
EMS FastStart Manual
Abstract
This manual provides information about the EMS FastStart program including installation,
event message design, instructions for running the program, and customizing EMS FastStart to
fit the specific needs of your application. In addition, this manual covers event message design
to help you make the best use of the EMS FastStart program. The code examples in this manual
are written in COBOL85.

Product Version
Guardian 90 C20

Supported Releases
This manual supports function added to C20.00, and supports all subsequent releases until
otherwise indicated in a new edition.

Part Number Published Release ID

133701 August 1997 D44.00

Document History
Part Number Product Version Published

031022 Guardian 90 C20 March 1990

058659 Guardian 90 C20 February 1991

133701 Guardian 90 C20 August 1997

New editions incorporate any updates issued since the previous edition.

A plus sign (+) after a release ID indicates that this manual describes function added to the base release, either by an
interim product modification (IPM) or by a new product version on a .99 site update tape (SUT).
Ordering Information
For manual ordering information: domestic U.S. customers, call 1-800-243-6886; international customers, contact
your local sales representative.

Document Disclaimer
Information contained in a manual is subject to change without notice. Please check with your authorized Tandem
representative to make sure you have the most recent information.

Export Statement
Export of the information contained in this manual may require authorization from the U.S. Department of
Commerce.

Examples
Examples and sample programs are for illustration only and may not be suited for your particular purpose. Tandem
does not warrant, guarantee, or make any representations regarding the use or the results of the use of any examples
or sample programs in any documentation. You should verify the applicability of any example or sample program
before placing the software into productive use.

U.S. Government Customers
FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED
SOFTWARE:

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
Section 52.227-19 of the FARS Computer Software—Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions
as set forth in paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in
DAR 7-104.9(a). This computer software is submitted with “restricted rights.” Use, duplication or disclosure is
subject to the restrictions as set forth in NASA FAR SUP 18-52 227-79 (April 1985) “Commercial Computer
Software—Restricted Rights (April 1985).” If the contract contains the Clause at 18-52 227-74 “Rights in Data
General” then the “Alternate III” clause applies.

U.S. Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract.

Unpublished — All rights reserved under the Copyright Laws of the United States.

New and Changed Information
This is the third edition of the EMS FastStart Manual. This is only a revision of the
format. No content has been changed. The following is the New and Changed
Information from the second edition, the last edition with changes in content:

New Features
EMS FastStart has the following new features:

• The token ZEMS-TKN-SUPPRESS-DISPLAY is now supported. Viewpoint and the
EMS distributors use this token to select whether a specific event is displayed. A
new field in the egen-record (suppress-display) was added to support this token. See
Section 6, Building Your Application for Event Generation.

• The token ZSPI-TKN-MANAGER is now supported. This token specifies the
process name of a particular subsystem process. A new field in the egen-record
(subsystem-manager) was added to support this token. See Section 6, Building Your
Application for Event Generation.

• EMS FastStart now supports template facilities. See Section 4, Preparing the
Application Configuration File.

• The following data types were added: ZSPI-DDL-TIMESTAMP, ZSPI-DDL-
TRANSID, ZSPI-DDL-SSID.

• EMS FastStart now supports the C language. EMS FastStart includes a version of
the ATM example written in the C language. See Section 3, Installing and
Configuring EMS FastStart.

• EMS FastStart has a new ACF format. See Section 4, Preparing the Application
Configuration File.)

• SAVE-DDL--DICTIONARY on page 4-4 key word was added. This is useful in
saving the DDL dictionary. The DDL dictionary is needed for creating the
templates for your application.

The parameter specifies if the DDL dictionary created in the subvolume
specified by the USER-SUBVOL parameter will be saved. Valid parameter
values are YES (save the dictionary) and NO (do not save the dictionary; purge
it). This dictionary will contain all the definitions for ZSPIDDL and ZEMSDDL
plus your own subsystem definitions (tokens and events). This dictionary is
required if you want to use the EMS Template Services and create templates for
your application.

• USER-DDL--FILE on page 4-4 key word in ACF has been added so that you
can include your own DDL definitions during the compilation of EMS FastStart
DDL.

The parameter specifies the name of a user defined DDL source file. Valid
parameter values are file-name (a valid DDL source file) and NOT-USED (do
not source a file). The content of this file will be sourced at the end of the MAIN
DDL file and added to the dictionary. You may use this file to source your event
EMS FastStart Manual–133701
iii

New and Changed Information Changed Information
definitions, which will then be used later by the EMS Template Services for
generating your application template file.

Changed Information
EMS FastStart has the following changed information:

• The file names of the ATM example have changed. See Section 3, Installing and
Configuring EMS FastStart.

• In Table 6-1, Procedures Required for Each Mode, the procedures required for
EGEN modes 1 to 4 has been corrected in Section 6, Building Your Application for
Event Generation.
EMS FastStart Manual–133701
iv

Contents
New and Changed Information iii

About This Manual xi

Notation Conventions xiii

1. Introduction
EMS FastStart Features 1-1
How EMS FastStart Works 1-3

EGEN 1-3
Test Program and Filter 1-3
DDL Source Files for C, COBOL85, and TAL 1-4

Choosing Between EMS and EMS FastStart 1-4
System and Program Requirements 1-5
Using Template Services with EMS FastStart 1-5

2. Brief Review of Event Design
How to Design Events 2-2

Step 1: Identify Event Owner (SSID) 2-2
Step 2: List Messages 2-2
Step 3: Identify Data in the Messages 2-3
Step 4: Identify Groups of Variables 2-4
Step 5: Assign Field Name, Type, and Number to Variables 2-6
Step 6: Assign Event Numbers 2-9
Step 7: Determine Event Subject 2-11
Step 8: Define Event Type – Informative, Action-Attention, Action-Completion, or

Critical 2-11
Step 9: Build Template File 2-12
Step 10: Assign a Group Field Number to Each Field 2-13

3. Installing and Configuring EMS FastStart
EMS FastStart Installation 3-1

Installing EMS FastStart on the Installation Subvolume 3-1
Installing EMS FastStart on a Working Subvolume 3-1
Post-installation Files 3-2

EMS FastStart Configuration 3-2
The Default Compiler Configuration File (CCF) 3-3
Modifying the CCF 3-4
EMS FastStart Manual–133701
v

Contents 4. Preparing the Application Configuration File
Security Considerations 3-6
Compiler Access 3-6
READ Access to Files 3-6

4. Preparing the Application Configuration File
Application Configuration File 4-1
Default Application Configuration File 4-2
Modifying the ACF 4-3
Field Definitions 4-7
Adding Data Types with EXTRADDL 4-7
EGEN Default Values 4-9

Example 4-9

5. Running EMS FastStart
Setting Up the EMS FastStart Environment 5-2
Running EMSFS 5-3

Stopping EMSFS and Detaching the Segment File 5-3
Running EMS FastStart–ATM Example 5-4
Parameter Validation (Steps 1-2) 5-4
Cleaning the Subvolume (Step 3) 5-6
Source File Generation (Steps 4 - 8) 5-6
Automatic Compilation (Steps 9 - 13) 5-7
File Creation: ATM1TEST and ATM1INDX (Steps 14 - 16) 5-8

EMSFS Messages 5-9
User Subvolume Files 5-9
EMSFS Components 5-10

DDL 5-11
Copy Libraries 5-11
EGEN 5-11
Test Program 5-11
Filter 5-12
Index File 5-12

6. Building Your Application for Event Generation
How EGEN Works 6-1
EGEN Operating Modes 6-1

Mode 1 6-1
Mode 2 6-2
Mode 3 6-2
Mode 4 6-2
Initialize^egen^record 6-2
EMS FastStart Manual–133701
vi

Contents 7. Testing Program and Filter
EGEN Operating Modes (continued)
Open^egen^collector 6-3
 EGEN 6-4
Complete^egen^operation 6-6
Close^egen^collector 6-7

EGEN Parameters 6-7
Egen-record Fields Definition 6-8
An Example Using Mode 2 6-9

EGEN Default Values 6-11
Example 6-11

Application Modifications 6-13
Global Program Modifications 6-14
Event-Specific Modifications 6-15

Specify Event Types 6-15
Specify Event Subject 6-17
Move Values to the Event Record 6-18
Pass the Record Structure to EGEN 6-19
Error Handling and Return Codes 6-19

Compile Application 6-20
Define Run-time Parameters 6-20

7. Testing Program and Filter
Testing Program 7-1
Testing Program Sample Session 7-2
Using the Filter Program with a Printing Distributor 7-4

Filtering on Specific Tokens 7-4

A. EMS FastStart Messages

B. EGEN Messages
Initialize^egen^record Return Codes B-1
Open^egen^collector Return Codes B-1
Close^egen^collector Return Codes B-2
Complete^egen^operation Return Codes B-2
Get^egen^event^text^define Return Codes B-3
Initialize^event^buffer Return Codes B-3
Write^event^buffer Return Codes B-4
EGEN Return Codes B-4

C. COBOL85 Program Example
EMS FastStart Manual–133701
vii

Contents D. DDL, Copy Libraries and Templates Example
D. DDL, Copy Libraries and Templates Example
ATM Example, EVENT DEFINITION SOURCE FILE: SATMDDL D-1
ATM Example, COBOL85 COPYLIB: ATM1COB D-3
ATM Example, DSM Templates Services Source File: SATMTMPL D-10

E. Filter

Index

Examples
Example 3-1. Default CCF in EMS FastStart 3-3
Example 4-1. Default Application Configuration File 4-2
Example 4-2. Adding a New Data Type to the EXTRADDL File 4-8
Example 4-3. EGEN Default Values 4-11
Example 6-1. Syntax for the Initialize^egen^record Procedure 6-3
Example 6-2. Syntax of the Open^egen^collector Procedure 6-4
Example 6-3. Syntax for the EGEN Procedure 6-5
Example 6-4. Syntax for the Complete^egen^operation Procedure 6-6
Example 6-5. Syntax for the Close^egen^collector Procedure 6-7
Example 6-6. Sample Code for EGEN in Mode 2 6-10
Example 6-7. EGEN Default Values 6-13
Example 6-8. Copy Statement Example from the COBOL85 ATM Sample

Program 6-15
Example 6-9. Sample Code for Generating Informative Events 6-15
Example 6-10. Sample Code for Generating Action-Attention Events 6-16
Example 6-11. Sample Code for Generating Action-Completion Events 6-16
Example 6-12. Sample Code for Generating Action Completion Events with Suppress

Display 6-17
Example 6-13. Sample Code for Generating Critical Events 6-17
Example 6-14. Sample Code Showing Subject Data 6-18
Example 6-15. ATM COBOL85 Example 6-19
Example 6-16. TACL Macro File 6-21
Example 7-1. Testing Program Sample Session 7-2
Example 7-2. Screen Output of the EMSDIST Program 7-4

Figures
Figure 1-1. The EMS FastStart Process 1-2
Figure 1-2. EGEN Interface 1-3
Figure 2-1. Event Generation and Reporting 2-1
Figure 5-1. EMS FastStart Generation Process 5-1
Figure 5-2. EMS FastStart Components 5-10
EMS FastStart Manual–133701
viii

Contents Tables
Figure 6-1. Application Modification Phases 6-13

Tables
Table 2-1. Data Types 2-7
Table 4-1. Field Content After Call to Initialize^egen^record Procedure 4-9
Table 4-2. ATM COBOL85 Example 4-10
Table 6-1. Procedures Required for Each Mode 6-2
Table 6-2. Parameters Required for Modes 6-7
Table 6-3. Egen-record Fields and Descriptions 6-8
Table 6-4. Field Content After Call to Initialize^egen^record Procedure 6-11
Table 6-5. ATM COBOL85 Example 6-12
EMS FastStart Manual–133701
ix

Contents
EMS FastStart Manual–133701
x

About This Manual
This manual provides information about the EMS FastStart program including
installation, event message design, instructions for running the program and customizing
EMS FastStart to fit the specific needs of your application. In addition, this manual
covers event message design to help you make the best use of the EMS FastStart
program. The code examples in this manual are written in COBOL85.

Who Should Read This Manual?
This manual will be of interest to anyone involved with designing event messages or
designing and coding applications that will use event message management. This
includes system managers and programmers who use the Event Management Service
and are installing EMS FastStart.

What You Should Know
System managers and programmers should be familiar with the GUARDIAN 90
operating system and the Event Management Service software. Programmers should be
familiar with C, COBOL85, or TAL.

What This Manual Covers
This manual consists of seven sections and five appendixes as follows:

• Section 1, Introduction, presents a broad view of the EMS FastStart program
including its applications and uses; required hardware and software; how to choose
between EMS and EMS FastStart; and information about running EMS FastStart.

• Section 2, Brief Review of Event Design, is a review of event message design and a
set of instructions with examples to help you optimize event message design in order
to make the best use of EMS FastStart.

• Section 3, Installing and Configuring EMS FastStart, describes the program
installation and configuration, how to modify the Compiler Configuration File
(CCF), and security considerations.

• Section 4, Preparing the Application Configuration File, describes the Application
Configuration File (ACF), including a listing of the default file and instructions for
modifying it to fit your application's needs.

• Section 5, Running EMS FastStart, tells you how to run (and stop) the program and
includes an example of the program output you see on your terminal. This section
also lists the user subvolume files and briefly describes the resulting program
components.

• Section 6, Building Your Application for Event Generation, is the most important
section for programmers. It tells you the tasks to perform to build your own
application and generate your event messages with EMS FastStart.
EMS FastStart Manual–133701
xi

About This Manual Related Documents
• Section 7, Testing Program and Filter, contains information on the EMS FastStart
test program and the use of the filter program with a printing distributor.

• Appendixes A through E contain the EMSFS and EGEN error, warning, and
advisory messages, a COBOL85 program example, copy libraries, a sample
template source file, and the filter program.

Related Documents
This manual assumes you are familiar with the GUARDIAN 90 operating system, the
Event Management Service (EMS) program, and TACL. In using EMS FastStart, you
may find it helpful to refer to the following documents:

• Distributed Systems Management (DSM) Programming Manual

• VIEWPOINT Manual

• Introduction to Distributed Systems Management (DSM)

• Event Management Service (EMS) Manual

• DSM Template Services Manual

Your Comments Invited
After using this manual, please take a moment to send us your comments. You can do
this by returning a Reader Comment Card or by sending an Internet mail message.

A Reader Comment Card is located at the back of printed manuals and as a separate file
on the Tandem CD Read disc. You can either FAX or mail the card to us. The FAX
number and mailing address are provided on the card.

Also provided on the Reader Comment Card is an Internet mail address. When you send
an Internet mail message to us, we immediately acknowledge receipt of your message. A
detailed response to your message is sent as soon as possible. Be sure to include your
name, company name, address, and phone number in your message. If your comments
are specific to a particular manual, also include the part number and title of the manual.

Many of the improvements you see in Tandem manuals are a result of suggestions from
our customers. Please take this opportunity to help us improve future manuals.
EMS FastStart Manual–133701
xii

Notation Conventions

General Syntax Notation
The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list may be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

LIGHTS [ON]
 [OFF]
 [SMOOTH [num]]

K [X | D] address-1

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list may be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and separated
by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address-1 [, new-value]...

[-] {0|1|2|3|4|5|6|7|8|9}...
EMS FastStart Manual–133701
xiii

Notation Conventions Notation for Messages
An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char..."

Punctuation. Parentheses, commas, semicolons, and other symbols not previously described
must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each continuation
line is indented three spaces and is separated from the preceding line by a blank line.
This spacing distinguishes items in a continuation line from items in a vertical list of
selections. For example:

ALTER [/ OUT file-spec /] CONTROLLER

 [, attribute-spec]...

Notation for Messages
The following list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name
EMS FastStart Manual–133701
xiv

Notation Conventions Notation for Management Programming Interfaces
[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be displayed,
of which one or none might actually be displayed. The items in the list might be
arranged either vertically, with aligned brackets on each side of the list, or horizontally,
enclosed in a pair of brackets and separated by vertical lines. For example:

LDEV ldev [CU %ccu | CU %...] UP [(cpu,chan,%ctlr,%unit)]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list might be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

LBU { X | Y } POWER FAIL

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The %
notation precedes an octal number. The %B notation precedes a binary number. The
%H notation precedes a hexadecimal number. For example:

%005400

P=%p-register E=%e-register

Notation for Management Programming Interfaces
UPPERCASE LETTERS. Uppercase letters indicate names from definition files; enter these

names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters. Words in lowercase letters are words that are part of the notation, including
Data Definition Language (DDL) keywords. For example:

token-type
EMS FastStart Manual–133701
xv

Notation Conventions Change Bar Notation
Change Bar Notation
Change bars are used to indicate substantive differences between this edition of the
manual and the preceding edition. Change bars are vertical rules placed in the right
margin of changed portions of text, figures, tables, examples, and so on. Change bars
highlight new or revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for old
message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.
EMS FastStart Manual–133701
xvi

1 Introduction
EMS FastStart enhances development of applications under Distributed Systems
Management (DSM). EMS FastStart provides a simple, cost-effective way for
programmers to develop and test EMS event messages. Event Management Service
(EMS) is a component of DSM that is used for collecting and distributing events.

EMS FastStart generates and compiles a number of source files which are used to
simplify event generation and testing. EMS FastStart uses a configuration file to
generate a module that is bound into the user application. This module, called EGEN,
serves as an interface between the user application and EMS. This enables programmers
to generate events in the same syntax as the user application.

EMS FastStart Features
EMS FastStart does the following:

• Automates many EMS steps to increase accuracy and save time

• Generates events in the same language as the user application

• Simplifies event generation and saves programming time and effort

• Provides an interactive testing facility to validate newly-defined fields, filters and
templates

• Provides complete examples in C, COBOL85 and TAL

• Promotes standardization of error and event processing within applications

• Provides automatic file generation and compilation

• Facilitates testing of the DSM interfaces and functions separately from application
developments

• Facilitates using DSM template services

• Supports TAL, C, and COBOL85
EMS FastStart Manual–133701
1-1

Introduction EMS FastStart Features
Figure 1-1 shows the EMS FastStart process and the resulting components.

Figure 1-1. The EMS FastStart Process

Parameter Validation
Parameter Substitution
Source File Generation
Automatic Compilation

EGEN

Test Program

Filter

COPY LIB

DDL

EMS Faststart

User Subvol
App Prefix
App SSID owner
App SSID #
App SSID version
FIELD 1 TYPE
FIELD 1 NAME
FIELD x TYPE
FIELD x NAME

ACF

Parameters

The ACF (Application
Configuration File) is
an edit file you use to
setup your event
parameters.

Legend

The ACF (Application Configuration File) is an EDIT
file you use to set up your event parameters.

001
EMS FastStart Manual–133701
1-2

Introduction How EMS FastStart Works
How EMS FastStart Works
EMS FastStart is a TACL-based code generator which generates and compiles a number
of source files which are used to simplify event generation and testing. EMS FastStart
creates these routines, programs, and copy libraries:

• EGEN

• Test Program and Filter

• DDL Source Files for C, COBOL85, and TAL

EGEN
EGEN is a TAL routine that provides a high-level interface between your application
and the Event Management Service (EMS). The application interfaces with EGEN by
moving values into the EGEN record structure (defined by the Application
Configuration File). EGEN generates tokenized events on behalf of the application by
performing a WRITE-READ of the event buffer to the collector $0 or an alternate
location you specify using run-time DEFINEs. Figure 1-2 illustrates how EGEN
interfaces with your application. EGEN supports four modes of operation which allow it
to be used in COBOL85 applications as well as multi-threaded TAL applications.

Test Program and Filter

The EMS FastStart test program lets you enter values for events based on the ACF. It is
an interactive COBOL85 program that calls EGEN to generate events and is compiled as
part of EMSFS. This program lets you test the interface between your application and
EGEN. It lets you test EGEN with your ACF, DSM applications, filters and templates
before an application has been completed, saving time and effort in filter and event

Figure 1-2. EGEN Interface

COPY
Statements

ENTER TAL "EGEN"
USING egen-record
GIVING return-code

$0
Collector

User
Application

EGEN

002
EMS FastStart Manual–133701
1-3

Introduction DDL Source Files for C, COBOL85, and TAL
validation. Also, you can isolate testing data from production data by writing events to a
location other than the event log.

When used with EGEN, the testing program and filter create an interactive testing
facility which allows immediate testing of newly defined events through an easy-to-use
conversational interface.

EMS FastStart creates and compiles a test filter that can be run with a printing
distributor or Viewpoint to test your application events.

DDL Source Files for C, COBOL85, and TAL

EMS FastStart automatically generates copy statements for COBOL85 and source
definitions for TAL and C that can be sourced in your application based on the ACF.

• The COBOL85 copy libraries are located in the file xxxxCOB (for instance, the
example in this manual is ATM1COB because the file prefix is ATM1).

• The TAL source definitions are located in the file xxxxTAL.

• The C source definitions are located in the file xxxxC.

These files contain the event record layout (EGEN-RECORD), the EGEN interface
definitions and the EGEN return codes.

Choosing Between EMS and EMS FastStart
EMS FastStart is designed to streamline the event generation process. It offers
programmers a simplified interface with the Event Management Service (EMS) for
building event buffers. Although EMS FastStart provides a comprehensive subset of
EMS functions, the demands of your application might require you to use EMS rather
than EMS FastStart. To determine whether to use EMS or EMS FastStart, you must
evaluate the needs of your application.

The following are examples of situations where you may want to use EMS rather than
EMS FastStart for generating events:

• The application has events with more than one subject (EMS FastStart has a limit of
one subject per event).

• The application specifies values for header tokens that are not supported by EMS
FastStart. EMS allows the application to override the identification of the event
generator and timestamp in an event. This is useful if one process generates events
on behalf of another.

• The application includes multiple occurrences of a specific token in an event (EMS
FastStart allows only one occurrence per event).

Note. The EMS term “token” is used here to explain the differences in using EMS and EMS
FastStart. In the rest of this manual, the term “variable data field” (specific to EMS FastStart) is
substituted for “token” (specific to EMS). For an explanation of token, refer to any of the
Distributed System Management manuals such as the Event Management Service (EMS)
Manual.
EMS FastStart Manual–133701
1-4

Introduction System and Program Requirements
• The application has events that include error lists or foreign tokens (tokens owned
by a different subsystem than the subsystem generating the event).

• The user of the application needs to check that the correct set of tokens is included
in an event at the time the event is generated. EMS FastStart cannot perform explicit
checking of the event-generating subprogram.

• The application needs these specialized tokens for the event messages which EMS
FastStart cannot generate:

• Extensible structured tokens

• Error lists

• Structured tokens containing numeric values

• The application cannot run within the default values of EMS FastStart for numeric
fields. (See Modifying the ACF in Section 4, Preparing the Application
Configuration File, for a list of the default values.)

System and Program Requirements
EMS FastStart runs on the GUARDIAN 90 operating system version C20 or higher on
Tandem Nonstop systems.

EMS FastStart uses the following software:

• DDL—The DDL compiler is used to generate the language-specific definition files
and the user COPYLIB files.

• TAL—The TAL compiler generates the EMS FastStart customized EGEN
procedure.

• EMS—EMS (Event Management Services) is a component of DSM used for
collecting and distributing events. The EMS FastStart EGEN routine (a TAL routine
bound into the user’s application) interfaces with EMS to write events to the
collector $0.

• EMF—EMF (Event Management Filter compiler) is used by EMS FastStart to
produce a default filter which can be used with VIEWPOINT to display specific
events coming from the application.

• COBOL85 (optional)—The COBOL85 compiler compiles the EMS FastStart
/EGEN testing application (event generator) written in COBOL85.

• C (optional)—C is required only if you use an application programmed in C.

Using Template Services with EMS FastStart
The template compiler allows you to create templates for formatting and displaying
events. For more information, see the DSM Template Services Manual.
EMS FastStart Manual–133701
1-5

Introduction Using Template Services with EMS FastStart
EMS FastStart Manual–133701
1-6

2 Brief Review of Event Design
This section provides guidelines and standards for programmers to follow when
designing events. EMS FastStart is designed to simplify the process of generating EMS
event messages. It is necessary to design event standards for programmers to follow,
whether EMS is used by itself or with EMS FastStart. These standards can increase the
overall efficiency of development efforts as well as enable more efficient operation and
management of the subsystem. Figure 2-1 shows the EMS event generating and
reporting process.

An event is any significant hardware or software incident that you want reported, either
to a person or to a program. For example, a message to a person goes to Viewpoint to be
read and a message to a program can be used by an application to cause an action or to
accumulate statistics. The number of messages created and their design depends on what
you need to convey to the people or programs that use the messages.

Some of the questions that need to be considered when developing and using the
standards for event message design for applications are:

• What type of information is included in an event?

• What events are critical?

• What event number is assigned to an event?

• Should the event be displayed?

• Who or what will be reacting to the event (people or programs)?

Good event message planning and design before using EMS FastStart helps you benefit
from the streamlined event message generation and testing the EMS FastStart program
provides. Refer to the Event Management Service (EMS) Manual for more information
on events. Event message design is described in this section in a series of steps with 12
sample event messages.

Figure 2-1. Event Generation and Reporting

User Application
Event Management

Services
Operations/

Management

Subsystem
Process

Event

ATM Low on Cash

$0
Collector

Event
Log

VIEWPOINT

003
EMS FastStart Manual–133701
2-1

Brief Review of Event Design How to Design Events
How to Design Events
To help give an overview of event design, the process has been divided into ten steps.
Each step uses the same set of 12 sample event messages as an example. These are the
same 12 event messages used in the COBOL85 program in Appendix C, COBOL85
Program Example

Step 1: Identify Event Owner (SSID)

Step 2: List Messages

Step 3: Identify Data in the Messages

Step 4: Identify Groups of Variables

Step 5: Assign Field Name, Type, and Number to Variables

Step 6: Assign Event Numbers

Step 7: Determine Event Subject

Step 8: Define Event Type – Informative, Action-Attention, Action-Completion, or
Critical

Step 9: Build Template File

Step 10: Assign a Group Field Number to Each Field

Step 1: Identify Event Owner (SSID)

Before defining events, you must identify the owner of the events. The DSM architecture
and the Event Management Services requires that each event generated by an application
be identified by a specific subsystem ID (SSID). The SSID is made up of three parts: a
subsystem owner, a subsystem number and a version field. In the COBOL85 ATM
example, the SSID is CUSTOMER.1.J00 where CUSTOMER is the subsystem owner, 1
is the subsystem number, and the version is J00.

The SSID identifies the owner of each event in the EMS log files. It can be used to build
a filter which selects events generated by a specific subsystem, for example, print only
the messages generated by the ATM application. Each application or subsystem should
have a different SSID; this will make event filtering and selection much easier.

For your application, you must assign an SSID using the standards defined by EMS.
Please refer to the EMS Manual for a detailed description of the valid SSID values.

Step 2: List Messages

Make a list of all event messages necessary for your application. For existing
applications, list all of the current messages (for example, do a code search). For new
applications, create a list of the messages you will need to generate. The example below
shows a typical list of event messages for a banking application.

Note. Steps 1 through 9 apply to both EMS and EMS FastStart. Step 10 applies to EMS
FastStart only.
EMS FastStart Manual–133701
2-2

Brief Review of Event Design Step 3: Identify Data in the Messages
Example:

1. ATM SFMAIN01 is up at 245 A St. San Francisco.

2. ATM SFMAIN02 is up at 245 A St. San Francisco.

3. Insufficient funds in account 34503933. Access denied on ATM OAKWEST1 at 245
Oak St. Oakland.

4. Insufficient funds in account 23409344. Access denied on ATM SACTO99 at
341 Main St. Sacramento.

5. ATM SFMAIN02 at 245 A St. San Francisco is low on funds.

6. ATM SFMAIN01 at 245 A St. San Francisco is low on funds.

7. ATM LACENT99 is down at 9320 Main St. Los Angeles.

8. ATM LACENT91 is down at 9320 Main St. Los Angeles.

9. Security breach on account 23457320. Number of accesses attempted 3; ATM
SACTO02 is down at 230 State St. Sacramento.

10. Security breach on account 34094443. Number of accesses attempted 2; ATM
SACTO01 is down at 230 State St. Sacramento.

