System SoftwareLibrary

Distributed Systems
Network M anagement
(DSNM) Subsystem

| nter face Development
Guide

Abstract

This manual describes the Distributed Systems Network Management (DSNM) services
that support network management applications. It describes how to use the program
frame and library services supplied by Tandem for the development of the subsystem
interface processes that integrate additional subsystems into the base of DSNM -
managed subsystems.

Product Version
DSNM D30

Supported Releases

This manual supports D30.01 and all subsequent releases until otherwise indicated in a
new edition

Part Number Edition Published Release ID

109759 Second February 1996 D30.03

Document History
Earliest Supported

Edition Part Number Product Version Release Published
First 029783 DSMSC21 C20 December 1990
Second 109759 DSNM D30 D30.01 February 1996

New editions incorporate any updates since the previous edition.

A plussign (+) after arelease ID indicates that this manual describes function added to the base release, either by an
interim product modification (IPM) or by a new product version on a .99 site update tape (SUT).

Ordering Information

For manual ordering information: domestic U.S. customers, call 1-800-243-6886; international customers, contact
your local sales representative.

Document Disclaimer

Information contained in amanual is subject to change without notice. Please check with your authorized Tandem
representative to make sure you have the most recent information.

Export Statement

Export of the information contained in this manual may require authorization from the U.S. Department of
Commerce.

Examples

Examples and sample programs are for illustration only and may not be suited for your particular purpose. Tandem
does not warrant, guarantee, or make any representations regarding the use or the results of the use of any examples
or sample programs in any documentation. You should verify the applicability of any example or sample program
before placing the software into productive use.

U.S. Government Customers

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED
SOFTWARE:

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
Section 52.227-19 of the FARS Computer Software—Restricted Rights clause.

RESTRICTED RIGHTSNOTICE: Use, duplication, or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 52.227-7013.

RESTRICTED RIGHTSLEGEND: Use, duplication or disclosure by the Government is subject to restrictions
as set forth in paragraphp(b)(3)(B) of therightsin Technical Data and Computer Software clausein

DAR 7-104.9(a). This computer software is submitted with “restricted rights” Use, duplication or disclosureis
subject to the restrictions as set forth in NASA FARpSUP 18-52p227-79 (Aprilp1985) “Commercial Computer
Software—Restricted Rights (Aprilp1985).” |If the contract contains the Clause at 18-52p227-74 “Rightsin Data
General” then the “Alternate | 11" clause applies.

U.S. Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract.

Unpublished — All rights reserved under the Copyright Laws of the United States.

— New and Changed Information

This edition of the Distributed Systems Network Management (DSNM) Subsystem
Interface Devel opment Guide has been updated to include functions and features added
to DSNM for the C31 and D30 releases of the product.

The operating system for Tandem NonStop systems, formerly called the Guardian
operating system, is now called the Tandem NonStop Kernel. This change reflects
Tandem'’s current and future operating system enhancements that further enable open
systems and application portability.

The mgjor changes to each section are as follows:

e Section 1, “Overview of DSNM,” has been expanded to include new components
such asthe conversational interface process (CIP), and the list of supported products
has been expanded to include NonStop NET/MASTER Management Services (MS).
Section 1 now includes information on installation, process configuration, running
more than one copy of DSNM concurrently, and mixed network requirements.

® Section 2, “DSNM Commands,” has been expanded to include the INQUIRE and
UPDATE commands.

® |n Section 3, “I Process Development Process,” referencesto
_COMMAND"CONTEXT"ADDRESS have been replaced with
_THREAD"CONTEXT”ADDRESS and minor changes have been made.

® |n Section 4, “DSNM Command Requirements,” the DSNM command requirements
have been expanded to include INQUIRE and UPDATE.

e The configuration and process parameter descriptionsin Section 5, “DSNM Process
Startup Functions,” have been updated, expanded, and reformatted.

® |n Section 6, “Configuring a New Subsystem Into DSNM,” changes to the DSNM
configuration files and parameters are reflected where necessary.

® Section 7, “DSNMCom: The | Process Test Utility,” documents the new DSNMCom
commands and parameters.

* New DSNM error codes have been added to Appendix B, “DSNM Error Codes.”

* New DSNM SPI components have been added to Appendix C, “Data Definition
Language (DDL)-Defined DSNM SPI Components.”

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 iii

New and Changed Information

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

— Contents

New and Changed Information iii
About ThisManual xv
Notation Conventions Xxix

1. Overview of DSNM

Scope of This Section 1-1

WhatisDSNM? 1-1

Applications Supported by DSNM 1-1
NonStop NET/MASTERMS 1-3
NetCommand 1-3
NetStatus 1-4

The Network-Management Architecture 1-4
The Operations Layer 1-4
The Management Services Layer 1-8
The Subsystem Layer 1-10

Installing DSMS Products 1-12

Startup Sequence and Configuration Files 1-12

Running DSNM Products 1-13

Installing More Than One Copy of DSNM Concurrently 1-13

Mixed Network Requirements 1-14

Extending DSNM Support 1-14

2. DSNM Commands
Scope of This Section 2-1
Command Line Syntax 2-1
Commands 2-1
Object Specification 2-2
Modifiers 2-3
Parameters 2-5
Considerations 2-6
DSNM Object States 2-6
Canceling Commands 2-6
The ABORT Command 2-8
The AGGREGATE Command 2-10
TheINFO Command 2-11
The INQUIRE Command 2-13
The START Command 2-15

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759

3. | Process Development Process Contents

Vi

The STATISTICS Command 2-17
The STATUS Command 2-19
The STOP Command 2-21

The UPDATE Command 2-23

Process Development Process
Scope of This Section 3-1
Function of the | Process 3-1
| Process Program Structure Concepts 3-3
General Command Processing Scheme 3-6
The Command Thread Source Environment 3-9
ASSIGN Statements Required for Compilation 3-11
User-Written Procedures 3-11
The STARTUP*MODE Procedure 3-12
The STARTUP Procedure 3-13

Declaring Thread Procedures. | THREAD”PROC and
_END"THREAD"PROC 3-14

The Initial Command Thread Procedure: . COMMAND”PROC 3-14

The Thread Termination Procedure: _ COMMANDATERMINATIONMPROC 3-14
Command Context Space 3-15

Accessing the Command Context Space 3-17

Defining the Command Context Space 3-17

Thelnput Areaz _INPUT 3-18

The Output Areaz _OUTPUT 3-19
The Input and Output List Member Structures 3-20

Defining the Input List Member Structure: INPUTALMAHEADER 3-22

Defining the Output List Member Structure: _ OUTPUTALMAHEADER 3-22
Working With Lists 3-23

Declaringalist: LIST 3-24

Initializing aList Structure: _INITIALIZEALIST 3-24

Accessing the First Member of aList: _FIRSTALM 3-25

Accessing the Last Member of aList: LASTALM 3-25

Accessing the Next List Member: SUCCESSORMLM 3-25

Accessing the Previous List Member: PREDECESSORMNLM 3-25

DeclaringaPointer toaList: LISTPOINTER 3-25

Scanningalist 3-26

Processingalist 3-26

Maintainingalist 3-27

Requesting Status About aList 3-28

Initializing Object List Members: _FOBJECT/AINIT 3-28

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Contents 4. DSNM Command Requirements

Adding Text Items to an Output Object: _APPENDMOUTPUT 3-32
Releasing Output List Members to the Frame: _ RELEASEMOUTPUT 3-32
Example: List Processing Library Services 3-32
Suspending and Dispatching Thread Procedures 3-34
Suspending Thread Procedures. Return Codes 3-34
Dispatching Thread Procedures. Events 3-35
Declaring Utility Procedures. RCATYPE 3-36
State Management 3-37
Determining Which Event(s) Caused the Current Dispatch 3-38
Altering the Current Thread Procedure and Thread State 3-39
Frame Services 3-45
Cl Communications 3-45
Accessing Information About a CI Communication 3-48
Timeout Intervals 3-50
Command Thread Termination 3-51
Reporting Errors 3-51
Reporting Errorsto the Frame 3-52
Command-Terminating Errors 3-53
Reporting Errorsto EMS 3-53
Overview of theLibrary Services 3-54

4. DSNM Command Requirements
Scope of This Section 4-1
Command Flow 4-1
Command Components 4-1
Action to be Performed 4-2
Command Modifiers 4-2
Object List Modifiers 4-3
Response Modifiers 4-5
Action Modifiers 4-7
Object States 4-7
The Input Object List 4-8
Execution Objects 4-9
Applying Object List Modifiers 4-9
The User Area: Intermediate Lists 4-9
The Output Object List 4-10
Output Object Variable-Length Items 4-10

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 vii

5. DSNM Process Startup Functions Contents

Command Requirements 4-11
The ABORT Command 4-12
The AGGREGATE Command 4-13
The INFO Command 4-15
The START Command 4-16
The STATISTICS Command 4-17
The STATUS Command 4-18
The STOP Command 4-20

5. DSNM Process Startup Functions

Scope of This Section 5-1

DSNM Process Startup Message 5-1
Process Parameters 5-2
DSNM Configuration Parameters 5-3

Parameter Types and Search Criteria 5-4
Local Parameters and Search Patterns 5-4
Global Parameters and Search Patterns 5-5

Parameter Retrieval Library Services 5-6
Accessing Standard Process Parameters. PROCESS*PARAMS 5-8
Accessing Standard Configuration Parameters:. DSNMCONF*PARAMS 5-8
Retrieving Non-Standard Process Parameters. _ GET"PROCESS*PARAM 5-9
Retrieving Nonstandard Configuration Parameters. _ GET"PARAM 5-10
Retrieving Subsystem Configuration Parameters 5-12
Retrieving CI Configuration Parameters 5-12

6. Configuring a New Subsystem Into DSNM

Scope of This Section 6-1

New and Changed DSNM Configuration Information 6-1

The $SYSTEM.SYSTEM.DSNM File 6-2

Format of the DSNMCONF File 6-4

DSNMCONF Records Relevant to | Processes 6-5
SUBSY STEM Class Records 6-5
process-class-CONFIG Records 6-9

Adding Subsystem Objectsto the DNS Database 6-12

Defining an | Process as a Pathway Server 6-12

7. DSNMCom: Thel Process Test Utility
Scope of This Section 7-1
What isDSNMCom? 7-1
Before You Run DSNMCom 7-1
DSNMCom Command Syntax 7-1

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
viii Development Guide

Contents A. DSNM Library Services

The DSNMCom Prompt 7-3
Running DSNMCom Interactively 7-3
Running DSNMCom From an Input File 7-4
The Comment Character, COMMENT-CHAR 7-4
Using the Break Key 7-4
Setting Security Parametersin DSNMCom 7-5
The DSNMCom Commands 7-5

CLOSE Command 7-5

EXIT Command 7-5

FC Command 7-6

HELP Command 7-6

OPEN Command 7-7

QUIT Command 7-7

RESET Command 7-7

SET Command 7-7

SHOW Command 7-10
Executing DSNM Commands 7-11
DSNMCom Messages 7-12

DSNM Perser Errors 7-17

A. DSNM Library Services
Scope of This Appendix A-1

_ADD”CI A-5
_ADD/MSUBSYS A-7
_ALLOFF A-9
_ALLON A-10
_ALLON~TURNOFF A-11
_ANYOFF A-12
_ANYON A-13
_ANYON~TURNOFF A-14
_APPEND"MOUTPUT A-15
_BITDEF A-18
_CANCEL"SEND”MCI A-20
_CANCELATIMEOUT A-21
_CI"DEF A-22
_CI"FILENUM A-24
_CInNID A-25

_CI"IDPOINTER A-26
CI"LASTERROR A-27

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 iX

A. DSNM Library Services Contents

_CI"REPLYADDRESS A-28
_CI"REPLYLENGTH A-29
_CI"REPLYTAG A-30
_CLOSEMCI A-31
_COMMAND/MCONTEXTMEADER A-32
_COMMAND"PROC A-33
_COMMAND/TERMINATIONAPROC A-34
_COMPILEDMNNATESTMODE A-35
_DEALLOCATEMLIST A-36
_DELETEALM A-37

_DEPOSIT A-38
_DISPATCH"THREAD A-39
_DSNMCONF*PARAMS A-40
_EMPTYALIST A-41
_EMS'EVENTACRITICAL A-42
_EMS'EVENTAFATAL A-42
_EMS'EVENTAINFO A-42
_END"THREAD"MPROC A-43
_END"THREADM"TERMINATIONMPROC A-44
_EVACANCEL A-45
_EVACONTINUE A-45
_EVAMNODONE A-45
_EVASTARTUP A-45
_EVATIMEOUT A-45

_EXTRACT A-46

_FIRSTALM A-47

FOBJECT A-48

_FOBJECTAINIT A-50

_GETALM A-54

_GET"PARAM A-55
_GET"PROCESS*PARAM A-58
_INITIALIZEMLIST A-59

_INPUT A-60

_INPUT"DEF A-61
_INPUT"LMMHEADER A-62
_ISNULL A-64

_JOINALIST A-65

KDSNDEFS A-66

_LASTACINID A-67

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
X Development Guide

Contents A. DSNM Library Services

_LASTAEVENTS A-68
_LASTALM A-69
_LASTATIMEOUTATAG A-70
LIST A-71

_LISTPOINTER A-72
_MEMBERSOFALIST A-73
_MOVEALIST A-74

_NOTNULL A-75

_NULL A-76

_NULLALIST A-77

OBJECTLIST A-78

_OFF A-79

_ON A-80

_OPEN~CI A-81

_OUTPUT A-84

_OUTPUTDEF A-85
_OUTPUTALM~HEADER A-86
_POP\LM A-87
_POP"THREAD"PROCSTATE A-88
_PREDECESSORML.M A-89
_PRIVATEATHREADAEVENT A-91
_PROCESS'PARAMS A-92
_PUSHALM A-93

_ PUSHATHREAD"PROCSTATE A-95
_PUTALM A-97

_RCMABORT A-99

_RCANULL A-99

_RCASTOP A-99

_RCATYPE A-100

_RCAWAIT A-100
_REALALASTAEVENTS A-101
_RELEASEAOUTPUT A-102
_REPORTAINTERNALAERROR A-103
_REPORTASTARTUP'ERROR A-104
_RESTOREATHREADAND/DISPATCH A-106
_SAVEATHREADMANDADISPATCH A-107
_SEND~CI A-108
_SETATHREAD"PROC A-111
_SETATIMEOUT A-112

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 Xi

B. DSNM Error Codes Contents

Xii

_SIGNALAEVENT A-113
_STARTUP A-114

_STARTUP*MODE A-116

_STAINITIAL A-118
_STAMINATHREADASTATE A-119
_SUBSYS'DEF A-120
_SUCCESSORLM A-122
_THREAD"CONTEXTAADDRESS A-124
_THREAD"PROC A-125
_THREADASTATE A-126
_THREADATERMINATIONACODE A-127
_THREADATERMINATIONAPROC A-128
_TURNOFF A-129

_TURNON A-130

_UNGETALM A-131

_UNPOP'LM A-132

_XADRMEQ A-133

_XADRNEQ A-134

B. DSNM Error Codes
Scope of This Appendix B-1
Reporting Errors B-1
What to Prepare Before Contacting Your Tandem Support Representative B-1
ZDSN Error Codes B-2
-nnn B-2
0 ZDSN"ERR"NOERR B-2

-30
-34
-35
-44
.45
.51
.55
-56

-60
-64
-67
-69
-71

ZDSN"ERR"CMD"MISMATCH B-2
ZDSN"ERRMNNTERNALMERR B-3
ZDSN"ERRM"SUBSY STEM?ERR B-3
ZDSN"ERRMTKNAVALAINV - B-3
ZDSN"ERRMTKNMREQ B-3
ZDSN"ERRM"SPI"ERR B-4
ZDSN"ERR"OBINAME?NNV - B-4

ZDSN"ERRMOBJTY PE*"NOT*SUPPORTED or
ZDSN"ERRMOBI*"NOTASUPP B-4

ZDSN"ERR"MEMORY or ZDSN*"ERR*"NO*"MEMASPACE B-4
ZDSN"ERRM"FS*ERR B-5

ZDSN"ERR"CMDMTIMEDMOUT B-5
ZDSN"ERRMCMD”NOTASUPP B-5
ZDSN"ERRMALLOCATESEGMENT”ERR B-5

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Contents C. Data Definition Language (DDL)-Defined DSNM
SPI Components

-16 ZDSN"ERR"BADCOMMAND B-6

-7 ZDSN"ERRM"UNSUPPORTED"BY"SUBSYS B-6
-8 ZDSN"ERRM"UNSUPPORTED"BY”"l B-6

-719 ZDSN"ERR"DATAMNTEGRITY B-6

-81 ZDSN"ERR"MISSINGM"OBJTYPE B-7

-82 ZDSN"ERR"BADOBJTYPE B-7

-86 ZDSN"ERR"REQ"KEYWORD"MISSING B-7
-88 ZDSN"ERR"DUP*KEYWORD B-7

-202 ZDSN"ERRMOBJECTTOOLONG or
ZDSN"ERRMOBJTOOLONG B-8

-204 ZDSN"ERR"BADARGUMENT B-8

-206 ZDSN"ERRM"NOTPUSHED B-8

-207 ZDSN"ERRMLIB"BADVALUE"OMITTED B-8

-212 ZDSN"ERRMNSYNTAX B-9

-214 ZDSN"ERRM"RESERVEDWORD B-9

-216 ZDSN"ERR"CMDERROR B-9

-217 DSN"ERR"BADLOGON B-9
Messages From the DSNM Parser B-10

C. Data Definition Language (DDL)-Defined DSNM SPI Components
Scope of This Appendix C-1
Commands C-1
Modifiers C-1
HMOD Values C-1
EMOD Values C-2
SMOD Vaues C-2
RMOD Values C-2
AMOD Values C-2
Command Object DDL C-3
DSNM State Values C-3
Error Codes C-4
AGGREGATE Counters C-4
Response Item Types C-4
DDL Definitionsfor DSNM Character String Components C-5

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 Xiii

D. Sample | Process Program Code

Contents

D. Samplel Process Program Code
Scope of This Appendix D-1
Overview of the SPIFFY Subsystem D-1
Characteristics of SPIFFY Objects D-1
SPIFFY Subsystem Programmatic Interface Commands D-2
Command and Response Message Formats D-3
SPIFFY Subsystem Literal Definitions D-5
SPIFFY | Process Design D-6
State Mapping D-6
Implementing DSNM Commands D-7
Managing SPIFFY Through DSNM: Sample Command Output D-8
Using DSNMCom to Test the SPIFFY | Process D-8
DSNM STATUS Command Output D-9
Sample User-Written Code for SPIFFY Subsystem Interface Process D-12
Configuring SPIFFY Into DSNM D-28

| ndex

Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 3-1.
Figure 3-2.
Figure 3-3.

Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.

Tables

Xiv

Table 3-1.
Table 4-1.
Table 4-2.
Table 7-1.
Table 7-2.
Table A-1.

Index-1

Network-Management Application Components 1-2

DSNM and DSM Functional Connections 1-7

The Subsystem Layer 1-11

DSNM Process Startup and Configuration Components 1-13
Function of the | Process 3-2

Relationship Between the Frame and User-Written Procedures 3-4

Frame/Command Thread Interaction: Processing a DSNM
Command 3-8

Command Context Area 3-16

Object List Member Definitions 3-21

Logical View of aList 3-24

Altering Current Thread Procedure and Thread State Values 3-42
Dispatching New Thread Procedures 3-44

Summary of | Process Development Library Services 3-54
Command Modifiers 4-2

HMOD Usage 4-4

DSNMCom Commands 7-5

DSNMCom SET Parameters 7-8

DSNM Library Services A-1

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

— About ThisManual

The Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide iswritten for programmers who devel op the interface processes

(I processes) that alow subsystems or applications to be managed by network
management products that Distributed Systems Network Management (DSNM) services
support.

DSNM services support network management applications that automate and simplify
the management of Tandem systems and networks. This manual describes a program
frame, library services, and a detailed development model that facilitate the devel opment
of the interface processes between the targeted subsystems and the DSNM services layer
within a network management application architecture.

The DSNM product is part of the Distributed Systems M anagement Solutions (DSMYS)
package, which provides the capability of monitoring and managing a single Tandem
node or a network of Tandem systems from asingle terminal. The Distributed Systems
Management Solutions (DSVIS) System Management Guide is a companion manual to
the DSNM Subsystem I nterface Development Guide.

How This Manual 1s Organized

This manual serves as both areference manual and a programmer's guide. Itis
organized as follows:

e Section 1, “Overview of DSNM,” provides a functional overview of DSNM, and
explains how network management applications interact with the underlying DSNM
service layer processes and components to control and monitor objects.

e Section 2, “DSNM Commands,” describes the DSNM commands and provides
syntax descriptionsin sufficient detail for testing I program code in an end-user

capacity.

e Section 3, “I Process Development Process,” introduces the conceptual model upon
which the program frame and library services are based. It also provides a detailed
development model and associated rules for using the | process development
software correctly and effectively.

® Section 4, “DSNM Command Requirements,” defines the DSNM requirements for
carrying out each supported DSNM operation.

e Section 5, “DSNM Process Startup Functions,” describesthe library services that
take advantage of the expanded scope of the DSNM configuration file(s) to perform
process startup and subsystem configuration parameter retrieval.

e Section 6, “Configuring a New Subsystem Into DSNM,” documents the steps
necessary to configure a new subsystem into DSNM.

® Section 7, “DSNMCom: The | Process Test Utility,” describes how to use
DSNMCom, the | process test utility.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide— 109759 XV

Where to Go for More Information About This Manual

e Appendix A, “DSNM Library Services” describesthe syntax and parameters (as
applicable) for each procedure call, define, literal, global variable, and structure
template.

e Appendix B, “DSNM Error Codes,” definesthe ZDSN error codes.

e Appendix C, “Data Definition Language (DDL)-Defined DSNM SPI Components,”
lists the Subsystem Programmatic Interface (SPI) Data Definition Language (DDL)
constant and structure definitions for user-written procedures.

e Appendix D, “Sample | Process Program Code,” provides asample | process
program, illustrating the program model and associated library services.

Whereto Go for More Information

XVi

If you are writing an interface for an existing Tandem subsystem, you need the
documentation for the product you intend to manage with DSNM.

Although the purpose of the interface development software is to create interface
processes that make the Tandem Subsystem Programmatic Interface (SPI) protocol used
by DSNM transparent to your subsystem, you may also want to refer to the following
manuals for more information about the Distributed Systems Management (DSM)
architecture upon which DSNM is built:

® Introduction to Distributed Systems Management (DSM), which provides an
overview of DSM and its components. DSM products support the management of
system and network resources and operations.

® SPI Programming Manual, which describes the operating system procedures that
programmers call to process Subsystem Programmatic I nterface (SPl) messages.
The manual aso presents conventions that regulate message content and
interpretation, provides programming guidelines and examples, and describes the
common ZSPI data definitions.

e SP| Common Extensions Manual, which describes conventions that extend the basic
SPI interface, as described in the SPI Programming Manual.

e EMSManual, which describes the Event Management Service (EMS). EMSisa
collection of processes, tools, and interfaces that provide event-message collection
and distribution in the DSM environment.

¢ Distributed Name Service (DNS) Management Operations Manual, which describes
the interactive DNS interface DSNCOM, used to maintain a database of object
names controlled by Tandem and other systems.

* NonStop NET/MASTER MS System Management Guide, which describes the
NonStop NET/MASTER MS configuration and security management processes, and
the specific tasks required to configure and secure NonStop NET/MASTER MS.

* NonStop NET/MASTER MS Operator’s Guide, which describes how to use the
various components of NonStop NET/MASTER M S to perform system and network
management tasks.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

About This Manual Your Comments Invited

* NonSop TSYMP and Pathway System Management Guide, which provides
guidelines for configuring and controlling Pathway transaction processing systems.

The following manuals provide information about the DSM S network management
products that currently use the DSNM services layer:

¢ Distributed Systems Management Solutions (DSMS) System Management Guide,
which providesinformation for installing and managing DSNM, NetCommand, and
NetStatus software in both DSM S and NonStop NET/MASTER MS operations
environments.

e User's Guideto DSNM Commands, which discusses the syntax and use of the
DSNM commands.

* NetSatus User's Guide, which explains both usage and management of the
NetStatus monitoring software.

Your Comments|nvited

After using this manual, please take a moment to send us your comments. You can do
this by returning a Reader Comment Card or by sending an Internet mail message.

A Reader Comment Card islocated at the back of printed manuals and as a separate file
on the Tandem CD Read disc. You can either fax or mail the card to us. The fax
number and mailing address are provided on the card.

Also provided on the Reader Comment Card is an Internet mail address. When you
send an Internet mail message to us, we immediately acknowledge receipt of your
message. A detailed response to your message is sent as soon as possible. Be sure to
include your name, company name, address, and phone number in your message. |f
your comments are specific to a particular manual, also include the part number and title
of the manual.

Many of the improvements you see in Tandem manuals are a result of suggestions from
our customers. Please take this opportunity to help us improve future manuals.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide— 109759 XVii

Your Comments Invited About This Manual

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Xviii Development Guide

— Notation Conventions

General Syntax Notation

The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For example:

MAXATTACH

lowercaseitalic letters. Lowercaseitalic lettersindicate variable items that you supply.
Items not enclosed in brackets are required. For example:

fil e-nanme

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\ syst em nane.] $t er mi nal - nanme
| NT[ERRUPTS]

A group of itemsenclosed in bracketsis alist from which you can choose one item or
none. Theitemsin thelist may be arranged either vertically, with aligned brackets on
each side of thelist, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

LIGHTS [ON]
OFF]
[SMOOTH [num]]

K[X| D] address-1
{ } Braces. A group of items enclosed in bracesis alist from which you are required to
choose oneitem. Theitemsin the list may be arranged either vertically, with aligned

braces on each side of the list, or horizontally, enclosed in a pair of braces and separated
by vertical lines. For example:

LI STOPENS PROCESS { $appl - ngr - nane }
{ $process-nane }

ALLOMSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:
| NSPECT { OFF | ON | SAVEABEND }

. Ellipsis. An élipsisimmediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:
M address-1 [, newvalue]...
[- 1 {011]2]3]4]5]6]7]8]9}...

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide— 109759 Xix

General Syntax Notation Notation Conventions

An dlipsisimmediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char..."
Punctuation. Parentheses, commas, semicolons, and other symbols not previously described
must be entered as shown. For example:
error := NEXTFILENAME (file-nane) ;
LI STOPENS SU $pr ocess- nane. #su- nanme

Quotation marks around a symbol such as a bracket or brace indicate the symbol isa
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of theitemsisa
punctuation symbol such as a parenthesis or acomma. For example:
CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process- nane. #su- nane

Line Spacing. If the syntax of acommand istoo long to fit on asingle line, each continuation
lineisindented three spaces and is separated from the preceding line by a blank line.
This spacing distinguishes itemsin a continuation line from items in a vertical list of
selections. For example:

ALTER [/ OUT file-spec /] CONTROLLER

[, attribute-spec]...

li and !'o. Inprocedure calls, the!i notation follows an input parameter (one that passes data
to the called procedure); the o notation follows an output parameter (one that returns
datato the calling program). For example:

CALL CHECKRESI ZESEGVENT (segnent-id i
, error) o

li,0. Inprocedure calls, the!i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COWRESSEDI T (filenum) ; 'i,o
lizi. Inprocedure calls, the!i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME COWARE_ (filenanel:|ength Fi:
, filename2:1ength) ; Fici

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
XX Development Guide

Notation Conventions Notation for Messages

lo:i. Inprocedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE GETINFO_ (filenum i
[filenane:maxlen]) ; lo:i

Notation for Messages

The following list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:
Backup Up.

lower caseitalic letters. Lowercaseitalic letters indicate variable items whose values are
displayed or returned. For example:
p-regi ster
process- nane

[] Brackets. Brackets encloseitemsthat are sometimes, but not always, displayed. For
example:
Event nunber = nunber [Subject = first-subject-val ue]

A group of items enclosed in bracketsisalist of al possible items that can be displayed,
of which one or none might actually be displayed. Theitemsin the list might be
arranged either vertically, with aligned brackets on each side of thelist, or horizontaly,
enclosed in apair of brackets and separated by vertical lines. For example:

LDEV Idev [CU%cu | CU%..] UP[(cpu,chan,%tlr,%unit)]
{ } Braces. A group of items enclosed in bracesisalist of all possibleitems that can be
displayed, of which oneis actually displayed. Theitemsin thelist might be arranged

either vertically, with aligned braces on each side of thelist, or horizontally, enclosed in
apair of braces and separated by vertical lines. For example:

LBU{ X | Y} POWER FAIL

process-nane State changed from ol d-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { K| Failed }

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide— 109759 XXi

Notation for Management Programming Interfaces Notation Conventions

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
%lpnotation precedes an octal number. The %Bpnotation precedes a binary number.
The %Hpnotation precedes a hexadecima number. For example:

%9©05400
P=%-regi ster E=%e-register

Notation for Management Programming I nterfaces

UPPERCASE LETTERS. Uppercase lettersindicate names from definition fil es; enter these
names exactly as shown. For example:

ZCOM+ TKN- SUBJ - SERV

lower case letters. Wordsin lowercase |etters are words that are part of the notation, including
Data Definition Language (DDL) keywords. For example:
t oken-type

Ir. The!r notation following a token or field name indicates that the token or field is
required. For example:
ZCOM+ TKN- OBJNAME t oken-type ZSPI - TYP- STRI NG I'r

lo. The'o notation following atoken or field name indicates that the token or field is
optional. For example:
ZSPI - TKN- MANAGER t oken-type ZSPI - TYP- FNAME32. o

Change Bar Notation

Change bars are used to indicate substantive differences between this edition of the
manual and the preceding edition. Change bars are vertical rules placed in the right
margin of changed portions of text, figures, tables, examples, and so on. Change bars
highlight new or revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85 |
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for old
message types. In the CRE, the message type SY STEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
XXii Development Guide

i Overview of DSNM

Scope of This Section

This section provides an overview of the Distributed Systems Network Management
(DSNM) services, which collate information from multiple subsystems and provide a
consistent view between network-management applications and the diverse subsystems
being managed.

What iSDSNM?

The DSNM product provides a management service layer between management
applications and individual management facilities for Tandem subsystems and user
applications. DSNM works with the DSM products to present network-management
applications with a uniform interface to Tandem subsystems and applications. It collates
information from multiple subsystems and provides a consistent view between the
operations environment and the diverse subsystems managed by various network-
management products. DSNM provides the following services and operations:

* Maintains areal-time database about subsystem objects defined to nodes in the
network.

® Processesa set of control, information, and update commands that it receives from
network-management applications.

* Trandates command responses from different subsystemsinto standard DSNM
responses.

* [Interprets subsystem events and forwards object state change information to the
requesting program.

NetCommand and NetStatus are complementary management applications that present
the major DSNM services to a human network operator and provide additional functions
of their own.

Note. In the context of Tandem systems, a subsystem is a process or set of processes that
manages a cohesive set of objects. Objects are items subject to independent reference and
control by a subsystem: for example, PATHMON-controlled applications and terminals handled
by a PATHMON process, communication lines controlled by a SNAX line-handler process, or
jobs managed by the spooler. Objects relate conceptually to the subsystems that control them,
and are often referred to as "subsystem objects.”

Applications Supported by DSNM

DSNM supports three network-management products—NonStop NET/MASTER MS,
NetCommand, and NetStatus. Figure 1-1 illustrates the relationship between the user
interface (NonStop NET/MASTER MS, NetCommand, or NetStatus), the DSNM
services layer, and the subsystems being managed.

Collectively, the NetCommand and NetStatus applications, along with the DSNM
services layer, compose supported networks and applications. The DSMS products

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1-1

Applications Supported by DSNM Overview of DSNM

address day-to-day network-management issues. The DSMS products are primarily
oriented toward early fault detection and recovery.

NonStop NET/MASTER MS provides comprehensive collections of network-
management services, such as automated operations, capacity and change management,
configuration management, problem management, and performance management.
DSMS products are used by and with NonStop NET/MASTER MS. In particular, the
DSNM command infrastructure provides the command interface to Tandem subsystems
for NonStop NET/MASTER MS.

Figure 1-1. Network-Management Application Components

[

Full-Screen
User
Interface

Command-Line
User Interface

NetCommand

NonStop NET/MASTER MS
or NetStatus

l EMS }‘ - DSNM > DNS

and soon_

Yy

l SNAX l l AM3270 l X.25
\

i \ Y

l Expand l l Pathway l l TR3271 l l Spooler l

001

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
1-2 Development Guide

Overview of DSNM NetCommand

NonStop NET/MASTER MS

NonStop NET/MASTER MS is a network-management product that allows you to
monitor and manage a single Tandem system or an entire network from asingle
terminal. Having NonStop NET/MASTER MSinstalled on your system also allows
your local system to be monitored and/or managed remotely as part of a network of
systems managed by NonStop NET/MASTER MS, SOLV E management services, and
NetView products.

With NonStop NET/MASTER MS, you can:

* View event messages generated by both local and remote systems throughout a
network.

® |ssue commands to remotely control and gather information about any peer system
in the network, and have the responses displayed on your local terminal.

® Run Tandem NonStop Kernel utilities, TACL routines, and other external
conversational-mode utilities, and control Tandem block-mode applications.

* Write and execute custom applications and operations management automation
procedures with NonStop NET/MASTER Network Control Language (NCL), a
high-level language for automating system and network-management tasks.

* Browse activity log files, where messages arriving at your local NonStop
NET/MASTER MS system are logged.

NetCommand

The NetCommand management application is a conversational user interface to DSNM,
primarily for command and control operations. NetCommand provides a secure TACL
environment for operational control of subsystems throughout a distributed network.

Asthe manager of the system, you can define operator profiles and exercise control over
operator capabilities. NetCommand is extensible by using user-written TACL routines
and macros; these can be entered into any operator’s command set.

NetCommand allows an authorized operator direct access to the DSNM command set, as
well as access to individual subsystem command interfaces or other utilities, such asthe
Peripheral Utility Program (PUP) or the Subsystem Control Facility (SCF). It aso
maintains an audit trail of operator commands and command responses through every
operator session.

With the DSNM command set, you can:

e Control various subsystems in a network by removing resources from service and
restoring them later (ABORT, STOPR, START).

* Display status information about network objects (AGGREGATE, INQUIRE,
STATUYS).

® Gather information about how network objects are configured (INFO).

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1-3

NetStatus Overview of DSNM

® Display operational statistics about network objects (STATISTICS).
® Define how the DSNM services layer monitors subsystem objects (UPDATE).
Use of NetCommand is discussed in the User’s Guide to DSNM Commands.

NetStatus

The NetStatus management application is a Pathway-environment application that uses
the monitoring facility of DSNM to provide afull-screen status display, which is
continuously updated. You can view the status of objects, a system, or an entire network
of systems from any point in the network. From the status display, you can use function
keysto perform avariety of operations. navigate, execute DSNM commands, query, and
control components. Frequently, you can correct an identified problem with asingle
keystroke. NetStatus also allows access to the NetCommand conversational interface
directly from the block-mode Pathway screen.

The NetStatus operations environment is described in the NetStatus User’s Guide.

The Networ k-Management Architecture

A network-management architecture is generally divided into three layers:
e Operations layer

* Management services layer

® Subsystem layer

Each layer is a set of related or parallel services having awell-defined interface with the
other layers.

The Operations L ayer

1-4

The operations layer provides the interface for human operators. It may consist of
command-line and full-screen user interfaces. NonStop NET/MASTER MS,
NetCommand, and NetStatus are examples of user interfacesto DSNM.

NonStop NET/MASTER MS

NonStop NET/MASTER MS is network and system management product. Itis
composed of the following major services:

e Operator Control Services (OCS), which provides the central point of operational
control of your local Tandem system, your local NonStop NET/MASTER MS
system, and remote systems. OCS provides a command input line to enter NonStop
NET/MASTER M'S commands.

® Edit Services, which provides access to the Tandem text editor, PS Text Edit
(TEDIT). Edit Services allows NCL programmers to create and check NCL
procedures and panel description files.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Overview of DSNM The Operations Layer

User ID Management Services (UMS), a security service that enables the definition
of authorized NonStop NET/MASTER MS users and their associated functions and
privileges.

Inter-NET/MASTER Connection (INMC), which allows multiple NonStop
NET/MASTER M S and SOLV E management services systems to be connected and
controlled from one location.

Remote Operator Control (ROC), which alows usersto log on from alocal NonStop
NET/MASTER MS system to aremote NonStop NET/MASTER MS or SOLVE
management services system, to execute commands on the remote system, and to
receive the results at the local NonStop NET/MASTER MS system.

Inter-System Routing (ISR), which enables, disables, and controls system-level
message flows between multiple NonStop NET/MASTER MS and SOLVE
management services systems.

NetCommand

NetCommand is a command-line interface to DSNM. NetCommand is composed of the
following:

The NetCommand configuration file (NETCONF), which contains the following
information about the NetCommand environment:

* Thelogfileand limit on the length of log entries.

® Thename of the DSNM command server process (discussed under “The
Management Services Layer” on page 1-8).

® Thename of the NetStatus terminal start server process (discussed under
“NetStatus’ on page 1-4).

e The command sets for specified groups of users and terminals.

® Thenode access restrictions for specified groups of users and terminals.

* Default NetStatus display sets for specified groups of users and terminals.
A TACL requester process (NETCMD), which:

® Definesthe user environment (such as the operator’s command set, what nodes
the operator can control, and the number of response lines logged).

® Secures DSNM by checking each command against the user environment.
® Executes TACL commands entered by the user or received from NetStatus.
® Passes DSNM commands to the NetCommand server process.

TAL-based NetCommand server process (NETSVR), which:

® Parse DSNM commands into tokenized form.

® Pass control and status commands to DSNM.

® Invoke utilities.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1-5

The Operations Layer Overview of DSNM

Format responses to DSNM commands for the NetCommand requester process.
Send display set information to NetStatus.
Execute non-DSNM commands for NetStatus.

Log commands and responses.

The Distributed Systems Management Solutions (DSMS) System Management Guide
contains additional information on NetCommand components.

NetStatus

NetStatus is afull-screen interface to DSNM. NetStatus runsin aPATHMON
environment composed of:

* A termina start server (TERM-START-SVR), which:

Initiates the terminal session.

Retrieves information identifying the network objects to be monitored and
controlled and sends this information to the screen requester for display.

Allocates and deall ocates NetStatus threads (consisting of a NetStatus terminal
and its associated NetStatus server class as defined in DSMS PATHWAY') when
auser enters and exits NetStatus.

e A SCREEN COBOL screen requester, which:

Displays object status information, help screens, and text response screens on
the operator's terminal.

Passes commands to the NetStatus servers.

* NetStatus servers (NETSTATUS-SVR), which provide status, command, page
control, response formatting, notification, and command and response logging
services for NetStatus. NetStatus servers:

Secure DSNM by checking each command against the user environment.
Parse DSNM commands into tokenized form.

Send control and status commands to and receive responses from the DSNM
command server.

Deliver object state change information forwarded by the command server to the
designated screen requester for display.

Send TACL commands to NetCommand.

The Distributed Systems Management Solutions (DSMS) System Management Guide
contains additional information on NetStatus components.

1-6

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Overview of DSNM

The Operations Layer

Figure 1-2. DSNM and DSM Functional Connections

Conversational Utility Interface

Management Applications

Remote System

NonStop
NET/MASTER
MS

NetCommand

DNS

Logical Names /

Y

—

Command
Server

| Processes ’l

DNS Database

Conversational
Utilities

Legend

USTART
STOP
ABORT
STATUS

Object Database

Configuration/
State Changes

Routing Transport
Information Command
Server
JYVY Monitor Function
(UPDATE)
- DB |
Control/ Monitor
Information Function
. Acceptable states/

RetnevalD (INQUIRE) MONITORED/NOT-MONITORED flag

: Function ‘
[]
OMON
| Processes
In Memory
1 Object Database [
State
Changes
E Processes
Configuration
Information
Events

Subsystem
Control
Interfaces

Subsystem
Processes

(State Changes)

INFO
STATISTICS

OBJ OBJ OBJ

OBJ

AGGREGATE

Subsystem Objects

010

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

1-7

The Management Services Layer Overview of DSNM

The Management Services L ayer

1-8

The management services layer performs services for the operations layer. It provides
for object resolution, the routing of commands to appropriate nodes and subsystems, and
the handling of event messages. Tandem's Distributed Systems Management (DSM)
services contribute object resolution and event management facilities. Figure 1-2
displays the DSNM and DSM functional connections.

DSM Components

¢ Distributed name service (DNS)

DNS is asubsystem that manages a distributed database of names, aliases, groups,
and composites of system and network objects. The DSNM command server
(discussed later in this subsection) communicates with the DNS name manager
process ($ZDNS) to resolve aliases, groups, and composite names into their
constituent subsystem-defined object names. DNS is described in the Distributed
Name Service (DNS) Management Operations Manual.

* Event management service (EMS)
EMS provides event-collection, logging, and distribution facilities:

e The EMS collector process ($0) receives event messages from the processes that
control subsystem devices and writes them to an event log.

* AnEMSdistributor process reads event messages from the event log, filters out
the messages for each DSNM-managed subsystem, and forwards them to the
appropriate event monitoring process (“E process,” discussed later in this
subsection). The locations of EM Sfilter files are defined to DSNM as part of
the installation procedure.

EMS is described in the EMS Manual.

DSNM Components
® The command server process, which performs the following operations:
® Receives commands from server processes.

e Communicates with the DNS name manager process to resolve object names
into subsystem object names.

® Sends command and object information to the interface process (1 process)
associated with the targeted subsystem or to the object monitor process
(discussed next).

e Collects response information from the | process or the object monitor process
and forwards it to the server process that initiated the command.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Overview of DSNM The Management Services Layer

The object monitor process (OMON), which performs the following

® Receives state change information from the event monitoring processes
(E processes, discussed later in this subsection).

® Creates and maintains an in-memory database of current object state
information.

® Responds to command server requests for object state information.

® Receives update changes from the database interface process (discussed later in
this subsection).

The object database, which stores the following information for each object:
* Whether the object is currently monitored.

® A description of the object, including its subsystem, object type, manager, and
parent within the subsystem hierarchy.

® Current subsystem status.

® Current high-level status (UP, DOWN, or PENDING).

* Acceptable states.

For each subsystem, the object database contains the following information:
® Thestatus of the subsystem.

e Whether the subsystem has been acquired by the object monitor (OMON); this
affects what the E processes must do when a state change occurs.

The object database is originally configured by the E process for each supported
subsystem.

The database interface process (DBI), which performs the following:

® Updates entriesin the object database in response to requests from the command
server regarding which objects are to be monitored, how much error information
isto be displayed, and the criteria by which datais highlighted on the screen.

* Reports these types of update changes to the object monitor process.

A subsystem interface process (I process) for each supported subsystem provides the
interface between the targeted subsystem and the DSNM command processing
services. Thel processes:

e Convert DSNM commands affecting subsystem objects into a sequence of
syntactically correct subsystem-specific commands.

® Pass commands to the subsystem’s control interface process, whichis
responsible for executing the commands.

* Trandate subsystem responses and return them to the command server process.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1-9

The Subsystem Layer Overview of DSNM

® The conversational interface processes (CIP), which provides accessto
conversational utilities. It creates and terminates utility processes and emulates a
terminal from the utility’s point of view.

* Anevent monitoring process (E process) for each supported subsystem provides the
interface between the targeted subsystem and the DSNM object monitoring services.
The E processes:

* Forward state change information from the EM S distributor process to the object
monitor process.

® Update state change information and other operational statisticsin the object
database.

* Rebuild the object data base after system reconfiguration.

The Subsystem Layer

The subsystem layer, an example of which is shown in Figure 1-3, comprises the
subsystems managed by the network-management application. This layer includes the
subsystem control interface processes (Cls) and the subsystem resources.

Control Interface Processes (Cls)

Subsystems support control and inquiry through their CI processes. In this manual, the
term “Cl” isused in the general sense, to mean any gateway to the subsystem for control
and inquiry.

A Cl istypically amanagement process such as PATHMON (the NonStop TSIMP
control process); a public interface management process such as the SCP
communications control facility, which further communicates with a private or
privileged subsystem manager process to actually execute commands; or possibly a set
of procedure calls such as are available for the Spooler.

A Cl may execute as a server such as PATHMON or SCP, or as arequester such as PUP,
Requester Cls generally have atextua interface; servers variously use text, formatted
messages, or the subsystem programmatic interface (SPI).

Note. This release of the DSNM subsystem interface development software addresses
server-type Cls only.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
1-10 Development Guide

Overview of DSNM

The Subsystem Layer

Figure 1-3. The Subsystem Layer

Network-
Management
Applications

DSNM

| Processes

-

\

Management

Cl
Proc_e_ss/

|

\
Manager
Process

/

\

Other
Subsystem

EMS
[
Subsystem
Process
Z
OoBJ OoBJ OoBJ OoBJ

Processes

OBJ OBJ OBJ OBJ

Subsystem Objects

A subsystem object is an entity subject to independent reference or control by a

subsystem CI process. Examples of subsystem objects include:

® SNAX lines, physical units, and logical units

e AM3270 lines and subdevices
e TR3271 lines and subdevices
e X25AM lines and subdevices

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

1-11

Installing DSMS Products Overview of DSNM

* PATHMON-controlled terminal control processes, terminals, and server classes
® Expand paths and lines

e Tandem NonStop Kernel disks and processors

® Spooler devices

See the Tandem NonStop Kernel Documents (softdocs) for a complete list of the
subsystems supported by the current level of your DSNM software.

Installing DSM S Products

DSMS software arrives at your site on a site update tape (SUT). Youinstall DSMS
software from the SUT onto your local node by running the system installation program,
Install, as directed in the INSTALL User’s Guide. Be certain to run the full system
Install, including the REPSUBSY S and SY SGEN phases.

The NonStop Kernel Install program places most of the DSNM filesinthe DSMS
installation subvolume ZDSMS. The default DSNM configuration file ZDSNCONF is
installed in $SY STEM.SY STEM.

You may choose to copy the ZDSM Sfiles (except the default configuration file,
ZDSNCONF) to aworking subvolume or to distribute them over several subvolumes. If
you distribute files over several subvolumes, certain files must be placed in the same
subvolume for proper operation.

Refer to the Distributed Systems Management Solutions (DSVIS) System Management
Guide for more information about working with configuration files, including stepsto
customize your DSNM environment.

Startup Sequence and Configuration Files

A major component of DSNM isits process configuration. There are four el ements to
DSNM process configuration:

® The process startup message (the SERVER class STARTUP attribute in the DSNM
Pathway configuration file)

® The$SYSTEM.SYSTEM.DSNM file
e User-supplied DSNM configuration file(s)
® The $SYSTEM.SY STEM.ZDSNCONF file delivered with DSNM

Figure 1-4 shows the startup sequence that each DSNM process goes through to
establish its running configuration. Section 6, “ Configuring a New Subsystem Into
DSNM,” provides more information on the DSNM configuration files.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
1-12 Development Guide

Overview of DSNM Installing More Than One Copy of DSNM
Concurrently

Figure 1-4. DSNM Process Startup and Configuration Components

$SYSTEM.SYSTEM.DSNM

]]
- ™| DSNM Config File | * * * | DSNM Config File f—
| |
1
User-Supplied

DSNM Configuration Files

$SYSTEM.SYSTEM.ZDSNCONF
Configuration File])

DSNM Process Startup Message ZDSNCONF

015

Running DSNM Products

You can run DSMS products in a default configuration after the REPSUBSY S phase of
the Install program in the following operations environments:

e DSNM and NetCommand in aDSMS operations environment

¢ DSNM and NetCommand with NetStatus in a DSM S operations environment

* DSNM aoneinaNonStop NET/MASTER MS operations environment

e DSNM with NetStatus in a NonStop NET/MASTER MS operations environment

e DSNM started externally, with or without NetStatus, in a NonStop NET/MASTER
M S operations environment

Refer to the Distributed Systems Management Solutions (DSVIS) System Management
Guide for adiscussion of each of these environments.

Installing More Than One Copy of DSNM Concurrently

Just asthe DSNM product runs in an operations environment such as DSM S or NonStop
NET/MASTER MS, every DSNM processrunsin aDSNM environment. A DSNM
environment defines configuration characteristics of the process. You can define any
number of DSNM environments, each of which may be run in a default configuration or
may be customized to any degree desired. For more information about customizing a
DSNM environment, refer to the Distributed Systems Management Solutions (DSMS)
System Management Guide.

You can have severa copies of the same DSNM environment active on a Tandem node.

For example, you may want to use one DSNM copy for operations and another for
testing.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1-13

Mixed Network Requirements Overview of DSNM

To run concurrent copies with no DSNM configuration, use the standard names and
change only the process prefix character.

If you are running DSNM under NonStop NET/MASTER MS, no special configuration
isrequired. DSNM processes take their process prefix character from the first character
of the NonStop NET/MASTER NCP process (refer to the NonStop NET/MASTER MS
System Management Guide for more information).

If you are running DSNM as a PATHMON-controlled application, you must create a
separate PATHMON configuration for each concurrent copy of DSNM you wish to run.

Refer to the Distributed Systems Management Solutions (DSVIS) System Management
Guide for more information on running multiple copies of DSNM.

Mixed Network Requirements

DSNM can operate in anetwork that includes systems running both C-series and
D-series versions of the Tandem Nonstop operating system. In such a mixed network,
the DSNM modules that access remote files or processes must run at low PINs
(processor identification numbers). All DSNM modules are released with the HIGHPIN
parameter set to OFF.

Refer to the Distributed Systems Management Solutions (DSVIS) System Management
Guide and the documentation that accompanies your site update tape (SUT) for
information on system configuration and these DSNM modules.

Extending DSNM Support

1-14

Suitable subsystems can be added to the existing base of DSNM-managed subsystemsin
amodular way, without modifying existing subsystem support, by providing an | process
and an E processfor the targeted subsystem.

The remainder of this manual describes the development of | processes.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

% DSNM Commands

Scope of This Section

This section describes the DSNM commands that your subsystem interface process

(I process) must support. It provides syntax descriptions in sufficient detail to allow you
to test the commands in an end-user’s capacity, explains the effect of the valid modifiers
on each command, and defines what the outcome of each command should be. For
complete descriptions and syntax of all DSNM commands, see the User’s Guideto
DSNM Commands.

Command Line Syntax

All DSNM commands, except AGGREGATE, have the same general syntax, which
includes the following information:

e Command

® Object specification
* Modifiers

® Parameters

The DSNM command syntax is shown below:

command obj ectspec [, objectspec][, nodifier][, paraneter]

Commands

comand can be any one of the following:

e ABORT

e INFO

e INQUIRE

e START

e STATISTICS
e STATUS

e STOP

e UPDATE

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-1

Object Specification DSNM Commands

Object Specification

An object specification gives information that DSNM uses to identify objects against
which acommand isissued. If thereis more than one object specification, each must be
separated from the other by a comma.

An object specification must include the name of at |east one object. It can also include
optional qualifiers (which help identify the objects you are specifying) and a hierarchy
modifier (which determines—based on the subsystem object hierarchy—the objects to
be included).

The syntax of the object specification is shown in the following box:

[subsys] [type] [\node.]nane [[\node.]nane] ...
[UNDER [\ node.] $nanager] [hi erarchy-nodifier]

subsys

isaqualifier that identifies the name of the subsystem that controls the objects you
are specifying. If you do not specify a subsystem, DSNM attempts to determine the
objects subsystems from the operating system, Distributed Name Service (DNS),
and the rest of the object specification.

type

isaqualifier that identifies the type of the object you are specifying. The object
type must be valid in the specified subsystem. If you do not specify an object type,
DSNM attempts to determine the object types from the operating system, DNS, and
the rest of the object specification.

[\ node.] nane
is one of the following:
® A subsystem object name.
* Anadliasfor asubsystem object name defined in the DNS database.
® A group name defined in the DNS database.
* A composite name defined in the DNS database.

* A wild-card (*) specification, if permitted by the subsystem. (Thewild card is
combined with the qualifiers to specify all objects that belong to the same
subsystem, object type, node, and—if applicable—subsystem manager.)

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
2-2 Development Guide

DSNM Commands Modifiers

[\ node.] $manager]

isaqualifier that identifies the name of the manager process for the objects you are
specifying. (Specify it only if it is applicable to the specified subsystem.)

Note. You must specify the node if it is not the local node and if any of the following are
true:

The name is a wild card(*).

The name begins with a dollar sign ($).
The name includes a manager.

The name is not in the DNS database.

If the name is an alias, a group, or a composite, you can omit the node. DSNM determines
the node from the DNS database.

hi erar chy-nodi fi er

determines which objects are to be included, based on the subsystem object

hierarchy:

ALL Causes the command to affect both the specified objects and their
subordinate objects. Thisisthe default value.

ONLY Causes the command to affect the specified objects, but not the

objects subordinate to them.

SUBONLY Causesthe command to affect the objects subordinate to the
specified objects, but not the specified objects themselves.

Modifiers

Modifiers qualify the scope or output of the command. Possible modifiers are:

¢ Hierarchy modifier—determines, on the basis of the subsystem object hierarchy,
which objects are to be affected by the command. The hierarchy modifier values

are:

ALL Appliesthe command to the object itself and to al subordinate
subsystem objects. Thisisthe default value.

ONLY Appliesthe command to only the specified object(s).

SUBONLY Appliesthe command to the subordinate subsystem objects only, but
not the specified objects themselves.

® Error modifier—determines how much information is reported when the command
is correct, but the objects against which the command is being executed produce
errors. The error modifier values are:

ERROR-BRIEF Returnsasingle line of error text. Thisisthe default value.
ERROR-DETAIL Returns all available error information.
ERROR-SUPPRESS Returns no error information.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-3

Modifiers DSNM Commands

® State modifier—restricts the scope of the command to a subset of the specified
objects on the basis of their states. The state modifier values are:

DOWN Appliesthe command to only the objects that are DOWN.
NOT-UP Appliesthe command to the objects that are DOWN or PENDING.
NOT- Appliesthe command to the objects that are UP or PENDING.
DOWN

UP Appliesthe command to only the objects that are UP.

See “DSNM Object States’ on page 2-6 for the DSNM definitions for UP, DOWN,
and PENDING states. The state modifiers are not used with the INFO and
STATISTICS commands.

® Response modifier—controls the response information from an INQUIRE or
STATUS command. The response modifier values are:

BRIEF Returns one line of status information for each
object, including the object’'s DSNM state (see
“DSNM Object States’ on page 2-6). Also returns
the object’s subsystem state, if it provides additional
information. Thisisthe default value.

DETAIL Returns one line of status information for each
object, followed by available detailed status
information.

SUMMARY Returns a one-line display showing the total number

of objectsthat are UP, PENDING, DOWN,
UNDEFINED, and IN ERROR.

SUMMARY-BYOBJECT Returnsone line of status information followed by a
summary status line for each subordinate object type.
Each summary status line includes the total number
of objectsthat are UP, PENDING, DOWN,
UNDEFINED, and IN ERROR.

SUMMARY-BYTY PE Returns one line for each object type showing the
total number of objectsthat are UP, PENDING,
DOWN, UNDEFINED, and IN ERROR. Thevalue
of the hi er ar chy- nodi fi er determines whether
the totals include the specified objects, subordinate
objects, or both.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
2-4 Development Guide

DSNM Commands Parameters

¢ Highlight modifier—Ilimits the scope of the UPDATE and INQUIRE commands to a
subset of the objects, based on the objects' attributesin the DSNM object database.
The highlight modifier values are:

FROM-DISPLAY Causes the command to use the names on the
NetStatus display instead of resolving them through
Distributed Name Service (DNS), thus speeding name
resolution. Refer to the User’s Guide to DSNM
Commands for restrictions on using this parameter.

DEFINED Limits the scope of the command to objects defined
inthe DSNM object database.

UNDEFINED Limits the scope of the command to objects not
defined in the DSNM object database.

MONITORED Limits the scope of the command to objects recorded
in the DSNM object database as being monitored.

NOT-MONITORED Limits the scope of the command to objects recorded
in the DSNM object database as not being monitored.

ACCEPTABLE Limits the scope of the command to objects that are

recorded in the DSNM object database as being
monitored and currently in one of their acceptable
states.

UNACCEPTABLE Limits the scope of the command to objects that are
recorded in the DSNM object database as being
monitored and not currently in one of their acceptable
states.

Parameters

Parameters affect the action of a command and are used only with the UPDATE and
STATISTICS commands. Possible UPDATE command parameters are:

ACCEPT Changes the acceptabl e state of the specified objects to the states
indicated.
MONITOR Determines whether the specified objects are monitored or not

when they appear on the NetStatus display.

NOMONITOR Determines whether the specified objects are not monitored when
they appear on the NetStatus display.

The STATISTICS command parameter is RESET. If you specify RESET, DSNM
directs the subsystem to reset the statistical counters for the specified objects after
executing the command.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-5

Considerations DSNM Commands

Consider ations

The following considerations apply to all DSNM commands except the AGGREGATE
command. For more information on object specification and modifiers, refer to the
User’s Guide to DSNM Commands.

® You can use parentheses to nest object lists. Any modifiers that appear inside
parentheses are limited to the object specifications within the parentheses,
overriding any modifiers that apply to the entire command.

* Modifiers can appear in any order aslong as there is only one of each type. The
hierarchy modifier isthe only exception; it can occur as part of the object
specification or as part of the command as awhole, or both.

* |f you specify more than one modifier of the same type, DSNM only uses the last
one. You can specify a hierarchy modifier within any of the object specifications,
and you can apply one to the entire command. If a hierarchy modifier is specified
within an object specification, it overrides the command's hierarchy modifier.

e |f you enter acommand that is syntactically correct, except that it includes an
incorrect or incompl ete object specification, DSNM executes the command for all of
the objects that can be resolved.

DSNM Object States

One purpose of DSNM isto present a uniform representation of objects and their
subsystems for status displays. To this end, subsystem objects are classified into one of
asmall set of DSNM states. This set of states may be smaller than the possible set of
subsystem states for the object. The subsystem interface process must be able to map
the states of the subsystem objects to the following DSNM object states:

DOWN The object is unavailable or needs an operator to take action to make
it ready.
UP The object in use or available for immediate use.

PENDING The object is neither ready for use nor totally deactivated; itisin
some intermediate state such as STARTING.

UNDEFINED The object is not configured.
UNKNOWN The state of the object cannot be determined.

Canceling Commands

2-6

If you are using NetCommand, you can cancel any command still in progress by
pressing the Break key. When you press the Break key, you see the following prompt:

Cancel ?

Enter Y to cancel the command; enter N to permit it to continue. Pressing the Enter key
also permits the command to continue. If you enter Y, the command isimmediately
canceled. Any portions of the command that were already completed remain in effect.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Commands Canceling Commands

The command server initiates a cancellation by sending a cancel buffer (where
_INPUT.MOD.Z*"AMOD = ZDSN*"AMOD”*CANCEL) to theframe. The framethen
redispatches the thread with an _ EVACANCEL event. The command thread is
responsible for cleaning up its environment.

Refer to the NetSatus User’s Guide to find out how to cancel commands issued from the
command line in NetStatus.

Note. You cannot cancel a command that is in progress in the NonStop NET/MASTER MS
environment.

The remainder of this section provides syntax information by command, alphabetically.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-7

The ABORT Command DSNM Commands

The ABORT Command

2-8

The ABORT command causes DSNM to issue the subsystem-specific command(s) that
stops each object. When an object is stopped, its state changes to the subsystem state
that corresponds to the DSNM DOWN state. The ABORT command stops objects
without waiting for any outstanding operations to be completed. Thiscommand is more
emergency-oriented than the STOP command, which stops obj ects after completing
outstanding operations.

If al objects specified in the command are stopped, there is no command response. If
the command failsto stop any object, a response message lists the objects that were not
stopped. If the command contains a syntax error, you receive an error message, and the
objects are not stopped.

ABORT obj ectspec [, objectspec |...

[, hierarchy-nodifier]
[, error-nodifier]

[, state-nodifier]

obj ect spec
is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hi erar chy-nodi fi er

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-nodifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

state-nodifier

restricts the scope of the command to a subset of the specified objects, depending on
their states: UP, NOT-URP, DOWN, or NOT-DOWN.

If you do not specify avalue for the state modifier, DSNM applies the command to
all objects that match your object specification, regardless of their states.

Consider ations

Since the purpose of the ABORT command is to bring objects into the DOWN state, the
command has no effect on objects aready in the DOWN state.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Commands The ABORT Command

Because subsystems generally must abort objects in a predetermined order, the ONLY
hierarchy modifier isineffective with certain object types if their subordinate objects are
still up; that is, aborting certain object types forces their subordinates to be aborted al so.

The ABORT command is not appropriate for all object types; refer to the User’s Guide
to DSNM Commands for details.

Example

The following command stops the Expand lines in the group ALL-EXPAND:

ABORT ALL- EXPAND

The default hierarchy modifier is ALL, but because the group consists only of lines that
have no subordinate objects, there are no subordinate objects to stop.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-9

The AGGREGATE Command DSNM Commands

The AGGREGATE Command

2-10

Use the AGGREGATE command to obtain the status of each object under the specified
manager process or subsystem. The response message comprisesinformation that is
collated into a summary of the number of objects of each type that are in the state UP,
PENDING, DOWN, UNDEFINED, or IN ERROR.

AGGREGATE [subsys] [\node]... [[UNDER [\node.] $manager]]
[,[subsys] [\node]... [[UNDER [\node.]$manager]]]. ..

subsys

is the subsystem for which you want the aggregate status.

\ node

is the node for which you want the aggregate status.

[\ node.] $manager
is the name of the manager process for which you want the aggregate status (specify
it only if it is applicable to the specified subsystem).

Consider ations

If you specify anode each for both the name and manager process, the manager node
takes precedence.

Where you do not specify a node, DSNM uses the local node.
If the subsystem requires a manager process, you must specify it.

Example

The following command returns the aggregate status of all the SNAX objects on
\BERLIN:

AGGREGATE SNAX \ BERLI N
A sample response to the command is:

SNAX LINE \BERLIN

1 Up, O Pending, 1 Down, O Undefined, O In Error
SNAX PU \ BERLI N

1 Up, O Pending, 1 Down, O Undefined, O In Error
SNAX LU \ BERLI N

5 Up, 0 Pending, 5 Down, 0 Undefined, O In Error

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Commands The INFO Command

Thel NFO Command

Use the INFO command to obtain configuration information on objects.

The INFO command is not appropriate for al object types. Refer to the User’s Guide to
DSNM Commands for information on how the command is interpreted by each
subsystem.

| NFO obj ectspec [, objectspec]...
[, hierarchy-nodifier]
[, error-nodifier]

obj ect spec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hi erar chy-nodi fi er

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-nodifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

Example

The following command returns the configuration information for the PATHMON-
controlled terminal DPWT3 under \BERLIN.$PMD with the alias TERM-3:

| NFO TERM 3

A sample response to the command is:

PATHWAY TERM DPWI'3 UNDER \ BERLI N. $PMVD
Autorestart: O
Break: off

Di agnostic: on

Di spl aypages: -1
Echo: on

Excl usi ve: off

File: \BERLIN. $TML3B
I nitial: ENABLE- RELEASE
I nspect: off

I nspectfile:

| oprotocol: O

Maxi nput nsgs: O
Printerattached: no

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-11

The INFO Command DSNM Commands

Printerfile:

Tcl prog: \BERLI N. $SYSLOG. TRSYS. POBJ
TCP: TCP2

TMF: on

Ternt ype: CONVERSATI ONAL

Ter nmsubt ype: 0

Trail i ngbl anks: on

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

2-12 Development Guide

DSNM Commands The INQUIRE Command

TheINQUIRE Command

Use the INQUIRE command to obtain the current status of objects as recorded in the
DSNM object database. Response time to the INQUIRE command can be faster than
that of the STATUS command, but the response to the STATUS command can be more
up-to-date than that of the INQUIRE command. See*“Considerations’ for details.

I NQUI RE obj ectspec [, objectspec]...

[, hierarchy-nodifier]
[, error-nodifier]

[, state-nodifier]

[, response-nodifier]
[, highlight-nodifier]

obj ect spec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hi erar chy-nodi fi er

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-nodifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

state-nodifier

restricts the scope of the command to a subset of the specified objects, depending on
their states: UP, NOT-UP, DOWN, or NOT-DOWN.

If you do not specify avalue for the state modifier, DSNM applies the command to
all objects that match your object specification, regardless of their states.

response-nodi fier

determines how much status information is returned and its format. Possible
response modifiers are: BRIEF, DETAIL, SUMMARY, SUMMARY-BYOBJECT,
and SUMMARY-BYTY PE.

hi ghl i ght - nodi fi er

determines the scope of the command, based on information in the DSNM object
database. Possible highlight modifiers are: FROM-DISPLAY, DEFINED,
UNDEFINED, MONITORED, NOT-MONITORED, ACCEPTABLE, and
UNACCEPTABLE. Thereis no default for the highlight modifier.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-13

The INQUIRE Command DSNM Commands

2-14

FROM-DISPLAY causes the command to use the names on the NetStatus display
instead of resolving them through Distributed Name Service (DNS), thus speeding
name resolution. The FROM-DISPLAY parameter isvalid only if you areissuing a
command from the NetStatus command line and all objects specified in the
command appear on the NetStatus screen. (Refer to the NetSatus User’s Guide for
more information on FROM-DISPLAY.)

Consider ations

Because the INQUIRE command obtains status information from the object database, it
has a faster response time than the STATUS command. Thisis especially noticeablein
large networks. However, because the STATUS command obtains status information
from the subsystems directly, it produces more up-to-date information. Take your
immediate needs into account when choosing between using INQUIRE and STATUS.

Because the SUMMARY, SUMMARY-BYOBJECT, and SUMMARY-BYTY PE
response modifiers return the number of objects in each state, the state modifier is
ineffective with them. DSNM ignores the state modifier if it is combined with any of
these response modifiers.

Because the INQUIRE command retrieves status information from the in-memory copy
of the DSNM object database, it does not return the status of dynamic objects, such as
PATHMON-controlled terminals (which are not added to the database), or of objects
added to your network configuration after the DSNM object database was built.

Example

The following command returns status information for all the PATHM ON-controlled
TCPs controlled by manager process \LONDON.$PMUK that are in either the UP or
PENDING state:

I NQUI RE TCP * UNDER $PMUK, NOT- DOMN

Because no hierarchy modifier is specified, this command also returns the status of all
the UP or PENDING terminals controlled by that TCP. The default response modifier
BRIEF returns one line of information for each object. A sample response to this
command is:

PATHWAY TCP TCP1 UNDER \ LONDON. $PMUK Up
PATHWAY TERM UKPW'1 UNDER \ LONDON. $PMJUK Up
PATHWAY TERM UKPW4 UNDER \ LONDON. $PMUK Pendi ng
PATHWAY TERM UKPW5 UNDER \ LONDON. $PMUK Up
PATHWAY TERM UKPW6 UNDER \ LONDON. $PMUK Pendi ng
PATHWAY TERM UKPW7 UNDER \ LONDON. $PMUK Pendi ng
PATHWAY TERM UKPW8 UNDER \ LONDON. $PMUK Up
PATHWAY TERM UKPW10 UNDER \ LONDON. $PMUK Up

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Commands The START Command

The START Command

The START command causes DSNM to issue the subsystem-specific command(s) that
change each object to the subsystem state that corresponds to the DSNM UP state. If all
objects specified in the command are started, there is no command response. |If the
command fails to start any of the objects, thereis aresponse, listing the objects that
were not started. If the command line contains a syntax error, you receive an error

message.
START obj ect spec

obj ectspec]...
hi erarchy-nodi fier |
error-nodifier]
state-nodifier]

—r—r—r—

obj ect spec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hi erar chy-nodi fi er

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-nodifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

state-nodifier

restricts the scope of the command to a subset of the specified objects, depending on
their states: UP, NOT-URP, DOWN, or NOT-DOWN.

