
System Software Library

Guardian
Application
Conversion
Guide

Abstract This guide describes how to convert a TAL, COBOL85, or Pascal application or a TACL
program to use the extended features of the Tandem NonStop Kernel. It is intended for
application programmers.

Part Number 096047

Edition Second

Published September 1993

Product Version Guardian D20

Release ID D20.00

Supported Releases This manual supports D20.00 and all subsequent releases until otherwise indicated in
a new edition.

Document History Edition Part Number Product Version Earliest Supported Release Published

First 069808 Guardian 90 D10 N/A January 1993

Second 096047 Guardian D20 D20.00 September 1993

New editions incorporate any updates issued since the previous edition.

A plus sign (+) after a release ID indicates that this manual describes function added to the base release,
either by an interim product modification (IPM) or by a new product version on a .99 site update tape (SUT).

Copyright Copyright © 1993 by Tandem Computers Incorporated. Printed in the U.S.A. All rights reserved. No part of this
document may be reproduced in any form, including photocopying or translation to another language, without
the prior written consent of Tandem Computers Incorporated.

Export Statement Export of the information contained in this manual may require authorization from the U. S. Department of
Commerce.

Examples Examples and sample programs are for illustration only and may not be suited for your particular purpose.
Tandem does not warrant, guarantee, or make any representations regarding the use or the results of the use
of any examples or sample programs in any documentation. You should verify the applicability of any example
or sample program before placing the software into productive use.

Ordering Information For manual ordering information: Domestic U.S. customers, call 1-800-243-6886; international customers,
contact your local sales representative.

New and Changed Information

096047 Tandem Computers Incorporated iii

The following changes have been made to the Guardian Application Conversion Guide for
this edition:

The name of this guide has been changed from the Guardian 90 Operating System
Application Conversion Guide to the Guardian Application Conversion Guide.

Section 8, “Converting Other Parts of an Application,” has been updated to
include information on converting applications to use the ADDRESS_DELIMIT_
and SEGMENT_USE_ procedures.

Section 9, “Converting to TNS/R Systems,” is new. Most of the information in this
section applies to all TNS/R systems. Some of the information on data swap file
size, however, applies only to D20 TNS/R systems.

The list of system procedures in Appendix A has been updated to include the
ADDRESS_DELIMIT_ and SEGMENT_USE_ procedures.

Appendix D, “Considerations for Migrating Any Application,” contains the
following additions:

A discussion of condition codes.

A discussion of the MLAM PORT interface.

A discussion of bounds checking of reference parameters.

A discussion of ensuring adequate pool space.

The glossary has been updated to add TNS/R terms that are used in this edition.

New and Changed Information

iv 096047 Tandem Computers Incorporated

Contents

096047 Tandem Computers Incorporated v

About This Guide xvii

Notation Conventions xxiii

Section 1 Introduction

Why a New Operating System? 1-1

What Are the Differences? 1-2

More Concurrent Processes per CPU 1-3

Conversion Strategy 1-4
Converting Single-Process Applications 1-5
Converting Multiple-Process Applications 1-5

An Approach to Converting an Application 1-6

Conversion Options 1-7
Running a Process at a High PIN 1-8
Allowing a High-PIN Creator 1-8
Opening a High-PIN Process 1-8
Allowing a High-PIN Opener 1-8
Creating and Managing a High-PIN Process 1-9
Converting Other Parts of an Application 1-11
Converting to Run on TNS/R Systems 1-11

Section 2 Conversion Concepts

New Guardian Procedures 2-1
Naming Conventions 2-2
Parameter Conventions 2-2
Error-Return Conventions 2-5

New File-Name Format 2-6
Disk File Names 2-6
Device Names 2-8

New Process Identifiers 2-10
Process Names 2-10
Process File Names 2-10
Process Descriptors 2-14
Process Handles 2-14

New System Messages 2-16

Improved I/O Performance 2-17

New Distributed Systems Management (DSM) Tokens 2-17

New File-System Error Numbers 2-17

Contents

vi 096047 Tandem Computers Incorporated

Section 2 Conversion Concepts (continued)

New Object-File Attributes 2-18
The HIGHPIN Attribute 2-18
The HIGHREQUESTERS Attribute 2-19
The RUNNAMED Attribute 2-19

Conversion Considerations and the Common Run-Time Environment
(CRE) 2-19

Section 3 Converting TAL Applications

Converting Basic Elements of a TAL Program 3-2
Using the EXTDECS Declarations 3-2
Using the ZSYSTAL Declarations 3-3
Declaring and Using Programming Variables 3-4
Running the TAL Compiler 3-8
Using the Binder With Converted Object Files 3-8

Converting a TAL Program to Run at a High PIN 3-9
Setting the HIGHPIN Object-File Attribute 3-10
Using a Library File 3-10
Declaring 16-Bit CPU and PIN Variables 3-10
Calling the MYPID Procedure 3-11
Using MYPID in a SETMODE (Function 11) Procedure Call 3-12

Creating and Managing a High-PIN Process 3-13
Creating a High-PIN Process 3-14
Specifying a Process Name Using PROCESS_CREATE_ 3-17
Using the Process Name From PROCESS_CREATE_ 3-21
Using the Process Handle and Process Descriptor From
PROCESS_CREATE_ 3-21
Specifying Other PROCESS_CREATE_ Options 3-22
Creating a Low-PIN Process 3-23
Managing a High-PIN Process 3-23

Opening and Communicating With a High-PIN Server 3-30
Setting the RUNNAMED Object-File Attribute 3-30
Communicating With a High-PIN Server 3-31
Monitoring a High-PIN Server 3-35

Contents

096047 Tandem Computers Incorporated vii

Section 3 Converting TAL Applications (continued)

Allowing a High-PIN Creator 3-38
Full Conversion or HIGHREQUESTERS? 3-38
Getting Your Creator’s Process Identifier 3-40
Converting a Startup Sequence That Does Not Use INITIALIZER 3-41
Setting the HIGHREQUESTERS Attribute to Allow a High-PIN
Creator 3-45

Being Opened by and Communicating With a High-PIN Requester 3-46
Converting a Server 3-46
Setting the HIGHREQUESTERS Attribute to Allow High-PIN
Openers 3-54

Section 4 Converting COBOL85 Applications

Converting Basic Elements of a COBOL85 Program 4-2
Using the ZSYSCOB Declarations 4-2
Declaring and Using Programming Variables 4-3
Converting Guardian Procedure Calls 4-7
Converting for New Reserved Words 4-7
Running the COBOL85 Compiler 4-7
Using the Binder With Converted Object Files 4-8

Converting a COBOL85 Program to Run at a High PIN 4-8
Selecting the Common Run-Time Environment (CRE) 4-9
Setting the HIGHPIN Object-File Attribute 4-10
Using a Library File 4-10
Declaring CPU and PIN Data Items 4-11
Calling COBOL85 Utility Routines 4-11
Removing ARMTRAP Procedure Calls 4-11
Converting MYPID Procedure Calls 4-12

Creating and Managing a High-PIN Process 4-13
Creating a High-PIN Process 4-14
Managing a High-PIN Process 4-14

Opening and Communicating With a High-PIN Server 4-15
Setting the RUNNAMED Object-File Attribute 4-15
Converting a Requester 4-16

Being Opened by and Communicating With a High-PIN Requester 4-22
Converting a Server 4-22
Setting the HIGHREQUESTERS Attribute to Allow High-PIN
Openers 4-27

Contents

viii 096047 Tandem Computers Incorporated

Section 5 Converting C Applications

Recompiling Your C Program 5-2
D-Series and C-Series Object Modules 5-2
D-Series CEXTDECS Declarations 5-3
D-Series ZSYSC Declarations 5-3
Changing Memory-Model File References 5-4
Opening Temporary Files 5-4
Replacing min and max Macros 5-4
Including the Macro NULL Definition 5-4
Changing Macro Definitions 5-4
Using Type long in Bit-field Declarations 5-5
Using the New Definition for errno 5-5
Result of the sizeof Operator 5-5
Type of size_t 5-5
fflush Function 5-5
sscanf Function 5-6
Changing Keywords 5-6
Replacing Obsolete TAL Function Declarations 5-6
Declaring Function Prototypes 5-6

Program Elements Affected by D-Series System Enhancements 5-6
Declaring CPU and PIN Variables 5-7
Declaring and Checking File-System Error Numbers 5-7
Using Guardian File Names 5-7
Declaring Process Identifiers 5-9
Avoiding Subvolume Defaulting in Disk File Names 5-9
Converting Guardian Procedure Calls 5-9

Making the C Compiler Run as a High-PIN Process 5-10

Converting a C Program to Run at a High PIN 5-11
Setting the HIGHPIN Object-File Attribute 5-12
Using a Library File 5-12
Declaring CPU and PIN Variables 5-12
Converting MYPID Procedure Calls 5-13

Creating a High-PIN Process 5-14

Contents

096047 Tandem Computers Incorporated ix

Section 5 Converting C Applications (continued)

Opening and Communicating With a High-PIN Server 5-16
Setting the RUNNAMED Object-File Attribute 5-17
Communicating With a High-PIN Server 5-18

Opening a High-PIN Server 5-18
Opening a High-PIN Server for a Backup Requester Process 5-20
Sending a Request to a High-PIN Server 5-21
Closing a High-PIN Server 5-21
Closing a High-PIN Server for a Backup Requester Process 5-21

Monitoring a High-PIN Server 5-22
Opening $RECEIVE 5-22
Reading System Messages From $RECEIVE 5-23
Processing System Messages Using the CHILD_LOST_
Procedure 5-24
Closing $RECEIVE 5-24

Being Opened by and Communicating With a High-PIN Requester 5-25
Converting a Server 5-25

Defining an Opener Table 5-26
Opening $RECEIVE 5-27
Reading System Messages From $RECEIVE 5-28
Getting Information About System Messages 5-28
Reading and Processing Open and Close System Messages 5-29
Reading and Processing Status-Change Messages 5-30
Replying to a System Message 5-30
Using the OPENER_LOST_ Procedure to Maintain an Opener
Table 5-32

Setting the HIGHREQUESTERS Attribute to Allow High-PIN
Openers 5-33

Section 6 Converting Pascal Applications

Converting Basic Elements of a Pascal Program 6-2
Importing the PEXTDECS and PASEXT Declarations 6-3
Importing the ZSYSPAS Declarations 6-4
Naming Standard Files in the Module Heading 6-4
Declaring and Using Programming Variables 6-5
Converting Guardian Procedure Calls 6-8
Running the Pascal Compiler 6-8
Binding the Run-Time Library 6-8
Using the Binder With Converted Object Files 6-8

Contents

x 096047 Tandem Computers Incorporated

Section 6 Converting Pascal Applications (continued)

Converting a Pascal Program to Run at a High PIN 6-9
Setting the HIGHPIN Object-File Attribute 6-9
Using a Library File 6-10
Declaring CPU and PIN Variables 6-10
Converting MYPID Procedure Calls 6-10

Creating a High-PIN Process 6-12

Opening and Communicating With a High-PIN Server 6-14
Setting the RUNNAMED Object-File Attribute 6-15
Communicating With a High-PIN Server 6-16
Monitoring a High-PIN Server 6-20

Being Opened by and Communicating With a High-PIN Requester 6-23
Converting a Server 6-23
Setting the HIGHREQUESTERS Attribute to Allow High-PIN Openers
 6-31

Section 7 Converting TACL Programs

Declaring and Using TACL Variables 7-2
Declaring File-System Error Numbers 7-2
Declaring CPU and PIN Variables 7-2
Declaring Process Identifiers 7-3
Avoiding Subvolume Defaulting 7-4
Converting Between Process Handles and Process File Names 7-4

Creating and Managing a High-PIN Process 7-5
Creating a High-PIN Process 7-5
Receiving Completion Codes 7-6

Using TACL Built-in Functions 7-8
Checking the Error When Stopping a Process 7-8
Returning a Node Name From #NEWPROCESS or #PROCESS 7-8

Obtaining Lock Information 7-9

Section 8 Converting Other Parts of an Application

Managing Your Disk Files 8-2
Manipulating and Editing Disk File Names 8-2
Maintaining Disk Files and Volumes 8-7

Using Terminal I/O Operations 8-13
Converting a Command-Interpreter Interface 8-13
Converting BREAK Key Handling 8-16

Contents

096047 Tandem Computers Incorporated xi

Section 8 Converting Other Parts of an Application (continued)

Using Sequential I/O (SIO) Procedures 8-17
Using the GPLDEFS File 8-17
Allocating FCBs Using the INITIALIZER 8-18
Allocating FCBs Using Declarations 8-19
Initializing the Common FCB Using SET^FILE 8-19
Initializing a New FCB Using SET^FILE 8-19
Specifying an Opener for $RECEIVE Using the SET^FILE
Procedure 8-20
Specifying System Messages Using the SET^FILE Procedure 8-20
Determining an Opener Using the CHECK^FILE Procedure 8-21
Opening $RECEIVE to Read System Messages 8-22

Converting Distributed Systems Management (DSM) Applications 8-23
Using the DSM Definition Files 8-23
Receiving and Interpreting Event Messages 8-23
Generating Event Messages 8-29
Converting DSM Applications That Use SPI 8-32

Improving I/O Performance Using Direct I/O Transfers 8-35
Using Direct I/O Transfers 8-35
Using the SETMODE 72 Function 8-35
When You Must Use PFS Buffers 8-36

Converting Memory-Management Procedure Calls 8-37
Allocating an Extended Data Segment 8-37
Making an Extended Data Segment Accessible 8-37
Deallocating an Extended Data Segment 8-38
Getting Information About an Extended Data Segment 8-38
Extended Segment Size 8-39
Checking Address Limits 8-39

Handling the Message System Interface 8-41

Section 9 Converting to TNS/R Systems

General Considerations 9- 1
Extended Segment Limit Checking 9- 1
Overflow Results 9- 2

Contents

xii 096047 Tandem Computers Incorporated

Section 9 Converting to TNS/R Systems (continued)

General-Case Variances 9- 3
Trap Handlers That Use the Register Stack 9- 3
Trap Handlers That Use the Program Counter 9- 3
Privileged Instructions 9- 4
Nonprivileged References to System Global Data 9- 4
Stack Wrapping 9- 5
Odd-Byte References 9- 6
Data Swap File Size 9- 7
Passing the Addresses of P-Relative Objects 9- 7
Shift Instructions With Dynamic Shift Counts 9- 7

Appendix A Guardian Procedures

Appendix B System Messages

Appendix C System Compatibility

Identifying Disks and I/O Devices C-2

Identifying Processes C-3
Using C-Series Process Identifiers C-3
Using D-Series Process File Names C-4
Ensuring Compatibility: The Inherited Force-Low Characteristic C-5
Using the Inherited Force-Low Characteristic C-5
Overriding the Inherited Force-Low Characteristic C-6

Allowing Opens by High-PIN Requesters C-6
Using Synthetic Process IDs C-7

Communicating With a Named High-PIN Process C-8

Appendix D Considerations for Migrating Any Application

Potential Application Problems D-1
Undocumented Procedures D-1
Undocumented Side Effects of Documented Procedures D-1
Other Potential Application Problems D-1

INITIALIZER Procedure Enhanced D-3

Undefined Condition Codes Contain Meaningless Information D-3

Aggregate SDU Length Checking Enhanced D-3

Contents

096047 Tandem Computers Incorporated xiii

Appendix D Considerations for Migrating Any Application (continued)

D-Series Systems Must Be Named D-4
File Names Always Include a System Name D-4
Device Names Should Not Exceed 7 Characters D-4
DEFINEREADATTR and DEFINEINFO Return a System Name D-4

Temporary File Names Have 7 Digits D-5

System-Message Protocol for Process Pairs Includes CPU Down Message D-5

Pool Space Address Adjustment D-5

TERMPROCESS Replaced by ATP6100 D-6
Device and Subdevice Names for ATP6100 D-6
Protocol Differences D-6

Nowait Write Buffer Integrity D-7

TMF Transactions Not Propagated to Device Simulator Process
Automatically D-7

Enhanced Attribute Values Returned from DEFINEs D-8

For a Process ID of 255 it is Important to Know the Source System D-8

Glossary Glossary–1

Index Index–1

Figures Figure 1. Related Manuals xx

Figure 1-1. D-Series Operating System Environment 1-4

Figure 1-2. Sample Application to Be Converted 1-7

Figure 3-1. Converting Basic Elements of a TAL Program 3-2

Figure 3-2. Converting a TAL Program to Run at a High PIN 3-9

Figure 3-3. Converting a TAL Program to Create and Manage a High-PIN
Process 3-13

Figure 3-4. Converting a TAL Requester to Communicate With a High-PIN
Server 3-31

Figure 3-5. Opening a High-PIN Server for a Backup Process 3-33

Figure 3-6. Converting a TAL Program to Allow a High-PIN Creator 3-38

Figure 3-7. Converting a TAL Server to Communicate With a High-PIN
Requester 3-46

Figure 4-1. Converting Basic Elements of a COBOL85 Program 4-2

Figure 4-2. Converting a COBOL85 Program to Run at a High PIN 4-8

Contents

xiv 096047 Tandem Computers Incorporated

Figure 4-3. Converting a COBOL85 Program to Create and Manage a High-
PIN Process 4-13

Figure 4-4. Converting a COBOL85 Requester to Communicate With a
High-PIN Server 4-16

Figure 4-5. Converting a COBOL85 Server to Communicate With a High-
PIN Requester 4-22

Figure 5-1. Converting Basic Elements of a C Program 5-1

Figure 5-2. Converting a C Program to Run at a High PIN 5-11

Figure 5-3. Converting a C Program to Create a High-PIN Process 5-14

Figure 5-4. Converting a C Requester to Communicate With a High-PIN
Server 5-18

Figure 5-5. Opening a High-PIN Server for a Backup Process 5-20

Figure 5-6. Converting a C Server to Communicate With a High-PIN
Requester 5-25

Figure 6-1. Converting Basic Elements of a Pascal Program 6-2

Figure 6-2. Converting a Pascal Program to Run at a High PIN 6-9

Figure 6-3. Converting a Pascal Program to Create a High-PIN
Process 6-12

Figure 6-4. Converting a Pascal Requester to Communicate With a High-
PIN Server 6-16

Figure 6-5. Opening a High-PIN Server for a Backup Process 6-18

Figure 6-6. Converting a Pascal Server to Communicate With a High-PIN
Requester 6-23

Figure 8-1. Converting Other Parts of an Application 8-1

Figure C-1. Network of C-Series and D-Series Systems C-1

Figure C-2. Identifying Disk Volumes and I/O Devices C-2

Figure C-3. Identifying Processes Using C-Series Process Identifiers C-3

Figure C-4. Identifying Processes Using D-Series Process File Names C-4

Figure C-5. Process Creation Between C-Series and D-Series Systems C-5

Figure C-6. Allowing Opens by High-PIN Requesters C-6

Figure C-7. Communicating With a Named High-PIN Process C-8

Tables Table 2-1. C-Series and D-Series Programmatic Representation of Disk File
Names 2-8

Table 2-2. C-Series and D-Series Programmatic Representation of I/O
Device Names 2-9

Contents

096047 Tandem Computers Incorporated xv

Table 2-3. C-Series and D-Series Programmatic Representation of Process
File Names 2-13

Table 2-4. C-Series Process IDs and D-Series Process Handles 2-15

Table 2-5. D-Series File-System Errors 2-17

Table 3-1. FILE_GETRECEIVEINFO_ message^info Parameter
Format 3-50

Table 4-1. COBOL85 Utility Routines 4-11

Table 4-2. Message-Type Keywords 4-18

Table 5-1. FILE_GETRECEIVEINFO_ message_info Parameter
Format 5-29

Table 6-1. FILE_GETRECEIVEINFO_ message_info Parameter
Format 6-27

Table 8-1. SET^SYSTEMMESSAGES Parameter 8-20

Table 8-2. SET^SYSTEMMESSAGESMANY Parameter 8-21

Table 8-3. D-Series Event Management Service (EMS) Tokens 8-24

Table 8-4. Event Management Service (EMS) Superseded Tokens 8-25

Table 8-5. Cross-Version Access Restrictions for EMS Tokens 8-26

Table 8-6. D-Series File-System Error Lists 8-34

Table A-1. Guardian Procedures A-1

Table B-1. System Messages B-1

Table D-1. Potential Application Problems D-2

Contents

xvi 096047 Tandem Computers Incorporated

About This Guide

096047 Tandem Computers Incorporated xvii

This guide describes how to convert a TAL, COBOL85, C, or Pascal application or a
Tandem Advanced Command Language (TACL) program to use the extended
features of the D-series operating system.

Audience This guide is intended for an application programmer who is converting an
application. The reader should be familiar with:

The language (TAL, COBOL85, C, Pascal, or TACL) used for the application

The Guardian programmatic interface, if the application calls Guardian
procedures or reads system messages from $RECEIVE

The Tandem requester-server approach to application programming, if the
application is a requester or a server

How to Use This Guide This guide is designed to help application programmers who want to convert their
programs to take advantage of the higher limits of the D-series operating system. It is
published as part of the D20 release, but there is more than one way to migrate to D20.

You might be migrating to D20 from a C-series release. In that case, this guide
provides you with the information necessary to convert your applications as you
migrate from a C-series system to a D-series system.

You might be migrating to D20 from the D10 release. In that case, your
applications already run successfully on a D-series system, and you might already
have converted them to take advantage of some or all of the higher limits of the
D-series operating system. This guide will assist you in converting any parts of
your application that have not already been converted and that you want to
convert at this time.

There are only a few things to convert at D20 that are new since D10. See “New
and Changed Information” at the beginning of this guide.

You might also be migrating to D20 running on a TNS/R system. Because TNS/R
systems were supported by C-series operating systems beginning at C30.06, you
might be coming from a TNS/R system already; in that case, there should be few
changes specific to TNS/R systems that you need to make. See “New and
Changed Information” at the beginning of this guide. If you are migrating from a
TNS system, however, you should read Section 9, “Converting to TNS/R
Systems.”

Organization This guide covers these topics:

Section 1 explains why Tandem developed the D-series operating system and
summarizes the differences between a C-series and D-series operating system that
affect an application programmer. It also provides an approach to converting an
application and directs the reader in how to find the required information in the rest of
the guide.

About This Guide

xviii 096047 Tandem Computers Incorporated

Section 2 provides details of some concepts associated with conversion. It expands on
the differences between C-series and D-series systems and provides a comparison of
C-series syntax with D-series syntax.

Section 3 describes how to convert a TAL application. This section also applies to a
COBOL85, C, or Pascal application that calls Guardian procedures.

Section 4 describes how to convert a COBOL85 application.

Section 5 describes how to convert a C application.

Section 6 describes how to convert a Pascal application.

Section 7 describes how to convert a TACL application.

Section 8 describes how to convert the parts of an application that are not described in
Sections 3 through 7. This section applies to TAL, COBOL85, C, Pascal, and TACL
applications.

Section 9 describes how to convert an application to run on TNS/R systems. This
section applies mainly to TAL programs; one subsection applies to C programs as
well.

Appendix A lists each C-series Guardian procedure and the corresponding D-series
Guardian procedure, if one exists.

Appendix B lists the C-series and D-series user-level system messages that an
application can read from $RECEIVE.

Appendix C describes compatibility between processes on C-series systems and
D-series systems in a network.

Appendix D describes the changes that you might have to make to your application
whether you want the D-series enhancements or not. For most applications, these
changes are not necessary.

Related Manuals The required and optional manuals are listed below and shown in Figure 1.

Required Manuals

The Introduction to D-Series Systems is an overview of features that are unique to the
D-series operating system.

The D-series Guardian Programmer’s Guide describes how to use the D-series Guardian
programmatic interface.

The Guardian Procedure Calls Reference Manual describes syntax and programming
considerations for C-series and D-series Guardian procedures.

The Guardian Procedure Errors and Messages Manual describes error codes, error lists,
system messages, and trap numbers for C-series and D-series Guardian procedures.

