numeric literals
LMAP directive

description of 11-96/11-97
compiler listing and 22-41
migrating to native mode and 33-19
sample output from 22-63

Load maps 22-41, 22-63

Loadfiles
executing 1-8
in OSS 1-4
main programs and 11-3
of separately compiled parts 1-7
on PC 1-4
processes and 24-8
RUNNABLE directive and 11-107
running as processes 12-2
when COBOL85 compler
produces 11-27
when NMCOBOL compler
produces 11-27

Local buffering
for indexed files 6-52
for relative files 6-46
for sequential files 6-36

Local names 2-16
LOCK phrase

for relative, indexed, or queue file 9-41
for sequential or line sequential
file 9-38

Locked open mode 4-10
LOCKFILE statement 9-115/9-118
Locking

files 9-37, 26-9, 28-3, 28-38
keys 32-18
records 28-38, 32-18

LOG function 14-26
LOG10 function 14-27
Logging program activity

to printer 30-22
to terminal 29-14

Logical operators
in combined conditions 8-65
in conditional expressions 8-64

Logical pages 7-26
Logical records 4-4
LOGICAL-CLOSE message 6-75
LOGICAL-OPEN message 6-75
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-32

Index M
LOWER-CASE function 14-28
LOW-VALUE or LOW-VALUES figurative
constant 3-23

M
MAIN directive 11-98
Main programs

description of 11-3, 11-98, 23-3
CANCEL statement and 9-33
identifying 7-42

Manipulating object files 11-28, 33-21
MAP directive 11-99, 22-41, 22-53
Margins

See also Reference format
A 2-4, 2-6, 16-4
B 16-4
C 2-4, 16-2
L 16-1
R 2-6, 16-4
top and bottom 7-26

MAX function 14-29/14-30
Maximum code block size 24-18
MEAN function 14-31
MEDIAN function 14-32
MEM option of RUN command 25-4
Memory 31-2
Memory areas 13-6/13-7
MEMORY-LOCK-COMPLETION
message 6-75
MEMORY-LOCK-FAILURE message 6-75
MEMORY-SIZE clause 6-5, 6-6
Merge keys 9-122
MERGE statement 9-119/9-127
Message indicator line 47-2
MESSAGE SOURCE phrase

description of 6-67, 6-72
CRE and 18-5
operating system messages and 26-11
#RECEIVE and 11-25

Messages
determining source of 31-24
error

See Error messages
failure 47-3
generated by asynchronous hardware
events 6-74
initialization 11-109, 11-128
REPORT clause 6-75
saved 13-36
system

CRE and 18-6
intercepting 26-10
list of 6-73

tape mount 13-84
warning 8-34, 47-3

MESSAGE-CANCELLED message 6-75
MESSAGE-MISSED message 6-75
MIDRANGE function 14-34
Migrating to native mode

description of 33-1
guidelines for 33-3/33-22
reasons for 33-2/33-3

MIN function 14-35/14-36
MINSPACE parameter 13-56, 13-60
MINTIME parameter 13-56, 13-61
Minus sign (-)

See also Hyphen (-)
as arithmetic operator 8-46
in PICTURE clause 3-24, 7-57, 7-65,
7-66

MISALIGNLOG attribute (SCF)
misalignment handling and 33-8
misalignment tracing facility and 33-7

Misalignment
See Address misalignment

Misalignment tracing facility 33-7/33-8
Mixed-language programs

description of 23-1
binding 24-16
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-33

Index N
Mixed-language programs (continued)
CRE and 18-1
data type correspondence and B-1
DDL and 22-25
ENTER statement and 9-58
in OSS environment 19-5/19-6
sharing data 23-17
sharing standard files 28-8

Mnemonic codes in compiler listing
COBOL85 compiler 11-83
NMCOBOL compiler 11-87

Mnemonic names
for object files 24-11
for terminals 29-2

MOD function 14-37
Modules of HP COBOL 1-2
Mount messages

See Tape mount messages
MOVE statement

explicit
description of 9-128/9-132
instead of ALTER statement 9-17

implicit 9-93/9-94
Multidimensional tables 7-82, 9-209, 9-212
Multiple COPY libraries 22-33
MULTIPLE FILE clause

description of 6-59, 6-63
LABEL RECORDS clause and 7-22
labeled tape files and 27-22

Multiple-file tapes 27-5
Multiple-file transactions 32-16
Multiple-reel tape files 9-39, 9-297, 27-6
Multiplication operator 8-46
MULTIPLY statement

description of 9-132/9-138
precision of 8-50

N
N in PICTURE clause 7-55
NAME option of RUN command 25-12

Named processes 11-108, 25-12/25-13
Names

global 2-16
local 2-16
qualified 3-13/3-16
unqualified 11-36
user-defined 3-10

National class and category 4-1
National data items

alignment of data in 4-15
BLANK WHEN ZERO clause and 7-88
CHARACTER-SET clause and 6-8
comparisons of 8-56
in INSPECT statements 9-97
in PICTURE clause 7-62
in STRING statement 9-260
in UNSTRING statement 9-281
MOVE statements and 9-129
SIGN clause and 7-79
SPECIAL-NAMES paragraph and 6-10
SYNCHRONIZED clause and 7-87
USAGE clause and 7-72

National literals
description of 3-20
CHARACTER-SET clause and 6-8
comparisons of 8-56
continuing

in ANSI format 16-3
in Tandem reference format 2-5

in INSPECT statements 9-97
in STRING statement 9-260
in UNSTRING statement 9-281
punctuation characters in 3-6
restrictions on 3-21
SIGN clause and 7-79
SPECIAL-NAMES paragraph and 6-10
USAGE clause and 7-72
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-34

Index N
Native COBOL cross compiler
description of 34-1/34-11
ar utility and 34-10
compilation with 34-7
debugging on 34-7/34-10
documentation for 34-11
environments for 34-1
features of 34-2
file extension for 34-4
from PC command line 34-4
in ETK (NonStop COBOL) 34-3
in TDS (Tandem NMCOBOL) 34-4
linking and 34-7
online help for 34-11
OSS environment and 34-5
PC-to-NonStop host transfer tools
and 34-11

Native mode
migrating HP COBOL programs
to 33-1/33-23

Native programs
debugging

after migration 33-6
on PC 34-7/34-10

that can also be compiled as TNS
programs 33-23

Native SRLs
description of 13-1/13-2
diagram of 13-2

Native user library
building 13-10
in binding 24-6
migrating to native mode and 33-5
UL directive and 11-135

NATIVEATOMICMISALIGN attribute
(SCF) 33-8
NATIVE-n data format

description of 7-76, 7-70
compared to COMPUTATIONAL data
format 7-77

NATIVE-n data format (continued)
compared to COMPUTATIONAL-5 data
format 7-77
PORT directive and 11-105
tape input-output and 27-15

Natural logarithm function 14-26
Negated conditions 8-64
Negative zero 8-44
Nested intrinsic functions 14-3
Nested programs

description of 2-9/2-14, 23-4/23-5
code and data blocks and 24-2
directly contained 2-10
indirectly contained 2-10
precedence rules for 9-290

Nested SOURCE directives 11-120
Nested statements

IF
conditional 9-87
delimited-scope 9-84

PERFORM 9-160
NetBatch system 22-22
NEWPROCESS routine 24-9
NEWPROCESSNOWAIT-COMPLETION
message 6-76
NEWPROCESS-COMPLETION
message 6-75
Next executable statement 8-19
Next record 9-189
NEXT SENTENCE phrase 9-86
Nibbles 7-69
NLD directive 11-99
nld utility

native COBOL cross compiler
and 34-7, 34-10
NMCOBOL compiler and 33-21

NMCOBEX0 file 11-15, 23-14
NMCOBEX1 file 11-15, 23-14
NMCOBEXT file 11-15, 13-23,
23-13/23-15, 24-6
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-35

Index N
NMCOBOL compiler
See also Compiler
See also nmcobol utility (OSS)
description of 1-4
object files produced by 11-27, 33-21

nmcobol utility (OSS) 19-3/19-4
NO ADVANCING phrase 9-50
NO REWIND phrase 9-38
NOBLANK directive

description of 11-54
initial state of program and 12-24
initializing data items and 7-36
migrating to native mode and 33-15

NOCANCEL directive
description of 11-56
CANCEL statement and 9-33

NOCODE directive
description of 11-58
compiler listing and 22-41
migrating to native mode and 33-18

NOCOMPACT directive
description of 11-60/11-61
migrating to native mode and 33-18

NOCONSULT directive
description of 11-62/11-63
migrating to native mode and 33-19

NOCROSSREF directive
description of 11-63/11-66
compiler listing and 22-41
migrating to native mode and 33-18

NODE-DOWN message 6-76
NODE-UP message 6-76
NODIAGNOSEALL directive 11-71
NODIAGNOSE-74 directive 11-66/11-69
NODIAGNOSE-85 directive 11-70
NOFIPS directive 11-76
NOFLOAT directive 11-78

NOICODE directive
description of 11-83
compiler listing and 22-41
migrating to native mode and 33-19

NOINNERLIST directive
description of 11-87
compiler listing and 22-41
migrating to native mode and 33-20

NOINSPECT directive 11-88
NOLIST directive 11-86, 11-95, 22-40
NOLMAP directive

description of 11-96/11-97
compiler listing and 22-41
migrating to native mode and 33-19

NOMAP directive 11-99, 22-41
Nonatomic access 33-8
Nonconforming elements 11-125
Noncontiguous elementary data items 7-93
Nondefault character sets 6-9
Nondisk files

default input-output 25-5
system file names of 26-3

Nonexecutable files
See Linkfiles

Nonnumeric comparisons 8-55
Nonnumeric data items

DISPLAY statement and 9-49
initializing 7-90
VALUE clause and 7-90

Nonnumeric literals
continuing

in ANSI format 16-3
in Tandem reference format 2-5

hexadecimal 3-20
punctuation characters in 3-6
simple 3-19

Nonprinting characters 6-18
NonStop COBOL 34-3
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-36

Index N
NONSTOP directive
description of 11-100
fault-tolerant facility and 32-9
migrating to native mode and 33-19
overriding 25-5

NonStop SQL/MP
See Embedded NonStop SQL/MP

NonStop TS/MP
See HP Nonstop TS/MP

Non-COBOL programs 9-58, 11-4,
23-7/23-19
Non-CRE environment 11-72, 28-32
NON-SHARED directive 11-101
NOPORT directive 11-104
NOPURGE-OUTPUT parameter 13-56,
13-61
NOROUND misalignment handling
method 33-9
NOSAVEABEND directive

description of 11-111
migrating to native mode and 33-17

NOSEARCH directive
description of 11-112/11-113
migrating to native mode and 33-19

NOSHOWCOPY directive 11-117, 22-45
NOSHOWFILE directive 11-118
NOSQL directive

description of 11-122/11-124
migrating to native mode and 33-19

NOSUPPRESS directive 11-129
NOSYMBOLS directive 11-130
NOT AT END phrase

in READ statement 9-180, 9-185,
9-187, 9-194
in RETURN statement 9-201

NOT EQUAL TO operator 8-54
NOT EXCEPTION phrase 9-23
NOT GREATER THAN operator 8-54
NOT INVALID KEY phrase

in DELETE statement 9-45
in READ statement 9-197

NOT INVALID KEY phrase (continued)
in REWRITE statement 9-203, 9-207
in START statement 9-242, 9-245,
9-246
in WRITE statement 9-295

NOT LESS THAN operator 8-54
NOT modifier 8-59, 8-63
NOT SIZE ERROR phrase

in ADD CORRESPONDING
statement 9-14
in ADD GIVING statement 9-12
in ADD TO statement 9-9
in COMPUTE statement 9-41

NOTRAP2 directive
description of 11-132/11-134
migrating to native mode and 33-19

NOTRAP2-74 directive
description of 11-134/11-135
migrating to native mode and 33-19

NOWAIT option of RUN command 22-15,
25-13
NOWAIT-IO parameter 13-56, 13-61
NOWARN directive 11-136, 22-40
NO-CPU-MASK parameter 13-53
NULL pointer value

in relation condition 8-58
in SET TO statement 9-221

Null values for alternate record keys 28-36
Numeric class and category 4-1
NUMERIC class test 8-59
Numeric comparisons 8-55
Numeric data items