If you do not specify avalue for the state modifier, DSNM applies the command to
all objects that match your object specification, regardless of their states.

Consider ations

In some cases, the SUBONLY modifier has no meaning when issued with the START
command. Some subsystems prevent you from requesting to start subordinate objects
without starting the objects to which they are subordinate. The SNAX/XF subsystem
requires that SNAX lines be started before PUs and LUs. PATHMON requires that
TCPs be started before terminals.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-15

The START Command DSNM Commands

Example

The following command starts the SNAX lines identified by the aliases BERLIN-ATM-
LINE and PARIS-ATM-LINE but does not start any subordinate PUs or LUs:

START BERLI N- ATM LI NE PARI S- ATM LI NE, ONLY

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

2-16 Development Guide

DSNM Commands The STATISTICS Command

The STATISTICS Command

Use the STATISTICS command to obtain operational statistics about objects. Some
subsystems return statistics on only objects that are up.

The STATISTICS command is not appropriate for all object types; refer to the User’s
Guide to DSNM Commands for details on this restriction.

[, objectspec]...

[, hierarchy-nodifier]
[, error-nodifier]

[, RESET]

STATI STI CS obj ect spec

obj ect spec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hi erar chy-nodi fi er

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-nodifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

RESET

If you specify RESET, DSNM directs the subsystem to reset the statistical counters
for the specified objects after executing the command. Not all counters are
necessarily reset; the subsystems determine which counters are reset for different
types of objects.

Example

The following command returns the operational statistics for the Expand line
\PARIS.$LHD (local node is\LONDON):

STATI STI CS \ PARI S. $LHD

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-17

The STATISTICS Command DSNM Commands

A sample response to the command is:

EXPAND LI NE \ PARI S. $LHD
Current Tinmestanp: 21 Feb 1992, 16:07:52.044
Last Resetstats Tinme: 21 Feb 1992, 16:03: 36. 351
| Franes Sent: 17
| Franmes Rcvd: 8
S Franes Sent: 25
S Franes Rcvd: 39
U Frames Sent: O
U Franes Rcvd: O
L2 | Franes Sent: 17
L2 | Franes Rcvd: 8
L2 | Franes Sent P. O
L2 | Frames Rcvd P: O
L2 RR Franes Sent: 25
L2 RR Franes Rcvd: 39
L2 RNR Franes Sent: O
L2 RNR Franes Revd: O
L2 REJ Franes Sent: O
L2 REJ Franes Rcvd: O
L2 SABM Franmes Sent:
L2 SABM Franes Rcvd:
L2 DI SC Franmes Sent:
L2 DI SC Franes Rcvd:
L2 CMDR Franmes Sent:
L2 CVDR Franes Rcvd:
L2 UA Franes Sent: O
L2 UA Franes Rcvd: O

L2 DM Franes Sent: O
L2 DM Franes Rcvd: O
L2 SREJ Franmes Sent: O
L2 SREJ Franes Rcvd: O
L2 FCS Errors: O

L2 Tinmeouts: O

L2 Address Errors: O
L2 Length Errors: O
L2 Receive Aborted: O
L2 Received Buffers: O
Driver Franes Total: O
Driver Franmes Error: O
Driver NO Buffer: O
Driver BCC Errors: O
Driver Line Quality: O
Driver Receive Overrun: O
Driver Mbdem Errors: O
CTS State: On

DCD St at e: On

DSR St at e: On

Primary PID (2, 44)
Backup PID: (3, 25)

eololololole)

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
2-18 Development Guide

DSNM Commands The STATUS Command

The STATUS Command

Use the STATUS command to obtain the current subsystem status of objects, as obtained
from the subsystem. The STATUS command generates more up-to-date information
than the INQUIRE command, but the response time can be slower.

STATUS obj ectspec [, objectspec]...

[, hierarchy-nodifier]
[, error-nodifier]

[, state-nodifier]

[, response-nodifier]

obj ect spec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hi erar chy-nodi fi er

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-nodifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

state-nodifier

restricts the scope of the command to a subset of the specified objects, depending on
their states: UP, NOT-UP, DOWN, or NOT-DOWN. If you do not specify avalue
for the state modifier, DSNM applies the command to all objects that match your
object specification, regardless of their states.

response-nodi fier

determines how much status information is returned and it sformat. Possible
response modifiers are: BRIEF, DETAIL, SUMMARY, SUMMARY-BYOBJECT,
and SUMMARY-BYTY PE.

Consider ations

Because the STATUS command obtains status information from the subsystems directly,
it produces more up-to-date information than the INQUIRE command. However,
because the INQUIRE command obtains status information from the object database, it
has a faster response time than the STATUS command. Thisis especially noticeablein
large networks.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-19

The STATUS Command DSNM Commands

The state modifier isignored if the response modifier has the value of SUMMARY,
SUMMARY-BYTY PE, or SUMMARY-BY OBJECT, because these values return totals
by subsystem state.

If the SUBONLY and SUMMARY modifiers are combined for object types on the
lowest level, counter values are 0. (Subordinate objects do not exist; therefore, the
summary of their countersis0.)

DETAIL isnot avalid response modifier for Tandem data communications subsystems
other than AM 3270, Expand, SNAX, SNAX/CDF, TR3271, and X25AM.

The STATUS command is not appropriate for all object types; refer to the User’s Guide
to DSNM Commands for details on these restrictions.

Example

The following command returns the total number of objectsin each state for TCP1 and
its subordinate terminals:

STATUS TCP1 UNDER $PMUJK, SUMVARY
A sample response to the command is:
7 Up, 1 Pending, 2 Down, O Undefined, O In Error

The following command returns a summary line of status information for each object
type on each node included in the members of the group ALL-PATHWAY:

STATUS ALL- PATHWAY, SUMVARY- BYTYPE
A sample response to the command is:
PATHWAY SERVER \ LONDON

2 Up, O Pending, O Down, O Undefined, O In Error
PATHWAY TCP \ LONDON
1 Up, O Pending, 0 Down, O Undefined, O In Error
PATHWAY TERM \ LONDON
10 Up, O Pending, 0 Down, O Undefined, O In Error
PATHWAY SERVER \BERLI N
1 Up, 1 Pending, 0 Down, O Undefined, O In Error
PATHWAY TCP \ BERLI N
0 Up, 1 Pending, O Down, O Undefined, O In Error
PATHWAY TERM \ BERLI N
0 Up, 10 Pending, O Down, O Undefined, O In Error

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
2-20 Development Guide

DSNM Commands The STOP Command

The STOP Command

Use the STOP command to stop objects. The command causes DSNM to issue the
appropriate subsystem commands to stop each object after all current and outstanding
operations are complete.

If all objects specified in the command are successfully stopped, there is no command
response. If the command fails to stop any object, thereis aresponse, listing the objects
that were not stopped. If the command contains a syntax error, you receive an error
message, and the objects are not stopped.

If you wish to stop objects immediately, regardless of outstanding operations, use the
ABORT command.

STOP obj ect spec obj ectspec]...
hi erarchy-nodi fier |
error-nodifier]

state-nodifier]

—r—r—r—

obj ect spec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hi erar chy-nodi fi er

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-nodifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

state-nodifier

restricts the scope of the command to a subset of the specified objects, depending on
their states: UP, NOT-UP, DOWN, or NOT-DOWN. If you do not specify avalue
for the state modifier, DSNM applies the command to all objects that match your
object specification, regardless of their states.

Consider ations

An object engaged in alengthy operation can take along timeto stop. Therefore, the
subsystem commands issued by DSNM to stop the objects, and thus the DSNM STOP
command itself, can be complete before the objects actually stop. Consequently, some
of the objects can still be stopping for some time after the STOP command is issued,

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-21

The STOP Command DSNM Commands

2-22

during which time the objects can be reported by DSNM as in either the DOWN or the
PENDING state.

Because each subsystem must stop its objectsin a predetermined order, the ONLY
hierarchy modifier isineffective with certain object types if their subordinate objects are
still up; that is, stopping certain object types forces their subordinates to aso be stopped.

The STOP command is not appropriate for all object types; refer to the User’s Guide to
DSNM Commands for details on these restrictions.

Example

The following command stops the PUs and L Us that are subordinate to the SNAX line
\WY J$STLR. It does not stop the SNAX lineitself. No error information isreturned if
a subsystem error occurs while the command is being executed.

STOP SNAX LI NE \WYJ. $STLR, SUB- ONLY, ERROR- SUPPRESS

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Commands The UPDATE Command

The UPDATE Command

Use the UPDATE command to modify object attributes in the DSNM object database
that control:

® Whether an object is monitored when it appears on the NetStatus display
e What states cause an object to be highlighted on the NetStatus display

The UPDATE command returns aresponse for only those objects that are not
successfully updated.

The UPDATE command line must include aMONITOR, NOMONITOR, or ACCEPT
parameter.

UPDATE obj ectspec [, objectspec]...

[, hierarchy-nodifier]

error-nodifier]

state-nodifier]

hi ghl i ght - nodi fier]

MONI TOR | NOVONI TOR]

ACCEPT [UP] [DOMN] [PENDING]]

obj ect spec

is the object specification. The syntax for the object specification is provided in
“Object Specification” on page 2-2.

hi erar chy-nodi fi er

determines which objects are affected by the command, based on the subsystem
object hierarchy: ONLY, SUBONLY, or ALL (default).

error-nodifier

determines how much information is reported when the command is correct but the
objects against which the command is being applied produce errors. The error
modifier does not affect the command response for errors that result when a
command is entered incorrectly or when a name cannot be resolved. Possible error
modifiers are ERROR-BRIEF (default), ERROR-DETAIL, and
ERROR-SUPPRESS.

state-nodifier

restricts the scope of the command to a subset of the specified objects, depending on
their states: UP, NOT-UP, DOWN, or NOT-DOWN. If you do not specify avalue
for the state modifier, DSNM applies the command to all objects that match your
object specification, regardless of their states.

hi ghl i ght - nodi fi er

determines the scope of the command, based on information in the DSNM object
database. Possible highlight modifiers are: FROM-DISPLAY, DEFINED,

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-23

The UPDATE Command DSNM Commands

2-24

UNDEFINED, MONITORED, NOT-MONITORED, ACCEPTABLE, and
UNACCEPTABLE. Thereis no default for the highlight modifier.

FROM-DISPLAY causes the command to use the names on the NetStatus display
instead of resolving them through Distributed Name Service (DNS), thus speeding
name resolution. The FROM-DISPLAY parameter is valid only if you are issuing
the UPDATE command from the NetStatus command line and all the objects
specified in the command appear on the NetStatus screen. (Refer to the NetStatus
User’s Guide for more information.)

Note. Objects not defined in the object database are excluded by all values of the
highlight modifier except UNDEFINED.

MONI TOR | NOVONI TOR

determines whether the specified objects are to be monitored or not when they
appear on the NetStatus display.

Note. The MONITOR and NOMONITOR parameters are similar in name to two values of
the highlight modifier; be careful to distinguish them:

® MONITOR and NOMONITOR are parameters that can be used with the UPDATE
command to switch monitoring on and off.

® MONITORED and NOT-MONITORED are values of the highlight modifier that limit the
scope of the command either to objects currently being monitored or to objects not
currently being monitored.

ACCEPT [UP] [DOWN [PENDI NG

changes the acceptable state of the specified objectsto the statesindicated. If no
states are indicated, the current state becomes the acceptable state. Objectsnot in an
acceptable state are highlighted when they appear on the NetStatus display.

Consider ations

If you specify ACCEPT with no parameters, DSNM replaces the valuesin the
acceptable states field of the object entry with the current state of the object. If you
specify more than one subsystem object in the UPDATE command line, DSNM replaces
the acceptable states for each object with that object’s current state. 1f you specify
ACCEPT followed by any combination of the keywords UP, DOWN, and PENDING,
DSNM replaces the current acceptabl e states for each object with the states that you

specify.
The UPDATE command is not supported in NonStop NET/MASTER MS.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Commands The UPDATE Command

Example

The following command replaces the current values of the acceptable states fields for the
SNAX PU \BERLIN.$SATM .#ATMCC with the current state of the PU:

UPDATE PU \ BERLI N. $SATM #ATMCC, ONLY, ACCEPT

Because the command line includes the ONLY modifier, it does not update the object
entries for any subordinate LUs.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 2-25

The UPDATE Command DSNM Commands

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
2-26 Development Guide

% | Process Development Process

Scope of This Section

This section introduces the conceptual model upon which the | process program’s frame
and command thread interactions and supporting library services are based. Also
provided are a detailed development model and associated rules for using the | process
development software correctly and effectively.

The purpose of this section isto:
* Define central concepts of the | process program structure.

® Describe the environment and services provided for | process devel opment, focusing
on the command thread and how it interacts with the program frame and library
services.

® Qutline how to integrate your code with the frame code to produce aworking
| process.

Complete syntax and parameter descriptions for all procedures, literals, defines, and
structure templates discussed in this section are provided in Appendix A, “DSNM
Library Services.” ZDSN error codes are described in Appendix B, “DSNM Error
Codes” The SPI DDL constants and structure definitions that users must know about
arelisted in Appendix C, “Data Definition Language (DDL)-Defined DSNM SPI
Components.”

Note. Appendix D, “Sample | Process Program Code,” contains an example of the user-written
portion of an | process program, illustrating the model and associated library services
described in this section. You may find it helpful to refer to this sample code when reading this
section.

Function of the | Process

You add a Tandem or customer-written subsystem to the existing base of DSNM-
managed subsystems by providing a DSNM subsystem interface process, commonly
referred to asan “| process.” An | process converts DSNM commands affecting
subsystem objects into a sequence of subsystem commands, sends them to the targeted
subsystem’s control interface for processing, and converts the result into a standard
DSNM form.

An | processisamember of aDSNM server class. Ashighlighted in Figure 3-1, it:
® Receives commands from a DSNM requester (usually the command server).

® Converts DSNM commands into syntactically correct subsysterm commands.

® Presents commands to the subsystem CI for execution.

® Convertstheresult into a standard DSNM form.

® Returnsresponses to the requester.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-1

Function of the | Process | Process Development Process

3-2

You can think of an | process as being atranslator from the DSNM language to the
language supported by the subsystem CI.

Note. This release of the DSNM subsystem interface development software addresses
server-type Cls only, which must be started outside the | process.

DSNM commands can be categorized by function as follows:

Information retrieval commands—return various types of information about objects.
These are the AGGREGATE, INFO, STATISTICS, and STATUS commands.

Control commands—change the state of objects. These are the START, STOP, and
ABORT commands.

M onitoring commands—report information on the status of subsystem objects as
currently stored in the DSNM object database, and enable you to control certain
aspects of how objects are monitored. These are the INQUIRE and UPDATE
commands.

Figure 3-1. Function of the | Process

Formatted response User issues DSNM command
returned for display
Y
Object name
Command - resoluton DNS
server Database
I}
Response buffer returned to IEI | process reads
requester command buffer
Y
Response interpreted and Converts DSNM command
converted to standard DSNM | process into syntactically correct
form subsystem command(s)
A
Response returned Command(s) sent to

subsystem CI for execution

Y

Subsystem
Cl

Command(s) executed

005

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process | Process Program Structure Concepts

| Process Program Structure Concepts

The following concepts are central to the | process program structure:

Frame

A frameisaset of compiled procedures supplied by Tandem into which user-written
subsystem-specific code is bound to produce an | process that conforms to DSNM
protocols. The frame carries out the following major functions:

® [nitialization and configuration
® Thread management
e Communication with the DSNM requester (usually the command server)

e Communication with the subsystem CI (any gateway to the subsystem for control
purposes)

A Caution. All SRECEIVE operations are done by the frame on behalf of the | process; the
frame does this by calling internal DSNM library procedures. Do not perform any NonStop
Kernel file operations that affect SRECEIVE, such as FILE_OPEN_ or
FILE_GETRECEIVEINFO_. Processes may fail or behave unpredictably if you attempt to open
$RECEIVE.

Thread

A thread is an independent instruction stream capable of being interleaved in execution
with other instruction streams (under the control of the frame). In this manual, an
executing instance of acommand thread is called simply “athread,” and the procedures
that compose it are called the “thread procedures.”

You use | process-development library servicesto write TAL procedures executed by the
frame as an independent thread, called the “command thread.” These procedures
collectively perform the following major functions:

® Trandation of DSNM commands into subsystem-specific commands
e Construction of command buffersto be sent to the subsystem CI
* Interpretation of response buffers returned by the subsystem CI

The frame handles the bulk of the complexity of the requester-to-l1 process and process-
to-Cl interactions. Library services support frame and user-written operations such as
memory management and list processing.

Figure 3-2 illustrates the relationship between the | process program frame supplied by
Tandem and the user-written procedures COMMAND”PROC, STARTUPR,
_STARTUP*MODE, and _COMMAND*TERMINATION"PROC.

See Table 3-1 for an overview of the defines, procedures, structure templates, and user-
written procedure identifiers referenced in thisillustration and in code examples
throughout this section.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-3

| Process Program Structure Concepts | Process Development Process

3-4

Figure 3-2. Relationship Between the Frame and User-Written Procedures

| PROCESS

| Process Program Frame

User-Written
Procedures

_COMMAND”PROC

Command Thread
Procedures

s

_COMMANDA
TERMINATIONA
PROC

_STARTUP*MODE

006

Dispatch
Dispatch means invoking a thread for execution.

A thread procedure periodically suspends execution until something occurs (for
example, the completion of an 1/0O operation) by returning to the frame with a RETURN
procedure and waiting for the frame to generate a particular event, at which point the
frame dispatches the current thread procedure. (Seethe “Event” discussion next in this
subsection.) Asthe thread executes, it can ater the current thread procedure to be called
by the frame at the next thread dispatch.

When execution proceeds after an event, the current thread procedure is reentered from
the beginning. The thread procedure determines its current state from the event that
occurred and information stored in its context area (see the “Command Context”
discussion later in this subsection).

Library routines help support state maintenance and restoration. Local variables are not
preserved and must be reinitialized on continuation after any return to the frame.

Event

An event is an occurrence that initiates athread dispatch. Whenever athread is
dispatched, the event that caused the dispatch is communicated to the thread.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process | Process Program Structure Concepts

Command Context

A command context is a collection of datain memory reserved for a particular thread's
exclusive use during its execution. When the frame receives a command, it creates an
instance of the command thread and dynamically allocates memory for acommand
context areathat is preserved for the life of the thread. Thread procedures must use
memory within their context area.

Formatted Object

A formatted object is the data structure, defined by the ZDSN*"DDL"FOBJECT"DEF
DDL structure, that defines a subsystem object to DSNM. The fields within the
structure contain information about all the relevant attributes of a subsystem object.
Each object that a command has to act on is defined as afilled-in formatted object
structure.

List

A list is adouble-ended queue structure that consists of alist declaration and list
members:

® Thelist declaration isasmall data structure that holds control information for use by
the | process memory management services. Its size and structure are fixed.

* A list member is ablock of memory, the size and description of which are
determined by the thread. Memory is allocated dynamically as members are added
to alist, and deall ocated as members are removed from alist. List members can be
of any size.

Two predefined list structures are available in the thread's command context space:

®* Theinput object list isthelist of objects (each one of which is represented by a
formatted object structure) upon which a DSNM operation is performed.

® The output object list is produced by the command thread when processing the
command; it isinitially empty.

Library functions support creation of additional lists for intermediate data storage.
Cl

A Cl isacontrol interface: any gateway to the subsystem that provides control. Within
the | process model, a Cl is conceptually the name of a control interface, analogous to a
NonStop Kernel process name. Like aNonStop Kernel process, a Cl can be opened for
communication. Anopen Cl isreferredto by aci i d, which isthe functional
equivalent of aNonStop Kernel file number for an open NonStop Kernel process.
_SENDACI is an operation that provides for communication with an open CI.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-5

General Command Processing Scheme | Process Development Process

General Command Processing Scheme

Asan | process developer, you write a set of procedures that, when executed, form a
command thread that carries out aDSNM command. The general command processing
schemeislisted next. (See Figure 3-3 on page 3-8 for an illustrated example.)

3-6

1. When the frame receives a command, it extracts the following command
components and places them in the command context space it allocates to each
thread when it is created:

The action to be performed.
The command modifiers.

A list of objects on which the operation isto be performed (the input object list).
The input object list is made up of a header and alinked list. Each list member
isaformatted object structure, defining one object to which the command is

applied.

2. Theframe alocates the command context space, creates an instance of the command
thread, and dispatches the command thread.

3. Thethread'soverall task isto apply the command to each object in the input object
list by carrying out the following steps:

a

Inits simplest form, the thread creates a subsystem command equivalent to the
DSNM command. If the subsystem does not support the operation, the thread

may':
® Perform the operation by means of a combination of subsystem commands.

e Simulate the operation. (If the subsystem doesn’t support a particular
operation, the | process itself might be coded to support it. For example, the
| process might keep its own statistics on subsystem objects for which a
STATISTICS operation is not supported.)

® Treat the operation as a no-operation (but still produce the output required
by the command).

* Reject the operation with an error.

The thread selects an object off theinput list and sendsit to an appropriate
subsystem CI.

The thread returns to the frame to await completion of the CI communication.
When aresponse is received from the Cl, the frame redispatches the thread.

The thread interprets the response and creates an appropriate response for the
command (see Section 4, “DSNM Command Requirements’).

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process General Command Processing Scheme

f. Thethread places the response (possibly empty, depending on the command
requirements) into a predefined output object list (defined as part of the
command context space).

Steps b through f are repeated until the input list is exhausted and the output list
represents a complete response to the original DSNM command. During the
process, the thread can define its own lists and add membersto it for
intermediate results.

Note. Part of the command context space is a user-defined area where the thread
can define and manipulate intermediate lists.

4. When the command has been completely processed, the thread must free al the
user-allocated lists and then stop by returning an appropriate return code to the
frame.

5. The frame then formats the response and returns it to the DSNM requester. The
frameis responsible for freeing the input and output object lists.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-7

General Command Processing Scheme

3-8

| Process Development Process

Figure 3-3. Frame/Command Thread Interaction: Processinga DSNM Command

DSNM LIBRARY SERVICES

»| Receive command.

Requester

i

Extract command, modifiers, and
objects and create input object
list.

Create instance of command
thread (CALL _COMMAND/PROC).

| PROCESS PROGRAM FRAME

Present operation to subsystem
Cl.

A

COMMAND THREAD
(_COMMANDAPROC)

Create subsystem
operation for current
object.

Initiate request for ClI
communication and return to

When operation completes,
generate 1/0O completion event
and redispatch thread.

frame (_CI7D, _OPENACI,
_SENDACI).

Interpret response; build

Build response.

formatted object structure and
append text as necessary for
each object.

Release output object(s)
to frame

Return response to requester.

(_RELEASE~OUTPUT,
_CLOSEACH).

When all objects have been
processed, terminate
thread.

* Depending on the subsystem, a Cl may be closed inside or outside the object processing loop.

007

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process The Command Thread Source Environment

The Command Thread Sour ce Environment

The source environment in which the command thread is written consists of source
definitions (DDL, literals, and defines), global definitions, and external declarations.
You must include the following ?SOURCE statements in your program:

?SOURCE KDSNDEFS (| PROCESS"DEFI NI TI ONS)
?SOURCE KDSNDEFS (| PROCESS" GLOBALYS)
?SOURCE KDSNDEFS (| PROCESS™ EXTDECS)

Your program source file should be arranged as follows:
? < User conpiler directives >
?SOURCE KDSNDEFS (| PROCESS"DEFI NI TI ONS)

< User-defined |-process globals >

Note. Because they are shared by all currently active threads, global definitions must be read-
only after initialization.

The following templates should be defined:

BLOCK PRI VATE;
STRUCT i n~l mivdef (*);

BEG N I Input Iist nenber definition
_ | NPUT” LMMHEADER;
< User-defined input list nmenber fields for work space,
if any >
END;
STRUCT out Ml nirdef (*);
BEG N I Qutput list menber definition
_ OQUTPUTA LM\HEADER;
< User-defined output |ist nenber fields for work space,
if any >
END;
STRUCT cx”def (*);
BEA N I Command context definition
_ COMVAND" CONTEXT" HEADER;

I NT . EXT inobj (in”l mdef);
I NT . EXT outobj (out”l mtdef);

< User-defined context fields >
END;

I NT . EXT ci”~config (_ClI"DEF);
I NT . EXT ss”config (_SUBSYS"DEF);

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-9

The Command Thread Source Environment | Process Development Process

3-10

STRI NG . ci nane[0: ZDSN*MAXACI CLASS- 1] = [“XXXXXXX "];
STRI NG . ssnane[0: ZDSN*MAXASUBSYS- 1] : = [" XXXXXXX "];

END BLOCK;

?SOURCE KDSNDEFS (| PROCESS" GLOBALYS)
?NCLI ST, SOURCE EXTDECSO (...)
?LI ST

?SOURCE KDSNDEFS (| PROCESS" EXTDECS)

_THREAD"PROC(MYPRCC1) ; FORWARD;
_THREAD"PROC(MYPRCOC2) ; FORWARD;

I NT PROC _STARTUP (cx”length, in”l nmlength) EXTENSIBLE
I NT .cx™l ength, .in”l ntlength;

BEG N
cx™l ength : = $LEN(cx~def);
i ™l mMlength : = $LEN(i n*l m*def) ;

IF _ISNULL (@i ~config := _ADD'Cl (cinane)) THEN
RETURN ZDSN'ERRM| NTERNALMERR,;
IF _ISNULL (@s”~config := _ADD*SUBSYS (sshane)) THEN

RETURN ZDSN*ERRM| NTERNAL™ ERR;
RETURN ZDSN* ERR"NOERR;
END;

| NT PROC _STARTUP"MODE (conponent, testnode,
accept *startup”conponent,
subj ect)
EXTENSI BLE;

STRI NG . EXT conponent; - - ZDSN*DDL" COVPONENT” DEF,
I NT . EXT testnode;

| NT . EXT accept”startup”conponent;

STRI NG . EXT subj ect;

BEG N
< nove subsystem nanme to COVPONENT >

test node : = _COWPI LEDMI N TESTMODE;
accept *startup”conponent := 1;
RETURN ZDSN*ERR*NOERR;

END;

_ THREAD*PROC(_ COMVAND* PROC) ;
BEG N
INT . EXT cx (cx“def) = _THREAD“CONTEXT"ADDRESS;

__END" THREAD" PROC:

< ot her command thread procedures >

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process User-Written Procedures

_THREAD*"TERM NATI ON*PRCC (_COVIVAND" TERM NATI O\ PRQOC) ;
BEG N

< clean up thread environnment >

_ENDMTHREADM TERM NATI O\ PROC;

ASSIGN Statements Required for Compilation
For compilation, you must assign the following subvolumes to be searched:
® 3$SYSTEM.SY STEM—or the subvolume on your system that contains EXTDECSO.
e Thevolume(s) and subvolume(s) on your system that contain:

ZDSNDEFS
KDSNDEFS

ZDSNLIB
KDSNLIB

ZSPITAL
ZDSNTAL

® Thevolume and subvolume on your system that contains definitions for your
subsystem.

For example:

ASSI GN SSV1, $SYSTEM SYSTEM
ASSI GN SSV2, $DSNM | DEVLI B
ASSI GN SSV3, $DSNM | DEVDDL

User-Written Procedures

Asillustrated in Figure 3-2 on page 3-4, user-written | process procedures consist of:
® Two startup procedures. STARTUP*MODE and _STARTUP.

® Theinitia command thread procedure (COMMAND”PROC), and other command
thread procedures and utility procedures as necessary.

* Anoptional thread termination procedure: _ COMMAND"TERMINATION"PROC.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-11

The STARTUP~AMODE Procedure | Process Development Process

The STARTUPMMODE Procedure

3-12

The frame calls STARTUP*MODE when it begins its startup processing.
_STARTUP*MODE performs the following tasks:

* Retrieves the component name of the subsystem(s) being handled by the | process.
® Determines whether the | process is running in test mode.

e Determines whether to use the COMPONENT process parameter value if one
appears in the startup message.

The format of the STARTUP*MODE procedure is as follows:

| NT PROC _STARTUP"MODE (conponent
, t est node
, accept - st art up- conponent
, Subj ect)
EXTENSI BLE;

conponent

is usually the name of the subsystem the | process handles. For | processes that
handle more than one subsystem, the component name is an arbitrary name chosen
by the developer of the process. For example, the SCP | process supplied by
Tandem handles multiple communications subsystems. COMM is its component
name. The component nameis used for configuration parameter retrieval searches.

t est node

passes a value indicating whether the | processis running in test mode (which
affects startup parameter processing; see Section 5, “DSNM Process Startup
Functions”).

accept - st art up- conponent

indicates whether a process COMPONENT parameter value in the startup message
should (nonzero) or should not (zero, the default) override the conponent value.

subj ect

identifies the | process name, up to ZDSN-MAX-COMPONENT characters (36),
terminated by a space or null. Itisincluded asthe subject valuein all EMS
messages generated by the | process.

_STARTUP*MODE is discussed further in Section 5, “DSNM Process Startup
Functions”

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process The _STARTUP Procedure

The STARTUP Procedure

The frame must supply the lengths of the command context space and the input list
member structures for which it allocates memory each time it creates an instance of a
thread. _STARTUP declares an initialization procedure that is called by the frame to
provide thisinformation before it creates the first instance of the command thread.

_STARTUP also retrieves subsystem and CI configuration parameters from the
DSNMCONF file and places them into predefined structures for use by the frame. (See
“Command Context Space” on page 3-15 for a definition of the command context

space.)
The format of the STARTUP procedure is as follows:

I NT PROC _STARTUP (context-length,input-Imlength)
EXTENSI BLE;

context-1length

isthe length, in bytes, of the user-defined command context structure.
i nput-I mlength

isthe length, in bytes, of the user-defined input list member structure.

If no values are provided, the frame allocates only the space required for its own use; no
space is made available for user data.

The following procedures must be called in your _ STARTUP procedure:

_ADD"SUBSYS

fillsin apredefined structure with subsystem configuration parameters for the
subsystem(s) the | process handles. The frame uses this information when it gets a
command for that subsystem.

_ADDMC

fillsin apredefined structure with CI configuration parameters for the Cl class with
which your | process communicates.

The STARTUP procedure is described in more detail in Section 5, “DSNM Process
Startup Functions.”

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-13

Declaring Thread Procedures: _THREAD"PROC | Process Development Process
and _END"THREAD”*PROC

Declaring Thread Procedures. THREAD”PROC and
_END"THREAD"PROC

Any procedure that might be dispatched as part of a thread must be declared with
_THREAD"PROC and _END*THREAD"PROC:

_THREADM"PRCC (procnane);
BEG N
< procedure body >
_END" THREAD" PROC;

_ENDATHREAD"PROC issues RETURN _RCMWAIT, which returns the thread to the
frame until the occurrence of the next event causesit to be redispatched. (See
“Suspending and Dispatching Thread Procedures’ later in this section for more
information.)

Use THREAD"PROC in the following constructions:
_THREADMPRCC (procnhane); EXTERNAL;
_THREADM"PROC (procnane); FORWARD,

Thelnitial Command Thread Procedure. COMMAND"PROC

Thefirst time it dispatches an instance of the thread, the frame invokes the command
thread as_ COMMAND”PROC. You must declare theinitial thread procedure with
_THREAD”PROC and _END*THREAD"PROC:

_THREAD"PROC (_COWAND"PRQOC) ;
BEG N
< procedure body <
_END" THREAD" PRCC;

The Thread Termination Procedure:
_COMMANDMTERMINATIONAPROC

When a thread terminates, either because of afatal error or because it has successfully
completed the processing of acommand, the thread library looks for a user-written
procedure named _ COMMAND"TERMINATION"PROC, which may be used for
cleaning up the thread's environment. You must declare this procedure with
_THREADATERMINATION"PROC and _END"THREAD"TERMINATION”PROC:

_THREAD"TERM NATI O*PROC (_ COMVANDMTERM NATI ONMPRCC) ;
BEG N
< procedure body >
_END"THREAD TERM NATI O\ PRCC;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
3-14 Development Guide

| Process Development Process Command Context Space

Use THREADTERMINATION”PROC in the following construction:

_THREAD*TERM NATI ON*PRCC (_COVIVAND" TERM NATI O\ PROC) ;
BEG N

< brocedure body >

I for exanple, free lists, close the open Cl(s) and
I return, leaving the input and output lists for the
I frane

CALL _DEALLOCATEALI ST (...);

CALL _CLOSErC (...);

_END" THREAD* TERM NATI ON* PRCC,

Command Context Space

When the frame receives a command, it alocates memory for acommand context space
and creates an instance of the command thread. You define the command context space
in your globals area to include the following:

* Aninput area, where the frame places the following command components for
access by the command thread: the command's action, modifiers, parameter list, and
theinput list of objects on which the command operation is performed.

* Anoutput area, where the frame predefines the output list. The thread will place the
objects with their associated states and/or text in response to the operation having
been performed in the output list.

® A user area, customized by the thread.

* A control context areareserved for use by the frame for state variable maintenance
and multithreading. The frame saves such variables as the current thread state, the
current thread procedure, and the event(s) that caused the current dispatch in the
control context area.

You define the input and output list members and the user area by specifying a structure
template for each. The first part of each structure is reserved for use by the frame.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-15

Command Context Space

| Process Development Process

Figure 3-4. Command Context Area

For example:

struct inputrlm~def (*);
begin
_INPUTALMMHEADER;
... <user-defined area>
end;

struct outputMm~def (*);
begin
_OUTPUTALM~HEADER,;
... <user-defined area>
end;

int .ext cx (command~context"def) =
_THREAD"CONTEXT~ADDRESS;
int .ext in (_INPUT~DEF) :=
@cx._INPUT,;
int .ext out (_ OUTPUT”DEF) :=
@cx._OUTPUT;

struct command”~context*def (*);
begin
_COMMAND*CONTEXTAHEADER,;
int .ext inobj (input"lm”def);
int .ext outobj (output*im”def);

-

<user-defined area>

end;

Command Context Area

Control context area for
use by frame

_INPUT

_INPUT.OBJECTLIST
members

_LIST(OBJECTLIST);

int action;

struct mod
zhmod
zrmod
z"emod
z"smod
zamod
zfmod

_OUTPUT

_LIST (OBJECTLIST);

Input Object List

_OUTPUT.OBJECTLIST
members

_CI"IDPOINTER (_LAST~CI*ID);
_LASTATIMEOUT/TAG;

User-Defined Data

Output Object List

008

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

| Process Development Process Defining the Command Context Space

Accessing the Command Context Space

_THREADMCONTEXT"ADDRESS isan INT(32) global variable in which the frame
places the extended address of the command context space before each thread dispatch.

The thread can access the command context space with a data definition similar to the
following example:

I NT. EXT cx (command”cont ext *def) = _THREAD*CONTEXT"ADDRESS,
where

command”cont ext Adef

is a user-defined structure that describes the command context space. The
definition of command”~cont ext ~def isprovided in the next subsection,
“Defining the Command Context Space.”

Defining the Command Context Space

The command context space contains both frame-defined areas and a user-defined area.
Your _STARTUP procedure provides the frame with the length of the command context
area.

Generating the Frame-Defined Variables:
_COMMAND"MNCONTEXTM"HEADER

_COMMAND"MCONTEXTMHEADER isadefinethat is required as part of the
command context structure definition. It declares the frame-defined input, output, and
control context areas.

Defining the User Area
You define the rest of the command context space according to your needs.

The following exampl e declares a command context structure containing three user-
defined lists, a ClID structure (see “ Cl Communications,” later in this section), and
several work variables:

STRUCT COVIVANDN CONTEXTADEF (*);
BEG N

COVIVAND" CONTEXTN HEADER,;

LI ST (objlistl);

LI ST (objlist?2);

LI ST (objlist3);

CIM D (subsys”™nyr);

I NT wor k1[0: 9];

STRI NG wor k2;

I NT(32) work3;

END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-17

The Input Area: _INPUT | Process Development Process

Thelnput Area: INPUT

Theinput areaisthe portion of the command context space in which the frame places
the command components.

_INPUT isthe name assigned to the INPUT”DEF structure generated by
_COMMAND"MCONTEXTMHEADER. Thisstructure containsthe LIST declarations
for the input object list (OBJECTLIST), the action field, and a structure containing the
command modifiers.

STRUCT _| NPUTADEF (*);
BEG N
_LI ST (OBJECTLI ST);
I NT acti on;
STRUCT nod (zdsn”nod”def);
END;

_INPUT.ACTION is one of the following:

ZDSN"ACTIONMABORT
ZDSN"ACTIONMAGGREGATE
ZDSN”ACTIONMNFO
ZDSNMACTIONASTATUS
ZDSN™MACTIONASTART
ZDSN™MACTIONASTATISTICS
ZDSN*ACTIONASTOP

_INPUT.MOD is zero or more of the following:
Hierarchy modifier (.Z-HMOD):

ZDSN*"HMOD"ALL
ZDSN*HM OD"ONLY
ZDSN*HM OD*"SUBONLY

Error modifier (.Z-EMOD):

ZDSN"EMOD"BRIEF
ZDSN"EMOD”DETAIL
ZDSN"EM OD""SUPPRESS

Select state modifier (.Z-SMOD):

ZDSN*"SMOD"UP | ZDSN*SMOD”*GREEN
ZDSN*"SMOD"NOT”"UP | ZDSN*SM OD”*NOT~GREEN
ZDSN*"SMOD"DOWN | ZDSN*"SMOD”RED
ZDSN*"SMOD"NOT*DOWN | ZDSN*SMOD”*NOT”RED

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
3-18 Development Guide

| Process Development Process The Output Area: _OUTPUT

Response modifier (.Z-RMOD):

ZDSN*"RMOD”BRIEF
ZDSN"RMOD”DETAIL

Note. SUMMARY response modifiers are handled entirely by the | process frame and
are never seen by the command thread itself.

Action modifier ((Z-AMOD): ZDSN*"AMOD”"RESET

Flow modifier (.Z-FMOD)
Actions and modifiers are described in detail in Section 4, “DSNM Command
Requirements.”

Accessing the Input Area

Use data definitions similar to the following to access the input area:
I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS;
INT . EXT in (_I NPUTADEF) := @x. | NPUT;

The Output Area: OUTPUT

The output areais the portion of the command context space in which the frame declares
the output object list that will be generated as a result of processing a command.

_OUTPUT isthe name assigned to the OUTPUT”DEF structure generated by
_COMMAND"MCONTEXTAHEADER. Thisstructure containsthe LIST declaration
for the output object list (OBJECTLIST).

STRUCT _OUTPUTADEF (*);
BEG N
_LI ST (OBJECTLI ST);
END;

Accessing the Output Area

Use data definitions similar to the following to access the output area:

I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS;
| NT. EXT out (_OUTPUTADEF) := @x._OUTPUT;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-19

The Input and Output List Member Structures | Process Development Process

Thelnput and Output List Member Structures

In addition to defining the command context area, you must also define the input and
output list member structures by specifying a structure template for each, asillustrated
in Figure 3-5. Thefirst part of each structure isreserved for use by the frame; the thread

defines the rest of the structure.

Figure 3-5 shows the fields of interest to the command thread that are generated as part
of the input list formatted object structure (identified as FOBJ). The figure also shows
the fields that the command thread must fill in the output list member structures.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
3-20 Development Guide

| Process Development Process

The Input and Output List Member Structures

Figure 3-5. Object List Member Definitions

struct inputlm~def (*);

begin

_INPUTALMMHEADER;
... <user-defined area>

end;

struct outputMm”def (*);

begin

_OUTPUTALM~HEADER,;
... <user-defined area>

end;

_INPUT.OBJECTLIST members

struct FOBJ

z”hmod

z"subsys
z"objtype
z”objname”occurs
z”objname
zmanager”*occurs
z"manager

User-defined output
list member fields

Input Object List

_OUTPUT.OBJECTLIST members

struct FOBJ

z"result
z"subsys
z"objtype
z”objname
z"manager

Appended output text lines

User-defined output
list member fields

Output Object List

009

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

3-21

Defining the Input List Member Structure:

_INPUTALMAHEADER

Defining the Input List Member Structure: INPUTALMA"HEADER

_INPUTALM”™HEADER describes thefirst part of an input list member. It generates an

input list formatted object structure (FOBJ). Itisrequired as part of theinput list
member definition. Your STARTUP procedure provides the frame with the length of
the input list member structure

Thefollowing is an example of an input list member structure declaration:

STRUCT i nput Mli st *nenber *def (*);
BEG N
_ I NPUTALM*HEADER
< user-definitions >

END;
For each member in the input object list, the following FOBJfields are available to the
thread:

Z"HMOD Contains a hierarchy modifier for the object. If present,
it overrides the hierarchy modifier (Z-HMOD) value in
the INPUT.MOD.Z"HMOD field for this object only.

Values are:

ZDSN"HMOD"ALL

ZDSN"HMOD”"ONLY

ZDSN"HMOD"SUBONLY
Z"SUBSYS I's the subsystem to which the object belongs.
Z"OBJTYPE I's the subsystem object type of the object.
Z"OBINAMEMOCCURS Isthelength of the object name.
Z"OBINAME I's the object name.
Z"MANAGERMOCCURS Isthelength of the manager name, if any.
Z"MANAGER Is the name of the manager, if any.

In addition, internal information in each input list object structure is carried forward to
output list object structures when they are initialized with _FOBJECTAINIT (see
“Initializing Object List Members: FOBJECTAINIT,” later in this section).

These fields are described in more detail in Section 4, “DSNM Command
Requirements.”

Defining the Output List Member Structure:
_OUTPUTALMMHEADER

3-22

_OUTPUTALM”™HEADER describes the first part of the user-defined output list
member structure (reserved for use by the frame) and generatesa DSNM formatted
object structure identified as FOBJ. Itisrequired as part of the output list member
definition.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process

| Process Development Process Working With Lists

Thefollowing is an example of an output list member structure definition:

STRUCT out put ~l i st *menber ~def (*);
BEG N
_QUTPUTALM'HEADER,;

END;
The following FOBJ fields must be filled in by the command thread for each objectin |

the output object list according to the specifications for the individual commands
(described in Section 4, “DSNM Command Requirements’):

Z"RESULT Containsthe result code for the object in the response buffer. It
may be aZDSN"ERR value (see Appendix B, “DSNM Error
Codes’), aZDSNASTATE value, or null (zero).

Z"SUBSYS I's the subsystem to which the object belongs.
Z"OBJTYPE Isthe subsystem object type of the object.
Z"OBINAME Isthe object name, blank-filled.
Z"MANAGER Isthe name of the manager, if any, blank-filled.

Note. Z"OBIJNAMEMOCCURS and Z*"MANAGER"OCCURS are present in the output object
structure, but they need not be filled in.

Output objects may have lines of text associated with them aswell (see “Adding Text
Items to an Output Object: APPEND~OUTPUT,” later in this section).

These fields are described in more detail in Section 4, “DSNM Command
Requirements.”

Wor king With Lists

Thethread's overall task isto take a command and the input list of objects, and
transform them into an output list of objects with associated states and/or text. The two
predefined list structures available in the command context area are:

* Theinput object list, extracted by the frame from the command buffer.

® The output object lit, filled in by the thread as aresult of processing the command,;
itisinitially empty.

Asshown in Figure 3-6, list members are logically ordered. The first member isthe
earliest item placed on the list; the last member is the latest. Each member hasa
successor and a predecessor, the predecessor of the first and the successor of the last
being NULL.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-23

Declaring a List: _LIST | Process Development Process

Figure 3-6. Logical View of aList

!

_PUSHALM _POPLM

[=— @last = _LASTALM (list);
|<— @previous := _PREDECESSORMLM (list, last);
1— error := _DELETEALM (list, @ list-member); —»
=
Je—@next := _SUCCESSORMM (list first);
l—— @first := _FIRSTALM (list);
List Member Structure
num := _MEMBERSOFALIST (list);
length := _SIZEMOF~LM (list-member);
_PUTALM — ||
~—— GETALM —

050

Declaringalist: LIST

Use LIST to declare alist structure.

_LIST (list);

Initializinga List Structure: _INITIALIZEMLIST
Use INITIALIZEMLIST to set alist structure to nulls.

CALL _INITIALI ZEMLIST (list);

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
3-24 Development Guide

| Process Development Process Declaring a Pointer to a List: _LISTPOINTER

Accessing theFirst Member of aList: FIRSTALM
Use FIRSTALM to retrieve the address of the first member of alist.

@irst-list-nmenber := FIRSTALM (list);

AccessingthelLast Member of aList: LASTALM
Use LAST~LM to retrieve the address of the last (most recent) member of alist.

@ast-list-nenber := LASTALM (list);

Accessing the Next List Member: SUCCESSORMLM

Use SUCCESSORAMLM to retrieve the address of the next list member in first-to-last
(earliest to most-recent) order.

@ext-1list-nmenber := SUCCESSORMLM (i st
, I ist-nmenber);

Accessing thePreviousList Member: PREDECESSORMNLM

Use PREDECESSOR”MLM to retrieve the address of the previous list member in first-
to-last (earliest to most-recent) order.

@rev-list-nmenber := PREDECESSORMLM (i st
, I ist-nmenber);

Declaring a Pointer toalList: LISTPOINTER
Use LISTPOINTER to declare an extended pointer to a_LIST-generated list structure.

_LISTPO NTER (list);

Oncealist pointer has been initialized with alist address, it may be used anywhere a
_LIST may be used. For example:

I NT . EXT cx(comand”cont ext *def) = _THREAD*CONTEXT"ADDRESS;
_LI STPO NTER (outlist) := @x._OUTPUT. OBJECTLI ST;
I NT . EXT out”l m (out put "l mtdef);

I F '_I SNULL (@ut” m:= PUTALM (outlist,,$LEN (out”™lm))

THEN ... <out of nenory> ;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-25

Scanning a List | Process Development Process

Scanning a List

The following examples illustrate methods of scanning lists:
® Thisexample scans alist forward:

@m = _NULL;

VWH LE _NOTNULL (@m := _SUCCESSOR'LM (list,Im DO
BEG N
END;

* Inthenext example, the user waits for a new last member to be added to the end of a
list by keeping a previous member pointer. After findinga NULL, @Im is returned
to its previous setting. @Im can be used later in _ SUCCESSORMNLM to retrieve a
new later member, if one has been added, or another NULL, if one has not been
added.

@m:= @extlm:= _NULL;
VWH LE _NOTNULL (@m := _SUCCESSORM'LM (list,Im DO
BEG N
@extlm:= @m

END.
@m:= @extlm

Processing a List

3-26

Normally, you process alist either by PUTALM plus_GET”LM or by PUSHALM
plus_POP*_M, but not both. _PUTALM isidentical to PUSMHLM, providing
different sets of primitives for first-in, first-out (FIFO) and last-in, first-out (LIFO)
processing, respectively. Adding alist member (PUTALM or _PUSH”LM) allocates
new memory for the member.

Removing amember (GET~LM or _POP*LM) does not deallocate memory
immediately: the member's memory remains allocated and its contents usable until the
next successive member is removed from the same end of thelist, or anew member is
added to the same end of the list. The removed member does not participatein list scans
with _SUCCESSORMLM or _PREDECESSORMNLM.

_UNPOPMM and UNGET”LM replace the last list member removed from alist with
_POPM_M or _GET”LM, respectively.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process Maintaining a List

First-In First-Out Processing: PUTALM / _GETALM

Use PUTALM to alocate memory for anew last member of alist. Use GETALM to
remove the current first member from alist (the earliest member put on the list).

@ist-menber := PUTALM (|1 st
[Iength]
initlength
initdata]);

@i st-menber = GETM"LM

o~

Last-In First-Out Processing: PUSHALM / _POPALM

Use PUSH”LM to alocate memory for anew last member of alist. Use POP*LM to
remove the current last member from alist (the most recent member put on the list).

@ist-menber := PUSHLM (|i st
,[length]
,initlength
,[initdata]);
@ist-menber := POPMLM (I|ist
[length]);
_PUSH”LM deallocates and reuses the memory assigned to the last element removed by
_POPMLM.

Maintaining a List

Use thefollowing library servicesto delete list membersor to join lists.

DeletingalList Member: DELETEALM

Use DELETE"LM to delete amember of alist. Deleting a member removes it from
the list and deallocates its memory immediately; | i st - menber isset tonull.

error := DELETEMLM (|1 st
, @i st-nmenber);

Deleting All Membersof aList: DEALLOCATEALIST

Use DEALLOCATEMLIST to delete all membersof alist. Memory for thelist
members is deallocated immediately.

CALL _DEALLOCATEMLIST (list);

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-27

Requesting Status About a List | Process Development Process

Joining Two Lists: _JOINALIST

Use JOINALIST to append all members of asource list to adestination list. When two
lists are joined, datais not moved in memory. The source list is empty afterwards.

error := JON'LIST (dest-Iist
,source-list);

Reguesting Status About a List

Use the following library servicesto get information about lists.

Determiningif aList isEmpty: EMPTYALIST
_EMPTY~LIST isaBoolean value that is TRUE if | i st hasno members.

_EMPTYALIST (list)

Deter mining the Number of List Members:. MEMBERSOFALIST
_MEMBERSOF/LIST isthe type INT(32) number of members currently inalist.

_MEMBERSOFALI ST (|ist)

Initializing Object List Members:. FOBJECTAMINIT

3-28

Every subsystem object processed by DSNM is defined by the contents of a
ZDSN"DDL"FOBJECT”DEF structure, known as a “formatted object” or “FOBJECT
structure.” The FOBJECT structure contains fields used directly by the command thread
(and internal fields used by the | process frame and libraries).

It isimportant that every object processed by the command thread be represented in a
properly initialized FOBJECT structure. Objects on the input list sent to the command
thread by the frame are correctly initialized at the time the command thread is first
dispatched.

Each object on an intermediate list or on the output list must also be represented in an
FOBJECT structure that has been correctly initialized from a previoudly initialized
source FOBJECT.

The source FOBJECT structure may define the same object that the new FOBJECT
structure defines, or a parent object from which a new object has been derived. “Parent”
here means the parent of the new object in aname hierarchy, which includes the
subsystem hierarchy and an asterisk (*) object name, if supported by your | process.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process Initializing Object List Members: _FOBJECTAINIT

You can produce new objects from objects on the input list in two ways:

1. Theinput object isa subsystem object, and new object names are subordinate
objects produced as aresult of processing a hierarchy modifier (HMOD).

2. Theinput object isan wild card (*), and new object names are produced as a result
of expanding the wild card.

In either case, the input object is the parent of the new object in the name hierarchy
(which includes the subsystem hierarchy).

Note. Outside the I process, there are higher levels possible in the name hierarchy made up of
(possibly nested) DNS groups and composites.

_FOBJECTAINIT initializesanew FOBJECT structure and determines required fields
from its source FOBJECT structure.

error := FOBJECTMINIT (new- fobject
, [same-fobject]
,| parent-fobject]);

Oneof samne- f obj ect or par ent - f obj ect must be supplied in the call, but not
both:

® Usethesame- f obj ect argument if the new FOBJECT structure isto define the
same object as an existing FOBJECT structure. The new object isthe sameif it has
the same subsystem, object type, name, and manager. Use the following syntax to
initialize the new FOBJECT structure:

error := FOBJECTAMINIT (new-fobject, sane-fobject);

The following fields from the source FOBJECT structure are copied to
new- f obj ect whenthesame- f obj ect argument is supplied:

Z"SUBSY S

Z"OBJTY PE
Z"OBINAME"OCCURS
Z"OBINAME
Z"MANAGERMOCCURS
Z"MANAGER

® Usetheparent-fobj ect argument if the new FOBJECT structure isto define a
different object from any previoudly initialized FOBJECT structure. Specify the
new object’s parent in the name hierarchy; as described earlier, as
par ent - f obj ect. The new object isdifferent if it differsin either object, type,
or name from its “name parent” (the name from which the new object was derived
by expanding awild card or through the subsystem hierarchy). Use the following
syntax to initialize the new FOBJECT structure:

error := FOBJECTAINIT (new fobject,, parent-fobject);

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-29

Initializing Object List Members: _FOBJECTAINIT | Process Development Process

3-30

The following fields from the source FOBJECT structure are copied to
new- f obj ect whenthepar ent - f obj ect argument is supplied:

Z"SUBSY S
Z"MANAGERMOCCURS
Z"MANAGER

Z"OBJTYPE, Z*"OBINAME, and Z*"OBINAME"OCCURS are set to null values
(zero or blanks, as appropriate). It isyour responsibility to supply valuesfor the
Z"OBJTY PE and Z*OBINAME fields. Itisnot necessary tofill in
Z"OBINAMEMOCCURS, except for your own use.

In both cases, al required internal information is entered into the new- f obj ect
structure.

Note. _FOBJECT”INIT does not allocate memory; memory for the new formatted object must
be previously allocated.

The name hierarchy may extend to multiple levels. A new object may be the
subordinate of an object that was in turn derived from processing awild card object
name from the original input list.

Originaly, only the input list contains initialized FOBJECT structures. Every
FOBJECT structureinitialized with _FOBJECTAINIT must be able to be traced back to
an FOBJECT structure on the original input object list, asin the following illustration
(taken from the sample subsystem in Appendix D, “Sample | Process Program Code”):

| REACTOR * —I

PARENT name of PARENT name of

REACTOR PURPLE REACTOR AMBER

PARENT name of PARENT name of

R ! ' 4

BOILER1 BOILER2 BOILER3 BOILERA BOILERB BOILERC

400

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process Initializing Object List Members: _FOBJECTAINIT

Example

In the following example, an output object isinitialized. The output object is derived by
processing its source input object; its status, object type, and object name arefilled in:

STRUCT i nput Al mhdef (*);
BEG N
__ I NPUTA LM HEADER

END
STRUCT out put Al mtdef (*);

BEG N
_OQUTPUT” LM*HEADER

END;
STRUCT conmmand”cont ext *def (*);
BEG N
_ COVIVAND" CONTEXTA HEADER
I NT . EXT inobj (input”lntdef);
I NT . EXT outobj (output”l mdef);
END;

' Thread proc | ocal s!

I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS;
INT . EXT in (input”™l mtdef) := @x. _| NPUT,
I NT . EXT out (output”l mdef) := @x._ OUTPUT;

| Create out put |ist nenber

I|F _ISNULL (@x.outobj := _PUT"LM (out.OBJECTLI ST,
$LEN (cx.outobj)))
THEN ... <out of avail able nenory> ;

IF (error := FOBJECTMI NIT (cx.outobj.FOBJ,,
cx.inobj.FOBJ))

THEN ... <error exit> ;

cX.out obj. FOBJ. ZARESULT : = <status of subordi nate>;

cx.outobj. FOBJ. Z "OBJTYPE ': =" <type of subordi nate>;

cX.out obj . FOBJ. Z"OBIJNAME ' : =" <nane of subordi nat e>;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-31

Adding Text Items to an Output Object: | Process Development Process
_APPEND"OUTPUT

Adding Text Itemsto an Output Object: APPEND*"OUTPUT

For some commands, text and other variable-length items must be appended to the
output object with _ APPEND"OUTPUT:

error := _APPEND"QUTPUT (output-Iist-nenber
, [header]
,| header-len]
,[body]
[body-len]);

Text items are described fully under the individual command descriptions in Section 4,
“DSNM Command Requirements.”

Releasing Output List Memberstothe Frame: RELEASEMOUTPUT

_RELEASEMOUTPUT releases amember of the output list to the frame. Once released,
the output list member can be removed by the frame at the next frame return. Each
output list member should be released as soon as it has been filled in completely.

_RELEASENQUTPUT (out put-1i st-nmenber);

The frame cannot remove an output list member that has an unreleased predecessor.
Thread termination releases all output list members.

Example: List Processing Library Services

The following sample code illustrates FOBJECTAINIT and some of the list processing
library services described above. In this example, each input object and its hierarchical
subordinates are to appear in the output for a STATUS command:

STRUCT i nput Al mhdef (*);
BEG N
__ I NPUTA LM HEADER

END;
STRUCT out put Al mtdef (*);

BEG N
_OQUTPUT” LM*HEADER

END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
3-32 Development Guide

| Process Development Process Example: List Processing Library Services

STRUCT conmand”cont ext *def (*);
BEG N
_ COVIVAND" CONTEXTA HEADER
I NT . EXT inobj (input”lntdef);
| NT . EXT outobj (output”l mdef);
END;

' Thread proc | ocal s!

I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS;
INT . EXT in (input”™l mtdef) := @x. _| NPUT,
I NT . EXT out (output”l mdef) := @x._ OUTPUT;

I Get the next input object

IF _ISNULL (@Xx.inobj := _GETALM (i n.OBJECTLI ST))
THEN ... <No nore input> ;

ICreate output |ist nmenber

IF _ISNULL (@x.outobj := _PUTALM (out.OBJECTLI ST,
$LEN (cx.outobj)))
THEN ... <out of avail able nenory> ;

' Now cx.inobj.fobj and cx.outobj.fobj are the current
I input and output objects. Since the output object is the
I sane as an input object, use the sane-fobject paraneter

IF (error := FOBJECTMINIT (cx.outobj.FOBJ, cx.inobj.FOBJ))
THEN ... <error exit> ;

Send to Cl, determ ne status of input object and its
subor di nat es.

Use state variables to return to this point after the
_EV™1 ODONE event occurs.

cx.outobj.FOBJ. Z"RESULT : = <status of input object>;
I Since this conpletes the current output object, release it
_RELEASE"MQUTPUT (cx. out obj);

I Enter subordinates and their status into output |ist
I' (Assum ng one CI conmuni cation returns all subordi nates)

VWH LE <nore subordi nate objects>

DO
BEG N
IF _ISNULL (@x.outobj := _PUTALM (out.OBJECTLI ST,
$LEN (cx.outobj)))
THEN ... <out of avail able nenory> ;

I Next output object

I Since the output object is not the sane as the input
I object, use the parent-fobject paraneter:

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-33

Suspending and Dispatching Thread Procedures | Process Development Process

IF (error := _FOBJECTMI NIT (cx.outobj.FOBJ,,
cx.inobj.FOBJ))
THEN ... <error exit> ;
cX.out obj . FOBJ. ZARESULT : = <status of subordi nate>;
cx.outobj . FOBJ. Z"OBJTYPE ' : <type of subordi nate>;
cx. out obj . FOBJ. Z"OBIJNAME ' : <nane of subordi nate>;
_RELEASE"MQUTPUT (cx. out obj);

END;

Suspending and Dispatching Thread Procedures

The command thread must periodically suspend execution until something occurs; then
it continues at the point it left off. To temporarily suspend execution, such as for CI 1/0,
the thread returns an _ RCMWAIT return code to the frame.

The driving mechanism for dispatching athread is the occurrence of an event, at which
point the frame calls the current thread procedure, which is entered at the top. (Any
procedure that is a candidate to be dispatched as part of athread must be declared with
_THREAD"PROC and _END*THREAD”PROC.)

The command thread may return to the frame for the express purpose of having a new
thread procedure dispatched (see “ State Management,” later in this section).

Thread procedures may aso call utility procedures, which are not thread procedures.

Suspending Thread Procedures. Return Codes

When a thread procedure cannot or should not proceed, it returns one of the following
return codes to the frame:

_RCMWAIT Redispatch the current thread procedure on the next event.
_RCASTOP The command completed normally.

_RCMABORT (error) The command terminated abnormally. error isaZDSN*"ERR
value indicating the reason for the abnormal command
termination. See Appendix B, “DSNM Error Codes.”

Note. The library functions _DISPATCHA"THREAD, _SAVEATHREAD"AND”DISPATCH, and
_RESTOREA"THREAD"MAND”DISPATCH also result in a return to the frame with an _RCA"WAIT
return code. See “State Management” for more information on library functions.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
3-34 Development Guide

| Process Development Process Dispatching Thread Procedures: Events

Dispatching Thread Procedures. Events

A thread dispatch isinitiated by an event, such asthe completion of aCl
communication. Events can be generated by the frame or by the thread itself:

* Eventsgenerated by the frame occur singly, with one dispatch per event.

e Eventsgenerated by the thread occur together, immediately after the next return to
the frame and before any frame-generated events.

Frame-Generated Service Completion Events

The frame generates one of the following service completion events when it completes a
request from the thread:

EVAMNODONE Generated when /O initiated by a SEND”CI request compl etes
_EVATIMEOUT Generated when atimeout interval set by acall to
_SETATIMEOUT elapses

Frame-Generated Internal Events

The frame can generate internal events, not due directly to a request for service:
_EVASTARTUP Generated on the frame'sinitia dispatch of the thread

_EVACONTINUE Generated when the thread returns with an _ RCM"WAIT and no
outstanding requests are needed

_EV~ACANCEL Generated when the frame receives a command cancellation
request

Examples of internal events are an event requesting cancellation of the command in
progress, or an event causing the thread to be redispatched (if it returnsto the frame
without a pending outstanding event).

Thread-Generated Events. SIGNALMEVENT

Thelibrary procedure SIGNAL”EVENT allows the thread to generate its own events.
The thread can generate private events or events simulating any frame event. When the
thread generates its own event(s), it is redispatched immediately when it returns
_RCMWAIT to the frame.

CALL _SI GNALMEVENT (event(s));

The thread may generate multiple simultaneous eventswith _SIGNALMEVENT. All
events signaled by the thread before RETURN _RCMWAIT appear in_LASTA"EVENTS
and REALALAST~EVENTS together at the next thread dispatch. No frame events can
appear in this case.

_LASTAEVENTSand _REALMLASTAEVENTS are defined in “ State Management.”

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-35

Declaring Utility Procedures: _RCATYPE | Process Development Process

Declaring Private Thread Events. PRIVATE*THREADMEVENT

_PRIVATE"THREAD"EVENT declares events, the values of which are different from
any frame-generated event values, with meanings private to the thread.

_PRI VATEATHREADEVENT (num) ;

numis anumber in the range O through 7.

For example:

LI TERAL next”obj ect = _PRI VATEATHREADEVENT (0);
LI TERAL sub”obj ect = PRI VATEATHREAD'EVENT (1)

CALL _SI GNALMEVENT (sub”™obj ect + next”object);
RETURN _RCMAMAIT;

| After the next di spatch ...

I F '_ALL(J\I (_LASTMEVENTS, sub”™object + next”object)
THEN .. .;
Simulating Frame-Gener ated Events

You may simulate any frame event by signaling it with _ SIGNAL"EVENT. For
example:

CALL _SI GNALMEVENT (_EV*| ODONE) ;

Note. When you simulate a frame event, be careful not to use control variables set by frame-
generated events (such as _LASTACIMID or _LASTATIMEOUTATAG), unless they are set to
match the event simulated.

Declaring Utility Procedures. RC/ATYPE

3-36

Thread procedures may call utility procedures, which are not themselves thread
procedures. It may be useful for such a procedure to return avalid frame return code as
afunction value. Use RCATY PE to declare:

* Function procedures that can be called by athread procedure (but which are not
themsel ves thread procedures) and that return a frame return code value.

e Variablesto hold the frame return code (_RC") values returned by RCATY PE
function procedures.

_RCMTYPE PROC procnane ; |

_RCMTYPE varl ,[var2 [,...]];

A special return code, RCMNULL, may bereturned by an _RC TY PE procedure to
indicate that it has not returned any valid frame return code. ' RC*NULL must not be
returned to the frame.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process State Management

In the following example, athread procedure callsan _RCMTY PE procedure. The called
procedure returns a frame return code, which is interpreted by the calling procedure.

_RCMTYPE PROC process”object (...);
BEG N
END;

_THREAD"PROC (_COWAND"PRQOC) ;
BEG N
_RCMTYPE obj ~rc;

6bjArc .= process”object (...);
| F obj ~rc <> _RCMNULL

THEN
RETURN obj "rc;

__END" THREAD" PROC;

State M anagement

As described earlier, each thread is allocated a context space when created. The context
space exists until the thread terminates. The command context space and all
dynamically allocated memory areas are preserved between dispatches of the thread.

Local variables are not preserved between dispatches and must be reinitialized after any
dispatch before they are used. Global variables are shared among all concurrently
executing threads. There isno way for the user to order dispatching among active
concurrent threads; therefore, only read-only globals are practical as a general rule.

When the frame dispatches a thread, the current thread procedure is always entered from
thetop. Itisup to the thread procedure to determine its current state from the event that
occurred and from information it has kept in its command context area.

The frame maintains the following state variables:
e Event(s) that caused the current dispatch

® Current thread state

e Current thread procedure

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-37

Determining Which Event(s) Caused the Current | Process Development Process
Dispatch

Deter mining Which Event(s) Caused the Current Dispatch

3-38

_REALMNLASTMEVENTS and LASTEVENTS alow the thread to determine which
event(s) caused the current dispatch.

_REALMLASTAMEVENTS

Each time the command isdispatched, REALALASTA"EVENTS s set to contain the
event(s) that caused the current dispatch. Each bit represents a different event.
_REALMLASTAEVENTS is adefine that returns a value; therefore it can only be tested,
not altered.

_REALMNLASTMEVENTS

For example, to seeif the thread is dispatched by arequest to cancel the command:

| F _ON (_REALALASTAEVENTS, _EVACANCEL)
THEN . ..

Only one frame event occurs with one dispatch per event, so only one bit of
_REALMLASTMEVENTS s ever on for aframe event.

The thread may generate multiple simultaneous eventswith _SIGNALMEVENT. All
events signaled by the thread before RC*WAIT appear in_LASTA"EVENTS at the next
thread dispatch. No frame-generated events can appear in this case.

_LASTAMEVENTS

Each time the command isdispatched, LAST"EVENTS s set to contain the event(s)
that caused the current dispatch. _LASTA"EVENTS isaglobal variable that can be
altered aswell astested.

_LASTMEVENTS

For example, since acommand that terminates early due to a cancel event from the
frameis considered to have terminated normally, you might want to treat
_EVACANCEL as _EV/~IODONE by atering the contentsof LASTAEVENTS:

_TURNOFF (_LASTAEVENTS, _EVACANCEL):
TURNON (_LASTAEVENTS, _EV*| ODONE)

Note. When a thread is invoked for the first time, LASTAEVENTS and
_REALMLASTAEVENTS are set to _EVASTARTUP.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process Altering the Current Thread Procedure and Thread
State

Altering the Current Thread Procedure and Thread State

When the frame dispatches the thread, it calls the current thread procedure. You can
alter the current thread procedure (and, in some cases, the thread state also) to be called
by the frame at the next thread dispatch by using any one of the following procedures:

_SET"THREAD"PROC
_THREADAMSTATE
_PUSHATHREAD"PROCSTATE
_POP*THREAD"PROCSTATE
_DISPATCH"THREAD
_SAVEATHREADMAND”DISPATCH
_RESTORE"THREAD"*AND"DISPATCH

Altering the current thread procedure is a high-level state change. Asshown in the
following example, the initial thread procedure might examine a command passed to it
by the frame when it isfirst dispatched. The thread procedure determinesiif the
command is an informational or state-change command. Since these two types of
commands have considerably different output requirements, it may be convenient to
have different procedures perform their processing.