Required Distributed Systems Management (DSM) Manuals

The Subsystem Programmatic Interface (SPI) Programming Manual describes SPI and how
to use it in a DSM application.

About This Guide

096047 Tandem Computers Incorporated xix

The Event Management Service (EMS) Manual describes EMS, which allows an
application to collect, process, distribute, and generate event messages.

The Tandem NonStop Kernel Event Management Programming Manual describes
Tandem NonStop Kernel event messages.

Required Language Reference Manuals

Transaction Application Language (TAL) Reference Manual

COBOL85 Reference Manual

C Reference Manual

Pascal Reference Manual

TACL Reference Manual

Required Program Development Manuals

The Binder Manual describes Binder, an interactive linker that allows you to examine,
modify, and combine object files and to generate load maps and cross-reference
listings.

The Inspect Manual describes the Inspect program, which is both a source-level and a
machine-level interactive debugger.

The Debug Manual describes Debug, a machine-level interactive debugger.

About This Guide

xx 096047 Tandem Computers Incorporated

Figure 1. Related Manuals

Guardian
Application
Conversion
Guide

Guardian
Procedure
Calls
Reference
Manual

Event Mgmt
Service
(EMS)
Manual

Inspect
Manual

CRE
Programmer's
Guide

Tandem
NonStop
Kernel Event
Management
Programming
Manual

Debug
Manual

TACL
Programmer's
Guide

Guardian
Programmer's
Guide

SPI
Programming
Manual

Binder
Manual

C-Series
Guardian 90
OS
Programmer's
Guide

Intro to
D-Series
Systems

Pascal
Reference
Manual

C
Reference
Manual

COBOL85
Reference
Manual

TAL
Reference
Manual

Language Reference Manuals

Other
Useful

Manuals

Guardian
Procedure
Manuals

DSM
Manuals

Programming Tools
Manuals

TACL
Reference
Manual

Guardian
Procedure
Errors and
Messages
Manual

About This Guide

096047 Tandem Computers Incorporated xxi

Optional Manuals

The C-series Guardian Programmer’s Guide describes how to use the C-series Guardian
programmatic interface.

The TAL Programmer’s Guide provides TAL programming information for the less
experienced programmer who will need to read this guide before using the Transaction
Application Language (TAL) Reference Manual.

The Common Run-Time Environment (CRE) Programmer’s Guide describes the Common
Run-Time Environment for TAL, COBOL85, C, and Pascal applications.

The TACL Programmer’s Guide describes how to write TACL programs.

About This Guide

xxii 096047 Tandem Computers Incorporated

Notation Conventions

096047 Tandem Computers Incorporated xxiii

General Syntax
Notation

The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS Uppercase letters indicate keywords and reserved words; enter these items exactly as
shown. Items not enclosed in brackets are required. For example:

MAXATTACH

lowercase italic letters Lowercase italic letters indicate variable items that you supply. Items not enclosed in
brackets are required. For example:

file-name

Brackets [] Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list may be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

LIGHTS [ON]
 [OFF]
 [SMOOTH [num]]

K [X | D] address-1

Braces { } A group of items enclosed in braces is a list from which you are required to choose one
item. The items in the list may be arranged either vertically, with aligned braces on
each side of the list, or horizontally, enclosed in a pair of braces and separated by
vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

Vertical Line | A vertical line separates alternatives in a horizontal list that is enclosed in brackets or
braces. For example:

INSPECT { OFF | ON | SAVEABEND }

General Syntax Notation

Notation Conventions

xxiv 096047 Tandem Computers Incorporated

Ellipsis ... An ellipsis immediately following a pair of brackets or braces indicates that you can
repeat the enclosed sequence of syntax items any number of times. For example:

M address-1 [, new-value]...

[-] {0|1|2|3|4|5|6|7|8|9}...

An ellipsis immediately following a single syntax item indicates that you can repeat
that syntax item any number of times. For example:

"s-char..."

Punctuation Parentheses, commas, semicolons, and other symbols not previously described must
be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing Spaces shown between items are required unless one of the items is a punctuation
symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process-name.#su-name

Line Spacing If the syntax of a command is too long to fit on a single line, each continuation line is
indented three spaces and is separated from the preceding line by a blank line. This
spacing distinguishes items in a continuation line from items in a vertical list of
selections. For example:

ALTER [/ OUT file-spec /] CONTROLLER

 [, attribute-spec]...

Notation for Management Programming Interfaces

Notation Conventions

096047 Tandem Computers Incorporated xxv

!i and !o In procedure calls, the !i notation follows an input parameter (one that passes data to
the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

1 Introduction

096047 Tandem Computers Incorporated 1–1

Most TAL, COBOL85, C, or Pascal applications or Tandem Advanced Command
Language (TACL) programs written for the C-series operating system can run under
the D-series operating system without modification. However, to take advantage of
the higher limits of the D-series operating system, an application might need to be
converted as described in this manual.

Also, most applications written to run on TNS systems can run on TNS/R systems
without modification. However, modifications might be required in some programs,
particularly in privileged TAL programs. This manual also provides information
about converting applications to run on TNS/R systems.

This section introduces the D-series operating system and summarizes the differences
between the C-series and the D-series operating systems that affect an application
program. This section also provides an approach to converting an application and
discusses conversion options.

Why a New
Operating System?

Tandem designed the C-series operating system for earlier computer systems. Newer
systems such as the Cyclone system are faster and more sophisticated. Therefore,
when running a C-series operating system, newer computer systems sometimes
encounter these limitations:

CPUs are not used efficiently.

Newer Tandem systems execute instructions faster than older systems. When
running a C-series operating system, which supports only 256 concurrent
processes per CPU, a CPU in a newer system can become I/O bound (that is, all
processes are waiting for an I/O operation to finish). Sometimes the CPU becomes
idle and must wait before it can continue executing instructions.

I/O configurations are limited.

While earlier systems have only one I/O channel per CPU, newer systems allow a
maximum of four channels per CPU. Usually, each I/O device requires an I/O
process (IOP), which is a system process that controls the device. Increasing the
number of I/O devices in a system also requires an increase in the number of IOPs
that are running concurrently in a CPU. Thus, when running a C-series operating
system, which allows only 256 concurrent processes per CPU, a newer system
might not be able to support its maximum number of I/O devices.

The D-series operating system increases the number of concurrent processes per CPU
from 256 to an architectural limit of 65,534. The actual limit is at most 2500 and might
be less, depending on availability of segments, time-list elements (TLEs), and memory.
Increasing the number of concurrent processes per CPU:

Improves the efficiency of each CPU

Allows for more IOPs so that larger I/O configurations can be supported

The D-series operating system also supports larger I/O configurations by increasing
the software limits for the maximum number of:

What Are the Differences?

Introduction

1–2 096047 Tandem Computers Incorporated

I/O devices and named processes from 4,096 to 65,535 per system

I/O subdevices per device from 256 to a theoretical limit of 65,535 depending on
the subsystem

Opens per subdevice from 16 to a theoretical limit of 65,535, again depending on
the subsystem

Opens per disk volume from 4,096 to 32,767

Again, these values are the architectural limits. The actual limits depend on the
available resources of the system.

What Are the
Differences?

The major differences between the C-series operating system and the D-series
operating system that affect an application program are:

More concurrent processes per CPU

The D-series operating system allows more than 256 concurrent processes per
CPU; a C-series operating system allows a maximum of 256 processes per CPU.

New system procedures

New user-callable system procedures are available for converted applications in
order to support the extended system limits. These procedures use new naming
and error-return conventions.

New file-name format

The D-series file-name format for disk file names, device names, and process file
names is a variable-length string. The string length is specified as a separate
integer value.

New process identifiers

The D-series process file name is a variable-length string that replaces the C-series
process file name. The D-series process handle is a 20-byte structure that replaces
the C-series 4-word process ID (or CRTPID).

New system messages

New user-level system messages are available for converted applications to read
from $RECEIVE.

Improved performance for I/O operations

The D-series operating system can improve the performance of I/O operations by
directly transferring data between an application’s I/O buffers and the I/O device
without having to allocate an intermediate buffer in the application’s process file
segment (PFS).

New Distributed Systems Management (DSM) tokens

The Event Management Service (EMS) and the Subsystem Programmatic Interface
(SPI) have new tokens and filter functions for DSM applications.

More Concurrent Processes per CPU

Introduction

096047 Tandem Computers Incorporated 1–3

Other changes

To support its extended features, the D-series operating system also provides new
file-system error numbers, file-system error lists, and object-file attributes.

Section 2, “Conversion Concepts,” describes these differences in detail.

Note There are two programmable interfaces to a D-series system:

The C-series-compatible interface. You cannot make use of the extended system limits using this
interface. Entities that describe parts of the C-series-compatible interface are generally referred to in
this guide as C-series entities.

The D-series enhanced interface, which supports the new system limits as described earlier. Entities
that form parts of the D-series enhanced interface are referred to in this guide as D-series entities.

A program that runs on a D-series system can use either or both of these interfaces.

More Concurrent
Processes per CPU

Although the D-series operating system increases several software limits, the limit that
most directly affects an application is the number of concurrent processes per CPU. A
D-series operating system can support an architectural limit of 65,534 concurrent
processes per CPU. The actual number of concurrent processes per CPU depends on
the system’s available resources, such as virtual memory.

The system identifies a process by a process identification number (PIN). When the
system creates a new process, it assigns a PIN to the process. A C-series PIN ranges
from 0 through 255 (and therefore can be represented in an 8-bit field). A D-series PIN
ranges from 0 through the maximum number of processes per CPU supported by the
system. A D-series PIN falls in these categories:

A low PIN ranges from 0 through 254.

A high PIN ranges from 256 through the maximum number supported for the
CPU.

PIN 255 is never assigned to a process. It is sometimes used in a synthetic process ID,
which is described in Appendix C.

Figure 1-1 shows various converted and unconverted processes running in a CPU in
the D-series operating system environment.

Conversion Strategy

Introduction

1–4 096047 Tandem Computers Incorporated

Figure 1-1. D-Series Operating System Environment

High-PIN Processes: PINs ≥ 256

Low-PIN Processes: PINs 0 – 254

User
Applications

User
Applications

Tandem
Subsystems

Operating
System

Operating
System

Tandem
Subsystems

PIN 255 is reserved.

Converted Process

Unconverted Process

Operating
System

Tandem
Subsystems

Conversion Strategy Converting application programs includes those activities that allow you to change
C-series applications to take advantage of the D-series enhancements. Migrating
application programs includes those activities that allow you to run C-series
applications on D-series systems.

Almost all applications designed to run under the C-series operating system can
migrate without modification to run under the D-series operating system by
continuing to use the C-series-compatible interface. The exceptions are few and are
detailed in Appendix D, “Considerations for Migrating Any Application.” Therefore,
there is usually no need to do any conversion unless your system has reached or is
likely to reach the C-series limit of 255 concurrent processes.

If you might reach the C-series limit of 255 processes, then you need to move some
processes into high PINs. Tandem recommends converting your applications if, after
placing Tandem and third-party products in high PINs, you still need more process
control blocks (PCBs) in the low-PIN range than are available.

To move processes into a high PIN requires conversion, because the process identifiers
used in the C-series-compatible interface allow for only 8-bit PINs.

The amount of conversion you need to do depends on the type of application. Single-
process applications, for example, are easier to convert than multiple-process
applications, and some multiple-process applications need more conversion effort than
others.

Conversion Strategy

Introduction

096047 Tandem Computers Incorporated 1–5

Converting Single-Process
Applications

Interprocess communication and process management might need a moderate to large
amount of conversion effort. Single-process applications need the least effort to
convert because they communicate with few, if any, other processes. They also do not
keep track of what processes open them. They do not create other processes because if
they did, they would not be single-process applications.

Word processors and calculators are typical examples of single-process applications.
They are also applications that are executed by a large number of users. Since each
execution of these processes requires a separate PIN a lot of low PINs can be freed by
converting such processes to run at high PINs.

Converting Multiple-
Process Applications

The amount of effort needed to convert multiple-process applications ranges from
small to extensive. As the amount of interprocess communication and management
increases, so does the conversion effort needed. The following list of applications that
contain multiple processes appears in order of the amount of effort, from low to high,
it would take to convert these applications:

COBOL85 program with no ENTER TAL statements

Most requester processes

Server processes that do not track processes that open them

Server processes that care about their creator’s identity

Server processes that do track processes that open them

Monitor process pairs that create and track other processes

The following paragraphs outline the conversion effort required for each of these
application types.

COBOL85 Program With No ENTER TAL Statements

If a COBOL85 program contains no ENTER TAL statements, you do not have to
convert C-series procedure calls to D-series procedure calls. You do need to use the
Common Run-Time Environment (CRE), however, to run a COBOL85 program at a
high PIN.

Most Requester Processes

A requester process opens a server, makes a request, and gets a reply. If the server is
named, then the requester does not have to understand the server’s CPU and PIN; the
system takes care of the interprocess communication.

If the server is not named, some changes are necessary. It is probably easier to run the
server named than to change the requester.

Server Processes That Do Not Track Processes That Open Them

A server process that does not read system messages from its $RECEIVE file probably
does not need to process the CPU and PIN of the requester, because it does not keep a
table of processes that open it.

An Approach to Converting an Application

Introduction

1–6 096047 Tandem Computers Incorporated

Server Processes That Care About Their Creator’s Identity

Some processes check the identity of the process that creates them. Such a process
might, for example, compare that process identifier with the sender of the Startup
message to make sure that the sender is also the creator.

Some changes might be necessary if the creator runs at a high PIN; the server needs to
be able to obtain the identity of a high-PIN creator and a high-PIN opener.

Server Processes That Do Track Processes That Open Them

This type of server keeps a table of processes that open it. If the server uses the CPU
and PIN to uniquely identify processes that open it, the server must be converted to
understand the PIN of a high-PIN process. In many cases, however, all that is
necessary is to set the HIGHREQUESTERS attribute for the server.

Monitor Process Pairs That Create and Track Other Processes

Monitor process pairs create, monitor, and control other processes. They also keep
tables of information about the attributes of these processes. If they create and track
high-PIN processes, some changes to your application are required.

An Approach to
Converting an

Application

A typical application consists of several processes that communicate with each other to
achieve a specific objective. Converting an application involves changing parts of each
process. If you are converting an application, you might consider the approach for the
application shown below. This application consists of these processes:

$REQ A requester process that creates, opens, and sends requests to the server
process $SRV. $REQ also monitors and manages $SRV. Process $REQ is
started from a terminal using the TACL RUN command. By default, TACL
starts a new process at a high PIN if possible.

$SRV A server process that is opened by the requester process $REQ and receives
requests from $REQ. $SRV also maintains an opener table to track its openers.

The goal of the approach listed below and shown in Figure 1-2 is for both $REQ and
$SRV to run at high PINs.

1. Convert the requester $REQ and the server $SRV to run at high PINs.

2. Convert the requester $REQ to create the server $SRV at a high PIN and then to
manage the high-PIN $SRV process (for example, to suspend or stop it).

3. Convert the requester $REQ to open and send requests to $SRV and to monitor the
high-PIN $SRV process.

4. Convert the server $SRV to receive requests from the requester $REQ and to
maintain an opener table.

5. Convert other parts of the requester $REQ and server $SRV as needed, such as
managing extended memory and files.

Conversion Options

Introduction

096047 Tandem Computers Incorporated 1–7

Figure 1-2. Sample Application to Be Converted

$SRV

$REQ

Requester
Process

Server
Process

TACL

10> RUN reqfile /NAME $REQ,.../

Sections 3 through 7 describe the conversion of TAL, COBOL85, C, Pascal, and TACL
applications, respectively. Section 8, “Converting Other Parts of an Application,”
describes converting parts of an application that can apply to any of these languages.

Conversion Options The approach to conversion described in this guide provides you with enough
information to convert everything in your application to use the D-series enhanced
interface. Of course, not every application needs to have every part converted.
Depending on your application, several options are available. The following list
outlines some of the major enhancements you might need to make, starting with the
easiest options and working to the most complex:

Running your process at a high PIN

Allowing your process to be created by a high-PIN process

Opening a high-PIN process

Allowing your process to be opened by a high-PIN process

Creating and managing a high-PIN process

The following paragraphs indicate where in this guide you need to turn to find
procedural information on the above options.

Conversion Options

Introduction

1–8 096047 Tandem Computers Incorporated

Running a Process at a
High PIN

The following table identifies the parts of this guide that tell you how to convert an
application to be capable of running at a high PIN.

For
programs
written in... See the subsection entitled... In Section...

TAL Converting a TAL Program to Run at a High PIN 3

COBOL85 Converting a COBOL85 Program to Run at a High PIN 4

C Converting a C Program to Run at a High PIN 5

Pascal Converting a Pascal Program to Run at a High PIN 6

For information about using TACL to run processes at a high PIN, see Section 7,
“Converting TACL Programs.” These programs can be written in any language.

Allowing a High-PIN
Creator

The following table identifies the parts of this guide that tell you how convert an
application to be capable of being created by a high-PIN process.

For
programs
written in...

See
Section
... Subsection entitled...

If the process reads system
messages, then, in the same
section, see also...

TAL 3 Allowing a High-PIN Creator

COBOL85 4 Setting the HIGHREQUESTERS
Object-File Attribute

Converting a Server

C 5 Setting the HIGHREQUESTERS
Object-File Attribute

Monitoring a High-PIN Server and
Converting a Server

Pascal 6 Setting the HIGHREQUESTERS
Object-File Attribute

Monitoring a High-PIN Server and
Converting a Server

This operation does not apply to TACL programs.

Opening a High-PIN
Process

To open a high-PIN process, see “Opening and Communicating With a High-PIN
Server” in the section that corresponds to your programming language (Sections 3
through 6). This operation does not apply to TACL programs.

Allowing a High-PIN
Opener

To allow a high-PIN opener, see “Being Opened by and Communicating With a High-
PIN Requester” in the section that corresponds to your programming language
(Sections 3 through 6). This operation does not apply to TACL programs.

Conversion Options

Introduction

096047 Tandem Computers Incorporated 1–9

Creating and Managing a
High-PIN Process

The following tables identify the subsections of this guide that you should refer to for
help in creating and managing high-PIN processes. Separate tables are included for
TAL, COBOL85, C, and Pascal. These operations do not apply to TACL programs.

For TAL Programs

Step...
You might need to convert your
application to...

As described
in Section... Subsection entitled...

 1 Create any processes that you want at a
high PIN using PROCESS_CREATE_

 3 Creating a High-PIN Process

 2 Create any processes that you want at a
low PIN using PROCESS_CREATE_

 3 Creating a Low-PIN Process

 3 Create a backup process (if required)
using PROCESS_CREATE_

 3 Creating a High-PIN Process

 4 Manage processes using the D-series
enhanced procedures

 3 Managing a High-PIN
Process

 5 Get information about processes using
the PROCESS_GETINFO_ procedure

 3 Getting Information About a
High-PIN Process

 6 Set process attributes using the
PROCESS_SETINFO_ procedure

 3 Setting Process Attributes for
a High-PIN Process

 7 Monitor the process status 3 Monitoring a High-PIN Server

For COBOL85 Programs

Step...
You might need to convert your
application to...

As described
in Section... Subsection entitled...

 1 Create any processes that you want at a
high PIN using PROCESS_CREATE_

 4 Creating a High-PIN Process

 2 Create any processes that you want at a
low PIN using PROCESS_CREATE_

 4 Creating a High-PIN Process

 3 Create a backup process (if required)
using PROCESS_CREATE_ as for any
high-PIN process

 4 Creating a High-PIN Process

 4 Manage processes using the D-series
enhanced procedures

 4 Managing a High-PIN Process

 5 Get information about processes using
the PROCESS_GETINFO_ procedure

 3 Getting Information About a
High-PIN Process

 and 4 Converting Guardian System
Procedure Calls

 6 Set process attributes using the
PROCESS_SETINFO_ procedure

 3 Setting Process Attributes for
a High-PIN Process

 and 4 Converting Guardian System
Procedure Calls

 7 Monitor the process status 4 Converting the RECEIVE-
CONTROL Paragraph

Conversion Options

Introduction

1–10 096047 Tandem Computers Incorporated

For C Programs

Step...
You might need to convert your
application to...

As described in
Section... Subsection entitled...

 1 Create any processes that you want at a
high PIN using PROCESS_CREATE_

5 Creating a High-PIN Process

 2 Create any processes that you want at a
low PIN using PROCESS_CREATE_

5 Creating a High-PIN Process

 3 Create a backup process (if required) using
PROCESS_CREATE_

5 Creating a High-PIN Process

 4 Manage processes using the D-series
enhanced procedures

3 Managing a High-PIN Process

and 5 Converting Guardian System
Procedure Calls

 5 Get information about processes using the
PROCESS_GETINFO_ procedure

3 Getting Information About a High-
PIN Process

and 5 Converting Guardian System
Procedure Calls

 6 Set process attributes using the
PROCESS_SETINFO_ procedure

3 Setting Process Attributes for a
High-PIN Process

and 5 Converting Guardian System
Procedure Calls

 7 Monitor the process status 5 Monitoring a High-PIN server

For Pascal Programs

Step...
You might need to convert your
application to...

As described
in Section... Subsection entitled...

 1 Create any processes that you want at a
high PIN using PROCESS_CREATE_

 6 Creating a High-PIN Process

 2 Create any processes that you want at a
low PIN using PROCESS_CREATE_

 6 Creating a High-PIN Process

 3 Create a backup process (if required)
using PROCESS_CREATE_

 6 Creating a High-PIN Process

 4 Manage processes using the D-series
enhanced procedures

 3 Managing a High-PIN Process

 and 6 Converting Guardian System
Procedure Calls

 5 Get information about processes using
the PROCESS_GETINFO_ procedure

 3 Getting Information About a
High-PIN Process

 and 6 Converting Guardian System
Procedure Calls

 6 Set process attributes using the
PROCESS_SETINFO_ procedure

 3 Setting Process Attributes for a
High-PIN Process

 and 6 Converting Guardian System
Procedure Calls

 7 Monitor the process status 6 Monitoring a High-PIN Server

Conversion Options

Introduction

096047 Tandem Computers Incorporated 1–11

Converting Other Parts of
an Application

If you convert your application programs to use the D-series enhancements, you might
have to convert other parts of the application:

Terminal I/O operations; specifically those that have an interface with TACL or
process the BREAK key

Sequential I/O operations

Direct transfers during I/O operations

Memory management for extended data segments, if your process shares an
extended data segment with one or more processes

There are two additional memory-management procedure calls that you can convert
your application to use: SEGMENT_USE_ and ADDRESS_DELIMIT_; however,
conversion is optional. There are also some new procedure calls that make managing
disk files easier, but converting disk file management applications is optional. For
details on how to convert these other parts of an application, see Section 8,
“Converting Other Parts of an Application.”

Converting to Run on
TNS/R Systems

Most TNS programs written for the C30 and D-series versions of the operating system
can run on a TNS/R system without modification. Variances between TNS and
TNS/R systems, however, might require modification in some programs, particularly
in privileged TAL programs. Some C programs might require modification as well.

Variances between TNS and TNS/R systems exist in the following areas:

Extended segment limit checking

Overflow results

Trap handlers that use the register stack

Trap handlers that modify the P or E registers

Privileged instructions

Nonprivileged references to system global data

Stack wrapping

Odd-byte references

Data swap file size

For details on these variances and on how to convert your application to run on a
TNS/R system, see Section 9, “Converting to TNS/R Systems.”

2 Conversion Concepts

096047 Tandem Computers Incorporated 2–1

This section describes the major concepts involved in converting an application to
make use of the D-series enhancements. Specifically, this section describes:

The use of the new Guardian procedures

The new file-name format

New process identifiers

New system messages

Performance improvements for I/O operations

New Distributed Systems Management (DSM) tokens

New file-system error numbers and error lists

New object-file attributes

Conversion considerations related to the Common Run-time Environment (CRE)

New Guardian
Procedures

The D-series operating Guardian has many new user-accessible Guardian procedures.
However, to ensure compatibility with unconverted applications, Tandem provides
these new procedures in addition to the existing C-series procedures.