ACCEPT statement and 9-3
alignment of data in 4-15
displaying values of 9-49
initializing 7-89
PICTURE clause and 7-61
reading and writing 29-13
VALUE clause and 7-89

Numeric edited category 4-1
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-37

Index O
Numeric edited data items
ACCEPT statement and 9-3
alignment of data in 4-15
MOVE statements and 9-130
PICTURE clause and 7-62

Numeric functions
description of 14-4
ACOS 14-8
ANNUITY 14-9
ASIN 14-11
ATAN 14-12
COS 14-15
LOG 14-26
LOG10 14-27
MEAN 14-31
MEDIAN 14-32
MIDRANGE 14-34
NUMVAL 14-38/14-39
NUMVAL-C 14-40/14-42
PRESENT-VALUE 14-47/14-48
RANDOM 14-49
REM 14-52
SIN 14-54
SQRT 14-55
STANDARD-DEVIATION 14-56/14-57
TAN 14-60
VARIANCE 14-62/14-63

Numeric literals
COMPUTATIONAL-5 data items
and 7-75
decimal 3-17/3-18
hexadecimal 3-18
passed by content 23-22
punctuation characters in 3-6

NUMVAL function 14-38/14-39
NUMVAL-C function 14-40/14-42

O
OBEY command files

for BIND utility 24-15
for CROSSREF utility 15-9
for pre-execution preparation 25-7/25-8
for running compiler 22-16

Object files
See also Linkfiles
See also Loadfiles
adding to primary search list 24-12
adding to tertiary search list 24-13
as user libraries 24-12/24-13
binding 11-23
creating 11-27/11-28
default names for 22-16
description of 24-2
establishing mnemonic names
for 24-11
manipulating 11-28, 33-21
naming 22-16
production of 24-4
reducing size of 11-56, 11-91
specifying 24-10

Object programs 11-28
OBJECT-COMPUTER paragraph 6-5/6-9
Obsolete elements 11-125
OBSOLETE parameter 11-126
OCCURS clause

ALL subscript and 14-7
in record description entry

for fixed-size table 7-79
for variable-size table 7-83

in redefined data item 7-50
Octal code listing 11-58, 22-41, 22-54
ODDUNSTR attribute 7-17
Offsets for fields 33-11
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-38

Index O
OMITTED keyword
in COBOLLIB routines 13-85
in ENTER statement 9-60
in ZCOBSRL routine 13-38

Omitted parameters 11-23
Online dumps 32-17
Online help for native COBOL cross
compiler 34-11
OPEN message 6-76
Open modes

description of 4-10
initial state of program and 12-24
of external files 7-13
summary of 9-148

OPEN routine 13-139
OPEN statement

description of 9-138/9-156
fault-tolerant facility and 32-10

Open System Services (OSS) environment
description of 19-1/19-25
native COBOL cross compiler and 34-5

Operands
arithmetic 8-46
identification of

description of 8-21
in ADD TO statement 9-11

overlapping
description of 8-22
in INITIALIZE statement 9-94
in INSPECT CONVERTING
statement 9-115
in STRING statement 9-260
in UNSTRING statement 9-280

pointer 8-58
Operating system routines

description of 23-10/23-15,
28-40/28-47
generations of 23-14
parameters for 23-10
resolution of 23-13/23-15

Operators
arithmetic 8-46
communicating with 29-10/29-14
logical

in combined conditions 8-65
in conditional expressions 8-64

prompting 29-6/29-7
relational 8-54

Optimization
of disk file processing 28-31/28-37
of disk file storage 28-37

OPTIMIZE directive
description of 11-102
migrating to native mode and 33-16

ORD function 14-43
ORD-MAX function 14-43/14-44
ORD-MIN function 14-45/14-46
Organization

of files 4-7
of HP COBOL programs 2-1/2-24

ORGANIZATION clause
description of 6-25
file type and 6-24
for indexed file 6-49
for line sequential file 6-39, 19-13
for queue file 6-54
for relative file 6-43
for sequential file 6-31

OSS
See Open System Services (OSS)
environment

OSS ASCII text files
See Line sequential files

OUT option of RUN command 22-14,
25-11, 26-7
Output

See also Input-output
description of 26-1/26-11
default device for 25-10
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-39

Index P
Output (continued)
from compiler 1-6, 11-25/11-33
merged 9-119
open mode 4-10
to disk files 28-1/28-47
to printers 30-1/30-22
to spoolers 30-1, 30-7/30-22
to tape 27-1/27-26
to terminals 29-1/29-15
waited 23-10

OUT-FILE-EXCL parameter 13-56, 13-62
OUT-FILE-FORMAT parameter 13-56,
13-62
Out-of-line PERFORM statement 9-159
Overflow

arithmetic
COBOL85^ARMTRAP and 13-39
CRE and 18-6
TRAP2 and NOTRAP2 and 11-132
TRAP2-74 and NOTRAP2-74
and 11-134

in STRING statement 9-260
page 9-294, 9-298
size error condition and 8-24

Overlapping operands
description of 8-22
in INITIALIZE statement 9-94
in INSPECT CONVERTING
statement 9-115
in STRING statement 9-260
in UNSTRING statement 9-280

Overprinting lines in output 30-19
Ownership

of Break key 29-8/29-9
of disk files 28-3
of spooler jobs 30-4

P
P in PICTURE clause 7-56

PACKED-DECIMAL data format 7-69/7-72,
7-74
PADDING CHARACTER clause

file type and 6-24
in external file 7-12
in sequential file 6-31

Page overflow condition 9-294, 9-298
Pages, logical 7-26
Paragraphs

execution of 8-17
syntax of 8-11

Paragraph-names
identical 3-16
qualified 3-13, 3-15

PARAM commands
description of 11-34, 12-9/12-16
DEBUG 12-10, 15-2, 25-4
EXECUTION-LOG 12-11, 25-5
INSPECT 12-11
maximum number of 25-8
NONSTOP 12-11, 25-5
OSS environment and 19-23
PRINTER-CONTROL 25-6, 30-22
SAMECPU 11-34, 22-20, 22-22
showing active 25-8
SWAPVOL 11-35, 22-22
SWITCH-nn 12-10, 25-6
SYMBOL-BLOCKS

description of 11-35, 22-22
migrating to native mode and 33-6

WAITED-IO 12-11, 25-7
PARAM message portions 13-36
Parameters

adding formal 23-13
addressing 9-62
arithmetic expressions as 23-22
COBOL file names as 23-22
declaring 9-27
elementary data items as 23-21, 23-23
established with FastSort 13-25
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-40

Index P
Parameters (continued)
established with =_SORT_DEFAULTS
DEFINE 13-26
extensible 23-13
for operating system routines 23-10
formal, adding 23-13
index values as 9-28
lists of 23-13
numeric literals as 23-22
omitted 9-60, 11-23
passing

See Passing parameters
presenting 11-22
records as 23-23
reference 33-10
replacing code blocks and 24-16
string:length 9-60, 9-65, 23-33, 33-4
tables as 23-22
validation of 9-27
variable 23-13

Parentheses
as separators 3-5
in arithmetic expressions 8-47
in conditions 8-68

Partitioned disk files 28-2, 28-37
Pascal routines

addressing parameters in 9-63
calling 9-58
in TNS user library 24-19
migrating to native mode 33-5
passing parameters to 23-31/23-32
restrictions on 9-64, 23-19
run-time environment for 23-2

Passing parameters
description of 23-19/23-34
by content 9-21, 23-21/23-22
by reference 9-21, 9-61, 11-23, 23-23
by value 9-21, 9-61, 11-22, 23-23
CALL statement and 9-27/9-28

Passing parameters (continued)
COMPUTATIONAL-5 7-75
FORTRAN, to TAL routines 9-65
to COBOL programs 23-24/23-25
to non-COBOL routines

description of 23-25/23-34
C and C++ 23-26/23-29
FORTRAN 23-29/23-30
Pascal 23-31/23-32
TAL 23-32/23-34

Passwords, remote 28-6
Pathnames for OSS files 19-8/19-9
PC-to-NonStop host transfer tools 34-11
PEP (program entry point) table 24-17
PERFORM cycle 9-158
PERFORM LOOP field 9-286
PERFORM statement

description of 9-157/9-177
CALL statement and 9-26
initial state of program and 12-24
status during program execution 12-25

PERFORM-TRACE directive 11-103
Period (.)

See also Decimal point
as separator 3-5
format restrictions on 2-7
in delimited-scope IF statement 9-84
in PICTURE clause 3-24, 7-57, 7-64

PERUSE utility 22-14, 30-3, 30-11/30-15
Physical records 4-4
PIC

See Position-independent code (PIC)
PICTURE character-strings

description of 3-24
editing characters in 3-24
punctuation characters in 3-6
size of 7-55
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-41

Index P
PICTURE clause
description of 7-54/7-68
for BINARY/COMPUTATIONAL data
item 7-73
for COMPUTATIONAL-5 data item 7-75
for INDEX data item 7-76
for NATIVE-n data item 7-76
in record description entry 7-45
NUMERIC class test and 8-60

Plus sign (+)
as editing character 3-24
in PICTURE clause 7-57, 7-65, 7-66

Pointer class and category 4-1
POINTER data format

description of 7-70, 7-77
in relation conditions 8-58
PORT directive and 11-105
SYNCHRONIZE clause and 7-87

Pointers
alignment of targets of 33-10
as operands 8-58
assigning values to 9-220/9-221
decrementing 9-225/9-226
incrementing 9-225/9-226
initializing 7-90
on IBM/370 machine 9-226
SET TO statement for 9-220/9-221
SET UP or DOWN statement
for 9-225/9-226
VALUE clause and 7-90

PORT directive
description of 11-104
CALL statement and 9-18, 23-7, 23-19
misaligned addresses and 33-12
unmatched items and 7-41

POSITION phrase 9-238, 28-26/28-30
Positioning, file

description of 28-23/28-30
approximate 28-24
exact 28-23

Positioning, file (continued)
generic 28-24/28-26
to record with same alternate
key 28-26/28-30

Position-independent code (PIC)
CALL statement and 9-25
CALL-SHARED directive and 11-55
debugging 33-23, 34-8
dynamic-link libraries and 13-11
SHARED directive and 11-116

Power, raising to a
See Exponentiation operator

POWER-ON message 6-76
Precedence

of arithmetic operators 8-47
of nested programs 9-290
of PICTURE clause symbols 7-58
of SIGN clauses 7-79

Precision
arithmetic 8-48/8-53
of ADD statement 8-49
of DIVIDE statement 8-50/8-51
of MULTIPLY statement 8-50
of SUBTRACT statement 8-49

Predefined DEFINEs 11-36, 22-19
Prereading file records 9-156, 26-10, 27-1
Presenting parameters 11-22
PRESENT-VALUE function 14-47/14-48
Pre-execution preparation

description of 25-1/25-9
OBEY command files for 25-7/25-8

Primary process 32-4/32-6
Primary search list

adding file to 24-12
binding or linking and 24-6, 24-10
unqualified references and 11-14

Primary (or prime) record keys 28-13
Print process 30-3
Printer control tape channel punch 30-19
Printer file records 9-154
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-42

Index P
Printers
DISPLAY statement and 30-22
logging program activity to 30-22
out of paper 30-22
output to

description of 30-1/30-22
formatting of 30-20/30-21
vertical spacing in 30-18/30-20

unavailable 25-6
WRITE statement and 30-22
writing to 29-12

PRINTER-CONTROL parameter 12-12,
12-14
Priority of spooler jobs 30-6
PRIORITY parameter 13-56, 13-62
Procedure Division

description of 8-1/8-69
components of 8-1, 8-2/8-3
example of 8-3
execution of 8-16/8-20
HP extensions affecting 17-4/17-5
summary of 43-1/43-59
syntax of 8-2
verbs in 9-1/9-305

Procedures
error-handling 25-14
execution of 8-20
manipulating 33-21
syntax of 8-14

Process file segment 24-8
Process pairs

description of 32-4/32-6
activity of 32-5/32-6
CANCEL statement and 9-33
checkpoint lists for 13-35
CHECKPOINT statement and 9-34,
9-36
CLOSE statement and 9-40
example of 32-12/32-13
mechanisms for 32-2/32-3

Process pairs (continued)
migrating to native mode and 33-19
naming 25-12/25-13
NONSTOP directive and 11-100
OPEN statement and 9-154
OSS environment and 19-24
SQL databases and 9-36