11. Hardware failure on ATM LACENT99 at 125 8th Avenue. Component failed is cash
dispenser; subcomponent 321561ac; serial number 231234093; sense status
0101110101.

12. Hardware failure on ATM LACENT98 at 125 8th Avenue. Component failed is cash
dispenser; subcomponent 321576xx; serial number 343223480; sense status
1010111011.

Step 3: Identify Data in the Messages

Identify each part of a message as either fixed text or variable data. The variable data
and the fixed text are the two elements that define each event and comprise its template.
The variable data become the fields into which you move values when you generate your
event messages.

The sample messages below show the variables underlined. Fixed text is not underlined.

Example:

1. ATM SFMAIN01 is up at 245 A St. San Francisco.

2. ATM SFMAIN02 is up at 245 A St. San Francisco.

3. Insufficient funds in account 23457320. Access denied on ATM OAKWEST1 at 245
Oak St. Oakland.

4. Insufficient funds in account 23409344. Access denied on ATM SACTO99 at
341 Main St. Sacramento.

5. ATM SFMAIN02 at 245 A St. San Francisco is low on funds.
EMS FastStart Manual–133701
2-3

Brief Review of Event Design Step 4: Identify Groups of Variables
6. ATM SFMAIN01 at 245 A St. San Francisco is low on funds.

7. ATM LACENT99 is down at 320 Main St. Los Angeles.

8. ATM LACENT91 is down at 320 Main St. Los Angeles.

9. Security breach on account 23457320. Number of accesses attempted 3; ATM
SACTO02 is down at 230 State St. Sacramento.

10. Security breach on account 34094443. Number of access attempted 2; ATM
SACTO01 is down at 230 State St. Sacramento.

11. Hardware failure on ATM LACENT99 at 125 8th Ave. Los Angeles. Component
failed is cash dispenser; subcomponent 321561ac; serial number 231234093; sense
status 0101110101.

12. Hardware failure on ATM LACENT98 at 125 8th Ave. Los Angeles. Component
failed is cash dispenser; subcomponent 321561ac; serial number 343223480; sense
status 1010111011.

Step 4: Identify Groups of Variables

In this step you identify groups of variables, or variable types, in your messages (for
example, account numbers). It is important to understand that a single variable type can
occur in any number of event messages (for example, account number).

In the sample event messages there are eight types or groups of variables:

1. Name

2. Location

3. Account number

4. Hardware component

5. Hardware subcomponent

6. Serial number

7. Sense status

8. Retry limit

The variables from the messages are shown below in the appropriate group.

1. Name

SFMAIN01
SFMAIN02
OAKWEST1
SACTO01
SACTO02

SACTO99
LACENT91
LACENT98
LACENT99

2. Location
EMS FastStart Manual–133701
2-4

Brief Review of Event Design Step 4: Identify Groups of Variables
There is additional standard event information automatically included by EMS as part of
each event:

• Timestamp showing the time the event was logged to the collector $0

• System number of the system that generated the event

• PIN of the reporting subsystem process

• CPU of the reporting subsystem process

For a complete list of standard event information, see the Event Management Service
(EMS) Manual.

245 A St. San Francisco
245 Oak St. Oakland
341 Main St. Sacramento
320 Main St. Los Angeles
230 State St. Sacramento
125 8th Ave. Los Angeles

3. Account Number

23409344
23457320
34094443

4. Hardware Component

cash dispenser

5. Hardware Subcomponent

321561ac

6. Serial Number

231234093
343223480

7. Sense Status

0101110101
1010111011

8. Retry Limit

3
2

EMS FastStart Manual–133701
2-5

Brief Review of Event Design Step 5: Assign Field Name, Type, and
Number to Variables
Step 5: Assign Field Name, Type, and Number to Variables

This step is the beginning of defining the variable data fields for your application. Each
variable data field has three components:

• FIELD-x-NAME

• FIELD-x-TYPE

• FIELD-x-NUMBER

Note that the number between the hyphens (for example, x in the example above) is the
group field number. This number is associated with all three components that
make up a field in the ACF. Each group of three components shares a group field
number. This group field number is distinct from the field NUMBER and the event
number. (See Step 6: Assign Event Numbers for information on event numbers and Step
9: Build Template File for information on group field numbers.)

Assign a Field Name for Each Variable

Give each field a unique name that identifies the type of information passed in the event
buffer. The field name must be COBOL85 compatible and is limited to 20 alphanumeric
characters and hyphens. Below is an example of a field name (bold type):

Assign a Field Type for Each Variable

Each variable data field has a DDL type defined as ZSPI-DDL-xxxx, where xxxx is
the data type you define to suit the needs of your application. Below is an example of a
field type (bold type):

FIELD-7-NAME ATM-SENSE-STATUS

FIELD-7-TYPE ZSPI-DDL-INT2

FIELD-7-NUMBER 700

FIELD-7-NAME ATM-SENSE-STATUS

FIELD-7-TYPE ZSPI-DDL-INT2

FIELD-7-NUMBER 700
EMS FastStart Manual–133701
2-6

Brief Review of Event Design Step 5: Assign Field Name, Type, and
Number to Variables
FastStart uses the data types (see the DSM Programming Manual for more information)
listed in Table 2-1 below.

Assign a Field Number for Each Variable

A field number identifies each separate variable data type. The field number can be any
number from 1 to 9990. You can assign an arbitrary field number, although you may
wish to assign field numbers with some logic for your application. Below is an example
of a field number (bold type):

Table 2-1. Data Types

ZSPI-DDL-INT ZSPI-DDL-CHAR24

ZSPI-DDL-INT2 ZSPI-DDL-CHAR50

ZSPI-DDL-INT4 ZSPI-DDL-CHAR64

ZSPI-DDL-UINT ZSPI-DDL-CHAR128

ZSPI-DDL-ENUM ZSPI-DDL-CHAR254 *

ZSPI-DDL-BOOLEAN ZSPI-DDL-USERID

ZSPI-DDL-CHAR ZSPI-DDL-USERNAME

ZSPI-DDL-CHAR-PAIR ZSPI-DDL-FNAME

ZSPI-DDL-CHAR4 ZSPI-DDL-FNAME32

ZSPI-DDL-CHAR6 ZSPI-DDL-SUBVOL

ZSPI-DDL-CHAR8 ZSPI-DDL-CRTPID

ZSPI-DDL-CHAR16 ZSPI-DDL-DEVICE

ZSPI-DDL-TRANSID ZSPI-DDL-TIMESTAMP

ZSPI-DDL-SSID

*ZSPI-DDL--CHAR254 is defined in EXTRADDL. Refer to Section 4, Preparing the Application
Configuration File, for detailed information.

FIELD-7-NAME ATM-SENSE-STATUS

FIELD-7-TYPE ZSPI-DDL-INT2

FIELD-7-NUMBER 700
EMS FastStart Manual–133701
2-7

Brief Review of Event Design Step 5: Assign Field Name, Type, and
Number to Variables
Examples of Field Names, Types, and Numbers
Assigned to Variables

Here are examples of field names, types, and numbers assigned to variables:

Field name: ATM-NAME

Field type (DDL): ZSPI-DDL-CHAR8

Field number: 100

Variables: SFMAIN01
SFMAIN02
OAKWEST1
SACTO01
SACTO02
SACTO99
LACENT98
LACENT99

Field name: ATM-LOCATION

Field type (DDL): ZSPI-DDL-CHAR24

Field number: 200

Variables: 245 A St. San Francisco
245 Oak St. Oakland
341 Main St. Sacramento
230 State St. Sacramento
125 8th Ave. Los Angeles
320 Main St. Los Angeles

Field name: ATM-ACCOUNT-NUMBER

Field type (DDL): ZSPI-DDL-INT2

Field number: 300

Variables: 23409344
23457320
34094443

Field name: ATM-RETRY-LIMIT

Field type (DDL): ZSPI-DDL-INT

Field number: 400
EMS FastStart Manual–133701
2-8

Brief Review of Event Design Step 6: Assign Event Numbers
Step 6: Assign Event Numbers

In this step, you group all event messages that have exactly the same fixed text and
the same variable data fields and assign one event number to each group. You should
also assign a literal that describe each of the event numbers. These literals will enhance
the documentation of your application and will be needed to create the template source
file in Step 9: Build Template File. Then create one event message template for each
group (numbered event).

Variables: 3
2

Field name: ATM-HW-COMPONENT

Field type (DDL): ZSPI-DDL-CHAR24

Field number: 500

Variables: cash dispenser

Field name: ATM-HW-SUBCOMPONENT

Field type (DDL): ZSPI-DDL-CHAR24

Field number: 600

Variables: 321561AC

Field name: ATM-SERIAL-NUMBER

Field type (DDL): ZSPI-DDL-INT2

Field number: 700

Variables: 231234093

343223480

Field name: ATM-SENSE-STATUS

Field type (DDL): ZSPI-DDL-INT2

Field number: 800

Variables: 0101110101
1010111011
EMS FastStart Manual–133701
2-9

Brief Review of Event Design Step 6: Assign Event Numbers
An event message template is the design of the fixed text and variable data for one event.
All of the event messages produced by the numbered event type will differ only in the
contents of the variable data fields.

There are several reasons to assign unique event numbers:

• An event can have a probable cause and a recommended action database within
Viewpoint. This database is keyed into by a subsystem ID and an event number. A
unique event number should be assigned when the causes and corrective actions are
not the same. In our example, the cause of Event 202 is hardware failure and the
cause of Event 201 is a security breach. Each of these events has a different
recommended action to fix the problem. Therefore, each event has a unique event
number.

• The DSM template facility, which formats the event messages for display, uses a key
comprised of the subsystem ID and event number. When it is desirable to format the
fixed and variable portions of the event buffer differently, unique subsystem IDs are
required.

• Unique event numbers enable you to write programs to watch for certain events and
automatically react to them. You can use the same subsystem ID and event number
for events that differ only in their variable data values.

Six of the twelve messages in our example have identical fixed text and variable data
fields (underlined text). Shown below are six unique event numbers assigned to those six
messages:

EVENT 1 ATM-EVT-UP

ATM SFMAIN01 is up at 245 A St. San Francisco.

ATM SFMAIN02 is up at 245 A St. San Francisco.

EVENT 2 ATM-EVT-ACCT-INSUF-FUNDS

Insufficient funds in account 23457320. Access denied on ATM
OAKWEST1 at 245 Oak St. Oakland.

Insufficient funds in account 23409344. Access denied on ATM
SACTO99 at 341 Main St. Sacramento.

EVENT 100 ATM-EVT-LOW-ON-CASH

ATM SFMAIN02 at 245 A St. San Francisco is low on funds.

ATM SFMAIN01 at 245 A St. San Francisco is low on funds.

EVENT 200 ATM-EVT-DOWN

ATM LACENT99 is down at 320 Main St. Los Angeles.

ATM LACENT91 is down at 320 Main St. Los Angeles.

EVENT 201 ATM-EVT-SECURITY-BREACH

Security breach on account 23457320. Number of accesses attempted
3; ATM SACTO02 is down at 230 State St. Sacramento.
EMS FastStart Manual–133701
2-10

Brief Review of Event Design Step 7: Determine Event Subject
Step 7: Determine Event Subject

The subject of an event identifies the system component that is most directly involved in
the event. The subject of an event can be a hardware component (for example, ATM or
processor) or a software component (for example, a process, protocol layer, or file). Any
component of the system can be the subject.

Viewpoint provides one specific screen designed to display event messages based on
event subjects. Viewpoint can display the last “n” events database sorted by subject. This
enables you to sort events by subject prior to taking corrective actions. For more
information on Viewpoint, consult the Viewpoint manual.

The subject of all of the events in our example is the ATM name. The subject field
names for our example are listed below.

In all of our events the ATM-NAME seemed to be the most important piece of
information so it was chosen as the subject. However, you may choose any field as the
subject. EMS FastStart has a limit of one subject per event, but any field can be defined
as the subject. (For more information about the subjects of events see the Event
Management Service (EMS) Manual.)

Step 8: Define Event Type – Informative, Action-Attention,
Action-Completion, or Critical

Each event must be one of the four types: Informative, Action-Attention, Action-
Completion, or Critical. The four event types are described below. Note that the Action-
Attention and Action-Completion event types are mutually dependent, so that neither

Security breach on account 34094443. Number of accesses attempted
3; ATM SACTO01 is down at 230 State St. Sacramento.

EVENT 202 ATM-EVT-HW-FAILURE

Hardware failure on ATM LACENT99 at 125 8th Ave. Los Angeles.
Component failed is cash dispenser; subcomponent 321561ac; serial
number 231234093; sense status 0101110101.

Hardware failure on ATM LACENT98 at 125 8th Ave. Los Angeles.
Component failed is cash dispenser; subcomponent 321561ac; serial
number 343223480; sense status 1010111011.

Event Number Event Literal Field Name of the Event Subject

Event 1 ATM-EVT-UP ATM-NAME

Event 2 ATM-EVT-ACCT-INSUF-FUNDS ATM-NAME

Event 100 ATM-EVT-LOW-ON-CASH ATM-NAME

Event 200 ATM-EVT-DOWN ATM-NAME

Event 201 ATM-EVT-SECURITY-BREACH ATM-NAME

Event 202 ATM-EVT-HW-FAILURE ATM-NAME
EMS FastStart Manual–133701
2-11

Brief Review of Event Design Step 9: Build Template File
can be used without the other. An event is classified informative by default unless
otherwise specified.

Section 6, Building Your Application for Event Generation, has more information on
event types and lists sample code for each. Each programmer decides which type is
appropriate for each message needed for an application.

Informative

An informative event message informs you about any system or program status message
you want, for example, the program started normally. This is the default event message
type for FastStart.

Action-Attention

An action-attention event message means operator intervention is needed, for example, a
message to change a tape. This is the first half of a pair with an Action-Completion type
message being the second half.

Action-Completion

An action-completion event message informs you that the necessary action of an action-
attention event message was completed and the job is continuing.

Critical

A critical event message informs you that a critical event has occurred, for example, an
error has occurred which requires immediate attention.

You determine the event type by deciding the level of importance of each event, for
example:

Step 9: Build Template File

Based on the previous steps, you can now build your event templates. During this step,
you will use the syntax defined in the DSM Template Services Manual to create a
template source file for you application. In this file, you need to describe your
subsystem, each event with their fixed text and the variable data fields (tokens) which
will contain the variables data for each event.

Event
Number Event Literal Topic Event Type

Event 1 ATM-EVT-UP ATM is up Informative

Event 2 ATM-EVT-ACCT-INSUF-FUNDS Insufficient funds in
account

Informative

Event 100 ATM-EVT-LOW-ON-CASH ATM is low on cash Action

Event 200 ATM-EVT-DOWN ATM is down Critical

Event 201 ATM-EVT-SECURITY-BREACH ATM security breach Critical

Event 202 ATM-EVT-HW-FAILURE ATM hardware failure Critical
EMS FastStart Manual–133701
2-12

Brief Review of Event Design Step 10: Assign a Group Field Number to Each Field
For more information on how to build this file, see the DSM Template Services Manual.

In order to create and then compile your application template source file, you need to
know the name of the corresponding token that matches each of the application fields
you define in the ACF. These tokens are created by EMS FastStart during the generation
process and are defined in a DDL source file (for example, ATM1DDLS). The
information about these fields is also be stored in the DDL dictionary.

The name of each of these tokens is built according to these rules:

• Each field name you define in the ACF will have two prefixes added to them. The
TAL/TACL syntax is used to describe the token names here since this is the same
syntax used by the template compiler language.

• The first prefix added is “-TKN-”.

• The second prefix added is the USER-VARIABLES-PREFIX parameter (for
example, ATM). See Section 4, Preparing the Application Configuration File, for a
description of how to define the USER-VARIABLE-PREFIX.

The following examples show the token name created by the ATM example used
throughout this manual. Note that the token field name syntax is shown as TACL
compatible since this syntax will be used by the filter compiler. In this example, the
USER-VARIABLES-PREFIX is ATM.

Please refer to Appendix D, ATM Example, EVENT DEFINITION SOURCE FILE:
SATMDDL on page D-1. This is a template source file corresponding to this example in
this section.

Step 10: Assign a Group Field Number to Each Field

Assign a group field number to each field (for example, “1” in FIELD-1-NUMBER).
You can assign any number from 1 through 999. When you assign group field numbers,
you must start with “1” and continue assigning consecutive numbers (for example,
2, 3, 4...). If you try assigning group field numbers in any other way, EMS FastStart does

ACF field name Token field name

ATM-NAME ATM-TKN-ATM-NAME

ATM-LOCATION ATM-TKN-ATM-NAME-LOCATION

ATM-ACCOUNT-NUMBER ATM-TKN-ATM-NAME-ACCOUNT-NUMBER

ATM-RETRY-LIMIT ATM-TKN-ATM-RETRY-LIMIT

ATM-HW-COMPONENT ATM-TKN-ATM-HW-COMPONENT

ATM-HW-SUBCOMPONENT ATM-TKN-ATM-HW-SUBCOMPONENT

ATM-SERIAL-NUMBER ATM-TKN-ATM-SERIAL-NUMBER

ATM-SENSE-STATUS ATM-TKN-ATM-SENSE-STATUS

Note. All of the steps you have completed so far apply to both EMS and EMS FastStart.
Beginning with Step 10, Assign a Group Field Number to Each Field, the information applies
only to EMS FastStart.
EMS FastStart Manual–133701
2-13

Brief Review of Event Design Step 10: Assign a Group Field Number to Each Field
not work. (The group field number is an internal value used by the program to keep track
of the number of fields.)

Note that the group field number is distinct from the field number (for example, 1 in
FIELD-1-NUMBER) and the event number.

When you follow these steps in designing your event messages, you create the
subsystem portion of the ACF. The ACF is used as input for EMS FastStart (see
Section 4, Preparing the Application Configuration File and Section 6, Building Your
Application for Event Generation for detailed information about the ACF).

Below are examples of group field numbers (bold type).

Fields Field Definitions

FIELD-1-NAME ATM-NAME

FIELD-1-TYPE ZSPI-DDL-CHAR8

FIELD-1-NUMBER 100

FIELD-2-NAME ATM-LOCATION

FIELD-2-TYPE ZSPI-DDL-CHAR24

FIELD-2-NUMBER 200

FIELD-3-NAME ATM-ACCOUNT-NUMBER

FIELD-3-TYPE ZSPI-DDL-INT2

FIELD-3-NUMBER 300

FIELD-4-NAME ATM-RETRY-LIMIT

FIELD-4-TYPE ZSPI-DDL-INT

FIELD-4-NUMBER 400

FIELD-5-NAME ATM-HW-COMPONENT

FIELD-5-TYPE ZSPI-DDL-CHAR24

FIELD-5-NUMBER 500

FIELD-6-NAME ATM-HW-SUBCOMPONENT

FIELD-6-TYPE ZSPI-DDL-CHAR24

FIELD-6-NUMBER 600

FIELD-7-NAME ATM-SERIAL-NUMBER

FIELD-7-TYPE ZSPI-DDL-INT2

FIELD-7-NUMBER 700

FIELD-8-NAME ATM-SENSE-STATUS

FIELD-8-TYPE ZSPI-DDL-INT2

FIELD-8-NUMBER 800
EMS FastStart Manual–133701
2-14

Brief Review of Event Design Step 10: Assign a Group Field Number to Each Field
EMS FastStart Manual–133701
2-15

3
Installing and Configuring EMS
FastStart

This section has three parts. The first part describes the EMS FastStart Installation
procedure, including Installing EMS FastStart on the Installation Subvolume and
Installing EMS FastStart on a Working Subvolume, and a list of Post-installation Files
that should be on your system after successful installation of EMS FastStart.

Next, the EMS FastStart Configuration is described, including code for The Default
Compiler Configuration File (CCF) and a description of the key words and their
parameters used in Modifying the CCF for a specific environment.

In the third part of this section, Security Considerations are addressed with specific
information about Compiler Access and READ Access to Files.

EMS FastStart Installation
EMS FastStart is installed at your site using the INSTALL program documented in the
System Generation Manual. This is normally done by the system manager.

It is not necessary to perform a SYSGEN to install EMS FastStart since EMS FastStart
is a stand-alone product that does not bind any files in the operating system.

Installing EMS FastStart on the Installation Subvolume

Install EMS FastStart software files from the Site Update Tape (SUT). The INSTALL
program restores the EMS FastStart files from the SUT onto the distribution subvolume
(DSV) and then copies them to the Installation Subvolume (ISV) during the installation
process. The subvolume name on the installation subvolume (ISV) is ZEMSFS.

Installing EMS FastStart on a Working Subvolume
Copy all the EMS FastStart files from the ISV (ZEMSFS) to the working subvolume you
choose. You can use the subvolume name ZEMSFS again or another subvolume name if
you prefer. Do not run EMS FastStart from the original ISV subvolume; make a working
copy.

Caution. We strongly recommend that you do not run EMS FastStart from the original ISV
subvolume; make a working copy. When you install software from SUT tapes, the INSTALL
program overwrites all files on the ISV subvolume.
EMS FastStart Manual–133701
3-1

Installing and Configuring EMS FastStart Post-installation Files
Post-installation Files

After the installation is complete, the following files will be in the EMS FastStart
installation subvolume (ISV) and in your working subvolume:

EMS FastStart Configuration
EMS FastStart lets you adapt the code generation process to your environment by using
a configuration file called CCF (Compiler Configuration File). The CCF should be
modified by your system manager if your installation has different configurations than
the default values specified in the CCF (for example, your COBOL85 compiler is not on
$SYSTEM.SYSTEM). The default CCF is shown in Example 3-1.

CCF Compiler Configuration File, used to modify the run time
environment of EMS FastStart.

CEGNDECS C Library Header for EGEN Procedure (Needed by C programs).

EGENDECS EGEN TAL Procedures Declaration File.

EMSFS TACL macro file used to attach the segment file.

EMSFSC20 EMS FastStart Segment File for release C20.

EXTRADDL DDL Schema Source File used for user-defined variable data field
types.

SATMACF ATM Example, ACF source code.

SATMC ATM Example, C Source code.

SATMCOB ATM Example, COBOL85 source code.

SATMDDL ATM Example, DDL event definitions

SATMDOC ATM Example, Programming and Compilation Notes.

SATMTAL ATM Example, TAL source code.

SATMTMPL ATM Example, EMF source template.

SOFTDOC Programmer notes supplied in the release tape.

Note. Be aware that EMS FastStart may not work properly if you use a batch product to invoke
the TAL, COBOL85, and DDL compilers at your installation. EMS FastStart uses the
completion codes returned by these compilers to determine if the compilation was successful.
Since some batch products do not return completion codes, EMS FastStart can wait
indefinitely. To correct this problem, specify the exact location of the Tandem compilers in the
CCF.
EMS FastStart Manual–133701
3-2

Installing and Configuring EMS FastStart The Default Compiler Configuration File (CCF)
The Default Compiler Configuration File (CCF)

The Compiler Configuration File (CCF) is used to modify the EMS FastStart generation
compiler attributes to reflect a specific installation. The CCF contains key words which
have parameters you can modify for each installation.

Example 3-1 shows the contents of the default CCF for EMS FastStart.

Example 3-1. Default CCF in EMS FastStart

--
-- EMS FastStart - T9263C20 - (17MAR91)
--
-- File Type: CCF
--
-- File Version: A00
--
-- Creation Date: September 17, 1989 11:01:43
--
-- Source File Name: CCF
--
-- Description:This is the CCF file distributed with EMS FastStart
--
-- Modifications Summary: Date of Modification
--
-- This is the first release of this file 16 September, 1989
--
--

CCF-VERSION A00
COBOL85-LOCATION $SYSTEM.SYSTEM.COBOL85
COBOL85-CPU 0
COBOL85-PRIORITY 100
COBOL85-WORK-VOLUME $SYSTEM
DDL-LOCATION $SYSTEM.SYSTEM.DDL
DDL-CPU 1
DDL-PRIORITY 100
DDL-WORK-VOLUME $SYSTEM
EMF-CPU 0
EMF-PRIORITY 100
EMF-WORK-VOLUME $SYSTEM
TAL-LOCATION $SYSTEM.SYSTEM.TAL
TAL-CPU 1
TAL-PRIORITY 100
TAL-WORK-VOLUME $SYSTEM
SPOOLER-COLLECTOR $S
EMS FastStart Manual–133701
3-3

Installing and Configuring EMS FastStart Modifying the CCF
Modifying the CCF

The CCF contains key words which are reserved by EMS FastStart and cannot be
modified. However, each key word has a parameter which you can modify to customize
the CCF for a specific installation. The list below and on the following page shows the
EMS FastStart CCF key words and their parameters.

Key Word Parameter

CCF-VERSION ccf-version

The parameter specifies the version of the CCF; the only
version currently supported is A00.

Note: A00 is the internal version number of the CCF and is not
related to the GUARDIAN 90 version number.

COBOL85-LOCATION cobol85-location

The parameter specifies the location of the COBOL85 compiler
(for example, $SYSTEM.SYSTEM.COBOL85). If your
COBOL85 compiler is located somewhere other than
$SYSTEM.SYSTEM, make the appropriate changes. You must
specify the exact location of the Tandem compilers.

Note: If you do not have the COBOL85 compiler you must
specify NOT-USED as a parameter to the COBOL85-
LOCATION key word. Even if you do not use the COBOL85
compiler you must enter valid parameter values for the
COBOL85 key words (COBOL85-CPU, COBOL85-
PRIORITY and COBOL85-WORK-VOLUME).

COBOL85-CPU cobol85-cpu

The parameter specifies the CPU in which the COBOL85
compiler will execute (for example, 0). Valid values for this
parameter are 0 through 15.

COBOL85-PRIORITY cobol85-priority

The parameter specifies the priority at which the COBOL85
compiler will execute (for example, 100). Valid values for this
parameter are 1 through 199.

COBOL85-WORK-
VOLUME

 cobol85-work-volume

The parameter specifies the volume which will be used by the
COBOL85 compiler to create its temporary files during the
compilation process (for example, $SWAP).

DDL-LOCATION ddl-location

The parameter specifies the location of the DDL compiler (for
example, $SYSTEM.SYSTEM.DDL).

DDL-CPU ddl-cpu

The parameter specifies the CPU in which the DDL compiler
will execute (for example, 0). Valid values for this parameter
are 0 through 15.
EMS FastStart Manual–133701
3-4

Installing and Configuring EMS FastStart Modifying the CCF
DDL-PRIORITY ddl-priority

The parameter specifies the priority at which the DDL compiler
will execute (for example, 100). Valid values for this parameter
are 1 through 199.

DDL-WORK-VOLUME ddl-work-volume

The parameter specifies the volume which will be used by the
DDL compiler to create its temporary files during the
compilation process (for example, $SWAP).

EMF-CPU emf-cpu

The parameter specifies the CPU in which the EMF compiler
will execute (for example, 0). Valid values for this parameter
are 0 through 15.

EMF-PRIORITY emf-priority

The parameter specifies the priority at which the EMF compiler
will execute (for example, 100). Valid values for this parameter
are 1 through 199.

EMF-WORK-VOLUME emf-work-volume

The parameter specifies the volume which will be used by the
EMF compiler to create its temporary files during the
compilation process (for example, $SWAP).