_THREADM"PRCC (i nf ot hr ead”™proc);
BEG N
< procedure body >
_END" THREAD" PRCC,

_THREADMPRCC (st at e*change”™t hr ead™proc) ;
BEG N
< procedure body >
_END" THREAD" PRCC,

THREAD*PROC (COMVAND* PROC) ;
BEG N

| F i nfo-type-command

THEN _SET"THREAD"PROC (@ nf o™t hr ead”pr oc)

ELSE _SETA"THREAD'PROC (@t at e*change”t hr ead”proc);
CALL _SI GNALNEVENT (_EVASTARTUP) ;
RETURN _RCMWAIT;

__END" THREAD* PROC;

Setting the Current Thread Procedure: SETATHREAD”PROC

_SET"THREAD"PROC allows you to set the thread procedure to be called by the frame
at the next thread dispatch.

_SETA"THREAD"PROC (@rochane);

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-39

Altering the Current Thread Procedure and Thread | Process Development Process

State

3-40

Deter mining and Setting the Current Thread State:
_THREADAMSTATE

The frame sets the thread state to _ STAINITIAL when it creates athread. Subsequently,
you may set the thread state as desired; the frame never uses it again. The current thread
state can be tested or set with THREAD/STATE.

The following exampl e tests the current state of the thread:
CASE _THREADMSTATE OF
BEA N
_STAINITIAL ->
OTHERW SE - >
END,
Currently, STAINITIAL isthe only reserved thread state value.

Defining Thread States: _ST"MIN*THREAD"STATE

Thread state values are dways nonnegative. Theliteral STAMIN"THREADASTATE is
the minimum value to which a user-defined thread state can be set. Use thislitera to
define thread states.

The following example declares several thread states and then sets the current thread
state:

LI TERAL thr~statel = ST"M N*THREADMSTATE, thr”/state2,
t hr *st at e3;

_THREAD'STATE : = thr st at e2;

Saving and Restoring Current Thread Procedure and State Values:
_PUSHATHREAD""PROCSTATE and
_POP*THREAD"PROCSTATE

PUSHATHREAD"PROCSTATE and _POP*THREAD"PROCSTATE allow you to save
and restore the current thread procedure and thread state.

error
error

_PUSH THREAD"PROCSTATE ([@rocnane | ,[state]);
_POPATHREAD" PROCSTATE ;

_PUSHATHREAD"PROCSTATE saves the current thread procedure and thread state. It
optionally sets new values for the current thread procedure and thread state.

_POP*"THREAD"PROCSTATE restores the saved values.

In the following example, the frame dispatches PROC"X of the command thread in
_STAINITIAL.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process Altering the Current Thread Procedure and Thread
State

PROC"X calls PROCMY in STATE”B by:
® Settingitsreturn stateto STATEMNA.

e Saving the old current thread procedure and state values, and setting new current
thread procedure and thread state values.

® Signaling an event and returning to the frame to dispatch the new thread procedure

PROCMY in the new state STATE"B.
PROCMY checks for event EVASTARTUP; resets the current thread procedure and

thread state to the previously saved values of PROCMX and STATE"A; and returns to the

frame to dispatch PROC”X in STATEMA.

_THREAD'PROC (PROCX) :
BEG N

CASE _THREADMSTATE OF
BEGE N
_STANITIAL -->
_THREADMSTATE : = STATEMA,
I F (error :=_PUSH'THREAD"PROCSTATE (@ROC"Y, STATE"B))
THEN ... <error> ;

CALL _SI GNALMEVENT (_EVASTARTUP) ;
RETURN _RC*WAI T,

STATEMNA -->

RETURN _RCMSTOP;
END;
_ END*THREAD" PRCC; *

_THREAD'PROC (PROCMY) ;
BEG N

CASE _THREAD"STATE OF
BEG N
STATE’B - - >
|F _ON (_LASTAEVENTS, EVASTARTUP)
THEN
BEG N

I F (error := _POP"THREAD"PROCSTATE)
THEN ... <error> ;
CALL _SI GNALMEVENT (_EVACONTI NUE) ;
RETURN _RC*WAI T,
END;
END;
_ ENDM THREAD PRCC,

Figure 3-7 illustratesusing _THREAD/STATE, _ SET"THREAD"PROC,
_PUSHATHREAD”PROCSTATE, and _ POP*THREAD"PROCSTATE.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759

3-41

Altering the Current Thread Procedure and Thread

State

3-42

| Process Development Process

Figure 3-7. Altering Current Thread Procedure and Thread State Values

PROC"X of command thread executing in
STAINITIAL.

PROCA"X executing in STATEA.

PROCAX executing in STATE”A, but next time
it RETURNS to frame, PROC"Y of command
thread is dispatched in STATE”B.

PROCAY executing in STATE”B, but next time it
returns to frame, PROC”X of command thread is
dispatched in STATE"A.

_SIGNAL"EVENT; RETURN to dispatch PROC"X in STATE"A.

PROCAX still executing in STATE”A.

PROCAX still executing in STATE”A, but next
time it returns to frame, PROC”Z of command
thread is dispatched in STATE~C.

Current—| PROC"X _STAINITIAL
_THREADSTATE := STATE"A,;
Current— PROC"X STATE"A
_PUSHATHREAD"PROCSTATE (@PROC"Y, STATE"B);
Current —= PROCAY STATE"B
PROC"X STATE"A
_SIGNAL?EVENT; RETURN to dispatch PROC?Y in STATE"B.
_POPATHREAD*PROCSTATE;
Current—| PROC"X STATE"A
_PUSHATHREAD"PROCSTATE;
Current— PROC"X STATE"A
PROC"X STATE"A
_SETATHREAD"PROC (@PROC"Z);
_THREADSTATE := STATE/C;
Current—| PROC"Z STATE"C
PROC"X STATE"A

011

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

| Process Development Process Altering the Current Thread Procedure and Thread
State

Dispatching a New Thread Procedure: DISPATCHA"THREAD

_DISPATCHATHREAD returns to the frame and causes a new dispatch.
_DISPATCHATHREAD does not save any information about the procedure from which
it was invoked.

_DI SPATCH*THREAD ([@procnane |
,| state]
, [event]);

Saving Context and Dispatching a New Thread Procedure:
_SAVEATHREADMANDAMDISPATCH

_SAVEATHREADMAND/DISPATCH saves the current thread procedure and state,
optionally sets new thread procedure and state values, and returns to the frame for
immediate dispatch with the specified event (or _EVACONTINUE if none specified).

_ SAVEN"THREAD"ANDMDI SPATCH ([@procnane |
,| state]
, [event]);

Restoring and Dispatching Previous Context:
_RESTORE"THREAD"MAND/"DISPATCH

_RESTORE"THREAD"AND"DISPATCH restores the thread procedure and state last
saved, and dispatches it with the specified event (or _ EVACONTINUE if none
specified).

_ RESTOREATHREADAND*DI SPATCH ([event]);

Figure 3-8 illustrates using _SAVE "THREAD*AND”DISPATCH,
_RESTORE"THREAD/*AND”DISPATCH, and _DISPATCH*"THREAD.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-43

Altering the Current Thread Procedure and Thread | Process Development Process
State

Figure 3-8. Dispatching New Thread Procedures

PROC"X of command thread executing in
STAINITIAL.

Current—™™] PROC"X _ST2INITIAL

_DISPATCHATHREAD (@PROC"Y, STATE"A, EVENT”B);

* PROCAMY of command thread executing in
Current =1 PROCAY STATEA STATE"A.
_REALALASTAEVENTS —» EVENT”B

_SAVEATHREAD"AND"DISPATCH (@PROC"Z, STATE"B, EVENT"C);

f

Current ——| PROC"Z STATE"B PROCA"Z of command thread executing in
STATE”B.
PROCMNY STATE"A _REALMLASTAEVENTS — EVENTAC

_SAVE"THREAD"AND"DISPATCH (@PROC"AA, STATE"D, EVENT"D);

Current —" PROC"AA STATE"D

PROCMAA of command thread executing in

PROC/Z STATE"B STATE"D.
_REALALASTAEVENTS —* EVENTAD

PROC™NY STATE"A

_RESTOREATHREAD"AND”DISPATCH (EVENT"A);

f

Current = PROC"Z STATE"B PROC"Z of command thread executing in
STATE”B.
PROCAY STATEMA _REALALASTAEVENTS —# EVENT"A

_RESTOREATHREAD"AND”DISPATCH (EVENT"B);

PROCAMY of command thread executing in
Current ——» PROCMNY STATE"A STATE"A.

_REALMNLASTMEVENTS — EVENT”B

012

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
3-44 Development Guide

| Process Development Process Cl Communications

Frame Services

The frame transmits Cl messages and sets timeout intervals for the command thread.

To request aframe service, such as CI communication, the command thread calls a
library procedure and eventually returns to the frame to wait for the event signaling the
completion of the service.

The frame generates a service completion event (EVAIODONE or _ EVATIMEOUT) at
the completion of each service and then redispatches the thread.

The thread can initiate more than one service request before returning to the frame.

Cl Communications
Communicating with a Cl involves the following steps:

1. Declaring aglobal pointer to a structure (defined by the template _CI*"DEF) for each
Cl with which your | process communicates.

2. Retrieving CI configuration parameters from the DSNM configuration by calling
_ADD”CI inyour _STARTUP procedure. The frame uses thisinformation when it
opens a Cl for communication. _ADDACI allocates the memory for, fillsin, and
returns a pointer to the _CI*DEF-defined structure.

3. Declaring aClID structure with _CI*ID in which information about an open Cl is
stored. (You may also find it convenient to declare an extended pointer to that
structure with _CINDPOINTER.)

Opening the CI for communication (_ OPEN”CI).
Sending request buffer(s) to the Cl (_ SEND”CI).
Terminating the CI communication (_ CLOSE"CI).

The CI Configuration Structure: _CI*"DEF

CI"DEF is atemplate for a Cl configuration structure that isfilled in by the _ADD/CI
procedure. You declare an extended pointer to the structure in globals; for example:

I NT . EXT ci”~config (_ClI"DEF);

Note. The _CI*"DEF-defined CI configuration structure plays a role in command thread CI
communications analogous to file name in NonStop Kernel interprocess communications. A Cl
is identified by its CI configuration name.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-45

Cl Communications | Process Development Process

The definition of the CI"DEF-defined structure is:
DEFI NI TI ON ZDSN- DDL- PCLASS- CONFI G

02 Z- PCLASS TYPE ZDSN- DDL- PCLASS.

02 Z- PUBLI G- NAME- OCCURS TYPE ZSPI - DDL- Ul NT.

02 Z- PUBLI G- NAVE TYPE ZDSN- DDL- PARAMNANE.
02 Z- FLAGS TYPE ZSPI - DDL- ENUM

02 Z- PNAME- OCCURS TYPE ZSPI - DDL- Ul NT.

02 Z- PNAVE TYPE ZDSN- DDL- PNAME.

02 Z- MAX- PROCESSES TYPE ZSPI - DDL- | NT.

02 Z- OPEN- PARAMS.
03 Z- DEFAULT- QUALI FI ER TYPE ZDSN- DDL- PQUAL.

03 Z- NOMAI T- DEPTH TYPE ZSPI - DDL- | NT.
03 Z- OPEN- TI MEQUT TYPE ZSPI - DDL- | NT2.
02 Z- NEWPROCESS- PARAMS.

03 Z- OBJECT-FI LE TYPE ZDSN- DDL- OBJNANME.
03 Z-LI BRARY-FI LE TYPE ZDSN- DDL- OBJNANME.
03 Z- SWAPVOL TYPE ZDSN- DDL- OBJNANME.
03 Z-PRIORITY TYPE ZSPI - DDL- | NT.
03 Z- DATAPAGES TYPE ZSPI - DDL- | NT.
03 Z- NUM CPUS TYPE ZSPI - DDL- | NT.
03 Z- CPUS TYPE ZSPI - DDL- | NT OCCURS 16 TI MES.
03 Z- HOVETERM TYPE ZDSN- DDL- OBJNANME.
03 Z- FLAGS TYPE ZSPI - DDL- ENUM

END

Retrieving Cl Configuration Parameter Values. _ADD”CI

_ADDACI dlocates memory for the _CI"DEF-defined structure, fillsit in with Cl
configuration information from the DSNM configuration, and returns the address of the
filled-in structure.

@i-config := _ADDMCI (ciname
,[error]
,[error-filenane]);

You must call _ADDA”CI inyour _STARTUP procedure for each Cl class with which
your | process communicates.

ci nane isthe process class name of the Cl. The process class nameis arbitrary; by
custom, the object file name of the subsystem manager is the logical name of the process
class: for example, PATHMON or SCP.

Note. The CI process class name is configured in the DSNMCONF file (in the COMPONENT
field in the class CI-CONFIG record for this Cl). See Section 6, “Configuring a New Subsystem
Into DSNM,” for more information about CI configuration.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
3-46 Development Guide

| Process Development Process Cl Communications

Declaringa CIID Structure: _CIMID

To access aCl, first use _CIND to declare a structure, referred to asa“ ClID structure.”
A later call to OPEN”CI causes information about the CI to be stored in the CIID
structure.

_CA™MD(ciid);

ci i disthename (avalid TAL identifier) of the CIID structure by which an open CI
can be referred.

Note. The CIID structure plays a role in command thread CI communication analogous to a
file number in NonStop Kernel interprocess communications. A particular instance of an open
Clis identified by its ciid in CI communications.

Declaring a Pointer toa CIID Structure: _CIMDPOINTER
Use CIMIDPOINTER to declare an extended pointer to a ClID structure.

_CI"IDPONTER (ciid);

Opening a Cl for Communication: _OPEN”CI

_OPENACI opens a Cl for communication.

error := OPEN'CI (ci-config
,ciid
,[processnane |
,[nowait-depth])

Reguesting a Cl Communication: _SEND”CI
The frame sends messages to the Cl. Use _SENDACI to initiate sending a message:

error := SENDMCI (ciid
, buf fer
, Wi te-count
, repl y-count
, [context-bool ean]

[tag]
,[timeout]);

You must allocate a message buffer large enough to hold the larger of the message and
itsresponse. This buffer must be in the command context space or in an allocated list
member: it cannot be in globals or locals. If more than one operation isto be
outstanding (whether on the same or on separate Cls), you should also supply an
INT(32) tag for the operation, usually a pointer to some identifying data.

After initiating arequest for CI communication, the thread must return to the frame to
wait for its completion withaRETURN _RCMWAIT.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-47

Accessing Information About a CI Communication | Process Development Process

When the communication is complete, the frame dispatches the thread with the event
_EV~IODONE.

Canceling a Cl Communication Request: CANCEL"SEND”CI
Use CANCEL"SENDACI to cancel an outstanding CI communication request:

error := CANCEL"SENDMCI ([tag]);

The frame cancels any outstanding _ SEND”CI operations when the thread terminates.

Terminating a Cl Communication: CLOSEAMCI

You must close a Cl before its CIID structure (ci i d) isused in another _ OPEN/CI
operation. _ CLOSE"CI terminates a Cl communication and cancels any outstanding 1/0
operations.

error := CLOSErC (ciid);

Accessing Information About a CI Communication

3-48

Use the following library servicesto retrieve information about a Cl communication:

_LAST~ACIMND Address of ClI involved in last CI communication
when EV/IODONE occurs
_CI"LASTERROR (ciid) INT file system error of last operation

_CI"REPLYADDRESS (ciid) INT(32) extended address of reply
_CI"REPLYLENGTH (ciid) INT length of reply
_CI"REPLYTAG (ciid) INT(32) tag of last operation
_CI"FILENUM (ciid) INT file number of CI

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process Accessing Information About a CI Communication

The Most-Recently Completed CI Communication: LASTACIMNID

_LASTACI?ND isafield within the command context space giving the Cl involved in the
Cl communication terminated by the last _EVAIODONE event. Itstypeis
_CINIDPOINTER.

Cl A1 DPO NTER (ngr);
I'NT . EXT cx(connand“context“def) = _THREAD" CONTEXT” ADDRESS;

| F _ON (_LASTAEVENTS, _EV*| ODONE)
THEN
BEG N
@mr := cx._ LASTACI "M D;
I F CIALASTERRCR (mgr) ! check for errors
THEN . ;
END;

File System Error: CI"LASTERROR

_CI"LASTERROR isthe type INT file system error of thelast Cl operation (see
previous example).

fserror := CIM"LASTERROR (ciid)

Addressof Cl Reply Buffer: CI"REPLYADDRESS

_CI"REPLYADDRESS isthetype INT(32) extended address of the reply buffer
containing information read from a Cl on completion of a_SENDCI.

repl yaddress := CI"REPLYADDRESS (ciid)

Length of Cl Reply Buffer: _CI"REPLYLENGTH

CI"REPLYLENGTH isthetype INT length of the reply buffer containing information
read from a Cl on completion of a_ SENDACI.

replylen := CI"REPLYLENGIH (ciid)

Tag of Last Cl Operation: CI"REPLYTAG
_CI"REPLYTAG isthe type INT(32) tag associated with the last ClI operation.

replytag := CI"REPLYTAG (ciid)

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-49

Timeout Intervals | Process Development Process

FileNumber: _CI*"FILENUM

_CI"FILENUM isthetype INT file number of the CI involved with the most-recently
completed communication.

filenunber := CI"FILENUM (ciid)

Timeout Intervals

3-50

The command thread may create a pause by arranging for a future timeout event and
then returning to the thread to wait for it.

Requesting a Timeout Interval: SETATIMEOUT
Use SETATIMEOUT to delay for atimeinterval:

CALL _SETATIMEQUT (time-interval
[tag |);

After initiating the request, the thread returns to the frame with _ RCMWAIT.

When the time interval elapses, the frame dispatches the thread with the event
_EVATIMEOUT. ti nme-i nterval establishesthetimein hundredths (0.01)
of asecond and is atype INT(32) expression.

t ag isatype INT(32) expression.

Accessing the Timeout Request Tag: LASTATIMEOUTATAG
Use LASTATIMEOUTATAG to access the tag associated with atimeout request:

_LASTATI MEQUTATAG

It is convenient to use the address of alist member as atimeout tag to hold information
about the purpose of the timeout, asillustrated in the following example:

STRUCT ti nme”i nf ordef (*);
BEG N

END;
I NT . EXT tinmeNinfo (tinme”infordef);

IF _ISNULL (@ine”info := _PUTALM (cx.worklist,,
$LEN (timerinfo)))
THEN ... <out of nenory> ;
< fill in timerinfo data >

CALL _SETATIMEOUT (time, @i meinfo);
RETURN _RCMAI T; IVait for _EVATI MEOUT

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process

| F _ON (_LASTAEVENTS, _EVATI MEQUT)
THEN
BEG N
@inmeninfo = cx. LASTATI MEQUTATAG,
<process tine*info data >
CALL DELETEMLM (cx.worklist, @i ne”info);
END;

_LASTATIMEOUTATAG isatype INT(32) expression.

Canceling a Timeout Request: CANCELATIMEOUT
Cancel an outstanding timeout with CANCELA"TIMEOUT:

Reporting Errors

error := CANCELATIMEQUT ([tag]);

t ag isatype INT(32) expression.

Command Thread Ter mination

When the command thread terminates, the frame performs the following:

® |ssues_CLOSENCI for all open Cls.

® |ssues CANCELATIMEOUT for any outstanding SETATIMEOUT operation.
® |ssues CANCEL"SENDACI for any outstanding _ SEND/CI operation.

* Releasesall output list members.

® Deallocates any remaining input object list members.

The thread must deallocate all lists containing current members other than input and
output lists (. COMMANDATERMINATION”PROC is a convenient place to do this).

Reporting Errors

When a subsystem or DSNM error occurs, the command thread should:

e Attend to outstanding Cl operations. This may involve sending a sequence of
commands to the Cl to return it to aclean state. The frame cancels outstanding 1/0
operations when athread terminates. Thisis sufficient for context-free server Cls.

Note. Since the error may involve running out of memory, sufficient memory should be
reserved for this purpose, either in the command context space or in a working list

member, before the first CI communication is initiated.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759

3-51

Reporting Errors to the Frame | Process Development Process

* |If appropriate, generate an EM S event (see “ Reporting Errorsto EMS’ for
guidelines).

® Return to the frame with an appropriate_ RC*ABORT error to describe the error.

The EV~CANCEL event should be handled like an error except that it is a normal
thread termination (return code RCNSTOP is appropriate).

Reporting Errorsto the Frame

3-52

Errors that do not terminate the command must be associated with some command
object (for instance, an object name unknown by the subsystem). Usually, errors
associated with an object should not terminate the command, although there may be
exceptions for individual subsystems.

Errorsthat do not terminate the command are reported in the FOBJECT result code field
(Z"RESULT) of the affected output object structure. The result code must be one of the
defined ZDSNERR token values (see Appendix B, “DSNM Error Codes’). The
structure must also contain all entries appropriate for the executed command, including
the fully qualified object name.

For errors generated by the subsystem, the result code should be

ZDSN"ERRMNSUBSY STEM”ERR. In addition, one line of result text
(ZDSNAVTY/MRESULTTEXT), briefly describing the subsystem error, should be
appended to the output object. The result text must not duplicate the information of the
result code, but add to it. To formulate result text, assume that presentation services will
substitute the text listed in Appendix B, “DSNM Error Codes,” associated with each
ZDSN"ERR code in the error display.

Note. ZDSN"EMOD"SUPPRESS allows the user to suppress errors associated with the
subsystem (undefined objects, unreachable managers, and so on); when
ZDSN"EMOD”SUPPRESS is in effect, error objects should be omitted from the output object
list.

If ZDSN*"EMOD"DETAIL isin effect, and if there is more error information available
from the subsystem than can reasonably be given in the one line of result text, one or
more lines of error text (ZDSN*VTYERRTEXT) should be appended to the structure.
The decision to supply error text depends upon the information available from the
subsystem: it should be omitted unless there is genuine additional information to be
transmitted.

Errors returned from a subsystem or arising when accessing the subsystem should be
reported using the following ZDSN*ERR values.

e ZDSN"ERRM"FSERR

Use this value to report file system errors that occur when accessing the subsystem
(for example, if the manager isnot running) or that are passed through from the
subsystem about a subsystem object (for example, a security violation). The
file-system error number should be appended as ZDSNAVTY/RESULTTEXT.

If thefile that caused the error is not the same as the object in the object structure,
the error file name should be given in the text aso, as “node.$filename.”

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

| Process Development Process Reporting Errors to EMS

e ZDSN*"ERRM"OBI*NOT*FOUND

Use this value to report an object unknown to the subsystem. No result text should
be included.

e ZDSN"ERR"M"SUBSY STEM”ERR

Use this value to report al other subsystem errors. The error should be described as
result text.

Command-Terminating Errors

If an error causes a command to terminate, the command thread must clean up its
resources. Such an error should not affect commands that might be active on other
threads at the time. Asagenera rule, an error should terminate the thread in which it
occurs by returning _ RC*"ABORT (error) to the frame, but should not causethe | process
to terminate by calling PROCESS STOP .

Errorsthat are the result of logic or data errorsin the command thread, or errorsin any
component supplied by Tandem, should also be reported to EMS. Errors that represent
normal (although infrequent) conditions, such as running out of memory, should not be
reported to EMS.

Some errors, such as corrupted global data, may be so serious that there is no choice but
to terminate the process. These errors should always be reported to EMS.

Reporting Errorsto EMS

Use REPORTASTARTUP*ERROR and _REPORTAINTERNAL"ERROR to log
serious errors to the EMS collector process. These procedures are summarized in
Table 3-1, and described in detail in Appendix A, “DSNM Library Services”

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-53

Overview of the Library Services

Overview of theLibrary Services

3-54

| Process Development Process

Table 3-1 lists the library services that support the | process development model.

Table 3-1. Summary of | Process Development Library Services (page 1 of 6)

Function

Arguments

Booleans and Bit Manipulation

Description

Giventhat: A isan INT variableand B isan INT expression; F isabit mask INT expression specifying which
bits of the other operands are affected or participate in the operation; X and Y are INT(32) expressions.

Bit test Booleans
(true/false)

Functions
returning avaue

Executable
functions (no
value returned)

Executable
functions (value
returned)

Extended address
Booleans

Defining Objects

Generating
formatted object
structure

Initializing

_ON (B, F)

_OFF (B, F)
_ANYON (B, F)
_ANYOFF (B, F)
_ALLON (B, F)
_ALLOFF (B, F)
_EXTRACT (B, F);

_BITDEF(B [max-bit],[min-bit])

_TURNON (A, F);
_TURNOFF (A, F);

_DEPOSIT (A, B, F);

_ALLONATURNOFF (A, F);

_ANYONATURNOFF (A, F);

_ISNULL (X)

_NOTNULL (X)

_XADRMEQ (X, Y)

_XADRANEQ (X, Y)

_INPUTALMMHEADER;
_OUTPUTALMMHEADER ;

error :=_FOBJECTZINIT (new- f obj ect
J[same- f obj ect],[parent -fobject]);

TRUE if any one-bit of Fisonin B.
TRUE if any one-bit of Fis off in B.
TRUE if any one-bit of Fisonin B.
TRUE if any one-hit of Fis off in B.
TRUE if every one-bit of Fisonin B.
TRUE if every one-hit of Fisoff in B.

Has value of those one-bits of F that
areonin B.

Defines abit within a specified range.
Turnon all one-bitsof Fin A.
Turn off all one-bitsof Fin A.

Set bitsin A equal to same bitsin B as
selected by one-bitsin F.

TRUE if every one-hit of FisoninA;
turns off every one-bit in A thatisonin
F.

TRUE if any one-bit of FisoninA;
turns off every one-bit in A thatisonin
F.

TRUE if X isanull extended memory
pointer.

TRUE if X isanonnull extended
memory pointer.

TRUE if two valid extended addresses
are equal.

TRUE if two valid extended addresses
are not equal.

Generates formatted object portion of
an input list member structure.

Generates formatted object portion of
an output list member structure.

Initializes new object.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

| Process Development Process

Overview of the Library Services

Table 3-1. Summary of | Process Development Library Services (page 2 of 6)

Function Arguments

Appending text error :=_APPEND"OUTPUT
(out put-1ist-nenber,type
[header],[header-1en] ,[body]
[body-len]);

Releasing _RELEASEMOUTPUT

(out put-1ist-nmenber);
User-Written Procedure Declar ations

INT PROC _STARTUP
(context-len,input-Imlen)
EXTENSIBLE;

Startup procedures

INT PROC _STARTUP*MODE
(conponent , t est node,
accept - start up-conponent,
subj ect) EXTENSIBLE;

_COMPILEDMNATESTMODE

Thread procedures _THREAD”PROC (pr ocnane);
_END"THREAD"PROC;

Initial command _THREAD”PROC (_COMMAND"PROC);

thread procedure ENDATHREADAPROC:

Thread _THREAD~TERMINATION”~PROC

termination (COMMANDATERMINATION”PROC);

procedure _ENDATHREADATERMINATIONAPROC;

Command thread _RCATYPE pr ochane ;

utility procedures peaTypEvar1[var2,[..]]:

_RCANULL
Configuration
Parameter retrieval _CI"DEF
structures

_SUBSY S"DEF

Description

Appends text and other variable-length
items to an output object.

Releases a member of the output list to
the frame.

Supplies lengths of user context area
and input list members, and retrieves
subsystem and CI configuration
parameters for frame.

Supplies startup processing
information to frame.

Literal setto 1 (TRUE) if sourcefileis
compiled in test mode and O otherwise.
Used to set testmode parameter value
in_STARTUP*MODE procedure

Declares any procedure that can be
dispatched by the frame.

Name of initial command thread
procedure.

Declares thread termination procedure.

Declares procedures that return avalid
frame return code value but are not
themselves thread procedures. May
also be used to declare variables that
hold frame return code values.

Special return code that may be
returned by a utility procedure that was
caled by an _RCATY PE thread utility
procedure, indicating that the
procedure has not returned any valid
frame return code.

Defines a Cl configuration structure to
befilled in by _ADD/CI.

Defines a subsystem configuration
structure to be filled in by
_ADD"SUBSYS.

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

3-55

Overview of the Library Services

3-56

| Process Development Process

Table 3-1. Summary of | Process Development Library Services (page 3 of 6)

Function

Parameter retrieval
procedures

Arguments

@ci - config:=_ADD"CI (ci nane
Jerror], [error-filenane]);

@ss-config:=_ADD"SUBSYS (ssnane

Jerror], [error-filenane]);

error :=_GET"PARAM (scope ,type

Jsubsys] [class],[conponent]
, par ammane , par amval ue:max| en
Jlen],error-filenane]);

error :=_GET"PROCESS*PARAM
(paramane , par amval ue:max| en

[len]);

Thread Procedure Control Flow

Return codes

Frame events

Thread events

Testing and
atering events

List Processing
Declarations

Initializing
Scanning

RETURN _RCMWAIT;
RETURN _RC/STOP;

RETURN _RCMABORT (error);
_EVACANCEL

_EVACONTINUE

_EVANODONE
_EVASTARTUP

_EVATIMEOUT
CALL _SIGNALAEVENT (event (s));

_PRIVATEATHREAD"EVENT (num);
_LASTAEVENTS

_REALMLASTAEVENTS

LIST(list);
_LISTPOINTER (I i st);

CALL _INITIALIZEALIST (I i st);
@\m:= _FIRSTALM (li st);
@m:= _LASTALM (i st);

@Im := _SUCCESSORMM
(I'ist,l'ist-nmenber);

@Im := _PREDECESSORM.M
(I'ist,l'ist-nmenber);

Description

Fillsin _CI*"DEF-defined structure
with CI configuration information.

Fillsin _SUBSY S"DEF-defined
structure with subsystem and object
type configuration information.

Retrieves aDSNM configuration
parameter.

Retrieves a process startup parameter.

Redispatches thread on next event.
Command completed normally.
Command terminated abnormally.
Cancel the current command.

Default event when no other event can
occur.

_SENDACI request completed.

Initial dispatch of thread after thread is
created.

Timeout interval has elapsed.

L ets thread generate its own event and
be redispatched immediately upon
return to frame.

Declares event different from any
frame-generated event.

Tests or dters event(s) that caused
current thread dispatch.

Determines event(s) that caused current
thread dispatch.

Declares alist.

Declares extended pointer to alist.
Setsalist structure to nulls.
Points to first member of list.
Points to last member of list.

Points to next member in first-to-last
order.

Points to next member in last-to-first
order.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

| Process Development Process

Overview of the Library Services

Table 3-1. Summary of | Process Development Library Services (page 4 of 6)

Function

Processing

Maintenance

Returns
information about
alist

State M anagement

Altering current
thread procedure/
thread state

Arguments

@Im:=_PUTALM (li st [l ength]
,Jinitlength [initdatal]);
@m:=_GETALM (Iist [length])

@Im:=_PUSHALM (list [length],
initlength [initdata]);
@m:= _POPM (list [length]);

error :=_UNGET (li st ,
l'i st-nmenber);
error :=_UNPOP(li st ,
l'i st-nenber);

error :=_DELETEALM (li st,
@l i st - menber);

CALL DEALLOCATEAMLIST (i st);
error :=_JOINMLIST (listl,list2);
IF_EMPTYALIST (i st) THEN ...
num:=_MEMBERSOFLIST (I i st);

_SETA"THREADPROC (@pr ocnane);

_THREADASTATE

_DISPATCHATHREAD ([@pr ochane]
Jstate] [event]);

_RESTORE"THREAD"AND"DISPATCH
([event]);

_SAVE"THREAD”*AND"DISPATCH
([@procnane],[state],[event]);

error := _PUSHA"THREAD""PROCSTATE
([@procnane],[state]);
error :=_POP'"THREAD"PROCSTATE;

_ST*MIN*THREADASTATE

_STAINITIAL

Description

FIFO processing (first in, first out):
adds new last member; removes current
first member.

LIFO processing (last in, first out):
adds new last member; removes current
last member.

Replaces last list member removed
from alist.

Deletes any member of list.

Deallocates all members of list.
Concatenates lists.

TRUE if list has no members.
Number of current list members.

Sets current thread procedure to be
called at next thread dispatch.

Current thread state; may be tested or
altered.

Returnsto frame for immediate
dispatch with specified event, after
optionally setting current thread
procedure and state.

Restores thread procedure and state last
pushed, and returns to thread for
immediate dispatch with specified
event.

Saves current thread procedure and
state, and returns to frame for
immediate dispatch of new (or same, if
none specified) thread procedurein
specified state.

Saves current thread procedure and
state and optionally sets new current
thread procedure and state; restores
previously pushed thread procedure
and state.

Minimum value of user-defined thread
state.

Thread state value when thread created.

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

3-57

Overview of the Library Services

3-58

| Process Development Process

Table 3-1. Summary of | Process Development Library Services (page5 of 6)

Function Arguments

Cl Communication

Giventhat INT .EXT ci-config (_CI"DEF) ...
Declarations _CIMD (ciid);

_CINDPOINTER (ci i d);

Communication error :=_OPENACI (ci-config, ci i d
JLprocessnane] ,[nowait-depth]);

error :=_SENDACI (ci i d, buffer,
write-count,reply-count
Jcontext-boolean],[tag]
Jtinmeout]);

error :=_CANCEL"NSEND”CI ([tag]);

error :=_CLOSE"CI (ciid);

Information _LASTACIND
fserror :=_CI"LASTERROR (ciid)
repl yaddr ess :=_CI*"REPLYADDRESS
(ciid)
replyl en:=_ CI*"REPLYLENGTH (ciid)
replytag :=_CI*REPLYTAG (ciid)
filenunber :=_CI"FILENUM (ciid)

Timeout intervals ~ CALL _SETATIMEOUT (ti ne-interval
[tag]);

error :=_CANCELATIMEOUT ([tag]);
_LASTATIMEOUTATAG

Command Context

Defining fixed _COMMAND"CONTEXT"HEADER;
header portion of
command context

Accessing _THREAD*CONTEXT"ADDRESS
command
context space

Description

Declares CIID structure where
information about an open Cl is stored.

Declares (extended) pointer to a ClID
structure.

Opens CI for communication.

Initiates request for CI communication.

Cancels outstanding ClI communication
request.

Terminates CI communication.
Points to Cl that caused last event.
File system error of last Cl operation.
Extended address of CI reply buffer.

Length of CI reply buffer.
Tag associated with last CI operation.

File number of CI involved in most-
recently completed communication.

Initiates request for time interval delay.

Cancels outstanding timeout.

A ccesses tag associated with timeout
request.

Required as part of command context
space structure definition to reserve
and define input, output, and command
context areas.

Contains extended address of
command context space.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

| Process Development Process Overview of the Library Services

Table 3-1. Summary of | Process Development Library Services (page 6 of 6)

Function Arguments Description

Frame-defined _INPUT~DEF Structure template that defines the
input/output areas input area of the command context
space.

_INPUT Name assigned to the _INPUT~DEF
structure by
_COMMAND"CONTEXT"HEADER.

_OUTPUT~DEF Structure template that defines the
output area of the command context
space.

OUTPUT Name assigned to the OUTPUT~DEF
structure by
_COMMAND"CONTEXT"HEADER.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3-59

Overview of the Library Services | Process Development Process

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
3-60 Development Guide

% DSNM Command Requirements

Scope of This Section

This section defines the requirements for carrying out DSNM operations. It specifies
what information is sent to the command thread and what information must be returned
for each command so that the frame can create a DSNM-formatted response to return to
the requester.

Command Flow

Thetypical flow for aDSNM command isfrom auser to the DSNM command server,
and then to one or more | processes. Command responses flow back from the
| processes through the command server and then to the user.

The command server is responsible for resolving objects of acommand, which means
determining their complete set of characteristics and routing them to the correct

| process. Thel processis responsible for direct communication with the subsystem to
carry out commands delivered to it by the command server.

The general command processing flow is as follows:

® Thel process carries out the DSNM command for each input list object using
subsystem commands. Severa subsystemm commands may be required to carry out
one DSNM command. Input list objects are processed in the order they appear.

e Carrying out acommand for an object means executing it for some selection of the
input list object and its subordinates in the subsystem hierarchy. The exact set of
objectsinvolved is determined by the combination of the hierarchy and state
modifiers (see “Object List Modifiers’ on page 4-3).

® Thel process generates output objects as required by the command. Informational
commands other than AGGREGATE return an output object for each object. State-
change commands return an output object only in the case of errors. The
AGGREGATE command returns summary information rather than information
about individual objects.

Command Components

For each DSNM command, the frame places the following components in the command
thread context space:

e Theaction to be performed
® The command modifiers

® A list of objects on which the operation is to be performed

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-1

Action to be Performed DSNM Command Requirements

Action to be Perfor med

The action to be performed is determined by the value in the _INPUT.ACTION field in
the command context space. The command thread must be able to trandate the
following DSNM operationsinto an equivalent subsystem-specific command or
command sequence:

ZDSNMACTION~ABORT Brings objects to a nonoperational state, without
waiting for outstanding operations to complete.

ZDSNMACTIONMAGGREGATE Returns a summary of operational status of all
objects in the subsystem or under a specified
manager process.

ZDSNMACTIONAINFO Returns configuration information for each
object.

ZDSNMACTIONASTATUS Returns current operational status of each object.

ZDSNMACTIONASTART Brings objects to an operationa state.

ZDSNMACTIONASTATISTICS Returns operational statistics for each object.

ZDSNMACTIONASTOP Brings objects to a nonoperational state, once

outstanding operations are compl ete.

Command Modifiers

4-2

Command modifiers specify whether acommand is applied to subordinate objects in the
subsystem hierarchy, specify the state of objects to which acommand is applied, specify
whether error responses are suppressed, and so on. The command modifiers are
determined by the valuesinthe INPUT.MOD structure (ZDSN*MOD"DEF) contained
within the command context space. The command modifiersrelevant to | processes are
listed in Table 4-1.

Table4-1. Command Modifiers

Modifier Abbreviation M odifies/Specifies
Hierarchy HMOD Subsystem hierarchy
State SMOD State of affected objects
Response RMOD Response format

Error EMOD Error response format
Action AMOD Action of operation

Note: A value of O for any modifier indicates that the modifier is omitted.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Command Requirements

Object List Modifiers

These modifiersfall into the following categories:

® Object list modifiers, which limit or expand the scope of the original input object list

(HMOD and SMOD).

* Response modifiers, which determine the amount and type of information returned
for each object in the output object list (RMOD and EMOD).

e The action modifier, which indicates that statistics be reset (AMOD).

Object List Modifiers

Applying the hierarchy and state modifiers to the contents of the original input object
list returns a subset or superset of thelist. The command thread must be able to resolve
the hierarchy and state command modifiers that limit or expand the scope of the input

object list.

TheHierarchy Modifier (INPUT.MOD.Z"HMOD)

The hierarchy modifier (HMOD) controls whether the command is applied to subsystem
objects that are subordinate to the object(s) in theinput object list. HMOD isvalid for
all DSNM commands except AGGREGATE. Its values have the following meanings:

ZDSN*"HMOD"ALL

ZDSN*HM OD"ONLY

ZDSN*HM OD"SUBONLY

For each object on the input object list, apply the
command to the object itself and to all subsystem
objects subordinate to it. For consistency among
subsystems, this should be the default when HMOD is
omitted, unless there are overwhelming subsystem
reasons for adifferent default.

Apply the command to each object on the input object
list, but not to subordinate objects.

For each object on the input object list, apply the
command only to the subsystem objectsthat are
subordinate to it in the subsystem hierarchy (but not the
object itself).

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

4-3

Object List Modifiers DSNM Command Requirements

In addition to the HMOD value in the MOD structure supplied with the command
(MOD.Z"HMOD), there may also be an HMOD value in the FOBJECT structure
associated with each input list object (FOBJ.Z*"HMOD). When both are present, the
HMOD in the object structure overrides the HMOD command modifier. Table 4-2
summarizes HMOD usage.

Table4-2. HMOD Usage

FOBJ.Z"HMOD MOD.ZA"HMOD HMOD Associated With Object
Omitted Omitted ZDSN"HMOD"ALL (default)
Omitted Present MOD.Z"HMOD

Present Omitted FOBJ.Z"HMOD

Present Present FOBJ.Z"HMOD

The State Modifier (INPUT.MOD.Z*"SM OD)

The state modifier (SMOD) selects objects for operation according to their current
DSNM state. Thereis no default for SMOD. |If omitted, the command should be
applied to all objects determined by the HMOD.

SMOD isvalid for all DSNM commands except AGGREGATE, INFO and
STATISTICS. Its values have the following meanings:

ZDSN"SMOD"UP | Apply the command only to objects on the object

ZDSN"SM OD"GREEN list that are UP (GREEN).

ZDSN"SM ODNOT”UP | Apply the command only to objects on the object

ZDSN"SMOD"NOT~GREEN list that are DOWN (RED) or PENDING
(YELLOW).

ZDSN"SMOD*DOWN | Apply the command only to objects on the object

ZDSN"SMOD"RED list that are DOWN (RED).

ZDSN"SMODNOT~DOWN | Apply the command only to the objects on the

ZDSN"SMOD"MNOT”*RED object list that are UP (GREEN) or PENDING
(YELLOW)

Note. ZDSNASMOD” GREEN and ZDSN*"SMOD"UP have the same value and may be used
interchangeably. Similarly, NOT"GREEN/NOT~UP, RED/DOWN, and NOT"RED/NOT"DOWN
are interchangeable. Externally in DSNM commands, UP, NOT-UP, DOWN, and NOT-DOWN
designate these values.

SMOD isapplied after HMOD: that is, it can apply to subordinates of an input list
object even if the input list object itself does not satisfy the SMOD. For example, a
START command specifying a NOT"GREEN SMOD would start subordinates of a
GREEN state object in RED and YELLOW states without attempting to start the object
itself.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
4-4 Development Guide

DSNM Command Requirements Response Maodifiers

When SMOD is specified, only objects in UP/GREEN, DOWN/RED, and
PENDING/YELLOW states are included. So, for example, a STATUS command with a
NOT”RED SMOD value should not include UNDEFINED or UNKNOWN objectsin
the response.

Note. Itis the responsibility of the command thread to map the set of states supported by the
subsystem into the set of DSNM states (see “Object States” on page 4-7).

Error reporting is independent of SMOD. Unreachable, undefined, or ill-formed objects should
be reported as errors according to the EMOD (see the error modifier discussion in “The Error
Madifier (_INPUT.MOD.Z*"EMOD)” on page 4-6).

Response M odifiers

The response modifiers determine the amount and type of information returned for each
object in the output object list.

The Response M odifier (INPUT.MOD.Z*"RMOD)

The response modifier (RMOD) controls the level of detailed information returned for
informational commands. RMOD isvalid for the STATUS command only; its values
have the following meanings:

ZDSN"RMOD”BRIEF Return the DSNM object state for each object (UP,
DOWN, PENDING) and possibly one line of descriptive
text (ZDSNAVTY RESULTTEXT); see“Object States”
on page 4-7. Thisisthe default.

ZDSN"RMOD”DETAIL Return the object state and append as much additional
detailed status (ZDSNAVTYATEXT) as available to each
object on the output object list (seeindividual command
descriptionsin this section).

Note. SUMMARY-type response modifiers are handled entirely by the | process frame and are
never encountered by the command thread itself.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-5

Response Maodifiers DSNM Command Requirements

The Error Modifier (INPUT.MOD.Z"EMQOD)

The error modifier (EMOD) controls how much information to return if a subsystem
error occurs during command processing. EMOD isvalid for al DSNM commands
except AGGREGATE; its values have the following meanings:

ZDSN"EMOD"BRIEF Append asingle line of text
(ZDSNAVTYRESULTTEXT) to describe the
ZDSN"ERR error code in the Z"RESULT field to
members on the output object list that generate an
error. Thisisthe default.

ZDSN"EMOD"DETAIL Append as much available information about the error
(ZDSNAVTY/ERRTEXT) to members on the output
object list that generate an error, in addition to the
EMOD”BRIEF response.

ZDSN"EMOD"SUPPRESS Suppress the reporting of objects that cause subsystem
errors. |f the command returns status, configuration, or
statistical information, do not create an output object
list member for any objects that generate errors.

Any output object that has an error associated with it must contain aZDSN”ERR code
inthe Z"RESULT field (see Appendix B, “DSNM Error Codes’).

If ZDSN"EMOD"BRIEF isin effect (the default if EMOD is omitted or has the

value 0), one line of result text (ZDSN*VTYRESULTTEXT) describing the
ZDSN"ERR value in the Z*"RESULT code field should be appended to the output object
(with _APPEND OUTPUT). The result text must not duplicate the information of the
result code. To formulate result text, assume that presentation services will substitute
text (listed in Appendix B) for the result code in the error display.

If ZDSN*"EMOD"DETAIL isin effect, and if more error information is available from
the subsystem than can fit on one line, additional lines of error text
(ZDSNAVTY/ERRTEXT) should be appended to the structure to describe the error in
detail. (Whether to supply error text depends on the information available from the
subsystem; it should be omitted unless there is useful additional information to
transmit.)

When the BRIEF response gives al the error information from the subsystem, the
DETAIL and BRIEF error responses are identical.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
4-6 Development Guide

DSNM Command Requirements Object States

Action Modifiers

ZDSN"AMOD"RESET inthe INPUT.MOD.Z*"AMOD field indicates that statistics
should be reset after being reported.

The Action Modifier (INPUT.MOD.Z*"AMOD)

The command thread must support the resetting of statistics asindicated by the
following action modifier:

ZDSN"AMOD"RESET Reset subsystem statistics after reporting (valid for
STATISTICS command only).

Object States

Subsystem objects can have a number of possible states that are significant within the
context of the subsystem. To present uniform status displays of subsystems and their
objects, subsystem states are classified into a small set of DSNM states. This set of
states can be smaller than the set of subsystem statesfor an object. Subsystem states are
reported astext in the DSNM command response. The command thread must be able to
map the states of the subsystem objects to the following DSNM object states:

ZDSNASTATEMNUP | Object isin use or available for immediate use.
ZDSNNSTATE"GREEN

ZDSNASTATEADOWN | The object is unavailable or needs an operator to take
ZDSNASTATEMRED action to make it ready.

ZDSNASTATEMPENDING | The object is neither UP nor DOWN, but isin some

ZDSNASTATENYEELLOW intermediate state (such as STARTING). Most
subsystems have one or more states to describe an
object that is neither ready nor totally deactivated.
PENDING corresponds to these subsystem states; an
object in this state may require special action to occur
or condition to be met.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-7

The Input Object List DSNM Command Requirements

In addition to the previous states, an object may not be configured, or it may be
configured but its state cannot be determined (because a manager is not running or the
object is not secured correctly, for instance). For these cases, the following DSNM
states are provided:

ZDSNASTATEANUNDEFINED Object is not defined in the subsystem. An error
could have been made, either in configuring the
subsystem or entering the object name.

ZDSNASTATEAUNKNOWN State of the object cannot be determined.

ZDSNASTATEMNULL Subsystem may have one or more objects that act
only to group other objects rather than being
functional entities. These objects are represented in
DSNM as having aNULL operational state. (This
type of object usually doesn’t support state-change
commands.)

Note. ZDSNASTATEMUP and ZDSNASTATEAGREEN have the same value and may be used
interchangeably. Similarly, DOWN/RED and PENDING/YELLOW are interchangeable.
Externally in DSNM responses, UP, DOWN, and PENDING are used.

Thelnput Object List

An object inaDSNM command is a subsystem object name qualified with the
subsystem name, the object type, and possibly the object’s manager. Depending on the
subsystem, a manager may be required, optional, or not allowed.

The input object list consists of input list members, each of which includes aformatted
object structure named FOBJ (defined by ZDSN*DDLA"FOBJECT”DEF) that describes
one object to which the command is to be applied. The command should be applied to
objects in the order they appear on the input list.

Subsystems usually have a hierarchy of object types. A DSNM command may specify
that the command is applied to only the specified objects, to only their subordinates, or

to both.

Each input object list member contains the following FOBJfields:

Z"HMOD Isan INT field that contains a hierarchy modifier
(HMOD) applying to this object only. If present, it
overrides the hierarchy modifier (for this object only)
associated with the command as awhole.

Z"SUBSY'S Isastructure (defined by ZDSN*DDL"SUBSY S"DEF)
that identifies the subsystem to which the object
belongs.

Z"OBJTYPE Isa structure (defined by

ZDSN"DDL"OBJTY PE"DEF) that specifies the
subsystem object type of the object.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
4-8 Development Guide

DSNM Command Requirements

Z"OBINAME" OCCURS

Z"OBINAME

Z"MANAGER" OCCURS

Z"MANAGER

Execution Objects

The User Area: Intermediate Lists

Isan INT field that contains the length of the object
name.

Is a structure (defined by
ZDSN*"DDL"OBJINAME"DEF) that contains the object
name. If the subsystem permitsit, the object name may
be *, meaning all objects of the object type specified
(under the manager specified, if any).

Isan INT field that contains the length of the manager
name. If amanager is not present,
Z"MANAGERMOCURSisO.

Is a structure (defined by
ZDSN*"DDL"MANAGER"DEF) that contains the name
of the manager process, if any.

The input list objects and the hierarchy and state modifiers determine the final set of
objects to which the command is to be applied.

Applying Object List Modifiers

Thefinal list of objectsto which acommand is eventually applied results from the
application of the hierarchy and state modifiers to the members of the input object list in

the following order:

1. Apply the Z"HMOD value associated with the command
(context-area._ INPUT.MOD.Z*"HMOQOD).

2. Apply the Z*HMOD valueg, if it exists, within the individual formatted object
structures (context-area.output-list-member. FOBJ.Z*"HMOD).

3. Apply the Z*SMOD value associated with the command
(context-area. INPUT.MOD.ZA"SMOD).

Use the list-processing library services described in “Processing a List” later in this
section to manipulate the original input list and to create intermediate lists.

TheUser Area: Intermediate Lists

A context space is allocated to each thread when created, and persists until the thread
terminates. The context space contains a fixed header area reserved for use by the
frame, followed by a user-defined areathat can be used as workspace to manipulate

intermediate object lists. See “Command Context Space” on page 3-15 for information
on accessing the user-defined area of the context space.

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

4-9

The Output Object List DSNM Command Requirements

The Output Object List

The output object list is built by the command thread. Each member includes a
formatted object structure named FOBJ (defined by ZDSN*DDL"FOBJECT"DEF) that |
describes one object to which the command was applied.

Depending on the command, and the hierarchy, state, and error modifiers, a single input
list object may produce many output objects (which may or may not include the original
input list object), or no output objects at all.

With minor exceptions (see detailed command descriptions in this section), the
command thread must always fill the following fields in each output object:

Z"RESULT Isan INT field containing the result code for the output object. It
can be one of the ZDSN"ERR values (see Appendix B), a
ZDSN/STATE value (for the STATUS command), or null (O value).

Except for STATUS command responses, ZDSN*"ERR*"NOERR
(O value) is used in all responses when no error occurs.

Z"SUBSY'S |s astructure (defined by ZDSN*DDLASUBSY S"DEF) that
identifies the subsystem to which the object belongs.

Z"OBJTYPE Isastructure (defined by ZDSN~DDL"OBJTY PE"DEF) that
specifies the subsystem object type of the object.

Z"OBINAME Isastructure (defined by ZDSN*DDL "OBINAME"DEF) that
contains the object name, terminated with a blank or null.

Z"MANAGER Isastructure (defined by ZDSN*DDL*"MANAGER"DEF) that
contains the name of the manager process (if any), terminated with a
blank or null. If there is no manager, thisfield should be blank or
null (O value).

Output Object Variable-Length Items

Depending on specific command details, one or more of the following variable-length
items can be appended to an output object (with APPEND"OUTPUT):

ZDSNVTYMRESULTTEXT Interpretsthe Z*RESULT code, either describing the
subsystem state of the object (for STATUS
commands) or providing error information.

ZDSNAVTYATEXT Is the response text for STATUS (DETAIL), INFO, or
STATISTICS commands.

ZDSNAVTYNERRTEXT Is detailed error text.

ZDSNVTYMCOUNTERS Is the state summary counters for the AGGREGATE
command.

The maximum length of atext line (RESULTTEXT, TEXT, or ERRTEXT items) that
may be appended is 75 characters (ZDSN*MAXATEXT).

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
4-10 Development Guide

DSNM Command Requirements Command Requirements

Command Requirements

The DSNM commands are often needed in daily operations and can be applied to widely
diverse objects. For the most part, subsystems support commands equivalent to the
DSNM commands for their objects. There are two categories of DSNM commands:
informational commands and state-change commands:

® Informational commands (AGGREGATE, INFO, INQUIRE, STATISTICS, and
STATUYS) require that the output list contain aformatted object for each object on
theinput list.

e State-change commands (ABORT, START, STOPR, and UPDATE) require only
exception output.

The remainder of this section details the valid command modifiers and response
requirements for DSNM commands, except for the INQUIRE and UPDATE commands:
the | processes and the frame are not involved in these command operations.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-11

The ABORT Command DSNM Command Requirements

The ABORT Command

4-12

ABORT issues the subsystem command(s) that immediately bring objectsto a
nonoperational state without waiting for outstanding operationsto finish. (A
nonoperationa state isthe subsystem state equivalent to the DSNM state
ZDSNASTATE"DOWN or ZDSNASTATE"RED.)

Note. If the subsystem makes no distinction between stopping objects gracefully and
otherwise, the DSNM STOP and ABORT commands perform the same operation.

Valid Modifiers
HMOD, EMOD, and SMOD.
RMOD does not apply and should be ignored if present.

Output Object Requirements

Commands to abort subsystem objects should beissued for objects obtained by applying
the hierarchy (HMOD) and state (SMOD) modifiers to each input list object.

ABORT must be performed on objects in the order they appear in the input list.

Build an output object structure for only those objects that cannot be aborted, consistent
with the EMOD value (see the error modifier discussion in the “ The Error Modifier
(_INPUT.MOD.Z"EMOD)” on page 4-6).

Objects aborted successfully do not generate aresponse. ZDSN*EMOD/"SUPPRESS
causes all objects to be omitted from the response.

Note. Many subsystems produce a warning if an ABORT operation is issued for an object that
is already stopped. Such a warning should be ignored; do not report it as an error.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Command Requirements The AGGREGATE Command

The AGGREGATE Command

AGGREGATE issues the subsystem command(s) that return the current operational
status of objects. This command summarizes the operational status of all objectsin a
subsystem. |If the subsystem employs a manager, the summary isfor all objects
controlled by the manager. If there is no manager, Z*MANAGER"OCCURS IsO.

For theinput list object, only the fields ZASUBSY S, Z*"M ANAGER"OCCURS and
Z"MANAGER arerelevant. Object type, object name, and HMOD are irrelevant and
should be ignored.

Valid Modifiers

None; any modifiers present should be ignored.

Output Object Requirements

For each input list object, return one output object for each object type in the subsystem,
designated asfollows:

Z"SUBSYS Subsystem

Z"OBJTYPE Object type

Z"OBINAME Blank

Z"MANAGER Manager, if any; blank otherwise
Z"RESULT Null (0 value)

Append atype ZDSNVTYCOUNTERS counters structure (described by
ZDSN"DDLACOUNTERS"DEF) containing the number of objects of Z*"OBJTYPE in
each DSNM state. The relevant counters structure fields are:

INT(32) Z"GREEN;

INT(32) Z~UP=Z"GREEN;
INT(32) Z"RED;

INT(32) Z"DOWN = Z"RED;
INT(32) Z~YELLOW;

INT(32) Z"PENDING = ZAYELLOW;
INT(32) Z~UNDEFINED;

INT(32) Z~NERROR;

Count objectsin ZDSNASTATE*NULL in the Z*GREEN counter, which hereis
interpreted as “exists”

Accumulate objects in both ZDSNA"STATE"UNDEFINED and
ZDSNASTATE"UNKNOWN in the ZAUNDEFINED counter.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-13

The AGGREGATE Command DSNM Command Requirements

4-14

If an error occurs such that the subsystem or a manager cannot be reached to carry out
the AGGREGATE command, return one output object for that input object in the
ZDSN"EMOD"BRIEF format. If necessary, append one line of
ZDSNAVTYMRESULTTEXT, further describing the error. Designate the object
structure fields as follows:

Z"SUBSYS Subsystem

Z"OBJTYPE Blank

Z"OBINAME Blank

Z"MANAGER Manager, if any; blank otherwise
Z"RESULT ZDSN"ERR code describing the error

If necessary, append one line of ZDSNAVTYRESULTTEXT, further describing the
error.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Command Requirements The INFO Command

The INFO Command

INFO issues the subsystem command(s) that return configuration information for
objects.

Valid Modifiers
HMOD and EMOD.
SMOD is not supported for the INFO command and should be ignored if present.

Output Object Requirements

Return one output object for each hierarchically derived input list object (unless
Z"EMOD = ZDSN"EMOD"SUPPRESS, which suppresses the reporting of objects that
cause subsystem errors).

Return Z"RESULT null (0 value) unless an error occurs. Do not append
ZDSNVTYMRESULTTEXT except to further interpret a returned error value.

Append ZDSNAVTYATEXT linesto report all normal configuration information for
each object.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-15

The START Command DSNM Command Requirements

The START Command

4-16

START issues the subsysterm command(s) to bring objects to an operational state (the
subsystem state equivalent to the DSNM state ZDSNASTATEMUP or
ZDSNASTATE"GREEN).

Valid Modifiers
HMOD, EMOD, SMOD.
RMOD does not apply and should be ignored if present.

Output Object Requirements

Commands to start subsystem objects should be issued for objects obtained by applying
the hierarchy (HMOD) and state (SMOD) modifiers to each input list object.

START must be performed on objects in the order they appear in the input list.

Build an output object structure for only those objects that cannot be aborted, consistent
with the EMOD value (see the error modifier discussion in “The Error Modifier
(_INPUT.MOD.Z"EMOD)” on page 4-6).

Objects started successfully do not generate a response. ZDSN*"EMOD"SUPPRESS
causes all objects to be omitted from the response.

Note. Many subsystems produce a warning if a START operation is issued for an object that is
already started. Such a warning should be ignored; do not report it as an error.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Command Requirements The STATISTICS Command

The STATISTICS Command

STATISTICS issues the subsystem command(s) that return operational statistics for
objects.

Valid Modifiers
HMOD, EMOD, AMOD.

AMOD = ZDSN"AMOD"RESET (meaning statistics counters are to be reset after being
reported).

SMOD is not supported and should be ignored if present.

Output Object Requirements

Return one output object for each hierarchically derived input list object (unless
Z"EMOD = ZDSN"EMOD"SUPPRESS, which suppresses the reporting of objects that
cause subsystem errors).

Return Z*"RESULT null (0 value) unless an error occurs. Do not append
ZDSNVTYMRESULTTEXT except to further interpret a returned error value.

Append ZDSNAVTYATEXT linesto report all normal statistical information for each
object.

If ZDSN"AMOD”RESET isin effect, reset object statistics after reporting them in the
response.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-17

The STATUS Command DSNM Command Requirements

The STATUS Command

4-18

STATUS issues the subsystem command(s) that return the current operational status of
objects. One output object should be returned for each subsystem object obtained by
applying the hierarchy (HMOD) and state (SMOD) modifiers to each input list object.

Valid Modifiers
HMOD, EMOD, SMOD, RMOD.

Output Object Requirements

Return one output object for each hierarchically derived input list object (unless
Z"EMOD = ZDSN"EMOD"SUPPRESS, which suppresses the reporting of objects that
cause subsystem errors).

The command thread must determine the subsystem state of each object and trandlate it
into a DSNM state. An object may have more than one subsystem state attribute, which
isrelevant to the operational state of the object, and which is a factor in determining the
DSNM state. The command thread must translate subsystem-derived information into a
DSNM state.

Return the DSNM state of the object in the Z*RESULT field.

If the subsystem state(s) used to determine the DSNM state add relevant operational
information to the Z*"RESULT code, report it by appending one line of
ZDSNVTYMRESULTTEXT. (Result text should not repeat the DSNM state itself; it
should provide additional information). PENDING states most often require additional
interpretation.

If ZDSN*RMOD”DETAIL isin effect, append additional ZDSNAVTYATEXT entries,
providing all operational information available from the subsystem. These additional
text lines should augment, not replace, the ZDSNAVTYRESULTTEXT information
(see exampl e below).

Example

The following command requests brief status information (the default) for aSNAX line
and its subordinate PUs and L Us:

STATUS SNAX LI NE \WyJ. $STLR

SNAX LU \WYJ. $STLR #TLR1 Pendi ng, Stoppi ng

In the resulting display, St oppi ng isthe appended ZDSNAVTY/RESULTTEXT,
clarifying the PENDING state returned in Z"RESULT.

The following command line requests detailed status information:
STATUS SNAX LI NE \WrJ. $STLR, DETAI L

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Command Requirements The STATUS Command

The resulting display might include something like the following. Thetext in boldis
ZDSNVTYATEXT appended to the output object.

SNAX LU \WrJ. $STLR #TLR1 Pendi ng, Stoppi ng
Lu State: Daclu Request Pending, Not in Session
Session State: Not in Session
Open State: Opens Forbi dden
Session Id: 2
Sw Li ne Nane : $STLR’

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 4-19

The STOP Command DSNM Command Requirements

The STOP Command

4-20

STOP issues the subsystem command(s) that bring objects to a nonoperational state (the
subsystem state equivalent to the DSNM state ZDSN*STATE*"DOWN or
ZDSNASTATEMRED). Objects should be brought down gracefully if the subsystem
supports it, allowing current operations to terminate normally.

Note. If the subsystem makes no distinction between stopping objects gracefully and
otherwise, the DSNM STOP and ABORT commands perform the same operation.

Valid Modifiers
HMOD, EMOD, SMOD.
RMOD does not apply and should be ignored if present.

Output Object Requirements

Commands to stop subsystem objects should be issued for objects obtained by applying
the hierarchy (HMOD) and state (SMOD) modifiers to each input list object.

STOP must be performed on objectsin the order they appear in the input list.

Build an output object structure for only those objects that cannot be aborted, consistent
with the EMOD value (see the error modifier discussion in “The Error Modifier
(_INPUT.MOD.Z"EMOD)” on page 4-6).

Objects stopped successfully do not generate aresponse. ZDSN*"EMOD/"SUPPRESS
causes all objects to be omitted from the response.

Note. Many subsystems produce a warning if a STOP operation is issued for an object that is
already stopped. Such a warning should be ignored; do not report it as an error.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

§ DSNM Process Startup Functions

Scope of This Section

DSNM processes call a startup procedure as the first step in the main procedure.
Typically, the startup procedure reads parameters vialibrary calls, and then continues
with other process-specific initialization.

Processes retrieve process parameters and configuration parameters from either the
startup message or the DSNM CONF file, depending on how the system is configured
and how the parameter-retrieval procedures are called. Processes retrieve subsystem and
Cl configuration information from the DSNM CONF file.

The structure and content of the DSNMCONF file is discussed in Section 6,
“Configuring a New Subsystem Into DSNM.” This section describes:

® The startup message
* Thewaysin which startup messages and configuration files are searched

* How the structures into which processes retrieve startup and configuration
parameters are declared and defined

* Theintended usage and syntax of the library procedures that retrieve the following
information into predefined structures for use by the frame and the command thread:

® Process parameters and configuration parameters from the startup message and
the DSNMCONF file

® Subsystem configuration information
® CI configuration information

DSNM Process Startup M essage

The format of the parameter portion of the RUN command for DSNM processes appears
in bold next. These are the parameters that are sent to the new processin the startup

message.
[RUN] programfile [/ run-option [, run-option] ... [/]
[process-paraneter [, process-paraneter | ...]

[; DSNM config-paraneter [, DSNM confi g-paraneter | ...]

Process parameters are specific to the particular processitself. These parameters are
accepted by the process, regardless of the STARTUP [PARAMS] value in the
$SYSTEM.SY STEM.DSNM file (see Section 6, “Configuring a New Subsystem Into
DSNM”).

DSNM configuration parameters are ignored unless STARTUP[PARAMS] isYESin
the environment (see “DSNM Configuration Parameters’ on page 5-3). If you specify
DSNM configuration parameters but no process parameters, the configuration parameter
list must begin with a semicolon (;).

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5-1

Process Parameters DSNM Process Startup Functions

Pr ocess Parameter s

The standard DSNM process parameters accepted from the startup message are
discussed next. (TESTMODE, CONFIG, STARTUP, and DEBUG are used for
development testing only.)

DSNM env- nane

specifies the $SY STEM.SY STEM.DSNM section name to be used by this process.
The process uses the environment defined in ?ZSECTION env- nane in
$SYSTEM.SYSTEM.DSNM. If both the DSNM and CONFIG parameters are
omitted, the unnamed section (blank) of $SY STEM.SY STEM.DSNM s used.

If $SYSTEM.SY STEM.DSNM exists, it must contain a section named env- nane
or afatal error is reported.

COVPONENT conponent - nanme

specifies the process component name. Thisvalueis used for retrieval of parameter
values from the DSNM CONF file.

For | processes, COMPONENT is usually the name of the subsystem the | process
handles. For | processesthat handle more than one subsystem (such as the SCP

| process), the component name is an arbitrary name chosen by the developer of the
process (for example, COMM is the component name for the SCP | process).

MYSYSTEM syst em nane

specifies the acting home system, if the process can act as if aremote system were
its home system.

TESTMODE num

any nonzero value specifies that the processis running in test mode; O, the default,
specifies production mode. This parameter isvalid only if the processis compiled
in test mode; you receive afatal error if the processis compiled in production mode.

Test mode forces the STARTUP [PARAMS] value in $SY STEM.SY STEM.DSNM
to default to YES, and enables processing of the CONFIG, STARTUP, and DEBUG
process parameters.

Note. To compile in test mode, set toggle 1 during compilation (SETTOG 1). Recompile
all programs without SETTOG 1 before placing them in production.

CONFI G filename [fil enane]

specifiesa DSNM CONF search list of up to three configuration files, which
overrides the DSNM CONF file pointed to in $SY STEM.SY STEM.DSNM.

CONFIG dlows you to specify multiple configuration files for testing purposes
only. Thisallows you to maintain your subsystem, Cl, and | process configuration
records separate from your installation’s site-specific production environment
configuration. CONFIG values areignored if TESTMODE is not enabled.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
5-2 Development Guide

DSNM Process Startup Functions DSNM Configuration Parameters

To start an | process for testing with DSNMCom (I process test utility), using site-
specific configuration parameters in $SDSNM.NETW.DSNM CONF and |-process-
specific configuration parametersin $DSNM.IDEV.DSNMIDEYV, use the
TESTMODE and CONFIG process parameters in an explicit RUN command. For
example:

RUN $DSNM | DEV. SPI FI / NAME $SPFI , NOMI T/ TESTMODE 1, &
CONFI G $DSNM NETW DSNMCONF $DSNM | DEV. DSNM DEV

STARTUP { YES | NO}

specifies whether DSNM configuration parameters from the startup message are
allowed to override parameters stored in the DSNM CONF file(s). (Thisisthe same
asthe STARTUP [PARAMS] value in the $SY STEM.SY STEM.DSNM file)) The
STARTUP valueisignored if TESTMODE is not enabled. DSNM configuration
parameters are discussed in the next subsection.

DEBUG num

enables DEBUG calls as specified by num DEBUG numsetsthe
Z"DEBUG"LEVEL field in the PROCESS*"PARAMS structure to num(see
“Accessing Standard Process Parameters. PROCESS*PARAMS’ on page 5-8). Its
purposeisto cal DEBUG under various externally specified circumstances unique
to the particular process. The process developer decides what each value of num
means, there are no external standards for it. This parameter isignored if
TESTMODE is not enabled.