Processes
description of 24-8
background 25-13
backup 9-253, 32-4/32-6
changing creator IDs of 31-39
collector 30-3
communicating with 29-10/29-14,
31-6/31-18
definition of 12-1
descendants of 31-35
determining handles of 31-22
determining nodes of 31-23
determining status of 31-26/31-33
fault-tolerant 32-1/32-20
identifying creators of 31-33
initiating 31-3/31-6
involved in compilation 11-9
managing 31-22/31-40
named 11-108, 25-12/25-13, 31-12
primary 32-4/32-6
print 30-3
receiving from 29-12
requesting 6-70
separate 24-19
supervisor 30-3
suspending 31-39
treated as files 26-10
unnamed 9-254
with timestamp names 25-12

Processor used by compilation
processes 22-20
PROCESS-CREATE-COMPLETION
message 6-76
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-43

Index Q
PROCESS-DELETION message 6-76
PROCESS-TIME-SIGNAL message 6-76
Production systems 33-9
Program collating sequence 6-18
PROGRAM COLLATING SEQUENCE
clause

description of 6-5, 6-7
MERGE statement and 9-123

Program entry point (PEP) table 24-17
Program logic errors 8-33
Programs

called
See Called programs

calling
See Calling programs and routines

compatible 11-74
ENFORM 23-15
HP COBOL

See HP COBOL programs
mixed-language

See Mixed-language programs
native

See Native programs
non-COBOL 9-58, 11-4, 23-7/23-19
source

See HP COBOL programs
PROGRAM-ID paragraph 5-2, 5-4/5-5
Program-name, scope of 2-12
PROGRAM-STATUS special
register 9-254, 32-10/32-12
PROGRAM-STATUS-1 special
register 9-254
PROGRAM-STATUS-2 special
register 9-254
PROMPT phrase 9-181
Prompting an operator 29-6/29-7
PROTECTED exclusion mode 4-10, 9-155,
28-38
PS TEXT EDIT (TEDIT) editor

description of 22-8/22-10
commands of 22-10

PS TEXT EDIT (TEDIT) editor (continued)
customizing 22-10
second window of 22-9

Pseudorandom number function 14-49
Pseudo-text

COPY statement and 22-32
delimiter for 3-5
REPLACE statement and 22-37

pTAL routines
migrating to native mode and 33-4
passing parameters to 9-63

Public shared run-time libraries
See Native SRLs

Punctuation characters
description of 3-4/3-6
as separators 3-4/3-5
in comments 3-6
in literals

national 3-6
nonnumeric 3-6
numeric 3-6

in PICTURE character-strings 3-6
Purging files

description of 28-2
contents only 28-44
entire files 28-43/28-44

PUTASSIGNTEXT routine 13-127/13-130
PUTASSIGNVALUE routine 13-131/13-133
PUTPARAMTEXT routine 13-133/13-135
PUTSTARTUPTEXT routine 13-136/13-138

Q
Qualification

in CALL and ENTER statements 11-13
of data items

ordinary 4-19
redefined 7-50
summary of 39-1/39-4

of file names 5-5
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-44

Index R
Qualification (continued)
of names 3-13/3-16
of references 11-13
operand identification and 8-21

Question mark (?)
as TACL command 22-2
in ANSI reference format 16-2
in Tandem reference format 2-4

Queue files
description of 4-8, 28-13
access modes of 4-9
closing 9-40
creating 28-19
determining key value of last record
of 9-248
file description entries for 7-10
file-control entries for 6-24, 6-54
opening 9-138, 28-19
reading 28-20
removing records from 28-20
rewriting 9-202/9-207
writing 9-301/9-305, 28-20

Queuing printer file records 9-154
Quotation mark (")

as separator 3-5
figurative constant for 3-23
in CALL statement 9-20, 24-11
in ENTER statement 9-59, 24-11
in literal

hexadecimal nonnumeric 3-20
national 3-21
simple nonnumeric 3-19

QUOTE or QUOTES figurative
constant 3-23

R
Radix 10 7-69
Raising to a power

See Exponentiation operator

Random access mode
description of 4-8
DELETE statement and 9-47
key values and 6-25

RANDOM function 14-49
RANGE function 14-50/14-51
READ statement

description of 9-177/9-200
for line sequential file 19-20/19-21
LOCKFILE statement and 9-117, 9-186
READ NEXT 9-189

Reading
from called programs 28-7
from processes 29-12
from tape files

description of 27-1/27-15
labeled 27-8/27-12
other than HP 27-12/27-15
unlabeled 27-3/27-8

from terminals 29-12
numeric data 29-13

READWRITE (PROMPT phrase) 9-181
RECEIVE-CONTROL paragraph

description of 6-64/6-76, 31-16
for run unit 6-64
without reply table 6-71

Receive-control table 6-70, 31-16
Receiving data items

description of 8-21
in INITIALIZE statement 9-93

RECFORM attribute of DEFINE
for labeled tape file 27-21
for unlabeled tape file 27-17

RECORD CONTAINS clause
description of 7-17/7-21, 7-31
for labeled tape file 27-21
for unlabeled tape file 27-16, 27-17
in external file 7-13
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-45

Index R
RECORD DELIMITER clause
description of 6-25
file type and 6-24
for sequential file 6-31
in external file 7-12

RECORD KEY clause
description of 6-50
file type and 6-24

Record keys
alternate 28-22/28-23
OCCURS clause and 6-51
primary or prime 28-13

Records
description of 4-4/4-6
blocking 27-2, 28-31/28-35
deleted 28-14
description entries for

description of 7-2, 7-43/7-90
file description entries and 7-47

displaying 9-50
elements of 4-5
external 7-52
fixed-length 7-20
gaps between 27-2
implicit FILLER bytes and 4-17
in Extended-Storage Section 2-17,
24-22
in Linkage Section 2-18
in Working-Storage Section 2-17
keys to

See Record keys
length of 4-5
locking 28-38, 32-18
logical 4-4
names of

identical 3-16
scope of 2-13

numbers for 28-12, 28-16
offsets for fields of 33-11

Records (continued)
passed by reference 23-23
physical 4-4
prereading 9-156, 26-10, 27-1
short 7-20
variable-length 7-18
zero-length 28-11, 28-12

Recovery, roll-forward 32-17
Recursion 2-12, 9-28
Redefined data items 7-81
REDEFINES clause

EXTERNAL clause and 7-50
GLOBAL clause and 7-54
implicit FILLER bytes and 4-18
in record description entry 7-45,
7-48/7-49
in redefined data item 7-50
OCCURS DEPENDING clause
and 7-85

REEL phrase 9-38
Reel swaps 13-84
Reexecuting TACL commands 22-3, 22-4
Reference format

ANSI
See ANSI reference format

COPY libraries and 10-13
COPY statement and 10-5
REPLACE statement and 10-17
source program lines and 2-3, 22-6,
22-42
Tandem

See Tandem reference format
text libraries and 22-22

Reference modifiers
description of 4-22/4-26
migration to Native mode and 33-10
operand identification and 8-21
TAL routines and 9-65

REFERENCE parameters 33-10
Reference parameters 11-23, 23-23
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-46

Index R
References
external 24-3
internal 24-3
qualification of 11-13

References (continued)
to data items 4-18/4-26
unresolved 24-8, 24-9
validation of 24-4, 24-6/24-7

Relation conditions
generally 8-54, 8-57
abbreviated combined 8-66
with nonpointer operands 8-57
with pointer operands 8-58

Relational operators 8-54
Relative files

description of 4-7, 28-12/28-13
access modes of 4-9
alternate keys and 28-16, 28-36
closing 9-40
creating 28-16/28-17
file description entries for 7-10
file-control entries for 6-24, 6-40/6-46
opening 9-138
rewriting 9-202/9-207
writing 9-301/9-305

RELATIVE KEY clause
description of 6-43
file type and 6-24

Relative record keys 6-45
RELEASE statement 9-200
REM function 14-52
Remainder function 14-52
Remote passwords 28-6
REMOTE-CPU-DOWN message 6-76
REMOTE-CPU-UP message 6-76
REMOVAL phrase 9-38
REMOVE-DUPLICATES parameter 13-56,
13-63
RENAMES clause 7-91/7-92

Renaming
of data items 7-91
of files 28-44

REPLACE statement
description of 10-14/10-18
compiler listing and 22-44
COPY libraries and 22-38
IF directive and 11-85
REPLACING phrase of COPY
statement and 22-38
SOURCE libraries and 22-39
source manipulation and 22-36/22-39
substrings and 22-37

Replacement
of code blocks 24-15/24-16
with tallying 9-107
without tallying 9-103, 9-113

REPLACING phrase
description of 10-7/10-11, 22-31
REPLACE statement and 22-38
substrings and 22-32

REPLY CONTAINS phrase 6-67
Reply table 6-70, 31-16
REPORT clause

description of 6-73, 7-30
CRE and 18-5
message types of 6-75
syntax of 6-68

Reports
names of 30-6
printed

formatting of 30-20/30-21
vertical spacing in 30-18/30-20

Repositioning file to record with same
alternate key 28-26/28-30
Requesters

reply table and 6-70
screen transactions and TMF 32-19

RERUN clause 6-58
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-47

Index R
RESERVE clause
buffered cache and

for indexed file 6-52
for relative file 6-45
for sequential file 6-35

file type and 6-24
for indexed file 6-48
for line sequential file 6-39, 19-13
for relative file 6-42
for sequential file 6-30
HP COBOL Fast I-O and 6-36
SAME AREA clause and 6-37
sequential block buffering and

for indexed file 6-52
for relative file 6-45
for sequential file 6-34

Reserved words
description of 3-9
all 21-1/21-11
categories of 21-1
HP COBOL 21-11/21-12
that cannot be split 2-6

RESETMEMORY routine 24-22
RESETSYNC message 6-76
RESETTOG directive 11-106
Resolution

control directives for 11-51
of external references

in binding 24-4, 24-6/24-7
to COBOL programs 11-16/11-18
to non-COBOL
programs 11-18/11-22

of operating system
routines 23-13/23-15

RETENTION attribute of DEFINE
for labeled tape file 27-23
for unlabeled tape file 27-18

RETURN statement 9-201/9-202

Returned values
GIVING phrase and 11-23
sizes of B-1

RETURN-CODE special register 9-19, 23-9
REVERSE function 14-53
REWRITE statement 9-202/9-208
RIGHT keyword

in JUSTIFIED clause 7-88
in SYNCHRONIZED clause 7-87

Roll-forward recovery 32-17
ROUND (default) misalignment handling
method 33-9
ROUNDED phrase

description of 8-23
for NATIVE-n data item 7-76
in ADD CORRESPONDING
statement 9-15
in ADD GIVING statement 9-12
in ADD TO statement 9-10
in COMPUTE statement 9-41
in DIVIDE GIVING REMAINDER 9-55
in DIVIDE GIVING statement 9-53
in DIVIDE INTO statement 9-51
migrating to native mode and 33-17

Rounding down addresses
definition of 33-6
in HP COBOL programs 33-10

Routines
C

See C routines
C++

See C++ routines
dummy 13-23
Enscribe 28-40/28-47
FastSort interface 13-25/13-26
file system 23-10
FORTRAN

See FORTRAN routines
Guardian environment level 3
spooling 13-139
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-48

Index S
Routines (continued)
in CBL85UTL file 13-24, 13-38
in CLULIB file 13-30, 13-85
in COBOLLIB file 13-26, 13-85
in ZCOBSRL file 13-29, 13-38, 13-85
in ZCRESRL file 13-37
operating system

See Operating system routines
Pascal

See Pascal routines
pTAL

See pTAL routines
putting in TNS user library 24-19
Saved Message Utility (SMU)

See Saved Message Utility routines
TAL

See TAL routines
utility

See Utility routines
RUN or RUND command 12-2/12-4
RUNNABLE directive

description of 11-107
migrating to native mode and 33-20

RUNNAMED directive
description of 11-108, 25-13
migrating to native mode and 33-16

Running programs
See Execution, of programs

Running the compiler
See Compilation

RUNUNIT file 22-16
RUNV TACL macro and OSS
script 34-8/34-10
Run-time environment

description of 23-2
common

See CRE
determining 11-73, 22-19
for various languages 18-2

Run-time environment (continued)
migrating to native mode and 33-3
non-CRE 11-72, 28-32