TAL-LOCATION tal-location

The parameter specifies the location of the TAL compiler (for
example, $SYSTEM.SYSTEM.TAL).

TAL-CPU tal-cpu

The parameter specifies in which CPU the TAL compiler will
execute (for example, 0). Valid values for this parameter are 0
through 15.

TAL-PRIORITY tal-priority

The parameter specifies in which CPU the TAL compiler will
execute (for example, 0). Valid values for this parameter are
1 through 199.

TAL-WORK-VOLUME tal-work-volume

The parameter specifies the volume which will be used by the
TAL compiler to create its temporary files during the
compilation process (for example, $SWAP).

SPOOLER-COLLECTOR spooler-collector

The parameter specifies the name of the spooler collector on
your system. Please note that EMS FastStart only verifies if the
process specified exists and does not verify if this is really a
collector process (for example, $S).

Key Word Parameter
EMS FastStart Manual–133701
3-5

Installing and Configuring EMS FastStart Security Considerations
After the CCF is modified to reflect your specific environment, the system manager can
run EMS FastStart with the default ACF (ATMACF) supplied to test the installation and
configuration (also see Section 5, Running EMS FastStart, and Section 7, Testing
Program and Filter, for more information).

Security Considerations
There are two security considerations: compiler access and READ access to files. The
system manager may be involved in securing these files for EMS FastStart users.

Compiler Access

Users of EMSFS need the correct security to access and execute the following
compilers: DDL, TAL, EMF, C, and COBOL85 (if COBOL85 is on your system).

READ Access to Files

To run EMS FastStart properly, you need READ access to the following files in the
subvolume: EMSFS, EMSFSC20, CCF, EXTRADDL and the ACF you specify. The
locations of these files are specified in the ACF with the EMSFS-SUBVOL key word.

You also need READ access to the following ZSPIDEF files: ZEMSDDL, ZSPIDDL,
ZSPITACL, ZSPITAL, ZEMSTACL and ZEMSTAL. The locations of these files are
specified in the ACF with the ZSPIDEF-SUBVOL. (See Section 4, Preparing the
Application Configuration File, for more information.)
EMS FastStart Manual–133701
3-6

4
Preparing the Application Configuration
File

Before you use EMS FastStart, you must modify the Application Configuration File
(ACF) parameters to generate the customized EGEN procedure for your application.
This section outlines the procedure for Modifying the ACF. In Application
Configuration File the features and restrictions of the ACF are described. Next, a listing
of the Default Application Configuration File is shown followed by the key words and
parameters used to modify the ACF. A subsection about Field Definitions is included to
help explain the field key words and parameters. The end of this section covers adding
data types to the ACF with Adding Data Types with EXTRADDL and EGEN Default
Values.

This section assumes that you have already prepared your application by designating the
owner of the events, number and version (SSID), and the event message details (for
example, name, number, type, subject, etc.).

Application Configuration File
The Application Configuration File (ACF) is the source file for the EMS FastStart
generation process which produces the customized EGEN procedure. The ACF contains
parameters which you can modify to use with your application.

The EMS FastStart generation process starts by validating each ACF file parameter
entered. If an error is detected, an informative message is displayed and the generation
process stops. The message informs you of the probable cause and recommended action.
Therefore, it is important to specify the ACF parameters carefully. (See Section 5,
Running EMS FastStart, and Appendix A, EMS FastStart Messages, for specific
information.)

The ACF has the following features:

• The ACF supports a comment character “--” (two hyphens) which may be placed in
any column.

• A version field is provided to support future extensions.

• USER-SUBVOL-FILES-PREFIX is a key word used to prefix all the files in the
user subvolume. It enables you to have multiple versions of the EGEN module in the
same subvolume.

• Any field defined in the ACF can become the subject (see Section 6, Building Your
Application for Event Generation for information on Multiple Subject Data Type
Support).

The ACF has the following restrictions:

• The variables used by EGEN must be unique.
EMS FastStart Manual–133701
4-1

Preparing the Application Configuration File Default Application Configuration File
• The FIELD-X-TYPE parameter must be a Subsystem Programmatic Interface (SPI)
definition supported by EMS FastStart (for example, ZSPI-DDL-CHAR8).

If you are creating an application, you can design your application’s events to take
advantage of EMS FastStart’s features. If you are converting an existing application, you
can search your application’s code for event messages and organize them for EMS
FastStart. See Section 2, Brief Review of Event Design, for information and examples of
event message design.

Default Application Configuration File
The ACF contains key words with parameters which can be modified for each
installation. You can modify the default ACF for your application or replace it with your
own ACF. There are 27 possible data types; 8 are shown in the default ACF below. A
complete list of the data types supported can be found under Section 4, Preparing the
Application Configuration File. Example 4-1 shows the contents of the default ACF for
EMS FastStart (ATMACF) which you see after the program is installed.

Example 4-1. Default Application Configuration File (page 1 of 2)

--
-- EMS FastStart - T9263C20 - (17MAR91)
--
-- File Type: ACF
--
-- File Version: B00
--
-- Creation Date: September 17, 1989 10:54:31
--
-- Source File Name: SATMACF
--
-- Description: This ACF implements the ATM example.
--
-- Modifications Summary: Date of Modification
--
-- This is the first release of this file 16 September, 1989
--
-- Modified for the T9263C20 release 21 November, 1990
--
-- 1- Added the following key words: SAVE-DDL-DICTIONARY
-- USER-DDL-FILE
--
-- 2- Changed the version from A00 to B00.
--

--
-- ACF-VERSION B00
--
 EMSFS-SUBVOL $data.zemsfs
 ZSPIDEF-SUBVOL $dsv.zspidef
 USER-SUBVOL $data.atm
 USER-SUBVOL-FILES-PREFIX ATM1
 SAVE-DDL-DICTIONARY YES
 USER-DDL-FILE SATMDDL
 USER-VARIABLES-PREFIX ATM
--
 APPLICATION-SSID-OWNER CUSTOMER
 APPLICATION-SSID-NUMBER 1
 APPLICATION-SSID-VERSION J00
--
 EVENT-TEXT-TYPE ZSPI-DDL-CHAR254
EMS FastStart Manual–133701
4-2

Preparing the Application Configuration File Modifying the ACF
Modifying the ACF
The ACF contains key words reserved by EMS FastStart which you cannot modify.
However, each key word has a parameter which you can modify in order to customize
the ACF for a specific installation. Following is a list of the ACF key words and their
parameters.

--
-- Start of field definitions for application ATM !
--
 FIELD-1-NAME atm-name
 FIELD-1-TYPE ZSPI-DDL-CHAR8
 FIELD-1-NUMBER 100
 FIELD-2-NAME atm-location
 FIELD-2-TYPE ZSPI-DDL-CHAR24
 FIELD-2-NUMBER 200
 FIELD-3-NAME atm-account-num
 FIELD-3-TYPE ZSPI-DDL-INT2
 FIELD-3-NUMBER 300
 FIELD-4-NAME atm-retry-limit
 FIELD-4-TYPE ZSPI-DDL-INT
 FIELD-4-NUMBER 400
 FIELD-5-NAME atm-hw-component
 FIELD-5-TYPE ZSPI-DDL-CHAR24
 FIELD-5-NUMBER 500
 FIELD-6-NAME atm-hw-subcomponent
 FIELD-6-TYPE ZSPI-DDL-CHAR24
 FIELD-6-NUMBER 600
 FIELD-7-NAME atm-serial-number
 FIELD-7-TYPE ZSPI-DDL-INT2
 FIELD-7-NUMBER 700
 FIELD-8-NAME atm-sense-status
 FIELD-8-TYPE ZSPI-DDL-INT2
 FIELD-8-NUMBER 800

Key Word Parameter

ACF-VERSION acf-version

The parameter specifies the version of the ACF; the only version
currently supported is B00. This is the internal version number of
the ACF and should not be altered.

EMSFS-SUBVOL emsfs-subvol

The parameter specifies the location of the working EMSFS
subvolume. EMS FastStart expects to find the following files in
this subvolume: CCF and EXTRADDL. Note that EMS FastStart
users must have READ access for these two files.

ZSPIDEF-SUBVOL zspidef-subvol

The parameter specifies the subvolume which contains the
ZSPIDDL, ZEMSDDL, ZSPITAL, ZEMSTAL, ZSPITACL and
ZEMSTACL definition files used by the different compilers
during the generation phases. Note that EMS FastStart users
must have READ access to all these files.

Example 4-1. Default Application Configuration File (page 2 of 2)
EMS FastStart Manual–133701
4-3

Preparing the Application Configuration File Modifying the ACF
USER-SUBVOL user-subvol

The parameter specifies the location where EMS FastStart will
create all the source and object files. EMS FastStart creates files
on behalf of the user. Therefore, the user must have CREATE
access on the designated USER-SUBVOL.

USER-SUBVOL-
FILES-PREFIX

user-subvol-file-prefix

The parameter specifies the prefix that EMS FastStart will use to
build the filenames of each file in the subvolume specified by
USER-SUBVOL. For example, APP1 will be used to create the
following files: APP1DDLS, APP1EGES, APP1INDX, etc.

SAVE-DDL--
DICTIONARY

user-subvol-file-prefix

The parameter specifies if the DDL dictionary created in the
subvolume specified by the USER-SUBVOL parameter will be
saved. Valid parameter values are YES (save the dictionary) and
NO (do not save the dictionary; purge it). This dictionary will
contain all the definitions for ZSPIDDL and ZEMSDDL plus your
own subsystem definitions (tokens and events). This dictionary is
required if you want to use the DSM Template Services and create
templates for your application.

USER-DDL--FILE user-subvol-file-prefix

The parameter specifies the name of a user defined DDL source
file. Valid parameter values are file-name (a valid DDL source
file) and NOT-USED (do not source a file). The content of this file
will be sourced at the end of the MAIN DDL file and added to the
dictionary. You may use this file to source your event definitions,
which will then be used later by the DSM Template Services for
generating your application template file.

USER-VARIABLES-
PREFIX

user-variables-prefix

The parameter is used to make EGEN variable names unique. The
name cannot be longer than four characters, must start with a
letter and must contain only alphanumeric characters. For
example: A123, Z111, ZZZZ, ABCD, etc. The token names
created by EMS FastStart will also use this prefix. For example:
PROGRAM-NAME will have an associated token called ATM-
TKN-PROGRAM-NAME (If the USER-VARIABLES-PREFIX is
ATM).

Key Word Parameter
EMS FastStart Manual–133701
4-4

Preparing the Application Configuration File Modifying the ACF
APPLICATION-SSID-
OWNER

application-ssid-owner

The parameter defines the owner of the event buffer and must be
an eight-character string or less to identify your company or
organization.

The owner name must start with an alpha character and contain
only alphanumeric characters and hyphens. Blanks are allowed
only at the end for padding. The alpha characters are case
sensitive (for example, “COMPANY” and “Company” are
recognized as different names). To avoid confusion, it is
recommended that you define your owner ID with all alpha
characters in uppercase, as is done for the Tandem owner ID
“TANDEM_ _” (where the underscores represent blanks).

APPLICATION-SSID-
NUMBER

application-ssid-number

This field defines the SSID subsystem number and is identified by
a 16-bit signed integer value that identifies the subsystem within
the set of subsystems provided by the subsystem owner.

APPLICATION-SSID-
VERSION

application-ssid-version

The parameter represents the software release version of the
subsystem and is a 16-bit unsigned integer value. In the format of
the field the left byte contains the letter part of the version as an
ASCII uppercase alpha character, and the right byte contains the
numeric part of the version as an unsigned integer value.

EVENT-TEXT-TYPE event-text-type

The parameter controls the length of the displayable text
describing the event. The values supported by EMS FastStart are
ZSPI-DDL-CHAR128 and ZSPI-DDL-CHAR254.

FIELD-X-NAME field-x-name

The parameter specifies the name of each field in the EGEN-
RECORD and has a maximum 20 character string. The name
must start with an alpha character and contain only alpha and
numeric characters and hyphens. Blanks are allowed only at the
end for padding. Replace the “X” for each different field with an
integer value (a field includes NAME, TYPE, and NUMBER
definitions). The value for “X” must be sequential and start with
1. (See Field Definitions below for more information.)

Key Word Parameter
EMS FastStart Manual–133701
4-5

Preparing the Application Configuration File Modifying the ACF
FIELD-X-TYPE field-x-type

The parameter specifies which variable data types are supported
by EGEN. The following 27 variable data types are supported:

ZSPI-DDL-INT ZSPI-DDL-CHAR24

ZSPI-DDL-INT2 ZSPI-DDL-CHAR50

ZSPI-DDL-INT4 ZSPI-DDL-CHAR64

ZSPI-DDL-UINT ZSPI-DDL-CHAR128

ZSPI-DDL-ENUM ZSPI-DDL-CHAR254 *

ZSPI-DDL-BOOLEAN ZSPI-DDL-USERID

ZSPI-DDL-CHAR ZSPI-DDL-USERNAME

ZSPI-DDL-CHAR-PAIR ZSPI-DDL-FNAME

ZSPI-DDL-CHAR4 ZSPI-DDL-FNAME32

ZSPI-DDL-CHAR6 ZSPI-DDL-SUBVOL

ZSPI-DDL-CHAR8 ZSPI-DDL-CRTPID

ZSPI-DDL-CHAR16 ZSPI-DDL-DEVICE

ZSPI-DDL-TRANSID ZSPI-DDL-TIMESTAMP

ZSPI-DDL-SSID

*ZSPI-DDL-CHAR254 is defined in EXTRADDL. (See Adding
Data Types with EXTRADDL below.)

Replace the “X” for each different field with an integer value (a
field includes NAME, TYPE, and NUMBER definitions). The
value for “X” must be sequential and start with 1. (See Field
Definitions below.)

FIELD-X-NUMBER field-x-number

The parameter specifies the number of the variable data type that
will be added to the event buffer by EGEN. A field number
identifies each separate variable data field (token). The field
number can be any number from 1 to 9990. You can assign any
number from 1 through 9990 arbitrarily to any variable data field,
although you may wish to assign them with some logic for your
application.

Replace the “X” for each different field with an integer value (a
field includes NAME, TYPE, and NUMBER definitions). The
value for “X” must be sequential and start with 1. (See Field
Definitions below.)

Key Word Parameter
EMS FastStart Manual–133701
4-6

Preparing the Application Configuration File Field Definitions
Field Definitions
For each field defined in the ACF, you need to specify three things: the field name, the
field type, and the field number. Each must share the same value for X, the group field
number. For example:

The field name, type, and number are always defined as a group. The “x” represents the
group field number.

The group field number “X” is replaced by an integer value for each different field.
Valid values for “X” are 1 through 9990. Numbers from 9991 through 9998 are reserved
by EMS FastStart. The first “X” value must be 1 and the values must continue
sequentially (2, 3, 4, 5, etc.).

Fields 1 and 2 are defined as follows in the sample ACF:

For more information, see the Distributed Systems Management (DSM) Programming
Manual.

Adding Data Types with EXTRADDL
If you need a data type not found in the standard types supported by EMSFS, you can
define another in the EXTRADDL file.

EMS FastStart provides a DDL source file to allow you to expand on the basic data
types allowed. New data types are defined in the DDL source file, EXTRADDL, located
in the EMS FastStart distribution subvolume. Only character fields can be defined in the
EXTRADDL. EMS FastStart automatically sources in the EXTRADDL file during the
main DDL compilation step. The name of the new data type you define should always
be of the form ZSPI-DDL-CHAR*, where the asterisk (*) represents the number of
characters you define. For example, ZSPI-DDL-CHAR20.

The EXTRADDL file contains a definition for the ZSPI-DDL-CHAR254 data type. You
can add a new data type to the EXTRADDL file by adding a section that defines the new
data type. The sample code in Example 4-2 shows the EXTRADDL file with added code
for a new data type, CHAR20. To add your own data types, use this code as a guide.

FIELD-x-NAME field-x-name

FIELD-x-TYPE field-x-type

FIELD-x-NUMBER field-x-number

FIELD-1-NAME atm-name

FIELD-1-TYPE ZSPI-DDL-CHAR8

FIELD-1-NUMBER 100

FIELD-2-NAME atm-location

FIELD-2-TYPE ZSPI-DDL-CHAR24

FIELD-2-NUMBER 200
EMS FastStart Manual–133701
4-7

Preparing the Application Configuration File Adding Data Types with EXTRADDL
Example 4-2. Adding a New Data Type to the EXTRADDL File

*---
*
* EMS Fast Start - T9263020 - (17MAR91)
*
* File Type: DDL Source Schema
*
* Source File Name: Extraddl
*
* Generation Time: July 7, 1988
*
* Language Compiler Required: Data Definition Language (DDL)
*
* Compiler Version Required: C20
*
* Source Library File Produced: None, see below.
*
*
* File Description: This DDL source schema file is an example of DDL
* definitions which may be added to the base ZSPIDDL definitions
* provided by Tandem. These definitions can then be used by
* EMS Fast Start and EGEN to create tokens of specific types.
*
* Modifications Summary: Date of Modification
*
* 1 - Added the Zspi-ddl-char254 token. Used by 21 October 1988
* EGEN to generate an event message with a
* ZEMS-TKN-TEXT of up to 254 bytes.
* N.B. 254 is the maximum bytes length for a
* fixed token code.
*
*---
?SECTION Zspi-ddl-char254
!
! 254 ASCII characters - addressable as a STRUCT, bytes, or INT's
!
?TALBOUND 0
DEFINITION Zspi-ddl-char254.
 02 z-c PIC X(254) SPI-NULL " ".
 02 z-s REDEFINES z-c.
 03 z-i TYPE BINARY 16 OCCURS 127 TIMES.
 02 z-b REDEFINES z-c PIC X OCCURS 254 TIMES.
END
TOKEN-TYPE Zspi-typ-char254 VALUE IS Zspi-tdt-char
 DEF IS Zspi-ddl-char254.

!
!This section shows how to add a field type of 20 characters.
!
?SECTION Zspi-ddl-char20
!
! 20 ASCII characters - addressable as a STRUCT, bytes, or INT's
!
?TALBOUND 0
DEFINITION Zspi-ddl-char20.
 02 z-c PIC X(20) SPI-NULL " ".
 02 z-s REDEFINES z-c.
 03 z-i TYPE BINARY 16 OCCURS 10 TIMES.
 02 z-b REDEFINES z-c PIC X OCCURS 20 TIMES.
END
TOKEN-TYPE Zspi-typ-char20 VALUE IS Zspi-tdt-char
 DEF IS Zspi-ddl-char20.
EMS FastStart Manual–133701
4-8

Preparing the Application Configuration File EGEN Default Values
EGEN Default Values
EGEN default values are used by the EGEN procedure to determine if information
should be added to the event buffer. EGEN compares the value of each field defined in
your ACF against a set of default values. Each field type supported by EGEN has a
specific default value.

Before generating an event, an application always initializes all fields of the egen-record
(the egen-record contains all the fields declared in the ACF) with default values. This is
done with the initialize^egen^record procedure. The following values are entered into
the field types:

These default values were assigned because they represent values which are unlikely to
occur during the course of running an application. If the actual value passed to EGEN
differs from the default value, that new value is passed to the event message buffer. If the
actual value matches the default value, EGEN assumes nothing has changed, and no
value is added to the event buffer. The objective is to supply information which does not
match the default values. If you feel that one of the EGEN default values may in fact
match a legitimate value passed by an event, change the default value for that field type.
If you do not do this, variable data will be missing from your event message buffer.

Example

Table 4-1 shows the contents of the following fields after a call to the
initialize^egen^record procedure.

Field type EGEN Default Values

ZSPI-DDL-INT 32767

ZSPI-DDL-INT2 2147483647

ZSPI-DDL-INT4 9223372036854775807

ZSPI-DDL-UINT 65535

ZSPI-DDL-ENUM 32767

ZSPI-DDL-TRANSID 9223372036854775807

ZSPI-DDL-TIMESTAMP 9223372036854775807

Table 4-1. Field Content After Call to Initialize^egen^record Procedure (page 1
of 2)

FIELD-NAME FIELD-TYPE FIELD-VALUE

ATM-NAME ZSPI-DDL-CHAR8 8 spaces

ATM-LOCATION ZSPI-DDL-CHAR24 24 spaces

ATM-ACCOUNT-NUM ZSPI-DDL-INT2 2147483647

ATM-RETRY-LIMIT ZSPI-DDL-INT 32767

ATM-HW-COMPONENT ZSPI-DDL-CHAR24 24 spaces
EMS FastStart Manual–133701
4-9

Preparing the Application Configuration File Example
Once the fields are initialized, information needed for each specific event must be
moved into the fields, replacing the default values. Table 4-2 shows the ATM-ACCT-
INSUF-FUNDS event generated by the ATM COBOL85 example. This shows all the
fields values after event-specific information was moved into three fields: ATM-NAME,
ATM-LOCATION, and ATM-ACCOUNT-NUM. These fields are shown in boldface
type below.

The application now calls EGEN. EGEN looks at the contents of the field-value and
compares it with the EGEN default values. Only those fields whose contents differ from
the default values are added to the event buffer. In the example above, only those fields
which are shown in bold type will be added to the event buffer. Note that if the field
value is not modified, and the default value is used, nothing is added to the event buffer.
Should this happen, you may find some variable data missing from the events you
generate.

To change the default field values, generate your application and modify the xxxxTAL
(for example, ATM1TAL for our sample) DDL file (Example 4-3). Enter the new default
values. Then re-compile the EGEN module with the new TAL DDL and re-bind this new

ATM-HW-SUBCOMPONENT ZSPI-DDL-CHAR24 24 spaces

ATM-SERIAL-NUMBER ZSPI-DDL-INT2 2147483647

ATM-SENSE-STATUS ZSPI-DDL-INT2 2147483647

Note. For character fields such as ZSPI-DDL-CHAR8 and ZSPI-DDL-CHAR24, the default
value is 8 and 24 spaces respectively.

Table 4-2. ATM COBOL85 Example

FIELD-NAME FIELD-TYPE FIELD-VALUE

ATM-NAME ZSPI-DDL-CHAR8 OAKWEST1

ATM-LOCATION ZSPI-DDL-CHAR24 245 Oak St., Oakland

ATM-ACCOUNT-NUM ZSPI-DDL-INT2 34503933

ATM-RETRY-LIMIT ZSPI-DDL-INT 32767

ATM-HW-COMPONENT ZSPI-DDL-CHAR24 24 spaces

ATM-HW-SUBCOMPONENT ZSPI-DDL-CHAR24 24 spaces

ATM-SERIAL-NUMBER ZSPI-DDL-INT2 2147483647

ATM-SENSE-STATUS ZSPI-DDL-INT2 2147483647

Note. The term “default” is used to mean a standard value to which other values are
compared. The default value is one that is not expected so that when the user-supplied value
does not equal the default, the user-supplied value is added to the event buffer.

Table 4-1. Field Content After Call to Initialize^egen^record Procedure (page 2
of 2)

FIELD-NAME FIELD-TYPE FIELD-VALUE
EMS FastStart Manual–133701
4-10

Preparing the Application Configuration File Example
TAL module with your application. Remember, it is important to choose default values
which are unlikely to occur in your application. Do not use a common or likely value as
a default. In the example above, a “real-life” ATM-RETRY-LIMIT value is unlikely to
match the default value of 32767; however, it is likely that a value of 4 might be passed
to the field-value. Therefore, 4 would not be a wise choice as a default value for that
field type.

Example 4-3. EGEN Default Values

!--
!
! Constants used by Egen to define the default values of a field
!
LITERAL EMSFS^DEFAULT^INT = 32767;
LITERAL EMSFS^DEFAULT^INT2 = 2147483647D;
LITERAL EMSFS^DEFAULT^INT4 = 9223372036854775807F;
LITERAL EMSFS^DEFAULT^UINT = %177777;
LITERAL EMSFS^DEFAULT^ENUM = 32767;
LITERAL EMSFS^DEFAULT^TRANSID = 9223372036854775807F;
LITERAL EMSFS^DEFAULT^TMESTAMP = 9223372036854775807F;
EMS FastStart Manual–133701
4-11

Preparing the Application Configuration File Example
EMS FastStart Manual–133701
4-12

5 Running EMS FastStart
This section describes how to run EMS FastStart. It outlines the procedure for first
Setting Up the EMS FastStart Environment and then Running EMSFS with the
GENERATE command.

The message you receive after a successful completion of the setup as well as two
possible error messages if the setup cannot be completed are shown and explained.
Then, Stopping EMSFS and Detaching the Segment File after the run is completed is
described. Next, a sample run is shown including the commands you must enter and the
text you see on your terminal.

At the end of this section, the User Subvolume Files and EMSFS Components are listed
and described. There is also information about the warning, advisory, and error
messages you may receive when you run EMS FastStart, (listed and described in detail
in Appendix A, EMS FastStart Messages).

Figure 5-1 illustrates the generation process: parameter validation, cleaning the
subvolume, source file generation, automatic compilation, and file creation. The figure
also shows the resulting EMS FastStart components: copy libraries, the EGEN routine,
the test program, the DDL source code, and the filter.

Figure 5-1. EMS FastStart Generation Process

TACL> generate SATMACF

Parameter Validation

Cleaning Subvolume

Source File Generation

Automatic Compilation

File Creation

Copy Lib. EGEN Test FilterDDL

004
EMS FastStart Manual–133701
5-1

Running EMS FastStart Setting Up the EMS FastStart Environment
Setting Up the EMS FastStart Environment
Before using EMS FastStart, you must attach the EMSFSC20 segment file to your
TACL.

A TACL macro is provided to simplify this operation. Enter the following commands
exactly as specified to be sure that your working environment is properly initialized.

At the TACL prompt enter:

1> VOLUME EMS-FastStart-working-subvolume

This command sets your default subvolume to the EMS FastStart development
subvolume (for example, VOLUME $DEV.ZEMSFS).

At the TACL prompt enter:

2> RUN EMSFS

This command invokes the EMSFS TACL macro which attaches the EMSFSC20
segment file to your TACL. This macro also checks that the version of EMSFS matches
the version of the segment file.

The following message appears on your terminal if the EMS FastStart setup was
successfully completed.

One of the following two error messages will appear on your terminal if the EMS
FastStart set up was unsuccessful.

Error Message 1

EMS FastStart - T9263C20 - (17MAR91)
Copyright Tandem Computers Incorporated 1989,1990,1991

** Comment 1 ** EMS FastStart set up completed.

Enter the GENERATE <acf-filename> command to start an EMS FastStart
session.

EMS FastStart - T9263C20 - (17MAR91)
Copyright Tandem Computers Incorporated 1989,1990,1991

** Error 1 ** EMS FastStart set up failed.
Probable Cause: The segment file version does not match the startup file
version.

 Segment file version = <segment file version>
 Startup file version = <startup file version>

Recommended Action: Reinstall EMS FastStart to ensure that the segment
file and the startup file have the same version.
EMS FastStart Manual–133701
5-2

Running EMS FastStart Running EMSFS
Error Message 2

Running EMSFS
To start EMS FastStart, enter the GENERATE command at the TACL prompt.

TACL> GENERATE acf-filename

This command accepts one parameter: the filename of the ACF customized for your
application (for example, GENERATE SATMACF). The parameter acf-filename
specifies an edit file which contains the information specific to your application. If the
file does not exist, EMS FastStart creates a default ACF that you must edit to describe
your particular environment. (See Section 4, Preparing the Application Configuration
File,, for information about the ACF.)

The GENERATE command starts the five automatic processes of EMS FastStart as
given in Running EMS FastStart–ATM Example: parameter validation, cleaning the
subvolume, source file generation, automatic compilation, and file creation. When
complete, EMS FastStart will have created a group of files in the user subvolume and the
TACL prompt will be returned. To stop the GENERATE process and EMS FastStart at
any time, press the BREAK key.

