
Data Management Library

Tandem Computers Incorporated

ENABLE™

User’s Guide

Abstract This guide describes how to use ENABLE to generate a variety of data base management applications.

Part Number 82571 A00

Data Management Library

Document History Edition Part Number Product Version Operating System Version Date

First Edition 82571 A00 ENABLE B00 GUARDIAN B00 March 1985

New editions incorporate any updates issued since the previous edition.

Copyright All rights reserved. No part of this document may be reproduced in any form, including photocopying or
translation to another language, without the prior written consent of Tandem Computers Incorporated.
Copyright  1985 Tandem Computers Incorporated.

 CONTENTS

 PREFACE .. xi

 SYNTAX CONVENTIONS IN THIS MANUAL xiii

 SECTION 1. INTRODUCTION TO ENABLE 1-1
 What Can an ENABLE Application Do? 1-1
 Typical Tasks Performed by an ENABLE Application 1-4
 Tandem Products and ENABLE Applications 1-7
 Why Use ENABLE? .. 1-8
 How Does ENABLE Work? 1-9

 SECTION 2. GENERATING AND EXECUTING AN APPLICATION--
 OVERVIEW ... 2-1
 Providing a Data Dictionary 2-1
 Supplying Specifications 2-2
 Supplying Values for Box and Application Attributes .. 2-11
 Effect of the ENABLE Commands 2-13
 Supplying a Data Base 2-24
 What is a Data Base? 2-24
 Fields .. 2-24
 Records ... 2-25
 Files ... 2-25
 Key Fields .. 2-26
 Establishing a PATHWAY System 2-27

 SECTION 3. DEVELOPING, DESCRIBING, AND CREATING A
 DATA BASE .. 3-1
 Developing a Data Base 3-1
 Identifying the Classes of Information 3-2
 Listing the Data Items 3-3
 Drawing the Relationship Between Classes of
 Information .. 3-4
 Listing the Fields in Each File 3-8
 Selecting the Appropriate File Type 3-9
 Choosing Key Fields 3-10
 Describing a Data Base 3-11

 iii

 CONTENTS

 Using DDL to Create a Record Description 3-11
 ENABLE Limitations on DDL 3-15
 Creating a Dictionary 3-16
 Creating a Data Base 3-17
 Determining File Size 3-20
 Increasing Block Size 3-21
 Using FUP to Create Your Files 3-22

 SECTION 4. CREATING AND RUNNING A SINGLE-FILE
 APPLICATION .. 4-1
 Generating a Single-File Application 4-4
 Establishing a PATHWAY System and Executing an
 Application .. 4-7

 SECTION 5. CREATING AND RUNNING A MULTIFILE
 APPLICATION .. 5-1
 Special Considerations for Multifile Applications 5-5
 Do Matching Fields Exist? 5-5
 Do the Files Contain Related Information? 5-6
 Generating a Multifile Application 5-7
 Describing and Adding Boxes 5-8
 Associating and Linking Boxes 5-10
 Identifying the Name of the PATHCOM Command File 5-30
 Naming and Adding the Application 5-30
 Generating an Application 5-30
 Submitting the Command File to ENABLE 5-31
 Establishing a PATHWAY System and Executing the
 Application ... 5-31

 SECTION 6. TAILORING AN APPLICATION 6-1
 Providing a Customized Screen 6-1
 General Guidelines for Customizing a Screen 6-2
 How To Customize a Screen 6-3
 Example of Screen Customization 6-5
 Providing a Screen Title 6-7
 Using DDL Headings for Screen Labels 6-9
 Reordering Screen Fields 6-11
 Providing a Compressed Format 6-13
 Providing User Information for a Box 6-15
 Excluding Fields From a Box 6-17
 Providing a Tabular Format 6-19
 Defining the Operations that an Application Can
 Perform ... 6-22
 Limiting the Operations an Application Can Perform 6-22
 Providing Automatic READ Operations 6-23
 Restricting an Application to a Subset of Records for
 a Child Box ... 6-27
 Ensuring File Integrity 6-30
 Identifying Files Audited by TMF 6-30
 Running the General Server as a NonStop Process
 Pair .. 6-31

 iv

 CONTENTS

 Accessing Audited and Nonaudited Files With the
 Same Application 6-31

 SECTION 7. MODIFYING A GENERATED APPLICATION 7-1

 SECTION 8. USING AN ENABLE APPLICATION 8-1
 ENABLE Display Screens 8-2
 Record Keys .. 8-4
 Primary Key .. 8-4
 Alternate Key .. 8-5
 Courtesy Key ... 8-5
 Labels and Fields .. 8-6
 Labels ... 8-6
 Fields ... 8-7
 Cursor Positioning for IBM 327x and T16-651x
 Terminals ... 8-11
 Getting Started ... 8-11
 Reading Records ... 8-12
 READ FIRST (F4) 8-12
 READ NEXT (F5) .. 8-14
 READ APPROXIMATE (F6) 8-15
 READ EXACT (F7) 8-16
 READ GENERIC (F8) 8-17
 Inserting Records 8-20
 INSERT (F10) .. 8-20
 INSERT BOX (Shifted F10) 8-25
 Deleting Records .. 8-29
 DELETE (F12) .. 8-29
 DELETE BOX (Shifted F12) 8-29
 DELETE Considerations for Applications With
 Several Boxes 8-30
 Updating Records .. 8-31
 UPDATE (F14) .. 8-32
 UPDATE BOX (Shifted F14) 8-32
 UPDATE Considerations for Applications With
 Several Boxes 8-33
 Undoing an INSERT, DELETE, or UPDATE (Shifted F13) 8-33
 Undoing a DELETE Operation 8-34
 Undoing an UPDATE Operation 8-34
 Undoing an INSERT Operation 8-34
 Performing Special Screen Operations 8-35
 Defining a Printer (Shifted F4) 8-35
 Printing a Screen Image (Shifted F5) 8-35
 Recovering a Display Screen (Shifted F15) 8-35
 Operator Display and Error Messages 8-36
 Terminal Function Keys 8-37

 SECTION 9. RESOLVING PROBLEMS 9-1
 Handling Problems with Extended Memory Overflow 9-1
 Resolving Problems Accessing a Dictionary 9-3
 Resolving Problems That Occur During Application
 Execution .. 9-3

 v

 CONTENTS

 SECTION 10. MAINTAINING AN APPLICATION 10-1
 Moving an Application 10-1
 Moving a Generated Application 10-2
 Generating an Application to be Moved 10-3
 Reclaiming Disc Space 10-4

 SECTION 11. INTEGRATING APPLICATIONS INTO A SINGLE
 PATHWAY SYSTEM .. 11-1
 Writing a SCREEN COBOL Menu Program 11-3
 Generating the Applications 11-4
 Directing Object Code to the Same Object File 11-4
 Obtaining a SCREEN COBOL Compilation Listing 11-5
 Obtaining SCREEN COBOL Source Code 11-6
 Avoiding Conflicting Box Names 11-6
 Modifying SCREEN COBOL Source Code to Call Another
 Application .. 11-11
 Modifying a PATHCOM Command File 11-14
 Determining a New Value for MAXTERMDATA 11-16
 Changing the Program Name in the PATHCOM ADD PROGRAM
 Command .. 11-19
 Adding SET SERVER ASSIGN Commands 11-19
 Including Optional Commands 11-20
 Integrating an Application into an Existing PATHWAY
 System ... 11-22
 Generating the Application 11-22
 Integrating the Application 11-23

 SECTION 12. SAMPLE PROJECT TRACKING SYSTEM 12-1
 Defining the Functional Requirements of the System 12-2
 Defining the Data Requirements of the System 12-3
 Identifying Classes of Data 12-3
 Identifying the Data Items 12-4
 Identifying the Relationships Between Classes of
 Data .. 12-7
 Listing the Fields in Each File 12-10
 Identifying Key Fields 12-10
 Checking for Normalization 12-12
 Creating a Dictionary That Describes the Files 12-13
 Defining the Applications to be Generated 12-15
 Identifying the Applications 12-15
 Identifying the Files To Be Accessed by Each
 Application .. 12-16
 Determining the Format of the Screens 12-18
 Identifying Candidate Applications for Automatic
 READ Operations 12-21
 Identifying Calling Applications 12-22
 Generating the Applications 12-23
 Project-Entry Application 12-23
 Employee-Assign Application 12-26
 Look-Up Application 12-28
 Project-Info Application 12-29
 Event-Detail Application 12-32

 vi

 CONTENTS

 Event-Revised Application 12-34
 Modifying the SCREEN COBOL Source Code of Selected
 Applications 12-36
 Modifying the Source Code for the Project-Entry
 Application .. 12-37
 Modifying the Source Code for the Employee-Assign
 Application .. 12-38
 Modifying the Source Code for the Project-Info
 Application .. 12-38
 Writing a Menu Program 12-39
 Modifying the PATHCOM Command File to Integrate the
 Applications ... 12-54
 Sample Obey Files 12-59

 APPENDIX A. SYNTAX SUMMARY A-1

 APPENDIX B. ENABLE MESSAGES B-1

 APPENDIX C. GLOSSARY C-1

 INDEX .. Index-1

 FIGURES

 1-1. Sample Screen Displayed by a Single-File
 Application 1-2
 1-2. Sample Screen Displayed by a Multifile
 Application 1-3
 1-3. Sample Screen Displaying Several Records in a
 Tabular Format 1-4
 1-4. Typical Tasks Performed by an ENABLE
 Application 1-6
 1-5. Tasks Performed by ENABLE 1-10

 2-1. Attribute Table When You Start ENABLE 2-12
 2-2. Attribute Table With a Current Box-Attribute
 Value ... 2-14
 2-3. Attribute Table With an Override Box-Attribute
 Value ... 2-15
 2-4. Attribute Table With a Default Box-Attribute
 Value ... 2-16
 2-5. Adding a Box to the Object Table 2-17
 2-6. Contents of Attribute Table After an ADD BOX
 Command ... 2-18
 2-7. Attribute Table With a Current and an Override
 Application-Attribute Value 2-19
 2-8. Attribute Table With a Default Application-
 Attribute Value 2-20
 2-9. Adding an Application to the Object Table 2-21

 vii

 CONTENTS

 2-10. Attribute Table Contents After an ADD APPL
 Command ... 2-22
 2-11. Generating an Application 2-23
 2-12. Sample Employee Record 2-25
 2-13. Sample Employee File 2-26
 2-14. Establishing a PATHWAY System and Executing an
 Application 2-28

 3-1. Classes of Information 3-3
 3-2. List of Data Items 3-3
 3-3. Relationship Between Classes of Information 3-4
 3-4. One-to-One Relationship 3-5
 3-5. Dependents Class with Repeating Data 3-6
 3-6. Dependents Class with Repeating Data Removed 3-7
 3-7. One-to-Many Relationship 3-8
 3-8. List of Fields in Both Files 3-8
 3-9. Sample DDL RECORD Statements 3-12
 3-10. Sample FUP Source Commands 3-18

 4-1. Screen Displayed by the Sample Employee-Prog
 Application 4-1
 4-2. Commands That Generate and Execute the
 Sample Employee-Prog Application 4-3
 4-3. PATHCOM Command File for the Sample
 Employee-Prog Application 4-8
 4-4. Obey File Commands That Establish a PATHWAY
 System and Execute the Application 4-10

 5-1. Sample Screen Displayed by the Employee-Detail
 Application 5-1
 5-2. Commands That Generate and Execute the
 Employee-Detail Application 5-3
 5-3. Sample Record Descriptions 5-5
 5-4. Describing and Adding Two Boxes 5-9
 5-5. Sample Tree Structure 5-11
 5-6. Parent and Child Boxes on the Screen 5-12
 5-7. Box Levels When Multiple Links are Possible 5-15
 5-8. Box Levels When Links are Limited 5-17
 5-9. Sample Two-Level Tree Structure 5-21
 5-10. Sample Screen With Two Boxes 5-22
 5-11. Application-Access Path for the Employee-Detail
 Application 5-23
 5-12. Qualified Records for a Tree Structure With Two
 Boxes ... 5-24
 5-13. Sample Three-Level Tree Structure 5-26
 5-14. Screen With Four Boxes 5-27
 5-15. Qualified Records for an Application with a
 Three-Level Tree Structure 5-29
 5-16. PATHCOM Command File for the Employee-Detail
 Application 5-32
 5-17. Obey File Commands That Establish a PATHWAY System
 and Execute the Employee-Detail Application 5-34

 viii

 CONTENTS

 6-1. Sample Standard Screen 6-5
 6-2. Sample Customized Screen 6-6
 6-3. Screen With User-Defined Screen Title 6-8
 6-4. Screen With DDL Headings as Screen Labels 6-10
 6-5. Screen With Fields Reordered 6-12
 6-6. Screen With Compressed Format 6-14
 6-7. Screen With User-Defined Information Displayed
 in a Box .. 6-16
 6-8. Screen With Field Excluded 6-18
 6-9. Screen With Tabular-Format Box 6-20
 6-10. Automatic READ for First Level Box 6-24
 6-11. FILL ON For a Second Level Box 6-26
 6-12. Application Limited to Subset of Records 6-29
 6-13. Accessing Audited and Nonaudited Files 6-33

 8-1. ENABLE Template 8-1
 8-2. Sample Display Screens 8-2
 8-3. Sample Screen With Nested Boxes 8-3
 8-4. Screen Labels and Fields 8-6
 8-5. Join Fields for Containing Boxes 8-10
 8-6. Example of Records Returned 8-18
 8-7. Inserting a Record 8-22
 8-8. Inserting a Record in a Nested Box 8-24
 8-9. Example of INSERT BOX Operation for a Single
 Box ... 8-26
 8-10. INSERT BOX Operation for a Nested Box 8-28

 10-1. Using SCUP to Reclaim Disc Space 10-5

 11-1. Common PATHWAY System 11-2
 11-2. Alternative PATHWAY System 11-2
 11-3. Box Names in a PATHWAY System 11-8
 11-4. Sample PATHCOM Command File 11-15
 11-5. Determining Longest Path 11-18
 11-6. Sample Obey File That Starts a Terminal 11-22
 11-7. Sample Obey File That Stops a PATHWAY System 11-22

 12-1. Sample Project-Tracking System 12-1
 12-2. Classes of Data Within the Project-Tracking
 System .. 12-4
 12-3. Data Items Associated With Each Class of Data 12-5
 12-4. Relationships Between Classes of Data 12-7
 12-5. Relationships Between Instances of Classes of
 Data .. 12-8
 12-6. Relationships With New Class of Data 12-9
 12-7. List of Fields in Each File 12-10
 12-8. Possible Relationships Between Files and Keys 12-12
 12-9. DDL Source Code 12-13
 12-10. Rough Sketches of Screens in Project-Tracking
 System ... 12-17
 12-11. Detailed Sketch of the Proposed Project-Entry
 Screen ... 12-20

 ix

 CONTENTS

 12-12. Applications With Automatic READ Operations 12-21
 12-13. Screen Displayed by Project-Entry Application 12-24
 12-14. ENABLE Commands for the Project-Entry
 Application 12-25
 12-15. Screen Displayed by Employee-Assign Application .. 12-26
 12-16. ENABLE Commands to Generate the Employee-Assign
 Application 12-27
 12-17. Screen Displayed by the Look-Up Application 12-28
 12-18. ENABLE Commands Used to Generate the Look-Up
 Application 12-29
 12-19. Screen Displayed by the Project-Info Application . 12-30
 12-20. ENABLE Commands to Generate the Project-Info
 Application 12-31
 12-21. Screen Displayed by the Event-Detail Application . 12-32
 12-22. ENABLE Commands to Generate the Event-Detail
 Application 12-34
 12-23. Screen Displayed by Event-Revised Application 12-35
 12-24. ENABLE Commands to Generate the Event-Revised
 Application 12-36
 12-25. Screen Displayed by Sample Menu Program 12-39
 12-26. SCREEN COBOL Source Code for Sample Menu
 Program .. 12-40
 12-27. PATHCOM Command File Before Modifications 12-54
 12-28. Sample Modified PATHCOM Command File 12-55
 12-29. Sample Obey File That Establishes the PATHWAY
 System ... 12-59
 12-30. Sample Obey File to Suspend the PATHWAY System ... 12-59

 TABLES

 2-1. Summary of ENABLE Commands 2-3
 2-2. Summary of Application Attributes 2-4
 2-3. Summary of Box Attributes 2-6

 6-1. Attributes That Affect Screen Format 6-4

 8-1. Terminal Function Keys 8-38

 11-1. Access Modes and ABILITY Attribute Values 11-9

 B-1. ENABLE Error and Warning Messages B-2

 B-2. Application Run-Time Error Messages B-21

 x

 PREFACE

 This guide describes how to use ENABLE, a product that is part of
 the ENCOMPASS distributed data base management system provided by
 TANDEM, to build simple transaction processing applications.

 To use this guide, you must understand your information needs,
 have a working knowledge of the Tandem text editor, and be
 familiar with some data management application programs. As an
 ENABLE user, you need not know the SCREEN COBOL or COBOL
 programming languages.

 The guide is organized in a sequence that parallels the
 development of an ENABLE application:

 • Section 1 introduces the capabilities and uses of ENABLE and
 identifies its components.

 • Section 2 provides an overview of the steps required to produce
 an application. This section also introduces some concepts
 referred to throughout the remainder of the guide.

 • Section 3 provides guidelines for developing, describing, and
 creating a data base.

 • Section 4 describes the tasks you must perform to develop an
 application that can access a single data base file.

 • Section 5 describes the tasks you must perform to develop an
 application that can access more than one data base file.

 • Section 6 describes methods you can use to tailor an ENABLE
 application.

 • Section 7 provides guidelines for modifying the SCREEN COBOL
 source code generated by ENABLE

 • Section 8 provides guidelines for using an ENABLE application.

 xi

 PREFACE

 • Section 9 provides guidelines for resolving problems
 encountered during application generation or execution.

 • Section 10 provides guidelines for maintaining applications
 generated by ENABLE.

 • Section 11 describes the tasks you must perform to integrate
 several ENABLE applications into a single PATHWAY system.

 • Section 12 provides an example of an integrated system with
 several ENABLE applications.

 First time users of ENABLE should read sections 1, 2, 3, 4, 5,
 and 6 in that order. If a data dictionary and data base files
 already exist, you can omit Section 3.

 Individuals who have used the previous version of ENABLE should
 read sections 1, 2, 5, and 6. If you must create a data
 dictionary or data base files, read section 3.

 The following manuals contain more detailed information about the
 Tandem NonStop II and TXP Computer Systems and the software
 products used with ENABLE:

 • Data Definition Language (DDL) Reference Manual

 • ENABLE Reference Manual

 • GUARDIAN Operating System User's Guide

 • PATHWAY System Management Reference Manual

 • PATHWAY SCREEN COBOL Reference Manual

 • PATHAID Reference Manual

 When you use an application developed by ENABLE, you should have
 the appropriate ENABLE template. These templates and the
 corresponding terminal type are as follows:

 • Part Number 82174 B00 For T16-651x and T16-652x terminals

 • Part Number 45637 For T16-653x terminals

 xii

 SYNTAX CONVENTIONS IN THIS MANUAL

 The following list summarizes the conventions for syntax notation
 in this manual.

 Notation Meaning

 UPPERCASE Uppercase letters represent keywords and reserved
 LETTERS words; you must enter these items exactly as shown.

 <lowercase Lowercase letters within angle brackets represent
 letters> variables that you must supply.

 Brackets [] Brackets enclose optional syntax items. A
 vertically aligned group of items enclosed in
 brackets represents a list of selections from which
 you may choose one or none.

 Braces {} Braces enclose required syntax items. A vertically
 aligned group of items enclosed in braces represents
 a list of selections from which you must choose only
 one.

 Ellipsis An ellipsis immediately following a pair of brackets
 ... or braces indicates that you can repeat the enclosed
 syntax items any number of times.

 Percent Precedes a number in octal notation.
 Sign %

 I/O In procedure calls, input parameters (those that
 pass data from the calling program to the called
 procedure) are followed by an 'I' (input). Output
 parameters (those that return data from the called
 procedure to the calling program) are followed by an
 'O' (output).

 Spaces If two items are separated by a space, that space is
 required between the items. If one of the items is
 a punctuation symbol, such as a parenthesis or a
 comma, spaces are optional.

 Punctuation Parentheses, commas, semicolons, and other symbols
 or punctuation not described above must be entered
 precisely as shown. If any of the punctuation above
 appears enclosed in quotation marks, that character
 is not a syntax descriptor but a required character
 and you must enter it as shown.

 RETURN Indicates a carriage return.

 xiii

 SECTION 1

 INTRODUCTION TO ENABLE

 Many companies have a backlog of programming projects requested
 by their departments. While these projects are important to the
 department involved, most companies use their data processing
 resources to develop projects that are important to the
 organization as a whole; projects for a single department must
 often wait.

 If your department needs a data-management application, ENABLE
 may offer a solution. You can use ENABLE to develop an
 application that can record, maintain, or retrieve information
 stored within a data base. ENABLE is a powerful tool that allows
 you to develop simple data-management applications, without using
 a conventional programming language.

 Although it might not solve your problem with as much
 sophistication as a custom-designed application program, you can
 quickly generate an ENABLE application to meet your immediate
 needs.

 WHAT CAN AN ENABLE APPLICATION DO?

 An ENABLE application can enter, retrieve, and display
 information from one or more related data base files. The
 application performs these operations on a record-by-record basis
 and on one file at a time.

 1-1

 INTRODUCTION TO ENABLE
 What Can an ENABLE Application Do?

 ENABLE generates online applications that you use interactively
 through a terminal. To simplify the process of entering and
 changing information, they display a form on the screen similar
 to the one shown in Figure 1-1. The application that displays
 this form can retrieve and enter information for one data base
 file.

EMPLOYEE-PROG
Page 1/1
* EMPNUM ______
* EMPNAME _______________________
* DEPT
 REGNUM ______
 BRANCHNUM ______
 JOB __________________
 AGE ___
 SALARY _________
 VACATION ___

Ready for input F3 for Help, shift F16 to exit

Label Field

S5044-001

.00

 Figure 1-1. Sample Screen Displayed by a Single-File Application

 Notice that the application provides labels for each piece of
 information that appears on the screen. The application also
 provides fields that display information and that you can use to
 enter information. Because applications similiar to this
 application access information from only one data base file,
 these applications are sometimes called single-file applications.

 1-2

 INTRODUCTION TO ENABLE
 What Can an ENABLE Application Do?

 Figure 1-2 shows a form displayed by another ENABLE application.
 This application can process simple transactions for two data
 base files.

EMPLOYEE-DETAIL
Page 1/1
* EMPNUM ___________

 * DEP-KEY
 DEPENDENT-NO ____
 DEPENDENT-NAME ________________________________
 RELATIONSHIP ____
 DEPENDENT-AGE ____

* EMPNAME _______________________________
* DEPT
 REGNUM ___________
 BRANCHNUM ___________
 JOB _______________________
 AGE ___
 SALARY _______________
 VACATION ___

Ready for input F3 for Help, shift F16 to exit

S5044-002

.00

 Figure 1-2. Sample Screen Displayed by a Multifile Application

 Like the application whose screen appears in Figure 1-1, this
 application provides labels and fields. To distinguish between a
 record from one data base file and a record from the other file,
 the application encloses some of the labels and fields within a
 box. Because applications like this one can access information
 from more than one data base file, these applications are
 sometimes called multifile applications.

 1-3

 INTRODUCTION TO ENABLE
 Typical Tasks Performed by an ENABLE Application

 When you develop an application, ENABLE provides you with the
 ability to tailor specific areas of the screen. Figure 1-3 shows
 a screen that has been tailored so that records appear in a
 tabular format.

Employee Information Screen
Page 1/1
To find an employee, enter the first name then the last name:
* Employee Name __________________________________
* Department
 Region Number ____ Branch Number ____
 Job Title _______________ Vacation ____ * Employee Number _______

 Valid values for Rel are either 'S' or 'C'

 *No. Dependent Rel
 ____ _______________ ___
 ____ _______________ ___
 ____ _______________ ___
 ____ _______________ ___
 ____ _______________ ___

Ready for input F3 for Help, shift F16 to exit

S5044-003

 Figure 1-3. Sample Screen Displaying Several Records in a
 Tabular Format

 The application that produces this screen can display more than
 one record within the box.

 TYPICAL TASKS PERFORMED BY AN ENABLE APPLICATION

 Figure 1-4 illustrates some typical tasks that can be performed
 by an ENABLE application. The application shown in this figure
 maintains information in an employee file. The application
 repeats the following tasks until the user exits:

 1. Displays the screen; the user fills in the necessary
 information

 1-4

 INTRODUCTION TO ENABLE
 Typical Tasks Performed by an ENABLE Application

 2. Accepts a request from the user to insert the entered
 information

 3. Accesses the data base to insert the information

 4. Tells the user that the request has been successfully
 processed and that it is ready to accept another request

 1-5

 INTRODUCTION TO ENABLE
 Typical Tasks Performed by an ENABLE Application

1

2

3

4

0001 Jane Doe 0101
0002 Phil Dean 0101
0003 Mark Monte 0102
 • • • • • • • • •
0231 John Smith 0202

• • •
• • •
• • •
• • •
• • •

Application

Application

Application

S5044-004

EMPLOYEE-PROG
Page 1/1
* EMPNUM ______
* EMPNAME _______________________
* DEPT
 REGNUM ______
 BRANCHNUM ______
 JOB __________________
 AGE ___
 SALARY _________
 VACATION ___

Ready for input . . .

.00

INSERT . . .

Record Inserted OK Ready for Input . .

Employee File

Insert This Record

0231
John Smith

02
02
Salesman
29
 650.17
8+

EMPLOYEE-PROG
Page 1/1
* EMPNUM ______
* EMPNAME _______________________
* DEPT
 REGNUM ______
 BRANCHNUM ______
 JOB __________________
 AGE ___
 SALARY ___________
 VACATION

0231
John Smith

02
02
Salesman
29
 650.17
8+

EMPLOYEE-PROG
Page 1/1
* EMPNUM ______
* EMPNAME _______________________
* DEPT
 REGNUM ______
 BRANCHNUM ______
 JOB __________________
 AGE ___
 SALARY ___________
 VACATION

 Figure 1-4. Typical Tasks Performed by an ENABLE Application

 1-6

 INTRODUCTION TO ENABLE
 Tandem Products and ENABLE Applications

 The preceding tasks are especially typical of transaction-
 processing applications that keep information current and correct
 by making immediate (instead of deferred) changes to the data
 base.

 TANDEM PRODUCTS AND ENABLE APPLICATIONS

 As in any PATHWAY application, the tasks performed by an ENABLE
 application are divided logically among the following components:

 1. A request-oriented program (requester) that displays the data
 entry screen, accepts the data entered from the terminal, and
 passes the data to programs that update the data base

 2. A data base service program (server) that actually records,
 modifies, and retrieves information from the data base

 ENABLE generates a SCREEN COBOL requester program that defines
 terminal display screens and accepts requests. ENABLE supplies a
 server program, called the General Server, that accesses the data
 base and performs the requested operation. Optionally, ENABLE
 also produces a third component, a command file that you can use
 to execute the application under a PATHWAY system.

 PATHWAY, a Tandem product, controls online transaction
 processing applications. PATHWAY supplies a monitor process
 (PATHMON) that controls the PATHWAY system and a command
 interface (PATHCOM) that uses the command file, called a PATHCOM
 command file, produced by ENABLE. By entering a few commands,
 you can establish a PATHWAY system and execute an ENABLE
 application. Sections 2, 4, and 5 provide more information about
 PATHWAY.

 After you use an ENABLE application to enter or modify
 information in your data base, you can use another Tandem
 product, ENFORM, to produce reports based on the data in your
 data base.

 1-7

 INTRODUCTION TO ENABLE
 Why Use ENABLE?

 WHY USE ENABLE?

 ENABLE reduces the amount of time needed to develop a simple
 application, thereby decreasing application development costs.
 To write a simple application in a conventional programming
 language could take hours, days, or even weeks of work. If you
 use ENABLE to generate the same application, you can be finished
 in a matter of minutes. ENABLE allows you to:

 • Control the format of the screen displayed by the
 application

 • Limit the types of operations (delete, insert, read, or
 update) that the application can perform on a data base file

 • Define a method that the application uses to ensure the
 integrity of a data base file

 Although ENABLE provides you with enough flexibility to tailor a
 simple application, an ENABLE application is not suitable for
 every purpose. An ENABLE application, for example, can neither
 perform mathematical calculations nor ensure the consistency of
 your data base files. ENABLE does, however, provide several
 options that allow you to modify an application and supply your
 own calculations or integrity constraints.

 A standard ENABLE application (one that has not been modified)
 can be used as:

 • A prototype of a more complex application--An analyst, for
 example, might use an application generated by ENABLE as a
 basis for determining end-user needs.

 • A data entry program--An application generated by ENABLE can
 be used to enter information into a data base that will
 ultimately be maintained by a more complex application.

 • A tool to maintain a personal data base--Any individual can
 use an application generated by ENABLE to maintain their
 personal data base files.

 If you modify an ENABLE application, it can be:

 • Integrated into an existing PATHWAY system--Within the
 PATHWAY system, you could use the application to list
 information from one or more data base files or to retrieve
 information used for another component of the PATHWAY system.

 1-8

 INTRODUCTION TO ENABLE
 How Does ENABLE Work?

 • Used to maintain a small independent data base--Because a
 standard ENABLE application typically does not maintain all
 desired integrity constraints, you should modify the
 application before you use it for a data base that requires
 these constraints.

 HOW DOES ENABLE WORK?

 When you use ENABLE to generate an application, ENABLE performs
 the following tasks:

 1. Accepts specifications that describe your application

 2. Opens a data dictionary and obtains a description of the
 files to be accessed by your application

 3. Stores information about the applications to be generated in
 an internal table called the object table

 4. Uses the information in the object table to:

 --Transform a SCREEN COBOL skeleton file into SCREEN COBOL
 source code

 --Transform a PATHCOM skeleton file into a PATHCOM command
 file

 5. Calls the SCREEN COBOL compiler (SCOBOLX) to compile the
 generated SCREEN COBOL source code

 Figure 1-5 illustrates these tasks.

 ENABLE supplies the SCREEN COBOL skeleton file and the PATHCOM
 skeleton file. ENABLE allows you to modify these files before
 you generate an application.

 You must supply a data dictionary and specifications that
 describe your application. Refer to Section 2 for information
 about the tasks that you must perform to generate and execute an
 application.

 1-9

 INTRODUCTION TO ENABLE
 How Does ENABLE Work?

Data Dictionary
RECORD
Employee

S5044-005

SET RECORD employee
ADD BOX employee
SET APPL TREE (01 employee)
SET PATHCOMFILE enabpth
ADD APPL employee-prog
GENERATE APPL employee-prog

Your Specifications

ENABLE

SCREEN
COBOL

Skeleton File

PATHCOM
Skeleton

File

SCREEN
COBOL

Source Code

PATHCOM
Command

File

SCREEN
COBOL

Object Code

SCOBOL

Applications to be Generated
APPL Employee-Prog

Object Table

 Figure 1-5. Tasks Performed by ENABLE

 1-10

 SECTION 2

 GENERATING AND EXECUTING AN APPLICATION--OVERVIEW

 This section provides an overview of the tasks that you perform
 to generate and execute an ENABLE application. These tasks are:

 1. Providing a data dictionary that contains a description of
 each file to be accessed by the application

 2. Supplying specifications, in the form of ENABLE commands,
 that describe the application

 3. Creating the data base file (or files) to be accessed by the
 application if the files do not already exist

 4. Establishing a PATHWAY system to execute the application

 PROVIDING A DATA DICTIONARY

 A data dictionary is a set of files that document the structure
 and organization of a data base. A data dictionary contains one
 or more record descriptions; each record description provides a
 format for the records stored in a data base file.

 If a dictionary does not exist, you must create one before you
 try to generate an application. Section 3 provides information
 about creating a dictionary.

 2-1

 TASK OVERVIEW
 Supplying Specifications

 If a dictionary exists but does not contain an appropriate record
 description, you must add the record description to it before you
 try to generate an application. Section 3 also contains
 information about adding a record description to an existing
 dictionary.

 SUPPLYING SPECIFICATIONS

 When you use ENABLE, you must supply specifications that
 define and control program components called objects.
 There are two types of objects recognized by ENABLE:
 applications and boxes.

 An application consists of a SCREEN COBOL program generated by
 ENABLE, the optional PATHCOM command file, and the provided
 General Server. Each application has attributes that describe
 it and for which you can supply values. For example, you can
 supply a value such as T16-6520 for the attribute (TERMINAL) that
 describes the type of terminal upon which an application runs.
 By supplying values for other application attributes, you can
 describe such global characteristics of an application as:

 • The name of the file to which ENABLE writes the PATHCOM
 commands

 • The title that the application displays on the terminal
 screen

 A box represents a particular data base file and how it is to be
 handled by the application. The term "box" is derived from the
 box that a multifile application uses to enclose data from a
 file. Each box has attributes that describe it and for which you
 can supply values. You can, for example, indicate:

 • How the application is to display information from the file on
 the teminal screen

 • The types of operations (DELETE, INSERT, READ, or UPDATE) that
 the application can perform upon the file

 2-2

 TASK OVERVIEW
 Supplying Specifications

 You define and control these applications and boxes by using the
 ENABLE commands listed in Table 2-1. Refer to the ENABLE
 Reference Manual for detailed information about these
 commands. Each command has an optional keyword that indicates
 the type of object to which it applies. These keywords are:

 • APPL--to indicate that the command applies to an application

 • BOX--to indicate that the command applies to a box

 Table 2-1. Summary of ENABLE Commands

 | |
 | Command Function |
 |___|
 | |
 | ADD [APPL] Names an object and adds the object's |
 | [BOX] description to the object table; |
 | optionally supplies values for an |
 | object's attributes. |
 | |
 | ASSUME [APPL] Establishes a default object type for |
 | [BOX] subsequent ENABLE commands. |
 | |
 | DELETE [APPL] Deletes the named object from the object |
 | [BOX] table. |
 | |
 | GENERATE [APPL] Generates an application. |
 | |
 | INFO [APPL] Displays the attributes of a named |
 | [BOX] object. |
 | |
 | RESET [APPL] Resets attribute values. |
 | [BOX] |
 | |
 | SET [APPL] Changes the current value of an |
 | [BOX] attribute. |
 | |
 | SHOW [APPL] Displays the current value of attributes. |
 | [BOX] |
 | |

 2-3

 TASK OVERVIEW
 Supplying Specifications

 When you want to describe an application, you can supply a value
 for one or more of the attributes listed in Table 2-2. Note that
 ENABLE supplies starting values (values supplied when you start
 ENABLE) or default values (values supplied when you add an
 application) for most application attributes. This means that
 you can provide a complete description of an application without
 supplying a value for every application attribute.

 Table 2-2. Summary of Application Attributes
 (Continued next page)

 | |
 | Attribute Characteristic Value Required? |
 |___|
 | |
 | PATHCOMFILE Identifies the name No; however, |
 | of the PATHCOM ENABLE will not |
 | command file. produce a PATHCOM |
 | Starting value: command file if |
 | null (no name) you do not supply |
 | a value. |
 | |
 | PATHCOMSKELETON Identifies the name No |
 | of the PATHCOM |
 | skeleton file. |
 | Starting value: |
 | ENABPATS |
 | |
 | SCOBOLCOMPILER Identifies the SCREEN No |
 | COBOL compiler that |
 | produces the SCREEN |
 | COBOL object code. |
 | Starting value: |
 | $system.system.scobolx |
 | |
 | SCOBOLLIST Identifies a file to No |
 | which the SCREEN COBOL |
 | compilation listing is |
 | written. Starting |
 | value: null (no file) |
 | |
 | SCOBOLOBJECT Identifies the name No |
 | of the object files |
 | for the compiled |
 | SCREEN COBOL program. |
 | Starting value: POBJ |
 | |

 2-4

 TASK OVERVIEW
 Supplying Specifications

 Table 2-2. Summary of Application Attributes (Continued)

 | |
 | Attribute Characteristic Value Required? |
 |___|
 | |
 | SCOBOLSKELETON Identifies the name |
 | of the SCREEN COBOL No |
 | skeleton file. |
 | Starting value: |
 | ENABAPPS |
 | |
 | SCOBOLSOURCE Identifies the file No |
 | to which the SCREEN |
 | COBOL source code is |
 | written. Starting |
 | value: null (no file) |
 | |
 | TERMINAL Identifies the type No |
 | of terminal on |
 | which the |
 | application will |
 | run. Starting |
 | value: the type of |
 | terminal from which |
 | you enter ENABLE |
 | commands |
 | |
 | TITLE Identifies text No |
 | that is displayed |
 | on the first screen |
 | line by the |
 | application. |
 | Starting value: |
 | null (blank); |
 | defaults to the |
 | application name |
 | |
 | TREE Identifies the box Required for |
 | (or boxes) used by multifile |
 | an application. applications; |
 | Starting value: recommended |
 | null (blank); for single-file |
 | defaults to: applications. |
 | (01 <appl-name>-BOX) |
 | |

 2-5

 TASK OVERVIEW
 Supplying Specifications

 When you want to describe a box, you can supply a value for one
 or more of the attributes listed in Table 2-3. Note that ENABLE
 supplies starting values (values that exist when you start
 ENABLE) or default values (values that exist when you add a box)
 for most box attributes. This means that you can provide a
 complete description of a box without supplying a value for every
 box attribute.

 Table 2-3. Summary of Box Attributes (Continued next page)

 | |
 | Attribute Characteristic Value Required? |
 |___|
 | |
 | BOXTITLE 1 Identifies text No |
 | BOXTITLE 2 that appears on |
 | BOXTITLE 3 the terminal |
 | screen with the |
 | records from a |
 | file. Starting |
 | value: null (blank) |
 | |
 | CHECKDATA Indicates whether No |
 | the application |
 | contains special |
 | code that verifies |
 | the contents of |
 | numeric fields in |
 | a file. Starting |
 | value: ON (numeric |
 | fields are verified) |
 | |
 | DATAFILE Identifies the No |
 | name of a data |
 | base file. |
 | Starting value: |
 | null; defaults to |
 | the file named in |
 | the DDL record |
 | description |
 | |

 2-6

 TASK OVERVIEW
 Supplying Specifications

 Table 2-3. Summary of Box Attributes (Continued)

 | |
 | Attribute Characteristic Value Required? |
 |___|
 | |
 | DELETE Indicates whether No |
 | the application |
 | can delete records |
 | from a file. |
 | Starting value: ON |
 | (the application |
 | can delete records |
 | from the file) |
 | |
 | |
 | DICTIONARY Identifies the No |
 | location of the |
 | data dictionary |
 | that contains the |
 | record description |
 | of a file. |
 | Starting value: |
 | the system, volume |
 | and subvolume from |
 | which you enter |
 | ENABLE commands |
 | |
 | EXCLUDE Identifies fields No |
 | from the record |
 | description that |
 | are not to appear |
 | on the terminal |
 | screen. Starting |
 | value: Null (no |
 | fields are excluded) |
 | |

 2-7

 TASK OVERVIEW
 Supplying Specifications

 Table 2-3. Summary of Box Attributes (Continued)

 | |
 | Attribute Characteristic Value Required? |
 |___|
 | |
 | FILL Indicates whether No |
 | the application |
 | performs an |
 | automatic read |
 | operation on a |
 | file under certain |
 | conditions. |
 | Starting value: |
 | OFF (an automatic |
 | read is not |
 | performed) |
 | |
 | FLAG Sets values for No |
 | user flags defined |
 | in the SCREEN |
 | COBOL skeleton. |
 | Starting value: 0 |
 | |
 | HEADINGS Identifies the set No |
 | of labels to be |
 | used on the |
 | screen. |
 | Starting value: |
 | DDLFIELDNAMES |
 | (field names |
 | appear as labels) |
 | |
 | INCLUDE Identifies fields No |
 | from the record |
 | description that |
 | are to appear on |
 | the screen; also |
 | indicates the |
 | order in which the |
 | fields appear. |
 | Starting value: |
 | null (all fields |
 | appear in DDL record- |
 | description order) |
 | |

 2-8

 TASK OVERVIEW
 Supplying Specifications

 Table 2-3. Summary of Box Attributes (Continued)

 | |
 | Attribute Characteristic Value Required? |
 |___|
 | |
 | INSERT Indicates whether No |
 | the application |
 | can insert records |
 | in a file. Starting |
 | value: ON (records |
 | can be inserted) |
 | |
 | NONSTOP Indicates whether No |
 | the General Server |
 | runs as a NonStop |
 | process pair. |
 | Starting value: |
 | OFF (the General |
 | Server does not |
 | run as a NonStop |
 | process pair) |
 | |
 | READ Indicates whether No |
 | the application |
 | can, or cannot, |
 | read records from |
 | a file. |
 | Starting value: ON |
 | (records can be read) |
 | |
 | RECORD Identifies the Yes |
 | name of the record |
 | description that |
 | describes a file. |
 | Starting value: |
 | null |
 | |
 | SCREENFORMAT Identifies the No |
 | choice of screen |
 | layout for a file. |
 | Starting value: |
 | UNCOMPRESSED (one |
 | label and field |
 | appear on a screen |
 | line) |
 | |

 2-9

 TASK OVERVIEW
 Supplying Specifications

 Table 2-3. Summary of Box Attributes (Continued)

 | |
 | Attribute Characteristic Value Required? |
 |___|
 | |
 | SERVERCLASS Provides a name No |
 | for the server |
 | class to which the |
 | General Server |
 | belongs. |
 | Starting value: |
 | ENABLE SERVER |
 | |
 | SIZE Identifies the No |
 | number of records |
 | from a file that |
 | the application |
 | can display at one |
 | time. Starting |
 | value: 1 |
 | |
 | TMF Indicates whether the No |
 | box is to access a |
 | file audited by the |
 | Transaction Monitor- |
 | ing Facility (TMF). |
 | Starting value: |
 | OFF (the file is not |
 | audited by TMF) |
 | |
 | UPDATE Indicates whether No |
 | the application |
 | can update records |
 | in a file. |
 | Starting value: ON |
 | (records can be |
 | updated) |
 | |

 2-10

 TASK OVERVIEW
 Supplying Values for Box and Application Attributes

 Table 2-3. Summary of Box Attributes (Continued)

 | |
 | Attribute Characteristic Value Required? |
 |___|
 | |
 | VALUES Indicates whether No |
 | the application |
 | does, displays |
 | initial field values |
 | from the DDL record |
 | description. |
 | Starting value: |
 | OFF (initial |
 | values do not |
 | appear) |
 | |

 Supplying Values for Box and Application Attributes

 When you supply a value for an application or box attribute,
 ENABLE stores the value in an internal table called the attribute
 table. To ensure that an object is adequately described, ENABLE
 stores the following in the attribute table:

 • The starting value of each attribute--a value that an
 attribute has when you start ENABLE

 • The current value (if any) of an attribute--a value that you
 supply with a SET command

 When you supply a current value for an attribute, the current
 value remains in the attribute table until you supply a new
 current value (with another SET command), remove the current
 value (with a RESET command), or exit from ENABLE.

 • The override value (if any) of an attribute--a value that you
 supply with an ADD command

 When you supply an override value that value only applies to
 the object being named and added with the ADD command.

 2-11

 TASK OVERVIEW
 Supplying Values for Box and Application Attributes

 • A default value for some attributes--a value that ENABLE
 supplies for some attributes with null starting values when
 you do not supply a current or override value.

 ENABLE supplies a default value when an object is added. A
 default value only applies to the added object.

 Figure 2-1 illustrates the partial contents of the attribute
 table when you start ENABLE.

S5044-006

Starting Value:

Current Value:

Override Value:

Default Value:

Sample Application Attributes Sample Box Attributes

TITLE TREE PATHCOMFILE RECORD DELETE DATAFILE

 Null Null Null Null ON Null

 Figure 2-1. Attribute Table When You Start ENABLE

 When ENABLE adds an object to the object table, it uses the
 contents of the attribute table to determine the description of
 the object. ENABLE evaluates the contents of the attribute table
 as follows:

 1. Attributes for which you have supplied override values--
 ENABLE uses these values to determine the object's
 description.

 2. Attributes for which you have not supplied override values,
 but for which you have supplied current values--ENABLE uses
 the the current values to determine the object's
 description.

 3. Attributes for which you have supplied neither current nor
 override values--ENABLE uses the starting values to determine
 the object's description.

 2-12

 TASK OVERVIEW
 Effect of the ENABLE Commands

 4. Certain attributes whose starting values are null and for
 which you have supplied neither override nor current values--
 ENABLE supplies default values to determine the object's
 description.

 Effect of the ENABLE Commands

 Typically, you use the ENABLE commands to perform the following
 tasks:

 1. Describe a box by supplying values for the box attributes.

 2. Name the box and add it to the object table.

 3. Repeat steps 1 and 2 until you have described and added every
 box to be used by the application.

 4. Describe the application by supplying values for the
 application attributes.

 5. Name the application and add it to the object table.

 6. Generate the application.

 The following paragraphs describe the action that ENABLE takes
 when you perform the preceding tasks to:

 • Provide a complete description of a box named "employ-box"

 • Add this box to the object table

 • Describe an application named "employ-in"

 • Add this application to the object table

 • Generate "employ-in"

 Describing and Adding a Box

 The values of the box attributes describe a box. To supply a
 value for these attributes, you can use one of the following
 commands:

 • The SET command--which supplies a current value for the
 attribute

 2-13

 TASK OVERVIEW
 Effect of the ENABLE Commands

 • The ADD command--which supplies an override value for the
 attribute

 To identify the record description for "employ-box," for example,
 you could use the following SET command to supply a value for the
 RECORD attribute:

 SET BOX RECORD employee

 Note that you do not have to include the keyword BOX when you use
 the SET command to supply a value for a box attribute. To
 maintain compatibility with a previous version of ENABLE, ENABLE
 allows you use the SET command to supply a value for a box
 attribute without including this keyword; for example, the
 command:

 SET RECORD employee

 could also be used.

 Figure 2-2 illustrates the action ENABLE takes if you enter the
 preceding SET command.

S5044-007

Starting Value:

Current Value:

Override Value:

Default Value:

Sample Application Attributes Sample Box Attributes

TITLE TREE PATHCOMFILE RECORD DELETE DATAFILE

 Null Null Null Null ON Null

%SET BOX RECORD employee ENABLE

EMPLOYEE

 Figure 2-2. Attribute Table With a Current Box-Attribute Value

 2-14

 TASK OVERVIEW
 Effect of the ENABLE Commands

 You could supply OFF as an override value for the DELETE
 attribute of "employ-box" by entering the following command:

 ADD BOX employ-box, DELETE OFF

 Figure 2-3 illustrates the effect of the preceding ADD command.

S5044-008

Starting Value:

Current Value:

Override Value:

Default Value:

Sample Application Attributes Sample Box Attributes

TITLE TREE PATHCOMFILE RECORD DELETE DATAFILE

 Null Null Null Null ON Null

%ADD BOX employ-box, DELETE OFF ENABLE

EMPLOYEE

OFF

 Figure 2-3. Attribute Table With an Override Box-Attribute Value

 After you enter the ADD BOX command, ENABLE examines the contents
 of the attribute table to obtain the description of the box. If
 certain attributes retain a null starting value (you have not
 supplied a current or override value), ENABLE supplies a default
 value. For example, the starting value of the DATAFILE attribute
 in Figure 2-3 is null and the attribute table contains neither an
 override nor current value for this attribute. Since this
 attribute has a default value, ENABLE will supply "employee" as
 the default value of the DATAFILE attribute for "employ-box."

 Figure 2-4 illustrates the partial contents of the attribute
 table when ENABLE adds the default value of the DATAFILE
 attribute. ENABLE obtains this default value from the record
 description in the dictionary.

 2-15

 TASK OVERVIEW
 Effect of the ENABLE Commands

S5044-009

Starting Value:

Current Value:

Override Value:

Default Value:

Sample Application Attributes Sample Box Attributes

TITLE TREE PATHCOMFILE RECORD DELETE DATAFILE

 Null Null Null Null ON Null

EMPLOYEE

OFF

EMPLOYEE

Dictionary
RECORD Employee
FILE IS Employee...

ENABLE

 Figure 2-4. Attribute Table With a Default Box-Attribute Value

 After entering any default values in the attribute table, ENABLE
 adds "employ-box" and its description to the object table, as
 Figure 2-5 illustrates.

 2-16

 TASK OVERVIEW
 Effect of the ENABLE Commands

S5044-010

Starting Value:

Current Value:

Override Value:

Default Value:

 Null Null Null Null ON Null

EMPLOYEE

OFF

EMPLOYEE

Sample Application Attributes Sample Box Attributes

TITLE TREE PATHCOMFILE RECORD DELETE DATAFILE

ENABLE

employ-box
 DATAFILE employee
 DELETE OFF
• • •

Object Table

 Figure 2-5. Adding a Box to the Object Table

 When ENABLE adds "employ-box" to the object table, it removes any
 override or default values from the attribute table. Figure 2-6
 shows the contents of the attribute table after ENABLE adds
 "employ-box."

 2-17

 TASK OVERVIEW
 Effect of the ENABLE Commands

S5044-011

Starting Value:

Current Value:

Override Value:

Default Value:

Sample Application Attributes Sample Box Attributes

TITLE TREE PATHCOMFILE RECORD DELETE DATAFILE

 Null Null Null Null ON Null

EMPLOYEE

 Figure 2-6. Contents of Attribute Table After ADD BOX Command

 Notice that ENABLE does not remove any current values from the
 attribute table. If you were to add another box without
 supplying either an override value or a new current value for the
 RECORD attribute, ENABLE would use "employee" as the value of the
 RECORD attribute for the new box.

 Once ENABLE has added a box to the object table, you cannot
 change the description of the box. You can, however, remove the
 box from the object table with a DELETE command, supply a new
 description of the box, and use the ADD command to add the newly
 described box to the object table.

 Describing and Adding an Application

 The values of the application attributes describe an application.
 You can supply values for these attributes by using either of the
 following commands:

 • The SET APPL command--which supplies a current value for an
 application attribute

 • The ADD APPL command--which supplies an override value for an
 application attribute

 2-18

 TASK OVERVIEW
 Effect of the ENABLE Commands

 Suppose, for example, that you want ENABLE to write the PATHCOM
 command file for the "employ-in" application to a file named
 "enabpath." You could supply this file name as a value for the
 PATHCOMFILE attribute by entering the following command:

 SET APPL PATHCOMFILE enabpath

 To tell ENABLE that the "employ-in" application uses
 "employ-box," you can supply an override value for the TREE
 attribute by entering command:

 ADD APPL employ-in, TREE (01 employ-box)

 Figure 2-7 illustrates the action that ENABLE takes when you
 enter the preceding SET and ADD commands.

S5044-012

Starting Value:

Current Value:

Override Value:

Default Value:

Sample Application Attributes Sample Box Attributes

TITLE TREE PATHCOMFILE RECORD DELETE DATAFILE

 Null Null Null Null ON Null

%SET APPL PATHCOMFILE enabpath
%ADD APPL employ-in, TREE (01 employ-box)

ENABLE

EMPLOYEEENABPATH

(01 employ-box)

 Figure 2-7. Attribute Table With a Current and an Override
 Application-Attribute Value

 2-19

 TASK OVERVIEW
 Effect of the ENABLE Commands

 Before ENABLE adds the "employ-in" application to the object
 table, it examines the contents of the attribute table to
 determine if it must supply any default values for application
 attributes. Notice that in Figure 2-7, the starting value of the
 TITLE attribute is null. Since the attribute table contains
 neither an override nor a current value, ENABLE supplies the
 application name as a default value.

 Figure 2-8 illustrates the partial contents of the attribute
 table when ENABLE supplies a default value for the TITLE
 attribute.

S5044-013

Starting Value:

Current Value:

Override Value:

Default Value:

Sample Application Attributes Sample Box Attributes

TITLE TREE PATHCOMFILE RECORD DELETE DATAFILE

 Null Null Null Null ON Null

ENABLE

EMPLOYEEENABPATH

(01 employ-box)

EMPLOY-IN

 Figure 2-8. Attribute Table With a Default Application-Attribute
 Value

 After ENABLE supplies the appropriate default values, it uses the
 contents of the attribute table to obtain the description of the
 "employ-in" application and adds this application to the object
 table, as illustrated by Figure 2-9.

 2-20

 TASK OVERVIEW
 Effect of the ENABLE Commands

S5044-014

Starting Value:

Current Value:

Override Value:

Default Value:

 Null Null Null Null ON Null

EMPLOYEE

Sample Application Attributes Sample Box Attributes

TITLE TREE PATHCOMFILE RECORD DELETE DATAFILE

ENABLE

Employ-box
 DATAFILE employee
 DELETE OFF
• • •

ENABPATH

(01 employ-box)

EMPLOY-IN

Employ-in
 PATHCOMFILE enabpath
 TREE (01 employ-box)
• • •

Object Table

 Figure 2-9. Adding an Application to the Object Table

 After ENABLE adds "employ-in" to the object table, it removes any
 override and default values from the attribute table. Figure
 2-10 illustrates the contents of the attribute table after ENABLE
 adds "employ-in."

 2-21

 TASK OVERVIEW
 Effect of the ENABLE Commands

S5044-015

Starting Value:

Current Value:

Override Value:

Default Value:

Sample Application Attributes Sample Box Attributes

TITLE TREE PATHCOMFILE RECORD DELETE DATAFILE

 Null Null Null Null ON Null

EMPLOYEEENABPATH

 Figure 2-10. Contents Attribute Table After an ADD APPL Command

 Notice that ENABLE does not remove the current value of any
 attribute. If, at this point, you added another application
 without supplying any application attribute values, ENABLE would
 try to write the PATHCOM command file for this application to
 "enabpath," the file identified by the current value of the
 PATHCOMFILE attribute.

 Once ENABLE has added an application to the object table, you
 cannot change its description by supplying attribute values. You
 can, however, use the DELETE APPL command to remove the
 application from the object table, supply a new description, and
 use the ADD command to add the newly described application to the
 object table.

 Generating an Application

 To indicate that you want to generate an application, use the
 GENERATE command. The following command generates the
 "employ-in" application:

 GENERATE APPL employ-in

 When you enter the GENERATE command, ENABLE uses the contents of
 the object table to generate the application, as illustrated in
 Figure 2-11.

 2-22

 TASK OVERVIEW
 Effect of the ENABLE Commands

S5044-016

Employ-in
 PATHCOMFILE enabpath
 TREE (01 employ-box)
• • •

Employ-box
 DATAFILE employee
 DELETE OFF
• • •

%GENERATE APPL employ-in

ENABLE

SCREEN COBOL
Skeleton File
(ENABAPPS)

PATHCOM
Skeleton File
(ENABPATS)

SCREEN
COBOL

Source Code

PATHCOM
Command File

(enabpath)

SCREEN COBOL
Object Files

(POBJ)

SCOBOL

 Figure 2-11. Generating an Application

 To maintain compatibility with a previous version, ENABLE
 provides many default values. You can use these defaults to
 generate an application that accesses a single data base file.
 For example, you can generate the application described in the
 preceding paragraphs by entering the following ENABLE command:

 GENERATE employ-in, RECORD employee, PATHCOMFILE enabpath

 Section 4 describes the recommended method of generating
 single-file applications; Section 5 describes the recommended
 method of generating multifile applications.

 2-23

 TASK OVERVIEW
 Supplying a Data Base

 SUPPLYING A DATA BASE

 Before you can execute an application generated by ENABLE, you
 must supply a data base consisting of one or more files, as
 described below. Refer to Section 3 for information about
 developing, describing, and creating a data base for your
 application.

 What is a Data Base?

 A data base is an organized collection of information, usually
 stored on a computer system. This information is represented by
 data in a standard format for ease of access by one, or by
 several application programs. A data base often serves as a
 repository for the information needed to perform certain
 functions in a commercial, scientific, or business enterprise.

 Broadly speaking, the format of data in a data base is composed
 of three elements. Fields form the smallest units, describing
 one feature of interest. A record is a set of fields used to
 describe one complete item. A file is a set of records that
 describe similar items.

 Fields

 The smallest named unit of data in a data base is a field. Each
 field has a name and occupies a specific location in relation to
 other fields.

 Fields can contain data that belongs to one of three broad
 categories: alphanumeric, alphabetic, or numeric. Alphanumeric
 fields contain data composed of letters of the alphabet, spaces,
 digits, and special symbols like the hyphen. Alphabetic fields
 contain data composed of letters of the alphabet and space
 characters. Numeric fields contain digits, minus or plus signs,
 and decimal points.

 A group field consists of two or more continguous fields. Each
 field within a group field has its own field name. In addition,
 the group itself has a name that can be used to refer to all the
 fields. As an example, consider a group named "address." This
 group consists of fields named "street," "city," "state," and
 "zip-code."

 2-24

 TASK OVERVIEW
 Files

 The characters that are stored in a field are called the field
 value. When more than one value is associated with a field, the
 field is said to contain repeating field values. The field
 itself is called a repeating field or group.

 Records

 A record is a collection of associated fields. Figure 2-12 shows
 a typical employee record.

S5044-017

0001 Jack Jones 01 01 Manager • • •

 Figure 2-12. Sample Employee Record

 An employee record contains the field values that concern a
 specific employee.

 Files

 A file is a collection of records. A file has a name but does
 not occupy a specific location in relation to other files. A
 file that contains a collection of employee records could be
 named "employee." Figure 2-13 shows an example of such a file.