Run-time errors
See Error messages, run-time

Run-time routines, resolution of 24-6

S
S in PICTURE clause 7-56
SAME AREA clause

description of 6-59
for input-output file 6-60
for sort-merge file 6-61/6-62
RESERVE clause and 6-37

SAME MERGE AREA clause 6-62
SAME RECORD AREA clause

description of 6-62
GLOBAL clause and 7-14, 7-54

SAME SORT AREA clause 6-62
SAVE directive 11-109/11-110
SAVEABEND directive

description of 11-111
migrating to native mode and 33-17

Saveabend file 11-111
Saved Message Utility routines

overview of 13-31, 13-36
individual 13-105/13-138
original and new 13-32

Saved messages 13-36
SAVE-SCRATCH parameter 13-56, 13-63
SCF user interface

misalignment handling and 33-8
misalignment tracing facility and 33-7

Scope
explicit terminators of 8-7
of condition-names 2-13
of data-names 2-13
of file-names 2-13
of index-names 2-14
of program-names 2-12, 9-25
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-49

Index S
Scope (continued)
of record-names 2-13
of statements 8-8
of user-defined names 2-11

Scratch file
MERGE statement and 9-125
SORT statement and 9-230, 9-236

SCRATCH-BLOCK parameter 13-56,
13-63
SCRATCH-CHECK parameter 13-56,
13-64
SCRATCH-FILE parameter

description of 13-53
MERGE statement and 9-125

Screen transactions 32-19
SD entries

See Sort-merge files, file description
entries for

SEARCH directive
description of 11-112/11-113
migrating to native mode and 33-15,
33-22

Search lists
primary

adding file to 24-12
binding or linking and 24-6, 24-10
unqualified references and 11-14

secondary 11-14
tertiary

adding files to 24-13
binding or linking and 24-6, 24-10
unqualified references and 11-14

Search mode 31-30
SEARCH statement 9-209/9-219
Searches, binary 9-216
Secondary search list 11-14
SECOND-BUFFER parameter 13-56,
13-64
SECTION directive 10-13, 11-114
SECTION keyword as qualifier 3-15

Sections
execution of 8-18
syntax of 8-13/8-14

Security
of disk files 28-3/28-6
of operating system 31-27/31-30

SECURITY paragraph 5-3
SEG1 parameter 11-126
SEG2 parameter 11-126
SEGMENT parameter 13-56, 13-64
Segmentation 24-23
Segments

code 24-17/24-18
independent

description of 8-14
ALTER statement and 9-18

SEGMENT-LIMIT clause 6-5, 6-7
SELECT clause

description of 6-25
file type and 6-24
for indexed file 6-47
for line sequential file 6-38, 19-12
for relative file 6-41
for sequential file 6-28
for sort-merge file 6-55

Semantic rules, common 8-21
Semicolon (;) 3-5
Sending data items

description of 8-21
in INITIALIZE statement 9-94

Sentences
execution of 8-17
syntax of 8-10

SEPARATE CHARACTER phrase 7-78
Separate processes 24-19
Separately compiled programs

description of 1-7, 11-5, 23-3, 24-2,
24-18
diagnostic messages and 22-51
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-50

Index S
Separately compiled programs (continued)
sharing files 28-7
UL directive and 11-135

Separators 3-4/3-5
Sequence number 22-43
Sequence number area 16-1
Sequential access mode

description of 4-8, 6-25
DELETE statement and 9-46

Sequential block buffering
enabled by RESERVE clause 9-190
for indexed files 6-52
for relative files 6-45
for sequential files 6-34
for structured disk files 28-33

Sequential files
description of 4-7
access modes of 4-8
closing 9-37/9-40
creating 28-14/28-16
file description entries for 7-7
file-control entries for 6-24, 6-28/6-37
opening 9-138
reading 9-178/9-192
repositioning 9-40
rewriting 9-202/9-207
structured 28-12, 28-14
unstructured 28-9, 28-15
writing 9-292/9-299

Servers
breaking batch programs into 24-19
checkpointing rules for 32-9
debugging 25-15
example 31-18
for high-PIN requesters 11-83
HP NonStop TS/MP 32-3

SET DEFMODE command 25-2
SET statement 9-219/9-226
SETMODE message 6-76
SETPARAM message 6-76

SETTIME message 6-76
SETTOG directive 11-115
Shared code

See Position-independent code (PIC)
SHARED directive

description of 11-116/11-117
migrating to native mode and 33-21

SHARED exclusion mode 4-10, 9-155,
28-38
Shared run-time libraries

See Dynamic-link libraries (DLLs)
See Native SRLs

Sharing
of data 23-17
of disk files 28-8/28-9
of file operations 18-4
of resources 2-15/2-24
of terminals 29-7/29-8

Short records 7-20
SHOWCOPY directive 11-117
SHOWFILE directive 11-118
SIGILL signal (signal #4) 33-9
Sign character (+ or -) 3-17
SIGN clause

description of 7-78/7-79
CODE-SET clause and 7-29
for BINARY/COMPUTATIONAL data
item 7-73
for NATIVE-n data item 7-76
in record description entry 7-45

Sign conditions 8-63
Simple conditions 8-53
Simple insertion editing 7-64
SIN function 14-54
Sine function 14-54
Single-tape files 9-39
Size error condition 8-24, 8-51
SIZE ERROR phrase

description of 8-23/8-26
arithmetic precision and 8-49
for NATIVE-n data item 7-76
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-51

Index S
SIZE ERROR phrase (continued)
in ADD CORRESPONDING
statement 9-14
in ADD GIVING statement 9-12
in ADD TO statement 9-9
in COMPUTE statement 9-41

Size limits
in Extended-Storage Section 7-38
in Working-Storage Section 7-36
list of 20-1/20-4

Skipping
lines in output 30-19
to new page 30-20

Slash (/)
as arithmetic operator 8-46
in ANSI reference format 16-2
in PICTURE clause 3-24, 7-57, 7-64
in Tandem reference format 2-4

Small data area
description of 13-7
LARGEDATA directive and 11-88
UL directive and 11-135

Small-memory model 9-63
SMU routines

See Saved Message Utility routines
SORT INPUT field 9-286
Sort keys 9-231
SORT OUTPUT field 9-286
SORT statement 9-227/9-237
Sort-merge files

file description entries for 7-30/7-32
file-control entries for 6-24, 6-55/6-56
SORT statement and 9-232

SORT-PROGRAM parameter 13-53
SOURCE directive

description of 11-119/11-122
compared to COPY statement 22-23
IF directive and 11-85

SOURCE libraries
description of 22-22/22-24
altering 22-24/22-29
compiler listing and 22-48
creating 22-24/22-29
format of 11-121
including text from 22-34/22-35
REPLACE statement and 22-39

Source program listing
See Compiler listing

Source programs
See HP COBOL programs

SOURCE-COMPUTER paragraph 6-4
Space character

as separator 3-4
figurative constant for 3-23
in PICTURE clause 7-64
inserting 3-24

SPACE or SPACES figurative
constant 3-23
Special insertion editing 7-64
Special names 26-5
Special registers

DEBUG-ITEM 9-285
GUARDIAN-ERR 9-187, 13-82, 13-84,
13-93, 13-95
LINAGE-COUNTER 7-28
PROGRAM-STATUS 9-254
PROGRAM-STATUS-1 9-254
PROGRAM-STATUS-2 9-254
RETURN-CODE 9-19, 23-9

SPECIAL-NAMES paragraph
description of 6-10/6-22
migrating to native mode and 33-15

SPI devices
opening 13-77
sending events to 13-79
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-52

Index S
SPOOLCOM utility
description of 30-3, 30-15/30-18
DEV subcommand 30-17
JOB subcommand 30-16

SPOOLCONTROL routine 13-139
SPOOLCONTROLBUF routine 13-139
SPOOLEND routine 13-139
Spooler jobs

description of 30-4/30-7
current 30-12
form names for 30-7
location of 30-4
number of copies of 30-6
priority of 30-6
report names for 30-6
state of 30-5

Spoolers
components of 30-2/30-3
jobs for

See Spooler jobs
level 2 protocol for 13-95/13-99
output to

description of 30-1, 30-7/30-22
formatting of 30-20/30-21
from compiler listing 30-8
from programs 30-8/30-11
vertical spacing in 30-18/30-20

Spooling
level-1 30-8
level-2 30-9/30-10
level-3 30-10

SPOOLSETMODE routine 13-139
SPOOLSTART routine 13-139
SPOOLWRITE routine 13-139
SQL databases 9-36
SQL directive

description of 11-122/11-124
migrating to native mode and 33-13

SQLMEM directive
description of 11-124
migrating to native mode and 33-19

SQL/MP 34-3, 34-4, 34-7
SQL/MX 34-3, 34-4, 34-7
SQRT function 14-55
Square root function 14-55
SRLs

See Native SRLs
Stack overflow error messages 48-9
Stacked compilation 11-5
STANDARD access mode 7-40
Standard addressing 7-40
Standard COBOL

description of 1-1
formatting restrictions for 2-8, 8-14

Standard date format
converting to integer date format 14-21
obtaining from integer date
format 14-17

Standard files
sharing 28-8
terminals as 29-8

STANDARD-DEVIATION
function 14-56/14-57
START PROGRAM field 9-286
START statement

description of 9-237/9-251
START LESS THAN 9-248

STARTBACKUP statement
description of 9-252/9-255
fault-tolerant facility and 32-2, 32-9
migrating to native mode and 33-13
PROGRAM-STATUS data item
and 32-10/32-12

Starting points in disk files 28-20/28-30
Startup message portions 13-36
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-53

Index S
Statements
description of 8-4
arithmetic

description of 8-42
common features of 8-43

common semantic rules of 8-21
compiler-directing

See Compiler directives
conditional 8-6/8-7
delimited-scope 8-7
execution of 8-16
imperative 8-5
nested

conditional IF 9-87
delimited-scope IF 9-84
PERFORM 9-160

next executable 8-19
scope of 8-8
summary of 43-1/43-59
types of 8-4

Static calls 23-5
Statistics

from Binder 11-29
from compiler 11-29/11-32

Status Key 1 8-29
Status Key 2 8-30
STATUS-3270 message 6-76
STOP statement 9-256
Stopping compilation

in Guardian environment 11-44
in OSS environment 19-1

Storage allocation
for compiler 22-21
for data items

data structures 7-46
elementary 7-46
redefined 7-49

for disk files 28-2
in File Section 7-3, 7-46

Storage allocation (continued)
in Linkage Section 7-46
initial programs and 9-27

STRING statement 9-257/9-261
String:length parameters 9-60, 9-65, 23-33,
33-4
Stroke (/)

See Slash (/)
Structured files

description of 28-10
entry-sequenced 28-12, 28-14
improving performance of 28-31/28-35
indexed 28-13/28-14, 28-17/28-18
key-sequenced 28-13/28-14
record blocking for 28-31/28-35
relative 28-12/28-13, 28-16/28-17

SUBORDINATE-NAME message 6-76
Subprograms

See Called programs
Subscripts

description of 4-19/4-21
for fixed-size tables 7-81
indexes and 7-82
indexes instead of 4-21
intrinsic functions and 14-7
MOVE statement and 9-128
number of 4-21
of redefined data items 7-50
operand identification and 8-21
order of 7-82
range of 4-21
syntax of 4-20

SUBSET directive 11-125/11-128
SUBSORT-COUNT parameter 13-56,
13-65
Substring replacement

with COPY statement 22-32
with REPLACE statement 22-37

Subsystem Control Facility
See SCF user interface
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-54

Index T
SUBTRACT statement
description of 9-262/9-268
precision of 8-49

Subtraction operator 8-46
SUBTYPE directive

description of 11-128
migrating to native mode and 33-17

Subvolumes to be searched 22-19
SUM function 14-58/14-59
Supervisor process 30-3
SUPPRESS directive 11-129, 22-40
Suppressing zero 3-24
Suspending a process 31-39
Swap file

MERGE statement and 9-125
redirecting 6-56
SORT statement and 9-230

SWAP-FILE parameter
description of 13-54
MERGE statement and 9-125

Switches, external 9-224, 25-6
Switch-status conditions 8-62
Symbol table

directives for 22-41
for Inspect debugger 11-130
listing of 22-53

SYMBOLIC CHARACTERS clause 6-18
Symbolic code listing 22-41, 22-55
SYMBOLS directive 11-130
SYMSERV process

description of 11-10, 11-12
selecting processor for 11-34

Sync blocks, checkpointing 32-7
SYNCDEPTH LIMIT phrase 6-66
SYNCDEPTH parameter 32-8
SYNCHRONIZED clause

description of 7-86/7-87
for COMPUTATIONAL-3 data item 7-74
for COMPUTATIONAL-5 data item 7-75
for INDEX data item 7-76