Stopping EMSFS and Detaching the Segment File
After running EMS FastStart, use the EMSFS:STOP command to free memory segment
space within your TACL by detaching the EMSFSC20 segment file.

At the TACL prompt, enter the EMSFS:STOP command:

TACL> EMSFS:STOP

This message is displayed:

EMS FastStart - T9263C20 - (17MAR91)
Copyright Tandem Computers Incorporated 1989,1990,1991

** Error 2 ** Unable to locate the EMSFSC20 segment files.

Probable Cause: Your current default subvolume (<user-defaults-subvol>)
does not contain EMSFSC20 segment files.

Recommended Action: Please change your default subvolume to the location
of the EMS FastStart subvolume and reissue the RUN command by entering the
following commands:

VOLUME $<emsfs-volume>.<emsfs-subvol>
RUN EMSFS

EMS FastStart - T9263C20 - (17MAR91)
Copyright Tandem Computers Incorporated 1989,1990,1991

** Comment 2 ** Environment stopped.
EMS FastStart Manual–133701
5-3

Running EMS FastStart Running EMS FastStart–ATM Example
Running EMS FastStart–ATM Example

This section shows you how to generate a sample run of EMS FastStart using the default
ACF called SATMACF.

Following the command entries, a listing of what you will see on your screen is shown.
In order to clarify the process, the listing is divided into steps which are grouped as
follows:

Parameter Validation (Steps 1-2)

Cleaning the Subvolume (Step 3)

Source File Generation (Steps 4 - 8)

Automatic Compilation (Steps 9 - 13)

File Creation: ATM1TEST and ATM1INDX (Steps 14 - 16)

Note that the EMS FastStart run will stop if an error occurs. You will receive an error
message advising you of the probable cause and the recommended action (listed and
described in detail in Appendix A, EMS FastStart Messages. Correct the error and run
the program again.

Here is a sample EMS FastStart run:

Enter the GENERATE acf-filename command to start an EMS FastStart session.

The EMS FastStart response following the RUN and GENERATE commands is shown
below as it will appear on your screen.

Parameter Validation (Steps 1-2)

Steps 1 and 2 show the validation of the ACF and CCF parameters.

STEP #1: Reading and validating the ACF: $DATA.ZEMSFS.SATMACF.

--
--
-- EMS FastStart - T9263C20 - (17MAR91)
--
-- File Type: ACF
--
-- File Version: B00
--
-- Creation Date: September 17, 1989 10:54:31

TACL> volume $data.zemsfs
TACL> run emsfs
EMS FastStart - T9263C20 - (17MAR91)
Copyright Tandem Computers Incorporated 1989,1990,1991

** Comment 1 ** EMS FastStart set up completed.

TACL> generate satmacf
EMS FastStart - T9263C20 - (17MAR91), Operating System C20, System name \MTL
October 15, 1989 22:24:28
EMS FastStart Manual–133701
5-4

Running EMS FastStart Parameter Validation (Steps 1-2)
--
-- Source File Name: SATMACF
--
-- Description: This ACF implements the ATM example.
--
-- Modifications Summary: Date of Modification
--
-- This is the first release of this file 16 September, 1989
--
-- Modified for the T9263C20 release 21 November, 1990
--
-- 1- Added the following key words: SAVE-DDL-DICTIONARY
-- USER-DDL-FILE
--
-- 2- Changed the version from A00 to B00.
--
--
--
--
ACF-VERSION B00
--
EMSFS-SUBVOL $data.zemsfs
ZSPIDEF-SUBVOL $dsv.zspidef
USER-SUBVOL $data.atm
USER-SUBVOL-FILES-PREFIX ATM1
SAVE-DDL-DICTIONARY YES
USER-DDL-FILE $DATA.ATM.SATMDDL

USER-VARIABLES-PREFIX ATM
--
APPLICATION-SSID-OWNER CUSTOMER
APPLICATION-SSID-NUMBER 1
APPLICATION-SSID-VERSION J00
--
EVENT-TEXT-TYPE ZSPI-DDL-CHAR254
--
-- Start of Field definitions for application ATM
--
FIELD-1-NAME atm-name
FIELD-1-TYPE ZSPI-DDL-CHAR8
FIELD-1-NUMBER 100
FIELD-2-NAME atm-location
FIELD-2-TYPE ZSPI-DDL-CHAR24
FIELD-2-NUMBER 200
FIELD-3-NAME atm-account-num
FIELD-3-TYPE ZSPI-DDL-INT2
FIELD-3-NUMBER 300
FIELD-4-NAME atm-retry-limit
FIELD-4-TYPE ZSPI-DDL-INT
FIELD-4-NUMBER 400
FIELD-5-NAME atm-hw-component
FIELD-5-TYPE ZSPI-DDL-CHAR24
FIELD-5-NUMBER 500
FIELD-6-NAME atm-hw-subcomponent
FIELD-6-TYPE ZSPI-DDL-CHAR24
FIELD-6-NUMBER 600
FIELD-7-NAME atm-serial-number
FIELD-7-TYPE ZSPI-DDL-INT2
FIELD-7-NUMBER 700
FIELD-8-NAME atm-sense-status
FIELD-8-TYPE ZSPI-DDL-INT2
FIELD-8-NUMBER 800
October 15, 1989 22:24:52
EMS FastStart Manual–133701
5-5

Running EMS FastStart Cleaning the Subvolume (Step 3)
STEP #2: Reading and validating the CCF: $DATA.ZEMSFS.CCF.
--
--
-- EMS FastStart - T9263C20 - (17MAR91)
--
-- File Type: CCF
--
-- File Version: A00
--
-- Creation Date: September 17, 1989 11:01:43
--
-- Source File Name: CCF
--
-- Description: This is the CCF file distributed with EMS FastStart
--
-- Modifications Summary: Date of Modification
--
-- This is the first release of this file 16 September, 1989
--
--
CCF-VERSION A00
COBOL85-LOCATION $SYSTEM.SYSTEM.COBOL85
COBOL85-CPU 0
COBOL85-PRIORITY 100
COBOL85-WORK-VOLUME $SYSTEM
DDL-LOCATION $SYSTEM.SYSTEM.DDL
DDL-CPU 1
DDL-PRIORITY 100
DDL-WORK-VOLUME $SYSTEM
EMF-CPU 0
EMF-PRIORITY 100
EMF-WORK-VOLUME $SYSTEM
TAL-LOCATION $SYSTEM.SYSTEM.TAL
TAL-CPU 1
TAL-PRIORITY 100
TAL-WORK-VOLUME $SYSTEM
SPOOLER-COLLECTOR $S

October 15, 1989 22:25:00

Cleaning the Subvolume (Step 3)

This step is included to ensure that old versions of EMS FastStart files do not exist on
the subvolume. If files are found, they are purged; therefore it is important that your
subvolume be empty of any files.
STEP #3: Cleaning the subvolume: $DATA.ATM.

EMS FastStart continuing, no files found in this subvolume

October 15, 1989 22:25:01

Source File Generation (Steps 4 - 8)

All the source files required by the compilers will be created during the following steps.
STEP #4: Creating the MAIN DDL source file: $DATA.ATM.ATM1DDLS.

October 15, 1989 22:25:06

STEP #5: Creating the USER DDL source library file: $DATA.ATM.ATM1UDDL.
EMS FastStart Manual–133701
5-6

Running EMS FastStart Automatic Compilation (Steps 9 - 13)
October 15, 1989 22:25:08

STEP #6: Creating the FILTER source file: $DATA.ATM.ATM1EMFS.

October 15, 1989 22:25:10

STEP #7: Creating the COBOL85 test program source file: $DATA.ATM.ATM1PROS.

October 15, 1989 22:25:17

STEP #8: Creating the TAL EGEN module source file: $DATA.ATM.ATM1EGES.

October 15, 1989 22:25:38

Automatic Compilation (Steps 9 - 13)

Next, EMS FastStart automatically compiles the various files just created. Compilation
of the main DDL source file is the longest step within the EMS FastStart generation
process. Depending on your system type and the ACF configuration, the automatic
compilation can take from 5 to 20 minutes or longer.

STEP #9: Starting the compilation of the MAIN DDL schema source file.

DDL compiler location: $SYSTEM.SYSTEM.DDL.
DDL compiler execution cpu: 1.
DDL compiler execution priority: 100.
DDL compiler work volume: $SYSTEM.

Source file: $DATA.ATM.ATM1DDLS.
Listing file: $S.#EMSFS.ATM1DDLS.

October 15, 1989 22:32:46

STEP #10: Starting the compilation of the USER DDL schema source file.

DDL compiler location: $SYSTEM.SYSTEM.DDL.
DDL compiler execution cpu: 1.
DDL compiler execution priority: 100.
DDL compiler work volume: $SYSTEM.

Source file: $DATA.ATM.ATM1UDDL.
Listing file: $S.#EMSFS.ATM1UDDL.

October 15, 1989 22:32:54

STEP #11: Starting the compilation of the EGEN module.

TAL compiler location: $SYSTEM.SYSTEM.TAL.
TAL compiler execution cpu: 1.
TAL compiler execution priority: 100.
TAL compiler work volume: $SYSTEM.

Source file: $DATA.ATM.ATM1EGES.

Note. DDL compilation warnings may be returned to you. These warnings are caused by
DDL when it creates the COBOL85 copylib files. They are a result of an inconsistency
between COBOL85 and SPI substructures. Some variable data fields like ZSPI-DDL-
FNAME and ZSPI-DDL-FNAME32 as defined by SPI have substructures with variable
data fields not supported by COBOL85. You can ignore these types of warnings since
they will not affect your application or the EGEN module, but relate to the DDL
compilation phase.
EMS FastStart Manual–133701
5-7

Running EMS FastStart File Creation: ATM1TEST and ATM1INDX
(Steps 14 - 16)
Object file: $DATA.ATM.ATM1EGEN.
Listing file: $S.#EMSFS.ATM1EGEN.

October 15, 1989 22:33:49

STEP #12: Starting the compilation of the COBOL85 test program.

COBOL85 compiler location: $SYSTEM.SYSTEM.COBOL85.
COBOL85 compiler execution cpu: 0.
COBOL85 compiler execution priority: 100.
COBOL85 compiler work volume: $SYSTEM.

Source file: $DATA.ATM.ATM1PROS.
Object file: $DATA.ATM.ATM1PROG.
Listing file: $S.#EMSFS.ATM1PROG.

October 15, 1989 22:34:26

STEP #13: Starting the compilation of the EMF Filter example.

EMF compiler execution cpu: 0.
EMF compiler execution priority: 100.
EMF compiler work volume: $SYSTEM.

Source file: $DATA.ATM.ATM1EMFS.
Object file: $DATA.ATM.ATM1EMFO.
Listing file: $S.#EMSFS.ATM1EMFO.

October 15, 1989 22:35:06

File Creation: ATM1TEST and ATM1INDX (Steps 14 - 16)

After these three steps, the EMS FastStart generation process is complete and the
statistics for the run are shown.
STEP #14: Creating the COBOL85 program test file: $DATA.ATM.ATM1TEST

October 15, 1989 22:35:07

STEP #15: Creating the INDEX file: $DATA.ATM.ATM1INDX.

October 15, 1989 22:35:09

STEP #16: Duplicating the ACF file: $DATA.ZEMSFS.SATMACF.

File Utility Program - T9074C20 - (15FEB89) System \MTL
Copyright Tandem Computers Incorporated 1981, 1983, 1985, 1986, 1987, 1988
ALLOW 1 ERRORS
DUP $DATA.ZEMSFS.SATMACF, $DATA.ATM.ATM1ACF, PURGE, SAVEALL
FILES DUPLICATED: 1

EMS FastStart - T9263C20 - (17MAR91)

Number of generation errors = 0
Number of generation warnings = 0
Number of files created = 8
Number of files compiled = 5
Number of fields validated = 8
Generation cpu time = 00:00:59
Total elapsed time = 0:10:47

TACL>
EMS FastStart Manual–133701
5-8

Running EMS FastStart EMSFS Messages
The EMS FastStart generation process is now complete. Use the EMSFS:STOP
command to free memory segment space within your TACL by detaching the
EMSFSC10 or EMSFSC20 segment file. At the TACL prompt enter the STOP
command:

TACL> EMSFS:STOP

This message will be displayed:

The remainder of this section has information about EMSFS messages, the files that will
now be on your user subvolume, and the EMSFS components.

EMSFS Messages
Each step of the EMS FastStart generation process is validated and if an error or
warning occurs, a message appears on the terminal. If it is an error message, the
generation process stops to let you correct the problem. Each error and warning has a
number associated with it and a probable cause and recommended action to help you
identify the problem and correct it. The error messages and warnings are listed and
described in Appendix A, EMS FastStart Messages.

User Subvolume Files
After the successful completion of the generation process, the following files are located
on the user subvolume (in this example, $DATA.ATM). The files are also listed in an
index file (in this example, ATM1INDX) located on the user subvolume.

EMS FastStart - T9263C20 - (17MAR91)
Copyright Tandem Computers Incorporated 1989,1990,1991

** Comment 2 ** Environment stopped.

ATM1ACF ACF used to build this subvolume.

ATM1COB COBOL85 definitions of the EGEN structure.

ATM1C C definitions of the EGEN structure.

ATM1DDLS Application DDL schema source file.

ATM1EGEN TAL object which will be bound within a program.

ATM1EGES TAL source code for EGEN.

ATM1EMFO EMF filter object file.

ATM1EMFS EMF filter source file example (compatible with Viewpoint).

ATM1INDX Index file of the subvolume.

ATM1PROG COBOL85 program to test the EGEN module.

ATM1PROS COBOL85 source file code of ATM1PROG.

ATM1TACL TACL definitions used by the EMF compiler.
EMS FastStart Manual–133701
5-9

Running EMS FastStart EMSFS Components
EMSFS Components
The EMS FastStart generation and compilation process produces a TAL routine called
EGEN, a test program, a filter, copy libraries, and DDL source files. Figure 5-2
illustrates the process and the resulting components.

A description of the components that result from the EMS FastStart generation and
compilation process is shown below as well as the files related to each component.

ATM1TAL TAL definitions used by EGEN.

ATM1TEST TACL macro file to set up the defines for EGEN and start the
ATM1PROG.

ATM1UCOB User-defined event numbers in a COBOL85 copylib format.

ATM1UDDL User-defined event numbers in a DDL schema source file.

Figure 5-2. EMS FastStart Components

EGEN

Test Program

Filter

COPY LIB

DDL

EMS Faststart

ACF

005
EMS FastStart Manual–133701
5-10

Running EMS FastStart DDL
DDL

After the generation process, the user subvolume contains DDL source code that
produces the copy libraries for COBOL85 and TAL, the two programming languages
supported by EMS FastStart.

Copy Libraries

Copy libraries for your application are produced by the compilation of the DDL source
file.

EGEN

EMS FastStart uses an Application Configuration File (ACF) to generate a TAL routine
called EGEN (Event GENerator). EGEN is bound into the user application and
generates events by performing a WRITE-READ of the event buffer to the collector $0,
or to an alternate location you specify.

Test Program

An interactive COBOL85 test program (ATM1PROG) lets you enter values for events
based on your ACF. It calls EGEN to generate events and is compiled as part of EMSFS.
This program lets you test the interface between your application and EGEN. When
testing events, you can isolate testing data from production data by writing events to a
location other than the event log.

Files: ATM1DDLS

Files: ATM1COB

ATM1TAL

ATM1TACL

ATM1UCOB

ATM1UDDL

ATM1C

Files: ATM1EGEN

ATM1EGES

Files: ATM1PROG

ATM1PROS

ATM1TEST
EMS FastStart Manual–133701
5-11

Running EMS FastStart Filter
Filter

A filter is created and compiled by EMS FastStart which can be run with a printing
distributor or Viewpoint to test your application events. The interactive testing facility
allows immediate testing of newly-defined events and filters through an easy-to-use
conversational interface.

Index File

In addition to the components and their files listed above, an index file is created that is
located in the user subvolume and contains a list of all of the files created when you
generated the EMS FastStart.

Files: ATM1EMFS

ATM1EMFO

File: ATM1INDX
EMS FastStart Manual–133701
5-12

6
Building Your Application for Event
Generation

To use EMSFS, you must modify your application to use the EGEN module generated
by EMS FastStart. These modifications will enable you to generate the event messages
needed for your application. This section includes information on defining, modifying,
and compiling an application (EGEN Operating Modes). It details the specific steps a
programmer must take to use EGEN with a specific application and shows how to use
EGEN with a COBOL85 program (Mode 1). For a description of TAL and C examples
using EGEN, see the ATM example in the EMS FastStart Distribution subvolume.

How EGEN Works
EGEN is the TAL module which links the application process and the EMS system.
Your application interfaces with EGEN by moving values to the event record structure
(called egen-record in this section) defined by the ACF. The ENTER TAL constructs
pass these parameters to EGEN. EGEN then generates the tokenized event by
performing a WRITE-READ of the event buffer to the collector $0 or to an alternate
location.

EGEN Operating Modes
EGEN is designed to be used by a number of different application types such as
COBOL85 batch programs, COBOL85, C or TAL servers, or multi-threaded TAL
programs. Each type of application has specific requirements (for example, a simple
interface or full control of all I/O operations) which can be addressed by choosing one of
the four operating modes supported by EGEN. Before any modifications can be made,
you must select the correct EGEN operating mode. Each mode has a pre-defined set of
procedures and parameters provided within the EGEN module. Table 6-1 and Table 6-2
summarize the procedures and parameters required for each mode of operation.

Mode 1

This is the simplest operating mode and is used mainly by COBOL85 applications. In
mode 1, EGEN sends approximately three messages to the collector for each event
generated. Each of the other operating modes sends only one message per event.
Because of the heavy use of CPU resources, it is recommended that mode 1 be used only
by applications which generate few events.

For each event generated, EGEN opens the defined collector, writes the event, completes
the write operation and then closes the defined collector.
EMS FastStart Manual–133701
6-1

Building Your Application for Event Generation Mode 2
Mode 2

Mode 2 can be used by applications which generate many events. Mode 2 is like mode 1
but opens the defined collector only once, which reduces the use of system resources to
generate events. The only disadvantage of this mode is that EGEN completes the write
operation before returning to the calling program. In some cases, this may cause
unacceptable delays for the application.

Mode 3

Mode 3 allows EGEN to be used within a multi-threaded program because it completes
the write operation within the calling program.

Mode 4

Mode 4 uses EGEN only to format an event buffer based on the contents of the egen-
record passed to EGEN. When you use this mode, you must write the event within the
user application.

Initialize^egen^record

This procedure initializes the egen^record with default values. A default value is
specified in the DDL source file for each field within the record. See EGEN Default
Values later in this section for detailed information on EGEN default values.

For all modes, this procedure must be called before calling the EGEN procedure. You
must call this procedure each time you want to generate an event message, otherwise
EGEN will return an error code to your application. Example 6-1 shows the syntax for
this procedure.

Table 6-1. Procedures Required for Each Mode

Procedure called for mode #

Procedure Name 1 2 3 4

Initialize^egen^record YES YES YES YES

Open^egen^collector NO YES YES *

EGEN YES YES YES YES

Complete^egen^operation NO NO YES *

Close^egen^collector NO YES YES *

*You can use these EGEN procedures or use your own customized procedures.
EMS FastStart Manual–133701
6-2

Building Your Application for Event Generation Open^egen^collector
Open^egen^collector

This procedure opens the collector on behalf of the user application. It uses a run time
parameter, called a DEFINE, which allows you to select the name of the collector to
which events will be written. This DEFINE, =_EMS_COLLECTOR is discussed in
Define Run-time Parameters on page 6-20. If this DEFINE is not used, the default
collector $0 is opened.

The defined collector (or the default collector) is opened with a default sync depth of 1
(if not otherwise specified by the caller) and for nowait I/O. Example 6-2 shows the
syntax for this procedure.

Example 6-1. Syntax for the Initialize^egen^record Procedure

 { status := } INITIALIZE^EGEN^RECORD (egen^record) ! i/o
 { CALL }

 status returned value

 INT

 on return, is one of the following numbers:

 0 No Error

 <> 0 An error occurred when initializing the
 egen^record. Please refer to Appendix B
 for the list of warnings or errors that can be returned by this
procedure.

egen^record input, output

 INT .EXT:ref:*

 is the structure to be initialized with default values.
EMS FastStart Manual–133701
6-3

Building Your Application for Event Generation EGEN
 EGEN

The EGEN procedure accepts a record structure from the user application and formats a
tokenized event buffer based on the information received. The EGEN mode is a function
of the combination of parameters passed to EGEN by the application. Sample syntax for
EGEN procedure is shown in Example 6-3.

Example 6-2. Syntax of the Open^egen^collector Procedure

 { status := } Open^egen^collector (collector^file^number, ! o
 { CALL } [sync^depth], ! i
 error^detail) ! o

 status returned value

 INT

 on return, is one of the following numbers:

 0 No Error

 <> 0 An error occurred when opening the collector.
 Please refer to Appendix B for the list of
 warnings or errors that can be returned by this
 procedure.

collector^file^number output

 INT:ref:1

 is used to pass back the filenumber which was opened by this
 procedure.

sync^depth input

INT:value

is used to specify a sync depth value used when opening the collector.
If not specified, a value of one is assumed.

error^detail output

 INT:ref:1

 is used to pass back the file system error if an error occurs
 within this procedure.
EMS FastStart Manual–133701
6-4

Building Your Application for Event Generation EGEN
Example 6-3. Syntax for the EGEN Procedure

 { status := } EGEN (egen^record, ! i
 { CALL } [collector^file^number], ! i
 [event^buffer^ptr], ! i
 [tag], ! i
 [event^buffer^used]) ! o

 status returned value

 INT

 on return, is one of the following numbers:

 0 No Error

 <> 0 An error occurred within Egen. Please
 refer to Appendix B for the list of
 warnings or errors that can be returned by
 this procedure.

egen^record input

 INT .EXT:ref:*

 is the structure which contains the event message information.

collector^file^number input

 INT:ref:1

 is used to pass the file number on which to WRITEX or WRITEREADX
 the event message formatted by Egen.

event^buffer^ptr input

 INT .EXT:ref:1

 is the address of the buffer that will contain the tokenized
 event message formatted by Egen.

tag input

 INT(32):value

 is used to pass a tag that will be associated with the WRITEX or
 WRITEREADX operation to be done by Egen.

event^buffer^used output

 INT .EXT:ref:1

 is used to pass back the length of the tokenized event message formatted by
Egen.
EMS FastStart Manual–133701
6-5

Building Your Application for Event Generation Complete^egen^operation
Complete^egen^operation

This procedure is used to complete the WRITEX or WRITE-READX nowaited I/O on
the collector file on behalf of the user application. Example 6-4 shows the syntax for this
procedure.

Example 6-4. Syntax for the Complete^egen^operation Procedure

 { status := } COMPLETE^EGEN^OPERATION (collector^file^number, ! i
 { CALL } tag, ! o
 [time^limit], ! i
 error^detail) ! o

 status returned value

 INT

 on return, is one of the following numbers:

 0 No Error

 <> 0 An error occurred when completing the write of
 the event buffer. Please refer to Appendix B
 for the list of warnings or errors that can
 be returned by this procedure.

collector^file^number input

 INT:ref:1

 is used to pass the file number on which to complete the
 write/writeread operation.

tag output

 INT(32) .EXT:ref:1

 is used to pass back the tag associated with the operation just
 completed.

time^limit input

 INT(32):value

 is used to pass a time limit value to the AWAITIOX procedure call.
 If no value is passed, the value of -1D will be used.

error^detail output

 INT:ref:1

 is used to pass back the file system error if an error occurred within
 this procedure.
EMS FastStart Manual–133701
6-6

Building Your Application for Event Generation Close^egen^collector
Close^egen^collector

The Close^egen^collector procedure is used to close the current collector file on behalf
of the user application. Example 6-5 shows the syntax for this procedure.

EGEN Parameters
EGEN internally detects the mode of operation by analyzing the combination of
parameters passed to it. There are four combinations of parameters which are valid for
EGEN. If you call EGEN with any other combination, an error message will be returned
to you. Table 6-2 shows the parameters that must be passed to EGEN for each operating
mode.

Example 6-5. Syntax for the Close^egen^collector Procedure

 { status := } CLOSE^EGEN^COLLECTOR (collector^file^number) ! i
 { CALL }

 status returned value

 INT

 on return, is one of the following numbers:

 0 No Error

 <> 0 An error occurred when closing the collector.
 Please refer to Appendix B for the list of
 warnings or errors that can be returned by
 this procedure.

collector^file^number

 INT:value

 is used to pass the filenumber to close.

Table 6-2. Parameters Required for Modes

Mode #

Name Passed 1 2 3 4

egen-record YES YES YES YES

user-file-number NO YES YES NO

event-buffer-ptr NO NO YES YES

user-tag NO NO YES NO

event-buffer-length NO NO NO YES
EMS FastStart Manual–133701
6-7

Building Your Application for Event Generation Egen-record Fields Definition
Egen-record Fields Definition

The Egen-record structure is the principal interface between an application and EGEN.
Based on the values of these fields, EGEN will generate an event. Table 6-3 shows each
of the fields and their descriptions. Note that all the user defined fields in the ACF will
also be added to the egen-record. These fields are not described here because they are
specific to each application.

Table 6-3. Egen-record Fields and Descriptions (page 1 of 2)

Field Name Field Data Type and Description

acf-version ZSPI-DDL-INT.

This field contains the version of the ACF; the only version
currently supported is B00. This is the internal version number of
the ACF and should not be altered. This field is initialized each
time you call the Initialize^egen^record procedure and is used
internally by the EGEN procedure. You should not alter the value
of this field.

ssid-owner ZSPI-DDL-CHAR8

This field contains the owner of the event buffer and must be an
eight-character string or less to identify your company or
organization.

ssid-subsystem-number ZSPI-DDL-INT

This field contains the SSID subsystem number and is identified by
a 16-bit signed integer value that identifies the subsystem within
the set of subsystems provided by the subsystem owner.

ssid-version ZSPI-DDL-UINT

This field contains the software release version of the subsystem
and is a 16-bit unsigned integer value. In the format of the field the
left byte contains the letter part of the version as an ASCII
uppercase alpha character, and the right byte contains the numeric
part of the version as an unsigned integer value.

egen-error ZSPI-DDL-INT

This field contains more detailed information about errors detected
by an EGEN procedure.

event-type ZSPI-DDL-ENUM

This field contains the type of event to be generated by EGEN. One
of four types can be generated: Informative-event, Critical-event,
Action-attention-event and Action-completion-event.

event-number ZSPI-DDL-INT

This field contains the event number of the event to be generated
by EGEN.

action-id ZSPI-DDL-UINT

This field contains the action identifier of an action-attention-event
or an action-completion-event.
EMS FastStart Manual–133701
6-8

Building Your Application for Event Generation An Example Using Mode 2
An Example Using Mode 2

After you have selected the operating mode for your application, modify the application
code accordingly. Example 6-6 shows sample code for using EGEN in mode 2 within a
COBOL85 program. (For a detailed example refer to Appendix C, COBOL85 Program
Example.) As shown in Table 6-1, mode 2 requires the following procedures:

• Initialize^egen^record

• Open^egen^collector

• Egen

• Close^egen^collector

Calling these procedures opens the collector at the beginning of the program and then
closes it before the end of the program.