DSNM Configuration Parameters

DSNM configuration parameters are site-specific parameters such as SWAPVOL; these
parameters are described in the Distributed Systems Management Solutions (DSMS)
System Management Guide.

DSNM conf i g- par amet er may be accepted from the startup message if either:

® STARTUP[PARAMS] isYESin the designated section of
$SYSTEM.SYSTEM.DSNM (in this case the DSNM conf i g- par anet er
overrides or supplements the value of the corresponding parameter in the
DSNM CONF file).

e Theprocessisrunning in test mode (compiled with SETTOG 1) and the process
parameters TESTMODE 1 (or any nonzero value) and STARTUP Y ES are specified.

DSNM configuration parameters are separated from standard process parametersby a = |
semicolon (;).

Note. If STARTUP [PARAMS] is NO in the designated section of $SYSTEM.SYSTEM.DSNM,
DSNM configuration parameters in the startup message are ignored, and no error is reported. |

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5-3

Parameter Types and Search Criteria DSNM Process Startup Functions

Parameter Types and Search Criteria

The parameter retrieval library functions retrieve parameter values from the startup
message or the DSNM CONF file, according to the search criteria specified in the
arguments passed to the procedures. (See the syntax descriptions of the proceduresin
“Parameter Retrieval Library Services’ on page 5-6.) Such library functions return
either the first value set obtained or the union of value sets obtained, depending on
whether the parameter is local or global.

A vaue set is all the records retrieved from a single configuration file (or from the
startup message) by a generic key search that excludes the SEQUENCE field.

If STARTUP[PARAMS] issetto YES, and if at least one instance of the named
parameter isfound in the startup message, the startup message val ues determine the
value set. If not, the configuration file is searched for the first key. The first successful
search determines the value set. If no search is successful with the first key, the
procedure is repeated with the second key, and so on.

Note. In the following discussion on local and global parameters, mysystem refers to either the
local system, or, if the process accepts the MYSYSTEM process parameter, the system that
acts as the home system. Also, if the process has no component name (“class component” is
identical to “class blank”), only one search is performed.

L ocal Parameters and Search Patterns

5-4

Local parameters consist of asingle value (for example, SWAPVOL) obtained from one
source: aDSNMCONF file or the startup message.
L ocal Component Parameters

A local component parameter is a parameter specific to this component and class. The
first value set found by the following generic key search is returned:

mysystem DSNM class component parameter
DSNM class component parameter

L ocal Class Parameters

A local class parameter is a parameter specific to this class. If component is blank, itis
specific to the class as awhole. Thefirst value set found by the following generic key
search is returned:

mysystem DSNM class component parameter
mysystem DSNM class blank parameter
blank DSNM class component parameter
blank DSNM class blank parameter

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Process Startup Functions Global Parameters and Search Patterns

L ocal General Parameters

A local general parameter isany instance of this parameter. It may be for this
component, for the class as awhole (if component is blank), or for any class (if both
class and component are blank). Thefirst value set found by the following generic key
search is returned:

mysystem DSNM class component parameter
mysystem DSNM class blank parameter
mysystem DSNM blank blank parameter
blank DSNM class component parameter
blank DSNM class blank parameter
blank DSNM blank blank parameter

Global Parameters and Search Patterns

Global parameters consist of multiple value sets: the union of sets of values from all
sources in which instances of the parameter are found. The value set for aglobal
parameter typically contains multiple values (for example, command server SY STEM
parameters).

Global Component Parameters

A globa component parameter is all instances of this parameter specific to this
component and class. All value sets found by the following generic key searches are
returned:

mysystem DSNM class component parameter
DSNM class component parameter

Global Class Parameters

A global class parameter isall instances of this parameter specific to thisclass. If
component isblank, it is specific to the class asawhole. All value setsfound by the
following generic key searches are returned:

mysystem DSNM class blank parameter
mysystem DSNM class component parameter
blank DSNM class component parameter
blank DSNM class blank parameter

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5-5

Parameter Retrieval Library Services DSNM Process Startup Functions

Global General Parameters

A global general parameter isall instances of this parameter. It may be for this
component, for the class as awhole (if component is blank), or for any class (if both
class and component are blank). All value setsfound by the following generic key
searches are returned:

mysystem DSNM class component parameter

mysystem DSNM class blank parameter
mysystem DSNM blank blank parameter

blank
blank
blank

DSNM class component parameter
DSNM class blank parameter
DSNM blank blank parameter

Parameter Retrieval Library Services

In the context of an | process, the frame performs the following stepsin its startup
procedure:

1. Theframecals STARTUP*MODE.
_STARTUP*MODE is a user-written procedure that provides the frame with:

5-6

The COMPONENT name for configuration parameter retrieval searches. The
component name is usually the name of the subsystem the | process handles.

For | processes that handle more than one subsystem (such asthe SCP | process)
the component name is an arbitrary name chosen by the devel oper of the process
(for example, COMM is the component name for the SCP | process).

A vaue indicating whether the | processis running in test mode or production
mode.

A vaue indicating whether a COMPONENT value in the startup message
should be accepted as an overriding value.

The frame then calls a frame procedure which:

Opens $RECEIVE.

Reads the startup message.

Reads $SY STEM.SY STEM.DSNM (if indicated).
Opens the appropriate configuration file.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Process Startup Functions Parameter Retrieval Library Services

® Usesthe COMPONENT value passed from STARTUP*MODE (or the startup
message, if indicated) to retrieve standard process parameters and configuration
parameters into predefined structures.

® Supplies appropriate defaults.

Note. The command thread also has access to the information retrieved by the frame; see
the next two subsections for information on accessing _PROCESS*"PARAMS and
_DSNMCONF*"PARAMS parameters.

3. Theframe callsthe STARTUP procedure.

_STARTUP is another user-written procedure that supplies the lengths of the user
context area and the input list members. It also retrieves and places subsystem and
Cl configuration parameters into predefined structures for use by the frame.

The following procedures must be called in your | process STARTUP procedure:

e ADD/SUBSYS: fillsin apredefined structure with subsystem configuration
parameters for the subsystem(s) the | process handles. The frame uses this
information when it gets a command for that subsystem.

e ADDACI: fillsin a predefined structure with CI configuration parameters for
the CI class with which your | process communicates.

In addition, your | process STARTUP procedure may call the following
procedures:

* GET"PROCESS‘PARAM: retrieves process parameter values that are not part
of the standard set retrieved by the frame and stored in _ PROCESS*"PARAMS.

* _GET"PARAM: retrieves configuration parameter valuesthat are not part of the
standard set retrieved by the frame and stored in_ DSNMCONF*PARAMS.

4. Theframe then terminates startup processing, closes the open DSNM CONF file, and
frees resources allocated on behalf of the configuration library procedures.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5-7

Accessing Standard Process Parameters:
_PROCESS"PARAMS

DSNM Process Startup Functions

Accessing Standard Process Parameters. PROCESS*PARAMS

As part of its startup processing, the frame retrieves values for these parameters and fills
in astructure declared by PROCESS*PARAMS. The command thread may then

access these values for its own use.

The structure declared by PROCESS*"PARAMS is defined as follows:
DEFI NI TI ON ZDSN- DDL- PROCESS- PARANS.

Z- CLASS- OCCURS

Z- CLASS

Z- COVPONENT- OCCURS

Z- COVPONENT

Z- MYSYSTEM OCCURS

Z- MYSYSTEM

Z- MYREALSYSTEM OCCURS
Z- MYREALSYSTEM

Z- MYPROCESS- OCCURS

Z- MYPROCESS

Z- TESTMCDE

Z- DEBUG- LEVEL

Z- SECTI ON- NAME- OCCURS
Z- SECTI ON- NAMVE

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

ZSPI - DDL- Ul NT.
ZDSN- DDL- CLASS.
ZSPI - DDL- Ul NT.
ZDSN- DDL- COVPONENT.
ZSPI - DDL- Ul NT.
ZDSN- DDL- SYSTEM
ZSPI - DDL- Ul NT.
ZDSN- DDL- SYSTEM
ZSPI - DDL- Ul NT.
ZDSN- DDL- PNANE.
ZSPI - DDL- | NT.

ZSPI - DDL- ENUM

ZSPI - DDL- Ul NT.
ZDSN- DDL - PARAMNAME.

Accessing Standard Configuration Parameters:

_DSNM CONF*"PARAMS

In addition to the startup message process parameters, a set of configuration parameters
also applies to many DSNM processes. The standard configuration parameters are:

DSNM-MANAGER
EMS-COLLECTOR
MAXOPENERS
OBJECT-DB
OBJECT-DB-INTERFACE
OBJECT-MONITOR
SEGEXT

SEGPAGES

SWAPVOL

As part of its startup processing, the frame retrieves values for these parameters and fills
in astructure declared by DSNMCONF*PARAMS. The command thread may then

access these values for its own use.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

5-8

Development Guide

DSNM Process Startup Functions Retrieving Non-Standard Process Parameters:
_GET"PROCESS"PARAM

The structure declared by DSNMCONF*PARAMS is defined as follows:

DEFI NI TI ON ZDSN- DDL - DSNMCONF- PARAMS.
02 Z- DSNM MANAGER- OCCURS TYPE ZSPI - DDL- Ul NT.

02 Z- DSNWV MANAGER TYPE ZDSN- DDL- MANAGER.
02 Z- SWAPVOL- OCCURS TYPE ZSPI - DDL- Ul NT.
02 Z- SWAPVOL TYPE ZDSN- DDL- OBJNANME.
02 Z- SEGPAGES TYPE ZSPI - DDL- | NT2.
02 Z- SEGEXT.

03 Z- PRI MARY TYPE ZSPI - DDL- | NT.

03 Z- SECONDARY TYPE ZSPI - DDL- | NT.
02 Z- OBJECT- DB- OCCURS TYPE ZSPI - DDL- Ul NT.
02 Z- OBJECT- DB TYPE ZDSN- DDL- OBJNANME.
02 Z- OBJECT- MONI TOR- OCCURS TYPE ZSPI - DDL- Ul NT.
02 Z- OBJECT- MONI TOR TYPE ZDSN- DDL- PNAME.

02 Z- OBJECT- DB- | NTERFACE- OCCURS TYPE ZSPI - DDL- Ul NT.
02 Z- OBJECT-DB-1 NTERFACE TYPE ZDSN- DDL- PNAME.

02 Z- MAX- OPENERS TYPE ZSPI - DDL- | NT.

02 Z- EM5- COLLECTOR- OCCURS TYPE ZSPI - DDL- Ul NT.

02 Z- EMs- COLLECTOR TYPE ZDSN- DDL- PNAME.

02 Z- SECPARANMS TYPE ZSPI - DDL- Ul NT.
END

Note. Values configured for Z-SEGEXT are ignored by all DSNM processes supplied by
Tandem.

Retrieving Non-Standard Process Parameters:
_GET"PROCESS*"PARAM

You can call _GET"PROCESS*PARAM inyour _STARTUP procedureto retrieve
process startup parameter values that are not part of the standard set stored in the

_PROCESS*"PARAMS structure.
error := _CGET"PROCESS"PARAM (parammane
, paranval ue: nmaxl en
[len]);
error output

isaZDSN or NonStop Kernel error. (FEEOF means there are no more parameters
with this name.)

par ammane input
STRING .EXT ! ZDSN*DDL"PARAMNAME"DEF !
is the parameter name, left-justified, blank-filled.

par amval ue output
STRING .EXT
is the parameter value.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5-9

Retrieving Nonstandard Configuration Parameters: DSNM Process Startup Functions
_GET"PARAM

max| en input
INT
is the maximum number of bytes that can be returned in par anmval ue.

| en output
INT

is the number of bytes returned in par anval ue.

Retrieving Nonstandard Configuration Parameters. _GETA"PARAM

You can call _GET”PARAM inyour STARTURP procedure to retrieve configuration
parameter values that are not part of the standard set stored in the
_DSNMCONF*PARAM structure.

error := _GET"PARAM (paranscope
, parantype

,[subsys]

,[class]

,| component]

, paramane

, paranval ue: maxl en

[len]

,| error-filenane |);

error output
isaZDSN or NonStop Kernel error. (FEEOF means there are no more parameters
with this name.)

par anscope input
INT
indicates whether the parameter islocal or global:

_LOCAL"PARAM Loca parameters consist of asingle value (for example,
SWAPVOL) obtained from one source—a DSNMCONF

file or the startup message.

_GLOBAL"MPARAM Global parameters consist of multiple values (for example,
command server SY STEM parameters) from all sourcesin
which instances of the parameter are found.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
5-10 Development Guide

DSNM Process Startup Functions Retrieving Nonstandard Configuration Parameters:
_GET*"PARAM
par ant ype input
INT
indicates how restrictive the search criteriais:

_COMPONENTAPARAM Component parameters are instances of a parameter
specific to this component and class.

_CLASS"PARAM Class parameters are instances of aparameter specific
tothisclass. If conponent isblank, it is specific to
the classasawhole.

_GENERALMPARAM General parameters are any instance of this
parameter. It may be for this component, for the class
asawhole (if conponent isblank), or for any class
(if both cl ass and conponent are blank).

subsys input
STRING .EXT ! ZDSN"DDL"SUBSY S"DEF !

is the name of the subsystem whose associated parameter values are to be retrieved.
A blank subsystem name (all spaces) isvalid; the default is“DSNM 7.

cl ass input
STRING .EXT ! ZDSN*DDL"CLASS'\DEF !

is the name of the class whose associated parameter values are to be retrieved. A
blank class name (all spaces) isvalid; if omitted, the caller’s class name is used.

conponent input
STRING .EXT ! ZDSN*"DDL*"COMPONENT"DEF !

is the name of the component whose associated parameter values are to be retrieved.
A blank component name (all spaces) isvalid; if omitted, the caller’s component
name (specified by the COMPONENT parameter in the_ STARTUP*MODE
procedure or obtained from the process startup message) is used.

par ammane input

STRING .EXT ! ZDSN*DDL"PARAMNAME"DEF !

is the name of the parameter, |eft-justified, blank-filled, whose value you want
returned.

par amval ue output
STRING .EXT
contains the parameter value if error = 0; otherwise undefined.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5-11

Retrieving Subsystem Configuration Parameters DSNM Process Startup Functions

max| en input
INT
the maximum length, in bytes, that can be returned in par anval ue.

| en output
INT

the actual length, in bytes, of the value returned in par anval ue. If
| en <maxl en, theremainder of par amval ue is blank-filled.

error-fil ename output
STRING .EXT ! ZDSN*"DDL"OBIJNAME"DEF!
is the name of the configuration file associated with the returned er r or value.

Retrieving Subsystem Configuration Parameters

For each subsystem it handles, the | process must declare an extended pointer to a
subsystem configuration structure defined by _ SUBSY S*DEF iniits global definitions.
Then, as part of its_ STARTUP procedure, it must call _ADD*SUBSY Sto retrieve
subsystem configuration information, and to allocate the memory for, fill in, and return
the address of each _ SUBSY S"DEF-declared structure. The frame uses information
from this structure when it gets a command for that subsystem.

Retrieving Cl Configuration Parameters

For each subsystem manager process (Cl) it communicates with, the | process must
declare an extended pointer to aCl configuration structure defined by _CI*"DEF in its
global definitions. Then, as part of its_STARTUP procedure, it must cadl ADD”Cl to
retrieve Cl configuration information, and to allocate the memory for, fill in, and return
the address of each CI"DEF-declared structure. The frame uses information from this
structure when it gets arequest from the thread to open a Cl for communication.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
5-12 Development Guide

£ Conf

DSNM
Scope of This Section

This section contains the steps necessary to configure a subsystem and its associated

| processinto DSNM. More configuration and management details, including an
extended list of the DSNM process class configuration parameters, can be found in the
Distributed Systems Management Solutions (DSMS) System Management Guide.

Asan | process developer, you must provide the person responsible for installing and
managing DSNM at your site with configuration information specific to your | process,
the subsystem(s) it manages, and the subsystem manager process (Cl) with which it
communicates.

Note. For testing purposes, it is convenient to maintain all of your subsystem, CI, and

| process configuration records in a separate configuration file. If you compile in test mode,
you can then run your | process with the TESTMODE and CONFIG process parameters to
specify this file.

New and Changed DSNM Configuration Information

DSNM now runs “out-of-the-box,” which means DSNM can execute without
customization after the Install REPSUBSY S phase. DSM S processes use internal
default values that previously had to be specified in various configuration files. All user-
supplied configuration files are optional, and the post-Install function (DINSTALL) has
been eliminated.

Note. Verify that your system is updated to the C30 DSMS release before installing C31 or a
later release. The C30 DSMS release contained major changes in the handling of DSMS
process and file names.

Note the following important highlights of the DSNM customization changes:

® By default, DSMS now operates with most files in a single subvolume (the ISV or a
copy of the ISV) rather than being distributed among several subvolumes asin
previous releases.

® DSMS now creates the object database if it does not exist.

® 3$SYSTEM.SYSTEM.ZDSNCONFisanew file (sincethe C31 release) and is
installed by the REPSUBSY S phase of the Install program. Thisfileisakey-
sequenced file and contains DSNM configuration parameters supplied by Tandem.

$SY STEM.SY STEM.ZDSNCONF may change at each release, but you should not
alter it yourself. If you need to override particular parameters for your installation,
refer to the Distributed Systems Management Solutions (DSMS) System
Management Guide.

® The$SYSTEM.SYSTEM.DSNM fileisno longer arequired file.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-1

The $SYSTEM.SYSTEM.DSNM File

Configuring a New Subsystem Into DSNM

* Thefollowing are changes to the processing of the DSNM configuration file:

If no DSNM configuration fileis specified, each DSM S process uses the file
named DSNM CONF, located on the same subvolume as the object file of the
process.

If a nonexistent DSNM configuration file is specified (explicitly or by default),
the DSNM processes behave as if the fileis present, but empty.

All DSNM configuration file parameters for DSM S processes supplied by
Tandem now haveinternal default values. Additionally, anumber of DSNM
configuration file parameters have been added or altered for C31 and subsequent
releases. Refer to the Distributed Systems Management Solutions (DSVS)
System Management Guide for the complete description of a DSNM
configuration parameters.

* Thefollowing are changes to the processing of the $SY STEM.SY STEM.DSNM

file:

If $SY STEM.SY STEM.DSNM does not exist or is unreadable, each DSMS
process uses the default DSNM configuration file (DSNMCONF) and the
default value STARTUP PARAMS YES.

The CONFIG parameter in $SY STEM.SY STEM.DSNM is now optional. If
present, it may contain a search list of oneto threefiles, all of which must bein
the format of aDSNM configuration file. (The specified files are searched for
parameters in the order listed.) If CONFIG is absent, the default DSNM
configuration fileisused. In either case, $SY STEM.SY STEM.ZDSNCONF is
searched for parameters after all other DSNM configuration files. Refer to the
Distributed Systems Management Solutions (DSMS) System Management Guide
for details on the search order.

Comments are now allowed in the $SY STEM.SY STEM.DSNM file.

The$SYSTEM.SYSTEM.DSNM File

$SYSTEM.SYSTEM.DSNM isan edit file that all DSNM processesin a production
environment read as part of their startup function. It points to the DSNM CONF file
from which configuration parameters are retrieved, and specifies whether parameter
valuesin the DSNM CONF file can be overridden by parameter values from the startup
message (Startup message parameters are discussed in Section 5, “DSNM Process
Startup Functions”).

6-2

Note. In a test environment, you specify a DSNMCONF file with the CONFIG process
parameter in your | process RUN command.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Configuring a New Subsystem Into DSNM The $SYSTEM.SYSTEM.DSNM File

The format of $SY STEM.SYSTEM.DSNM is as follows:

?SECTI ON]
CONFIG[FILE] filename [filenane [filenane |]]
[STARTUP [PARAMS | { YES | NO}]
[?SECTI ON env- nane
[CONFIG[FILE] filename [fi

lename [filename]]]
[STARTUP [PARAMS | { YES | NO}]

]

?SECTI ON env- nane

names the DSNM environment. Each section in $SY STEM.SY STEM.DSNM
defines a separate environment.

Thefirst sectionin $SY STEM.SY STEM.DSNM is always the unnamed section.
The unnamed section defines the default environment. The ?SECTION statement is
optional for the unnamed section. An unnamed (blank) ?SECTION statement that is
not the first section in the fileisignored. If the file beginswith a named ?SECTION
statement, an unnamed section is considered to be present but empty.

A ?SECTION statement isfollowed by zero or more lines of environment definition
statements and comments. A section isterminated by the next ?SECTION statement
or the end of thefile. Blank lines are allowed.

The environment definition statements are:

CONFIG[FILE] filename [filename [filenanme]|]
STARTUP [PARAMS | { YES | NO}

Both statements are optional. If more than one CONFIG or STARTUP statement is
present in the section, al but the first are ignored.

CONFIG[FILE] filename [filename [filenane]|]

defines a search list of up to three configuration files that the DSNM processes
search in the order listed for configuration parameters. The default for CONFIG
fil ename isobj subvol .DSNMCONF.

obj subvol isthe subvolume on which the process program file resides.

A CONFIG statement with a blank search list is not valid. You must omit the
CONFIG statement atogether to default the search list to
obj subvol .DSNMCONF.

If a CONFIG statement is present but one or more of the file names is not fully
qualified, obj subvol qualifiesthefirst file name (at the local node). The
remaining file names are qualified by the node, volume, and subvolume of the first
file name: thisis true whether the first file name is fully qualified or is partially
qualified by the default obj subvol .

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-3

Format of the DSNMCONF File Configuring a New Subsystem Into DSNM

A CONFIG statement search list may specify nonexistent files; thisis not an error.
A nonexistent fileistreated as if it were present but empty. It isignored, and the
search continues with the next configuration file. Thisisalso true of the default
DSNM configuration file (obj subvol .DSNMCONF), if thereis no CONFIG
statement for an environment.

The Tandem configuration file $SY STEM.SY STEM.ZDSNCONF is searched in
addition to thefiles listed in a CONFIG statement; it is always the last file on the
search list. $SY STEM.SY STEM.ZDSNCONF must be present.

STARTUP [PARAMB] { YES | NO}

determines whether DSNM configuration parameters from the startup message are
used:

e |f STARTUPIisYES, DSNM configuration parameters in the process startup
message override or supplement the value of the corresponding parameter in the
DSNM configuration search list. YES isthe default.

e |f STARTUPisNO, DSNM configuration parameters in the process startup
message are ignored.

Format of the DSNM CONF File

6-4

DSNMCONF files contain startup parameters for the various DSNM processes,
subsystem and subsystem object type configuration information, and subsystem ClI
configuration information. A DSNMCONF fileis akey-sequenced file with a
ZDSN*"DDL"DSNMCONF'DEF record definition. Each record representsasingle
instance of a parameter and contains the following fields:

Key Field Description

SYSTEM Identifies the Tandem node to which the parameter applies. |

SUBSY S Identifies the product to which the parameter applies, for DSNM
components supplied by Tandem, the SUBSY S key field must be
“DSNM.”

CLASS Identifies the class of DSNM entities to which the parameter
applies.

COMPONENT Identifies the member of the class to which the parameter applies;

the component name often identifies the subsystem that the
DSNM entity supports.

PARAMETER Identifies the parameter defined by the record. |

SEQUENCE Distinguishes multiple instances of a parameter. For multivalued
parameters, the valid range is 1 to 9999; for single-valued
parameters, thisfield is blank.

VALUE Contains the value of the parameter. Valid values depend on the
particular parameter.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Configuring a New Subsystem Into DSNM SUBSYSTEM Class Records

Searching schemes provide various ways for library procedures to retrieve values from
thesefiles. See Section 5, “DSNM Process Startup Functions,” for more information on
searching schemes.

DSNM CONF Records Relevant to | Processes

The classes of DSNM configuration parameters of concern for | process development
are SUBSY STEM, SUBSY STEM-INTERFACE-CONFIG, and CI-CONFIG. These are
described in detail in the following subsections.

In addition, to integrate your subsystem and | processinto a production system, your
system administrator must add a COMMAND-SERVER class record and

SUBSY STEM-INTERFACE class records to the DSNMCONF file. Refer to the
Distributed Systems Management Solutions (DSMS) System Management Guide for
definitions of these class records.

A Caution. Do not alter the $SYSTEM.SYSTEM.ZDSNCONF file; however, you may override
certain parameters in this file. To do so, refer to the Distributed Systems Management
Solutions (DSMS) System Management Guide.

SUBSY STEM Class Records

Parameter records that specify subsystem configuration parameters have SUBSY STEM
in the CLASS field and the subsystem name in the COMPONENT field. Object type
configuration is part of subsystem configuration.

Parameter records with the CLASS key field set to SUBSY STEM specify subsystem
characteristics. They are OBJTY PE, RANK, DEFAULT-OBJTY PE, DEVICETY PE,
FLAGS, MANAGER, subsystemrMANAGER, and SUBSY STEM-INTERFACE. Each
of theseis described next.

OBJTYPE
OBJTY PE describes the objectsin the subsystem.
Class Component Parameter Value Formats

SUBSYSTEM subsystem OBJTYPE objtype [parent-objtype [relative-rank]]

obj type
is the object type name:

par ent - obj t ype

is the object type name of the object’s parent within the subsystem object
hierarchy.

rel ati ve-rank

isthe object’s rank relative to other object types subordinate to the same parent.
Rank determines the starting and stopping sequence of objects within a

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-5

SUBSYSTEM Class Records Configuring a New Subsystem Into DSNM

6-6

subsystem. Objects are started in increasing rank order and stopped in
decreasing order.

The default value is 0, indicating that the rank of the object is 1 greater than its
parent’s rank (this means that the object isone level below its parent in the
subsystem object hierarchy). Nonzero relative ranks may be used to specify
starting (increasing) and stopping (decreasing) orders for subordinates of the
same parent type.

Default: None

Considerations. An OBJTY PE record must be entered for each object type in the
subsystem.

RANK

This parameter ranks the subsystem within the DSNM hierarchy. It determines the order
in which subsystem objects are brought up and down by DSNM commands.

Class Component Parameter Value Formats
SUBSYSTEM subsystem RANK number

Default: The default is 16.

Considerations. Thevalid rangeis 0 through 31. Rank 0 subsystem objects are started
first and rank 31 last; stopping occursin the reverse order.

Within a subsystem, starting and stopping order depends on relative rank. Seethe
OBJTY PE parameter, described earlier.

DEFAULT-OBJTYPE

DEFAULT-OBJTY PE specifies the default object type used if an object in the subsystem
cannot be resolved.

Class Component Parameter Value Formats
SUBSYSTEM subsystem DEFAULT- default-objtype [subordinate-objtype]
OBJTYPE

def aul t - obj type
is the object type.

subor di nat e- obj t ype

is the default object type for an object name in the NonStop Kernel subdevice
format.

Default: None

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Configuring a New Subsystem Into DSNM SUBSYSTEM Class Records

DEVICETYPE

DEVICETY PE isthe NonStop Kernel device type and subtypes, if applicable, for
objects in the subsystem.

Class Component Parameter Value Formats
SUBSYSTEM subsystem DEVICETYPE type[subtype... [subtype]]

Default: None.

Considerations. Up to eight subtypes are permitted.

FLAGS
FLAGS indicates how object names for the subsystem are specified and resolved.

Class Component Parameter Value Formats
SUBSYSTEM subsystem FLAGS flagname ... [flagname]
fl agnane

is one or more of the following values, each separated by one space:

[NOT] MANAGER- ALLOWED
[NOT] MGR- ALLOWED

indicates whether a manager is allowed with objectsin the subsystem.

[NOT] MANAGER- REQ Ul RED]
[NOT] MGR- REQ Ul RED]

indicates whether a manager is required for objects in the subsystem.

[NOT] STAR- OBJ[ECT] - ALLONED
[NOT] *- OBJ[ECT] - ALLOAED

indicates whether an asterisk (*) isaccepted as awild card for an object name in
the subsystem.

[NOT] STAR- MANAGER- REQJ Ul RED]
[NOT] *- MANAGER- REQ Ul RED]

[NOT] STAR- MGR- REQ Ul RED]

[NOT] *- MGR- REQ Ul RED]

indicates whether a manager processisrequired if awild card (*) object is
specified, thus restricting the wild card to a particular manager process.

[NOT] RESCOLVE- OBJTYPE- W THOUT- DNS

indicates whether the object name form is unique to the particular object type,
and it is not necessary for the command server to use DNS for object name
resolution.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-7

SUBSYSTEM Class Records Configuring a New Subsystem Into DSNM

6-8

[NOT] RESCOLVE- SUBOBJ- W THOUT- DNS

indicates whether the subordinate object is unique within a subsystem, and it is
not necessary for DNS object name resolution.

[NOT] DUMMY- DNS- MGR

[NOT] DUMMY- DNS- MANAGER

[NOT] MGR- | N-DNS- | S- DUMMY

[NOT] MANAGER- | N- DNS- | S- DUMMY

indicates whether a manager name in DNS for the subsystem is used only to
determine the Tandem node on which the object islocated. The DNS manager
nameisignored.

Default: All flags default to the NOT condition.

MANAGER

MANAGER isthe unqualified file name of the subsystem manager program file, if the
subsystem uses a manager of which multiple instances can be run.

This parameter is used by the command server to assist name resolution. The command
server attempts to determine the subsystem of an object by comparing the file name of
the manager process to this parameter value when the manager is given in acommand
but the subsystem is not.

The MANAGER parameter is not used to control or access the manager process.

Note. If you modify the MANAGER parameter, you must also modify the CI-CONFIG class,
OBJECT-FILE parameter accordingly, if it exists.

Class Component Parameter Value Formats
SUBSYSTEM subsystem MANAGER unqualified-filename
Default: None.

Considerations. Only the file name is needed, not its node, volume, or subvolume. For
example, specify “PATHMON?” for “$SY STEM.SY STEM.PATHMON.”

When thisform is used for automation-1-supported subsystems, the *-M GR-REQ and
MGR-REQUIRED flags must be set (FLAGS parameter), and the UNDER $manager
qualifier isrequired in the DSNM command syntax. You must also include CI-CONFIG
class records to define the control interface process.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Configuring a New Subsystem Into DSNM process-class-CONFIG Records

subsystem-M ANAGER

Thisisthe name of the subsystem manager process, if the subsystem uses a single fixed
manager process for each Tandem node.

Class Component Parameter Value Formats
SUBSYSTEM subsystem subsystemMANAGER unqualified-filename

Default: None.

Considerations. When thisform is used for automation-I-supported subsystems, do
not set the *-MGR-REQ and MGR-REQUIRED flags (FLAGS parameter), and do not
use the UNDER $manager qualifier inthe DSNM command syntax. If SCPisthe
control interface for the subsystem, you do not need to include CI-CONFIG class
records.

SUBSY STEM-INTERFACE

This parameter is the component name of the CI-CONFIG class that describes the
control interface for the subsystem

Class Component Parameter Value Formats
SUBSYSTEM subsystem SUBSYSTEM- CI-CONFIG-component-name
INTERFACE

Default: None.

Considerations. The SUBSY STEM-INTERFACE name appearsin the
COMPONENT key field of the SUBSY STEM-INTERFACE-CONFIG parameter
record. It may or may not be the component of the corresponding subsystem interface
process class.

process-classs-CONFIG Records

Parameter records with the CLASS key field set to process-classs:CONFIG allow one
class of DSNM process to access processes in another class. Process class configuration
parameters are specific to a particular type of process but not to a particular installation.
You do not normally specify these parameters yourself unless you are configuring
additional subsystemsfor DSNM support.

You must provide necessary | process configuration information so that these records
can be added to the DSNMCONF file. The following process class configurations are
delivered in the DSNMCONF file:

e COMMAND-SERVER-CONFIG

Specifies fixed command server process configuration parameters (as opposed to
site-specific command server configuration information contained in COMMAND-
SERVER class records).

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-9

process-class-CONFIG Records Configuring a New Subsystem Into DSNM

6-10

e SUBSYSTEM-INTERFACE-CONFIG

Specifies fixed subsystem interface process configuration parameters (as opposed to
site-specific configuration information contained in SUBSY STEM-INTERFACE
class records).

e CI-CONFG

Specifies control interface (subsystem management process or public interface
management process) configuration parameters. The process class name is aname
you assign to the Cl and passto _ ADD”CI inyour | process STARTUP procedure.

The components associated with process-classsCONFIG class parameters are:

Class Component
COMMAND-SERVER-CONFIG blank
SUBSY STEM-INTERFACE-CONFIG CDFI
PWI
SCPI
CI-CONFIG CDF-MANAGER
PATHMON
SCP

SPOOLER-SUPERVISOR

Note: If additional subsystems are configured at your site for DSNM support, there will be associated
components defined for the SUBSY STEM-INTERFACE-CONFIG and CI-CONFIG classes.

The process-class-CONFIG parameters are defined next. They are PUBLIC-NAME,
DEFAULT-PROCESSNAME, OBJECT-FILE, PROCESS-TY PE, MAX-PROCESSES,
and OPEN-PARAMS.

PUBLIC-NAME

PUBLIC-NAME isthelogical identifier for the process class to be reported in error
messages about that process class.

Class Component Par ameter Value Formats
process-classs=CONFIG ~ component-name PUBLIC-NAME name

Default: The public name defaults to the name in the COMPONENT field.

DEFAULT-PROCESSNAME

Thisisthe default process name used to open a member of the process classiif the
opening process has no overriding name.

Class Component Par ameter Value Formats
process-classsCONFIG component-name DEFAULT- $process-name
PROCESSNAME
Default: None.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Configuring a New Subsystem Into DSNM process-class-CONFIG Records

OBJECT-FILE

OBJECT-FILE isthe program file of a process in the process class.
Class Component Par ameter Value Formats
process-class-=CONFIG component-name OBJECT-FILE [$vol.][subvoal]file

Default: None. Individua users of the class may provide their own defaults. For
Tandem processes accessing subsystem managers, the default volume and subvolume is
$SYSTEM.SY STEM and $SY STEM.SY Snnif the file cannot be found in
$SYSTEM.SYSTEM.

PROCESS-TYPE

Thisisthe default process name used to open a member of the process classiif the
opening process has no overriding name.

Class Component Par ameter Value Formats
process-classsCONFIG ~ component-name PROCESS-TYPE { REQUESTER |
SERVER}

Default: SERVER.

MAX-PROCESSES

MAX-PROCESSES is the maximum number of times amember of this process class
can be opened.

Class Component Par ameter Value Formats
process-classsCONFIG component-name MAX-PROCESSES number

Default: -1.

Considerations. A value less than zero (< 0) means thereis no limit on the number of
opens; avalue of zero (0) means all opens to the process classes are closed after
command compl etion; avalue greater than zero (> 0) means up to the number specified
process class will be kept open.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-11

Adding Subsystem Objects to the DNS Database Configuring a New Subsystem Into DSNM

OPEN-PARAMS
OPEN-PARAMS specifies values to be used when the process class is opened.

Class Component Par ameter Value Format

process-classsCONFIG component-name OPEN-PARAMS [QUALIFIER default-
qualifier]
[, NOWAIT[-DEPTH]
number |
[, OPEN-TIMEOUT
number]

QUALI FI ER defaul t-qualifier

isthe qualifier added to the process name when the process is opened for
communication. The default is#ZSP!I.

NOWAI T[- DEPTH] nunber

is the maximum concurrent operations allowed on the same open. The default value
isl.

OPEN- TI MEQUT nunber

isthe time, in .01-second units, that the opener should wait for aresponseto an
OPEN request. -1 meanswait indefinitely. The default valueisO.

Default: If not configured, an appropriate internal default is supplied by each DSNM
component.

Adding Subsystem Objectsto the DNS Database

You must provide your system administrator with the appropriate information for adding
your subsystem’s objects to the DNS database. DNSCOM, the interactive interface to
the DNS, and AUTOLOAD, the utility for constructing DNSCOM command (OBEY)
files, are described in the Distributed Systems Management Solutions (DSMS) System
Management Guide. The Distributed Name Service (DNS) Management Operations
Manual provides additional instructions on using DNSCOM.

Defining an | Process as a Pathway Server

If your | processis started by PATHMON in a production environment, the process must
also be defined as a Pathway server. The DSNM PATHMON configuration parameters

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
6-12 Development Guide

Configuring a New Subsystem Into DSNM Defining an | Process as a Pathway Server

arein atext file named ZCPWDSMS (if your installation includes NetStatus) or
ZCPWDSNM (if it does not). The following are settings for a Pathway server:

RESET SERVER Resets values for all server class attributes to
PATHMON defaults.

SET SERVER AUTORESTART {0..32767}; nunber of times PATHMON attempts
to restart server process after an abnormal
termination. Default isO.

SET SERVER PRI {1..199}; pri ori ty at which server processes of
this server classrun. Default is 10 less than the
priority of PATHMON.

SET SERVER CPUS pri mary-cpu:backup- cpu

SET SERVER LI NKDEPTH maxi mum nunber of concurrent links a server
process can have before PATHOM directs the TCP
link requests to another server process within the
server class. Defaultis .

SET SERVER MAXLI NKS maxi mum nunber of processes alowed in this
server class. Default is unlimited.

SET SERVER NUMSTATI C maxi mum nunber of static server processesin this
class. DefaultisO.

SET SERVER MAXSERVERS maxi mum nunber of server processesin this
server class that can run at the same time. Default
is 1.

SET SERVER PROGRAM $vol ure. subvol . obj ect -fi | e for the server
class; thisisarequired parameter.

SET SERVER STARTUP “string” specifying process startup parameters.
For example, SET SERVER STARTUP “DSNM
idev” specifiesthe $SY STEM.SY STEM.DSNM
section from which the configuration file for this
process is obtained.

SET SERVER PROCESS $pr ocess- nane within the server class that
PATHMON assigns to the server process when it
createsit.

ADD SERVER server - cl ass- nane; names server class and

adds its definitions to PATHMON control file.

START SERVER server-class-name; starts NUMSTATIC number of
server processes for this server class.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 6-13

Defining an | Process as a Pathway Server Configuring a New Subsystem Into DSNM

Defining server class configurationsis described in detail in the Pathway System
Management Reference Manual, if you are running NonStop Kernel release D30.01, or
in the NonStop TSMP and Pathway System Management Guide, if you are running
NonStop Kernel release D30.02 or later.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
6-14 Development Guide

=S DS

Scope of This Section

This section describes DSNM Com, the | process test utility. It providesthe syntax
descriptions for the DSNM Com commands and parameters.

What isDSNM Com?

DSNMCom isauser interface to DSNM. It enables you to bypass NetCommand and
send DSNM commands directly to a started process (such as a command server or an
| process). Thisletsyou test your | process without having to set up a DSNM
environment. DSNMCom must be licensed before you can useiit.

DSNM Com supports the DSNM commands described in Section 2, “DSNM
Commands.” If you are using DSNM Com to send commands directly to an | process,
object names must be fully qualified, because no name resolution takes place.

Before You Run DSNM Com

Before you run DSNM Com:

® Configuration records for the subsystem and its subsystem interface process must be
added to a DSNM CONF file (see Section 6, “ Configuring a New Subsystem Into
DSNM™).

® The process(es) you wish to communicate with must be started before DSNM Com
can open them. For example, to start the | process associated with the SPIFFY
subsystem referred to in the examples that follow, type the following RUN
command:

> RUN $DSNM | DEV. SPI FI / NAME $SPFI , NOMAI T/ TESTMODE 1, &
CONFI G $DSNM | DEV. DSNMCONF

The TESTMODE and CONFIG process parameters are discussed in Section 5,
“DSNM Process Startup Functions.”

DSNM Com Command Syntax

DSNM Com can accept input interactively or from a specified file. To use the following
command syntax, the object code for DSNMCom must reside in one of the subvolumes
contained in your #PM SEARCHLIST file (if it does not, add the code to your
TACLCSTM file):

DSNMCOM [/ run-option [, run-option] .../]

[DSNM[section-name | | CONFIG [filename |]
[$process- nane]

[

[.]
[;1 [.] comand] |

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-1

DSNMCom Command Syntax DSNMCom: The | Process Test Utility

7-2

run-option

isany run option for the TACL RUN command. Run options must be separated by
commas and set off in the command line by slashes (/). See the TACL Reference
Manual for descriptions of valid run options.

Two run options most often used with DSNM Com are:

IN fil enane
QuT fil enane

IN filenane
causes DSNMCom to read and execute commands located in the specified file.

If youomit INfi | ename, DSNMCom uses the input file in effect for the
current TACL process. usually, the home terminal.

QUT fil enane
causes DSNMCom to send its output to the specified file.

If you omit OUT f i | enane, the output is directed to the output file in effect
for the current TACL process. usually, the home terminal.

If fil ename doesnot exist, an EDIT fileis created.

DSNM secti on- nane

initializes the DSNM Com subsystem and object tables using the configuration file
pointed to in the named sect i on- nane of $SYSTEM.SY STEM.DSNM. If you
do not specify a section name (blank value), the blank section of
$SYSTEM.SYSTEM.DSNM s used.

CONFI G fi |l enane

initializes the DSNM Com subsystem and object tables using the named
configuration file. Only one configuration file can be specified. If do not specify a
configuration file (blank value), the blank section of $SY STEM.SY STEM.DSNM is
used

WARNING. DSNMCom and the process(es) you are testing must all be using the same
DSNMCONF file for the subsystem, CI, and | process configuration parameters. If you are
testing an | process, you must specify the same DSNMCONF file in both your | process RUN
command and your DSNMCom RUN command; otherwise, results are unpredictable.

If you specify more than one configuration file in your | process RUN command (for instance, if
you are maintaining your subsystem-specific configuration parameters separately from your
installation’s production DSNM configuration parameters), you must provide DSNMCom with
the configuration file that contains the subsystem-specific configuration information.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNMCom: The | Process Test Utility Running DSNMCom Interactively

$process- nane
is the name of the process to which DSNM sends commands.

If you omit $pr ocess- nane, you must open the process with the DSNMCom
OPEN command before issuing any DSNM commands (see “The DSNMCom
Commands’ on page 7-5).

$pr ocess- nane must be preceded by acommaif you specify either DSNM or
CONFIG with ablank value.

conmmand

is either one of the DSNM Com commands listed in Table 7-1, or a DSNM

command. Separate the command from the $pr ocess- nane by asemicolon or at
least one space.

The DSNM Com Prompt

The DSNMCom prompt is one of the following:

* When you enter DSNMCOM at your TACL prompt without specifying a process
name to be opened, the following prompt appears:

DSNMCom >

* Once you open a process, either by including the process name in your run
command or by issuing an OPEN command from DSNM Com, the following prompt

appears:
DSNM $pr ocess- nane >

e |f DSNMCom is unableto open the specified process, the following prompt appears:
DSNM $process-nane (filesystemerror) >

Running DSNM Com Interactively

You can run DSNMCom interactively in one of the following ways:

* By executinga DSNM command through DSNM Com at the TACL prompt. For
example:

> DSNMCOM CONFI G $DSNM | DEV. DSNMCONF $SPFI &

STOP VALVE PRT3 UNDER $SMGR
>

e By entering DSNMCom and executing DSNM commands at the DSNM Com
prompt. For example:

> DSNMCOM CONFI G $DSNM | DEV. DSNMCONF $SPFI
DSNM $spfi > STOP VALVE PRT3 UNDER $SMGR
DSNM $spfi >

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-3

Running DSNMCom From an Input File DSNMCom: The | Process Test Utility

Running DSNM Com From an Input File

UsetheIN file name option with the RUN command to provide DSNM Com with a set
of commands to execute. For example, to execute a set of DSNM commandsin file
EXCMDS, using the configuration file pointed to in section TEST of
$SYSTEM.SYSTEM.DSNM, type:

> DSNMCOM /| N EXCVDS/ DSNM TEST $process- nane
DSNM cormand out put

>

The end of file (EOF) of theinput file terminates the DSNM Com process; control of the
terminal returnsto TACL. (EOF isthe same astyping EXIT.)

To execute the commands located in file EXCMDS and send the output to printer $HT1,
type:

> DSNMCOM /I N EXCNVDS, QUT $S. #HT1, NOMAI T/ DSNM TEST &
$process- nane
>

The Comment Character, COMMENT-CHAR

To have input recognized as comments by DSNM Com, you must precede each comment
line with one COMMAND-CHAR character and one COMMENT-CHAR character. By
default, both are the period (.) and both are set using the DSNMCom SET command,
discussed later in this section.

To have an input line be interpreted as a comment by DSNM Com, use the following
syntax:

COVWWAND- CHAR COMMVENT- CHAR comment -t ext

With both COMMAND-CHAR and COMMENT-CHAR set to aperiod (.), an example
would be the following:

..setting PAID is optional

Using the Break Key

7-4

Use the Break key to stop a command that islisting information to the screen.
DSNM Com then returns to the DSNM Com prompt.

If you press the Break key from within DSNM Com when alisting command is not
executing, control of the terminal returnsto TACL. DSNMCom continues to run in the
background. From the TACL prompt, you can:

e Type PAUSE to return to DSNMCom.
® Type STOP to stop the running DSNM Com process.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNMCom: The | Process Test Utility EXIT Command

Setting Security Parametersin DSNM Com

To set security parametersin DSNMCom, use the DSNMCom SET command. To
display the current settings before setting or changing them, use the DSNM Com SHOW
command, followed by the parameter name. The SHOW command without a parameter
name displays the current settings of all these parameters. The security parameters are
discussed with the DSNMCom SET command definition, later in this section.

The DSNM Com Commands

With the exception of the FC command, DSNMCom commands must be preceded by
the COMMAND-CHAR character; otherwise, the command is not recognized. No
leading spaces are allowed.

The default COMMAND-CHAR character isthe period (.). You can change the value of
COMMAND-CHAR with the DSNM Com SET command, which is discussed later in
this section. Table 7-1 lists the DSNM Com commands.

Table 7-1. DSNM Com Commands

Command Function

CLOSE Closes the current server.

EXIT Closes all files and terminates DSNM Com.

FC Allows you to edit and reexecute the previous command line.

HELP Displays all DSNMCom commands or the syntax of a particular command.
OPEN Opens a process.

QUIT Closes dl files and terminates DSNM Com (same as EXIT).

RESET Returns all settable parameters to their default values.

SET Sets DSNM Com parameters.

SHOW Displays the current settings of DSNMCom parameters.

CLOSE Command

The CLOSE command closes the current server.

CLCSE

EXIT Command

The EXIT command terminates DSNM Com and returns control to the command
interpreter.

EXIT

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-5

FC Command DSNMCom: The | Process Test Utility

Consider ations

® The DSNMCom process terminates when it reads the end of file (EOF) of an input
file: you do not have to end an input command file with an EXIT command.

® Entering Ctrl/Y at theterminal is the same as EOF. If you type Ctrl/Y at the
DSNM Com prompt, DSNM Com terminates.

® The DSNMCom QUIT command is synonymous with the EXIT command. |
FC Command

FC (fix command) allows you to modify and resubmit the last command line entered.
The FC command is not recognized if preceded by a period (.).

FC

Consider ations

The FC subcommands (R, |, and D) are the same as those used for the TACL FC
command. Seethe TACL Reference Manual for further description.

HELP Command

The HEL P command displays DSNM Com command and parameter names or the syntax
of aparticular DSNMCom command. It also provides limited usage information for
commands and parameters.

HELP [/ QUT filenane /] [conmmand or paramane | |

QuT fil enane

isthe output device for the listing. If omitted, the output is sent to your home
terminal.

conmmand

is the name of the DSNM Com command whose syntax you want to see.

paramane

is the name of the DSNM Com parameter about which you want to see information.
The DSNMCom parameters are listed in the “SET Command” subsection, later in
this section.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
7-6 Development Guide

DSNMCom: The | Process Test Utility SET Command

OPEN Command
The OPEN command opens the specified process.

OPEN $pr ocess- nane

$process- nane
is the name of the process to which you want to send DSNM commands.
Consideration

A previously opened process (if any) is closed upon successful completion of the OPEN
command.

QUIT Command

The QUIT command closes al files and terminates DSNM Com; it is synonymous with
the EXIT command.

QUT

Consider ation

Seethe EXIT command considerations.

RESET Command

The RESET command returns all settable parametersto their default values. You might
find thiscommand useful to quickly reset all the DSNM Com parameters to their defaults
before resetting just one parameter (for a specific test). For a specific test, use the

RESET command to restore all the default settings, then use the SET command to set a
single parameter.

RESET

SET Command

The SET command allows you to set DSNMCom parameters, most of which are
security attributes. The LICENSED, LOGGED-ON, REMOTE, SEND-SECINFO, and
TYPED-OUTPUT parameters can be set to YES, NO, TRUE, FALSE, ON, or OFF.

These security parameters alow you to establish a simulated test environment where
processes and commands appear to have certain characteristics or security attributes.

Thisallows you to test your | process or server process without establishing an entire
DSNM environment.

SET parammane paranval ue

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759 7-7

SET Command DSNMCom: The | Process Test Utility

7-8

The values of par ammane and par anval ue appear in Table 7-2, which liststhe
DSNMCom SET parameters.

Table 7-2. DSNM Com SET Parameters

Parameter Function Default

COMMAND-CHAR Required first character of each line that contains a . (period)
DSNMCom command or acomment (except for the
FC command).

COMMENT-CHAR Character that must follow COMMAND-CHAR fora . (period)

comment line.

LICENSED When set to TRUE, makes DSNM commands appear FALSE
to be from alicensed requester.

LOGGED-ON When set to TRUE, makes DSNM commands appear FALSE
to be sent from alogged-on requester.

PAID Process accessor |D value of an open request sent to None
DSNM.

REMOTE When set to TRUE, makes DSNM commands appear FALSE

to be sent from aremote process or a process created
by aremote process.

SEND-SECINFO When set to TRUE, DSNMCom sends commands FALSE
with security data consistent with that sent by the
DSNM CMDSVR process.

TYPED-OUTPUT When set to TRUE, DSNMCom displays VTY type FALSE
information.

USER NonStop Kernel user 1D of the user under which the None
command is to be processed.

COMMAND-CHAR

COMMAND-CHAR isthe character that must appear as the first character of each line
that containsa DSNM Com command or a comment. When setting COMMAND-
CHAR, enter the new character without quotes. For example, to set the command
character to the slash (/), use the following:

. SET COVMAND- CHAR /

Before processing the command in this example, COMMAND-CHAR was set to a
period (.); notice a period at the beginning of the command line. After DSNMCom
processes this command, COMMAND-CHAR becomes the slash. All subsequent
DSNM Com commands and comments must now begin with a slash (until the next
setting of this character or aDSNMCom RESET command).

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNMCom: The | Process Test Utility SET Command

COMMENT-CHAR

COMMENT-CHAR isthe character that must follow COMMAND-CHAR for the
remainder of the line to be ignored (to be interpreted as a comment). When setting
COMMENT-CHAR, enter the new character without quotes. For example, to set the
comment character to the slash (/) use the following:

. SET COMMENT- CHAR /

After DSNMCom processes this command, COMMENT-CHAR becomes the slash
(until the next setting of this character or aDSNMCom RESET command).

LICENSED

When the LICENSED parameter is set to TRUE, all DSNM commands sent to the
server appear to be from alicensed requester. The LICENSED parameter is only
effective in this manner when the DSNM Com processis licensed and the security
parameter SEND-SECINFO is aso TRUE.

LOGGED-ON

When LOGGED-ON is set to TRUE, all DSNM commands sent to the server appear to
be from alogged-on requester. The LOGGED-ON parameter is only effective in this
manner when the DSNM Com process is licensed and the security parameter SEND-
SECINFO isalso TRUE.

PAID (Process Accessor ID)

The process-accessor-id (PAID) is the user ID under which the process gains access to
system objects: for example, files. The value of PAID is sent as the process-accessor-id
of the open operation over which the request was sent to DSNM.

The PAID parameter is only effective in this manner when the DSNM Com process is
licensed and the security parameter SEND-SECINFO is set to TRUE.

PAID can be set to groupname.username or groupnumber,user number.

REMOTE

When REMOTE is set to TRUE, the command sent to a server appearsto be from a
remote process or one that was created by a remote process and has not logged on
locally. For a TRUE setting of REMOTE to have any effect, the DSNM Com process
must be licensed, and the security parameter SEND-SECINFO is aso set to TRUE.

SEND-SECINFO

When SEND-SECINFO is set to TRUE, DSNM Com sends commands with

security information (internal DSNM Com security information:
ZDSNATKNASECURITYAINFO) consistent with that sent by the DSNM CMDSVR
process. DSNMCom must be licensed for SEND-SECINFO (when set to TRUE) to
support valid security testing.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-9

SHOW Command DSNMCom: The | Process Test Utility

When SEND-SECINFO is FAL SE, DSNMCom sends logon information
(ZDSNATKNALOGONAINFO) in the same manner as an external DSNM requester
(such as NonStop NET/MASTER). Logon information is only sent if parameter USER
IS Set.

If you are testing an | process or a secondary command server, use TRUE for
SEND-SECINFO. If you are testing a primary command server, use FAL SE for
SEND-SECINFO.

TYPED-OUTPUT

When TYPED-OUTPUT isset to TRUE, DSNMCom displaysthe VTY type
information for each line of output from a server response.

USER

USER isthe NonStop Kernel user 1D of the user under which the command is to be
processed by the server. USER can be set to groupname.username or
groupnumber,user number.

Consideration
USER isallowed only if DSNMCom is licensed.

SHOW Command

7-10

The SHOW command displays the current values of all the DSNMCom parameters. If
you follow the SHOW command with a parameter name, DSNM Com displays the
current setting of that parameter.

SHOW [paramane |

Consider ations

None.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNMCom: The | Process Test Utility

Executing DSNM Commands

Any command you enter from within DSNM Com other than CLOSE, EXIT, FC, HELP,

OPEN, QUIT, RESET, SET, or SHOW is assumed to be aDSNM command.

Executing DSNM Commands

You can send DSNM commands directly from the DSNMCom RUN command line. For

example:

> DSNMCOM CONFI G $DSNM | DEV. DSNMCONF $SPF

UNDER $SMCR, DOWN

SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
>

CHAMBER COVPOUND3 UNDER $SMGR Down
BAO LER STUFFX UNDER $SMGR Down
VALVE FORMULAY UNDER $SMGR Down
BO LER | NGREDTA UNDER $SMGR Down
BO LER | NGREDTC UNDER $SMGR Down
VALVE XXX UNDER $SMGR Down

Or you can send DSNM commands from within DSNMCom. For example
> DSNMCOM CONFI G $DSNM | DEV. DSNMCONF $SPF

DSNMCom -

19216030 12FEB95

Copyri ght Tandem Comput ers | ncorporated 1995
DSNM $spfi > STATUS REACTOR PURPLE UNDER $SMGR, NOT- UP

SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY

DSNM $spf i

SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY

BO LER ELEMENT1 UNDER $SMCGR Pendi ng
BO LER ELEMENT2 UNDER $SMCGR Pendi ng
BO LER ELEMENT3 UNDER $SMCGR Pendi ng
VALVE M X3 UNDER $SMGR Pendi ng
CHAMBER COVPOUND2 UNDER $SMGR Pendi ng
CHAMBER COVPOUND3 UNDER $SMGR Down

BO LER | NGREDTB UNDER $SMGR Up
VALVE YYY UNDER $SMGR Up
VALVE ZZZ UNDER $SMGR Pendi ng
CHAMBER AAA UNDER $SMGR Pendi ng
CHAMBER BBB UNDER $SMGR Up
CHAMBER CCC UNDER $SMGR Pendi ng

DSNM $spfi> EXIT
>

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

STATUS REACTOR * &

> STATUS REACTOR AMBER UNDER $SMGR, NOT- DOMN

7-11

DSNMCom Messages DSNMCom: The | Process Test Utility

DSNM Com M essages

DSNM Com produces the following messages, which are displayed on the OUT listing
device.

ERROR -- no server open: use OPEN <process>

Cause. Youtried to issue a DSNM command without first opening a process.
Effect. You are returned to the DSNMCom prompt.

Recovery. Usethe OPEN command to open a started process; then resubmit the
command.

ERROR -- Invalid process nane

Cause. You provided an invalid process name to DSNMCom.
Effect. You are returned to the DSNMCom prompt.
Recovery. Usethe OPEN command and provide avalid process name.

ERRCOR -- process nane expected

Cause. You tried to open a process without providing a process name.
Effect. You are returned to the DSNMCom prompt.
Recovery. Reenter the command with avalid process name.

File Systemerror nn ON fil enanme

Cause. A file system error occurred when DSNM Com attempted a WRITEREAD to
either the input file, the output file, or the currently open processfile.

Effect. If the error occurred on the input file, the message is written to the output file
and DSNM Com abnormally ends.

If the error occurred on the output file, the message is written to the home terminal and
DSNMCom abnormally ends.

If the error occurred on the currently open process file, the message is written to the
output file and the processfileisclosed. Any subsequent SEND commands result in an
“ERROR -- no server open” message until an OPEN command is successfully
processed.

Recovery. Seethe Guardian Procedure Errors and Messages Manual for a description
of the specific file system error and the appropriate recovery action.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
7-12 Development Guide

DSNMCom: The | Process Test Utility DSNMCom Messages

OPEN ERRCOR nn ON fil enane

Cause. DSNMCom was unable to open the specified file.

Effect. If the error occurred on the input or output file, DSNM Com abnormally ends
after writing a brief description of the error to the home terminal.

If the error occurred on the processfile, the process file remains closed; any previously
opened process file remains open.

Recovery. Seethe Guardian Procedure Errors and Messages Manual for a description
of the specific file system or sequential 1/0O (SIO) error and the appropriate recovery
action.

ERROR -- Section nanme too | ong

Cause. DSNMCom was unable to open the specified STARTUP parameter valuein the
$SYSTEM.SY STEM.DSNM file (a section named env-name) during the DSNM
initialization process because the specified section name istoo long. The maximum
acceptable length for env-name (ZDSN-MAX-PARAMNAME) is 32 bytes.

Effect. A fatal error isreported, and DNSM is not started.

Recovery. Correct and reissue the command. Refer to the Distributed Systems
Management Solutions (DSVIS) System Management Guide for information on DSNM
process startup message parameters.

ERRCOR -- Expecting <space> <conmma> or <semni -col on>

Cause. The command did not include an expected character.
Effect. DSNMCom is not started up.
Recovery. Correct and reissue the command.

ERROR -- DSNMCom can't conti nue

Cause. During theinitiaization of DSNM, inappropriate configuration input was
submitted, or no configuration was submitted.

Effect. DSNM and DSNMCom cannot be started.

Recovery. Check your configuration files and try the DSNM initialization again. If the
problem persists, contact your Tandem representative. Be prepared to describe the
problem in detail as recommended in “What to Prepare Before Contacting Your Tandem
Support Representative” on page B-1.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-13

DSNMCom Messages DSNMCom: The | Process Test Utility

7-14

ERRCOR -- unrecogni zed text foll ow ng conmand

Cause. You provided text that is not recognized or supported after the DSNM Com
command.

Effect. The command is not executed.
Recovery. Correct and reissue the command.

ERRCOR -- expecting one of: ON, OFF, TRUE, FALSE, YES or NO

Cause. You provided a parameter value that is not recognized or supported.
Effect. The command is not executed.
Recovery. Correct and reissue the command.

ERRCOR -- invalid value for paraneter

Cause. You provided a parameter value that is not recognized or supported; DSNMCom
was expecting a single character.

Effect. The command is not executed.
Recovery. Correct and reissue the command.

ERROR -- invalid usernane

Cause. You provided a user name that is unrecognizable, not supported, or in an
improper format.

Effect. The command is not executed.

Recovery. Correct and reissue the command. The user name must be in the format
groupnumber.user number, where both groupnumber and usernumber are no more than
eight characters and begin with aletter (A to Z or ato z). Also, aperiod (.) must appear
between groupnumber and usernumber.

ERROR -- invalid userid

Cause. You provided a user ID that is unrecognizable, not supported, or in an improper
format.

Effect. The command is not executed.

Recovery. Correct and reissue the command with avalid user ID.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNMCom: The | Process Test Utility DSNMCom Messages

ERROR -- Unable to obtain userid

Cause. Userid isout of bounds or thereis an 1/O error on
$SYSTEM.SYSTEM.USERID.

Effect. The command is not executed.
Recovery. Check USERID or contact your system manager.

ERROR -- Unable to obtain usernane

Cause. Usernameisout of bounds or thereisan I/O error on
$SYSTEM.SYSTEM.USERID.

Effect. The command is not executed.
Recovery. Check USERNAME or contact your system manager.

ERROR -- non-exi stent user

Cause. You specified auser ID / user name that is undefined.
Effect. The command is not executed.
Recovery. Correct and reissue the command.

ERROR -- expecting a valid userid or usernane

Cause. You provided auser ID or user namein aDSNMCom SET command that is not
recognized or supported.

Effect. The command is not executed.
Recovery. Correct and reissue the command.

ERRCOR -- expecting a valid paraneter nane

Cause. You misspelled a parameter or issued a SET or SHOW command with a
parameter name that is not supported.

Effect. The command is not executed.
Recovery. Correct and reissue the command.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-15

DSNMCom Messages DSNMCom: The | Process Test Utility

7-16

ERROR -- invalid DSNMCom conmand

Cause. DSNMCom is unable to recognize the command because the command line did
not begin with the current COMMAND-CHAR character, and the command is not a
valid DSNM command.

Effect. The command is not executed.

Recovery. Correct and reissue the command.

DSNM error: error-text ON fil enane

Cause. A DSNM error occurred during the file operation.
Effect. Seethe descriptionintheerr or-text portion of the message.
Recovery. Seetheerror-text portionof the message.

SSGETTKN Error nn on LOGONMI NFO t oken

Cause. An SPI error occurred.
Effect. The command is not executed

Recovery. Check the SPI error identified in the message and refer to the SPI error
documentation in the SPI Programming Manual.

Warni ng: SSPUTTKN Error nn addi ng the SECURI TY-I NFO t oken

Cause. An SPI error occurred.
Effect. The command is sent without the security token.

Recovery. Check the SPI error identified in the message and refer to the SPI error
documentation in the SPI Programming Manual.

Warning: Error nn trying to construct SECURI TY-I NFO t oken
SECURI TY- 1 NFO not added to command buffer

Cause. An SPI error occurred.
Effect. The command is sent without the security token.

Recovery. Check the SPI error identified in the message and refer to the SPI error
documentation in the SPI Programming Manual.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNMCom: The | Process Test Utility DSNM Parser Errors

SECURI TY- I NFO not added to command buffer

Cause. An SPI error occurred.
Effect. The command is sent without the security token.
Recovery. No recovery action required.

no server open

Cause. The CLOSE command was given when no server was open.
Effect. The command is not executed.
Recovery. No recovery action needed.

DSNM Parser Errors

The following errors may be generated by the DSNM parser, which interprets DSNM
commands before they are executed.

Command unr ecogni zabl e

Cause. You misspelled a command or issued a command that is not supported.
Effect. The command is not executed.
Recovery. Correct and reissue the command.

Exceeded max objects

Cause. Your command included more objects than are allowed in a single command.
Effect. The command is not executed.

Recovery. Break the command up into two or more commands.

Exceeded max paren |evels

Cause. You nested parentheses beyond the maximum allowabl e depth.
Effect. The command is not executed.

Recovery. Simplify the command or break it into two or more commands, if necessary.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-17

DSNM Parser Errors DSNMCom: The | Process Test Utility

Exceeded param space

Cause. You entered too many parameters or an excessively long parameter.
Effect. The command is not executed.
Recovery. Simplify the command or break it into two or more commands, if necessary.

Invalid option

Cause. You specified an option that is not valid for any command.
Effect. The command is not executed.
Recovery. Correct and reissue the command.

Invalid option for this conmand

Cause. You specified an option that is not valid for this command.
Effect. The command is not executed.
Recovery. Correct and reissue the command.

Nane too | ong

Cause. You entered a name that islonger than the maximum valid length.
Effect. The command is not executed.
Recovery. Correct the name and reissue the command.

No oper ands

Cause. You issued acommand that requires operands, but did not specify any.
Effect. The command is not executed.
Recovery. Correct and reissue the command.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
7-18 Development Guide

DSNMCom: The | Process Test Utility DSNM Parser Errors

bj ect type table error

Cause. A consistency error was encountered in the parser object type table.
Effect. Commands cannot be correctly interpreted.

Recovery. Contact your Tandem representative. Be prepared to describe the problem in
detail asrecommended in “What to Prepare Before Contacting Your Tandem Support
Representative’ on page B-1.

Par am dat at ype table error

Cause. A consistency error was encountered in the parser parameter data type table.
Effect. Commands cannot be correctly interpreted.

Recovery. Contact your Tandem representative. Be prepared to describe the problem in
detail asrecommended in “What to Prepare Before Contacting Your Tandem Support
Representative” on page B-1.

Reserved word m spl aced

Cause. A keyword, subsystem name, or object type was out of place.
Effect. The command is not executed.

Recovery. Correct and reissue the command. If the error was caused because an object
name is the same as a keyword, subsystem name, or object type, enclose it in quotation
marks.

Subsys table error

Cause. A consistency error was encountered in the parser subsystem table.
Effect. Commands cannot be correctly interpreted.

Recovery. Contact your Tandem representative. Be prepared to describe the problemin
detail as recommended in “What to Prepare Before Contacting Your Tandem Support
Representative” on page B-1.

Syntax error

Cause. The command contains a serious syntax error.
Effect. The command is not executed.

Recovery. Correct and reissue the command.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7-19

DSNM Parser Errors DSNMCom: The | Process Test Utility

Unbal anced parens

Cause. Your command includes parentheses that are incorrectly paired.
Effect. The command is not executed.
Recovery. Correct and reissue the command.

Unexpected end

Cause. The command did not include all required and expected i nformation.
Effect. The command is not executed.