SYNCHRONIZED clause (continued)
for NATIVE-n data item 7-76
for PACKED-DECIMAL data item 7-74
in record description entry 7-46
migrating to native mode and 33-12

Synchronized data items 7-86
Syntax checking 22-18
SYNTAX directive 11-131, 22-22
System code extension 13-7
System code space

description of 13-7
COBOLLIB routines in 13-29

System data space 13-7
System file names

description of 26-2/26-4
associating with COBOL file
names 9-144, 26-5/26-9
for devices 26-3
for nondisk files 26-3
for temporary disk files 26-3
special 26-5

System library 13-8
System messages

CRE and 6-76, 18-6
intercepting 26-10
list of 6-73

System numbers 31-23
SYSTEM parameter 13-56, 13-65
SYSTEM-FLAG 26-11
System-Name clause

description of 6-11/6-14
with STATUS phrase 6-13
without STATUS phrase 6-12

System-names 3-10

T
TABLE OCCURS phrase 6-65
Tables

elements of 9-217
fixed-size 7-79
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-55

Index T
Tables (continued)
implicit FILLER bytes and 4-17
in Data Division 4-12/4-14
in Extended-Storage Section 24-21
multidimensional 7-82, 9-209, 9-212
passed by content 23-22
receive-control 6-70
reply 6-70
variable-size 7-83

TACL commands
displaying 22-2
editing 22-4
log of 22-2/22-4
reexecuting 22-3, 22-4

TACL DEFINE file 34-2
TACL DEFINE tool 34-10
TAL routines

calling 9-58
in TNS user library 24-19
migrating to native mode 33-4
passing parameters to 9-63,
23-32/23-34
record numbers and 28-17
restrictions on 9-65, 23-19
run-time environment for 23-2
with FORTRAN CHARACTER
parameters 9-65
with FORTRAN protocol 23-8

Tallying
with replacement 9-107
without replacement 9-95

TAN function 14-60
Tandem Development Suite (TDS)

debugging and 34-7
native COBOL cross compiler and 34-4
online help for 34-11
TACL DEFINE files and 34-2

TANDEM directive 11-132

Tandem reference format
description of 2-3/2-8
COLUMNS directive and 11-59
compiler listing and 22-42
directive for 11-53
program creation and 22-6
restrictions on 2-6/2-8
text libraries and 22-22

Tangent function 14-60
Tape files

blocking 27-2
closing 9-39
DEFINEs for 27-15/27-24
EBCDIC 27-12
executing programs that
use 27-24/27-26
input-output 27-1/27-26
labeled

See Labeled tape files
minimum record length 27-1
other data types in 27-13
other than HP 27-12/27-15
preventing prereading of 27-1
reading and writing

description of 27-1/27-15
labeled 27-8/27-12
other than HP 27-12/27-15
unlabeled 27-3/27-8

sharing one tape 27-5
spanning several tapes 27-6
STANDARD and OMITTED in 7-22
unlabeled

See Unlabeled tape files
variable-length records in 27-15

Tape mount messages
description of 27-24
for labeled tapes 27-25
for unlabeled tapes 27-6, 27-25
specifying file for 13-84
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-56

Index T
Tape Utility Program (Tapecom) 27-16,
27-22, 27-24
TAPE-DIALOGUE parameter 12-12
Target file

description of 11-28
construction of 11-43
in single program unit
compilation 11-10, 11-11

TDS
See Tandem Development Suite (TDS)

TEC
See HP Tandem Extensions for
Codewright (TEC)

TEDIT editor
description of 22-8/22-10
commands of 22-10
customizing 22-10
second window of 22-9

Temporary files
names for 26-3
placement of 11-11, 22-21

TERM option of RUN command 25-11,
26-7
Terminals

ACCEPT statement and 29-2/29-3,
29-13
as files 29-4/29-5
DISPLAY statement and 29-2/29-3,
29-10, 29-13
home 25-11
input-output on 29-1/29-15
logging program activity to 29-14
prompting from 29-6/29-7
receiving from 29-12
sharing 29-7/29-8
writing to 29-12

Terminating compilation
in Guardian environment 11-44
in OSS environment 19-1

Terminators, explicit scope 8-7

Tertiary search list
adding files to 24-13
binding or linking and 24-6, 24-10
unqualified references and 11-14

Text combining 22-44/22-45
Text lines 2-5
Text replacement 22-36/22-39
Text-names

identical 3-16
qualified 3-13, 3-15

Time limit
Break and 29-8
expired 8-41
for LOCKFILE statement 9-116, 9-117
for READ statement 9-179, 9-188,
9-199
for START statement 9-241, 9-245
for $RECEIVE 8-42
on disk file input-output 28-7, 28-39
on input-output 8-41/8-42

TIME LIMIT phrase
in LOCKFILE statement 9-116, 9-117
in READ statement 9-179
in START statement 9-241, 9-245

TIME LIMITS phrase 9-139
TIME phrase 9-8
Timestamp process names 25-12
Time, current

ACCEPT statement and 9-8
CURRENT-DATE function and 14-16

TIME-SIGNAL message 6-76
TMF

See HP NonStop Transaction
Management Facility (TMF)

TNS mode 1-3
TNS user library

description of 13-8/13-9, 24-19/24-20
COBOLLIB routines in 13-28
CRE programs in 18-6
in binding 24-6, 24-10
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-57

Index U
TNS user library (continued)
routines that can go in 24-19/24-20
specifying 24-9

TNSMISALIGN attribute (SCF) 33-8
TNS/R native mode 1-3
Toggles

in ENDIF directive 11-71
in IF and IFNOT directives 11-84, 11-86
in RESETTOG directive 11-106
in SETTOG directive 11-115

Tracing facility 33-7/33-8
Transactions

description of 32-15/32-16
screen 32-19

Transfer of control
explicit 8-18
implicit 8-18
in PERFORM statement 9-159
in SIZE ERROR or NOT SIZE ERROR
phrase 8-26

Transfer Tool 34-11
Trap 1 33-9
Trap 2

See Arithmetic overflow
TRAP2 directive

description of 11-132/11-134
migrating to native mode and 33-19
SIZE ERROR phrase and 8-24

TRAP2-74 directive
description of 11-134/11-135
migrating to native mode and 33-19

Trapping arithmetic overflow
COBOL85^ARMTRAP and 13-39
TRAP2 and NOTRAP2 and 11-132
TRAP2-74 and NOTRAP2-74
and 11-134

TRUE value 8-54
TS/MP

See HP Nonstop TS/MP

U
UL directive

description of 11-135
migrating to native mode and 33-18

Unary arithmetic operators 8-46
Unaudited files 32-3
Unavailable printers 25-6
Unconditional GO TO statement 9-81/9-82
Unconditional PERFORM
statement 9-157/9-162
Undefined results 8-22
Underlining lines in output 30-19
Underscore (_) 12-20
Uniqueness

in user-defined names 3-10
qualification and 3-16

UNIT phrase 9-38
Unlabeled tape files

description of 27-3/27-8
DEFINEs for 27-16/27-18
mount messages for 27-25

UNLOCKFILE statement 9-269/9-270
UNLOCKRECORD statement 9-270/9-271
Unnamed processes 9-254
Unqualified file names 11-36, 22-19
Unqualified references 11-13/11-16
Unresolved references 24-8, 24-9
UNSTRING statement 9-271/9-283
Unstructured disk files

description of 28-9
creating and using 28-15
faster processing 28-31

Until loop (PERFORM
VARYING) 9-166/9-177
UPPER-CASE function 14-61
USAGE clause

description of 7-69/7-78
in record description entry 7-45

USE attribute of DEFINE 27-22
USE PROCEDURE field 9-286
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-58

Index V
USE statement
description of 9-283/9-291
migrating to native mode and 33-14

User code space
description of 13-6
COBOLLIB routines in 13-28

User data space
description of 13-6
LARGEDATA directive and 11-88

User extended space
description of 13-7
LARGEDATA directive 11-88

User library
description of 13-8, 13-9
migrating to native mode and 33-16
native

See Native user library
specifying 13-10
TNS

See TNS user library
User library space

description of 13-6
COBOLLIB routines in 13-28

User-defined names
description of 3-10
scope of 2-11

USESEGMENT routine 24-22
USING phrase

in CALL statement 9-21
in ENTER statement 9-61
Linkage Section and 7-40

Utility routines
description of 13-1/13-139
dummy 13-23
in OSS environment 19-25
list of 13-3/13-5

V
V in PICTURE clause 7-56, 7-64

Validation
of parameters 9-27
of references 24-4, 24-6/24-7

VALUE clause
description of 7-89/7-90
EXTERNAL clause and 7-52
for condition-name 7-95
for INDEX data item 7-76
for redefined data item 7-50
initializing data items and 7-36

VALUE OF clause 7-23
Value parameters 11-22, 23-23
Variable parameter lists 23-13
Variables

conditional
See Conditional variables

environment 19-7, 35-10
Variable-length records

description of 4-5
in disk files 28-6
in EDIT files 28-9
in entry-sequenced files 28-12
in indexed files 28-14
in key-sequenced files 28-14
in relative files 28-13
in tape files 27-15
in terminal files 29-4
preferred description of 7-18
PROMPT phrase and 9-182
READ statement and 9-188
writing 9-298, 9-303

Variable-size data items
operand identification and 8-21
tables 7-83

Variable-type intrinsic functions
description of 14-6
MAX 14-29/14-30
MIN 14-35/14-36
RANGE 14-50/14-51
SUM 14-58/14-59
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-59

Index W
VARIANCE function 14-62/14-63
VARYING phrase 7-31
Verbs

description of 9-1/9-305
imperative 8-5

Vertical spacing 30-18/30-20
Virgule (/)

See Slash (/)
Virtual memory 31-2
Visual Inspect debugger

description of 15-4
on PC 34-8/34-10

Visual Studio .NET 34-3
VOLUME attribute of DEFINE 27-23
Volume names 18-3
VS full-screen editor 22-8

W
WAITED-IO parameter 12-12
WARN directive 11-136, 22-40
Warning messages

description of 8-34
format of 47-3
from Binder 11-136
from compiler 11-75, 11-136, 22-15
in compiler listing 22-50
list of 47-4/47-93
optional 22-50

WHEN-COMPILED function 14-63/14-64
While loop (PERFORM
VARYING) 9-166/9-177
Winsock 34-11
Working-Storage Section

description of 7-33/7-36
LESS-CODE 1 directive and 24-22

WRITE statement 9-292/9-305
Write-through cache 28-32
Writing

numeric data 29-13
to console 29-11

Writing (continued)
to printer 29-12, 30-22
to tape files

description of 27-1/27-15
labeled 27-8/27-12
other than HP 27-12/27-15
unlabeled 27-3/27-8

to terminal 29-12

X
X in PICTURE clause 7-56
XEP (extended entry point) table 24-17
X/Open CALL statement

description of 9-18, 23-9
CANCEL statement and 9-33, 23-7
ENTER statement and 9-29, 23-7

Z
Z in PICTURE clause 3-24, 7-57, 7-67
ZCOBSRL file

overview of 13-29, 13-30
descriptions of routines
in 13-85/13-104
list of routines in 13-29
syntax summary of routines
in 45-1/45-10

ZCRESRL file 13-37
Zero

figurative constant for 3-23
in PICTURE clause 3-24, 7-57, 7-64
negative 8-44
suppression of 3-24, 7-67

ZERO, ZEROS, or ZEROES figurative
constant 3-23
Zero-length records 28-11, 28-12
ZSYSCOB file 23-13
ZZBInnnn file 22-17
ZZPTnnnn file 22-17
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-60

Index Special Characters
Special Characters
8-45/8-48, 8-54/8-57, 13-23/13-24,

13-26/13-29, 13-29/13-30, 13-31/13-36,
16-1/16-4
!