 2-25

 TASK OVERVIEW
 Key Fields

S5044-018

Record 1

Record 2

Record 3

Record 4

Record n

Employee File
Field
Name:

Empnum
Field
Value

Empnum

0001

0002

0003

0004

• • •

Empname
Field
Value

Empname

Jack Jones

Marge Martin

Phil Smith

Mark Monte

• • •

Regnum
Field
Value

Regnum

01

01

02

01

• • •

Branchnum
Field
Value

Branchnum

01

02

03

02

• • •

Job
Field
Value

Job

Manager

Clerk

Clerk

Manager

• • •

• • •
Field

Values

• • •

• • •

• • •

• • •

• • •

• • •

 Figure 2-13. Sample Employee File

 Notice that this file resembles a table. Tandem computer systems
 store information in relational data base form. With a
 relational data base, you can regard each file as a
 two-dimensional table, where the columns correspond to fields,
 and the rows correspond to records.

 Key Fields

 A key field identifies a specific record within a file.
 Sometimes more than one field is needed to identify a record.
 When two or more contiguous fields are used to identify a
 specific record, the combined fields are called a composite key
 field.

 A primary key field uniquely identifies a particular record.
 Only one primary key field can exist for a record. A likely
 primary key field for an employee record is empnum because only
 one employee can have this unique number.

 An alternate key field identifies records with a common property.
 A record can have more than one alternate key. When a record has
 an alternate key, the application can use alternate search
 paths to retrieve data.

 2-26

 TASK OVERVIEW
 Establishing a PATHWAY System

 ESTABLISHING A PATHWAY SYSTEM

 An ENABLE application must exist within a PATHWAY system.
 PATHWAY, a part of the ENCOMPASS distributed data base management
 system, supplies programs, procedures, and structures that define
 and control requester and server processes (programs). PATHWAY
 also provides a program that handles the terminal for your
 application.

 ENABLE supplies you with many of the components necessary to
 establish a PATHWAY system. To establish such a system and
 execute an ENABLE application, you must:

 1. Create a PATHWAY monitor process (PATHMON). PATHMON controls
 the activity of processes and devices within the PATHWAY
 system.

 2. Create a PATHCOM process (PATHCOM). PATHCOM acts as the
 command interface to PATHMON.

 3. Submit the PATHCOM command file, produced by ENABLE, to
 PATHCOM, which then passes the information on to PATHMON.

 PATHMON uses the information in the PATHCOM command file to:

 • Define a Terminal Control Process (TCP)--The TCP controls the
 screen and sends instructions to the General Server.

 • Define the requester program generated by ENABLE--When
 executed, the requester process accepts requests from the
 screen and sends messages to the General Server.

 • Define the General Server program supplied by ENABLE--The
 General Server opens the data base file and implements the
 request.

 Figure 2-14, which is divided into two parts, illustrates the
 events that occur when you (1) establish a PATHWAY system and (2)
 execute an application.

 Sections 4 and 5 provide more information about establishing a
 PATHWAY system and executing an application.

 2-27

 TASK OVERVIEW
 Establishing a PATHWAY System

PATHMON
$one

Data Base
Files

PATHCTL

S5044-019

PATHCOM
Command File

(enabpath)

TCP PATHMON
$one

General Server
(ENABLEGS)

PATHCOM

PATHCTL
PATHCOM

1. Establishing a PATHWAY System

2. Executing the Application

:PATHMON/NAME $one, cpu 0, nowait/
:PATHCOM/IN enabpath/$one

SCREEN COBOL
Object Code

(POBJ)

:PATHCOM $one; RUN multi-prog

 Figure 2-14. Establishing a PATHWAY System and Executing an
 Application

 2-28

 SECTION 3

 DEVELOPING, DESCRIBING, AND CREATING A DATA BASE

 If the information your department uses is already stored in an
 existing data base, you can use that data base when you generate
 your ENABLE applications. If such a data base does not already
 exist, you must describe and create one before using ENABLE to
 generate an application to maintain it.

 The discussion below follows the step-by-step process used to
 describe and create the data base files used for many of the
 examples in this guide. This sample data base comprises two
 files that store information used by a personnel department.

 DEVELOPING A DATA BASE

 Since many users of ENABLE also use ENFORM to obtain reports, the
 approach described in the following paragraphs results in a data
 base that can be used by ENFORM as well as ENABLE.

 Briefly, the tasks involved in developing the sample personnel
 data base are:

 1. Identifying the classes of information in which the personnel
 department is interested. (Each class of information will be
 a data base file.)

 2. Listing the characteristics (or items) of data associated
 with each class of information. (Each data item will be a
 field within its associated file.)

 3. Drawing a diagram of the relationships between the classes of
 data

 3-1

 DEVELOPING A DATA BASE
 Identifying the Classes of Information

 4. Listing the fields within each file

 5. Selecting an appropriate file type for each file

 6. Choosing key fields for each file

 Identifying the Classes of Information

 You can determine the appropriate classes of data for the
 personnel department by considering the present flow of
 information; for example:

 1. When an employee is hired, the clerk performing the interview
 fills out two forms:

 --The first form lists the employee's name, age, and sex.
 The clerk completes this form with information (such as the
 employee's salary) supplied by the employee's department
 manager.

 --The second form contains general information about the
 employee's dependents. On this form, the clerk lists each
 dependent's name, age, and sex.

 2. Once a month, someone from the department updates a list that
 provides vacation information. This list identifies the
 number of vacation days available for each employee.

 3. If an employee receives a raise, a clerk retrieves the
 employee's file and changes the salary information.

 4. Whenever an employee informs the personnel department of a
 new dependent, someone in the department must add this
 information to the appropriate form.

 After reviewing the current flow of information, you might
 conclude that the personnel department is interested in the
 classes of information shown in Figure 3-1.

 3-2

 DEVELOPING A DATA BASE
 Listing the Data Items

 | |
 | EMPLOYEE Each employee for which the personnel |
 | department is responsible. |
 | |
 | DEPENDENTS The dependents of these employees. |
 | |

 Figure 3-1. Classes of Information

 Listing the Data Items

 A study of the information flow yields the list of data items
 shown in Figure 3-2.

 | |
 | EMPLOYEE |
 | |
 | empnum A unique identifying number |
 | empname The name of the employee |
 | regnum A number that identifies the region in |
 | which the employee works |
 | branchnum A number that identifies the branch for |
 | which the employee works |
 | job The job title of the employee |
 | age The employee's age |
 | salary The employee's current monthly salary |
 | vacation The number of vacation days accrued by |
 | the employee |
 | DEPENDENTS |
 | |
 | emp-no The identification number of an employee |
 | empname The name of the employee |
 | branchnum The branch number of the employee |
 | regnum The region number of the employee |
 | dependent-name ... The name of a dependent |
 | relationship ... The relationship between the dependent |
 | and the employee |
 | dependent-age ... The dependent's age |
 | |
 | The symbol (...) indicates that a data item may be repeated. |
 | |

 Figure 3-2. List of Data Items

 3-3

 DEVELOPING A DATA BASE
 Drawing the Relationship Between Classes of Information

 Drawing the Relationship Between Classes of Information

 A drawing of the relationships that exist between classes of
 information often helps you discover problems in these
 relationships. Such a drawing is also helpful later when you use
 ENABLE to generate an application that accesses the information
 in these classes.

 Since only two classes of data exist for the personnel data base,
 you can determine the relationship between these classes of data
 by drawing a diagram similar to the one shown in Figure 3-3.

DependentsEmployee Has

 Figure 3-3. Relationship Between Classes of Information

 Once you have drawn this diagram, the next step is to examine the
 relationship to determine how many occurrences of one class
 relate to occurrences of the other. Several different types of
 relationships can exist:

 • one-to-one For each occurrence in one class of information,
 there is exactly one occurrence in the other
 class.

 • one-to-many For each occurrence in one class of information,
 there are zero or more occurrences in the other
 class.

 • many-to-many Zero to many occurrences in one class of
 information can be associated with zero to many
 occurrences in the other class.

 Consider the relationship between employee and dependents. For
 each employee occurrence, there is one dependent occurrence.
 Figure 3-4 illustrates this relationship.

 3-4

 DEVELOPING A DATA BASE
 Drawing the Relationship Between Classes of Information

DependentsEmployee

OneOne

 Figure 3-4. One-to-One Relationship

 After you determine the type of relationship that exists between
 the classes of information, ask yourself the following questions:

 • Are any of the data items associated with more than one class
 of information? If so, is this duplication necessary?

 • Are any of the data items repeated in the same class of data?

 Depending on the answers to these questions, you might need to
 draw a new diagram of the relationships between your classes of
 information.

 Are Data Items Associated With More Than One Class?

 Some employee data (an employee number, name, branch number, and
 region number) appears with both employee and dependents. To
 eliminate some of this redundant information, you could remove
 the employee name, branch number, and region number from the
 dependents information. The employee number should remain with
 both, however, so that you can form a logical connection between
 these classes when you use either ENABLE or ENFORM.

 Are Data Items Repeated in the Same Class of Data?

 Several data items (dependent-name, relationship, and
 dependent-age) can be repeated. Figure 3-5 shows some sample
 data from this class of information.

 3-5

 DEVELOPING A DATA BASE
 Drawing the Relationship Between Classes of Information

Sample Data for Dependents

empnum

0001

0002

0004

•••

dependent-name

•••

Jane Jones
Bill Jones
Mark Jones

Judy Martin

Leslie Monte
David Monte
Sue Monte

relationship

S
C
C

C

S
C
C

•••

dependent-age

•••

33
12
10

17

27
3
2

 Figure 3-5. Dependents Class with Repeating Data

 You can remove this repeating data from the dependents class by
 using a technique called "normalization." To normalize the
 dependents data, you could include "empnum" with each occurrence
 of "dependent-name," "relationship," and "dependent-age." Figure
 3-6 illustrates how the sample dependent data appears when you
 eliminate repeating data.

 3-6

 DEVELOPING A DATA BASE
 Drawing the Relationship Between Classes of Information

Sample Data for Dependents

empnum

0001

0001

0001

0002

0004

0004

0004

•••

dependent-name

Jane Jones

Bill Jones

Mark Jones

Judy Martin

Leslie Monte

David Monte

Sue Monte

•••

relationship

S

C

C

C

S

C

C

•••

dependent-age

•••

33

12

10

17

27

3

2

 Figure 3-6. Dependents Class with Repeating Data Removed

 Although normalization requires you to include the same data item
 ("empnum") with several occurrences of the dependent data, this
 process simplifies your data base files and results in a data
 base that can be handled by both ENABLE and ENFORM.

 Drawing the New Relationship

 After you remove any data items that are associated with more
 than one class of data and eliminate repeating data from each
 class, you can draw a new diagram that shows the relationship
 between the classes. Since the repeating information has been
 removed from the dependents class, each employee occurrence is
 now related to several dependents occurrences. Figure 3-7
 illustrates this new relationship.

 3-7

 DEVELOPING A DATA BASE
 Listing the Fields in Each File

DependentsEmployee

ManyOne

 Figure 3-7. One-to-Many Relationship

 Listing the Fields in Each File

 At this point, you have identified the two files in the personnel
 data base: employee and dependents. Since dependents is too
 long to be a valid file name (eight character maximum length),
 you might shorten this name to "depend." The next step is to
 list the fields in each file as shown in Figure 3-8.

 | |
 | EMPLOYEE empnum, empname, regnum, branchnum, job, age, |
 | salary, vacation |
 | |
 | DEPEND emp-no, dependent-name, relationship, dependent-age |
 | |

 Figure 3-8. List of Fields in Both Files

 Notice that both files contain a field that represents an
 employee identification number. The presence of such duplicate
 fields is essential because you need these fields to provide
 logical connections when you use ENABLE to generate an
 application or use ENFORM to request a report.

 After you list the fields in each file, you are ready to select
 the physical structure for the file.

 3-8

 DEVELOPING A DATA BASE
 Selecting the Appropriate File Type

 Selecting the Appropriate File Type

 You can select one of the following file types for your data base
 files:

 • Key-sequenced--In a key-sequenced file, each record has a
 primary key and up to 255 alternate keys. If you select a
 key-sequenced file type, you can delete, insert, read, and
 update records in the file. To select a record you want to
 read, you can use either the primary or alternate key.

 • Relative--In a relative file, each record has a unique record
 number and can have up to 255 alternate keys. The record
 number is a unique value that corresponds to the physical
 position of a record within the file. If you select a
 relative file type, you can delete, insert, read, or update
 records within the file. To select a record you want to read,
 you can either use the record number as a primary key or use
 an alternate key.

 • Entry-sequenced--In an entry-sequenced file, each record has
 a unique record number and up to 255 alternate keys. The
 record number corresponds to the order in which a record is
 stored in the file. If you select an entry-sequenced file
 type, you can insert, read, or update records in the file; you
 cannot, however, delete records from the file. To select a
 record you want to read, you can either use the record number
 as a primary key or use an alternate key.

 • Unstructured--In an unstructured file, each record has a
 unique record number that serves as a primary key. Alternate
 keys cannot exist. If you select an unstructured file type,
 you can insert, read, or update records in the file; you
 cannot, however, delete records from the file. To select a
 record you want to read, you must use the record number as a
 primary key.

 Generally, you should select a key-sequenced file type for your
 data base files. This file type supplies you with the most
 flexibility of use. Of the other file types, you might want to
 select:

 • A relative file type if you have a use for the record number
 field

 • An entry-sequenced file type if you plan always to enter data
 in your file sequentially

 3-9

 DEVELOPING A DATA BASE
 Choosing Key Fields

 A key-sequenced file type is the best choice for both files in
 the personnel data base. A relative file type is not necessary
 because no logical use for the record number field exists. An
 entry-sequenced file type is not satisfactory because the
 personnel department enters data in both files randomly and
 sequentially. An unstructured file type is unsatisfactory
 because, with such a file type, the personnel department could
 not use alternate keys to find an "employee" or "depend" record.

 After you select a file type for a file, you are ready to choose
 key fields for that file.

 Choosing Key Fields

 Assuming that you have selected a key-sequenced file type for
 your data base files, you must now choose one primary key field
 for each. In addition, you can choose up to 255 alternate key
 fields for each file.

 For the "employee" file, a good choice for a primary key is
 "empnum." One of the requirements for a primary key field is
 that it stores unique values. Since each employee has a unique
 employee number, "empnum" satisfies this requirement. Good
 candidates for alternate keys in this file are "empname,"
 "regnum," and "branchnum." Instead of making both "regnum" and
 "branchnum" separate alternate key fields, you could identify a
 group field ("dept") of which these fields are a part and make
 that group an alternate key field. When you choose a group as a
 key field, that group is said to be a composite key field.

 For the "depend" file, neither "emp-no" nor "dependent-name"
 uniquely identify a record. These fields are not unique because
 the same employee number can appear with several dependents, and
 several dependents could have the same name. If you provide a
 number that identifies each dependent of a given employee, you
 could identify a group ("dep-key") consisting of "emp-no" and the
 dependent number ("dependent-no"). You could then use this group
 as a composite primary-key field. Although "dependent-name" is
 not unique, and therefore cannot serve as a primary key, it is a
 good choice for an alternate key field.

 When you are choosing key fields for your files, consider making
 any field (such as "empnum") that also appears in another file a
 key field of the other file. If you do this, you can use ENABLE
 to generate an application that can access both files.

 3-10

 DEVELOPING A DATA BASE
 Using DDL to Create a Record Description

 After you choose the key fields for your files, you are ready to
 use the Data Definition Language (DDL) to describe your data
 base.

 DESCRIBING A DATA BASE

 Before you can use ENABLE to generate an application, you must
 use DDL to describe each of the files in your data base. When
 you use DDL, you create a data dictionary.

 A data dictionary is a set of files that documents the structure
 of the data base. The dictionary documents the structure of each
 file with a record description that you create. When you create
 a record description, you can provide the following information:

 • Field names

 • The type of data (either alphanumeric, alphabetic, or numeric)
 that a field represents

 • The size of a field

 • A label for the field that can be used by both ENABLE and
 ENFORM

 • The name of a file whose organization is described by the
 record description

 • The structure (key-sequenced, relative, entry-sequenced, or
 unstructured) of a file that the record description describes

 • Key fields

 When you use DDL to create the record description and the
 dictionary, you can also produce File Utility Program (FUP)
 source code with which you can create the data base file.

 Using DDL to Create a Record Description

 To create a record description, you use the DDL RECORD statement.
 Although you can use DDL interactively, the recommended procedure
 is to enter the DDL source code (in this case, the DDL RECORD
 statement) in an edit-type file.

 3-11

 DEVELOPING A DATA BASE
 Using DDL to Create a Record Description

 Consider Figure 3-9, which shows the DDL RECORD statements of the
 two files in the sample data base. The numbers that appear to
 the right of this figure refer to notes that describe different
 portions of the RECORD statements.

 | |
 |RECORD employee. (1) |
 | FILE IS employee KEY-SEQUENCED. (2) |
 | 02 empnum PIC 9(4) HEADING "Employee Number". (3) |
 | 02 empname PIC X(18) HEADING "Employee Name". (4) |
 | 02 dept HEADING "Department". (5) |
 | 04 regnum PIC 9(4) HEADING "Region Number". (6) |
 | 04 branchnum PIC 9(4) HEADING "Branch Number". |
 | 02 job PIC X(12) HEADING "Job Title". |
 | 02 age PIC 9(2) HEADING "Age". |
 | 02 salary PIC 9(4)V99 HEADING "Salary". (7) |
 | 02 vacation PIC S99 HEADING "Vacation". (8) |
 | KEY IS empnum. (9) |
 | KEY "en" IS empname. (10) |
 | KEY "dp" IS dept. (11) |
 | END (12) |
 | |
 | RECORD dependents. (13) |
 | FILE IS depend KEY-SEQUENCED. (14) |
 | 02 dep-key. (15) |
 | 04 emp-no PIC 9(4) HEADING "Employee Number". |
 | 04 dependent-no PIC 9(2) HEADING "Dependent Number". |
 | 02 dependent-name PIC X(18) HEADING "Dependent Name.". |
 | 02 relationship PIC A. (16) |
 | 02 dependent-age PIC 99. |
 | KEY 0 IS dep-key. (17) |
 | KEY "dn" IS dependent-name. (18) |
 | END |
 |___|
 | |
 | |
 | NOTES |
 | |
 | (1) Identifies the subsequent information as a RECORD |
 | statement and supplies the record description name |
 | "employee." |
 | |

 Figure 3-9. Sample DDL RECORD Statements (Continued next page)

 3-12

 DEVELOPING A DATA BASE
 Using DDL to Create a Record Description

 | |
 | (2) Identifies a file name ("employee"); also indicates the |
 | file type (KEY-SEQUENCED). |
 | |
 | (3) Names a field, "empnum." The PIC clause identifies the |
 | size of this elementary field (four characters) and |
 | indicates its data type (numeric). Note the two digits |
 | to the left of the field name. These digits are called |
 | level numbers. All fields have level numbers to |
 | indicate their relationship to other fields. You can |
 | select any digits from 1 to 50 for level numbers. |
 | |
 | Notice the HEADING clause that appears with this and |
 | many other fields. Including such a clause provides |
 | you with a method of supplying your own screen labels |
 | when you use ENABLE to generate an application. |
 | |
 | (4) Names a field, "empname." The PIC clause identifies |
 | the size of this elementary field (18 characters) and |
 | indicates its data type (alphanumeric). |
 | |
 | (5) Names a field, "dept." Notice that this field does not |
 | have a PIC clause. The absence of a PIC clause |
 | indicates that the field is a group field. A group |
 | field consists of all of the immediately following |
 | elementary fields with lower level numbers. Be aware |
 | of the way that DDL evaluates level numbers. For DDL, |
 | a level number of 02 is higher than a level number of |
 | 03. |
 | |
 | (6) Names a field, "regnum." The PIC clause identifies the |
 | size (four characters) of this elementary field and |
 | indicates its data type (numeric). Note that the level |
 | number (04) associated with this field is lower than |
 | the level number (02) associated with the group field |
 | ("dept") of which "regnum" is a part. |
 | |
 | (7) Names a field, "salary." The PIC clause identifies the |
 | size (six characters) of this elementary field and |
 | indicates its data type (numeric). The symbol V in the |
 | PIC clause indicates an implied decimal point. The |
 | decimal point is not actually stored in the file. |
 | |

 Figure 3-9. Sample DDL RECORD Statements (Continued)

 3-13

 DEVELOPING A DATA BASE
 Using DDL to Create a Record Description

 | |
 | (8) Names a field, "vacation." The PIC clause identifies |
 | the size (three characters) of this elementary field |
 | and indicates its data type (numeric). The symbol "S" |
 | in the PIC field indicates that the value for the field |
 | can include a plus or minus sign. |
 | |
 | (9) Identifies a key field, "empnum." The absence of a key |
 | specifier in this KEY clause indicates that "empnum" is |
 | the primary key field. Since the "employee" file is |
 | identified as a key-sequenced file, the RECORD |
 | statement must identify a primary key field. |
 | |
 | (10) Identifies a key field, "empname." The presence of a |
 | two character mnemonic (en) in the KEY clause indicates |
 | that "empname" is an alternate key field. |
 | |
 | (11) Identifies a composite key field, "dept." A composite |
 | key field is a key that consists of a group field. The |
 | presence of the two-character mnemonic (dp) indicates |
 | that "dept" is an alternate key field. |
 | |
 | (12) Terminates the RECORD statement. |
 | |
 | (13) Identifies the beginning of a new RECORD statement and |
 | supplies the record description name "dependents." |
 | |
 | (14) Supplies a file name ("depend") and identifies the file |
 | type (KEY-SEQUENCED). |
 | |
 | (15) Defines a group field ("dep-key"). |
 | |
 | (16) Defines a field named "relationship." The PIC clause |
 | associated with this field indicates that its data type |
 | is alphabetic and its size is one character. |
 | |
 | (17) Identifies "dep-key" as the primary key. Note that |
 | since "dep-key" is a group field, this primary key is a |
 | composite key. |
 | |
 | (18) Identifies "dependent-name" as an alternate key field. |
 | |

 Figure 3-9. Sample DDL RECORD Statements (Continued)

 3-14

 DEVELOPING A DATA BASE
 ENABLE Limitations on DDL

 ENABLE Limitations on DDL

 Because ENABLE uses record descriptions to generate SCREEN COBOL
 source code, the syntax of a RECORD statement must be compatible
 with SCREEN COBOL representation capabilities. Specifically,
 this affects the syntax that you can use for the RECORD statement
 as follows:

 • If you use a TYPE clause or a user-defined TYPE (see the Data
 Definition Language (DDL) Reference Manual for details), the
 data type must be either CHARACTER or BINARY.

 • BINARY 8, FLOAT 32, FLOAT 64, COMPLEX, LOGICAL 2 and LOGICAL 4
 data items are not supported by ENABLE.

 • When you define numeric fields, the PIC clause cannot define
 more than 18 digits; for example, both PIC 9999999999999999999
 and PIC 9(19) are illegal.

 • If you use an OCCURS clause, the OCCURS clause nesting must
 not exceed four levels. The number of occurrences must not
 exceed 999.

 • When you specify elementary fields, the size of each field
 must not exceed 256 bytes.

 • If you add the values specified for the size descriptions of
 all the fields in the record description, the total number of
 bytes must not exceed 2046.

 • You can use a FILLER clause; however, the application will not
 display the filler on the screen.

 • You can use a REDEFINES clause; however, ENABLE ignores the
 redefined structure.

 • You can use a RENAMES clause; however, ENABLE ignores the
 renamed structure.

 • If you identify the entire record as a key field, an ENABLE
 application will use the first group or elementary item in the
 record as the key.

 • If you use an OCCURS DEPENDING ON clause, ENABLE will use the
 maximum number of occurs items. Refer to the ENABLE Reference
 Manual for more information.

 Refer to the Data Definition Language (DDL) Reference Manual
 for more information about the RECORD statement.

 3-15

 DEVELOPING A DATA BASE
 Creating a Dictionary

 Creating a Dictionary

 Once you write your RECORD statements in an edit-type file, you
 can use the DDL compiler either to create a new dictionary for
 the record descriptions or to add the record descriptions to an
 existing dictionary. By including a special command when you use
 the DDL compiler, you can also tell the compiler to write FUP
 file-creation commands that you can use later to create your data
 base files.

 To use the DDL compiler, enter a command with the following DDL
 COMMAND syntax from the command interpreter:

 | |
 | DDL/IN <ddl-source-file>/ [<command>] [, <command> ...] |
 | |
 | <ddl-source-file> |
 | |
 | is the name of an edit-type file containing one or more |
 | DEFINITION or RECORD statements or DDL compiler |
 | commands. |
 | |
 | <command> |
 | |
 | is any DDL compiler command. Refer to the Data |
 | Definition Language Reference Manual for a complete list |
 | of DDL compiler commands. |
 | |
 | DDL compiler commands that are relevant when creating a |
 | data base for an ENABLE application are as follows: |
 | |
 | DICT [!] |
 | |
 | creates a new dictionary for the record descriptions |
 | or adds the record descriptions to an existing |
 | dictionary. To purge an existing dictionary and add |
 | the record to a new dictionary, include the |
 | exclamation point (!). |
 | |
 | FUP <file-name> [!] |
 | |
 | tells the DDL compiler to create <file-name> if it |
 | doesn't already exist and to write the FUP file- |
 | creation commands to this file. To purge any |
 | previous contents of <file-name>, include the |
 | exclamation point (!). |
 | |

 3-16

 DEVELOPING A DATA BASE
 Creating a Data Base

 If your RECORD statements for the sample data base are in an
 edit-type file named "ddlsrc1," you can create a dictionary for
 these record descriptions by entering the following:

 DDL/IN ddlsrc1/DICT, FUP fupsrc1

 This command tells the DDL compiler to:

 1. Compile the source code on "ddlsrc1"

 2. Open and update a data dictionary on the default volume and
 subvolume

 3. Create and write FUP source commands in "fupsrc1"

 After you compile your DDL source code, you can use the FUP
 source file produced by DDL to create your data base.

 CREATING A DATA BASE

 Before you execute an application, the data base file (or files)
 to be used by the application must exist. To create these files,
 use the FUP commands produced by the DDL compiler. This assures
 that the structure and organization of a file is the same as the
 structure and organization described by the corresponding record
 description.

 This is particularly important if you use ENABLE to generate an
 application that access one of these files. An application
 generated by ENABLE retains information about a file, such as the
 file type, record organization, and key field location. When you
 execute the application, the General Server checks to see if a
 physical file matches the information retained by the
 application. If a file does not match, the application displays
 an error message stating:

 Regenerate program: file has changed.

 Figure 3-10 shows an annotated example of the FUP file-creation
 commands created by the DDL compiler for the sample data base
 files.

 3-17

 DEVELOPING A DATA BASE
 Creating a Data Base

 | |
 | < SCHEMA PRODUCED DATE - TIME : 1/08/84 15:45:21 (1) |
 | < SECTION EMPLOYEE |
 | < Record EMPLOYEE created on 01/08/84 at 15:45 |
 | RESET |
 | SET ALTKEY ("en," KEYOFF 4, KEYLEN 18, FILE 0) (2) |
 | SET ALTKEY ("dp," KEYOFF 22, KEYLEN 8, FILE 0) |
 | SET NO ALTCREATE |
 | SET ALTFILE (0, EMPLOYE0) (3) |
 | SET TYPE K (4) |
 | SET KEYOFF 0 (5) |
 | SET KEYLEN 4 (6) |
 | SET REC 54 (7) |
 | SET BLOCK 512 (8) |
 | SET IBLOCK 512 (9) |
 | CREATE EMPLOYEE (10) |
 | RESET (11) |
 | SET TYPE K (12) |
 | SET KEYLEN 24 |
 | SET REC 24 |
 | SET BLOCK 512 |
 | SET IBLOCK 512 |
 | CREATE EMPLOYE0 (13) |
 | < SECTION DEPENDENTS |
 | < Record DEPENDENTS created on 01/08/84 at 15:45 |
 | RESET |
 | SET ALTKEY ("dn," KEYOFF 6, KEYLEN 18, FILE 0) (14) |
 | SET NOALTCREATE |
 | SET ALTFILE (0, DEPEND0) (15) |
 | SET TYPE K |
 | SET KEYOFF 0 |
 | SET KEYLEN 6 |
 | SET REC 29 |
 | SET BLOCK 512 |
 | SET IBLOCK 512 |
 | CREATE DEPEND (16) |
 | |

 Figure 3-10. Sample FUP Source Commands (Continued next page)

 3-18

 DEVELOPING A DATA BASE
 Creating a Data Base

 | |
 | RESET |
 | SET TYPE K |
 | SET KEYLEN 26 |
 | SET REC 26 |
 | SET BLOCK 512 |
 | SET IBLOCK 512 |
 | CREATE DEPEND0 (17) |
 | |
 | |
 | NOTES |
 | |
 | (1) Contains header information written by the DDL |
 | compiler |
 | |
 | (2) Identifies an alternate key specifier ("en"), provides |
 | the location of this key (KEYOFF 4) in bytes relative |
 | to the start of a record, defines the key length |
 | (KEYLEN 18) in bytes, and identifies the alternate key |
 | file number (FILE 0). (FUP associates this alternate |
 | key with the actual alternate key file by means of the |
 | ALTFILE command described in note 3.) |
 | |
 | (3) Identifies the name of the alternate key file |
 | ("employe0") associated with this data file |
 | |
 | (4) Indicates that the data file is a key-sequenced (K) |
 | file |
 | |
 | (5) Identifies the location (KEYOFF 0) in bytes of the |
 | primary key field |
 | |
 | (6) Identifies the length (KEYLEN 4) in bytes of the |
 | primary key field |
 | |
 | (7) Identifies the length (REC 54) in bytes of the records |
 | that can be stored by this data file |
 | |
 | (8) Identifies the data block length in bytes (BLOCK 512) |
 | |

 Figure 3-10. Sample FUP Source Commands (Continued)

 3-19

 DEVELOPING A DATA BASE
 Determining File Size

 | |
 | (9) Identifies the index block length in bytes (IBLOCK |
 | 512). (Consider increasing this to 4096 bytes.) |
 | |
 |(10) Creates the named data file ("employee") |
 | |
 |(11) Restores the file-creation command parameters to their |
 | default settings |
 | |
 |(12) Indicates that the alternate key file is a |
 | key-sequenced (K) file. Alternate key files are always |
 | key-sequenced files |
 | |
 |(13) Creates the alternate key file ("employe0") |
 | |
 |(14) Identifies an alternate key specifier ("dn"), provides |
 | the location of this key (KEYOFF 6) in bytes relative |
 | to the start of a record, defines the key length |
 | (KEYLEN 18) in bytes, and identifies the alternate key |
 | file number (FILE 0). (FUP associates this alternate |
 | key with the actual alternate key file by means of the |
 | ALTFILE command described in note 15.) |
 | |
 |(15) Identifies the alternate key file ("depend0") |
 | associated with "depend" |
 | |
 |(16) Creates "depend" |
 | |
 |(17) Creates "depend0," the alternate key file for "depend" |
 | |

 Figure 3-10. Sample FUP Source Commands (Continued)

 Determining File Size

 When DDL writes FUP file-creation commands, it does not include a
 command to define the file size. The default file size is one
 page (4096 bytes) for the primary extent and one page for each
 secondary extent. Each file has 1 primary extent and up to 15
 secondary extents that are allocated automatically by the
 computer system when they are needed.

 These default extent sizes are small. Using them, a
 key-sequenced file with records 100 bytes long could store about
 320 records. For most applications, you will want to make the
 extents larger.

 3-20

 DEVELOPING A DATA BASE
 Increasing Block Size

 When you determine the size of a file, estimate the number of
 records that the file will store. To do this you will have to
 find answers to such questions as, "How many people work for the
 company?" You might want to include space for records that are
 no longer active such as those that store information about
 people who have left the company. Consider how many records will
 be added to the file each month and leave some room for growth.

 As a minimum, you will want to make the primary extent big enough
 to hold all of the records that are to be initially stored in the
 file. You can then let the system use the secondary extents for
 growth.

 Once you have determined the number of records that your file
 will contain, add the following FUP statement to the FUP file-
 creation commands:

 SET EXT (xxx RECS, yyy RECS)

 where xxx is the number of records that are to fit in the
 primary extent and yyy is the number of records that are to fit
 in the secondary extent. Insert this command before the FUP
 CREATE commands that create the data file and the alternate key
 file. The FUP SET EXT command is the only way that you can
 define your file size.

 When you include the SET EXT command, FUP uses the number of
 records you specify, the record size, and the size of the file
 block to calculate the number of pages required to hold your
 data.

 Refer to the ENSCRIBE Programming Manual for more information
 about selecting an appropriate extent size.

 Increasing Block Size

 If you increase the size of the BLOCK parameter, you can enhance
 the efficiency of any application that accesses records from the
 file sequentially. Consider changing this parameter from BLOCK
 512 to BLOCK 4096.

 3-21

 DEVELOPING A DATA BASE
 Using FUP to Create Your Files

 Using FUP to Create Your Files

 To use FUP to create your files, enter the FUP command from the
 command interpreter using the following FUP command syntax:

 | |
 | FUP/IN <fup-source-file>/ |
 | |
 | <fup-source-file> |
 | |
 | is the name of an edit-type file containing FUP commands. |
 | |

 Consider, for example, the following command:

 FUP/IN fupsrc1/

 This command tells FUP to execute the commands in the edit-type
 file named "fupsrc1."

 After you create the appropriate data base files, you are ready
 to use ENABLE to generate the application. Section 4 provides
 you with guidelines for generating and running an application
 that can access a single data base file. Section 5 provides
 guidelines for generating and running an application that can
 access two or more data base files.

 3-22

 SECTION 4

 CREATING AND RUNNING A SINGLE-FILE APPLICATION

 You can use ENABLE to generate an application through which you
 can enter or change data in a single data base file. When you
 execute the application, a screen similar to the one shown in
 Figure 4-1 appears.

EMPLOYEE-PROG
Page 1/1
* EMPNUM ______
* EMPNAME _______________________
* DEPT
 REGNUM ______
 BRANCHNUM ______
 JOB __________________
 AGE ___
 SALARY _________
 VACATION ___

Ready for input F3 for Help, shift F16 to exit

S5044-020

.00

 Figure 4-1. Screen Displayed by the Sample Employee-Prog
 Application

 4-1

 SINGLE-FILE APPLICATIONS
 The Sample Employee-Prog Application

 The application that displays this screen could be used to
 maintain employee information. To generate and execute this
 application, enter the series of commands shown in Figure 4-2.
 (Within the figure, arbitrary file names appear in lowercase
 letters. You can use these names exactly as shown or you can
 change them to avoid conflicts with existing file names.)
 Using these commands, you:

 1. Create a data dictionary with the Data Definition Language
 (DDL).

 2. Create a data base file with the File Utility Program (FUP).

 3. Generate a single-file application with ENABLE.

 4. Establish a PATHWAY system and run the application with the
 command interpreter, the Tandem text editor (EDIT), and
 PATHCOM.

 After you generate and execute the application, you can enter
 data into the file and manipulate the data according to the
 instructions presented in Section 7.

 4-2

 SINGLE-FILE APPLICATIONS
 The Sample Employee-Prog Application

 | |
 | STEP 1: CREATE A DATA DICTIONARY |
 | |
 | :EDIT ddlsrc1 |
 | |
 | *ADD |
 | 1 RECORD EMPLOYEE. |
 | 2 FILE IS employee KEY-SEQUENCED. |
 | 3 02 EMPNUM PIC 9(4) HEADING "Employee Number". |
 | 4 02 EMPNAME PIC X(18) HEADING "Employee Name". |
 | 5 02 DEPT HEADING "Department". |
 | 6 04 REGNUM PIC 9(4) HEADING "Region Number". |
 | 7 04 BRANCHNUM PIC 9(4) HEADING "Branch Number". |
 | 8 02 JOB PIC X(12) HEADING "Job Title". |
 | 9 02 AGE PIC 9(2) HEADING "Age". |
 | 10 02 SALARY PIC 9(4)V99 HEADING "Salary". |
 | 11 02 VACATION PIC S99 HEADING "Vacation". |
 | 12 KEY IS EMPNUM. |
 | 13 KEY "EN" IS EMPNAME. |
 | 14 KEY "DP" IS DEPT. |
 | 15 END |
 | 16 // |
 | *EXIT |
 | |
 | :DDL/IN ddlsrc1/DICT, FUP fupsrc1 ! |
 | |
 | STEP 2: CREATE A DATA BASE FILE |
 | |
 | :FUP/IN fupsrc1/ |
 | |
 | STEP 3: CALL ENABLE AND GENERATE AN APPLICATION |
 | |
 | :ENABLE |
 | |
 | %SET BOX RECORD EMPLOYEE |
 | %ADD BOX EMPLOYEE |
 | %SET APPL TREE (01 EMPLOYEE) |
 | %SET APPL PATHCOMFILE singlpth |
 | %ADD APPL EMPLOYEE-PROG |
 | %GENERATE EMPLOYEE-PROG |
 | %EXIT |
 | |

 Figure 4-2. Commands That Generate and Execute the Sample
 Employee-Prog Application (Continued next page)

 4-3

 SINGLE-FILE APPLICATIONS
 Generating a Single-File Application

 | |
 | STEP 4: ESTABLISH A PATHWAY SYSTEM AND EXECUTE THE |
 | APPLICATION |
 | |
 | :EDIT enabex1 |
 | |
 | *ADD |
 | 1 PURGE enablog, enabctl |
 | 2 CREATE enablog |
 | 3 ASSIGN PATHCTL, enabctl |
 | 4 PATHMON/NAME $one,CPU 0, NOWAIT,OUT enablog/ |
 | 5 PATHCOM/IN singlpth/$one |
 | 6 PATHCOM $one;RUN EMPLOYEE-PROG |
 | 7 PATHCOM $one;shutdown,wait |
 | 8 // |
 | |
 | :OBEY enabex1 |
 | |

 Figure 4-2. Commands That Generate and Execute the Sample
 Employee-Prog Application (Continued)

 Section 3 describes how to create a dictionary and a data base
 file. The tasks that you perform to generate and execute your
 own single-file application are:

 1. Generating the application

 2. Establishing a PATHWAY system and executing the application

 GENERATING A SINGLE-FILE APPLICATION

 When you generate a basic single-file application, you use, with
 a few exceptions, either the starting or the default values of
 box or application attributes. (Refer to Section 2 for a list of
 these attribute values.) To generate such an application,
 perform the following tasks:

 4-4

 SINGLE-FILE APPLICATIONS
 Generating a Single-File Application

 1. Start ENABLE by using the ENABLE run command in response to
 the command interpreter prompt, for example:

 :ENABLE

 ENABLE prompts for input by displaying the percent symbol
 (%). When this prompt appears, you can enter the ENABLE
 commands that describe your application.

 2. Describe a box by supplying a value for the RECORD attribute.
 This attribute identifies the record description that ENABLE
 will use to obtain information about the data base file to be
 accessed. For the sample "employee-prog" application, supply
 "employee" as a record description name by using the
 following SET command:

 SET BOX RECORD employee

 When you supply a value for the RECORD attribute, ENABLE
 stores this value in the attribute table. ENABLE does not
 open a dictionary and obtain the record description until you
 add a box. If ENABLE cannot find a record description, it
 will issue an error message at that time.

 3. Add a box that represents the data base file to be accessed
 by the application. When you add a box to the object table,
 you also provide a box name. For the sample "employee-prog"
 application, add a box named "employee" with the following
 ADD BOX command:

 ADD BOX employee

 ENABLE uses the contents of the attribute table to determine
 the description of the box. The value of the DATAFILE
 attribute identifies the data base file that a box
 represents. If you have not supplied a value for DATAFILE,
 ENABLE uses the file name contained in the record description
 as the default value of this attribute. For the sample
 "employee-prog" application, ENABLE uses "employee" as the
 file name.

 4. Supply a value for the TREE attrtribute. When you add an
 application, ENABLE uses the value of the TREE attribute to
 associate a box with the application. For the sample
 "employee-prog" application, you associate a box named
 "employee" with an application by using the following SET
 command:

 SET APPL TREE (01 employee)

 4-5

 SINGLE-FILE APPLICATIONS
 Generating a Single-File Application

 Notice the level number (01) that appears to the left of the
 box name. The value of this level number is significant only
 for multifile applications. (See Section 5 for more
 information.) For a single-file application, the only
 requirement for this level number is that it be any digit
 from 1 to 50.

 5. Supply a value for the PATHCOMFILE attribute. This attribute
 identifies the file to which ENABLE is to write the PATHCOM
 commands. (After you generate your application, you use this
 PATHCOM command file to establish a PATHWAY system with which
 you can execute your application.) If you do not supply a
 value for this attribute, ENABLE does not write a PATHCOM
 command file. For the sample "employee-prog" application,
 you use the following SET command to identify "singlpth" as
 the name of the file for the PATHCOM commands:

 SET APPL PATHCOMFILE singlpth

 If you want ENABLE to write the PATHCOM commands to an
 existing file, include an exclamation point (!) with the file
 name. When you include this symbol, ENABLE replaces the
 contents of the file with the PATHCOM commands. If you tell
 ENABLE to write these commands to an existing file, that file
 must be an edit-type file.

 6. Add the application to the object table. When you add an
 application, you also provide an application name. To add
 the sample "employee-prog" applicaton, use the following ADD
 command:

 ADD APPL employee-prog

 When you enter an ADD APPL command, ENABLE uses the contents
 of the attribute table to determine the description of the
 application. If you have not provided a value for the TITLE
 attribute (the value of this attribute identifies the screen
 title), ENABLE will use the application name as the default
 value and, hence, as the default screen title.

 After you add an application to the object table, you can
 either repeat steps 1 through 6 to describe and add more
 applications or generate the application you just added.

 7. Generate the application by using the following command:

 GENERATE employee-prog

 4-6

 SINGLE-FILE APPLICATIONS
 Establishing a PATHWAY System and Executing an Application

 When you enter a GENERATE command, ENABLE displays the
 following messages:

 Generating application: application-name Please wait ...

 Program generated: application-name

 8. Exit from ENABLE by entering the following command:

 EXIT

 Alternatively, you could exit from ENABLE by pressing the
 CTRL and Y terminal keys simultaneously.

 When you complete these tasks, you are ready to establish a
 PATHWAY system to execute your application.

 ESTABLISHING A PATHWAY SYSTEM AND EXECUTING AN APPLICATION

 When you supply a value for the PATHCOMFILE attribute and
 generate an application, ENABLE writes PATHCOM commands to the
 named edit-type file. ENABLE includes all the commands necessary
 to configure (set up) a PATHWAY system. Figure 4-3 shows the
 contents of the PATHCOM file generated for the sample
 "employee-prog" applicaton.

 4-7

 SINGLE-FILE APPLICATIONS
 Establishing a PATHWAY System and Executing an Application

 | |
 | SET PATHMON BACKUPCPU 1 |
 | SET PATHWAY MAXTCPS 10 |
 | SET PATHWAY MAXTERMS 10 |
 | SET PATHWAY MAXPROGRAMS 10 |
 | SET PATHWAY MAXSERVERCLASSES 10 |
 | SET PATHWAY MAXSERVERPROCESSES 10 |
 | SET PATHWAY MAXSTARTUPS 10 |
 | SET PATHWAY MAXPATHCOMS 40 |
 | SET PATHWAY MAXASSIGNS 32 |
 | SET PATHWAY MAXPARAMS 32 |
 | START PATHWAY COLD! |
 | |
 | SET TCP PROGRAM $SYSTEM.SYSTEM.PATHTCP2 |
 | SET TCP CPUS 0:1 |
 | SET TCP MAXTERMS 5 |
 | SET TCP MAXSERVERCLASSES 001 |
 | SET TCP MAXSERVERPROCESSES 001 |
 | SET TCP MAXTERMDATA 06464 |
 | SET TCP MAXREPLY 02000 |
 | SET TCP NONSTOP 0 |
 | SET TCP TCLPROG $MYVOL.MYSUB.POBJ |
 | ADD TCP ENABLE-TCP |
 | |
 | SET PROGRAM TCP ENABLE-TCP |
 | SET PROGRAM TYPE T16-6520 INITIAL EMPLOYEE-PROG |
 | SET PROGRAM TMF OFF |
 | ADD PROGRAM EMPLOYEE-PROG |
 | |
 | RESET SERVER ASSIGN, PARAM |
 | |
 | SET SERVER PROGRAM $SYSTEM.SYSTEM.ENABLEGS |
 | SET SERVER CPUS 0:1 |
 | SET SERVER NUMSTATIC 1 |
 | SET SERVER (ASSIGN EMPLOYEE,EMPFILE) |
 | SET SERVER TMF OFF |
 | ADD SERVER ENABLE-SERVER |
 | |

 Figure 4-3. PATHCOM Command File for the Sample Employee-Prog
 Application

 4-8

 SINGLE-FILE APPLICATIONS
 Establishing a PATHWAY System and Executing an Application

 You can use the generate PATHCOM command file to establish a
 PATHWAY system by entering a series of commands that result in:

 • The creation of a PATHWAY Monitor (PATHMON) process--PATHMON
 is the controlling process in a PATHWAY system

 • The creation of a log file to which PATHMON can report errors
 and changes in status

 • The assignment of the PATHCTL file--PATHCTL is a disc file
 where PATHMON maintains status information and the application
 configuration

 • The creation of a PATHCOM process--PATHCOM is the command
 interface to the PATHMON process

 You can place these commands that define, execute, and terminate
 the application in an edit-type file. Figure 4-4 describes the
 contents of such a file. Because you can execute the commands in
 this edit-type file by using the OBEY command, this type of file
 is called an "obey" file.

 4-9

 SINGLE-FILE APPLICATIONS
 Establishing a PATHWAY System and Executing an Application

 | |
 | 1. Purge the current PATHCOM log file and the current |
 | PATHCTL control file. |
 | |
 | PURGE <log-file>, <control-file> |
 | |
 | For example: |
 | |
 | PURGE log1, enabctl |
 | |
 | 2. Create a new PATHCOM log file. |
 | |
 | CREATE <log-file> |
 | |
 | For example: |
 | |
 | CREATE log1 |
 | |
 | 3. Assign the PATHCTL file to the control-file. |
 | |
 | ASSIGN PATHCTL, <control-file> |
 | |
 | For example: |
 | |
 | ASSIGN PATHCTL, enabctl |
 | |
 | 4. Create a PATHMON process. |
 | |
 | PATHMON/NAME <pathmon-name>, NOWAIT, |
 | CPU <cpu-number>, OUT <log-file>/ |
 | |
 | For example: |
 | |
 | PATHMON/NAME $one, NOWAIT, CPU 0, OUT log1/ |
 | |
 | Note that <pathmon-names> must not exceed six |
 | characters (five characters if they are to be used |
 | across the network), must begin with a dollar sign ($), |
 | and must be unique within the system (or systems) upon |
 | which it executes. |
 | |

 Figure 4-4. Obey File Commands That Establish a PATHWAY
 System and Execute an Application (Continued next page)

 4-10

 SINGLE-FILE APPLICATIONS
 Establishing a PATHWAY System and Executing an Application

 | |
 | 5. Cold start PATHWAY using information in the named |
 | PATHCOM command file. |
 | |
 | PATHCOM/IN <pathcom-file-name>/<pathmon-name> |
 | |
 | For example: |
 | |
 | PATHCOM/IN singlpth/$one |
 | |
 | 6. Run the application. |
 | |
 | PATHCOM <pathmon-name>; RUN <program-name> |
 | |
 | For example: |
 | |
 | PATHCOM $one;RUN employee-prog |
 | |
 | 7. Stop the PATHMON process when all users of the |
 | application exit from the application. |
 | |
 | PATHCOM <pathmon-name>; SHUTDOWN, WAIT |
 | |
 | For example: |
 | |
 | PATHCOM $one;SHUTDOWN, WAIT |
 | |

 Figure 4-4. Obey File Commands That Establish a PATHWAY
 System and Execute an Application (Continued)

 To execute the obey file, enter the OBEY command in reponse to
 the command interpreter prompt as follows:

 OBEY enabex1

 where enabex1 is the name of an edit-type file containing
 the commands described in Figure 4-4.

 4-11

 SECTION 5

 CREATING AND RUNNING A MULTIFILE APPLICATION

 You can use ENABLE to generate a multifile application through
 which two or more data base files can be maintained. When you
 execute the application, a screen similar to the one shown in
 Figure 5-1 appears.

EMPLOYEE-DETAIL
Page 1/1
* EMPNUM ___________

 * DEP-KEY
 DEPENDENT-NO ____
 DEPENDENT-NAME ________________________________
 RELATIONSHIP ____
 DEPENDENT-AGE ____

* EMPNAME _______________________________
* DEPT
 REGNUM ___________
 BRANCHNUM ___________
 JOB _______________________
 AGE ___
 SALARY _______________
 VACATION ___

Ready for input F3 for Help, shift F16 to exit

S5044-021

.00

 Figure 5-1. Sample Screen Displayed by Employee-Detail
 Application

 5-1

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Sample Employee-Detail Application

 The application that displays this screen could be used to
 maintain information that pertains to employees and their
 dependents. Figure 5-2 shows the series of commands used to
 generate and execute this application. You can generate the same
 application by entering the commands shown in this figure.
 (Change the file names that appear in lowercase letters, if
 necessary, to avoid conflicts with existing file names.) These
 commands accomplish the following tasks:

 1. Create a data dictionary

 2. Create two data base files

 3. Generate the application

 4. Establish a PATHWAY system and execute the application

 5-2

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Sample Employee-Detail Application

 | |
 | STEP 1: CREATE A DATA DICTIONARY |
 | |
 | :EDIT ddlsrc2 |
 | *ADD |
 | 1 RECORD EMPLOYEE. |
 | 2 FILE IS employee KEY-SEQUENCED. |
 | 3 02 EMPNUM PIC 9(4) HEADING "Employee Number". |
 | 4 02 EMPNAME PIC X(18) HEADING "Employee Name". |
 | 5 02 DEPT HEADING "Department". |
 | 6 04 REGNUM PIC 9(2) HEADING "Region Number". |
 | 7 04 BRANCHNUM PIC 9(2) HEADING "Branch Number". |
 | 8 02 JOB PIC X(12) HEADING "Job Title". |
 | 9 02 AGE PIC 9(2) HEADING "Age". |
 | 10 02 SALARY PIC 9(4)V99 HEADING "Salary". |
 | 11 02 VACATION PIC S99 HEADING "Vacation". |
 | 12 KEY 0 IS EMPNUM. |
 | 13 KEY "en" IS EMPNAME. |
 | 14 KEY "dp" IS DEPT. |
 | 15 END |
 | 16 |
 | 17 RECORD DEPENDENTS. |
 | 18 FILE IS depend KEY-SEQUENCED. |
 | 19 02 DEP-KEY. |
 | 20 04 EMP-NO PIC 9(4) |
 | 21 HEADING "Employee Number". |
 | 22 04 DEPENDENT-NO PIC 9(2) |
 | 23 HEADING "Dependent ID". |
 | 24 02 DEPENDENT-NAME PIC X(18) |
 | 25 HEADING "Dependent Name". |
 | 26 02 RELATIONSHIP PIC A. |
 | 27 02 DEPENDENT-AGE PIC 9(2). |
 | 28 KEY 0 IS DEP-KEY. |
 | 29 KEY "dn" IS DEPENDENT-NAME. |
 | 30 END |
 | *EXIT |
 | |
 | :DDL/IN ddlsrc2/DICT, FUP fupsrc2! |
 | |
 | STEP 2: CREATE THE DATA BASE FILES |
 | |
 | :FUP/IN fupsrc2/ |
 | |

 Figure 5-2. Commands That Generate and Execute the
 Employee-Detail Application (Continued Next Page)

 5-3

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Sample Employee-Detail Application

 | |
 | STEP 3: GENERATE THE APPLICATION |
 | |
 | :EDIT enabsrc1 |
 | *ADD |
 | 1 SET BOX RECORD employee |
 | 2 ADD BOX employee |
 | 3 SET BOX RECORD dependents |
 | 4 ADD BOX dependents |
 | 5 SET APPL TREE (01 employee |
 | 6 02 dependents |
 | 7 LINK empnum TO OPTIONAL emp-no) |
 | 8 SET APPL PATHCOMFILE multipth |
 | 9 ADD APPL employee-detail |
 | 10 GENERATE * |
 | 11 // |
 | *EXIT |
 | |
 | :ENABLE/IN enabsrc1/ |
 | |
 | |
 | STEP 4: ESTABLISH A PATHWAY SYSTEM AND EXECUTE THE |
 | APPLICATION |
 | |
 | :EDIT enabex2 |
 | *ADD |
 | 1 PURGE multilog, multictl |
 | 2 CREATE multilog |
 | 3 ASSIGN PATHCTL, multictl |
 | 4 PATHMON/NAME $mult, CPU 0, NOWAIT, OUT multilog/ |
 | 5 PATHCOM/IN multipth/$mult |
 | 6 PATHCOM $mult;RUN EMPLOYEE-DETAIL |
 | 7 PATHCOM $mult;SHUTDOWN,WAIT |
 | 8 // |
 | *EXIT |
 | |
 | :OBEY enabex2 |
 | |

 Figure 5-2. Commands that Generate and Execute the
 Employee-Detail Application (Continued)

 5-4

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Do Matching Fields Exist?

 SPECIAL CONSIDERATIONS FOR MULTIFILE APPLICATIONS_

 Before you try to generate a multifile application, consider
 the answers to the following questions:

 1. Do the files contain matching fields?

 2. Do the files contain related information?

 Do Matching Fields Exist?

 ENABLE can generate an application that uses several data base
 files only if the record descriptions of the files contain
 matching fields. Fields can match only when they have compatible
 data types. Consider, for example, the record descriptions in
 Figure 5-3 of the two data base files used by the sample
 "employee-detail" application.

S5044-022

RECORD employee.

FILE IS employee KEY-SEQUENCED.

02 empnum PIC 9(4) HEADING "Employee Number"

02 empname PIC X(18) HEADING "Employee Name".

02 dept HEADING "Department".

 04 regnum PIC 9(2) HEADING "Region Number".

 04 branchnum PIC 9(2) HEADING "Branch Number".

02 job PIC X(12) HEADING "Job Title".

02 age PIC 9(2) HEADING "Age".

02 salary PIC 9(4)V99 HEADING "Salary".

02 vacation PIC S99 HEADING "Vacation".

KEY 0 IS empnum.

KEY "en" IS empname.

KEY "dp" IS dept.

END

RECORD dependents.

FILE IS depend KEY-SEQUENCED.

02 dep-key.

 04 emp-no PIC 9(4) HEADING "Employee Number"

 04 dependent-no PIC 9(2) HEADING "Dependent ID".

02 dependent-name PIC X(18) HEADING "Dependent Name".

02 relationship PIC A.

02 dependent-age PIC 9(2).

KEY 0 IS dep-key.

KEY "dn" IS dependent-name.

END

 Figure 5-3. Sample Record Descriptions

 5-5

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Do the Files Contain Related Information?

 Notice that the "empnum" field of the "employee" record
 description matches the "emp-no" field of the "dependents" record
 description. In this case both fields have the same data type:
 PIC 9 or numeric. If you are not sure that two fields have
 compatible data types, refer to the ENABLE Reference Manual for
 more information.

 When fields from two files match, you can use them as join fields
 to establish a logical connection between the two files. When
 you generate a multifile application, each file must have at
 least one join field that can be used to link it to another file.
 If an application accesses more than two data base files, some
 files may have more than one join field forming links to other
 files.

 ENABLE has one other requirement for multifile applications:
 when you link two files, the join field of one of the files must
 be a key field. In Figure 5-3, both of the prospective join
 fields ("empnum" and "emp-no") are key fields. "Empnum" is a
 primary key field and "emp-no" is the leading portion of a group
 field ("dep-key") that is also a primary key field.

 If your files do not have appropriate join fields, you cannot use
 ENABLE to generate an application to maintain them.

 Do the Files Contain Related Information?

 When you generate a multifile application, the files being
 accessed should contain related information.

 An ENABLE application uses the join-field value of one file to
 locate or insert a record in another file. If the join fields
 do not contain related information, the application might not
 perform in the manner you expect, even though the values in the
 join fields are compatible.

 Suppose, for example, that you try to generate an application to
 access a file that contains employee information and a file that
 contains parts information. Suppose further that the join fields
 of these files are: "enpnum" (containing a four-digit employee
 number) and "partnum" (containing a four-digit part number).
 Although ENABLE could generate this application, you could not
 use it in any meaningful manner because no logical relationship
 exists between employee numbers and part numbers.

 When your data base files do not contain related information,
 consider using several single-file applications to access the
 files.

 5-6

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Generating a Multifile Application

 In the sample "employee-detail" application for files that
 contain related information, the "employee" file contains general
 information about each employee; the "depend" file contains
 information about each employee's dependents. The join fields
 ("empnum" and "emp-no") each represent an employee identification
 number. Since these fields represent related data, you can use
 the "employee-detail" application to record, maintain, or display
 information about a particular employee.

 If you have decided that your data base files contain related
 data and have appropriate join fields, you are ready to generate
 and execute your own multifile application. To do this:

 1. Use the ENABLE commands to generate the application.

 2. Use the PATHCOM command file produced by ENABLE to establish
 a PATHWAY system. You can then execute the application.

 GENERATING A MULTIFILE APPLICATION_

 To generate a multifile application, perform the following
 tasks:

 1. Describe and add a box for each data base file to be used by
 the application.

 2. Associate the boxes with the application and define the
 logical connections that exist between the boxes.

 3. Identify the name of the file to which the PATHCOM commands
 are to be written.

 4. Name and add the application.

 5. Generate the application.

 To perform these tasks, use the ENABLE commands. Since some
 commands are long, you may want to enter them in an edit-type
 file (called a "command file"). If you enter the commands in a
 command file, the last task to perform is:

 6. Submit the command file to ENABLE.

 5-7

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Describing and Adding Boxes

 Describing and Adding Boxes

 To describe and add a box for every data base file that the
 application is to access, proceed much as you did to add a box
 for a single-file application. Describe a box by supplying a
 value for the RECORD attribute and add it using the ADD command,
 as illustrated in Figure 5-4.