Next, look at Table 6-2 for the parameters to use with the mode 2 EGEN procedure:

• egen-record

• user-file-number

suppress-display ZSPI-DDL-BOOLEAN

If TRUE, tells the Viewpoint application not to display the event
message; Viewpoint will display it if the token is either FALSE or
missing. By default, the value is FALSE, which mean that the event
will be displayed on Viewpoint. See the EMS Manual, under the
ZEMS-TKN-SUPPRESS-DISPLAY heading, for more
information.

subsystem-manager ZSPI-DDL-FNAME32

This field contains the process name of a particular subsystem
process. See the DSM programing manual, under the ZSPI-TKN-
MANGER heading for more information.

event-text ZSPI-DDL-CHAR254

This field contains the displayable text describing the event. If you
use the DSM templates services, then you do not need to put text
into this field. See the EMS manual, under the ZEMS-TKN-TEXT
heading for more information.

subject-field-name ZSPI-DDL-CHAR24

This field contains the name of the other field in the egen-record
which will contains the subject of this event. (Example, Initializing
subject-field-name with ATM-NAME will cause the subject of this
event to be the value contained by ATM-NAME (for example,
“SFMAIN01”).

Table 6-3. Egen-record Fields and Descriptions (page 2 of 2)

Field Name Field Data Type and Description
EMS FastStart Manual–133701
6-9

Building Your Application for Event Generation An Example Using Mode 2
Example 6-6 opens the collector at the beginning of the program and stores the file-
number in a variable (section 205-open-collector in the example). In Example 6-6 the
variable is called file-number. In section 210-atm-up, the egen-record is initialized in
section 300-initialize-egen-record and the informative event message “atm is up” is
moved into the event buffer along with the appropriate variable data (ATM name,
location, and event type). EGEN is called next to generate event messages with two
parameters (egen-record and file-number).

The collector is closed in the section 365-close-collector.

Example 6-6. Sample Code for EGEN in Mode 2

 205-open-collector.

 MOVE ZERO TO file-number.
 ENTER TAL "Open^egen^collector" USING file-number, omitted, error-detail
 GIVING return-code.
 IF return-code IS NOT EQUAL TO ZERO
 PERFORM 400-validate-return-code.

*---
* EVENT # 1: ATM IS UP:
*
* Fields within the egen-record which are used for event # 1:
*

* event-type PIC S9(4).
* event-number NATIVE-2.
* atm-name PIC X(8).
* atm-location PIC X(24).
*---

 210-atm-up.

 PERFORM 300-initialize-egen-record.

 MOVE INFORMATIVE-EVENT TO event-type OF egen-record.
 MOVE ATM-EVT-UP TO event-number OF egen-record.
 MOVE "SFMAIN01" TO atm-name OF egen-record.
 MOVE "atm-name" TO subject-field-name OF egen-record.
 MOVE "245 A St., San Francisco" TO atm-location OF egen-record.

 ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.
 IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.

 300-initialize-egen-record.

 ENTER TAL "Initialize^egen^record" USING egen-record
 GIVING return-code.
 IF return-code IS NOT EQUAL TO ZERO
 PERFORM 400-validate-return-code.

 MOVE ZERO TO return-code.
 MOVE ATM-VAL-OWNER TO ssid-owner OF egen-record.
 MOVE ATM-SSN-NUMBER TO ssid-subsystem-number OF egen-record.
 MOVE ATM-VAL-VERSION TO ssid-version OF egen-record.

 365-close-collector.

 ENTER TAL "Close^egen^collector" USING file-number
 GIVING return-code.
 IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.
EMS FastStart Manual–133701
6-10

Building Your Application for Event Generation EGEN Default Values
EGEN Default Values
EGEN default values are used by the EGEN procedure to determine if information
should be added to the event buffer. EGEN compares the value of each field defined in
your ACF against a set of default values. Each field type supported by EGEN has a
specific default value.

Before generating an event, an application always initializes all fields of the egen-record
(the egen-record contains all the fields declared in the ACF) with default values. This is
done with the initialize^egen^record procedure. The following values are entered into
the field types:

These default values were assigned because they represent values which are unlikely to
occur during the course of running an application. If the actual value passed to EGEN
differs from the default value, that new value is passed to the event message buffer. If the
actual value matches the default value, EGEN assumes nothing has changed, and no
value is added to the event buffer. The objective is to supply information which does not
match the default values. If you feel that one of the EGEN default values may in fact
match a legitimate value passed by an event, change the default value for that field type.
If you do not do this, variable data will be missing from your event message buffer.

Example

Table 6-4 shows the contents of the following fields after a call to the
initialize^egen^record procedure.

Field type EGEN Default Values

ZSPI-DDL-INT 32767

ZSPI-DDL-INT2 2147483647

ZSPI-DDL-INT4 9223372036854775807

ZSPI-DDL-UINT 65535

ZSPI-DDL-ENUM 32767

ZSPI-DDL-TRANSID 9223372036854775807

ZSPI-DDL-TIMESTAMP 9223372036854775807

Table 6-4. Field Content After Call to Initialize^egen^record Procedure (page 1
of 2)

FIELD-NAME FIELD-TYPE FIELD-VALUE

ATM-NAME ZSPI-DDL-CHAR8 8 spaces

ATM-LOCATION ZSPI-DDL-CHAR24 24 spaces

ATM-ACCOUNT-NUM ZSPI-DDL-INT2 2147483647

ATM-RETRY-LIMIT ZSPI-DDL-INT 32767

ATM-HW-COMPONENT ZSPI-DDL-CHAR24 24 spaces
EMS FastStart Manual–133701
6-11

Building Your Application for Event Generation Example
Once the fields are initialized, information needed for each specific event must be
moved into the fields, replacing the default values. Table 6-5 shows the ATM-EVT-
ACCT-INSUF-FUNDS event generated by the ATM COBOL85 example. This shows all
the fields values after event-specific information was moved into three fields:
ATM-NAME, ATM-LOCATION, and ATM-ACCOUNT-NUM. These fields are shown
below (bold).

The application now calls EGEN. EGEN looks at the contents of the field-value and
compares it with the EGEN default values. Only those fields whose contents differ from
the default values are added to the event buffer. In the example above, only those fields
which are shown in bold type will be added to the event buffer. Note that if the field
value is not modified, and the default value is used, nothing is added to the event buffer.
Should this happen, you may find some variable data missing from the events you
generate.

To change the default field values, generate your application and modify the xxxxTAL
(for example, ATM1TAL for our sample) DDL file (Example 6-7). Enter the new default
values. Then re-compile the EGEN module with the new TAL DDL and re-bind this new
TAL module with your application.

Remember, it is important to choose default values which are unlikely to occur in your
application. Do not use a common or likely value as a default. In the example above, a
“real-life” ATM-RETRY-LIMIT value is unlikely to match the default value of 32767;

ATM-HW-SUBCOMPONENT ZSPI-DDL-CHAR24 24 spaces

ATM-SERIAL-NUMBER ZSPI-DDL-INT2 2147483647

ATM-SENSE-STATUS ZSPI-DDL-INT2 2147483647

Note. For character fields such as ZSPI-DDL-CHAR8 and ZSPI-DDL-CHAR24, the default
value is 8 and 24 blanks respectively.

Table 6-5. ATM COBOL85 Example

FIELD-NAME FIELD-TYPE FIELD-VALUE

ATM-NAME ZSPI-DDL-CHAR8 OAKWEST1

ATM-LOCATION ZSPI-DDL-CHAR24 245 Oak St., Oakland

ATM-ACCOUNT-NUM ZSPI-DDL-INT2 34503933

ATM-RETRY-LIMIT ZSPI-DDL-INT 32767

ATM-HW-COMPONENT ZSPI-DDL-CHAR24 24 spaces

ATM-HW-SUBCOMPONENT ZSPI-DDL-CHAR24 24 spaces

ATM-SERIAL-NUMBER ZSPI-DDL-INT2 2147483647

ATM-SENSE-STATUS ZSPI-DDL-INT2 2147483647

Table 6-4. Field Content After Call to Initialize^egen^record Procedure (page 2
of 2)

FIELD-NAME FIELD-TYPE FIELD-VALUE
EMS FastStart Manual–133701
6-12

Building Your Application for Event Generation Application Modifications
however, it is likely that a value of 4 might be passed to the field-value. Therefore, 4
would not be a wise choice as a default value for that field type.

Application Modifications
In order for EGEN to work with your application, certain application modifications must
be made. These modifications are grouped into three parts: global program
modifications, event-specific modifications, and compilation. Figure 6-1 shows these
phases.

Example 6-7. EGEN Default Values

!--
!
! Constants used by Egen to define the default values of a field
!
LITERAL EMSFS^DEFAULT^INT = 32767;
LITERAL EMSFS^DEFAULT^INT2 = 2147483647D;
LITERAL EMSFS^DEFAULT^INT4 = 9223372036854775807F;
LITERAL EMSFS^DEFAULT^UINT = %177777;
LITERAL EMSFS^DEFAULT^ENUM = 32767;
LITERAL EMSFS^DEFAULT^TRANSID = 9223372036854775807F;
LITERAL EMSFS^DEFAULT^TMESTAMP = 9223372036854775807F;

Figure 6-1. Application Modification Phases

Add Search Directive

Global Program
Modifications

Event Specific
Modifications

Add New Variables

Specify Event Type

Specify Event Subject

Pass Record
Structure to EGEN

Event Handling
and Return Codes

Insert COPY Statement

Compilation

Compile Application

Define
Runtime Parameters

Run Application

006
EMS FastStart Manual–133701
6-13

Building Your Application for Event Generation Global Program Modifications
Global Program Modifications

Add the SEARCH Directive
Add the ?SEARCH directive to the user application, specifying the location of EGEN.
The compiler must know where EGEN resides in order to bind it with your application.

Example:

?SEARCH $data.atm.atm1egen

Add New Variables
Add variables for the specific values needed by EGEN. Example of variables added to
the COBOL85 ATM program to support the EGEN interface:

01 cobol-val-true PIC xx value high-values*
01 cobol-val-false PIC xx value low-values*
01 return-code PIC S9(4)
01 file-number PIC 9(4) COMP
01 error-detail PIC 9(4) COMP.

*These need to be moved into the suppress-display field of the egen record to suppress
the display.

Insert Copy Statements

The five copy statements described below must be inserted in the record-definition of the
Data Division in your program. You can also add copy statements to include specific
definitions for your program. Example 6-8 below shows a copy statement.

egen-record The definition of the egen-record as specified in your ACF. It
contains other fields needed by EGEN (for example,
egen-error)

atm-ssid The definition for your SSID.

egen-interfaces-
definitions

Defines constants used to tell EGEN which type of event to
generate and constants used to define all the return codes that
EGEN can return to your application.

user-event-numbers Defines constants used to specify each event generated by
your application (for example, ATM-DOWN).

user-action-id Defines constants used to generate action attention and action
completion events.
EMS FastStart Manual–133701
6-14

Building Your Application for Event Generation Event-Specific Modifications
Event-Specific Modifications

Specify Event Types

Events are classified as one of four types: Informative (the default type), Action
attention, Action completion, or Critical. This section describes the event types and
includes sample COBOL85 code to show how to generate each type. The sample code is
part of the COBOL85 ATM example listed in Appendix C, COBOL85 Program
Example, and is included on the ISV. For a more detailed description on the event types,
refer the Event Management Service (EMS) Manual.

Informative

An informative event message informs you about any system or program status (for
example, the program started normally). This is the default event message type for EMS
FastStart unless you specify otherwise. See Example 6-9 below.

Action Attention

An action-attention event message means operator intervention is required (for example,
a message to change a tape or add paper to a printer). This is the first half of a pair with
an action-completion event message being the second half. These two events must be
linked. To tie each action-attention event with a specific action-completion event, move
the same user-action-id value to action-id for both the action-attention events and action-
completion events and use the same subject value for each. See Example 6-10 below.

Example 6-8. Copy Statement Example from the COBOL85 ATM Sample
Program

 COPY egen-record OF "$data.atm.atm1cob".
 COPY atm-ssid OF "$data.atm.atm1cob".
 COPY egen-interface-definitions OF "$data.atm.atm1cob".

 COPY user-event-numbers OF "$data.atm.atm1cob".
 COPY user-action-id OF "$data.atm.atm1cob".

Example 6-9. Sample Code for Generating Informative Events

GENERATE-INFORMATIVE-EVENT.

MOVE INFORMATIVE-EVENT TO event-type OF egen-record.
MOVE ATM-EVT-UP TO event-number OF egen-record.
MOVE "SFMAIN01" TO atm-name OF egen-record.
MOVE "atm-name" TO subject-field-name OF egen-record.
MOVE "245 A St., San Francisco" TO atm-location OF egen-record.

ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.
IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.
EMS FastStart Manual–133701
6-15

Building Your Application for Event Generation Specify Event Types
Action Completion

An action-completion event message informs you that the action required in an action-
attention event message was completed and the job is continuing. Note in this
Example 6-11, that the user-action-id (user-action-id-1) from the action-attention
example above was moved into the field action-id. Also, the same subject value was
used.

Example 6-12 shows sample code for generating action completion events with the
display suppressed.

Example 6-10. Sample Code for Generating Action-Attention Events

GENERATE-ACTION-ATTENTION.

PERFORM 300-initialize-egen-record.

MOVE ACTION-ATTENTION-EVENT TO event-type OF egen-record.
MOVE USER-ACTION-ID-1 TO action-id OF egen-record.
MOVE ATM-EVT-LOW-ON-CASH TO event-number OF egen-record.
MOVE "SFMAIN02" TO atm-name OF egen-record.
MOVE "atm-name" TO subject-field-name OF egen-record.
MOVE "245 A St., San Francisco" TO atm-location OF egen-record.

ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.
IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.

Example 6-11. Sample Code for Generating Action-Completion Events

GENERATE-ACTION-COMPLETION.

PERFORM 300-initialize-egen-record.

MOVE ACTION-COMPLETION-EVENT TO event-type OF egen-record.
MOVE ATM-ACTION-ID-1 TO action-id OF egen-record.
MOVE ATM-EVT-BACK-ONLINE TO event-number OF egen-record.
MOVE "SFMAIN02" TO atm-name OF egen-record.
MOVE "atm-name" TO subject-field-name OF egen-record.
MOVE "245 A St., San Francisco" TO atm-location OF egen-record.

ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.
IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.
EMS FastStart Manual–133701
6-16

Building Your Application for Event Generation Specify Event Subject
Critical
A critical event message informs you that an event such as a system error, component
failure, or security breach has occurred and requires immediate attention. See
Example 6-13 below.

Specify Event Subject

An event message is generated by a subsystem whenever a significant occurrence is
detected. An event message includes many kinds of information besides “what
happened.” Every event message must include a subject: the name or the number of the
hardware or software component most directly involved in the event.

Since each event can have a different subject, EMS FastStart has implemented a facility
which provides the capability to select a unique subject for each event. In fact, any field
name that you declare in the ACF can become the subject of an event. However, you are
restricted to one subject per event and the field which will become the subject cannot be
added as another field in the event record.

Example 6-12. Sample Code for Generating Action Completion Events with
Suppress Display

GENERATE-ACTION-COMPLETION.

PERFORM 300-initialize-egen-record.

MOVE ACTION-COMPLETION-EVENT TO event-type OF egen-record.
MOVE COBOL-VAL-TRUE TO SUPPRESS-DISPLAY OF egen-record.
MOVE ATM-ACTION-ID-1 TO action-id OF egen-record.
MOVE ATM-EVT-BACK-ONLINE TO event-number OF egen-record.
MOVE "SFMAIN02" TO atm-name OF egen-record.
MOVE "atm-name" TO subject-field-name OF egen-record.
MOVE "245 A St., San Francisco" TO atm-location OF egen-record.

ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.
IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.

Example 6-13. Sample Code for Generating Critical Events

GENERATE-CRITICAL-EVENT.

MOVE CRITICAL-EVENT TO event-type OF egen-record.
MOVE ATM-EVT-SECURITY-BREACH TO event-number OF egen-record.
MOVE "SACTO02" TO atm-name OF egen-record.
MOVE "atm-name" TO subject-field-name OF egen-record.
MOVE "230 State St. Sacramento" TO atm-location OF egen-record.
MOVE 23457320 TO atm-account-num OF egen-record.
MOVE 3 TO atm-retry-limit OF egen-record.

ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.

IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.
EMS FastStart Manual–133701
6-17

Building Your Application for Event Generation Move Values to the Event Record
The application needs to tell EGEN which field in the event buffer is the subject of the
event. This is accomplished in the user's application by moving the name of the selected
field to another field called subject-field-name. At this point, you can move the specific
values into the field that will become the subject.

The following example illustrates the point. An informative event will be generated
which will alert the operations staff that the ATM named SFMAIN01 is now up and
running. Since this event is about this specific ATM, we want the subject of this event to
be SFMAIN01. To accomplish this, we use the field named “atm-name” to contain the
name of the ATM (SFMAIN01) and then we initialize the field called subject-field-name
with the name of the field containing the subject, in this case atm-name. Example 6-14
shows the subject fields from the COBOL85 ATM program.

Move Values to the Event Record

Move the values associated with the specific events into the fields that were defined in
the ACF. In Example 6-15 below, the fields associated with the event #200 (ATM
DOWN) are:

• Event type

• Event number

• ATM name

• ATM location

• Event text

The programmer is responsible for determining the values for each field and moving
them into the event record.Example 6-15 shows the ATM COBOL85 example.

Example 6-14. Sample Code Showing Subject Data

MOVE INFORMATIVE-EVENT TO event-type OF egen-record.
MOVE ATM-EVT-UP TO event-number OF egen-record.
MOVE "SFMAIN01" TO atm-name OF egen-record.
MOVE "atm-name" TO subject-field-name OF egen-record.
MOVE "245 A St., San Francisco" TO atm-location OF egen-record.
EMS FastStart Manual–133701
6-18

Building Your Application for Event Generation Pass the Record Structure to EGEN
Pass the Record Structure to EGEN

Pass the record structure to EGEN by issuing the following statement from within the
user application:

ENTER TAL "Egen" USING egen-record GIVING return-code.

Error Handling and Return Codes

Each time you call one of the procedures implemented in the EGEN module you should
check to see if any errors occurred when generating an event by verifying the value of
the return-code. Appendix B, EGEN Messages, describes the return codes defined
between EGEN and a user application (implemented by EGEN as a set of TAL
procedures).

A return-code for each procedure implemented in the EGEN module informs the calling
application of the status of the operation requested. If the return-code is equal to
zero (0), the operation was successful. If the return-code is not equal to zero (0), it
indicates a warning or an error. Also, a special field called egen-error (Integer) in the
EGEN record structure is used to give you more detailed information about the error.
The contents of this field depend on the return-code of the EGEN procedures.

Example 6-15. ATM COBOL85 Example

?HEADING "240-ATM-DOWN SECTION"
/
 240-atm-down.
*---
* EVENT # 200: ATM IS DOWN:
*
* the fields within the EGEN record which are used for event # 200:
*
* event-type PIC S9(4).
* event-number NATIVE-2.
* atm-name PIC X(8).
* atm-location PIC X(24).
* event-text PIC X(254).
*
*---

 PERFORM 300-initialize-egen-record.

 MOVE CRITICAL-EVENT TO event-type OF egen-record.
 MOVE ATM-EVT-DOWN TO event-number OF egen-record.
 MOVE "LACENT99" TO atm-name OF egen-record.
 MOVE "atm-name" TO subject-field-name OF egen-record.
 MOVE "9320 Main St., Los Angeles" TO atm-location OF egen-record.

 ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.

 IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.
EMS FastStart Manual–133701
6-19

Building Your Application for Event Generation Compile Application
The following is a list of procedures for which errors, warnings, and advisory return
codes are returned to the calling application. (The return codes for each procedure are
listed and described in Appendix B, EGEN Messages.)

• Initialize^egen^record

• Open^egen^collector

• Close^egen^collector

• Complete^egen^operation

• Get^egen^event^text^define

• Initialize^event^buffer

• Write^event^buffer

• EGEN

Compile Application
After you have completed the global and the event specific modifications, compile the
application program. If the application compiles successfully, you will receive no system
error messages. If you receive a system error message, correct the problem and re-
compile the program. Consult your Tandem compiler manual for information about
specific system errors.

Define Run-time Parameters

EGEN supports two run time parameters which add flexibility to applications that use
EMS FastStart. These parameters allow you to specify an alternate EMS collector (the
default is $0.). These parameters are implemented with two DEFINEs which can be
changed each time you run your application. (For more information about DEFINEs see
the GUARDIAN 90 Operating System User’s Guide.)

The =_EMS_COLLECTOR DEFINE allows you to specify the location where you want
EGEN to pass the buffer via a write-read command. The default location is the primary
collector $0. You can also specify a disk file for testing purposes before you install your
application in production. If you do not specify another collector in this DEFINE,
EGEN will use $0 as the default collector.

The second DEFINE, =_EGEN_ADD_EVENT_TEXT tells EGEN whether to add the
token ZEMS^TKN^TEXT (plus its value, which in this case is the event text) to the
event buffer. The valid values are $YES (add the event text) or $NO (do not add the
event text). $NO is the default value.

Note. If you specify a disk file as a collector, it must have the same structure and attributes as
the EMS event log file if you want to use a distributor to print the contents of this file.
EMS FastStart Manual–133701
6-20

Building Your Application for Event Generation Define Run-time Parameters
Using TACL to Set up and Change DEFINEs

To add the DEFINEs to your application, use the following TACL macro. Example 6-16
shows how to add DEFINE values for =_EMS_COLLECTOR and
=_EGEN_ADD_EVENT_TEXT.

Example 6-16. TACL Macro File

==
==
?TACL MACRO
==
#OUTPUT Adding the =_EMS_COLLECTOR define.
==
==
== The define =_EMS_COLLECTOR is used to specify the location of the
== collector to EGEN. (The default collector is $0). If a filename
== is entered which has a file code of 843 (EMS event log files,
== type) EGEN will write formatted event messages to that file.
== As an aid in testing the functionality of an application using
== EGEN, those messages can be printed from this file by using a
== standard EMS distributor (EMSDIST).
==
SET DEFMODE ON
SET DEFINE CLASS MAP
SET DEFINE FILE $0
ADD DEFINE =_EMS_COLLECTOR

#OUTPUT

INFO DEFINE (=_EMS_COLLECTOR)

#OUTPUT Adding the =_EGEN_ADD_EVENT_TEXT define.
==
==
== The define =_EGEN_ADD_EVENT_TEXT is used to specify that EGEN
== should add the EVENT-TEXT field to the event buffer. The
== following values are valid: $YES and $NO.
==
SET DEFINE CLASS MAP
SET DEFINE FILE $YES
ADD DEFINE =_EGEN_ADD_EVENT_TEXT
#OUTPUT
INFO DEFINE (=_EGEN_ADD_EVENT_TEXT)
#OUTPUT
#OUTPUT Starting $DATA.ATM.ATM1PROG.
#OUTPUT
RUN $DATA.ATM.ATM1PROG
EMS FastStart Manual–133701
6-21

Building Your Application for Event Generation Define Run-time Parameters
EMS FastStart Manual–133701
6-22

7 Testing Program and Filter
EMS FastStart generates a Testing Program, xxxxPROG (where xxxx is the name of
your USER-SUBVOL-FILE-PREFIX), and an EMF filter (Using the Filter Program
with a Printing Distributor), xxxxEMFO, to help you test your customized EGEN
module before you bind EGEN with your application.

You can use the testing program and the filter to generate event messages similar to
those you want your application to generate. You can display the event messages using
Viewpoint or a printing distributor. The default filter can be used by Viewpoint or a
printing distributor to select only those events generated by the testing program. The
testing program can also be used to test other filters and templates as well as DSM
programmed applications prior to completing your application using EMS FastStart.

This section describes the five event types the testing program can generate, shows you a
sample run of the testing program generated from the ATM example, and describes the
use of the filter program with a printing distributor.

Testing Program
The EMS FastStart testing program, xxxxPROG, is written in COBOL85 and supports
a simple conversational interface which allows you to generate four types of “hard-
coded” events or a customized event type.

The four hard-coded event types are:

• INFORMATIVE-EVENT

• ACTION-ATTENTION-EVENT

• ACTION-COMPLETION-EVENT

• CRITICAL-EVENT

Each of these event types is supported by EGEN and has specific parameters which you
cannot change. (See Section 6, Building Your Application for Event Generation, for
more information on event types.)

The fifth event type supported by EGEN is DATA-ENTRY-EVENT. This event type
allows you to enter the parameters of your customized EGEN procedure.

The DATA-ENTRY event type lets you select:

• Owner of the event (SSID)

• Type of the event

• Value of the suppress display flag

• Number of the event

• Name of the subsystem manager

Note. The testing program (xxxxPROG) uses EGEN mode 2 as a default.
EMS FastStart Manual–133701
7-1

Testing Program and Filter Testing Program Sample Session
• Text of the event

• Value for each field defined in the ACF

• Field which will be the subject of this event.

Testing Program Sample Session
A TACL macro file is created for you on the subvolume which contains the EMSFS
testing program. This macro file adds the =_EMS_COLLECTOR and the
=_EGEN_ADD_EVENT_TEXT DEFINES and then initializes them with default values
($NO is the =_EGEN_ADD_EVENT_TEXT default value). (For more information
about these defines please refer to Section 6, Building Your Application for Event
Generation.)

Example 7-1 shows a sample session using the EMS FastStart testing program generated
for the ATM example. The user input is shown in bold type.

Note. In the following sample session based on the ATMACF example, the USER-SUBVOL-
FILE-PREFIX parameter was ATM1 so the TACL macro file is called ATM1TEST and the EMS
FastStart testing program is called ATM1PROG.

Example 7-1. Testing Program Sample Session (page 1 of 2)

1> RUN ATM1TEST
Adding the =_EMS_COLLECTOR define.

 Define Name =_EMS_COLLECTOR
 CLASS MAP
 FILE $0

Adding the =_EGEN_ADD_EVENT_TEXT define.
 Define Name =_EGEN_ADD_EVENT_TEXT
 CLASS MAP
 FILE $YES

Starting $DATA.ATM.ATM1PROG

EMS Fast Start - T9263C20 - (17MAR91) - ATM1PROG

This program will prompt you for the type of Event Message
to generate

The following event message types are currently supported
 I- Informative Event
 AA- Action Attention Event
 AC- Action Completion Event
 C- Critical Event
 D- Data entry event. Enter necessary fields for testing.
 H- Help
 E- Exit Program
Enter the event message type to generate: I, AA, AC, C, D or H
>I
EGEN generated the event message successfully

>AA
EGEN generated the event message successfully

>AC
EGEN generated the event message successfully
EMS FastStart Manual–133701
7-2

Testing Program and Filter Testing Program Sample Session
>D
Please enter the required information:

ssid owner (ZSPI-TYP-CHAR8): CUSTOMER
ssid subsystem number (ZSPI-TYP-INT): 1
ssid version (ZSPI-TYP-UINT): 12345
event type (I,AA,AC,C): AA
action identifier (ZSPI-TYP-INT): 2
suppress-display (T,F): F
event number (ZSPI-TYP-INT): 100
subsystem manager (ZSPI-DDL-FNAME32):
event text (ZSPI-TYP-CHAR254): This is a test event generated by ATM1PROG
atm-name (ZSPI-TYP-CHAR8): MTL0122
atm-location (ZSPI-TYP-CHAR24): 221 Rene Levesque, MTL.
atm-account-num (ZSPI-TYP-INT2): 122345
atm-retry-limit (ZSPI-TYP-INT): 3
atm-hw-component (ZSPI-TYP-CHAR24):
atm-hw-subcomponent (ZSPI-TYP-CHAR24:
atm-serial-number (ZSPI-TYP-INT2): 334356
atm-sense-status (ZSPI-TYP-INT2): 03303

Please enter the name of the field which value will be the subject
of this event (e.g. Program-name, Atm-name, ...)