See Exclamation mark (!)
#DYNAMIC special name

description of 26-8
ASSIGN command and 26-9
in OSS environment 19-25

#IN special name
description of 26-6
in OSS environment 19-11

#OUT special name
description of 26-7
in OSS environment 19-11

#RECEIVE blocks 11-24/11-25
#TEMP special name 26-8, 28-43
#TERM special name 26-7
$

See Dollar sign ($)
$0

opening 13-77
sending events to 13-79, 29-11

$0.#ZSPI
opening 13-77
sending events to 13-79

$RECEIVE
as input-output file 31-10/31-12
as separate input and output
files 31-7/31-9
Break and 29-8
CRE and 18-4
file number of 28-41
process communication
and 31-6/31-12
RECEIVE-CONTROL paragraph
and 6-64/6-76
rules for 31-17

$RECEIVE (continued)
time limit for 8-42
#RECEIVE blocks and 11-24/11-25

$SYSTEM.SYSnn subvolume
ZCOBSRL and 13-29
ZCRESRL and 13-37

$SYSTEM.SYSTEM subvolume 13-23
&

See Ampersand (&)
*

See Asterisk (*)
+

See Plus sign (+)
-

See Minus sign (-)
.cbl file extension 34-4
.cob file extension 34-4
/

See Slash (/)
:

See Colon (:)
;

See Semicolon (;)
=_DEFAULTS DEFINE 26-3
=_OBJECT_SEARCH DEFINE 11-37,
22-19
=_SORT_DEFAULTS DEFINE

establishing parameters with 13-26
MERGE statement and 9-125

=_SOURCE_SEARCH DEFINE 11-37,
22-19
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-61

Index Special Characters
HP COBOL Manual for TNS and TNS/R Programs—522555-006
Index-62

	What’s New in This Manual
	Manual Information
	New and Changed Information
	New
	Changed
	Deleted

	About This Manual
	Manuals to Which This Manual Refers
	Acknowledgment
	Notation Conventions
	COBOL Name Conventions
	Hypertext Links
	Syntax Diagram Conventions
	Range Convention
	Example Conventions
	Change Bar Notation

	1 Introduction
	HP�COBOL Language
	Embedded SQL/MP
	Embedded SQL/MX

	Summary of Execution Modes
	HP�COBOL Compilers for TNS and TNS/R Programs
	Guardian and OSS Environments
	Compiler Input
	Compiler Output
	Combining Separately Compiled Source Programs
	Executing Loadfiles
	Guardian Environment
	OSS Environment

	2 Source Program Organization and Format
	Source Program Components
	Reference Format for Source Program Lines
	Indicator Area
	Area A and Area B
	Restrictions

	COPY Libraries
	Nested Source Programs
	Directly Contained Programs and Indirectly Contained Programs
	Scope of User-Defined Names

	Common Programs
	Programs in the Same Run Unit
	Initial Programs
	How Programs Share Resources
	Global and Local Names
	External and Internal Objects
	Shared Data
	Shared Files

	3 Language Elements
	COBOL Character Set
	Punctuation Characters
	Separators
	Comments
	Nonnumeric and National Literals
	Numeric Literals and PICTURE Character-Strings

	Character-Strings
	COBOL Words
	Literals
	PICTURE Character-Strings
	Comments

	4 Data Fundamentals
	Data Levels, Classes, and Categories
	Data Structures
	Level-Numbers
	Records
	Files
	Tables

	Data Representation
	Data Alignment in Receiving Items
	Data Alignment in Memory
	Implicit FILLER Bytes
	Records
	Tables
	REDEFINES Clause

	References to Data Items
	Qualifiers
	Subscripts
	Reference Modifiers
	Identifiers
	Condition-Names

	5 Identification Division
	Identification Division Syntax
	PROGRAM-ID Paragraph
	DATE-COMPILED Paragraph

	6 Environment Division
	Environment Division Syntax
	Configuration Section
	SOURCE-COMPUTER Paragraph
	OBJECT-COMPUTER Paragraph
	SPECIAL-NAMES Paragraph

	Input-Output Section
	FILE-CONTROL Paragraph
	I�O-CONTROL Paragraph
	RECEIVE-CONTROL Paragraph

	7 Data Division
	Data Categories and Data Descriptions
	Record Description Entries
	Independent Data Item Description Entries

	File Section
	File Description Entries
	Sort-Merge File Description Entries
	Data Description Entries

	Working-Storage Section
	Data Description Entries
	Initializing Data Items
	Size Limits
	Checkpointing

	Extended-Storage Section
	Data Description Entries and Initializing Data Items
	Addressing
	Size Limits
	Checkpointing

	Linkage Section
	Data Description Entries and Initializing Data Items
	ACCESS MODE Clause
	CALL Statement and USING Phrase
	Index-Names
	Absent Linkage Section

	Descriptions of Records (Levels 01-49)
	General Considerations
	FILLER Keyword
	REDEFINES Clause
	EXTERNAL Clause
	GLOBAL Clause
	PICTURE Clause
	USAGE Clause
	SIGN Clause
	OCCURS Clause for Fixed-Size Tables
	OCCURS Clause for Variable-Size Tables
	SYNCHRONIZED Clause
	JUSTIFIED Clause
	BLANK WHEN ZERO Clause
	VALUE Clause

	Descriptions That Rename Items (Level�66)
	Descriptions of Noncontiguous Elementary Items (Level 77)
	Descriptions of Condition-Names for Values (Level�88)

	8 Procedure Division
	Procedure Division Components and Syntax
	Statements
	Sentences
	Paragraphs
	Sections
	Procedures
	Declaratives Portion

	Execution of the Procedure Division
	Statement Execution
	Sentence Execution
	Paragraph Execution
	Section Execution
	Procedure Execution
	Declaratives Portion Execution

	Common Semantic Rules
	Operand Identification
	Overlapping Operands

	Common Phrases
	CORRESPONDING Phrase
	ROUNDED Phrase
	SIZE ERROR Phrase
	FROM Phrase
	INTO Phrase

	Input-Output
	I�O Status Code
	Diagnosing Input-Output Errors
	Recovering from Input-Output Errors
	Timed Input and Output

	Arithmetic Operations
	Common Features of Arithmetic Statements
	Arithmetic Expressions
	Arithmetic Precision

	Conditional Expressions
	Simple Conditions
	Complex Conditions
	Abbreviated Combined Relation Conditions
	Condition Evaluation Rules

	Concatenation Expressions

	9 Procedure Division Verbs
	ACCEPT
	ACCEPT With Mnemonic-Name
	ACCEPT With DATE, DAY, DAY-OF-WEEK, or TIME Phrase

	ADD
	ADD TO
	ADD GIVING
	ADD CORRESPONDING

	ALTER
	CALL
	CANCEL
	CHECKPOINT
	CLOSE
	CLOSE for Sequential and Line Sequential Files
	CLOSE for Relative, Indexed, and Queue Files

	COMPUTE
	CONTINUE
	COPY
	DELETE
	DISPLAY
	DIVIDE
	DIVIDE INTO
	DIVIDE GIVING
	DIVIDE GIVING REMAINDER

	ENTER
	ENTER COBOL
	EVALUATE
	EXIT
	GO TO
	Unconditional GO TO
	Conditional GO TO

	IF
	Delimited-Scope Form
	Conditional Form

	INITIALIZE
	INSPECT
	INSPECT TALLYING

	Procedure Division Verbs
	INSPECT REPLACING
	INSPECT TALLYING REPLACING
	INSPECT CONVERTING
	LOCKFILE
	MERGE
	MOVE
	MOVE TO
	MOVE CORRESPONDING

	MULTIPLY
	MULTIPLY BY
	MULTIPLY GIVING

	OPEN
	PERFORM
	Unconditional PERFORM
	PERFORM TIMES
	PERFORM UNTIL
	PERFORM VARYING

	READ
	READ for Sequential or Dynamic Access
	READ for Line Sequential Files
	READ for Random or Dynamic Access

	RELEASE
	REPLACE
	RETURN
	REWRITE
	REWRITE for Sequential, Relative, Indexed, and Queue Files
	REWRITE for Line Sequential Files

	Procedure Division Verbs
	SEARCH
	SEARCH VARYING
	SEARCH ALL

	SET
	SET TO
	SET UP or SET DOWN

	SORT
	START
	STARTBACKUP
	STOP
	STRING
	SUBTRACT
	SUBTRACT FROM
	SUBTRACT GIVING
	SUBTRACT CORRESPONDING

	UNLOCKFILE
	UNLOCKRECORD
	UNSTRING
	USE
	USE DEBUGGING
	USE AFTER EXCEPTION

	WRITE
	WRITE for Sequential Files
	WRITE for Line Sequential Files
	WRITE for Relative, Indexed, and Queue Files

	10 Source Text Manipulation
	COPY Statement
	REPLACING Phrase
	COPY Libraries
	Specifying Library Names
	Library Format

	REPLACE Statement

	11 Program Compilation
	Compiler Input
	Main Programs
	Calling and Called Programs
	How an HP�COBOL Program Calls a Non-COBOL Program
	Compilation Units

	Compilation Details
	Processes Involved in Compilation
	Temporary File Placement
	CALL and ENTER Statement Processing: Overview
	CALL and ENTER Statement Processing: Detailed Explanation
	#RECEIVE Blocks

	Compiler Output
	Listing Creation
	Object File Creation
	Manipulating Object Files
	Compilation Statistics
	Completion Codes

	Running the Compiler
	PARAM Commands
	Predefined SEARCH DEFINEs
	Starting a Compilation
	Terminating a Compilation

	Compiler Directives
	Where Compiler Directives Are Allowed
	Categories of Compiler Directives
	ANSI
	BLANK and NOBLANK
	CALL-SHARED
	CANCEL and NOCANCEL
	CHECK
	CODE and NOCODE
	COLUMNS
	COMPACT and NOCOMPACT
	COMPILE
	CONSULT and NOCONSULT
	CROSSREF and NOCROSSREF
	DIAGNOSE-74 and NODIAGNOSE-74
	DIAGNOSE-85 and NODIAGNOSE-85
	DIAGNOSEALL and NODIAGNOSEALL
	ENDIF
	ENDUNIT
	ENV
	ERRORFILE
	ERRORS
	FIPS and NOFIPS
	FLOAT and NOFLOAT
	FMAP
	HEADING
	HEAP
	HIGHPIN
	HIGHREQUESTERS
	IICODE and NOICODE
	IF and IFNOT
	INNERLIST and NOINNERLIST
	INSPECT and NOINSPECT
	LARGEDATA
	LD
	LESS-CODE
	LIBRARY
	LINES
	LIST and NOLIST
	LMAP and NOLMAP
	MAIN
	MAP and NOMAP
	NLD
	NONSTOP
	NON-SHARED
	OPTIMIZE
	PERFORM-TRACE
	PORT and NOPORT
	RESETTOG
	RUNNABLE
	RUNNAMED
	SAVE
	SAVEABEND and NOSAVEABEND
	SEARCH and NOSEARCH
	SECTION
	SETTOG
	SHARED
	SHOWCOPY and NOSHOWCOPY
	SHOWFILE and NOSHOWFILE
	SOURCE
	SQL and NOSQL
	SQLMEM
	SUBSET
	SUBTYPE
	SUPPRESS and NOSUPPRESS
	SYMBOLS and NOSYMBOLS
	SYNTAX
	TANDEM
	TRAP2 and NOTRAP2
	TRAP2-74 and NOTRAP2�74
	UL
	WARN and NOWARN

	12 Program Execution
	RUN or RUND Command
	ASSIGN Command
	PARAM Command
	CLEAR Command
	DEFINEs
	DEFINE and ASSIGN
	Controlling the Propagation of DEFINEs
	DEFINE Names
	DEFINE Attributes
	ADD DEFINE Command

	Initial State
	Status of Internal Entities During Program Execution
	Status of External Entities During Program Execution
	Called Program Termination

	13 Libraries and Utility Routines
	Memory Areas
	Linkfiles as Libraries
	System Library
	TNS User Library
	User Library
	Building a User Library
	Specifying a User Library

	Dynamic-Link Libraries (DLLs)
	Building a DLL From a Single Source File
	Building a DLL from Multiple Source Files
	Specifying a DLL

	Files of Dummy Routines
	CBL85UTL Overview
	FastSort Interface Overview
	Establishing Parameters With FastSort Interface Routines
	Establishing Parameters With =_SORT_DEFAULTS DEFINE