 5-8

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Describing and Adding Boxes

S5044-023

%SET BOX RECORD employee
%ADD BOX employee

Starting Value:

Current Value:

Override Value:

Default Value:

(Partial Contents of Attribute Table)

Null \xyz.$myvol.mysub Null

EMPLOYEE

RECORD DICTIONARY DATAFILE

EMPLOYEE

ENABLE

(\XYZ.$MYVOL.MYSUB)
RECORD employee.
FILE IS employee . . .
• • •
RECORD parts.
FILE IS parts . . .
• • •
RECORD dependents.
FILE IS depend . . .

Object Table

BOX employee
 DATAFILE employee
• • •

Dictionary

%SET BOX RECORD dependents
%ADD BOX dependents

Starting Value:

Current Value:

Override Value:

Default Value:

(Partial Contents of Attribute Table)

Null \xyz.$myvol.mysub Null

DEPENDENTS

RECORD DICTIONARY DATAFILE

DEPEND

ENABLE

(\XYZ.$MYVOL.MYSUB)
RECORD employee.
FILE IS employee . . .
• • •
RECORD parts.
FILE IS parts . . .
• • •
RECORD dependents.
FILE IS depend . . .

Object Table

BOX employee
 DATAFILE employee
• • •
BOX dependents
 DATAFILE depend
• • •

Dictionary

ENABLE enters employee as the current value of the RECORD attribute in the attribute table.

ENABLE opens the dictionary identified by the DICTIONARY attribute and gets the employee record description.

ENABLE uses the file (employee) identified in the record description as the default value of the DATAFILE attribute.

ENABLE adds the employee box and its description to the object table.

ENABLE changes the current value of the RECORD attribute to dependents.

ENABLE opens the dictionary identified by the DICTIONARY attribute and gets the dependents record description.

ENABLE uses the file (depend) identified in the dependents record description as the default value of the DATAFILE attribute.

ENABLE adds the dependents box and its description to the object table.

Legend

1

2

3 4

5

6

7 8

1

2

3

4

5

6

7

8

 Figure 5-4. Describing and Adding Two Boxes

 5-9

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

 Although you can supply values for other box attributes when you
 describe and add a box, this discussion assumes that the default
 values suit your needs. If you use the SET command to describe a
 box, you might want to use the RESET BOX command (to reset the
 attributes to their starting values) before you describe and add
 the next box. After you describe and add the necessary boxes,
 you are ready to associate the boxes with an application.

 Associating and Linking Boxes

 When you generate a multifile application, you must identify:

 • The boxes to be used by the application

 • The logical connections or links that exist between the boxes

 • The order in which the boxes are to be connected for the
 application

 To perform this task, supply a value for the TREE application
 attribute. When you supply a value for this attribute, you build
 a logical structure called a tree structure that ENABLE uses to
 organize the application.

 What Is a Tree Structure?

 A tree is a hierarchical structure similar to a family tree.
 Within the tree structure, each box has a specific position, much
 as you have a specific position within your own family. The
 position of a box within a tree structure is called its level. A
 box at one level of the tree structure is connected to a box (or
 boxes) at other levels of the tree structure by links. Figure
 5-5 illustrates a sample two-level tree structure and shows the
 value of the TREE attribute that builds this structure.

 5-10

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

TREE(01 employee
 02 dependents LINK empnum TO OPTIONAL emp-no)

S5044-024

employee
 empnum
 empname
 • • •

Level 1

Dependents
 dep-key
 emp-no
 dependent-no
 • • •

Level 2

Link that Connects Boxes

 Figure 5-5. Sample Tree Structure

 What Is a Link?

 A link is the portion of the tree structure that establishes a
 logical connection between two boxes. A tree structure might
 have many links that connect a box to several other boxes;
 however, only two boxes are connected by any single link.

 ENABLE provides a special kind of link called a LINK OPTIONAL.
 When you establish a LINK OPTIONAL between two boxes, you define
 the order in which the application can read or insert records for
 the boxes. This order establishes a dependency between the
 records associated with both. With a LINK OPTIONAL, the
 application must use the join-field value of a record from one
 box to read or insert a record for the other box. Access to a
 record in the second box depends upon the presence of a record
 that has a matching join-field value in the first.

 Because this dependency is similar to the relationship that
 exists between a parent and a child, one of the boxes connected
 by a LINK OPTIONAL is called a parent box and the other is called
 a child box. You can read or insert a record for a child box
 only if you have already read or inserted a record for the parent
 box.

 5-11

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

 The screen displayed by an application reflects the parent-child
 relationship you define. An application displays a child box
 after the join field of the parent box. If any other fields in
 the parent box follow the join field, the application displays
 these fields below the child box. An application does not
 display the join field of a child box.

 Figure 5-6 shows the screen displayed by the sample
 "employee-detail" application. For this application, the
 employee box is the parent box and the "dependents" box is the
 child box. Notice that the join field ("empnum") of the
 "employee" box appears before the "dependents" box and that the
 join field of the dependents box ("emp-no") does not appear on
 the screen. An ENABLE application does not display the join
 field of the child box because the data in this field is
 identical to the data displayed or inserted in the join field of
 the parent box.

EMPLOYEE-DETAIL
Page 1/1
* EMPNUM ___________

 * DEP-KEY
 DEPENDENT-NO ____
 DEPENDENT-NAME ________________________________
 RELATIONSHIP ____
 DEPENDENT-AGE ____

* EMPNAME _______________________________
* DEPT
 REGNUM ___________
 BRANCHNUM ___________
 JOB _______________________
 AGE ___
 SALARY _______________
 VACATION ___

Ready for input F3 for Help, shift F16 to ex

S5044-025

.00

Join Field of
Parent Box

Child Box

Remaining Fields
of Parent Box

 Figure 5-6. Parent and Child Boxes on the Screen

 5-12

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

 When you establish a link between two boxes, you must decide
 which box is to be the parent box and which box is to be the
 child.

 Choosing a Parent and Child Box

 To decide which box is to be a parent box and which box is to be
 a child, consider the purpose for which the application is being
 generated. ENABLE imposes two requirements regarding this
 choice:

 1. The join field of a child box must be a primary key field, an
 alternate key field, a courtesy key field, or the leading
 portion of a primary or alternate key field.

 2. The size of the join field for the parent box must be equal
 to or less than the size of the join field of the child box.

 Refer to the ENABLE Reference Manual for more information about
 these requirements.

 After you determine the links that can exist between the boxes
 used by your application, you must identify the level at which
 each box resides in the tree structure.

 The Levels of the Tree Structure

 A simple tree structure, such as the one you build for a
 single-file application, has one level and a single box that
 resides at that level. A more complex structure, such as one
 that you build for an application that accesses several files,
 can have many levels, with several boxes residing at each level
 except for the first. At this, lowest, level there can be only
 one box. ENABLE imposes no restrictions on the number of boxes
 that reside at other levels of the tree structure and has a
 maximum of 50 levels per application.

 Before you identify the level at which each box resides, you
 should understand how they affect the generated application.
 When you identify the levels of your tree structure:

 1. Only one box can reside at the first level. A box that
 resides at this level must have one or more join fields that
 you can use to link it to a child box (or boxes) at the
 second level of the tree.

 5-13

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

 2. For a box at any level except the first, a join field must
 exist that links that box to a parent box at the next lower
 level of the tree structure.

 3. If you link two or more boxes to the same parent box, these
 boxes must reside at the same level of the tree structure.

 The level at which a box resides in the tree structure affects
 the appearance of the screen displayed by the application as
 follows:

 • A field from the box at the first level of the tree must
 appear as the first field on the screen.

 • For each subsequent level, a field from a box at that level
 must appear before any fields from boxes at higher levels.

 Before you determine the levels at which your boxes are to
 reside, consider the purpose for which you are generating the
 application, the possible links that you can establish between
 boxes, and the logical relationship between these boxes.

 If your application uses only two boxes, you can identify either
 box as residing at the first level of the tree structure.

 If your application uses three or more boxes, the process of
 determining appropriate levels becomes more complicated.
 Suppose, for example, that you want to generate an application
 that uses three boxes: "employ-box," "depends-box," and
 "insure-box." Assume that these boxes represent the following
 information:

 • "Employ-box" represents general information about employees.

 • "Depends-box" represents information about the dependents of
 these employees.

 • "Insure-box" represents information about each employee's
 insurance coverage. This information also indicates whether
 dependents are covered by the employee's insurance.

 Now suppose that each of these boxes has a field that represents
 an employee identification number. Depending on the purpose for
 which you are generating this application, you could build a
 variety of tree structures with a variety of links. Figure 5-7
 illustrates the various tree structures which you could build for
 these boxes.

 5-14

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

S5044-026

Employ-box

 empnum
 • • •

To Display and Maintain Employee Information

Employ-box Employ-box

Depends-box

dep-key
 emp-no
 • • •

Insure-box

Cov-key
 empno
 • • •

Insure-box

 Cov-key
 empno
 • • •

Depends-box

Dep-key
 emp-no
 • • •

Depends-box

dep-key
 emp-no
 • • •

Insure-box

Cov-key
 empno
 • • •

 empnum
 • • •

 empnum
 • • •

Insure-box

Cov-key
 empno
 • • •

To Display and Maintain Insurance Information

Depends-box

 Dep-key
 emp-no

Employ-box

Depends-box

Dep-key
 emp-no
 • • •

To Display and Maintain Dependent Information

Depends-box

Dep-key
 emp-no
 • • •

Insure-box

 Cov-key
 empno
 • • •

Insure-box

 Cov-key
 empno
 • • •

Employ-box

 empnum
 • • •

Employ-box

 empnum
 • • •

Depends-box

Dep-key
 emp-no
 • • •

empnum
 • • •

Employ-box

 empnum
 • • •

Depends-box

 Dep-key
 emp-no
 • • •

Depends-box

 Dep-key
 emp-no
 • • •

Employ-box

empnum
• • •

Insure-box

Cov-key
 empno
 • • •

Insure-box

Cov-key
 empno
 • • •

Insure-box

Cov-key
 empno
 • • •

Employ-box

empnum
 • • •

 Figure 5-7. Box Levels When Multiple Links Are Possible

 5-15

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

 Sometimes the links that you can establish will determine the
 level at which a box must reside. Suppose that your application
 uses a box named "dept-box" as well as two of the boxes
 ("employ-box" and "depends-box") described earlier. Suppose
 further that you can link "dept-box" to "employ-box" but you
 cannot link "dept-box" to "depends-box." Depending on the
 purpose of the application, you could identify the levels shown
 in Figure 5-8.

 5-16

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

S5044-027

To Display and
Maintain Employee

 Information

To Display and
Maintain Dependent

Information

To Display and
Maintain Department

 Information

Application Purpose Possible Tree Structures

Employ-box

Depends-box
dep-key
 emp-no
 • • •

Dept-box

 empnum
 dept

Depends-box
 Dep-key
 emp-no
 • • •

Dept-box

Depends-box

Dep-key
 emp-no
 • • •

Employ-box

 empnum
 dept

 Deptnum
 • • •

Employ-box

 empnum
 dept

 Deptnum
 • • •

Dept-box

 Deptnum
 • • •

 Figure 5-8. Box Levels When Links Are Limited

 5-17

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

 After you identify the level at which a box is to reside, you are
 ready to supply a value for the TREE attribute.

 Supplying a Value for the TREE Attribute

 Although you can supply a value for the TREE attribute in several
 ways, the examples in this discussion use the SET APPL command to
 do so.

 To supply values for the TREE attribute, you must:

 • Associate a box with a level number

 • Provide a LINK OPTIONAL clause for each box except the box at
 the first level of the tree structure

 Associating a Box With a Level Number. To define the level at
 which a box resides in the tree, you associate the box name with
 a level number (similar to a DDL level number). Valid values
 for level numbers range from 1 to 50.

 To define a box as being at the first level of the tree, specify
 a level number that is lower in value than any other level number
 in the tree. For example, consider the following box names and
 associated level numbers:

 06 employ-box 08 depends-box 08 coverage-box 10 location-box

 The level numbers associated with these box names indicate that:

 • "Employ-box" is at the first level of the tree structure

 • "Depends-box" and "coverage-box" are at the second level of
 the tree structure

 • "Location-box" is at the third level of the tree structure

 5-18

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

 Level numbers do not have to correspond to the precise level at
 which a box resides, nor do they have to be sequential. These
 rules govern level numbers for the TREE attribute:

 1. The numerically lowest-level number identifies the box at the
 first level of the tree; only one box can have this level
 number.

 2. The level number of a parent box must be lower than the level
 number of its child box (or boxes).

 3. The level numbers for all child boxes associated with the
 same parent box must be the same.

 4. Valid level numbers range between 1 and 50.

 Using the LINK OPTIONAL Parameter. When you supply a value for
 the TREE attribute, you must use the LINK OPTIONAL parameter with
 every box except the box at the first level of the tree. When
 you use this parameter, you identify the link that connects a
 child box to a parent box.

 The LINK OPTIONAL parameter has two forms. You use the first
 form if the join field of the parent box and the join field of
 the child box have different names. You use the second form if
 the join fields of both boxes have the same name.

 If you use the first form of the LINK OPTIONAL parameter, you
 enter the join-field name of the parent box before the join-field
 name of the child box, for example:

 SET APPL TREE (01 employee
 02 dependents LINK empnum
 TO OPTIONAL emp-no)

 In this case:

 • "employee" is the name of the parent box.

 • "dependents" is the name of the child box.

 • "empnum" is the join field of the parent record.

 • "emp-no" is the join field of the child record.

 5-19

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

 If you use the second form of the LINK OPTIONAL parameter, you
 enter the name of the parent box, the name of the child box, and
 the common name of the join fields from both boxes, for example:

 SET APPL TREE (01 region
 02 branch
 LINK region TO OPTIONAL branch
 VIA regnum)

 In this case:

 • "region" is the parent box.

 • "branch" is the child box.

 • "regnum" is the join field in both parent and child records.

 Effect of the Tree Structure on a Generated Application

 When you build a tree structure for your application, that
 structure affects the following aspects of a generated
 application:

 • The screen displayed by the application, as follows:

 --A field from the box at the first level always appears as
 the field on the screen.

 --The join field of a parent box always appears on the
 screen immediately before any child box (or boxes).

 --A join field of a child box does not appear on the terminal
 screen.

 • The records that can be read and inserted for each box: The
 organization of the tree structure determines the access path
 that the generated application follows to read and insert
 records.

 The following paragraphs describe two sample tree structures and
 discuss how these tree structures affect the preceding aspects of
 their respective applications.

 5-20

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

 Sample Two-Level Tree Structure. Figure 5-9 shows an example of
 a two-level tree structure. This figure also shows the SET TREE
 command that builds this tree structure.

TREE(01 employee
 02 dependents LINK empnum TO OPTIONAL emp-no)

S5044-028

employee
 empnum
 empname
 • • •

Level 1

Dependents
 dep-key
 emp-no
 dependent-no
 • • •

Level 2

Link between Boxes

 Figure 5-9. Sample Two-Level Tree Structure

 Figure 5-10 shows the screen displayed by an application
 generated with this tree structure. Note that a field from the
 "employee" box (the box at the first level of the tree structure)
 appears first on the screen. The "dependents" box directly
 follows the join field ("empnum") of the "employee" box. The
 join field ("emp-no") of the "dependents" box does not appear on
 the screen.

 5-21

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

EMPLOYEE-DETAIL
Page 1/1
* EMPNUM ___________

 * DEP-KEY
 DEPENDENT-NO ____
 DEPENDENT-NAME ________________________________
 RELATIONSHIP ____
 DEPENDENT-AGE ____

* EMPNAME _______________________________
* DEPT
 REGNUM ___________
 BRANCHNUM ___________
 JOB _______________________
 AGE ___
 SALARY _______________
 VACATION ___

Ready for input F3 for Help, shift F16 to exit

S5044-029

.00

 Figure 5-10. Sample Screen With Two Boxes

 The tree structure defined for an application also determines the
 the records that the application can retrieve or insert for each
 box. If the application can retrieve or insert a record for a
 box, that record is said to qualify for the application-access
 path.

 An ENABLE application can read or insert any record for the box
 at the first level of the tree structure. Therefore, all the
 records associated with this box qualify for the application-
 access path.

 An ENABLE application can read or insert records for a box at the
 second level of the tree only if those records match (have the
 same join-field values as) records read for or inserted in the
 box at the first level of the tree. Therefore, a record for a
 box at the second level of the tree qualifies for the
 application-access path only if that record matches a record for
 the box at the first level of the tree.

 Figure 5-11 illustrates this concept for the "employee" and
 "dependents" boxes.

 5-22

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

S5044-030

employee
 empnum
 empname
 • • •

Level 1

Dependents
 dep-key
 emp-no
 dependent-no
 • • •

Level 2

Any record for this box qualifies
for the application access path.

To qualify for the application
access path, a dependents record
must have an emp-no value that
exactly matches the empnum value
of an employee record.

 Figure 5-11. Application-Access Path for the Employee-Detail
 Application

 Figure 5-12 shows the partial contents of some sample records
 associated with the "employee" and "dependents" boxes. This
 figure also identifies the records from both boxes that qualify
 for the application-access path.

 5-23

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

S5044-031

Employee Records
(All records qualify for
the access path)

Dependent Records
(Records qualify for the access path
if they match an employee record)

Empnum . . . Emp-No . . .

0001 Jack Jones . . .

0002 Marge Martin

0003 Phil Smith

0004 Mark Monte

0006 Steven Myers

0007 Joe Lane

0008 Anne Lee

• • •

0001 01 Jane Jones
0001 02 Bill Jones
0001 03 Mark Jones

0002 01 Judy Martin

0004 01 Leslie Monte
0004 02 David Monte
0004 03 Sue Monte

0006 01 Liz Myers

0007 01 Lois Lane

0008 01 Tod Lee
0008 02 Steve Lee

• • •

• • •
• • •
• • •

• • •

• • •
• • •
• • •

• • •

• • •

• • •
• • •

• • •

A Dependent record with Emp-No = 0005 does not qualify for the application access
path because a matching Employee record with Empnum = 0005 does not exist.

Legend

The Employee record with Empnum = 0003 qualifies for the application access path
even though a matching Dependent record does not exist.

1

2

1

2

 Figure 5-12. Qualified Records for a Tree Structure
 With Two Boxes

 The access path established for an application also affects the
 way that you can perform delete and update operations on records
 for these boxes, for example:

 • If you update a parent record and change the value of its join
 field, the child record that previously matched the updated
 record no longer qualifies for the application-access path.

 5-24

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

 • If you delete a parent record before you delete a matching
 child record, you can no longer retrieve the child record.
 Since the matching parent record no longer exists, the child
 record does not qualify for the application-access path.

 Sample Three-Level Tree Structure. Figure 5-13 shows a
 three-level tree structure and the SET TREE command that builds
 this structure.

 5-25

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

S5044-032

SET APPL TREE(06 employ-box
 08 depend-box LINK empnum TO OPTIONAL emp-no
 08 empcov-box LINK employ-box TO OPTIONAL empcov-box VIA empnum
 10 cov-box LINK cov-type TO OPTIONAL insur-id)

Level 1

Level 2

Join
Fields
Form a
Link

Level 2

Level 3

Employ-box

empnum
empname
• • •

Depend-box

Dep-key
 emp-no
 dependent-no
 • • •

Cov-box

insur-type
insur-name
• • •

Empcov-box

primkey
 empnum
 cov-type

Join
Fields

Form a
Link

 Figure 5-13. Sample Three-Level Tree Structure

 Figure 5-14 shows the screen displayed by an application
 generated with this tree structure. Note the following:

 1. A label ("empnum") from "employ-box" appears first on the
 screen.

 5-26

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

 2. "Depend-box" appears directly after "empnum" (the join field
 of "employ-box"). The join field ("emp-no") of "depend-box"
 does not appear.

 3. The second child box, "empcov-box," follows "depend-box."
 Note that both "depend-box" and "empcov-box" begin in the
 same screen column because they are both children of
 "employ-box." The join field ("empnum") of "empcov-box" does
 not appear.

 4. "Cov-box," the child of "empcov-box," appears to be nested in
 "empcov-box." The join field ("insur-type") of "cov-box"
 does not appear.

EMPLOYEE-DETAIL
Page 1/1
* EMPNUM ___________

 * DEP-KEY
 DEPENDENT-NO ____
 DEPENDENT-NAME _______________________________
 RELATIONSHIP ____
 DEPENDENT-AGE ____

 * PRIMKEY
 COV-TYPE ____

 INSUR-NAME _____________________________
 DEP-COV ____

* EMPNAME _______________________________

Ready for input F3 for Help, shift F16 to exit

S5044-033

 Figure 5-14. Screen With Four Boxes

 5-27

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

 Figure 5-15 shows the partial contents of the files associated
 with the application that displays the screen shown in
 Figure 5-14. This figure also shows the records from each file
 that qualify for the application-access path.

 When the tree structure of an application has more than two
 levels, records qualify for the application-access path as
 follows:

 1. The application can read or insert any record for the box at
 the first level of the tree. Therefore, all records for this
 box qualify for the application-access path.

 2. The application can read or insert a record for a box at the
 second level of the tree only if that record matches (has the
 same join-field value) a record for a box at the first level
 of the tree. Therefore, to qualify for the application-
 access path, a record at the second level of the tree must
 match any record at the first level of the tree.

 3. The application can read or insert a record for a box at the
 third level of the tree only if that record matches (has the
 same join-field value) a qualified record for a box at the
 second level of the tree. Therefore, to qualify for the
 application-access path, a record at the third level of the
 tree must match a qualified record at the second level of the
 tree.

 5-28

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Associating and Linking Boxes

S5044-034

Empnum . . . Emp-No . . .

0001 Jack Jones . . .

0002 Marge Martin

0003 Phil Smith

0004 Mark Monte

0006 Steven Myers

0007 Joe Lane

0008 Anne Lee

• • •

0001 01 Jane Jones
0001 02 Bill Jones
0001 03 Mark Jones

0002 01 Judy Martin

0004 01 Leslie Monte
0004 02 David Monte
0004 03 Sue Monte

0006 01 Liz Myers

0007 01 Lois Lane

0008 01 Tod Lee
0008 02 Steve Lee

• • •

• • •
• • •
• • •

• • •

• • •
• • •
• • •

• • •

• • •

• • •
• • •

• • •

A Depends-Box record with Emp-No = 0005 does not qualify for the access path.

Legend

Empnum . . .

0001 Jack Jones . . .

0002 Marge Martin

0003 Phil Smith

0004 Mark Monte

0006 Steven Myers

0007 Joe Lane

0008 Anne Lee

Empnum . . .

0001 A3

0002 A4

0003 B1

0004 B2

0006 B9

0008 C1

A3 Great Deal

A4 New Stuff

B1 Fine Thing

B2 Good Rates

C1 Okay Deal

1

2

3

1

2
3

The following Empcov-Box record does not qualify for the application access path because its
join field value (0005) does not match an Employ-Box record: 0005 B3.

Since the record 0005 B3 does not qualify for the application access path, the following
matching Cov Box record also does not qualify: B3 Cheap Rates.

Employ-Box Records
(All qualify for the access path)

Depend-Box Records
(Qualify for the access path if they match an
Emp-Box record)

Employ-Box Records
(All qualify for the access path)

Empcov-Box Records
(Qualify for the access path if
they match an employ-box
record)

Cov-Box Records
(Qualify for the access path if
they match a qualified record
from Empcov-Box)

 Figure 5-15. Qualified Records for an Application With a
 Three-Level Tree Structure

 5-29

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Identifying the Name of the PATHCOM Command File

 Supplying a value for the TREE attribute is the most complex task
 that you must perform to generate a multifile application. The
 remaining tasks are simple to perform. These tasks are:

 • Identifying the name of the PATHCOM command file

 • Naming and adding the application

 • Generating the application

 • Submitting the command file to ENABLE

 Identifying the Name of the PATHCOM Command File

 To complete the description of the application, request a PATHCOM
 file and identify its name. To request a PATHCOM file, supply
 the file name as the value of the PATHCOMFILE attribute. For
 example, the following SET APPL command requests that ENABLE
 write the PATHCOM command file to a file named "multipth":

 SET APPL PATHCOMFILE multipth

 Naming and Adding the Application

 You can now name and add the application and its description to
 the object table. To add an application, you use the ADD APPL
 command. For example, the following ADD APPL command adds the
 sample "employee-detail" application:

 ADD APPL employee-detail

 Generating an Application

 To generate an application, you use the GENERATE command. Since
 you have already added an application to the object table, you
 can generate your application by using the following form of the
 GENERATE command:

 GENERATE APPL *

 5-30

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Establishing a PATHWAY System and Executing the Application

 When you use this form of the GENERATE command, ENABLE generates
 all the applications that exist in the object table.

 Submitting the Command File to ENABLE

 If you have entered your ENABLE commands on a command file, you
 complete the tasks involved in generating an application by
 submitting the command file to ENABLE. To submit the command
 file, you use the following form of the ENABLE run command:

 ENABLE/ IN <command-file> /

 <command-file> is your edit-type file of ENABLE commands.

 You enter this command in response to the command interpreter
 prompt (:), for example:

 :ENABLE/IN enabcmds/

 ESTABLISHING A PATHWAY SYSTEM AND EXECUTING THE APPLICATION

 An ENABLE application executes within a PATHWAY system. If you
 supply a value for the PATHCOMFILE attribute when you generate an
 application, ENABLE writes PATHCOM commands to the named EDIT
 file. You can use these commands to establish a PATHWAY system
 to execute your application. Figure 5-16 shows the PATHCOM
 commands written by ENABLE for the sample "employee-detail"
 application.

 5-31

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Establishing a PATHWAY System and Executing the Application

 | |
 | SET PATHMON BACKUPCPU 1 |
 | SET PATHWAY MAXTCPS 10 |
 | SET PATHWAY MAXTERMS 10 |
 | SET PATHWAY MAXPROGRAMS 10 |
 | SET PATHWAY MAXSERVERCLASSES 10 |
 | SET PATHWAY MAXSERVERPROCESSES 10 |
 | SET PATHWAY MAXSTARTUPS 10 |
 | SET PATHWAY MAXPATHCOMS 40 |
 | SET PATHWAY MAXASSIGNS 32 |
 | SET PATHWAY MAXPARAMS 32 |
 | START PATHWAY COLD! |
 | |
 | SET TCP PROGRAM $SYSTEM.SYSTEM.PATHTCP2 |
 | SET TCP CPUS 0:1 |
 | SET TCP MAXTERMS 5 |
 | SET TCP MAXSERVERCLASSES 002 |
 | SET TCP MAXSERVERPROCESSES 002 |
 | SET TCP MAXTERMDATA 07560 |
 | SET TCP MAXREPLY 02000 |
 | SET TCP NONSTOP 0 |
 | SET TCP TCLPROG $MKT.SAMPLE.POBJ |
 | ADD TCP ENABLE-TCP |
 | |
 | SET PROGRAM TCP ENABLE-TCP |
 | SET PROGRAM TYPE T16-6520 INITIAL EMPLOYEE-DETAIL |
 | SET PROGRAM TMF OFF |
 | ADD PROGRAM EMPLOYEE-DETAIL |
 | |
 | RESET SERVER ASSIGN, PARAM |
 | |
 | SET SERVER PROGRAM $SYSTEM.SYSTEM.ENABLEGS |
 | SET SERVER CPUS 0:1 |
 | SET SERVER NUMSTATIC 1 |
 | SET SERVER (ASSIGN EMPLOYEE,$MKT.SAMPLE.EMPLOYEE) |
 | SET SERVER (ASSIGN DEPENDENTS,$MKT.SAMPLE.DEPEND) |
 | SET SERVER TMF OFF |
 | ADD SERVER ENABLE-SERVER |
 | |

 Figure 5-16. PATHCOM Command File for the Employee-Detail
 Application

 5-32

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Establishing a PATHWAY System and Executing the Application

 To use the PATHCOM command file to establish a PATHWAY system for
 a multifile application, enter a series of commands similar to
 those that you enter to establish a PATHWAY system for a
 single-file application. These commands result in the following:

 • The creation of a PATHWAY Monitor (PATHMON) process--PATHMON
 is the controlling process in a PATHWAY system

 • The creation of a log file to which PATHMON can report errors
 and changes in status

 • The assignment of the PATHCTL file--PATHCTL is a disc file
 where PATHMON maintains status information and the application
 configuration

 • The creation of a PATHCOM process--PATHCOM is the command
 interface for the PATHWAY system

 You can place these commands in a single obey file for convenient
 definition, execution, and subsequent termination of the ENABLE
 application. Figure 5-17 shows an annotated example of an obey
 file that establishes a PATHWAY system and executes the sample
 "employee-detail" application.

 5-33

 CREATING AND RUNNING A MULTIFILE APPLICATION
 Establishing a PATHWAY System and Executing the Application

 | |
 | PURGE multilog, multictl (1) |
 | CREATE multilog (2) |
 | ASSIGN PATHCTL, multictl (3) |
 | PATHMON/NAME $mult, NOWAIT, CPU 0, OUT multilog/ (4) |
 | PATHCOM/IN multipth/$mult (5) |
 | PATHCOM $mult; RUN employee-detail (6) |
 | PATHCOM $mult; SHUTDOWN, WAIT (7) |
 | |
 |___|
 | |
 | |
 | NOTES |
 | |
 | (1) Purges the current PATHCOM log file and the current |
 | PATHCTL file. |
 | |
 | (2) Creates a new PATHCOM log file. |
 | |
 | (3) Assigns the PATHCTL file to "multictl." |
 | |
 | (4) Creates a PATHMON process. PATHMON names must not |
 | exceed six characters (five characters if PATHMON is to |
 | be used across the network), must begin with a dollar |
 | sign ($), and must be unique within the system upon |
 | which PATHWAY executes. |
 | |
 | (5) Cold starts PATHWAY using the generated PATHCOM command |
 | file. |
 | |
 | (6) Runs the application. |
 | |
 | (7) Stops the PATHMON process when you exit from the |
 | application. |
 | |

 Figure 5-17. Obey File Commands That Establish a PATHWAY System
 and Execute the Employee-Detail Application

 To execute the obey file, use the OBEY command. If the name of
 the edit-type file that contains these commands is "enabex2," you
 can execute this file by entering the following in response to
 the command interpreter prompt:

 :OBEY enabex2

 5-34

 SECTION 6

 TAILORING AN APPLICATION

 Sections 4 and 5 describe the tasks involved in generating a
 basic application--an application that displays a standard
 screen and that can perform delete, insert, read, and
 update operations on the data base files to which it has access.
 This section describes optional capabilities with which you can:

 • Provide a customized screen for an application. You might,
 for example, want to provide a customized screen that improves
 the usability of an application and enhances its appearance.

 • Indicate the operations (DELETE, INSERT, READ, or UPDATE) that
 can be performed by an application. You might want to limit
 your application to specific operations, for example, to
 protect your data base files from inadvertent changes.

 • Specify a method that the application must use to ensure the
 integrity of the data base files. You might, for example,
 need to indicate that your data base files are audited by the
 Transaction Monitoring Facility (TMF).

 PROVIDING A CUSTOMIZED SCREEN

 While a standard screen format is satisfactory for many
 applications, you may want to provide a customized screen in
 order to enhance the appearance of the screen and improve the
 usability of the application.

 6-1

 TAILORING AN APPLICATION
 General Guidlines for Customizing a Screen

 General Guidelines for Customizing a Screen

 Before you decide on a format for your customized screen,
 consider the needs of the people who will use it. When choosing
 a screen format for an application, do the following wherever
 possible:

 • Provide a descriptive screen title. If you supply a
 descriptive screen title, the users can be confident that they
 are using the appropriate application.

 • Provide your own labels for screen fields. You can supply
 labels that are more informative than the field names used for
 a standard format screen.

 • Display a key field as the first field on the screen. Most
 users expect to be able to enter a value in the first screen
 field, press an appropriate read function key, and retrieve a
 record. If the first screen field is not a key field, the
 user must tab to a key field before retrieving a record.

 • Provide user information within a box whenever necessary. If
 appropriate, you might want to provide user instructions (such
 as the type of data that can be entered into a particular
 field) when you customize the screen.

 • For multifile applications, wherever possible, display all
 other fields in a parent box before you display any join
 fields that link that box to a child box. In this way, all
 the fields of the parent box appear in one area and the user
 does not have to tab over a child box to complete an entry for
 the parent box.

 • Display several records within a box where appropriate. When
 the primary purpose of an application is to display data, a
 box that displays more than one record is often more
 convenient.

 • Provide a compressed format if many fields will appear in a
 box. A compressed format is one in which more than one field
 appears on a screen line. With a compressed format, the
 application is more likely to display an entire record on one
 screen page. This not only enhances the appearance of the
 screen, but also improves the usability of the application,
 since the user will not have to move to a new screen page to
 view the entire record.

 6-2

 TAILORING AN APPLICATION
 How to Customize a Screen

 • Wherever possible, try to limit the screen display to a single
 screen page. In particular, avoid splitting boxes across
 screens because users might update partial records if they
 cannot see all the fields of a record on a single screen page.

 • Use a tabular screen format wherever appropriate. With this
 format, records appear to be organized in a table, a format
 that is familiar to most users.

 • Exclude any fields from a box that do not need to appear. For
 some applications, a user does not need to see every field in
 a record. If a record contains particularly sensitive
 information, such as an employee's salary or age, consider
 excluding these fields from any application used solely for
 display purposes.

 How To Customize a Screen

 You can customize a screen for an application by supplying the
 appropriate values for the box and application attributes that
 determine screen format. Table 6-1 lists these attributes and
 indicates how a value supplied for each attribute affects the
 screen.

 6-3

 TAILORING AN APPLICATION
 How to Customize a Screen

 Table 6-1. Attributes That Affect Screen Format

 | |
 | Attribute Effect of Supplying a Value |
 | Name |
 |___|
 | |
 | BOXTITLE 1 Supply a value for these attributes to |
 | BOXTITLE 2 provide user information that appears within |
 | BOXTITLE 3 a box on the screen or to provide your own |
 | screen labels for boxes with tabular |
 | formats. |
 | |
 | EXCLUDE Supply a value for this attribute to exclude |
 | fields from the screen. |
 | |
 | HEADINGS Supply a value for this attribute to |
 | indicate that DDL headings from the record |
 | description are to be used as screen labels |
 | or to indicate that ENABLE is not to supply |
 | screen labels for boxes with tabular |
 | formats. |
 | |
 | INCLUDE Supply a value for this attribute to define |
 | the order in which fields are to appear on |
 | the screen and, optionally, exclude fields |
 | from the screen. |
 | |
 | SIZE Supply a value for this attribute to display |
 | more than one record within a box. |
 | |
 | SCREENFORMAT Supply a value for this attribute to provide |
 | a compressed layout for a box. |
 | |
 | TITLE Supply a value for this attribute to provide |
 | your own screen title. |
 | |
 | VALUES Supply a value for this attribute to display |
 | initial values from the record description |
 | in screen fields. |
 | |

 6-4

 TAILORING AN APPLICATION
 Example of Screen Customization

 Example of Screen Customization

 The remainder of this discussion describes the tasks involved in
 providing a customized screen for "employee-info"--an application
 that displays information about employees and their dependents.
 This application accesses the same files ("employee" and
 "depend") as the application "employee-detail," described in
 Section 5. "Employee-detail" displays the standard screen shown
 in in Figure 6-1.

EMPLOYEE-DETAIL
Page 1/1
* EMPNUM ___________

 * DEP-KEY
 DEPENDENT-NO ____
 DEPENDENT-NAME ________________________________
 RELATIONSHIP ____
 DEPENDENT-AGE ____

* EMPNAME _______________________________
* DEPT
 REGNUM ___________
 BRANCHNUM ___________
 JOB _______________________
 AGE ___
 SALARY _______________
 VACATION ___

Ready for input F3 for Help, shift F16 to exit

S5044-035

.00

 Figure 6-1. Sample Standard Screen

 For each step in the process, the discussion indicates an
 appropriate ENABLE command and illustrates the effect that each
 command has on screen appearance. Figure 6-2 shows the screen
 that is finally produced as a result of this customization.

 6-5

 TAILORING AN APPLICATION
 Example of Screen Customization

Employee Information Screen
Page 1/1
To find an employee, enter the first name then the last name:
* Employee Name __________________________________
* Department
 Region Number ____ Branch Number ____
 Job Title _______________ Vacation ____ * Employee Number _______

 Valid values for Rel are either 'S' or 'C'

 *No. Dependent Rel
 ____ _______________ ___
 ____ _______________ ___
 ____ _______________ ___
 ____ _______________ ___
 ____ _______________ ___

Ready for input F3 for Help, shift F16 to exit

S5044-036

 Figure 6-2. Sample Customized Screen

 To provide a customized screen for "employee-info," the following
 tasks are required:

 1. Provide a descriptive screen title.

 2. Indicate that DDL HEADINGS are to be used as screen labels
 for the box ("employ-box") that represents the "employee"
 file.

 3. Supply a new order for the fields displayed in "employ-box."
 This new order will identify a key field, the employee name,
 as the first field that appears in "employ-box," and
 indicate that certain fields from the "employee" record
 description are not to appear on the screen.

 4. Supply a compressed layout for "employ-box."

 5. Supply instructions within "employ-box" that tell the user
 the correct way to enter an employee name.

 6. Exclude a field ("dependent-age") that should not appear in
 the box ("depends-box") that represents the "depend" file.

 6-6

 TAILORING AN APPLICATION
 Providing a Screen Title

 7. Provide a tabular format for "depends-box." With this
 format, the application can display up to five dependent
 records at one time. In addition, it supplies instructions
 that describe the data to be entered in this box.

 Providing a Screen Title

 Since the screen title is the first item that appears, you
 might begin customizing the screen by providing a descriptive
 screen title. To provide a descriptive screen title for
 "employee-info," for example, you could supply "Employee
 Information Screen" as a value for the TITLE attribute. To
 supply this value, you can include the following in the series of
 commands used to generate the application:

 SET APPL TITLE "Employee Information Screen"

 Figure 6-3 shows the screen displayed by "employee-info" if you
 generate this application by supplying the attribute value
 described thus far. This figure also shows the SET TITLE command
 within the other commands used to generate the application.

 6-7

 TAILORING AN APPLICATION
 Providing a Screen Title

Employee Information Screen
Page 1/1
* EMPNUM ___________

 * DEP-KEY
 DEPENDENT-NO ____
 DEPENDENT-NAME ________________________________
 RELATIONSHIP ____
 DEPENDENT-AGE ____

* EMPNAME _______________________________
* DEPT
 REGNUM ____
 BRANCHNUM ____
 JOB _______________________
 AGE ___
 SALARY _______________
 VACATION _____

Ready for input F3 for Help, shift F16 to exit

.00

S5044-037

SET BOX RECORD employee
ADD BOX employ-box
SET BOX RECORD dependents
ADD BOX depends-box
SET APPL TREE (01 employ-box
 02 depends-box LINK empnum TO OPTIONAL emp-no)
SET APPL PATHCOMFILE emppath
SET APPL TITLE "Employee Information Screen"
ADD APPL employee-info
GENERATE APPL employee-info

Terminal
Screen:

ENABLE
Commands:

Provides a
screen title

 Figure 6-3. Screen With User-Defined Screen Title

 If you supply a value for the TITLE attribute, the title can be
 up to 79 characters long (78 for T16-651x terminals). You can
 center the title in the following way:

 1. Divide the number of characters in the title by 2.

 2. Subtract the result of step 1 from 40 (character 40 falls at
 the center of the screen). This step gives you the number of
 blank characters that should precede the title.

 6-8

 TAILORING AN APPLICATION
 Using DDL Headings for Screen Labels

 To center the title "Employee Information Screen":

 1. Divide 27 (the number of characters in the title) by 2 giving
 you a result of 13.

 2. Subtract 13 from 40 giving you a result of 27.

 3. Include 27 blank characters before you enter the title when
 you supply a value for the TITLE attribute:

 SET APPL TITLE " Employee &
 Information Screen"

 Notice the ampersand character following the characters
 "Employee." This character indicates that the SET TITLE
 command is continued onto the next line. If you must
 continue your title text onto another line, be sure to
 include this character.

 Using DDL Headings for Screen Labels

 If the DDL record description associated with a file contains
 appropriate HEADING clauses, you can identify these headings as
 labels by supplying DDLHEADINGS as a value for the HEADING
 attribute. To use the DDL HEADING clauses from the "employee"
 record description for "employee-info," for example, include the
 following command when describing the "employ-box":

 SET HEADINGS DDLHEADINGS

 Figure 6-4 shows the screen that "employee-info" will display if
 you supply the attribute values discussed thus far. This figure
 also shows the SET HEADINGS command within the series of commands
 used to generate the application.

 6-9

 TAILORING AN APPLICATION
 Using DDL Headings for Screen Labels

S5044-038

Employee Information Screen
Page 1/1
* Employee Number ___________

 * DEP-KEY
 DEPENDENT-NO ____
 DEPENDENT-NAME ________________________________
 RELATIONSHIP ____
 DEPENDENT-AGE ____

* Employee Name _______________________________
* Department
 Region Number ____
 Branch Number ____
 Job Title _______________________
 Age ___
 Salary _______________
 Vacation ___

Ready for input F3 for Help, shift F16 to exit

.00

SET BOX HEADINGS DDLHEADINGS
SET BOX RECORD employee
ADD BOX employ-box
RESET BOX *
SET BOX RECORD dependents
ADD BOX depends-box
SET APPL TITLE "Employee Information Screen"
SET APPL TREE (01 employ-box
 02 depends-box LINK empnum TO OPTIONAL emp-no)
SET APPL PATHCOMFILE emppath !
ADD APPL employee-info
GENERATE APPL employee-info

Terminal
Screen:

ENABLE
Commands:

Provides DDL
HEADINGS as labels
for employ-box

Resets box
attributes to their
starting values

 Figure 6-4. Screen With DDL Headings as Screen Labels

 A RESET command appears before the SET BOX command that
 identifies the "dependents" record description. When you use the
 SET command to supply values for the box attributes that describe
 one box, use the RESET command to reset these box attributes to
 their current values before you begin describing another box. If
 you use the SET BOX command but do not use the RESET command,
 ENABLE will use any current box attribute-values that remain in
 the attribute table for the next box that you add.

 6-10

 TAILORING AN APPLICATION
 Reordering Screen Fields

 When you supply DDLHEADINGS as a value for the HEADINGS
 attribute, the application uses the field name as a label for any
 field in a record description that does not have a HEADING
 clause.

 Reordering Screen Fields

 If you want to define the order in which fields appear on the
 screen, you must supply a value for the INCLUDE attribute.
 Consider, for example, the "employee-info" application. To
 provide an attractive and useful screen for this application, you
 should reorder the fields for "employ-box" so that:

 • The join field ("empnum") appears after all the other fields
 in the box

 • A key field (such as "empname") appears as the first field on
 the screen

 • Fields (such as "age" and "salary") that contain sensitive
 information do not appear on the screen

 You can reorder the fields in "employ-box" by including the
 following in the series of commands that describe this box:

 SET INCLUDE (empname, dept, job, vacation, empnum)

 Figure 6-5 shows the screen that "employee-info" will
 display if you supply the attribute values discussed thus far.
 This figure also shows the preceding SET INCLUDE command in the
 series of commands used to generate the application.

 6-11

 TAILORING AN APPLICATION
 Reordering Screen Fields

Reorders screen
fields for employ-box

Employee Information Screen
Page 1/1
* Employee Name ____________________________
* Department
 Region Number ___
 Branch Number ___
 Job Title _______________________
 Vacation ___
* Employee Number ___________

 * DEP-KEY
 DEPENDENT-NO ____
 DEPENDENT-NAME ________________________________
 RELATIONSHIP ____
 DEPENDENT-AGE ____

Ready for input F3 for Help, shift F16 to exit

SET BOX HEADINGS DDLHEADINGS
SET BOX INCLUDE (empname, dept, job, vacation, empnum
SET BOX RECORD employee
ADD BOX employ-box
RESET BOX *
SET BOX RECORD dependents
ADD BOX depends-box
SET APPL TITLE "Employee Information Screen"
SET APPL TREE (01 employ-box
 02 depends-box LINK empnum TO OPTIONAL emp-no)
SET APPL PATHCOMFILE emppath !
ADD APPL employee-info
GENERATE APPL employee-info

Terminal
Screen:

ENABLE
Commands:

Resets box attributes

S5044-039

 Figure 6-5. Screen With Fields Reordered

 6-12

 TAILORING AN APPLICATION
 Providing a Compressed Format

 When you supply a value for the INCLUDE attribute, consider the
 following:

 • If you do not include all the field names in a record
 description, the application does not display the omitted
 fields.

 • If you use the application to update a record and one or more
 fields do not appear on the screen, the application uses the
 original values of the fields for the updated record.

 • If you use the application to insert a record and one or more
 fields do not appear on the screen, the application uses a
 default value for these fields. The application uses zeros
 for numeric fields and blanks for alphanumeric or alphabetic
 fields.

 Providing a Compressed Format

 If several fields appear in a box, you might want to provide a
 compressed format for that box. A compressed format often
 improves the appearance of the screen. Consider, for example,
 the "employee-info" application. You could improve the
 appearance of the screen displayed by this application by
 supplying a compressed format for "employ-box." To provide this
 format, you could include the following in the series of commands
 used to describe "employ-box":

 SET SCREENFORMAT COMPRESSED

 Figure 6-6 shows the screen that "employee-info" will
 display if you supply the attribute values discussed thus far.
 This figure also shows the preceding SET SCREENFORMAT command in
 the series of commands used to generate the application.

 6-13

 TAILORING AN APPLICATION
 Providing a Compressed Format

S5044-040

Provides a
compressed
format for
employ-box

Employee Information Screen
Page 1/1
* Employee Name _______________________________
* Department
 Region Number ____ Branch Number ___
 Job Title _____________ Vacation ___ * Employee Number ___

 * DEP-KEY
 DEPENDENT-NO ____
 DEPENDENT-NAME _________________________
 RELATIONSHIP ____
 DEPENDENT-AGE ____

Ready for input F3 for Help, shift F16 to exit

SET BOX HEADINGS DDLHEADINGS
SET BOX INCLUDE (empname, dept, job, vacation, empnum
SET BOX SCREENFORMAT COMPRESSED
SET BOX RECORD employee
ADD BOX employ-box
RESET BOX *
SET BOX RECORD dependents
ADD BOX depends-box
SET APPL TITLE "Employee Information Screen"
SET APPL TREE (01 employ-box
 02 depends-box LINK empnum TO OPTIONAL emp-no)
SET APPL PATHCOMFILE emppath !
ADD APPL employee-info
GENERATE APPL employee-info

Terminal
Screen:

ENABLE
Commands:

Resets box
attributes

 Figure 6-6. Screen With Compressed Format

 6-14

 TAILORING AN APPLICATION
 Providing User Information for a Box

 Providing User Information for a Box

 For a variety of reasons, you might want to provide user
 information to be displayed within a box. Consider, for example,
 the "employee-info" application. A user of this application
 might not know how to enter an employee name. You can provide
 the user with this information by supplying a value for one of
 the BOXTITLE attributes when you describe "employ-box," for
 example:

 SET BOXTITLE 1 "To find an employee, enter the first name &
 then the last name:"

 Figure 6-7 shows the screen that "employee-info" will
 display if you supply the attribute values discussed thus far.
 This figure also shows the preceding SET BOXTITLE 1 command in
 the series of commands used to generate the application.

 6-15

 TAILORING AN APPLICATION
 Providing User Information for a Box

S5044-041

Provides
user
instructions
for
employ-box

Employee Information Screen
Page 1/1
* Employee Name _______________________________
* Department
 Region Number ____ Branch Number ___
 Job Title _____________ Vacation ___ * Employee Number _____

 * DEP-KEY
 DEPENDENT-NO ____
 DEPENDENT-NAME __________________________
 RELATIONSHIP ____
 DEPENDENT-AGE ____

Ready for input F3 for Help, shift F16 to exit

SET BOX HEADINGS DDLHEADINGS
SET BOX INCLUDE (empname, dept, job, vacation, empnum)
SET BOX SCREENFORMAT COMPRESSED
SET BOX BOXTITLE 1 "To find an employee, enter the first name then
 the last name:"
SET BOX RECORD employee
ADD BOX employ-box
RESET BOX *
SET BOX RECORD dependents
ADD BOX depends-box
SET APPL TITLE "Employee Information Screen"
SET APPL TREE (01 employ-box
 02 depends-box LINK empnum TO OPTIONAL emp-no)
SET APPL PATHCOMFILE emppath !
ADD APPL employee-info
GENERATE APPL employee-info

Terminal
Screen:

ENABLE
Commands:

 Figure 6-7. Screen With User-Defined Information Displayed in a
 Box

 You can provide up to three lines of user information within a
 box by supplying values for the BOXTITLE 1, BOXTITLE 2, and
 BOXTITLE 3 attributes.

 6-16

 TAILORING AN APPLICATION
 Excluding Fields From a Box

 Excluding Fields From a Box

 If the users of an application do not need to see the contents of
 certain fields, you can exclude these fields from display on the
 screen. Consider, for example, the "employee-info" application.
 Since this application is to be used to display general
 information about employees and their dependents, you might not
 want to display a dependent's age. You could exclude the field
 ("dependent-age") that stores a dependent's age by specifying the
 following in the series of commands that describe "depends-box":

 SET EXCLUDE (dependent-age)

 Figure 6-8 shows the screen that "employee-info" will display if
 you supply the attribute values discussed thus far. This figure
 also shows the preceding SET EXCLUDE command within the series of
 commands used to generate the application.

 6-17

 TAILORING AN APPLICATION
 Excluding Fields From a Box

S5044-042

Excludes a
field from
depends-box

Employee Information Screen
Page 1/1
To find an employee, enter the first name then the last name:
* Employee Name _______________________________
* Department
 Region Number ____ Branch Number ___
 Job Title _____________ Vacation ___ * Employee Number ____

 * DEP-KEY
 DEPENDENT-NO ____
 DEPENDENT-NAME _________________________
 RELATIONSHIP ____

Ready for input F3 for Help, shift F16 to exit

SET BOX HEADINGS DDLHEADINGS
SET BOX INCLUDE (empname, dept, job, vacation, empnum)
SET BOX SCREENFORMAT COMPRESSED
SET BOX BOXTITLE 1 "To find an employee, enter the first name then
 the last name:"
SET BOX RECORD employee
ADD BOX employ-box
RESET BOX *
SET BOX EXCLUDE (dependent-age)
SET BOX RECORD dependents
ADD BOX depends-box
SET APPL TITLE "Employee Information Screen"
SET APPL TREE (01 employ-box
 02 depends-box LINK empnum TO OPTIONAL emp-no)
SET APPL PATHCOMFILE emppath !
ADD APPL employee-info
GENERATE APPL employee-info

Terminal
Screen:

ENABLE
Commands:

 Figure 6-8. Screen With Field Excluded

 6-18

 TAILORING AN APPLICATION
 Providing a Tabular Format

 Providing a Tabular Format

 If you want to display several records within a box, you can
 enhance the appearance of the screen by providing a tabular
 format for the box. Consider, for example, the "employee-info"
 application. Since one employee record can match (have the same
 join-field value) several dependent records, you might want to
 provide the ability to display several dependent records at one
 time. You can specify a tabular format for "depends-box" (the
 box that represents the dependent records) by including the
 following commands that describe this box:

 SET BOX SCREENFORMAT COMPRESSED
 SET BOX HEADINGS NULL
 SET BOX SIZE 5
 SET BOX BOXTITLE 1 "Valid values for Rel are either S or C."
 SET BOX BOXTITLE 3 "*No. Dependent Name Rel"

 Notice that the value of the BOXTITLE 1 attribute supplies user
 information while the value of the BOXTITLE 3 attribute supplies
 screen labels for "depends-box."

 Figure 6-9 shows the final customized screen displayed by
 "employee-info." This figure also shows the preceding ENABLE
 commands within the series of commands used to generate the
 application.

 6-19

 TAILORING AN APPLICATION
 Providing a Tabular Format

Employee Information Screen
Page 1/1
To find an employee, enter the first name then the last name:
* Employee Name __________________________________
* Department
 Region Number ____ Branch Number ____
 Job Title _____________ Vacation ____ * Employee Number ____

 Valid values for Rel are either 'S' or 'C'

 *No. Dependent Rel
 ____ _______________ ___
 ____ _______________ ___
 ____ _______________ ___
 ____ _______________ ___
 ____ _______________ ___

Ready for input F3 for Help, shift F16 to exit

S5044-043

Provides a
tabular
format for
depends-box

SET BOX HEADINGS DDLHEADINGS
SET BOX INCLUDE (empname, dept, job, vacation, empnum)
SET BOX SCREENFORMAT COMPRESSED
SET BOX BOXTITLE 1 "To find an employee, enter the first name then
 the last name:"
SET BOX RECORD employee
ADD BOX employ-box
RESET BOX *
SET BOX EXCLUDE (dependent-age)
SET BOX SCREENFORMAT COMPRESSED
SET BOX HEADINGS NULL
SET BOX SIZE 5
SET BOX BOXTITLE 1 "Valid values for Rel are either 'S' or 'C'"
SET BOX BOXTITLE 3 "*No. Dependent Name Rel"
SET BOX RECORD dependents
ADD BOX depends-box
SET APPL TITLE "Employee Information Screen"
SET APPL TREE (01 employ-box
 02 depends-box LINK empnum TO OPTIONAL emp-no)
ADD APPL employee-info
GENERATE APPL employee-info

Terminal
Screen:

ENABLE
Commands:

 Figure 6-9. Screen With Tabular-Format Box

 6-20

 TAILORING AN APPLICATION
 Providing a Tabular Format

 Determining if a Record Will Fit in a Tabular Format

 You can provide a tabular format for a box as long as all the
 fields displayed for one record will fit in the box. Up to 71
 characters will fit in a box at the second level of the tree
 structure. At each subsequent level, subtract 8 characters to
 determine the number of characters that will fit.

 When you determine whether a particular record will fit within a
 tabular format, allow for the following:

 • The blank character that an application displays before and
 after a record

 • The blank character (or characters) that an application
 displays between fields

 --For T16-652x, T16-653x, and IBM-327x terminals, an
 application displays one blank character between each field

 --For T16-651x terminals, an application displays two blank
 characters between each field

 Positioning Labels Over Screen Fields

 When you use the BOXTITLE attributes to provide screen labels,
 you want these labels to appear over the appropriate screen
 fields. To make sure that the labels appear in the correct
 position, enter a comment line that shows the way the fields will
 appear in the box immediately before the SET BOXTITLE command;
 for example:

 ...
 -- ## #################### # --
 SET BOXTITLE 3 "

 In the preceding example, the pound sign symbols (#) indicate
 where fields will appear within a box. If you place a similar
 comment line in an edit file with your ENABLE commands, you can
 use the comment line to center your labels in the SET BOXTITLE
 command.

 6-21

 TAILORING AN APPLICATION
 Defining the Operations That an Application Can Perform

 DEFINING THE OPERATIONS THAT AN APPLICATION CAN PERFORM

 A basic ENABLE application can perform delete, insert, read, or
 update operations on the data base files to which it has access.
 Depending on the purpose for which you are generating the
 application, you might want either to limit or to enhance these
 operations for a particular application.

 To determine the kind of operations that you want to allow, ask
 yourself the following questions about each box used by the
 application:

 • Is the purpose of the application to display information in
 this box? If so, consider limiting the application to read-
 only operations for the box.

 • Will a user of the application need to delete or update
 existing records in the box? If not, consider limiting the
 application to read and insert operations only for the box.

 • Is the box a child box? If so, consider providing the
 application with the ability to perform an automatic read
 operation for the box. Although providing this ability might
 slow processing time slightly, it greatly enhances the
 usability of the application since the user does not have to
 press a function key to request the read operation.

 Define the operations that an application can perform by
 supplying values for the ABILITY (or file operation) attributes.
 These attributes are: DELETE, FILL, INSERT, READ, and UPDATE.

 Limiting the Operations an Application Can Perform

 To limit the operations that an application can perform on a
 particular file, supply OFF as a value for the appropriate
 ABILITY attribute when you describe the box that represents the
 file. Consider, for example, the "employee-info" application
 described earlier in this section. Since the purpose of this
 application is to display information about employees and their
 dependents, "employee-info" only requires read access to the
 "employee" and "depend" files. You can restrict the application
 to read-only operations by using the following SET command before
 you add "employ-box" and "depends-box":

 SET BOX DELETE OFF, INSERT OFF, UPDATE OFF

 6-22

 TAILORING AN APPLICATION
 Providing Automatic READ Operations

 Providing Automatic READ Operations

 By supplying ON as a value for the FILL attribute, you generate
 an application that can perform an automatic read operation under
 certain conditions. To determine when the application should
 perform this automatic read operation, ENABLE examines the level
 at which a box with FILL ON resides in the tree structure.

 Automatic READ Operations for a Parent Box or the Only Box in the
 Tree

 If you supply ON for the FILL attribute of a parent box or
 the only box in the tree structure, the application, upon
 execution, will perform an automatic read operation upon the file
 represented by that box.

 Suppose, for example, that you generate the application
 ("employee-prog") described in Section 4 with FILL ON. Since
 this application uses only one box ("employee"), the application
 will, upon execution, read the first record in the "employee"
 file, as illustrated in Figure 6-10.

 6-23

 TAILORING AN APPLICATION
 Providing Automatic READ Operations

S5044-044

EMPLOYEE-PROG
Page 1/1 Approx key EMPNUM
* EMPNUM 0001
* EMPNAME John James__________
* DEPT
 REGNUM 01
 BRANCHNUM 01
 JOB President______
 AGE 42
 SALARY 9000.00
 VACATION 12

Ready for input . . .