Event subject field name (ZSPI-TYP-CHAR24): atm-name

This is the current setting of EGEN-RECORD

Ssid owner: CUSTOMER
Ssid subsystem number: 00001
Ssid version: 12345
event type: Action-attention event
action-identifier: 2
suppress display: False
event number: 00100
subsystem manager name:
Event subject field name: atm-name
Event text: This is a test event generated by ATM1PROG
atm-name: MTL0122
atm-location: 221 Rene Levesque, MTL
atm-account-num: 0000122345
atm-retry-limit: 00003
atm-hw-component:
atm-hw-subcomponent:
atm-serial-number: 0000334356
atm-sense-status: 0000003303

EGEN generated the event message successfully

>H
This program will prompt you for the type of Event Message
to generate

The following event messages type are currently supported
 I- Informative Event
 AA- Action Attention Event
 AC- Action Completion Event
 C- Critical Event
 D- Data entry event.. you enter the event fields
 H- Help
 E- Exit Program

>E

Example 7-1. Testing Program Sample Session (page 2 of 2)
EMS FastStart Manual–133701
7-3

Testing Program and Filter Using the Filter Program with a Printing Distributor
Using the Filter Program with a Printing
Distributor

This section shows how to display the event messages generated by the EMS FastStart
testing program. Please refer to the Event Management Service Manual for a detailed
explanation of how to start and configure an EMS distributor (EMSDIST).

The following command syntax starts a printing distributor that reads events from the
collector $0 and prints them to the terminal named $term31.

TACL> EMSDIST /NAME $mydist/TYPE p, COLLECTOR $0, TEXTOUT
$term31, FILTER $data.atm.atm1emfo , TIME 11:00

The filter object file $data.atm.atm1emfo is used by the printing distributor to select the
events generated by the ATM1PROG (EMS FastStart testing program) after 11:00 (the
specified time). Example 7-2 shows the screen output of the EMSDIST program.

Filtering on Specific Tokens

Each of the applications fields you define in the ACF will have a token identifier
associated with them. These tokens are created by EMS FastStart during the generation
process and are defined in the DDL file. You can then write a filter that will be used by
an EMS Distributor to print specific events. This filter could be used to verify the
existence of a specific token in your event messages or compare the value of a specific
field. The name of each of these tokens is built according to these rules:

• Each field name you define in the ACF will have two prefixes added to them. The
TAL/TACL syntax is used to describe the token names here since this is the same
syntax used by the filter compiler language.

• The first prefix added is “^TKN^”.

• The second prefix added is the USER-VARIABLES-PREFIX parameter (for
example, ATM).

Example 7-2. Screen Output of the EMSDIST Program

89-11-20 14:21:14 \MTL.02,171 CUSTOMER.1.J00 000004 Program:
 MYPROG of application: PAYROLL, BATCH RUN
 started
89-11-20 14:21:44 \MTL.02,171 CUSTOMER.1.J00 000100 Please mount
 tape (BA5277) on $TAPE1 for the PAYROLL
 batch run
89-11-20 14:22:07 \MTL.02,171 CUSTOMER.1.J00 000100 Tape (BA5277)
 accepted on $TAPE1, PAYROLL batch
 continuing ...
89-11-20 14:38:10 \MTL.02,171 CUSTOMER.1.12345 000100 This is a
 test event generated by ATM1PROG
EMS FastStart Manual–133701
7-4

Testing Program and Filter Filtering on Specific Tokens
The following examples show the token name created by the ATM example used
throughout this manual. Please note that the token field name syntax is shown as TACL
compatible since this syntax will be used by the filter compiler. In this example, the
USER-VARIABLES-PREFIX is ATM.

ACF field name Token field name

ATM-NAME ATM^TKN^ATM^NAME

ATM-LOCATION ATM^TKN^ATM^NAME^LOCATION

ATM-ACCOUNT-NUMBER ATM^TKN^ATM^NAME^ACCOUNT^NUMBER

ATM-RETRY-LIMIT ATM^TKN^ATM^RETRY^LIMIT

ATM-HW-COMPONENT ATM^TKN^ATM^HW^COMPONENT

ATM-HW-SUBCOMPONENT ATM^TKN^ATM^HW^SUBCOMPONENT

ATM-SERIAL-NUMBER ATM^TKN^ATM^SERIAL^NUMBER

ATM-SENSE-STATUS ATM^TKN^ATM^SENSE^STATUS
EMS FastStart Manual–133701
7-5

Testing Program and Filter Filtering on Specific Tokens
EMS FastStart Manual–133701
7-6

A EMS FastStart Messages
These code samples show the run-time errors, warnings, and advisory messages you
may receive when you run EMS FastStart.

You see the following lines of code on your terminal after a successful EMS FastStart
run:

If you press the BREAK key to terminate an EMS FastStart run, the following warning
appears.

If EMS FastStart terminates because of an undefined error, the following message
appears.

EMS FastStart - T9263C20 - (17MAR91)

Number of generation errors = <integer value>
Number of generation warnings = <integer value>
Number of files created = <integer value>
Number of files compiled = <integer value>
Number of fields validated = <integer value>
Generation cpu time = <hh:mm:ss>
Total elapsed time = <hh:mm:ss>

EMS FastStart - T9263C20 - (17MAR91)

** Warning 2 ** EMS FastStart stopping, BREAK key entered.

Number of generation errors = <integer value>
Number of generation warnings = <integer value>
Number of files created = <integer value>
Number of files compiled = <integer value>
Number of fields validated = <integer value>
Generation cpu time = <hh:mm:ss>
Total elapsed time = <hh:mm:ss>

EMS FastStart - T9263C20 - (17MAR91)

** Error 3 ** EMS FastStart terminating, an undefined error occurred.

Number of generation errors = <integer value>
Number of generation warnings = <integer value>
Number of files created = <integer value>
Number of files compiled = <integer value>
Number of fields validated = <integer value>
Generation cpu time = <hh:mm:ss>
Total elapsed time = <hh:mm:ss>
EMS FastStart Manual–133701
A-1

EMS FastStart Messages
The following errors and warnings and their probable causes and recommended actions
may appear on your terminal during an EMS FastStart run.

** Error 4 ** Unable to purge a file in the <user-subvol> subvolume.

Probable cause:

Purge error: <file system error> on file <filename>.

Recommended action:

EMS FastStart cannot continue because of this error and is terminating.
Please check the file security on your user subvolume.

** Warning 50 ** The ACF does not exist.

Probable cause:

The file: <acf-filename> does not exist and a default ACF was created.

Recommended action:

Please edit the prototype ACF to include your specific application
parameters.

** Error 51 ** An error occurred when trying to process the ACF.

Probable cause:

Unable to open the file: <acf-filename>, file error: <file system error>.

Recommended action:

Please correct the error by specifying a valid ACF.

** Error 52 ** Invalid key word in the ACF.

Probable cause:

EMS FastStart was expecting the <expected-keyword> key word and the
current key word is <current-keyword>.

Recommended action:

Please correct the key word in the ACF file.
EMS FastStart Manual–133701
A-2

EMS FastStart Messages
** Error 53 ** Missing Parameter or Invalid key word.

Probable cause:

EMS FastStart detected that no parameters were supplied for this keyword
or the key word expected was: <expected-keyword>.

Recommended action:

Please correct the ACF by specifying a valid key word or a valid
parameter.

** Error 54 ** Invalid ACF file or missing key word.

Probable cause:

EMS FastStart was expecting the <expected-keyword>.

Recommended action:

Please supply a valid ACF name or add the key word in the ACF.

** Error 56 ** Invalid ACF-VERSION parameter.

Probable cause:

The ACF-VERSION is invalid; the only version currently supported is B00.

Recommended action:

Please correct the ACF-VERSION parameter in the ACF file.

** Error 57 ** Invalid filename format.

Probable cause:

EMS FastStart tried to validate the subvolume name or the whole filename
and detected an error.

Recommended action:

Please specify a valid subvolume name or a valid file name.

** Error 58 ** The location specified for the EMSFS-SUBVOL parameter is
invalid.

Probable cause:

The file: <filename> does not exist.

Recommended action:

Please correct the EMSFS-SUBVOL parameter in the ACF file.
EMS FastStart Manual–133701
A-3

EMS FastStart Messages
** Error 59 ** The ZSPIDEF-SUBVOL parameter is invalid.

Probable cause:

One of the following files: ZEMSTACL, ZEMSTAL, ZEMSDDL, ZSPIDDL,
ZSPITACL, or ZSPITAL was not validated by EMS FastStart because of the
following reason: The file <filename> does not exist.

Recommended action:

Please correct the ZSPIDEF-SUBVOL parameter to point to the right
location.

** Error 60 ** The USER-SUBVOL parameter is invalid.

Probable cause:

The USER-SUBVOL parameter is invalid or specifies a non-existent volume or
is equal to the EMSFS-SUBVOL.

Recommended action:

Please correct the USER-SUBVOL parameter in the ACF.

** Error 61 ** The USER-SUBVOL-FILES-PREFIX parameter is invalid.

Probable cause:

The USER-SUBVOL-FILES-PREFIX parameter is invalid. It should be exactly 4
characters long and start with an alphabetic character (e.g. APP1).

Recommended action:

Please correct the USER-SUBVOL-FILES-PREFIX parameter in the ACF.

** Error 62 ** The USER-VARIABLES-PREFIX parameter is invalid.

Probable cause:

It should be exactly 4 characters long and start with an alphabetic
character(e.g. APPL).

Recommended action:

Please correct the USER-VARIABLES-PREFIX parameter in the ACF.

** Error 63 ** The APPLICATION-SSID-OWNER parameter is invalid.

Probable cause:

It should be a valid subsystem identifier as specified by DSM.

Recommended action:

Please correct the APPLICATION-SSID-OWNER parameter in the ACF.
EMS FastStart Manual–133701
A-4

EMS FastStart Messages
** Error 64 ** The APPLICATION-SSID-NUMBER parameter is invalid.

Probable cause:

It must be between 0 and 32767.

Recommended action:

Please correct the APPLICATION-SSID-NUMBER parameter in the ACF.

** Error 65 ** The APPLICATION-SSID-VERSION parameter is invalid.

Probable cause:

It must be exactly 3 characters long (1 alphabetic character + 2 numeric
characters (e.g. A00, C10).

Recommended action:

Please correct the APPLICATION-SSID-VERSION parameter in the ACF.

** Error 67 ** The EVENT-TEXT-TYPE parameter is invalid.

Probable cause:

The following values are valid: ZSPI-DDL-CHAR128, ZSPI-DDL-CHAR254.

Recommended action:

Please correct the EVENT-TEXT-TYPE parameter in the ACF.

** Error 68 ** Duplicate FIELD-<field-number>-NAME parameter.

Probable cause:

This parameter value has the same name as a previous FIELD-NAME or has the
same name as one of the EGEN-RECORD reserved names: ACF-VERSION, SSID-
OWNER, SSID-SUBSYSTEM-NUMBER, SSID-VERSION, EGEN-ERROR, EVENT-TYPE, EVENT-
NUMBER, ACTION-ID, SUPPRESS-DISPLAY, SUBSYSTEM-MANAGER, EVENT-TEXT, or
SUBJECT-FIELD-NAME.

Recommended action:

Please correct the FIELD-<field-number>-NAME parameter in the ACF to make
the FIELD-<field-number>-NAME unique.

** Error 69 ** The FIELD-<field-number>-NAME parameter is invalid.

Probable cause:
It must be from 1 to 20 characters long and be COBOL compatible (e.g.
Progra m-name, File-error, Text-detail-1, etc).

Recommended action:

Please correct the FIELD-<field-number>-NAME parameter in the ACF.
EMS FastStart Manual–133701
A-5

EMS FastStart Messages
** Warning 70 ** The FIELD-<field-number>-TYPE parameter was not
validated.

Probable cause:

EMS FastStart was not able to validate this field data type since it is
not one of the default data type supported. The supported data type are
described in the EMS FastStart manual.

Recommended action:

If this data type was added in the EXTRADDL file, then you can ignore this
warning. You should assure that this type is declared as a character
field,since EMS FastStart does not support structures.

** Error 71 ** The FIELD-<field-number>-NUMBER parameter is invalid.

Probable cause:

It must be between 0 and 9990. The field numbers 9991 through 9998 are
reserved for EGEN.

Recommended action:

Please correct the FIELD-<field-number>-NUMBER in the ACF.

** Error 72 ** Duplicated FIELD-<field-number>-NUMBER parameter.

Probable cause:

The FIELD-<field-number>-NUMBER parameter was already used by another
field.

Recommended action:

Please correct the FIELD-<field-number>-NUMBER in the ACF.

** Error 73 ** EMS FastStart internal error.

Probable cause:

This is an internal error that occurred when trying to validate the ACF
parameters. It should never occur unless there is an integrity problem
within the routine Utils:parse^acf^file.

Recommended action:

Please submit the problem to Tandem with the following files: EMSFS,
EMSFSC20,CCF, EXTRADDL, and your ACF.
EMS FastStart Manual–133701
A-6

EMS FastStart Messages
** Error 74 ** Invalid field type.

Probable cause:

The FIELD-<field-number>-TYPE keyword parameter does not start with a
ZSPI- DDL-CHAR form.

Recommended action:

Please specify a valid FIELD-<field-number>-TYPE.

** Error 75 ** The SAVE-DDL-DICTIONARY parameter is invalid.

Probable cause:

The following values are valid: YES (to save the dictionary) and NO (to
purge the dictionary after the compilation).

Recommended action:

Please correct the SAVE-DDL-DICTIONARY parameter in the ACF.

** Error 76 ** The USER-DDL-FILE parameter is invalid.

Probable cause:

The following values are valid: NOT-USED (do not source a DDL file
definition) or a valid filename.
The file <filename> does not exist.

Recommended action:

Please correct the USER-DDL-FILE parameter in the ACF.

** Error 100 ** An error occurred when trying to process the CCF.

Probable cause:

<error description>

Recommended action:

Please correct the error regarding the CCF.

** Error 101 ** Invalid key word in the CCF.

Probable cause:

EMS FastStart was expecting the <expected keyword> and the current key
word is <current keyword>.

Recommended action:

Please correct the key word in the CCF file.
EMS FastStart Manual–133701
A-7

EMS FastStart Messages
** Error 102 ** Missing Parameter or Invalid key word.

Probable cause:

EMS FastStart detected that no parameters were supplied for this keyword
or the key word expected was <expected keyword>.

Recommended action:

Please correct the CCF by specifying a valid key word or a valid
parameter.

** Error 103 ** Invalid CCF or missing key word.

Probable cause:

EMS FastStart was expecting the <expected keyword>.

Recommended action:

Please correct the key word in the CCF file.

** Warning 104 ** The COBOL85 compiler will not be used.

Probable cause:

EMS FastStart detected that the COBOL85-LOCATION parameter was NOT-USED.

Recommended action:

There is no action required if you do not want to use the COBOL85
compiler.

** Error 105 ** Invalid CCF-VERSION parameter.

Probable cause:

The CCF-VERSION is invalid; the only version currently supported is A00.

Recommended action:

Please correct the CCF-VERSION parameter in the ACF file.

** Error 106 ** Invalid <compiler-name-LOCATION> parameter.

Probable cause:

The <compiler-name-LOCATION> is invalid because of the following reason:
The file: <compiler-filename> does not exist.

Recommended action:

Please correct the <compiler-name-LOCATION> parameter in the CCF file.
EMS FastStart Manual–133701
A-8

EMS FastStart Messages
** Error 107 ** Invalid <compiler-name-CPU> parameter.

Probable cause:

The <compiler-name-CPU> parameter should be between 0 and 15 or the CPU is
not currently available.

Recommended action:

Please correct the <compiler-name-CPU> parameter in the CCF file.

** Error 108 ** Invalid <compiler-name-PRIORITY> parameter.

Probable cause:

The <compiler-name-PRIORITY> parameter should be between 1 and 199.

Recommended action:

Please correct the <compiler-name-PRIORITY> parameter in the CCF file.

** Error 109 ** Invalid <compiler-name-WORK-VOLUME> parameter.

Probable cause:

The <compiler-name-WORK-VOLUME> parameter should point to a valid volume.

Recommended action:

Please correct the <compiler-name-WORK-VOLUME> parameter in the CCF file.

** Error 110 ** Invalid SPOOLER-COLLECTOR parameter.

Probable cause:

The SPOOLER-COLLECTOR should be a valid process name that exists.

Recommended action:

Please correct the SPOOLER-COLLECTOR parameter in the CCF file.

** Warning 150 ** Compiler terminated with warnings diagnostic.

Probable cause:

The compilation terminated but warnings were detected by <compiler-name>.

Recommended action:

Please verify the listing file for detailed information. You may have
compiler warnings during the DDL compilation due to the conversion of data
types from SPI definitions (example, ZSPI-DDL-FNAME) to COBOL85. You can
ignore these warnings.
EMS FastStart Manual–133701
A-9

EMS FastStart Messages
** Error 151 ** Compiler abended.

Probable cause:

The compilation was not successful and terminated abnormally.

Recommended action:

EMS FastStart cannot continue operation because of this error, please
verify the listing file for detailed information.

** Error 152 ** Compiler failed because of CPU failure.

Probable cause:

The compilation was not successful and terminated abnormally.

Recommended action:

EMS FastStart cannot continue operation because of this error, please
verify the listing file for detailed information.

** Error 153 ** Compiler failed because of NETWORK problem.

Probable cause:

The compilation was not successful and terminated abnormally.

Recommended action:

EMS FastStart cannot continue operation because of this error, please
verify the listing file for detailed information.

** Error 154 ** Compiler failed; unknown error.

Probable cause:

The compilation was not successful and terminated abnormally.

Recommended action:

EMS FastStart cannot continue operation because of this error, please
verify the listing file for detailed information.
EMS FastStart Manual–133701
A-10

B EGEN Messages
Each time you call one of the procedures implemented in the EGEN module you should
verify the value of the return code to determine whether or not an error occurred during
event generation. This appendix describes the return codes defined between EGEN and a
user application (implemented by EGEN as a set of TAL procedures).

A return code for each procedure implemented in the EGEN module informs the calling
application of the status of the operation requested. If the return code is equal to zero
(0), the operation was successful. If the return code is not equal to zero (0), it indicates a
warning or an error. Also, a special field called egen-error (integer) in the EGEN record
structure is used to give you more detailed information about the error. The contents of
this field depends on the return code of the EGEN procedures.

The following is a list of procedures for which error, warning, and advisory return codes
are returned to the calling application:

• Initialize^egen^record (Initialize^egen^record Return Codes)

• Open^egen^collector (Open^egen^collector Return Codes)

• Close^egen^collector (Close^egen^collector Return Codes)

• Complete^egen^operation (Complete^egen^operation Return Codes)

• Get^egen^event^text^define (Get^egen^event^text^define Return Codes)*

• Initialize^event^buffer (Initialize^event^buffer Return Codes)*

• Write^event^buffer (Write^event^buffer Return Codes)*

• EGEN (EGEN Return Codes)

*These procedures are not called directly by the user application but are called from
within EGEN.

Initialize^egen^record Return Codes

0: Egen-initialize-record-ok

Returned when the egen-record initializes properly. The value of egen-error has no
meaning for this message.

1: Egen-initialize-missing-param

Returned if this procedure is called without the egen-record parameters. The value of
egen-error has no meaning for this message.

Open^egen^collector Return Codes

0: Egen-open-collector-ok

Returned when the collector is opened. The value of egen-error has no meaning for this
message.
EMS FastStart Manual–133701
B-1

EGEN Messages Close^egen^collector Return Codes
10: Egen-open-missing-param

Returned if this procedure is called without the collector^file^number and the
error^detail parameters. The value of egen-error has no meaning for this message.

11: Egen-open-invalid-sync-depth

Returned if this procedure is called with an invalid sync^depth parameter. The value of
egen-error has no meaning for this message. The value must be 0 through 15.

12: Egen-open-collector-error

Returned if this procedure gets an error when trying to open the collector. The value of
egen-error will contain the GUARDIAN 90 file system error returned by the FILEINFO
procedure.

13: Egen-open-collector-warning

Returned if this procedure gets a warning when trying to open the collector. The value of
egen-error will contain the GUARDIAN 90 file system error returned by the FILEINFO
procedure.

Close^egen^collector Return Codes

0: Egen-collector-closed-ok

Returned when the collector is closed properly. The value of egen-error has no meaning
for this message.

20: Egen-collector-missing-param

Returned if this procedure is called without the collector^file^number parameter. The
value of egen-error has no meaning for this message.

21: Egen-collector-already-closed

Returned if the collector is already closed. The value of egen-error has no meaning for
this message.

Complete^egen^operation Return Codes

0: Egen-complete-operation-ok

Returned when the last outstanding operation is terminated properly. The value of
egen-error has no meaning for this message.

30: Egen-complete-missing-param

Returned when one of the collector^file^number or tag or error^detail parameters is
missing. The value of egen-error has no meaning for this message.

31: Egen-complete-operation-error

Returned when the last outstanding operation is terminated with an error or warning.
The value of egen-error will contain the GUARDIAN 90 file system error returned by
the FILEINFO procedure.
EMS FastStart Manual–133701
B-2

EGEN Messages Get^egen^event^text^define Return Codes
Get^egen^event^text^define Return Codes

0: Egen-get-text-define-ok

Returned when the procedure processes the =_EGEN_ADD_EVENT_TEXT Define
properly. The value of egen-error has no meaning for this message.

40: Egen-get-text-definemode-error

Returned when the procedure detects an error with the DEFINEMODE procedure. The
value of egen-error will contain the define error returned by DEFINEMODE.

41: Egen-get-text-defineinfo-error

Returned when the procedure detects an error with the DEFINEINFO procedure. The
value of egen-error will contain the define error returned by DEFINEINFO.

Initialize^event^buffer Return Codes

0: Egen-initialize-event-ok

Returned when the event-buffer is initialized properly. The value of egen-error has no
meaning for this message.

50: Egen-initialize-type-error

Returned when the event-type field of egen-record does not contain a valid event type
(Informative-event, Action-attention-event, Action-completion-event or Critical-event).
The value of egen-error has no meaning for this message.

51: Egen-initialize-event-number

Returned when the event-number field of egen-record does not contain a valid event-
number. The value of egen-error has no meaning for this message.

52: Egen-initialize-emsinit-error

Returned when the EMSINIT procedure detects an error when trying to initialize the
event-buffer. The value of egen-error will contain the SPI error returned from EMSINIT.

53: Egen-initialize-subject-error

Returned when the subject-name field of egen-record does not contain a valid field-
name. The value of egen-error has no meaning for this message.

54: Egen-initialize-flags-error

Returned when the EMSADDTOKENS procedure detects an error when trying to add
variable data fields (tokens) ZEMS^TKN^EMPHASIS or
ZEMS^TKN^SUPPRESS^DISPLAY to the event-buffer. The value of egen-error will
contain the SPI error returned from EMSADDTOKENS.

55: Egen-initialize-action-id
EMS FastStart Manual–133701
B-3

EGEN Messages Write^event^buffer Return Codes
Returned when the event-type is an action-attention-event or an action-completion-event
and the action ADD ID is not initialized properly. The value of egen-error has no
meaning for this message.

56: Egen-initialize-action-error

Returned when the EMSADDTOKENS procedure detects an error when trying to add
action variable data fields (tokens) ZEMS^TKN^ACTION^NEEDED,
ZEMS^TKN^ACTION^ID to the event-buffer. The value of egen-error will contain the
SPI error returned from EMSADDTOKENS.

57: Egen-initialize-text-error

Returned when the EMSADDTOKENS procedure detects an error when trying to add
the text variable data field (token) ZEMS^TKN^TEXT to the event-buffer. The value of
egen-error will contain the SPI error returned from EMSADDTOKENS.

58: Egen-initialize-tokens-error

Returned when the EMSADDTOKENS procedure detects an error when trying to add
the user defined variable data fields (tokens) to the event-buffer. The value of egen-error
will contain the SPI error returned from EMSADDTOKENS.

59: Egen-initialize-ssgettkn-error

Returned when the SSGETTKN procedure detects an error when trying to get the length
of the event-buffer. The value of egen-error will contain the SPI error returned from
EMSADDTOKENS.

Write^event^buffer Return Codes

0: Egen-write-event-ok

Returned when the event is written properly. The value of egen-error has no meaning for
this message.

60: Egen-write-event-warning

Returned when a warning is detected after the write of the event-buffer. The value of
egen-error will contain the GUARDIAN 90 file system error returned by the FILEINFO
procedure.

61: Egen-write-event-error

Returned when an error is detected after the write of the event-buffer. The value of egen-
error will contain the GUARDIAN 90 file system error returned by the FILEINFO
procedure.

EGEN Return Codes

0: Egen-generate-event-ok

Returned when the event is generated properly. The value of egen-error has no meaning
for this message.
EMS FastStart Manual–133701
B-4

EGEN Messages EGEN Return Codes
70: Egen-missing-parameter-error

Returned if this procedure is called without a valid combination of parameters. The
value of egen-error has no meaning for this message.

71: Egen-record-not-initialized

Returned if this procedure is called but the egen-record is not initialized properly. This
can happen if you call EGEN without first calling the Initialize^egen^record procedure.
The value of egen-error has no meaning for this message.
EMS FastStart Manual–133701
B-5

EGEN Messages EGEN Return Codes
EMS FastStart Manual–133701
B-6

C COBOL85 Program Example
This appendix contains the COBOL85 source code file SATMCOB that is located on the
EMS FastStart subvolume after installation:
?HEADING "SATMCOB : COBOL PROGRAM EXAMPLE USING EGEN FOR AN ATM APPLICATION"
?SYMBOLS, INSPECT, SAVEABEND, NOMAP, NOICODE, ERRORS 0
*---
*
* File Type: COBOL85 Source File for the ATM example
* Source File Name: SATMCOB
* Program File Produced: OATMCOB
* Generation Time: October 31, 1989 09:42
* Language Compiler Required: COBOL85
* Compiler Version Required: C20
*
* File Description: This program shows an example of how to use the
* EGEN module within a COBOL85 program. This program will use EGEN in
* mode 2, which is the mode that we recommend for the COBOL85 program.
*--
* How to use this program example: To use this program example you will
* have to generate a set of EMS FastStart files by using the SATMACF
* file provided with the EMS FastStart product. After a successful
* generation, please modify the following statement to point to the
* volume and subvolume where your EMS FastStart generated files are.
*
* 1-?SEARCH <user-subvolume>.<application-prefix>EGEN
*
* 2-COPY egen-record OF "<user-subvolume>.<application-prefix>COB".
* COPY atm-ssid OF "<user-subvolume>.<application-prefix>COB".
* COPY egen-interface-definitions OF
* "<user-subvolume>.<application-prefix>COB".
*
* 3-COPY atm-event-numbers OF "<user-subvolume>.<application-prefix>COB".
* COPY atm-action-id OF "<user-subvolume>.<application-prefix>COB".
* COPY atm-constant-values OF "<user-subvolume>.<application-prefix>COB".
*--
* The ?SEARCH directive tells the compiler to look in the proper object
* file to find the EGEN module and resolve the external references.
*--

?SEARCH atm1egen

?HEADING "SATMCOB VARIABLES DECLARATIONS"
/
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SATMCOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 return-code PIC S9(4).
 01 file-number PIC 9(4) COMP.
 01 user-tag PIC 9(8) COMP.
 01 event-buffer-used PIC 9(4) COMP.
 01 sync-depth PIC 9(4) COMP.
 01 read-count PIC 9(4) COMP.
 01 error-detail PIC 9(4) COMP.