The D-series operating system does not include any new sequential I/O (SIO)
procedures. The SET^FILE, CHECK^FILE, and OPEN^FILE procedures (and their
LITERAL and DEFINE declarations) have been modified, but other SIO procedures are
unchanged.

Tandem provides declarations for many of the options and structures used as
parameters to the new Guardian procedures. Tandem uses the ZSYSDDL file to
generate the ZSYSTAL, ZSYSCOB, ZSYSC, ZSYSPAS , and ZSYSTACL files for TAL,
COBOL85, C, Pascal, and TACL applications, respectively. There is no equivalent file
for TACL programs. To use the ZSYSDDL declarations, include the appropriate file
(or sections of the file) in your source code.

This subsection describes in general the characteristics of the new procedures. For
information about each procedure, refer to the Guardian Procedure Calls Reference
Manual.

Note This guide uses the term D-series Guardian procedure to indicate a Guardian procedure that is new in
the D-series release. The term C-series Guardian procedure is used to refer to a C-series-compatible
Guardian procedure that can be called on either a D-series system or a C-series system.

New Guardian Procedures

Conversion Concepts

2–2 096047 Tandem Computers Incorporated

Naming Conventions A D-series procedure name has an underscore (_) after each part, including the last
part. This convention allows you to give your own procedures names that do not
conflict with Tandem procedure names provided that you do not end your procedure
names with an underscore. A D-series procedure name follows one of these format
conventions:

[module_]object_action_[CHKPT_]

module_

is the module or subsystem that owns the object. Examples are MBCS_ and SPI_.

object_

is the object that the procedure acts upon. Examples are FILE_ , PROCESS_ , and
SEGMENT_.

action_

is the action that the procedure takes on the object. Examples are CREATE_ ,
STOP_ , and GETINFO_.

CHKPT_

specifies that the CHECKMONITOR procedure executes the procedure for the
backup process of a process pair. For example, a primary process calls
FILE_OPEN_CHKPT_ to open a file for its backup process.

type-1_TO_type-2_

type-1_TO_type-2_

specifies the conversion from type-1_ to type-2_. Examples are
CRTPID_TO_PROCESSHANDLE_ and PROCESSHANDLE_TO_FILENAME_.

Parameter Conventions The D-series Guardian procedures use new input and output parameter conventions,
including:

Variable-length string parameters for file names, node names, and process
descriptors

20-byte process handles that you use to identify processes to process-control
procedures such as PROCESS_ACTIVATE_ and PROCESS_STOP_

The following paragraphs describe these new conventions.

New Guardian Procedures

Conversion Concepts

096047 Tandem Computers Incorporated 2–3

String Parameters

The D-series procedures use a variable-length string for:

All kinds of file names, including disk file names, device file names, and D-series
process file names. A D-series process file name parameter represents either a
named or unnamed process or a named process pair.

Node names.

Process-descriptor parameters, which are a specific form of D-series process file
name returned by Guardian procedures.

Declaring String Parameters. Declare a string parameter as a reference parameter with its
length specified as a separate integer value. The ZSYSTAL, ZSYSCOB, ZSYSC, and
ZSYSPAS files contain declarations that you can use to declare string parameters. In a
TAL program, you might declare a file name, a node name, and a process descriptor as
follows:

! File name declaration

STRING .file^name[0:ZSYS^VAL^LEN^FILENAME-1];
INT file^name^length;

! Node name declaration

STRING .node^name[0:ZSYS^VAL^LEN^SYSTEMNAME-1];
INT node^name^length;

! Process descriptor declaration

STRING .descriptor[0:ZSYS^VAL^LEN^PROCESSDESCR-1];
INT descriptor^length;

A file-name input parameter must fill the entire string for the number of characters
specified by the length and must not include any leading or trailing blanks or null
characters (that is, the name buffer can include blanks or null characters only after the
specified length).

The letters in a file name can be uppercase or lowercase (or a mixture of both cases);
the Guardian procedures are not case-sensitive with regard to the letters.

For other examples of TAL, COBOL85, C, and Pascal file-name and process-descriptor
string declarations, refer to Sections 3 through 6.

New Guardian Procedures

Conversion Concepts

2–4 096047 Tandem Computers Incorporated

Specifying the String Parameter Length. You specify the length of a string parameter
depending on whether the string is being used as an input-only, output-only, or
input/output parameter as described below and as shown in the hypothetical
procedure calls:

Input only The string parameter is followed by a colon (:) and an integer input
parameter that specifies the actual length in bytes of the string.
Passing the string length as zero is equivalent to omitting the string
parameter. For example:

error := PROC_CALL_ (file^name:file^name^length); ! i:i

Output only The string parameter is followed by a colon (:) and an integer input
parameter that specifies the maximum length in bytes of your return
buffer. Passing the return buffer length as zero is equivalent to
omitting the string parameter.

The system returns the actual length of the string in a separate
integer output parameter. For example:

error := PROC_CALL_ (file^name:max^buffer^length, ! o:i
 file^name^length); ! o

Input/output The string parameter is followed by a colon (:) and an integer input
parameter that specifies the maximum length in bytes of your return
buffer. Passing the return buffer length as zero is equivalent to
omitting the string parameter.

A separate integer parameter contains the current string length. You
set this parameter to the input parameter string length in bytes, and
the system returns the length of the output parameter string. For
example:

error := PROC_CALL_ (file^name:max^buffer^length, ! i,o:i
 file^name^length); ! i,o

Process-Handle Parameters

In process-control procedures such as PROCESS_ACTIVATE_ or PROCESS_STOP_ , a
20-byte process handle identifies the target process. Declare a process handle as a
reference parameter. The ZSYSTAL, ZSYSCOB, ZSYSC, and ZSYSPAS files contain
declarations that you can use to declare process-handle parameters. An example of a
TAL declaration is:

INT .process^handle[0:ZSYS^VAL^PHANDLE^WLEN-1];

Null Process Handle. Some procedures accept or return a null process handle, which has
a -1 in each word. For example, a process can obtain information about itself by
calling the PROCESS_GETINFO_ procedure with a null process handle input
parameter. The PROCESS_GETPAIRINFO_ procedure returns a null process handle
output parameter for the backup process if one does not exist.

New Guardian Procedures

Conversion Concepts

096047 Tandem Computers Incorporated 2–5

To set a process handle parameter to a null value, set each word to -1. An example of a
TAL null process handle is:

process^handle ':=' [ZSYS^VAL^PHANDLE^WLEN * [-1]];

However, when you check a process handle output parameter, you need check only
the first word for a -1. If the first word of a process handle output parameter is -1, the
parameter contains a -1 in each word and is a null process handle.

Error-Return Conventions The D-series procedures do not use the condition code (CC) setting to indicate an
error. Each procedure returns an integer error or status value. If an error condition
contains more information than the procedure can return in an integer parameter, the
procedure returns additional information in an integer error-detail parameter.

This hypothetical TAL example shows the error value and the error-detail
parameter:

...
INT error;
INT error^detail;

...

error := PROC_CALL_ (parameter-1,
 parameter-2,
 parameter-3,
 error^detail);
...

Depending on the procedure you call, the error value contains either a file-system
error number or one of the following values:

0 The procedure was successful.

1 A file-system error occurred; error-detail contains the file-system
error number.

2 A parameter error occurred. For example, a required parameter is
missing.

3 A bounds error occurred on a reference parameter.

4 through n Another error occurred; in some cases error-detail contains
additional information. The value and interpretation of n depend on the
procedure you are calling.

To avoid problems in future releases, your application should treat error values
other than the ones currently defined for each procedure as undefined rather than
invalid. Always include an OTHERWISE (or equivalent) clause in your application
when checking error values.

If a procedure has more than one input parameter, a parameter error (error = 2) or a
bounds error on a reference parameter (error = 3) can occur on more than one
parameter. In this case, the error-detail parameter contains the ordinal number of

New File-Name Format

Conversion Concepts

2–6 096047 Tandem Computers Incorporated

the first parameter that the system detected as causing an error (provided the
procedure returns the error-detail parameter). If more than one parameter causes
an error, error-detail does not necessarily point to the lowest-numbered
parameter.

When determining the ordinal number, the string parameter and its length (for
example, file^name:file^name^length) are treated as a single parameter.

New File-Name Format A Tandem file name identifies a permanent or temporary disk file, an I/O device, or a
process. A D-series file name is a variable-length string with its length in bytes
specified as a separate integer value. For compatibility with unconverted applications,
the D-series operating system also uses the 12-word internal-format file name used on
C-series systems.

D-series disk file names and device names are described in this subsection. The
D-series process file name, which supersedes the C-series process file name, is
described under “New Process Identifiers” later in this section.

Disk File Names D-series disk file names identify permanent or temporary disk files. A D-series disk
file name uses the same format as a C-series external disk file name except as
described below. Examples of valid D-series disk file names are:

REPORT ! Single file ID
FY90.MEMBERS ! Subvolume and file ID
$USERS.PAYROLL.LEVEL2 ! Volume, subvolume, and file ID
\LONDON.$DISK4.ACCTS.JAN89 ! Fully qualified file name
$DISKVOL.#1234567 ! Temporary file name

Advantages of D-Series Disk File Names

D-series disk file names have the following advantages over C-series disk file names:

The D-series Guardian procedures accept and return file-name string parameters
rather than the C-series 12-word internal-format file-name parameters. You are
not required to convert a D-series file name from external to internal format before
you call a D-series Guardian procedure.

The D-series Guardian procedures automatically expand a partially qualified
D-series file name to a fully qualified file name, including the node (system) name,
from the =_DEFAULTS DEFINE VOLUME attribute. You are not required to call
the FNAMEEXPAND procedure to expand the name before you call a procedure.

A D-series file name is suitable to display or print without any conversion. You
are not required to call the FNAMECOLLAPSE procedure to convert the name to a
suitable format before you display or print it.

A remote D-series disk file name can have eight-character volume or device names
(seven letters or digits after the dollar sign). A remote C-series disk-file volume or
device name is restricted to seven characters including the dollar sign.

New File-Name Format

Conversion Concepts

096047 Tandem Computers Incorporated 2–7

C-Series and D-Series Disk File Name Differences

A D-series disk file name is similar to an external-format disk file name used on
C-series systems except for the following differences:

Subvolume defaulting is not allowed. A D-series permanent disk file name does
not allow subvolume defaulting. For example, this disk file name is invalid on D-
series systems:

$DISKVOL.MYFILE ! Volume name and file ID

Temporary file names are longer. A D-series temporary file name can have up to
seven digits after the pound sign (#). A C-series temporary file name has only
four digits after the pound sign.

Remote volume names can be longer. A converted process on a D-series system
can identify remote disk files with eight-character volume names (seven characters
after the dollar sign) on other D-series systems in a network. A process on a
C-series system can identify a remote disk file with a maximum of seven
characters in the volume name (six characters after the dollar sign) on other
C-series systems in a network.

However, a converted process on a D-series system cannot identify a remote
C-series file with an eight-character volume name. For more information about
the compatibility of C-series and D-series disk file names, refer to Appendix C,
“System Compatibility.”

Partially Qualified File Names

If you call a D-series Guardian procedure, the D-series operating system expands a
partially qualified file name using the current settings, including the node name, from
the =_DEFAULTS DEFINE VOLUME attribute.

For example, suppose the =_DEFAULTS DEFINE VOLUME attribute is:

\SYSTEM.$VOL1.SUBVOL1

The D-series operating system expands a partially qualified file name as shown below.
The parts of each expanded file name that are taken from the =_DEFAULTS DEFINE
are shown in uppercase letters.

Partially Qualified File Name File Name After Expansion

fileid \SYSTEM.$VOL1.SUBVOL1.fileid

subvol2.fileid \SYSTEM.$VOL1.subvol2.fileid

$vol2.subvol2.fileid \SYSTEM.$vol2.subvol2.fileid

\sys2.subvol2.fileid \sys2.$VOL1.subvol2.fileid

\sys2.fileid \sys2.$VOL1.SUBVOL1.fileid

New File-Name Format

Conversion Concepts

2–8 096047 Tandem Computers Incorporated

Table 2-1 shows a comparison of the programmatic representation of C-series and
D-series disk file names.

Table 2-1. C-Series and D-Series Programmatic Representation of Disk File Names

Form C-Series Programmatic Representation D-Series Programmatic Representation

Permanent disk file (without
a specified node name)1

file-name [0:3]
file-name [4:7]
file-name [8:11]

= Volume name
= Subvolume name
= File ID

[[volume.]subvolume.]file-id

Network permanent disk file file-name [0].<0:7>
file-name [0].<8:15>
file-name [1:3]
file-name [4:7]
file-name [8:11]

= ASCII "\"
= System number
= Volume name 2
= Subvolume name
= File ID

[node-name.][[volume.]subvolume.]file-id 3

Temporary disk file (without a
specified node name)1

file-name [0:3]
file-name [4:11]

= Volume name
= Temporary file ID

[node-name.][volume.]#temporary-file-number

Network temporary disk file file-name [0].<0:7>
file-name [0].<8:15>
file-name [1:3]
file-name [4:11]

= ASCII "\"
= System number
= Volume name 2
= Temporary file ID

[node-name.][volume.]#temporary-file-number 3

1 The D-series operating system expands a partially qualified D-series file name using the current settings, including the node name,
from the =_DEFAULTS DEFINE VOLUME attribute. A file name that does not include a node name is therefore not necessarily a local
file name on a D-series system.

2 On C-series systems, a process can identify a remote volume name with a maximum of six characters. A remote volume name on a
C-series system does not contain a dollar sign in the programmatic representation.

3 On D-series systems, a converted process can identify a remote volume name with two to eight characters including the dollar sign on
other D-series systems but not on C-series systems.

Device Names A device name identifies an I/O device such as a terminal or printer. A D-series
device name uses the same format as a C-series device name, which is a dollar sign
followed by one to seven letters or digits The first alphanumeric character in the name
must be a letter. The device name can also have an optional qualifier, which is a
pound sign (#) followed by one to seven letters or digits, the first of which must be a
letter. Examples of valid D-series device names are:

$TAPE001 ! Device name
$LAZRPTR.#QWERTY ! Device name and qualifier
\TOKYO.$TERM080 ! Node and device name
\NY.$LINEPTR.#ROOM10 ! Node, device name, and qualifier

Note Although logical device numbers are valid for the D-series operating system, Tandem recommends that
you use a logical device name rather than a logical device number whenever possible. Logical device
numbers are often unreliable (for example, with Dynamic System Configuration).

New File-Name Format

Conversion Concepts

096047 Tandem Computers Incorporated 2–9

A converted process on a D-series system can identify remote device names with eight
characters (seven characters after the dollar sign) on other D-series systems in a
network. A process on a C-series system can identify remote device names with a
maximum of six letters or digits after the dollar sign on other systems.

However, a process on a D-series system cannot identify a remote C-series volume
name that has seven characters after the dollar sign. For more information about the
compatibility of C-series and D-series device names, refer to Appendix C, “System
Compatibility.”

Table 2-2 shows a comparison of the programmatic representation of C-series and
D-series device names.

Table 2-2. C-Series and D-Series Programmatic Representation of I/O Device Names

Form C-Series Programmatic Representation D-Series Programmatic Representation

Device name (without a
specified node name) 1

name [0:3]

name [4:11]

= Device name
 ($ and 1 to 7 characters)
= Optional qualifier

[node-name.]name[.qualifier] 3

Network device name name [0].<0:7>
name [0].<8:15>
name [1:3]

name [4:11]

= ASCII "\"
= System number
= Device name
 (1 - 6 characters)2
= Optional qualifier

[node-name.]name[.qualifier] 3

1 The D-series operating system expands a partially qualified D-series file name using the current settings, including the node name,
from the =_DEFAULTS DEFINE VOLUME attribute. A device name that does not include a node name is therefore not necessarily a
local device name on a D-series system.

2 On C-series systems, a process can identify a remote device name with a maximum of six characters. A remote device name does
not include a dollar sign in the programmatic representation.

3 On D-series systems, a converted process can identify a remote device name with two to eight characters including the dollar sign on
other D-series systems but not on C-series systems.

New Process Identifiers

Conversion Concepts

2–10 096047 Tandem Computers Incorporated

New Process
Identifiers

A process identifier identifies a process in a system or network. The D-series
operating system uses these process identifiers:

Process names

Process file names

Process descriptors

Process handles

These identifiers are described in the following paragraphs. For compatibility with
C-series systems, the D-series operating system also supports C-series process names,
process file names, and process IDs.

Process Names A process name identifies a process or process pair in a system. A D-series process
name uses the same format as a C-series process name, which is a dollar sign followed
by one to five letters or digits. The first character after the dollar sign must be a letter.
Examples of valid process names are:

$SERVR
$Z146
$SPLS
$A0020

If a process is named, the name is assigned to the process when it is created. If you
create a process using either the TACL RUN command or a process-creation
procedure such as PROCESS_CREATE_ , you can specify a process name or you can
request that the system generate a name for the process.

A converted process on a D-series system can identify remote processes with names
that have a maximum of six characters including the dollar sign on other D-series
systems in a network. A process on a C-series system can identify remote processes
with names that have a maximum of five characters including the dollar sign on other
systems.

However, a process on a D-series system can identify remote processes with names
that have only five characters or less, including the dollar sign, on C-series systems in
the network. For more information about the compatibility of C-series and D-series
process names, refer to Appendix C, “System Compatibility.”

Process File Names The D-series process file name replaces the C-series process file name. A D-series
process file name is a variable-length string that specifies either a named or unnamed
process (or a named process pair). The length in bytes of the string is specified as a
separate integer value. You use a D-series process file name with Guardian
procedures that operate on files (for example, the FILE_OPEN_ procedure).

The formats for the D-series unnamed and named process file names are described in
the following paragraphs.

New Process Identifiers

Conversion Concepts

096047 Tandem Computers Incorporated 2–11

Process File Names for Named Processes

A D-series process file name can identify a named process. Valid examples are:

\LONDON.$ZAB2:4300411433 ! Process name with node and seq num
$ZSVR ! Process name only
\LA.$APP2.#A001.Z1 ! Process name, node, and qualifiers

The format of a D-series process file name for a named process is:

[node-name.]process-name[:sequence-number][.q1[.q2]]

node-name

is a variable-length string specifying the node (system) name. The name consists
of a backslash (\) followed by one to seven letters or digits; the first character after
the backslash must be a letter. This syntax is identical to the syntax of a system
name in a C-series external-format process file name.

process-name

is a variable-length string specifying the process name. The process name consists
of a dollar sign followed by one to five letters or digits; the first character after the
dollar sign must be a letter.

For C-series systems connected in a network, processes with six-character names
(including the dollar sign) are visible only on the local system. These processes are
not visible from other C-series systems or D-series systems in the network.

For D-series systems connected in a network, processes with six-character process
names (including the dollar sign) are visible from any D-series system in the
network, but not from C-series systems.

Appendix C, “System Compatibility,” contains information about process-name
compatibility for a network of C-series and D-series systems.

sequence-number

is a system-assigned sequence number with a maximum of 13 digits. Any leading
zeros are suppressed. A colon (:) separates process-name from sequence-
number.

The sequence number identifies a named process (or a named process pair) over
its lifetime and can be used to detect an incorrect reference to a process. For
example, a process named $B23:4321133452 terminates. A new process named
$B23:4322246543 is created with the same name but with a different sequence
number. An attempt to access process $B23:4321133452 fails, because this specific
instance of $B23 no longer exists.

Both processes in a process pair have the same sequence number. If the primary
process stops then the backup process becomes the primary process and has the

New Process Identifiers

Conversion Concepts

2–12 096047 Tandem Computers Incorporated

same sequence number. When the original primary process restarts, it too has the
same sequence number. Only if both processes in the process pair stop is the
process pair restarted with a new sequence number.

q1 and q2

are optional file-name qualifiers. Each qualifier can have up to eight characters.
The first character of q1 must be a pound sign (#). This syntax is identical to the
syntax of C-series file-name qualifiers.

Process File Names for Unnamed Processes

A D-series process file name can identify an unnamed process. Valid examples are:

$:2:850:5237743650 ! CPU, PIN and seq num
\NY.$:6:200:2876540012 ! Node, CPU, PIN, and seq num
\PARIS.$:6:130:3547234520 ! Node, CPU, PIN, and seq num

The format of a D-series process file name for an unnamed process is:

[node-name.]$:cpu:pin:sequence-number

node-name

is a variable-length string specifying the node (system) name. The name consists
of a backslash followed by one to seven letters or digits; the first character after the
backslash must be a letter. This syntax is identical to the syntax for a system name
in a C-series external-format process file name.

cpu

is the CPU number, which is one or two digits ranging from 0 through 15. A colon
separates the dollar sign from cpu.

pin

is the PIN value, which is one to five digits ranging from 0 to the maximum value
allowed for the CPU. A colon separates cpu from pin.

sequence-number

is a system-assigned sequence number with a maximum of 13 digits. Any leading
zeros are suppressed. A colon separates pin from sequence-number.

The sequence number is unique for each process and serves the same purpose as
the process creation timestamp, which is used in the C-series timestamp form of
the process ID. (However, a sequence number is not a timestamp.)

The number identifies a process over its lifetime and therefore can detect incorrect
references to the process. For example, an unnamed process, $:1:650:1234567890,
terminates. The system creates a new process, $:1:650:9876543210, with the same

New Process Identifiers

Conversion Concepts

096047 Tandem Computers Incorporated 2–13

CPU number and PIN but with a different sequence number. An attempt to access
process $:1:650:1234567890 fails, because the process no longer exists.

Table 2-3 shows a comparison of the programmatic representation of C-series and
D-series process file names.

Table 2-3. C-Series and D-Series Programmatic Representation of Process File Names

Form C-Series Programmatic Representation D-Series Programmatic Representation

Timestamp unnamed
process

name [0].<0:1>
name [0].<2:7>
name [0].<8:15>
name [1:2]

name [3].<0:3>
name [3].<4:7>
name [3].<8:15>
name [4:11]

= 2
= Unused
= System number
= Low-order 32 bits of
 timestamp
= Unused
= CPU number
= PIN
= Blank-filled

[node-name.]$:cpu:pin:sequence-number

Named process (without a
specified node name) 1

name [0:2]

name [3].<0:3>
name [3].<4:7>
name [3].<8:15>
name [4:7]
name [8:11]

= Process name
 ($ and 1 - 5 characters)
= Unused
= CPU number
= PIN
= First qualifier
= Second qualifier

process-name[:sequence-number]
[.qualifier1[.qualifier2]] 1

Network named process name [0].<0:7>
name [0].<8:15>
name [1:2]

name [3].<0:3>
name [3].<4:7>
name [3].<8:15>
name [4:7]
name [8:11]

= ASCII "\"
= System number
= Process name 2
 (1 - 4 characters)
= Unused
= CPU number
= PIN
= First qualifier
= Second qualifier

[node-name.]process-name
[:sequence-number][.qualifier1[.qualifier2]] 3

1 The D-series operating system expands a partially qualified D-series file name using the current settings, including the node name,
from the =_DEFAULTS DEFINE VOLUME attribute. A process name that does not include a node name is therefore not necessarily a
local process name on a D-series system.

2 On C-series systems, a process can identify a remote process with a name that has a maximum of four characters. A remote
process name does not contain a dollar sign in the programmatic representation.

3 On D-series systems, a converted process can identify a remote process with a name that has two to six characters including the
dollar sign on other D-series systems but not on C-series systems.

New Process Identifiers

Conversion Concepts

2–14 096047 Tandem Computers Incorporated

Process Descriptors A process descriptor is a special case of a D-series process file name. It replaces the
process ID or CRTPID for returning the identity of a process from a procedure call
(such as PROCESS_CREATE_). It always contains a node name and a sequence
number as well as either a process name or a dollar sign and CPU/PIN designation. A
process descriptor never contains a qualifier.