:PATHCOM $one;RUN employee-prog

Application Employee

 Figure 6-10. Automatic READ for First Level Box

 If you supply ON as a value for both FILL and VALUES attributes
 for a box, the application will display initial values from a
 record description, even if no records exist in a file. In some
 cases, appearance of these initial values might be confusing to
 the person who uses the application. In other cases the initial
 may be an enhancement. These cases are described later in this
 section.

 Automatic READ Operations for a Child Box

 If you supply ON for the FILL attribute of a child box, an
 application performs an automatic read for the child box whenever
 an operation changes values in the parent box. Consider, for
 example, the application ("employee-info") described earlier in
 this section. You can generate this application so that it
 automatically reads records for "depends-box" whenever a user
 performs an operation on "employ-box." To provide this ability
 for "employee-info," you must generate the application with FILL
 ON for "depends-box" as in the following series of commands:

 6-24

 TAILORING AN APPLICATION
 Providing Automatic READ Operations

 SET HEADINGS DDLHEADINGS
 SET BOX INCLUDE (empname, dept, job, vacation, empnum)
 SET BOX SCREENFORMAT COMPRESSED
 SET BOXTITLE 1 "To find an employee, enter the first name then
 the& last name:"
 SET BOX RECORD employee
 ADD BOX employ-box
 RESET BOX *

 SET BOX SCREENFORMAT COMPRESSED
 SET BOX HEADINGS NULL
 SET BOX SIZE 5
 SET BOX BOXTITLE 1 "Valid values for Rel are either 'S' or &
 'C'"
 SET BOX BOXTITLE 3 "*No. Dependent Name Rel"
 SET BOX FILL ON -- Requests automatic read operations --
 SET BOX RECORD dependents
 ADD BOX depends-box
 SET APPL TITLE "Employee Information Screen"
 SET APPL TREE (01 employ-box
 02 depends-box LINK empnum
 TO OPTIONAL emp-no)
 SET APPL PATHCOMFILE emppath !
 ADD APPL employee-info
 GENERATE employee-info

 Figure 6-11 shows the events that occur when an application,
 generated using the above commands, reads an "employee" record.

 6-25

 TAILORING AN APPLICATION
 Providing Automatic READ Operations

Read Gerald Anderson's employee information.

S5044-045

Employee Information Screen
Page 1/1
To find an employee, enter the first name then the last name:
* Employee Name __________________________________
* Department
 Region Number ____ Branch Number ____
 Job Title _____________ Vacation ____ * Employee Number ____

 Valid values for Rel are either 'S' or 'C'

 *No. Dependent Rel
 ____ _______________ ___
 ____ _______________ ___
 ____ _______________ ___
 ____ _______________ ___
 ____ _______________ ___

Ready for input F3 for Help, shift F16 to exit

Employee Information Screen
Page 1/1
To find an employee, enter the first name then the last name:
* Employee Name Gerald___Anderson____
* Department
 Region Number 05 Branch Number 02
 Job Title Salesman______ Vacation 23 * Employee Number 0398

 Valid values for Rel are either 'S' or 'C'

 *No. Dependent Rel
 01 Peggy_________ S
 02 Michelle______ C
 03 Debbie________ C
 04 Joan__________ C
 __ ______________ __

Ready for input F3 for Help, shift F16 to exit

Application

Employee
File

Depend
File

 Figure 6-11. FILL ON for a Second Level Box

 6-26

 TAILORING AN APPLICATION
 Restricting an Application to a Subset of Records for a Child Box

 Restricting an Application to a Subset of Records for a Child Box

 You can restrict an application to a subset of records for a
 child box by allowing it to access only a single record for the
 parent box. Suppose, for example, that you want to generate an
 application that can access the employee records of only those
 employees who belong to region 1 and branch 2. If this region
 and branch information is also stored in a file that contains
 general departmental information, you can make a box that
 represents these departmental records the parent of the employee
 records. You can then restrict the application to a subset of
 the employee records by:

 1. Including a VALUE clause in the DDL record description of the
 departmental records. To limit the application to the subset
 of employee records where the employees belong to region 1
 and branch 2, the VALUE clauses in this record description
 might appear as follows:

 RECORD department-limit.
 FILE IS dept KEY-SEQUENCED.
 02 dept-num.
 04 regnum PIC 99 VALUE 01.
 04 branchnum PIC 99 VALUE 02.
 02 department-name PIC X(18) VALUE "California South ".
 KEY 0 IS dept-num.
 KEY "dn" IS dept-name.
 END

 If the "dept" file already had a record description that did
 not contain the appropriate VALUE clauses, you could add a
 new record description for this file. When you add this new
 record description to the dictionary, it is good practice to
 use a different record name. (ENABLE can use more than one
 record description per file, so long as the record lengths
 are the same for both.)

 2. Supplying ON as a value for the FILL and VALUES attributes
 and OFF as a value for the DELETE, INSERT, READ, and UPDATE
 attributes when you add the box that represents the "dept"
 file, for example:

 SET BOX RECORD department-limits
 SET BOX VALUES ON, FILL ON
 SET BOX DELETE OFF, INSERT OFF, READ OFF, UPDATE OFF
 ADD BOX department-box

 6-27

 TAILORING AN APPLICATION
 Restricting an Application to a Subset of Records for a Child Box

 When you supply ON as a value for the FILL and VALUES
 attributes, the application, upon execution, reads the record
 in the "dept" file whose field values match the field values
 described in the DDL VALUE clause. Since you have supplied
 OFF for the values of the DELETE, INSERT, READ, and UPDATE
 attributes, the application cannot perform any other file
 operation on the "department-box." Therefore, the
 application cannot retrieve any other record for this box.

 3. Resetting the box attributes before you add a box to
 represent the "employee" file, as follows:

 RESET BOX *
 SET BOX RECORD employee
 ADD BOX employ-box

 If you do not include the RESET command, ENABLE will use the
 current value (OFF) of the DELETE, INSERT, READ, and UPDATE
 attributes for "employ-box." This means that the application
 could not perform any file operation on this box.

 Because the application can only access a single department-box
 record, it can only read or insert records in employ-box that
 match that single department-box record.

 Figure 6-12 illustrates the events that occur when you execute an
 application generated with the following ENABLE commands:

 SET BOX RECORD department-limits
 SET BOX VALUES ON, FILL ON
 SET BOX DELETE OFF, INSERT OFF, READ OFF, UPDATE OFF
 ADD BOX department-box
 RESET BOX *
 SET BOX RECORD employee
 ADD BOX employ-box
 SET APPL TREE (01 department-box
 02 employ-box LINK dept-num TO OPTIONAL dept)
 SET APPL PATHCOMFILE employ-limit
 ADD APPL employ-limit
 GENERATE APPL employ-limit

 6-28

 TAILORING AN APPLICATION
 Restricting an Application to a Subset of Records for a Child Box

S5044-046

EMPLOYEE-LIMIT
Page 1/1 Approx key DEPT
* DEPT-NUM
 REGNUM 01
 BRANCHNUM 02

 EMPNUM _______
 EMPNAME _____________________
 JOB ____________
 AGE ___
 SALARY ________
 VACATION ___

* DEPT-NAME California South_____

Ready for input . . .

.00

• • •
• • •
• • •
• • •
• • •
• • •

Empnum Empname
0001 Jack Jones
0002 Marge Martin
0003 Phil Smith
0004 Mark Monte
 • • • • • •

Regnum
01
01
02
01
• • •

Branchnum
01
01
03
02
• • •

 Job
Manager
Clerk
Clerk
Manager
 • • •

Employee File

Regnum
0001
0001
0001
0001
0002
 • • •

Dept File

Branchnum
0001
0002
0003
0004
0001
• • •

Department-name
 California North
 California South
 Oregon
 Washington
 Arizona
 • • •

Application

Read the first employee record.

Application

The application can only read an employee record if Regnum = 01 and Branchnum = 02.

Legend

1

1

 Figure 6-12. Application Limited to Subset of Records

 6-29

 TAILORING AN APPLICATION
 Ensuring File Integrity

 ENSURING FILE INTEGRITY

 Because the starting value of the CHECKDATA attribute is ON, a
 basic ENABLE application ensures the integrity of your data base
 files by not allowing a user to enter invalid numeric data in
 these files. In this case, the term invalid data refers to data
 that is of the wrong data type. You can provide one of two
 additional methods of ensuring the integrity of your data base
 files by supplying values for either the TMF or NONSTOP
 attributes.

 If a data base file is audited by the Transaction Monitoring
 Facility (TMF), you can supply ON as a value for the TMF
 attribute when you describe the box that represents this file.
 If you supply ON for the TMF attribute, ENABLE includes the
 special code required by TMF in the portion of the SCREEN COBOL
 requester program that refers to that box.

 If a file is not audited by TMF, you can supply ON as a value for
 the NONSTOP attribute. When NONSTOP is ON for a box, the copy of
 the General Server that is used for the box runs as a NonStop
 process pair. This means that a backup copy of the General
 Server process is always available to take over if the primary
 process fails.

 In addition, you can generate an application that accesses both
 audited files and nonaudited files. In this case, you must
 supply a different copy of the General Server for each group of
 files.

 Identifying Files Audited by TMF

 If an application is to maintain (perform DELETE, INSERT, or
 UPDATE operations) a file audited by TMF, the value of the TMF
 attribute for that box must be ON. For example, the following
 series of commands supplies TMF ON as a value for "employ-box":

 SET BOX TMF ON
 SET BOX RECORD employee
 ADD BOX employ-box

 If the purpose of an application is to display information from a
 file audited by TMF, you do not have to set TMF ON for the box
 that represents this file. In this case, however, you must
 supply OFF as the value of the DELETE, INSERT, and UPDATE
 attributes.

 6-30

 TAILORING AN APPLICATION
 Accessing Audited and Nonaudited Files With the Same Application

 Running the General Server as a NonStop Process Pair

 If a file is not audited by TMF, you can indicate that the
 General Server is to run as a NonStop process pair when accessing
 that file. The following series of commands supplies NONSTOP ON
 for "depends-box":

 SET BOX NONSTOP ON
 SET BOX RECORD dependents
 ADD BOX depends-box

 Accessing Audited and Nonaudited Files With the Same Application_

 You can generate an application that can access both audited and
 nonaudited files. If you want to generate such an application,
 you must define at least two server classes for the General
 Server. You define a server class by supplying a value for the
 SERVERCLASS attribute.

 Suppose, for example, that the following is true about the files
 to be accessed by "employee-info" (the application described
 earlier in this section):

 • "Employee" is audited by TMF.

 • "Depend" is not audited by TMF.

 To supply TMF ON for "employ-box" (the box that represents the
 "employee" file) supply a server class name for the copy of the
 General Server that will access this file. You could supply a
 different server class name by including the following in the
 series of commands used to generate "employee-info":

 6-31

 TAILORING AN APPLICATION
 Accessing Audited and Nonaudited Files With the Same Application

 ...

 SET BOX TMF ON <--------------- indicates "employ-box" is
 audited by TMF
 SET BOX SERVERCLASS tmf-serv <-- provides a server class name
 for the copy of the General
 Server used for "employ-box"
 SET BOX RECORD employee
 ADD BOX employ-box
 RESET BOX TMF, SERVERCLASS <--- resets TMF and SERVERCLASS
 to their starting values,
 OFF and ENABLE-SERVER
 respectively
 SET BOX RECORD dependents
 ADD BOX depends-box

 Figure 6-13 illustrates the "employee-info" application during
 execution. Note that a copy of the General Server named
 "tmf-serv" accesses the "employee" file while a copy of the
 General Server named ENABLE-SERVER accesses the "depend" file.

 6-32

 TAILORING AN APPLICATION
 Accessing Audited and Nonaudited Files With the Same Application

S5044-047

PATHCTL

SCREEN COBOL
Object Code

(POBJ)

General Server
(ENABLE-SERVER) Nonaudited File

Depend

Audited File
Employee

General Server
(TMF-SERV)

PATHCOM PATHMON
$MULT

TCP

 Figure 6-13. Accessing Audited and Nonaudited Files

 6-33

 SECTION 7

 MODIFYING A GENERATED APPLICATION

 You can tailor an application further by modifying the SCREEN
 COBOL source code. To modify the source code, you must:

 1. Identify the name of a file to which ENABLE writes the SCREEN
 COBOL source code by supplying a value for the SCOBOLSOURCE
 attribute when you generate an application.

 2. After making the modifications to the file, compile the
 source code.

 If you want ENABLE to write the SCREEN COBOL source to a file
 named "srcfile," you can identify this file by entering the
 following command:

 SET APPL SCOBOLSOURCE srcfile !

 The following list briefly describes some modifications that you
 can make to the SCREEN COBOL source code.

 • Define acceptable values for an input screen field. You can
 modify the Screen Section of the generated SCREEN COBOL source
 code by including a MUST BE clause with the appropriate screen
 field.

 • Indicate that lowercase characters are to be translated to
 uppercase either when they are displayed on the screen or
 when they are inserted in a data base file. To do this,
 include the UPSHIFT clause with the appropriate screen field.

 7-1

 MODIFYING A GENERATED APPLICATION

 • Provide users of the application with the ability to call
 another application. To do this, you modify the source code
 to include a call to another requester program. Refer to
 Section 11 for more information about this type of
 modification.

 • Introduce consistency restraints if you are an experienced
 SCREEN COBOL programmer. An application generated by ENABLE
 cannot prevent you from deleting a record from a parent box
 before you delete the matching record (or records) from the
 child box. If you delete a parent record before you delete
 its matching child records, you can no longer read the child
 records. Therefore, you can no longer use the application to
 delete these records.

 If this occurs, your data base might contain inconsistent
 information. To avoid this problem, you could add your own
 consistency restraints. Adding such restraints is not a
 trivial task and should not, therefore, be undertaken by
 anyone who is not an experienced SCREEN COBOL programmer.

 • Change the position of fields on the screen, with the
 following restrictions:

 --Each record must remain contiguous; you cannot intersperse
 fields from one record with fields from another record.

 --The first and last field of a record must remain in their
 respective positions; you cannot change the position of
 these fields within a record.

 If you regenerate an application after you have made
 modifications to the SCREEN COBOL source code, you will have to
 add those modifications to the regenerated source code.

 7-2

 SECTION 8

 USING AN ENABLE APPLICATION

 An ENABLE application displays a screen through which you can
 perform the following tasks:

 • Look at the data in one or more data base files

 • Update the data in the data base files by making changes to
 one or more records

 • Insert new records in the data base

 • Delete records from the data base

 To perform these tasks, you press a function key on the terminal
 keyboard. Figure 8-1 shows the template supplied with ENABLE for
 T16-651x, T16-652x, and T16-653x terminals. This template
 indicates the function of each key. Refer to Table 8-1 for a
 list of the function keys and the operations performed by each.

S5044-048

FIRST
PAGE

PREVIOUS
PAGE

LAST
PAGE

NEXT
PAGE

DEFINE
PRINTER

READ
FIRST

HELP

PRINT

READ
NEXT

READ
APPROXIMATE

READ
EXACT

READ
GENERIC

INSERT
BOX

INSERT

DELETE
BOX

DELETE

UPDATE
BOX

UPDATE

RECOVER
SCREEN EXIT

DISPLAY/
CLEAR

SHIFT

UNSHIFT
ENABLE

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

 Figure 8-1. ENABLE Template

 8-1

 USING AN ENABLE APPLICATION
 ENABLE Display Screens

 If the template is available for your type of terminal, it will
 simplify the process of using an application. Simply place it
 along the top of the keyboard.

 ENABLE DISPLAY SCREENS

 An application generated by ENABLE can display a variety of
 screens. An application that allows you to display or maintain
 information on employee records might display a screen similar to
 one of those shown in Figure 8-2.

S5044-049

EMPLOYEE-PROG1
Page 1/1
* EMPNUM ______
* EMPNAME _______________________
* DEPT
 REGNUM ______
 BRANCHNUM ______
 JOB __________________
 AGE ___
 SALARY _________
 VACATION ___

Ready for input F3 for Help, shift F16 to exit

.00

EMPLOYEE-PROG2
Page 1/1
* EMPNUM ________ * EMPNAME ____________
* DEPT
 REGNUM ______ BRANCHNUM ______
 JOB _____ AGE ___ SALARY _______ VACATION ___

Ready for input F3 for Help, shift F16 to exit

.00

EMPLOYEE-PROG3
Page 1/1
EMPLOYEE
* EMPNUM ________ * EMPNAME ____________
* DEPT
 REGNUM ______ BRANCHNUM ______
 JOB _____ AGE ___ SALARY _______ VACATION ___
EMPLOYEE
* EMPNUM ________ * EMPNAME ____________
* DEPT
 REGNUM ______ BRANCHNUM ______
 JOB _____ AGE ___ SALARY _______ VACATION ___

Ready for input F3 for Help, shift F16 to exit

.00

.00

EMPLOYEE-PROG4
Page 1/1
*EMP *EMPLOYEE *DEPT JOB AGE SALARY VAC
 NO. NAME

___ _________ __ __ ______ ___ ______ ___
___ _________ __ __ ______ ___ ______ ___
___ _________ __ __ ______ ___ ______ ___
___ _________ __ __ ______ ___ ______ ___
___ _________ __ __ ______ ___ ______ ___
___ _________ __ __ ______ ___ ______ ___
___ _________ __ __ ______ ___ ______ ___

Ready for input F3 for Help, shift F16 to exit

.00

.00

.00

.00

.00

.00

.00

 Figure 8-2. Sample Display Screens

 8-2

 USING AN ENABLE APPLICATION
 ENABLE Display Screens

 The edges of the screen form a box around the record (or records)
 displayed by an application, which is referred to as the
 outermost box. When an application displays records for more
 than one file, it shows other boxes nested within this outermost
 box. Figure 8-3 shows the screen produced by an application that
 displays records from three files. These records contain
 information about the divisional branches of a company, the
 employees who work for each branch, and the type of insurance
 coverage that each employee has.

S5044-050

BRANCH-PROG2
Page 1/1
 BRANCHNAME ___________________________
 MANAGER _________
* PRIMKEY
 REGNUM _____
 BRANCHNUM _____

 EMPNAME _________________________
 JOB ___________________
 AGE ___
 SALARY _______________
 VACATION ___
 EMPNUM _________

 INSURANCE-COV _____________________
 DEPENDENT-CODE _____________________

Ready for input F3 for Help, shift F16 to exit

.00

Branch Box
(Outermost box; containing
box for the employee box)

Employee Box
(Nested within the branch
box; containing box for
the coverage box)

Coverage Box
(Nested within the
employee box)

 Figure 8-3. Sample Screen With Nested Boxes

 In Figure 8-3, the outermost box displays the fields for a
 "branch" record. Nested within it is a box that displays the
 fields for an "employee" record. Because the "employee" box is
 completely contained within the "branch" box, the "branch" box is
 called a containing box (as well as the outermost box).

 Since the "employee" box is nested within the "branch" box, the
 "employee" box is called a nested box. The employee box contains
 another box--the "coverage" box. Because the "employee" box
 contains the "coverage" box, the "employee" box is a containing
 box as well as a nested box. The "coverage" box, which does not
 contain another box, is simply a nested box.

 8-3

 USING AN ENABLE APPLICATION
 Record Keys

 If your application displays several boxes, it is important to
 recognize the difference between an outermost box, a containing
 box, and a nested box since:

 • You must perform an operation (read or insert a record) on the
 outermost box before you can perform an operation on any other
 box.

 • You must perform an operation (read or insert a record) on a
 containing box before you can perform any operation on a
 box nested within it.

 RECORD KEYS

 An application uses key fields, or record keys, to identify
 specific records. You can quickly and efficiently select one
 record from among thousands stored in a file by indicating a
 record key. Three categories of record keys exist: primary keys,
 alternate keys, and courtesy keys. A record cannot have both a
 primary key and a courtesy key. A record can, however, have a
 primary key and any number of alternate keys or a courtesy key
 and any number of alternate keys.

 Primary Key

 An application can identify a particular record by the contents
 of a primary key field. If a record has a primary key field of
 the value 500, for example, you could retrieve that record by
 requesting the record whose primary key value is equal to 500.

 A primary key value is always unique; that is, the primary keys
 of a file cannot contain duplicate values. Primary keys are
 always sorted in ascending sequence; this means that if you read
 through a file sequentially by primary key, the next record is
 always the record with the next higher primary key value.

 8-4

 USING AN ENABLE APPLICATION
 Courtesy Key

 Alternate Key

 An application can identify a single record or a set of records
 by the contents of an alternate key field. If, for example, the
 department number of an employee record is an alternate key, you
 can retrieve all records of that file sequentially, in
 department-number order.

 Courtesy Key

 ENABLE supplies a special courtesy key field for certain types of
 files. An application can identify a particular record in one of
 these files by the value of this courtesy key. The courtesy key
 corresponds to a unique record number associated with each record
 within a relative, entry-sequenced, or unstructured file.

 For a relative file, the record number corresponds to the
 physical position of the record within the file. The first
 record position is 0, the next record position is 1, and so
 forth. A record position exists whether or not a record has
 actually been stored in that position.

 For an entry-sequenced file, the record number corresponds to the
 order in which a record is stored in the file. The first record
 stored has record number 0, the next record stored has record
 number 1, and so forth. The record numbers are always in
 ascending order, but the numbering sequence is not always in
 increments of one. Record 4096, for example, could follow record
 32. The last record stored in the file always has the highest
 record number.

 For an unstructured file, the first record is record 0, the next
 record 1, and so forth. The last record stored in the file
 always has the highest record number.

 When you insert a record with a courtesy key, you do not have to
 supply a value for that key. Instead, the application can
 provide a value for you.

 As described later under "Labels and Fields," you can visually
 identify a courtesy key field; however, you cannot visually
 determine the type of file to which a courtesy key belongs. If
 you need to determine the file type, ask your data administrator.

 8-5

 USING AN ENABLE APPLICATION
 Labels and Fields

 LABELS AND FIELDS

 The screen produced by an application contains labels and fields.
 Figure 8-4 shows a sample screen and identifies its labels and
 fields.

S5044-051

Ready for input F3 for Help, shift F16 to exit

EMPLOYEE-PROG1
Page 1/1
* EMPNUM ______
* EMPNAME _______________________
* DEPT
 REGNUM ______
 BRANCHNUM ______
 JOB __________________
 AGE ___
 SALARY _________
 VACATION ___

LabelsFields

.00

 Figure 8-4. Screen Labels and Fields

 Labels

 A label appears on the screen to provide information about its
 associated field. If either an asterisk (*) or a plus sign (+)
 appears to the left of a label, the label identifies a key field.

 If an asterisk appears to the left of a label, the label
 identifies a primary key field. For example, consider the
 following label:

 * EMPNUM ____

 In this example, EMPNUM is the label for a primary key field.

 8-6

 USING AN ENABLE APPLICATION
 Fields

 If a plus sign appears to the left of a label, the label
 identifies an alternate key field. For example, consider the
 following label:

 + EMPNAME __________________

 In this example, EMPNAME is the label for an alternate key field.

 Sometimes a label appears without a field. Such a label
 identifies a group field. (A group field is a field that can be
 broken down into smaller items.) When a label identifies a group
 field, the labels of the items within the group usually appear on
 the following screen line or lines, indented two screen columns,
 for example:

 + DEPT + DEPT
 REGNUM __ or REGNUM __ BRANCHNUM __
 BRANCHNUM __

 Notice that in the preceding example, a plus sign appears to the
 left of the DEPT label, identifying the DEPT group as an
 alternate key field.

 A special label called Record Number identifies a courtesy key
 field. This label appears as follows:

 * Record Number ________

 The asterisk that appears to the left of the label indicates that
 you can use a Record Number field in the same manner that you use
 a primary key field.

 Fields

 An application uses fields to accept and display data from a
 record. Fields can accept and display the following types of
 data:

 8-7

 USING AN ENABLE APPLICATION
 Fields

 • Numeric data--This type of data consists of digits and
 possibly a minus sign or decimal point. Consider the
 following examples of fields that display or accept numeric
 data:

 * EMPNUM ____

 SALARY .00

 VACATION __

 * Record Number ________

 • Alphanumeric data--This type of data consists of letters of
 the alphabet, spaces, digits, and special symbols like the
 hyphen. Consider the following examples of fields that
 display or accept alphanumeric data:

 + EMPNAME __________________
 BRANCHNAME _____________

 • Alphabetic data--This type of data consists of letters of the
 alphabet and spaces. Consider the following example of a
 field that displays or accepts alphabetic data:

 INSURANCE-COV __________________

 Notice that, with the exception of fields with decimal points,
 you cannot visually determine the type of data that a field will
 accept or display. If the label associated with a field does not
 clearly define the type of data that you can enter in the field,
 ask your data administrator for this information. The
 application will not allow you to enter data of an invalid type
 in a screen field.

 Entering Data in Fields

 With the exception of numeric fields that accept signs, you can
 identify the number of characters (letters or digits) that a
 field will accept by examining the dashed lines that make up the
 field. Suppose, for example, that a field appears as follows:

 + EMPNAME __________________

 8-8

 USING AN ENABLE APPLICATION
 Fields

 You can enter characters in this field up to the end of the
 dashed line. You do not, however, have to enter enough
 characters to fill the dashed line.

 For decimal fields, you must enter the integer portion of the
 field, the decimal point, and any values that appear to the right
 of the decimal point. Consider the following field:

 SALARY .00

 If you enter data in this field, it could appear as:

 SALARY 34.00__

 You must include every value that appears to the right of the
 decimal point when you enter data in a decimal field.

 If a numeric field accepts a sign, that field contains an extra
 character position for the sign. Therefore, you can enter one
 less digit than the number of dashed lines displayed. Because
 you cannot visually distinguish a signed field from an unsigned
 field, ask your data administrator if an application displays
 signed fields. If the application displays signed fields, you
 must include a minus sign when you enter a negative value in such
 fields. (When you enter positive values in these fields do not
 enter a plus sign; this sign is both unnecessary and illegal).

 For alphanumeric or alphabetic fields, you can enter either
 uppercase or lowercase letters of the alphabet. If you try to
 read existing records with an operation that involves comparison
 (READ APPROXIMATE, READ EXACT, or READ GENERIC), follow these
 rules:

 • If the existing records contain uppercase letters, enter
 uppercase letters when you request a comparison operation.

 • If the existing records contain lowercase letters, enter
 lowercase letters when you request a comparison operation.

 Special Fields in Applications That Display Several Boxes

 If your application displays several boxes, be aware of special
 fields whose values connect a containing box to a nested box.
 These join fields appear directly above the nested box. Figure
 8-5 shows a screen with several boxes and identifies the join
 fields for each containing box.

 8-9

 USING AN ENABLE APPLICATION
 Fields

S5044-052

BRANCH-PROG2
Page 1/1
 BRANCHNAME __________________ MANAGER _________
* PRIMKEY
 REGNUM _____ BRANCHNUM _____

 EMPNAME _________________________
 JOB ___________________
 AGE ___
 SALARY _______________
 VACATION ___
 EMPNUM _________

 INSURANCE-COV _____________________
 DEPENDENT-CODE _____________________

Ready for input F3 for Help, shift F16 to exit

.00

Join Field for the branch box

Join Field for the employee box

 Figure 8-5. Join Fields for Containing Boxes

 If you cannot identify the join fields for your application, ask
 your data administrator for this information, since values in
 these fields can affect the way that you update or delete
 records.

 8-10

 USING AN ENABLE APPLICATION
 Getting Started

 Cursor Positioning for IBM 327x and T16-651x Terminals

 Multifile applications and applications that access multiple
 records use the cursor position to determine which box or
 record an operation applies to. When using IBM 327x and
 T16-651x terminals, the cursor may be positioned outside of
 the screen fields recognized by the application. When this
 happens, the application attempts to locate the record to be
 affected by the following rules:

 1. If the cursor is not positioned in a screen field, the
 application assumes that it is located in the next screen
 field (down and to the left) of the display.

 2. If the cursor is positioned after the last screen field, the
 application assumes that it is located in the box and record
 image where the previous operation took place.

 3. If no operations have yet been performed, the operation
 applies to the first record image in the outermost box.

 GETTING STARTED

 When the ENABLE screen appears on your terminal, you can begin
 operations. The application initially places the terminal cursor
 in the first character position of the first field. You can move
 the cursor to the first character position of the next field by
 using the TAB key. When you fill a field with characters, the
 cursor automatically moves to the next field with the
 exception of key fields. On the T16-652x, T16-653x, and
 IBM-327x, the cursor does not move to the next field when you
 completely fill a single key field, the last field of a group key
 field, or the last field in a nested box.

 The following paragraphs describe the operations that you can
 request to read, insert, delete, or update records. A table at
 the end of this section provides a brief summary of each of these
 operations and identifies the function key associated with each
 operation.

 8-11

 USING AN ENABLE APPLICATION
 Reading Records

 READING RECORDS

 You can read a record in a data base file by requesting several
 different types of read operations. These operations are:

 • READ FIRST

 • READ NEXT

 • READ APPROXIMATE

 • READ EXACT

 • READ GENERIC

 You can request these operations by using function keys F4, F5,
 F6, F7, and F8.

 When you request a read operation, you select a key field with
 which the application performs the operation. You select this
 key field by positioning the cursor within the field. If a
 particular record has only one key, the application assumes that
 you have selected that key regardless of where you position the
 cursor.

 If you do not position the cursor within a key field, the
 application assumes that you have selected the first key field
 that appears on the screen. For this reason, this key field is
 sometimes called the default key.

 If an application displays several boxes, you must position the
 cursor within the desired box before you request a read
 operation.

 READ FIRST (F4)

 When you want to retrieve the first record (or records) in the
 file according to a selected key field, request a READ FIRST
 operation. If you select a primary key field, you retrieve the
 first record actually stored in the file. If you select an
 alternate key field, you retrieve the first record in the file
 sorted by the alternate key field. Both primary and alternate
 keys are sorted in ascending sequence.

 8-12

 USING AN ENABLE APPLICATION
 READ FIRST

 If a key field is a group consisting of two fields, a READ FIRST
 operation retrieves the first record if the group is a primary
 key field or the record with the lowest group value if the group
 is an alternate key field. Consider the following group key
 field:

 + DEPT
 REGNUM __
 BRANCHNUM __

 If you request a READ FIRST operation by positioning the cursor
 in either REGNUM or BRANCHNUM, the application will return the
 first existing record with the lowest DEPT value.

 If duplicate alternate key values exist when you request a READ
 FIRST operation, the application will return a record with the
 requested alternate key value and the lowest primary key value.

 READ FIRST Operation for an Outermost Box

 You can request a READ FIRST operation for an outermost box at
 any time by pressing F4.

 READ FIRST Operation for a Nested Box

 To request a READ FIRST operation for a nested box, do the
 following:

 1. Request either a read or insert operation for the containing
 box.

 2. Press F4.

 8-13

 USING AN ENABLE APPLICATION
 READ NEXT

 READ NEXT (F5)

 If you have established a position within a file by previously
 requesting another read operation, you can retrieve the next
 record (or records) in sequence by requesting a READ NEXT
 operation. Suppose that you request a read by primary key where
 the key value is 100. Your position within the file is at that
 record. If you now request a READ NEXT operation, the
 application will read the next record with a primary key value
 greater than 100.

 If you request an intervening insert, delete, or update
 operation, you do not lose your position within the file. You
 can continue the READ NEXT operation as if you had not requested
 the intervening operation.

 After you press a function key to request any read operation, the
 application displays a message on the upper portion of the
 screen. This message identifies the key which the application
 will use if you request a READ NEXT operation.

 READ NEXT Operation for an Outermost Box

 If you have just performed a READ FIRST, by primary or alternate
 key, you can read an entire file by requesting repeated READ NEXT
 operations. To request a READ NEXT operation, press F5.

 Refer to the various read functions listed in the table later in
 this section to determine other uses of the READ NEXT operation.

 READ NEXT Operation for a Nested Box

 If you have just requested a read operation on a nested box, you
 can request repeated READ NEXT operations and read any other
 qualifying records. To request a READ NEXT operation, press F5.

 8-14

 USING AN ENABLE APPLICATION
 READ APPROXIMATE

 READ APPROXIMATE (F6)

 To read the first record (or records) in sequence whose key value
 is equal to or greater than that of a key value you have entered,
 request a READ APPROXIMATE operation.

 Suppose that you request a READ APPROXIMATE operation for the
 following group key field:

 + DEPT
 REGNUM __
 BRANCHNUM __

 If you enter a value of 01 or 1 in REGNUM, the application will
 return the first record (or records) with a REGNUM value equal to
 or greater than 1 (if you enter a leading zero with the 1, the
 zero is ignored). The BRANCHNUM field of the returned record
 will be the lowest in value of any records with a REGNUM value of
 1.

 If you request a READ APPROXIMATE operation on an alphanumeric or
 alphabetic field, the application will return records in
 alphanumeric sequence. For example, assume a file contains two
 records with alternate key name fields: JACK WILSON and JANE
 ADAMS. If you enter J or JA in the name field and press F6 to
 request a READ APPROXIMATE operation, the application will return
 JACK WILSON as the first record.

 READ APPROXIMATE Operation for an Outermost Box

 To perform a READ APPROXIMATE operation, do the following:

 1. Enter a value in the desired key field.

 2. Press F6.

 8-15

 USING AN ENABLE APPLICATION
 READ EXACT

 READ APPROXIMATE Operation for a Nested Box

 For a nested box, you can perform a READ APPROXIMATE operation
 only if a key field appears in the box. (If a key field does not
 appear and you request a READ APPROXIMATE operation, the
 application will perform a READ EXACT operation.) If a key field
 appears, do the following to request a READ APPROXIMATE
 operation:

 1. Read or insert a record in the containing box.

 2. Enter a value in the key field of the nested box.

 3. Press F6.

 READ EXACT (F7)

 To retrieve the first record (or records) with a key field value
 that exactly matches the one you have entered, request a READ
 EXACT operation. If you enter a value for a primary key field,
 the application returns the single existing record. If you enter
 a value for an alternate key field that has duplicate values, the
 application retrieves the first record (or records) that has that
 alternate key value.

 If the key field is a group key field, you must enter a value for
 all the fields in the group. Consider, for example, the
 following group key field:

 + DEPT
 REGNUM __
 BRANCHNUM __

 To request a READ EXACT for the DEPT field, you must first enter
 a value in both REGNUM and BRANCHNUM. If you enter a 1 in REGNUM
 and do not enter a value in BRANCHNUM, the application will not
 find a record unless REGNUM = 1 and BRANCHNUM = 0.

 8-16

 USING AN ENABLE APPLICATION
 READ GENERIC

 READ EXACT Operation for an Outermost Box

 To request a READ EXACT operation, do the following:

 1. Enter the entire key value in the desired key field.

 2. Press F7.

 READ EXACT Operation for a Nested Box

 If a key field appears within a nested box, do the following to
 request a READ EXACT operation:

 1. Read or insert a record in the containing box.

 2. Enter the entire field value in the desired key field.

 3. Press F7.

 If a key field does not appear within a box and you request a
 READ EXACT operation, the application performs the READ
 EXACT; however, the results will be indistinguishable from a READ
 FIRST operation.

 READ GENERIC (F8)

 To retrieve the first record (or records) with a partial key
 value that matches the one you have entered, request a READ
 GENERIC operation.

 You cannot request a READ GENERIC operation for any key field
 that contains binary values. The courtesy key field (record
 number) always contains binary values. Since, with the exception
 of the courtesy key field, you cannot visually distinguish fields
 containing binary values from fields containing other values, ask
 your data administrator to provide this information.

 To perform a READ GENERIC, you enter a partial key value and
 press F8. When you press F8, the application displays the
 following message at the top of the screen and waits for a
 response:

 Enter compare-length (characters), F8

 8-17

 USING AN ENABLE APPLICATION
 READ GENERIC

 You must then enter the number of characters to be used for the
 compare operation and press F8 a second time. The application
 uses the specified number of characters for the compare operation
 and returns the appropriate record. For example, suppose that
 you want to request a READ GENERIC operation for the following
 key field:

 + EMPNAME __________________

 Suppose further that the employee file contains records for
 employees named MARILYN, MARGARET, and MARIE. If you enter the
 following partial characters, you will retrieve the indicated
 records:

 M MARGARET returned MARIE returned on READ NEXT
 MA MARGARET returned MARIE returned on READ NEXT
 MAR MARGARET returned MARIE returned on READ NEXT
 MARI MARIE returned MARILYN returned on READ NEXT
 MARG MARGARET returned Record not found on READ NEXT

 Now, suppose that a field appears as follows:

 * EMPNUM ____

 If the employee file contains records for employee numbers 0
 through 123, the application will return the record listed in
 Figure 8-6 depending upon the value you enter and the compare
 length you specify.

 | |
 | Compare length Field Value Record Returned |
 | |
 | 0 0123 EMPNUM 123 |
 | (full field size used) |
 | 1 0xxx EMPNUM 0 (0000) |
 | 2 01xx EMPNUM 100 (0100) |
 | 3 012x EMPNUM 120 (0120) |
 | 4 0123 EMPNUM 123 (0123) |
 | no length specified 0123 EMPNUM 123 |
 | (full field size used) |
 | value greater than 4 0123 EMPNUM 123 |
 | (full field size used) |
 | |

 Figure 8-6. Example of Records Returned

 8-18

 USING AN ENABLE APPLICATION
 READ GENERIC

 READ GENERIC Operation for an Outermost Box

 To request a READ GENERIC operation for an outermost box, do the
 following:

 1. Enter a partial value in the key field.

 2. Press F8.

 3. Enter the number of compare characters in response to the
 request from the application.

 4. Press F8.

 READ GENERIC Operation for a Nested Box

 You can request a READ GENERIC operation for a nested box only if
 a key field appears in that box. If a key field does appear, do
 the following to request a READ GENERIC operation:

 1. Read or insert a record in the containing box.

 2. Enter a partial value in the key field.

 3. Press F8.

 4. Enter the compare length in response to the request from the
 application.

 5. Press F8.

 8-19

 USING AN ENABLE APPLICATION
 Inserting Records

 INSERTING RECORDS

 You can insert a new record in a file by entering the appropriate
 values in the record fields and requesting an insert operation.
 Two insert operations are available:

 INSERT--to insert a single record at a time.

 INSERT BOX--to insert several records at one time.

 When you request an INSERT operation, you must position the
 cursor within the record to be inserted. When you request an
 INSERT BOX operation, you must position the cursor within the
 appropriate box.

 INSERT (F10)

 To insert a single record into a file, request an INSERT
 operation. Before you request the INSERT operation, you must
 enter the appropriate values in the fields of the record to be
 inserted. If you do not enter values in any of the record
 fields, the application will issue the following error message:

 Default record is not acceptable.

 If all the information necessary to insert a record is not
 available, you do not have to enter a value in each field of a
 record. You can update such records later when the information
 becomes available. You must, however, enter values for the
 primary key field or any alternate key fields that have been
 defined as requiring unique values. If you do not enter a value
 in a nonkey alphanumeric or alphabetic field, the application
 inserts blanks for these fields. If you do not enter a value in
 a nonkey numeric field, the application inserts zeros for this
 field.

 If you request an INSERT operation for an entry-sequenced or
 unstructured file, the application ignores any value that you
 enter in a Record Number field. The application and the computer
 system automatically supply the appropriate number for the
 record.

 8-20

 USING AN ENABLE APPLICATION
 INSERT

 If you request an INSERT operation for a relative file, the
 application uses the value that you enter in the Record Number
 field. The application handles values in this field as follows:

 No value (or no The application inserts the record in the
 change to the first available position in the file.
 previously
 displayed value)

 Negative value The application inserts the record at the
 end of the file.

 Positive value The application inserts the record at that
 numbered position in the file if possible;
 if that is not possible, the application
 issues a Duplicate Key error message.

 INSERT Operation for an Outermost Box

 To insert a single record for an outermost box, do the following:

 1. Enter appropriate values in the fields of the record.

 2. Press F10.

 Figure 8-7 illustrates a sample record INSERT operation for an
 application that displays one box. The file into which this
 record is inserted is key-sequenced, as determined by the
 existence of a primary key (* EMPNUM) and alternate keys (+
 EMPNAME and + DEPT).

 8-21

 USING AN ENABLE APPLICATION
 INSERT

 | |
 | STEP 1: Enter the values in the fields. |
 | |
 | Page 1/1 |
 | (Stored as 0387) * EMPNUM 387_ |
 | + EMPNAME JANE WILSON_________ |
 | (Stored as 0600) + DEPT |
 | (1st two digits 06) REGNUM 6_ |
 | (2nd two digits 00) BRANCHNUM __ |
 | (Stored as ANALYST) JOB __ANALYST_ |
 | AGE 22 |
 | SALARY 1600.00 |
 | (If this is a signed VACATION 1_ |
 | field, the value is |
 | stored as 1--the |
 | first position on |
 | the display is |
 | reserved for the |
 | sign; if this is |
 | an unsigned field, |
 | the value is stored |
 | as 01.) |
 | |
 | STEP 2: Press F10 to insert the record. |
 | |

 Figure 8-7. Inserting a Record

 Figure 8-7 illustrates the following:

 • You do not have to enter a value in each field.

 • You can enter characters in any position on the line. The
 application will store values entered in numeric fields like
 EMPNUM right-justified with leading zeros. The application
 will store values entered in alphanumeric fields like JOB
 left-justified with trailing blanks.

 8-22

 USING AN ENABLE APPLICATION
 INSERT

 INSERT Operation for a Nested Box

 To insert a single record for a nested box, you must do the
 following:

 1. Request a read or insert operation for the containing box.

 2. Enter the appropriate values in the fields of the nested box.

 3. Position the cursor within the record to be inserted if more
 than one record exists in the box.

 4. Press F10.

 Figure 8-8 illustrates a sample record INSERT operation for an
 application that displays several boxes.

 8-23

 USING AN ENABLE APPLICATION
 INSERT

 | |
 | STEP 1: Enter values in the fields of the containing box. |
 | |
 | BRANCH-PROG1 |
 | Page 1/1 |
 | BRANCHNAME San Francisco_ |
 | MANAGER 23__ |
 | * PRIMKEY |
 | REGNUM _1 |
 | BRANCHNUM _2 |
 | ~~~ |
 | | EMPNUM ____ EMPNAME ______________ JOB ___________ | |
 | | AGE SALARY .00 VACATION | |
 | ~~~ |
 | |
 | STEP 2: Press F10 to insert the record in the containing |
 | box. |
 | |
 | STEP 3: Enter values in the fields of the nested box. |
 | |
 | BRANCH-PROG1 |
 | Page 1/1 |
 | BRANCHNAME San Francisco_ |
 | MANAGER 23__ |
 | * PRIMKEY |
 | REGNUM _1 |
 | BRANCHNUM _2 |
 | ~~~ |
 | | EMPNUM 0123 EMPNAME Joe Jones_____ JOB Salesman___ | |
 | | AGE 39 SALARY 3000.00 VACATION 1_ | |
 | ~~~ |
 | |
 | STEP 4: Press F10 to insert the record in the nested box. |
 | |

 Figure 8-8. Inserting a Record in a Nested Box

 8-24

 USING AN ENABLE APPLICATION
 INSERT BOX

 NOTE

 Do not enter values in a nested box until you request a
 read or insert operation for its containing box. If you
 enter values in the nested box before you request an
 operation for its containing box, the application will
 remove the values from the nested box when it performs the
 operation on the containing box. If an application
 automatically reads a record for the nested box whenever
 you request an operation for the containing box, the
 application will replace the values in the nested box with
 values read from the data base.

 INSERT BOX (Shifted F10)

 If you want to insert several records at one time, request an
 INSERT BOX operation. Before you request the INSERT BOX
 operation, you must enter values in some fields of at least one
 record. When the application successfully completes the INSERT
 BOX operation, it displays a message indicating the number of
 records inserted.

 If the application encounters an error during an INSERT BOX
 operation, it highlights the fields of the record in error. The
 application displays the following prompt on line 2 of the
 screen:

 Continue processing, Y/N, F1

 If the application displays this prompt, you must enter either
 the character Y (to indicate that you want to continue) or the
 character N (to indicate that you want to stop) and then press
 F1. If you enter a Y, the application continues the INSERT BOX
 operation beginning with the record directly following the record
 in error. If you enter an N, the application stops the INSERT
 BOX operation. In this case, the application has already
 inserted any records that precede the record in error.

 You can reverse the effects of an INSERT BOX operation by
 requesting an UNDO (SF13) operation immediately after the INSERT
 BOX operation.

 8-25

 USING AN ENABLE APPLICATION
 INSERT BOX

 INSERT BOX Operation for an Outermost Box

 You can insert several records in an outermost box by doing the
 following:

 1. Entering the appropriate values in the fields of the records.

 2. Pressing shifted F10 to insert the records.

 Figure 8-9 illustrates a sample INSERT BOX operation for an
 application that displays a single box. You do not have to enter
 values for every existing record position.

 | |
 | STEP 1: Enter values in the record fields. |
 | |
 | Page 1/1 |
 | * EMP + EMPLOYEE + DEPT JOB AGE SALARY VAC |
 | NO. NAME |
 | 323_ Joe Smith______ 2_ 3_ Manager____ 37 4000.00 12 |
 | 239_ James King_____ 2_ 3_ Salesman___ 39 2500.00 9_ |
 | 245_ Sally Jones____ 2_ 3_ Programmer_ 29 3900.00 13 |
 | .00 |
 | .00 |
 | .00 |
 | .00 |
 | |
 | STEP 2: Press shift F10 to insert the records. |
 | |
 | The application displays the following message after |
 | completing the INSERT BOX operation: |
 | |
 | Items inserted: 003 |
 | |

 Figure 8-9. Example of INSERT BOX Operation for a Single Box

 INSERT BOX Operation for a Nested Box

 To request an INSERT BOX operation for a nested box, do the
 following:

 1. Read or insert a record for the containing box.

 8-26

 USING AN ENABLE APPLICATION
 INSERT BOX

 2. Enter screen values in the nested box.

 3. Press shifted F10.

 NOTE

 Do not enter values in a nested box unless you have
 previously requested a read or insert operation for the
 containing box. If you enter values in the nested box
 before you request an operation for the containing box, the
 application will remove the values from the nested box when
 it performs the operation on the containing box. If an
 application automatically reads a record for a nested box
 whenever you request an operation for a containing box, the
 application will replace the values in the nested box with
 values read from the data base.

 Figure 8-10 illustrates an INSERT BOX operation for an
 application that displays several boxes.

 8-27

 USING AN ENABLE APPLICATION
 INSERT BOX

 | |
 | STEP 1: Enter values in the fields of the containing box. |
 | |
 | BRANCHNAME San Jose______ MANAGER ____ |
 | * PRIMKEY |
 | REGNUM __ BRANCHNUM __ |
 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ |
 | | EMP EMPLOYEE JOB AGE SALARY VAC | |
 | | NO. NAME DESCRIPTION | |
 | | .00 | |
 | | .00 | |
 | | .00 | |
 | | .00 | |
 | ~~~ |
 | |
 | STEP 2: Press F6 to read the record. |
 | |
 | STEP 3: Enter values in the fields of the nested box. |
 | |
 | BRANCHNAME San Jose______ MANAGER 359_ |
 | * PRIMKEY |
 | REGNUM 1_ BRANCHNUM 3_ |
 | ~~~ |
 | | EMP EMPLOYEE JOB AGE SALARY VAC | |
 | | NO. NAME DESCRIPTION | |
 | | 359_ Johnny Joe Myers__ Manager_____ 53 4500.00 23 | |
 | | 595_ Betty Lee_________ Secretary___ 27 1900.00 10 | |
 | | 323_ Sylvia Smitty_____ Saleswoman__ 31 4200.00 20 | |
 | | 534_ Philip Peters_____ Clerk_______ 32 1500.00 _3 | |
 | ~~~ |
 | |
 | STEP 4: Press shifted F10 to insert the records in the |
 | nested box. |
 | |
 | When the application sucessfully completes the INSERT BOX |
 | operation, it displays: |
 | |
 | Items inserted: 004 |
 | |

 Figure 8-10. INSERT BOX Operation for a Nested Box

 8-28

 USING AN ENABLE APPLICATION
 DELETE BOX

 DELETING RECORDS

 You can delete only those records that are currently displayed on
 the screen. To retrieve records that you want to delete, use any
 suitable read operation. After you retrieve a record (or
 records), you can request the following delete operations:

 DELETE--to delete a single record

 DELETE BOX--to delete several records

 When you request a DELETE operation, you must position the cursor
 within the record to be deleted. When you request a DELETE BOX
 operation, you must position the cursor within the appropriate
 box.

 If you request a delete operation and then change your mind, you
 can use the UNDO key (SF13) to replace the deleted record.

 DELETE (F12)

 If you want to delete a single record, request a DELETE
 operation. To request a DELETE operation, do the following:

 1. Perform any read operation to retrieve the record you want to
 delete.

 2. Position the cursor over the record you want to delete if
 more than one record appears in the box.

 3. Press F12 to delete the record.

 DELETE BOX (Shifted F12)

 If you want to delete several records at the same time, request a
 DELETE BOX operation. You can only delete those records that
 appear on the screen. To request a DELETE BOX operation, do the
 following:

 8-29

 USING AN ENABLE APPLICATION
 DELETE Considerations for Applications with Several Boxes

 1. Retrieve the records that you want to delete by requesting
 any suitable read operation.

 2. If any records appear that you do not want to delete, replace
 these records with the default record.

 3. Press Shifted F12 to delete the records shown on the screen.

 If the application encounters an error during the DELETE BOX
 operation, it highlights the fields of the record in error. The
 application then displays the following prompt at the top of the
 screen:

 Continue processing, Y/N, F1

 If the application displays this prompt, you must enter either
 the character Y (to indicate that you want to continue) or the
 character N (to indicate that you want to stop) and then press
 F1. If you enter a Y, the application continues the DELETE BOX
 operation beginning with the record that directly follows the
 record in error. If you enter an N, the application stops the
 DELETE BOX operation. In this case, the application has already
 deleted any records that appear above the record in error. If
 you request an UNDO operation at this point, however, you can
 return the data base to its previous condition.

 DELETE Considerations for Applications With Several Boxes

 If you delete a record from a containing box, you can no longer
 use the application to retrieve the matching record (or records)
 for the nested box. If this is a problem for your application,
 do the following:

 1. Use any read operation to retrieve the record for the
 containing box.

 2. Use an appropriate read operation to retrieve the record (or
 records) for the nested box.

 3. Delete the record (or records) displayed in the nested box.

 4. Repeat steps 2 and 3 until the application does not return
 any records as a result of the read operation.

 5. Delete the record in the containing box.

 8-30

 USING AN ENABLE APPLICATION
 Updating Records

 UPDATING RECORDS

 You can only update a record that is currently displayed on the
 screen. To retrieve the record (or records) you want to update,
 use any suitable read operation. After you have retrieved the
 record (or records), you can request the following update
 operations:

 UPDATE--to update a single record at a time

 UPDATE BOX--to update several records at a time

 If you request an update operation, you must position the cursor
 within the record being updated. If you request an UPDATE BOX
 operation, you must position the cursor with the appropriate box.

 When you request an update operation, you can change the primary
 key of a record in a key-sequenced file. If that record has a
 unique alternate key value, however, you must also change that
 alternate key.

 CAUTION

 If you retrieve a numeric field value and the data value
 stored in that field is invalid, the application issues an
 error message under certain circumstances and displays
 zeros in the field. If you immediately press F14, the
 application stores the zeros in the record. Since data
 administrators often wish to examine any invalid data, you
 may want to avoid requesting an update operation should the
 application indicate that invalid numeric is encountered.
 In this event, the application highlights the fields
 containing invalid data.

 8-31

 USING AN ENABLE APPLICATION
 UPDATE

 UPDATE (F14)

 To change a single record, request an update operation by:

 1. Use any read operation to retrieve the record.

 2. Make the necessary changes to the fields of the record.

 3. Position the cursor within the record to be updated if more
 than one record appears in the box.

 4. Press F14 to update the record.

 UPDATE BOX (Shifted F14)

 When you want to change several records at one time, request an
 UPDATE BOX operation. (You can only update those records that
 appear on the screen.) To request an UPDATE BOX operation, do
 the following:

 1. Use any read operation to retrieve the records.

 2. Make the necessary changes to the fields of the records.

 3. Press shifted F14 to update the records.

 If the application encounters an error during the UPDATE BOX
 operation, it highlights the fields of the record in error. The
 application then displays the following prompt at the top of the
 screen:

 Continue processing, Y/N, F1

 If the application displays this prompt, you must enter either
 the character Y (to indicate that you want to continue) or the
 character N (to indicate that you want to stop) and then press
 F1. If you enter a Y, the application continues the UPDATE BOX
 operation beginning with the record that directly follows the
 record in error. If you enter an N, the application stops the
 UPDATE BOX operation. In this case, the application has already
 updated any records that appear above the record in error. You
 can, however, request an UNDO operation at this point and return
 the data base to its previous condition.

 8-32

 USING AN ENABLE APPLICATION
 Undoing an INSERT, DELETE, or UPDATE

 UPDATE Considerations for Applications With Several Boxes

 If you request an update operation that changes the value of the
 join field of a containing box, you can no longer use the
 application to read any records in the nested box that have that
 same join-field value. If this is a problem for your
 application, do the following:

 1. Request a read operation to retrieve the containing record.

 2. Request a read operation to retrieve the nested record (or
 records).

 3. Delete the nested record (or records).

 4. Repeat steps 2 and 3 until the application does not return a
 record as a result of the read operation.

 5. Change the necessary fields of the containing record.

 6. Press F14 to update the record in the containing box.

 7. Replace the nested record (or records) by requesting the
 appropriate insert operations for the nested box.

 If many nested records need to be deleted and replaced, consider
 asking your data administrator for two single-file applications
 that you can use to change the join field-values of these
 records.

 UNDOING AN INSERT, DELETE, OR UPDATE (SHIFTED F13)

 You can reverse the effects of an INSERT, DELETE, or UPDATE
 operation by requesting an UNDO operation. You request an UNDO
 operation by pressing shifted F13.

 8-33

 USING AN ENABLE APPLICATION
 Undoing a DELETE Operation

 Undoing a DELETE Operation

 To undo a DELETE operation, the application must insert the
 deleted record (or records). The application can insert the
 deleted record if you have not requested another delete, insert,
 update, or read operation since you requested the delete
 operation you want to reverse and another application has not
 inserted the deleted record.

 You can undo a DELETE operation even if your application does not
 support insert operations.

 Undoing an UPDATE Operation

 To undo an UPDATE operation, the application must replace the old
 record (or records). The application can replace the old record
 if the following is true:

 • You have not requested another DELETE, INSERT, READ, or UPDATE
 operation since you requested the update operation you want to
 reverse.

 • Another application has not modified the updated record.

 You can undo an UPDATE operation even if you changed the primary
 key.

 Undoing an INSERT Operation

 To undo an INSERT operation, the application must delete the
 record (or records) you inserted. The application can reverse
 the insert operation if the following is true:

 • You have not requested another DELETE, INSERT, READ, or UPDATE
 operation since you requested the INSERT operation you want to
 reverse.

 • Another application has not changed or deleted the inserted
 record.

 • You did not insert the record (or records) in an
 entry-sequenced or unstructured file. The computer system
 will not allow the application to delete a record from either
 an entry-sequenced or an unstructured file.

 8-34

 USING AN ENABLE APPLICATION
 Recovering a Display Screen

 You can undo an INSERT operation even if your application does
 not support delete operations.

 PERFORMING SPECIAL SCREEN OPERATIONS

 Several types of screen operations are available. The operations
 are:

 • Defining a printer

 • Printing a screen image

 • Recovering a display screen

 Defining a Printer (Shifted F4)

 To define a printer, press shifted function key F4. The
 application issues a prompt that requests you to specify where
 printing should be directed. Type in the name of the appropriate
 device. The device can be a terminal, printer, or process such
 as the Tandem spooler. The device cannot be a disc file.

 Printing a Screen Image (Shifted F5)

 To send an image of the current screen to a device, press shifted
 function key F5. The application sends the screen image to the
 device you previously specified in response to the shifted F4 key
 prompt.

 Recovering a Display Screen (Shifted F15)

 To recover a screen image, press shifted function key F15. This
 function can be used when unexpected problems occur, for example,
 when someone inadvertently turns off your terminal. Note that
 the contents of the screen are not necessarily the same as they
 were before recovery was initiated.

 8-35

 USING AN ENABLE APPLICATION
 Operator Display and Error Messages

 OPERATOR DISPLAY AND ERROR MESSAGES

 The application displays messages on the upper and lower portions
 of the screen. For example, when the application is ready for
 you to perform an operation, the following message is displayed
 on the lower portion of the screen:

 Ready for Input

 After you perform an initial read operation for a box, one of the
 following messages appears on the upper portion of the screen
 whenever you are positioned within the box:

 Approx Key key-name appears after a READ FIRST, READ NEXT,
 and READ APPROXIMATE.

 Exact Key key-name appears after a READ EXACT.

 Generic Key key-name appears after a READ GENERIC.

 Each time you successfully complete an operation, an appropriate
 message is displayed on the lower portion of the screen:

 • Record deleted OK

 • Delete undone OK

 • Record inserted OK

 • Update undone OK

 • Record read OK

 • Items inserted: nnn

 • Record updated OK

 • Items deleted: nnn

 • Insert undone OK

 • Items updated: nnn

 The application displays error messages on the last line of the
 screen; the messages persist until you press a function key.
 These messages are listed in Appendix B under "Application
 Run-Time Messages."

 8-36

 USING AN ENABLE APPLICATION
 Terminal Function Keys

 TERMINAL FUNCTION KEYS

 To perform operations with an application, you use the terminal
 function keys located across the top of the keyboard. Table 8-1
 lists these function keys and their specific operations. Entries
 in the function key column indentify the function keys for the
 T16-651x, T16-652x, and T16-653x terminals. The comparable
 program function and attention keys for IBM-327x terminals appear
 in parentheses.