Recovery. Correct and reissue the command.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
7-20 Development Guide

g DSNM Library Services

Scope of ThisAppendix

This appendix provides the following information (as applicable) for each define, literal,
procedure, global variable, and structure template listed in Table A-1 below:

e Description

® Syntax

® Parameter descriptions

® Considerations (additional information)
e Examples

Table A-1. DSNM Library Services (page 1 of 4)

Global Structure
Identifier Define Literal Procedure Variable Template Miscellaneous

_ADDACI X
_ADD"SUBSY'S X
_ALLOFF
_ALLON
_ALLONATURNOFF
_ANYOFF
_ANYON
_ANYONATURNOFF
_APPENDAOUTPUT X
_BITDEF X
_CANCELASENDCI X
_CANCELATIMEOUT X
CI"DEF

CI"FILENUM

_CIND
_CINDPOINTER
CI"LASTERROR

_CI"REPLYADDRESS
_CI"REPLYLENGTH
_CI"REPLYTAG
_CLOSE"CI X
_COMMAND"CONTEXTM"EADER X

_COMMAND"PROC Name of initia
command
thread
procedure

X X X X X X

X X X X X X X X

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-1

Scope of This Appendix DSNM Library Services

Table A-1. DSNM Library Services (page 2 of 4)

Global Structure
Identifier Define Literal Procedure Variable Template Miscellaneous

_COMMANDATERMINATION”PROC Name of thread
termination
procedure

_COMPILEDMNNATESTMODE X

_DEALLOCATE"LIST X

_DELETEMLM X

_DEPOSIT X

_DISPATCHATHREAD X

_DSNMCONF*PARAMS X

_EMPTYALIST X

_EMSEVENT”CRITICAL X

_EMSEVENT"FATAL X

_EMSEVENTAINFO X

_ENDATHREAD”PROC X

_ENDA"THREADATERMINATIONAPROC X
EVACANCEL

EVACONTINUE

EVAODONE

EVASTARTUP

EVATIMEOUT

_EXTRACT X
_FIRSTALM X

FOBJECT Name assigned
to formatted
object structure

X X X X X

_FOBJECTAINIT
_GET”LM

_GET"PARAM
_GET"PROCESS‘PARAM
_INITIALIZEALIST

_INPUT Name assigned
to command
context input
area

X X X X X

_INPUT~DEF X
_INPUTALMAHEADER X

_ISNULL X

_JOINALIST X

KDSNDEFS Source file for
definitions and
declarations

_LASTACIMND X

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-2 Development Guide

DSNM Library Services Scope of This Appendix

Table A-1. DSNM Library Services (page 3 of 4)

Global Structure
Identifier Define Literal Procedure Variable Template Miscellaneous

_LASTAEVENTS X
_LASTALM X
_LASTATIMEOUTATAG X
_LIST X

_LISTPOINTER X

_MEMBERSOFLIST X

_MOVEALIST X

_NOTNULL X

_NULL X

_NULLALIST X

OBJECTLIST Name assigned
to input and
output object
lists

_OFF X

_ON X

_OPEN~CI X

_OUTPUT Name assigned
to command
context output
area

_OUTPUTADEF X
_OUTPUTALM"HEADER X
_POP"LM X
_POP*"THREAD"PROCSTATE X
_PREDECESSORM.M X
_PRIVATEATHREADEVENT X
_PROCESS'PARAMS X
_PUSHALM X
_PUSHATHREAD"PROCSTATE X
_PUTALM X
_RCMABORT X

RCANULL X

RCASTOP X

RCATYPE X

_RCMWAIT X
_REALALASTAEVENTS X
_RELEASE"OUTPUT X
_REPORTANTERNALMERROR X
_REPORTASTARTUP*ERROR X

_RESTOREN"THREADMANDADISPATCH X

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-3

Scope of This Appendix

A-4

DSNM Library Services

Table A-1. DSNM Library Services (page 4 of 4)

Identifier

Global Structure
Define Literal Procedure Variable Template Miscellaneous

_SAVE"THREAD”AND"DISPATCH X

_SENDACI
_SETATHREADPROC
_SETATIMEOUT
_SIGNALAEVENT
_STARTUP

_STARTUP*MODE

_STAINITIAL

User-supplied
initialization
procedure
User-supplied
startup
procedure

_ST*MINATHREADA"STATE X

_SUBSYS'DEF
_SUCCESSORMM

_THREAD"CONTEXT*ADDRESS X

_THREAD”*PROC
_THREADASTATE

_THREAD~TERMINATION*CODE
_THREAD*TERMINATION"PROC

_TURNOFF
_TURNON
_UNGETALM
_UNPOP'LM
_XADRMEQ
_XADRMEQ

X X X X X X

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _ADDACI

_ADDACI

_ADDCI retrieves Cl configuration information from the DSNM configuration file
(DSNMCONF). It alocates the memory for and completes a predefined CI
configuration structure with this information. 1t then returns the address of the
completed structure.

You must declare an extended pointer to a structure defined by _ CI*"DEF in your global
definitions for each ClI with which your subsystem communicates.

You must call _ADDA"CI inyour _STARTUP procedure for each CI class with which
your |-process communicates.

@i-config := _ADDMCI (ciname
,[error]
,| error-filenane |);

ci-config output
INT .EXT ! (_CI"DEF)!

receives the address of the CI"DEF-defined CI configuration structure that
_ADD"CI completes with configuration parameter values for the specified CI. If an
error occurs or no configuration isfound for this Cl process class, anull valueis
returned.

ci name input
STRING .EXT

is the process class name associated with the Cl. The string must be blank or null
terminated.

The process class name of the Cl is the name in the COMPONENT field of the
CI-CONFIG class records in the DSNM CONF file that specifiesthe Cl
configuration parameters. This name is arbitrary; by custom, the object file name of
the subsystem manager isthe logical name of the process class (for example,
PATHMON or SCP).

error output
INT .EXT
isthe ZDSN or file-system error, if an error occurs.

error-fil ename output
STRING .EXT ! (ZDSN*DDL"OBINAME"DEF) !

is the name of the DSNM configuration file associated with the returned er r or
value.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-5

_ADDACI DSNM Library Services

Example

< in global definitions >

I NT . EXT scp (_CI~DEF);
I NT . EXT snaxcdf (_SUBSYS"DEF);

STRI NG . scpcl ass[0: ZDSN*MAX"CI CLASS-1] = [“SCP “];
STRI NG . cdf [0: ZDSN*MAXANSUBSYS- 1] : = [" SNAXCDF “];

< wthin STARTUP procedure >

| F _I'SNULL (@cp := _ADDMCl (scpclass)) THEN
RETURN ZDSN*ERRM| NTERNALMERR,;
IF _ISNULL (@naxcdf := _ADD'SUBSYS (cdf)) THEN

RETURN ZDSN*ERRM| NTERNAL"ERR,;
< within _COVWAND"PROC procedure >

CALL _OPEN'Cl (scp, ...);

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _ADD"SUBSYS

_ADD"MSUBSYS

_ADD"SUBSY S retrieves subsystem and object type configuration information from
the DSNM configuration file (DSNMCONF). It allocates the memory for and

compl etes a predefined subsystem configuration structure with thisinformation. It then
returns the address of the compl eted structure.

You must declare an extended pointer to a subsystem configuration structure defined by
_SUBSY S"DEF in your global definitions for each subsystem your |-process handles.

You must call _ADD"SUBSY Sinyour STARTUP procedure for each subsystem your
|-process handles.

@s-config := _ADD'SUBSYS (ssnane
,[error]
,| error-filenane |);

ss-config output
INT .EXT ! (_SUBSYS'\DEF)!

receives the address of the SUBSY S*"DEF-defined subsystem configuration
structure that _ ADD/"SUBSY S completed with configuration parameter values for
the specified subsystem. If an error occurs or no configuration isfound for this
subsystem, anull value is returned.

ssnane input
STRING .EXT

is the subsystem name. The subsystem name isthe namein the COMPONENT field
of the SUBSY STEM class records in the DSNMCONF configuration file that
specifies the subsystem configuration parameters.

error output
INT .EXT
isthe ZDSN or file-system error, if an error occurs.

error-fil ename output
STRING .EXT ! (ZDSN*DDL"OBINAME"DEF) !

is the name of the DSNM configuration file associated with the returned er r or
value.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-7

_ADD"SUBSYS DSNM Library Services

Example

< in global definitions >

I NT . EXT scp (_CI~DEF);
I NT . EXT snaxcdf (_SUBSYS"DEF);

STRI NG . scpcl ass[0: ZDSN*MAX"CI CLASS-1] = [“SCP “];
STRI NG . cdf [0: ZDSN*MAXANSUBSYS- 1] : = [" SNAXCDF “];

< wthin STARTUP procedure >

| F _I'SNULL (@cp := _ADDMCl (scpclass)) THEN
RETURN ZDSN*ERRM| NTERNALMERR,;
IF _ISNULL (@naxcdf := _ADD'SUBSYS (cdf)) THEN

RETURN ZDSN*ERRM| NTERNAL™ ERR;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _ALLOFF

_ALLOFF

_ALLOFF isaBoolean define statement that is TRUE if every one-bit of bi t - mask is
off ini nt - exp. TRUE isnonzero, not necessarily -1.

The ALLOFF function is the same as the _OFF function. It is more descriptive to use
_ALLOFF when testing more than one bit.

_ALLOFF (int-exp , bit-nmask)

i nt-exp input
INT:value
isthe INT expression being compared with bi t - mask.

bi t - mask input
INT:value

isan INT expression, the one-bits of which identify the bitsini nt - exp to test.

Example

The following example testsif both bits9and 11 invar are off:

I NT var;
LI TERAL evta
LI TERAL evtb

= 9R0; levta.<11> on
= 94.00; levtb. <9> on
IF _ALLOFF (var, evta + evtb)
THEN . .. I both var.<9> and var.<11> are zero
ELSE .. .; lat | east one of var.<9> and var.<11> i s one

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-9

_ALLON DSNM Library Services

_ALLON

_ALLON isaBoolean define statement that is TRUE if every one-bit of bi t - mask is
onini nt - exp. TRUE isnonzero, not necessarily -1.

_ALLON (int-exp , bit-mask)

i Nt -exp input
INT:value
isthe INT expression being compared with bi t - mask.

bi t - mask input
INT:value
isan INT expression, the one-bits of which identify the bitsini nt - exp to test.

Examples

The following example testsif both bits9and 11 invar areon:

I NT var;
LI TERAL evta
LI TERAL evtb

920; levta.<11> on
%4.00; levtb. <9> on

IF _ALLON (var, evta + evtb)

THEN . .. I both var.<9> and var.<11> are one
ELSE .. .; lat | east one of var.<9> and var.<1l1> is
lzero
The following example testsif the event EVAIODONE caused the current dispatch of
the thread:
| F _ALLON (_LASTMEVENTS, _EV™I ODONE)
THEN . . .;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-10 Development Guide

DSNM Library Services _ALLONATURNOFF

_ALLONATURNOFF

If every one-bit of bi t - mask isonini nt -var, ALLONATURNOFF returns TRUE
and turns off every one-bit of i nt - var thatisoninbi t - mask. TRUE isnonzero,
not necessarily -1.

_ALLONWTURNOFF (int-var , bit-msk)

i nt-var input/output
INT:ref
is the variable compared with bi t - mask.

bi t - mask input
INT:value
isan INT expression, the one-bits of which identify the bitsini nt - var to turn off.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-11

_ANYOFF DSNM Library Services

_ANYOFF

A-12

_ANYOFF is aBoolean define statement that is TRUE if any one-bit of bi t - mask is
off ini nt - exp. TRUE isnonzero, not necessarily -1.

_ANYOFF (int-exp , bit-nmask)

i Nt -exp input
INT:value
isthe INT expression compared with bi t - mask.

bi t - mask input
INT:value
isan INT expression, the one-bits of which identify the bitsini nt - exp to test.

Example

The following exampletestsif at least one of bits9and 11 invar are off:

I NT var;
LI TERAL evta
LI TERAL evtb

920:; levta.<11> on
24.00:; levtb. <9> on

| F _ANYOFF (var, evta + evtb)
THEN . .. lat | east one of var.<9> and var.<1l1> is zero
ELSE .. .; I both var.<9> and var.<11> are one

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _ANYON

_ANYON

_ANYON isaBoolean define statement that is TRUE if any one-bit of bi t - mask ison
ini nt - exp. TRUE isnonzero, not necessarily -1.

The ANYON function isthe same asthe _ON function. It is more descriptive to use
_ANYON when testing more than one bit.

_ANYON (int-exp , bit-mask)

i nt-exp input
INT:value
isthe INT expression compared with bi t - mask.

bi t - mask input
INT:value

isan INT expression, the one-bits of which identify the bitsini nt - exp to test.

Example

The following exampletestsif at least one of bits9 and 11 invar are on:

I NT var;
LI TERAL evta
LI TERAL evtb

9%20:; levta.<11> on
24.00:; levtb. <9> on

I F _ANYON (var, evta + evtb)
THEN . .. lat | east one of var.<9> and var.<11> i s one
ELSE .. .; Il both var.<9> and var.<11> are zero

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-13

_ANYONATURNOFF DSNM Library Services

_ANYON~TURNOFF

If any one-bit of bi t - mask isonini nt - var, ANYON*TURNOFF returns TRUE
and turns off any one-bitsini nt - var that areoninbi t - mask. TRUE is nonzero,
not necessarily -1.

_ANYONWTURNOFF (int-var , bit-msk)

i nt-var input/output
INT:ref
is the variable compared with bi t - mask.

bi t - mask input
INT:value
isan INT expression, the one-bits of which identify the bitsini nt - var to turn off.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-14 Development Guide

DSNM Library Services _APPENDMOUTPUT

_APPENDMOUTPUT

_APPENDMOUTPUT appendstext and other variable-length itemsto an output list
member. The maximum allowed length of a character string (ZDSN-MAX-TEXT) is75
characters.

Text and other variable-length items can only be appended to the frame output list.

error := _APPEND"QUTPUT (output-Iist-nenber
, type
, [header]
,| header-len]
,[body]
,[body-len]);
error returned value
INT

iIsaZDSN”ERR value indicating the outcome of the call. See Appendix B, “DSNM
Error Codes,” for error code definitions.

out put - | i st - menber input
INT .EXT
is the output list member to which an item is appended.

type input
INT:value
isone of the following ZDSNAVTY codes describing the appended item:

ZDSNVTYMRESULTTEXT Oneline of additional subsystem and object-
specific text that further explains the valuein the
output object’sresult code field. For the STATUS
command, describes subsystem state of object.
Provides brief error description if error occurs.

ZDSNAVTYATEXT Additional lines of explanatory text for the
STATUS (DETAIL), INFO, and STATISTICS
commands.

ZDSNVTYERRTEXT Text that describes error conditions for detailed
error requests.

ZDSNVTYANONTEXT Indicates that it is not possible to scan the header,

and the header length is required.

ZDSNMNVTYMCOUNTERS State summary counters for the AGGREGATE
command.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-15

_APPENDMOUTPUT DSNM Library Services

A-16

header input
STRING .EXT

is the appended item's header. If header isterminated with anull, then
header - | en isnot required.

header - | en input
INT:value

isthe length, in bytes, of the appended item’s header. Required only if header
does not terminate with anull byte.

body input
STRING .EXT

is the item to be appended to the output list member. If body terminates with anull
byte, body- | en isnot required. body should be appropriate to the value
represented.

body- 1 en input
INT:value

is the length of the appended item, in bytes. Required only if body does not
terminate with a null byte.

Consider ations

* header and body together represent a“keyword : value” pair. body with no
header isany other line of text. Text items appended to an object are displayed
with the object in the following form:

object [result-code] , body (ZDSNAVTY”RESULTTEXT)
[header] : body (ZDSNAVTYATEXT)

[header] : body (ZDSNAVTY/ERRTEXT)

counter-val ues (ZDSN"VTYACOUNTERS)

* A response may have severa text and/or error text lines (see individual command
requirementsin Section 4, “DSNM Command Requirements’).

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _APPENDMOUTPUT

* A type ZDSNVTYNCOUNTERS structure is described by
ZDSN"DDLA"COUNTERS"DEF and contains the number of objects of the
Z"OBJTYPE in each DSNM state. The relevant counters structure fields are:

INT(32) Z"GREEN;

INT(32) Z~UP=Z"GREEN;

INT(32) Z"RED;

INT(32) Z"DOWN = Z"RED;

INT(32) Z~AYELLOW;

INT(32) Z~PENDING =Z"YELLOW;

INT(32) Z" UNDEFINED;

INT(32) Z~NNERROR;

For more information, see the description of the AGGREGATE command in

Section 4, “DSNM Command Requirements.”
Example

|F (err := APPEND*OUTPUT (cx. outobj, ZDSN*VTYACOUNTERS, ,,
count, $LEN (count)))
THEN RETURN err;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-17

_BITDEF DSNM Library Services

_BITDEF

_BITDEF defines a bit within a specified range of bits. A compile error is generated if
I nt fallsoutside of therangeni n- bi t to max- bi t, inclusive.

_BITDEF (int [,max-bit | [,mn-bit])

i nt input
the bit position to be defined within the range m n- bi t to max- bi t, inclusive.

max- bi t input

the leftmost bit position within the word that is now considered bit position 0. The
default is %100000.

m n-bit input
the rightmost bit position within the range. The default is 1.

Examples

The following exampl e assigns the value of bit position 2 within the range of bit
positions 3and 7 in aword to evt b:

LI TERAL naxval _BITDEF (3); I maxval 240000
LI TERAL m nval _BITDEF (7); I m nval %100
LI TERAL evtb = BITDEF (2, maxval, mnval); ! evtb = %000

Thisisthe same as:
LI TERAL evib = BITDEF (2, 940000, %00); I evtb = %2000

Bit position 2 within range _BITDEF(3) and _BITDEF(7)

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

|‘ |‘

_BITDEF (3) _BITDEF (7)
(N J
h
Range

401

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-18 Development Guide

DSNM Library Services _BITDEF

The next example generates a compile error because it attempts to assign avalue to a bit
position outside of the designated range:

LI TERAL z = BITDEF (4, %0, 9%0);

Bit position 4 is outside range %40 and %10

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

o 1 2 3 4

tof

%40 %10

Range
402

Bit position 4 requires arightmost bit position range delimiter equal to or greater than
%2 (_BITDEF(14)).

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-19

_CANCELNSEND/CI DSNM Library Services

_CANCEL"SENDAMCI

A-20

_CANCEL"SENDA/CI cancels an outstanding _ SEND/CI operation. The thread cancels
all outstanding _ SEND”CI operations when the thread terminates.

error := CANCEL"SENDMCI ([tag]);

error returned value
INT

isafile system error. File system errors are documented in the Guardian Procedure
Errors and Messages Manual.

t ag input
INT(32):value
isthe tag of an outstanding SENDCI operation.
If t ag isomitted, the frame selects an outstanding operation on that Cl from this
thread to be canceled.

Example

IF (error := _CANCEL"SEND CI)
THEN ... ;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _CANCELTIMEOUT

_CANCELATIMEOUT

_CANCELNTIMEOUT cancels an outstanding timeout set by acall to
_SETATIMEOUT.

Thetag of the canceled operation is stored in the command context space and can be
accessed with _LASTATIMEOUTATAG.

error := CANCELATIMEQUT ([tag]);

error returned value
INT

iIsaZDSN”ERR value indicating the outcome of the call. See Appendix B, “DSNM
Error Codes,” for error code definitions.

t ag input
INT(32):value
isthe tag of an outstanding SETATIMEOUT operation.

If t ag isomitted, the frame selects an outstanding timeout from this thread to
cancdl, if any.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-21

_CI"DEF DSNM Library Services
_CINDEF
_CI"DEF isatemplate for a Cl configuration structure, filled in by the _ ADD”CI
procedure.
Cl *"DEF

You must declare an extended pointer to a_CI*"DEF-defined CI configuration structure
in globals for each CI with which your | process communicates.

_ADDA”CI must be called in your STARTUP procedure for each ClI class your with
which your | process communicates. (_ ADD/CI allocates the memory for, fillsin, and
returns the address of the CI configuration structure.)

Consider ations

The definition of the CI"DEF-defined structure is:
DEFI NI TI ON ZDSN- DDL- PCLASS- CONFI G

02 Z- PCLASS TYPE
02 Z- PUBLI G- NAME- OCCURS TYPE
02 Z- PUBLI G- NAVE TYPE
02 Z- FLAGS TYPE
02 Z- PNAME- OCCURS TYPE
02 Z- PNAVE TYPE
02 Z- MAX- PROCESSES TYPE
02 Z- OPEN- PARAMS.

03 Z- DEFAULT- QUALI FI ER TYPE

03 Z- NOMAI T- DEPTH TYPE

03 Z- OPEN- TI MEQUT TYPE
02 Z- NEWPROCESS- PARAMS.

03 Z- OBJECT-FI LE TYPE

03 Z-LI BRARY-FI LE TYPE

03 Z- SWAPVOL TYPE
03 Z-PRIORITY TYPE
03 Z- DATAPAGES TYPE
03 Z- NUM CPUS TYPE
03 Z- CPUS TYPE
03 Z- HOVETERM TYPE
03 Z- FLAGS TYPE

END

A-22

ZDSN- DDL- PCLASS.
ZSPI - DDL- Ul NT.
ZDSN- DDL - PARAMNAME.
ZSPI - DDL- ENUM

ZSPI - DDL- Ul NT.
ZDSN- DDL- PNANE.

ZSPI - DDL- | NT.

ZDSN- DDL- PQUAL.
ZSPI - DDL- | NT.
ZSPI - DDL- | NT2.

ZDSN- DDL- OBJNAME.

ZDSN- DDL- OBJNAME.

ZDSN- DDL- OBJNAME.

ZSPI - DDL- | NT.

ZSPI - DDL- | NT.

ZSPI - DDL- | NT.

ZSPI - DDL- | NT OCCURS 16 TI MES.
ZDSN- DDL- OBJNAME.

ZSPI - DDL- ENUM

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _CI"DEF

Example

< in global definitions >
I NT . EXT scp (_Cl ~DEF);
I NT . EXT snaxcdf (_SUBSYS"DEF);

STRI NG . scpcl ass[0: ZDSN*MAXMCI CLASS-1] = [“SCP "];
STRI NG . cdf [0: ZDSN*MAXASUBSYS- 1] : = [“ SNAXCDF "];

< wthin STARTUP procedure >

| F _I'SNULL (@cp := _ADDMCl (scpclass)) THEN
RETURN ZDSN*ERRM| NTERNALMERR,;
IF _ISNULL (@naxcdf := _ADD'SUBSYS (cdf)) THEN

RETURN ZDSN*ERR*| NTERNAL"ERR
< within _COMVAND'PROC procedure >

CALL _OPEN'Cl (scp, ...);

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-23

_CI"FILENUM DSNM Library Services

CI"FILENUM

A-24

_CI"FILENUM givesthe type INT file number of the CI involved with the most-
recently completed communication.

filenunber := CI"FILENUM (ciid)

filenunber output
INT

isthe INT Guardian file number of the CI involved in the most-recently completed
communication.

ciid input
isthe CIID structure (declared with _CI~ID) identifying an open Cl.

Example
CALL FILEINFO (_CI~FILENUM (ciid), error);

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _CIND

_CI*ID

_CIMND declares astructure (referred to asa“ ClID” structure) in which _ OPEN/CI
stores information about an open ClI.

_CA™MD(ciid);

ciid user-providedidentifier

isthe name (avalid TAL identifier) given to the CIID structure with which an open
Cl can be accessed.

The CIID structure plays arole in command-thread CI communication analogousto a
file number in Tandem NonStop Kernel interprocess communications. A particular
instance of an open Cl isidentified by itsci i d in ClI communications.

The following defines extract information from the CIID structure about the
communication just completed:

_CI"LASTERROR (ciid) INT file-system error of last operation
_CI"REPLYLENGTH (ciid) INT length of reply
_CI"REPLYADDRESS (ci id) INT(32) extended address of reply

_CI"REPLYTAG (ciid) INT(32) tag of last operation
_CI"FILENUM (ciid) INT Guardian file number of CI
Example

The following example opens a Cl:

_CA™D (pm;
I NT . EXT ci”~config (_ClI"DEF);

IF (error := _OPENCl (ci”config, pm) THEN ...;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-25

CINDPOINTER DSNM Library Services

_CIMIDPOINTER
_CI"IDPOINTER_CIMDPOINTER declares an extended pointer to a ClID structure.

After the thread is dispatched by the framewith _EVAODONE, LASTACIND isatype
_CI™IDPOINTER pointer, which gives access to information about the CI causing the
event.

_CI"IDPONTER (ciid);

ciid input
declares a pointer to a ClID structure (declared with _CINID).

Example

The following exampl e declares a pointer to a ClID structure:
_CI A DPO NTER (pm; I'pointer to a CIID structure

|F _ON (_LASTAEVENTS, _EV"| ODONE)

THEN
BEG N
@m : = _LAST”AC "I D I'pm gets address of ClIID struct
|F _CI"LASTERROR (pn) !check for errors
THEN ... ;
END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-26 Development Guide

DSNM Library Services CI"LASTERROR

_CI"LASTERROR
_CI"LASTERROR isthe type INT file-system error of the last CI operation.

fserror := CIM"LASTERROR (ciid)

fserror output
INT
isthe file-system error of the last Cl operation.

ciid input
isthe CIID structure (declared with _CI~ID) identifying an open Cl.

Considerations

If CI"LASTERROR isnot 0, the following actions occurred:

* Retriable errors were retried unsuccessfully.

* |f the context flag of _SEND”CI was false (the send was context-free), an attempt
was made to reestablish communication with the CI process and to send the request
again.

If communication is reestablished, the file number returned by _CI*"FILENUM can
be different from earlier CI communications.

If any of these actions results in a successful communication, CI"LASTERROR
is 0; otherwise, it isthe last error that occurred. File system errors are documented
in the Guardian Procedure Errors and Messages Manual.

Example
_CI A DPO NTER (pm; I'pointer to a CIID structure
| F _ON (_LASTAEVENTS, _EV*| ODONE)
THEN

BEG N

@m : = _LAST”AC "I D I'pm gets address of ClIID struct
IF _CI"LASTERROR (pn) !check for errors
THEN ... ;
END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-27

_CI"REPLYADDRESS DSNM Library Services

_CI"REPLYADDRESS

A-28

_CI"REPLYADDRESS isthetype INT(32) extended address of the reply buffer
containing information read from a Cl on completion of a_SENDCI.

@eplyaddress := CI"REPLYADDRESS (ciid)

repl yaddr ess output
INT(32)
is the extended address of the reply buffer.

ciid input
isthe CIID structure (declared with _CI~ID) identifying an open Cl.

Example

In the following example, ci r epl y is set to point to the reply buffer containing data
returned by the most-recently completed I/O operation:

I NT . EXT cireply;

|F _ON (_LASTAEVENTS, _EV| ODONE)
THEN
BEG N
@ireply := _Cl~“REPLYADDRESS (_LASTACI Al D);

END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _CI"REPLYLENGTH

_CI"REPLYLENGTH

_CI"REPLYLENGTH isthetype INT length of the reply buffer containing information
read from a Cl on completion of a_ SEND"CI.

replylength := CI"REPLYLENGTH (ciid)

repl yl ength output
INT
isthe length of the reply buffer.

ciid input
isthe CIID structure (declared with _CI~ID) identifying an open Cl.

Example

In the following example, r epl yl en isthe length of the reply buffer containing data
returned by the most-recently completed CI 1/O operation:

I NT replylen;
| F _ON (_LASTAEVENTS, _EV*| ODONE)
THEN
BEG N
replylen : = _CI"REPLYLEN (_LASTACI*ID);
END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-29

_CI"REPLYTAG DSNM Library Services

_CI"REPLYTAG

A-30

_CI"REPLYTAG isthe type INT(32) tag associated with the last Cl operation.

replytag := CI"REPLYTAG (ciid)

repl yt ag output
INT(32)
is the tag associated with the last Cl operation.

ciid input
isthe CIID structure (declared with _CI~ID) identifying an open Cl.

Example

In the following example, r epl yt ag is the tag associated with the last Cl operation:

I NT(32) replytag;

| F_ON (_LASTAEVENTS, _EV*| ODONE)

THEN

BEG N
replytag : = CI"REPLYTAG (_LASTACI*I D);

END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _CLOSE"CI

_CLOSE~CI

_CLOSEN"CI terminates a Cl communication. In addition, CLOSE"CI cancels all
outstanding 1/O operations.

You must close a Cl beforeits CIID structure (ci i d) can be used in another _ OPEN”CI
operation.

error := CLOSErC (ciid);

error returned value
INT

isafile-system error. File system errors are documented in the Guardian Procedure
Errors and Messages Manual.

ciid input
isthe CIID structure (declared with _CI~ID) identifying an open Cl.

Example
In the thread termination procedure:

CALL _CLOSErCI (cx.spif);

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-31

_COMMAND/ACONTEXT*HEADER DSNM Library Services

_COMMAND"MCONTEXTMHEADER

A-32

_COMMAND"MCONTEXTMHEADER defines and reserves the fixed header portion of
the command context space that is allocated to each thread when it is created and that
persists until the thread terminates. This part of the command context space is reserved
for the specific uses described in Section 3, “| Process Development Process.”

_ COMVAND" CONTEXT™ HEADER

Consider ations

All private data used by the command thread must be defined in the command context
space or members of lists. Datain global areasis shared by all active threads and may
only be used asread-only data. Datain thelocal procedure is destroyed with each return
to the frame by any of the following:

e RETURN _RC"Xxx

e DISPATCHATHREAD

e SAVEATHREAD*AND"DISPATCH

e RESTORE"THREADAND"DISPATCH

The frame initializes the user-data area of the command context space to 0. Specify the
length of the command context structurein your _ STARTUP procedure, asin the
following example:

I NT PROC _STARTUP (context”™l ength, input”l mlength) EXTENSI BLE;
I NT . context”l ength, .input”l nmlength;
BEG N
context~l ength := $LEN (conmmand”cont ext ~def);
i nput Al mtl ength : = $LEN (i nput ”l ni*def) ;

RETURN ZDSN*ERR? NCERR;
END;

Example

The following exampl e declares a command context structure:

STRUCT COWVIVAND" CONTEXTADEF (*);
BEG N
_ COMVAND" CONTEXT" HEADER;
<user -defi ned dat a>

END;

Seethe _FOBJECTAINIT description for another _ COMMAND*CONTEXT"HEADER
example.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _COMMAND”PROC

_COMMAND"PROC

_COMMAND"PROC is the name of the first command thread procedure to be
dispatched by the frame.

THREAD*PROC (COMMANDPROC) ;

Consider ations

The frame invokes the command thread as_ COMMAND”PROC the first time it
dispatches an instance of thethread. It isrequired to have one thread defined with this
nameinthe | process.

You can change the procedure called at the next dispatch with:
e DISPATCHATHREAD
_PUSHATHREAD"PROCSTATE
_POP"THREAD"PROCSTATE

_SETA"THREAD"PROC
_SAVEATHREAD”*AND"DISPATCH
_RESTOREA"THREAD"AND”DISPATCH

Note. The thread procedure called at the next dispatch is referred to as the “current” thread.

Example

_THREAD"PROC (_COWAND"PRQOC) ;
BEG N
< procedure body >
_END" THREAD" PRCC,

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-33

_COMMAND/TERMINATION*PROC DSNM Library Services

_COMMANDATERMINATIONMPROC

_COMMAND"TERMINATION”PROC is the name of the thread termination procedure
declared with_ THREAD"TERMINATION"PROC.

_THREAD*"TERM NATI ON*PROC (_COMVANDMTERM NATI ONMPRCC) ;

Example

Use COMMANDATERMINATION”PROC in the following construction:

_THREAD*"TERM NATI ON*PRCC (_COVIVAND" TERM NATI O\ PRQOC) ;
BEG N

< brocedure body >

RETURN _RCMNULL;
_END*THREAD* TERM NATI ON*PRCC;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-34 Development Guide

DSNM Library Services _COMPILEDMNATESTMODE

_COMPILEDMINAMTESTMODE

_COMPILEDMINATESTMODE isaliteral with avalue of 1, if a sourcefileis compiled
with the SETTOG 1 compiler directive; otherwise, COMPILEDMNATESTMODE isO.

Use COMPILEDMINATESTMODE to set the value of thet est nbde parameter in
your _STARTUP*MODE procedure.

_COVPI LEDM N TESTMODE

Example

| NT PROC _STARTUP*MODE (conponent, testnode,
accept *startup”conmponent) EXTENSI BLE

STRI NG . EXT conponent;
I NT . EXT accept”startup”conponent;

BEG N
test node : = _COWPI LEDMI N TESTMODE;
accept *startup”conponent := 1;
RETURN ZDSN*ERR*NOERR;

END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-35

_DEALLOCATEAMLIST DSNM Library Services

_DEALLOCATE”LIST

_DEALLOCATEMLIST deletes all members of alist. Memory for the list membersis
deallocated immediately.

CALL _DEALLOCATEMLIST (list);

li st input
isthenameof a_LIST.

Example
CALL _DEALLOCATEMLI ST (cx. xc.input);

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-36 Development Guide

DSNM Library Services _DELETEANLM

_DELETEMLM

_DELETE"LM deletes amember of alist, immediately deall ocates its memory, and sets
the list-member pointer to null.

error := DELETEMLM (i st
, @i st-nmenber);

error returned value
INT

isaZDSN”ERR value, indicating the outcome of the call. See Appendix B,
“DSNM Error Codes,” for error code definitions.

li st input
isthenameof a_LIST.

| i st-menber input/output
INT .EXT
is apointer to the member to be deleted from | i st .

| i st-menber must point to acurrent member of | | st , or resultsare
unpredictable.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-37

_DEPOSIT DSNM Library Services

_DEPOSIT
_DEPOSIT sets selected bitsin the first parameter equal to the same bitsin the second
parameter.
_DEPCSIT (int-var
, I nt-exp
, bit-mask);
i nt-var input/output
INT:ref
iISINT variable, the selected bits of which are set equal to the same bitsin
i nt - exp.
i nt-exp input
INT:value

isan INT expression, the selected bitsto whichi nt - var bits are set equal.
bi t - mask input
INT:value
isan INT expression, the one-bits of which identify the bitsini nt - var and
I nt - exp participating in the operation.
Considerations

_DEPOSIT performs afunction similar to the following, except that the affected bits
need not be contiguous:

a.<x:y> := b.<x:y>

Example

In the following example, bits 9 and 15 of evt a are set equal to bits 9 and 15 of evt b:
I NT evta, evtb;

_DEPCOSIT (evta, evtb, %01); !sets evta.<9> := evth.<9>
land evta. <15> : = evtb. <15>.
I her bits of evta unchanged.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-38 Development Guide

DSNM Library Services _DISPATCH*THREAD

_DISPATCHA*"THREAD

_DISPATCHATHREAD returns to the frame and causes anew dispatch. It is effective
only in athread procedure, not in an auxiliary procedure or a subprocedure.

_DISPATCHATHREAD saves no information about the procedure from which it was
invoked.

This function cannot detect any failures and performs an unconditional RETURN
operation.

_ DI SPATCH*THREAD ([@rocnhane]
,| state]
,[event]);

procnane input

is the dispatched thread procedure. The default is the current procedure.

state input
INT: value

isan INT expression that designates the new current thread state when the thread is
dispatched. The default isthe current state.

event input
INT:value

isan INT expression that designates the event(s) with which the new procedure is
dispatched. The defaultis_ EVACONTINUE.

To use _DISPATCHATHREAD with no arguments (accepting all defaults), you must use
the following construction:

DI SPATCH"THREAD ()

To immediately redispatch the current thread in the current state, use
_DISPATCHATHREAD with the first two arguments blank:

_DI SPATCH*THREAD (, , event);

Example
_DI SPATCHTHREAD (@ext ~proc, , REALMLASTAEVENTS);

_DI SPATCH*THREAD (@wyproc, _STMINITIAL, my~event);
_ DI SPATCH*THREAD (@wyproc, my~state, ny~event);

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-39

_DSNMCONF*PARAMS

_DSNM CONF*PARAMS

_DSNMCONF*PARAMS isagloba structure, defined and stored in the | process
globals. The frame retrieves these parameters as part of its startup function.

A-40

DSNM Library Services

STRUCT _ DSNMCONF"PARAMS (ZDSN* DDL” DSNMCONF* PARAMS” DEF) ;

Consider ations

The contents of the DSNMCONF*PARAMS structureis as follows:

DEFI NI TI ON ZDSN- DDL - DSNMCONF-

02 Z- DSNWV MANAGER- OCCURS

02 Z- DSNWV MANAGER

02 Z- SWAPVOL- OCCURS

02 Z- SWAPVOL

02 Z- SEGPAGES

02 Z- SEGEXT.

03 Z- PRI MARY

03 Z- SECONDARY
Z- OBJECT- DB- OCCURS TYPE
Z- OBJECT- DB
Z- OBJECT- MONI TOR- OCCURS
Z- OBJECT- MONI TOR

Z- OBJECT- DB- | NTERFACE
Z- NAX- OPENERS

Z- EM5- COLLECTOR- OCCURS
Z- EM5- COLLECTOR

Z- SECPARAMS

PARANES.

TYPE ZSPI - DDL- Ul NT.
TYPE ZDSN- DDL- MANAGER.
TYPE ZSPI - DDL- Ul NT.
TYPE ZDSN- DDL- OBJNANME.
TYPE ZSPI - DDL- | NT2.

TYPE ZSPI - DDL- | NT.
TYPE ZSPI - DDL- | NT.
ZSPI - DDL- Ul NT.

TYPE ZDSN- DDL- OBJNANME.
TYPE ZSPI - DDL- Ul NT.
TYPE ZDSN- DDL- PNAME.

Z- OBJECT- DB- | NTERFACE- OCCURS TYPE ZSPI - DDL- Ul NT.

TYPE ZDSN- DDL- PNAME.
TYPE ZSPI - DDL- | NT.
TYPE ZSPI - DDL- Ul NT.
TYPE ZDSN- DDL- PNAME.
TYPE ZSPI - DDL- Ul NT.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Library Services _EMPTYALIST

_EMPTY~LIST

_EMPTYA2LIST is aBoolean define statement that isTRUE if | i st has no members.
TRUE is nonzero, not necessarily -1.

_EMPTYALIST (list)

li st input
isthenameof a_LIST.

Example

Thefollowing exampletestsif | i st isempty:
_LIST (list);

| F _EMPTYALI ST (1ist)
THEN ...

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-41

_EMSM"EVENT~CRITICAL DSNM Library Services

_EMS*EVENT/ACRITICAL

_EMS'EVENTACRITICAL isavalue used inthe REPORTAINTERNAL”ERROR and
_REPORTASTARTUPMERROR procedures, indicating that the event being logged to
EMSiscritical but not fatal.

_EVMSM"EVENTACRI TI CAL

_EMS*EVENT/MFATAL

_EMS'EVENTAFATAL isavaue used in the _ REPORTAINTERNALAERROR and
_REPORTASTARTUPERROR procedures, indicating that the event being logged to
EMSisfatal.

EMSM EVENT” FATAL

_EMS*EVENT”INFO

EMS'EVENTAINFO isavalue used in the_ REPORTAINTERNAL”AERROR and
_REPORTASTARTUPERROR procedures, indicating that the event being logged to
EMSisanon-fatal informative message.

_ENMSMEVENT” I NFO

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-42 Development Guide

DSNM Library Services _END"THREAD""PROC

_END*"THREAD""PROC

_END"THREAD"PROC ends athread procedure definition. Any procedure that can be
dispatched as part of athread must be declared with THREAD”PROC and
_ENDATHREAD"PROC.

_END*"THREAD"PROC issues RETURN _RCA"WAIT.

_END?M THREAD" PRCC,

Example

_THREADMPRCC (procnane);
BEG N
< procedure body >
_END" THREAD" PRCC,

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-43

_END"THREAD/TERMINATION*PROC DSNM Library Services

_END*"THREADATERMINATION”PROC

_END"THREAD""TERMINATION"PROC ends athread termination procedure
definition and issues RETURN _RCANULL.

The thread termination procedure declared with THREADATERMINATION"PROC
must end with _ END*"THREAD/*TERMINATION"PROC.

_ENDMTHREADM TERM NATI ONM PROC,

Example

Use END"THREADATERMINATION”PROC in the following construction:

THREAD"TERM NATI ON*PRCC (COVIVAND TERM NATI ONYPRQC) ;
BEG N
< procedure body >
_END"THREAD" TERM NATI O\ PRCC,

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-44 Development Guide

DSNM Library Services _EVATIMEOUT

_EVACANCEL

_EVACANCEL is generated by the frame when it receives a command cancellation
request.

The command thread can be dispatched with EVACANCEL after any return to the
frame; the operation should be terminated immediately.

_EVACANCEL

EVACANCEL should be handled like an error: you must perform clean-up operations,
such as freeing resources, returning the Cl to a reasonable state, and so on. Since
_EVACANCEL isanormal thread termination, the command thread should return to the
framewith an _RCASTOP return code.

_EVACONTINUE

EVACONTINUE is generated by the frame when the thread returns with RCMWAIT,
and there is no outstanding request to compl ete.

_EVACONTI NUE

_EVAIODONE

EVAIODONE is generated by the frame when I/O initiated by _ SEND"CI completes.
(cmd"context LASTACIMD gets the address of the ClID structure of the completed
operation.)

_EVA 1 ODONE

_EVASTARTUP
_EVASTARTUP is generated by the frame on itsinitial dispatch of a command thread.

_EVASTARTUP

_EVATIMEOUT

_EVATIMEOUT is generated by the frame when atimeout interval set by acall to
_SETATIMEOUT elapses. (cmd*context. LASTATIMEOUTATAG gets the tag of the
elapsed timeout.)

_BEVATI MEQUT

Note. The thread may simulate any frame event by signaling it with _SIGNAL"EVENT.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-45

_EXTRACT DSNM Library Services

_EXTRACT

A-46

_EXTRACT returns the value of those bits of bi t - mask that areonini nt - exp.
_EXTRACT performs afunction similar to the TAL bit-extraction operation, except the
extracted bits need not be contiguous, nor are they shifted to the right.

_EXTRACT (int-exp , bit-mask);

i nt-exp input
INT:value

isan INT expression from which bits are extracted, according to the one-bitsin
bi t - mask.

bi t - mask input
INT:value

isan INT expression, the one-bits of which identify the bitsini nt - exp to extract.

Example

LI TERAL error”bits = 9%B1101;
| NT sense”code, errors;

I Suppose sense”code = %B111000

errors := EXTRACT (sense”code, error”bits); !'errors = %81000

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _FIRSTALM

_FIRSTALM
_FIRSTALM returns the address of the first member of alist. _NULL isreturned if the
list isempty.
@irst-list-nmenber := FIRSTALM (list);
first-list-menber returned value
INT .EXT

is the address of the first member of | i st .

li st input
isthenameof a_LIST.

Example

_LI'ST (outlist);

I NT . EXT list*menber (list”nmenber”~def); !declare extended
I'pointer to list
I'menber structure

@i st menber := FIRSTALM (outlist); lget address of first
' menber

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-47

FOBJECT DSNM Library Services

FOBJECT

Every subsystem object processed by DSNM is defined by the contents of a
ZDSN"DDL"FOBJECT”DEF structure, known as a “formatted object.” The
_INPUTALM"HEADER and _OUTPUT”ALM"HEADER defines assign the name FOBJ |
to the formatted object structure portions of input and output list members.

It isimportant that every object processed by the command thread be represented in an
FOBJECT structure, properly initialized with the FOBJECTAINIT procedure.

The FOBJECT structure contains fields used directly by the command thread; it also
contains internal fields used by the | process frame and libraries.

Example

In the following example, information about the subordinate of an input object is entered
into an initialized output object for release to the frame:

STRUCT i nput Al mrdef (*);
BEG N
__ I NPUTA LM HEADER

END
STRUCT out put Al mtdef (*);

BEG N
_OQUTPUT” LM*HEADER

END;
STRUCT conmand”cont ext *def (*);
BEG N
_ COVIVAND" CONTEXTNHEADER,
I NT . EXT inobj (input”lntdef);
| NT . EXT outobj (output”l mdef);
END;

' Thread proc | ocal s!

I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS; |
INT . EXT in (input”~def) := @x. _I NPUT;
I NT . EXT out (output~def) := @x._ OUTPUT,

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-48 Development Guide

DSNM Library Services FOBJECT

I Create output |ist nenber

IF _ISNULL (@x.outobj := _PUT"LM (out.OBJECTLI ST,
$LEN (cx.outobj)))

THEN ... < out of available nmenory > ;

IF (error := FOBJECTMI NIT (cx.outobj.FOBJ,,

cx.inobj.FOBJ))

THEN ... < error exit > ;

cX.outobj.FOBJ. ZARESULT : = < status of subordinate >;
cx.outobj.FOBJ. Z "OBJTYPE ': =" < type of subordinate >;
cX.outobj . FOBJ. Z"OBIJNAME ' : =" < nane of subordinate >;

_RELEASEMQUTPUT (cx. out obj) ;

END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-49

_FOBJECTAINIT DSNM Library Services

_FOBJECTAINIT

A-50

_FOBJECTAINIT initializesanew FOBJECT structure and determines required fields
from its source FOBJECT structure. _FOBJECT/INIT does not allocate memory;
memory for the new formatted object must be allocated previoudly.

error := FOBJECTAMINIT (new- fobject
, [same-fobject]
,| parent-fobject]);

error returned value
INT

isaZDSN”ERR value, indicating the outcome of the call. See Appendix B,
“DSNM Error Codes,” for error code definitions.

new- f obj ect user-providedidentifier
isthe name (avalid TAL identifier) of the new FOBJECT structure to initialize.

sane- f obj ect input

is the name of an FOBJECT structure that contains the same object information as
new- f obj ect . Inthiscase, new f obj ect isidentical to its source object.

par ent - f obj ect input

is the name of an FOBJECT structure from which new- f obj ect is derived when
processing a hierarchy modifier or expanding a“*” object name.

Either sanme- f obj ect or par ent - f obj ect must be supplied in the call, but not
both. In both cases, all required internal information is entered in the new- f obj ect
structure.

® Usethesame- f obj ect argument if the new FOBJECT structure is to define the
same object as an existing FOBJECT structure. The new object isthe sameif it has
the same subsystem, object type, name, and manager. In this case, use the following
syntax to initialize the new FOBJECT structure:

error := FOBJECTAMINIT (new-fobject, sane-fobject);

The following fields from the source FOBJECT structure are copied to
new- f obj ect whenthesame- f obj ect argument is supplied:

Z"SUBSY S

Z"OBJTY PE
Z"OBINAME"OCCURS
Z"OBINAME
Z"MANAGERMOCCURS
Z"MANAGER

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _FOBJECTAINIT

Usethe par ent - f obj ect argument if the new FOBJECT structure isto define a
different object from any previoudly initialized FOBJECT structure. Specify the
new object’s parent in the name hierarchy as described above as the par ent -

f obj ect . The new object isdifferent if it differsin any of subsystem, object type,
name, or manager from its name parent (the name from which the new object was
derived by expanding a“*” or through the subsystem hierarchy). In this case, use
the following syntax to initialize the new FOBJECT structure:

error := FOBJECTAINIT (new fobject,, parent-fobject);

The following fields from the source FOBJECT structure are copied to
new- f obj ect whenthepar ent - f obj ect argument is supplied:

Z"SUBSY S
Z"MANAGER"OCCURS
Z"MANAGER

Z"OBJTY PE, Z"OBINAME, and Z*"OBINAME"OCCURS are set to null values (0
or blanks, as appropriate). You must supply values for Z*OBJTY PE and
Z"OBINAME. Suppling avaue for Z*\OBINAMEMOCCURS is optional.

In both cases, al required internal information is entered into the new- f obj ect
structure.

Consider ations

Parent means the parent of the new object in aname hierarchy, which includes the
subsystem hierarchy and a“*” object name, if supported by your | process. You can
produce new objects from objects on the input list in two ways.

1. Theinput object isa subsystem object, and new object names are subordinate

objects produced by processing a hierarchy modifier (HMOD).

2. Theinput objectisa“*,” and new object names are produced by expanding the “*.”

In either case, the input object is the parent of the new object in the name hierarchy
(which includes the subsystem hierarchy).

Note. Outside the | process, there are higher levels possible in the name hierarchy: DNS
groups (possibly nested) and composites.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-51

_FOBJECTAINIT

A-52

Example

In the following example, each input object and its hierarchical subordinates appear in

the output for a STATUS command:

STRUCT i nput Al mhdef (*);
BEG N
__ I NPUTA LM HEADER

END
STRUCT out put Al mtdef (*);

BEG N
_OQUTPUT” LM*HEADER

END;
STRUCT conmmand”cont ext *def (*);
BEG N
_ COVIVAND" CONTEXTA HEADER
I NT . EXT inobj (input”lntdef);
I NT . EXT outobj (output”l mdef);
END;
' Thread proc | ocal s!

I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS;
INT . EXT in (input”~def) := @x. _I NPUT;
I NT . EXT out (output~def) := @x._OUTPUT,

I Get the next input object

IF I SNULL(@X. i nobj := _GETALM (i n. OBJECTLI ST))
THEN RETURN _RCMSTOP;

I Create output |ist nmenber

IF _ISNULL (@x.outobj := _PUT"LM (out.OBJECTLI ST,
$LEN (cx.outobj)))
THEN ... < out of available nmenory > ;

Now cx.inobj.fobj and cx.outobj.fobj are the current

!
I input and output |ist nenbers. Since the output object
!
!

will be the same as the input object, use the samne-fobject
par anet er:
IF (error := FOBJECTMINIT (cx.outobj.FOBJ,

cx.inobj.FOBJ))
THEN ... < error exit > ;

' Now cx.inobj.fobj and cx.outobj.fobj are the current
I input and output objects.

I Send to Cl, determi ne status of input object and its
' subordi nat es.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services

DSNM Library Services _FOBJECTAINIT

I Use state variables to return to this point after the
I _EVM ODONE event occurs

cX.outobj.FOBJ. Z"RESULT : = < status of input object >;

I Since this conpletes the current output object, release it
_RELEASE"NQUTPUT (cx. out obj);

I Enter subordinates and their status into output |ist
I' (Assum ng one CI conmuni cation returns all subordi nates)

VWHI LE < nore subordi nate objects >

DO
BEG N
I|F _ISNULL (@x.outobj := _PUT"LM (out.OBJECTLI ST,
$LEN (cx.outobj)))
THEN ... < out of available nmenory > ;

I Next output object

I Since the output object is not the sane as the input
I object, use the parent-fobject paraneter:

IF (error := FOBJECTMI NIT (cx.outobj.FOBJ,,
cx.inobj.FOBJ))

THEN ... < error exit > ;

cX.outobj.FOBJ. ZARESULT : = < status of subordinate >;
cX.outobj.FOBJ. Z "OBJTYPE ': =" < type of subordinate >;
cX.outobj . FOBJ. Z"OBIJNAME ' : =" < nane of subordinate >;

_RELEASE"MQUTPUT (cx. out obj);
END;
See Section 4, “DSNM Command Requirements,” for more information about
FOBJECT fields.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-53

_GETALM DSNM Library Services

_GETALM

A-54

_GET”LM removes the current first member (the earliest member put on the list) from a
list and returnsits address. If thelistisempty, GET~LM returns _NULL.

@ist-menber = GETALM (i st
[length]);
li st-nmenber returned value
INT .EXT

is the address of the removed member.

li st input
isthenameof a_LIST.

| engt h output
INT:ref
returns the length of the removed member, in bytes.

Consider ations

® Removing amember with _GET”LM does not immediately deallocate memory.
The removed member's memory remains allocated and its contents useable until the
next successive member isremoved from the same end of the list, or a new member
is added to the same end of the list.

® Theremoved member does not participate in list scanswith _ SUCCESSORM.M or
_PREDECESSORMLM.

e Normally, alistisprocessed either by PUTALM plus_GET”ALM or by PUSHALM
plus _POPMLM, but not both.

* UNGETALM replacesthelast list member removed by GET”LM.

Example

In the following example, the first member of out | i st isremoved and
i st *menber issetto point to it:

LI ST (outlist);
TNT . EXT i st~menber (l'i st*menmber~def);
I NT Iength

IF _ISNULL (@i st”nmenber := _CET"LM (outlist, length))
THEN <enpty list> ;

Seethe FOBJECT/INIT description for another of example of _ GETALM.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _GET"PARAM

_GET"PARAM

_GET"PARAM retrieves one instance of a DSNM configuration parameter that is not
part of the standard set stored in the _ DSNM CONF*PARAMS structure.

error := _GET"PARAM (par anscope
, parantype

,[subsys]

,[class]

,| conmponent]

, paramane

, paranval ue: maxl en

[len]

,| error-filenane |);

error returned value
INT

iIsaZDSN”ERR or Guardian error. See Appendix B, “DSNM Error Codes,” for
ZDSN"ERR error code definitions. Refer to the Guardian Procedure Errors and
Messages Manual for Guardian error descriptions.

par anmscope input
INT
indicates whether the parameter islocal or global:
_LOCALMPARAM L ocal parameters consist of asingle value (for

example, SWAPVOL) obtained from one source: a
DSNMCONF file or the startup message.

_GLOBAL"PARAM Global parameters consist of multiple values (for
example, command server SY STEM parameters)
from all sources in which instances of the parameter
arefound.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-55

_GET~"PARAM DSNM Library Services

A-56

par ant ype input
INT
indicates how restrictive the search criteriais:

_COMPONENT”PARAM Component parameters are instances of a parameter,
specific to this component and class.

_CLASS"PARAM Class parameters are instances of a parameter,
specificto thisclass. If conponent isblank, itis
specific to the class as awhole.

_GENERALMPARAM General parameters are any instance of this
parameter. It may be for this component, for the
classasawhole (if conponent isblank), or for
any class (if both cl ass and conponent are
blank).

subsys input
STRING .EXT ! ZDSN"DDL"SUBSY S"DEF !

is the name of the subsystem whose associated parameter values are retrieved. A
blank subsystem name (all spaces) isvalid; the defaultis“DSNM .

cl ass input
STRING .EXT ! ZDSN*DDL"CLASS'\DEF !

is the name of the class whose associated parameter values are retrieved. A blank
class name (all spaces) isvalid; if omitted, the caller's class name is used.

conponent input
STRING .EXT ! ZDSN*"DDL*"COMPONENT”DEF !

is the name of the component whose associated parameter values are retrieved. A
blank component name (all spaces) isvalid; if omitted, the caller's component name
(specified by the COMPONENT parameter in your STARTUP*MODE procedure
or obtained from the process startup message) is used.

par ammane input

STRING .EXT ! ZDSN*DDL*"PARAMNAME"DEF !

is the name of the parameter, |eft-justified, blank-filled, whose value you want
returned.

par amval ue output
STRING .EXT

if er r or =0, contains the parameter value; otherwise, is undefined.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _GET"PARAM

max| en input
INT

is the maximum length returned in par anval ue, in bytes.
| en output
INT

isthe actual length of the value returned in par anval ue, in bytes. If
| en <maxl en, theremainder of par amval ue is blank-filled.

error-fil ename output
STRING .EXT ! ZDSN*"DDL*"OBINAME"DEF !

is the name of the configuration file associated with the returned er r or value.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-57

_GET"PROCESS"PARAM DSNM Library Services

_GET"PROCESS*"PARAM

_GETM"PROCESS"PARAM retrieves process startup parameters not part of the standard
set stored in the PROCESS*"PARAMS structure.

error := _CGET"PROCESS"PARAM (parammane
, paranval ue: maxl en

[len]);

error returned value
INT

iIsaZDSN”ERR or Guardian error. See Appendix B, “DSNM Error Codes,” for
ZDSN"ERR error code definitions. Refer to the Guardian Procedure Errors and
Messages Manual for Guardian error descriptions.

par ammane input
STRING .EXT ! ZDSN*DDL"PARAMNAME"DEF !

is the name of the parameter, |eft-justified, blank-filled, whose value you want
returned.

par amval ue output
STRING .EXT
if er r or =0, contains the parameter value; otherwise, is undefined.

max| en input
INT
is the maximum length returned in par anval ue, in bytes.

| en output
INT

isthe actual length of the value returned in par anval ue, in bytes.
If | en <maxl en, theremainder of par amval ue isblank-filled.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-58 Development Guide

DSNM Library Services _INITIALIZEMLIST

_INITIALIZEMLIST

_INITIALIZEMLIST setsalist structureto nulls. (Lists defined in the thread context do
not have to be initialized with _INITIALIZEMLIST.)

_INITIALIZEMLIST setsthe list header structure to nulls. Do not use it to deallocate
members of alist (seethe DEALLOCATEMLIST description).

CALL _INITIALI ZEMLIST (list);

li st input
isthenameof a_LIST.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-59

_INPUT DSNM Library Services

_INPUT

A-60

_INPUT isthe name assigned to the INPUT”~DEF structure template within the
command context area (where the frame places the command components). The
_COMMAND*CONTEXTMHEADER define assigns the _INPUT name.

Example

The following example of alocal data definition gives athread procedure access to the
input area:

I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS;
INT . EXT in (_INPUTADEF) := @x._| NPUT;

Seethe FOBJECTAINIT description for another INPUT example.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _INPUT”DEF

_INPUTADEF

_INPUT”DEF is a structure template into which the frame places the action and
command modifiers to be passed to the thread.

STRUCT _| NPUTADEF (*);
BEG N
_LI ST (OBJECTLI ST);
I NT acti on;
STRUCT nod (zdsn”“nod”def);
END;

Example

The following example of alocal data definition gives athread procedure access to the
input area:

I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS;
INT . EXT in (_INPUTADEF) := @x._| NPUT;

Seethe FOBJECT/INIT description for another INPUT”ADEF example.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-61

_INPUTALMAHEADER DSNM Library Services

_INPUT"LMM"HEADER

_INPUTALM”™HEADER describes thefirst part of the user-defined input list member
structure. Itisrequired as part of the input list member definition.

INPUTALM"HEADER generates aformatted object structure
(ZDSN~DDLFOBJECT~DEF); it identifies this object structure as FOBJ and identifies |
other fields for the frame.

_I NPUTM LMYHEADER

Considerations
The following FOBJECT fields arefilled by the frame for each object in the input list:

Z"HMOD Isthe hierarchy modifier. If present, it overrides the
hierarchy valuein _INPUT.MOD.Z"HMOD for this
object only.

Z"SUBSYS Is the name of the subsystem.

Z"OBJTYPE Isthe object type.

Z"OBINAMEMOCCURS Isthelength of the object name.

Z"OBINAME Isthe object name.

Z"MANAGERMOCCURS Isthelength of the manager name.

Z"MANAGER Is the name of the manager, if any.

Other FOBJECT fields and other dataitems generated by INPUTALM"HEADER are
reserved for use by the frame. See Section 4, “DSNM Command Requirements,” for
more information about FOBJECT fields.

The user-data area of each input list member following the INPUTALM~HEADER
portion is for the command thread’s use and isinitiaized to O by the frame. Specify the
length of the input list member structure in your _STARTUP procedure, asin the
following example:

I NT PROC _STARTUP (context”™l ength, input”l m'length) EXTENSI BLE;
I NT . context”l ength, .input”l mlength;
BEG N
context ™l ength := $LEN (conmmand”cont ext ~def);
i nput Al mtl ength : = $LEN (i nput”l ni*def) ;

RETURN ZDSN*ERR? NCERR;
END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-62 Development Guide

DSNM Library Services _INPUTALMMHEADER

Example
Thefollowing is an example of an input list member structure declaration:
STRUCT i nput *li st *nenber *def (*);

BEA N

_ | NPUTA LM HEADER,
< user-definitions >

END;
Seethe FOBJECTAINIT description for another INPUTALM~HEADER example.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-63

_ISNULL DSNM Library Services

_ISNULL

A-64

_ISNULL isaBoolean define statement that is TRUE if addr ess isanull extended
memory pointer. TRUE is nonzero, not necessarily -1.

Always use either ISNULL or NOTNULL to test a pointer rather than comparing it to
thelibrary literal _NULL. (There are multipleinternal valuesthat are accepted as
equivalent to _NULL.)

_I'SNULL (address)

addr ess input
INT(32):value
is the extended address being tested.

Example

Suppose command”~cont ext “def describing the command context area contains the
following:

I NT. EXT next”in™l'm (input”l nitdef);
The following exampl e removes objects from the input list until the list is empty:
I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS;

IF _|I SNULL (@x.nextin® m:= _GET"LM (cx. _|I NPUT. OBJECTLI ST))
THEN ... < out of input objects > ;

Seethe FOBJECTAINIT description for another ISNULL example.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _JOINALIST

_JOINALIST

_JOINALIST appends all members of a source list to a destination list.
Datais not moved in memory; the source list is empty afterwards.

error := JON'LIST (dest-Iist
,source-list);
error returnedvalue
INT

iIsaZDSN”ERR value indicating the outcome of the call. See Appendix B, “DSNM
Error Codes,” for error code definitions.

dest-1i st input/output
isthe name of the destination _LIST to which the membersof sour ce-1i st are
appended.

source-|i st input/output

is the name of the source LIST whose members are appendedto dest -1 i st .

Example

The following exampl e appends all the members of wor kl i st toout | i st :

_LIST (outlist);
_LI'ST (worklist);

I F (error := _JO NMLI ST (outlist, worklist))
THEN ... <error> ;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-65

KDSNDEFS DSNM Library Services

KDSNDEFS

A-66

KDSNDEFS isthe sourcefilefor all | process development definitions and declarations.
Your | process program code should have the following source structure:

? < user conpiler directives >
? SOURCE KDSNDEFS (1 PROCESSM"DEFI NI TI ONS)
BLOCK PRI VATE;

< user-defined globals >
END BLOCK
? SOURCE KDSNDEFS (| PROCESS"GLOBALS)

< user external procedure declarations >

? SOURCE KDSNDEFS (| PROCESS™ EXTDECS)

_STARTUP*MODE pr ocedur e

_STARTUP procedure

_ COVWWANDMPROC procedur e

< ot her command thread procedures >

_ COVWANDM TERM NATI ONMPROC pr ocedur e

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _LASTACIMND

_LASTACIMD

_LASTACI?ND isacommand context field that points to the CIID structure from the last
_EVAODONE event. Itstypeis_CI*DPOINTER.

command- cont ext. LASTACI M D

Example

In the following example, ngr is set to point to the CIID involved in the most-recently
completed CI communication:

_CI A DPO NTER (ngr);
I nt .ext cx(command”cont ext~def) = _THREAD*CONTEXT"ADDRESS,

| F _ON (_LASTAEVENTS, _EV*| ODONE)
THEN
BEG N
@mr := cx._ LASTACI "M D
IF _CIM"LASTERROR (nmgr) !check for errors
THEN ... ;
END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-67

_LASTAEVENTS DSNM Library Services

_LASTAEVENTS

A-68

_LASTA"EVENTS s set each time a command thread is dispatched to contain the

event(s) that caused the dispatch. Each bit represents a different event.

_LASTMEVENTS

Consider ations

e |LASTAEVENTSIisan INT global variable that can be tested and atered;
_REALMLASTAEVENTS, which is also set to the current event(s) at each dispatch,
can only be tested.

* Thefollowing events are generated by the frame:
_EVACANCEL When the frame receives a command cancellation request.

_EVACONTINUE When the thread returns with an _ RCMWAIT and thereis no
outstanding 1/0 or timeout.

EVAODONE When an /O initiated by a SEND”CI request completes.
_EVASTARTUP On the frame'sinitial dispatch of the thread.

_EVATIMEOUT When atimeout interval set by acal to _SETATIMEOUT
elapses.

* Only oneframe event at atime occurs with one dispatch per event, so only one bit of
_LASTAEVENTS s ever on for aframe event.

* Thethread may generate multiple, smultaneous eventswith SIGNAL"EVENT.
All events signaled by the thread before RCAWAIT appear together in
_LASTAEVENTS at the next thread dispatch. In this case, no frame events can

appear.

Examples

The following exampletestsif the EVACANCEL bitisonin _LAST"EVENTS:

| F ON(LASTAEVENTS, _EVACANCEL)
THEN ... ;

Inthis exampl e, thecontentsof LASTEVENTS are altered to reflect EVAIODONE
instead of EVATIMEOUT:

TURNCFF (_LASTMEVENTS, _EVATMEQUT) ;

_TURNON (_LASTAEVENTS, _EV*| ODONE) ;

Seethe SIGNALATIMEOUT description for another example of _LASTA"EVENTS.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _LASTALM

_LASTALM

_LASTALM returns the address of the last (most recent) member of alist. If alistis
empty, NULL isreturned.

@ast-list-nenber := LASTALM (list);

| ast-1i st-nmenber returned value
INT .EXT
is the address of the last member of | i st .

li st input
isthenameof a_LIST.

Example
I NT . EXT cx(command”cont ext *def) := _THREAD"CONTEXT" ADDRESS;
_LI STPO NTER (outlist) := @x. OQUTPUT. OBJECTLI ST;
I NT . EXT out”l m (out put "l mtdef); I Decl ar e extended poi nter
'to list nmenber structure
IF _ISNULL (@ut™ m:= _LASTALM (outlist))
THEN ... < list enpty > ;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-69

_LASTATIMEOUTATAG DSNM Library Services

_LASTATIMEOUTATAG

_LASTATIMEOUTATAG isacommand context field, set to the INT(32) timeout tag
associated with the SETATIMEOUT request, and completed by the last
_EVATIMEOUT event. It isconvenient to use the address of alist member as a timeout
tag to hold information about the purpose of the timeout, asillustrated in the example.

command- cont ext . _LASTATI MEQUTATAG

Example

STRUCT ti nme?i nf ordef (*);
BEG N

END;
I NT . EXT tinmeNinfo (tinme”infordef);

IF _ISNULL(@inmerinfo := PUTALM (cx.worklist,, SLEN(ti me?info)))
THEN ... < out of nenory > ;
< fill intime”info data >

CALL _SETATIMEOUT (time, @i meinfo);
RETURN _RCMAI T; IVait for _EVATI MEOUT

| F _ON (_LASTAEVENTS, _EVATI MEQUT)
THEN
BEG N
@inmeninfo := cx. LASTATI MEQUTATAG,
< process tinmetinfo data >
CALL DELETEMLM (cx.worklist, @i ne”info);
END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-70 Development Guide

DSNM Library Services _LIST

_LIST

_LIST declaresalist structure.

_LIST (list);

li st user-providedidentifier
isthe name (avalid TAL identifier) of the structure that _LI1ST declares.

Consider ations

® Thedata structure known as a“list” isthe basis for the | process program-
development software memory-management facility. A list consists of the structure
declared with _LIST and the list members.

® Thelist structure holds control information, used by the list library procedures.
Its size and structure are fixed.

e A list member isablock of memory, the size and description of which are
determined when the member is created with PUTALM or PUSH”LM.

® Thefollowing procedures and definesuse | i st to extract information about and
perform operations on list members:

_DEALLOCATEALIST (list)

_DELETEALM (list, @list-member)
_EMPTYALIST (list)

_FIRSTALM (list)

_GETALM (list, [length])
_INITIALIZEALIST (list)

_JOINALIST (source-list, dest-list)
_LASTALM (list)
_MEMBERSOF/LIST (list)

_POPMLM (ligt, [length])
_PREDECESSORMLM (list, list-member)
_PUSHALM (list, [length], initlength ,[initdata])
_PUTALM (list, [length], initlength, [initdata])
_SUCCESSORMLM (ligt, list-member)
_UNGETALM (list, list-member)
_UNPOPALM (ligt, list-member)

Example
Seethe examplefor _FOBJECTAINIT for list and list member declarations.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-71

_LISTPOINTER DSNM Library Services

_LISTPOINTER

A-72

_LISTPOINTER declares an extended pointer to a_LIST structure.

Oncealist pointer isinitialized with alist address, it can be used anywhere LIST is
used.

_LISTPO NTER (list);

li st user-providedidentifier
isthe name (avalid TAL identifier) of the list pointer.

Example

I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS; |
_LI STPO NTER (outlist) := @x._OUTPUT. OBJECTLI ST;
I NT . EXT out”l m (out put "l mdef);

IF'_ISNULL (@ut™lm:= PUTALM (outlist,,$LEN (out™lm))
THEN ... < out of nenory > ;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _MEMBERSOFALIST

_MEMBERSOFAMLIST
_MEMBERSOF/LIST isthe type INT(32) number of members currently in alist.

_MEMBERSOFALI ST (Iist)

li st input

isthenameof a_LIST.

Example

In the following example, nunt* renber s isthe number of membersini nli st :

_LIST (inlist);
I NT(32) numtnenbers;

nuntnmenbers = NMEMBERSOFMLI ST (inlist);

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-73

_MOVEALIST DSNM Library Services

_MOVEALIST

A-74

_MOVEMLIST moves all members of asource list to the destination list. After the
operation, the source list is empty.

CALL MOVENLI ST (dest-list, source-list)

dest-1i st input/output

isthe name of the destination _LIST to which the membersof sour ce-1i st are
moved.

li st input/output
isthe name of the source LIST whose members are movedtothedest - | i st .