The format for a process descriptor for a named process or named process pair is:

node-name.process-name:sequence-number

The format for a process descriptor for an unnamed process is:

node-name.$:cpu:pin:sequence-number

If necessary, you can use the FILENAME_EDIT_ procedure to remove the node name
or sequence number from the string.

Process Handles The D-series process handle replaces the C-series four-word process ID or CRTPID for
passing information to a Guardian procedure. You use a process handle in process-
control Guardian procedures such as PROCESS_STOP_ and PROCESS_ACTIVATE_
or in information procedures such as PROCESS_GETINFO_ . (Process-control
procedures operate only on processes and not on files; you use a process file name for
procedures that operate on files.)

A process handle is a 10-word (20-byte) structure that identifies a single named or
unnamed process. For a named process pair, a process handle identifies each specific
member of the pair.

Note The format for a process handle is subject to change in future releases. Your application should not try to
extract information (such as a CPU number or PIN) from a process handle except by using a Guardian
procedure such as PROCESSHANDLE_DECOMPOSE_.

A process handle contains the following information about a process:

A PIN identifies the process within a specific CPU. A D-series PIN ranges from 0
through the maximum number supported by the system (except for PIN 255,
which is never used in a process handle).

A CPU number identifies the CPU in which the process is running. The CPU
number ranges from 0 through 15.

A node (or system) number identifies the node within a network. The number
ranges from 0 through 254.

A verifier or sequence number allows the system to uniquely identify a process
over its lifetime.

New Process Identifiers

Conversion Concepts

096047 Tandem Computers Incorporated 2–15

For example, an unnamed process terminates while running in a specific CPU.
The system then creates another unnamed process in the same CPU with the same
PIN. The verifier number distinguishes the new process from the old process,
even though both processes have the same CPU number and PIN.

A process pair index allows the system to determine the name of a named process
pair (and therefore to locate the members of a named process pair).

A type field identifies the type of process (for example, a named or unnamed
process).

Table 2-4 shows a comparison of C-series process IDs and D-series process handles.

Table 2-4. C-Series Process IDs and D-Series Process Handles

Form
C-Series Internal Representation
(Process ID or CRTPID) D-Series Representation

Timestamp
unnamed process

name [0].<0:1>
name [0].<2:7>
name [0].<8:15>
name [1:2]

name [3].<0:3>
name [3].<4:7>
name [3].<8:15>

= 2
= Unused
= System number
= Low-order 32
 bits of timestamp
= Unused
= CPU number
= PIN

Process handle (20-byte structure
defined by Tandem)

Local named
process

name [0:2]

name [3].<0:3>
name [3].<4:7>
name [3].<8:15>

= Process name
 ($ and 1 - 5
 characters)
= Unused
= CPU number
= PIN

Process handle

Network named
process

name [0].<0:7>
name [0].<8:15>
name [1:2]

name [3].<0:3>
name [3].<4:7>
name [3].<8:15>

= ASCII "\"
= System number
= Process name
 (1 - 4
 characters)1
= Unused
= CPU number
= PIN

Process handle

1 On C-series systems, a process can identify a remote process with a name that has a maximum of
four characters. A remote process name does not contain a dollar sign in the programmatic
representation.

New System Messages

Conversion Concepts

2–16 096047 Tandem Computers Incorporated

Null Process Handle

A null process handle contains a -1 in each of its ten words. It is used for the following
purposes:

An application can specify a null process handle (for example, by using the
PROECSSHANDLE_NULLIT_ procedure) as an input parameter in a D-series
procedure such as PROCESS_GETINFO_ in order to get information about itself.

Some D-series procedures return a null process handle to represent a nonexistent
process (for example, a backup-process parameter when a backup process does
not exist).

An application can use a process handle as a place holder for a nonexistent
process. When an application declares a process-handle variable, it can initialize
the variable to a null value. If a server process monitors its openers, it can set the
primary and backup process-handle fields in an opener table entry to null values
as place holders for the nonexistent processes.

If a server process uses the OPENER_LOST_ procedure, it must set any unused
process-handle fields in its opener table to null values. See Section 3, “Converting
TAL Applications,” for more information about defining an opener table for the
OPENER_LOST_ procedure.

New System Messages The D-series operating system provides new user-level system messages that a
converted application can read from $RECEIVE. (An application that does not open
$RECEIVE to request system messages need not be concerned with system messages.)
An application that uses C-series Guardian procedures will also continue to receive
C-series system messages.

Some D-series messages supersede one or more C-series messages, while other
D-series messages support new procedures or features. For example, the D-series -101
(Process deletion) message supersedes the C-series -5 (Stop), -6 (Abend), and -2 (CPU
down for a named process deletion) messages, while the D-series -109 (Nowait
FILENAME_FINDNEXT_ completion) message supports the new
FILENAME_FINDNEXT_ procedure.

Tandem provides structure declarations that you can use in your application to read
and process system messages. Tandem uses the ZSYSDDL file to generate the
ZSYSTAL, ZSYSCOB, ZSYSC, and ZSYSPAS files for TAL, COBOL85, C, and Pascal
applications, respectively. To use the ZSYSDDL declarations, include the appropriate
file (or sections of the file) in your source code.

For a table of C-series messages and the D-series messages that supersede them, refer
to Appendix B, “System Messages.” For the format and description of all system
messages, refer to the Guardian Procedure Errors and Messages Manual.

New File-System Error Numbers

Conversion Concepts

096047 Tandem Computers Incorporated 2–17

Improved I/O
Performance

The D-series operating system improves the performance of most I/O operations by
transferring data directly between an application’s I/O buffers and the I/O device. A
C-series I/O operation (that is, an I/O operation that uses C-series procedures) uses an
intermediate buffer in the application’s process file segment (PFS) for data transfers.
The D-series SETMODE 72 function allows an application to specify an intermediate
PFS buffer, if needed.

For more information about direct I/O transfers and the SETMODE 72 function, refer
to Section 8, “Converting Other Parts of an Application.”

New Distributed
Systems Management

(DSM) Tokens

For DSM applications that use the Event Management Service (EMS) or the Subsystem
Programmatic Interface (SPI), the D-series operating system has these changes:

New tokens define items such as the process handle and process descriptor.
Tokens are also defined for new file-system errors and error lists.

The FNAMECOMPARE, DECOMPOSE, and DECOMPOSEERROR functions are
available for EMS filters.

If you are converting a DSM application, refer to Section 8, “Converting Other Parts of
an Application,” for more information.

New File-System Error
Numbers

Table 2-5 lists the D-series file-system errors. For a description of all file-system errors,
refer to the Guardian Procedure Errors and Messages Manual.

Table 2-5. D-Series File-System Errors

Error Number Description

560 A calling process tried to access a subject process, but the subject process has
not been converted to accept high-PIN requests.

561 The system did not recognize an item code in a list in a FILE_CREATELIST_ ,
FILE_ALTERLIST_ , FILE_GETINFOLIST_ , or FILE_GETINFOLISTBYNAME_
procedure.

563 The size of the output buffer in a procedure call is too small to hold the results.

564 The system detected an operation that is not allowed for this file type.

565 A server detected an inappropriate or illegal request sent from a requester.

566 A requester detected an inappropriate or illegal reply returned from a server.

590 The system detected an invalid or inconsistent parameter value.

593 An operation failed because a request was abandoned.

597 The system did not find a required item in an item list.

632 Not enough stack space was available to complete the operation.

For a description of the D-series file-system error lists, refer to Section 8, “Converting
Other Parts of an Application.”

New Object-File Attributes

Conversion Concepts

2–18 096047 Tandem Computers Incorporated

New Object-File
Attributes

The D-series operating system provides the following new object-file attributes:

HIGHPIN Use this attribute to tell the system that the program can be
run at a high PIN.

HIGHREQUESTERS Use these attributes to allow communication between
and RUNNAMED converted and unconverted applications . These attributes

can remove the need to convert certain processes.

You set these object-file attributes as follows:

When you compile your program, use a compiler directive in the source file or as a
compiler option when you start the compiler.

After you have compiled your program, use the Binder program.

For information about setting these attributes for TAL, COBOL85, C, and Pascal
applications, refer to Sections 3 through 6, respectively. For information about setting
setting the HIGHPIN directive using TACL, see Section 7, “Converting TACL
Programs.”

The following paragraphs describe these object-file attributes.

The HIGHPIN Attribute Use the HIGHPIN attribute to indicate that it is acceptable to run the object file as part
of a process that runs at a high PIN. For example, the program does not contain calls
to MYPID.

For a process to run at a high PIN, all the following are required:

All participating object files (including the user library file, if present) must have
the HIGHPIN attribute set.

The creating process agrees that it is acceptable to run the process at a high PIN.
To do this, the creating process must create the new process using the
PROCESS_CREATE_ procedure rather than NEWPROCESS[NOWAIT] and must
not demand a low PIN for the process.

Either of the following is true:

The inherited force-low characteristic for the new process is not set

The inherited force-low characteristic for the new process is set, and the
creating process overrides it

The inherited force-low characteristic is a mechanism that, for compatibility
reasons, forces descendents of low-PIN processes to run at a low PIN, unless the
creating process explicitly overrides the mechanism. See Appendix C, “System
Compatibility,” for details.

A high PIN must be available.

Conversion Considerations and the Common Run-Time Environment (CRE)

Conversion Concepts

096047 Tandem Computers Incorporated 2–19

The HIGHREQUESTERS
Attribute

The HIGHREQUESTERS attribute allows an unconverted server process to support
high-PIN requesters if the server meets certain requirements; that is, if the server does
not examine its openers. This attribute gives you the option of not converting the
server process, but you must be sure that the server process allows you to do this.

Appendix C, “System Compatibility,” provides additional information on the use of
the HIGHREQUESTERS attribute.

The RUNNAMED Attribute The RUNNAMED attribute causes a process to run as a named process even if the
creator does not provide a name. This attribute allows your process to run at a high
PIN and be opened by an unconverted process. Again, this option can work only if
the process does not examine its openers.

Conversion
Considerations and

the Common Run-Time
Environment (CRE)

The C-series C, COBOL85, FORTRAN, Pascal, and TAL programming languages each
have their own run-time environments defined by their respective run-time libraries.
These language-specific run-time environments are different from one another and are
often incompatible. Mixed-language programs running in these environments are
limited in their ability to use all of the features of each language and to share data
between routines written in different languages. This incompatibility severely limits
the potential for creating useful mixed-language programs.

The Common Run-Time Environment (CRE) eliminates this problem. The CRE
coordinates many run-time tasks on behalf of the run-time libraries, thus providing a
common environment for routines in a program, regardless of language. The CRE
provides services that significantly enhance your ability to create mixed-language
programs. These services include:

Shared access to standard files (standard input, standard output, standard log)

Shared access to a common run-time heap

Management of $RECEIVE

Management of process pairs

Uniform handling of exceptions

Uniform form and content of diagnostic messages

Routines in a program that runs in the CRE call language-specific run-time libraries as
in prior releases. However, these language-specific run-time libraries now call the
CRE library for some operations. Programs that run in the CRE can also make explicit
calls to CRE library routines. The CRE library replaces large portions of each
language’s run-time library; it does not replace Guardian procedures. The CRE allows
all routines in a program, regardless of language, to use their own run-time libraries as
well as CRE library routines and Guardian procedures.

All C-series compilers generate programs that run in a language-specific run-time
environment. The D-series C and Pascal compilers always generate programs that run
in the CRE. You can specify a compiler directive to instruct the D-series COBOL85,
FORTRAN, and TAL compilers to generate programs that run in the CRE.

Conversion Considerations and the Common Run-Time Environment (CRE)

Conversion Concepts

2–20 096047 Tandem Computers Incorporated

For programs that contain C, COBOL85, FORTRAN, and Pascal routines but do not
contain TAL routines, no changes are required to run in the CRE. There are no
changes in execution, except perhaps the text and format of run-time diagnostic
messages in C and Pascal, which come from the CRE error-reporting routines.

For programs that contain TAL procedures, you must change calls from Guardian
procedures to CRE library routines to perform actions on those objects, such as the
standard files, that you want to share or coordinate with other languages. TAL
routines can continue to use Guardian procedure calls for resources that are not
shared. In addition, TAL routines cannot directly manipulate the upper 32K of the
run-time heap. The CRE uses this area to store its data.

3 Converting TAL Applications

096047 Tandem Computers Incorporated 3–1

A TAL program can run at a low PIN under the D-series operating system without any
changes. However, for a TAL program to use the extended features of the D-series
operating system, specific parts of it must be converted. The topics in this section are:

Converting basic elements of a TAL program, such as using the EXTDECS and
ZSYSTAL files, declaring variables, and running the TAL compiler

Converting a TAL program to run at a high PIN

Converting a TAL program to create and manage a high-PIN process

Converting a TAL requester to communicate with a high-PIN server

Converting a TAL program to allow a high-PIN creator

Converting a TAL server to communicate with a high-PIN requester

The topics in this section can also apply to a COBOL85, C, or Pascal application that
calls Guardian procedures. For information about calling Guardian procedures from
COBOL85, C, or Pascal, refer to the specific language manual. You cannot call
Guardian procedures directly from TACL, but you can access them indirectly through
built-in functions; for details on TACL built-in functions, see the TACL Reference
Manual for details on TACL built-in functions.

Section 8, “Converting Other Parts of an Application,” also contains information about
converting other parts of a TAL application. For additional information about TAL,
refer to the Transaction Application Language (TAL) Reference Manual and the Transaction
Application Language (TAL) Programmer’s Guide.

Converting Basic Elements of a TAL Program

Converting TAL Applications

3–2 096047 Tandem Computers Incorporated

Converting Basic
Elements of a TAL

Program

This subsection describes conversion that applies to all TAL programs you need to
convert to run under the D-series operating system, irrespective of what the program
does. Later subsections describe how to convert specific actions that your program
might take.

This subsection discusses the following topics:

Using source declarations from the EXTDECS file

Using source declarations from the ZSYSTAL file

Declaring and using variables for high PINs, file system error numbers, file names,
and process identifiers

Running the TAL compiler

Figure 3-1 shows a typical application. The box shows which processes this part of the
conversion applies to. Converting basic elements of a TAL program applies to both of
these processes.

Figure 3-1. Converting Basic Elements of a TAL Program

$SRV

$REQ

TAL Requester
Process

TAL Server
Process

TACL

Using the EXTDECS
Declarations

Your existing program should use the SOURCE compiler directive to specify the
Guardian procedure declarations in the $SYSTEM.SYSTEM.EXTDECS0 file. For
example, this SOURCE directive specifies C-series procedures:

?SOURCE $SYSTEM.SYSTEM.EXTDECS0 (OPEN,
? READX,
? WRITEX,
? CLOSE)

Converting Basic Elements of a TAL Program

Converting TAL Applications

096047 Tandem Computers Incorporated 3–3

Convert your SOURCE directive to specify declarations from the D-series EXTDECS0
file. Use the procedure names for any D-series enhanced procedures your program
calls:

?SOURCE $SYSTEM.SYSTEM.EXTDECS0 (FILE_OPEN_,
? READX,
? WRITEX,
? FILE_CLOSE_)

Specify only the D-series EXTDECS file (EXTDECS0). The C-series compatible
declarations are also available in this file.

Note Although the file names are identical in the two examples shown here, they actually identify different files
because EXTDECS0 always names the most recent EXTDECS file.

Using the ZSYSTAL
Declarations

Tandem provides source declarations of TAL declarations and structures for Guardian
procedures and system messages in the ZSYSTAL file. This file is typically found on
the $SYSTEM.ZSYSDEFS subvolume. Contact your system manager for the location of
the file on your system.

To use these declarations, include them with your source code using the SOURCE
compiler directive. For example, this SOURCE directive includes the entire ZSYSTAL
file:

?SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL

The ZSYSTAL file is divided into sections, which allows you to include only the
sections your program actually needs. For example, this SOURCE directive includes
only the process-creation and system-message constant declarations:

?SOURCE $SYSTEM.ZSYSDEFS.ZSYSTAL (PROCESS^CONSTANT,
? SYSTEM^MESSAGES^CONSTANT)

To print a listing of the ZSYSTAL file to check the declarations that are available for
your program, use the FUP COPY command:

10> FUP COPY $SYSTEM.ZSYSDEFS.ZSYSTAL, $s.#lineptr

Converting Basic Elements of a TAL Program

Converting TAL Applications

3–4 096047 Tandem Computers Incorporated

Declaring and Using
Programming Variables

When converting your program to use the D-series enhanced interface, there are
several variables that you might need to add or modify. These variables include:

Variables that contain a PIN

File-system error numbers

Guardian file names, including disk file names, device names, and process file
names

Process identifiers, including process IDs, process handles, and process descriptors

The following paragraphs describe how to declare these entities to the D-series
enhanced interface.

Declaring CPU and PIN Variables

Your existing program might declare either a 16-bit integer variable for both the CPU
and PIN values or an 8-bit variable for a PIN value:

STRING primary^cpu, ! CPU of primary process.
 primary^pin; ! PIN of primary process.

INT cpu^and^pin; ! CPU and PIN values.

Declare all PIN values, including backup-process PINs, as 16-bit integer variables. For
CPU and PIN values, declare each item as a separate 16-bit integer variable:

INT primary^cpu, ! CPU of primary process.
 primary^pin; ! PIN of primary process.

Declaring and Checking File-System Error Numbers

You might need to convert the parts of your program that declare and check file-
system error variables. For example, your program might declare a STRING variable
for a file-system error number:

STRING fs^error^number;

Declare a file-system error number as a 16-bit integer variable:

INT fs^error^number;

Your program might also include procedures that assume a maximum value for a
file-system error number (for example, 255). A D-series file-system error number can
be a maximum of 16 bits. Therefore, to make sure that your procedures do not exclude
any new error numbers, you should allow for up to 5 decimal digits for error numbers.

Also, because Tandem might define additional error numbers in future releases, do
not consider currently undefined numbers as invalid.

For a list and description of all file-system error numbers, refer to the Guardian
Procedure Errors and Messages Manual.

Converting Basic Elements of a TAL Program

Converting TAL Applications

096047 Tandem Computers Incorporated 3–5

Using Guardian File Names

Guardian file names include disk file names, device names (such as a printer or
terminal name), and process file names. You might need to convert the parts of your
program that declare and use file-name variables as described in the following
paragraphs.

The C-series-compatible interface uses file names that have an internal format, have a
fixed length of 12 words, and are fully qualified. Unconverted programs that interact
with users typically:

1. Accept an external form of file name.

2. Convert the file name to uppercase.

3. Pass the uppercase file name to the FILENAMEEXPAND procedure, which
returns the internal format.

4. Pass the result to a C-series-compatible system procedure.

Programs that use the D-series enhanced interface can, in most cases, take a name and
pass it directly to the Guardian procedure, which handles case shifting and defaulting.
If file-name manipulation is necessary, the D-series enhanced interface has procedures
to do the manipulation for you.

Disk File Names. Your existing program might declare a Guardian disk-file-name
variable. The largest D-series disk file name are:

For permanent files 35 bytes (one byte larger than the external form of a
C-series network file name)

For temporary files 26 bytes (4 bytes larger than the external form of a
C-series network file name)

When accessing Guardian disk files on remote D-series systems in a network, a
converted program can use a D-series network disk file name with an eight-character
volume name (one to seven characters after the dollar sign). A C-series network disk
file name allows a maximum of six characters after the dollar sign in the volume name.

Therefore, if you want to take advantage of this extension, you must declare your
network file-name variables large enough to include this extra character. To ensure
that your declaration is long enough, use the ZSYS^VAL^LEN^FILENAME LITERAL
(47 bytes) from the ZSYSTAL file. For example:

STRING .employee[0:34] :=
 ["\newyork.$payroll.july1990.employee"];

STRING .managers[0:ZSYS^VAL^LEN^FILENAME-1] :=
 ["\newyork.$disk4.level2.managers "];

Converting Basic Elements of a TAL Program

Converting TAL Applications

3–6 096047 Tandem Computers Incorporated

Device Names. Your existing program might declare a variable for a Guardian device
name. The largest D-series device names are:

Device name without a node name or 8 bytes (same as a C-series name)
qualifier

Device name without a node name but 17 bytes (same as a C-series name)
with a qualifier

Network device name without a qualifier 17 bytes (one byte larger than a
C-series name)

Network device name with a qualifier 26 bytes (one byte larger than a
C-series name)

When accessing devices on remote D-series systems in a network, a converted
program can use an eight-character network device name (one to seven characters
after the dollar sign). A C-series network device name allows a maximum of six
characters after the dollar sign.

Therefore, you might need to declare your network device names large enough to
include this extra character. To ensure that your declaration is long enough, use the
ZSYS^VAL^LEN^FILENAME LITERAL (47 bytes) from the ZSYSTAL file. For
example:

! Network device name without a qualifier

STRING .device^name[0:16] := ["\hamburg.$term001"];

! Network device name with a qualifier

STRING .network^device^name[0:ZSYS^VAL^LEN^FILENAME-1] :=
 ["\hamburg.$lineptr.#room025"];

Process File Names. Your existing program might declare a variable for a C-series
process file name. The D-series operating system uses D-series process file names
instead of C-series process file names. Use C-series process file names for
compatibility with unconverted C-series procedures.

The following example shows a declaration for a D-series process file name that makes
use of the ZSYSTAL file:

! D-series process file name

STRING .proc^filename[0:ZSYS^VAL^LEN^FILENAME-1] :=
 ["\east.$S.#wide"];

Converting Basic Elements of a TAL Program

Converting TAL Applications

096047 Tandem Computers Incorporated 3–7

Declaring Process Identifiers

Your existing program might declare a four-word process-ID variable to identify a
process:

INT process^id[0:3];

Convert the process-ID variable declaration to a process-handle variable for process-
control operations or to a process-descriptor variable for returning information from a
Guardian procedure. Use a process-ID variable for compatibility with unconverted
C-series procedures.

A process handle is a 10-word (20-byte) fixed-length structure. A process descriptor is
a specific form of the D-series process file name that always includes a node name and
sequence number. The ZSYSTAL file contains declarations that you can use for
declaring process-handle and process-descriptor variables. For example:

! process handle

INT .my^process^handle[0:ZSYS^VAL^PHANDLE^WLEN-1];

! process descriptor

STRING .proc^desc[0:ZSYS^VAL^LEN^PROCESSDESCR-1];

Avoiding Subvolume Defaulting

Your existing program might use subvolume defaulting to represent a Guardian disk
file name in the form volume.file-id. For example:

STRING .disk^file[0:16] := ["$diskvol.filename"];

If you are using the D-series programmatic interface, avoid subvolume defaulting. If a
file name requires the volume name, also include the subvolume name:

STRING .disk^file[0:ZSYS^VAL^LEN^FILENAME-1] :=
 ["$diskvol.subvol.filename "];

Converting Basic Elements of a TAL Program

Converting TAL Applications

3–8 096047 Tandem Computers Incorporated

Running the TAL Compiler When you start the TAL compiler using the TACL RUN command, TACL calls the
PROCESS_CREATE_ procedure to create the TAL compiler process and the resulting
BINSERV and SYMSERV processes at low PINs.

To run the TAL compiler process and the BINSERV and SYMSERV processes at high
PINs, you must use the Binder program to set the HIGHPIN object-file attribute to ON
in the TAL compiler object file (provided you have the proper authority to change this
file):

@CHANGE HIGHPIN ON IN ztal

TACL then runs the TAL compiler and the BINSERV and SYMSERV processes at high
PINs if they are available. For more information about TACL, refer to the TACL
Reference Manual.

Using the Binder With
Converted Object Files

You cannot bind modules that have been compiled with the D-series compiler with
modules that have been compiled with a C-series compiler. If you compile any
module with the D-series compiler, you must also recompile any other modules that
you bind it with.