 If you are using an IBM-327x terminal, the ENTER key serves as a
 shift key for twelve operations corresponding to the Tandem
 shifted F1, F2, F3, F4, F5, F6, F10, F12, F13, F14, and F15 keys.
 To use these corresponding shifted functions, do the following:

 1. Press the ENTER key first. The screen displays the word
 SHIFT, and the PF keys take on their secondary functions. To
 cancel a SHIFT operation before execution, press the ENTER
 key again.

 2. Press the appropriate PF key. It is not necessary to hold
 the ENTER key down when the PF key is pressed.

 8-37

 USING AN ENABLE APPLICATION
 Terminal Function Keys

 Table 8-1. Terminal Function Keys (Continued next page)

 | |
 | Function Key Template Label Operation |
 |___|
 | |
 | F1 PREVIOUS PAGE Display the previous |
 | (PF1) screen page or HELP |
 | screen. |
 | |
 | F1 shifted FIRST PAGE Display the first screen |
 | (ENTER,PF1) screen page or HELP |
 | screen. |
 | |
 | F2 NEXT PAGE Display the next screen |
 | (PF2) page or HELP screen. |
 | |
 | F2 shifted LAST PAGE Display the last screen |
 | (ENTER,PF2) page or HELP screen. |
 | |
 | F3 HELP Switch between display of |
 | (PF3) record image screen and |
 | HELP screens. HELP |
 | screens display all |
 | function key assignments. |
 | |
 | F3 shifted /\ Application-dependent; |
 | (ENTER, PF3) \/ often calls another |
 | application. This |
 | function key might not |
 | be supported by your |
 | application. |
 | |
 | F4 READ FIRST Retrieve the first record |
 | (PF4) or records in a file |
 | sorted by a particular |
 | key field. You can then |
 | use F5 to continue |
 | reading. |
 | |
 | F4 shifted DEFINE PRINTER Indicate where printing |
 | (ENTER, PF4) of the display screen is |
 | to be directed. You can |
 | then use shifted F5 to |
 | print the screen. |
 | |

 8-38

 USING AN ENABLE APPLICATION
 Terminal Function Keys

 Table 8-1. Terminal Function Keys (Continued)

 | |
 | Function Key Template Label Operation |
 |___|
 | |
 | F5 READ NEXT Retrieve the next record |
 | (PF5) or records in sequence |
 | according to the |
 | operation in progress. |
 | |
 | F5 shifted PRINT Send an image of the |
 | (ENTER,PF5) current screen to the |
 | device specified by |
 | shifted F4. |
 | |
 | F6 READ APPROX Retrieve the first record |
 | (PF6) or records whose key |
 | value is greater than or |
 | equal to that of the |
 | value you have entered. |
 | You can then use F5 to |
 | continue reading. |
 | |
 | F6 shifted Application dependent; |
 | (ENTER, PF6) function might not be |
 | supported. |
 | |
 | F7 READ EXACT Retrieve the record or |
 | (PF7) records whose key value |
 | matches that of the |
 | value you have entered. |
 | You can then use F5 to |
 | continue reading as long |
 | as more records with the |
 | same key value exist. |
 | |
 | F8 READ GENERIC Retrieve the first record |
 | or records whose partial |
 | key value matches that of |
 | the partial key value you |
 | have entered. You can |
 | then use F5 to continue |
 | reading sequentially. |
 | You cannot use F8 on the |
 | courtesy key (record |
 | number) field. |
 | |

 8-39

 USING AN ENABLE APPLICATION
 Terminal Function Keys

 Table 8-1. Terminal Function Keys (Continued)

 | |
 | Function Key Template Label Operation |
 |___|
 | |
 | F10 INSERT Insert the record under |
 | (PF10) the cursor. |
 | |
 | F10 shifted INSERT BOX Insert all records |
 | (ENTER, PF10) currently displayed in |
 | the box which contains |
 | the cursor. |
 | |
 | F12 DELETE Delete the record |
 | (PF11) currently displayed on |
 | the screen under the |
 | cursor. |
 | |
 | You cannot use F12 with |
 | records from |
 | entry-sequenced or |
 | unstructured files. |
 | |
 | F12 shifted DELETE BOX Delete all the records |
 | (ENTER, PF11) currently displayed in |
 | the box with the cursor. |
 | |
 | You cannot use F12 with |
 | records from |
 | entry-sequenced or |
 | unstructured files. |
 | |
 | F13 shifted UNDO Reverse the immediately |
 | (ENTER, PF7) preceding insert, delete, |
 | or update operation. |
 | |
 | F14 UPDATE Change the values of the |
 | (PF12) record currently |
 | displayed under the |
 | cursor. |
 | |
 | F14 shifted UPDATE BOX Change the values of all |
 | (ENTER, PF12) the records currently |
 | displayed in the box with |
 | the cursor. |
 | |

 8-40

 USING AN ENABLE APPLICATION
 Terminal Function Keys

 Table 8-1. Terminal Function Keys (Continued)

 | |
 | Function Key Template Label Operation |
 |___|
 | |
 | F15 RECOVER Redisplay data items on |
 | (ENTER, PF 9) the screen. Items |
 | displayed on the screen |
 | are not necessarily those |
 | that were on the screen |
 | at the time the key was |
 | pressed. |
 | |
 | F16 DISPLAY/CLEAR Display or clear the |
 | current record--the |
 | record most recently |
 | read from or written to |
 | the data base. |
 | |
 | F16 shifted EXIT Exit the program. The |
 | (PA2) message "APPLICATION |
 | TERMINATING" appears on |
 | the lower portion of the |
 | screen. |
 | |
 | NEXT PAGE Display the next screen |
 | page or HELP screen. |
 | |
 | PREV PAGE Display the previous |
 | screen page or HELP |
 | screen. |
 | |

 8-41

 SECTION 9

 RESOLVING PROBLEMS

 This section provides guidelines to help you when you encounter
 problems when generating or using an application. The problems
 discussed in this section include:

 • Handling extended memory overflow

 • Difficulty accessing a dictionary or a record description

 • Applications that fail to run or that fail to run properly

 HANDLING PROBLEMS WITH EXTENDED MEMORY OVERFLOW

 ENABLE uses an area of extended memory for its internal tables.
 When you start ENABLE, the GUARDIAN operating system allocates
 500 pages for these tables. The amount of available space
 decreases as you describe and add boxes and applications. When
 this amount becomes dangerously low, ENABLE issues an warning
 message stating:

 Very low on extended memory, delete unnecessary objects

 If you receive this message when you are using ENABLE
 interactively, do the following to reclaim space in these tables:

 1. Use the INFO APPL *, SUMMARY command to obtain a list of the
 boxes and applications that currently exist in the object
 buffer.

 9-1

 RESOLVING PROBLEMS
 Handling Problems With Extended Memory Overflow

 2. Use the DELETE APPL command to delete all applications that
 you have already generated. Use the DELETE BOX command to
 delete all of the boxes associated with these applications.
 You must delete an application before you can delete a box
 used by the application.

 3. If you have not generated any applications, you must delete
 one or more applications (and the associated boxes) before
 you can generate the remaining applications.

 4. If several applications use the same boxes, deleting one or
 more applications might not reclaim sufficient space. In
 this case, you should:

 --Use the OUT, INFO, and SHOW commands to obtain a listing of
 the current contents of the object buffer.

 --Exit from ENABLE.

 --Increase the number of extended memory pages allocated by
 entering the command Interpreter PARAM command and
 specifying a value for the EXTPAGES parameter. (Refer to
 the ENABLE Reference Manual for more information about this
 parameter.)

 --Restart ENABLE and generate your applications.

 If you are using ENABLE noninteractively by entering commands in
 a command file, you will not encounter this error until ENABLE
 terminates with the following error message:

 ENABLE tables overflow allocated extended memory

 In this case, you should:

 1. Increase the number of extended memory pages allocated by
 entering the command Interpreter PARAM command to specify a
 value for the EXTPAGES parameter.

 2. Resubmit your command file to ENABLE.

 9-2

 RESOLVING PROBLEMS
 Resolving Problems That Occur During Application Execution

 RESOLVING PROBLEMS ACCESSING A DICTIONARY

 ENABLE accesses a dictionary to obtain the record description
 for a particular data base file. If you are using ENABLE
 interactively and receive an error message stating that the
 dictionary either cannot be found or cannot be opened, do the
 following:

 1. Use the SHOW command to determine the current value of the
 DICTIONARY attribute.

 2. Make sure that the value of the DICTIONARY attribute is set
 to the system, volume, and subvolume where the dictionary
 resides.

 3. If the current value of the DICTIONARY attribute is correct,
 exit from ENABLE and use the FUP INFO command to check the
 security attributes of the dictionary. Check the following:

 --If you do not own the dictionary, make sure that the
 security attributes allow you to access the dictionary. If
 you do not have access, ask the owner of the dictionary to
 change its security attributes.

 --If you are using a dictionary that resides on another
 system, make sure that the dictionary is secured for
 network access and that you have appropriate network
 passwords on both systems.

 If the application was generated with an obey file, make sure
 that the obey file refers to the proper system, volume and
 subvolume for the dictionary associated with each box. This may
 mean including a SET DICTIONARY command for each box to be
 described.

 RESOLVING PROBLEMS THAT OCCUR DURING APPLICATION EXECUTION

 If an ENABLE application fails to run, or if a running
 application fails to perform properly:

 • Check the PATHMON name you have selected. Make sure the name
 begins with a dollar sign, has no more than five characters,
 and is unique within your system.

 9-3

 RESOLVING PROBLEMS
 Resolving Problems That Occur During Application Execution

 • Make sure the PATHMON name you have selected is not the name
 of a running process. If it is the name of a running process,
 stop the process and change the PATHMON name or see your data
 administrator.

 • Make sure the PATHCOM command file you are using is correct.

 If the application still fails to run after you have checked each
 of the above, regenerate the application and PATHCOM command
 file. Run PATHMON using the generated PATHCOM command file. If
 the program still fails to run, see your data administrator.

 9-4

 SECTION 10

 MAINTAINING AN APPLICATION

 This section provides guidelines to help you:

 • Move an application from one place to another

 • Reclaim disc space used by old versions of applications

 MOVING AN APPLICATION

 For various reasons, you might want to move an application from
 one system, volume, or subvolume to another system, volume, or
 subvolume. The following paragraphs contain two sets of
 guidelines for moving an application. Follow the first set of
 guidelines if you want to move an existing application. Follow
 the second set of guidelines if you are generating an application
 that is to be moved.

 10-1

 MAINTAINING AN APPLICATION
 Moving a Generated Application

 Moving a Generated Application

 To move a generated application from one system, volume, or
 subvolume to another, do the following:

 1. Use the SCREEN COBOL Utility Program (SCUP) to move either
 the object file containing the SCREEN COBOL object code or
 the object code of a particular application. Refer to the
 PATHAID Reference Manual for more information about moving
 SCREEN COBOL object files.

 2. Use either the text editor or the FILE UTILITY PROGRAM (FUP)
 to move the PATHCOM command file.

 3. After you have moved the PATHCOM command file, check the
 system, volume, or subvolume references in the following
 commands:

 • SET TCP TCLPROG

 • SET SERVER ASSIGN

 If these commands refer to the old system, volume, or
 subvolume, change these references.

 4. If necessary, use FUP to move the data base file (or files),
 and its associated alternate key file. Use the FUP ALTER
 command to adjust the reference to the location of the
 alternate key file. Refer to the GUARDIAN Operating System
 User's Guide for information about the FUP ALTER command.

 10-2

 MAINTAINING AN APPLICATION
 Generating an Application To Be Moved

 Generating an Application To Be Moved

 If you are generating an application that you intend to move to
 another system, volume, or subvolume, do the following:

 1. Obtain the SCREEN COBOL source code by setting a value for
 the SCOBOLSOURCE attribute before you add the application.

 2. Suppress compilation of the SCREEN COBOL object code by
 setting the SCOBOLOBJECT attribute to a null value. For
 example:

 SET APPL SCOBOLOBJECT

 3. Use FUP or the editor to move the SCREEN COBOL source code to
 the desired system, volume, or subvolume.

 4. Compile the SCREEN COBOL source code by using the following
 command:

 | |
 | SCOBOLX/ IN <source-file>, OUT <list-file>, MEM 64 / |
 | |
 | <object-ID> |
 | |
 | |
 | <source-file> |
 | |
 | is the name of the edit-type file containing the |
 | SCREEN COBOL source code. |
 | |
 | <list-file> |
 | |
 | is the name of the file to which the SCREEN COBOL |
 | listing is to be directed. |
 | |
 | <object-ID> |
 | |
 | is the name of the SCREEN COBOL object file identifier, |
 | typically POBJ, which can be up to five characters long. |
 | |

 5. Use FUP or the editor to move the PATHCOM file.

 10-3

 MAINTAINING AN APPLICATION
 Reclaiming Disc Space

 6. Edit the PATHCOM command file and replace the question marks
 (???) that appear after the SET TCP TCLPROG command with the
 name of the SCREEN COBOL object file. If you are going to
 move a data base file, be sure that the SET SERVER ASSIGN
 commands identify the proper location of that file.

 7. If necessary, use FUP to move the data base file (or files),
 including any alternate key files associated with the data
 file. After moving the alternate key files, use the FUP
 ALTER command on the data file to adjust the reference to the
 location of the alternate key file. Refer to the GUARDIAN
 Operating System User's Guide for information about the FUP
 ALTER command.

 RECLAIMING DISC SPACE

 When you generate an application, ENABLE calls the SCREEN COBOL
 compiler to compile the SCREEN COBOL source code. If you
 generate several applications with the same name and direct these
 applications to the same object files, the SCREEN COBOL compiler
 adds the new version of the object code to the object files but
 does not purge the old version of the object code. Because the
 old version takes up disc space, you might want to remove
 unnecessary versions.

 To reclaim the disc space used by an old version of an
 application, use the SCREEN COBOL Utility Program (SCUP). When
 you use SCUP, you must know the names of the code file and
 directory file to which the SCREEN COBOL compiler writes the
 object code. If you set the SCOBOLOBJECT attribute to a value
 when you generate an application, the SCREEN COBOL compiler uses
 this value to determine the name of the code file and the
 directory file. If you do not set a value for the SCOBOLOBJECT
 attribute, the SCREEN COBOL compiler uses the starting value of
 this attribute (POBJ) to determine the names of these files.
 In either case, the object file names take the following forms:

 • <SCOBOLOBJECT-value>COD

 for the code file name; for example, "pobjcod"

 • <SCOBOLOBJECT-value>DIR

 for the directory file name; for example, "pobjdir"

 10-4

 MAINTAINING AN APPLICATION
 Reclaiming Disc Space

 You can use SCUP to reclaim disc space by performing the tasks
 described in Figure 10-1. This figure also shows an example of
 each task and describes the events that occur when you perform
 each task.

 | |
 | STEP 1: Call SCUP by entering the SCUP command from the |
 | command interpreter. |
 | |
 | :SCUP |
 | |
 | SCUP displays the product identification message and issues |
 | a prompt. |
 | |
 | SCREEN COBOL UTILITY - T9103E01 - (01MAR82) |
 | ? |
 | |
 | STEP 2: Enter the SCUP VOLUME command to set the default |
 | volume and subvolume. |
 | |
 | The following example identifies "$data" as the default |
 | volume and "enab" as the default subvolume: |
 | |
 | ?VOLUME $data.enab |
 | |
 | STEP 3: Enter the FILE command to set the default object |
 | file name. |
 | |
 | The following example identifies "pobj" as the default |
 | object file name: |
 | |
 | ?FILE pobj |
 | |
 | STEP 4: Enter the INFO command to display all versions of |
 | all programs in the object file as follows: |
 | |
 | ?INFO (*(*)) |
 | |

 Figure 10-1. Using SCUP to Reclaim Disc Space
 (Continued next page)

 10-5

 MAINTAINING AN APPLICATION
 Reclaiming Disc Space

 | |
 | When this command is entered, SCUP displays: |
 | |
 | $DATA.ENAB.POBJ |
 | PROGRAM (VERSION) ACCESS SIZE COMPILATION VER/DATE |
 | EMPLOYEE-PROG (1) ON 4096 (E06) 04 SEPT 1983 11:43:14 |
 | EMPLOYEE-PROG (2) ON 4096 (E06) 29 SEPT 1983 20:17:16 |
 | EMPLOYEE-PROG (3) ON 4096 (E06) 10 JAN 1984 13:40:18 |
 | EMPLOYEE-PROG (4) ON 4096 (E06) 15 FEB 1984 15:23:32 |
 | |
 | STEP 5: Enter the DELETE command to delete all versions |
 | except for the latest version from the directory |
 | file. |
 | |
 | In this example, the DELETE command deletes all versions |
 | except for the latest version of "employee-prog." |
 | |
 | ?DELETE (employee-prog (+)) |
 | |
 | SCUP displays: |
 | |
 | $DATA.ENAB.POBJ |
 | DELETED EMPLOYEE-PROG (1) |
 | DELETED EMPLOYEE-PROG (2) |
 | DELETED EMPLOYEE-PROG (3) |
 | |
 | To delete all but the latest versions of all files, you |
 | can enter: |
 | |
 | ?DELETE (*(+)) |
 | |
 | STEP 6: Enter the SCUP COMPRESS command to compress the code|
 | file. |
 | |
 | In this case, COMPRESS reclaims the disk space used by the |
 | deleted programs by compressing the code file "pobjcod": |
 | |
 | ?COMPRESS pobj |
 | |
 | SCUP renames the old object file "$data.enab.aa777cod" (for |
 | recovery purposes) and then purges "$data.enab.aa777cod" |
 | when compression is complete: |
 | |
 | COMPRESS $DATA.ENAB.POBJ |
 | EMPLOYEE-PROG (4) EMPLOYEE-PROG (1) |
 | OLD FILE $DATA.ENAB.POBJ RENAMED TO $DATA.ENAB.AA777 |
 | COMPRESSED $DATA.ENAB.POBJ |
 | |

 Figure 10-1. Using SCUP to Reclaim Disc Space (Continued)

 10-6

 SECTION 11

 INTEGRATING APPLICATIONS INTO A SINGLE PATHWAY SYSTEM

 When you generate several ENABLE applications, you often must
 establish a separate PATHWAY system for each, and execute each
 individually. If you use these applications on a regular basis,
 you may want to establish a single PATHWAY system for them all.
 If you often use information from one application in conjunction
 with another application, you may want to provide the ability to
 call the second application from the first.

 When you integrate applications into a single PATHWAY system
 with one PATHMON process and one TCP, the TCP can use the
 object code from any of the applications to send requests to the
 General Server.

 Figure 11-1 illustrates a PATHWAY system with several integrated
 applications. A user of this PATHWAY system can call "prog-a,"
 "prog-b," and "prog-c" from a menu.

 11-1

 INTEGRATING APPLICATIONS
 Overview

S5044-053

MENU

PROG-B PROG-CPROG-A

 Figure 11-1. Common PATHWAY System

 In addition to the usual organization of applications shown in
 Figure 11-1, another type of organization is possible. Figure
 11-2 illustrates a PATHWAY system where the user can call
 "prog-b" from "prog-a" and "prog-c" from "prog-b."

PROG-A

S5044-054

PROG-B

PROG-C

 Figure 11-2. Alternative PATHWAY System

 11-2

 INTEGRATING APPLICATIONS
 Writing a SCREEN COBOL Menu Program

 This section discusses the tasks involved in integrating
 applications into a single PATHWAY system, including:

 1. Writing a SCREEN COBOL menu program that you can use to call
 the integrated applications

 2. Generating the applications in such a manner that they can be
 integrated into the same PATHWAY system

 3. Optionally, modifying the SCREEN COBOL source code of an
 application generated by ENABLE to include a call to another
 application

 4. Modifying a PATHCOM command file to include the PATHWAY
 entities needed to execute all the applications

 Section 12 describes several applications that are integrated
 into a single project-tracking system.

 WRITING A SCREEN COBOL MENU PROGRAM

 A SCREEN COBOL menu program provides you with a method of
 selecting the application you want to use. When you write a
 SCREEN COBOL menu program, you must include program logic that:

 • Defines a menu screen

 • Displays the menu screen

 • Accepts information from the menu screen and uses this
 information to determine which ENABLE application is to be
 called

 • Calls the appropriate ENABLE application

 Optionally, you can also include program logic that limits access
 to all or part of the PATHWAY system.

 Refer to Section 12 for the source code of a sample menu program.

 11-3

 INTEGRATING APPLICATIONS
 Generating the Applications

 GENERATING THE APPLICATIONS

 When you generate the applications, you can simplify the process
 of integrating them by performing the following tasks:

 1. Direct all SCREEN COBOL object code to the same object file.
 When the object code for all the applications resides on the
 same file, you eliminate the need to modify a portion of the
 PATHCOM command file.

 2. Obtain a SCREEN COBOL compilation listing for each
 application. These compilation listings provide information
 that you will need when you modify the PATHCOM command file.

 3. Obtain SCREEN COBOL source code for each application that is
 to call another. Since ENABLE does not generate applications
 that call other applications, you must modify the source code
 of the calling application if you want to provide this
 capability.

 4. Avoid using the same box names for boxes having different
 values for the ABILITY attributes, or for boxes that
 represent different data base files. Otherwise, you may not
 be able to integrate the applications into a single PATHWAY
 system.

 Directing Object Code to the Same Object File

 When you use an ENABLE application, a terminal control process
 (TCP) within the PATHWAY system interprets the SCREEN COBOL
 object code and sends messages to a server process. A TCP can
 obtain SCREEN COBOL object code from several different object
 files. If you direct the object code of all applications to a
 single object file, however you eliminate the need to identify
 these different object files in the PATHCOM command file.

 To direct object code to the same object file, you can use either
 of the following methods:

 1. Generate the applications on the same system, volume, and
 subvolume.

 2. Supply a value for the SCOBOLOBJECT attribute to identify the
 same object file for all applications.

 11-4

 INTEGRATING APPLICATIONS
 Obtaining a SCREEN COBOL Compilation Listing

 Generating the Applications on the Same System, Volume, and
 Subvolume

 If you do not supply a value for the SCOBOLOBJECT attribute, the
 SCREEN COBOL compiler (SCOBOLX) directs the object code to a file
 named "pobjcod" on the default system, volume, and subvolume.
 The compiler also writes a directory entry for this object code
 to a file named "pobjdir" on the default system, volume, and
 subvolume.

 If you do not define new defaults by using the ENABLE operating
 commands, the default system, volume, and subvolume are those
 in effect when you enter ENABLE.

 Supplying a Value for the SCOBOLOBJECT Attribute

 If you generate your applications on different systems, volumes,
 or subvolumes, supply the fully expanded name of the object file
 as a value for the SCOBOLOBJECT attribute. For example, the
 following SET APPL SCOBOLOBJECT command identifies a file named
 "\xyz.$mkt.sample.aobjcod" as the file to which the object code
 is to be directed:

 SET APPL SCOBOLOBJECT \xyz.$mkt.sample.aobj

 To obtain the name of the object file, the SCREEN COBOL compiler
 appends the characters COD to the value you supply. Refer to the
 ENABLE Reference Manual for more information about expanded file
 names.

 Obtaining a SCREEN COBOL Compilation Listing

 For each application, a SCREEN COBOL compilation listing provides
 you with information needed to modify the PATHCOM command file.
 To obtain a compilation listing, supply the name of the listing
 file as a value for the SCOBOLLIST attribute. For example, the
 following SET APPL SCOBOLLIST command indicates that ENABLE is to
 write the SCREEN COBOL compilation listing to a file named
 "lista":

 SET APPL SCOBOLLIST lista

 Identify a different listing file for each application.

 11-5

 INTEGRATING APPLICATIONS
 Obtaining SCREEN COBOL Source Code

 Obtaining SCREEN COBOL Source Code

 If you want to provide the ability to call one application from
 another, you will need the SCREEN COBOL source code of the
 calling application. To obtain the SCREEN COBOL source code,
 supply a value for the SCOBOLSOURCE attribute, which identifies a
 file to which the SCREEN COBOL source code is written. The
 following SET APPL SCOBOLSOURCE command, for example, indicates
 that the SCREEN COBOL source code is written to a file named
 "srca":

 SET APPL SCOBOLSOURCE srca

 Avoiding Conflicting Box Names

 When you integrate several applications into the same PATHWAY
 system, some applications may use boxes having the same name.
 Since box names appear both in the generated SCREEN COBOL
 program and in the PATHCOM command file, all boxes with the same
 name must:

 • Represent the same data base file

 • Have compatible values for the ABILITY attributes (FILL,
 DELETE, INSERT, READ, and UPDATE)

 ENABLE uses the box name in a SET SERVER ASSIGN command in the
 PATHCOM command file to associate a data base file with the named
 box. The SET SERVER ASSIGN command for an application that uses
 a box named "one-box," for example, might appear as follows:

 SET SERVER (ASSIGN ONE-BOX, ONEFILE, INPUT)

 where "one-box" is the box name, "onefile" is the name of the
 data base file that the box represents, and INPUT is the access
 mode with which the file is to be opened.

 When you establish a PATHWAY system, PATHMON, the controlling
 process in the system, stores information from the SET SERVER
 ASSIGN commands in a file called PATHCTL. When you execute the
 application, the following events take place:

 • PATHMON starts the General Server and passes it information
 from the SET SERVER ASSIGN and SET SERVER PARAM commands.

 11-6

 INTEGRATING APPLICATIONS
 Avoiding Conflicting Box Names

 • The SCREEN COBOL requester program sends a message to the
 General Server that tells it to open a file. The requester
 program does not use the file name, but uses the box name
 instead.

 • The General Server accepts the message from the requester
 program and looks at the assign specification to determine
 which physical file is assigned to a specific box name.

 • The General Server then opens the assigned physical files,
 using the access mode indicated in the assign specification.

 Figure 11-3 illustrates this process.

 11-7

 INTEGRATING APPLICATIONS
 Avoiding Conflicting Box Names

:PATHCOM $two; run one-prog

PATHMON
$two

onefile

S5044-055

TCP

twopathPATHCOM

:PATHMON/NAME $two, CPU 0,NOWAIT, OUT testlog
:PATHCOM/IN twopath/$two

SCREEN COBOL
Object Code

• • •
OPEN one-box

• • •
SET SERVER PROGRAM $SYSTEM.SYSTEM.ENABLEGS
• • •
SET SERVER(ASSIGN one-box, onefile, input)
ADD SERVER ENABLE-SERVER

PATHCOM

General Server
(ENABLEGS)

PATHMON
$two

OPEN one-box

ASSIGN one-box, onefile, input

OPEN for input only

Legend

1
2

3

1

2

3

 Figure 11-3. Box Names in a PATHWAY System

 11-8

 INTEGRATING APPLICATIONS
 Avoiding Conflicting Box Names

 Since the General Server can assign only one physical file to a
 box name, boxes with the same name must represent the same file.
 Consider, for example, the following ENABLE commands used to
 generate two applications:

 SET RECORD a-rec SET RECORD b-rec
 SET DATAFILE afile SET DATAFILE bfile
 ADD BOX my-box ADD BOX my-box
 SET APPL PATHCOMFILE p1 SET APPL PATHCOMFILE p2
 SET APPL TREE (01 my-box) SET APPL TREE (01 my-box)
 ADD APPL my-appl1 ADD APPL my-appl2
 GENERATE APPL my-appl1 GENERATE APPL my-appl2

 You cannot integrate these applications into the same PATHWAY
 system because "my-box" in "my-appl1" represents a data base file
 named "afile" while "my-box" in "my-appl2" represents a data base
 file named "bfile."

 Since the values of the ABILITY attributes determine the access
 mode with which the General Server can open a data base file,
 boxes with the same name must also have compatible values for
 these attributes. The General Server cannot assign a file to
 box when the file is assigned more than one access mode.

 Table 11-1 lists the access modes and the values for the ABILITY
 attributes that correspond to these access modes.

 Table 11-1. Access Modes and ABILITY Attribute Values

S5044-056

Access Mode Ability Attribute Value

I/O
(default)

Input only

Output only

READ ON (BOXFILL can be either ON or OFF)
DELETE, UPDATE, or INSERT set ON

READ ON or BOXFILL ON
DELETE OFF, INSERT OFF, and UPDATE OFF

READ OFF and BOXFILL OFF
INSERT ON
DELETE OFF and UPDATE OFF

 11-9

 INTEGRATING APPLICATIONS
 Avoiding Conflicting Box Names

 If boxes with the same name have different access modes, you may
 not be able to use the applications in the way that you expect.
 For example, suppose that you use the following commands to
 generate two applications:

 SET RECORD c-rec SET RECORD c-rec
 SET DATAFILE cfile SET DATAFILE cfile
 SET DELETE OFF
 SET UPDATE OFF
 SET INSERT OFF
 ADD BOX new-box ADD BOX new-box
 SET APPL PATHCOMFILE p4 SET APPL PATHCOMFILE p3
 SET APPL TREE (01 new-box) SET APPL TREE (01 new-box)
 ADD APPL new-appl2 ADD APPL new-appl1
 GENERATE new-appl2 GENERATE APPL new-appl1

 The SET SERVER ASSIGN commands for these applications would
 appear as follows:

 SET SERVER ASSIGN (new-box, cfile, INPUT) (for new-appl1)

 SET SERVER ASSIGN (new-box, cfile) (for new-appl2)

 If you enter both of these commands in the same PATHCOM command
 file and then establish a PATHWAY system with that command file,
 the General Server uses the access mode of the SET SERVER ASSIGN
 command that appears last in the command file. If the SET SERVER
 ASSIGN command for "new-app2" appears last, both applications
 will work as expected. If the SET SERVER ASSIGN command for
 "newappl1" appears last, "newappl2" will not work as expected;
 that is, you will not be able to use this application to delete,
 insert, or update records because the access mode (INPUT) with
 which the General Server will open the file will not permit these
 operations.

 If you plan to integrate your applications into a single PATHWAY
 system, you can avoid using conflicting box names by doing the
 following:

 1. Describe, name, and add the boxes necessary for an
 application.

 2. Add the application to the object table.

 3. Repeat steps 1 and 2 until you have named and added every
 application to be integrated.

 4. Use the GENERATE * command to generate all of the
 applications.

 11-10

 INTEGRATING APPLICATIONS
 Modifying SCREEN COBOL Source Code to Call Another Application

 Since ENABLE will not allow you to add an object if an object
 with that name already exists, this procedure prevents you from
 using conflicting box names.

 MODIFYING SCREEN COBOL SOURCE CODE TO CALL ANOTHER APPLICATION

 To provide the capability to call one application from another,
 you must modify the SCREEN COBOL source code of the calling
 application.

 Suppose that you have an application, "A," that displays part of
 a record, and another application, "AA," that displays the entire
 record. In certain circumstances, the user may want to press a
 function key (shifted F3 is reserved for this purpose) to go
 directly from the partial record display to a display of the
 entire record.

 When ENABLE generates the SCREEN COBOL source code for an
 application, it includes a paragraph named T9155-CHAIN that
 contains code executed by the application when a user presses the
 shifted F3 function key. Normally, this code causes the
 application to display a message stating that the function key is
 not supported. You can, however, modify this paragraph to
 include code that causes a call to another application, by
 performing the following tasks:

 1. Use the text editor to edit the SCREEN COBOL source code for
 the calling application. If the source code for an
 application is in a file named "applscr," for example, you
 can edit this file by entering:

 :EDIT applsrc

 2. Find the T9155-CHAIN paragraph in the SCREEN COBOL source
 code by entering the following:

 *LIST /T9155-CHAIN./A

 When you enter this command, the editor returns the number of
 the line that contains the T9155-CHAIN paragraph.

 11-11

 INTEGRATING APPLICATIONS
 Modifying SCREEN COBOL Source Code to Call Another Application

 3. Use the editor to examine the T9155-CHAIN paragraph, for
 example:

 *LIST 2775/2785

 2775 T9155-CHAIN.
 2776 IF T9155-AAABOX-CHOICE
 2777 MOVE T9155-NOT-SUPPORTED-MESSAGE TO T9155-ERROR-MSG
 2778 ELSE IF T9155-ABBBOX-CHOICE
 2779 MOVE T9155-NOT-SUPPORTED-MESSAGE TO T9155-ERROR-MSG
 2780 ELSE NEXT SENTENCE.
 2781 ...
 *

 Note that the source code that appears between the phrase
 T9155-CHAIN and the clause ELSE NEXT SENTENCE is the only
 source code that affects the ability of the application to
 call another application.

 4. Use a SCREEN COBOL CALL statement to replace the "MOVE
 T9155-NOT-SUPPORTED-MESSAGE TO T9155-ERROR-MSG" sentence. In
 its simplest form a CALL statement appears as follows:

 CALL <application-name>

 Note the the T9155-CHAIN paragraph might refer to more than
 one box. In the preceding example, this paragraph refers to
 two boxes:

 • "aaa" (T9155-AAABOX-CHOICE)

 • "abb" (T9155-ABBBOX-CHOICE)

 To call an application named "AA" from the box named "aaa,"
 replace the MOVE statement for this box with a CALL
 statement, for example:

 2775 T9155-CHAIN.
 2776 IF T9155-AAABOX-CHOICE
 2777 CALL "AA"
 2778 ELSE IF T9155-ABBBOX-CHOICE
 2779 MOVE T9155-NOT-SUPPORTED-MESSAGE TO T9155-ERROR-MSG
 2780 ELSE NEXT SENTENCE.

 11-12

 INTEGRATING APPLICATIONS
 Modifying SCREEN COBOL Source Code to Call Another Application

 You can then replace the MOVE statement for the "abb" box
 with the T9155-CANT-CHAIN-MESSAGE provided by ENABLE, for
 example:

 2775 T9155-CHAIN.
 2776 IF T9155-AAABOX-CHOICE
 2777 CALL "AA"
 2778 ELSE IF T9155-ABBBOX-CHOICE
 2779 MOVE T9155-CANT-CHAIN-MESSAGE TO T9155-ERROR-MSG
 2780 ELSE NEXT SENTENCE.

 When you replace a MOVE statement with the T9155-CANT-CHAIN-
 MESSAGE, the application displays a message whenever a user
 presses shifted F3 without first positioning the cursor
 within the appropriate box.

 Alternatively, you can allow a user to call an application
 from both "aaa" box and "abb" box by replacing the MOVE
 statements for both boxes with appropriate CALL statements.
 If you replace all of the MOVE statements within the
 T9155-CHAIN paragraph with CALL statements, the user can call
 another application without positioning the cursor within a
 specific box.

 5. Compile the modified source code by using the SCOBOLX run
 command:

 SCOBOLX/ IN <source-file-name>, out <list-file-name>,
 MEM 64, NOWAIT/ <object-file-name>

 <source-file-name>

 is the name of the file containing the source code.

 <list-file-name>

 is the name of the file to which the SCREEN COBOL
 listing is to be written.

 <object-file-name>

 is the name of the file for the object code; this file
 should be the same as the object file for the other
 applications.

 6. Keep the compilation listing of the modified SCREEN COBOL
 program. You will need this listing when you modify the
 PATHCOM command file.

 11-13

 INTEGRATING APPLICATIONS
 Modifying a PATHCOM Command File

 MODIFYING A PATHCOM COMMAND FILE

 To establish a PATHWAY system that integrates several ENABLE
 applications, you can modify the PATHCOM command file generated
 for any one of them. The PATHCOM command file generated for a
 single application contains the PATHWAY commands required to
 execute that application. To include the PATHWAY commands that
 allow execution of more than one application, select a PATHCOM
 command file and modify it using the text editor as follows:

 1. Increase the value specified for MAXTERMDATA to include
 enough data space for the applications.

 2. Change the program name specified for SET PROGRAM TYPE and
 ADD PROGRAM to the name of your menu program.

 3. Include all the appropriate SET SERVER ASSIGN commands from
 the other PATHCOM command files.

 4. Optionally, include additional commands that affect the
 PATHWAY system, such as commands that define and control
 terminals.

 Figure 11-4 shows the commands that must be modified in a sample
 PATHCOM command file. (The application used to generate this
 file is shown in Section 12.)

 11-14

 INTEGRATING APPLICATIONS
 Modifying a PATHCOM Command File

 | |
 | SET PATHMON BACKUPCPU 1 |
 | SET PATHWAY MAXTCPS 10 |
 | SET PATHWAY MAXTERMS 10 |
 | SET PATHWAY MAXPROGRAMS 10 |
 | SET PATHWAY MAXSERVERCLASSES 10 |
 | SET PATHWAY MAXSERVERPROCESSES 10 |
 | SET PATHWAY MAXSTARTUPS 10 |
 | SET PATHWAY MAXPATHCOMS 40 |
 | SET PATHWAY MAXASSIGNS 32 |
 | SET PATHWAY MAXPARAMS 32 |
 | START PATHWAY COLD! |
 | |
 | SET TCP PROGRAM $SYSTEM.SYSTEM.PATHTCP2 |
 | SET TCP CPUS 0:1 |
 | SET TCP MAXTERMS 5 |
 | SET TCP MAXSERVERCLASSES 003 |
 | SET TCP MAXSERVERPROCESSES 003 |
 | SET TCP MAXTERMDATA 12036 <--- increase MAXTERMDATA |
 | SET TCP MAXREPLY 02000 value to provide more data |
 | SET TCP NONSTOP 0 space |
 | SET TCP TCLPROG $DATA.SAMPLE.POBJ |
 | ADD TCP ENABLE-TCP |
 | |
 | SET PROGRAM TCP ENABLE-TCP |
 | SET PROGRAM TYPE T16-6520 INITIAL APPL-A <- change |
 | SET PROGRAM TMF OFF initial name |
 | ADD PROGRAM APPL-A <----------------------- to menu |
 | program |
 | RESET SERVER ASSIGN, PARAM |
 | |
 | SET SERVER PROGRAM $SYSTEM.SYSTEM.ENABLEGS |
 | SET SERVER CPUS 0:1 |
 | SET SERVER NUMSTATIC 1 |
 | SET SERVER (ASSIGN A-BOX,AFILE,INPUT) |
 | SET SERVER (ASSIGN B-BOX,BFILE) |
 | SET SERVER (ASSIGN C-BOX,CFILE) <- add server assignments |
 | SET SERVER TMF OFF for other applications |
 | ADD SERVER ENABLE-SERVER |
 | |

 Figure 11-4. Sample PATHCOM Command File

 11-15

 INTEGRATING APPLICATIONS
 Determining a New Value for MAXTERMDATA

 Determining a New Value for MAXTERMDATA

 The value of MAXTERMDATA defines the maximum number of bytes used
 by the terminal control process (TCP) for data space for each
 terminal. A PATHCOM command file generated by ENABLE contains a
 value for MAXTERMDATA appropriate for one application. For
 example, in Figure 11-4, MAXTERMDATA is 12036.

 When you integrate several ENABLE applications, you must increase
 the value of MAXTERMDATA to allow the necessary data space for
 all the applications. You can estimate an appropriate value for
 MAXTERMDATA following these steps:

 1. Examine the SCREEN COBOL listings of all the applications.
 On the last page of each listing, the SCOBOL compiler prints
 a value called DATA SIZE. Make a list of the DATA SIZE
 values for each application.

 2. Compute the number of bytes in the longest path through the
 applications. A path through applications exists when one
 application calls another application. Figure 11-5 shows two
 examples of how to compute the number of bytes in the longest
 path. The first example shows how you determine the longest
 path when all applications are called from a menu program.
 The second example shows how you determine the longest path
 when applications are called from other applications.

 3. Multiply the number of bytes in the longest path by 2 to
 estimate an appropriate value for MAXTERMDATA, as follows:

 For Example 1 in Figure 11-5 (where all applications are
 called from a menu program), the estimated value of
 MAXTERMDATA is 15048 (7524 * 2).

 For Example 2 in Figure 11-5 (where applications are
 called from other applications), the estimated value of
 MAXTERMDATA is 21628 (10818 * 2).

 Refer to the PATHWAY System Management Reference Manual for more
 information about MAXTERMDATA.

 11-16

 INTEGRATING APPLICATIONS
 Determining a New Value for MAXTERMDATA

 Changing the Program Name in the PATHCOM SET PROGRAM TYPE Command

 The SET PROGRAM TYPE command identifies the type of terminal upon
 which a SCREEN COBOL program will execute. This command also
 identifies the SCREEN COBOL program unit that the terminal enters
 on startup. In Figure 11-4, this command appears as follows:

 SET PROGRAM TYPE T16-6520 INITIAL APPL-A

 where T16-6520 is the type of terminal upon which the application
 will execute and APPL-A is the SCREEN COBOL program name.

 To integrate several ENABLE applications and use a menu program,
 change the program name to that of the SCREEN COBOL menu program
 (the name that appears in the PROGRAM-ID paragraph of the menu
 program). If the name of your menu program is MENU, for example,
 you would change the program name to:

 SET PROGRAM TYPE T16-6520 INITIAL MENU

 11-17

 INTEGRATING APPLICATIONS
 Determining a New Value for MAXTERMDATA

S5044-057

Menu to Prog-A = 122 bytes + 6018 = 6140 bytes
Menu to Prog-B = 122 bytes + 7402 = 7524 bytes
Menu to Prog-C = 122 bytes + 3162 = 3284 bytes
Menu to Prog-D = 122 bytes + 4674 = 4796 bytes
Longest Path = Menu to Prog-B = 7524 bytes

Prog-A
6018 bytes

(DATA SIZE)

Prog-B
7402 bytes

(DATA SIZE)

Prog-C
3162 bytes

(DATA SIZE)

Prog-D
4674 bytes

(DATA SIZE)

Menu
122 bytes

(DATA SIZE)

Example 1

Prog-A
6018 bytes

(DATA SIZE)

Prog-B
7402 bytes

(DATA SIZE)

Prog-C
3162 bytes

(DATA SIZE)

Prog-D
4674 bytes

(DATA SIZE)

Menu
122 bytes

(DATA SIZE)

Example 2

Menu to Prog-A to Prog-D = 122 bytes + 6018 bytes
 + 4674 bytes = 10814 bytes
Menu to Prog-B = 122 bytes + 7402 = 7524 bytes
Menu to Prog-C = 122 bytes + 3162 = 3284 bytes
Longest Path = Menu to Prog-A to Prog-D = 10818 bytes

 Figure 11-5. Determining Longest Path

 11-18

 INTEGRATING APPLICATIONS
 Adding SET SERVER ASSIGN Commands

 Changing the Program Name in the PATHCOM ADD PROGRAM Command

 The ADD PROGRAM command enters a program description into the
 PATHWAY configuration. A PATHCOM command file generated by
 ENABLE sets the program-name parameter of this command to the
 application name. When you integrate several ENABLE
 applications, change the program name to that of the SCREEN COBOL
 menu program. (This name appears in the PROGRAM-ID paragraph of
 the menu program.) In Figure 11-4, for example, the ADD PROGRAM
 command appears as follows:

 ADD PROGRAM APPL-A

 If your menu program is named MENU, change the program name as
 follows:

 ADD PROGRAM MENU

 Adding SET SERVER ASSIGN Commands

 The General Server obtains file assignments from the SET SERVER
 ASSIGN commands in the PATHCOM command file. A PATHCOM command
 file generated by ENABLE contains file assignments for a single
 ENABLE application. In Figure 11-4, for example, the following
 SET SERVER ASSIGN commands appear:

 SET SERVER (ASSIGN A-BOX,AFILE,INPUT)
 SET SERVER (ASSIGN B-BOX,BFILE)
 SET SERVER (ASSIGN C-BOX,CFILE)

 When you integrate several ENABLE applications, you must add the
 SET SERVER ASSIGN commands needed for all of the applications.
 You can copy the SET SERVER ASSIGN commands from the PATHCOM
 command files produced for the applications to be added, for
 example:

 SET SERVER (ASSIGN A-BOX,AFILE,INPUT)
 SET SERVER (ASSIGN B-BOX,BFILE) <------ original SET
 SET SERVER (ASSIGN C-BOX,CFILE) SERVER ASSIGN
 SET SERVER (ASSIGN CC-BOX, CFILE) commands

 SET SERVER (ASSIGN D-BOX, DFILE) <----- SET SERVER ASSIGN
 SET SERVER (ASSIGN E-BOX, EFILE, INPUT) commands copied
 SET SERVER (ASSIGN BB-BOX, BFILE, INPUT) from other
 SET SERVER (ASSIGN AA-BOX, AFILE) PATHCOM files
 ...

 11-19

 INTEGRATING APPLICATIONS
 Including Optional Commands

 If some applications access files audited by TMF and other
 applications access nonaudited files, you must use different
 copies of the General Server for the audited and nonaudited
 files. In this case, the PATHCOM command file must contain at
 least two sets of SERVER commands, for example:

 SET SERVER PROGRAM $SYSTEM.SYSTEM.ENABLEGS
 SET SERVER CPUS 0:1
 SET SERVER NUMSTATIC 1 <---------------- commands that
 SET SERVER (ASSIGN A-BOX,AFILE,INPUT) define a server
 SET SERVER (ASSIGN B-BOX,BFILE) to access non-
 SET SERVER (ASSIGN C-BOX,CFILE) audited files
 SET SERVER TMF OFF
 ADD SERVER ENABLE-SERVER

 SET SERVER PROGRAM $SYSTEM.SYSTEM.ENABLEGS
 SET SERVER CPUS 0:1
 SET SERVER NUMSTATIC 1 <---------------- commands that
 SET SERVER (ASSIGN P-BOX, PFILE) define a server
 SET SERVER TMF ON to access non-
 SET SERVER (PARAM TMF ON) audited files
 ADD SERVER TMF-SERVER

 If your applications access audited and nonaudited files, be
 sure that you add the SET SERVER ASSIGN commands to the correct
 copy of the General Server. The SET SERVER ASSIGN commands for
 audited files must be included with the commands for the server
 that has TMF ON. The SET SERVER ASSIGN commands for nonaudited
 files must be included with the commands for the server that has
 TMF OFF.

 Including Optional Commands

 You can make other changes and additions to the PATHCOM command
 file to define the PATHWAY system further. For example, you can
 prohibit execution of the applications unless the General Server
 can open all the data base files by adding the following command:

 SET SERVER (PARAMS ALLFILES ON)

 11-20

 INTEGRATING APPLICATIONS
 Including Optional Commands

 You can also add commands that define and control terminals of
 the terminal type determined when the applications were
 generated. To do this, add the following command for each
 terminal defined for the PATHWAY system:

 • SET TERM FILE filename

 This command defines the system name of a terminal to be added
 to the PATHWAY system. Set the value of filename to the name
 of the terminal.

 • SET TERM INITIAL program-unit-name

 This command defines the SCREEN COBOL program unit that the
 terminal enters on start-up. Set program-unit-name to the
 name of the SCREEN COBOL menu program appropriate for the
 terminals. (This is the same as the program name following
 the INITIAL specification in the SET PROGRAM TYPE command.)

 • SET TERM tcp

 This command defines the TCP that controls the terminal.
 Generally, you can set the value of tcp to ENABLE-TCP.

 • ADD TERM termname

 This command enters a description of a terminal into the
 PATHWAY system. In this command, termname can be the name of
 the terminal. The name must begin with a letter and can
 contain 1 through 15 alphanumeric characters or hyphens. The
 name must be unique within the PATHWAY system.

 The PATHCOM file generated by ENABLE allows you to define up to
 five terminals per TCP. (The number of terminals that can be
 defined is determined by the value established by the SET PATHWAY
 MAXTERMS command and the value established by the SET TCP
 MAXTERMS command.)

 After you establish your PATHWAY system, you can use separate
 obey files to start and stop the appropriate terminals. Figure
 11-6 shows a sample obey file that starts a TCP and a terminal
 named "term01."

 11-21

 INTEGRATING APPLICATIONS
 Integrating an Application Into an Existing PATHWAY System

 | |
 | PATHCOM $one; START TCP ENABLE-TCP; START TERM term01 |
 | |

 Figure 11-6. Sample Obey File That Starts a Terminal

 Figure 11-7 shows a sample obey file that stops the PATHWAY
 system which "term01" is using.

 | |
 | PATHCOM $one; SHUTDOWN, WAIT |
 | |

 Figure 11-7. Sample Obey File That Stops a PATHWAY System

 Refer to the PATHWAY System Management Reference Manual for more
 information about adding terminals to a PATHWAY system.

 INTEGRATING AN APPLICATION INTO AN EXISTING PATHWAY SYSTEM

 You can add an ENABLE application to an existing PATHWAY system
 by performing the tasks described in the following paragraphs.
 Some of these tasks apply to application generation; other tasks
 apply to application integration.

 Generating the Application

 When you generate an application for integration within an
 existing PATHWAY system:

 1. Direct the object code for the generated application to an
 object file used by the existing PATHWAY system. To perform
 this task, supply the name of the object file as a value for
 the SCOBOLOBJECT attribute. For more information, refer to
 the discussion "Directing Object Code to the Same Object
 File" earlier in this section.

 11-22

 INTEGRATING APPLICATIONS
 Integrating the Application

 2. Request a PATHCOM command file. You can use information from
 this file when you integrate the application into the
 existing PATHWAY system. To request a PATHCOM command file,
 supply a file name as the value of the PATHCOMFILE attribute.
 Refer to Sections 4 and 5 for more information.

 Integrating the Application

 To integrate an application into an existing PATHWAY system, use
 the INFO PATHWAY, INFO TCP *, INFO PROGRAM * and INFO SERVER *
 commands to become familiar with the existing configuration. You
 can then use the following PATHCOM commands to modify this
 configuration. Refer to the PATHWAY System Management Reference
 Manual for more information about these commands.

 • SET PATHWAY MAXASSIGNS

 This command defines the maximum number of ASSIGN
 specifications that can be entered into the PATHWAY
 configuration for each server class. The value of this
 parameter must be large enough to allow for the existing
 ASSIGN specifications and the additional ASSIGN specifications
 that you must add for the generated application. If the value
 of SET PATHWAY MAXASSIGNS is not large enough, you must
 SHUTDOWN and reconfigure the PATHWAY system before integrating
 the new application.

 • SET PATHWAY MAXPARAMS

 This command defines the maximum number of PARAM
 specifications that can be entered into the PATHWAY system for
 all server classes. The value of this parameter must be large
 enough to allow for the existing PARAM specifications and any
 additional PARAM specifications you must add for the generated
 application.

 • SET PATHWAY MAXSERVERCLASSES

 This command defines the maximum number of server class
 descriptions that can be entered into the PATHWAY
 configuration. If you must add a description of the General
 Server this value must be large enough to allow for all
 existing server-class descriptions and the server-class
 description for the General Server.

 11-23

 INTEGRATING APPLICATIONS
 Integrating the Application

 • SET TCP MAXREPLY

 This command identifies the maximum number of bytes permitted
 in a reply from a server. The value of this parameter must be
 equal to or greater than the value of MAXREPLY in the
 generated PATHCOM command file.

 • SET TCP MAXTERMDATA

 This command identifies the number of bytes used for data area
 for each terminal. The value of this parameter must be equal
 to or greater than the value of MAXTERMDATA in the generated
 PATHCOM command file.

 • SET TCP MAXSERVERCLASSES

 This command identifies the maximum number of server classes
 with which the TCP can establish links. If you must add a
 server class description for the General Server, the value of
 this parameter must be large enough to allow for the existing
 server classes and the new description of the General Server
 server class.

 If the existing system configuration already defines a server
 class for the General Server, use the PATHCOM ALTER command to
 add appropriate SET SERVER ASSIGN commands for the new
 application. When you use the ALTER command, be sure to copy
 the SET SERVER ASSIGN commands from the generated PATHCOM
 command file.

 If the existing configuration does not define a server class
 for the General Server, use the PATHCOM SET and ADD commands
 to add the appropriate definition.

 11-24

 SECTION 12

 SAMPLE PROJECT-TRACKING SYSTEM

 This section describes the tasks involved in developing a sample
 project-tracking system, consisting of several ENABLE
 applications integrated into a single PATHWAY system. Figure
 12-1 illustrates this sample system.

S5044-058

Project
Tracking

Menu

Project-info Event-detailLook-up Event-revisedProject-entry

Employee-assign

 Figure 12-1. Sample Project-Tracking System

 12-1

 Sample Project-Tracking System
 Defining Functional Requirements

 The tasks involved in developing this system are:

 1. Defining the functional requirements of the system

 2. Defining the data requirements of the system

 3. Defining the applications to be generated

 4. Generating the applications

 5. Modifying the SCREEN COBOL source code of selected
 applications

 6. Writing a SCREEN COBOL Menu program

 7. Modifying a PATHCOM command file to integrate the
 applications

 DEFINING THE FUNCTIONAL REQUIREMENTS OF THE SYSTEM

 The first step in developing an application system is to define
 the functions it provides, based on requests from potential
 users. By eliciting the cooperation of potential users, you can
 find out about the tasks they perform and how the system can help
 them.

 Suppose that discussions with potential users indicate that the
 system should provide the following functions:

 1. A method for entering information about new projects and the
 events associated with each

 2. A means for assigning an employee to a specific event

 3. A means for displaying general information about each project
 and its events

 4. A means for displaying detailed information about a specific
 event within a project

 5. An allowance for revision of certain information associated
 with an event

 12-2

 Sample Project-Tracking System
 Identifying Classes of Data

 DEFINING THE DATA REQUIREMENTS OF THE SYSTEM

 The next step in developing an application system is to identify
 the information needed to carry out each function. To define
 these data:

 1. Identify classes of data that interest the users of the
 application system. These classes of data will correspond to
 files accessed by the application system.

 2. Identify the data items that belong to each class of data.
 These data items will correspond to the fields within the
 files.

 3. Determine the relationships that exist between classes.
 Identifying these relationships will help you later when you
 build the tree structures for the applications.

 4. List the fields in each file. This step and the following
 step will help you when you create record descriptions for
 the files.

 5. Identify key fields for each file.

 6. Normalize the files. Normalized files are simple to
 maintain, easy to link within applications, and easy to
 obtain reports from when using ENFORM.

 7. Use the Data Definition Language (DDL) to create the record
 descriptions and data dictionary that describe the files.

 Identifying Classes of Data

 For the project-tracking system, you can determine two classes of
 data that are of interest to users: the projects that
 application tracks, and the events associated with each project.

 You can identify these classes more precisely by examining the
 way that projects are currently tracked within the department,
 and through discussion with its employees, you might discover the
 following procedure:

 1. A project manager fills out a form that describes the
 project, listing a project code (a unique number that
 identifies each project), a brief description of the project
 and its estimated starting and ending dates. The project
 manager then files this form for later use.

 12-3

 Sample Project-Tracking System
 Identifying Data Items

 2. Next, the project manager fills out forms for each event.
 Each form describes an event, its projected starting and
 ending dates, and the names of the employees assigned to it.
 The project manager files the event forms in some convenient
 order.

 3. The project manager makes copies of each event form and
 passes them to the pertinent employees.

 4. If an employee needs to revise the projected starting or
 ending date, he or she fills out an event-revision form. The
 employee keeps a copy of this form and gives the original to
 the project manager.

 5. To record the current status of a project, the project
 manager assembles the original project form, the event forms,
 and any event-revision forms. The project manager then fills
 out another status-summary form for the project.

 6. The department secretary collects all of the forms and
 produces a monthly report.

 By using the preceding information, you could determine that the
 department uses the classes of data shown in Figure 12-2.

 | |
 | PROJECTS The projects being tracked within your |
 | department |
 | |
 | EVENTS The events associated with each project |
 | |
 | EMPLOYS The employees assigned to each event |
 | |

 Figure 12-2. Classes of Data Within the Project-Tracking System

 Identifying the Data Items

 Next, data items must be identified and associated with each
 class. For example, specific data items of the project-tracking
 system can be associated with each class as shown in Figure 12-3.

 12-4

 Sample Project-Tracking System
 Identifying Data Items

 | |
 | PROJECTS |
 | |
 | project-code --a unique number that identifies |
 | the project |
 | project-desc --a brief description of the |
 | project |
 | proj-status --the current status of the |
 | project |
 | proj-start-date --the projected starting date |
 | proj-end-date --the projected ending date |
 | proj-mgr --the employee number of the |
 | project manager |
 | manager-name --the name of the project manager |
 | manager-dept --the department number of the |
 | project manager |
 | |
 | EVENTS |
 | |
 | event-num --a number that identifies the |
 | event within the project |
 | event-desc --a brief description of the |
 | event |
 | predict-starting-date --the predicted starting date |
 | predict-ending-date --the predicted ending date |
 | revised-starting-date --the revised starting date |
 | revised-ending-date --the revised ending date |
 | change-info --a brief description of the |
 | reason for the date revision |
 | update-emp --a number that identifies an |
 | employee who made a date |
 | revision |
 | emp-name (...) --the names of the employees |
 | assigned to an event |
 | |
 | EMPLOYS |
 | |
 | emp-no --a unique number that identifies |
 | an employee |
 | emp-name --the name of the employee |
 | emp-dept --a number that identifies the |
 | department number of the |
 | employee |
 | |
 | The symbol (...) indicates that the item may be repeated. |
 | |

 Figure 12-3. Data Items Associated With Each Class of Data

 12-5

 Sample Project-Tracking System
 Identifying Data Items

 After they have been identified, you can ask specific questions
 about each data item; for example:

 • Are any of the data items associated with more than one class
 of data? If so, is there a reason for this redundancy?

 • Are any data items repeated within the same class of data? If
 so, can the data base be normalized?

 Examination of the data items associated with "projects" and
 those associated with "employs" shows that both classes contain
 an employee number, an employee name, and a department number.
 Note that in the case of the "projects" data, the employee
 information is that of the project manager.

 Redundant data such as this can use extra storage and complicate
 updates. If, for example, a project manager's department number
 changes, you must correct both the "projects" and "employs" data,
 leading to extra work and possible mistakes.

 A simple solution is to remove the employee information, except
 for the project manager's identification number, from the
 "projects" data. You should leave the project manager's employee
 number with the projects data to provide a link to the "employs"
 data. With this link, detailed information about the project can
 be maintained separately from that of the employees, yet their
 association can be preserved.