	COBOLLIB Overview
	COBOLLIB Routines in User Code Space
	COBOLLIB Routines in User Library Space
	COBOLLIB Routines in a Special TNS User Library
	COBOLLIB Routines in System Code Space

	ZCOBSRL Overview
	CLULIB Overview
	Saved Message Utility (SMU) Overview
	Checkpoint Lists for Process Pairs
	Defined Portions of Saved Messages

	ZCRESRL Overview
	CBL85UTL and ZCOBSRL Routines
	COBOL85^ARMTRAP
	COBOL85^COMPLETION and COBOL_COMPLETION_
	COBOL_CONTROL_
	COBOL_GETENV_
	COBOL_PUTENV_
	COBOL85^RETURN^SORT^ERRORS and COBOL_RETURN_SORT_ERRORS_
	COBOL85^REWIND^SEQUENTIAL and COBOL_REWIND_SEQUENTIAL_
	COBOL85^SET^SORT^PARAM^TEXT and COBOL_SET_SORT_PARAM_TEXT_
	COBOL85^SET^SORT^PARAM^VALUE and COBOL_SET_SORT_PARAM_VALUE_
	COBOL_SET_MAX_RECORD_
	COBOL_SETMODE_
	COBOL85^SPECIAL^OPEN and COBOL_SPECIAL_OPEN_

	COBOLLIB, CLULIB, and ZCOBSRL Routines
	COBOLASSIGN
	COBOL_ASSIGN_
	COBOLFILEINFO
	COBOL_FILE_INFO_
	COBOLSPOOLOPEN
	CREATEPROCESS

	Saved Message Utility (SMU) Routines
	ALTERPARAMTEXT
	CHECKLOGICALNAME
	CHECKMESSAGE
	DELETEASSIGN
	DELETEPARAM
	DELETESTARTUP
	GETASSIGNTEXT
	GETASSIGNVALUE
	GETBACKUPCPU
	GETPARAMTEXT
	GETSTARTUPTEXT
	PUTASSIGNTEXT
	PUTASSIGNVALUE
	PUTPARAMTEXT
	PUTSTARTUPTEXT

	Guardian Environment Level 3 Spooling Routines

	14 Intrinsic Functions
	Intrinsic Function Types
	Alphanumeric Intrinsic Functions
	Numeric Intrinsic Functions
	Integer Intrinsic Functions
	Variable-Type Intrinsic Functions

	Argument Types
	ACOS Function
	ANNUITY Function
	ASIN Function
	ATAN Function
	CHAR Function
	COS Function
	CURRENT-DATE Function
	DATE-OF-INTEGER Function
	DAY-OF-INTEGER Function
	FACTORIAL Function
	INTEGER Function
	INTEGER-OF-DATE Function
	INTEGER-OF-DAY Function
	INTEGER-PART Function
	LENGTH Function
	LOG Function
	LOG10 Function
	LOWER-CASE Function
	MAX Function
	MEAN Function
	MEDIAN Function
	MIDRANGE Function
	MIN Function
	MOD Function
	NUMVAL Function
	NUMVAL-C Function
	ORD Function
	ORD-MAX Function
	ORD-MIN Function
	PRESENT-VALUE Function
	RANDOM Function
	RANGE Function
	REM Function
	REVERSE Function
	SIN Function
	SQRT Function
	STANDARD-DEVIATION Function
	SUM Function
	TAN Function
	UPPER-CASE Function
	VARIANCE Function
	WHEN-COMPILED Function

	15 Debugging Tools
	Standard COBOL Debugging Tools
	Run-Time Debuggers
	Visual Inspect
	Inspect
	Debug
	Debugger Selection

	CROSSREF Utility Program
	FIXERRS Macro

	16 ANSI Reference Format
	Sequence Number Area
	Indicator Area
	Compiler Directive
	Ordinary Comment
	Comment for Top of Page
	Debugging Line
	Continuation Line

	Area A
	Area B
	Identification Field

	17 HP Extensions to ISO COBOL
	Source Program Organization and Format
	Language Elements
	Data Fundamentals
	Environment Division
	Data Division
	Procedure Division Verbs

	18 HP�COBOL CRE Support
	Introducing the CRE
	Compiler Directives
	Volume Names
	Shared File Operations
	$RECEIVE Processing
	EXTERNAL Clause
	MESSAGE SOURCE Clause
	REPORT Clause
	Message Format
	Message Replies

	Arithmetic Overflow Processing
	TNS HP�COBOL Programs in TNS User Libraries
	CHECKPOINT Access to Extended-Storage Section
	CBL85UTL Routines
	COBOLLIB Routines
	COBOLASSIGN
	COBOLFILEINFO
	COBOLSPOOLOPEN

	19 Using HP�COBOL in the OSS Environment
	Running the COBOL85 Compiler
	Running the NMCOBOL Compiler
	Running HP�COBOL Programs
	Calling OSS Functions From HP�COBOL Programs
	Mixed-Language Programs
	TNS Programs
	Native Programs

	Changing Default Pathnames and Disk Volume
	Files in the OSS Environment
	OSS Pathnames
	OSS Pathnames in HP�COBOL Source Programs
	OSS Files in HP�COBOL Source Programs
	#IN and #OUT

	Line Sequential Files
	File-Control Entries
	File Description Entries
	I�O-CONTROL Paragraph
	OPEN Statement
	READ Statement
	REWRITE Statement
	WRITE Statement

	Features Unavailable in the OSS Environment
	ASSIGN Commands
	PARAM Commands
	Compiler Directives
	Process Pairs

	Features That Operate Differently in the OSS Environment
	ACCEPT and DISPLAY Statements
	Utility Routines

	20 HP�COBOL Limits
	Size
	Number
	Callability
	External Names
	Ranges of Values
	Ignored Elements

	21 Reserved Words
	All Reserved Words
	HP Reserved Words

	22 Creating and Compiling HP�COBOL Source Programs
	Using the TACL Command Log
	Displaying Previous Commands
	Reexecuting Previous Commands
	Editing and Reexecuting Previous Commands

	Creating or Altering an HP�COBOL Source Program
	EDIT Files
	Reference Format
	EDIT Editor
	TEDIT Editor
	HP�Tandem Extensions for Codewright (TEC)

	Compiling an HP�COBOL Source Program
	Running the Compiler
	Naming the Object File
	Specifying the Default COPY Library
	Specifying Compiler Directives
	Specifying Subvolumes to Be Searched for Unqualified Files
	Changing the Compilation Environment
	Improving Compilation Speed
	Launching Compilations to Run Unattended

	Using COPY and SOURCE Libraries
	Creating or Altering a COPY or SOURCE Library
	Using an HP Editor
	Using Data Definition Language (DDL)

	Including Text From a COPY Library
	Including Text From a SOURCE Library
	Replacing Text-Words in an HP�COBOL Source Program
	Replacing Substrings
	Replacing Text-Words From COPY Libraries
	Replacing Text-Words From SOURCE Libraries

	Understanding and Controlling the Compiler Listing
	Compilation Banner
	Source Program Listing
	Diagnostic Messages
	Symbol Table Listing
	Octal Code Listing
	Symbolic Code Listing
	Cross-Reference Listing
	Load Maps
	Compilation Summary

	23 Calling Other Programs and Routines
	Run-Time Environment
	Calling Other COBOL Programs
	Separately Compiled HP�COBOL Programs
	Nested HP�COBOL Programs
	Common Programs
	Initial Programs
	Static Calls
	Dynamic Calls

	Calling Non-COBOL Routines
	ENTER Statement
	X/Open CALL Statement
	Functions (Routines That Return Values)
	Operating System Routines
	HP�COBOL Run-Time Routines
	COBOL Utility Routines
	ENFORM Programs
	Restrictions on Calling Non-COBOL Routines

	Passing Parameters
	TNS Addressing Modes
	Native Addressing Modes
	What HP�COBOL Can Pass by Content
	What HP�COBOL Can Pass by Reference
	What HP�COBOL Can Pass by Value
	Passing Parameters to COBOL Programs
	Passing Parameters to Non-COBOL Routines

	24 Issues Related to Binding and Linking
	Concepts and Terms
	Code and Data Blocks
	Binding or Linking
	Loadfiles, Linkfiles, and Processes
	Fixup

	Binding or Linking HP�COBOL Programs
	Binding or Linking Automatically
	Binding or Linking Programs to Be Called Dynamically
	Binding With BIND

	Binding or Linking Mixed-Language Programs
	Accelerating TNS HP�COBOL Programs
	Designing Programs With Large Amounts of Code
	Separate Programs
	Separate Processes
	TNS User Library

	Designing Programs With Large Amounts of Data
	Extended-Storage Section
	LESS-CODE Directive

	COBOL Segmentation

	25 Executing and Debugging HP�COBOL Programs
	Preparing to Execute an HP�COBOL Program
	Adding DEFINEs
	Overriding File Assignments Made at Compilation Time
	Specifying Characteristics of Files That a Program Creates
	Enabling Debugging Declaratives
	Overriding the NONSTOP Directive
	Specifying a Default Input-Output Device
	Providing for an Unavailable Printer
	Turning On External Switches
	Requesting a Debugger Instead of ABEND
	Specifying Waited Input-Output
	Using OBEY Files to Prepare for Execution
	Finding Out What Preparation Commands Are Already Active
	Changing or Clearing Unwanted Preparation Commands

	Executing an HP�COBOL Program
	Starting an HP�COBOL Program From a TACL Prompt
	Specifying Default Input and Output Devices
	Specifying the Home Terminal
	Naming the New Process
	Running the New Process in the Background
	Run-Time Errors

	Getting a Program to Enter Debugging Mode
	Before Execution
	Programmatically
	Forcefully

	26 Input and Output Concepts
	Files
	System File Names
	COBOL File Names
	Associating COBOL File Names With System File Names
	Prereading File Records

	Processes Handled as Files
	Intercepting Operating System Messages

	27 Tape Input and Output
	Reading and Writing Tape Files
	Preventing Prereading
	Saving Tape and Time
	Unlabeled Tape Files
	Labeled Tape Files
	Tape Files of Types Other Than HP

	Adding DEFINEs for Tape Files
	Unlabeled Tape Files
	Labeled Tape Files

	Executing HP�COBOL Programs That Use Tape Files
	Mount Messages
	Run-Time Errors

	28 Disk Input and Output
	Common Disk File Topics
	Allocation
	Partitioned Files
	Purging Files or Their Data
	Locking
	Ownership and Security
	Fixed-Length and Variable-Length Records
	Exclusion Modes
	Time Limits
	Reading Files From Called Programs
	Sharing Files Among HP�COBOL Programs
	Sharing Files Among Different-Language Modules
	Modification
	Maximum Number of Files

	Types of HP Disk Files
	Unstructured (Sequential) Files
	Structured Files

	Creating and Using HP�COBOL Sequential Files
	Entry-Sequenced Files
	Unstructured Files
	EDIT Files

	Creating and Using HP�COBOL Relative Files
	Creating and Using HP�COBOL Indexed Files
	Creating and Using Queue Files
	Creating a Queue File
	Opening a Queue File
	Reading a Queue File
	Writing to a Queue File

	Establishing Starting Points in Files
	Key of Reference
	Alternate Record Keys
	Positioning
	Repositioning to New Record With Same Alternate Key

	Optimizing Disk File Processing
	Unstructured Files
	Structured Files
	Files With Alternate Keys
	Partitioned Files

	Optimizing Disk File Storage
	Avoiding Deadlock
	Locking and Unlocking Files and Records
	Setting Time Limits on Input-Output Operations

	Using Enscribe and Operating System Routines
	Physical File Names
	Obtaining File Numbers and Other File Attributes
	Determining Whether Two COBOL File Names Specify the Same Physical File
	Purging a File From an HP�COBOL Program
	Purging the Contents of a File From an HP�COBOL Program
	Renaming a File From an HP�COBOL Program
	Creating a File Having Alternate Keys From an HP�COBOL Program

	29 Terminal Input and Output
	Using ACCEPT and DISPLAY With a Terminal
	Guardian Environment
	OSS Environment

	Using a Terminal as a File
	Prompting the Terminal Operator for Input
	Sharing a Terminal
	Terminal Associated With a Command Interpreter
	Terminal Not Associated With a Command Interpreter
	Non-COBOL Modules

	Getting Break Ownership
	Transferring Break Ownership
	Communicating With an Operator or Process
	Writing to a Console
	Writing to a Terminal or Printer
	Reading From a Terminal or Process
	Reading and Writing Numeric Data