?HEADING "COPY LIBRARIES STATEMENT"
/
*--
*

EMS FastStart Manual–133701
C-1

COBOL85 Program Example
* egen-record & atm-ssid:
* COPY libraries specific to each ACF.
*
* egen-interface-definitions:
* COPY library that is used to interface between user
* application and Egen.
*
* atm-event-numbers, atm-action-id & atm-constant-values:
* COPY libraries that are defined by the application
* programmer and sourced by the compilation of the
* main DDL.
*--

 COPY egen-record OF "atm1cob".
 COPY atm-ssid OF "atm1cob".
 COPY egen-interface-definitions OF "atm1cob".

 COPY atm-event-numbers OF "atm1cob".
 COPY atm-action-id OF "atm1cob".
 COPY atm-constant-values OF "atm1cob".

?HEADING "START-OF-PROGRAM SECTION"
/
 PROCEDURE DIVISION.

 100-main.

 PERFORM 205-open-collector.
 PERFORM 210-atm-up.
 PERFORM 215-atm-back-online.
 PERFORM 220-atm-acct-insuf-funds.
 PERFORM 230-atm-low-on-cash.
 PERFORM 240-atm-down.
 PERFORM 250-atm-security.
 PERFORM 260-atm-hardware.
 PERFORM 365-close-collector.

 STOP RUN.

?HEADING "205-OPEN-COLLECTOR SECTION"
/
 205-open-collector.

 MOVE ZERO TO file-number.
 ENTER TAL "Open^egen^collector" USING file-number, omitted, error-detail
 GIVING return-code.
 IF return-code IS NOT EQUAL TO ZERO
 PERFORM 400-validate-return-code.

?HEADING "210-ATM-UP SECTION"
/
 210-atm-up.
*--
* EVENT # 1: ATM IS UP:
*
* The fields within the egen-record which are used for event # 1:
*
* event-type PIC S9(4).
* event-number NATIVE-2.
* atm-name PIC X(8).
* atm-location PIC X(24).
*--

 PERFORM 300-initialize-egen-record.
EMS FastStart Manual–133701
C-2

COBOL85 Program Example

 MOVE INFORMATIVE-EVENT TO event-type OF egen-record.
 MOVE ATM-EVT-UP TO event-number OF egen-record.
 MOVE "SFMAIN01" TO atm-name OF egen-record.
 MOVE "atm-name" TO subject-field-name OF egen-record.
 MOVE "245 A St., San Francisco" TO atm-location OF egen-record.

 ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.
 IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.

?HEADING "215-ATM-BACK-ONLINE SECTION"
/
 215-atm-back-online.
*--
* EVENT # 3: ATM IS BACK ONLINE.
*
* The fields within the egen-record which are used for event # 3:
*
* event-type PIC S9(4).
* event-number NATIVE-2.
* atm-name PIC X(8).
* atm-location PIC X(24).
*--

 PERFORM 300-initialize-egen-record.

 MOVE ACTION-COMPLETION-EVENT TO event-type OF egen-record.
 MOVE ATM-ACTION-ID-1 TO action-id OF egen-record.
 MOVE ATM-EVT-BACK-ONLINE TO event-number OF egen-record.
 MOVE ATM-VAL-TRUE TO suppress-display OF egen-record.
 MOVE "SFMAIN02" TO atm-name OF egen-record.
 MOVE "atm-name" TO subject-field-name OF egen-record.
 MOVE "245 A St., San Francisco" TO atm-location OF egen-record.

 ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.
 IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.

?HEADING "220-ATM-ACCT-INSUF-FUNDS SECTION"
/
 220-atm-acct-insuf-funds.
*--
* EVENT # 2: ATM INSUFFICIENT FUNDS IN USER ACCOUNT.
*
* The fields within the egen-record which are used for event # 2:
*
* event-type PIC S9(4).
* event-number NATIVE-2.
* atm-name PIC X(8).
* atm-location PIC X(24).
* atm-account-num NATIVE-4.
*--

 PERFORM 300-initialize-egen-record.

 MOVE INFORMATIVE-EVENT TO event-type OF egen-record.
 MOVE ATM-EVT-ACCT-INSUF-FUNDS TO event-number OF egen-record.
 MOVE "OAKWEST1" TO atm-name OF egen-record.
 MOVE "atm-name" TO subject-field-name OF egen-record.
 MOVE "245 Oak St., Oakland" TO atm-location OF egen-record.
 MOVE 34503933 TO atm-account-num OF egen-record.
EMS FastStart Manual–133701
C-3

COBOL85 Program Example

 ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.
 IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.

?HEADING "230-ATM-LOW-ON-CASH SECTION"
/
 230-atm-low-on-cash.
*--
* EVENT # 100: ATM IS LOW ON CASH.
*
* The fields within the egen-record which are used for event # 100:
*
* event-type PIC S9(4).
* event-number NATIVE-2.
* atm-name PIC X(8).
* atm-location PIC X(24).
*--

 PERFORM 300-initialize-egen-record.

 MOVE ACTION-ATTENTION-EVENT TO event-type OF egen-record.
 MOVE ATM-ACTION-ID-1 TO action-id OF egen-record.
 MOVE ATM-EVT-LOW-ON-CASH TO event-number OF egen-record.
 MOVE "SFMAIN02" TO atm-name OF egen-record.
 MOVE "atm-name" TO subject-field-name OF egen-record.
 MOVE "245 A St., San Francisco" TO atm-location OF egen-record.

 ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.
 IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.

?HEADING "240-ATM-DOWN SECTION"
/
 240-atm-down.
*--
* EVENT # 200: ATM IS DOWN.
*
* the fields within the egen-record which are used for event # 200:
*
* event-type PIC S9(4).
* event-number NATIVE-2.
* atm-name PIC X(8).
* atm-location PIC X(24).
*--
 PERFORM 300-initialize-egen-record.
 MOVE CRITICAL-EVENT TO event-type OF egen-record.
 MOVE ATM-EVT-DOWN TO event-number OF egen-record.
 MOVE "LACENT99" TO atm-name OF egen-record.
 MOVE "atm-name" TO subject-field-name OF egen-record.
 MOVE "320 Main St. Los Angeles" TO atm-location OF egen-record.

 ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.
 IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.

?HEADING "250-ATM-SECURITY SECTION"
/
 250-atm-security.
*--
EMS FastStart Manual–133701
C-4

COBOL85 Program Example
* EVENT # 201 ATM SECURITY BREACH.
*
* The fields within the egen-record which are used for event # 201:
*
* event-type PIC S9(4).
* event-number NATIVE-2.
* atm-name PIC X(8).
* atm-location PIC X(24).
* atm-account-num NATIVE-4.
* atm-retry-limit NATIVE-2.
*--

 PERFORM 300-initialize-egen-record.

 MOVE CRITICAL-EVENT TO event-type OF egen-record.
 MOVE ATM-EVT-SECURITY-BREACH TO event-number OF egen-record.
 MOVE "SACTO02" TO atm-name OF egen-record.
 MOVE "atm-name" TO subject-field-name OF egen-record.
 MOVE "230 State St. Sacramento" TO atm-location OF egen-record.
 MOVE 23457320 TO atm-account-num OF egen-record.
 MOVE 3 TO atm-retry-limit OF egen-record.

 ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.

 IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.

?HEADING "260-ATM-HARDWARE SECTION"
/
 260-atm-hardware.
*--
* EVENT # 202: ATM-HARDWARE FAILURE EVENT.
*
* The fields within the egen-record which are used for event # 202:
*
* event-type PIC S9(4).
* event-number NATIVE-2.
* atm-name PIC X(8).
* atm-location PIC X(24).
* atm-hardware-component PIC X(24).
* atm-hardware-subcomponent PIC X(24).
* atm-serial-number NATIVE-4.
* atm-sense-status NATIVE-4.
*--

 PERFORM 300-initialize-egen-record.

 MOVE CRITICAL-EVENT TO event-type OF egen-record.
 MOVE ATM-EVT-HW-FAILURE TO event-number OF egen-record.
 MOVE "LACENT99" TO atm-name OF egen-record.
 MOVE "atm-name" TO subject-field-name OF egen-record.
 MOVE "125 8th Ave. Los Angeles" TO atm-location OF egen-record.
 MOVE "Cash Dispenser" TO atm-hw-component OF egen-record.
 MOVE "321561ac" TO atm-hw-subcomponent OF egen-record.
 MOVE 231234093 TO atm-serial-number OF egen-record.
 MOVE 0101110101 TO atm-sense-status OF egen-record.

 ENTER TAL "Egen" USING egen-record, file-number
 GIVING return-code.

 IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.
EMS FastStart Manual–133701
C-5

COBOL85 Program Example
?HEADING "300-INITIALIZE-EGEN-RECORD SECTION"
/
 300-initialize-egen-record.
*--
* This section will initialize the egen-record by calling the
* Initialize^egen^record procedure. This procedure is included in the
* Egen object file and sourced with the ?SEARCH compiler directive.
*
* Initialize^egen^record will move spaces to character fields and
* high values to all fields in egen-record. The following is a list
* of high values used to initialize non-character fields.
*
* LITERAL EMSFS^DEFAULT^INT = 32767;
* LITERAL EMSFS^DEFAULT^INT2 = 2147483647D;
* LITERAL EMSFS^DEFAULT^INT4 = 92233720368545775807F;
* LITERAL EMSFS^DEFAULT^TRANSID = 9223372036854775807;
* LITERAL EMSFS^DEFAULT^TIMESTAMP = 9223372036854775807;
* LITERAL EMSFS^DEFAULT^UINT = %177777;
* LITERAL EMSFS^DEFAULT^ENUM = 32767;
*
* After the egen-record is initialized, we will move the application
* ssid to the specific fields in this record.
*--

 ENTER TAL "Initialize^egen^record" USING egen-record GIVING return-code.

 IF return-code IS NOT EQUAL TO ZERO
 PERFORM 400-validate-return-code.

 MOVE ZERO TO return-code.
 MOVE ATM-VAL-OWNER TO ssid-owner OF egen-record.
 MOVE ATM-SSN-NUMBER TO ssid-subsystem-number OF egen-record.
 MOVE ATM-VAL-VERSION TO ssid-version OF egen-record.

?HEADING "365-CLOSE-COLLECTOR SECTION"
/
 365-close-collector.

 ENTER TAL "Close^egen^collector" USING file-number
 GIVING return-code.

 IF return-code NOT = ZERO
 PERFORM 400-validate-return-code.

?HEADING "400-VALIDATE-RETURN-CODE SECTION"
/
 400-validate-return-code.

 IF return-code = EGEN-GENERATE-EVENT-OK
 DISPLAY "Egen generated the event message successfully"
 ELSE
 IF return-code = EGEN-INITIALIZE-MISSING-PARAM
 DISPLAY "Egen Error: ** Egen-initialize-missing-param, error #1 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-OPEN-MISSING-PARAM
 DISPLAY "Egen Error: ** Egen-open-missing-param, error #10 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-OPEN-INVALID-SYNC-DEPTH
 DISPLAY "Egen Error: ** Egen-open-invalid-sync-depth, error #11 **"
EMS FastStart Manual–133701
C-6

COBOL85 Program Example
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-OPEN-COLLECTOR-ERROR
 DISPLAY "Egen Error: ** Egen-open-collector-error, error #12 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-OPEN-COLLECTOR-WARNING
 DISPLAY "Egen Error: ** Egen-open-collector-warning, error #13 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-COLLECTOR-MISSING-PARAM
 DISPLAY "Egen Error: ** Egen-collector-missing-param, error #20 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-COLLECTOR-ALREADY-CLOSED
 DISPLAY "Egen Error: ** Egen-collector-already-closed, error #21 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-COMPLETE-MISSING-PARAM
 DISPLAY "Egen Error: ** Egen-complete-missing-param, error #30 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-COMPLETE-OPERATION-ERROR
 DISPLAY "Egen Error: ** Egen-complete-operation-error, error #31 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-GET-TEXT-DEFINEMODE-ERROR
 DISPLAY "Egen Error: ** Egen-get-text-definemode-error, error #40 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-GET-TEXT-DEFINEINFO-ERROR
 DISPLAY "Egen Error: ** Egen-get-text-defineinfo-error, error #41 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-INITIALIZE-TYPE-ERROR
 DISPLAY "Egen Error: ** Egen-initialize-type-error, error #50 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-INITIALIZE-EVENT-NUMBER
 DISPLAY "Egen Error: ** Egen-initialize-event-number, error #51 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-INITIALIZE-EMSINIT-ERROR
 DISPLAY "Egen Error: ** Egen-initialize-emsinit-error, error #52 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-INITIALIZE-SUBJECT-ERROR
 DISPLAY "Egen Error: ** Egen-initialize-subject-error, error #53 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-INITIALIZE-FLAGS-ERROR
 DISPLAY "Egen Error: ** Egen-initialize-flags-error, error #54 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
EMS FastStart Manual–133701
C-7

COBOL85 Program Example
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-INITIALIZE-ACTION-ID
 DISPLAY "Egen Error: ** Egen-initialize-action-id, error #55 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-INITIALIZE-ACTION-ERROR
 DISPLAY "Egen Error: ** Egen-initialize-action-error, error #56 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-INITIALIZE-TEXT-ERROR
 DISPLAY "Egen Error: ** Egen-initialize-text-error, error #57 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-INITIALIZE-TOKENS-ERROR
 DISPLAY "Egen Error: ** Egen-initialize-tokens-error, error #58 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-INITIALIZE-SSGETTKN-ERROR
 DISPLAY "Egen Error: ** Egen-initialize-ssgettkn-error, error #59 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-WRITE-EVENT-WARNING
 DISPLAY "Egen Error: ** Egen-write-event-warning, error #60 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-WRITE-EVENT-ERROR
 DISPLAY "Egen Error: ** Egen-write-event-error, error #61 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-MISSING-PARAMETER-ERROR
 DISPLAY "Egen Error: ** Egen-missing-parameter-error, error #70 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF return-code = EGEN-RECORD-NOT-INITIALIZED
 DISPLAY "Egen Error: ** Egen-record-not-intialized, error #71 **"
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record
 ELSE
 IF (return-code < EGEN-GENERATE-EVENT-OK) OR
 (return-code > EGEN-RECORD-NOT-INITIALIZED)
 DISPLAY "Egen Error: ** Invalid return code, error # " WITH NO ADVANCING
 DISPLAY return-code
 DISPLAY "Error Detail: " WITH NO ADVANCING
 DISPLAY egen-error OF egen-record.

END-PROGRAM.
EMS FastStart Manual–133701
C-8

D
DDL, Copy Libraries and Templates
Example

This appendix contains the ATM DDL source file (ATM Example, EVENT
DEFINITION SOURCE FILE: SATMDDL), the ATM COBOL85 copylib (ATM
Example, COBOL85 COPYLIB: ATM1COB), and the ATM Template Source file (ATM
Example, DSM Templates Services Source File: SATMTMPL).

The first source file for ATM DDL event is SATMDDL and is provided on the
distribution subvolume. You can modify the ATM DDL event source as necessary to
meet the needs of your application. This file contains the description of all the events
needed by the ATM example. It will be sourced during the compilation of the main
DDL. You specify the location of this file with the USER-DDL-LOCATION key word
parameter in the ACF.

The second source file for ATM COBOL85 copylib is ATM1COB, which will be located
on your USER-SUBVOL subvolume after the generation process of EMS FastStart. This
file contains all the definitions about EGEN and at the end the definitions for events
from the file SATMDDL. The definitions in this file will be needed to compile a
template file.

The last source file is the template source file for the ATM example, SATMTMPL which
can be used with the DSM Templates Services to create a template file for the ATM
application. Please note that to compile this file and generate the object template file,
you need to keep the dictionary on the USER-SUBVOL by specifying the parameter of
the SAVE-DDL-DICTIONARY to YES.

ATM Example, EVENT DEFINITION SOURCE
FILE: SATMDDL

This is a new file.
?PAGE "EMS FastStart - T9263C20 - (17MAR91) - Atm DDL schema source file"
*---
*
* EMS FastStart - T9263C20 - (17MAR91)
*
* File Type: DDL Event Definition Source Schema
*
* Source File Name: SATMDDL
*
* Source Library File Produced: Sourced during the compilation of
* the main DDL.
*
* Generation Time: December 17, 1990
*
* Language Compiler Required: Data Definition Language (DDL)
*
* Compiler Version Required: C20
*
*

EMS FastStart Manual–133701
D-1

DDL, Copy Libraries and Templates Example ATM Example, EVENT DEFINITION SOURCE FILE:
SATMDDL
* File Description: This DDL source schema file is an example of DDL
* definitions which are used by the ATM example provided with EMS
* FastStart. These definitions will ease the documentation and the
* maintenance of an EGEN based application.
*
*--

?SETSECTION Atm-event-numbers
*--
*
* Each event message generated by an application will be identified
* by a unique number called the event message number. This section
* presents an example of a typical implementation.
*
* Event Numbers Usage Description
*
* 0 - 99 Informative Events
* 100 - 199 Action Events
* 200 - 499 Critical Events
* 500 - 999 Reserved for future enhancement
*
*--

*--
*
* INFORMATIVE EVENTS DESCRIPTION:
*
* These event message numbers describe the current set of INFORMATIVE
* EVENTS supported by this application. For each event generated by a
* Atm application, the programmer should select one of the following
* event message numbers and move it into the EVENT-NUMBER field of
* EGEN-RECORD.
*
*--

CONSTANT Atm-evt-up VALUE IS 1.
CONSTANT Atm-evt-acct-insuf-funds VALUE IS 2.
CONSTANT Atm-evt-back-online VALUE IS 3.

*--
*
* ACTION EVENTS DESCRIPTION:
*
* These event message numbers describe the current set of ACTION
* EVENTS supported by this application. For each event generated by a
* Atm application, the programmer should select one of the following
* event message numbers and move it into the EVENT-NUMBER field of
* EGEN-RECORD.
*
*--

CONSTANT Atm-evt-low-on-cash VALUE IS 100.

*--
*
* CRITICAL EVENTS DESCRIPTION:
*
* These event message numbers describe the current set of CRITICAL
* EVENTS supported by this application. For each event generated by a
* Atm application, the programmer should select one of the following
* event message numbers and move it into the EVENT-NUMBER field of
* EGEN-RECORD.
*
*--

CONSTANT Atm-evt-down VALUE IS 200.
EMS FastStart Manual–133701
D-2

DDL, Copy Libraries and Templates Example ATM Example, COBOL85 COPYLIB: ATM1COB
CONSTANT Atm-evt-security-breach VALUE IS 201.
CONSTANT Atm-evt-hw-failure VALUE IS 202.
?SETSECTION Atm-action-id
*--
*
* ACTION EVENT IDENTIFIER DESCRIPTION:
*
* There is an action identifier associated with each action event
* message. This Action ID is used by VIEWPOINT to match an
* action-attention event message with the corresponding
* action-completion event message.
*
*--

CONSTANT Atm-action-id-1 VALUE IS 1.
CONSTANT Atm-action-id-2 VALUE IS 2.
CONSTANT Atm-action-id-3 VALUE IS 3.
CONSTANT Atm-action-id-4 VALUE IS 4.
CONSTANT Atm-action-id-5 VALUE IS 5.

?SETSECTION Atm-constant-values
*--
*
* CONSTANT VALUE IDENTIFIER DESCRIPTION:
*
* These are constants that can be used globally in the ATM subsystem.
*
*--
CONSTANT Atm-val-false VALUE IS 0.
CONSTANT Atm-val-true VALUE IS 1.

ATM Example, COBOL85 COPYLIB: ATM1COB
*---
*
* EMS FastStart - T9263C20 - (17MAR91)
*
* DDL Source Library File, Language Dependant
*
* Produced by the DDL compilation of ATM1DDLS
*
* Generation Time: January 18, 1991 13:58:07
*
*--
?SECTION ZSPI-DDL-CHAR254,TANDEM
*---
* Source EXTRADDL source schema file for user defined SPI data types.
*---
*
* EMS FastStart - T9263C20 - (17MAR91)
*
* File Type: DDL Source Schema
*
* Source File Name: Extraddl
*
* Generation Time: July 7, 1988
*
* Language Compiler Required: Data Definition Language (DDL)
*
* Compiler Version Required: C20
*
* Source Library File Produced: None, see below.
*
*

EMS FastStart Manual–133701
D-3

DDL, Copy Libraries and Templates Example ATM Example, COBOL85 COPYLIB: ATM1COB
* File Description: This DDL source schema file is an example of DDL
* definitions which may me added to the base ZSPIDDL definitions
* provided by Tandem. These definitions can then be used by
* EMS FastStart and EGEN to create tokens of specific types.
*
* Modifications Summary: Date of Modification
*
* 1- Added the Zspi-ddl-char254 token. Used by 21 October, 1988
* EGEN to generate an event message with a
* ZEMS-TKN-TEXT of up to 254 bytes.
* N.B. 254 is the maximum bytes length for a
* fixed token code.
*
*--
 01 ZSPI-DDL-CHAR254.
 02 Z-C PIC X(254).
 02 Z-S REDEFINES Z-C.
 03 Z-I NATIVE-2
 OCCURS 127 TIMES.
 02 Z-B REDEFINES Z-C PIC X
 OCCURS 254 TIMES.
?SECTION ZSPI-TYP-CHAR254,TANDEM
 01 ZSPI-TYP-CHAR254 NATIVE-2 VALUE IS 510.
?Section ATM-SSID,Tandem
*--
*
* ATM SSID is defined here and will be passed to the EGEN
* procedure to identify the owner of the event. The SSID definition
* will also be used by EMF to compile the FILTER example.
*
* Description Value
* ----------- -----
*
* ATM-VAL-OWNER: CUSTOMER
*
* ATM-SSN-NUMBER: 1
*
* ATM-VAL-VERSION: J00
*
*--
*
*
*
 01 ATM-VAL-OWNER PIC X(8), VALUE IS "CUSTOMER".
 01 ATM-SSN-NUMBER NATIVE-2 VALUE IS 1.
 01 ATM-VAL-VERSION NATIVE-2 VALUE IS 18944.
*
*
*
 01 ATM-VAL-SSID.
 02 Z-FILLER PIC X(8)
 VALUE "CUSTOMER".
 02 Z-OWNER REDEFINES Z-FILLER.
 03 Z-C PIC X(8).
 03 Z-S REDEFINES Z-C.
 04 Z-I NATIVE-2
 OCCURS 4 TIMES.
 03 Z-B REDEFINES Z-C PIC X
 OCCURS 8 TIMES.
 02 Z-NUMBER NATIVE-2
 VALUE 1.
 02 Z-VERSION NATIVE-2
 VALUE 18944.
?Section EGEN-RECORD,Tandem
 01 EGEN-RECORD.
 02 ACF-VERSION NATIVE-2.
EMS FastStart Manual–133701
D-4

DDL, Copy Libraries and Templates Example ATM Example, COBOL85 COPYLIB: ATM1COB
 02 SSID-OWNER.
 03 Z-C PIC X(8).
 03 Z-S REDEFINES Z-C.
 04 Z-I NATIVE-2
 OCCURS 4 TIMES.
 03 Z-B REDEFINES Z-C PIC X
 OCCURS 8 TIMES.
 02 SSID-SUBSYSTEM-NUMBER NATIVE-2.
 02 SSID-VERSION NATIVE-2.
 02 EGEN-ERROR NATIVE-2.
 02 EVENT-TYPE PIC S9(4) COMP.
 02 EVENT-NUMBER NATIVE-2.
 02 ACTION-ID NATIVE-2.
 02 SUPPRESS-DISPLAY PIC X(2).
 02 SUBSYSTEM-MANAGER.
 03 Z-SYSNAME.
 04 Z-C PIC X(8).
 04 Z-S REDEFINES Z-C.
 05 Z-I NATIVE-2
 OCCURS 4 TIMES.
 04 Z-B REDEFINES Z-C PIC X
 OCCURS 8 TIMES.
 03 Z-LOCALNAME.
 04 Z-DISC.
 05 Z-VOLUME.
 06 Z-C PIC X(8).
 06 Z-S REDEFINES Z-C.
 07 Z-I NATIVE-2
 OCCURS 4 TIMES.
 06 Z-B REDEFINES Z-C PIC X
 OCCURS 8 TIMES.
 05 Z-SUBVOLUME.
 06 Z-C PIC X(8).
 06 Z-S REDEFINES Z-C.
 07 Z-I NATIVE-2
 OCCURS 4 TIMES.
 06 Z-B REDEFINES Z-C PIC X
 OCCURS 8 TIMES.
 05 Z-FILENAME.
 06 Z-C PIC X(8).
 06 Z-S REDEFINES Z-C.
 07 Z-I NATIVE-2
 OCCURS 4 TIMES.
 06 Z-B REDEFINES Z-C PIC X
 OCCURS 8 TIMES.
 04 Z-PROCESS REDEFINES Z-DISC.
 05 Z-CRTPID.
 06 Z-PROCNAME.
 07 Z-C PIC X(6).
 07 Z-S REDEFINES Z-C.
 08 Z-I NATIVE-2
 OCCURS 3 TIMES.
 07 Z-B REDEFINES Z-C PIC X
 OCCURS 6 TIMES.
 06 Z-CRT REDEFINES Z-PROCNAME NATIVE-2
 OCCURS 3 TIMES.
 06 Z-PID.
 07 Z-CPU PIC X(1).
 07 Z-PIN PIC X(1).
 06 Z-CPUPIN REDEFINES Z-PID NATIVE-2.
 05 Z-QUAL1.
 06 Z-C PIC X(8).
 06 Z-S REDEFINES Z-C.
 07 Z-I NATIVE-2
 OCCURS 4 TIMES.
 06 Z-B REDEFINES Z-C PIC X
EMS FastStart Manual–133701
D-5

DDL, Copy Libraries and Templates Example ATM Example, COBOL85 COPYLIB: ATM1COB
 OCCURS 8 TIMES.
 05 Z-QUAL2.
 06 Z-C PIC X(8).
 06 Z-S REDEFINES Z-C.
 07 Z-I NATIVE-2
 OCCURS 4 TIMES.
 06 Z-B REDEFINES Z-C PIC X
 OCCURS 8 TIMES.
 04 Z-DEVICE REDEFINES Z-DISC.
 05 Z-DEVNAME.
 06 Z-C PIC X(8).
 06 Z-S REDEFINES Z-C.
 07 Z-I NATIVE-2
 OCCURS 4 TIMES.
 06 Z-B REDEFINES Z-C PIC X
 OCCURS 8 TIMES.
 05 Z-SUBDEVNAME.
 06 Z-C PIC X(8).
 06 Z-S REDEFINES Z-C.
 07 Z-I NATIVE-2
 OCCURS 4 TIMES.
 06 Z-B REDEFINES Z-C PIC X
 OCCURS 8 TIMES.
 05 Z-FILLER PIC X(8).
 02 EVENT-TEXT.
 03 Z-C PIC X(254).
 03 Z-S REDEFINES Z-C.
 04 Z-I NATIVE-2
 OCCURS 127 TIMES.
 03 Z-B REDEFINES Z-C PIC X
 OCCURS 254 TIMES.
 02 SUBJECT-FIELD-NAME.
 03 Z-C PIC X(24).
 03 Z-S REDEFINES Z-C.
 04 Z-I NATIVE-2
 OCCURS 12 TIMES.
 03 Z-B REDEFINES Z-C PIC X
 OCCURS 24 TIMES.
 02 ATM-NAME.
 03 Z-C PIC X(8).
 03 Z-S REDEFINES Z-C.
 04 Z-I NATIVE-2
 OCCURS 4 TIMES.
 03 Z-B REDEFINES Z-C PIC X
 OCCURS 8 TIMES.
 02 ATM-LOCATION.
 03 Z-C PIC X(24).
 03 Z-S REDEFINES Z-C.
 04 Z-I NATIVE-2
 OCCURS 12 TIMES.
 03 Z-B REDEFINES Z-C PIC X
 OCCURS 24 TIMES.
 02 ATM-ACCOUNT-NUM NATIVE-4.
 02 ATM-RETRY-LIMIT NATIVE-2.
 02 ATM-HW-COMPONENT.
 03 Z-C PIC X(24).
 03 Z-S REDEFINES Z-C.
 04 Z-I NATIVE-2
 OCCURS 12 TIMES.
 03 Z-B REDEFINES Z-C PIC X
 OCCURS 24 TIMES.
 02 ATM-HW-SUBCOMPONENT.
 03 Z-C PIC X(24).
 03 Z-S REDEFINES Z-C.
 04 Z-I NATIVE-2
 OCCURS 12 TIMES.
EMS FastStart Manual–133701
D-6