 Notice also that the same data item (an employee name) appears
 both in the "events" data and the "employs" data. In this case,
 the employee information is not only redundant; it is also
 confusing. If more than one employee has the same name, you
 cannot clearly identify the employees assigned to an event. To
 eliminate the confusion, replace the employee name in the
 "events" data with an employee number. Although this solution
 eliminates the confusing data, it does not remove repeating
 information from the "events" data. Since more than one employee
 can be assigned to an event, more than one "emp-no" could be
 associated with each event. The next step in the development
 process provides a solution to the problem of repeating data.

 12-6

 Sample Project-Tracking System
 Identifying Relationships Between Classes of Data

 Identifying the Relationships Between Classes of Data

 Identifying the relationship between classes of data helps to
 isolate and solve problems of association between classes. To
 identify the relationships, draw a diagram that shows each class
 of data along with a brief explanation of connections between
 them. Figure 12-4 shows such a diagram.

S5044-059

Projects Events

Employs

contain/define a

have managers/work on

are
assigned
to/work on

 Figure 12-4. Relationships Between Classes of Data

 After drawing the diagram, determine how many instances of one
 class relate to instances of another. To illustrate, consider
 the relationship between the "projects" data and the "employs"
 data. Each project can have only one project manager.
 Therefore, the relationship between these classes of data is
 called one-to-one (abbreviated to 1:1).

 The relationship between the "projects" data and the "events"
 data is more complex. A project can have many events while an
 event can have only one project. This type of relationship is
 called a one-to-many relationship (in shorthand, 1:M).

 12-7

 Sample Project-Tracking System
 Identifying Relationships Between Classes of Data

 The relationship between the "events" data and the "employs" data
 is even more complex. An event can have many employees and an
 employee can have many events. Thus, the relationship between
 these two classes of data is many-to-many (or M:M).

 Figure 12-5 shows a diagram of these relationships.

S5044-060

Projects Events

Employs

1 M

1

1

M

M

 Figure 12-5. Relationships Between Instances of Classes of Data

 To summarize, the relationships shown in Figure 12-5 are:

 One project has one manager 1:1

 One project has many events 1:M Each event has one
 project

 One event can have many employees M:M One employee can
 have many events

 Depending upon the type of relationship, the following rules may
 apply:

 • With the exception of items involved in more than one
 relationship, data items that belong to classes with a
 one-to-one relationship can often be merged into a single
 class. Since the "employs" data is also related to the
 "events" class, the "projects" and "employs" data should not
 be merged.

 12-8

 Sample Project-Tracking System
 Identifying Relationships Between Classes of Data

 • In one-to-many relationships, data items that apply to both
 classes can be included in the "one-occurrence" class to save
 space in the files. The data items that identify unique
 entries for the "one-occurrence" class can be included in
 both--to provide a link between the classes.

 To associate the "projects" and "events" data, include an item
 within the "events" class that uniquely identifies a project,
 such as "proj-code."

 • All many-to-many relationships should be treated as a separate
 class of data.

 This rule offers a solution to the repeating data problem. If
 you create a separate class of data that contains an
 identifying item from "events" and an identifying item from
 "employs," you can remove the repeating data (the employee
 identification number) from "events."

 Figure 12-6 shows a diagram that includes the new class of data.

S5044-061

Projects Events

Employs

1 M

1

1

M

M

1

Respfor

 Figure 12-6. Relationships With New Class of Data

 12-9

 Sample Project-Tracking System
 Listing Fields in Each File

 At this point, you have identified the files that you need for
 the project-tracking system. Each data class ("projects,"
 "events," "employs," and now "respfor") corresponds to a file.

 Listing the Fields in Each File

 Having identified the files, you can list the fields in each.
 Figure 12-7 lists the fields in the files used by the
 project-tracking system.

 | |
 | File Fields |
 |___|
 | |
 | Projects proj-code, proj-desc, proj-status, |
 | proj-start-date, proj-end-date, proj-mgr |
 | |
 | Events proj-code, event-num, event-desc, |
 | predict-start-date, predict-end-date, |
 | revised-start-date, revised-end-date, |
 | change-info, update-emp |
 | |
 | Respfor proj-code, event-num, emp-no |
 | |
 | Employs emp-no, emp-name, dept-name |
 | |

 Figure 12-7. List of Fields in Each File

 Notice that fields such as "proj-code," "event-num," and "emp-no"
 appear in a number of files. This duplication of fields is
 essential to link the files for a multifile application.

 Identifying Key Fields

 A primary key field is any field with a value that uniquely
 identifies a record. In the projects file, for example, there
 can be only one record for each "proj-code." Thus, "proj-code"
 can be the primary key for the "projects" file. Similarly, an
 "emp-no" uniquely identifies a record in the "employs" file.

 12-10

 Sample Project-Tracking System
 Identifying Key Fields

 In the "events" and "respfor" files, however, neither a
 "proj-code" nor an "event-num" alone is sufficient to
 identify a record uniquely. Each record in those files can be
 uniquely identified only by a combination of both "proj-code" and
 "event-num." Therefore, the primary key for these files must be
 a composite key group consisting of both "proj-code" and
 "event-num."

 In addition to a primary key for each file, you may want to
 identify one or more alternate keys. The value of an alternate
 key field need not uniquely identify a record, but instead,
 provides an access path sorted in an alternate order. For
 example, while the "proj-desc" field of the "projects" file may
 have duplicate values, you can use this field as an alternate key
 field to display all projects with the same description.

 When a key from one file appears as a field in a related file,
 you should make that field an alternate key in the related file
 as well. This provides you with the means to link the files
 within a multifile application.

 Figure 12-8 shows a chart that illustrates the possible
 relationships between the files and keys used by the project-
 tracking system.

 12-11

 Sample Project-Tracking System
 Checking for Normalization

S5044-062

Projects

proj-code
prof-desc
proj-start-date
proj-end-date
prof-mgr

Events

proj-code/
event-num
event-desc
predict-start-date
predict-end-date
revised-start-date
revised-end-date
change-info
update-emp

Respfor

proj-code/
event-num
emp-no

Employs

emp-no
emp-name
emp-dept

 Figure 12-8. Possible Relationships Between Files and Keys

 Checking for Normalization

 A relational data base is usually normalized. In the simplest
 terms, this means that no file in the data base contains
 repeating data. As Figure 12-8 shows, no file used by the sample
 project-tracking system contains repeating groups. Therefore,
 these files are sufficiently normalized for use by an ENABLE
 application.

 If you are developing your own application, refer to Section 3
 for a discussion of the normalization process.

 12-12

 Sample Project-Tracking System
 Creating a Dictionary That Describes the Files

 Creating a Dictionary That Describes the Files

 Once you identify the files to be used by the system, you are
 ready to create a data dictionary that describes them. Figure
 12-9 shows the DDL source code that creates the data dictionary
 for the project-tracking files.

 | |
 | RECORD projects. |
 | FILE IS projects KEY-SEQUENCED. |
 | 02 proj-code PIC 9(6) HEADING "Project Code". |
 | 02 proj-desc PIC X(20) HEADING "Project Name". |
 | 02 proj-status PIC X(5) HEADING "Project Status". |
 | 02 proj-start-date HEADING "Starting Date". |
 | 04 start-day PIC 99 HEADING "Day". |
 | 04 start-mo PIC 99 HEADING "Month". |
 | 04 start-yr PIC 99 HEADING "Year". |
 | 02 proj-end-date HEADING "Ending Date". |
 | 04 end-day PIC 99 HEADING "Day". |
 | 04 end-mo PIC 99 HEADING "Month". |
 | 04 end-yr PIC 99 HEADING "Year". |
 | 02 proj-mgr PIC 9(6) HEADING "Manager". |
 | KEY 0 IS proj-code. |
 | KEY "pd" IS proj-desc. |
 | KEY "pm" IS proj-mgr. |
 | END |
 | |
 | RECORD employees. |
 | FILE IS employs KEY-SEQUENCED. |
 | 02 emp-no PIC 9(6) HEADING "Emp ID.". |
 | 02 emp-name PIC X(30) HEADING "Employee Name". |
 | 02 emp-dept PIC 9(4) HEADING "Dept.". |
 | KEY 0 IS emp-no. |
 | KEY "en" IS emp-name. |
 | KEY "ed" IS emp-dept. |
 | END |
 | |

 Figure 12-9. DDL Source Code (Continued next page)

 12-13

 Sample Project-Tracking System
 Creating a Dictionary That Describes the Files

 | |
 | RECORD participants. |
 | FILE IS respfor KEY-SEQUENCED |
 | 02 event-key HEADING "Event ID". |
 | 04 proj-code PIC 9(6) HEADING "Project No.". |
 | 04 event-num PIC 9(5) HEADING "Event No.". |
 | 02 emp-no PIC 9(6) |
 | HEADING "ID of Employee Assigned". |
 | KEY 0 IS event-key. |
 | KEY "en" IS emp-no. |
 | END |
 | |
 | RECORD events. |
 | FILE IS events KEY-SEQUENCED. |
 | 02 event-key HEADING "Event ID". |
 | 04 proj-code PIC 9(6) HEADING "Project No.". |
 | 04 event-num PIC 9(5) HEADING "Event No.". |
 | 02 event-desc PIC X(20) HEADING "Event". |
 | 02 predict-start-date HEADING "Predicted Starting Date". |
 | 04 start-day PIC 99 HEADING "Day". |
 | 04 start-mo PIC 99 HEADING "Month". |
 | 04 start-yr PIC 99 HEADING "Year". |
 | 02 predict-end-date HEADING "Predicted Ending Date". |
 | 04 end-day PIC 99 HEADING "Day". |
 | 04 end-mo PIC 99 HEADING "Month". |
 | 04 end-yr PIC 99 HEADING "Year". |
 | 02 revised-start-date HEADING "Revised Starting Date". |
 | 04 start-day PIC 99 HEADING "Day". |
 | 04 start-mo PIC 99 HEADING "Month". |
 | 04 start-yr PIC 99 HEADING "Year". |
 | 02 revised-end-date HEADING "Revised Ending Date". |
 | 04 end-day PIC 99 HEADING "Day". |
 | 04 end-mo PIC 99 HEADING "Month". |
 | 04 end-yr PIC 99 HEADING "Year". |
 | 02 change-info PIC X(30) |
 | HEADING "Reason for Revising Date:". |
 | 02 update-emp PIC 9(6) |
 | HEADING "Update Employee ID". |
 | KEY 0 IS event-key. |
 | KEY "ue" IS update-emp. |
 | KEY "ed" IS event-desc. |
 | END |
 | |

 Figure 12-9. DDL Source Code (Continued)

 12-14

 Sample Project-Tracking System
 Identifying the Applications

 Many of the fields in each record description have a DDL HEADING
 clause that you can use as a screen-field label when you generate
 an application.

 DEFINING THE APPLICATIONS TO BE GENERATED

 After you create the data dictionary, you can begin to specify
 the applications to be generated by performing the following
 steps:

 1. Identify the purpose of each application.

 2. For each application, list the files to be accessed, the
 fields that are to appear on the screen, and the operations
 that are to be permitted on each file.

 3. Determine the format of the screen.

 4. Identify any applications for which an automatic read
 operation would be appropriate.

 5. Identify those applications, if any, that are to call others.

 Identifying the Applications

 By using the requirements that you determined earlier in the
 development process, you can identify the following applications
 to be generated:

 1. "Project-entry"--an application to enter information about a
 project and the events associated with it

 2. "Employee-assign"--an application used to enter data that
 associates an employee with a particular event

 3. "Look-up"--an application that can be used to enter
 information about employees, including names and employee
 numbers

 4. "Project-info"--an application that displays general
 information about a project and the events associated it

 5. "Event-detail"--an application that displays detailed
 information about each event within a project

 12-15

 Sample Project-Tracking System
 Identifying the Files to be Accessed by Each Application

 6. "Event-revised"--an application that allows an employee to
 revise information about a particular event

 Identifying the Files to be Accessed by Each Application

 Having identified the applications, make a rough sketch of the
 screens that are to be displayed by each, using a box to
 represent each file to be accessed by the application. In the
 sketch of the PROJECT-ENTRY screen, for example, you would
 include a box for the following files: "projects," "events," and
 "employs."

 Next, determine the kinds of operations that the application will
 need to perform. Since a project manager using the
 "project-entry" application might need to delete, insert, or
 update information in the "projects" and "events" files, this
 application requires the ability to perform all of these
 operations. On the other hand, a project manager needs only to
 read information from the "employs" file. Therefore, the
 "project-entry" application requires only read access to this
 file. If you need to limit the kinds of operations that an
 application can perform on a particular file, include this
 information in your rough sketch of the application's terminal
 screen.

 Figure 12-10 shows rough sketches of the screens for the project-
 tracking system.

 12-16

 Sample Project-Tracking System
 Identifying the Files to be Accessed by Each Application

events

employs file

events file-read-only

employs file-read-only

projects file-read-only

events file-read-only

events file-read-only

respfor file

S5044-063

Project-entry Employee-assign

Look-up Project-info

Event-detail Event-revised

projects file

events file

employs file-read-only

 Figure 12-10. Rough Sketches of Screens in Project-Tracking
 System

 12-17

 Sample Project-Tracking System
 Determining the Format of the Screens

 When you define the organization of a tree, visualize the effect
 this has on the layout of the screen.

 Since the purpose of the "project-entry" application is to enter
 and maintain information about projects and events, you might
 assume that a box representing the "projects" file should be the
 first to appear in the tree structure. The intended users of
 this application, however, are project managers who will have to
 enter their employee numbers in the "projects" file. You can
 make this task easier by making the box that represents the
 "employs" file the first box in the tree structure. If you link
 this box to the "projects" box using "emp-no" and "proj-mgr" (the
 field for the project manager's employee number) as the join
 fields, the application will automatically insert the project
 manager's employee number in the "projects" file.

 Determining the Format of the Screens

 After you define the tree structure for each application, you can
 define the detailed format of each screen, using the following
 guidelines:

 • The first field that appears on the screen should be
 a key field.

 This guideline is particularly appropriate for applications
 whose primary function is to display information. Consider
 the "project-info" application. Its purpose is to display
 information about a project and the events associated with
 that project. A user of this application can expect to enter
 a value in the first screen field, press a function key, and
 see the desired information.

 • For a multifile application, arrange the screen so that all
 fields appear within a box before any join fields.

 Not only is the screen more attractive, the applications
 are easier to use.

 • Consider excluding fields from the screen if a user of the
 application does not need them.

 When a project manager uses the "project-entry" application to
 enter information about a project and its events, there is no
 need to enter information in the "revised-start-date,"
 "revised-end-date," "change-info," or "update-emp" fields.

 12-18

 Sample Project-Tracking System
 Determining the Format of the Screens

 • If necessary, consider using more than one box to represent
 different fields from a file.

 You can improve the appearance of the screen by using
 more than one box to represent a file. You could, for
 example, use two boxes to display fields from the "events"
 file for the "event-detail" application.

 By using two boxes to represent the same file, you can
 restrict access to certain fields within the file while
 allowing full access to other fields within the same file.
 Consider the "event-revised" application, which uses
 information from a single file: the "events" file. While an
 employee who uses this application might want to see the
 contents of the "predict-start-date" field and the
 "predict-end-date" fields, you probably want to protect the
 contents of these fields from changes by the employee.

 If you restrict the "event-revised" application to read-only
 access to the events file, you protect the
 "predict-start-date" and "predict-end-date" fields, but you
 also preclude changes to the "revised-start-date" or
 "revised-end-date" fields. If you generate the application so
 that more than one box represents the "events" file and link
 these boxes on the primary key, the application will display a
 portion of the same record in each box. For example, a box
 with read-only access can display the "predict-start-date" and
 "predict-end-date" fields while a box with read and update
 access can display the "revised-start-date" and
 "revised-end-date" fields. Refer the description of
 generating the "event-revised" application for more
 information about this process.

 • Provide descriptive screen titles.

 Each of the applications in the project-tracking system
 displays a screen title that describes its purpose.
 For example, the screen title of the look-up application is
 "Employee ID Display and Entry Screen."

 • If appropriate, display any unusual user instructions on the
 screen.

 Within the project-tracking system, every calling application
 displays a message that tells the user how to request the
 called application; every called application displays a
 message that tells the user how to return to the calling
 application.

 12-19

 Sample Project-Tracking System
 Determining the Format of the Screens

 • If you want to display more than one record within a box,
 consider using a tabular format.

 Since a project can have more than one event, the
 "project-info" application should display more than one
 "events" record. A tabular format can display summary several
 records attractively.

 When you have selected a screen layout for each application, make
 a detailed sketch of each proposed screen (see Figure 12-11) and
 show the sketch to the people who will use it. Wherever
 possible, incorporate any user suggestions into your screen
 design.

S5044-064

Project Entry Screen

*** To assign employees to events, press F3 ***

* Manager Name * I.D. No.

 Proj. Proj. Dates
 Description Starting Ending Proj. Proj.
 dy mo yr dy mo yr stat code

 *Event Event Event Dates
 No. Description Starting Ending
 dy mo yr dy mo yr

 Figure 12-11. Detailed Sketch of the Proposed Project-Entry
 Screen

 12-20

 Sample Project-Tracking System
 Identifying Candidate Applications for Automatic READ Operations

 Identifying Candidate Applications for Automatic READ Operations

 When the primary purpose of an application is to display
 information, most users expect to enter a value in a key field,
 press a function key, and view a screen full of information. To
 provide this expected behavior, you can supply ON as a value for
 the FILL attribute for every box (except the box at the first
 level of the tree structure) used by the application.

 Figure 12-12 shows the applications (and the boxes within these
 applications) that should have FILL ON.

 | |
 | Box That |
 | Application Represents: |
 | |
 | PROJECT-INFO The events file |
 | |
 | EVENT-DETAIL The events file |
 | The employs file |
 | |
 | EVENT-REVISED The copy of the events file |
 | for the: |
 | |
 | proj-code |
 | event-num |
 | predict-start-date |
 | predict-end-date |
 | |

 Figure 12-12. Applications With Automatic READ Operations

 12-21

 Sample Project-Tracking System
 Identifying Calling Applications

 Identifying Calling Applications

 The last task to perform before generating the applications is
 to identify those that need to call other applications, by asking
 the following questions about each:

 • Is the purpose of this application to display general
 information about a particular subject? If so, does another
 application display detailed information about the same
 subject?

 The purpose of the "project-info" application is to display
 general information about a project. If a user wants detailed
 information about an event associated with that project, he or
 she must use the "event-detail" application. For this reason,
 a user of the "project-info" application should be able to
 call the "event-detail" application.

 • Is one purpose of this application to enter data? If so, will
 some users of the application need information from another
 application to complete an entry in this one?

 The purpose of the "employee-assign" application is to enter
 data that assigns an employee to a particular event within a
 project. When using this application, a project manager
 enters an employee identification number to assign an employee
 to an event. If the project manager does not have a current
 list of employee numbers, he or she must use the "look-up"
 application to obtain the correct number. For this reason, a
 user of the "employee-assign" application should be able to
 call the "look-up" application.

 • Is there a logical order in which the applications should be
 used?

 The purpose of the "project-entry" application is to enter
 information about a project and the events associated with
 it. After entering this information, a project manager can
 assign employees to each event. A project manager cannot
 assign an employee to an event until that event exists. For
 this reason, a user should be able to call the
 "employee-assign" application only from the "project-entry"
 application.

 12-22

 Sample Project-Tracking System
 Project-Entry Application

 GENERATING THE APPLICATIONS

 The next step in the development process is to generate the
 applications. The following paragraphs briefly discuss the
 ENABLE commands used to generate each of the following
 applications in the project-tracking system.

 • Project-entry

 • Employee-assign

 • Look-up

 • Project-info

 • Event-detail

 • Event-revised

 Project-Entry Application

 The purpose of the "project-entry" application is to allow a
 project manager to:

 • Enter information about a new project and the events
 associated with it

 • Update information about existing projects

 This application accesses three files: "employs," "projects,"
 and "events." Figure 12-13 shows the screen this application
 displays.

 12-23

 Sample Project-Tracking System
 Project-Entry Application

S5044-065

Project Entry Screen
Page 1/1
 ***** To assign employees to events, press SF3 *****

 * Manager Name * ID No.
_______________________________ ________

 Proj. Dates
 Proj. Starting Ending Proj. Proj.
 Description dy mo yr dy mo yr Stat. Code
 ________________________ __ __ __ __ __ __ _____ _____

 Event Dates
 * Event Event Starting Ending
 No. Description dy mo yr dy mo yr
 _______ ____________________________ __ __ __ __ __ __
 _______ ____________________________ __ __ __ __ __ __
 _______ ____________________________ __ __ __ __ __ __
 _______ ____________________________ __ __ __ __ __ __
 _______ ____________________________ __ __ __ __ __ __

Ready for input F3 for Help, Shift F16 to Exit

 Figure 12-13. Screen Displayed by Project-Entry
 Application

 Figure 12-14 shows the ENABLE commands used to generate the
 "project-entry" application. The numbers to the right
 identify commands of particular interest that:

 1. Establish a tabular format for the boxes used by the
 application

 2. Reorder the screen fields displayed within each box (Note
 the fields for the "manager" box are reordered so that
 "emp-name," an alternate key field, appears first.)

 3. Provide usage instructions

 4. Restrict the application to read-only operations on records
 for the "manager" box, and allow delete, insert, read, and
 update operations on the records for the "projects" and
 "events" boxes

 12-24

 Sample Project-Tracking System
 Project-Entry Application

 5. Indicate that the application can display up to five records
 in the "events" box

 6. Request SCREEN COBOL source code that can be modified to
 provide the application with the ability to call
 "employee-assign"

ASSUME BOX

SET SCREENFORMAT COMPRESSED

SET HEADINGS NULL

SET RECORD employees

SET DELETE OFF, UPDATE OFF, INSERT OFF

SET INCLUDE (emp-name, emp-no)

SET BOXTITLE 1 " ***** To assign employees to events,&

 press SF3 *****"

SET BOXTITLE 3 "+ Manager Name * ID No."

ADD manager

RESET DELETE, UPDATE, INSERT

SET RECORD projects

SET INCLUDE (proj-mgr, proj-desc, proj-start-date,

proj-end-date, proj-status, proj-code)

SET BOXTITLE 1 " Proj. Dates"

SET BOXTITLE 2 " Proj. Starting Ending Proj. Proj."

SET BOXTITLE 3 " Description dy mo yr dy mo yr Stat. Code"

ADD projects

SET SIZE 5

SET RECORD events

SET INCLUDE (event-key, event-desc, predict-start-date,

predict-end-date)

SET BOXTITLE 1 " Event Dates "

SET BOXTITLE 2 "* Event Events Starting Ending"

SET BOXTITLE 3 " No. Description dy mo yr dy mo yr"

ADD events

ASSUME APPL

SET TREE (01 manager

 02 projects LINK emp-no TO OPTIONAL proj-mgr

 03 events LINK projects TO OPTIONAL events VIA proj-code)

SET TITLE "Project Entry Screen"

SET PATHCOMFILE prfile1 !

SET SCOBOLSOURCE appllsrc !

ADD project-entry

GENERATE project-entry

1

2

3

4

5

6

 Figure 12-14. ENABLE Commands for the Project-Entry Application

 12-25

 Sample Project-Tracking System
 Employee-Assign Application

 Employee-Assign Application

 The purpose of the "employee-assign" application is to allow a
 project manager to assign employees to particular events within a
 project. Since an event must exist before the project manager
 can use this application, he or she must call this application
 from the "project-entry" application instead of from the menu
 screen.

 The "employee-assign" application accesses two files: "events"
 and "respfor." Figure 12-15 shows the screen displayed
 by this application.

S5044-066

Employee Assignment Screen
Page 1/1

***** For an employee ID number, press SF3 *****

* Event ___________________
* Event ID
 Project No. _______ Event No. ________

 ID of Emp.
 Assigned

Ready for input F3 for Help, Shift F16 to Exit

 Figure 12-15. Screen Displayed by Employee-Assign
 Application

 12-26

 Sample Project-Tracking System
 Employee-Assign Application

 Figure 12-16 shows the ENABLE commands, used to generate the
 "employee-assign" application, that:

 1. Establish a compressed layout for the boxes used by the
 application

 2. Reorder the fields from the "events" file and identify the
 fields that are to appear within "events-box"

 3. Provide user information that appears within "events-box"

 4. Reset the box attributes

 5. Establish a tabular format for "partic-box" (The tabular
 format is established by the combined values of the
 SCREENFORMAT, SIZE, and HEADINGS attributes.)

 6. Request the SCREEN COBOL source code that can be modified to
 provide the application with the ability to call "look-up"

ASSUME BOX

SET RECORD events

SET HEADINGS DDLHEADINGS

SET SCREENFORMAT COMPRESSED

SET DELETE OFF, INSERT OFF, UPDATE OFF

SET INCLUDE (event-desc, event-key)

SET BOXTITLE 2 " ***** For an employee ID number, press SF3 *****"

SET BOXTITLE 3 " "

ADD events-box

RESET BOX *

SET RECORD participants

SET HEADINGS NULL

SET INCLUDE (event-key, emp-no)

SET SIZE 10

SET BOXTITLE 1 "ID of Emp."

SET BOXTITLE 2 "Assigned"

ADD partic-box

ASSUME APPL

SET PATHCOMFILE prfile2 !

SET SCOBOLSOURCE exam2src !

SET TREE (01 events-box

 03 partic-box LINK events-box TO OPTIONAL partic-box VIA event-key)

SET TITLE "Employee Assignment Screen"

ADD employee-assign

GENERATE APPL employee-assign

1

2
3

4

5

6

 Figure 12-16. ENABLE Commands to Generate the Employee-Assign
 Application

 12-27

 Sample Project-Tracking System
 Look-Up Application

 Look-Up Application

 The purpose of the "look-up" application is to allow a user to
 display and update employee information. A user can call this
 application from either the "employee-assign" application or the
 menu screen.

 The "look-up" application accesses the "employs" file. Figure
 12-17 shows the screen it displays.

S5044-067

Employee ID Display and Entry Screen
Page 1/1

***** To return to a calling program, press SF16 *****

 * Employee Name * ID # + Dept
______________________________________ ______ _______
______________________________________ ______ _______
______________________________________ ______ _______
______________________________________ ______ _______
______________________________________ ______ _______

Ready for input F3 for Help, Shift F16 to Exit

 Figure 12-17. Screen Displayed by the Look-Up
 Application

 Figure 12-18 shows the ENABLE commands, used to generate the
 "look-up" application, that:

 1. Provide a tabular screen format for the employee records

 12-28

 Sample Project-Tracking System
 Project-Info Application

 2. Provide usage information to appear within the "employees"
 box

 3. Provide screen labels for the employee records

 4. Request a SCREEN COBOL compilation listing that will be used
 when the application is integrated into a single PATHWAY
 system

ASSUME BOX

SET RECORD employees

SET HEADINGS NULL

SET SCREENFORMAT COMPRESSED

SET SIZE 5

SET BOXTITLE 1 " ***** To return to a calling program, press SF16 *****"

SET BOXTITLE 3 " + Employee Name * ID # + Dept."

SET INCLUDE (emp-name, emp-no, emp-dept)

ADD employees

ASSUME APPL

SET TITLE "Employee ID Display and Entry Screen"

SET TREE (01 employees)

SET SCOBOLLIST exam31st !

SET PATHCOMFILE prfile4 !

ADD look-up

GENERATE APPL look-up

1

2
3

4

 Figure 12-18. ENABLE Commands Used to Generate the Look-Up
 Application

 Project-Info Application

 The purpose of the "project-info" application is to display
 general information about a project and the events related to
 it. To use this application, enter a project name and press the
 appropriate read-operation key. The application returns
 information about the project and up to ten related events. If
 detailed information about an event is needed, the user can press
 a function key and call the "event-detail" application.

 12-29

 Sample Project-Tracking System
 Project-Info Application

 The "project-info" application accesses two data base files:
 "projects" and "events." Figure 12-19 shows the screen it
 displays.

S5044-068

Project Information Screen
Page 1/1

***** To obtain detailed information about an event, press SF3 *****

* Project Name __________________ Project Status ______
* Project Code _______

 * Event Orig. Act. Orig. Act.
 No. Description Start Start End End
 mo yr mo yr mo yr mo yr
 _______ ___________________ __ __ __ __ __ __ __ __
 _______ ___________________ __ __ __ __ __ __ __ __
 _______ ___________________ __ __ __ __ __ __ __ __
 _______ ___________________ __ __ __ __ __ __ __ __
 _______ ___________________ __ __ __ __ __ __ __ __
 _______ ___________________ __ __ __ __ __ __ __ __
 _______ ___________________ __ __ __ __ __ __ __ __
 _______ ___________________ __ __ __ __ __ __ __ __
 _______ ___________________ __ __ __ __ __ __ __ __
 _______ ___________________ __ __ __ __ __ __ __ __

Ready for input F3 for Help, Shift F16 to Exit

 Figure 12-19. Screen Displayed by the Project-Info
 Application

 Figure 12-20 shows the ENABLE commands, used to generate the
 "project-info" application, that:

 1. Restrict the application to read-only access to both the
 "projects" and "events" files

 2. Request a compressed screen format

 3. Reorder the fields for "project-box" so that the join field
 ("proj-code") appears last

 12-30

 Sample Project-Tracking System
 Project-Info Application

 4. In combination with the setting of SCREENFORMAT, these
 commands provide a tabular format for "events-box"

 5. Indicate that the application is to perform an automatic read
 operation on "events-box" whenever the contents of "proj-box"
 changes

 6. Request the SCREEN COBOL source code for this application.
 You must modify this source code to call the "event-detail"
 application

ASSUME BOX

SET DELETE OFF, INSERT OFF, UPDATE OFF

SET SCREENFORMAT COMPRESSED

SET RECORD project

SET HEADINGS DDLHEADINGS

SET INCLUDE (proj-desc,proj-status,proj-code)

SET BOXTITLE 2 " ***** To obtain detailed information about an event, press&

 SF3 *****"

SET BOXTITLE 3 " "

ADD proj-box

SET RECORD events

SET SIZE 10

SET HEADINGS NULL

SET BOXTITLE 1"* Event Orig. Act. Orig. Act."

SET BOXTITLE 2" No. Description Start Start End End "

SET BOXTITLE 3" mo yr mo yr mo yr mo yr"

SET INCLUDE (event-key, event-desc,predict-start-date.start-mo,

predict-start-date.start-yr, revised-start-date.start-mo,

revised-start-date.start-yr, predict-end-date.start-mo,

predict-end-date.start-yr, revised-end-date.start-mo,

revised-end-date.start-yr)

SET FILL ON

ADD events-box

ASSUME APPL

SET SCOBOLSOURCE exam4src !

SET PATHCOMFILE prfile4 !

SET TITLE "Project Information Screen"

SET TREE (01 proj-box

 02 events-box LINK project-box TO OPTIONAL events-box VIA proj-code)

ADD project-info

GENERATE project-info

1
2

3

4

5

6

 Figure 12-20. ENABLE Commands to Generate the Project-Info
 Application

 12-31

 Sample Project-Tracking System
 Event-Detail Application

 Event-Detail Application

 The purpose of the "event-detail" application is to display
 detailed information about a particular event within a project.
 To use this application, a person enters a project number and an
 event number. When the user presses an appropriate read-
 operation key, the application returns a description of the
 event, the reason that the event dates were revised, and
 information that identifies the employee who revised the dates.

 The "event-detail" application accesses two files: "events" and
 "employs." Figure 12-21 shows the screen it displays.

S5044-069

Event Detail Screen
Page 1/1
 ***** To return to a calling program, press SF16 *****
* Event ID
 Project No. ________ Event No. ______

 Updating
 Event Description Reason for Date Change Employee ID
 ____________________ __________________________ ____________

 Updating Employee Name

Ready for input F3 for Help, Shift F16 to Exit

 Figure 12-21. Screen Displayed by the Event-Detail
 Application

 12-32

 Sample Project-Tracking System
 Event-Detail Application

 Figure 12-22 shows the ENABLE commands used to generate the
 "events-detail" application. The numbers that appear to the
 right of this figure refer to commands of particular interest
 that:

 1. Limit the application to read-only access to both the
 "events" and "employs" files

 2. Supply "events" as the value of the RECORD attribute (Note
 that this value of the RECORD attribute applies to both the
 "event-x" box and the "events-a" box. Although both boxes
 represent the events file, each box displays different fields
 from the same record in this file.)

 3. Indicate that the application is to perform an automatic
 read operation for the "events-a" and "employ-assign" boxes
 whenever the contents of the "events-x" box changes

 4. Request a SCREEN COBOL compilation listing for this
 application. You will need information from this listing
 when you integrate the application into the project-tracking
 system

 12-33

 Sample Project-Tracking System
 Event-Revised Application

ASSUME BOX

SET DELETE OFF, INSERT OFF, UPDATE OFF

SET SCREENFORMAT COMPRESSED

SET RECORD events

SET HEADINGS DDLHEADINGS

SET BOXTITLE 1 " ***** To return to a calling program, press SF16 *****"

SET INCLUDE (event-key)

ADD event-x

SET FILL ON

SET INCLUDE (event-key, event-desc, change-info, update-emp)

SET HEADINGS NULL

SET BOXTITLE 1 " Updating"

SET BOXTITLE 2 " Event Description Reason for Date Change Employee ID"

ADD events-a

RESET BOXTITLE 2

SET RECORD employees

SET INCLUDE (emp-no, emp-name)

SET BOXTITLE 1 "Updating Employee Name"

ADD employ-assign

ASSUME APPL

SET PATHCOMFILE prfile5 !

SET SCOBOLLIST exam51st !

SET TREE (01 event-x

 02 events-a LINK event-x TO OPTIONAL events-a VIA event-key

 03 employ-assign LINK update-emp TO OPTIONAL emp-no)

SET TITLE "Event Detail Screen"

ADD event-detail

GENERATE event-detail

1

2

3

4

 Figure 12-22. ENABLE Commands to Generate the Event-Detail
 Application

 Event-Revised Application

 The purpose of the "event-revised" application is to provide
 employees with the ability to revise the starting and ending
 dates for a particular event within a project. To find the
 correct event, the employee enters a project number and an event
 number. The application then returns the event description and
 the predicted starting and ending dates. Although the employee
 cannot change the predicted starting and ending dates, he or she
 can enter revised dates and describe the reason for the date
 change.

 The "event-revised" application uses three different boxes to
 represent the "events" file. When an employee uses the
 application, each box contains a different portion of the same
 events record. Figure 12-23 shows the screen displayed
 by this application.

 12-34

 Sample Project-Tracking System
 Event-Revised Application

S5044-070

Event Revision Screen
Page 1/1
Enter a project no. and an event no., then press F6. After you make
changes, press F14.

* Event ID
 Project No. __________ Event No. ______

 Original Dates
 Starting Ending
 Event Description dy mo yr dy mo yr
 ________________________ __ __ __ __ __ __

 Revised Dates
 Starting Ending Your ID
 dy mo yr dy mo yr Reason for date change No.
 __ __ __ __ __ __ __________________________________ _______

Ready for input F3 for Help, Shift F16 to Exit

 Figure 12-23. Screen Displayed by Event-Revised
 Application

 Figure 12-24 shows the ENABLE commands used to generate the
 "event-revised" application. The numbers that appear to the
 right of this figure refer to commands of particular interest
 that:

 1. Identify "events" as the value of the RECORD attribute
 (Since this value is neither overridden or reset, ENABLE uses
 this value for the record description of all the boxes used
 by the application.)

 2. Indicate that the application can only read records for the
 "my-events" and "events-3" boxes (These boxes display fields
 from an event record that should not be changed.)

 3. Indicate that the application is automatically to read
 information for the "events-3" box whenever the contents of
 the "my-events" box changes

 12-35

 Sample Project-Tracking System
 Modifying the SCREEN COBOL Source Code of Selected Applications

 4. Reset the UPDATE attribute to allow a user to update the
 fields from an "events" record displayed within the
 "events-4" box

 5. Request a SCREEN COBOL compilation listing for this
 application

ASSUME BOX

SET RECORD events

SET SCREENFORMAT COMPRESSED

SET HEADINGS DDLHEADINGS

SET DELETE OFF, INSERT OFF, UPDATE OFF

SET INCLUDE (event-key)

SET BOXTITLE 1 "Enter a project no. and an event no., then press F6. After you make"

SET BOXTITLE 2 "changes, press F14. "

SET BOXTITLE 3 " "

ADD BOX my-event

SET FILL ON

SET HEADINGS NULL

SET INCLUDE (event-key, event-desc, predict-start-date, predict-end-date)

SET BOXTITLE 1 " Original Dates "

SET BOXTITLE 2 " Event Description Starting Ending "

SET BOXTITLE 3 " dy mo yr dy mo yr"

ADD BOX events-3

RESET UPDATE

SET INCLUDE (event-key, revised-start-date, revised-end-date, change-info,

update-emp)

SET BOXTITLE 1" Revised Dates "

SET BOXTITLE 2"Starting Ending Your ID"

SET BOXTITLE 3"dy mo yr dy mo yr Reason for Date Change No. "

ADD BOX events-4

SET APPL PATHCOMFILE prfile6 !

SET APPL SCOBOLLIST exam61st !

SET APPL TREE (01 my-event

 03 events-3 LINK my-event TO OPTIONAL events-3 VIA event-key

 03 events-4 LINK my-event TO OPTIONAL events-4 VIA event-key)

SET APPL TITLE "Event Revision Screen"

ADD APPL event-revised

GENERATE APPL event-revised

1

2

3

4

5

 Figure 12-24. ENABLE Commands to Generate the Event-Revised
 Application

 MODIFYING THE SCREEN COBOL SOURCE CODE OF SELECTED APPLICATIONS

 Three applications within the project-tracking system have the
 ability to call other applications. These calling applications
 are "project-entry," "employee-assign," and "project-info."

 12-36

 Sample Project-Tracking System
 Modifying the Source Code for the Project-Entry Application

 To allow these applications to call others, you must modify and
 compile their source code files, as described in Section 11.
 Briefly, you must change an entry in the T9155-CHAIN paragraph of
 the source code to include a call to the appropriate application.

 Modifying the Source Code for the Project-Entry Application

 The "project-entry" application needs the ability to call the
 "employee-assign" application. The T9155-CHAIN paragraph of the
 "project-entry" source code appears as follows:

 T9155-CHAIN.
 IF T9155-MANAGERBOX-CHOICE
 MOVE T9155-NOT-SUPPORTED-MESSAGE TO T9155-ERROR-MSG
 ELSE IF T9155-PROJECTBOX-CHOICE
 MOVE T9155-NOT-SUPPORTED-MESSAGE TO T9155-ERROR-MSG
 ELSE IF T9155-EVENTSBOX-CHOICE
 MOVE T9155-NOT-SUPPORTED-MESSAGE TO T9155-ERROR-MSG
 ELSE NEXT SENTENCE.

 To allow a user to call the "employee-assign" application when
 the cursor is positioned within the "events" box of
 "project-entry," the source code must be modified to include the
 CALL statement as follows:

 T9155-CHAIN.
 IF T9155-MANAGERBOX-CHOICE
 MOVE T9155-CANT-CHAIN--MESSAGE TO T9155-ERROR-MSG
 ELSE IF T9155-PROJECTBOX-CHOICE
 MOVE T9155-CANT-CHAIN-MESSAGE TO T9155-ERROR-MSG
 ELSE IF T9155-EVENTSBOX-CHOICE
 CALL employee-assign
 ELSE NEXT SENTENCE.

 Notice that a T9155-CANT-CHAIN-MESSAGE replaces the T9155-NOT-
 SUPPORTED-MESSAGE for both MANAGERBOX-CHOICE and
 PROJECTBOX-CHOICE. If the user must position the cursor with a
 particular box to call another application, be sure to exchange
 these messages. Refer to Section 11 for more information about
 the T9155-CANT-CHAIN-MESSAGE.

 12-37

 Sample Project-Tracking System
 Modifying the Source Code for the Employee-Assign Application

 Modifying the Source Code for the Employee-Assign Application

 The "employee-assign" application needs the ability to call the
 "look-up" application. The T9155-CHAIN paragraph for the
 "employee-assign" application appears as follows:

 T9155-CHAIN.
 IF T9155-EVENTSBOX-CHOICE
 MOVE T9155-NOT-SUPPORTED-MESSAGE TO T9155-ERROR-MSG
 ELSE IF T9155-PARTICBOX-CHOICE
 MOVE T9155-NOT-SUPPORTED-MESSAGE TO T9155-ERROR-MSG
 ELSE NEXT SENTENCE.

 To allow users of this application to call the "look-up"
 application, you must modify this source code to appear as
 follows:

 T9155-CHAIN.
 IF T9155-EVENTSBOX-CHOICE
 CALL look-up
 ELSE IF T9155-PARTICBOX-CHOICE
 CALL look-up
 ELSE NEXT SENTENCE.

 Modifying the Source Code for the Project-Info Application

 The "project-info" application needs the ability to call the
 "event-detail" application. The T9155-CHAIN paragraph of the
 "project-info" source code appears as follows:

 T9155-CHAIN.
 IF T9155-PROJECTBOX-CHOICE
 MOVE T9155-NOT-SUPPORTED-MESSAGE TO T9155-ERROR-MSG
 ELSE IF T9155-EVENTSBOX-CHOICE
 MOVE T9155-NOT-SUPPORTED-MESSAGE TO T9155-ERROR-MSG
 ELSE NEXT SENTENCE.

 To allow users of this application to call the "event-detail"
 application, modify this source code to include the CALL
 statement as follows:

 T9155-CHAIN.
 IF T9155-PROJECTBOX-CHOICE
 CALL event-detail
 ELSE IF T9155-EVENTSBOX-CHOICE
 CALL event-detail
 ELSE NEXT SENTENCE.

 12-38

 Sample Project-Tracking System
 Writing a Menu Program

 After making these modifications, you must compile the source
 code for each application using the SCOBOLX command discussed in
 Section 11. For example, if source code for the "project-entry"
 application is in a file named "exam1src," you compile this
 source code by entering:

 SCOBOLX/IN exam1src, OUT listex1, MEM 64, NOWAIT/ pobj

 WRITING A MENU PROGRAM

 After you have generated all the applications to be integrated
 into a single system, you can write a menu program that calls
 these applications. Figure 12-25 shows the screen displayed by a
 sample menu program for the project-tracking system.

==
PROJECT TRACKING
MASTER MENU
==
Select one of the following or press SF16 to EXIT
 Function Key Description
 _____________ __
 F1 To enter a new project.
 F2 To look up an employee number.
 F3 To obtain information about a project.
 F4 To obtain detailed event information.
 F5 To revise an event.

There are no more options
==

 Figure 12-25. Screen Displayed by Sample Menu Program

 12-39

 Sample Project-Tracking System
 Writing a Menu Program

 Figure 12-26 shows the SCREEN COBOL source code for this program.
 Within the source code, comments (indicated by an asterisk in
 column 1) provide additional information. You can modify this
 source code to develop a menu program for your own system of
 applications.

 | |
 | IDENTIFICATION DIVISION. |
 | PROGRAM-ID. MENU. |
 | AUTHOR. Your Name |
 | DATE-WRITTEN. 06/29/84 |
 | DATE-COMPILED. |
 | SECURITY. comment. |
 | ENVIRONMENT DIVISION. |
 | CONFIGURATION SECTION. |
 | SOURCE-COMPUTER. T16. |
 | OBJECT-COMPUTER. T16, |
 | * |
 | * Modify the following for T16-651x or IBM-327x terminals. |
 | * |
 | TERMINAL IS T16-6520. |
 | |
 | SPECIAL-NAMES. |
 | F1-KEY IS F1, |
 | F2-KEY IS F2, |
 | F3-KEY IS F3, |
 | F4-KEY IS F4, |
 | F5-KEY IS F5, |
 | F6-KEY IS F6, |
 | F7-KEY IS F7, |
 | F8-KEY IS F8, |
 | F9-KEY IS F9, |
 | F10-KEY IS F10, |
 | F11-KEY IS F11, |
 | F12-KEY IS F12, |
 | F13-KEY IS F13, |
 | F14-KEY IS F14, |
 | F15-KEY IS F15, |
 | F16-KEY IS F16, |
 | SF1-KEY IS SF1, |
 | SF2-KEY IS SF2, |
 | SF3-KEY IS SF3, |
 | SF4-KEY IS SF4, |
 | SF5-KEY IS SF5, |
 | SF6-KEY IS SF6, |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued next page)

 12-40

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | SF7-KEY IS SF7, |
 | SF8-KEY IS SF8, |
 | SF9-KEY IS SF9, |
 | SF10-KEY IS SF10, |
 | SF11-KEY IS SF11, |
 | SF12-KEY IS SF12, |
 | SF13-KEY IS SF13, |
 | SF14-KEY IS SF14, |
 | SF15-KEY IS SF15, |
 | SF16-KEY IS SF16, |
 | NORMAL IS NORMAL, |
 | DIM IS DIM, |
 | REVERSE IS REVERSE, |
 | HIDDEM IS HIDDEN, |
 | BLINK IS BLINK, |
 | NOBLINK IS NOBLINK, |
 | NOREVERSE IS NOREVERSE, |
 | UNDERLINE IS UNDERLINE, |
 | ADVICE IS (DIM, REVERSE). |
 | |
 | INPUT-OUTPUT SECTION. |
 | SCREEN-CONTROL. |
 | ERROR-ENHANCEMENT IS REVERSE IN ALL. |
 | |
 | DATA DIVISION. |
 | WORKING-STORAGE SECTION. |
 | 01 CALL-ERROR-MESSAGES. |
 | * Termination status = 0001 |
 | 02 FILLER PIC X(32) |
 | VALUE "Invalid Pseudocode detected ". |
 | * Termination status = 0002 |
 | 02 FILLER PIC X(32) |
 | VALUE "Depending variable value to big ". |
 | * Termination status = 0003 |
 | 02 FILLER PIC X(32) |
 | VALUE "Invalid subscript value ". |
 | * Termination status = 0004 |
 | 02 FILLER PIC X(32) |
 | VALUE "Screen Recovery -illegal instr. ". |
 | * Termination status = 0005 |
 | 02 FILLER PIC X(32) |
 | VALUE "Mismatch - number of parameters". |
 | * Termination status = 0006 |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-41

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | 02 FILLER PIC X(32) |
 | VALUE "Mismatch - size of parameters ". |
 | * Termination status = 0007 |
 | 02 FILLER PIC X(32) |
 | VALUE "Screen operation without base ". |
 | * Termination status = 0008 |
 | 02 FILLER PIC X(32) |
 | VALUE "Invalid data reference ". |
 | * Termination status = 0009 |
 | 02 FILLER PIC X(32) |
 | VALUE "Screen illegal for term type ". |
 | * Termination status = 0010 |
 | 02 FILLER PIC X(32) |
 | VALUE "Internal err in terminal format ". |
 | * Termination status = 0011 |
 | 02 FILLER PIC X(32) |
 | VALUE "Illegal terminal type specified ". |
 | * Termination status = 0012 |
 | 02 FILLER PIC X(32) |
 | VALUE "Screen referenced/not displayed ". |
 | * Termination status = 0013 |
 | 02 FILLER PIC X(32) |
 | VALUE "Overlay screen displayed/2 areas". |
 | * Termination status = 0014 |
 | 02 FILLER PIC X(32) |
 | VALUE "Illegal term IO protocol word ". |
 | * Termination status = 0015 |
 | 02 FILLER PIC X(32) |
 | VALUE "Arithmetic Overflow ". |
 | * Termination status = 0016 |
 | 02 FILLER PIC X(32) |
 | VALUE "Terminal stack space overflow ". |
 | * Termination status = 0017 |
 | 02 FILLER PIC X(32) |
 | VALUE "Error during terminal open ". |
 | * Termination status = 0018 |
 | 02 FILLER PIC X(32) |
 | VALUE "Error during terminal IO ". |
 | * Termination status = 0019 |
 | 02 FILLER PIC X(32) |
 | VALUE "Wrong transfer count in term IO ". |
 | * Termination status = 0020 |
 | 02 FILLER PIC X(32) |
 | VALUE "Called program unit not found ". |
 | * Termination status = 0021 |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-42

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | 02 FILLER PIC X(32) |
 | VALUE "Transaction msg send failure ". |
 | * Termination status = 0022 |
 | 02 FILLER PIC X(32) |
 | VALUE "Send:server class name invalid ". |
 | * Termination status = 0023 |
 | 02 FILLER PIC X(32) |
 | VALUE "Pseudocode size too big ". |
 | * Termination status = 0024 |
 | 02 FILLER PIC X(32) |
 | VALUE "TCLPROG directory entry is bad ". |
 | * Termination status = 0025 |
 | 02 FILLER PIC X(32) |
 | VALUE "Term input data stream invalid ". |
 | * Termination status = 0026 |
 | 02 FILLER PIC X(32) |
 | VALUE "Program unit has wrong term type". |
 | * Termination status = 0027 |
 | 02 FILLER PIC X(32) |
 | VALUE "Transaction mode violation ". |
 | * Termination status = 0028 |
 | 02 FILLER PIC X(32) |
 | VALUE "Transaction IO error ". |
 | * Termination status = 0029 |
 | 02 FILLER PIC X(32) |
 | VALUE "Trans. restart limit reached ". |
 | * Termination status = 0030 |
 | 02 FILLER PIC X(32) |
 | VALUE "TMF not configured ". |
 | * Termination status = 0031 |
 | 02 FILLER PIC X(32) |
 | VALUE "TMF not running ". |
 | 01 ERROR-ARRAY REDEFINES CALL-ERROR-MESSAGES. |
 | 02 CALL-ERROR-MESSAGE |
 | OCCURS 31 TIMES PIC X(32). |
 | |
 | 01 ERROR-NOTE. |
 | 02 FILLER PIC X(18) |
 | VALUE " Program called=> ". |
 | 02 PROG-NAME PIC X(15) VALUE "???????????????". |
 | |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-43

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | 01 BELL. |
 | 02 FILLER PIC 9 COMP VALUE 7. |
 | * ... |
 | 01 MAX-CHOICE PIC 99 VALUE 0. |
 | 01 OPERATION-CHOICE PIC 99 VALUE 1. |
 | 01 TASK PIC X. |
 | 88 TASK-DONE VALUE "Y". |
 | 88 TASK-NOT-DONE VALUE "N". |
 | 01 NCOUNT PIC 99 VALUE 1. |
 | 01 END-PROGRAM PIC X VALUE "N". |
 | 01 PROGRAM-CALLED PIC X(15) VALUE SPACES. |
 | |
 | ** |
 | * PLACE THE NAMES OF THE CALLED PROGRAMS IN THE VALUE |
 | * CLAUSES THAT FOLLOW. PROG1 CORRESPONDS TO FUNCTION |
 | * KEY 1 AND DESCRIPTION1 |
 | ** |
 | |
 | 01 PROGRAM-NAMES. |
 | 02 PROG1 PIC X(15) |
 | VALUE "project-entry ". |
 | 02 PROG2 PIC X(15) |
 | VALUE "look-up ". |
 | 02 PROG3 PIC X(15) |
 | VALUE "project-info ". |
 | 02 PROG4 PIC X(15) |
 | VALUE "event-detail ". |
 | 02 PROG5 PIC X(15) |
 | VALUE "event-revised ". |
 | 02 PROG6 PIC X(15) |
 | VALUE " ". |
 | 02 PROG7 PIC X(15) |
 | VALUE " ". |
 | 02 PROG8 PIC X(15) |
 | VALUE " ". |
 | 02 PROG9 PIC X(15) |
 | VALUE " ". |
 | 02 PROG10 PIC X(15) |
 | VALUE " ". |
 | 02 PROG11 PIC X(15) |
 | VALUE " ". |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-44

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | 02 PROG12 PIC X(15) |
 | VALUE " ". |
 | 02 PROG13 PIC X(15) |
 | VALUE " ". |
 | 02 PROG14 PIC X(15) |
 | VALUE " ". |
 | 02 PROG15 PIC X(15) |
 | VALUE " ". |
 | |
 | 01 PROGRAM-CHOICE REDEFINES PROGRAM-NAMES. |
 | 02 PROGRAM-CHOICE-VALUE |
 | OCCURS 15 TIMES PIC X(15). |
 | ** |
 | * PLACE THE DESCRIPTIONS OF THE CALLED PROGRAMS IN |
 | * THE VALUE CLAUSES BELOW. DESCRIPTION-1 CORRESPONDS |
 | * TO FUNCTION KEY 1 AND PROG1. LEAVE THE DESCRIPTIONS |
 | * BLANK FOR THE FUNCTION KEYS NOT USED. THE PROGRAM |
 | * LOGIC INSURES CORRECT DISPLAY AND FUNCTION KEY |
 | * CONTROL FOR THOSE OPTIONS WITH NO DESCRIPTIONS. |
 | ** |
 | |
 | 01 PROGRAM-DESCRIPTIONS. |
 | 02 DESCRIPTION-1 PIC X(40) |
 | VALUE "To enter a new project. ". |
 | 02 DESCRIPTION-2 PIC X(40) |
 | VALUE "To look up an employee number. ". |
 | 02 DESCRIPTION-3 PIC X(40) |
 | VALUE "To obtain information about a project. ". |
 | 02 DESCRIPTION-4 PIC X(40) |
 | VALUE "To obtain detailed event information. ". |
 | 02 DESCRIPTION-5 PIC X(40) |
 | VALUE "To revise an event. ". |
 | 02 DESCRIPTION-6 PIC X(40) |
 | VALUE " ". |
 | 02 DESCRIPTION-7 PIC X(40) |
 | VALUE " ". |
 | 02 DESCRIPTION-8 PIC X(40) |
 | VALUE " ". |
 | 02 DESCRIPTION-9 PIC X(40) |
 | VALUE " ". |
 | 02 DESCRIPTION-10 PIC X(40) |
 | VALUE " ". |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-45

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | 02 DESCRIPTION-11 PIC X(40) |
 | VALUE " ". |
 | 02 DESCRIPTION-12 PIC X(40) |
 | VALUE " ". |
 | 02 DESCRIPTION-13 PIC X(40) |
 | VALUE " ". |
 | 02 DESCRIPTION-14 PIC X(40) |
 | VALUE " There are no more options. ". |
 | 02 DESCRIPTION-15 PIC X(40) |
 | VALUE " ". |
 | |
 | 01 DESCRIPTION-VALUES REDEFINES PROGRAM-DESCRIPTIONS. |
 | 02 DESCRIPTION-ELEMENT |
 | OCCURS 15 TIMES PIC X(40). |
 | 01 APPLICATION-TITLE. |
 | * |
 | * Insert the screen title in the following VALUE clause. |
 | * |
 | 02 APPLICATION-NAME PIC X(60) |
 | VALUE "PROJECT TRACKING |
 | - " ". |
 | |
 | 01 FUNCTION-KEY-SCREEN. |
 | 02 DATA-F1 PIC X(4). |
 | 02 DATA-F2 PIC X(4). |
 | 02 DATA-F3 PIC X(4). |
 | 02 DATA-F4 PIC X(4). |
 | 02 DATA-F5 PIC X(4). |
 | 02 DATA-F6 PIC X(4). |
 | 02 DATA-F7 PIC X(4). |
 | 02 DATA-F8 PIC X(4). |
 | 02 DATA-F9 PIC X(4). |
 | 02 DATA-F10 PIC X(4). |
 | 02 DATA-F11 PIC X(4). |
 | 02 DATA-F12 PIC X(4). |
 | 02 DATA-F13 PIC X(4). |
 | 02 DATA-F14 PIC X(4). |
 | 02 DATA-F15 PIC X(4). |
 | |
 | 01 FUNCTION-KEY-SARRAY REDEFINES FUNCTION-KEY-SCREEN. |
 | 02 SARRAY-ELEMENT |
 | OCCURS 15 TIMES PIC X(4). |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-46

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | 01 FUNCTION-KEY-NAMES. |
 | 02 K-DATA-F1 PIC X(4) VALUE " F1". |
 | 02 K-DATA-F2 PIC X(4) VALUE " F2". |
 | 02 K-DATA-F3 PIC X(4) VALUE " F3". |
 | 02 K-DATA-F4 PIC X(4) VALUE " F4". |
 | 02 K-DATA-F5 PIC X(4) VALUE " F5". |
 | 02 K-DATA-F6 PIC X(4) VALUE " F6". |
 | 02 K-DATA-F7 PIC X(4) VALUE " F7". |
 | 02 K-DATA-F8 PIC X(4) VALUE " F8". |
 | 02 K-DATA-F9 PIC X(4) VALUE " F9". |
 | 02 K-DATA-F10 PIC X(4) VALUE " F10". |
 | 02 K-DATA-F11 PIC X(4) VALUE " F11". |
 | 02 K-DATA-F12 PIC X(4) VALUE " F12". |
 | 02 K-DATA-F13 PIC X(4) VALUE " F13". |
 | 02 K-DATA-F14 PIC X(4) VALUE " F14". |
 | 02 K-DATA-F15 PIC X(4) VALUE " F15". |
 | |
 | 01 FUNCTION-KEY-NARRAY REDEFINES FUNCTION-KEY-NAMES. |
 | 02 NARRAY-ELEMENT |
 | OCCURS 15 TIMES PIC X(4). |
 | |
 | 01 GLOBALS. |
 | 05 SCRN-MESSAGE PIC X(78) VALUE spaces. |
 | 05 SCRN-MESSAGE-FLDS redefines SCRN-MESSAGE. |
 | 10 MESSAGE-1-NUMBER PIC S9999 |
 | SIGN IS LEADING SEPARATE CHARACTER. |
 | 10 FILLER PIC XX. |
 | 10 MESSAGE-2-NUMBER PIC S9999 |
 | SIGN IS LEADING SEPARATE CHARACTER. |
 | 10 FILLER PIC XX. |
 | 10 MESSAGE-ALPHA. |
 | 15 MESSAGE-ALPHA-A PIC X(38). |
 | 15 MESSAGE-ALPHA-B PIC X(26). |
 | |
 | SCREEN SECTION. |
 | |
 | 01 MSCREEN1 OVERLAY SIZE 24, 80 . |
 | 05 FILLER AT 1, 2 |
 | VALUE "=== |
 | - "===================================" . |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-47