	Logging Program Activity Information to a Terminal

	30 Printer and Spooler Output
	Using a Printer Directly
	Understanding Spoolers
	Spooler Components
	Jobs

	Using a Spooler
	Spooling Compiler Listings
	Spooling Program Output
	Using PERUSE
	Using SPOOLCOM

	Controlling Vertical Spacing in a Printed Report
	Skipping Lines
	Overprinting Lines
	Skipping to a Printer Control Tape Channel Punch
	Skipping to a New Page

	Formatting Pages of a Printed Report
	Logging Program Activity Information to a Printer
	DISPLAY
	WRITE

	31 Process Initiation, Communication, and Management
	Memory and Virtual Memory
	Initiating a Process From an HP�COBOL Program
	Communicating With a Process
	$RECEIVE
	Process Names
	Example of Simple Interprocess Communication
	RECEIVE-CONTROL Paragraph
	At-End Condition
	Summary of $RECEIVE Rules
	Simple Server Example

	Managing a Process
	Determining the Process Handle
	Determining the Node (System Number)
	Identifying the Message Source
	Determining the Status
	Identifying the Creator
	Monitoring Descendants’ Completion
	Changing the Creator ID
	Suspending a Process

	32 Fault-Tolerant Processes
	NonStop Operating System
	Introduction to the Fault-Tolerant Facility
	Introduction to TMF
	Choosing the Fault-Tolerant Facility or TMF

	Fault-Tolerant Facility
	Process Pairs
	Checkpointing
	Using the Fault-Tolerant Facility
	Designing Programs for the Fault-Tolerant Facility
	Debugging Programs That Use the Fault-Tolerant Facility

	TMF
	Concepts
	Designing Programs for the TMF Subsystem
	The TMF Subsystem and Requester Screen Transactions
	The TMF Subsystem for Batch Jobs
	Debugging Programs That Use the TMF Subsystem

	33 Migrating TNS Programs to Native Programs
	Reasons to Migrate
	Migrating HP�COBOL Programs
	Data Alignment
	Misalignment Tracing Facility
	Misalignment Handling
	Causes of Misalignment in HP�COBOL Programs

	Source Program Changes
	General Migration Tasks
	Removal Required
	Possible Changes Required
	Removal Optional
	New Features (Optional)

	Development and Management Changes
	Maintaining Common Source Code
	Using the Inspect and Visual Inspect Debuggers

	34 Native COBOL Cross Compiler on PC
	Cross Compiler Features
	NonStop COBOL for TNS/R (ETK)
	Tandem COBOL (TDS)
	nmcobol (PC Command Line)
	Linking
	Debugging
	ETK and TDS Platforms
	Command-Line Platform
	RUNV

	Tools and Utilities
	NonStop ar Utility
	TACL DEFINE Tool (ETK and TDS)
	PC-to-NonStop-Host Transfer Tools

	Documentation

	35 Commands
	Guardian Environment
	Before Running the Compiler (Optional)
	Running the COBOL85 Compiler
	Running the NMCOBOL Compiler
	Running the Native Cross Compiler Under Visual Inspect
	Before Running the Compiled Program (Optional)
	Running the Compiled Program

	OSS Environment
	Before Running the Compiler (Optional)
	Running the cobol (COBOL85) Compiler
	Running the nmcobol Compiler
	Running the Compiled Program

	nmcobol (PC Command Line)

	36 Compiler Directives
	ANSI
	BLANK and NOBLANK
	CALL-SHARED
	CANCEL and NOCANCEL
	CHECK
	CODE and NOCODE
	COLUMNS
	COMPACT and NOCOMPACT
	COMPILE
	CONSULT and NOCONSULT
	CROSSREF and NOCROSSREF
	DIAGNOSE-74 and NODIAGNOSE-74
	DIAGNOSE-85 and NODIAGNOSE-85
	DIAGNOSEALL and NODIAGNOSEALL
	ENDIF
	ENDUNIT
	ENV
	ERRORFILE
	ERRORS
	FIPS and NOFIPS
	FLOAT and NOFLOAT
	FMAP
	HEADING
	HEAP
	HIGHPIN
	HIGHREQUESTERS
	ICODE and NOICODE
	IF and IFNOT
	INNERLIST and NOINNERLIST
	INSPECT and NOINSPECT
	LARGEDATA
	LD
	LESS-CODE
	LIBRARY
	LINES
	LIST and NOLIST
	LMAP and NOLMAP
	MAIN
	MAP and NOMAP
	NLD
	NONSTOP
	NON-SHARED
	OPTIMIZE
	PERFORM-TRACE
	PORT and NOPORT
	RESETTOG
	RUNNABLE
	RUNNAMED
	SAVE
	SAVEABEND and NOSAVEABEND
	SEARCH and NOSEARCH
	SECTION
	SETTOG
	SHARED
	SHOWCOPY and NOSHOWCOPY
	SHOWFILE and NOSHOWFILE
	SOURCE
	SQL and NOSQL
	SQLMEM
	SUBSET
	SUBTYPE
	SUPPRESS and NOSUPPRESS
	SYMBOLS and NOSYMBOLS
	SYNTAX
	TANDEM
	TRAP2 and NOTRAP2
	TRAP2-74 and NOTRAP2�74
	UL
	WARN and NOWARN

	37 Source Program Organization and Format
	Separately Compiled Source Program
	Reference Format
	TANDEM
	ANSI

	38 Language Elements and Expressions
	COBOL Character Set
	Character-Strings
	COBOL Word
	Literals
	PICTURE Character-Strings

	Arithmetic Expressions
	Conditional Expressions
	Simple Relation Condition
	Simple Class Condition
	Simple Sign Condition
	Negated Condition
	Combined Condition
	Abbreviated Combined Relation Condition

	Concatenation Expressions

	39 Data References
	Qualified Condition-Name
	Qualified Data-Name
	Qualified Paragraph-Name
	Qualified Text-Name
	Qualified LINAGE-COUNTER
	Qualified Identifier
	Subscripted Table Element
	Reference Modifier
	OSS Pathname for OSS File
	OSS Pathname for Guardian File

	40 Identification Division
	41 Environment Division
	Configuration Section
	SOURCE-COMPUTER Paragraph
	OBJECT-COMPUTER Paragraph
	SPECIAL-NAMES Paragraph

	Input-Output Section
	FILE-CONTROL Paragraph
	I�O-CONTROL Paragraph
	RECEIVE-CONTROL Paragraph

	42 Data Division
	File Descriptions
	Sequential File
	Line Sequential File
	Relative, Indexed, or Queue File
	Sort-Merge File

	Data Descriptions
	Record Item (Levels 01 through 49)
	Level-66 Item
	Level-77 Item
	Level-88 Item
	Clause for Data Descriptions in the Linkage Section

	43 Procedure Division
	ACCEPT With Mnemonic-Name
	ACCEPT With DATE, DAY, DAY-OF-WEEK, or TIME Phrase
	ADD TO
	ADD GIVING
	ADD CORRESPONDING
	ALTER
	CALL
	CANCEL
	CHECKPOINT
	CLOSE for Sequential and Line Sequential Files
	CLOSE for Relative, Indexed, and Queue Files
	COMPUTE
	CONTINUE
	COPY
	DELETE
	DISPLAY
	DIVIDE INTO
	DIVIDE GIVING
	DIVIDE GIVING REMAINDER
	ENTER
	ENTER COBOL
	EVALUATE
	EXIT
	Unconditional GO TO
	Conditional GO TO
	Delimited-Scope IF
	Conditional IF
	INITIALIZE
	INSPECT TALLYING
	INSPECT REPLACING
	INSPECT TALLYING REPLACING
	INSPECT CONVERTING
	LOCKFILE
	MERGE
	MOVE TO
	MOVE CORRESPONDING
	MULTIPLY BY
	MULTIPLY GIVING
	OPEN
	Unconditional PERFORM
	PERFORM TIMES
	PERFORM UNTIL
	PERFORM VARYING
	READ for Sequential or Dynamic Access
	READ for Line Sequential Access
	READ for Random or Dynamic Access
	RELEASE
	REPLACE
	RETURN
	REWRITE for Sequential, Relative, Indexed, and Queue Files
	REWRITE for Line Sequential Files
	SEARCH VARYING
	SEARCH ALL
	SET TO for Pointer Data Items
	SET TO for Nonpointer Data Items
	SET UP or SET DOWN for Pointer Data Items
	SET UP or SET DOWN for Nonpointer Data Items
	SORT
	START
	STARTBACKUP
	STOP
	STRING
	SUBTRACT FROM
	SUBTRACT GIVING
	SUBTRACT CORRESPONDING
	UNLOCKFILE
	UNLOCKRECORD
	UNSTRING
	USE DEBUGGING
	USE AFTER EXCEPTION
	WRITE for Sequential Files
	WRITE for Line Sequential Files
	WRITE for Relative, Indexed, and Queue Files

	44 Intrinsic Function Calls
	ACOS
	ANNUITY
	ASIN
	ATAN
	CHAR
	COS
	CURRENT-DATE
	DATE-OF-INTEGER
	DAY-OF-INTEGER
	FACTORIAL
	INTEGER
	INTEGER-OF-DATE
	INTEGER-OF-DAY
	INTEGER-PART
	LENGTH
	LOG
	LOG10
	LOWER-CASE
	MAX
	MEAN
	MEDIAN
	MIDRANGE
	MIN
	MOD
	NUMVAL
	NUMVAL-C
	ORD
	ORD-MAX
	ORD-MIN
	PRESENT-VALUE
	RANDOM
	RANGE
	REM
	REVERSE
	SIN
	SQRT
	STANDARD-DEVIATION
	SUM
	TAN
	UPPER-CASE
	VARIANCE
	WHEN-COMPILED

	45 CBL85UTL and ZCOBSRL Routine Calls
	COBOL85^ARMTRAP
	COBOL85^COMPLETION
	COBOL_COMPLETION_
	COBOL_CONTROL_
	COBOL_GETENV_
	COBOL_PUTENV_
	COBOL85^RETURN^SORT^ERRORS and COBOL_RETURN_SORT_ERRORS_
	COBOL85^REWIND^SEQUENTIAL and COBOL_REWIND_SEQUENTIAL_
	COBOL85^SET^SORT^PARAM^TEXT and COBOL_SET_SORT_PARAM_TEXT_
	COBOL85^SET^SORT^PARAM^VALUE and COBOL_SET_SORT_PARAM_VALUE_
	COBOL_SET_MAX_RECORD_
	COBOL_SETMODE_
	COBOL85^SPECIAL^OPEN and COBOL_SPECIAL_OPEN_
	For Spoolers and Printers
	For System Log Files
	For Partitioned Disk Files
	For Tape Files in the CRE

	46 COBOLLIB, CLULIB, and ZCRESRL Routine Calls
	SMU Routines
	ALTERPARAMTEXT
	CHECKLOGICALNAME
	CHECKMESSAGE
	DELETEASSIGN
	DELETEPARAM
	DELETESTARTUP
	GETASSIGNTEXT
	GETASSIGNVALUE
	GETBACKUPCPU
	GETPARAMTEXT
	GETSTARTUPTEXT
	PUTASSIGNTEXT
	PUTASSIGNVALUE
	PUTPARAMTEXT
	PUTSTARTUPTEXT

	Non-SMU Routines
	COBOLASSIGN
	COBOL_ASSIGN_
	COBOLFILEINFO
	COBOL_FILE_INFO_
	COBOLSPOOLOPEN
	CREATEPROCESS

	47 Compiler Diagnostic Messages
	Message Indicator Line
	Warning Message Format
	Error Message Format
	Failure Message Format
	Message List
	Other Products’ Error Messages
	NMCGEN
	SCI

	48 Run-Time Diagnostic Messages
	Sources of Run-Time Diagnostic Messages
	Where Messages Are Reported
	Standard Message Format—Non-CRE Environment
	Standard Message Format—CRE
	Input-Output Error Messages
	SORT Error Messages
	Guardian Abnormal Termination Messages
	Abend
	Arithmetic Overflow
	Stack Overflow

	How to Use the Message List
	Message List

	A ASCII Character Set
	ASCII Character Set in Numeric Order
	ASCII Character Set in Alphabetic Order

	B Data Type Correspondence
	Glossary
	Index