Converting a TAL Program to Run at a High PIN

Converting TAL Applications

096047 Tandem Computers Incorporated 3–9

Converting a TAL
Program to Run at a

High PIN

This subsection describes how to convert a TAL program to run at a high PIN under
the D-series operating system. Figure 3-2 shows a typical application. The box shows
which processes this part of the conversion applies to. Converting a TAL program to
run at a high PIN applies to both of these processes.

Figure 3-2. Converting a TAL Program to Run at a High PIN

$SRV

$REQ

TAL Requester
Process

TAL Server
Process

TACL

To convert your program to run at a high PIN, you must:

Set the HIGHPIN object-file attribute (which informs the system that your
program can run at a high PIN)

Make sure that each library file your program uses also has its HIGHPIN object-
file attribute set (and is capable of running at a high PIN)

Declare PIN variables large enough to hold high-PIN values

Convert MYPID procedure calls into calls to the PROCESS_GETINFO_ and
PROCESSHANDLE_DECOMPOSE_ procedures

Converting a TAL Program to Run at a High PIN

Converting TAL Applications

3–10 096047 Tandem Computers Incorporated

Setting the HIGHPIN
Object-File Attribute

The HIGHPIN object-file attribute informs the system that the object file can run at a
high PIN. You set the HIGHPIN object-file attribute either during compilation using a
compiler directive or after compilation using the Binder program.

To set the attribute when you compile your program, specify the HIGHPIN directive
in your source code or as a compiler option in the TACL RUN command for the
TAL compiler. The BINSERV program then sets the HIGHPIN attribute in the object
file. An example of this directive in your source file is:

?HIGHPIN

An example of this directive as a compiler option is:

10> TAL /IN talsrc, OUT $s.#tallst, NOWAIT/ talobj; HIGHPIN

You need to specify the HIGHPIN directive only once during a compilation. The TAL
compiler ignores redundant HIGHPIN directives.

If you do not set the HIGHPIN attribute when you compile your program, you can set
it after compilation using the Binder program.

If you are binding more than one object file into a single target object file, the Binder
program sets the HIGHPIN object-file attribute in the target file only if all constituent
files have the HIGHPIN object-file attribute set. If necessary, use the Binder CHANGE
command to set the attribute in the target object file:

@CHANGE HIGHPIN ON IN talobj

Using a Library File If your program uses a library file, the library file must also have the HIGHPIN object-
file attribute set. To determine the current setting of the HIGHPIN attribute for the
library file, use the Binder SHOW command:

@SHOW SET HIGHPIN FROM libfile

If necessary, set this attribute as described in the previous step (provided the library
file has been converted to support a high-PIN process).

Declaring 16-Bit CPU and
PIN Variables

As described earlier under “Converting Basic Elements of a TAL Program,” you need
to provide a 16-bit variable for the CPU value and a 16-bit variable for the PIN value.

Your existing program might declare either a 16-bit integer variable for both the CPU
and PIN values or an 8-bit variable for a PIN value:

STRING primary^cpu, ! CPU of primary process.
 primary^pin; ! PIN of primary process.

INT cpu^and^pin; ! CPU and PIN values.

Declare all PIN values, including backup-process PINs, as 16-bit integer variables. For
CPU and PIN values, declare each item as a separate 16-bit integer variable:

INT primary^cpu, ! CPU of primary process.
 primary^pin; ! PIN of primary process.

Converting a TAL Program to Run at a High PIN

Converting TAL Applications

096047 Tandem Computers Incorporated 3–11

Calling the
MYPID Procedure

If a high-PIN process calls MYPID, a trap condition occurs; MYPID cannot return 16
bits to an 8-bit field. Your existing program might call the MYPID procedure to obtain
its CPU and PIN values:

INT cpu^and^pin; ! CPU and PIN values.

...

cpu^and^pin := MYPID; ! Return the CPU and PIN values.

Convert MYPID calls into PROCESSHANDLE_DECOMPOSE_ procedure calls except
when MYPID is called within a SETMODE function 11 call as described under “Using
MYPID in a SETMODE (Function 11) Procedure Call,” the next subsection.

The PROCESSHANDLE_DECOMPOSE_ procedure requires a process handle as an
input parameter. If you do not know the process handle of your process, call the
PROCESSHANDLE_GETMINE_ procedure. Then pass the results to
PROCESSHANDLE_DECOMPOSE_ , which returns the CPU and PIN values as
separate integer values. For example:

INT cpu^number, ! CPU.
 pin^number, ! PIN.
 process^handle[0:ZSYS^VAL^PHANDLE^WLEN-1];
 ! Process handle.

...

! Obtain the caller's process handle.

error := PROCESSHANDLE_GETMINE_(process^handle);

 ... ! Check the error return value.

! Return the caller's CPU and PIN values.

error := PROCESSHANDLE_DECOMPOSE_(process^handle,
 cpu^number,
 pin^number);

Your program might also specify MYPID as a parameter to another procedure call (for
example, GETCRTPID or PROCESSINFO). See “Getting Information About a High-
PIN Process” later in this section for information about these procedures.

Converting a TAL Program to Run at a High PIN

Converting TAL Applications

3–12 096047 Tandem Computers Incorporated

Using MYPID in a
SETMODE (Function 11)

Procedure Call

Your existing program might also attempt to establish break ownership using a call to
the MYPID procedure in a SETMODE (function 11) procedure call as shown in the
following example:

LITERAL set^break^owner = 11;

...

CALL SETMODE (terminal^number,
 set^break^owner,
 MYPID, ! Call MYPID to set parameter-1.
 normal^mode,
 previous^owner);

You are not required to set parameter-1 to your CPU and PIN values. Instead,
convert your program to set parameter-1 to any positive value:

LITERAL break^flag = 1;

...

CALL SETMODE (terminal^number,
 set^break^owner,
 break^flag, ! Dummy value.
 normal^mode,
 previous^owner);

For more information about function 11 of the SETMODE procedure, refer to Section 8,
“Converting Other Parts of an Application.”

Creating and Managing a High-PIN Process

Converting TAL Applications

096047 Tandem Computers Incorporated 3–13

Creating and
Managing a

High-PIN Process

This subsection describes how to convert a program to create and manage a new
process using the D-series programmatic interface. The process you create must
already be converted to run at a high PIN as described under “Converting a TAL
Program to Run at a High PIN” earlier in this section.

Figure 3-3 shows the processes involved in converting this part of an application. The
steps described in this subsection apply to the requester process $REQ, which creates
the high-PIN server process $SRV.

Figure 3-3. Converting a TAL Program to Create and Manage a High-PIN Process

$SRV

$REQ

TAL Requester
Process

 Server
Process

TACL

This subsection covers these topics:

Creating a high-PIN process in a waited or nowait manner using the
PROCESS_CREATE_ procedure

Specifying a process name and other options using PROCESS_CREATE_

Using the process-name, process-descriptor, and process-handle parameters from
a PROCESS_CREATE_ procedure call

Creating a low-PIN process using PROCESS_CREATE_

Managing a high-PIN process, including activating, suspending, stopping, and
abending the process, as well as invoking Inspect or Debug for the process

Getting information about a high-PIN process

Setting process attributes for a high-PIN process

Creating and Managing a High-PIN Process

Converting TAL Applications

3–14 096047 Tandem Computers Incorporated

Creating a
High-PIN Process

To convert a program to create a high-PIN process, follow the steps in this subsection.
The ZSYSTAL file contains LITERAL declarations that you can use with the
PROCESS_CREATE_ procedure. This subsection describes:

How to programmatically create high-PIN processes in a waited manner

How to programmatically create high-PIN processes in a nowait manner

For information on how to interactively create a high-PIN process using TACL, refer to
Section 7, “Converting TACL Programs.”

To avoid running out of low PINs, we usually recommend running application
processes at high PINs. However, because the rules for communicating between
processes make it impossible for an unconverted low-PIN process to communicate
with a high-PIN process, you sometimes must run a given process at a low PIN.

The inherited force-low characteristic of a process usually causes a process with
ancestors on C-series systems to run at a low PIN to enable the ancestor to open the
process and communicate with it. You have the option to override the inherited force-
low characteristic.

Appendix C, “System Compatibility,” explains the rules for communicating with high-
PIN and low-PIN processes among C-series systems and D-series systems, including
details on the inherited force-low characteristic.

Creating a High-PIN Process in a Waited Manner

Your existing program might call the NEWPROCESS procedure to create a process in a
waited manner:

CALL NEWPROCESS (program^file,
 priority,
 memory^pages,
 processor,
 process^id,
 error);

To convert your program to create a high-PIN process in a waited manner, you must
make the following changes in your source code:

1. Use the PROCESS_CREATE_ procedure rather than the NEWPROCESS
procedure. NEWPROCESS always creates a low-PIN process.

2. Each file-name parameter must be a variable-length string with its length specified
as a separate integer value. Set the program^file parameter and, if needed, the
library^file, swapfile, and ext^swapfile parameters and their respective
lengths.

3. Set the nowait^tag parameter to -1D, or omit this parameter from the call.

4. If you use the create^options parameter, make sure that bit 15 is zero. If you
do not use create^options, this bit is zero by default. If this bit is not zero, the
system creates the process at a low PIN.

Creating and Managing a High-PIN Process

Converting TAL Applications

096047 Tandem Computers Incorporated 3–15

5. Set create^options.<10> to 1 if you want the process to run at a high PIN
irrespective of process ancestry. Set create^options.<10> to zero (the default
value) if you want process ancestry to influence whether the process runs at a high
PIN or a low PIN.

In the following example, PROCESS_CREATE_ creates a high-PIN process in a waited
manner, assuming the inherited force-low flag is not set. The nowait^tag and
create^options parameters are omitted from the call:

error := PROCESS_CREATE_(program^file:pf^length,
 ! library^file:lf^length ! ,
 ! swapfile:sf^length ! ,
 ! ext^swapfile:esf^length ! ,
 priority,
 cpu^number,
 process^handle,
 error^detail);

When you call PROCESS_CREATE_ in a waited manner, you receive the results
directly in the PROCESS_CREATE_ output parameters. The system returns any errors
in the returned value error and in the error^detail (if needed) output parameter.

Creating a High-PIN Process in a Nowait Manner

Your existing program might call the NEWPROCESSNOWAIT procedure to create a
process in a nowait manner:

CALL NEWPROCESSNOWAIT(program^file,
 priority,
 memory^pages,
 processor,
 ! process^id ! ,
 error);

To convert your program to create a high-PIN process in a nowait manner, you must
make the following changes in your source code:

1. Use the PROCESS_CREATE_ procedure rather than the NEWPROCESSNOWAIT
procedure. NEWPROCESSNOWAIT always creates a low-PIN process.

2. Each file-name parameter must be a variable-length string with its length specified
as a separate integer value. Set the program^file parameter and, if needed, the
library^file, swapfile, and ext^swapfile parameters and their respective
lengths.

3. Set the nowait^tag parameter to a value other than -1D.

4. If you use the create^options parameter, make sure that bit 15 is zero. If you
do not use create^options, this bit is zero by default. If this bit is not zero, the
system creates the process at a low PIN.

Creating and Managing a High-PIN Process

Converting TAL Applications

3–16 096047 Tandem Computers Incorporated

5. Set create^options.<10> to 1 if you want the process to run at a high PIN
irrespective of process ancestry. Set create^options.<10> to zero (the default
value) if you want process ancestry to influence whether the process runs at a high
PIN or a low PIN.

In this example, PROCESS_CREATE_ creates a high-PIN process in a nowait manner,
assuming the inherited force-low flag is not set. The nowait^tag parameter is set to
a value other than -1D:

error := PROCESS_CREATE_(program^file:pf^length,
 ! library^file:lf^length ! ,
 ! swapfile:sf^length ! ,
 ! ext^swapfile:esf^length ! ,
 priority,
 cpu^number,
 process^handle,
 error^detail,
 ! name^option ! ,
 ! proc^name:proc^name^length ! ,
 ! process^desc:max^length ! ,
 ! process^desc^length ! ,
 nowait^tag); ! Value is -1D.

When you call PROCESS_CREATE_ in a nowait manner, you receive the results as
follows:

System message -102 (PROCESS_CREATE_ completion)

If the system creates the process successfully, or if the system initiates the process
creation and an error occurs, the system returns the results to $RECEIVE in system
message -102. You read this message from $RECEIVE using the READX or
READUPDATEX procedure (provided you have already opened $RECEIVE to
receive system messages).

This message is analogous to system message -12 (NEWPROCESSNOWAIT
completion). For the description and format of all system messages, refer to the
Guardian Procedure Errors and Messages Manual.

The returned value error and the error^detail output parameter

If the system successfully initiates the creation, the returned value error is zero.

If the system cannot initiate the process creation, the system returns the results in
the returned value error and the error^detail output parameter and does not
send system message -102 to $RECEIVE.

For example, if the system encounters a parameter error, then error is 2 and the
error^detail parameter contains the ordinal number of the first parameter that
the system detected as causing an error.

Creating and Managing a High-PIN Process

Converting TAL Applications

096047 Tandem Computers Incorporated 3–17

Specifying a Process Name
Using PROCESS_CREATE_

Your existing program might call the CREATEPROCESSNAME or
CREATEREMOTENAME procedure to obtain a process name to use in the
NEWPROCESS[NOWAIT] procedure call:

CALL CREATEPROCESSNAME (process^name);

CALL NEWPROCESS (filenames,
 priority,
 memory^pages,
 processor,
 process^id,
 error,
 process^name);

Convert your program to generate a process name in one of the following ways:

Use the PROCESS_CREATE_ procedure to allow the system to generate a name.
You do not need to use a separate procedure to obtain the process name.

Supply the name yourself (or have the user supply the name).

Use the PROCESSNAME_CREATE_ procedure to supply a system-generated
name then pass the name to PROCESS_CREATE_.

A system-generated process name has the form $Xddd, $Yddd, or $Zaaa, where d is
any numeric character and a is any alphanumeric character.

Creating and Managing a High-PIN Process

Converting TAL Applications

3–18 096047 Tandem Computers Incorporated

System-Generated Name Without Using PROCESSNAME_CREATE_

 To have the system generate a name for a new process, follow these steps:

1. Set the name^option parameter to the LITERAL
ZSYS^VAL^PCREATEOPT^NAMEDBYSYS.

2. Omit the name parameter, or set the name^length parameter to zero.

3. Set any other PROCESS_CREATE_ parameters as needed and call the procedure.

4. Check the results as follows:

For a process created in a waited manner, the system returns a process
descriptor and its length in the process^desc and process^desc^length
output parameters.

For a process created in a nowait manner, the system returns a process
descriptor in the system message -102. Read this message from $RECEIVE
using the READ or READUPDATE procedure.

In this example, PROCESS_CREATE_ creates a high-PIN process in a waited manner.
The system-supplied name is returned in the process^desc parameter:

name^option := ZSYS^VAL^PCREATEOPT^NAMEDBYSYS;
max^length := ZSYS^VAL^LEN^PROCESSDESCR;
error := PROCESS_CREATE_(program^file:pf^length,
 ! library^file:lf^length ! ,
 ! swapfile:sf^length ! ,
 ! ext^swapfile:esf^length ! ,
 priority,
 cpu^number,
 process^handle,
 error^detail,
 name^option,
 ! proc^name:proc^name^length ! ,
 process^desc:max^length,
 process^desc^length);

Creating and Managing a High-PIN Process

Converting TAL Applications

096047 Tandem Computers Incorporated 3–19

User-Specified Name

Alternatively, you can specify a name for the new process when calling
PROCESS_CREATE_ by following these steps:

1. Set the name^option parameter to the LITERAL
ZSYS^VAL^PCREATEOPT^NAMEINCALL.

2. Set the name parameter to the process name. This name must be a variable-length
file-name string.

3. Set the name^length parameter to the length in bytes of the process name.

4. Set any other PROCESS_CREATE_ parameters as needed and call the procedure.
If the operation is successful, the system creates the process with the name you
specified in Step 2.

5. Check the results as described in Step 4 under “System-Generated Name,” earlier
in this section.

In this example, PROCESS_CREATE_ creates a high-PIN process in a waited manner.
The user supplies the name and name length:

name^option := ZSYS^VAL^PCREATEOPT^NAMEINCALL;
proc^name ':=' "$MYPROC.#first" -> @S^PTR;
proc^name^length := @S^PTR '-' @proc^name;
max^length := ZSYS^VAL^LEN^PROCESSDESCR;
error := PROCESS_CREATE_(program^file:pf^length,
 ! library^file:lf^length ! ,
 ! swapfile:sf^length ! ,
 ! ext^swapfile:esf^length ! ,
 priority,
 cpu^number,
 process^handle,
 error^detail,
 name^option,
 proc^name:proc^name^length,
 process^desc:max^length,
 process^desc^length);

Note If the RUNNAMED object-file attribute is set for the program file, the D-series operating system generates
a name even if the PROCESS_CREATE_ name^option parameter is zero or omitted.

Creating and Managing a High-PIN Process

Converting TAL Applications

3–20 096047 Tandem Computers Incorporated

System-Generated Name Using PROCESSNAME_CREATE_

 Alternatively, you can let the PROCESSNAME_CREATE_ procedure create a process
name which you later pass to the PROCESS_CREATE_ procedure. The following
steps show how:

1. Call the PROCESSNAME_CREATE_ procedure to obtain a system-generated
name and its length.

2. Set the name^option parameter of the PROCESS_CREATE_ procedure to the
LITERAL ZSYS^VAL^PCREATEOPT^NAMEINCALL.

3. Set the name parameter of PRCOESS_CREATE_ to the process name returned by
the PROCESSNAME_CREATE_ procedure.

4. Set the name^length parameter of PRCOESS_CREATE_ to the length in bytes of
the process name.

5. Set any other PROCESS_CREATE_ parameters as needed and call the procedure.
If the operation is successful, the system creates the process with the name you
specified in Step 2.

6. Check the results as described in Step 4 under “System-Generated Name,” earlier
in this section.

In this example, PROCESS_CREATE_ creates a high-PIN process in a waited manner.
The system provides the process name and length using the
PROCESSNAME_CREATE_ procedure:

max^length := ZSYS^VAL^LEN^PROCESSDESCR;
error := PROCESSNAME_CREATE_(proc^name:max^length,
 proc^name^length);

...
name^option := ZSYS^VAL^PCREATEOPT^NAMEINCALL;
error := PROCESS_CREATE_(program^file:pf^length,
 ! library^file:lf^length ! ,
 ! swapfile:sf^length ! ,
 ! ext^swapfile:esf^length ! ,
 priority,
 cpu^number,
 process^handle,
 error^detail,
 name^option,
 proc^name:proc^name^length,
 process^desc:max^length,
 process^desc^length);

Creating and Managing a High-PIN Process

Converting TAL Applications

096047 Tandem Computers Incorporated 3–21

Using the Process Name
From PROCESS_CREATE_

After calling PROCESS_CREATE_ , you might want to save the process name (if one
exists) from either the process^desc output parameter or system message -102 for
later use in your program. Save this name immediately after you receive it, because:

If you don’t save the name and you need the name later, you must convert the
process handle to a process name using the PROCESSHANDLE_TO_FILENAME_
procedure. If the process is running on a remote system, using
PROCESSHANDLE_TO_FILENAME_ implicitly sends a message to the remote
system. Your program must wait until the operation finishes.

If the process handle represents a named process (or process pair), you cannot
determine the process name from the process handle after the named process (or
process pair) has terminated.

Using the Process Handle
and Process Descriptor

From PROCESS_CREATE_

After calling the NEWPROCESS[NOWAIT] procedure, your existing program might
use the four-word process^id output parameter directly in a file-system procedure
such as an OPEN call. For example:

CALL NEWPROCESS (filenames,
 priority,
 memory^pages,
 processor,
 process^id,
 error,
 process^name);

...

CALL OPEN (process^id,
 file^number);

Instead of a four-word process ID, PROCESS_CREATE_ returns these parameters for
the new process:

A process handle, which you can use with process-control procedures such as
PROCESS_STOP_ and PROCESS_ACTIVATE_ and with status-monitoring
procedures such as OPENER_LOST_ and CHILD_LOST_.

A process descriptor, which always includes the node name and a system-
assigned sequence number. The process^desc^length parameter contains the
length in bytes of the process descriptor.

Creating and Managing a High-PIN Process

Converting TAL Applications

3–22 096047 Tandem Computers Incorporated

Use the process descriptor directly in the FILE_OPEN_ procedure call to open the
process:

error := PROCESS_CREATE_(program^file:pf^length,
 ! library^file:lf^length ! ,
 ! swap^file:sf^length ! ,
 ! ext^swapfile:esf^length ! ,
 ! priority ! ,
 ! cpu^number ! ,
 process^handle,
 error^detail,
 ! name^option:length ! ,
 process^desc:max^length,
 process^desc^length);

...

error := FILE_OPEN_(process^desc:process^desc^length,
 file^number);

If you do not want the system name or sequence number for other uses of the process
descriptor, call the FILENAME_DECOMPOSE_ procedure to remove either or both of
these parts. For example, you might want to remove the sequence number before you
display the process descriptor.

Specifying Other
PROCESS_CREATE_

Options

Most PROCESS_CREATE_ parameters are analogous to the NEWPROCESS or
NEWPROCESSNOWAIT parameters. The following features are specific to
PROCESS_CREATE_:

Swap file for the extended data segment

You can specify a swap file for the extended data segment of the new process.
This swap file must be on the same system as the new process. The swap-file-
name parameter must be a variable-length string with its length specified by a
separate integer parameter.

Saved DEFINEs

You can specify a set of saved DEFINEs for the new process. You must have
previously saved these DEFINEs in a buffer using one or more calls to the
DEFINESAVE procedure. The DEFINE buffer must be a variable-length string
with its length specified by a separate integer parameter.

Thus, the creator process can give the new process its own DEFINEs or a set of
saved DEFINEs (or both).

Process-deletion message recipient

You can specify that the process-deletion message (system message -101) from the
process you create be delivered according to D-series rules or according to C-series
rules. According to D-series rules, the process-deletion message is delivered only
to the specific instance of the process that created the terminating process.

Creating and Managing a High-PIN Process

Converting TAL Applications

096047 Tandem Computers Incorporated 3–23

According to C-series rules, the process-deletion message is delivered to whatever
process has the same name as the process that created the terminating process.

For a description of these features, refer to the Guardian Procedure Calls Reference
Manual.

Creating a
Low-PIN Process

Your program might need to create a new process that must run at a low PIN. For
example, a process must run at a low PIN to access files on a remote C-series system.

To create a low-PIN process, call the PROCESS_CREATE_ procedure with the
create^options.<15> bit set to 1. If you use the ZSYSTAL file, set the
create^options parameter to ZSYS^VAL^PCREATOPT^LOWPIN. The system
creates the new process at a low PIN regardless of the HIGHPIN attribute setting for
the program object file:

create^options := ZSYS^VAL^PCREATOPT^LOWPIN;

error := PROCESS_CREATE_(program^file:pf^length,
 ! library^file:lf^length ! ,
 ! swap^file:sf^length ! ,
 ! ext^swapfile:esf^length ! ,
 ! priority ! ,
 ! cpu^number ! ,
 process^handle,
 error^detail,
 ! name^option:length ! ,
 process^desc:max^length,
 process^desc^length,
 ! nowait^tag ! ,
 ! home^term:home^term^len ! ,
 ! memory^pages ! ,
 ! jobid ! ,
 create^options);

Managing a
High-PIN Process

This subsection describes how to convert a program to manage a high-PIN process.
Managing a process involves these operations:

Modifying the state of the process by activating or suspending the process,
invoking Inspect or Debug for the process, or stopping or abending the process

Getting information about the process

Setting process attributes

The following paragraphs describe these operations.

The security restrictions for modifying the state of a process and setting process
attributes are described in the Guardian Procedure Calls Reference Manual.