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | 05 SCREEN-APPLICATION AT 2, 3 |
 | PIC X(60) |
 | FROM APPLICATION-NAME . |
 | 05 FILLER AT 3, 3 |
 | VALUE "MASTER MENU" . |
 | 05 FILLER AT 4, 2 |
 | VALUE |
 | "== |
 | - "========================". |
 | 05 FILLER AT 5,2 |
 | VALUE "Select one of the following or press SF16 |
 | - "to EXIT" . |
 | 05 FILLER AT 6, 6 |
 | VALUE "Function Key" . |
 | 05 FILLER AT 6, 33 |
 | VALUE "Description" . |
 | 05 FILLER AT 7, 6 |
 | VALUE "----------- -------------------------- |
 | - "---------------" . |
 | 05 K-F1 AT 8, 10 |
 | PIC X(4) |
 | FROM DATA-F1 . |
 | 05 SCREEN-DESC1 AT 8, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-1 . |
 | 05 SCREEN-F2 AT 9, 10 |
 | PIC X(4) |
 | FROM DATA-F2 . |
 | 05 SCREEN-DESC2 AT 9, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-2 . |
 | 05 SCREEN-F3 AT 10, 10 |
 | PIC X(4) |
 | FROM DATA-F3 . |
 | 05 SCREEN-DESC3 AT 10, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-3 . |
 | 05 SCREEN-F4 AT 11, 10 |
 | PIC X(4) |
 | FROM DATA-F4 . |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-48

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | 05 SCREEN-DESC4 AT 11, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-4 . |
 | 05 SCREEN-F5 AT 12, 10 |
 | PIC X(4) |
 | FROM DATA-F5 . |
 | 05 SCREEN-DESC5 AT 12, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-5 . |
 | 05 SCREEN-F6 AT 13, 10 |
 | PIC X(4) |
 | FROM DATA-F6 . |
 | 05 SCREEN-DESC6 AT 13, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-6 . |
 | 05 SCREEN-F7 AT 14, 10 |
 | PIC X(4) |
 | FROM DATA-F7 . |
 | 05 SCREEN-DESC7 AT 14, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-7 . |
 | 05 SCREEN-F8 AT 15, 10 |
 | PIC X(4) |
 | FROM DATA-F8 . |
 | 05 SCREEN-DESC8 AT 15, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-8 . |
 | 05 SCREEN-F9 AT 16, 10 |
 | PIC X(4) |
 | FROM DATA-F9 . |
 | 05 SCREEN-DESC9 AT 16, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-9 . |
 | 05 SCREEN-F10 AT 17, 10 |
 | PIC X(4) |
 | FROM DATA-F10 . |
 | 05 SCREEN-DESC10 AT 17, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-10 . |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-49

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | 05 SCREEN-F11 AT 18, 10 |
 | PIC X(4) |
 | FROM DATA-F11 . |
 | 05 SCREEN-DESC11 AT 18, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-11 . |
 | 05 SCREEN-F12 AT 19, 10 |
 | PIC X(4) |
 | FROM DATA-F12 . |
 | 05 SCREEN-DESC12 AT 19, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-12 . |
 | 05 SCREEN-F13 AT 20, 10 |
 | PIC X(4) |
 | FROM DATA-F13 . |
 | 05 SCREEN-DESC13 AT 20, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-13 . |
 | 05 SCREEN-F14 AT 21, 10 |
 | PIC X(4) |
 | FROM DATA-F14 . |
 | 05 SCREEN-DESC14 AT 21, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-14 . |
 | 05 SCREEN-F15 AT 22, 10 |
 | PIC X(4) |
 | FROM DATA-F15 . |
 | 05 SCREEN-DESC15 AT 22, 21 |
 | PIC X(40) |
 | FROM DESCRIPTION-15 . |
 | 05 FILLER AT 23, 2 |
 | VALUE "== |
 | - "=========================". |
 | 05 MESS-AGE AT 24, 1 |
 | PIC X(79) |
 | FROM SCRN-MESSAGE |
 | ADVISORY |
 | UPSHIFT OUTPUT . |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-50

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | ** |
 | PROCEDURE DIVISION. |
 | ** |
 | DECLARATIVES. |
 | RECOVER-MAIN-SCREEN SECTION. |
 | USE FOR SCREEN RECOVERY ON MSCREEN1. |
 | MOVE SPACES TO SCRN-MESSAGE. |
 | MOVE "SCREEN RECOVERY" TO MESSAGE-ALPHA-A. |
 | DISPLAY MSCREEN1. |
 | DISPLAY TEMP MESS-AGE. |
 | END DECLARATIVES. |
 | |
 | MAIN SECTION. |
 | PERFORM 100-INITIALIZATION. |
 | PERFORM 200-READ-SCREEN until end-program = "Y". |
 | PERFORM END-OF-PROGRAM. |
 | |
 | END-OF-PROGRAM. |
 | EXIT PROGRAM. |
 | |
 | 100-INITIALIZATION. |
 | * based on the contents of the description-x fields, |
 | * determine how many options there are and set MAX-CHOICE. |
 | PERFORM 110-GET-MAX VARYING NCOUNT |
 | FROM 1 BY 1 UNTIL TASK-DONE. |
 | DISPLAY BASE MSCREEN1. |
 | DISPLAY MSCREEN1. |
 | 110-GET-MAX. |
 | IF PROGRAM-CHOICE-VALUE(NCOUNT) IS NOT EQUAL TO SPACES |
 | MOVE NCOUNT TO MAX-CHOICE |
 | MOVE NARRAY-ELEMENT(NCOUNT) TO SARRAY-ELEMENT(NCOUNT) |
 | ELSE |
 | NEXT SENTENCE. |
 | IF PROGRAM-CHOICE-VALUE(NCOUNT) IS EQUAL TO SPACES |
 | MOVE "Y" TO TASK. |
 | 200-READ-SCREEN. |
 | PERFORM 300-ACCEPT-SCREEN. |
 | IF OPERATION-CHOICE IS EQUAL TO 17 |
 | MOVE "Y" TO END-PROGRAM |
 | ELSE |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-51

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | IF (OPERATION-CHOICE IS GREATER THAN MAX-CHOICE OR |
 | OPERATION-CHOICE IS EQUAL TO 16) |
 | MOVE SPACES TO SCRN-MESSAGE |
 | MOVE "THIS FUNCTION KEY NOT ACTIVE" |
 | TO MESSAGE-ALPHA-A |
 | DISPLAY TEMP MESS-AGE |
 | ELSE |
 | |
 | MOVE PROGRAM-CHOICE-VALUE(OPERATION-CHOICE) |
 | TO PROGRAM-CALLED |
 | CALL PROGRAM-CALLED |
 | ON ERROR PERFORM 800-CALL-ERRORS |
 | DISPLAY BASE MSCREEN1 |
 | DISPLAY MSCREEN1. |
 | IF (OPERATION-CHOICE IS NOT GREATER THAN MAX-CHOICE) |
 | DISPLAY BASE MSCREEN1 |
 | DISPLAY MSCREEN1 |
 | ELSE |
 | NEXT SENTENCE. |
 | |
 | 300-ACCEPT-SCREEN. |
 | ACCEPT MSCREEN1 UNTIL |
 | F1-KEY |
 | F2-KEY, |
 | F3-KEY, |
 | F4-KEY, |
 | F5-KEY, |
 | F6-KEY, |
 | F7-KEY, |
 | F8-KEY, |
 | F9-KEY, |
 | F10-KEY, |
 | F11-KEY, |
 | F12-KEY, |
 | F13-KEY, |
 | F14-KEY, |
 | F15-KEY, |
 | ESCAPE ON (F16-KEY THRU SF15-KEY), |
 | SF16-KEY. |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-52

 Sample Project-Tracking System
 Writing a Menu Program

 | |
 | MOVE TERMINATION-STATUS TO OPERATION-CHOICE. |
 | |
 | 800-CALL-ERRORS. |
 | MOVE SPACES TO SCRN-MESSAGE. |
 | MOVE TERMINATION-STATUS TO MESSAGE-1-NUMBER. |
 | MOVE TERMINATION-SUBSTATUS TO MESSAGE-2-NUMBER. |
 | IF TERMINATION-STATUS IS LESS THAN 31 |
 | MOVE CALL-ERROR-MESSAGE(TERMINATION-STATUS) |
 | TO MESSAGE-ALPHA-A |
 | ELSE |
 | IF TERMINATION-STATUS IS EQUAL TO 44 |
 | MOVE "CALL PROGRAM UNIT NAME IS INVALID" |
 | TO MESSAGE-ALPHA-A |
 | ELSE |
 | MOVE "TERMINATION STATUS ERROR OCCURRED" |
 | TO MESSAGE-ALPHA-A. |
 | MOVE PROGRAM-CALLED TO PROG-NAME. |
 | MOVE ERROR-NOTE TO MESSAGE-ALPHA-A. |
 | |

 Figure 12-26. SCREEN COBOL Source Code for Sample Menu Program
 (Continued)

 12-53

 Sample Project-Tracking System
 Modifying the PATHCOM Command File to Integrate the Applications

 MODIFYING THE PATHCOM COMMAND FILE TO INTEGRATE THE APPLICATIONS

 Figure 12-27 shows the PATHCOM command file created by ENABLE
 when it generated the project-entry application. This figure
 also indicates areas of the file that require modification.

 | |
 | SET PATHMON BACKUPCPU 1 |
 | SET PATHWAY MAXTCPS 10 |
 | SET PATHWAY MAXTERMS 10 |
 | SET PATHWAY MAXPROGRAMS 10 |
 | SET PATHWAY MAXSERVERCLASSES 10 |
 | SET PATHWAY MAXSERVERPROCESSES 10 |
 | SET PATHWAY MAXSTARTUPS 10 |
 | SET PATHWAY MAXPATHCOMS 40 |
 | SET PATHWAY MAXASSIGNS 32 |
 | SET PATHWAY MAXPARAMS 32 |
 | START PATHWAY COLD! |
 | |
 | SET TCP PROGRAM $SYSTEM.SYSTEM.PATHTCP2 |
 | SET TCP CPUS 0:1 |
 | SET TCP MAXTERMS 5 |
 | SET TCP MAXSERVERCLASSES 003 |
 | SET TCP MAXSERVERPROCESSES 003 |
 | SET TCP MAXTERMDATA 12036 <---- must be modified to |
 | SET TCP MAXREPLY 02000 include enough data space |
 | SET TCP NONSTOP 0 for all applications |
 | SET TCP TCLPROG $DATA.SAMPLE.POBJ |
 | ADD TCP ENABLE-TCP |
 | |
 | SET PROGRAM TCP ENABLE-TCP |
 | SET PROGRAM TYPE T16-6520 INITIAL PROJECT-ENTRY <- must be |
 | SET PROGRAM TMF OFF changed |
 | ADD PROGRAM PROJECT-ENTRY <---------------------- to |
 | ident- |
 | RESET SERVER ASSIGN, PARAM ify the |
 | menu |
 | program |
 | |

 Figure 12-27. PATHCOM Command File Before Modifications
 (Continued next page)

 12-54

 Sample Project-Tracking System
 Modifying the PATHCOM Command File to Integrate the Applications

 | |
 | SET SERVER PROGRAM $SYSTEM.SYSTEM.ENABLEGS |
 | SET SERVER CPUS 0:1 |
 | SET SERVER NUMSTATIC 1 |
 | SET SERVER (ASSIGN MANAGER,EMPLOYS,INPUT) |
 | SET SERVER (ASSIGN PROJECTS,PROJECTS) |
 | SET SERVER (ASSIGN EVENTS,EVENTS) <- additional SET SERVER |
 | ASSIGN commands must |
 | SET SERVER TMF OFF be added |
 | ADD SERVER ENABLE-SERVER |
 | |

 Figure 12-27. PATHCOM Command File Before Modifications
 (Continued)

 Figure 12-28 shows the PATHCOM command file, "prfile1," after it
 has been modified to execute the project-tracking system.

 | |
 | SET PATHMON BACKUPCPU 1 |
 | SET PATHWAY MAXTCPS 10 |
 | SET PATHWAY MAXTERMS 10 |
 | SET PATHWAY MAXPROGRAMS 10 |
 | SET PATHWAY MAXSERVERCLASSES 10 |
 | SET PATHWAY MAXSERVERPROCESSES 10 |
 | SET PATHWAY MAXSTARTUPS 10 |
 | SET PATHWAY MAXPATHCOMS 40 |
 | SET PATHWAY MAXASSIGNS 32 |
 | SET PATHWAY MAXPARAMS 32 |
 | START PATHWAY COLD! |
 | |

 Figure 12-28. Sample Modified PATHCOM Command File
 (Continued next page)

 12-55

 Sample Project-Tracking System
 Modifying the PATHCOM Command File to Integrate the Applications

 | |
 | SET TCP PROGRAM $SYSTEM.SYSTEM.PATHTCP2 |
 | SET TCP CPUS 0:1 |
 | SET TCP MAXTERMS 5 |
 | SET TCP MAXSERVERCLASSES 003 |
 | SET TCP MAXSERVERPROCESSES 003 |
 | SET TCP MAXTERMDATA 27732 (1) |
 | SET TCP MAXREPLY 02000 |
 | SET TCP NONSTOP 0 |
 | SET TCP TCLPROG $DATA.PROJ.POBJ |
 | ADD TCP ENABLE-TCP |
 | |
 | SET PROGRAM TCP ENABLE-TCP |
 | SET PROGRAM TYPE T16-6520 INITIAL MENU (2) |
 | SET PROGRAM TMF OFF |
 | ADD PROGRAM MENU (3) |
 | |
 | RESET SERVER ASSIGN, PARAM |
 | |
 | SET SERVER PROGRAM $SYSTEM.SYSTEM.ENABLEGS |
 | SET SERVER CPUS 0:1 |
 | SET SERVER NUMSTATIC 1 |
 | SET SERVER (ASSIGN PROJECT-BOX, PROJECTS) (4) |
 | SET SERVER (ASSIGN PARTIC-BOX, RESPFOR) |
 | SET SERVER (ASSIGN MANAGER, EMPLOYS, INPUT) |
 | SET SERVER (ASSIGN PROJECTS, PROJECTS) |
 | SET SERVER (ASSIGN EVENTS, EVENTS) |
 | SET SERVER (ASSIGN EVENTS-BOX, EVENTS, INPUT) |
 | SET SERVER (ASSIGN EVENT-X, EVENTS, INPUT) |
 | SET SERVER (ASSIGN EVENTS-A, EVENTS, INPUT) |
 | SET SERVER (ASSIGN EMPLOY-ASSIGN, EMPLOYS, INPUT) |
 | SET SERVER (ASSIGN MY-EVENT, EVENTS, INPUT) |
 | SET SERVER (ASSIGN EVENTS-3, EVENTS) |
 | SET SERVER (ASSIGN EVENTS-4, EVENTS) |
 | SET SERVER (ASSIGN EMPLOYEES, EMPLOYS) |
 | SET SERVER (ASSIGN PROJ-BOX, PROJECTS, INPUT) |
 | SET SERVER (ASSIGN EMPLOYEE-PART, RESPFOR, INPUT) |
 | SET SERVER (ASSIGN EVENT-B, EVENTS, INPUT) |
 | SET SERVER (ASSIGN EMPLOY-BOX, EMPLOYS, INPUT) |
 | SET SERVER TMF OFF |
 | ADD SERVER ENABLE-SERVER |
 | |

 Figure 12-28. Sample Modified PATHCOM Command File
 (Continued)

 12-56

 Sample Project-Tracking System
 Modifying the PATHCOM Command File to Integrate the Applications

 | |
 | SET TERM FILE $TERM01 (5) |
 | SET TERM TCP ENABLE-TCP |
 | SET TERM INITIAL MENU |
 | ADD TERM TERM01 |
 | |
 | SET TERM FILE $TERM02 (6) |
 | SET TERM TCP ENABLE-TCP |
 | SET TERM INITIAL MENU |
 | ADD TERM TERM02 |
 | |
 | SET TERM FILE $TERM03 |
 | SET TERM TCP ENABLE-TCP |
 | SET TERM INITIAL MENU |
 | ADD TERM TERM03 |
 |__ |
 | |
 | |
 | NOTES |
 | |
 | (1) MAXTERMDATA is changed from 12036 (for the |
 | "project-entry" application) to 29782. You estimate |
 | this value for MAXTERMDATA by using the following DATA |
 | SIZE values from the SCREEN COBOL compilation listings |
 | of the applications: |
 | |
 | Application DATA SIZE |
 | |
 | Menu 359 |
 | Project-entry 6018 |
 | Employee-assign 4674 |
 | Look-up 3840 |
 | Project-info 7402 |
 | Event-detail 4850 |
 | Event-Revised 5160 |
 | |
 | You use these DATA SIZE values to compute the longest |
 | path through the applications as follows: |
 | |

 Figure 12-28. Sample Modified PATHCOM Command File
 (Continued)

 12-57

 Sample Project-Tracking System
 Modifying the PATHCOM Command File to Integrate the Applications

 | |
 | Menu to project-entry to employee-assign to |
 | look-up equals: |
 | |
 | 359 + 6,018 + 4,674 + 3,840 = 1,4891 |
 | |
 | Menu to project-info to event-detail equals: |
 | |
 | 359 + 7,402 + 4,850 = 1,2611 |
 | |
 | Menu to event-detail equals: |
 | |
 | 359 + 4,850 = 5,209 |
 | |
 | Menu to event-revised equals: |
 | |
 | 359 + 5,160 = 5,519 |
 | |
 | The number of bytes in the longest path is 14,891. |
 | Multiplying this figure by 2 gives the estimated value |
 | 29,782 for MAXTERMDATA. |
 | |
 | (2) You change the INITIAL specification from PROJECT-ENTRY |
 | to MENU. |
 | |
 | (3) You change the program-name entry from PROJECT-ENTRY to |
 | MENU. |
 | |
 | (4) You add the SET SERVER ASSIGN commands necessary for |
 | all the applications. You can copy these commands from |
 | the PATHCOM command files generated for each |
 | application. |
 | |
 | (5) Optionally, you can add commands to describe a terminal |
 | named TERM01 and add a description of this terminal to |
 | the PATHWAY system. If you want to execute your |
 | applications by entering a PATHCOM RUN PROGRAM command, |
 | do not add the TERMINAL commands to your PATHCOM |
 | command file. |
 | |
 | (6) Optionally, you can add commands to describe and add a |
 | terminal named TERM02. |
 | |

 Figure 12-28. Sample Modified PATHCOM Command File
 (Continued)

 12-58

 Sample Project-Tracking System
 Sample Obey Files

 SAMPLE OBEY FILES

 Figure 12-29 shows a sample obey file that establishes the
 PATHWAY system.

 | |
 | PURGE projlog <----------- purges the current PATHCOM |
 | |
 | CREATE projlog <---------- creates a new PATHCOM log file |
 | |
 | PATHMON/NAME $one, NOWAIT, |
 | CPU 0, OUT projlog/ <--- creates a PATHMON process |
 | |
 | PATHCOM/IN prfile1/$one <- cold starts PATHWAY from |
 | information in the named |
 | PATHCOM command file |
 | |
 | PATHCOM $one; START TCP ENABLE-TCP <- starts the TCP |
 | |
 | PATHCOM $one; START TERM TERM01 <- starts execution of a |
 | SCREEN COBOL program |
 | for one terminal in |
 | the PATHWAY system |
 | |
 | Note that if you want to execute your applications by |
 | entering a PATHCOM RUN PROGRAM command, omit the START |
 | TERM command from your obey file and create a separate |
 | obey file that contains the following: |
 | |
 | PATHCOM $one;RUN MENU |
 | |

 Figure 12-29. Sample Obey File That Establishes the PATHWAY
 System

 Figure 12-30 shows the contents of a sample obey file that
 suspends the PATHWAY system.

 | |
 | PATHCOM $one; SHUTDOWN, WAIT |
 | |

 Figure 12-30. Sample Obey File to Suspend the PATHWAY System

 12-59

 APPENDIX A

 SYNTAX SUMMARY

 This appendix summarizes the syntax of ENABLE commands,
 attributes and operating commands. A reference to the
 appropriate page in the ENABLE Reference Manual accompanies each.

 ENABLE Commands: Page:

 ADD [APPL] <object> [, LIKE <prior-object>] 3-6
 [BOX]

 [, <attribute> <value>] ...

 ASSUME { APPL } 3-11
 { BOX }

 DELETE [APPL] { <object-name> } 3-13
 [BOX] { * }

 GENERATE [APPL] [<application>] 3-15
 [*]

 [, <attribute> <value>] ...

 INFO [APPL] { <object> } [, BRIEF] 3-18
 [BOX] { * } [, DETAIL]

 A-1

 SYNTAX SUMMARY
 Attributes

 RESET [APPL] { [<attribute>] } 3-21
 [BOX] { [ABILITY] }
 { [FORMAT] }
 { [INTEGRITY] }
 { [OTHER] , ... }
 { * }

 SET [APPL] <attribute> <value> 3-26
 [BOX]

 [, <attribute> <value>] ...

 or

 SET [APPL] LIKE <object> [, <attribute> <value>] ...
 [BOX]

 SHOW [APPL] [<attribute>] 3-31
 [BOX] [ABILITY]
 [FORMAT]
 [INTEGRITY]
 [OTHER]
 [*]

 Attributes:

 BOXTITLE { 1 } <string-literal> 4-8
 { 2 }
 { 3 }

 CHECKDATA { ON } 4-11
 { OFF }

 DATAFILE <data-file-name> 4-13

 DELETE { ON } 4-15
 { OFF }

 DICTIONARY { <subvolume> } 4-17
 { $<volume>.<subvolume> }
 { \<system>.$<volume>.<subvolume> }

 A-2

 SYNTAX SUMMARY
 Attributes

 EXCLUDE { <qualified-field-name> } 4-19
 { (<qualified-field-name> [, ...]) }

 FILL { ON } 4-24
 { OFF }

 FLAG { <flag-number> } <flag-value> 4-28
 { * }

 HEADINGS { DDLFIELDNAMES } 4-30
 { DDLHEADINGS }
 { NULL }

 INCLUDE { <qualified-field-name> } 4-32
 { (<qualified-field-name> [, ...]) }

 INSERT { ON } 4-36
 { OFF }

 NONSTOP { ON } 4-37
 { OFF }

 PATHCOMFILE <file-name> [!] 4-39

 PATHCOMSKELETON <skeleton-file-name> 4-41

 READ { ON } 4-43
 { OFF }

 RECORD <external-record-name> 4-45

 SCOBOLCOMPILER [<compiler-name>] 4-47

 SCOBOLLIST [<file-name> [!]] 4-49

 SCOBOLOBJECT [<file-name>] 4-51

 A-3

 SYNTAX SUMMARY
 Attributes

 SCOBOLSKELETON <file-name> 4-53

 SCOBOLSOURCE <file-name> [!] 4-55

 SCREENFORMAT { UNCOMPRESSED } 4-58
 { COMPRESSED }

 SERVERCLASS <server-class-name> 4-62

 SIZE <number> 4-64

 TERMINAL <terminal-type> 4-66

 TITLE <string-literal> 4-68

 TMF { ON } 4-69
 { OFF }

 TREE (<level> <box-name> 4-71

 [<level> <box-name> <link-optional-clause>] ...)

 <link-optional-clause>

 is one of:

 LINK <parent-join-field>
 TO OPTIONAL <child-join-field>

 or

 LINK <box-name> TO OPTIONAL <box-name>
 VIA <join-field>

 UPDATE { ON } 4-102
 { OFF }

 VALUES { ON } 4-103
 { OFF }

 A-4

 SYNTAX SUMMARY
 Operating Commands

 Operating Commands:

 CMDSYS [\<system-name>] 5-5

 CMDVOL { $<volume> } 5-6
 { $<volume>.<subvolume> }
 { <subvolume> }

 ENV [CMDSYS] 5-8
 [CMDVOL]
 [OBEYSYS]
 [OBEYVOL]
 [SYSTEM]
 [VOLUME]

 EXIT 5-9

 FC 5-10

 R<replacement-string>

 I<insertion-string>

 D

 HELP [<command-name>] 5-13
 [{<}<symbol-name>{>}]

 OBEY <filename> 5-14

 OBEYSYS [\<system-name>] 5-16

 OBEYVOL { $<volume> } 5-17
 { $<volume>.<subvolume> }
 { <subvolume> }

 A-5

 SYNTAX SUMMARY
 Operating Commands

 OUT <file-name> 5-19

 or

 <command> /OUT <file-name> / <parameter>

 SYSTEM [\<system-name>] 5-21

 VOLUME { $<volume> } 5-22
 { $<volume>.<subvolume> }
 { <subvolume> }

 A-6

 APPENDIX B

 ENABLE MESSAGES

 This appendix lists error and warning messages that may be issued
 in response to ENABLE commands during application generation, or
 during execution of an ENABLE application.

 Unless specifically noted as a warning, all messages are error
 messages. Error messages signify that an error in processing has
 occurred. A warning message signifies that a questionable
 condition exists. These conditions are handled as follows:

 ERROR ENABLE prefixes error messages with the label
 "*** ERROR ***."

 An ERROR is fatal to the operation being attempted; in
 the case of a GENERATE command, ENABLE does not create a
 PATHCOM command file, SCREEN COBOL source code, or
 SCREEN COBOL object code.

 If ENABLE is running in interactive mode, it issues a
 prompt. If running in noninteractive mode, it
 terminates.

 WARNING ENABLE prefixes warning messages with the label
 "*** WARNING ***."

 A warning indicates a questionable condition that does
 not halt processing of the requested application.

 ENABLE calls the SCREEN COBOL compiler internally; therefore, you
 could receive a message from the SCREEN COBOL compiler that is
 not listed in this appendix. Refer to the SCREEN COBOL Reference
 Manual for a list of SCREEN COBOL messages.

 B-1

 ENABLE Messages
 ENABLE Error and Warning Messages

 Messages may also be received from the GUARDIAN operating system.
 Refer to the GUARDIAN Operating System Programmer's Guide for
 information about these messages.

 Table B-1 lists the messages that ENABLE might issue in response
 to commands or during application generation.

 Table B-1. ENABLE Error and Warning Messages
 (Continued next page)

 | |
 | Message Meaning |
 |___|
 | |
 | A flag in the range 0 to 99 The value supplied for the |
 | must be specified <flag-num> parameter of the |
 | FLAG attribute is invalid. |
 | |
 | All fields have been No fields exist in the box. |
 | excluded from this box You specified all fields in |
 | the record description when |
 | you supplied a value for the |
 | EXCLUDE attribute. Change |
 | the value of the EXCLUDE |
 | attribute. |
 | |
 | All key fields have been No primary or alternate key |
 | excluded from this box field exists in a box that |
 | represents a key-sequenced |
 | file. Either you supplied |
 | the EXCLUDE attribute with a |
 | value that eliminated all key |
 | fields, or you did not |
 | specify a key field when you |
 | supplied a value for the |
 | INCLUDE attribute. If the |
 | file is entry-sequenced, |
 | relative, or unstructured, |
 | you might have excluded both |
 | the courtesy key and all |
 | alternate keys. If you |
 | supplied a value for INCLUDE, |
 | you must explicitly include |
 | the courtesy key. Use the |
 | SHOW command to check the |
 | value of both the INCLUDE and |
 | EXCLUDE attributes. |
 | |

 B-2

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | An item size exceeds the Either a PIC or a TYPE clause |
 | maximum supported in the record description |
 | identifies a field that is |
 | more than 256 bytes long. |
 | |
 | An unsupported data type The record description shows |
 | appears in the record - the named field with an |
 | field: <field-name> invalid data type (BINARY and |
 | CHARACTER are valid data |
 | types), or the named field is |
 | a numeric item with more than |
 | 18 characters. |
 | |
 | At least one file operation The value of all file ABILITY |
 | option must be selected for attributes (FILL, DELETE, |
 | this BOX INSERT, READ, and UPDATE) are |
 | OFF for the box. The value |
 | of at least one of these |
 | attributes must be ON. |
 | |
 | Box contains field of the A box name must not be the |
 | same name same as any field within the |
 | file that the box represents. |
 | Use a different name for the |
 | box. |
 | |
 | Boxtitle is too long to fit The string literal that you |
 | in BOX supplied as a value for the |
 | BOXTITLE attribute does not |
 | fit within the box on the |
 | terminal screen. |
 | |
 | Cannot specify SCOBOLLIST You supplied a value for |
 | with compilation suppressed SCOBOLLIST, but the value of |
 | SCOBOLOBJECT indicates no |
 | SCREEN COBOL compilation. |
 | Change the value of one of |
 | these attributes. |
 | |

 B-3

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Could not obtain extended The GUARDIAN operating system |
 | memory (ALLOCATESEGMENT) could not obtain the number |
 | error: <err-num> of extended memory pages |
 | requested for the object and |
 | attribute tables. Use the |
 | EXTPAGES parameter to reduce |
 | the number of extended memory |
 | pages allocated. Try |
 | allocating 100 or 200 pages. |
 | |
 | Data file name was not The record description does |
 | specified not identify a file name, and |
 | you did not supply a value |
 | for the DATAFILE attribute. |
 | Supply a value for this |
 | attribute. |
 | |
 | Data item is too long to fit The named field contains too |
 | in box: <field-name> many characters to fit |
 | within the box on the |
 | terminal screen. |
 | |
 | The DDL record description The record description |
 | exceeds 2046 bytes indicates that the record |
 | contains more characters than |
 | allowed for an ENABLE |
 | application. |
 | |
 | Delete has been set off for Warning message. ENABLE has |
 | this box because of filetype set DELETE to OFF because |
 | this box represents a file |
 | that is either |
 | entry-sequenced or |
 | unstructured. Delete |
 | operations are not allowed |
 | for files of these file |
 | types. |
 | |

 B-4

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Dictionary file number mmmm The indicated I/O error |
 | File name : <file-name> occurred on the named |
 | File management error code = dictionary file. |
 | <err-num> |
 | |
 | Dictionary is out of date: The value of the DICTIONARY |
 | please convert attribute identifies a |
 | dictionary that was created |
 | by a version of DDL earlier |
 | than D00. To use this |
 | dictionary, recompile its |
 | source code with a newer |
 | version of DDL. |
 | |
 | Duplicate parameter The same attribute has been |
 | named more than once in a SET |
 | command, a RESET command, an |
 | ADD command, or a GENERATE |
 | command. |
 | |
 | Effective input line is too The maximum length of 528 |
 | long bytes has been exceeded; |
 | there are too many |
 | continuation lines. |
 | |
 | ENABLE internal error A system software error |
 | occurred. Notify your system |
 | analyst. |
 | |
 | ENABLE internal file error A file management system or |
 | File management error code = sequential I/O procedure |
 | <err-num> error occurred. |
 | |
 | ENABLE tables overflow Both the attribute table and |
 | allocated extended memory the object table have |
 | overflowed. |
 | |
 | Error in communicating with A file management system or |
 | ENABLE server sequential I/O procedure |
 | File management error code error has occurred. |
 | = <err-num> |
 | |

 B-5

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Exclude and Include cannot ENABLE does not allow you to |
 | both be selected supply a value for both the |
 | EXCLUDE and INCLUDE |
 | attributes. Reset the value |
 | of one of these attributes. |
 | |
 | ** FAILURE 18 ** DICTIONARY The SCREEN COBOL compiler did |
 | OVERFLOW not have enough data space to |
 | *** ERROR *** SCOBOL compile the generated program. |
 | COMPILATION ERRORS ... |
 | |
 | File error while accessing A file management system or |
 | SCOBOL compiler process sequential I/O procedure error |
 | File management error code = occurred. |
 | <err-num> |
 | |
 | Field corresponding to a For a box with INSERT ON, you |
 | unique key has been excluded excluded a unique alternate |
 | key or the primary key of a |
 | key-sequenced file by doing |
 | one of the following: |
 | |
 | • Specifying the key(s) or a |
 | portion of the key as a |
 | value for the EXCLUDE |
 | attribute. |
 | |
 | • Not specifying the key(s) |
 | or a portion of the key as |
 | a value for the INCLUDE |
 | attribute. |
 | |
 | Flags must be set to a value You supplied an invalid value |
 | between 0 and 255 for the <flag-value> |
 | paramater of the FLAG |
 | attribute. Supply a valid |
 | value for this parameter. |
 | |

 B-6

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Garbled PATHCOM skeleton -- The PATHCOM skeleton file |
 | Edit line nbr = aaaa.bbb does not conform to its |
 | expected structure. If you |
 | did not modify the PATHCOM |
 | skeleton file, notify your |
 | system analyst. |
 | |
 | Garbled SCOBOL skeleton -- The SCREEN COBOL skeleton |
 | Edit line nbr = aaaa.bbb file does not conform to its |
 | expected structure. If you |
 | did not modify the SCREEN |
 | COBOL skeleton file, notify |
 | your system analyst. |
 | |
 | Identifier too long You supplied a name that |
 | exceeds 30 characters. |
 | |
 | Illegal OBEY file The obey file does not have a |
 | valid name or cannot be |
 | accessed. |
 | |
 | Illegal OUT file - ignored The OUT file name is invalid; |
 | the listing is not |
 | redirected. |
 | |
 | Initial value too long - Warning message. The record |
 | discarded initial value for: description defines the named |
 | <field-name> field with an initial value |
 | that has more than 30 |
 | characters. ENABLE does not |
 | use the initial value. |
 | |
 | INSERT is not allowed with The INSERT attribute must be |
 | this linked field and OFF in a child box that |
 | filetype represents either an entry- |
 | sequenced or unstructured |
 | file when the join field of |
 | the child box is the courtesy |
 | key (the record number). |
 | |

 B-7

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Invalid APPL parameter ENABLE does not recognize the |
 | specified application |
 | attribute. Check your |
 | spelling of this attribute. |
 | |
 | Invalid BOX command The object type of a GENERATE |
 | command must not be BOX. |
 | Either include the keyword |
 | APPL with the GENERATE |
 | command or use the ASSUME |
 | command to make APPL the |
 | default object type. |
 | |
 | Invalid BOX parameter ENABLE does not recognize the |
 | specified box attribute. If |
 | the attribute is an |
 | application attribute, the |
 | current object type must be |
 | APPL. If the attribute is a |
 | box attribute, check your |
 | spelling of this attribute. |
 | |
 | Invalid boxtitle number You specified an invalid |
 | number with one of the |
 | BOXTITLE attributes. Valid |
 | numbers are 1, 2, or 3. |
 | |
 | Invalid file name A file name you specified |
 | does not conform to system |
 | file-naming standards. |
 | |
 | Invalid level number An invalid value appears as a |
 | level number for the value of |
 | the TREE attribute. Valid |
 | values for level numbers |
 | range from 1 to 50. |
 | |

 B-8

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Invalid name - PATHCOM You used a PATHCOM reserved |
 | reserved word word as a name. PATHCOM |
 | reserved words are illegal in |
 | certain constructs when a |
 | PATHCOM command file is being |
 | generated. |
 | |
 | Invalid name - reserved A name begins with the ENABLE |
 | ENABLE prefix T9155- prefix T9155-. |
 | |
 | Invalid name - SCOBOL A name is a SCREEN COBOL |
 | reserved word reserved word. |
 | |
 | Invalid Subvolume name The name is not a valid |
 | subvolume name or is not |
 | valid for the current system |
 | name. |
 | |
 | Invalid syntax The sequence of input |
 | characters does not conform |
 | to ENABLE language syntax. A |
 | ^ symbol indicates the |
 | element an error. |
 | |
 | Invalid System name The name is not a known |
 | system same. |
 | |
 | INVOKE returned error code ENABLE could not access the |
 | nnnn dictionary because of the |
 | indicated error. Record the |
 | error and notify your system |
 | analyst. |
 | |
 | Level numbers are improperly The level numbers for a tree |
 | sequenced in TREE structure command are |
 | incorrectly sequenced. Check |
 | for a level number that is |
 | lower numerically than the |
 | level number of the first box |
 | identified as a value for the |
 | TREE attribute. |
 | |

 B-9

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Link field appears in an The named join field of a box |
 | OCCURS item: <field-name> is: |
 | |
 | • Modified by an OCCURS |
 | clause in the record |
 | description |
 | |
 | • Part of a group modified |
 | with an OCCURS clause in |
 | the record description |
 | |
 | You cannot specify an OCCURS |
 | item as a join field. |
 | |
 | Link field data lengths are The join field of a child box |
 | incompatible: <field-name> is shorter than the join |
 | field of the parent box. |
 | |
 | Link field data types are The LINK option of the TREE |
 | incompatible: <field-name> attribute specifies join |
 | fields with incompatible data |
 | types. |
 | |
 | Link must be optional The keyword OPTIONAL was |
 | omitted from a LINK option of |
 | the TREE attribute. |
 | |
 | Linked field does not appear The named join field does not |
 | in box: <field-name> exist in the child box. |
 | Check the spelling of the |
 | join field name. If the name |
 | is spelled correctly, use the |
 | INFO BOX command to check the |
 | value of either the INCLUDE |
 | or EXCLUDE attribute. You |
 | might have excluded the join |
 | field by supplying it as a |
 | value for the EXCLUDE |
 | attribute or by not supplying |
 | it as a value for the INCLUDE |
 | attribute. |
 | |

 B-10

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Linked field is not a key The join field of a child box |
 | field: <field-name> must be a primary key field, |
 | an alternate key field, a |
 | courtesy key field, or the |
 | leading (leftmost) portion of |
 | a composite key. |
 | |
 | Linked field must not be If a join field is a group |
 | reordered or incomplete: field, the elementary items |
 | <field-name> of that group must not be |
 | reordered. Use the INFO BOX |
 | command to check the value of |
 | the INCLUDE and EXCLUDE |
 | commands for the child box. |
 | If the join field is a group |
 | that contains FILLER items, |
 | these items are automatically |
 | excluded by ENABLE. Groups |
 | containing FILLER items |
 | should not be used as join |
 | fields, although the leftmost |
 | field (if not a FILLER item) |
 | may be. |
 | |
 | Linking field does not The named join field does not |
 | appear in box: <field-name> exist in the parent box. |
 | First, check the spelling of |
 | the join-field name. If the |
 | name is spelled correctly, |
 | use the INFO BOX command to |
 | check the value of the |
 | INCLUDE or EXCLUDE attribute |
 | for the box. You must not |
 | exclude a join field either |
 | explicitly (by supplying it |
 | as a value for the EXCLUDE |
 | attribute) or implicitly (by |
 | supplying it as a value for |
 | the INCLUDE attribute). |
 | |

 B-11

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Linking field must not be If a join field is a group |
 | reordered or incomplete: field, the elementary items |
 | <field-name> of that group must not be |
 | reordered. Use the INFO BOX |
 | command to check the value of |
 | the INCLUDE or EXCLUDE |
 | attributes for the parent |
 | box. If the join field is a |
 | group that contains FILLER |
 | items, these items are |
 | automatically excluded by |
 | ENABLE. Groups containing |
 | FILLER items should not be |
 | used as join fields, although |
 | the leftmost field (if not a |
 | FILLER item) may be. |
 | |
 | List file error A file management system or |
 | File management error code = sequential I/O procedure |
 | <err-num> error occurred. Notify your |
 | system manager. |
 | |
 | List file name error The name of the list file does |
 | not conform to system file- |
 | naming standards. |
 | |
 | Mismatched attributes in The same server class of the |
 | shared SERVERCLASS: General Server cannot be |
 | <serverclass-name> shared by boxes when: |
 | |
 | • Some boxes have TMF ON and |
 | other boxes have TMF OFF |
 | |
 | • Some boxes have NONSTOP ON |
 | and other boxes have |
 | NONSTOP OFF |
 | |
 | • Some boxes have NONSTOP ON |
 | and other boxes have TMF |
 | ON |
 | |

 B-12

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Supply a value for the |
 | SERVERCLASS attribute to |
 | identify a different copy of |
 | the General Server for boxes |
 | with different integrity |
 | attribute values. |
 | |
 | Must have READ with UPDATE The UPDATE or DELETE option |
 | or DELETE is ON, but READ is OFF. You |
 | must supply ON as a value of |
 | the READ attribute if either |
 | UPDATE or DELETE is ON. |
 | |
 | Name not found: ENABLE cannot find the named |
 | <field-name> field in the record |
 | description. |
 | |
 | Name not sufficiently The named field requires |
 | qualified to avoid qualification. Refer to the |
 | ambiguity: <field-name> discussion of ENABLE command |
 | conventions in the reference |
 | manual. |
 | |
 | No field is left to be The value of the EXCLUDE |
 | displayed in box: attribute indicates that all |
 | <box-name> fields are to be excluded |
 | from the named box or that |
 | only the join field is left |
 | in the box. At least one |
 | field must appear in a box on |
 | the terminal screen. |
 | |
 | No microcode for ENABLE in ENABLE microcode has not been |
 | this CPU installed in the CPU. |
 | |
 | NONSTOP and TMF cannot both Both NONSTOP and TMF are ON. |
 | be selected Reset the value of one of |
 | these attributes. |
 | |

 B-13

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | No SCOBOL object code was Warning message. ENABLE did |
 | generated not generate object code |
 | because you omitted the |
 | <file-name> parameter when |
 | you supplied a value for the |
 | SCOBOLOBJECT attribute. |
 | |
 | No SCOBOL source or object Warning message. ENABLE did |
 | files were generated not generate either SCREEN |
 | COBOL source code or SCREEN |
 | COBOL object code because of |
 | the value of the SCOBOLSOURCE |
 | and SCOBOLOBJECT attributes. |
 | |
 | Number too large, too small, You entered a number (a level |
 | or not an integer number, size, or flag) that |
 | is invalid. |
 | |
 | OBEY nesting exceeds maximum Obey-file nesting exceeds |
 | four levels. |
 | |
 | OCCURS nesting too deep In a record description, the |
 | OCCURS clause nesting exceeds |
 | 4 levels. |
 | |
 | OCCURS value is too big In a record description, a |
 | field is described with an |
 | OCCURS clause that indicates |
 | more than 999 occurrences. |
 | |
 | Object in use If you are trying to add an |
 | object, an object with this |
 | name already exists in the |
 | object table. Each object |
 | (application or box) must |
 | have a unique name. If you |
 | are trying to delete a box, |
 | the box is being used by an |
 | application. |
 | |

 B-14

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | PATHCOM file already exists The value of the PATHCOMFILE |
 | attribute identifies an |
 | existing file, but you did |
 | not include the exclamation |
 | point symbol (!) to force an |
 | overwrite. |
 | |
 | PATHCOM file error The indicated file management |
 | File management error code = system or sequential I/O |
 | nnnn procedure error occurred. |
 | |
 | PATHCOM Program name Warning message. ENABLE has |
 | truncated to ... truncated the PATHCOM program |
 | name to the indicated 15 |
 | characters. |
 | |
 | PATHCOM skeleton file error The indicated file management |
 | File management error code = or sequential I/O procedure |
 | <err-num> error has occurred on the |
 | PATHCOM skeleton file. |
 | |
 | PATHCOM skeleton file name The file name set for the |
 | error PATHCOMSKELETON attribute |
 | does not conform to system |
 | file-naming standards. |
 | |
 | Program cannot be generated ENABLE cannot generate an |
 | with box size specified application with the value |
 | set for the SIZE attribute. |
 | The value could be too small, |
 | too large, or not an integer. |
 | |
 | RECORD name must be The value of the RECORD |
 | specified attribute is null. You must |
 | supply a value for this |
 | attribute. |
 | |

 B-15

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Same box already used in The named box appears more |
 | TREE: <box-name> than once as the value of the |
 | TREE attribute. |
 | |
 | SCOBOL compilation errors -- The SCREEN COBOL compiler |
 | see file <file-name> could not compile the SCREEN |
 | COBOL source code. The |
 | indicated file contains the |
 | listing generated by the |
 | SCREEN COBOL compiler. |
 | |
 | SCOBOL object file name The value of the SCOBOLOBJECT |
 | error attribute identifies a file |
 | name that does not conform to |
 | system file naming standards. |
 | |
 | SCOBOL object file name must The value of the SCOBOLOBJECT |
 | be < 6 char attribute identifies a file |
 | name that exceeds five |
 | characters. |
 | |
 | SCOBOL process ABENDed -- The SCREEN COBOL compiler |
 | source and listing on files process terminated abnormally. |
 | <file-name-1>, <file-name-2> The generated source code and |
 | SCREEN COBOL listing (if any) |
 | are on the indicated files. |
 | |
 | SCOBOL skeleton file error The indicated file management |
 | File management error code = system or sequential I/O |
 | <err-num> procedure error occurred on |
 | the SCREEN COBOL skeleton. |
 | |
 | SCOBOL skeleton file name The file name supplied for the |
 | error SCOBOLSKELETON attribute does |
 | not conform to system file |
 | naming standards. |
 | |

 B-16

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | SCOBOL source file already You supplied the name of an |
 | exists existing file as the value of |
 | the SCOBOLSOURCE attribute, |
 | but you did not include the |
 | exclamation point symbol (!) |
 | to force an overwrite. |
 | Either change the file name |
 | or include the exclamation |
 | point symbol. |
 | |
 | SCOBOL source file error The indicated file management |
 | File management error code = system or sequential I/O |
 | <err-num> procedure error occurred on |
 | the SCREEN COBOL source file. |
 | |
 | SERVER name must be < 16 The value of the SERVERCLASS |
 | char attribute is a name that |
 | exceeds 15 characters. |
 | Change the value of this |
 | attribute. |
 | |
 | Specified APPL not found: The named application has not |
 | <appl-name> been entered in the object |
 | table. |
 | |
 | Specified BOX not found: The named box has not been |
 | <box-name> entered in the object table. |
 | |
 | Specified Record not found: ENABLE cannot find the named |
 | <record-description-name> record description in the |
 | dictionary. |
 | |
 | System unknown or not Either the system does not |
 | available exist, or ENABLE cannot access |
 | it. |
 | |

 B-17

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | The generated PATHCOM file Warning message. You must |
 | must be edited. edit the PATHCOM file before |
 | using it to configure a |
 | PATHWAY system. |
 | |
 | The maximum box size for The indicated number is the |
 | this record is <num> maximum value to which the |
 | SIZE attribute can be set for |
 | this record. |
 | |
 | The same record element has The named field has been |
 | been referenced twice: supplied twice as a value for |
 | <field-name> either the INCLUDE or EXCLUDE |
 | attribute. This error also |
 | appears if you enter a group |
 | name and an element within |
 | the group as a value for |
 | either attribute. |
 | |
 | This version of ENABLE This version of ENABLE must |
 | cannot be run on a TNS be run on either a TNS II or |
 | system. a TXP system. |
 | |
 | Title too long to fit on The string literal supplied |
 | screen for the TITLE attribute |
 | exceeds 79 characters in |
 | length. |
 | |
 | Tree statement references The TREE statement contains |
 | undeclared BOX the name of a box that does |
 | not exist in the object |
 | table. Use the INFO command |
 | to be sure you added the box |
 | to the object table. Check |
 | the spelling of the box name. |
 | |

 B-18

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Unable to access dictionary ENABLE either could not find |
 | File name : <file-name> the dictionary files or could |
 | File management error code = not access them. <err-num> |
 | <err-num> identifies the cause of the |
 | error. |
 | |
 | Unable to access file. ENABLE cannot access the file |
 | File name: <file-name> because of either a file- |
 | File management error code = management system error, or a |
 | <err-num> sequential I/O procedure |
 | error. <err-num> identifies |
 | the cause of the error. |
 | |
 | Unterminated continuation ENABLE encountered an end-of- |
 | line file condition when a |
 | continuation line was |
 | expected. |
 | |
 | Unterminated string The string literal supplied |
 | for either the TITLE |
 | attribute, or a BOXTITLE |
 | attribute is not terminated |
 | by a quotation mark. |
 | |
 | Very low on extended memory; An overflow condition will |
 | please DELETE unwanted occur for the ENABLE tables |
 | objects unless you use the DELETE |
 | command to delete any |
 | unnecessary boxes and |
 | applications. |
 | |
 | Wrong version of PATHCOM The PATHCOM skeleton file |
 | skeleton does not match the current |
 | ENABLE product version. |
 | |

 B-19

 ENABLE Messages
 ENABLE Error and Warning Messages

 Table B-1. ENABLE Error and Warning Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Wrong version of SCOBOL The SCREEN COBOL skeleton file |
 | skeleton does not match the current |
 | ENABLE product version. |
 | |

 Table B-2 lists messages that an ENABLE application might issue
 while running.

 B-20

 ENABLE Messages
 Application Run-Time Error Messages

 Table B-2. Application Run-Time Error Messages
 (Continued next page)

 | |
 | Message Meaning |
 |___|
 | |
 | Alternate key is gone. You tried to read a file |
 | using an alternate key and |
 | the General Server cannot |
 | find, open, or read the |
 | alternate key file. |
 | |
 | An invalid printer was You specified a device that |
 | specified. was not a printer, terminal, |
 | or process, in response to |
 | the DEFINE PRINTER prompt. |
 | |
 | Default record is not You tried to insert a record |
 | acceptable entirely composed of default |
 | values, or you tried to |
 | update a record so that it is |
 | entirely composed of default |
 | values. Such records are not |
 | allowed. |
 | |
 | DELETE failed. File error A GUARDIAN-ENSCRIBE file |
 | code = nnnn management error occurred. |
 | Record the error and see your |
 | data administrator. |
 | |
 | DELETE failed. Record is You tried to delete a record |
 | gone that no longer exists; the |
 | record might have been |
 | deleted by some other |
 | application since you last |
 | read it. |
 | |
 | DELETE failed. Record is You tried to delete a record |
 | locked that is locked by some other |
 | process. Try the operation |
 | again. |
 | |

 B-21

 ENABLE Messages
 Application Run-Time Error Messages

 Table B-2. Application Run-Time Error Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Fatal error occurred during During I/O to the print |
 | printout device, a GUARDIAN file error |
 | code indicating a fatal error |
 | condition was returned. |
 | Reenter the name of the |
 | printer and try the operation |
 | again. If the operation fails |
 | again, see your data |
 | administrator. |
 | |
 | File OPEN error. Either the General Server is |
 | AUDIT/TMF param mismatch being run with TMF OFF and |
 | the file is audited by TMF, |
 | or the General Server is |
 | being run with TMF ON and the |
 | file is not audited by TMF. |
 | Record the error and see your |
 | data administrator. |
 | |
 | File OPEN error. A security violation occurred |
 | Data file security at file-open time. |
 | violation (048) |
 | |
 | File OPEN error. The file could not be access- |
 | Data file was in use (012) ed at open time because |
 | another program was using it. |
 | |
 | File OPEN error. The file could not be found |
 | Data file was not at open time. |
 | found (011) |
 | |
 | File OPEN error. The program is calling a |
 | ENABLE version mismatch General Server module that is |
 | from the wrong version of |
 | ENABLE. |
 | |

 B-22

 ENABLE Messages
 Application Run-Time Error Messages

 Table B-2. Application Run-Time Error Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | File OPEN error. No ASSIGN naming the |
 | File name was not assigned. logical record referred to |
 | was supplied to the called |
 | server class. Check the |
 | PATHCOM command file for a |
 | SET SERVER ASSIGN command. |
 | |
 | File OPEN error. A file management error |
 | File system error occurred on open. |
 | code = <err-num> |
 | |
 | File OPEN error. The General Server needs more |
 | General Server needs memory to open the files. |
 | more memory. Start the General Server with |
 | MEM 64, reduce the number of |
 | files assigned to the General |
 | Server, or assign some of the |
 | files to another serverclass |
 | of the General Server and |
 | regenerate the program. |
 | |
 | File OPEN error. The General Server is being |
 | NONSTOP and TMF were run with both NONSTOP and TMF |
 | both selected ON. |
 | |
 | File OPEN error. The organization of the data |
 | Regenerate program: base file does not agree with |
 | file has changed the organization described in |
 | the record description used |
 | to generate the ENABLE |
 | application. Any of the |
 | following might have changed: |
 | the record length, the file |
 | type, or the offset and |
 | length of the key fields. |
 | Either the file or the |
 | program must be corrected so |
 | that the same record |
 | description is used for both |
 | the application and the data |
 | file. |
 | |

 B-23

 ENABLE Messages
 Application Run-Time Error Messages

 Table B-2. Application Run-Time Error Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Files must not be changed You tried a delete operation |
 | prior to DELETE. after changing some value in |
 | a field of the record. |
 | |
 | INSERT failed. Duplicate A key-field value of the |
 | key record you tried to insert |
 | duplicated an existing key- |
 | field value in the data base. |
 | Primary keys can never be |
 | duplicated; alternate keys |
 | can be defined to accept or |
 | disallow duplicate values. |
 | |
 | INSERT failed. File error A GUARDIAN-ENSCRIBE file- |
 | code = nnnn management error occurred. |
 | Record the error and see your |
 | data administrator. |
 | |

 B-24

 ENABLE Messages
 Application Run-Time Error Messages

 Table B-2. Application Run-Time Error Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | INSERT OK, but DELETE on old You tried to update a record |
 | image failed. and change the primary key. |
 | When you change the primary |
 | key with an update operation, |
 | the General Server must |
 | insert a new record with the |
 | new primary key and delete |
 | the old record with the old |
 | primary key. The General |
 | Server was able to insert the |
 | new record but the old record |
 | was not available and |
 | therefore could not be |
 | deleted. If the old record |
 | cannot be deleted, the |
 | General Server tries to |
 | delete the new record. If |
 | you receive this message, the |
 | General Server did not delete |
 | either record. Record the |
 | error and see your data |
 | administrator. If this |
 | situation is not corrected, |
 | the data base will be in an |
 | inconsistent state. |
 | |
 | Invalid KEY SPECIFIER An invalid key ID was |
 | entered. The key was not one |
 | of the known keys. |
 | |
 | INVALID NUMBER FORMAT You entered characters in a |
 | numeric field, entered a |
 | digit in the sign position of |
 | a signed field, or omitted a |
 | required decimal. This error |
 | is posted by PATHWAY. |
 | |

 B-25

 ENABLE Messages
 Application Run-Time Error Messages

 Table B-2. Application Run-Time Error Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Invalid numeric field(s) If you have just read a record |
 | displayed as zero: data and this message appears, the |
 | is corrupt highlighted fields contain |
 | invalid data that the |
 | application displays as |
 | zeros. Record the error and |
 | see your data administrator. |
 | |
 | Invalid RECORD length Modification of either the |
 | SCREEN COBOL skeleton or the |
 | SCREEN COBOL source code has |
 | resulted in the entry of an |
 | invalid record length. The |
 | length was not within the |
 | limits imposed by the |
 | file structure. |
 | |
 | Join field value was not You entered an invalid value |
 | acceptable. (such as a -1) in the join |
 | field of the containing box |
 | when the nested box |
 | represents a relative file. |
 | The join field of the |
 | containing box is the last |
 | field on the screen before |
 | the child box. |
 | |
 | Join field was changed on You entered a new join-field |
 | the screen but not updated. value on the screen for the |
 | containing box but did not |
 | request an update operation |
 | for this box. You cannot |
 | read a record for the nested |
 | box until either you read or |
 | insert a record in the |
 | containing box or you return |
 | the join field value to the |
 | value read from the data base. |
 | |

 B-26

 ENABLE Messages
 Application Run-Time Error Messages

 Table B-2. Application Run-Time Error Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | No base screen was displayed Modifications to either the |
 | SCREEN COBOL skeleton or the |
 | SCREEN COBOL source code |
 | resulted in the omission of a |
 | required DISPLAY BASE |
 | statement. The current |
 | screen is undefined. Correct |
 | the error and recompile the |
 | SCREEN COBOL source code. |
 | |
 | No changes were specified. You tried an update operation |
 | without first changing the |
 | record read from the data |
 | base. |
 | |
 | No detail screens can be You cannot call another |
 | accessed from this box. application to obtain |
 | detailed information for this |
 | box because the application |
 | does not support a call for |
 | this box. |
 | |
 | No key field was identified. You tried a Read Next |
 | operation before reading the |
 | first record. Precede a Read |
 | Next operation by one of the |
 | following operations: Read |
 | First, Read Approximate, Read |
 | Exact, or Read Generic. |
 | |
 | No parent item. You tried to perform an |
 | operation on a nested box |
 | without first performing a |
 | read or insert operation on |
 | the containing box. |
 | |
 | Nothing to delete. You tried to delete a record |
 | without previously reading |
 | the record from the data |
 | base. |
 | |

 B-27

 ENABLE Messages
 Application Run-Time Error Messages

 Table B-2. Application Run-Time Error Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | Nothing to update. You tried to update a record |
 | without previously reading |
 | the record from the data |
 | base. |
 | |
 | OPEN error: <file-name> The specified error occurred |
 | File system error on open for the named file. |
 | code = <err-code> Record the error and see your |
 | data administrator. |
 | |
 | Printer requires attention. The printer is not ready. |
 | |
 | Program error: Corrupt The request to the General |
 | data file info Server contains incorrect |
 | information about a data file |
 | that was previously opened |
 | successfully by the same |
 | requester. |
 | |
 | Record is locked The record you tried to read |
 | has been locked by another |
 | application. |
 | |
 | Record not found. The record you tried to read |
 | does not exist in the data |
 | base. |
 | |
 | Screen recovery. Some You either pressed the SCREEN |
 | entries to this screen RECOVER key or a terminal I/O |
 | may have been lost was detected and recovery was |
 | successful. Values you |
 | entered on the current screen |
 | before the failure might have |
 | to be re-entered. |
 | |
 | Selected function key is You requested an operation |
 | not supported by this that is not supported by this |
 | application. application, or you pressed a |
 | function key that is not |
 | assigned to an operation. |
 | |

 B-28

 ENABLE Messages
 Application Run-Time Error Messages

 Table B-2. Application Run-Time Error Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | SEND Error status value = A PATHWAY error has occurred. |
 | nnn Record the error and see your |
 | data administrator for |
 | interpretation of the error |
 | code associated with the |
 | PATHWAY SEND verb. |
 | |
 | This operation is not You attempted an operation |
 | supported that is not supported by this |
 | application. |
 | |
 | UNDO cannot be executed at You tried to undo an operation |
 | this time either after requesting a read |
 | operation, or when there was |
 | no operation to be undone. |
 | |
 | Unknown FUNCTION-CODE Modifications to either the |
 | SCREEN COBOL skeleton or the |
 | SCREEN COBOL source code have |
 | resulted in a FUNCTION-CODE |
 | that is unknown to the |
 | General Server. |
 | |
 | Unknown TRANS-CODE Modifications to either the |
 | SCREEN COBOL skeleton or the |
 | SCREEN COBOL source code have |
 | resulted in a TRANS-CODE that |
 | is unknown to the General |
 | Server. |
 | |
 | Update conflict. Record You tried to update a record |
 | has been reread that has been modified by |
 | some other application since |
 | you last read it. The record |
 | has been reread by ENABLE, |
 | and the new value appears on |
 | the screen. |
 | |
 | UPDATE failed. Duplicate You entered a duplicate value |
 | key for a key that is declared to |
 | be unique. |
 | |

 B-29

 ENABLE Messages
 Application Run-Time Error Messages

 Table B-2. Application Run-Time Error Messages (Continued)

 | |
 | Message Meaning |
 |___|
 | |
 | UPDATE failed. File error A GUARDIAN-ENSCRIBE file |
 | code = nnnn management error occurred. |
 | Record the error and see your |
 | data administrator. |
 | |
 | UPDATE failed. Primary key You tried to update a record |
 | must not be changed. in an entry-sequenced, |
 | relative, or unstructured |
 | file and changed the record |
 | number key field. To change |
 | the Record Number field for a |
 | record in a relative file, |
 | you must delete the old |
 | record and insert a new one. |
 | You cannot alter the value of |
 | the record number field for |
 | an unstructured or entry- |
 | sequenced file. |
 | |
 | UPDATE failed. Record is You tried to update a record |
 | gone that no longer exists. |
 | |
 | UPDATE failed. Record is You tried to update a record |
 | locked that is locked by some other |
 | process. Try the operation |
 | again. |
 | |

 B-30

 APPENDIX C

 GLOSSARY

 Access. The right of an application to open, read, or update
 information in a data base file.