Consider ations

dest - I i st should not have any members prior to the operation. If it does, these
members will not be accessible later on, as the pointer to them will be pointing to the
source members after the operation.

If source- i st isinitially empty, then, prior to the operation, it should be properly
initialized: for example, with NULLALIST.
Example

The following example moves all members of wor kl i st toout | i st:

_LIST (outlist);
_LI'ST (worklist);

_MOVEMLI ST(out list, worklist);

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _NOTNULL

_NOTNULL

_NOTNULL isaBoolean define statement that is TRUE if addressis anonnull extended
memory pointer. TRUE is nonzero, not necessarily -1.

Always use either NOTNULL or ISNULL to test a pointer rather than comparing it to
thelibrary literal _NULL. (There are multipleinternal valuesthat are accepted as
equivalent to_NULL.)

_NOTNULL (address)

addr ess input
INT(32)
is the tested extended address.

Example

The following example scans alist forward:

_LIST (list);
INT .EXT Im (list”menber~def); !extended pointer to
'N'ist menber structure

@m = _NULL;
VH LE _NOTNULL (@ m := _SUCCESSORMLM (list,Im) DO
BEG N
. while pointer is not null there are nore nenbers on
I the |ist
END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-75

_NULL DSNM Library Services

_NULL

A-76

_NULL isanINT(32) literal, defining a null value for an extended memory pointer.

Alwaysuse NULL for anull pointer value. Never test a pointer for null by comparing
itto_NULL; awaysuse ISNULL or NOTNULL for such tests. Thel process
program-development libraries use arange of null values. _NULL isguaranteed to bein
the range, but is not the only possible null pointer value.

A pointer set to _NULL causes an addresstrap, if used, to access memory.

_NULL

Example

_LIST (list);

INT .EXT Im (list”menber~def); !extended pointer to
I'l'ist menber structure

@m = _NULL;

WH LE _NOTNULL (@m := _SUCCESSOR'LM (list,In)) DO
BEG N
END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _NULLALIST

_NULLALIST

_NULL ALIST initidlizes alist structure. Itisuseful toinitializea LIST declaredin an
uninitialized memory area.

CALL _NULLALIST(list);

li st input/output

isthenameof a_LIST.

Consider ations

_NULLALIST does not deallocate an existing list. Use DEALLOCATEMLIST to
remove and deallocate all existing list members.

| i st must not have any members prior to the operation. If it does, these members will
not be accessible later on, because the pointer to them will be initialized.
Example

_LIST (worklist);
CALL _NULLALI ST(worklist);

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-77

OBJECTLIST DSNM Library Services

OBJECTLIST

OBJECTLIST isthe name assigned to the input and output object lists by the
_COMMAND*CONTEXTAHEADER define.

Example

The following exampl e gets a member off the input list and creates a member on the
output list:

STRUCT i nput Al mrdef (*);
BEG N
__ I NPUTA LM HEADER

END;
STRUCT out put Al mtdef (*);

BEG N
_OQUTPUT” LM*HEADER

END
STRUCT conmmand”cont ext *def (*);
BEG N
_ COMVAND" CONTEXT" HEADER;
I NT . EXT inobj (input”lntdef);

I NT . EXT outobj (output”l mdef);
END;

I Thread proc |ocals!

I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS;
INT . EXT in (input”~def) := @x. _I NPUT;
I NT . EXT out (output~def) := @x._ OUTPUT,

| Get the next i nput obj ect

IF _I'SNULL(@Xx.inobj := _GETALM (i n.OBJECTLI ST))
THEN RETURN _RCMSTOP; I out of input |ist nmenbers

I Create output |ist nenber

IF _ISNULL (@x.outobj := _PUT"LM (out.OBJECTLI ST,
$LEN (cx.outobj)))
THEN ... < out of available nenory > ;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-78 Development Guide

DSNM Library Services _OFF

OFF

_OFF isaBoolean define statement that is TRUE if any one-bit of bi t - mask isoff in
I nt - exp. TRUE isnonzero, not necessarily -1.

The _OFF function is the same asthe _ALLOFF function. It ismore descriptive to use
_ALLOFF when testing more than one bit.

_OFF (int-exp , bit-mask)

i nt-exp input
INT:value
isthe INT expression compared with bi t - mask.

bi t - mask input
INT:value

isan INT expression, the one-bits of which identify the bitsini nt - exp to test.

Example

The following exampletestsif the EVASTARTUP bit isoff in_LAST"EVENTS:

|F _OFF (_LASTAEVENTS, _EVASTARTUP)
THEN ... ;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-79

_ON

DSNM Library Services

ON

A-80

_ON isaBoolean define statement that is TRUE if any one-bit of bi t - mask isonin
I nt - exp. TRUE isnonzero, not necessarily -1.

The _ON function isthe same asthe _ ANYON function. It is more descriptive to use
_ANYON when testing more than one bit.

_ON (int-exp , bit-msk)

i nt-exp input
INT:value
is the variable compared with bi t - mask.

bi t - mask input
INT:value

isan INT expression, the one-bits of which identify the bitsini nt - exp to test.

Example

The following exampletestsif the EVACANCEL bitisonin _LAST"EVENTS:

|F _ON (_LASTAEVENTS, _EVACANCEL)
THEN . ..

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _OPEN"CI

_OPENACI
_OPENACI opens a Cl for communication.
error := OPEN'CI (ci-config
,ciid

,[processnane |
,[nowait-depth])

error returned value
INT

If > 0, isthefile system error returned from the FILE_OPEN __ procedure. File
system errors are described in the Guardian Procedure Errors and Messages
Manual.

If <0,isaZDSN error. See Appendix B, “DSNM Error Codes,” for ZDSN error
code definitions.

ci-config input

is the extended pointer (declared in globals). It pointsto the CI*"DEF-defined ClI
configuration structure, containing Cl configuration parameters.

ciid input
isthe CIID structure (declared with _CI~ID), identifying an open CI.
processnamne input

STRING .EXT

is the name of an existing CI process. The process nameisin external format and
must be terminated with anull or a blank.

nowai t - dept h input
INT:value

is the maximum number of concurrent _ SEND”CI operations that can be executed
against this Cl by thisthread. Thedefaultisl, if nowai t - dept h isomitted or
specified asavalue < 1.

Consider ations

e Your STARTUP procedure must call _ADD”CI to fill the CI*"DEF-defined CI
configuration structure for each CI class opened by the command thread.

e ci-configandciid play arolein command-thread CI communication that is
analogous to file name and file number in Tandem NonStop Kernel interprocess
communications. A Cl isidentified by itsci - confi g;aci i dreferstoa
particular instance of an open CI.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-81

_OPENA"CI

DSNM Library Services

® To communicate with a server Cl, you must all ocate a message buffer large enough
to hold the larger of the message and its response. This buffer must be in the
command context space or in an alocated list member. It cannot bein globals or
procedure locals. If more than one operation is to be outstanding (whether on the
same or on separate Cls), you should also supply an INT(32) tag for the operation,

usually a pointer to some identifying data.

e Afterinitiating arequest for CI communication, the thread must return to the frame
to wait for its completion withaRETURN _RCMWAIT. When the communication
is complete, the frame dispatches the thread with the event _ EVAIODONE.

e |f multiple SEND"Cls are outstanding concurrently, they are completed one at a
time and dispatched with EVAIODONE. Threads must return to the frame with
_RCAMWAIT to obtain completions of subsequent operations.

Example

The following example opens a Cl:

< wthin user globals area >

STRUCT cont ext "def (*);
BEG N I' Command t hread

_ COVIVAND" CONTEXTNHEADER,;
I NT . EXT i nput”™l m (input”l nmtdef);

|
!
I NT . EXT out put~l m (out”l mdef); !
|
CIM"I D (current”™ci);
I'NT cibuf[0:7];
END;

I NT . EXT scp (_CI"DEF);
I NT . EXT snaxcdf (_SUBSYS"DEF);

STRI NG . scpcl ass[0: ZDSN*MAXNCI CLASS- 1]

context definition

Current input |ist
menber

Current output Iist
menber

= [“SCP "];

STRI NG . cdf [0: ZDSN*MAX*SUBSYS- 1] : = [“ SNAXCDF "] ;

< wthin STARTUP procedure >

| F _I'SNULL (@cp := _ADDMCl (scpclass)) THEN

RETURN ZDSN*ERRM| NTERNALM ERR;

IF _ISNULL (@naxcdf := _ADD*SUBSYS (cdf)) THEN

RETURN ZDSN'ERR"| NTERNAL"ERR;

< vvithin conmand thread >

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

A-82

Development Guide

DSNM Library Services

I NT . EXT cx (context”~def) = _THREADCONTEXT"ADDRESS,
I NT error, cmd”l en;

LI TERAL max"cnd = ..., max"reply = ...;
IF (error := _OPEN*ClI (scp, cx.current”ci,
cX.input™l m FOBJ. Z*MANAGER) ;

THEN ... < open error > ;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759

_OPEN"CI

A-83

_OUTPUT DSNM Library Services

_OUTPUT

_OUTPUT isthe name assigned to the _ OUTPUT”DEF structure template within the
command context area where the frame declares the output object list (OBJECTLIST).
_OUTPUT isassigned by COMMAND/*CONTEXT"HEADER.

Example

The following example of alocal data definition gives athread procedure access to the
output area:

I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS;

| NT . EXT out (_OUTPUTADEF) := @x._ OUTPUT;

Seethe FOBJECT/INIT description for another _ OUTPUT example.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-84 Development Guide

DSNM Library Services _OUTPUT”DEF

_OUTPUT/DEF

_OUTPUTADEF is a structure template where the frame declares the output object list
(OBJECTLIST).

STRUCT _OUTPUTADEF (*);
BEG N
_LI ST (OBJECTLI ST);
END;

Example

The following example of alocal data definition gives athread procedure access to the
output area:

I NT . EXT cx (conmand”~cont ext "def) = _THREAD"CONTEXT"ADDRESS;

| NT . EXT out (_OUTPUTADEF) := @x._OUTPUT;

Seethe FOBJECTAINIT description for another . OUTPUT/DEF example.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-85

_OUTPUTALMMHEADER DSNM Library Services

_OUTPUTALMMHEADER

_OUTPUTALM”™HEADER describes the first part of the user-defined output list
member structure. It isrequired as part of the output list member definition.

_OUTPUTALM”MHEADER generates a formatted object structure
(ZDSN"DDL"FOBJECT"DEF); it identifies this object structure as FOBJECT and
identifies other fields for the frame.

_OQUTPUTN LMMHEADER

The following FOBJECT fields should be completed by the command thread before
releasing an output object list member to the frame:

Z"RESULT Is the result code for this object.

Z"SUBSY S Is the name of the subsystem.

Z"OBJTYPE I's the object type.

Z"OBINAME I's the object name, blank-filled.

Z"MANAGER Isthe name of the manager, if any, blank-filled.

It is not necessary to fill in ZOBINAMEOCCURS nor Z"MANAGERMOCCURS.

fS_gIedSection 4, “DSNM Command Requirements,” for more information on FOBJECT
ields.

Example

Following is an example of an output list member structure declaration:

STRUCT out put ~l i st *menber ~def (*);
BEA N
_ OQUTPUTALMMHEADER;
user - def i ned- ar ea

END;
Seethe FOBJECTAINIT description for another OUTPUTALM”HEADER example.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-86 Development Guide

DSNM Library Services _POPALM

_POP LM

_POPM_M removes the current last member (most recently added) from alist and
returnsits address. If alistisempty, POPALM returns_NULL.

@ist-menber := POPMLM (|ist
[length]);
li st-nmenber returned value
INT .EXT

is the address of the removed member.

li st input

isthenameof a_LIST.

| engt h output
INT:ref
returns the length of the removed member, in bytes.

Consider ations

® Removing amember with_POP*M does not immediately deallocate memory. The
removed member's memory remains allocated and its contents useable until the next
successive member isremoved with POP*_M, or anew member is added with
_PUSHALM.

® Theremoved member does not participatein list scans with _ SUCCESSORML.M nor
_PREDECESSORMLM.

e PUTALM, if used with _POP*LM, aso deallocates memory for the last element
removed by POPM_M.

e Normally, alistisprocessed either by PUTALM plus_GET”~LM or by PUSHALM
plus _POPMLM, but not both.

e UNPOPMM replaces the last list member removed by POPM_M.

Example

In the following example, the latest member of out | i st isremoved and
i st *menber issetto point to it:

LI ST (outlist);

INT . EXT |i st menber (1'ist*menber~def);

INTIeng t h;

IF_ISN LL (@i st nenber := POPLM (outlist, length));
THEN . <list empty > ;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-87

_POP"THREAD"PROCSTATE DSNM Library Services

_POP*THREAD""PROCSTATE

_POP*THREAD"PROCSTATE restores the values of the thread procedure and thread
state saved with the most recent PUSHA"THREAD”"PROCSTATE.

error := _POP*THREAD"PROCSTATE ;

error returned value
INT

iIsaZDSN”ERR value indicating the outcome of the call. See Appendix B, “DSNM
Error Codes,” for error code definitions.

Example
See the examplefor PUSH*"THREAD"PROCSTATE.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-88 Development Guide

DSNM Library Services _PREDECESSORALM

_PREDECESSORM LM

_PREDECESSORMLM returns the address of the list member placed on the list
immediately before the current list member was added.

@rev-list-nmenber := PREDECESSORMLM (i st
, I ist-nmenber);

prev-list-nmenber returned value
INT .EXT
is the address of the predecessor of the current list member.

li st input
isthenameof a_LIST.

| i st-menber input
INT .EXT
is apointer to acurrent member of | i st .

Consider ations

® List membersarelogically ordered. The first (or front or head) member isthe
earliest put on the list and the last (or end or tail) member isthe latest. Each
member has a successor and a predecessor, the predecessor of the first and the
successor of thelast being NULL.

e |ist-nmenber must beacurrent memberofli st,or @I i st-nenber must be
_NULL. If @li st-nenber is_NULL, the address of the last member of | i st
is returned.

® Predecessor list members are not necessarily stored at decreasing memory
addresses. You cannot determine the order of list members by comparing their

addresses.

* PREDECESSORMLM returns _NULL if one of the following is true:
® |ist-menber isthefirst memberof | i st.
* |ist isempty.

® Anerror Occurs.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-89

_PREDECESSORMNM DSNM Library Services

Example

The following exampl e sets two pointers, one to the last member of | i st , and another
to the next-to-last member:

_LIST (list);

INT . EXT Im (list”~menber~def); l'extended pointer to |ist
'menber structure

I NT . EXT previm (list”~nmenber~def); !another extended pointer
I'to list nmenber struct

@m:= LASTALM (list);

@revlm:= PREDECESSOR'LM (list, Im;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-90 Development Guide

DSNM Library Services _PRIVATEATHREADMEVENT

_PRIVATEATHREADMEVENT

_PRIVATEATHREAD"EVENT produces an INT constant with a single one-bit, suitable
for labeling an event to look different from any frame-generated event.

_PRI VATEATHREADEVENT (num) ;

numis anumber in the range O through 7.

Consider ations

e Currently, the thread can declare eight events guaranteed to be different from all
frame-generated events.

® Thread procedures must call _SIGNAL"EVENT to generate private events. When
the thread generates its own event(s), it is redispatched immediately when it returns
_RCMWAIT to the frame.

Example

The following exampl e causes two user-defined events, sub”™obj ect and
next ~obj ect ,tobeturned onin LASTAEVENTS at the next dispatch:

LI TERAL next”obj ect = PRI VATEATHREADEVENT (0);
LI TERAL sub”object = PRI VATEATHREAD'EVENT (1)

CALL _SI GNALMEVENT (sub”™obj ect + next”object);
RETURN _RCMAMAIT;

| After the next di spatch ..

I F ;ALLCN (_LASTMEVENTS, sub”object + next”object)
THEN .. .;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-91

_PROCESS"PARAMS DSNM Library Services

_PROCESS*"PARAMS

_PROCESS"PARAMS isaglobal structure defined in the | process globalsin which the
frame stores standard process parameters it retrieves as part of its startup function.

STRUCT _PROCESS"PARAMS (ZDSN"*DDL" PROCESS" PARAMS" DEF) ;

Consider ations

The contents of the PROCESS*"PARAMS structureis as follows:
DEFI NI TI ON ZDSN- DDL- PROCESS- PARAMS.

02 Z- CLASS- OCCURS TYPE ZSPI - DDL- Ul NT.

02 Z- CLASS TYPE ZDSN- DDL- CLASS.

02 Z- COMPONENT- OCCURS TYPE ZSPI - DDL- Ul NT.

02 Z- COMPONENT TYPE ZDSN- DDL- COVPONENT.

02 Z- M\YSYSTEM OCCURS TYPE ZSPI - DDL- Ul NT.

02 Z- M\YSYSTEM TYPE ZDSN- DDL- SYSTEM

02 Z- MYREALSYSTEM OCCURS TYPE ZSPI - DDL- Ul NT.

02 Z- M\YREALSYSTEM TYPE ZDSN- DDL- SYSTEM

02 Z- M\YPROCESS- OCCURS TYPE ZSPI - DDL- Ul NT.

02 Z- M\YPROCESS TYPE ZDSN- DDL- PNAME.

02 Z- TESTMODE TYPE ZSPI - DDL- | NT.

02 Z- DEBUG LEVEL TYPE ZSPI - DDL- ENUM

02 Z- SECTI ON- NAME- OCCURS TYPE ZSPI - DDL- Ul NT.

02 Z- SECTI ON- NAME TYPE ZDSN- DDL- PARAMNANE.
END

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-92 Development Guide

DSNM Library Services _PUSHALM

_PUSHALM

_PUSH”LM allocates memory for anew last member of alist and returnsits address.
_NULL isreturned if no memory is available for anew list member.

@ist-menber := PUSHLM (|i st
,[length]
,initlength
,[initdata]);
li st-nmenber returned value
INT .EXT
is the address of the new member.
li st input
isthenameof a_LIST.
| engt h input

INT:value
isthe length of the new member, in bytes.

initlength input
INT:value

is the number of bytes of the new member to be initialized (to the contents of
I ni tdat a, if present); otherwise, it isinitialized to Os.

i ni tdata input
INT .EXT
isastructure or an array containing initial data for the list member.

Consider ations

e |fl engthisnotprovided,i nitl engt h istaken asthelength of the new
member, as well astheinitializing length.

e Normally, alistisprocessed either by PUTALM plus_GET”~LM or by PUSHALM
plus _POP*LM, but not both.

e PUSHA”LM deallocates and reuses the memory assigned to the last element
removed by POPM_M.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-93

_PUSHALM DSNM Library Services

Example

The following exampl e allocates space for a new list member initialized to binary Os:
_LIST (list);

INT . EXT Im (list” menber~def);

IF _ISNULL (@m := _PUSH'M (list,,$LEN (I m)))

THEN <no nenory avail abl e> ;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-94 Development Guide

DSNM Library Services _PUSHATHREAD"PROCSTATE

_PUSHATHREAD”""PROCSTATE

_PUSHATHREAD"PROCSTATE saves the current thread procedure and thread state,
and optionally sets new values for the current thread procedure and thread state.

error := _PUSH'THREAD"PROCSTATE ([@procnane |
[state]);

error returned value
INT

isaZDSN”ERR value, indicating the outcome of the call. See Appendix B,
“DSNM Error Codes,” for error code definitions.

pr ocnane input

is athread procedure that becomes the current thread procedure after the existing
thread procedure is saved.

state input
INT:value
isan INT expression that becomes the current thread state after the existing value is
saved.

Consider ations

* |f procnane and st at e are not provided, the current thread procedure and thread
state are saved, and no new current thread procedure and state are set.

e The current thread procedure is defined as the procedure called by the frame the next
time the thread is dispatched.

* POP"THREAD"PROCSTATE restores the values of the thread procedure and
thread state saved with the last _ PUSH*"THREAD"PROCSTATE.
Example

In the following example, the frame dispatches PROC"X of the command thread in
_STAINITIAL. PROCMX calls PROCMY in STATE™B by:

® Settingitsreturn stateto STATEMNA.

e Saving the old current thread procedure and state values, and setting new current
thread procedure and thread state values.

® Signaling an event and returning to the frame to dispatch the new thread procedure
PROC™Y in the new state STATE"B.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-95

_PUSHATHREAD"PROCSTATE DSNM Library Services

PROCMY checksfor event EVASTARTUR, resets the current thread procedure and thread
state to the previously saved values of PROC*X and STATE"A, and returnsto the frame
to dispatch PROC"X in STATEMA.

_THREAD'PROC (PROCX) :
BEG N

CASE _THREADMSTATE OF
BEGE N
_STANITIAL -->
_THREADMSTATE : = STATEMA,
IF (error := _PUSHTHREAD"PROCSTATE(@ROC"Y, STATE"B))
THEN ... < error > ;

CALL _SI GNALMEVENT (_EVASTARTUP) ;
RETURN _RC*WAI T,

STATEMNA -->

RETURN _RCMSTOP;
END;
_ END*THREAD" PROC;

_THREAD'PROC (PROCMY) ;
BEG N

CASE _THREAD"STATE OF
BEG N
STATE’B - - >
|F _ON (_LASTAEVENTS, _EVASTARTUP)
THEN
BEG N

IF (error := _POP"THREAD"PROCSTATE)
THEN ... < error > ;
CALL _SI GNALMEVENT (_EVACONTI NUE) ;
RETURN _RC*WAI T,
END;
END;
_ENDM THREAD PRCC,

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-96 Development Guide

DSNM Library Services _PUTALM

_PUTALM

_PUTALM allocates memory for anew last member of alist and returnsits address.
_NULL isreturned if no memory is available for anew list member.

@ist-menber := PUTALM (|1 st
,[length]
,initlength

,[initdata]);

| i st-menber returned value
INT .EXT
is the address of the new member.

li st input
isthenameof a_LIST.

| engt h input
INT:value
isthe length of the new member, in bytes.

initlength input
INT:value

is the number of bytes of the new member to be initialized (to the contents of
I ni tdat a, if present): otherwise, it isinitialized to Os.

i ni tdata input
INT .EXT
isastructure or an array containing initial data for the list member.

Consider ations

e |fl engthisnotprovided,i nitl engt h istaken asthelength of the new
member, as well astheinitializing length.

e Normally, alistisprocessed either by PUTALM plus_GET”~LM or by PUSHALM
plus _POP*LM, but not both.

e PUTALM, if used with _POP*LM, deallocates and reuses the memory assigned to
the last element removed by POPLM.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-97

_PUTALM DSNM Library Services

A-98

Example

In the following example, the INITALMAVALUES structureis set to initializing values
for each worklist member; then alist member is allocated and initialized to
INITALMAVALUES:

STRUCT .init”l ntval ues (I mtdef);
_LIST (worklist);
I NT . EXT I m (| mdef);

I|F I SNULL(@ m : =_PUTALM (wor klist,,$SLEN(I m),init~l mval ues))
THEN ... <nenory error> ;

Seethe FOBJECT/INIT description for another PUTALM example.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _RCASTOP

_RCMABORT
Thethread returns _ RC*"ABORT to the frame when a command abnormally terminates.

RETURN RCMABORT (error);

error
INT

isaZDSN”ERR value, indicating the reason for the abnormal command
termination. See Appendix B, “DSNM Error Codes,” for error code definitions.

_RCANULL

_RCANULL isaspecial return code that is not equal to any valid thread return code; it
must be returned to the framein _ COMMAND"TERMINATION”PROC.

_RCANULL may bereturned by an _RCATY PE procedure (defined later in this
appendix) to indicate that it has not returned any valid frame return code.

_RCANULL must not be returned to the frame by any thread procedure.

_RC'NULL;

_RCASTOP

Thethread returns _ RCASTOP to the frame when a command ends normally.

RETURN _RC*STOP;

A command that terminates early dueto an _ EVACANCEL event from the frameis
considered to have terminated normally; the thread should return _RCASTOP to the
frame.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-99

_RCATYPE DSNM Library Services

_RCATYPE

_RCATYPE declares function procedures that can be called by a thread procedure (but
are not themselves thread procedures) and that return aframe return code value.

RCATYPE also declares variables to hold the frame return code (RC”) values such as
valuesreturned by RCATY PE function procedures.

_RCMTYPE PROC procnane

_RCMTYPE varl, [var2 [,...]];

The specia return code RCNULL may be returned by an _RCATY PE procedure to
indicate that it has not returned any valid frame return code. ' RC*NULL must not be
returned to the frame by any thread procedure.

Example

In this example, athread procedure callsan _RCATY PE procedure. The called
procedure returns a frame return code, which is interpreted by the calling procedure.

_RCMTYPE PROC process”object (...);
BEG N
END;
_THREAD"PROC (_COWAND"PRQOC) ;
BEG N
_RCMTYPE obj ~rc;
6bjArc . = process”object (...);
| F obj~rc <> _RCMNULL

THEN
RETURN obj "rc;

__END" THREAD" PROC;

_RCAWAIT

A-100

Thethread returns RCMWAIT to the frame to wait for the next event.

RETURN _RCMMAIT;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _REALMLASTMEVENTS

_REALMLASTAMEVENTS

_REALMLASTMEVENTS s set each time the command thread is dispatched to contain
the event(s) that caused the current dispatch. Each bit represents a different event.

_REALMNLASTMEVENTS

_REALMLASTMEVENTS is adefine that returns a value and as such, can only be tested;
it cannot be altered. LAST”EVENTS, which isaso set to the current event(s) at each
dispatch, is aglobal variable that can be tested and altered.

When athread isinvoked for thefirst time, LAST "EVENTS and
_REALMLASTAEVENTS are set to EVASTARTUP.

Example

The following exampletestsif the EVAIODONE bitisonin _REALMLASTAEVENTS:

| F _ON (_REALALASTAEVENTS, _EV~| ODONE)
THEN . ..

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-101

_RELEASEMOUTPUT DSNM Library Services

_RELEASEMOUTPUT

A-102

_RELEASEMOUTPUT releases amember of the output list to the frame. Once released,
the output list member can be removed by the frame at the next frame return.

Each output list member should be released as soon as it is completely compl eted.

_RELEASENQUTPUT (out put-1i st-nmenber);

out put - | i st - menber input
INT .EXT
is the output list member released to the frame.

Consider ations

® Theframe cannot remove an output list member that has an unreleased predecessor.
® Thread termination releases all output list members.

Example
Seethe FOBJECT/INIT description for a_ RELEASEMOUTPUT example.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _REPORTAINTERNALM"ERROR

_REPORTAINTERNALM"ERROR
_REPORTAINTERNALMERROR logsinternal errorsto the $0 EMS collector.

_REPORT” | NTERNALMERROR ([i nternal code]
verity]

———r—r—r—

i nt er nal code input
INT:value
isan internal code that you assign strictly for your own use.

severity input
INT:value
is one of the following values, indicating the severity of the event logged to EMS:
_EMSM"EVENT” I NFO The event is anonfatal informative message; itis

defined earlier in this appendix.

_EMSM"EVENTACRI TI CAL The event reports a critical but nonfatal condition; it
is defined earlier in this appendix.

_EMSMEVENT~FATAL The event reports afatal condition; it is defined
earlier in this appendix.

11 .. 14 input
INT:value
are four optional integer values for you to report relevant information.

Consider ations

* Theinternal codeis designed to assign a code for locating the point of the error in
the program.

* Theinteger values are designed to display internal data values in the event message
to help trace the error.

Example

IF _NOTNULL (@nobj := _GETALM (cx.current”™in)) THEN
BEG N
CALL _REPORTAI NTERNALMERROR (1, _EMSMEVENT”I NFO) ;
RETURN _RCMABORT (ZDSNMERRM NTERNALMERR) ;
END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-103

_REPORTASTARTUP"ERROR DSNM Library Services

_REPORTASTARTUPMERROR

_REPORTASTARTUP*ERROR reports fatal startup errorsto the $0 EMS collector,
resulting from _STARTUP procedure startup parameter or configuration errors.

_REPORTASTARTUPMERROR ([i nternal code]
,| severity]
[otext])]

i nt er nal code input
INT:value

isan internal code that you can assign strictly for your own use.

severity input
INT:value
is one of the following values, indicating the severity of the event logged to EMS:

EMSMEVENT” | NFO The event is anonfatal informative message; it is
defined earlier in this appendix.

_EMSM"EVENTACRI TI CAL The event reports a critical but nonfatal condition; it
is defined earlier in this appendix

EMSN EVENTA FATAL The event reports a critical and fatal condition; itis
defined earlier in this appendix.

t ext input
STRING .EXT

isthe error text. The text string must be terminated by a null character.

Consider ations

Theinternal code is designed to assign a code for locating the point of the error in the
program.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-104 Development Guide

DSNM Library Services _REPORTASTARTUP"ERROR

Example
| NT PROC _STARTUP (cxl, inputl) EXTENSI BLE;
I NT .cxl, .inputl;
BEG N
STRING errtext[0:29] :=["Invalid SPIFFY configuration", 0];
cxl := $LEN (cx~def); I' Command t hread context |ength
input! := $LEN (object”l mtdef); ' Frame input object

' list nmenber |ength

I Get C and subsystem configurations

IF _ISNULL (@pifnon := ADDMCI (spifclass))
OR ISNULL (@piffy := _ADD*SUBSYS (spifsys))
THEN CALL _REPORTASTARTUPMERROR (0, _EMSMEVENTAFATAL,
errtext);

RETURN ZDSN*ERRMNOERR;
END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-105

_RESTOREA"THREAD*AND"DISPATCH DSNM Library Services

_RESTORE"THREAD"MAND”DISPATCH

_RESTORE"THREAD"AND"DISPATCH restores the thread procedure and state last
pushed and returns to the frame for immediate dispatch with the specified event.

_ RESTOREATHREADAND'DI SPATCH ([event]);

event input
INT:value

isan INT expression that designates the event(s) with which the restored procedure
isto be dispatched. The defaultis EVACONTINUE.

When using _RESTORE"THREAD"AND"DISPATCH with all arguments omitted
(accepting the default event), you must use the following construction:

_RESTORE" THREAD* ANDDI SPATCH () ;

_RESTORE"THREAD/*AND”DISPATCH can fail only with error
ZDSN*ERR*NOTPUSHED. When afailure occurs, code immediately following the
function is executed.

Example
IF _ISNULL(@nobj := @x.currentobj :=
_CETALM cx. current”~in))
THEN
BEG N

I Qut of input objects; restore caller and conti nue.
I Note: Calling proc has set the state in which it
! desires to return before saving the thread
! state and dispatching this proc.
_RESTORE" THREAD" AND"DI SPATCH (_EVACONTI NUE) ;

I If _RESTORENTHREADMAND'DI SPATCH fail s,

I we fall through to here and ...
RETURN _RCMABORT (ZDSN*ERRMNOTPUSHED) ;

END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-106 Development Guide

DSNM Library Services _SAVEATHREAD*AND"DISPATCH

_SAVEATHREAD"MAND”DISPATCH

_SAVEATHREADMAND/DISPATCH saves the current thread procedure and state,
optionally sets new current thread procedure and state values, and returns to the frame
for immediate dispatch.

_SAVE"THREAD"ANDMDI SPATCH ([@procnane]
,| state]
,[event]);

procnane input

is the dispatched thread procedure. This procedure becomes the new current thread
procedure. The default is to redispatch the existing current thread procedure.

state input
INT: value

isan INT expression that designates what becomes the current thread state when the
specified thread is dispatched. The default is to keep the existing current state.

event input
INT:value

isan INT expression that designates the event(s) with which the new procedure is
dispatched. The defaultis_ EVACONTINUE.

When using _ SAVE"THREAD"AND"DISPATCH with all arguments omitted
(accepting all the defaults), you must use the following construction:

_SAVE"THREAD* ANDMDI SPATCH () ;

_SAVEATHREAD~AND/DISPATCH can fail only with the error
ZDSN"ERR"MEMORY. When afailure occurs, code immediately following the
function is executed.

Example

IF _ON (inobj.cf, c”info) THEN
BEG N
I Set state where we wish to return to this proc.
_THREADMSTATE : = st *done;
_SAVEN THREADMANDMDI SPATCH (@ nf o”proc, st”newtobj ect,
_EVASTARTUP) ;
I I f _SAVEAMTHREAD"ANDMDI SPATCH fai | s,
' we fall through to here and ...
RETURN _RCMABORT (ZDSN*ERRM MVEMORY) ;
END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-107

_SEND”CI DSNM Library Services

_SEND”CI

_SENDACI initiates sending amessage to aserver Cl. After initiating SEND”CI, the
thread must eventually return to the frame to wait for its completion with _RCMWAIT.

error := SENDMCI (ciid
, buf fer
, Wi te-count
, repl y-count
, [context-bool ean]
[tag]
,[timeout]);

error returned value
INT

If >0, isafile system error. File system errors are described in the Guardian
Procedure Errors and Messages Manual.

If <0,isaZDSN error. See Appendix B, “DSNM Error Codes,” for ZDSN error
code definitions.

ciid input
isthe CIID structure (declared with _CI~ID) identifying an open Cl.
buf f er input

INT .EXT:ref:*

isan array containing information to be sent to the Cl. Onreturn, buf f er contains
the information read from the CI (and is referred to as the “reply buffer”).

wri t e- count input
INT:value
is the number of bytes to send to the Cl.

repl y- count input
INT:value
is the maximum number of bytes accepted from the ClI in the reply buffer.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-108 Development Guide

DSNM Library Services _SEND”CI

con

tag

t ext - bool ean input
INT:value

indicates whether the send is context-free, meaning it does not depend on any
previous communication with thisci i d. Specifically:

* If cont ext - bool eanisO (FALSE), the send is context-free, which means it
may be sent to a new instance of the same Cl if an error occurs.

® |f cont ext - bool ean isnonzero (TRUE) or omitted, the command is
assumed to be contextually dependent on earlier commands sent to this Cl, and
the frame will not send the command to a new instance of the Cl if an error
OCCUrS.

input
INT(32):value

uniquely identifiesthis_ SEND”CI operation. t ag is used to distinguish among
sends if more than one operation is outstanding at the same time (whether to the
same or to separate Cls). Normally, atag isthe address of alist member in which
the user places identifying information about the operation.

ti meout i nput

INT(32):value

isthe timein .01-second unitsthat this I/O operation is allowed to remain
outstanding without a response. If the CI does not respond within thistime, the I/0
operation completes with file system error 40 (cannot be retried).

If ti meout isomitted or lessthan or equal to OD, an indefinite wait is indicated.

Consider ations

Distributed

If the communication is an SPI message containing a context token from a previous
communication, the message is contextually dependent on the previous message,
even though the CI is context-free. Inthiscase, cont ext - bool ean must be true.

The frame dispatches the thread with an _ EV/IODONE event when a_SEND/CI
operation completes. At that time:

_CI"LASTERROR (ciid) Isthe INT file system error of the operation.
_CI"REPLYLENGTH (ciid) IsthelINT length of thereply.
_CI"REPLYADDRESS((ci id) IsthelNT(32) extended address of the reply.

_CI"REPLYTAG (ciid) Isthe INT(32) tag of the operation.
_CI"FILENUM (ciid) Isthe INT Guardian file number of the Cl.
Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759 A-109

_SEND”CI DSNM Library Services

Example

In the following example, the command thread initiatesa_SEND”CI request and returns
to the frame to wait for an 1/0 completion event:

< wthin user globals area >

STRUCT cont ext Adef (*);

BEG N I' Command t hread context definition
_ COVIVAND" CONTEXTNHEADER,;
I NT . EXT i nput”™l m (input”l nmtdef); I Current input |ist
I menber
I NT . EXT output™l m (out”™l mtdef); ! Current output Iist
I menber

_LI'ST (worklist);

_CI™I D (current”™ci);

I NT ci buf[O: <buffer word | ength>)];
END;

< wthin command thread >

I NT . EXT cx (context”~def) = _THREAD*CONTEXT"ADDRESS,
I NT . EXT currentobj (input”l nmtdef);
INT error, cnd”len;

LI TERAL max"cnd = ..., maxreply = ...
IF _ISNULL (@urrentobj := _FIRSTALM cx. _| NPUT. OBJECTLI ST))
THEN ... < enpty list > ;
IF (error := _OPEN*ClI (ci”config, cx.current”ci

cX. i nput Al m FOBJ. ZA"MANAGER) ;
THEN ... < open error > ;

< Allocate buffer for _SENDMC >
IF _ISNULL (@x.cibuf := PUT"LM (cx.worklist,,
SMAX(max”~cnd, max”reply)))
THEN ... < nenory error > ;

< Construct bﬁffer to execute conmmand when sent to Cl >

IF (error ::'_SEND“CI (cx.current”ci, cx.cibuf, cnmd”™l en,
max”~reply, 0));
THEN ... < send error > ;
RETURN _RCMAMAIT; I Wit for EVM ODONE

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-110 Development Guide

DSNM Library Services _SET"THREAD"PROC

_SETA"THREAD"PROC

_SET"THREAD"PROC sets the current thread procedure to be called by the frame at

the next thread dispatch.

_SET"THREAD"PROC (@rochane);

procnane

input

is the name of the thread procedure called by the frame at the next thread dispatch.

Consider ations

® Setting the current thread procedure is ahigh-level state change. For instance, the
initial thread procedure (COMMAND”PROC) might examine the command passed

to it by the frame (when first dispatched) to determine if it is an informational

command or a state-change command. Since these commands have considerably
different output requirements, it may be convenient to have different procedures

perform their processing (see the provided example).

® The current thread procedure and thread state may be saved and later restored with

combinations of _DISPATCH*THREAD, _ PUSH*"THREAD"PROCSTATE,
POP"THREAD”"PROCSTATE, _SAVE*"THREAD"AND"DISPATCH, and

_RESTOREATHREAD"AND"DISPATCH.

Example

The following example causes the thread procedure selected for the command type to be

dispatched immediately with the event EVASTARTUP:
THREADMPRCC (i nf o™t hr ead”™pr oc) ;

- BEGN
< procedure body >
_END" THREAD" PRCC,
_THREADM"PRCC (st at e*change”™t hr ead™proc) ;
BEG N
< procedure body >
_END" THREAD" PRCC,
_THREAD"PROC (_COWAND"PRQOC) ;
BEG N

| F i nfo-type-command

THEN _SET"THREAD"PROC (@ nf o™t hr ead”pr oc)

ELSE _SETA"THREAD'PROC (@t at e*change”t hr ead”pr oc) ;
CALL _SI GNALNEVENT (_EVASTARTUP) ;
RETURN _RC*"WAIT;

__END" THREAD" PROC;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759

A-111

_SETATIMEOUT DSNM Library Services

_SETATIMEOUT

_SETATIMEOUT allows the command thread to delay for atime interval by arranging
for afuture timeout event.

CALL _SETATIMEQUT (time-interval
[tag |);

time-interval input
INT(32):value

specifies the timeout period, in .01-second units. Thisvalue must be greater than O.

t ag input
INT(32):value
is an identifier associated with the timer, which is placed into command context.

After theinterval is set, the thread must return to the frame with RC*WAIT. The thread
isdispatched with EVATIMEOUT when the interval elapses. If supplied, thetagis
placed into command context and can be accessed with LASTATIMEOUTATAG.
Usually, atimeout tag is the address of alist member holding information about the
purpose of the timeout.

Example

The following exampl e dispatches the current thread procedure with EVATIMEOUT
after a 1.00 second delay:

LI TERAL asec = 100D,

CALL _SETATI MEQUT (asec); Vit one second

RETURN _RCMWAI T, Vit for _EVATI MEQUT

Seethe LASTATIMEOUTATAG description for another SETATIMEOUT example.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-112 Development Guide

DSNM Library Services _SIGNALMEVENT

_SIGNALMEVENT

_SIGNALMEVENT generates private events or simulates frame events.

CALL _SI GNALMEVENT (event(s));

event (s) input

INT:value
isan INT expression, the one-bits of which designate the event(s) to be generated.

Consider ations

When the thread generates its own event(s) with _SIGNAL”EVENT, itis
redispatched immediately when it returns_ RCMWAIT to the frame.

You may simulate any frame event by signaling it with _SIGNAL"EVENT. For
example:

CALL _SI GNALMEVENT (_EV~I ODONE) ;

When you simulate a frame event, be careful not to use control variables set by
frame-generated events (such as_LASTACIND or _LASTATIMEOUTATAG),
unless they are set to match the event simulated.

Events generated by the frame occur singly, with one dispatch per event. All events
generated by the thread occur together, immediately after the next return to the
frame and before any frame-generated events.

Example

The following exampl e causes two user-defined events, sub”obj ect and
next ~obj ect ,tobeturned onin LASTAEVENTS at the next dispatch:

LI TERAL next”obj ect = PRI VATEATHREADEVENT (0);
LI TERAL sub”object = PRI VATEATHREAD'EVENT (1)

CALL _SI GNALMEVENT (sub”™obj ect + next”object);
RETURN _RCMAMAIT;

| After the next di spatch ...

I F '_ALL(J\I (_LASTMEVENTS, sub”object + next”object)

THEN .. .;

Since PRIVATEATHREAD/MEVENT generates abit value different from all frame
events, the eventsthat areon in _LAST”EVENTS mean this dispatch was caused by
_SIGNALMEVENT.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-113

_STARTUP DSNM Library Services

_STARTUP

_STARTUP isauser-provided initialization procedure called by the frame. It supplies
the lengths of the user context area and input list members, and retrieves and places
subsystem and CI configuration parameters into predefined structures for use by the
frame.

You must call _ADD"SUBSY Sinyour STARTUP procedure for each subsystem your
| process handles, aswell as_ ADDACI for each CI class with which your | process
communicates.

I NT PROC _STARTUP (context-length , input-Imlength)
EXTENSI BLE;

context-1length output
INT:ref

is the length of the command context structure, in bytes.

i nput-I mlength output
INT:ref
is the length of an input list member, in bytes.

The frame must know the lengths of the user-defined command context and input list
member structures, since it allocates these areas before it creates the first instance of the
command thread.

If no values are provided for cont ext -1 engt h andi nput - I m | engt h, the frame
allocates only the space required for its own use (as defined by

__ COMMAND"CONTEXTMHEADER and _INPUTALM”"HEADER). No spaceis
reserved for user data.

Example

The following example of an initialization procedure assumes that the user has defined
structure templates for the command context area (command”contextdef), an input list
member (input®lm”def), pointersto a_CI*"DEF-defined CI configuration structure (scp),
and a_SUBSY S"DEF-defined subsystem configuration structure (snaxcdf):

I NT PROC _STARTUP (cx”length, in”l nmlength) EXTENSI BLE
I NT .cx™l ength, .in”l ntlength;

BEG N
cxM ength : = $LEN (command”~cont ext *def);
i Nl Ml ength : = $LEN (i nput~l mdef);

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-114 Development Guide

DSNM Library Services _STARTUP

IF ISNULL (@cp := _ADDMCl (scpclass)) THEN
RETURN ZDSN'ERRM| NTERNALMERR,;
IF _ISNULL (@naxcdf := _ADD'SUBSYS (cdf)) THEN

RETURN ZDSN*ERRM| NTERNALM ERR;
RETURN ZDSN*ERR"NOERR;
END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-115

_STARTUP*MODE

_STARTUP*M ODE

A-116

_STARTUP*MODE is a user-provided procedure called by the frame when it begins
startup processing. _ STARTUP*MODE retrieves the component name of the

subsystem(s) being handled by the | process and determinesif the | processis running in

test mode and whether to use the COMPONENT process parameter value (if one
appears in the startup message).

DSNM Library Services

| NT PROC _STARTUP"MODE (conponent
, testnode
, accept-startup-conponent
, Subject)
EXTENSI BLE;
conponent output

STRING .EXT ! (ZDSN*"DDL"COMPONENT”DEF) !
is the name, left justified, blank-filled, of the subsystem handled by the | process.

conponent isused for configuration parameter retrieval, and is usually the name
of the subsystem that the | process handles. For | processes that handle multiple
subsystems, component is an arbitrary name chosen by the devel oper of the process.
For example, the Tandem-supplied SCP | process handles multiple communications
subsystems: COMM is its component name.

t est node output

INT .EXT

indicatesif the | processisrunningin test mode. A nonzero value indicates yes;
0 indicates no (default).

Usetheliteral COMPILEDMINATESTMODE as the value for the testmode
parameter. COMPILEDANATESTMODE isautomatically set to 1 if the source
fileis compiled with SETTOG 1, and 0 otherwise (indicating that the | processis
running in production mode).

Test mode forces the STARTUP process parameter to default to yes, and enables
processing of the CONFIG, STARTUPR, and DEBUG process parameters (see
Section 5, “DSNM Process Startup Functions’).

accept - start up- conponent output

INT .EXT

indicates whether a process COMPONENT value in the startup message should
override (nonzero) or should not override (0) the conponent vaue. O (zero) isthe
default.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _STARTUP"MODE

subj ect output
STRING .EXT

identifies the NUL L-terminated value used in the EM S event messages. It can be
the | process name.

Example

| NT PROC _STARTUP"MODE (component, testnode,
accept *st art up”conponent, subject) EXTENSI BLE;
STRI NG . EXT conponent;
| NT . EXT testnode;
I NT . EXT accept~startup”conponent;
STRI NG . EXT subj ect;

BEG N

t est node : = _COWPI LEDMI N TESTMODE;

accept *startup” corrponent = 0

conmponent ':=" [" "] & conponent FOR
$LEN(ZDSN*DDL” COVPONENTADEF) - 1;

conmponent ' :=' [" PATHWAY" | ;

subj ect o=t ["PWT, 0];

RETURN ZDSN* RETC(DE"(J(

END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-117

_STMINITIAL DSNM Library Services

_STAINITIAL

A-118

When the frame creates athread, it sets the thread stateto STAINITIAL. The thread
state value isstored in an INT context variable, accessible with the THREAD"STATE
define.

See STMINATHREADASTATE for information on defining your thread states.

_STM NI TI AL

Example

The following exampl e tests the current state of the thread:

CASE _THREAD*STATE OF
BEG N
"STAINITIAL ->
OTHERW SE - >
END,

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _ST*MIN*THREADAMSTATE

_ST"MIN*"THREAD/MSTATE
_STAMINATHREADA"STATE isthe minimum value of a user-defined thread state.

_ST"M N"THREADSTATE

Considerations

® Thread states are normally declared as literals.

* Vaueslessthan ST"MIN"THREADA"STATE are reserved for use by the frame.
¢ THREADXSTATE contains the current thread state.

Example

The following exampl e declares several user-defined thread states and sets the current
thread state:

LI TERAL thr~statel = ST"M N*THREADMSTATE, thr”/state2,
thr~state3, .. .;

_THREADMSTATE : = thr~statez2;

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759 A-119

_SUBSYS”DEF DSNM Library Services

_SUBSYS'DEF

_SUBSY S"DEF is atemplate for a subsystem configuration structure, filled by the

_ADDASUBSYS procedure with subsystem and object-type configuration data.
Declare an extended pointer to a_SUBSY S*DEF-defined subsystem configuration
structure in globals for each subsystem your | process handles.

_ADD”SUBSY S must be called in your _STARTUP procedure for each subsystem your
| process handles. _ADD"SUBSYS allocates the memory for, fillsin, and returns the
address of the subsystem configuration structure.

_SUBSYS" DEF

The definition of the SUBSY S"DEF-defined structureis:

STRUCT _SUBSYS"DEF (*);
BEG N
STRUCT SUBSYSMCONFI G (ZDSN*DDL” SUBSYS™ CONFI G DEF) ;
| NT OBJTYPES;
STRUCT OBJTYPE"CONFI G (ZDSN*DDL” OBJ TYPEA CONFI G DEF)
[0:-1];
END;

_SUBSY S"DEFfillsin one OBJTY PE*CONFIG array for each object type configured
in the subsystem, and sets OBJTY PES to the number of object-type configuration
entries in the subsystem.

Definitions for the two structures contained within the SUBSY S*"DEF-defined
structure are as follows:

DEFI NI TI ON ZDSN- DDL- SUBSYS- CONFI G
02 Z- SUBSYS TYPE ZDSN- DDL- SUBSYS.
02 Z- RANK TYPE ZSPI - DDL- | NT.
02 Z- DEFAULT- OBJTYPE TYPE ZDSN- DDL- OBJTYPE.
02 Z- DEFAULT- SUBOBJTYPE TYPE ZDSN- DDL- OBJTYPE.

02 Z- DEVTYPE OCCURS ZDSN- MAX- DEVTYPES TI MES.
03 Z-TYPE TYPE ZSPI - DDL- | NT.
03 Z- SUBTYPE TYPE ZSPI - DDL- | NT
OCCURS ZDSN- MAX- SUBTYPES TI MES.
02 Z- FLAGS TYPE ZSPI - DDL- ENUM
02 Z- MANAGER- GBJFI LE TYPE ZDSN- DDL- OBJNANME.
02 Z- DSNM TYPE ZDSN- DDL- PCLASS.
END
DEFI NI TI ON ZDSN- DDL- OBJTYPE- CONFI G
02 Z- SUBSYS TYPE ZDSN- DDL- SUBSYS.
02 Z-OBJTYPE TYPE ZDSN- DDL- OBJTYPE.
02 Z- PARENT- OBJTYPE TYPE ZDSN- DDL- OBJTYPE.
02 Z- RANK TYPE ZSPI - DDL- | NT.
END

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-120 Development Guide

DSNM Library Services

Example

< in global definitions >

I NT . EXT ci”~config (_ClI"DEF);
I NT . EXT ss”config (_SUBSYS"DEF);

STRI NG . ci name[0: ZDSNAMAXACl CLASS- 1] := [“XXX "];
STRI NG . ssname[0: ZDSNAMAXASUBSYS- 1] : = [YYYYYY "];

< wthin STARTUP procedure >
BEG N

| F _I'SNULL (@i ~config := _ADD'Cl (cinanme)) THEN
RETURN ZDSN*ERRM| NTERNALMERR,;

IF _ISNULL (@s”config := _ADD*SUBSYS (sshane)) THEN

RETURN ZDSN*ERRM| NTERNAL" ERR;

END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759

_SUBSYS”DEF

A-121

_SUCCESSORMLM DSNM Library Services

_SUCCESSORALM

_SUCCESSOR”LM returns the address of the list member placed on the list
immediately after the current list member was added.

@ext-list-nmenber := SUCCESSORMLM (|i st
, I ist-nmenber);

next -l i st-nmenber returned value
INT .EXT
is the address of the successor list member.

li st input
isthenameof a_LIST.

| i st-menber input

INT .EXT
is apointer to acurrent member of | i st .

Consider ations

® List membersarelogically ordered. The first (or front or head) member isthe
earliest put on the list and the last (or end or tail) member isthe latest. Each
member has a successor and a predecessor, the predecessor of the first and the
successor of thelast being NULL.

e |ist-nenber must beacurrent member, or @l i st - menmber must be NULL.
If @i st-nenmber is_NULL, the address of the first member of | i st is
returned.

® Successive list members are not necessarily stored at increasing memory addresses.
You cannot determine the order of list members by comparing their addresses.

_SUCCESSORMLM returns _NULL if one of the following istrue:
e |ist-nenber isthelast memberof | i st.

* |ist isempty.
® Anerror Occurs.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-122 Development Guide

DSNM Library Services _SUCCESSORAMLM

Examples

The following exampl es use the declarations:

_LIST (list);

INT . EXT Im (list” menber~def); ' extended pointer to
'N'ist menber structure

I NT . EXT nextlm (list”nmenber~def); !another extended pointer

lto list nenber struct

This example scans alist in the forward direction:

@m = _NULL;

VH LE _NOTNULL (@m := _SUCCESSORMLM (list,Im) DO
BEG N
END;

In this example, the user waits for anew last member to be added to the end of alist by
keeping a previous member pointer. After finding NULL, @Im is set to its previous
value. Later, @Im can be used in _SUCCESSOR”LM to get a new later member, if one
has been added, or _NULL, if one has not been added.

@m:= @extlm:= _NULL,;
VH LE _NOTNULL (@m := _SUCCESSORMLM (list,Im) DO
BEG N
@extlm:= @m

END:
@m:= @extlm

< Imcan be used to find a new | ast nenber >

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-123

_THREAD*CONTEXT”ADDRESS DSNM Library Services

_TH

A-124

READMCONTEXTMADDRESS

_THREADMCONTEXT~ADDRESS isan INT(32) field, containing the extended
address of the command context area, which isallocated to each thread when itis
created and persists until the thread terminates. The context area contains a fixed
header, followed by a user-defined area.

Since globals are shared among all threads, the construction to access the thread context
must be done in the local data area of each procedure that requires access.

_ THREAD CONTEXT" ADDRESS

Example

The following example of alocal data definition gives athread procedure access to the
command context area:

I NT. EXT cx (command”cont ext *def) = _THREAD*CONTEXT"ADDRESS;

command”~cont ext “def isauser-defined structure template that begins with
_COMMAND”CONTEXTAHEADER.

See a'so the examples for _FOBJECTAINIT and _COMMAND”MCONTEXTAHEADER.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _THREAD"MPROC

_THREAD"PROC

_ THREAD"PROC defines a procedure dispatched as part of a thread
(aprocedure that can be set as a new current thread with SETA"THREAD”PROC,
_PUSHATHREAD”PROCSTATE, _POP*"THREAD"PROCSTATE,
_DISPATCHATHREAD or _SAVE"THREAD"*AND"DISPATCH).

_THREADMPRCC (procnane);

pr ocnane user-providedidentifier
isthe name (avalid TAL identifier) of the procedure.

Examples

Use THREAD"PROC in the following constructions:
_THREADMPROC(procnane); EXTERNAL;
_THREADMPROC(procnane); FORWARD;

_THREADMPROC(procnane);
BEG N
< procedure body >
_END" THREAD" PRCC;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-125

_THREADASTATE DSNM Library Services

_THREADAMSTATE

_THREADN"STATE accesses an INT variable that represents the current state of the
thread. THREAD/STATE may be set or tested.

_THREADMSTATE

Consider ations

® Theframe setsthe thread stateto _STAINITIAL when it creates athread.
Subsequently, you may alter the thread state as desired; the frame never usesiit

again.

® Thread state valuesless than the library literal _ ST*MIN"THREADA"STATE are
reserved. State values are aways nonnegative. At present, STAINITIAL isthe
only reserved value.

® The current thread state may altered with _DISPATCHATHREAD,
_PUSHATHREAD”PROCSTATE, _POP*"THREAD"PROCSTATE,
_SAVEATHREAD"AND"DISPATCH, or
_RESTOREATHREAD*AND”DISPATCH.

Example

The following exampl e tests and alters the current state of the thread:

CASE _THREAD'STATE OF
BEG N
"STAINITIAL -
OTHERW SE - >
END,

_THREAD'STATE : = thrst at e2;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-126 Development Guide

DSNM Library Services _THREAD"TERMINATIONACODE

_THREADATERMINATION*CODE

_THREAD"TERMINATION"CODE is a define to access a context field that contains
the ZDSN"ERR value returned with RC*ABORT or RCASTOP. Itisdesigned for use
in_COMMAND/TERMINATION”PROC to determine why the thread terminated.

_THREAD* TERM NATI O\ CCDE

In the case of an _RC"STOPR, the _THREADATERMINATION~CODE valueisO.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-127

_THREAD*TERMINATION*PROC DSNM Library Services

_THREAD*TERMINATION”PROC

A-128

_THREAD"TERMINATION"PROC defines a procedure responsible for cleaning up the
thread’s environment after a command successfully completes or after athread
abnormally terminates. It isthe required name of the thread termination procedure for
the | process.

_THREAD"MTERMINATIONMCODE may be accessed and/or altered in the thread
termination procedure.

The thread termination procedure declared with THREADATERMINATION"PROC
must end with _ ENDATHREAD~TERMINATION”PROC.

_THREAD*"TERM NATI ON*PRCC (_COMVANDMTERM NATI ONMPRCC) ;

Examples
Use THREAD"TERMINATION”PROC in the following construction:

_THREAD*TERM NATI ON*PRCC (_COVIVAND" TERM NATI O\ PROC) ;

BEG N

< p?ocedure body >

I For exanple, may free lists and return, |eaving the
I thread’s original termnation code

I (_THREAD"TERM NATI ON*CODE) unchanged, and | eavi ng

I official input and output lists to the frane.

CALL DEALL(I:ATE"LIST(DE

CALL _CLOSErD (...);

RETURN _RCMNULL;
_END*THREAD" TERM NAT| ON* PROC;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _TURNOFF

_TURNOFF
_TURNOFF turns off all thebitsini nt - var that areoninbi t - mask.

_TURNOFF (int-var , bit-mask);

i nt-var input/output
INT:ref

isavariable, the bits of which are turned off according to the contents of
bi t - mask.

bi t - mask input
INT:value
isan INT expression, the one-bits of which identify the bitsini nt - var to turn off.

Example

The following example turns off bits9and 11 invar :

| NT var;

LI TERAL evta %20;

LI TERAL evtb %4.00;
_TURNCOFF (var, evta + evtb);

evta. <11> on
evt b. <9> on

var.<9> and var.<11>
now of f

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-129

_TURNON DSNM Library Services

_TURNON

A-130

_TURNON turnsonall thebitsini nt - var thatareoninbi t - mask.

_TURNON (int-var , bit-nmask);

i nt-var input/output
INT:ref

isavariable, the bits of which are turned on according to the contents of
bi t - mask.

bi t - mask input
INT:value
isan INT expression, the one-bits of which identify the bitsini nt - var to turn on.

Example

The following exampleturnson bits9 and 11 invar :

| NT var;

LI TERAL evta = %20; levta. <11> on

LI TERAL evtb = 9%00; levtb. <9> on

_TURNON (var, evta + evtb); !var.<9> and var.<11> now on

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Library Services _UNGETALM

_UNGETALM
_UNGET”LM replaces the last list member removed from alist using GETALM.
error := UNGETALM (|i st
, I ist-nmenber);
error returned value
INT

iIsaZDSN”ERR value indicating the outcome of the call. See Appendix B, “DSNM
Error Codes,” for error code definitions.

li st input
isthenameof a_LIST.

| i st-menber input
INT .EXT
is a pointer to the member most-recently removed from | i st with GETALM.

Specifying alist member that is not the most-recently removed with _GET*LM
invalidates the _UNGET”LM operation. Also, any intervening _| PUTALM or

DEALLOCATEALIST invalidatesthe UNGETALM operation. Results from any of
these are unpredictable.

Example

In the following example, members of wor kI i st are examined and removed up to the
first member that does not match a particular control value:

LI ST (worklist);
TNT . EXT |i st ~menber (1'i st menmber~def);
I |list”nmenber”~def includes control~field

VWH LE NOTNULL (@i st nmenber := _CGET LM (worklist))
AND | i st”~nmenber.control ~Mfield = current”~ctl~val ue
DO
BEG N
< process all list®menbers matching current”ctl~val ue>
END;

I Put non-matching |ist”nmenber back
I F _NOTNULL (@i st~ nenber)
THEN | F (error := _UNGETALM (wor klist, |ist~menber))
THEN ... < data corrupted > ;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-131

_UNPOPALM DSNM Library Services

_UNPOPALM
_UNPOPM_M replaces the last list member removed from alist using _POP*LM.
error := UNPOPMLM (|i st
, I ist-nmenber);
error returned value
INT

isaZDSN”ERR value, indicating the outcome of the call. See Appendix B,
“DSNM Error Codes,” for error code definitions.

li st input
isthenameof a_LIST.

| i st-menber input
INT .EXT
is apointer to the member most-recently removed from | i st with_POPLM.

Specifying alist member that is not the most-recently removed with_POP*.M
invalidates the _UNPOP*L_M operation. Also, any intervening _| PUTALM or

DEALLOCATEALIST invalidatesthe UNPOPALM operation. Results from any of
these are unpredictable.

Example

In the following example, members of wor kI i st are examined and removed up to the
first member that does not match a particular control value:

LI ST (worklist);
TNT . EXT |i st ~menber (1'i st menmber~def);
I |list”nmenber”~def includes control~field

VWH LE NOTNULL (@i st nmenber := _POP"LM (worklist))
AND | i st”~nmenber.control ~Mfield = current”~ctl~val ue
DO
BEG N
< process all list®menbers matching current”ctl~val ue>
END;

I Put non-matching |ist”nmenber back
I F _NOTNULL (@i st~ nenber)
THEN | F (error := _UNPOPMLM (worklist, list~menber))
THEN ... < data corrupted > ;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-132 Development Guide

DSNM Library Services _XADRMEQ

_XADRMEQ

_XADRMEQ is aBoolean define statement that is TRUE if two possibly null extended
addresses are equal (since_NULL can have more than one value).

_XADRMEQ (addressl

, address2)
addr ess1 input
INT(32):value
is an extended address whose value is compared to addr ess 2.
addr ess2 input
INT(32):value

is an extended address whose value is compared to addr ess 1.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 A-133

_XADRMNEQ DSNM Library Services

_XADRAMNEQ

_XADRMNEQ is aBoolean define statement that is TRUE if two possibly null addresses
are not equal (since_NULL can have more than one value).

_XADR*NEQ (addressl
, address2)

addr ess1 input
INT(32):value
is an extended address whose value is compared to addr ess?2 .

addr ess2 input
INT(32):value
is an extended address whose value is compared to addr ess 1.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
A-134 Development Guide

g DSNM Error Codes

Scope of ThisAppendix

This appendix lists the ZDSN*ERR values that you may send back to the frame in the
Z"RESULT field of aformatted output object structure, or that may be returned to you
fromacall toaDSNM library procedure.

Reporting Errors

Errors that do not terminate a command must be associated with an object (for instance,
an object name that is unknown to the subsystem) and are reported in the ZARESULT
field of aformatted output object structure. In general, errors associated with a
particular object should not terminate the command, although there may be exceptions
for individual subsystems.

The Z"RESULT result code must be one of the ZDSN"ERR values defined in this
appendix. In addition, the output object structure must contain all entries appropriate for
the command being executed, including the fully qualified object name.

If the result code doesn't fully describe the error, additional descriptive information
should be appended as result text (ZDSNVTYARESULTTEXT). The result text must
not duplicate the information of the result code itself: presentation services substitute
the text below for the result code in the user’s error display.

What to Prepare Before Contacting Your Tandem
Support Representative

Some of the problems you encounter might require assistance from a Tandem support
representative. Before you contact your representative, gather the following relevant
information:

e How DSNM isinstalled.

* Whether DSNM was started before starting NonStop NET/MASTER MS, or
NonStop NET/MASTER M S started DSNM.

e The VPROC of any utility executed by PROGRUN or OPSY S (with NonStop
NET/MASTER MS environments).

® History of the problem: has it happened before? If so, when and under what
conditions did it happen? Can you reproduceit? If so, state how to reproduce it.

e List of any recent changes to the system, including, but not limited to, new or
changed configuration parameters, new or upgraded software modules, new
hardware components, or changed NCL procedures (with NonStop NET/MASTER
MS environments).

e List of the output of any tracing associated with the problem, if appropriate to the
environment or nature of the problem.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-1

ZDSN Error Codes

DSNM Error Codes

e List of any warning or error messages displayed before and after the problem

occurred.

* Any other information, as stated in the explanation of the pertinent error messages.

ZDSN Error Codes

The following ZDSN*ERR values may be returned to the frame by the command thread
inthe Z"RESULT field of aformatted output object, or returned to the command thread
from acall to alibrary procedure. Error numbers -1 through -29 are standard SPI error
codes, refer to the SPI Programming Manual for information on SPI error codes.

-nNnN

Unexpected Error: text

Cause. Thereisaninterna problem in the software that issued the message.

Effect. The effects of this problem vary, depending on the individual situation.

Recovery. Note the error number and the message text and contact a Tandem
representative. Prepare the necessary information as suggested in “What to Prepare

Before Contacting Your Tandem Support Representative” on page B-1.

0 ZDSN"ERRMNOERR

B-2

Cause. Thisisnot an error condition.
Effect. The operation completed successfully.
Recovery. None.

ZDSN*"ERRM"CMDM"MISMATCH

I nval id Command For This Object

Cause. You issued acommand against objects for which the command is not allowed.

Effect. Your command is not executed on the objects for which it isinvalid.

Recovery. Refer to the User’s Guide to DSNM Commands for information on which

commands are valid for the object type you specified.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

DSNM Error Codes -45 ZDSN"ERRA"TKN"REQ

-34 ZDSNM"ERRMINTERNALMERR

Unexpected Error: DSNM Conponent Error |

Cause. Aninternal program error or inconsistency occurred.

Effect. Command terminated abnormally dueto an internal DSNM component error,
possibly due to memory corruption.

Recovery. Check the EM S event log for the error reported. Stop the | process and then
start it again. If the error persists, contact your Tandem representative.

-35 ZDSNM"ERRMSUBSYSTEM/MERR

Subsystem Error

Cause. In attempting to execute your command, the subsystem generated an error. The
name of the subsystem appears in the error message.

Effect. The command is executed on all objects except the one for which the error
occurred. The state of the error object is subsystem-dependent.

Recovery. Refer to the subsystem documentation for error information.

-44 ZDSNM"ERRAMTKNAVALAINV

I nval id Token or Operand Val ue

Cause. Your command included something invalid in the position where a keyword or
operand is expected.

Effect. Your command is not executed.

Recovery. See Section 2, “DSNM Commands,” for the correct syntax of the command
and reissueiit.

-45 ZDSNM"ERRMTKNMREQ

Requi red Token or Operand M ssing

Cause. Your command omitted something that is syntactically required.
Effect. Your command is not executed.

Recovery. See Section 2, “DSNM Commands,” for the correct syntax of the command
and reissueit.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-3

-51 ZDSN"ERR"SPI"ERR DSNM Error Codes

-51

B-4

ZDSNM"ERRMSPIM"ERR

Unexpected Error: DSNM SPI Error

Cause. A subsystem SPI error occurred. Append the SPI error to the output object as
ZDSNAVTY RESULTTEXT.

Effect. The command terminated abnormally. The state of the error object is
subsystem-dependent.

Recovery. Check the Cl message SPI buffer for correctness. Refer to the subsystem
management programming documentation for information about the error.

ZDSN*"ERRMOBJINAME” INV

Invalid Object Nane

Cause. You specified a syntactically invalid object name.
Effect. Your command is not executed on the objects with the invalid name(s).
Recovery. Reissue the command with the correct object name.

ZDSNM"ERRMOBJTYPEANOTASUPPORTED or
ZDSN*"ERRMOBJMNOTASUPP

bj ect Type not Supported

Cause. You specified an object type that is not supported by DSNM. It is possible for
DSNM to support a subsystem without supporting all of its object types.

Effect. Your command is not executed on objects of the unsupported type.
Recovery. None.

ZDSN*"ERR*MEMORY or ZDSN*"ERR*"NO*"M EM”"SPACE

Qut of Menory

Cause. Thereisinsufficient memory to execute your command.

Effect. Your command might have been partially executed. Use the information
commands to determine to what extent the command was executed.

Recovery. Configure alarger segment size or break the command into several smaller
commands. For information on configuring a larger segment size, refer to the
Distributed Systems Management Solutions (DSMS) System Management Guide.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Error Codes -71 ZDSN*"ERRMALLOCATESEGMENT"ERR

-64 ZDSNM"ERRMNFSMERR

File System Error

Cause. The Guardian file system generated an error during the execution of your
command.

Effect. The effect depends on the specific file system error.

Recovery. Refer to the Guardian User’s Guide for an explanation of the error and its
recovery.