Creating and Managing a High-PIN Process

Converting TAL Applications

3–24 096047 Tandem Computers Incorporated

Activating a Process

Your existing program might call the ACTIVATEPROCESS procedure to return a
process or process pair from the suspended state to the active state:

CALL ACTIVATEPROCESS (process^id);

Convert the ACTIVATEPROCESS call into a call to the PROCESS_ACTIVATE_
procedure. PROCESS_ACTIVATE_ requires a process handle rather than a process ID
as an input parameter to specify the process or process pair to activate.

An optional integer parameter specifies whether only the specified process is activated
or both members of a named process pair are activated. Values for this parameter are:

0 (or omitted) Activate only the process specified by the process handle.

1 If the process specified by the process handle is part of a named
process pair, activate both members of the pair.

In the following example, PROCESS_ACTIVATE_ first activates only the process
identified by the process^handle parameter and then activates both processes of a
process pair where one process of the pair is identified by process^handle:

error := PROCESS_ACTIVATE_(process^handle);

...

! Activate both processes of the process pair.

specifier := activate^pair; ! Set to 1.

error := PROCESS_ACTIVATE_(process^handle,
 specifier); ! Value = 1.

Suspending a Process

Your existing program might call the SUSPENDPROCESS procedure to place a
process or process pair in the suspended state:

CALL SUSPENDPROCESS (process^id);

Convert the SUSPENDPROCESS call into a call to the PROCESS_SUSPEND_
procedure. PROCESS_SUSPEND_ requires a process handle rather than a process ID
as an input parameter to specify the process or process pair to suspend.

An optional integer parameter specifies whether only the specified process is
suspended or both members of a named process pair are suspended. Values for this
parameter are:

0 (or omitted) Suspend only the process specified by the process handle.

1 If the process specified by the process handle is part of a named
process pair, suspend both members of the pair.

Creating and Managing a High-PIN Process

Converting TAL Applications

096047 Tandem Computers Incorporated 3–25

In the following example, PROCESS_SUSPEND_ first suspends a process identified by
the process^handle parameter and then suspends both processes of a process pair
where one process of the pair is identified by process^handle:

error := PROCESS_SUSPEND_(process^handle);

...

! Suspend both processes of the process pair.

specifier := suspend^pair; ! Set to 1.

error := PROCESS_SUSPEND_(process^handle,
 specifier); ! Value = 1.

Invoking Inspect or Debug for a Process

Your existing program might call the DEBUGPROCESS procedure to invoke Inspect or
Debug for another process:

CALL DEBUGPROCESS (process^id);

Convert the DEBUGPROCESS call to a call to the PROCESS_DEBUG_ procedure.
PROCESS_DEBUG_ requires a process handle rather than a process ID as an input
parameter to specify the process (for a process other than the calling process).

Optional parameters specify the home terminal and whether the process should enter
debug mode immediately. The option to enter debug mode immediately (the debug
now option) affects processes where the debug breakpoint is within library code; if the
debug now option is set, debugging begins within the library code itself, rather than
waiting until the return to user code. The debug now option is available only to the
super ID with process access ID (PAID) 255,255.

This example shows two calls to the PROCESS_DEBUG_ procedure:

! Debug the process identified by process^handle.

error := PROCESS_DEBUG_(process^handle);

...

! Debug the process identified by process^handle.
! Use the now option (PAID must be 255,255).

now := debug^now; ! Set to 1.

error := PROCESS_DEBUG_(process^handle,
 ! home^terminal ! ,
 now); ! Value = 1.

Creating and Managing a High-PIN Process

Converting TAL Applications

3–26 096047 Tandem Computers Incorporated

Stopping or Abending a Process

Your existing program might call the STOP or ABEND procedure to delete a process
or process pair and to send a system message to the creator process indicating that the
deletion was caused by a normal (STOP) or abnormal (ABEND) condition:

CALL ABEND (process^id, ! Process to abend.
 ! stop^backup ! ,
 error);

...

CALL STOP; ! Stop the calling process.

Convert the STOP or ABEND call to a call to the PROCESS_STOP_ procedure.
PROCESS_STOP_ supersedes both the STOP and ABEND procedures.

Your program can use PROCESS_STOP_ to delete itself, its backup process, or another
process. The security restrictions for deleting a process are described in the Guardian
Procedure Calls Reference Manual.

PROCESS_STOP_ requires a process handle rather than a process ID as an input
parameter to specify a process other than the calling process. To stop itself, your
program should omit the process-handle parameter or set it to a null value (-1 in each
word).

The PROCESS_STOP_ options.<15> bit determines whether the system stops or
abends a process:

0 Stop the process. The default completion code is 0.

1 Abend the process. The default completion code is 5.

All other bits in the options parameter must be zero.

The system sends system message = (Process deletion) to:

The mom of the deleted process (if it exists).

The ancestor of the deleted process if the deleted process is a single named process
or if it is one process of a process pair and both members of the pair are deleted.

The job ancestor (GMOM) of the deleted process if the deleted process is part of a
batch job.

This example shows PROCESS_STOP_ used to abend a process:

! Abend the process identified by process^handle.

options := abend^option; ! Set to 1.

error := PROCESS_STOP_(process^handle,
 ! specifier ! ,
 options); ! Value = 1 (abend).

Creating and Managing a High-PIN Process

Converting TAL Applications

096047 Tandem Computers Incorporated 3–27

These examples show PROCESS_STOP_ used to stop several processes:

error := PROCESS_STOP_; ! Stop the calling process.

...

! Stop the process identified by process^handle.

error := PROCESS_STOP_(process^handle);

...

! Stop the brother process for the calling process.

specifier := stop^brother; ! Set to 2.

error := PROCESS_STOP_(! process^handle ! ,
 specifier); ! Value = 2.

...

! Stop both processes of a process pair.

specifier := stop^pair; ! Set to 1.

error := PROCESS_STOP_(process^handle,
 specifier); ! Value = 1.

Getting Information About a High-PIN Process

Your existing program might call one of the following C-series procedures to get
information about a process. To get information about a high-PIN process, convert
your program to call the appropriate D-series procedure.

C-Series Procedure D-Series Procedure

CREATORACCESSID PROCESS_GETINFO[LIST]_

GETCPCBINFO PROCESS_GETINFO[LIST]_

GETCRTPID PROCESS_GETINFO[LIST]_

GETREMOTECRTPID PROCESS_GETINFO[LIST]_

LOOKUPPROCESSNAME PROCESS_GETPAIRINFO_

MOM or MYGMOM PROCESS_GETINFO[LIST]_

MYTERM PROCESS_GETINFO[LIST]_

PRIORITY PROCESS_GETINFO[LIST]_

PROCESSFILESECURITY PROCESS_GETINFOLIST_

PROCESSINFO PROCESS_GETINFO[LIST]_

PROCESSTIME PROCESS_GETINFO[LIST]_

PROGRAMFILENAME PROCESS_GETINFO[LIST]_

Creating and Managing a High-PIN Process

Converting TAL Applications

3–28 096047 Tandem Computers Incorporated

PROCESS_GETINFO_ returns a limited set of information about a specific process
identified by its process handle. It also allows a process to retrieve its own process
handle.

PROCESS_GETINFOLIST_ returns detailed information about a specific process or
about all processes within a CPU that meet a list of search criteria. This procedure
also allows you to identify a process using the CPU and PIN if the process handle is
not available.

PROCESS_GETPAIRINFO_ returns information about a named process or process
pair, including the process handle for the current primary process, the backup process
(if one exists), and the ancestor process (if one exists).

Setting Process Attributes for a High-PIN Process

Your existing program might call one of the following C-series procedures to set
attributes for a process. To set attributes for a high-PIN process, convert your program
to call the appropriate D-series procedure.

C-Series Procedure D-Series Procedure

ALTERPRIORITY PROCESS_SETINFO_

PRIORITY PROCESS_SETINFO_

PROCESSFILESECURITY PROCESS_SETINFO_

SETMYTERM PROCESS_SETSTRINGINFO_

STEPMOM PROCESS_SETINFO_

PROCESS_SETINFO_ alters a single attribute of a process and optionally returns the
attribute’s previous value. PROCESS_SETINFO_ supersedes PRIORITY, except that it
does not return the initial priority. To return the initial priority, use the
PROCESS_GETINFOLIST_ procedure.

PROCESS_SETSTRINGINFO_ alters a single string attribute of a process and
optionally returns the attribute’s previous value.

Both procedures require a process handle as an input parameter to specify the process.
A process can specify itself by omitting the process handle input parameter or by
setting this parameter to a null value (-1 in each word).

In the following example, PROCESS_SETSTRINGINFO_ sets the home terminal name
of the calling process to the value of parameter new^home^term and returns the old
home terminal name and length in parameter old^home^term and
old^home^term^length. If you use the ZSYSTAL file, set the
home^term^attribute parameter to ZSYS^VAL^PINF^HOMETERM.

Creating and Managing a High-PIN Process

Converting TAL Applications

096047 Tandem Computers Incorporated 3–29

home^term^attribute := ZSYS^VAL^PINF^HOMETERM;

error := PROCESS_SETSTRINGINFO_
 (! process^handle ! ,
 ! specifier ! ,
 home^term^attribute,
 new^home^term:new^home^term^length,
 old^home^term:max^length,
 old^home^term^length);

In the following example, PROCESS_SETINFO_ sets the process file security to the
value of parameter new^security for both members of a named process pair if one
of the members of the pair is identified by parameter process^handle. If you use
the ZSYSTAL file, set the security^attribute parameter to
ZSYS^VAL^PINF^FILE^SECURITY.

security^attribute := ZSYS^VAL^PINF^FILE^SECURITY;

error := PROCESS_SETINFO_(process^handle,
 specifier, ! Value = 1.
 security^attribute,
 new^security,
 security^length);

For a list of the attributes that you can set using PROCESS_SETINFO_ and
PROCESS_SETSTRINGINFO_ , refer to the Guardian Procedure Calls Reference Manual.

Opening and Communicating With a High-PIN Server

Converting TAL Applications

3–30 096047 Tandem Computers Incorporated

Opening and
Communicating With a

High-PIN Server

Your existing program might be a requester that communicates with a server. For
example, you might open a server, send it a request, and then process its reply. You
might also open a server for a backup requester if your program is running as a
process pair.

How much conversion you need to perform depends on whether your server is named
or unnamed, and, if the server is named, on how long the name is. Your options are:

If the server is local and named or if the server is remote with a name of five
characters or less (including the dollar sign), then no conversion is necessary. You
can still open the high-PIN server using the Guardian C-series-compatible OPEN
procedure. See Appendix C, “System Compatibility,” for further information on
communicating with a named high-PIN process.

If the server is remote and has a six-character name, then you need to first convert
your requester to run at a high PIN as described under “Converting a TAL
Program to Run at a High PIN” earlier in this section, and then complete the
conversion as described under “Communicating With a High-PIN Server” and
“Monitoring a High-PIN Server,” later in this section. See Appendix C, “System
Compatibility,” for further information on communicating with a named high-PIN
process.

If the server is unnamed, then you have the following options:

Set the RUNNAMED object-file attribute in the server so that the system
provides a name for the server, and pass the system-assigned name to the
requester; for example in a DEFINE or an ASSIGN. See “Setting the
RUNNAMED Object-File Attribute,” later in this section, for details.

Convert the requester to run at a high PIN as described under “Converting a
TAL Program to Run at a High PIN” earlier in this section, and then complete
the conversion as described under “Communicating With a High-PIN Server”
and “Monitoring a High-PIN Server,” later in this section.

Setting the RUNNAMED
Object-File Attribute

The RUNNAMED object-file attribute causes a process to run as a named process even
if you do not provide a name for it. Thus, a process can run at a high PIN under the
D-series operating system and be opened by an unconverted process using the OPEN
procedure.

You set the RUNNAMED object-file attribute either during compilation using a
compiler directive or after compilation using the Binder program.

To set the attribute when you compile your program, specify the RUNNAMED
directive in your source code or as a compiler option in the TACL RUN command for
the TAL compiler. The BINSERV program then sets the RUNNAMED attribute in the
object file. An example of this directive (with the HIGHPIN directive) in a source file
is:

?HIGHPIN, RUNNAMED

Opening and Communicating With a High-PIN Server

Converting TAL Applications

096047 Tandem Computers Incorporated 3–31

An example of this directive as a compiler option is:

10> TAL /IN talsrc, ... / talobj; HIGHPIN, RUNNAMED

You need to specify the RUNNAMED directive only once during a compilation. The
TAL compiler ignores redundant RUNNAMED directives.

If you do not set the RUNNAMED attribute when you compile your program, you can
set it after compilation using Binder. For a single object file, use the Binder CHANGE
command:

@CHANGE RUNNAMED ON IN talobj

If you are binding more than one object file into a single target object file, use the
Binder SET command to set the RUNNAMED object-file attribute. If any of the
constituent object files used to build the target file has the RUNNAMED object-file
attribute set, Binder sets this attribute in the target object file.

Communicating With a
High-PIN Server

A requester can open and communicate with a high-PIN named server by opening the
server using the OPEN procedure. However, you must convert your requester to open
the server using the FILE_OPEN_ procedure if the server:

Is unnamed

Is on a remote D-series system and has a six-character name (a dollar sign and five
alphanumeric characters)

Figure 3-4 shows the processes involved in converting this part of a typical
application. The steps in this subsection apply to the requester process $REQ.

Figure 3-4. Converting a TAL Requester to Communicate With a High-PIN Server

$SRV

$REQ

TAL Requester
Process

 Server
Process

TACL

This subsection discusses converting the following operations:

Opening and closing the high-PIN server

Opening and closing the high-PIN server for a backup process

Sending requests to the high-PIN server

Opening and Communicating With a High-PIN Server

Converting TAL Applications

3–32 096047 Tandem Computers Incorporated

Opening a High-PIN Server

Your requester might open the server using the OPEN procedure:

INT .server^name[0:11] := ["$SRV", 10 * [" "]];

...

CALL OPEN (server^name,
 server^file^number,
 nowait^depth,
 sync^depth);

Convert your requester to open the high-PIN server using the FILE_OPEN_
procedure. The FILE_OPEN_ procedure requires a variable-length string for the
server file-name input parameter rather than the 12-word internal-format file name.

Note If the file-name input parameter is incomplete (that is, not fully qualified), FILE_OPEN_ uses the current
settings, including the system name, in the =_DEFAULTS DEFINE for the unspecified parts.

FILE_OPEN_ also accepts a DEFINE name that represents a valid file name in this
format.

FILE_OPEN_ accepts an integer options parameter to specify certain file
characteristics. The options bit positions represent these options:

options
Bit Position Description

.<0> Allow unstructured access for a disk file (must be 0 for other files and devices)

.<1> Execute a nowait open

.<2> Do not execute an update when the file is opened

.<3> Use any available file number for backup open (0 means use the same file number as
in the primary open)

.<4:13> Reserved; must be 0

.<14> Receive C-series system messages ($RECEIVE only)

.<15> Do not receive process open and close system messages ($RECEIVE only)

The ZSYSTAL file contains LITERAL declarations that you can use with the options
parameter.

Opening and Communicating With a High-PIN Server

Converting TAL Applications

096047 Tandem Computers Incorporated 3–33

If you started the server using the PROCESS_CREATE_ procedure, you can use the
PROCESS_CREATE_ process-descriptor output parameter directly in the
FILE_OPEN_ procedure call (shown below as the server^name parameter). Refer to
“Creating and Managing a High-PIN Process” earlier in this section for details.

error := FILE_OPEN_(server^name:server^length,
 server^file^number,
 exclusion^mode,
 nowait^operations,
 sync^depth,
 options);

If you open the server using the nowait open option, you must call the AWAITIO[X]
procedure to complete the open. To determine the error and options values, call
the FILE_GETINFOLIST_ procedure and check the items specified by
ZSYS^VAL^FINF^LASTERROR and ZSYS^VAL^FINF^OPENOPTS, respectively
(provided you use the ZSYSTAL file).

Opening a High-PIN Server for a Backup Requester Process

If your requester is running as a process pair, it might open the server for its backup
process using the CHECKOPEN procedure:

CALL CHECKOPEN (server^name,
 server^file^number,
 nowait^depth,
 sync^depth,
 ! seq^block^buffer ! ,
 ! buffer^length ! ,
 back^error);

Figure 3-5 shows a requester process pair and a server process.

Figure 3-5. Opening a High-PIN Server for a Backup Process

$SRV

 Server
Process

TACL

TAL Requester
Process Pair

$REQ
Primary

$REQ
Backup

Opening and Communicating With a High-PIN Server

Converting TAL Applications

3–34 096047 Tandem Computers Incorporated

Convert your requester to open the high-PIN server for its backup process using the
FILE_OPEN_CHKPT_ procedure. To identify the high-PIN server,
FILE_OPEN_CHKPT_ requires the file number returned by the FILE_OPEN_
procedure call in the primary process. The system returns a file-system error (if a file-
system error occurs) in the returned value error and the status of the backup open in
an output parameter, which is the backup^open^status parameter in this example:

error := FILE_OPEN_CHKPT_(server^file^number,
 backup^open^status);

If you opened the server using the nowait open option, you must call the AWAITIO[X]
procedure to complete the open. To determine the error and
backup^open^status values, call the FILE_GETINFOLIST_ procedure and check
the items specified by ZSYS^VAL^FINF^LASTERROR and
ZSYS^VAL^FINF^LASTERRORDETAIL, respectively (provided you use the
ZSYSTAL file).

Sending a Request to a High-PIN Server

Your requester might send a request to a high-PIN server using the WRITE[X] or
WRITEREAD[X] procedure:

CALL WRITEREADX (server^file^number,
 sbuffer,
 write^count,
 read^count,
 count^read);

Your WRITE[X] or WRITEREAD[X] procedure call should not require any changes to
send a request to a high-PIN server.

Closing a High-PIN Server

Your requester might close the server using the CLOSE procedure:

CALL CLOSE (server^file^number);

You can close a high-PIN server using either the CLOSE or FILE_CLOSE_ procedure:

error := FILE_CLOSE_(server^file^number);

Closing a High-PIN Server for a Backup Requester Process

Your requester might close the server for the backup process using the CHECKCLOSE
procedure:

CALL CHECKCLOSE (server^file^number);

You can close the server for the backup process using either the CLOSE procedure or
the FILE_CLOSE_CHKPT_ procedure:

error := FILE_CLOSE_CHKPT_(server^file^number);

Opening and Communicating With a High-PIN Server

Converting TAL Applications

096047 Tandem Computers Incorporated 3–35

Monitoring a High-PIN
Server

If your program monitors a high-PIN server, you must convert the following
operations:

Opening and closing $RECEIVE

Reading process-deletion and status-change messages

Using the CHILD_LOST_ procedure

The following paragraphs describe how to convert these operations. These steps also
can apply to any creator process that monitors a process that it has created.

Opening $RECEIVE

Your requester might open $RECEIVE using the OPEN procedure:

INT .receive^name[0:11] := ["$RECEIVE", 8 * [" "]];

...

CALL OPEN (receive^name,
 receive^file^number,
 read^open^close^msgs,
 receive^depth);

Convert your requester to open $RECEIVE using the FILE_OPEN_ procedure. Use a
file-name string for the $RECEIVE file name instead of the internal file-name format.
Specify the length as a separate integer value.

The options.<14> bit must be zero (which is the default value) for the system to send
D-series system messages to $RECEIVE; otherwise, the system sends C-series system
messages to $RECEIVE for the requester.

An example of a FILE_OPEN_ procedure call for $RECEIVE is:

LITERAL receive^name^length = 8;

STRING .receive^name[0:receive^name^len-1] := ["$RECEIVE"];

...

! Open $RECEIVE to read D-series system messages.

error := FILE_OPEN_(receive^name:receive^name^length,
 receive^file^number,
 ! access^mode ! ,
 ! exclusion^mode ! ,
 ! nowait^operations ! ,
 receive^depth,
 options);

Opening and Communicating With a High-PIN Server

Converting TAL Applications

3–36 096047 Tandem Computers Incorporated

Reading System Messages From $RECEIVE

Your requester might read system messages from $RECEIVE using the READ[X] or
READUPDATE[X] procedure:

STRING .message^buffer[0:199]; ! Message buffer (200 bytes).

...

read^count := 200;

CALL READX (receive^file^number,
 message^buffer,
 read^count,
 bytes^read);

The lengths shown for each system message are subject to change. In a future release,
Tandem might add new fields to the end of a system message (while maintaining the
layout of the existing fields). Therefore, use a READ[X] or READUPDATE[X] message
buffer at least 250 bytes in length. Also, use a read^count parameter of 250 bytes.

If you use the ZSYSTAL file, use the ZSYS^VAL^SMSG^LEN LITERAL declaration to
specify the system message length in bytes. If you work in words you can use the
ZSYS^VAL^SMSG^WLEN LITERAL declaration instead.

STRING .message^buffer[0:ZSYS^VAL^SMSG^LEN - 1];

...

read^count := ZSYS^VAL^SMSG^LEN;

CALL READX (receive^file^number,
 message^buffer,
 read^count,
 bytes^read);

The ZSYSTAL file also contains structures that you can use when your requester reads
system messages.

Reading Process-Deletion System Messages. Your requester might monitor a server
process by reading these process-deletion system messages from $RECEIVE:

-2 CPU down: named process deletion
-5 Process normal deletion: stop
-6 Process abnormal deletion: abend

Convert your requester to read and process the D-series system message -101 (Process
deletion), which supersedes all the above messages.

Opening and Communicating With a High-PIN Server

Converting TAL Applications

096047 Tandem Computers Incorporated 3–37

Reading Status-Change System Messages. Your requester might monitor a server process
by reading these status-change system messages from $RECEIVE:

-2 CPU down: local CPU failure after process called MONITORCPUS
-8 Change in status of network node

Continue to read system message -2. Then, convert your requester to read these new
status-change messages, all of which supersede system message -8:

-100 Remote CPU down
-110 Loss of communication with node
-113 Remote CPU up

To receive system messages -100, -110, and -113, first call the MONITORNET
procedure with the enable parameter set to 1.

Processing System Messages Using the CHILD_LOST_ Procedure

Your requester might call a user-written routine to determine whether a process-
deletion or status-change message affects the server.

You might convert your requester to call the new CHILD_LOST_ procedure. The
CHILD_LOST_ procedure accepts the process handle of a process you are monitoring
and either a C-series (-2, -5, -6, or -8) or D-series (-2, -100, -101, -110, or -113) process-
deletion or status-change system message:

error := CHILD_LOST_(message:message^length,
 process^handle);

The CHILD_LOST_ error returned value indicates whether the process (or process
pair) is lost:

0 The process (or process pair) is not lost.
4 The process (or process pair) is lost.

Note System message -101 (Process deletion) contains the process handle and process descriptor of the
process that terminated. If a named process (or process pair) has terminated, this is the last opportunity
for you to save the process name of the process (or process pair).

Closing $RECEIVE

Your requester might close $RECEIVE using the CLOSE procedure:

CALL CLOSE (receive^file^number);

You can close $RECEIVE using either the CLOSE or FILE_CLOSE_ procedure:

error := FILE_CLOSE_(receive^file^number);

Allowing a High-PIN Creator

Converting TAL Applications

3–38 096047 Tandem Computers Incorporated

Allowing a High-PIN
Creator

This subsection describes two approaches to allowing your process to be created by a
high-PIN process:

Convert your program to use the D-series enhanced interface when obtaining the
process identifier of the creator process or when receiving the startup sequence of
messages if your process does not use the INITIALIZER procedure.

Set the HIGHREQUESTERS object file attribute on your program file.

Figure 3-6 shows the sample application. The box shows which processes this part of
the conversion applies to. Allowing a high-PIN creator applies to both of these
processes.

Figure 3-6. Converting a TAL Program to Allow a High-PIN Creator

$SRV

$REQ

TAL Requester
Process

TAL Server
Process

TACL

Full Conversion or
HIGHREQUESTERS?