 Access path. An established order in which an application reads
 records.

 Alphanumeric data. Data that consists of uppercase and lowercase
 letters of the alphabet, digits, blanks, and special
 characters.

 Alternate key. A key field that identifies a record in a
 key-sequenced, entry-sequenced, or relative file; alternate
 keys need not have unique values.

 APPL. A keyword that identifies the type of object that
 represents an application and its attributes.

 Appl attribute. A characteristic of an application.

 Application. A complete sequence of machine instructions and
 routines necessary to solve a problem.

 Approximate mode. A positioning mode that provides record access
 by a key value equal to or greater than a supplied key value.

 Assignment. A convention in which an ASSIGN command is issued to
 make logical file assignments for programs. A logical file
 assignment equates a Tandem file name with a logical file of a
 program and optionally attributes characteristics to that
 file.

 Attribute. A characteristic of an object.

 C-1

 GLOSSARY
 Attribute Table

 Attribute table. An internal table that ENABLE uses to store
 attribute values.

 Audited file. A data file that is flagged for auditing by TMF;
 auditing is the monitoring of transactions in preparation for
 recovery efforts.

 BOX. A keyword that identifies the type of object that
 represents a data base file and its attributes within an
 application.

 Box. An element displayed by an application on the terminal
 screen. A box contains a record (or records) from a specific
 data base file.

 Box attribute. A characteristic of a box.

 Command interpreter. An interactive program used to run
 programs, check system status, create and delete disc files,
 and alter hardware states.

 Command subvolume. The subvolume in effect when you enter the
 ENV operating command.

 Command volume. The volume in effect when you enter the ENV
 operating command.

 Composite key. A primary or alternate key field that consists of
 two or more contiguous fields.

 Containing box. A box on the terminal screen within which
 another box is nested.

 Courtesy key. The record number of an entry-sequenced, relative,
 or unstructured file.

 Current attribute value. An attribute value supplied by a SET
 command.

 Current record. The most recently retrieved record.

 Cursor. A highlighted screen element that marks character
 position during terminal input.

 Data administrator. An individual who is responsible for
 defining the format and organization of a data base.

 Data Definition Language (DDL). A trademark that signifies the
 Tandem proprietary language used to describe the records and
 files composing a data base.

 C-2

 GLOSSARY
 File Utility Program

 Data base. A collection of data that is described and controlled
 within a computer system.

 Data dictionary. A set of files that provide information about
 each file in a data base.

 Data type. A category that identifies the kind of data that a
 field represents. Four broad categories of data types exist:
 alphabetic, alphanumeric, numeric integer, and numeric
 noninteger.

 Data values. The actual values stored in a data base file.

 Default attribute value. An attribute value supplied by ENABLE
 when both the starting and current attribute values are null.

 Default object type. A object type that ENABLE uses when you
 omit the keyword BOX or APPL from an ENABLE command. The
 ASSUME command affects the default object type.

 Default value. A value that is used by the system when a value
 has not been supplied by the user.

 Edit-type file. A source text file that can be augmented and
 modified by the user through a text editor.

 ENABLE. A trademark that signifies the Tandem proprietary
 application-generation subsystem.

 ENABLE commands. Commands that are associated with use of the
 ENABLE subsystem.

 ENSCRIBE. A trademark that signifies the Tandem proprietary
 data base record manager.

 Entry-sequenced file. A file in which records are stored in the
 order in which they are written into the file. Records can be
 identified by a record number that indicates the position of
 the record within the file.

 Exact mode. A positioning mode that provides record access by a
 key value exactly matching a supplied key value.

 Field. An element that represents the storage area for one
 specific group of letters, numbers, or letters and numbers.

 File. A collection of records.

 File Utility Program (FUP). A trademark that signifies the
 Tandem proprietary utility program that is used for performing
 certain disc file related operations.

 C-3

 GLOSSARY
 General Server

 General Server. The Tandem proprietary process, supplied by the
 ENABLE subsystem, that provides access and updates data base
 files.

 Generic mode. A positioning mode that provides record access by
 a key value matching a supplied partial key value.

 Group. A field in a record description made up of two or more
 contiguous elementary fields.

 GUARDIAN. The Tandem operating system.

 Heading. A name established in the DDL dictionary that can
 replace the field name on reports or on the screen.

 Interactive mode. An operating mode in which commands are
 entered from a terminal keyboard.

 Join field. A field from one box that matches a field from
 another box. Fields match if they have compatible data types
 and represent common data values.

 Key field. A field, the value of which is used to identify a
 specific record within a file.

 Key of reference. Either the primary key or alternate key
 currently being used to access a record.

 Key-sequenced file. A file in which records are stored in
 ascending sequence according to the value of the primary key
 field.

 Link. A logical connection between the boxes used by an
 application.

 Linked field. A join field from a child box.

 Linking field. A join field from a parent box.

 Multifile application. An application generated by ENABLE that
 can access two or more data base files or a single data file
 opened as two or more data files.

 Nested box. A box on the terminal screen that is contained by
 another box.

 Noninteractive mode. An operating mode in which commands are
 entered through a command file.

 NonStop. A trademark signifying the failure-tolerant features
 of the proprietary Tandem architecture and operating system.

 C-4

 GLOSSARY
 Positioning Mode

 NONSTOP. An ENABLE attribute used to specify whether the General
 Server is to operate as a NonStop process pair.

 Numeric data. Data that consists of digits (0-9); leading and
 trailing blanks; and possibly a decimal point and a minus
 sign.

 Obey file. A file that serves as an alternate source for command
 input.

 Object. An application or a box. An object table entry that
 describes an application or a box.

 Object table. An internal table that ENABLE uses to store
 information from which applications are generated.

 Object type. An entity that can be the subject of a SET command.
 ENABLE currently supports two object types: APPL and BOX.

 Operating commands. Commands that are associated with control of
 the ENABLE program.

 Operation. An act performed by an application upon a data base
 file.

 Outermost box. The highest level box in a multifile
 application. The terminal screen itself forms the box that
 displays the screen label and field pairs for the outermost
 box.

 Override attribute value. A temporary attribute value supplied
 by an ADD command; the value only applies to the object being
 added.

 PATHCOM command file. A file of commands that define PATHWAY
 objects required to execute an application.

 PATHCTL. A disc file in which PATHMON maintains status
 information and the application configuration.

 PATHMON. The central controlling process in a PATHWAY system.

 PATHWAY. A trademark signifying the Tandem proprietary
 transaction processing system that supplies the programs,
 procedures, and structures necessary to execute user-written
 applications.

 Positioning Mode. One of three modes that establish a subset of
 records in a designated access path: approximate, exact, and
 generic.

 C-5

 GLOSSARY
 Primary Key

 Primary key. The key field that uniquely identifies a record in
 a file; a primary key cannot be duplicated.

 Program generator. The component of ENABLE that generates SCREEN
 COBOL source code.

 Record. Depending on the context in which it is used, a record
 is either related data stored in a data base file or a record
 description.

 Record description. A entity stored in a data dictionary that
 describes the organization and structure of a data base file.

 Record number. An ordinal value that uniquely identifies a
 record in an entry-sequenced, relative, or unstructured file.

 Relative file. A file in which records are stored in a position
 relative to the beginning of the file. Records within the
 file can be identified by a record number.

 Requester process. A process that interprets application-program
 object code and sends replies to a server; synonymous with
 requester.

 SCREEN COBOL. A trademark that signifies the Tandem proprietary
 procedural language for terminal display control under
 PATHWAY.

 Server. A process that handles file I/O processing under
 PATHWAY.

 Skeleton file. A file of SCREEN COBOL source text or PATHCOM
 commands, plus special commands that drive ENABLE processing;
 the file can be used in its present state or changed by the
 application programmer.

 Single-file application. An application generated by ENABLE that
 can access a single data base file.

 Spooler. A process that serves as a buffer between a print
 device and an application writing to the device.

 Starting value. An attribute value that exists when you start
 ENABLE.

 Subset. A related set of records in an access path.

 Subsystem. A program that is supplied as part of the operating
 software.

 C-6

 GLOSSARY
 Unstructured File

 Sync ID. A value used by the operating system to provide
 automatic path error recovery for disc files.

 TCP. A program supplied by Tandem that interprets SCREEN COBOL
 object code and sends messages to server processes; synonymous
 with requester process.

 Terminal. A device capable of sending and receiving information
 over communication lines.

 Transaction Monitoring Facility (TMF). A trademark that
 signifies the Tandem proprietary data management product that
 monitors a data base for consistency and provides the tools
 for data base recovery.

 Tree structure. A logical structure that ENABLE uses to identify
 the boxes that are associated with an application. For a
 multifile application, a tree structure also identifies the
 links that exist between the boxes and the order in which the
 boxes are linked.

 Unstructured file. A file in which data is physically located in
 512-byte sectors and is referred to by a relative byte
 address.

 C-7

 INDEX

 ABILITY attributes
 and access mode 11-9
 DELETE
 summary description 2-7
 to limit DELETE operations 6-22
 FILL
 summary description 2-8
 to provide automatic READ operations 6-23
 INSERT
 summary description 2-9
 to limit INSERT operations 6-22
 READ
 summary description 2-9
 to limit READ operations on a child box 6-22
 UPDATE
 summary description 2-10
 to limit UPDATE operations 6-22
 when integrating applications 11-9
 Access mode
 and ABILITY attributes 11-9
 and file open 11-9
 corresponding ABILITY attributes 11-9
 Access path, See application-access path
 ADD command
 and override attribute values 2-14
 application examples 2-18, 4-6, 5-30
 box examples 2-17, 4-5, 5-9
 overview 2-14
 summary description 2-3
 ADD PROGRAM (PATHCOM command) 11-19
 ADD TERM (PATHCOM command) 11-21
 Adding
 a box 4-5, 5-7
 a multifile application 5-30
 a single-file application 4-6
 ALLFILES parameter 11-20

 Index-1

 INDEX
 Alphabetic data

 Alphabetic data
 and READ APPROX 8-15
 appearance on the terminal screen 8-8
 defined 2-24
 Alphanumeric data
 and READ APPROX 8-15
 appearance on the terminal screen 8-8
 defined 2-24
 Alternate key fields
 and unstructured files 3-9
 as used by an application 8-7
 choosing 3-10, 12-11
 defined 2-26
 for entry-sequenced files 3-9
 for key-sequenced files 3-9
 for relative files 3-9
 maximum number 3-9
 screen identifier 8-7
 sorting sequence 8-12
 Application
 access path 5-20
 accessing audited files 6-31
 adding 2-18
 and other Tandem products 1-7
 associated with a box or boxes
 multifile example 5-10
 single-file example 4-6
 building a tree structure for 5-18
 definition within ENABLE 2-2
 describing
 examples 2-18, 4-6
 overview 2-2
 employee-assign 12-26
 employee-detail 5-1
 employee-prog 4-1
 event-detail 12-32
 event-revised 12-34
 example of integrated applications 12-1
 execution 4-7
 functional description 1-1
 generation
 guidelines for single-file 4-2
 overview 2-22
 identifying the PATHCOM command file
 multifile example 5-30
 single-file example 4-6
 integration into a single PATHWAY system 11-1
 limiting operations 6-22
 look-up 12-28
 modifying after generation 7-1
 moving 10-1
 naming 4-6, 5-30

 Index-2

 INDEX
 ASSUME command

 problems that arise during execution 9-3
 project-entry 12-23
 project-info 12-29
 providing a screen title 6-7
 providing automatic READ operations 6-23
 providing the ability to call 11-4
 restricting to read-only operations 6-22
 restricting to subset of child records 6-27
 running the General Server as a NonStop
 process pair 6-31
 summary of attributes 2-4
 tailoring 6-1
 usage restrictions 1-8
 using 8-1
 Application attributes
 evaluation of values 2-12
 overview description 2-2
 PATHCOMFILE
 summary description 2-4
 supplying a value 4-6, 5-30
 PATHCOMSKELETON 2-4
 SCOBOLCOMPILER
 summary description 2-4
 SCOBOLLIST
 obtaining SCREEN COBOL listing 11-5
 summary description 2-4
 SCOBOLOBJECT
 identifying object file 11-4
 summary description 2-4
 using the starting value 11-4
 SCOBOLSKELETON 2-5
 SCOBOLSOURCE
 summary description 2-5
 supplying a value 7-1, 11-6
 summary list 2-4
 supplying values 2-11, 2-18
 TERMINAL 2-5
 TITLE
 summary description 2-5
 supplying a value 6-7
 TREE
 summary description 2-5
 supplying a value 4-5, 5-18
 Application-access path
 defined 5-20
 for a sample four-box application 5-29
 for sample two-box application 5-23
 sample qualified records 5-23
 Assign specifications 11-19
 ASSUME command
 summary description 2-3

 Index-3

 INDEX
 Attribute table

 Attribute table
 current application-attribute value 2-19
 default application-attribute value 2-20
 default box-attribute value 2-15
 defined 2-11
 evaluation precedence 2-12
 override application-attribute values 2-19
 override box-attribute values 2-14
 removing a current value 2-18
 starting values 2-11
 supplying a current box-attribute value 2-13
 values removed 2-17
 Audited files 6-30
 Avoiding box name conflicts 11-6

 Binary data values 8-17
 Block size 3-21
 Box
 adding to the object table 2-13
 associating with a level number 5-18
 associating with an application
 description 5-10
 examples 2-19, 4-5
 changing the description of an added box 2-18
 child
 appearance on terminal screen 5-12
 defined 5-11
 See also Child box
 containing 8-3
 defined 2-2
 describing 2-13, 5-7
 for a single-file application 4-5
 overview 2-13
 name conflict, avoiding 11-6
 naming 4-5, 5-7
 nested 8-3
 outermost 8-3
 parent
 appearance on the terminal screen 5-12
 defined 5-11
 See also Parent box
 providing user information within
 and the BOXTITLE attributes 6-4
 summary description 2-6
 summary of attributes 2-6
 using two boxes to represent one file 12-19
 Box attributes
 BOXTITLE
 summary description 2-6
 use in screen customization 6-4, 6-19
 CHECKDATA
 ensuring file integrity 6-30

 Index-4

 INDEX
 Box attributes, supplying values

 summary description 2-6
 DATAFILE
 identifying a file 4-5, 5-9
 summary description 2-6
 DELETE
 limiting DELETE operations 6-22
 summary description 2-7
 DICTIONARY
 summary description 2-7
 value used by ENABLE 5-9
 evaluation of values 2-12
 EXCLUDE
 excluding screen fields 6-4, 6-17
 summary description 2-7
 FILL
 providing automatic READ operations 6-23
 summary description 2-8
 FLAG 2-8
 HEADINGS
 providing screen labels 6-9
 summary description 2-8
 with tabular format screens 6-19
 INCLUDE
 summary description 2-8
 to exclude screen fields 6-11
 to reorder screen fields 6-11
 INSERT
 summary description 2-9
 to limit INSERT operations 6-22
 NONSTOP
 and the General Server 6-31
 summary description 2-9
 overview description 2-2
 READ
 and restricting file operations 6-22
 summary description 2-9
 RECORD
 identifying a record description 4-5, 5-9
 summary description 2-9
 SCREENFORMAT
 and tabular format screens 6-19
 summary description 2-9
 to compress screen layout 6-13
 SERVERCLASS
 providing a server class 6-31
 summary description 2-10
 SIZE
 and tabular format screens 6-19
 summary description 2-10
 summary description 2-6
 supplying a value 2-13
 supplying values 2-11

 Index-5

 INDEX
 Box attributes, TMF

 TMF
 summary description 2-10
 to identify audited files 6-30
 UPDATE
 summary description 2-10
 to restrict UPDATE operations 6-22
 VALUES
 and a DDL VALUE clause 6-27
 summary description 2-11
 BOXTITLE attribute
 and tabular format screens 6-19
 function in screen customization 6-4
 providing user information in a box 6-15
 starting value 2-6
 summary description 2-6

 CALL statement 11-11
 Calling another application
 modifying SCREEN COBOL source code 11-11
 obtaining SCREEN COBOL source code 11-6
 Calling applications 12-22
 Centering
 a title 6-8
 labels for a tabular screen 6-21
 CHECKDATA attribute
 and numeric data 6-30
 starting value 2-6
 summary description 2-6
 Child box
 and screen customization 6-2
 choosing 5-13
 defined 5-11
 displayed on terminal screen 5-12
 join field on terminal screen 5-12
 key field requirement 5-13
 relationship to parent box 5-12
 subset of records 6-27
 supplying automatic READ operations 6-24
 Child record, See Child box
 Classes of information
 identifying 3-2, 12-3
 listing data items for 3-3
 Command file
 defined 5-7
 submitting to ENABLE 5-31
 Commands
 ADD 2-3, 4-5, 5-9
 ASSUME 2-3
 DELETE 2-3, 2-18, 9-2
 effect 2-13
 list of 2-3
 providing a screen title 6-7

 Index-6

 INDEX
 Containing box

 providing screen labels 6-9
 reordering screen fields 6-11
 RESET 2-3, 6-28, 6-32
 resetting attribute values 6-10
 SET BOXTITLE 6-15
 SET DELETE 6-22
 SET EXCLUDE 6-17
 SET FILL 6-25
 SET INCLUDE 6-11
 SET INSERT 6-22
 SET NONSTOP 6-31
 SET READ 6-22, 6-27
 SET RECORD 4-5, 5-9
 SET SCOBOLLIST 11-5
 SET SCOBOLOBJECT 11-5
 SET SCOBOLSOURCE 7-1, 11-6
 SET SERVERCLASS 6-32
 SET SIZE 6-19
 SET TITLE 6-9
 SET TMF 6-32
 SET UPDATE 6-22
 SET VALUES 6-27
 submitting a command file 5-31
 summary 2-3
 that compress screen format 6-13
 to exclude screen fields 6-17
 to generate a multifile application 5-3
 to generate a single-file application 4-5
 Compare operations 8-17
 Compiler
 SCREEN COBOL 10-3
 Compiling modified source code 11-13
 Composite key fields
 and READ APPROX 8-15
 and READ EXACT 8-16
 and READ FIRST 8-13
 choosing 3-10
 defined 2-26
 Compressed screen format
 for tabular screens 6-19
 providing 6-13
 usage guideline 6-4
 Consistency restraints 7-2
 Containing box
 and READ or INSERT operations 8-4
 changing the join field value 8-33
 defined 8-3
 deleting the join field value 8-30
 illustrated 8-3
 INSERT 8-21
 INSERT BOX 8-26
 READ APPROX 8-15

 Index-7

 INDEX
 Courtesy key fields

 READ EXACT 8-17
 READ FIRST 8-13
 READ GENERIC 8-19
 READ NEXT 8-14
 Courtesy key fields
 and INSERT operations 8-20
 and READ GENERIC operations 8-17
 appearance on the terminal screen 8-8
 as used by an application 8-5
 identifying on the screen 8-5
 Current attribute values
 defined 2-11
 examples 2-14, 2-19
 removing from the attribute table 2-18, 2-22
 Cursor
 moving 8-11
 position 8-11
 Cursor position
 at application execution 8-11
 for READ operations 8-12
 Customization
 ensuring file integrity 6-30
 excluding screen fields 6-3, 6-11, 6-17
 limiting application operations 6-22
 providing a screen title 6-7
 providing screen labels 6-4, 6-9, 6-21
 providing user information in a box 6-4, 6-21
 reordering screen fields 6-4, 6-11
 tabular format screen 6-21
 using initial values 6-27
 Customizing the terminal screen 6-2

 Data base files
 and box names 11-9
 and the ABILITY attributes 11-9
 and the RECORD attribute 5-8
 audited 6-30
 components 2-24
 creating 3-17
 defined 2-25
 describing 3-11
 determining requirements 12-3
 determining size 3-20
 developing 3-1
 choosing key fields 3-10
 identifying classes of information 3-2
 listing the data items 3-3
 listing the fields 3-8
 relationship between classes of data 3-4
 selecting a file type 3-9
 ensuring integrity 6-1, 6-30
 identifying audited files 6-30

 Index-8

 INDEX
 DDL, VALUE clause

 identifying to ENABLE 2-6, 4-5, 5-9
 limiting an application to certain
 operations 6-22
 nonaudited 6-30
 represented by a box 2-2
 supplying
 detailed description 3-1
 overview 2-24
 Data base, See Data base files
 Data categories
 compatible 5-6
 defined 2-24
 describing with DDL 3-11
 Data Definition Language, See DDL
 Data dictionary, See Dictionary
 Data items 3-3, 12-4
 Data types
 compatible 5-6
 defined 2-24
 describing with DDL 3-11
 Data values
 and INSERT operations 8-20
 binary 8-17
 displayed in screen fields 8-7
 entering in screen fields 8-8
 entering negative values 8-9
 entering positive values 8-8
 DATAFILE attribute
 and a record description 2-15
 and the dictionary 2-15
 and the RECORD attribute 5-9
 examples 2-15, 4-5, 5-9
 starting value 2-6
 summary description 2-6
 DDL
 compiler commands 3-16
 DICT command 3-16
 ENABLE limitations 3-15
 FILE IS statement 3-12
 FILLER clause 3-15
 FUP command 3-16
 HEADING clause 3-12, 6-9
 KEY clause 3-12
 OCCURS DEPENDING ON clause 3-15
 PIC clause 3-12
 RECORD statement 3-12
 REDEFINES clause 3-15
 RENAMES clause 3-15
 run command 3-16
 VALUE clause
 and the VALUES attribute 6-27
 example 6-27

 Index-9

 INDEX
 DDL DICT command

 DDL DICT command 3-16
 DDL FUP command 3-16
 Decimal numeric screen fields 8-8
 Default
 attribute values 2-12
 block size 3-21
 file size 3-20
 Default attribute values
 defined 2-12
 for the DATAFILE attribute 2-6, 2-15
 for the TITLE attribute 2-5
 for the TREE attribute 2-5
 removed from the attribute table 2-17, 2-21
 Default key 8-12
 DEFINE PRINTER 8-35
 Defining functional requirements of an
 application system 12-2
 DELETE attribute
 and the VALUES attribute 6-27
 examples 2-15, 6-22
 starting value 2-7
 summary description 2-7
 supplying OFF as a value 6-22
 DELETE BOX operations 8-29
 DELETE command
 removing a box from the object table 2-18
 removing an application from the object
 table 2-22
 summary description 2-3
 to delete unwanted objects 9-2
 DELETE operations 8-29
 and the application-access path 5-24
 DELETE 8-29
 DELETE BOX 8-29
 described 8-29
 restricting for an application 6-22
 reversing 8-34
 special considerations 8-30
 Describing a data base 3-11
 Determining file size 3-20
 Determining format of terminal screen 12-18
 Developing a data base
 choosing key fields 3-10
 identifying classes of information 3-2
 listing the data items 3-3
 listing the fields in each file 3-8
 overview 3-1
 relationship between classes of data 3-4
 selecting file types 3-9
 DICT command, See DDL DICT command
 Dictionary
 and the DATAFILE attribute 2-15, 5-9

 Index-10

 INDEX
 Examples

 creating 3-11, 3-16, 12-13
 description 2-1
 identifying to ENABLE 2-7
 problems accessing 9-3
 security attributes 9-3
 DICTIONARY attribute
 starting value 2-7
 summary description 2-7
 Display messages 8-36

 Employee-assign application 12-26
 Employee-detail application 5-1
 Employee-prog application 4-1
 ENABLE
 applications
 examples 4-3, 5-3, 6-5
 integrating in a single PATHWAY system 11-1
 commands
 description 2-3
 summary 2-3
 description of application generation 1-9
 evaluation of attribute values 2-12
 exiting from 4-7
 messages
 displayed after application generation 4-7
 error B-1
 operator 8-36
 product description 1-1
 starting 4-5
 submitting a command file 5-31
 supplying a default attribute value 2-15
 tables 1-9, 2-11
 template 8-1
 terms defined C-1
 ENFORM
 and a data base 3-1
 and ENABLE applications 1-7
 ENTER key 8-37
 Entry-sequenced files
 and INSERT operations 8-20
 courtesy key 8-5
 described 3-9
 record number field 3-9, 8-5
 Error messages
 application run time B-21
 described 8-36
 syntax and generation B-2
 Evaluation of attribute values 2-12
 Event-detail application 12-32
 Event-revised application 12-34
 Examples
 accessing audited and nonaudited files 6-31

 Index-11

 INDEX
 Examples, ENABLE commands

 ENABLE commands
 ADD 4-5, 5-9
 RESET BOX 6-28
 SET BOXTITLE 6-15, 6-19, 12-25, 12-27
 SET DELETE 6-22, 12-25
 SET EXCLUDE 6-17
 SET FILL 6-25, 12-31
 SET INCLUDE 6-11, 12-25
 SET INSERT 6-22, 12-25
 SET NONSTOP 6-32
 SET READ 6-27
 SET RECORD 4-5, 5-9
 SET SCOBOLSOURCE 7-1, 12-25
 SET SERVERCLASS 6-32
 SET TITLE 6-9, 12-25
 SET TMF 6-30
 SET UPDATE 6-22, 12-25
 SET VALUES 6-27
 that provide a screen title 6-7
 that provide screen labels 6-9
 that reorder screen fields 6-11
 to generate a multifile application 5-3
 to generate a single-file application 4-5
 to provide a compressed screen format 6-15
 INSERT operations for an outermost box 8-20
 project-tracking applications 12-24
 project-tracking system 12-1
 screens
 for integrated applications 12-26
 standard multifile application 5-1
 standard single-file application 4-1
 with a compressed screen format 6-18
 with a tabular format 6-20
 with DDL HEADINGs as screen labels 6-10
 with fields excluded 6-14
 with reordered fields 6-12
 with user information on line 1 of a box 6-16
 with user-provided screen title 6-8
 EXCLUDE attribute
 function in screen formatting 6-4
 restricting the fields displayed 6-17
 summary description 2-7
 Excluding fields
 examples 6-12, 6-18
 summary description 2-7
 Executing
 a multifile application 5-31
 a single-file application 4-7
 ENABLE 4-5, 5-31
 EXIT command 4-7
 Exiting from ENABLE 4-7
 Extended memory

 Index-12

 INDEX
 Files

 handling overflow 9-1
 increasing allocation 9-2
 EXTPAGES parameter 9-2

 Field (screen), See Screen field
 Field value
 defined 2-25
 displaying 8-7
 entering 8-8
 Fields
 defined 2-24
 describing with DDL 3-12
 length limitation 3-15
 listing for files 3-8, 12-10
 matching 5-6
 FILE IS clause 3-12, 12-13
 File operations
 automatic READ
 and the FILL attribute 2-8
 providing for an application 6-23
 DELETE
 and the DELETE attribute 2-7
 DELETE 8-29
 restricting for an application 6-22
 INSERT 8-20
 and the INSERT attribute 2-9
 INSERT BOX 8-25
 restricting for an application 6-22
 READ
 and the READ attribute 2-9
 READ APPROX 8-14
 READ EXACT 8-16
 READ FIRST 8-12
 READ GENERIC 8-17
 READ NEXT 8-14
 restricting for an application 6-22
 reversing 8-33
 UPDATE
 and the UPDATE attribute 2-10
 restricting for an application 6-22
 UPDATE 8-32
 UPDATE BOX 8-32
 File size
 default 3-20
 determining 3-20
 File type
 describing with DDL 3-12
 selecting 3-9
 File Utility Program, See FUP
 Files
 defined 2-25
 identifying with DDL 3-12

 Index-13

 INDEX
 FILL attribute

 See also Data base files
 FILL attribute
 and the VALUES attribute 6-27
 providing automatic READ operations 6-23
 summary description 2-8
 FLAG attribute 2-8
 Form, See Screen
 FORMAT attributes
 BOXTITLE
 effect on screen contents 6-4
 summary description 2-6
 EXCLUDE
 effect on screen contents 6-4
 summary description 2-7
 HEADINGS
 effect on screen contents 6-4
 summary description 2-8
 INCLUDE
 effect on screen contents 6-4
 summary description 2-8
 SCREENFORMAT
 effect on screen contents 6-4
 summary description 2-9
 SIZE
 effect on screen contents 6-4
 summary description 2-10
 VALUES
 effect on screen contents 6-5
 summary description 2-11
 Formatting the screen 12-18
 Function keys
 described 8-37
 listed 8-38
 Functional requirements of application
 system 12-2
 FUP
 creating a data base 3-17
 example file-creation source code 3-18
 run command 3-22
 SET EXT command 3-21
 using DDL to create file-creation source 3-11, 3-16
 FUP command, See DDL FUP command
 FUP INFO command 9-3
 FUP SET EXT command 3-21

 General Server
 functional description 1-7
 identifying a server class for
 detailed instructions 6-31
 summary description 2-10
 running as a NonStop process pair 6-31
 within a PATHWAY system 2-27

 Index-14

 INDEX
 INCLUDE attribute

 GENERATE command
 single-file application 4-7
 summary description 2-3
 to generate all applications in the
 object table 5-30
 Generating
 an application to be moved 10-1
 applications to be integrated into a
 single PATHWAY system 11-4
 sample project-tracking applications 12-25
 Generating an application
 defaults 2-23
 multifile example 5-30
 overview 2-22
 resolving problems 9-1
 single-file example 4-7
 Glossary C-1
 Group
 defined 2-24
 key fields
 and READ APPROX 8-14
 and READ EXACT 8-16
 and READ FIRST 8-13
 See also Composite key fields
 Guidelines
 generating a multifile application 5-1
 generating a single-file application 4-1
 integrating applications into a single
 PATHWAY system 11-1

 HEADING clause (DDL)
 examples 3-12, 12-13
 used as screen label 6-9
 HEADINGS attribute
 and tabular format screens 6-19
 function in screen formatting 6-4
 starting value 2-8
 summary description 2-8
 supplying DDLHEADINGS as a value
 description 6-9
 for fields without DDL HEADINGs 6-9
 supplying NULL as a value 6-19
 using DDL HEADINGs as screen labels 6-9

 IBM-327x terminals
 cursor position 8-11
 function keys 8-37
 usage instructions 8-37
 INCLUDE attribute
 excluding screen fields 6-11
 function in screen formatting 6-4
 reordering screen fields 6-11

 Index-15

 INDEX
 INFO command

 special considerations 6-13
 starting value 2-8
 summary description 2-8
 INFO command
 summary description 2-3
 to get current contents of object table 9-1
 Information flow 3-2
 INSERT attribute
 and the VALUES attribute 6-27
 starting value 2-9
 summary description 2-9
 supplying OFF as a value 6-22
 INSERT BOX operations
 described 8-25
 for a containing box 8-26
 for a nested box 8-26
 for an outermost box 8-26
 illustrated 8-28
 INSERT operations
 and the application-access path 5-28
 and the courtesy key 8-5
 and the INCLUDE attribute 6-13
 and the outermost box 8-4
 caution for INSERT BOX 8-27
 containing box 8-4
 described 8-20
 effect of tree structure 5-22
 for a nested box 8-23
 for an outermost box 8-21
 illustrated 8-22, 8-24
 INSERT 8-20
 INSERT BOX 8-26
 limiting 6-22
 nested box 8-4
 reversing 8-34
 Integrating applications
 avoiding conflicting box names 11-6
 calling other applications 11-11
 changing the program name in ADD PROGRAM 11-19
 defining functional requirements 12-2
 directing the object code 11-4
 generating the applications 11-4
 introduction 11-1
 modifying a PATHCOM command file 11-14
 obtaining a SCREEN COBOL compilation
 listing 11-5
 obtaining SCREEN COBOL source code 11-6
 optional tasks 11-20
 sample system 12-1
 writing a menu program 11-3
 INTEGRITY attributes
 CHECKDATA

 Index-16

 INDEX
 Keywords

 effect on generated application 6-30
 summary description 2-6
 NONSTOP
 and the General Server 6-31
 summary description 2-9
 TMF
 and audited files 6-30
 summary description 2-10
 Interactive mode
 exiting from 4-7
 problems accessing a dictionary 9-3
 starting 4-5

 Join fields
 and a link 5-11
 changing the value for a parent box 5-24
 defined 5-6
 deleting from a containing box 8-30
 displayed on terminal screen 5-12, 8-10
 guidelines for appearance on screen 12-18
 identifying on terminal screen 8-10
 key field requirement 5-6
 key field requirement for child box 5-13
 of a containing box 8-33
 screen location of parent box 5-20
 used by an ENABLE application 5-6

 KEY clause (DDL) 3-12, 12-13
 Key fields
 application selection 8-12
 as first field on the screen 12-18
 as used by an application 8-4
 default key 8-12
 defined 2-26
 describing with DDL 3-11
 for entry-sequenced files 3-9
 for key-sequenced files 3-9
 for relative files 3-9
 for unstructured files 3-9
 group 8-13
 requirement for child boxes 5-13
 selecting 3-10, 12-10
 when the entire record is the key 3-15
 Key-sequenced files
 described 3-9
 maximum number of alternate keys 3-9
 primary key 8-4
 Keywords
 APPL 2-3
 BOX 2-3, 2-14

 Index-17

 INDEX
 Labels

 Labels
 for a primary key field 8-6
 for an alternate key field 8-7
 illustrated 1-2, 8-7
 providing 6-2
 for a tabular format screen 6-21
 summary description 2-8
 with the BOXTITLE attributes 6-21
 with the HEADINGS attribute 6-9
 providing for a tabular format screen 6-21
 using DDL HEADING clauses 6-9
 Level number
 associating with a box 5-18
 for the TREE attribute 4-6
 in a DDL RECORD statement 3-12
 rules for 5-18
 valid values 5-18
 Levels of a tree structure
 effect on terminal screen 5-14
 defined 5-13
 description 5-10
 determining 5-13
 examples 5-15
 first level 5-13
 number allowed 5-13
 rules for 5-13
 Limits
 DDL 3-15
 field length 3-15
 levels of nesting in OCCURS clauses 3-15
 maximum number of alternate keys 3-9
 on size of join field for parent box 5-13
 on size of numeric data 3-15
 record size 3-15
 Link
 child box 5-11
 defined 5-11
 described 5-6
 function within a tree structure 5-11
 LINK OPTIONAL 5-11
 parent box 5-11
 samples
 when available links are limited 5-15
 when several possible links exist 5-15
 LINK OPTIONAL parameter
 examples 5-19
 rules for using 5-18
 Log files 4-9
 Logical connection, See Link
 Longest path 11-18
 Look-up application 12-28

 Index-18

 INDEX
 Nested box

 Many-to-many relationship
 defined 3-4
 guidelines 12-9
 illustrated 12-9
 Matching fields 5-6, 5-22
 MAXTERMDATA
 determining new value 11-18, 12-58
 role within PATHWAY system 11-16
 Menu program
 example 12-39
 guidelines for writing 11-3
 identifying in PATHCOM command file 11-17, 11-19
 Messages
 displayed after application generation 4-7
 error B-1
 operator display and error 8-36
 T9155-CANT-CHAIN-MESSAGE 11-13
 Modifications
 necessary to call another application 11-11, 12-36
 to generated applications 7-1
 Multifile applications
 adding 5-30
 and join fields 5-6
 associating with a box or boxes 5-10
 command example 5-3
 creating 5-1
 defining box order 5-10
 describing and adding boxes 5-8
 display screen 8-3
 example screen 5-1
 functional description 1-3
 generating 5-30
 identifying a PATHCOM command file 5-30
 importance of related information 5-6
 integrated into a single PATHWAY system 11-1, 12-1
 limiting operations 6-22
 providing automatic READ operations 6-23
 restricted to subset of child records 6-27
 special generation considerations 5-5
 tasks required for generation 5-7

 Naming
 a box 4-6
 an application 5-30
 Nested box
 and DELETE operations 8-30
 and READ or INSERT operations 8-4
 and UPDATE operations 8-33
 caution for INSERT BOX 8-27
 defined 8-3
 illustrated 8-3
 INSERT 8-23

 Index-19

 INDEX
 NONSTOP attribute

 INSERT BOX 8-26
 READ APPROX 8-16
 READ EXACT 8-17
 READ FIRST 8-13
 READ GENERIC 8-19
 READ NEXT 8-14
 special caution for INSERT operations 8-27
 NONSTOP attribute
 and file assignments 11-9
 and the General Server 6-31
 starting value 2-9
 summary description 2-9
 Normalization 3-6, 12-12
 Numeric data
 and the CHECKDATA attribute 2-6, 6-30
 appearance on the terminal screen 8-8
 caution for UPDATE operations 8-31
 defined 2-24
 signed 8-8
 size limitation 3-15

 Obey file
 execution 4-11, 5-34
 to establish a PATHWAY system 4-10, 5-33
 Object
 and the contents of the attribute table 2-12
 defined 2-2
 Object table
 adding a box 2-17
 adding an application 2-20
 defined 1-9
 generating all applications 5-30
 removing a box 2-18
 OCCURS clause 3-15
 One-to-many relationship
 defined 3-4
 guidelines 12-7
 illustrated 3-8
 One-to-one relationship
 defined 3-4
 guidelines 12-7
 illustrated 3-5
 Operations
 automatic READ 6-23
 DELETE
 and the DELETE attribute 6-22
 DELETE 8-29
 DELETE BOX 8-29
 INSERT
 and the INCLUDE attribute 6-13
 and the INSERT attribute 6-22
 INSERT 8-20

 Index-20

 INDEX
 Outermost box

 INSERT BOX 8-25
 limiting 6-22
 providing automatic READ
 described 6-23
 illustrated 6-23, 6-25
 READ
 and the READ attribute 6-22
 READ APPROX 8-14
 READ EXACT 8-16
 READ FIRST 8-12
 READ GENERIC 8-17
 READ NEXT 8-14
 restricting application to subset 6-27
 read-only 6-22
 reversing 8-35
 screen
 DEFINE PRINTER 8-35
 PRINT 8-35
 RECOVER 8-35
 UPDATE
 and the INCLUDE attribute 6-13
 and the UPDATE attribute 6-22
 UPDATE 8-32
 UPDATE BOX 8-32
 Ordered link 5-11
 OTHER attributes
 DATAFILE
 and the RECORD attribute 4-5, 5-9
 summary description 2-6
 DICTIONARY
 starting value 2-7
 summary description 2-7
 FLAG 2-8
 RECORD
 identifying a record description 4-5, 5-9
 summary description 2-9
 SERVERCLASS
 and the TMF and NONSTOP attributes 6-31
 summary description 2-10
 OUT command 9-2
 Outermost box
 and READ or INSERT operations 8-4
 defined 8-3
 DELETE operations 8-33
 illustrated 8-3
 INSERT 8-21
 INSERT BOX 8-26
 READ APPROX 8-15
 READ EXACT 8-17
 READ FIRST operation 8-13
 READ GENERIC 8-19
 READ NEXT operation 8-14

 Index-21

 INDEX
 Override attribute values

 UPDATE operations 8-33
 Override attribute values
 defined 2-11
 examples 2-10, 2-19
 removed from the attribute table 2-17, 2-21

 Parent box
 and screen customization 6-2
 choosing 5-13
 definition 5-11
 displayed on terminal screen 5-12
 providing automatic READ operations 6-23
 relationship to child box 5-11
 updating the join-field value 5-24
 Parent record, See Parent box
 Partial key value 8-17
 PATHCOM
 creation 4-7
 defined 2-27
 RUN command 4-11
 SHUTDOWN command 4-11
 WAIT command 4-11
 PATHCOM command file
 and the SCREEN COBOL compilation listing 11-5
 editing 10-4
 functional description 1-7
 identifying 4-7, 5-30
 modifying to integrate applications
 ADD PROGRAM 11-19
 commands 11-16
 example 12-54
 MAXTERMDATA 11-16
 necessary tasks 11-14
 SET PROGRAM TYPE 11-17
 moving 10-2
 sample for a single-file application 4-8
 sample for multifile application 5-31
 within a PATHWAY system 2-27
 PATHCOM skeleton file 1-9
 PATHCOMFILE attribute
 summary description 2-4
 supplying a current value 2-19, 4-7, 5-30
 PATHCOMSKELETON attribute 2-4
 PATHCTL file 4-9
 PATHMON
 creation 4-9
 defined 2-27
 naming rules 4-10
 PATHWAY
 ADD PROGRAM command 11-19
 adding terminals to the system 11-21
 and ENABLE applications 1-7

 Index-22

 INDEX
 Project-tracking system

 establishing sample systems 4-7, 5-31
 example of integrated system 12-1
 integrating applications into a single
 system 11-1
 log files 4-9
 MAXTERMDATA 11-16
 obey file to establish an integrated
 system 12-59
 obey file to stop a system 11-22
 obey files to establish a system 4-10, 5-33
 sample obey files 4-10
 SET PROGRAM TYPE 11-17
 SET SERVER ASSIGN command 11-10, 11-19
 starting a TCP 11-22
 starting a terminal 11-22
 system
 defined 2-27
 overview 2-27
 PATHCOM 2-27
 PATHMON 2-27
 TCP 2-27
 Physical files
 and ABILITY attributes 11-9
 and box names 11-9
 PIC clause (DDL)
 examples 3-12
 limitation 3-15
 Primary key field
 as used by an application 8-4
 choosing 3-10, 12-10
 defined 2-26
 in key-sequenced files 3-9
 screen identifier 8-6
 sorting sequence 8-12
 PRINT 8-35
 Printing a screen 8-35
 Project-info application 12-29
 Project-tracking system
 calling applications 12-22
 candidates for automatic READ operations 12-21
 checking for normalization 12-12
 classes of data 12-3
 data requirements 12-3
 defining applications to be generated 12-15
 described 12-1
 determining screen format 12-18
 files to be accessed 12-16
 functional requirements 12-2
 generating the applications 12-25
 identifying applications 12-15
 key fields 12-10
 listing the fields in each file 12-10

 Index-23

 INDEX
 Providing user information

 relationships between classes of data 12-7
 Providing user information
 and the BOXTITLE attribute 6-15
 summary description 2-6

 Qualified records 5-24

 Random access 3-9
 READ APPROX operations
 comparison of alphanumeric data 8-9
 described 8-15
 for a containing box 8-15
 for a nested box 8-16
 for an outermost box 8-15
 READ attribute
 and file operations 6-22
 restricting access to a child box 6-27
 summary description 2-9
 READ EXACT operations
 comparison of alphanumeric data 8-9
 described 8-16
 for a containing box 8-17
 for a nested box 8-17
 for an outermost box 8-17
 READ FIRST operations
 described 8-12
 for group key fields 8-13
 with duplicate alternate keys 8-13
 READ GENERIC operations
 comparison of alphanumeric data 8-9
 described 8-17
 for a containing box 8-19
 for a nested box 8-19
 for an outermost box 8-19
 READ NEXT operations 8-14
 READ operations
 and the application-access path 5-23, 5-28
 and the outermost box 8-4
 automatic 6-23, 12-21
 containing box 8-4
 effect of tree structure 5-22
 for a child box 5-11
 limiting an application to read-only 6-22
 nested box 8-4
 READ APPROX 8-15
 READ EXACT 8-16
 READ FIRST 8-12
 READ GENERIC 8-17
 READ NEXT 8-14
 Read-only operations 6-22
 Reclaiming disc space 10-4
 RECORD attribute

 Index-24

 INDEX
 Records, updating

 and the DATAFILE attribute 5-9
 detailed description 4-5, 5-9
 summary description 2-9
 supplying a value 2-14, 4-5, 5-9
 Record description
 adding to a dictionary 3-16
 and the DATAFILE attribute 2-15, 5-9
 creating 3-12
 description 2-1
 displaying initial values 2-11
 identifying to ENABLE
 examples 2-14, 4-5, 5-9
 summary description 2-9
 Record number field
 and INSERT operations 8-20
 and READ GENERIC operations 8-17
 and the courtesy key 8-5
 appearance on the terminal screen 8-8
 entry-sequenced files 3-9
 relative files 3-9
 unstructured files 3-9
 RECORD statement
 example 3-12, 12-13
 submitting to DDL 3-16
 Records
 defined 2-25
 deleting
 a single record 8-29
 several records at a time 8-29
 special considerations 8-33
 displaying several within a box 1-4, 6-2
 fitting on a tabular format screen 6-21
 inserting
 a single record 8-20
 several records at a time 8-25
 keys, See key fields
 length limitation 3-15
 reading
 by a partial key value 8-17
 by an exact key value 8-16
 by approximate key value 8-15
 the first record in a file 8-12
 the next record in a file 8-14
 retrieval
 effect of the ABILITY attributes 6-22
 effect of tree structure 5-22
 that qualify for the application-access
 path 5-22
 updating
 a single record 8-32
 several records at one time 8-32
 special considerations 8-33

 Index-25

 INDEX
 RECOVER

 RECOVER 8-35
 Recovering a screen 8-35
 Related information 5-6
 Relational data base 2-26
 Relationships
 between classes of data 3-4, 12-7
 between parent and child box 5-11
 many-to-many
 defined 3-4
 guidelines 12-9
 one-to-many
 defined 3-4
 guidelines 12-7
 one-to-one
 defined 3-4
 guidelines 12-7
 Relative files
 and INSERT operations 8-21
 courtesy key 8-5
 described 3-9
 record number field 3-9, 8-5
 Removing repeating data 3-6
 Reordering screen fields
 and the INCLUDE attribute 6-4, 6-11
 summary description 2-8
 Repeating field values 2-25
 Requester
 defined 1-7
 within a PATHWAY system 2-27
 Requirements
 values for application attributes 2-4
 values for box attributes 2-6
 RESET command
 examples 6-28
 summary description 2-3
 usage guideline 6-10
 Resolving problems
 accessing a dictionary 9-3
 during application execution 9-3
 with extended memory overflow 9-1
 Reversing an operation 8-33
 Rules
 for ENABLE level numbers 5-19
 for levels of a tree structure 5-13
 for relationships between data classes 12-8
 join fields of links 5-13
 using the LINK OPTIONAL parameter 5-19

 Sample tree structures 5-21
 SCOBOLCOMPILER attribute 2-4
 SCOBOLLIST attribute
 obtaining compilation listing 11-5

 Index-26

 INDEX
 SCREEN COBOL compilation listing

 summary description 2-4
 supplying a value 11-5
 SCOBOLOBJECT attribute
 identifying the location of the object
 code 11-5
 summary description 2-4
 suppressing object file 10-3
 using the starting value 11-4
 SCOBOLSKELETON attribute 2-5
 SCOBOLSOURCE attribute
 and moving an application 10-3
 functional description 7-1
 summary description 2-5
 supplying a value 7-1, 11-6
 SCOBOLX
 SCREEN COBOL compiler command 10-3
 Screen
 and levels of a tree structure 5-13, 5-20
 compressed layout 2-9, 6-14
 customization
 example 6-5
 guidelines 6-2
 task description 6-6
 defining number of records in a box 2-10
 determining format 12-18
 displaying initial values 2-11
 example with a two-level tree structure 5-22
 excluding fields
 overview 2-10
 with the INCLUDE attribute 6-11
 join fields 5-12
 list of format attributes 6-4
 making a detailed sketch 12-20
 multifile examples 1-3, 5-1
 reflecting parent-child relationship 5-12
 reordering screen labels and fields
 overview 2-8
 with the INCLUDE attribute 6-4, 6-11
 screen labels 2-7
 single-file examples 1-2, 4-1
 title 6-7
 title example 6-8
 user information in a box 2-6
 user information on box line 1 6-16
 with a sample three-level tree structure 5-26
 with DDL HEADINGs used as labels 6-10
 with user information on line 1 of a box 6-16
 SCREEN COBOL
 run command 10-3
 SCOBOLX command 10-3
 SCREEN COBOL CALL statement 11-11
 SCREEN COBOL compilation listing

 Index-27

 INDEX
 SCREEN COBOL compiler

 and MAXTERMDATA 11-16
 obtaining 11-5
 SCREEN COBOL compiler 10-3
 SCREEN COBOL menu program
 example 12-40
 guidelines for writing 11-3
 SCREEN COBOL object code
 directing to the same object file 11-4
 identifying location 11-5
 removing old versions 10-4
 SCREEN COBOL requester program 1-7
 SCREEN COBOL skeleton file
 function 1-9
 setting flags 2-8
 SCREEN COBOL source code
 compiling 10-3
 compiling after modifications 11-13
 modifying to call another application 11-11
 obtaining 7-1, 11-6
 SCREEN COBOL Utility Program, See SCUP
 Screen fields
 acceptable data types 8-8
 acceptable data values 8-8
 and INSERT operations 8-20
 decimal numeric 8-8
 determining length 8-8
 entering negative values 8-9
 entering positive values 8-8
 excluding
 and the EXCLUDE attribute 6-17
 summary description 2-7
 usage guideline 6-3
 with the INCLUDE attribute 6-11
 identifying acceptable values 7-1
 illustrated 1-2
 join fields 8-10
 numeric signed 8-9
 reordering
 and the INCLUDE attribute 6-11
 example 6-12
 summary description 2-8
 restricting access to 12-19
 Screen format attributes 6-4
 Screen identifiers
 alternate key fields 8-7
 primary key fields 8-6
 Screen operations 8-35
 SCREENFORMAT attribute
 and tabular format screens 6-19
 function in screen formatting 6-4
 summary description 2-9
 supplying COMPRESSED as a value 6-13

 Index-28

 INDEX
 SET SERVER ASSIGN command

 Screens
 making a rough sketch 12-17
 modifying outside of ENABLE 7-2
 printing 8-35
 providing a tabular format 6-19
 recovering 8-35
 typical single-file 8-2
 SCUP
 to reclaim disc space 10-4
 using to move a generated application 10-2
 Selecting a file type 3-9
 Sequential access 3-9
 Server
 defined 1-7
 identifying a server class 6-31
 in a PATHWAY system 2-27
 SERVERCLASS attribute
 and the TMF and NONSTOP attributes 6-31
 summary description 2-10
 SET command
 and current attribute values 2-11
 BOXTITLE 6-15, 6-19
 DELETE 6-22
 EXCLUDE 6-17
 FILL 6-24
 HEADINGS 6-9, 6-19
 INCLUDE 6-11
 INSERT 6-22
 NONSTOP 6-31
 PATHCOMFILE attribute 4-7, 5-30
 READ 6-27
 RECORD 4-5, 5-9
 SCOBOLLIST 11-5
 SCOBOLOBJECT 11-5
 SCOBOLSOURCE 7-1, 11-6
 SCREENFORMAT 6-13, 6-19
 SERVERCLASS 6-31
 SIZE 6-19
 summary description 2-3
 supplying application attribute values 2-18
 TITLE 6-7
 TMF 6-30
 to describe a box 2-13, 5-9
 TREE 4-5, 5-18
 UPDATE 6-22
 VALUES 6-27
 SET EXT command, See FUP SET EXT command
 SET PROGRAM TYPE (PATHCOM command) 11-17
 SET SERVER ASSIGN command
 adding to a PATHCOM command file 11-16
 example in modified PATHCOM command file 12-58
 for a moved application 10-4

 Index-29

 INDEX
 SET TCP TCLPROG

 when integrating applications 11-10
 SET TCP TCLPROG 10-4
 SET TERM (PATHCOM command) 11-21
 SET TERM INITIAL (PATHCOM command) 11-21
 SET TERM TCP (PATHCOM command) 11-21
 SHOW command
 summary description 2-3
 to examine current values in attribute
 table 9-3
 to obtain value of DICTIONARY attribute 9-3
 Signed numeric data 8-9
 Single-file application
 adding a box 4-5
 associating the box with the application 4-5
 execution 4-7
 functional description 1-2
 generation guidelines 4-2
 identifying a record description 4-5
 providing automatic READ operations 6-23
 sample application 4-2
 typical display screens 8-2
 SIZE attribute
 and tabular format screens 6-19
 as a screen formatting attribute 6-4
 summary description 2-10
 Specifications, See Commands
 Starting attribute value
 and default attribute values 2-15
 defined 2-11
 summary for application attributes 2-4
 summary for box attributes 2-6
 Syntax summary A-1

 T16-651x terminals
 function keys 8-37
 template 8-1
 T16-652x terminals
 cursor position 8-11
 function keys 8-37
 template 8-1
 T16-653x terminals
 cursor position 8-11
 function keys 8-37
 template 8-1
 T9155-CANT-CHAIN-MESSAGE 11-13
 T9155-CHAIN paragraph 11-11, 12-37
 Tabular format screens
 determining if a record will fit 6-21
 examples 1-4, 12-24
 providing 6-19
 usage guidelines 6-3

 Index-30

 INDEX
 Tree Structure

 TCP
 defined 2-27
 starting 11-22
 stopping 11-22
 Template 8-1
 TERMINAL attribute 2-5
 Terminal Control Process, See TCP
 Terminal function keys, See Function
 keys
 Terminal screen, See Screen
 Terminals
 adding to a PATHWAY system 11-21
 maximum number 11-21
 Terminating ENABLE, See EXIT command
 Three-level tree structure 5-25
 TITLE attribute
 examples 2-20, 6-9
 function in screen formatting 6-5
 guidelines for centering a title 6-8
 summary description 2-5
 to provide a screen title 6-7
 Title, screen 6-2, 6-8, 12-19
 TMF
 and integrated applications 11-20
 and nonaudited files 6-31
 identifying audited files 6-30
 TMF attribute
 summary description 2-10
 supplying ON as a value 6-30
 Transaction Monitoring Facility, See TMF
 TREE attribute
 detailed description for single-file
 applications 4-5
 override value example 2-19
 providing level numbers 5-18
 relationship to a tree structure 5-10
 summary description 2-5
 supplying a value
 instructions 5-18
 multifile examples 5-19
 rules for the LINK OPTIONAL parameter 5-20
 single-file example 4-6
 Tree structure
 and INSERT operations 5-22
 and READ operations 5-22
 and screen format 12-18
 application-access path 5-20
 defined 5-10
 effect on generated application 5-20
 identifying the box at the first level 5-18
 samples 5-11, 5-21
 screen location of first level box 5-21

 Index-31

 INDEX
 Two-level tree structure

 three-level 5-25
 two-level 5-11
 Two-level tree structure
 detailed example 5-21
 illustrated 5-11
 terminal screen 5-22
 TYPE clause (DDL) 3-15

 UNDO operation 8-33
 Undoing a file operation 8-33
 Unstructured files
 and INSERT operations 8-20
 courtesy key 8-5
 described 3-9
 record number field 8-5
 UPDATE attribute
 and the VALUES attribute 6-27
 summary description 2-10
 supplying OFF as a value 6-22
 UPDATE BOX operations 8-32
 UPDATE operations 8-32
 and the application-access path 5-24
 and the INCLUDE attribute 6-13
 restricting with the UPDATE attribute 6-22
 reversing 8-33
 special considerations 8-33
 UPDATE 8-32
 UPDATE BOX 8-32
 User information within a box 6-2, 6-19
 Using an application 8-1

 VALUE clause (DDL)
 and the VALUES attribute 6-27
 example 6-27
 VALUES attribute
 and the DDL VALUE clause 6-27
 summary description 2-11

 Index-32

	TPTITLE
	TPCONTNT
	TPPREF
	TPCONVNT
	TPSEC01
	TPSEC02
	TPSEC03
	TPSEC04
	TPSEC05
	TPSEC06
	TPSEC07
	TPSEC08
	TPSEC09
	TPSEC10
	TPSEC11
	TPSEC12
	TPAPPA
	TPAPPB
	TPGLOSS
	TPINDEX