-6/ ZDSN*"ERRM"CMDATIMEDMNOUT

Command Ti neout

Cause. The command timed out before it could be executed.
Effect. Your command is not executed.

Recovery. Issue the command again.

-69 ZDSNM"ERRM"CMDMNOTASUPP

Command not Supported

Cause. You issued acommand that is not supported in the specified subsystem or on the
specified object types.

Effect. Your command did not affect the objects for which the command is not
supported.

Recovery. Refer to the User’s Guide to DSNM Commands for information on which
commands are supported for the subsystem and objects you specified.

-11 ZDSN"ERRMALLOCATESEGMENT”ERR

Segnent Al l ocation Error

Cause. There was a segment allocation error during the execution of your command.
Effect. Your command is not executed.

Recovery. If thereis not enough disk space, configure the SWAPVOL disk for more
space for the segment swap file. Refer to the Distributed Systems Management
Solutions (DSMS) System Management Guide for information.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-5

-76 ZDSN"ERR"BADCOMMAND DSNM Error Codes

-76

B-6

ZDSN*"ERR*"BADCOMMAND

Unexpected Error: Invalid Conmmand

Cause. Thecommand isnot valid for the subsystem.
Effect. The command is not executed.

Recovery. Refer to the User’s Guide to DSNM Commands for information on which
commands are supported for the subsystem you specified.

ZDSNM"ERRMUNSUPPORTEDMBY/ASUBSY S

Not Supported by Subsystem

Cause. The operation or command modifier is not supported by the subsystem you
specified.

Effect. Your command is not executed.

Recovery. Refer to the User’s Guide to DSNM Commands for information about the
commands supported by the specified subsystem.

ZDSNM"ERRMUNSUPPORTED/MBY

Not Supported by DSNM I nterface

Cause. You attempted to use an operation or command modifier that is not supported by
the DSNM interface.

Effect. Your command is not executed.

Recovery. Refer to the User’s Guide to DSNM Commands for information about the
commands you can use.

ZDSNM"ERRMNDATAMNINTEGRITY

Unexpected Error: Data Integrity Error

Cause. Arguments areinconsistent or data structures have been corrupted.

Effect. Theframe waitsfor the next event to redispatch the command thread. The
command may yield erroneous results.

Recovery. Stop and restart the | process. If the error persists, contact your Tandem
representative.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Error Codes -88 ZDSN"ERR"DUP"KEYWORD

-81 ZDSNM"ERRMMISSINGMOBJTY PE

M ssi ng Object Type

Cause. You issued a command without specifying the object type, and the object type
could not be determined from the information on the command line.

Effect. Your command is not executed on the affected objects.
Recovery. Reissue the command, specifying the object type explicitly.

-82 ZDSN"ERR"M"BADOBJTY PE

Invalid Object Type

Cause. You issued acommand, specifying an object type that is not valid for the
subsystem.

Effect. Your command is not executed on the affected objects.

Recovery. Refer to the User’s Guide to DSNM Commands for information about valid
object typesfor the subsystem.

-86 ZDSNM"ERRM"REQM"KEYWORDMMISSING

Requi red Keyword M ssi ng

Cause. The command has arequired keyword missing.
Effect. The command is not executed.

Recovery. Refer to the User’s Guide to DSNM Commands for information about
command syntax and required keywords.

-88 ZDSN*"ERRM"DUPMKEYWORD

Dupl i cate keyword

Cause. A keyword is repeated in the command.
Effect. The command is not executed.

Recovery. Refer to the User’s Guide to DSNM Commands for information about
command syntax.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-7

-202 ZDSN*"ERRM"OBJECTTOOLONG or DSNM Error Codes
ZDSN"ERR"MOBJTOOLONG

-202 ZDSN"ERRMOBJECTTOOLONG or

ZDSNM"ERRMOBJTOOLONG

bj ect Nanme too Long

Cause. You typed an object name that islonger than the maximum allowable length.
Effect. Your command is not executed.

Recovery. Reissue the command with a shorter name.

-204 ZDSN"ERRM"BADARGUMENT

M ssing or Invalid Library Argunent

Cause. Thereisaninterna problem in the software that issued the message.
Effect. The effects of this problem vary, depending on the situation.

Recovery. Contact a Tandem representative. Prepare the necessary information as
suggested in “What to Prepare Before Contacting Your Tandem Support Representative”’
on page B-1.

-206 ZDSN"ERRMNOTPUSHED

Thread Proc was not pushed

Cause. _POP*"THREAD"PROCSTATE or _RESTORE"THREAD"*AND"DISPATCH
was executed without a procedure having first been placed o n the stack.

Effect. Thread procedure not executed, and the command terminated abnormally.

Recovery. Check the source code to ensure that the thread procedure is saved before it
isdispatched again. If necessary, correct the source code.

-207 ZDSN"ERRMLIBM"BADVALUEMOMITTED

B-8

Inval id DSNM confi gurati on paraneter val ues

Cause. One or more DSNM configuration parameter records contained an invalid
numeric value.

Effect. Thelibrary procedure reporting this error substitutes avalue of -1 for the
erroneous value in the affected output parameter.

Recovery. You may be able to determine which value was unacceptabl e by looking for
a-1 returned in some field for which a positive value was expected. Using NETCOM,
check the DSNM configuration records in your DSNM configuration file, if any, and
correct the record.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Error Codes -217 DSN*"ERR"BADLOGON

-212 ZDSNM"ERRMSYNTAX

I nval id Syntax

Cause. Your command was syntactically incorrect.
Effect. Your command is not executed.

Recovery. Verify the syntax of the command, correct it as needed, and reissue the
command. See Section 2, “DSNM Commands,” for information.

-214 ZDSN"ERRMRESERVEDWORD

Reserved Wrd M spl aced

Cause. Your command included areserved word in the wrong position.
Effect. Your command is not executed.

Recovery. Verify the syntax of the command, correct it as needed, and reissue the
command. See Section 2, “DSNM Commands,” for further information.

-216 ZDSN"ERRM"CMDERROR

Unexpected Error: Invalid Command or Option

Cause. Your command or one of its options was not valid.

Effect. Your command is not executed.

Recovery. Verify the syntax of the command, correct it as needed, and reissue the
command. See Section 2, “DSNM Commands,” for further information.

-217 DSN*"ERR"BADLOGON

Invalid Logon Info

Cause. The software from which you attempted to use DSNM may be incorrectly
configured. DSNM was invoked with incorrect data.

Effect. DSNM is not invoked.

Recovery. Notify your system manager.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-9

Messages From the DSNM Parser DSNM Error Codes

M essages From the DSNM Par ser

B-10

The following errors may be generated by the DSNM parser, which interprets DSNM
commands before they are executed.

Command not recogni zed

Cause. You misspelled a command or issued a command that is not supported.
Effect. Your command is not executed.
Recovery. Correct and reissue the command.

Exceeded max objects

Cause. Your command includes more objects than are allowed in a single command.
Effect. Your command is not executed.

Recovery. Simplify the command, or break it into multiple commands if necessary.

Exceeded max paren |evels

Cause. You nested parentheses beyond the maximum allowabl e depth.
Effect. Your command is not executed.

Recovery. Simplify the command or break it into two or more commands, if necessary.

Exceeded param space

Cause. You entered too many parameters or an excessively long parameter.
Effect. Your command is not executed.

Recovery. Simplify the command, or break it into multiple commands if necessary.

Invalid Error nunber: error

Cause. An error that DSNM does not recognize occurred during the processing of your
command. Thisisthe mechanism by which file system errors associated with Tandem
data communi cations subsystems other than AM 3270, Expand, SNAX/CDF, SNAX/XF,
TR3271, or X25AM are reported.

Effect. The effects of this problem vary, depending on the situation.

Recovery. If the reporting subsystem is a Tandem data communications subsystem
other than AM 3270, Expand, SNAX/XF, SNAX/CDF, TR3271, or X25AM, and the

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Error Codes Messages From the DSNM Parser

error is a positive number, refer to the Guardian Procedure Errors and Messages
Manual for an explanation of the file system error and its recovery.

If the error isnot afile system error, call your Tandem representative. Prepare the
necessary information as suggested in “What to Prepare Before Contacting Your
Tandem Support Representative” on page B-1.

Invalid Object Type

Cause. You specified an object type that is not valid.
Effect. Your command is not executed.
Recovery. Correct and reissue the command.

Invalid option

Cause. You specified amodifier or parameter that is not valid for any command.
Effect. Your command is not executed.
Recovery. Correct and reissue the command.

Invalid option for this conmand

Cause. A modifier or parameter was entered that is not valid with this command.
Effect. Your command is not executed.
Recovery. Correct and reissue the command.

M ssi ng Object Type

Cause. You omitted the object type when it was required.
Effect. Your command is not executed.
Recovery. Correct and reissue the command.

Nane too | ong

Cause. You entered a name that islonger than the maximum legal length.
Effect. Your command is not executed.

Recovery. Correct the name and reissue the command.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-11

Messages From the DSNM Parser DSNM Error Codes

B-12

No operands

Cause. You issued acommand that requires operands, but did not specify any.
Effect. Your command is not executed.
Recovery. Correct and reissue the command.

Reserved word m spl aced

Cause. A keyword, subsystem name, or object type was out of place.
Effect. Your command is not executed.

Recovery. Correct and reissue the command. If the error was caused because an object
name is the same as a keyword, subsystem name, or object type, enclose the object name
in quotation marks.

Syntax error

Cause. The command contains a serious syntax error.
Effect. Your command is not executed.
Recovery. Correct and reissue the command.

Unbal anced parens

Cause. Your command includes parentheses that are incorrectly paired.
Effect. Your command is not executed.
Recovery. Correct and reissue the command.

Unexpected end

Cause. The command did not include all required and expected i nformation.
Effect. Your command is not executed.
Recovery. Correct and reissue the command.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DSNM Error Codes Messages From the DSNM Parser

Unexpected error: text

Cause. Thereisaninterna problem in the software that issued the message.
Effect. The effects of this problem vary, depending on the situation.

Recovery. Note the error text and contact a Tandem representative. Prepare the

necessary information as suggested in “What to Prepare Before Contacting Your
Tandem Support Representative” on page B-1.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 B-13

Messages From the DSNM Parser DSNM Error Codes

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
B-14 Development Guide

E Data

Defined DSNM SPI Components
Scope of This Appendix

Internally, DSNM uses the Tandem Subsystem Programmatic I nterface (SPI) for
command and response message flows. DSNM SPI components (constants and data
definitions) are defined in the DSNM SPI Data Definition Language (DDL) and may be
identified by the prefix ZDSNA.

SPI messages are handled by the frame and are generally hidden from the user-written
command thread, but certain SPI DDL constants and structure definitions are required.
This appendix liststhe SPI DDL constants and structure definitions that user-written
procedures must use.

Commands

The following action codes identify the DSNM commands:

ZDSN"ACTIONMABORT
ZDSN"ACTIONMAGGREGATE
ZDSN?ACTIONANFO
ZDSN"MACTIONASTART
ZDSNMACTIONASTATISTICS
ZDSNMACTIONASTATUS
ZDSN™ACTIONASTOP

Modifiers

The following structure definition defines the modifiersin aDSNM command.
STRUCT ZDSN*DDL"MOD"DEF contains the following fields of interest:

INT Z2"AMOD
INT ZA"EMOD
INT ZAHMOD
INT ZA"RMOD
INT ZASMOD

HMOD Values
The following constants are the possible Z*HMOD values:

Zero (omitted)—Default to ZDSN*"HMOD” AL L
ZDSN"HMOD"™ALL

ZDSN"HMOD”"ONLY
ZDSN"HMOD"SUBONLY

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 C-1

EMOD Values Data Definition Language (DDL)-Defined DSNM SPI
Components

EMOD Values
The following constants are the possible Z*EMOD values.

Zero (omitted)—Default to ZDSN*"EM OD"BRIEF
ZDSN"EMOD"BRIEF

ZDSN"EMOD"DETAIL

ZDSN*"EM OD""SUPPRESS

SM OD Values

The following constants are the possible ZASMOD values:

0 (omitted)—No default—Command applied regardless of object state
ZDSN~SMOD"GREEN / ZDSN*SMOD"*UP
ZDSN"SMOD"NOT~GREEN / ZDSN*"SMOD"NOT"UP
ZDSN~SMOD"RED / ZDSN*SMOD”*DOWN
ZDSN*SMOD"NOT”RED / ZDSN"SMOD~NOT"DOWN

ZDSN*"SM OD"GREEN and ZDSN*SM OD"UP have the same value and may be used
interchangeably. Similarly NOT"GREEN/NOT”UP, RED/DOWN, and
NOT”RED/NOT~DOWN are interchangeable.

RMOD Values
The following constants are the possible Z*"RMOD values:

Zero (omitted)—Default to ZDSN*"RMOD”BRIEF
ZDSN*"RMOD"BRIEF

ZDSN*"RMOD”DETAIL
ZDSN*RMOD*"SUMMARY
ZDSN*"RMOD*"SUMMARY”BY COMPONENT
ZDSN*"RMOD*"SUMMARY”"BYNAME
ZDSN*"RMOD*"SUMMARY”BY OBJECT
ZDSN*RMOD*"SUMMARY”"BYTY PE

AMOD Values

The following constants are the possible Z*AMOD values:

Zero (omitted)—Default; do not reset statistics
ZDSN"AMOD"CANCEL
ZDSN"AMOD"RESET

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
C-2 Development Guide

Data Definition Language (DDL)-Defined DSNM SPI DSNM State Values
Components

Command Object DDL

The following structure definition defines an object ina DSNM command. STRUCT
ZDSN"DDL"FOBJECT”DEF contains the following fields of interest:

INT Z"RESULT

INT Z"HMOD = Z"RESULT

STRUCT Z~SUBSYS (ZDSN"DDL"SUBSY S*"DEF)
STRUCT Z~OBJTYPE (ZDSN*"DDL"OBJTY PE"DEF)

INT Z"OBINAME"OCCURS
STRUCT Z"OBIJNAME (ZDSN*DDL"OBINAME"DEF)
INT Z"MANAGERMOCCURS

STRUCT Z"MANAGER (ZDSN*DDL*"MANAGER"DEF)

An object in acommand contains an HMOD in the Z*HMOD field. In the response, the
Z"RESULT field (which redefines Z*HMOD) contains a state (for the STATUS
command) or aZDSN” ERR error code.

Note. The ZDSN"ERR value ZDSN*ERR"NOERR (value zero) is the no-error value for all
responses except for the STATUS command.

DSNM State Values

The following constants are the DSNM object state values:

ZDSNNSTATE"GREEN / ZDSNASTATEMUP
ZDSNASTATEMRED / ZDSNASTATEA"DOWN
ZDSNASTATEMY ELLOW / ZDSNASTATEMPENDING
ZDSNASTATEMNULL

ZDSNASTATENUNKNOWN
ZDSNASTATENUNDEFINED

ZDSNASTATEMGREEN and ZDSNASTATE”UP are interchangeable, as are
RED/DOWN and Y ELLOW/PENDING.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 C-3

Error Codes Data Definition Language (DDL)-Defined DSNM SPI

Components

Error Codes

The following constants are the DSNM error codes used most often:

ZDSN"ERR*NOERR
ZDSN"ERRMNTERNALMERR
ZDSN"ERRM"SUBSY STEM”ERR
ZDSN"ERRMOBINAMEANNV
ZDSN"ERRMOBJTY PEANOT"ASUPPORTED | ZDSN*ERR*"OBJ*NOT"SUPP
ZDSN*"ERR*"MEMORY
ZDSN"ERRM"FS'ERR
ZDSN"ERRMCMDANOTASUPP
ZDSN"ERRMUNSUPPORTED”MBY/SUBSY S
ZDSN"ERRMUNSUPPORTED"BY/
ZDSN"ERRMMISSING"OBJTY PE

AGGREGATE Counters

The following structure definition defines counters returned in an AGGREGATE
command response. STRUCT ZDSN*DDL*"COUNTERS"DEF contains the following
fields of interest:

INT(32) Z~GREEN;

INT(32) ZAUP=Z"GREEN;
INT(32) Z~RED;

INT(32) Z*DOWN = Z~RED;
INT(32) ZAYELLOW;

INT(32) Z~PENDING = ZAYELLOW;
INT(32) Z~UNDEFINED;

INT(32) Z~INERROR;

Response Item Types

C-4

Command responses often require items to be appended to the response object. The
following constants define the types of items that may be appended:

ZDSNVTYMCOUNTERS
ZDSNVTYMERRORTEXT
ZDSNVTYANONTEXT
ZDSNVTYARESULTTEXT
ZDSNVTYATEXT

The maximum length of atext line (RESULTTEXT, TEXT, or ERRORTEXT) that may
be appended isthe DDL constant ZDSN*"MAXATEXT (75 characters).

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

DDL Definitions for DSNM Character String
Components

Data Definition Language (DDL)-Defined DSNM SPI
Components

DDL Definitionsfor DSNM Character String
Components

Subsystems and object typesin DSNM commands, responses, and configuration are
represented by character strings. In TAL, the representation of a character-string type
item has the following form:

LI TERAL zdsn“nmax”item = | engt h-of -i tem i n- byt es;
STRUCT zdsn”ddl ~i temtdef;

BEG N
STRI NG z~c[0: zdsnmax”™i tem 1] ;
I NT z™i = z”c;

END;

All character-string type items are defined this way: a constant (with the item'slength in
bytes) and a uniform structure that allows it to be referred to as a structure, a string, or
an INT.

Note. If one of these items is embedded in another structure, care must be taken to ensure
that the structure begins on a word boundary.

The mgjor character-string items of interest are described by the following DDL items:

Item Describes DDL Name Length

System name ZDSN"DDLASY STEM"DEF ZDSN"MAXASY STEM
Subsystem name ZDSN*DDL"SUBSY S"DEF ZDSN"MAXANSUBSY S
Object type ZDSN"DDL"OBJTY PE"DEF ZDSN"MAX"OBJTY PE
Object name ZDSN"DDL"OBINAME"DEF ZDSN"MAX"OBINAME
Manager nane ZDSNA"DDL"MANAGER"DEF ZDSN"MAX MANAGER
Process name ZDSN"DDL"PNAME"DEF ZDSN"MAX"PNAME
Process qualifier ZDSN"DDL"PQUAL"DEF ZDSN"MAX PQUAL
Process class ZDSN"DDL"PCLASS"DEF ZDSN"MAX~MPCLASS

Cl class ZDSN"DDL"CICLASS"DEF ZDSN"MAXNCICLASS

Note. A ClI class is an instance of a process class (pclass).

DSNM Configuration Items

Item Describes DDL Name Length

Class ZDSN"DDL"CLASS'DEF ZDSN"MAX~MCLASS

Component ZDSN"DDL"COMPONENT”DEF ZDSN"MAXNCOMPONENT

Parameter name ZDSN"DDL"PARAMNAME"DEF ZDSN*MAX"PARAMNAME

Parameter value ZDSN"DDL"CONFPARAMVALUE ZDSN*MAX"CONFPARAM
"DEF VALUE

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 C-5

DDL Definitions for DSNM Character String Data Definition Language (DDL)-Defined DSNM SPI
Components Components

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
C-6 Development Guide

E Sample | Process Program Code

Scope of ThisAppendix

Appendix D provides asample | process program for a pseudo-subsystem (SPIFFY),
illustrating the program model and associated | process development library services
described in this manual.

Overview of the SPIFFY Subsystem

The SPIFFY subsystem consists of SPIFFY manager processes, each controlling a set of
SPIFFY objects. A manager supports a programmatic interface consisting of formatted
messages. There are seven object types arranged in the following hierarchy:

REACTOR ASSEMBLY
I\ / \
BO LER VALVE CHAMBER COGMHEEL GEAR

The hierarchical parent of a SPIFFY object is known as the object’s “ Pop.”

Characteristicsof SPIFFY Objects

A REACTOR object comprises an internal group of objects and has no individual
characteristics of its own. The other objects have various individual characteristics, as
follows:

¢ BOILER, VALVE, and CHAMBER objects consist of a number of elements (each
of which istoo insignificant to be considered a separate entity). When these
elements are raised to a temperature above absolute 0, they exert pressure.
BOILER, VALVE, and CHAMBER have the following characteristics:

® Pressure
* \Volume
® Temperature
® Number of elements
e ASSEMBLY, COGWHEEL, and GEAR objects have the following characteristics
e Color: YELLOW, CYAN, MAGENTA, BLACK
e Composition: IRON, STEEL, COPPER, BRASS
e Statefor ASSEMBLY objects: STOPPED, GOING

e State for COGWHEEL and GEAR objects: IDLE, COASTING, ROTATING,
LOCKED

An object is LOCKED when its“Pop” object is STOPPED.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-1

SPIFFY Subsystem Programmatic Interface Sample | Process Program Code
Commands

SPIFFY Subsystem Programmatic I nterface Commands

D-2

The SPIFFY subsystem programmatic interface supports informational and state-change
commands.

| nformational Commands

The SPIFFY subsystem programmatic interface supports one informational command,
TELLABOUT, which applies to objects of all types and returns everything known about
the object(s) specified by the command. TELLABOUT has the following operands:

NAME { objnanme | * }
POP { objnane | * }
TYPE { typecode | ANYTHI NG }

Multiple objects can be specifiedina TELLABOUT command by supplying an asterisk
(*) as the object name (NAME) or parent name (POP), and the ANY THING type code
to specify objects of any type. (The asterisk allows you to specify objects and parents of
any name.)

NAME, POP, and TY PE may be used in the following combinations to retrieve
information about objects:

NAME POP TYPE Returns
Objnamel Objname2 typecode Object Objnamel of type typecode with Pop
Objname2
* Objname2 typecode All objects of type typecode with Pop Objname2
Objnamel * typecode é(l) | objects Objnamel of type typecode with any
Y
* * typecode All objects of type typecode
Objnamel Objname2 ANYTHING Object Objnamel of any type with Pop Objname2
* Objname2 ANYTHING All objects of any type with Pop Objname2
Objnamel * ANYTHING All objects Objnamel of any type with any Pop
* * ANYTHING All objects
State-Change Commands

State-change commands behave differently for different object types. There are no
state-change commands for the REACTOR object. For the other objects, the following
operations are supported:

BOILER, VALVE, CHAMBER WARMUP, HEATUPR, COOL OFF, SHUTOFF
ASSEMBLY GO, DONTGO
COGWHEEL, GEAR LOOSENUPR, SPEEDUP, SLOWUR, LOCKUP

State-change commands do not support the asterisk (*) for NAME, nor do they support
the ANYTHING type code.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Sample | Process Program Code Command and Response Message Formats

The program code example in this appendix illustrates the processing of informational
commands. The processing of state-change operationsis not explicitly illustrated,;
however, the preliminary processing of NAME, POP, and TY PE valuesisincluded (to
determine the set of objects on which a state-change operation would be performed).

Command and Response M essage For mats

A SPIFFY command is executed by sending a command message to a SPIFFY manager
process. Theresults of the command message are returned in a response message. A
single command may consist of several command-to-response exchanges.

Command M essage For mat

The command message has the same format for all commands and al SPIFFY object

types:
LI TERAL spiffy~nane”l en= 20;
STRUCT spi f fy*conmand~def (*); ! Conmand nessage, which al so
I heads response nessage
BEG N
I NT cnd;
I NT type;

| NT response”cont ext;
STRI NG nane|[O: spi f f y*nanme”l en-1];
STRI NG pop”~nang[O0: spi f f y*nane”l en-1];
END;
The command message contains the following:
¢ A command code (CMD)
® A object type code to which the command applies (TY PE)

® The name and parent of the object to which the command applies (NAME and
POP*NAME)

RESPONSEMCONTEXT must be set to 0 when acommand is originated.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-3

Command and Response Message Formats Sample | Process Program Code

D-4

Response M essage For mat

The response message begins with the command message, followed by an error code
(ERROR), a count of response objects (RESPONSEATHINGS), and response object
details in an object-characteristics array (THING):

LI TERAL max”"response”t hi ngs = 2;

STRUCT spi ffy~response®def (*); ! Response nessage, which
I contains cnd nsg struct
BEG N
STRUCT cnmd (spiffy~comand”~def);
I NT error;

| NT response”t hi ngs;
STRUCT t hing (spiffy”thing~def) [0:nmax"response”t hings-1];
END;

If an error occurs, an error code isreturned in the first response; see “ SPIFFY
Subsystem Literal Definitions’ later in this section. In this case, there are no response
objects. If the command succeeds, the code COMMAND”DONE (0) isreturned, along
with response object(s).

If aTELLABOUT command specifies more objects than can be returned in asingle
response, the RESPONSEMCONTEXT field in the response message CM D structure is
set to anonzero value. Inthis case, returning the CMD structure exactly asit appearsin
the response message causes the next set of response objectsto be returned. This
process is repeated until the response message CMD.RESPONSEMCONTEXT isO0,
indicating the return of all objects.

The THING structure returns the characteristics of SPIFFY objects and is the same for
all object types:

STRUCT spi f fy~t hi nghdef (*);
BEG N
I NT type;
I NT nane”occurs;
STRI NG nane [O:spiffy~nane”l en-1];
| NT pop”nane”occurs,;

I object type
I length of object name
I obj ect nane
I length of nane of
I object’s parent
STRI NG pop”nane[O: spi ffy*nane”l en-1]; ! parent nane
' For ASSEMBLYs and subordi nat es
| NT state; I ASSEMBLY state
I NT col or; I and ot her essentials
I NT conposition
I For the various REACTOR conponents

I NT(32) tenp; I Degrees Kelvin

| NT(32) press; I MM Hg

I NT(32) vol; I Liters

I NT(32) n; ' Nunber of elenents
END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Sample | Process Program Code SPIFFY Subsystem Literal Definitions

SPIFFY Subsystem Literal Definitions

Literal definitionsfor al codes and errors are provided when the SPIFFY subsystem is
delivered.

Codes. Object Types, States, Oper ations, Characteristics

LI TERAL
I Types of objects
LEASTALI TTLEATHI NG REACTOR = LEASTALI TTLEATHI NG,
BO LER, VALVE, CHAMBER, ASSEMBLY, COGWHEEL, GEAR, OTHER,
ALMOSTAANYTHI NG = OTHER, ANYTHI NG,

I States of objects

STOPPED, GO NG I ASSEMBLY st at es
LOCKED, ROTATI NG COASTI NG, | DLE, I COGMHEEL and GEAR
| states

I Operations on objects
TELLABQOUT, Qperations for

all objects

REACTOR conponent
oper ati ons

ASSEMBLY oper ati ons
COGWHEEL and GEAR

oper ati ons

WARMUP, HEATUP, COOLCFF, SHUTOCFF,

GO, DONTGO,
LOOSENUP, SPEEDUP, SLOAUP, LOCKUP,

I Characteristics of objects

BLACK, YELLOW CYAN, MAGENTA, I ASSEMBLY, COGWHEEL,
I GEAR in 4 colors
| RON, STEEL, COPPER, BRASS; I made 4 ways
Errors

LI TERAL COMVAND*DONE, COVIVAND*MSG*TOOSHORT, COVIVAND™I NVALI D,
TYPEM NVALI D, COMVANDM | NVALI DMFORMTYPE,
COMVANDM | MPOSSI BLE, THI NG*NONEXI STENT,
POPN NONEXI STENT;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-5

SPIFFY | Process Design

SPIFFY | Process Design

To develop an | process, you must map the states of subsystem objectsto DSNM states,
and a sequence of subsystem commands to the DSNM commands.

State M apping

Sample | Process Program Code

To map the many possible states of subsystem objectsto DSNM states requires detailed
subsystem knowledge. The mapping should represent the operating state of the
subsystem object. The DSNM states GREEN, RED, Y ELLOW represent good, poor,
and transitional or borderline operational health. Suppose you enlisted the aid of a
SPIFFY subsystem expert, who tells you that:

¢ REACTOR objects cannot have a state; they only exist (or not).

* BOILER, VALVE, and CHAMBER operation depends only on temperature, which
must be neither too high nor too low.

e ASSEMBLY, COGWHEEL, and GEAR operation depends only on the SPIFFY
state at the moment.

The following state mapping is assigned:

Object Type
REACTOR

BOILER/

VALVE/
CHAMBER

ASSEMBLY

COGWHEEL /
GEAR

Temperature

0-297
298-595
596-893
894-1191

1192-up

State
STOPPED
GOING

LOCKED
IDLE
COASTING
ROTATING

Operating Condition
N.A.

Too low to operate

Low but operable
Optimum operating range
High but operable

Too high to operate

Inoperable
Operable

Unusable
Inoperable
Marginally operable
Operable

DSNM State
Assigned

NULL

RED
YELLOW
GREEN
YELLOW
RED

RED
GREEN

RED

RED
YELLOW
GREEN

Note. Within a subsystem, it is possible for more than one set of conditions to map to the
same DSNM state. Also, not all DSNM states need be present for every object type.

D-6

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample | Process Program Code Implementing DSNM Commands

| mplementing DSNM Commands
DSNM commands are implemented by SPIFFY subsystem commands as follows.

| mplementing the I nformational Commands

The DSNM STATUS and INFO commands can be issued by executing the
TELLABOUT command and selecting different informational detailsto return in the
output. The SPIFFY subsystem does not support a STATISTICS command or its

equivalent.
SPIFFY

DSNM Command Command Comment

INFO TELLABOUT Returns selected information fields according
to object type.

STATUS TELLABOUT Returns selected status information.

STATISTICS N.A. Returns“No STATISTICS Available” (see
following note).

AGGREGATE TELLABOUT Combines the results of :

NAME * POP* TYPE ANYTHING

by object type.

Note. How you handle a DSNM command when no subsystem-equivalent command exists
depends on what is operationally reasonable and how much information you want to return.
For example, with the STATISTICS command here, you could return
ZDSN"ERRM"UNSUPPORTED”BY"SUBSYS or ZDSN"ERR"NOERR, or possibly have the
| process keep its own statistics, thus simulating the operation.

| mplementing the Hierarchy Modifiers

Assuming that object names are unique under a given manager, the various
combinations of “*” names and the ANY THING type code listed next can be used to
construct all of the possible DSNM hierarchy modifiers.

TELLABOUT Command with

HMOD NAME POP TYPE
ONLY objname * typecode
SUBONLY * objname ANYTHING
ALL objname * typecode
followedby * objname ANYTHING

| mplementing the State M odifiers

Thereisno SPIFFY equivalent of SMOD. The only way to implement something
analogous is by using the TELLABOUT command and selecting those objects whose
DSNM mapped state satisfies the DSNM SMOD.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-7

Managing SPIFFY Through DSNM: Sample Sample | Process Program Code
Command Output

| mplementing an I nfor mational Command on a“*” Operand

You can implement an informational command on a“*” operand by first issuing a
TELLABOUT command:

TELLABOUT NAME * POP * TYPE typecode

Thisignores HMOD and SMOD. Perform the informational operation on each resulting
object, as described in the hierarchy modifier table above.

| mplementing State-Change Commands

Since the SPIFFY subsystem state-change commands do not support a“*” objname for
NAME, such commands usually require that a TELLABOUT command be issued first
to determine the list of objects on which to carry out the state-change operation.
Essentialy, thisis an internal DSNM STATUS command (applying modifiers), followed
by a state-change command for each resulting object.

Managing SPIFFY Through DSNM: Sample Command
Output

The following examplesillustrate how to test the DSNM STATUS command on various
SPIFFY subsystem objects, using DSNM Com to send commands to the SPIFFY
| process.

Using DSNM Com to Test the SPIFFY | Process

D-8

If they are not already running, start the SPIFFY | process and the SPIFFY manager
process(es). For example:

> RUN $DSNM | DEV. SPI FI / NAME $SPFI, NOMAI T/ TESTMCDE 1 &
CONFI G $DSNM | DEV. DSNMCONF

> RUN $DSNM | DEV. SPI FMGR/ NAME $SMGR, NOWAI T/

See “ Configuring SPIFFY Into DSNM” on page D-28 for a description of the
DSNMCONF filereferred to in this example. See also Section 5, “DSNM Process
Startup Functions,” for information about DSNM process startup parameters.

Next start DSNMCom, opening the SPIFFY | process and specifying the configuration
fileinto which the SPIFFY subsystem records have been added. For example:

> DSNMCOM CONFI G $DSNM | DEV. DSNMCONF
DSNMCom - T9216D30 12FEB95

Copyri ght TandemConput ers | ncor por at ed 1995
DSNMCon® open $spfi

DSNM $spfi >

See Section 7, “DSNMCom: The | Process Test Utility,” for a description of
DSNMCom.

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Sample | Process Program Code DSNM STATUS Command Output

DSNM STATUS Command Output

Following are examples of STATUS command output:

DSNM $spfi > STATUS REACTOR * UNDER $SMGR

SPI FFY REACTOR PURPLE UNDER $SMCGR

SPI FFY BO LER ELEMENT1 UNDER $SMGR Down
SPI FFY BO LER ELEMENT2 UNDER $SMGR Pendi ng
SPI FFY BO LER ELEMENT3 UNDER $SMGR Up

SPI FFY VALVE M X1 UNDER $SMGR Pendi ng

SPI FFY VALVE M X2 UNDER $SMGR Down

SPI FFY VALVE M X3 UNDER $SMGR Pendi ng

SPI FFY ~ CHAMBER COVPOUND1 UNDER $SMGR Up

SPI FFY CHAMBER COVPOUND2 UNDER $SMGR Down
SPI FFY CHAMBER COVPOUND3 UNDER $SMCGR Pendi ng
SPI FFY REACTOR YELLOW UNDER $SMCGR

SPI FFY BO LER STUFFX UNDER $SMGR Pendi ng
SPI FFY BO LER STUFFY UNDER $SMGR Down

SPI FFY BO LER STUFFZ UNDER $SMGR Pendi ng
SPI FFY VALVE FORMULAX UNDER $SMGR Down
SPI FFY VALVE FORMULAY UNDER $SMGR Up

SPI FFY VALVE FORMULAZ UNDER $SMGR Up

SPI FFY ~ CHAMBER SECRETX UNDER $SMGR Down

SPI FFY CHAMBER SECRETY UNDER $SMGR Pendi ng
SPI FFY CHAMBER SECRETZ UNDER $SMGR Pendi ng
SPI FFY REACTOR AMBER UNDER $SMCGR

SPI FFY BO LER | NGREDTA UNDER $SMGR Pendi ng
SPI FFY BO LER | NGREDTB UNDER $SMGR Pendi ng
SPI FFY BO LER | NGREDTC UNDER $SMGR Pendi ng
SPI FFY VALVE XXX UNDER $SMGR Pendi ng

SPI FFY VALVE YYY UNDER $SMGER Down

SPI FFY VALVE ZZZ UNDER $SMGR Pendi ng

SPI FFY CHAMBER AAA UNDER $SMGR Pendi ng

SPI FFY CHAMBER BBB UNDER $SMGR Up

SPI FFY ~ CHAMBER CCC UNDER $SMGR Pendi ng
DSNM $spfi > STATUS REACTOR * UNDER $SMGR, ONLY
SPI FFY REACTOR PURPLE UNDER $SMCGR

SPI FFY REACTOR YELLOW UNDER $SMCGR

SPI FFY REACTOR AMBER UNDER $SMCGR

DSNM $spfi > STATUS REACTOR * UNDER $SMGR, SUBONLY
SPI FFY BO LER ELEMENT1 UNDER $SMGR Down
SPI FFY BO LER ELEMENT2 UNDER $SMGR Pendi ng
SPI FFY BO LER ELEMENT3 UNDER $SMGR Up

SPI FFY VALVE M X1 UNDER $SMGR Pendi ng

SPI FFY VALVE M X2 UNDER $SMGR Down

SPI FFY VALVE M X3 UNDER $SMGR Pendi ng

SPI FFY ~ CHAMBER COVPOUND1 UNDER $SMGR Up

SPI FFY CHAMBER COVPOUND2 UNDER $SMGR Down
SPI FFY ~ CHAMBER COVPOUND3 UNDER $SMCGR Pendi ng
SPI FFY BO LER STUFFX UNDER $SMGR Pendi ng
SPI FFY BO LER STUFFY UNDER $SMGR Down

SPI FFY BO LER STUFFZ UNDER $SMGR Pendi ng
SPI FFY VALVE FORMULAX UNDER $SMGR Down
SPI FFY VALVE FORMULAY UNDER $SMGR Up

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759

D-9

DSNM STATUS Command Output

D-10

SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY

DSNM $spf i

SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY

DSNM $spf i

SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY

DSNM $spf i

SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY
SPI FFY

VALVE
CHAMBER
CHAMBER
CHAMBER
BA LER
BA LER
BA LER
VALVE
VALVE
VALVE
CHAMBER
CHAMBER
CHAMBER

BA LER
CHAMBER
VALVE
VALVE
CHAMBER

BA LER
BA LER
VALVE
VALVE
VALVE
CHAMBER
CHAMBER
BA LER
BA LER
BA LER
VALVE
CHAMBER
CHAMBER
CHAMBER
BA LER
BA LER
BA LER
VALVE
VALVE
VALVE
CHAMBER
CHAMBER

VALVE
VALVE
VALVE
BA LER
BA LER
BA LER

> STATUS REACTOR *

> STATUS REACTOR *

Sample | Process Program Code

FORMULAZ UNDER $SMGR Up
SECRETX UNDER $SMGR Down
SECRETY UNDER $SMGR Pendi ng
SECRETZ UNDER $SMGR Pendi ng
| NGREDTA UNDER $SMGR Pendi ng
| NGREDTB UNDER $SMGR Pendi ng
| NGREDTC UNDER $SMGR Pendi ng
XXX UNDER $SMGR Pendi ng

YYY UNDER $SMGR Down

ZZZ UNDER $SMGR Pendi ng

AAA UNDER $SMGR Pendi ng

BBB UNDER $SMGR Up

CCC UNDER $SMCGR Pendi ng

UNDER $SMCR, UP
ELEMENT3 UNDER $SMGR Up
COVPOUND1 UNDER $SMGR Up
FORMULAY UNDER $SMGR Up
FORMULAZ UNDER $SMGR Up

BBB UNDER $SMGR Up

ELEVENT1 UNDER $SMGR Down
ELEMENT2 UNDER $SMGR Pendi ng
M X1 UNDER $SMGR Pendi ng

M X2 UNDER $SMGR Down

M X3 UNDER $SMGR Pendi ng
COVPOUND2 UNDER $SMGR Down
COVPOUND3 UNDER $SMGR Pendi ng
STUFFX UNDER $SMGR Pendi ng
STUFFY UNDER $SMGR Down
STUFFZ UNDER $SMGR Pendi ng
FORMULAX UNDER $SMGR Down
SECRETX UNDER $SMGR Down
SECRETY UNDER $SMGR Pendi ng
SECRETZ UNDER $SMGR Pendi ng
| NGREDTA UNDER $SMGR Pendi ng
| NGREDTB UNDER $SMGR Pendi ng
| NGREDTC UNDER $SMGR Pendi ng
XXX UNDER $SMGR Pendi ng

YYY UNDER $SMGR Down

ZZZ UNDER $SMGR Pendi ng

AAA UNDER $SMGR Pendi ng

CCC UNDER $SMGR Pendi ng

| NGREDTA UNDER $SMGR Pendi ng
| NGREDTB UNDER $SMGR Pendi ng
| NGREDTC UNDER $SMGR Pendi ng
XXX UNDER $SMCGR Pendi ng

YYY UNDER $SMGR Down

ZZZ UNDER $SMCGR Pendi ng

UNDER $SMCR, NOT- UP

> STATUS REACTOR AMBER UNDER $SMGR, NOT- UP

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample | Process Program Code DSNM STATUS Command Output

SPI FFY ~ CHAMBER AAA UNDER $SMGR Pendi ng

SPI FFY ~ CHAMBER OCC UNDER $SMGR Pendi ng

DSNM $spfi > STATUS REACTOR * UNDER $SMGR, DOWN
SPIFFY ~ BOLER ELEMENT1 UNDER $SMGR Down
SPIFFY VALVE M X2 UNDER $SMGR Down

SPIFFY ~ CHAMBER COMPOUND2 UNDER $SMGR Down
SPIFFY BOLER STUFFY UNDER $SMGR Down
SPIFFY VALVE FORMULAX UNDER $SMGR Down
SPIFFY CHAMBER SECRETX UNDER $SMGR Down
SPIFFY VALVE YYY UNDER $SMGR Down

DSNM $spfi > STATUS REACTOR * UNDER $SMGR, NOT- DOWN
SPIFFY ~ BOLER ELEMENT2 UNDER $SMGR Pendi ng
SPIFFY BOILER ELEMENT3 UNDER $SMGR Up
SPIFFY VALVE M X1 UNDER $SMGR Pendi ng
SPIFFY VALVE M X3 UNDER $SMGR Pendi ng
SPIFFY ~ CHAMBER COMPOUNDL UNDER $SMGR Up
SPIFFY CHAMBER COMPOUND3 UNDER $SMGR Pendi ng
SPIFFY BOLER STUFFX UNDER $SMGR Pendi ng
SPIFFY BOLER STUFFZ UNDER $SMGR Pendi ng
SPIFFY VALVE FORMULAY UNDER $SMGR Up
SPIFFY VALVE FORMULAZ UNDER $SMGR Up
SPIFFY ~ CHAMBER SECRETY UNDER $SMGR Pendi ng
SPIFFY ~ CHAMBER SECRETZ UNDER $SMGR Pendi ng
SPIFFY BOLER | NGREDTA UNDER $SMGR Pendi ng
SPIFFY BOLER | NGREDTB UNDER $SMGR Pendi ng
SPIFFY BOILER | NGREDTC UNDER $SMGR Pendi ng
SPIFFY VALVE XXX UNDER $SMGR Pendi ng
SPIFFY VALVE ZZZ UNDER $SMGR Pendi ng
SPIFFY CHAMBER AAA UNDER $SMGR Pendi ng
SPIFFY CHAMBER BBB UNDER $SMGR Up

SPIFFY CHAMBER CCC UNDER $SMGR Pendi ng

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759

D-11

Sample User-Written Code for SPIFFY Subsystem Sample | Process Program Code
Interface Process

Sample User-Written Code for SPIFFY Subsystem
| nterface Process

D-12

The following is the user-written SPIFFY subsystem interface code, which, when
compiled, is bound in with the Tandem | process program frame code to create the
SPIFFY | process object file. This example does not illustrate the processing of any
state-change commands, nor does it illustrate how to handle command cancellation
(_EVACANCEL).

Note. Refer to Section A, “DSNM Library Services,” for detailed descriptions of the library
services that appear in this example.

?1 NSPECT, SYMBOLS, NOCCDE, NOMAP, SAVEABEND

?SETTOG 1 ! Puts me in test node
?SOURCE KDSNDEFS (| PROCESS"DEFI NI TI ONS)

BLOCK PRI VATE; ! My gl obals

-- Error cache

-- CONSTANT ZDSN- ERR- | NTERNAL- ERR VALUE - 34.
-- CONSTANT ZDSN- ERR- OBJTYPE- NOT- SUPPORTED VALUE - 56.
-- CONSTANT ZDSN- ERR- CVD- NOT- SUPP VALUE - 69.
-- CONSTANT ZDSN- ERR- UNSUPPORTED- BY- SUBSYS VALUE -77.
-- CONSTANT ZDSN- ERR- UNSUPPORTED- BY- | VALUE -78.
-- CONSTANT ZDSN- ERR- M SSI NG- OBJTYPE VALUE -81.
-- CONSTANT ZDSN- ERR- BADOBJTYPE VALUE -82.

I SPI FFY subsystem definitions
?SOURCE SPI FDEFS

I Types of objects

LEASTALI TTLEATH NG, REACTOR = LEAST~ALI TTLEATHI NG,

BO LER, VALVE, CHAMBER, ASSEMBLY, COGWHEEL, GEAR, OTHER,
ALMOSTAANYTHI NG = OTHER, ANYTHI NG,

I States of objects

STOPPED, GO NG, I ASSEMBLY st at es
LOCKED, ROTATI NG, COASTI NG | DLE, I COGMHEEL and GEAR
I states

I Operations on objects
TELLABOUT, Operations for

all objects

REACTOR conponent
operations

ASSEMBLY operations
COGWHEEL and GEAR

operations

WARMUP, HEATUP, COCLOFF, SHUTOFF,

GO, DONTGO,
LOOSENUP, SPEEDUP, SLOWJP, LOCKUP,

I Characteristics of objects

BLACK, YELLOW CYAN, MAGENTA, I ASSEMBLY, COGWHEEL,
I GEAR in 4 colors
| RON, STEEL, COPPER, BRASS; ! made 4 ways

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Sample | Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process

I ERRORS

LI TERAL COMVANDMDONE, COMMANDM MSG'TOOSHORT, COMVANDM| NVALI D,
TYPEM NVALI D, COMVANDM I NVALI DMFORM TYPE
COVIVANDM | MPCSSI BLE, THI NG*NONEXI STENT,
POP" NONEXI STENT;

literal spiffy~nane”l en= 20, nmax"response”™things = 2

STRUCT spi ffy~thing”things =
I NT type
I NT name”occurs;
STRI NG nane [O0: spiffy~rname”l en-1];
I NT pop”nanme”occurs;

obj ect type

I ength of object nane
obj ect nane

I ength of name of

obj ect’ s parent

STRI NG pop”~nane[O0: spi f f y*nanme”l en- 1] ; I parent nane

I For ASSEMBLYs and subordi nat es

I NT state; I ASSEMBLY state

I NT col or; I and ot her essentials

I NT conposition
I For the various REACTOR conponents

I NT(32) tenp; ! Degrees Kelvin

I NT(32) press; I MM Hg

I NT(32) vol; I Liters

I NT(32) n; I Nunber of el enents
DEFI NE starnane = “* “#,
DEFI NE nonane = *“ “#,

STRUCT spi ffy~thing~rdef (*); BEG N
spi f f y™t hi ng™t hi ngs;
END;

STRUCT spi ffy*command®def (*); ! Command nessage, which al so
! heads response nessage
BEG N
I NT cnd;
I NT type
I NT response”cont ext;
STRI NG nane[O0: spi f f y*nane”l en-1];
STRI NG pop”~nane[0: spi f f y*nanme”l en- 1] ;

END;
STRUCT spi ffy~response~def (*); ! Response nessage, which
I contains cnd nsg struct
BEG N
STRUCT cnd (spiffy~conmand™def);
I NT error,;

I NT response”t hi ngs;
STRUCT t hing (spiffy”thing~rdef) [O0: max"response”thi ngs-1];
END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-13

Sample User-Written Code for SPIFFY Subsystem Sample | Process Program Code
Interface Process

! Thread states

LI TERAL st”~new‘object = _ST"M N*THREAD*STATE, st prilintdone, st”done,
st “exec, st”exec”done;

I cx.cf Command flag bit definitions (see cx.def struct) ON OFF

LI TERAL c”™info = BITDEF(0), ! Commmuand: Info type Action type
c”t hi ngs = BITDEF(1), ! Thi ngs found Not found
c M roncnd = BITDEF(2), ! Object: From cnd From hi erar chy
c replydetail = _BITDEF(3), ! Reply text: Det ai | Nor mal
c"replystate = _BITDEF(4), ! State in reply: State No state
cMerrsuppress = _BITDEF(5), ! Error obj: Suppress I ncl ude
cMerrdetail = BITDEF(6), ! Error text: Det ai | Bri ef
c"resetstats = _BITDEF(7), ! Statistics: Reset Don't reset
c~cndobj = BITDEF(8), ! Apply cnd to: Cmd obj Not cnd obj
c”subobj = BITDEF(9), ! Sub obj Not sub obj
c”greenstate = _BITDEF(10),! Green obj Not gr obj
c"redstate = BITDEF(11),! Red obj Not red obj
c*yell owstate = _BI TDEF(12),! Yel | ow obj Not yell ow obj
cManystate = BITDEF(13),! Any state Col ored states
c/st ar obj = BITDEF(14);! Object name *

I Input and general working list nenber definition
STRUCT obj ect *l mtdef (*);

BEG N
_| NPUTALM'HEADER; I generates FOBJ; see Section 3 and Appendix A
I NT cf; I Conmand fl ags
I NT dsnnst at e; ! DSNM state of this thing
I NT er; ! DSNM or FS Error
I NT spifer; ! SPI FFY subsystem error
STRUCT t hing (spiffy”thing~def); I Particulars about this thing
END;

I Frame output |ist nmenber definition

STRUCT f rame”®out put 2l nitdef (*);
BEG N
_ PUT” LMMHEADER; I generates FOBJ; see Section 3 and Appendix A
END;

I Command thread context definition

STRUCT cx”~def (*);
BEG N
_ COMVAND" CONTEXT"HEADER;
_CI™MD (spif);
I NT . EXT inobj (object”l mtdef);
I NT . EXT currentobj (object”l ntdef);

I NT cf; I Conmand fl ags
I NT hnodf ; ! HMOD command f | ags
STRUCT r (spiffy”~responsendef); I Conmand and response area
STRUCT cnd (spiffy~conmand™def) = r;
_LI STPO NTER (current”in); ! Pointers to working lists
_LI STPO NTER (current”~out);
LI ST (things); I Working lists

_LI ST (ot her”things);
END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
D-14 Development Guide

Sample | Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process

I SPI FFY Subsystem CI and Subsystem configurations

STRI NG . spi fcl ass[0: ZDSN*MAXACl CLASS- 1] : = "SPI FMON ";
STRI NG . spi f sys[0: ZDSN*MAXASUBSYS- 1] := "SPI FFY ";

I NT . EXT spifnon (_Cl~"DEF);

I NT . EXT spiffy (_SUBSYS"DEF);

END BLOCK;

I Other toolkit necessities

?SOURCE KDSNDEFS (| PROCESS"GLOBALS)

?NOLI ST, SOURCE EXTDECSO(DEBUG, PROCESS_STOP_?, DNUMOUT)
?SOURCE KDSNDEFS (| PROCESS"EXTDECS)

?LI ST

I NT PROC _STARTUPA"MODE (component, conpil ed”?i nt est node,
accept Astartup”conponent,

subj ect) EXTENSI BLE; |
-- proc returns error code
STRI NG . EXT conponent; -- QUT: OPT conponent nane, default bl ank
-- defined by ZDSN*DDL"OBJNAME"DEF

I NT . EXT conpil ed”i n*t est node; -- OQUT: OPT any non-zero = YES, default O
I NT . EXT accept”~startup”conponent; -- OUT: OPT any non-zero = YES, default O
STRI NG . EXT subj ect; |
BEG N

conpi | ed™i n*"t est node : = _COWI LEDM"l N TESTMODE;

accept st artup”conponent : = 0;

RETURN O;
END;
I NT PROC _STARTUP (cxl, inputl) EXTENSIBLE
INT .cxl, .inputl;
BEG N

STRING errtext[0:29] :=["Invalid SPIFFY configuration", 0];

cxl := $LEN (cx~def); I Command thread context |ength

i nputl := $LEN (object”l ntdef); ! Frane input object list nenber |ength

I Get Cl and subsystem configurations
IF _I'SNULL (@pifrmon := _ADD'Cl (spifclass))
OR _ISNULL (@piffy := _ADD*SUBSYS (spifsys))

THEN CALL _REPORTASTARTUPAERROR (0, _EMS"EVENTAFATAL, errtext);
RETURN ZDSN* ERR*NCERR;
END;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-15

Sample User-Written Code for SPIFFY Subsystem
Interface Process

Sample | Process Program Code

I NT PROC append”nurneric”resul ttext (frameobj”arg, num;

I NT(32) num
I NT . EXT franeobj™arg;
BEG N

I Use DNUMOUT for conversions because it returns the | ength of
! the converted field (and accepts an extended string pointer

! besides). Return ZDSN'ERR if error occurs,

probably nenory.

I NT . EXT frameobj (frame”output”lntdef) = franeobj™arg;

INT len, error := O;
STRI NG t ext[0: 23];
IF (len := DNUMOUT (text, num 10)) THEN

error := _APPENDMOUTPUT (franeobj, ZDSN*VTYMRESULTTEXT,,,text, len);

RETURN error;
END;

_RCMTYPE PROC fornat~error”object (obj”™arg);
I NT . EXT obj*arg;

BEG N

Generate an error output object for an input object in error.

Er:

< 0 - ZDSN'ERR nunber; caller nust append resulttext if any

file systemerr into resulttext.

Gener ate ZDSN'ERRMFSM"ERR and put
Its object is the manager,

which is already in the response object.
= 0 - Shouldn't occur, but treat as ZDSN*ERR*NOERR

|
|
|
!' >0 - File systemerror.
|
|
|

I If spifer is present with ZDSN'ERR*"SUBSYSTEM'ERR t hen put it

! into result text; otherwise ignore it.

I NT . EXT cx (cx~def) = _THREAD*CONTEXT”ADDRESS,;

I NT . EXT inobj (object”l mdef) = obj~arg;
I NT . EXT frameobj (frame”output”l ntdef);
I NT er;

IF _ON (inobj.cf, cerrsuppress) THEN
RETURN _RCMNULL;

IF 1 SNULL(@rameobj := _PUTALM cx. OUTPUT. OBJECTLI ST, , $LEN(f r ameobj)))

THEN RETURN _RCMABORT (ZDSN*ERRMEMORY) ;

IF er := FOBJECTMINIT (franeobj.FOBJ,
RETURN _RCMABORT (er);

i nobj . FOBJ) THEN

IF (frameobj. FOBJ. Z"RESULT : = inobj.er) <= 0 THEN
BEG N
| F inobj.er = ZDSN*ERR*SUBSYSTEMERR
AND (er := append™nuneric”resulttext (franeobj,

THEN RETURN _RCMABORT (er);
END

$DBL (i nobj.spifer)))

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

D-16

Development Guide

Sample | Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process

ELSE
BEG N ! FS Error
frameobj . FOBJ. Z"RESULT : = ZDSN'ERR'FSM"ERR;
I F (er := append™nuneric”resulttext (franeobj, $DBL (inobj.er)))
THEN RETURN _RCMABORT(er);
END;

_RELEASEMQUTPUT (franeobj);
RETURN _RCMNULL;
END;
_RCMTYPE PROC f ornat “nor mal “obj ect (obj*arg);
I NT . EXT obj*arg;
BEG N

I Generate output object for an input object

I NT . EXT cx (cx~def) = _THREADCONTEXT"ADDRESS;
I NT . EXT inobj (object”l mdef) = obj~arg;

I NT . EXT frameobj (frame”output”l ntdef);

I NT er;

I F _OFF (inobj.cf, c”info) THEN RETURN _RCMNULL;

I F _I SNULL(@ranmeobj := _PUTALM (cx._OUTPUT. OBJECTLI ST, , $LEN (franeobj)))
THEN RETURN _RCMABORT (ZDSN*ERRMMEMORY) ;

IF er := FOBJECTAINIT (franeobj.FOBJ, inobj.FOBJ) THEN

RETURN _RCMABORT (er);

IF _ON (inobj.cf, c*rreplystate) THEN
frameobj . FOBJ. ZARESULT : = i nobj.dsnnstate

ELSE franeobj. FOBJ. ZARESULT : = O;
_RELEASE"NQUTPUT (franeobj);
RETURN _RCMNULL;

END;

Note. This does not illustrate the processing of an INFO command, and shows incomplete
processing of the STATUS command. It only produces output for a BRIEF response modifier; it
does not produce the output for a DETAIL RMOD.

_THREADMPROC (i nf orcrmd”proc); FORWARD;
_THREADMPROC (acti on“cnd”™proc); FORWARD;

_THREADMPROC (_COVVAND" PROC) ;
BEG N
I First command thread proc. Analyze command and process objects
! one at a tine until we are done. Then stop.

I NT . EXT cx (cx~def) = _THREADCONTEXT"ADDRESS;

I NT . EXT inobj (object”l mdef), .EXT outobj (object”l mdef);
I NT . EXT thing (spiffy”thing~def);

I NT er, k;

_RCMTYPE rc;

I NT snodf, anodf, rnodf, enodf;

_LI STPO NTER (tenp);

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-17

Sample User-Written Code for SPIFFY Subsystem Sample | Process Program Code
Interface Process

! Return cnmd flags for HMOD val ue
I NT SUBPROC hnodfl ags (xhnod);
I

NT xhnod;
BEG N
CASE xhnod OF
BEG N
ZDSNMHMODMONLY -> RETURN c”cndobj ;
ZDSNMHMODNSUBONLY - > RETURN c”subobj ;
OTHERW SE -> RETURN c”~cndobj + c”subobj;
END;
END;

Return cnd flags for SMOD val ue

|

I NT SUBPROC snodfl ags (xsnod);

I NT xsnod;

BEG N
CASE xsnod OF BEG N
ZDSN* SMOD" RED -> RETURN c”redst at e;
ZDSN SMODM GREEN -> RETURN c”greenst at e;

ZDSN*SMODMNOT"RED -> RETURN c”~greenstate + c”yel |l owst at e;
ZDSN*SMODMNOTAGREEN - > RETURN c”redstate + c”yel | owst at e;
OTHERW SE -> RETURN c”redstate + cyell owstate +
cMgreenstate + c”anystate;
END;
END;

! Return cnmd flags for EMOD val ue
I NT SUBPROC enodfl ags (xenod);

I NT xenod;
BEG N
CASE xenod OF
BEG N
ZDSNMEMODNSUPPRESS - > RETURN c”errsuppress;
ZDSN* EMODMDETAI L -> RETURN c”errdetail;
OTHERW SE -> RETURN O;
END;
END;

Return cnd flags for RMOD val ue

|
I NT SUBPROC r nodfl ags (xrnod);
I NT xr nod;
BEG N
RETURN | F xrnod = ZDSN*RMODMDETAI L THEN c”repl ydet ai |
ELSE O;
END;
! Return cnmd flags for AMOD val ue
I NT SUBPROC anodfl ags (xanod);
I NT xanod;
BEG N
RETURN | F xanod = ZDSN*AMODMRESET THEN c”resetstats
ELSE O;
END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
D-18 Development Guide

Sample | Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process

! Return SPIFFY type code for type nane
I NT SUBPROC typecode (tnane);
STRI NG . EXT t nane;

BEG N;
I F tnane = "REACTOR " THEN RETURN r eact or
ELSE IF tnanme = "BO LER " THEN RETURN boil er
ELSE | F tnanme = "VALVE " THEN RETURN val ve
ELSE | F tnane = "CHAMBER " THEN RETURN chanber
ELSE | F tnane = "ASSEMBLY" THEN RETURN assenbly
ELSE | F tnane = " COGAMHEEL" THEN RETURN cogwheel
ELSE I F tnane = "GEAR " THEN RETURN gear
ELSE RETURN ot her;

END;

! Boolean, true if type has subordi nates
I NT SUBPROC has”subordi nates (type);
I NT type;
BEG N
CASE type OF
BEG N
reactor, assenbly, other, anything -> RETURN 1;
OTHERW SE -> RETURN O;
END;

———————————— Procedure Body ----------------------

! First analyze the command nodifiers and the action code to
! set command flags that will deternmi ne the major paths through
! the thread procedure states.

CASE _THREAD"STATE OF BEG N
_STAINITIAL ->
! Flags for nodifiers

cx. hmodf = hnodflags (cx. _I NPUT. MOD. ZAHMOD) ;
snodf = snodfl ags (cx. _I NPUT. MOD. Z"SMD) ;
enodf = enodfl ags (cx. _I NPUT. MOD. ZANEMOD) ;
r modf = rnodfl ags (cx. _I NPUT. MOD. ZA"RMOD) ;
anodf = anodfl ags (cx._I NPUT. MOD. Z*AMOD) ;

I Set command flags by action
CASE cx. _| NPUT. ACTI ON OF BEG N
ZDSNMACTI ONMSTATUS - >

cx.cf :=rnmodf + enmodf + snodf + c”info + c”replystate;
ZDSNMACTI ONM I NFO - >
cx.cf := rnmodf + enpdf + c”info;
ZDSNMACTI ONMSTATI STICS ->
cx.cf := rnmodf + enpdf + anodf + c”info;
ZDSNMACTI ONMSTART, ZDSNMACTI ONMSTOP, ZDSNMACTI ONMABORT - >
cx.cf := enmodf + snodf;

ZDSNMACT| ONM AGCGREGATE - >
cx. hmodf : = hnodfl ags(0);
cx.cf := snodflags(0) + enodflags(0) + cx.hnodf + c”info;
OTHERW SE - >
RETURN _RCMABORT (ZDSN*ERR" CVD"NOT” SUPP) ;
END;
_TURNON (cx.cf, crMroncnd); ! Everything comes fromthe conmand
I at first

! Having anal yzed the command and nodifiers, process comand

! objects one at a tine.

! Redispatch this thread procedure in the new‘object state to get
I first command object for processing.

_DI SPATCH'THREAD (, st”newobject, _EVACONTI NUE);

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-19

Sample User-Written Code for SPIFFY Subsystem Sample | Process Program Code
Interface Process

st“nemﬂobject ->
Enter this state each tinme we need a new object fromthe
! frame's input object list, which occurs initially and after
! the preceding object has been processed conpletely.

I Get the next object fromthe _I NPUT. OBJECTLI ST; when it’s _NULL,
! we've processed themall.

if ISNULL (@x.inobj := @nobj := _GETALM (cx. | NPUT. OBJECTLI ST))
“THEN RETURN _RC"STOP;

! As soon as we get the next input object, process its hnod and
! set the command flags in the object Im W nust anal yze the hnod
! now because it is redefined by the result code.

i nobj.cf :=cx.cf + (IF inobj.FOBJ. Z"HMCOD
THEN hnodfl ags (i nobj . FOBJ. Z*HVOD)
ELSE cX. hmodf) ;

i nobj . FOBJ. ZA"RESULT : = 0;

! Set up the command el ements and open the manager

| F i nobj.FOBJ. ZASUBSYS <> "SPIFFY " THEN
BEG N
! Found an error. Put out an error object and redispatch
! this proc in the current state to process the next one.
' If format”™error”object returns anything but _RC*NULL, it
I found an error of its own which supersedes this one to
I abort the thread.

i nobj . er : = ZDSN'ERR"BADSUBSYS;
IF (rc := format”error”object (inobj)) <> RC*NULL THEN

RETURN r c;
_DI SPATCH*THREAD (, , _EVACONTI NUE) ;
END;
I'F (inobj.thing.type := typecode (inobj.FOBJ.Z"OBJTYPE)) = other
THEN BEG N

i nobj . er := ZDSN'ERR"OBJTYPE"NOT" SUPPORTED;
IF (rc := format”error”object (inobj)) <> RC*NULL THEN

RETURN rc;
_DI SPATCHTHREAD (, , _EV"CONTI NUE) ,
END;
I F NOT has”subordi nates (inobj.thing.type) THEN
BEG N
I 1f object has no subordinates, don't ook for them no
! matter what the hnmod says. |If further the hnod says not

! to process the object, there isn't nuch to do with it...
_TURNOFF (i nobj.cf, c*subobj);

IF _OFF (inobj.cf,c”cndobj) THEN
DI SPATCH® THREAD G,y _ V" CONTI NUE) ;
END;

I F inobj.FOBJ. ZOBJNAME = st arnane THEN
_TURNON (i nobj . cf,c”starobj);

IF (inobj.er := OPENMClI (spifnon, cx.spif, inobj.FOBJ. Z"MANACER))
THEN BEG N
IF (rc := format”error”object (inobj)) <> RC*NULL THEN
RETURN rc;
_DI SPATCH*THREAD (, , _EVACONTI NUE) ;
END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
D-20 Development Guide

Sample | Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process

I Set the current input and output lists for processing

! thread and put the inobj on the input.

! Note: The current”in and current”out |ist pointers nay be
! exchanged several tinmes while processing an object.

! Ref erence after this initialization should always be
! made through the current pointers rather than to the
! things/other*things lists directly.

@x.current™in := @Xx.things;

@x. currentout := @x.other”things;
I F _I'SNULL (_PUTALM (cx. current”in,,$LEN (inobj),inobj)) THEN
RETURN _RCMABORT (ZDSN*ERRMMEMORY) ;

Di spatch a proc to process the conmand.
Note: All conmands begin with (or consist entirely of) a
TELLABOUT command with the exception of an action command on

!
!
!
! a single object (i.e., no subordinates, no *).

IF _ON (inobj.cf, c”info) THEN
BEG N

! Conmand requires info (TELLABOUT) comrand only.
| Set state where we wish to return to this proc.

_THREADMSTATE : = st ~done;
_ SAVEMTHREADM ANDMDI SPATCH (@ nf o~crd”™proc, st”~new‘obj ect,
_EVASTARTUP) ;

' 1f _save“thread fails, we fall through to here and ...

RETURN _RC*ABORT (ZDSN*ERR*MEMORY) ;
END;

I Must be an action conmand
I F _ANYOFF (inobj.cf, chanystate) OR _ON (inobj.cf, c”subobj) THEN

BEG N
! Conmand requires info as a prelimnary to its execution.
_THREADMSTATE : = st”prili nmtdone; | State to return to this
I proc
_ SAVEN"THREAD ANDMDI SPATCH (@ nf o~cnd”™proc, st”new‘obj ect,
_EVASTARTUP) ;
RETURN _RCMABORT (ZDSN*ERR MEMORY) ;
END;
I Can performaction directly
_THREADMSTATE : = st ~done; | State to return to this proc
_ SAVEM"THREADMANDMDI SPATCH (@cti on*cnmd”proc, st”~newtobject,
EVASTARTUP) ;

RETURN _RCMABORT (ZDSN*ERR*MEMORY) ;

st”prilimdone ->
I We've done a prelimnary conmand to produce a |list of objects
! for the real command. Swap the current input and output lists
! and get on with the main event.

@enp = @x.current?in;
@x.current™in := @Xx.current”out;
@x.current”out := @enp;

THREADMSTATE : = st”done; ! Return state

SAVE" THREADM ANDM DI SPATCH (@cti on*cnmd”™proc, st”new‘object,
_EVASTARTUP) ;

RETURN _RCMABORT (ZDSN*ERRM MEMORY) ;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-21

Sample User-Written Code for SPIFFY Subsystem Sample | Process Program Code

Interface Process

D-22

st *done ->

END;

I Whatever objects resulted from executing the conmand on
I cx.inobj are now on the cx.current?out list. Build the
! thread output for return to the frane.

CALL _CLOSErO (cx.spif);

VWH LE _NOTNULL (@utobj := _GET~LM (cx.current”out)) DO BEG N
I F outobj.er THEN rc := fornmat”~error”object (outobj)
ELSE rc := fornmat”~normal ~obj ect (outobj);

IF rc <> _RC*NULL THEN RETURN rc;
END;

I Continue with next _input object.
_DI SPATCH*THREAD (, st”new‘object, _EVACONTI NUE);

_ END*THREAD™ PROC;
_THREADMPROC (i nf o*crmd”proc);

BEG N

Process info commands, including a conmmand prelimnary to an
action command. Generate output list of all objects resulting

nanmes, together with info about the object fromthe subsystem

!
!
I from expanding the input |ist through hierarchy and * object
!
!

and its DSNM st at e.

I NT
I NT

. EXT cx (cx~def) = _THREADCONTEXT”ADDRESS;
. EXT inobj (object”l mdef), .EXT outobj (object”l mdef);

STRUCT . tenpobj (object”l nmdef);
LI STPO NTER (tenp);

TNT

er, k;

_RC*MTYPE rc;

RC*"TYPE SUBPROC error”object (erno, spiferno) VARI ABLE;

TNT
BEG

END;

erno, spiferno;

N

I Generate an output object for an input object in error.