Tandem recommends conversion to the D-series enhanced interface—this method
works in all cases. However, in many cases, the HIGHREQUESTERS attribute
provides an acceptable short cut.

You should not use the HIGHREQUESTERS method if either of the following is true:

Your process cannot allow high-PIN openers other than the process creator. Using
the HIGHREQUESTERS flag allows any high-PIN opener for the life of the
process.

The process ID of the creator process requires further processing for which a
synthetic process ID is inadequate; for example, when you compare it with
another process identifier or pass it to another process, log, or operator.

Allowing a High-PIN Creator

Converting TAL Applications

096047 Tandem Computers Incorporated 3–39

If You Do a Full Conversion

To use the D-series enhanced interface to allow your program to enable a high-PIN
creator, you need to convert your program to run at a high PIN as described in
“Converting a TAL Program to Run at a High PIN,” earlier in this section. In addition,
you might choose to make changes if your program obtains the identity of its creator
or if your program does not use the INITIALIZER procedure to process the startup
sequence of messages.

If your program directly obtains the identity of its creator, you should:

Convert all calls to the MOM procedure into calls to the PROCESS_GETINFO_
procedure.

Convert all calls to the LOOKUPPROCESSNAME procedure that return the
identity of the creator into calls to the PROCESS_GETPAIRINFO_ procedure.

PROCESS_GETINFO_ and PROCESS_GETPAIRINFO_ return process handles instead
of the process IDs that the MOM and LOOKUPPROCESSNAME procedures return.
Process IDs are unsuitable because the PIN field is too short to return a high PIN; you
get a synthetic process ID instead, which always has a PIN of 255. “Getting Your
Creator’s Process Identifier,” later in this section, provides details.

If your program does not use the INITALIZER procedure, you must:

Open $RECEIVE using the FILE_OPEN_ procedure instead of the OPEN
procedure and then read and process the D-series messages.

Convert calls to the RECEIVEINFO procedure and the LASTRECEIVE procedure
into calls to the FILE_GETRECEIVEINFO_ procedure.

“Converting a Startup Sequence That Does Not Use INITIALIZER,” later in this
section, provides details.

If You Use the HIGHREQUESTERS Attribute

If you choose to set the HIGHREQUESTERS object-file attribute, then the high-PIN
creator of your process is allowed to open your process. “Setting the
HIGHREQUESTERS Attribute to Allow a High-PIN Creator,” later in this section,
provides details on how to do this.

Further conversion is unnecessary if synthetic process IDs returned by the MOM,
LOOKUPPROCESSNAME, RECEIVEINFO, and LASTRECEIVE procedures are
enough to distinguish the creator process for the needs of your application.

Allowing a High-PIN Creator

Converting TAL Applications

3–40 096047 Tandem Computers Incorporated

Getting Your Creator’s
Process Identifier

Your existing application might get the process ID of its creator directly using either
of:

The MOM procedure

The LOOKUPPROCESSNAME procedure

In either case, you must convert your program to use the corresponding D-series
procedure call as described in the following paragraphs.

Converting MOM Procedure Calls

Your existing application might get the process ID of its creator using the MOM
procedure as follows:

INT moms^process^id[0:3];

CALL MOM(moms^process^id);

Convert your program to use the D-series PROCESS_GETINFO_ procedure to return
the process handle instead:

INT my^process^handle[0:ZSYS^VAL^PHANDLE^WLEN - 1];
INT moms^process^handle[0:ZSYS^VAL^PHANDLE^WLEN - 1];

my^process^handle ':=' ZSYS^VAL^PHANDLE^WLEN * [-1];
CALL PROCESS_GETINFO_(my^process^handle,
 !process^descriptor!,
 !process^descriptor^length!,
 !priority!,
 moms^process^handle);

Converting LOOKUPPROCESSNAME Procedure Calls

Your existing application might get the process ID of its creator using the
LOOKUPPROCESSNAME procedure as follows:

INT ppd[0:9];
INT momsid[0:3];

ppd ':=' "$MYMOM ";
CALL LOOKUPPROCESSNAME(ppd);
momsid ':=' ppd[5] FOR 4;

Allowing a High-PIN Creator

Converting TAL Applications

096047 Tandem Computers Incorporated 3–41

Convert your program to use the D-series PROCESS_GETPAIRINFO_ procedure to
return the process handle instead. This example returns the process handle of the
ancestor process:

INT ancestor^process^handle[0:ZSYS^VAL^PHANDLE^WLEN - 1];

CALL PROCESS_GETPAIRINFO_(!process^handle!,
 !process^name:max^len!,
 !pair^length!,
 !primary^process^handle!,
 !backup^process^handle!,
 !search index!,
 ancestor^process^handle);

Converting a Startup
Sequence That Does Not

Use INITIALIZER

This subsection describes the remaining steps for conversion assuming that you have
already converted any attempts to directly obtain the identity of your creator process
and decided that using the HIGHREQUESTERS attribute is inappropriate.

For a program that does not use INITIALIZER, you need to convert the way you
process the startup sequence as follows:

Use the FILE_OPEN_ procedure instead of OPEN when opening $RECEIVE to
read the startup sequence, and ask for D-series system messages.

Convert your code to handle D-series system messages, specifically system
messages -103 (Process open) and -104 (Process close).

Use the FILE_GETRECEIVEINFO_ procedure instead of RECEIVEINFO or
LASTRECEIVE if your program uses either of these procedures to identify the
sender of the startup sequence.

Opening $RECEIVE to Read the Startup Sequence

If your new process does not use INITIALIZER to process the startup sequence, then it
typically opens $RECEIVE using the OPEN procedure with the OPEN flags.<1> bit
set to 1 (flags = %40000). This allows you to receive system messages such as -30
(Process open) and -31 (Process close). Your existing program might open $RECEIVE
as follows:

INT .receive^name[0:11] := ["$RECEIVE", 8 * [" "]];

LITERAL read^open^close^msgs = %40000 ;

...

CALL OPEN (receive^name,
 receive^file^number,
 read^open^close^msgs, ! Value = %40000
 receive^depth);

Allowing a High-PIN Creator

Converting TAL Applications

3–42 096047 Tandem Computers Incorporated

Convert your program to open $RECEIVE for processing the startup sequence using
the FILE_OPEN_ procedure:

1. Use a file-name string for the $RECEIVE file name instead of the internal file-name
format. Specify the length as a separate integer value.

2. Make sure that the FILE_OPEN_ options.<15> bit is zero (the default value). If
this bit is not zero, system messages such as -103 (Process open) and -104 (Process
close) are not sent to $RECEIVE.

3. Make sure that the FILE_OPEN_ options.<14> bit is zero (the default value) so
that the system sends D-series system messages to $RECEIVE. If this bit is not
zero, the system sends C-series system messages to $RECEIVE.

4. Set any other FILE_OPEN_ input parameters as required and call the procedure:

LITERAL receive^name^length = 8;

STRING .receive^name[0:receive^name^len-1] :=
["$RECEIVE"];

...

! Open $RECEIVE to read D-series system messages.

error := FILE_OPEN_(receive^name:receive^name^length,
 receive^file^number,
 ! access^mode ! ,
 ! exclusion^mode ! ,
 nowait^operations,
 receive^depth);

If you open $RECEIVE using the FILE_OPEN_ procedure, the system assumes that
you support high-PIN requesters (provided the options.<14> bit is zero). You do not
need to explicitly set the HIGHREQUESTERS object-file attribute in your server’s
object file.

When you close $RECEIVE, use either the CLOSE or FILE_CLOSE_ procedure.

Allowing a High-PIN Creator

Converting TAL Applications

096047 Tandem Computers Incorporated 3–43

Reading and Processing Process Open and Process Close System Messages

When processing the startup sequence, your program might read the C-series -30
(Process open) and -31 (Process close) system messages from $RECEIVE.

To allow a high-PIN creator process, convert your server to read the D-series -103
(Process open) and -104 (Process close) system messages.

To process D-series system messages correctly, you need to change the size of the read
buffer to allow for longer D-series system messages. Your existing process might read
these messages using the READ[X] or READUPDATE[X] procedure in code similar to
the following:

STRING .message^buffer[0:199]; ! Message buffer (200 bytes).

...

read^count := 200;

CALL READX (receive^file^number,
 message^buffer,
 read^count,
 bytes^read);

The lengths shown for each system message are subject to change. Use a READ[X] or
READUPDATE[X] message buffer at least 250 bytes in length. Also, use a
read^count parameter value of 250 bytes.

If you use the declarations in the ZSYSTAL file, use the ZSYS^VAL^SMSG^LEN
LITERAL for the system-message length in bytes or the ZSYS^VAL^SMSG^WLEN
LITERAL for the length in words:

STRING .message^buffer[0:ZSYS^VAL^SMSG^LEN - 1]; ! Message
 ! buffer (250 bytes)
...

read^count := ZSYS^VAL^SMSG^LEN;

CALL READX (receive^file^number,
 message^buffer,
 read^count,
 bytes^read);

Allowing a High-PIN Creator

Converting TAL Applications

3–44 096047 Tandem Computers Incorporated

Getting Information About the Process Open Message in the Startup Sequence

The RECEIVEINFO and LASTRECEIVE procedures obtain information about the last
message read from $RECEIVE. Your existing program might call one of these
procedures after reading the process-open message to obtain the identity of the
process that sent the message, that is, the process creator:

CALL RECEIVEINFO (process^id,
 message^tag,
 sync^id,
 file^number,
 read^count,
 io^type);

Convert the RECEIVEINFO or LASTRECEIVE call into a call to the
FILE_GETRECEIVEINFO_ procedure:

! Return information about the last message.

error := FILE_GETRECEIVEINFO_(message^info);
creators^process^handle ':=' message^info[6] FOR
 ZSYS^VAL^PHANDLE^WLEN;

FILE_GETRECEIVEINFO_ returns information in the 17-word message^info
parameter. The process handle of the creator is in words 6 through 15.

See Table 3-1, later in this section, for a summary of all the information returned in the
message^info parameter.

Allowing a High-PIN Creator

Converting TAL Applications

096047 Tandem Computers Incorporated 3–45

Setting the
HIGHREQUESTERS

Attribute to Allow a High-
PIN Creator

You can set the HIGHREQUESTERS object-file attribute in your source file, or you can
set it after you have finished converting your source code, either during compilation
using a compiler directive or after compilation using the Binder program. The
following paragraphs describe all of these alternatives.

Setting the HIGHREQUESTERS Compiler Directive

To set the attribute when you compile your program, specify the HIGHREQUESTERS
compiler directive in your source code or as a compiler option in the TACL RUN
command for the TAL compiler. The BINSERV program then sets the
HIGHREQUESTERS attribute in the object file. An example of this directive in a
source file is:

?HIGHREQUESTERS

An example of this directive as a compiler option is:

10> TAL /IN talsrc, ... / talobj; HIGHREQUESTERS

You need to specify the HIGHREQUESTERS directive only once during a compilation.
If your program file copies source code from another file, specify the
HIGHREQUESTERS directive only in the program file that contains the main
procedure; do not specify the directive in the other file (or files).

Setting the HIGHREQUESTERS Attribute Using Binder

If you do not set the HIGHREQUESTERS attribute when you compile your program,
you can set it after compilation using Binder. For a single object file, use the Binder
CHANGE command:

@CHANGE HIGHREQUESTERS ON IN TALOBJ

If you are binding more than one object file into a single target object file, use the
Binder SET command to set the HIGHREQUESTERS object-file attribute. For Binder
to set the HIGHREQUESTERS object-file attribute in a target object file, the object file
containing the main procedure must have this object-file attribute set.

For more information about the HIGHREQUESTERS object-file attribute, refer to
“Allowing Opens by High-PIN Requesters” in Appendix C, “System Compatibility.”

Being Opened by and Communicating With a High-PIN Requester

Converting TAL Applications

3–46 096047 Tandem Computers Incorporated

Being Opened by and
Communicating With a

High-PIN Requester

This subsection describes how to convert a TAL server to communicate with a high-
PIN requester. Whether you need to convert the server process depends in part on
whether the server tracks its openers. If the server does keep track of its openers, you
should enable the server to run at a high PIN as described in “Converting a TAL
Program to Run at a High PIN,” earlier in this section, and then convert the server as
described under “Converting a Server,” later in this subsection.

If the server does not track its openers, or if you choose not to perform the conversion,
then you can keep the server process at a low PIN and not convert it, except for setting
the HIGHREQUESTERS object-file attribute as described under “Setting the
HIGHREQUESTERS Attribute to Allow High-PIN Openers,” later in this subsection.
Setting this attribute enables a high-PIN requester to open a low-PIN server.

Converting a Server If your server process tracks its openers, you must convert the following parts of your
program:

Defining an opener table

Opening $RECEIVE

Reading D-series system messages from $RECEIVE

Getting information about system messages

Processing system messages

Replying to a system message

Using the OPENER_LOST_ procedure to maintain an opener table

Figure 3-7 shows the processes involved in converting an application. The steps
described in this subsection apply to the server process $SRV.

Figure 3-7. Converting a TAL Server to Communicate With a High-PIN Requester

$SRV

$REQ

 Requester
Process

TAL Server
Process

TACL

Being Opened by and Communicating With a High-PIN Requester

Converting TAL Applications

096047 Tandem Computers Incorporated 3–47

Defining an Opener Table

If your server tracks its openers, it might define an opener table that uses a process ID
to identify an opener (primary process opener and backup process opener):

STRUCT .opener^table;
 BEGIN
 INT current^count;
 STRUCT openers [0:max^openers - 1];
 BEGIN
 INT primary^process^id [0:3];
 INT primary^file^number;
 INT backup^process^id [0:3];
 INT backup^file^number;
 END;
 END;

Convert your opener table to identify an opener using a process handle rather than a
process ID. To use the OPENER_LOST_ procedure (which is described later in this
subsection) to manage your opener table, define the table as follows:

Use a process handle to identify both a primary-process and backup-process
opener.

Declare the process-handle field for the backup-process opener immediately after
the process-handle field for the primary-process opener (that is, the fields must be
stored in a 20-word contiguous part of an entry).

Declare table entries as fixed length and contiguous.

Do not store variable-length items in the table. If necessary, save a pointer in the
table to a variable-length item.

Set the process handles for primary and backup openers in unused entries to null
values (all -1s).

An example of an opener table that the OPENER_LOST_ procedure can process is:

STRUCT .opener^table;
 BEGIN
 INT current^count;
 STRUCT openers [0:max^openers - 1];
 BEGIN
 INT primary^process^handle
 [0:ZSYS^VAL^PHANDLE^WLEN - 1];
 INT backup^process^handle
 [0:ZSYS^VAL^PHANDLE^WLEN - 1];
 INT primary^file^number;
 INT backup^file^number;
 END;
 END;

Being Opened by and Communicating With a High-PIN Requester

Converting TAL Applications

3–48 096047 Tandem Computers Incorporated

Opening $RECEIVE

Your server might open $RECEIVE using the OPEN procedure with the OPEN
flags.<1> bit set to 1 (flags = %40000). This allows you to receive system
messages such as -30 (Process open) and -31 (Process close):

INT .receive^name[0:11] := ["$RECEIVE", 8 * [" "]];

LITERAL read^open^close^msgs = %40000 ;

...

CALL OPEN (receive^name,
 receive^file^number,
 read^open^close^msgs, ! Value = %40000.
 receive^depth);

Convert your server to open $RECEIVE using the FILE_OPEN_ procedure:

1. Use a file-name string for the $RECEIVE file name instead of the internal file-name
format. Specify the length as a separate integer value.

2. Make sure that the FILE_OPEN_ options.<15> bit is zero (the default value). If
this bit is not zero, system messages such as -103 (Process open) and -104 (Process
close) are not sent to $RECEIVE.

3. Make sure that the FILE_OPEN_ options.<14> bit is zero (the default value) so
that the system sends D-series system messages to $RECEIVE. If this bit is not
zero, the system sends C-series system messages to $RECEIVE.

4. Set any other FILE_OPEN_ input parameters as required and call the procedure:

LITERAL receive^name^length = 8;

STRING .receive^name[0:receive^name^length-1] :=
["$RECEIVE"];

...

! Open $RECEIVE to read D-series system messages.

error := FILE_OPEN_(receive^name:receive^name^length,
 receive^file^number,
 ! access^mode ! ,
 ! exclusion^mode ! ,
 nowait^operations,
 receive^depth);

If you open $RECEIVE using the FILE_OPEN_ procedure, the system assumes that
you support high-PIN requesters (provided the options.<14> bit is zero). You do not
need to explicitly set the HIGHREQUESTERS object-file attribute in your server’s
object file.

When you close $RECEIVE, use either the CLOSE or FILE_CLOSE_ procedure.

Being Opened by and Communicating With a High-PIN Requester

Converting TAL Applications

096047 Tandem Computers Incorporated 3–49

Reading System Messages From $RECEIVE

Your existing server might read system messages from $RECEIVE using the READ[X]
or READUPDATE[X] procedure using code similar to the following:

STRING .message^buffer[0:199]; ! Message buffer (200 bytes).

...

read^count := 200;

CALL READX (receive^file^number,
 message^buffer,
 read^count,
 bytes^read);

The lengths shown for each system message are subject to change. Use a READ[X] or
READUPDATE[X] message buffer at least 250 bytes in length. Also, use a
read^count parameter value of 250 bytes.

If you use the declarations in the ZSYSTAL file, use the ZSYS^VAL^SMSG^LEN
LITERAL for the system-message length in bytes or the ZSYS^VAL^SMSG^WLEN
LITERAL for the length in words:

STRING .message^buffer[0:ZSYS^VAL^SMSG^LEN - 1]; ! Message
 ! buffer (250 bytes)
...

read^count := ZSYS^VAL^SMSG^LEN;

CALL READX (receive^file^number,
 message^buffer,
 read^count,
 bytes^read);

Getting Information About System Messages

Your server might call the RECEIVEINFO or LASTRECEIVE procedure to obtain
information about the last message read from $RECEIVE:

CALL RECEIVEINFO (process^id,
 message^tag,
 sync^id,
 file^number,
 read^count,
 io^type);

Convert the RECEIVEINFO or LASTRECEIVE call into a call to the
FILE_GETRECEIVEINFO_ procedure:

! Return information about the last message.

error := FILE_GETRECEIVEINFO_(message^info);

Being Opened by and Communicating With a High-PIN Requester

Converting TAL Applications

3–50 096047 Tandem Computers Incorporated

FILE_GETRECEIVEINFO_ returns information in the 17-word message^info
parameter, which has the format shown in Table 3-1. The ZSYSTAL file contains a
structure that you can use for the message^info format.

Table 3-1. FILE_GETRECEIVEINFO_ message^info Parameter Format

Word Description

0 I/O type for the message:
0 = A system message was sent.
1 = The sender called WRITE[X].
2 = The sender called READ[X].
3 = The sender called WRITEREAD[X].

1 The maximum reply count in bytes

2 The message tag identifying the message

3 The file number for the message

4 through 5 The sync ID for the message

6 through 15 The process handle of the process sending the message

16 The open^label from a previous reply (or -1 if unavailable or for a C-series message)

Reading and Processing Open and Close System Messages

To monitor an opener, your server might read the C-series -30 (Process open) and -31
(Process close) system messages from $RECEIVE.

To monitor a high-PIN process, convert your server to read the D-series -103 (Process
open) and -104 (Process close) system messages. When your server is opened or closed
by a process pair, it receives a process-open or a process-close message from each
process of the pair.

If you call the RECEIVEINFO or LASTRECEIVE procedure to obtain information
about the process-open or process-close message, convert the call into a call to the
FILE_GETRECEIVEINFO_ procedure as described under “Getting Information About
System Messages,” earlier in this section.

After calling FILE_GETRECEIVEINFO_, update your opener table using the process
handle rather than the process ID to identify the opener.

Being Opened by and Communicating With a High-PIN Requester

Converting TAL Applications

096047 Tandem Computers Incorporated 3–51

System Message -103 (Process Open). Check the process open sysmsg[7].<15> bit (or
ZSYS^DDL^SMSG^OPEN.Z^FLAGS if you use the ZSYSTAL file), which indicates
whether the opener is a primary or backup process:

Primary open (sysmsg[7].<15> bit = 0): Add an entry in your opener table for the
process.

Backup open (sysmsg[7].<15> bit = 1): Process a backup open as follows:

1. Get the process handle for the primary opener from the process-open system
message (-103). This process handle is in sysmsg[8] for ten words (or the
ZSYS^DDL^SMSG^OPEN.Z^PRIMARY field if you use the ZSYSTAL file).

2. Use the process handle to search your opener table for the corresponding
primary-process open entry. If you find this entry but there is no backup open
yet (the backup process handle is null), add the backup process handle to the
table entry.

3. If the primary-process open entry is not found, reject the backup open with a
file-system error greater than 9.

System Message -104 (Process Close). Delete the opener-table entry for this process. You
should receive a process-close message from each process of a process pair.

Reading and Processing Status-Change Messages

If one of your openers has a CPU failure, or if its system fails or becomes partitioned
from your system because of a network failure, you do not receive a process-close
message (-31). Therefore, when maintaining an opener table, your server might read
and process these status-change messages:

-2 CPU down: local CPU failure after the process called MONITORCPUS
-8 Change in status of network node

Continue to read system message -2. In addition, read these new status-change
messages (all of which supersede C-series system message -8):

-100 Remote CPU down
-110 Loss of communication with node
-113 Remote CPU up

To receive system messages -100, -110, and -113, first call the MONITORNET
procedure with the enable parameter set to 1.

Replying to a System Message

Your server might reply to a system message using the Guardian REPLY[X]
procedure:

CALL REPLYX (reply^buffer,
 write^count,
 count^written,
 message^tag,
 error^return);

Being Opened by and Communicating With a High-PIN Requester

Converting TAL Applications

3–52 096047 Tandem Computers Incorporated

Replying to System Message -103 (Process Open). The D-series system supports returning a
label value in the reply to a system message -103 (Process open). Typically, an opener-
table index gets sent in this way. This label then appears in the open^label field of
future FILE_GETRECEIVEINFO_ procedure calls that provide information about
messages received from the same requester. To support this feature, the file system
expects a reply buffer with a length of 0 to 4 bytes; otherwise, the open in the requester
returns an error.

Your server might reply to an open message as follows:

write^count := any^valid^integer;
CALL REPLYX(reply^buffer,
 write^count,
 ! count^written ! ,
 ! message^tag ! ,
 error^return);

To make use of the open^label field in the FILE_GETRECEIVEINFO_ procedure,
you must convert your code to reply to the open message as follows:

reply^buffer[0] := -103;
reply^buffer[1] := open^label^value;
write^count := 4;
CALL REPLYX (reply^buffer,
 write^count,
 ! count^written ! ,
 ! message^tag ! ,
 error^return);

If you do not want to use the open^label field, you still need to be sure that the
reply buffer has a length of 0 to 4 bytes. Convert your server as follows:

write^count := 0;
CALL REPLYX (reply^buffer,
 write^count,
 ! count^written ! ,
 ! message^tag ! ,
 error^return);

Replying to an Unknown System Message. Your server should be able to handle an
unknown system message. If the first word of a message contains an unknown
message number, call the REPLY[X] procedure with an error indication of 2 (invalid
operation):

CALL REPLYX (! reply^buffer ! ,
 ! write^count ! ,
 ! count^written ! ,
 ! message^tag ! ,
 invalid^operation); ! Value = 2.

Being Opened by and Communicating With a High-PIN Requester

Converting TAL Applications

096047 Tandem Computers Incorporated 3–53

Using the OPENER_LOST_ Procedure to Maintain an Opener Table

After receiving a status-change message, your server might call one or more routines
to maintain its opener table.

You might want to use the OPENER_LOST_ procedure to maintain your opener table.
OPENER_LOST_ determines whether a status-change message affects your opener
table and updates the appropriate table entry if an opener was lost.