DDL, Copy Libraries and Templates Example ATM Example, COBOL85 COPYLIB: ATM1COB
 03 Z-B REDEFINES Z-C PIC X
 OCCURS 24 TIMES.
 02 ATM-SERIAL-NUMBER NATIVE-4.
 02 ATM-SENSE-STATUS NATIVE-4.
?Section EGEN-INTERFACE-DEFINITIONS,Tandem
*---
* EGEN module interface variables definitions.
*---
*
* Used to define the EVENT-TYPE field of EGEN-RECORD.
*
 01 INFORMATIVE-EVENT NATIVE-2 VALUE IS 1.
 01 ACTION-ATTENTION-EVENT NATIVE-2 VALUE IS 2.
 01 ACTION-COMPLETION-EVENT NATIVE-2 VALUE IS 3.
 01 CRITICAL-EVENT NATIVE-2 VALUE IS 4.
 01 ACF-VERSION NATIVE-2 VALUE IS 16896.
*
*
*---
* When the EGEN module is invoked, it will return a status variable,
* called Return-code, to the calling program. Please note that this
* return code does not correspond to a file system error, the field
* egen-error of egen-record will contains more information. This
* table lists the possible values returned by EGEN.
*
* Return-Code Description
*
* 0 EGEN successfully generated the event message
*
* 1 The Initialize^egen^record procedure detected that
* there was no parameter passed to this procedure.
*
* 10-13 The Open^egen^collector procedure detected an error
* when opening the collector. The Egen-error field
* of Egen-record contains detailed information.
*
* 20-21 The Close^egen^collector procedure detected an error
* when closing the collector. The Egen-error field
* of Egen-record contains detailed information.
*
* 30-31 The Complete^egen^operation procedure detected an error
* when completing the write operation. The Egen-error field
* of Egen-record contains detailed information.
*
* 40-41 The Get^egen^event^text^define procedure detected an error
* when processing the =_EGEN_ADD_EVENT_TEXT define. The
* Egen-error field of Egen-record contains detailed
* information.
*
* 50-59 The Initialize^event^buffer procedure detected an error
* when initializing the event buffer. The Egen-error field
* of Egen-record contains detailed information.
*
* 60-61 The Write^event^buffer procedure detected an error or a
* warning when writing the event buffer. The Egen-error field
* of Egen-record contains detailed information.
*
* 70 The Egen procedure detected that a required parameter
* was not passed or that the combination of parameters was
* not valid.
*
* 71 The Egen procedure detected that the Egen-record was not
* initialized by the Initialize^egen^record procedure
* before calling Egen.
*
*---
EMS FastStart Manual–133701
D-7

DDL, Copy Libraries and Templates Example ATM Example, COBOL85 COPYLIB: ATM1COB
*
* Constants and returns code used by the Initialize^egen^record procedure
*
 01 EGEN-INITIALIZE-RECORD-OK NATIVE-2 VALUE IS 0.
 01 EGEN-INITIALIZE-MISSING-PARAM NATIVE-2 VALUE IS 1.
*
* Constants and returns code used by the Open^egen^collector procedure
*
 01 EGEN-OPEN-COLLECTOR-OK NATIVE-2 VALUE IS 0.
 01 EGEN-OPEN-MISSING-PARAM NATIVE-2 VALUE IS 10.
 01 EGEN-OPEN-INVALID-SYNC-DEPTH NATIVE-2 VALUE IS 11.
 01 EGEN-OPEN-COLLECTOR-ERROR NATIVE-2 VALUE IS 12.
 01 EGEN-OPEN-COLLECTOR-WARNING NATIVE-2 VALUE IS 13.
*
* Constants and returns code used by the Close^egen^collector procedure
*
 01 EGEN-COLLECTOR-CLOSED-OK NATIVE-2 VALUE IS 0.
 01 EGEN-COLLECTOR-MISSING-PARAM NATIVE-2 VALUE IS 20.
 01 EGEN-COLLECTOR-ALREADY-CLOSED NATIVE-2 VALUE IS 21.
*
* Constants and returns code used by the Complete^egen^operation procedure
*
 01 EGEN-COMPLETE-OPERATION-OK NATIVE-2 VALUE IS 0.
 01 EGEN-COMPLETE-MISSING-PARAM NATIVE-2 VALUE IS 30.
 01 EGEN-COMPLETE-OPERATION-ERROR NATIVE-2 VALUE IS 31.
*
* Constants and returns code used by the Get^egen^event^text^define procedure
*
 01 EGEN-GET-TEXT-DEFINE-OK NATIVE-2 VALUE IS 0.
 01 EGEN-GET-TEXT-DEFINEMODE-ERROR NATIVE-2 VALUE IS 40.
 01 EGEN-GET-TEXT-DEFINEINFO-ERROR NATIVE-2 VALUE IS 41.
*
* Constants and returns code used by the Initialize^event^buffer procedure
*
 01 EGEN-INITIALIZE-EVENT-OK NATIVE-2 VALUE IS 0.
 01 EGEN-INITIALIZE-TYPE-ERROR NATIVE-2 VALUE IS 50.
 01 EGEN-INITIALIZE-EVENT-NUMBER NATIVE-2 VALUE IS 51.
 01 EGEN-INITIALIZE-EMSINIT-ERROR NATIVE-2 VALUE IS 52.
 01 EGEN-INITIALIZE-SUBJECT-ERROR NATIVE-2 VALUE IS 53.
 01 EGEN-INITIALIZE-FLAGS-ERROR NATIVE-2 VALUE IS 54.
 01 EGEN-INITIALIZE-ACTION-ID NATIVE-2 VALUE IS 55.
 01 EGEN-INITIALIZE-ACTION-ERROR NATIVE-2 VALUE IS 56.
 01 EGEN-INITIALIZE-TEXT-ERROR NATIVE-2 VALUE IS 57.
 01 EGEN-INITIALIZE-TOKENS-ERROR NATIVE-2 VALUE IS 58.
 01 EGEN-INITIALIZE-SSGETTKN-ERROR NATIVE-2 VALUE IS 59.
*
* Constants and returns code used by the Write^event^buffer procedure
*
 01 EGEN-WRITE-EVENT-OK NATIVE-2 VALUE IS 0.
 01 EGEN-WRITE-EVENT-WARNING NATIVE-2 VALUE IS 60.
 01 EGEN-WRITE-EVENT-ERROR NATIVE-2 VALUE IS 61.
*
* Constants and returns code used by the Egen procedure
*
 01 EGEN-GENERATE-EVENT-OK NATIVE-2 VALUE IS 0.
 01 EGEN-MISSING-PARAMETER-ERROR NATIVE-2 VALUE IS 70.
 01 EGEN-RECORD-NOT-INITIALIZED NATIVE-2 VALUE IS 71.
?Section ATM-EVENT-NUMBERS,Tandem
*---
* If a file was specified in the USER-DDL-FILE of the ACF, we will
* source it here. We also add these definitions in the COBOL
* definition file to be used by COBOL programs.
*---
*---
*
* EMS FastStart - T9263C20 - (17MAR91)
EMS FastStart Manual–133701
D-8

DDL, Copy Libraries and Templates Example ATM Example, COBOL85 COPYLIB: ATM1COB
*
* File Type: DDL Source Schema
*
* Source File Name: SATMDDL
*
* Source Library File Produced: Sourced during the compilation of
* the main DDL.
*
* Generation Time: December 17, 1990
*
* Language Compiler Required: Data Definition Language (DDL)
*
* Compiler Version Required: C20
*
*
*
* File Description: This DDL source schema file is an example of DDL
* definitions which is used by the ATM example provided with EMS
* FastStart. These definitions will ease the documentation and the
* maintenance of an EGEN based application.
*
*--
*--
*
* Each event message generated by an application will be identified
* by a unique number called the event message number. This section
* presents an example of a typical implementation.
*
* Event Numbers Usage Description
*
* 0 - 99 Informative Events
* 100 - 199 Action Events
* 200 - 499 Critical Events
* 500 - 999 Reserved for future enhancement
*
*--
*--
*
* INFORMATIVE EVENTS DESCRIPTION:
*
* These event message numbers describe the current set of INFORMATIVE
* EVENTS supported by this application. For each event generated by a
* Atm application, the programmer should select one of the following
* event message numbers and move it into the EVENT-NUMBER field of
* EGEN-RECORD.
*
*--
 01 ATM-EVT-UP NATIVE-2 VALUE IS 1.
 01 ATM-EVT-ACCT-INSUF-FUNDS NATIVE-2 VALUE IS 2.
 01 ATM-EVT-BACK-ONLINE NATIVE-2 VALUE IS 3.
*--
*
* ACTION EVENTS DESCRIPTION:
*
* These event message numbers describe the current set of ACTION
* EVENTS supported by this application. For each event generated by a
* Atm application, the programmer should select one of the following
* event message numbers and move it into the EVENT-NUMBER field of
* EGEN-RECORD.
*
*--
 01 ATM-EVT-LOW-ON-CASH NATIVE-2 VALUE IS 100.
*--
*
* CRITICAL EVENTS DESCRIPTION:
*

EMS FastStart Manual–133701
D-9

DDL, Copy Libraries and Templates Example ATM Example, DSM Templates Services Source
File: SATMTMPL
* These event message numbers describe the current set of CRITICAL
* EVENTS supported by this application. For each event generated by a
* Atm application, the programmer should select one of the following
* event message numbers and move it into the EVENT-NUMBER field of
* EGEN-RECORD.
*
*--
 01 ATM-EVT-DOWN NATIVE-2 VALUE IS 200.
 01 ATM-EVT-SECURITY-BREACH NATIVE-2 VALUE IS 201.
 01 ATM-EVT-HW-FAILURE NATIVE-2 VALUE IS 202.
?Section ATM-ACTION-ID,Tandem
*--
*
* ACTION EVENT IDENTIFIER DESCRIPTION:
*
* There is an action identifier associated with each action event
* message. This Action ID is used by VIEWPOINT to match an
* action-attention event message with the corresponding
* action-completion event message.
*
*--
 01 ATM-ACTION-ID-1 NATIVE-2 VALUE IS 1.
 01 ATM-ACTION-ID-2 NATIVE-2 VALUE IS 2.
 01 ATM-ACTION-ID-3 NATIVE-2 VALUE IS 3.
 01 ATM-ACTION-ID-4 NATIVE-2 VALUE IS 4.
 01 ATM-ACTION-ID-5 NATIVE-2 VALUE IS 5.
?Section ATM-CONSTANT-VALUES,Tandem
*--
*
* CONSTANT VALUE IDENTIFIER DESCRIPTION:
*
* These are constants that can be used globally in the ATM subsystem.
*
*--
 01 ATM-VAL-FALSE NATIVE-2 VALUE IS 0.
 01 ATM-VAL-TRUE NATIVE-2 VALUE IS 1.

ATM Example, DSM Templates Services Source
File: SATMTMPL

===
== Program Name : EMS FastStart - T9263C20 - (17MAR91)
==
== File State : Production
== File Version : 1
== Generation Time : December 15, 1990 14:50:35
== Source File Name : SATMTMPL
== Object File Name : ZATMTMPL
== Compiler Version : TACL and TEMPL C20
==
== File Description : This file is the input file to the TEMPL
== compiler. It contains the ATM example
== templates.
==
== Program Modifications: Date of Modification
== First release of this file December 15, 1990
===

VERSION: "T9263C20 - (17MAR91)"
SSID: ATM-VAL-SSID
SSNAME: "CUSTOMER"
EMS FastStart Manual–133701
D-10

DDL, Copy Libraries and Templates Example ATM Example, DSM Templates Services Source
File: SATMTMPL
==
== GENERAL FORMATTING TEMPLATES
==

MSG: ZEMS-TKN-EVENTNUMBER, ATM-EVT-UP

 "ATM <1> is up at <2>."

 1: ATM-TKN-ATM-NAME
 2: ATM-TKN-ATM-LOCATION

MSG: ZEMS-TKN-EVENTNUMBER, ATM-EVT-ACCT-INSUF-FUNDS

 "Insufficient funds in account <1>."
 " Access denied on ATM <2>, at <3>."

 1: ATM-TKN-ATM-ACCOUNT-NUM, ZI2
 2: ATM-TKN-ATM-NAME
 3: ATM-TKN-ATM-LOCATION

MSG: ZEMS-TKN-EVENTNUMBER, ATM-EVT-LOW-ON-CASH

 "ATM <1> at <2> is low on funds."

 1: ATM-TKN-ATM-NAME
 2: ATM-TKN-ATM-LOCATION

MSG: ZEMS-TKN-EVENTNUMBER, ATM-EVT-DOWN

 "ATM <1> is down at <2>."

 1: ATM-TKN-ATM-NAME
 2: ATM-TKN-ATM-LOCATION

MSG: ZEMS-TKN-EVENTNUMBER, ATM-EVT-SECURITY-BREACH

 "Security breach on account <1>. Number of accesses "
 "attempted <2>; ATM <3> is down at <4>."

 1: ATM-TKN-ATM-ACCOUNT-NUM, ZI2
 2: ATM-TKN-ATM-RETRY-LIMIT, I
 3: ATM-TKN-ATM-NAME
 4: ATM-TKN-ATM-LOCATION

MSG: ZEMS-TKN-EVENTNUMBER, ATM-EVT-HW-FAILURE

 "Hardware failure on ATM <1> at <2>. Component failed is <3>; "
 "subcomponent is <4>; serial number <5>; sense status <6>."

 1: ATM-TKN-ATM-NAME
 2: ATM-TKN-ATM-LOCATION
 3: ATM-TKN-ATM-HW-COMPONENT
 4: ATM-TKN-ATM-HW-SUBCOMPONENT
 5: ATM-TKN-ATM-SERIAL-NUMBER, ZI2
 6: ATM-TKN-ATM-SENSE-STATUS, ZI2
EMS FastStart Manual–133701
D-11

DDL, Copy Libraries and Templates Example ATM Example, DSM Templates Services Source
File: SATMTMPL
EMS FastStart Manual–133701
D-12

E Filter
This is the program code for the EMS FastStart default filter program ATM1EMFS.

--
-- EMS Fast Start - T9263C20 - (17MAR91)
--
-- File Type: EMF Source file
--
-- Source File Name: $DATA.ATM.ATM1EMFS
--
-- Object File Produced: $DATA.ATM.ATM1EMFO
--
-- Generation Time: November 6, 1989 21:41:40
--
-- Language Compiler Required: Event Management Filter (EMF)
--
-- Compiler Version Required: C20
--
-- File Description: This file contains a filter which passes only
-- event messages generated by a specific subsystem. This filter is
-- compatible with Viewpoint and can be used to select event messages
-- generated by the ATM1PROG program.

--
-- Filter description: This filter will pass only event messages which
-- are generated by the specific subsystem: ATM. It is compatible
-- with VIEWPOINT and can be used to display events generated by the
-- $DATA.ATM.ATM1PROG program.
--
-- Author : Please take ownership.
--
-- Date Created : November 6, 1989 21:41:40
-- Date Last Changed : November 6, 1989 21:41:40
--
-- Source Filter Name: $DATA.ATM.ATM1EMFS
-- Object Filter Name: $DATA.ATM.ATM1EMFO
--
-- Function Keywords:
-- Parameterized: No
-- Distributor Type:
-- Forwarding: No
-- Printing: Yes
-- Consumer: Yes
-- Security: NONO
-- Private: Yes
-- Shareable: No
-- User Group:
-- Help Desk: No
-- Support Center: No
-- Other: Development
-- Mode of Operation:
-- Monitor: No
-- Troubleshooting: No
-- Other: Program Testing
-- Tokens:
-- Emphasis:
-- Action: Pass 1
-- Critical: Pass 2
-- Normal: Pass
-- Scope:
-- 1. Node Name: Pass
-- Node Name = *
EMS FastStart Manual–133701
E-1

Filter
--
-- 2. Subsystem ID: Pass
-- Subsystem ID = ATM^VAL^SSID
--
-- 3. Event Number: Pass
-- Event Number = *
--
-- 4. Token Present: Pass
-- Token Name = *
--
-- 5. Specific Token Value: Pass
-- Token Value = *
-- 6. Text: Pass
-- Text = *
-- 7. Other Pass
-- Other = *
--
--

[#SET ZEMS^VAL^SSID [ZSPI^VAL^TANDEM].[ZSPI^SSN^ZEMS].0]

[#SET ATM^VAL^SSID [ATM^VAL^OWNER].[ATM^SSN^NUMBER].0]

FILTER ATM^DEFAULT^FILTER;

BEGIN SSID (ZEMS^VAL^SSID)

 IF ZSPI^TKN^SSID = SSID (ATM^VAL^SSID) THEN
 BEGIN
 --
 -- fails on suppress^display events which are not
 -- action-completion.
 --
 IF ZEMS^TKN^SUPPRESS^DISPLAY = [ZSPI^VAL^TRUE] THEN
 BEGIN
 IF TOKENPRESENT (ZEMS^TKN^ACTION^NEEDED) AND
 ZEMS^TKN^ACTION^NEEDED = [ZSPI^VAL^FALSE]
 THEN PASS 3
 ELSE FAIL;
 END;
 --
 -- passes action-attention and action-completion events
 --
 IF TOKENPRESENT (ZEMS^TKN^ACTION^NEEDED) THEN PASS 1;
 --
 --
 -- testing for <> false for critical events
 --
 IF ZEMS^TKN^EMPHASIS <> [ZSPI^VAL^FALSE] THEN PASS 2;
 --
 --
 -- all other events from ATM^VAL^SSID are passed
 --
 PASS;
 END
 ELSE FAIL;
END;
EMS FastStart Manual–133701
E-2

Index

A
ACF

defined 4-1
field definitions 4-7
validating parameters 5-4

Action-attention events 2-11
Action-completion events 2-11
Application Configuration File (ACF) 4-1
Application modifications 6-13
Application, compiling 6-20
Assigning event numbers 2-9
Assigning group field numbers 2-13
ATM

COBOL85 copy library D-3
DDL source file D-1
template source file D-10

ATM COBOL85 example 4-10
ATM example, running 5-4
ATM1ACF 5-10
ATM1C 5-10
ATM1COB 5-10, D-3
ATM1DDLS 5-10
ATM1EGEN 5-10
ATM1EGES 5-10
ATM1EMFO 5-10
ATM1EMFS 5-10, E-1
ATM1INDX 5-8, 5-10
ATM1PROG 5-10
ATM1PROS 5-10
ATM1TACL 5-10
ATM1TAL 5-10
ATM1TEST 5-8, 5-10
ATM1UCOB 5-10
ATM1UDDL 5-10
Automatic compilation 5-7

B
Building template file 2-12

C
C language

DDL source files 1-4
Call to initialize^egen^record procedure 4-9
CCF

configurations 3-2
default file 3-3
validating parameters 5-4

CEGNDECS 3-2
Cleaning subvolume 5-6
Close^egen^collector 6-7
COBOL85

DDL source files 1-4
Compilation, automatic 5-7
Compiler access 3-6
Compiler configuration file (CCF) 3-3
Compiling application 6-20
Complete^egen^operation 6-6
Configuring EMS FastStart 3-2
Copy libraries 5-11
Critical events 2-11

D
Data fields, defining 2-6
Data types 2-7, 4-7
DDL 5-11
DDL source files 1-4
Default application configuration file 4-2
Default compiler configuration file
(CCF) 3-3
Defining variable data fields 2-6
Designing events 2-2
Detaching segment file 5-3
EMS FastStart Manual–133701
Index-1

Index E
Determining event subject 2-11
Documents, related xii
DSM Template services 1-5
DSM Template source file D-10

E
EGEN

default values 4-9, 6-11
defined 1-3
detailed description 6-1
files 5-11
interface 1-3
messages B-1
modes and procedures 6-2
operating modes 6-1
parameters 6-7
procedure 6-4

EGENDECS 3-2
EMS FastStart

choosing between it and EMS 1-4
components 5-10
configuring 3-2
features 1-1
filter program E-1
installation 3-1
messages A-1
process 1-2
requirements 1-5
running 5-1
setting up environment 5-2
stopping 5-3

EMS vs. EMS FastStart 1-4
EMSDIST program 7-4
EMSFS 3-2
EMSFSC20 3-2
Environment setting 5-2
Error messages

EGEN B-1
EMS FastStart A-1

Event
assigning group field numbers 2-13
assigning numbers 2-9
building template file 2-12
defined 2-1
defining type 2-11
determining subject 2-11
generation and reporting 2-1
identifying data in messages 2-3
identifying groups of variables 2-4
listing messages 2-2
owner 2-2

Events
designing 2-2

EXTRADDL file 3-2, 4-7

F
Field definitions 4-7
Files

ACF 4-1
ATM1COB D-3
ATM1EMFS E-1
ATM1INDX 5-8
ATM1TEST 5-8
CCF 3-3
compiling 5-7
EXTRADDL 4-7
index 5-12
post-installation 3-2
SATMCOB C-1
SATMDDL D-1
SATMTMPL D-10
security 3-6
segment file 5-3
source file generation 5-6
TACL macro 6-21
user subvolume 5-9

Filter 1-3, 5-12, 7-4
Filter program E-1
EMS FastStart Manual–133701
Index-2

Index G
Filtering on tokens 7-4

G
GENERATE command 5-1
Global program modifications 6-14
Group field numbers 2-13

I
Identifying data in messages 2-3
Identifying groups of variables 2-4
Index file 5-12
Informative events 2-11
Initialize^egen^record 4-9, 6-2
Installing EMS FastStart 3-1

L
Listing event messages 2-2

M
Manuals, related xii
Messages

EGEN B-1
EMS FastStart A-1

Modifying application 6-13

O
Open^egen^collector 6-3

P
Parameter validation 5-4
Parameters, EGEN 6-7
Post-installation files 3-2
Printing distributor 7-4
Procedures

Close^egen^collector 6-7
Complete^egen^operation 6-6
EGEN 6-4
Initialize^egen^record 6-2

Open^egen^collector 6-3
return codes B-1

Procedures for EGEN mode 6-2
Procedure, Initialize^egen^record 4-9
Program modifications 6-14
Program requirements 1-5

R
Related documents xii
Requirements 1-5
Return codes B-1
Running EMS FastStart 5-1

S
SATMACF 3-2
SATMC 3-2
SATMCOB 3-2, C-1
SATMDDL 3-2, D-1
SATMDOC 3-2
SATMTAL 3-2
SATMTMPL D-10
Security considerations 3-6
Segment file 5-3
SOFTDOC 3-2
Source code, SATMCOB C-1
Source file generation 5-6
SSID 2-2
Statistics 5-8
Subvolume, cleaning 5-6
System requirements 1-5

T
TACL macro file 6-21
TAL

DDL source files 1-4
programs 6-1

Template file, building 2-12
Template services 1-5
EMS FastStart Manual–133701
Index-3

Index U
Template source file D-10
Test program 1-3, 5-11
Testing program 7-1
Token 1-4
Tokens, filtering 7-4

U
User subvolume files 5-9

V
Variable data fields 2-6
Variables 2-4

W
Warnings

EGEN B-1
EMS FastStart A-1
EMS FastStart Manual–133701
Index-4

	New and Changed Information
	New Features
	Changed Information

	About This Manual
	Who Should Read This Manual?
	What You Should Know
	What This Manual Covers
	Related Documents
	Your Comments Invited

	Notation Conventions
	1 Introduction
	EMS FastStart Features
	How EMS FastStart Works
	EGEN
	Test Program and Filter
	DDL Source Files for C, COBOL85, and TAL

	Choosing Between EMS and EMS FastStart
	System and Program Requirements
	Using Template Services with EMS FastStart

	2 Brief Review of Event Design
	How to Design Events
	Step 1: Identify Event Owner (SSID)
	Step 2: List Messages
	Step 3: Identify Data in the Messages
	Step 4: Identify Groups of Variables
	Step 5: Assign Field Name, Type, and Number�to�Variables
	Step 6: Assign Event Numbers
	Step 7: Determine Event Subject
	Step 8: Define Event Type – Informative, Action�Attention, Action�Completion, or Critical
	Step 9: Build Template File
	Step 10: Assign a Group Field Number to�Each�Field

	3 Installing and Configuring EMS FastStart
	EMS FastStart Installation
	Installing EMS FastStart on the Installation�Subvolume
	Installing EMS FastStart on a Working�Subvolume
	Post-installation Files

	EMS FastStart Configuration
	The Default Compiler Configuration File (CCF)
	Modifying the CCF

	Security Considerations
	Compiler Access
	READ Access to Files

	4 Preparing the Application Configuration File
	Application Configuration File
	Default Application Configuration File
	Modifying the ACF
	Field Definitions
	Adding Data Types with EXTRADDL
	EGEN Default Values
	Example

	5 Running EMS FastStart
	Setting Up the EMS FastStart Environment
	Running EMSFS
	Stopping EMSFS and Detaching the Segment File
	Running EMS FastStart–ATM Example
	Parameter Validation (Steps 1-2)
	Cleaning the Subvolume (Step 3)
	Source File Generation (Steps 4 - 8)
	Automatic Compilation (Steps 9 - 13)
	File Creation: ATM1TEST and ATM1INDX (Steps�14���16)

	EMSFS Messages
	User Subvolume Files
	EMSFS Components
	DDL
	Copy Libraries
	EGEN
	Test Program
	Filter
	Index File

	6 Building Your Application for Event Generation
	How EGEN Works
	EGEN Operating Modes
	Mode 1
	Mode 2
	Mode 3
	Mode 4
	Initialize^egen^record
	Open^egen^collector
	EGEN
	Complete^egen^operation
	Close^egen^collector

	EGEN Parameters
	Egen-record Fields Definition
	An Example Using Mode 2

	EGEN Default Values
	Example

	Application Modifications
	Global Program Modifications
	Event-Specific Modifications
	Specify Event Types
	Specify Event Subject
	Move Values to the Event Record
	Pass the Record Structure to EGEN
	Error Handling and Return Codes

	Compile Application
	Define Run-time Parameters

	7 Testing Program and Filter
	Testing Program
	Testing Program Sample Session
	Using the Filter Program with a Printing Distributor
	Filtering on Specific Tokens

	A EMS FastStart Messages
	B EGEN Messages
	Initialize^egen^record Return Codes
	Open^egen^collector Return Codes
	Close^egen^collector Return Codes
	Complete^egen^operation Return Codes
	Get^egen^event^text^define Return Codes
	Initialize^event^buffer Return Codes
	Write^event^buffer Return Codes
	EGEN Return Codes

	C COBOL85 Program Example
	D DDL, Copy Libraries and Templates Example
	ATM Example, EVENT DEFINITION SOURCE FILE: SATMDDL
	ATM Example, COBOL85 COPYLIB: ATM1COB
	ATM Example, DSM Templates Services Source File: SATMTMPL

	E Filter
	Index