I @nobj nmust point to the object fromwhich the error resulted.

I Create an out put object and put error info into it.

' 1f everything works, put thread into new‘object state and return

I RCMMIT; otherwi se return appropriate return code to abort

! the thread.

! Note: We can fiddle with the thread's state in a subproc

! whi ch makes handling the return sinpler than in a proc

! such as fornat”error”object.

! Erno: DSNM or FS error

I Spiferno: Spiffy error nunber, if present

IF _ISNULL (@utobj := PUTALM (cx.current”out,,$LEN (outobj))) THEN
RETURN _RCMABORT (ZDSN*ERR MEMORY) ;

IF er := _FOBJECTAINIT (outobj.FOBJ, inobj.FOBJ) THEN
RETURN _RCMABORT (er);

outobj.cf :=inobj.cf;

outobj.thing ':=" inobj.thing FOR $LEN (outobj.thing) BYTES;

outobj.er := erno;

| F $PARAM (spi ferno) THEN outobj.spifer := spiferno;
_THREADMSTATE : = st “new*obj ect ;
RETURN _RCMWAI T;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Sample | Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process

! Return object type string fromthe SPIFFY type code
SUBPROC t ypenane (tnane, typecode);
STRI NG . EXT t nane;

I NT typecode;
BEG N
CASE typecode OF
BEG N
reactor -> tnane ': =" "REACTOR ";
boi | er ->tname ':=" "BOLER ";
val ve -> tnanme ':=" "VALVE "
chanber -> tnanme ':=" "CHAMBER ";
assenbly -> tnanme ':=" "ASSEMBLY";
cogwheel -> tnanme ':=" "COGAHEEL";
gear -> tnane ': =" "GEAR "
OTHERW SE -> tname ': =" "OIHER ";
END;
END;

! Return DSNM state of a thing fromits subsysteminfo
I NT SUBPROC dsnnstate (thingtarg);
I NT . EXT thing~targ;

BEG N
I NT . EXT thing (spiffy~thing~rdef) = thing”arg;

CASE thing.state OF

BEG N
-- stopped, going, I ASSEMBLY st at es
-- locked, idle, coasting, rotating, ! COGANHEEL, CEAR states
st opped, |ocked, idle -> RETURN ZDSN*STATE"RED,;
coasting -> RETURN ZDSN*STATE" YELLOW
going, rotating -> RETURN ZDSN*STATE" GREEN,

OTHERW SE - >
CASE t hing.type OF
BEG N
reactor -> RETURN ZDSN*STATEMNULL;
boi |l er, val ve, chanber ->

' T 0-297 =red

! 298-595 = yell ow
! 596-893 = green

! 894- 1191 = yel | ow
' 1192-up = red

IF thing.tenp < 298D or thing.tenp >= 1192D THEN
RETURN ZDSN*STATE*RED

ELSE I F thing.temp < 596D or thing.tenp >= 894D THEN
RETURN ZDSN*STATE” YELLOW

ELSE
RETURN ZDSN*STATE" GREEN,;

OTHERW SE - > RETURN ZDSN'STATE™ UNKNOWN;
END;
END;
END;

! Return true if xstate satisfies state flags (snodf flags) in
I in xcf; fal se otherw se.

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-23

Sample User-Written Code for SPIFFY Subsystem Sample | Process Program Code
Interface Process

I NT SUBPROC st at e®ok (xstate, xcf);
I NT xstate, xcf;
BEG N
CASE xstate OF
BEG N
ZDSNMSTATEMGREEN - > RETURN _ON (xcf,c”greenstate);
ZDSN'STATEMYELLOW - > RETURN _ON (xcf, c*yel | owst at e);

ZDSNMSTATEMRED - > RETURN _ON (xcf, c”redstate);
OTHERW SE - > RETURN _ON (xcf,cManystate);
END;

END;

! Produce a normal (non-error) output object
_RCMTYPE SUBPROC nor nmal “obj ect (thing~arg);

I NT . EXT thing~targ;
I NT er;

BEG N
I NT . EXT thing (spiffy~thing~rdef) = thing”arg;
I NT state,;
state : = dsnnstate (thing);
IF _OFF (inobj.cf, c”starobj) AND NOT state”ok (state, inobj.cf) THEN
RETURN _RCMNULL;

IF I SNULL (@utobj := PUTALM (cx.current”out,,$LEN (outobj))) THEN
RETURN _RCMABORT (ZDSN*ERR*MEMORY) ;
outobj.cf :=inobj.cf;

outobj.thing ':=" thing for $LEN (outobj.thing) BYTES;
_TURNON (outobj.cf, c”things);

outobj . dsnnstate : = state;
I F thing. nane = inobj.FOBJ. ZOBJNAME FOR spi ffy~nanme”™l en BYTES THEN
BEG N
I Sane as conmand t hi ng.
IF er := FOBJECTAI NIT (outobj.FOBJ, inobj.FOBJ) THEN

RETURN _RCMABORT (er);
IF _OFF (inobj.cf, c~things) THEN

BEG N
inobj.thing ':=" thing FOR $LEN (i nobj.thing) BYTES;
i nobj . dsnnstate := state;
_TURNON (i nobj.cf, c”things);
END;
END
ELSE
BEG N
! Subordi nate of or derived from conmand thing
IF er := FOBJECTMINIT (outobj.FOBJ,, inobj.FOBJ) THEN
RETURN _RCMABORT (er);
out obj . FOBJ. ZAOBINAME ': =" [ZDSN*MAX"OBINAME * [" "]11;
out obj . FOBJ. Z*OBJNAME ': =" thing. nane FOR spiffy~rname”l en BYTES;

CALL typenane (outobj.FOBJ.Z "OBJTYPE, t hi ng.type);
IF _ON (inobj.cf, chrstarobj) THEN _TURNOFF (outobj.cf, c”starobj)
ELSE _TURNOFF (outobj.cf, c~Afroncnd + c”subobj);
END;
RETURN _RCMNULL;
END;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
D-24 Development Guide

Sample | Process Program Code

Sample User-Written Code for SPIFFY Subsystem

Interface Process

CASE _THREAD"STATE OF BEG N
st *new*obj ect ->
F _ISNULL (@nobj := @x.currentobj := _GETALM (cx.current”in)) THEN

BEG N
I Qut of input objects; restore caller and continue.
! Note: Calling proc has set the state in which it
! desires to return before saving the thread state
! and di spatching this proc.
RESTORE" THREAD" AND" DI SPATCH (_EVACONTI NUE) ;
I If _restorerthread fails, we fall through to here and ...
RETURN _RCMABORT (ZDSN* ERR® NOTPUSHED ;
END;

If we already know things about the input object, it's been
asked about earlier (probably froma * object). |If c”cndobj
is off, we don't want to know things about it unless it's *.
Ei t her way, skip issuing a conmmand for it and proceed
directly to subordinate processing, if any.

| F _ON (inobj.cf, c~things) OR _ALLCFF (inobj.cf, c”cndobj +

c/starobj)
THEN

BEG N

IF _ON (inobj.cf, c~cndobj)

AND (rc := normal ~object (inobj.thing)) <> _RC*NULL
THEN RETURN rc;
_DI SPATCH*"THREAD (, st”exec”done, _EVACONTI NUE);

END;

Note: Star objects. A star object is replaced on the input
list for this procedure (cx.current”in) by the things to
which it expands. This is done without regard for nodifiers
(hrmod, snod), which nust be applied to the resulting objects
rather than *. Fortunately, * can only cone fromthe
_COVWANDMPROC rather than froma later iteration of this one
(that is to say, this proc never produces a * object inits
output list). _COVWAND'PROC hands out objects one at a
time, so * always appears alone on this proc's input.

Therefore after processing a *, we put the output back onto
the (now enpty) input and iterate this procedure again, this
time paying attention to the nodifiers.

cx.cnd.cnd : = tell about;

cx.cmd. response~context = 0;

cx.cnmd. type := inobj.thing.type;

cx.cmd. name ': =" inobj.FOBJ. ZOBIJNAME FOR spi ffy~name”l en BYTES;
cx.cnmd. popMnane ': =" starnane;

IF (er := _SENDMCI (cx.spif, cx.cnd, $LEN (cx.cnd), $LEN (cx.r))) THEN

RETURN error~obj ect (er)

_THREADMSTATE : = st “exec;

RETURN _RCMWAIT; I W'll get _EVMNI ODONE when |/ O conpl etes
st*exec -> | _EV*|l ODONE di spatched us
@ nobj := @x.currentobj;

F _CI"LASTERROR (cx.spif) THEN
RETURN error”object (_CI"LASTERROR (cx.spif));

F cx.r.error THEN
RETURN error”object (ZDSN'ERR*"SUBSYSTEMERR, cx.r.error);

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

D-25

Sample User-Written Code for SPIFFY Subsystem

Interface Process

D-26

Sample | Process Program Code

FOR k := 0 to cx.r.response”things-1 DO
BEG N
IF (rc := normal “object (cx.r.thing[k])) <> _RC*NULL THEN
RETURN r c;
END;
I F cx.r.cnd. response~cont ext THEN
BEG N
! Note: [|If _SEND*ClI produces an error now, sonething happened

!
P
l h
| F

RET
END;

to the SPIFFY manager after we last talked to it.

ut object with error into output, even though it may

ave appeared earlier

(er := _SEND"Cl (cx.spif, cx.cnmd, $LEN (cx.cnd), $LEN (cx.r)))
THEN RETURN error”object (er);

URN _RCMWAIT;

IF _OFF (inobj.cf,crstarobj) THEN

DI

I nput
i nobj

SPATCH*THREAD (, st”exec”done, _EVACONTINUE); ! Done with this
I obj

was a star object. Input list now enpty. Get next

to free the last inobj got, and to be sure it's

really enpty, then exchange the current input and
output, which effectively replaces the star object with

its e

xpansion. See note in st”new‘object state.

I'F _NOTNULL (@nobj := _GETALM (cx.current”™in)) THEN

@

BEG N
CAL
RET

END;

enp

L _REPORT"I NTERNALMERROR (1, _EMS*"EVENT”I NFO);
URN _RCMABORT (ZDSN*ERR™| NTERNAL™ERR) ;

1= @Xx.current”in;

@x.current”™in := @x.current”™out;
@x.currentout := @enp;

_DI SPATCH'THREAD (, st”newobj ect, _EVACONTI NUE);

st “exec”done ->

@

If th
want e
ot her
exec

nobj

is wasn't the command object, or if subordinates aren't
d, enter new*object state to process next input;

Wi se issue command to get subordinates and return to
state to put on output.

.= @Xx.currentobj;

I F _ANYOFF (inobj.cf, cAMroncnd + c”subobj) THEN

DI

SPATCH'THREAD (, st“new‘object, _EVACONTI NUE);

_TURNOFF (i nobj.cf, c*subobj);

CX.
CX.
CX.
CX.
CX.

I F

cnd.
cnd.
cnd.
cnd.
cnd.

(er
RET

cnd = tell about;

response”®context := 0;

type := anythi ng;

name ':=' starnane,

popfnane ': =" inobj.FOBJ. Z*OBJNAME FOR spi ffy~nane”l en BYTES
:= _SENDMClI (cx.spif, cx.cnd, $LEN(cx.cnd), $LEN(cx.r))) THEN
URN error”object (er);

_THREADMSTATE : = st “exec;
RETURN _RC*WAI T;

END;

_ENDM THREAD" PRCC;

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Sample | Process Program Code Sample User-Written Code for SPIFFY Subsystem
Interface Process

_THREADMPROC (acti on”“cnd”proc);
BEG N

_ END* THREAD" PROC;

_THREADMTERM NATI ON*PROC (_COMVAND" TERM NATI ON'PROC) ;
BEG N
I NT . EXT cx (cx~def) = _THREADCONTEXT”ADDRESS;
I NT . EXT inobj (object”l mtdef);

! Free our lists and return |leaving the thread' s ori gi nal
! term nation code (_THREAD*"TERM NATI ON*CODE) unchanged.
! Leave freeing the official input and output lists to the frane.

CALL _DEALLOCATEMLI ST (cx.things);
CALL _DEALLOCATEMLI ST (cx. ot her”t hi ngs);
CALL _CLOSErCl (cx.spif);
RETURN _RCMNULL;
_END"THREADM TERM NATI ONPRCC;

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 D-27

Configuring SPIFFY Into DSNM

Configuring SPIFFY Into DSNM

Specify afile containing the following as an IN fileto NETCOM:

add \ SYS. dsnm subsystem i nterface-config.spifi

SPI FFY- | NTERFACE
add \ SYS. dsnm subsystem i nterface-config.spifi

processnane, $?SPF
add \ SYS. dsnm subsystem i nterface-config.spifi

NOMAI T- DEPTH 15
\ SYS.
\ SYS.
\ SYS.
\ SYS.
\ SYS.
\ SYS.
*-0BJ- ALLONED MR- REQUI
\ SYS.
\ SYS.
\ SYS.
\ SYS.
\ SYS.
\ SYS.
\ SYS.
\ SYS.

add
add
add
add
add
add

add
add
add
add
add
add
add
add

dsnm subsyst em spi
dsnm subsyst em spi
dsnm subsyst em spi
dsnm subsyst em spi
dsnm subsyst em spi

ff
ff
ff
ff
ff
dsnm subsyst em spi f f

pY)
m

dsnm subsyst em spi
dsnm subsyst em spi
dsnm subsyst em spi
dsnm subsyst em spi
dsnm subsyst em spi
dsnm subsyst em spi
dsnm subsyst em spi

ff
ff
ff
ff
ff
ff
ff
dsnm subsyst em spi f f

<KL

KKK

D

Sample | Process Program Code

. public-nanme, &
.defaul t-&

. open-parans, &

. rank , 4

.defaul t-objtype , cogwhee

. devi cetype , 0

. manager , SPI FMON

. subsysteminterface, SPIFI

.fl ags , &

.0bjtype.1 , subsys

.0bjtype.2 ,reactor subsys
.0objtype. 3 , boiler react or
.0bjtype. 4 ,valve react or
.0bj type.5 , chanber react or
.0bjtype. 6 ,assenbly subsys
. 0bj type. 7 , cogwheel assenbl y
.0bj type. 8 , gear assenbl y

This adds the SPIFFY | process and subsystem configuration records listed below to a

DSNMCONF file:

> NETCOM

Net Com 1> SET FI LE $dsnm i dev. dsnntonf

Current config file:

Net Com 2> | NFO

Record
SYSTEM \ SYS
SUBSYS DSNM
CLASS SUBSYSTEM
COVPONENT SPI FFY
PARAMETER DEFAULT- OBJTYPE
SEQUENCE
VALUE COGWHEEL
Record
SYSTEM \ SYS
SUBSYS DSNM
CLASS SUBSYSTEM
COVPONENT SPI FFY
PARAMETER DEVI CETYPE
SEQUENCE
VALUE 0

D-28

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

$DSNM | DEV. DSNMCONF

Sample | Process Program Code

Recor d

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

Recor d

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

\ SYS

DSNM
SUBSYSTEM
SPI FFY
FLAGS

*-0BJ- ALLONED

\ SYS

DSNM
SUBSYSTEM
SPI FFY
MANAGER

SPI FMON

\ SYS

DSNM
SUBSYSTEM
SPI FFY
OBJTYPE

1

SUBSYS

\ SYS

DSNM
SUBSYSTEM
SPI FFY
OBJTYPE

2

REACTOR

\ SYS

DSNM
SUBSYSTEM
SPI FFY
OBJTYPE

3

BA LER

SUBSYS

REACTOR

MGER- REQUI RED

Configuring SPIFFY Into DSNM

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759

D-29

Configuring SPIFFY Into DSNM

D-30

Record
SYSTEM
SUBSYS
CLASS
COVPONENT
PARAMETER
SEQUENCE
VALUE

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

Record
SYSTEM
SUBSYS
CLASS
COVPONENT
PARAMETER
SEQUENCE
VALUE

\ SYS

DSNM

SUBSYSTEM

SPI FFY

OBJTYPE

4

VALVE REACTOR

\ SYS

DSNM

SUBSYSTEM

SPI FFY

OBJTYPE

5

CHAMBER REACTOR

\ SYS

DSNM

SUBSYSTEM

SPI FFY

OBJTYPE

6

ASSEMBLY SUBSYS

\ SYS

DSNM

SUBSYSTEM

SPI FFY

OBJTYPE

7

COGMWHEEL ASSEMBLY

\ SYS

DSNM

SUBSYSTEM

SPI FFY

OBJTYPE

8

GEAR ASSEMBLY

Sample | Process Program Code

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Development Guide

Sample | Process Program Code

Recor d

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

Recor d

SYSTEM
SUBSYS
CLASS
COVPONENT
PARAVETER
SEQUENCE
VALUE

\ SYS

DSNM
SUBSYSTEM
SPI FFY
RANK

4

\ SYS

DSNM

SUBSYSTEM

SPI FFY

SUBSYSTEM | NTERFACE

SPI FI

\ SYS

DSNM

SUBSYSTEM | NTERFACE- CONFI G
SPI FI

DEFAULT- PROCESSNANVE

$?SPF

\ SYS

DSNM

SUBSYSTEM | NTERFACE- CONFI G
SPI FI

OPEN- PARANMS

NOWM T- DEPTH 15

\ SYS

DSNM

SUBSYSTEM | NTERFACE- CONFI G
SPI FI

PUBLI C- NAME

SPI FFY- | NTERFACE

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759

Configuring SPIFFY Into DSNM

D-31

Configuring SPIFFY Into DSNM Sample | Process Program Code

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
D-32 Development Guide

— |Index
A

ABORT command
command line syntax 2-8
output object requirements 4-12
valid modifiers 4-12
Action modifier
ZDSN"AMOD values 4-7
ADDMCI 3-13, 3-46, 5-12, A-5
ADDMSUBSYS 3-13, 5-12, A-7
AGGREGATE command
command line syntax 2-10
output object requirements 4-13
valid modifiers 4-13
ALLOFF A-9
ALLON A-10
ALLONATURNOFF A-11
Altering current thread procedure 3-39
Altering current thread state 3-40
AMOD
See Action modifier
ANYOFF A-12
ANYON A-13
ANYONATURNOFF A-14
APPENDMOUTPUT 3-32, 4-10, A-15
ASSIGN statements 3-11
AUTOLOAD 6-12

B

BITDEF A-18

C

Canceling
Cl communication 3-48
timeout request 3-51
Canceling aDSNM command 3-35
CANCEL"SEND”CI 3-48, A-20

CANCELATIMEOUT 3-51, A-21
Cl 1-10, 3-5
canceling communication request 3-48
closing 3-48
communication with
retrieving information about 3-48
stepsinvolved 3-45
configuration
See Configuration
opening for communication 3-47
process class name 3-46
referenced by ciid 3-5

retrieving configuration in
_STARTUP 5-12

sending messagesto 3-47
Cl configuration structure 3-45
ClID structure 3-47, A-25
CI"DEF 3-45, 5-12, A-22
CI"FILENUM 3-50, A-24
CINID A-25
CI"NNDPOINTER 3-47, A-26
CI"LASTERROR 3-49, A-27
CI"REPLYADDRESS 3-49, A-28
CI"REPLYLENGTH 3-49, A-29
CI"REPLYTAG 3-49, A-30
CLASS*PARAM 5-11, A-56
CLOSENCI 3-48, A-31
Command context 3-5, 3-15

extended address of 3-17

input area 3-18

output area 3-19

required header 3-17

state management 3-37
Command server 1-8

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

Index-1

Command thread
definition 3-3
termination 3-51
See also Thread

Commands
DSNM

See DSNM commands and
individual command names

DSNMCom 7-5
See also DSNM Com
COMMAND/MCONTEXTAHEADER 3-17,
A-32
COMMAND"PROC procedure 3-14, A-33

COMMANDATERMINATION~PROC
procedure 3-14, A-34

COMPILEDMINATESTMODE A-35
Compiling
in test mode 5-2
required ASSIGN statements 3-11
required ?SOURCE statements 3-9
Component name, defined 3-12
COMPONENT process parameter 5-2
COMPONENT~PARAM 5-11, A-56
CONFIG
DSNM Com process parameter 7-2
CONFIG process parameter 5-2
Configuration
adding objects to DNS database 6-12
Cl, retrieving parameters 5-7, 5-12
DSNMCONFfile
See DSNMCONFfile
NETCOM utility
example D-28
of serversin Pathway environment 6-12
subsystem 6-1
retrieving parameters 5-7, 5-12
SUBSY STEM class records 6-5
$SYSTEM.SY STEM.DSNM
See $SY STEM.SY STEM.DSNM

Index

Context space
See Command context

Control context area 3-15

Control interface process
SeeCl

CPWDSMS 6-12

CPWDSNM 6-12

Current thread 3-4
atering 3-39
restoring and dispatching 3-43
saving and dispatching new 3-43
saving and restoring 3-40

D

Data definition language
See DDL
Database interface process 1-9
DBI 1-9
DDL
representing character strings C-5

summary of constants and structure
defs C-1/C-5

DEALLOCATENLIST 3-27, A-36
Declaring private thread events 3-36
DELETEALM 3-27, A-37
DEPOSIT A-38
Dispatch 3-4
Dispatching athread procedure 3-34, 3-35
DISPATCHATHREAD 3-43, A-39
Distributed Name Service
See DNS
Distributed Systems Management
See DSM
Distributed Systems Network Management
See DSNM
DNS 1-8
DNS database 6-12
DNSCOM 6-12

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Index-2

Development Guide

Index

DSNM 1-1

commands
components of 4-1
executing from DSNMCom 7-11
overview of how processed 3-6
components of
command server 1-8
database interface process
(DBI) 1-9
E process 1-10
| process 1-9
object database 1-9
object monitor process
(OMON) 1-9
DSNM Com process parameter 7-2
environment
running multiple copies 1-13
extending support of 1-14
object states
See Object states
operations environments 1-13
parser errors 7-17, B-10
process configuration 1-12
process parameter 5-2
process startup functions 5-1
startup sequence 1-12

DSNM commands

command syntax 2-1
general considerations 2-6

example of mapping subsystem to
DSNM D-7

hierarchy modifier

See Hierarchy modifier
nesting object lists 2-6
processing flow 4-1
response modifier

See Response modifier

specifying more than one modifier 2-6

DSNM commands (continued)

state modifier
See State modifier
summary requests 2-4

when operation unsupported by
subsystem D-7
See also individual command names

DSNMCom 7-1

Break key 7-4
commands 7-5
CLOSE 7-5
EXIT 7-5
FC 7-6
HELP 7-6
OPEN 7-7
QUIT 7-7
RESET 7-7
SET 7-7
SHOW 7-10
DSNM parser errors 7-17, B-10
example of testing with D-8
executing DSNM commands 7-11
interactive 7-3
messages 7-12
noninteractive 7-4
process parameters 7-2
prompt 7-3
syntax 7-1

DSNMCONF file

classes of records 6-5

record format 6-4

retrieving parameters from 5-4

search list, for testing purposes 5-2

specifying to DSNMCom 7-2

SUBSY STEM classrecords 6-5

used by ADD"SUBSYS A-7

using NETCOM to add recordsto
example D-28

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759 Index-3

DSNMCONF parameters 5-3
accessing nonstandard 5-10
accessing standard 5-8

DSNMCONF*PARAMS 5-9, A-40

E

E process

function within network management
architecture 1-10

object database configuration 1-9
EMOD

See Error modifier
EMPTYALIST 3-28, A-41
EMS 1-8

logging errorsto 3-53
EMS'EVENTACRITICAL A-42, A-104
EMS'EVENTAFATAL A-42, A-104
EMS'EVENTAINFO A-42, A-104
ENDA"THREAD"MPROC 3-14, A-43

ENDATHREADATERMINATIONAPROC 3
-14, A-44

Error codes
See ZDSNERR codes

Error modifier
in command line 2-3
ZDSN"EMOD values 4-6

Errors
reporting to EMS 3-53
reporting to the frame 3-52
that cause command to terminate 3-53
See also ZDSNERR codes

Event 3-4
declaring private thread events 3-36
dispatching athread 3-34
generated by thread or frame 3-35
simulating frame events 3-36
thread-generated 3-35

Seealso _SIGNALMEVENT

Index

Event Management Service

See EMS
Event monitoring process

See E process
EVACANCEL 3-35, 3-52, A-45
EVACONTINUE 3-35, A-45
EVAIODONE 3-35, A-45
EVASTARTUP 3-35, A-45
EVATIMEOUT 3-35, A-45
EXIT command, DSNMCom 7-5
EXTRACT A-46

F

FC command, DSNMCom 7-6
FIRSTALM 3-25, A-47
FOBJ

input list members 3-22

output list members 3-23

structure built by command thread 4-10
FOBJECT 3-20, 3-28

defined A-48

structure defined 3-28
FOBJECTAINIT 3-29, A-50
Formatted object 3-5

example of structure A-48
Frame 3-3

startup procedure 5-6

G

GENERAL"PARAM 5-11, A-56
GETALM 3-27, A-54

GET"PARAM 5-7,5-10, A-55
GET"PROCESS"PARAM 5-7, 5-9, A-58
Global data A-32

Global variables 3-37
GLOBAL"PARAM 5-10, A-55

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Index-4

Development Guide

Index

H

HELP command, DSNMCom 7-6
Hierarchy modifier
example of implementing D-7
in command line 2-3
men used with hierarchy qualifier 2-6,
when used with state modifier 2-6, 4-4
ZDSN"HMOD values 4-3
Hierarchy qualifier
when used with hierarchy modifier 2-6
Highlight modifier
in command line 2-5
HMOD
See Hierarchy modifier

| process
function of 3-1

function within network management
architecture 1-9

testing
See DSNMCom
INFO command
command line syntax 2-11
output object requirements 4-15
valid modifiers 4-15
INITIALIZEALIST 3-24, A-59
INPUT A-60
action modifier value 4-7
area of command context space 3-18
error modifier value 4-6
hierarchy modifier vaue 4-3

INPUT (continued)
MOD structure
Z"AMOD values 4-7
See also Z"AMOD
Z"EMOD values 4-6
See also Z"EMOD
Z"HMOD values 4-3
See also Z"HMOD
Z"RMOD values 4-5
See also Z"RMOD
Z"SMOD values 4-4
See also ZASMOD
response modifier value 4-5
state modifier value 4-4
Input list member 3-22
Input object list 3-5
FOBJ object structures 4-8
in command context 3-15
_INPUTADEF structure 3-18
INPUT structure
ACTION field 4-2
INPUTADEF 3-18, A-61
INPUTALMMHEADER 3-22, A-62
INQUIRE command
command line syntax 2-13
Interface process
See | process
ISNULL A-64

J

JOINALIST 3-28, A-65

K

KDSNDEFS 3-9, A-66

L

LASTACIND 3-49, A-67
LASTAEVENTS 3-38, A-68
LASTALM 3-25, A-69

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

Index-5

LASTATIMEOUTATAG 3-50, A-70
Library services, overview of 3-54
LIST 3-24, A-71
List 3-5
allocating memory for new last
member 3-27

declaring list structure 3-24
deleting a member of 3-27
deleting all membersof 3-27
extended pointer to 3-25
finding out if empty 3-28
first member 3-25
initializing 3-24
joining two lists 3-28
last member 3-25
logical view of 3-23
next member 3-25
number of members 3-28
previous member 3-25
releasing members to frame 3-32
removing current first member 3-27
removing current last member 3-27
scanning 3-26
LISTPOINTER 3-25, A-72
Local variables 3-37
LOCAL"PARAM 5-10, A-55

M

MEMBERSOF LIST 3-28, A-73
Mixed network requirements 1-14
MOVEMLIST A-74

Multiple copiesof DSNM 1-13
MY SY STEM process parameter 5-2

N

Name resolution 1-8

NETCMD 1-5

NetCommand 1-3
componentsof 1-5

Index

NETCOM, example D-28
NETCONF 1-5
NetStatus 1-4
componentsof 1-6
NETSTATUS-SVR 1-6
NETSVR 1-5
Network management architecture
layers 1-4
management services layer 1-8
operations layer 1-4
subsystem layer 1-10
NonStop NET/MASTER MS 1-2, 1-3
NOTNULL A-75
NULL A-76
NULLALIST A-77

@)
Object 1-1
adding to DNS database 6-12

as defined by contentsof
FOBJECT 3-28

examplesof 1-11
hierarchy 4-8
records in object database 1-9
states
See Object states
Object database 1-9
Object monitor process 1-9
Object states 2-6, 4-7, 4-8
DOWN 2-6

example of mapping subsystem states to
DSNM states D-6

PENDING 2-6

UNDEFINED 2-6

UNKNOWN 2-6

UP 2-6

values 4-7

when state cannot be determined 4-8

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Index-6

Development Guide

Index

OBJECTLIST
declared by OUTPUT~DEF A-85
example A-78
input object list 3-18
output object list 3-19
OFF A-79
OMON 1-9
ON A-80
OPEN command, DSNMCom 7-7
OPENMCI 3-47, A-81
Operations environments 1-13
OUTPUT 3-19, A-84
Output list member 3-22
Output object list 3-5
fieldsfilled in by command thread 4-10
in command context 3-15
releasing members to frame 3-32
_OUTPUT"DEF structure 3-19
OUTPUTADEF 3-19, A-85
OUTPUTALM"HEADER 3-22, A-86

P

Parameters
global 5-5
class 5-5
component 5-5
general 5-6
local 5-4
class 54
component 5-4
general 5-5
search criteria 5-4, 5-10
See also DSNM CONF parameters
See also Process parameters

Parser errors, returned by DSNMCom 7-17,
B-10

POP.M 3-27, A-87
POP*"THREAD"PROCSTATE 3-40, A-88
PREDECESSORM.M 3-25, A-89

Private events 3-35
PRIVATEA"THREADMEVENT 3-36, A-91
Process class name

Cl 3-46
Process configuration 1-12
Process parameters 5-2

accessing nonstandard 5-9

accessing standard 5-8

COMPONENT 5-2

CONFIG 5-2

DSNM 5-2

MYSYSTEM 5-2

TESTMODE 5-2
PROCESS*"PARAMS 5-8, A-92
PUSHALM 3-27, A-93
PUSHATHREAD”"PROCSTATE 3-40, A-95
PUTALM 3-27, A-97

R

RCMABORT 3-34, 3-53, A-99
RCANULL 3-36, A-99
RCASTOP 3-34
RCATYPE 3-36, A-100
RCNWAIT 3-34, A-100
REALAMLASTAEVENTS 3-38, A-101
RELEASENOUTPUT 3-32, A-102
Reporting errors B-1
REPORTAINTERNALM"ERROR A-103
REPORTASTARTUPERROR A-104
Response modifier
in command line 2-4
ZDSN"RMOD values 4-5

RESTORENTHREADMAND/DISPATCH
3-43, A-106

RMOD
See Response modifier

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

Index-7

S

SAVEATHREADMANDADISPATCH 3-43,
A-107

Scanning alist 3-26
SEND~CI 3-47, A-108
SETA"THREAD”PROC 3-39, A-111
SETATIMEOUT 3-50, A-112
SHOW command, DSNMCom 7-10
SIGNALMEVENT 3-35, A-113
Simulating frame events 3-36
SMOD
See State modifier
START command
command line syntax 2-15
output object requirements 4-16
valid modifiers 4-16
Startup message
DSNMCONF parameters 5-3
See also DSNM CONF parameters
format of 5-1
process parameters 5-2
See also Process parameters
retrieving parameters from 5-4
standard process parameters 5-8
STARTUP procedure
caling _GET&PARAM 5-10
format 3-13
format and example A-114
proceduresto becalled in 5-7
retrieving nonstandard values 5-9
_ADD™CI 3-13,5-7,5-12
_ADD"NSUBSYS 3-13,5-7,5-12
_GET"PARAM 5-7
_GET"PROCESS_PARAM 5-7
Startup sequence 1-12

STARTUP*MODE procedure 3-12, 5-6,
A-116

State management 3-37

Index

State modifier
in command line 2-4
men used with hierarchy modifier 2-6,
ZDSNASMOD vaues 4-4
States
See Object states
STATISTICS command
command line syntax 2-17
output object requirements 4-17
valid modifiers 4-17
Statistics, resetting 4-7
STATUS command
command line syntax 2-19
output object requirements 4-18
valid modifiers 4-18
STOP command
command line syntax 2-21
output object requirements 4-20
valid modifiers 4-20
STAINITIAL 3-40, A-118
ST"MINATHREADA"STATE 3-40, A-119
Subsystem 1-1
configuring into DSNM 6-1
See also Configuration
records in object database 1-9

retrieving configuration in
_STARTUP 5-12

SUBSY STEM class records

See DSNMCONFfile
Subsystem interface process

See | process
SUBSY S'DEF 5-12, A-120
SUCCESSORMLM 3-25, A-122
SUMMARY-BYOBJECT 2-4
SUMMARY-BYTYPE 2-4
Suspending thread procedures 3-34

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Index-8

Development Guide

Index

T

TERM-START-SVR 1-6
Test mode 5-2

compilingin 5-2
Test utility

See DSNMCom
TESTMODE process parameter 5-2
Thread 3-3

declaring thread procedures 3-14

See also Current thread
Thread state

atering 3-40

determining 3-40

initial state 3-40

restoring 3-43

saving 3-43

saving and restoring 3-40
THREADMCONTEXTMADDRESS 3-17
THREAD”MPROC 3-14, A-125
THREADA/STATE A-126
THREADATERMINATIONACODE A-127

THREADMTERMINATION"MPROC 3-14,
A-128

Timeouts 3-50
TURNOFF A-129
TURNON A-130

U

UNGET A-131
UNPOPLM A-132
UPDATE command
command line syntax 2-23
Utility procedures 3-34, 3-36

V

Variable-length text items 3-32

X
XADRMEQ A-133
XADRMNEQ A-134

Z

ZDSN-DDL-DSNMCONF-PARAMS A-40
ZDSN-DDL-OBJTY PE-CONFIG A-120
ZDSN-DDL-PCLASS-CONFIG A-22
ZDSN-DDL-SUBSY S-CONFIG A-120
ZDSNMACTIONA

ABORT 4-2

AGGREGATE 4-2

INFO 4-2

START 4-2

STATISTICS 4-2

STATUS 4-2

STOP 4-2
ZDSN"DDL"CLASS'DEF 5-11
ZDSN"DDL"COMPONENT”DEF 5-11
ZDSN"DDL"COUNTERS'DEF A-17,C-4
ZDSN"DDL"DSNMCONF'DEF 6-4
ZDSN"DDL"DSNMCONF'‘PARAMS 5-9
ZDSN"DDL"FOBJECT"DEF 3-28, 4-8,
4-10, C-3
ZDSN"DDL"MANAGER"DEF 4-9
ZDSN"DDL"OBINAME"DEF 4-9
ZDSN"DDL"OBJTY PE"DEF 4-8
ZDSN"DDL"PARAMNAME"DEF 5-11
ZDSN"DDL"PCLASS"CONFIG 3-46
iDgSZN’\DDL’\PROCESS’\PARAMS 5-8,
ZDSN"DDL"SUBSY S"DEF 4-8, 5-11
ZDSN"EMOD”DETAIL 3-52
ZDSN"ERR codes

summary of B-1/B-13
ZDSN"ERRM"NFSMERR 3-52
ZDSN"ERR"MEMORY A-107
ZDSN"ERR"NOTPUSHED A-106
ZDSN"ERR"OBJ*NOT~FOUND 3-53

Distributed Systems Network Management (DSNM) Subsystem Interface Development

Guide—109759

Index-9

Special Characters

ZDSN"ERRM"SUBSY STEM”ERR 3-53
ZDSN*MAXATEXT 4-10
ZDSN*M OD"DEF 4-2
ZDSNASTATEADOWN 4-7
ZDSNMSTATEMGREEN 4-7
ZDSNASTATEANULL 4-8
ZDSNASTATEMPENDING 4-7
ZDSNASTATEMRED 4-7
ZDSNASTATEANUNDEFINED 4-8
ZDSNASTATEANUNKNOWN 4-8
ZDSNASTATEMNUP 4-7
ZDSNASTATEMY ELLOW 4-7

ZDSNVTYACOUNTERS 4-10, 4-13,
A-15, A-16

ZDSNVTYMERRTEXT 4-10, A-15, A-16
iDl%N’\VTY’\RESULTTEXT 4-10, A-15,
ZDSNAVTYATEXT 4-10, A-15, A-16
Z"HMOD

applying to object list members 4-9
Z"SMOD

applying to object list members 4-9

Special Characters
$0 1-8
$SYSTEM.SYSTEM.DSNM 5-2
format of 6-2
STARTUP PARAMS 5-2
$ZDNS 1-8
?SOURCE statements 3-9

_COMMANDATERMINATION~PROC
procedure 3-51

Index

109759—Distributed Systems Network Management (DSNM) Subsystem Interface

Index-10

Development Guide

Contents 2. DSNM Commands

New and Changed Information iii
About ThisManual xv
Notation Conventions Xxix

1. Overview of DSNM

Scope of This Section 1-1

WhatisDSNM? 1-1

Applications Supported by DSNM 1-1
NonStop NET/MASTERMS 1-3
NetCommand 1-3
NetStatus 1-4

The Network-Management Architecture 1-4
The Operations Layer 1-4
The Management Services Layer 1-8
The Subsystem Layer 1-10

Installing DSMS Products 1-12

Startup Sequence and Configuration Files 1-12

Running DSNM Products 1-13

Installing More Than One Copy of DSNM Concurrently 1-13

Mixed Network Requirements 1-14

Extending DSNM Support 1-14

2. DSNM Commands
Scope of This Section 2-1
Command Line Syntax 2-1
Commands 2-1
Object Specification 2-2
Modifiers 2-3
Parameters 2-5
Considerations 2-6
DSNM Object States 2-6
Canceling Commands 2-6
The ABORT Command 2-8
The AGGREGATE Command 2-10
TheINFO Command 2-11
The INQUIRE Command 2-13
The START Command 2-15
The STATISTICS Command 2-17
The STATUS Command 2-19

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1

3. | Process Development Process Contents

The STOP Command 2-21
The UPDATE Command 2-23

3. | Process Development Process

Scope of This Section 3-1

Function of the | Process 3-1

| Process Program Structure Concepts 3-3

General Command Processing Scheme 3-6

The Command Thread Source Environment 3-9
ASSIGN Statements Required for Compilation 3-11

User-Written Procedures 3-11
The STARTUP*MODE Procedure 3-12
The STARTUP Procedure 3-13

Declaring Thread Procedures. | THREAD”PROC and
_END"THREAD"PROC 3-14

The Initial Command Thread Procedure: . COMMAND”PROC 3-14

The Thread Termination Procedure: _ COMMANDATERMINATIONMPROC 3-14
Command Context Space 3-15

Accessing the Command Context Space 3-17

Defining the Command Context Space 3-17

Thelnput Areaz _INPUT 3-18

The Output Areaz _OUTPUT 3-19
The Input and Output List Member Structures 3-20

Defining the Input List Member Structure: INPUTALMAHEADER 3-22

Defining the Output List Member Structure: _ OUTPUTALMAHEADER 3-22
Working With Lists 3-23

Declaringalist: LIST 3-24

Initializing aList Structure: _INITIALIZEALIST 3-24

Accessing the First Member of aList: FIRSTALM 3-25

Accessing the Last Member of aList: LASTALM 3-25

Accessing the Next List Member: SUCCESSORMLM 3-25

Accessing the Previous List Member: PREDECESSORMN.M 3-25

DeclaringaPointer toaList: _LISTPOINTER 3-25

Scanningalist 3-26

Processingalist 3-26

Maintainingalist 3-27

Requesting Status About aList 3-28

Initializing Object List Members: _FOBJECT/AINIT 3-28

Adding Text Items to an Output Object: _APPENDM"OUTPUT 3-32

Releasing Output List Membersto the Frame: _ RELEASEMOUTPUT 3-32

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
2 Development Guide

Contents 4. DSNM Command Requirements

Example: List Processing Library Services 3-32
Suspending and Dispatching Thread Procedures 3-34
Suspending Thread Procedures. Return Codes 3-34
Dispatching Thread Procedures. Events 3-35
Declaring Utility Procedures. RCATYPE 3-36
State Management 3-37
Determining Which Event(s) Caused the Current Dispatch 3-38
Altering the Current Thread Procedure and Thread State 3-39
Frame Services 3-45
Cl Communications 3-45
Accessing Information About a CI Communication 3-48
Timeout Intervals 3-50
Command Thread Termination 3-51
Reporting Errors 3-51
Reporting Errorsto the Frame 3-52
Command-Terminating Errors 3-53
Reporting Errorsto EMS 3-53
Overview of theLibrary Services 3-54

4. DSNM Command Requirements
Scope of This Section 4-1
Command Flow 4-1
Command Components 4-1
Action to be Performed 4-2
Command Modifiers 4-2
Object List Modifiers 4-3
Response Modifiers 4-5
Action Modifiers 4-7
Object States 4-7
The Input Object List 4-8
Execution Objects 4-9
Applying Object List Modifiers 4-9
The User Area: Intermediate Lists 4-9
The Output Object List 4-10
Output Object Variable-Length Items 4-10
Command Requirements 4-11
The ABORT Command 4-12
The AGGREGATE Command 4-13
The INFO Command 4-15

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 3

5. DSNM Process Startup Functions Contents

The START Command 4-16

The STATISTICS Command 4-17
The STATUS Command 4-18
The STOP Command 4-20

5. DSNM Process Startup Functions

Scope of This Section 5-1

DSNM Process Startup Message 5-1
Process Parameters 5-2
DSNM Configuration Parameters 5-3

Parameter Types and Search Criteria 5-4
Local Parameters and Search Patterns 5-4
Global Parameters and Search Patterns 5-5

Parameter Retrieval Library Services 5-6
Accessing Standard Process Parameters. PROCESS*"PARAMS 5-8
Accessing Standard Configuration Parameters:. DSNMCONF*PARAMS 5-8
Retrieving Non-Standard Process Parameters. _ GET"PROCESS*PARAM 5-9
Retrieving Nonstandard Configuration Parameters:. _GET"PARAM 5-10
Retrieving Subsystem Configuration Parameters 5-12
Retrieving CI Configuration Parameters 5-12

6. Configuring a New Subsystem Into DSNM

Scope of This Section 6-1

New and Changed DSNM Configuration Information 6-1

The $SYSTEM.SYSTEM.DSNM File 6-2

Format of the DSNMCONF File 6-4

DSNMCONF Records Relevant to | Processes 6-5
SUBSY STEM Class Records 6-5
process-class-CONFIG Records 6-9

Adding Subsystem Objectsto the DNS Database 6-12

Defining an | Process as a Pathway Server 6-12

7. DSNMCom: Thel Process Test Utility
Scope of This Section 7-1
What isDSNMCom? 7-1
Before You Run DSNMCom 7-1
DSNMCom Command Syntax 7-1
The DSNMCom Prompt 7-3
Running DSNMCom Interactively 7-3
Running DSNMCom From an Input File 7-4
The Comment Character, COMMENT-CHAR 7-4

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Contents A. DSNM Library Services

Using the Break Key 7-4
Setting Security Parametersin DSNMCom 7-5
The DSNMCom Commands 7-5

CLOSE Command 7-5

EXIT Command 7-5

FC Command 7-6

HELP Command 7-6

OPEN Command 7-7

QUIT Command 7-7

RESET Command 7-7

SET Command 7-7

SHOW Command 7-10
Executing DSNM Commands 7-11
DSNMCom Messages 7-12

DSNM Parser Errors 7-17

A. DSNM Library Services
Scope of This Appendix A-1

_ADD”CI A-5
_ADD”"SUBSYS A-7
_ALLOFF A-9
_ALLON A-10
_ALLON~TURNOFF A-11
_ANYOFF A-12
_ANYON A-13
_ANYON~TURNOFF A-14
_APPEND"MOUTPUT A-15
_BITDEF A-18
_CANCEL"SENDMCI A-20
_CANCEL"TIMEOUT A-21
_CI"DEF A-22
_CI"FILENUM A-24
_CInNID A-25
_CINIDPOINTER A-26
_CI"LASTERROR A-27
_CI"REPLYADDRESS A-28
_CI"REPLYLENGTH A-29

_CI"REPLYTAG A-30
_CLOSEMCI A-31

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 5

A. DSNM Library Services Contents

_COMMANDACONTEXTAHEADER A-32
_COMMANDAPROC A-33
_COMMANDATERMINATIONAPROC A-34
_COMPILEDMINATESTMODE A-35
_DEALLOCATEALIST A-36
_DELETEALM A-37

_DEPOSIT A-38
_DISPATCHATHREAD A-39
_DSNMCONFAPARAMS A-40
_EMPTYALIST A-41
_EMS'EVENTACRITICAL A-42
_EMS'EVENTAFATAL A-42
_EMS'EVENTAINFO A-42
_ENDATHREAD"PROC A-43
_END~THREAD~TERMINATIONAPROC A-44
_EVACANCEL A-45
_EVACONTINUE A-45
_EVAIODONE A-45
_EVASTARTUP A-45
_EVATIMEOUT A-45

_EXTRACT A-46

_FIRSTALM A-47

FOBJECT A-48

_FOBJECTAINIT A-50

_GETALM A-54

_GETAPARAM A-55
_GET"PROCESS"PARAM A-58
_INITIALIZEALIST A-59

_INPUT A-60

_INPUT"DEF A-61
_INPUTALMAHEADER A-62
_ISNULL A-64

_JOINALIST A-65

KDSNDEFS A-66

_LASTACINID A-67
_LASTAEVENTS A-68
_LASTALM A-69
_LASTATIMEOUTATAG A-70
LIST A-71

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
6 Development Guide

Contents A. DSNM Library Services

_LISTPOINTER A-72
_MEMBERSOFALIST A-73
_MOVEALIST A-74

_NOTNULL A-75

_NULL A-76

_NULLALIST A-77

OBJECTLIST A-78

_OFF A-79

_ON A-80

_OPEN~CI A-81

_OUTPUT A-84

_OUTPUTDEF A-85
_OUTPUTALM~HEADER A-86
_POP\LM A-87
_POP"THREAD"PROCSTATE A-88
_PREDECESSORMLM A-89
_PRIVATEATHREADAEVENT A-91
_PROCESS'PARAMS A-92
_PUSHALM A-93

_ PUSHATHREAD"PROCSTATE A-95
_PUTALM A-97

_RCMABORT A-99

_RCANULL A-99

_RCASTOP A-99

_RCATYPE A-100

_RCAWAIT A-100
_REALALASTAEVENTS A-101
_RELEASEAOUTPUT A-102
_REPORTAINTERNALAERROR A-103
_REPORTASTARTUP'ERROR A-104
_RESTOREATHREADAND/DISPATCH A-106
_SAVEATHREADMANDADISPATCH A-107
_SEND~CI A-108
_SETATHREAD"PROC A-111
_SETTIMEOUT A-112
_SIGNALAEVENT A-113
_STARTUP A-114
_STARTUP*MODE A-116
_STAINITIAL A-118

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 7

B. DSNM Error Codes Contents

_STAMINATHREADASTATE A-119
_SUBSYS'DEF A-120
_SUCCESSORLM A-122
_THREAD"CONTEXTAADDRESS A-124
_THREAD"PROC A-125
_THREADASTATE A-126
_THREADATERMINATIONACODE A-127
_THREADATERMINATIONAPROC A-128
_TURNOFF A-129

_TURNON A-130

_UNGETALM A-131

_UNPOP'LM A-132

_XADRMEQ A-133

_XADRNEQ A-134

B. DSNM Error Codes
Scope of This Appendix B-1
Reporting Errors B-1
What to Prepare Before Contacting Your Tandem Support Representative B-1
ZDSN Error Codes B-2
-nnn B-2
0 ZDSN"ERR"NOERR B-2

-30
-34
-35
44
.45
.51
.55
-56

-60
-64
-67
-69
71
-76
77
-78
-79

ZDSN"ERR"CMDM"MISMATCH B-2
ZDSN"ERRMNNTERNALMERR B-3
ZDSN"ERRMSUBSY STEM?ERR B-3
ZDSN"ERRAMTKNAVALAINV - B-3
ZDSN"ERRMTKNMREQ B-3
ZDSN"ERRM"SPI"ERR B-4
ZDSN"ERR"OBINAME?NNV - B-4

ZDSN"ERRMOBJTY PE*"NOT*SUPPORTED or
ZDSN"ERRMOBI*"NOTASUPP B-4

ZDSN"ERR"MEMORY or ZDSN*"ERR*"NO*"MEMASPACE B-4
ZDSN"ERRM"FS*ERR B-5

ZDSN"ERR"CMD"TIMEDMOUT B-5
ZDSN"ERRMCMDMNOTASUPP B-5
ZDSN"ERRMALLOCATESEGMENT”ERR B-5
ZDSN"ERR"BADCOMMAND B-6
ZDSN"ERRMUNSUPPORTED"BYMSUBSYS B-6
ZDSN"ERRMUNSUPPORTED"BY” B-6
ZDSN"ERRM"DATAMNNTEGRITY B-6

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
Development Guide

Contents D. Sample | Process Program Code

-81 ZDSN"ERR™MISSINGM"OBJTYPE B-7

-82 ZDSN"ERR"BADOBJTYPE B-7

-86 ZDSN"ERR"REQ"KEYWORD"MISSING B-7
-88 ZDSN"ERR"DUP*KEYWORD B-7

-202 ZDSN"ERRMOBJECTTOOLONG or
ZDSN"ERRMOBJTOOLONG B-8

-204 ZDSN"ERR"BADARGUMENT B-8

-206 ZDSN"ERRM"NOTPUSHED B-8

-207 ZDSN"ERRMLIB"BADVALUEMOMITTED B-8

-212 ZDSN"ERRMNSYNTAX B-9

-214 ZDSN"ERRM"RESERVEDWORD B-9

-216 ZDSN"ERR"CMDERROR B-9

-217 DSN"ERR"BADLOGON B-9
Messages From the DSNM Parser B-10

C. Data Definition Language (DDL)-Defined DSNM SPI Components
Scope of This Appendix C-1
Commands C-1
Modifiers C-1
HMOD Values C-1
EMOD Values C-2
SMOD Vaues C-2
RMOD Values C-2
AMOD Values C-2
Command Object DDL C-3
DSNM State Values C-3
Error Codes C-4
AGGREGATE Counters C-4
Response Item Types C-4
DDL Definitionsfor DSNM Character String Components C-5

D. Samplel Process Program Code

Scope of This Appendix D-1

Overview of the SPIFFY Subsystem D-1
Characteristics of SPIFFY Objects D-1
SPIFFY Subsystem Programmatic Interface Commands D-2
Command and Response Message Formats D-3
SPIFFY Subsystem Literal Definitions D-5

SPIFFY | Process Design D-6
State Mapping D-6

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 9

Index Index-1 Contents

Implementing DSNM Commands D-7
Managing SPIFFY Through DSNM: Sample Command Output D-8
Using DSNMCom to Test the SPIFFY | Process D-8
DSNM STATUS Command Output D-9
Sample User-Written Code for SPIFFY Subsystem Interface Process D-12
Configuring SPIFFY Into DSNM D-28

Index Index-1

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
10 Development Guide

Examples

Examples

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1

Examples

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
2 Development Guide

Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 3-1.
Figure 3-2.
Figure 3-3.

Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.

Figures

Network-Management Application Components 1-2

DSNM and DSM Functional Connections 1-7

The Subsystem Layer 1-11

DSNM Process Startup and Configuration Components 1-13
Function of the | Process 3-2

Relationship Between the Frame and User-Written Procedures 3-4

Frame/Command Thread Interaction: Processing a DSNM
Command 3-8

Command Context Area 3-16

Object List Member Definitions 3-21

Logical View of aList 3-24

Altering Current Thread Procedure and Thread State Values 3-42
Dispatching New Thread Procedures 3-44

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759

Figures

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
2 Development Guide

Tables

Tables
Table 3-1. Summary of | Process Development Library Services 3-54
Table 4-1. Command Modifiers 4-2
Table 4-2. HMOD Usage 4-4
Table 7-1. DSNMCom Commands 7-5
Table 7-2. DSNMCom SET Parameters 7-8
Table A-1. DSNM Library Services A-1

Distributed Systems Network Management (DSNM) Subsystem Interface Development
Guide—109759 1

Tables

109759—Distributed Systems Network Management (DSNM) Subsystem Interface
2 Development Guide

	System Software Library
	Distributed Systems Network Management (DSNM) Subsystem Interface Development Guide
	Abstract
	Product Version
	Supported Releases
	Part Number
	Edition
	Published
	Release ID
	Document History

	New and Changed Information
	Contents
	1.�Overview of DSNM
	2.�DSNM Commands
	3.�I Process Development Process
	4.�DSNM Command Requirements
	5.�DSNM Process Startup Functions
	6.� Configuring a New Subsystem Into DSNM
	7.� DSNMCom: The I Process Test Utility
	A.�DSNM Library Services
	B.�DSNM Error Codes
	C.� Data Definition Language (DDL)-Defined DSNM SPI Components
	D.�Sample I Process Program Code
	Index����Index�1
	Figures
	Tables

	About This Manual
	How This Manual Is Organized
	Where to Go for More Information
	Your Comments Invited

	Notation Conventions
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces
	Change Bar Notation

	1 Overview of DSNM
	Scope of This Section
	What is DSNM?
	Applications Supported by DSNM
	Figure�1�1.� Network-Management Application Components
	NonStop NET/MASTER MS
	NetCommand
	NetStatus

	The Network-Management Architecture
	The Operations Layer
	Figure�1�2.� DSNM and DSM Functional Connections

	The Management Services Layer
	The Subsystem Layer
	Figure�1�3.� The Subsystem Layer

	Installing DSMS Products
	Startup Sequence and Configuration Files
	Figure�1�4.� DSNM Process Startup and Configuration Components

	Running DSNM Products
	Installing More Than One Copy of DSNM Concurrently
	Mixed Network Requirements
	Extending DSNM Support

	2 DSNM Commands
	Scope of This Section
	Command Line Syntax
	Commands
	Object Specification
	Modifiers
	Parameters
	Considerations
	DSNM Object States
	Canceling Commands
	The ABORT Command
	The AGGREGATE Command
	The INFO Command
	The INQUIRE Command
	The START Command
	The STATISTICS Command
	The STATUS Command
	The STOP Command
	The UPDATE Command

	3 I Process Development Process
	Scope of This Section
	Function of the I�Process
	Figure�3�1.� Function of the I Process

	I Process Program Structure Concepts
	Figure�3�2.� Relationship Between the Frame and User-Written Procedures

	General Command Processing Scheme
	Figure�3�3.� Frame/Command Thread Interaction: Processing a DSNM Command

	The Command Thread Source Environment
	ASSIGN Statements Required for Compilation

	User-Written Procedures
	The _STARTUP^MODE Procedure
	The _STARTUP Procedure
	Declaring Thread Procedures: _THREAD^PROC and _END^THREAD^PROC
	The Initial Command Thread Procedure: _COMMAND^PROC
	The Thread Termination Procedure: _COMMAND^TERMINATION^PROC

	Command Context Space
	Figure�3�4.� Command Context Area
	Accessing the Command Context Space
	Defining the Command Context Space
	The Input Area: _INPUT
	The Output Area: _OUTPUT

	The Input and Output List Member Structures
	Figure�3�5.� Object List Member Definitions

	Defining the Input List Member Structure: _INPUT^LM^HEADER
	Defining the Output List Member Structure: _OUTPUT^LM^HEADER
	Working With Lists
	Figure�3�6.� Logical View of a List

	Declaring a List: _LIST
	Initializing a List Structure: _INITIALIZE^LIST
	Accessing the First Member of a List: _FIRST^LM
	Accessing the Last Member of a List: _LAST^LM
	Accessing the Next List Member: _SUCCESSOR^LM
	Accessing the Previous List Member: _PREDECESSOR^LM
	Declaring a Pointer to a List: _LISTPOINTER
	Scanning a List
	Processing a List
	Maintaining a List
	Requesting Status About a List
	Initializing Object List Members: _FOBJECT^INIT
	Adding Text Items to an Output Object: _APPEND^OUTPUT
	Releasing Output List Members to the Frame: _RELEASE^OUTPUT
	Example: List Processing Library Services
	Suspending and Dispatching Thread Procedures

	Suspending Thread Procedures: Return Codes
	Dispatching Thread Procedures: Events
	Declaring Utility Procedures: _RC^TYPE
	State Management

	Determining Which Event(s) Caused the Current Dispatch
	Altering the Current Thread Procedure and Thread State
	Figure�3�7.� Altering Current Thread Procedure and Thread State Values
	Figure�3�8.� Dispatching New Thread Procedures
	Frame Services
	CI Communications
	Accessing Information About a CI Communication
	Timeout Intervals

	Command Thread Termination
	Reporting Errors
	Reporting Errors to the Frame
	Command-Terminating Errors
	Reporting Errors to EMS

	Overview of the Library Services
	Table�3�1.� Summary of I Process Development Library Services�(page�1 of�6)

	4 DSNM Command Requirements
	Scope of This Section
	Command Flow
	Command Components
	Action to be Performed
	Command Modifiers
	Table�4�1.� Command Modifiers

	Object List Modifiers
	Table�4�2.� HMOD Usage

	Response Modifiers
	Action Modifiers
	Object States
	The Input Object List
	Execution Objects

	Applying Object List Modifiers
	The User Area: Intermediate Lists
	The Output Object List

	Output Object Variable-Length Items
	Command Requirements

	The ABORT Command
	The AGGREGATE Command
	The INFO Command
	The START Command
	The STATISTICS Command
	The STATUS Command
	The STOP Command

	5 DSNM Process Startup Functions
	Scope of This Section
	DSNM Process Startup Message
	Process Parameters
	DSNM Configuration Parameters
	Parameter Types and Search Criteria

	Local Parameters and Search Patterns
	Global Parameters and Search Patterns
	Parameter Retrieval Library Services

	Accessing Standard Process Parameters: _PROCESS^PARAMS
	Accessing Standard Configuration Parameters: _DSNMCONF^PARAMS
	Retrieving Non-Standard Process Parameters: _GET^PROCESS^PARAM
	Retrieving Nonstandard Configuration Parameters: _GET^PARAM
	Retrieving Subsystem Configuration Parameters
	Retrieving CI Configuration Parameters

	6 Configuring a New Subsystem Into DSNM
	Scope of This Section
	New and Changed DSNM Configuration Information
	The $SYSTEM.SYSTEM.DSNM File
	Format of the DSNMCONF File
	DSNMCONF Records Relevant to I�Processes
	SUBSYSTEM Class Records
	process-class-CONFIG Records

	Adding Subsystem Objects to the DNS Database
	Defining an I�Process as a Pathway Server

	7 DSNMCom: The I Process Test Utility
	Scope of This Section
	What is DSNMCom?
	Before You Run DSNMCom
	DSNMCom Command Syntax
	DSNMCOM [/ run-option [, run-option] .../]
	[DSNM [section-name] | CONFIG [filename]]
	[[,] $process-name]
	[[;] [.] command]

	The DSNMCom Prompt
	Running DSNMCom Interactively
	Running DSNMCom From an Input File
	The Comment Character, COMMENT-CHAR
	COMMAND-CHAR COMMENT-CHAR comment-text

	Using the Break Key
	Setting Security Parameters in DSNMCom
	The DSNMCom Commands
	Table�7�1.� DSNMCom Commands
	CLOSE Command
	CLOSE

	EXIT Command
	EXIT

	FC Command
	FC

	HELP Command
	HELP [/ OUT filename /] [command or paramname]

	OPEN Command
	OPEN $process-name

	QUIT Command
	QUIT

	RESET Command
	RESET

	SET Command
	SET paramname paramvalue
	Table�7�2.� DSNMCom SET Parameters

	SHOW Command
	SHOW [paramname]

	Executing DSNM Commands
	DSNMCom Messages
	DSNM Parser Errors

	A DSNM Library Services
	Scope of This Appendix
	Table�A�1.� DSNM Library Services�(page�1 of�4)
	_ADD^CI
	_ADD^SUBSYS
	_ALLOFF
	_ALLON
	_ALLON^TURNOFF
	_ANYOFF
	_ANYON
	_ANYON^TURNOFF
	_APPEND^OUTPUT
	_BITDEF
	_CANCEL^SEND^CI
	_CANCEL^TIMEOUT

	_CI^DEF
	_CI^FILENUM
	_CI^ID
	_CI^IDPOINTER
	_CI^LASTERROR
	_CI^REPLYADDRESS
	_CI^REPLYLENGTH
	_CI^REPLYTAG
	_CLOSE^CI
	_COMMAND^CONTEXT^HEADER
	_COMMAND^PROC
	_COMMAND^TERMINATION^PROC
	_COMPILED^IN^TESTMODE
	_DEALLOCATE^LIST
	_DELETE^LM
	_DEPOSIT
	_DISPATCH^THREAD
	_DSNMCONF^PARAMS
	_EMPTY^LIST
	_EMS^EVENT^CRITICAL
	_EMS^EVENT^FATAL
	_EMS^EVENT^INFO
	_END^THREAD^PROC
	_END^THREAD^TERMINATION^PROC
	_EV^CANCEL
	_EV^CONTINUE
	_EV^IODONE
	_EV^STARTUP
	_EV^TIMEOUT
	_EXTRACT
	_FIRST^LM
	FOBJECT
	_FOBJECT^INIT
	_GET^LM
	_GET^PARAM
	_GET^PROCESS^PARAM
	_INITIALIZE^LIST
	_INPUT
	_INPUT^DEF
	_INPUT^LM^HEADER
	_ISNULL
	_JOIN^LIST
	KDSNDEFS
	_LAST^CI^ID
	_LAST^EVENTS
	_LAST^LM
	_LAST^TIMEOUT^TAG
	_LIST
	_LISTPOINTER
	_MEMBERSOF^LIST
	_MOVE^LIST
	_NOTNULL
	_NULL
	_NULL^LIST
	OBJECTLIST
	_OFF
	_ON
	_OPEN^CI
	_OUTPUT
	_OUTPUT^DEF
	_OUTPUT^LM^HEADER
	_POP^LM
	_POP^THREAD^PROCSTATE
	_PREDECESSOR^LM
	_PRIVATE^THREAD^EVENT
	_PROCESS^PARAMS
	_PUSH^LM
	_PUSH^THREAD^PROCSTATE
	_PUT^LM
	_RC^ABORT
	_RC^NULL
	_RC^STOP
	_RC^TYPE
	_RC^WAIT
	_REAL^LAST^EVENTS
	_RELEASE^OUTPUT
	_REPORT^INTERNAL^ERROR
	_REPORT^STARTUP^ERROR
	_RESTORE^THREAD^AND^DISPATCH
	_SAVE^THREAD^AND^DISPATCH
	_SEND^CI
	_SET^THREAD^PROC
	_SET^TIMEOUT
	_SIGNAL^EVENT
	_STARTUP
	_STARTUP^MODE
	_ST^INITIAL
	_ST^MIN^THREAD^STATE
	_SUBSYS^DEF
	_SUCCESSOR^LM
	_THREAD^CONTEXT^ADDRESS
	_THREAD^PROC
	_THREAD^STATE
	_THREAD^TERMINATION^CODE
	_THREAD^TERMINATION^PROC
	_TURNOFF
	_TURNON
	_UNGET^LM
	_UNPOP^LM
	_XADR^EQ
	_XADR^NEQ

	B DSNM Error Codes
	Scope of This Appendix
	Reporting Errors
	What to Prepare Before Contacting Your Tandem Support Representative
	ZDSN Error Codes
	-nnn
	0�ZDSN^ERR^NOERR
	-30�ZDSN^ERR^CMD^MISMATCH
	-34�ZDSN^ERR^INTERNAL^ERR
	-35�ZDSN^ERR^SUBSYSTEM^ERR
	-44 ZDSN^ERR^TKN^VAL^INV
	-45 ZDSN^ERR^TKN^REQ
	-51�ZDSN^ERR^SPI^ERR
	-55�ZDSN^ERR^OBJNAME^INV
	-56�ZDSN^ERR^OBJTYPE^NOT^SUPPORTED or ZDSN^ERR^OBJ^NOT^SUPP
	-60�ZDSN^ERR^MEMORY or ZDSN^ERR^NO^MEM^SPACE
	-64�ZDSN^ERR^FS^ERR
	-67�ZDSN^ERR^CMD^TIMED^OUT
	-69�ZDSN^ERR^CMD^NOT^SUPP
	-71 ZDSN^ERR^ALLOCATESEGMENT^ERR
	-76�ZDSN^ERR^BADCOMMAND
	-77�ZDSN^ERR^UNSUPPORTED^BY^SUBSYS
	-78�ZDSN^ERR^UNSUPPORTED^BY^I
	-79�ZDSN^ERR^DATA^INTEGRITY
	-81�ZDSN^ERR^MISSING^OBJTYPE
	-82�ZDSN^ERR^BADOBJTYPE
	-86�ZDSN^ERR^REQ^KEYWORD^MISSING
	-88�ZDSN^ERR^DUP^KEYWORD
	-202 ZDSN^ERR^OBJECTTOOLONG or ZDSN^ERR^OBJTOOLONG
	-204 ZDSN^ERR^BADARGUMENT
	-206�ZDSN^ERR^NOTPUSHED
	-207�ZDSN^ERR^LIB^BADVALUE^OMITTED
	-212 ZDSN^ERR^SYNTAX
	-214 ZDSN^ERR^RESERVEDWORD
	-216 ZDSN^ERR^CMDERROR
	-217 DSN^ERR^BADLOGON

	Messages From the DSNM Parser

	C Data Definition Language (DDL)- Defined DSNM SPI Components
	Scope of This Appendix
	Commands
	Modifiers
	HMOD Values
	EMOD Values
	SMOD Values
	RMOD Values
	AMOD Values

	Command Object DDL
	DSNM State Values
	Error Codes
	AGGREGATE Counters
	Response Item Types
	DDL Definitions for DSNM Character String Components

	D Sample I Process Program Code
	Scope of This Appendix
	Overview of the SPIFFY Subsystem
	Characteristics of SPIFFY Objects
	SPIFFY Subsystem Programmatic Interface Commands
	Command and Response Message Formats
	SPIFFY Subsystem Literal Definitions

	SPIFFY I Process Design
	State Mapping
	Implementing DSNM Commands

	Managing SPIFFY Through DSNM: Sample Command Output
	Using DSNMCom to Test the SPIFFY I Process
	DSNM STATUS Command Output

	Sample User-Written Code for SPIFFY Subsystem Interface Process
	Configuring SPIFFY Into DSNM

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X
	Z
	Special Characters
	1.�Overview of DSNM
	2.�DSNM Commands
	3.�I Process Development Process
	4.�DSNM Command Requirements
	5.�DSNM Process Startup Functions
	6.� Configuring a New Subsystem Into DSNM
	7.� DSNMCom: The I Process Test Utility
	A.�DSNM Library Services
	B.�DSNM Error Codes
	C.� Data Definition Language (DDL)-Defined DSNM SPI Components
	D.�Sample I Process Program Code
	Index����Index�1
	Examples
	Figures
	Tables

	1 Overview of DSNM
	2 DSNM Commands
	3 I Process Development Process
	4 DSNM Command Requirements
	5 DSNM Process Startup Functions
	6 Configuring a New Subsystem Into DSNM
	7 DSNMCom: I�Process Test Utility
	A DSNM Library Services
	B DSNM Error Codes
	C DDL-Defined DSNM SPI Components
	D Sample I Process Program Code
	Index
	DSNM
	DSNM Subsystem Interface Development Guide
	D30.03