OPENER_LOST_ accepts a C-series (-2 or -8) or D-series (-2, -100, -110, or -113) status-
change message and searches your opener table for any processes affected by the
message. If OPENER_LOST_ determines that an opener has been lost, it updates the
opener-table entry and returns the index of the entry and an error value. The error
value indicates the reason for the opener-table change:

error
Value Reason

4 A backup process opener is lost

5 A primary process opener is lost; the backup process is now the primary process

6 The primary process and backup process (if it exists) openers for a table entry are lost; the
table entry is now free

When OPENER_LOST_ returns an error value of zero, processing is complete for the
message.

To process all entries in your opener table for a status-change message, set up a loop
similar to the one shown below. The opener table must be defined as described under
“Defining an Opener Table,” earlier in this subsection.

done := 0; ! Set control for start of loop.
index := -1; ! Set index for start of loop.

DO BEGIN
 error := OPENER_LOST_(message:message^length,
 opener^table.openers,
 index,
 opener^table.current^count,
 $LEN(opener^table.openers));

 CASE error OF
 BEGIN
 4 -> ! Processing for lost backup opener
 5 -> ! Processing for lost primary opener
 6 -> ! Processing for lost opener
 ! (primary and backup for a process pair)
 OTHERWISE -> done = -1 ! Processing is finished or
 ! error occurred
 END;
END
UNTIL done;

Being Opened by and Communicating With a High-PIN Requester

Converting TAL Applications

3–54 096047 Tandem Computers Incorporated

Setting the
HIGHREQUESTERS

Attribute to Allow High-PIN
Openers

The HIGHREQUESTERS object-file attribute allows a process to support requests from
high-PIN requesters. You can set the HIGHREQUESTERS attribute by including a
compiler directive in your source file, or you can set it after you have finished
converting your source code either, with a compiler option or after compilation using
the Binder program.

To set the attribute when you compile your program, specify the HIGHREQUESTERS
compiler directive in your source code or as a compiler option in the TACL RUN
command for the TAL compiler. The BINSERV program then sets the
HIGHREQUESTERS attribute in the object file. An example of this directive in a
source file is:

?HIGHREQUESTERS

An example of this directive as a compiler option is:

10> TAL /IN talsrc, ... / talobj; HIGHREQUESTERS

You need to specify the HIGHREQUESTERS directive only once during a compilation.
If your program file copies source code from another file, specify the
HIGHREQUESTERS directive only in the program file that contains the main
procedure; do not specify the directive in the other file (or files).

If you do not set the HIGHREQUESTERS attribute when you compile your program,
you can set it after compilation using Binder. For a single object file, use the Binder
CHANGE command:

@CHANGE HIGHREQUESTERS ON IN TALOBJ

If you are binding more than one object file into a single target object file, use the
Binder SET command to set the HIGHREQUESTERS object-file attribute. For Binder
to set the HIGHREQUESTERS object-file attribute in a target object file, the object file
containing the main procedure must have this object-file attribute set.

For more information about the HIGHREQUESTERS object-file attribute, refer to
“Allowing Opens by High-PIN Requesters” in Appendix C, “System Compatibility.”

4 Converting COBOL85
Applications

096047 Tandem Computers Incorporated 4–1

A COBOL85 program can run at a low PIN under the D-series operating system
without any changes. However, for a program to use the extended features of the
D-series operating system, specific parts of it must be converted. The topics in this
section are:

Converting basic elements of a COBOL85 program, such as using the ZSYSCOB
file, declaring variables, calling Guardian procedures, and running the COBOL85
compiler

Converting a COBOL85 program to run at a high PIN

Converting a COBOL85 program to create and manage a high-PIN process

Converting a requester to communicate with a high-PIN server

Converting a server to communicate with a high-PIN requester

Section 8, “Converting Other Parts of an Application,” contains information about
converting other parts of a COBOL85 application. For additional information about
the Tandem implementation of COBOL85, refer to the COBOL85 Reference Manual.

Converting Basic Elements of a COBOL85 Program

Converting COBOL85 Applications

4–2 096047 Tandem Computers Incorporated

Converting Basic
Elements of a

COBOL85 Program

This subsection describes conversion that applies to all COBOL85 programs you need
to convert to run under the D-series operating system, irrespective of what the
program does. Later subsections describe how to convert specific functions of your
programs, such as communicating with a high-PIN process.

This subsection discusses the following topics:

Using source declarations from the ZSYSCOB file

Declaring and using variables for high PINs, file-system error numbers, file names,
and process identifiers

Calling Guardian procedures

Converting for new reserved words

Running the COBOL85 compiler

Binding Converted Object Files

Figure 4-1 shows a typical application. The box shows which processes this part of the
conversion applies to. Converting basic elements of a COBOL85 program applies to
both of these processes.

Figure 4-1. Converting Basic Elements of a COBOL85 Program

$SRV

$REQ

COBOL85 Requester
Process

COBOL85
Server

Process

TACL

Using the ZSYSCOB
Declarations

Tandem provides COBOL85 source declarations of data items and structures for
Guardian procedures and system messages in the ZSYSCOB file. This file is typically
found on the $SYSTEM.ZSYSDEFS subvolume. Contact your system manager to find
the location of this file on your system.

To use the declarations in this file, include them in your source code using the COPY
statement. For example, this statement copies the entire ZSYSCOB file:

COPY "$SYSTEM.ZSYSDEFS.ZSYSCOB".

Converting Basic Elements of a COBOL85 Program

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–3

The ZSYSCOB file is divided into sections, which allows you to copy only the sections
your program actually needs. For example, these statements copy only the process
creation and system-message constant declarations:

COPY PROCESS-CONSTANT OF "$SYSTEM.ZSYSDEFS.ZSYSCOB".
COPY SYSTEM-MESSAGES-CONSTANT OF "$SYSTEM.ZSYSDEFS.ZSYSCOB".

To print a listing of the ZSYSCOB file to check the declarations that are available for
your program, use the FUP COPY command:

10> FUP COPY $SYSTEM.ZSYSDEFS.ZSYSCOB, $s.#lineptr

Declaring and Using
Programming Variables

For your existing program to run at a high PIN, you might need to add or modify
declarations for the following variables:

CPU and PIN data items

File-system error numbers

Guardian file names, including disk file names, device names,
and process file names

Process identifiers including process IDs, process handles,
and process descriptors

These declarations are described in the following paragraphs.

Declaring CPU and PIN Data Items

When using Guardian procedures that return values for CPU number and PIN, your
existing program might declare either a two-digit data item for the CPU value and a
three-digit data item for the PIN value, or a just a three-digit data item for a PIN value:

WORKING-STORAGE SECTION.
01 CPU-PIN-DEFINITIONS.
 05 CPU PIC S9(2) COMPUTATIONAL.
 05 PIN PIC S9(3) COMPUTATIONAL.

Use a USAGE IS NATIVE-2 clause in the declaration of all PIN values, including PINs
for backup processes, to allow up to 32,767 PINs. Declare a CPU number as a separate
two-digit unsigned data item:

WORKING-STORAGE SECTION.
01 CPU-PIN-DEFINITIONS.
 05 CPU PIC S9(2) COMPUTATIONAL.
 05 PIN NATIVE-2.

Note that you can declare each PIN using a PIC 9(4) COMPUTATIONAL clause if you
will never need a PIN higher than 9,999.

Converting Basic Elements of a COBOL85 Program

Converting COBOL85 Applications

4–4 096047 Tandem Computers Incorporated

Declaring and Checking File-System Error Numbers

A Guardian procedure can return a file-system error number in the GIVING phrase of
an ENTER statement to report an error or special condition. Similarly, the
COBOLFILEINFO utility routine is capable of returning a file-system error code. You
might need to convert the parts of your program that declare and process file-system
errors.

For example, your program might declare a three-digit data item for a file-system error
number:

* C-series file-system error number.

 01 ERROR-NUMBER PIC S9(3) COMPUTATIONAL.

Declare file-system error numbers as five-digit data items:

* D-series file-system error number.

 01 ERROR-NUMBER PIC S9(5) COMPUTATIONAL.

You can also declare a data item for a file-system error number using the
USAGE IS NATIVE-2 clause.

Your program might include a routine that assumes a maximum value for a
file-system error number (for example, 255). A D-series file-system error number is a
maximum of 16 bits. Therefore, make sure that your routine does not exclude any new
error numbers. Also, because Tandem might define additional error numbers in
future releases, do not consider currently undefined numbers as invalid.

For a list and description of all file-system error numbers, refer to the Guardian
Procedure Errors and Messages Manual.

Using Guardian File Names

Guardian file names include disk file names, device names (such as a printer or
terminal name), and process file names. You might need to convert the parts of your
program that declare and use these names.

Disk File Names. Your existing program might declare a Guardian disk-file-name data
item. The largest C-series fully qualified disk file name is 34 characters:

* Fully qualified C-series disk file name.

 01 C-DISK-FILE-NAME PIC X(34).

When accessing disk files on other D-series systems in a network, a converted
COBOL85 program can use a remote D-series file name with an eight-character
volume name (seven characters after the dollar sign) in:

A SELECT clause in the FILE-CONTROL paragraph

A FILE clause in the SPECIAL-NAMES paragraph

Converting Basic Elements of a COBOL85 Program

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–5

However, a converted COBOL85 program cannot use a remote D-series file name with
an eight-character volume name:

In a USING or GIVING phrase in a SORT or MERGE statement

For a file using fast I/O

For spooler job file names

Because of this extra character in the volume name, the largest D-series fully qualified
disk file name is 35 characters. You might need to declare your network file-name
data items large enough to include this extra character. For example:

* Fully qualified D-series disk file name.

 01 DISK-FILE-NAME PIC X(35)
 VALUE "\NEWYORK.$USERDSK.JUNE1990.REPORTS2".

Device Names. Your existing program might declare a Guardian device name. The
largest C-series device name without a system name or a qualifier is eight characters (a
dollar sign and one to seven characters). The largest C-series network device name
without a qualifier is 15 characters (a backslash and a system name followed by a
period, a dollar sign, and one to six characters).

When accessing devices on other D-series systems in a network, a converted program
can use an eight-character remote device name (one to seven characters after the dollar
sign). Therefore, you might need to declare your network device names large enough
to include this extra character. For example:

* Network D-series device name without a qualifier.

 01 DEVICE-NAME PIC X(17)
 VALUE "\HAMBURG.$PRTR004".

* Network D-series device name with a qualifier.

 01 DEVICE-NAME-QUALIFIER PIC X(35)
 VALUE "\HAMBURG.$SPOOLER.#LASRPRT".

Process File Names. Your existing program might declare a variable for a C-series
Guardian process file name. The D-series operating system uses D-series process file
names instead of C-series process file names. Use C-series process file names for
compatibility with unconverted C-series procedures.

A D-series process file name is a variable-length string data item with its length
specified as a separate data item. A sample declaration follows:

* D-series process file name declaration.

01 PROCESS-STUFF.
 03 PROC-NAME-LEN USAGE NATIVE-2.
 03 PROCESS-FILENAME.
 05 P-F OCCURRS 1 TO 47 TIMES DEPENDING ON PROC-NAME-LEN

Converting Basic Elements of a COBOL85 Program

Converting COBOL85 Applications

4–6 096047 Tandem Computers Incorporated

The ZSYSCOB file also contains declarations that you can use for declaring D-series
process file name data items.

Declaring Process Identifiers

Your existing program might declare a process-ID data item to identify a process (for
example, to represent an opener in an opener table):

* Process-ID declaration.

 01 PROCESS-ID.
 05 PROCESS-NAME PIC X(6).
 05 CPU-PIN PIC S9(5) COMPUTATIONAL.

Convert the process-ID variable declaration to a process-handle variable for process-
control operations or to a process-descriptor variable for returning information from a
Guardian procedure. Use a process-ID variable for compatibility with unconverted
C-series procedures.

A process handle has a 10-word (20-byte) fixed-length structure. A process descriptor
is a specific form of the process file name that always includes a node name and
sequence number. Examples of declarations are:

* D-series process-handle declaration.

 01 PROCESS-HANDLE PIC X(20).

* D-series process-descriptor declaration.

 01 PROCESS-DESCRIPTOR PIC X(33).

The ZSYSCOB file also contains declarations that you can use for declaring process-
handle and process-descriptor data items.

Avoiding Subvolume Defaulting

Your existing program might use subvolume defaulting to represent a Guardian disk
file name in the form volume.file-id. For example, this ASSIGN clause uses
subvolume defaulting to specify the file named MASTER on the $DATA disk volume:

* Subvolume defaulting is allowed in a program running
* under the C-series operating system.

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT MASTER-FILE
 ASSIGN TO "$DATA.MASTER".

If you are using the D-series programmatic interface, avoid subvolume defaulting. If a
file name requires the volume name, it must also include the subvolume name.

Converting Basic Elements of a COBOL85 Program

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–7

For example:

* Subvolume defaulting is NOT allowed in a program running
* under the D-series operating system.

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT MASTER-FILE
 ASSIGN TO "$DATA.FY90.MASTER".

Converting Guardian
Procedure Calls

Guardian procedures that you might need to convert are procedures that accept or
return:

A PIN parameter for a high-PIN process

A process-ID parameter

D-series procedures use a process handle (which includes the CPU and PIN values)
rather than a process ID to identify a process.

If you convert your program to run at a high PIN, then you must replace MYPID
procedure calls with calls to the PROCESS_GETINFO_ and
PROCESSHANDLE_DECOMPOSE_ procedures.

“Converting a COBOL85 Program to Run at a High PIN” later in this section, describes
most of the Guardian procedures that need converting.

Convert each C-series procedure to the appropriate D-series procedure. The COBOL85
Programmer’s Guide, the COBOL85 Reference Manual, and the Common Run-Time
Environment Programmer’s Guide provide information about converting TAL procedure
calls to COBOL85.

Converting for New
Reserved Words

FUNCTION is a new reserved word introduced in the D-series COBOL85 compiler. If
you have used the word FUNCTION as a variable name you must replace the name
with a nonreserved word.

Running the
COBOL85 Compiler

When you start the COBOL85 compiler using the TACL RUN command, TACL calls
the PROCESS_CREATE_ procedure to create the COBOL85 compiler process and the
resulting BINSERV and SYMSERV processes at low PINs.

To run the COBOL85 compiler process (and the BINSERV and SYMSERV processes) at
a high PIN, you must use the Binder program to set the HIGHPIN object-file attribute
to ON in the COBOL85 compiler object file (provided you have the proper authority to
change this file). TACL then runs the COBOL85 compiler (and the BINSERV and
SYMSERV processes) at a high PIN if one is available.

Note When running the COBOL85 compiler at a high PIN, there are restrictions on accessing files that reside
on C-series systems for input or output . The compiler returns diagnostic messages if you cannot access
a given C-series file. See Appendix C, “System Compatibility,” for details.

Converting a COBOL85 Program to Run at a High PIN

Converting COBOL85 Applications

4–8 096047 Tandem Computers Incorporated

Using the Binder With
Converted Object Files

You cannot bind modules that have been compiled with the D-series compiler with
modules that have been compiled with a C-series compiler. If you compile any
module with the D-series compiler, you must also recompile any other modules that
you bind it with.

Converting a
COBOL85 Program to

Run at a High PIN

This subsection describes how to convert your COBOL85 program to run at a high PIN
under the D-series operating system. Figure 4-2 shows a typical application. The box
shows which processes this part of the conversion applies to. Converting a COBOL85
program to run at a high PIN applies to both of these processes.

Figure 4-2. Converting a COBOL85 Program to Run at a High PIN

$SRV

$REQ

COBOL85 Requester
Process

COBOL85
Server

Process

TACL

To convert your program, you must:

Select the Common Run-Time Environment (CRE).

Set the HIGHPIN object-file attribute (which tells the system that your program
can run at a high PIN).

Make sure that each library file your program uses also has its HIGHPIN object-
file attribute set (and is capable of running at a high PIN).

Declare PIN data items large enough to hold high-PIN values.

Convert calls to the COBOL85^COMPLETION and COBOLSPOOLOPEN utility
routines into calls to the COBOL_COMPLETION_ and COBOL_SPECIAL_OPEN_
routines.

Remove all ARMTRAP procedure calls.

Convert calls to the MYPID Guardian procedure to calls into the
PROCESS_GETINFO_ and PROCESSHANDLE_DECOMPOSE_ procedures.

These topics are described in the following subsections.

Converting a COBOL85 Program to Run at a High PIN

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–9

Selecting the
Common Run-Time
Environment (CRE)

To convert your COBOL85 program to run at a high PIN, you must select the Common
Run-Time Environment (CRE) using the ENV compiler directive.

To select the CRE, specify the COMMON or LIBRARY option for the ENV compiler
directive. Place this directive before any source code lines in your program:

?ENV COMMON

The COMMON or LIBRARY option selects the CRE for the object file. The object file is
then compatible with other CRE object files (that is, other COBOL85, TAL, C, Pascal,
and FORTRAN object files that are compiled to run with the CRE). TAL object files
that have been recompiled with the D-series TAL compiler are also compatible even if
they are not compiled to run with the CRE.

The LIBRARY option also allows the object file to be placed in a user library.

The OLD option (the default option) causes the object file to be compatible with
C-series object files and other D-series object files that are compiled with the OLD
option specified.

The CRE allows a COBOL85 program to call and be called by other programs written
in COBOL85, C, Pascal, and FORTRAN, even if the main program is not written in
COBOL85. Thus, the CRE has these advantages:

A program can use the language that is best suited for a specific task. For
example, it can perform I/O operations in COBOL85 and then call a C or Pascal
routine to perform mathematical computations.

Routines of a program can share the standard input file, standard output file, and
execution log file even though the routines are written in different languages.
COBOL85 and FORTRAN routines can also share the same $RECEIVE file.

Error reporting and exception handling are provided in the CRE routines.

For more information about the CRE, including the requirements for binding
COBOL85, TAL, C, Pascal, and FORTRAN object files using Binder, refer to the
Common Run-Time Environment (CRE) Programmer’s Guide.

Converting a COBOL85 Program to Run at a High PIN

Converting COBOL85 Applications

4–10 096047 Tandem Computers Incorporated

Setting the HIGHPIN
Object-File Attribute

The HIGHPIN object-file attribute directs the system to run a program at a high PIN if
one is available. If a high PIN is not available, the program runs at a low PIN if one is
available. You set the HIGHPIN object-file attribute either during compilation using a
compiler directive or after compilation using the Binder program.

To set the attribute when you compile your program, specify the HIGHPIN directive
in your source code or as a compiler option in the TACL RUN command for the
COBOL85 compiler. The BINSERV program then sets the HIGHPIN attribute in the
object file. An example of this directive (with the ENV directive) in a source file is:

?ENV COMMON
?HIGHPIN

An example of this directive as a compiler option is:

10> COBOL85 / ... / cobobj; ENV COMMON; HIGHPIN

You need to specify the HIGHPIN directive only once during a compilation.
However, you can specify it any number of times and the compiler will not generate
an error.

Note If you compile with the HIGHPIN directive but do not specify COMMON or LIBRARY for the ENV directive,
the COBOL85 compiler generates a warning message and ignores the HIGHPIN directive.

If you do not set the HIGHPIN attribute when you compile your program, you can set
it after compilation using the Binder program.

If you are binding more than one object file into a single target object file, the Binder
program sets the HIGHPIN object-file attribute in the target file only if all constituent
files have the HIGHPIN object-file attribute set. If necessary, use the Binder CHANGE
command to set the attribute in the target object file:

@CHANGE HIGHPIN ON IN cobobj

Using a Library File If your existing program uses a library file, the library file must also have its HIGHPIN
object-file attribute set. To determine the current setting of the HIGHPIN attribute for
a library file, use the Binder SHOW command:

@SHOW SET HIGHPIN FROM libfile

If necessary, set this attribute as described in the previous step (provided the library
file has been converted to support a high-PIN process).

Converting a COBOL85 Program to Run at a High PIN

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–11

Declaring CPU and PIN
Data Items

As already stated under “Declaring and Using Guardian Data Items,” earlier in this
section, your existing program might declare either a two-digit data item for the CPU
value and a three-digit data item for the PIN value, or a three-digit data item for just a
PIN value:

WORKING-STORAGE SECTION.
01 CPU-PIN-DEFINITIONS.
 05 CPU PIC S9(2) COMPUTATIONAL.
 05 PIN PIC S9(3) COMPUTATIONAL.

Use a USAGE IS NATIVE-2 clause in the declaration of all PIN values, including PINs
for backup processes, to allow up to 32,767 PINs. Declare a CPU number as a separate
two-digit unsigned data item:

WORKING-STORAGE SECTION.
01 CPU-PIN-DEFINITIONS.
 05 CPU PIC S9(2) COMPUTATIONAL.
 05 PIN NATIVE-2.

Note that you can declare each PIN using a PIC 9(4) COMPUTATIOSAL clause if you
will never need a PIN higher than 9,999.

Calling COBOL85
Utility Routines

If your existing program calls utility routines in the COBOLLIB or CBL85UTL library
files, you might need to convert these calls to the appropriate D-series routines. The
routines that you must convert are shown in Table 4-1. For a description of all
COBOL85 utility routines, refer to the COBOL85 Reference Manual.

Table 4-1. COBOL85 Utility Routines

C-Series Routine
(ENV is OLD or omitted)

D-Series Routine
(ENV is COMMON or LIBRARY) Reason for Conversion

COBOL85^COMPLETION COBOL_COMPLETION_ The COBOL85^COMPLETION
routine text-length parameter
has been removed.

COBOLSPOOLOPEN COBOL_SPECIAL_OPEN_ The COBOLSPOOLOPEN
routine has been deleted.

Removing ARMTRAP
Procedure Calls

If your existing program calls the ARMTRAP Guardian procedure using the ENTER
statement, remove all calls to this procedure. If you specify the CRE, CRE routines
perform all trap handling. (You are not required to remove calls to the
COBOL85^ARMTRAP routine; however, it is no longer needed because the CRE
selects a trap automatically.)

Converting a COBOL85 Program to Run at a High PIN

Converting COBOL85 Applications

4–12 096047 Tandem Computers Incorporated

Converting MYPID
Procedure Calls

Your existing program might call the MYPID Guardian procedure using the ENTER
statement to obtain its CPU and PIN values:

WORKING-STORAGE SECTION.
01 CPU-PIN PIC S9(5) COMPUTATIONAL.
...
PROCEDURE DIVISION.
...

ENTER TAL "MYPID" GIVING CPU-PIN

If a high-PIN process calls MYPID, a trap condition occurs. Convert MYPID
procedure calls into PROCESSHANDLE_DECOMPOSE_ procedure calls.

The PROCESSHANDLE_DECOMPOSE_ procedure requires a process handle as an
input parameter. If you do not know the process handle of your process, first call the
PROCESSHANDLE_GETMINE__ procedure. Then pass the results to
PROCESSHANDLE_DECOMPOSE_ , which returns the CPU and PIN values as
separate integer values. For example:

WORKING-STORAGE SECTION.
01 PROCESS-HANDLE PIC X(20).
01 CPU-PIN.
 05 CPU PIC S9(2) COMPUTATIONAL.
 05 PIN NATIVE-2.
01 ERROR-NUMBER PIC S9(5) COMPUTATIONAL.
01 NULL-PH PIC X(20) VALUE ALL HIGH-VALUES.
...

PROCEDURE DIVISION.
...

ENTER TAL "PROCESSHANDLE_GETMINE_"
 USING PROCESS-HANDLE
 GIVING ERROR-NUMBER

ENTER TAL "PROCESSHANDLE_DECOMPOSE_"
 USING PROCESS-HANDLE
 CPU
 PIN
 GIVING ERROR-NUMBER

Creating and Managing a High-PIN Process

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–13

Creating and
Managing a High-PIN

Process

This subsection describes how to convert a program that creates and manages a new
process. The converted program uses the D-series enhanced interface. The process
you create must already be converted to run at a high PIN as described under
“Converting a COBOL85 Program to Run at a High PIN” earlier in this section.

Figure 4-3 shows the processes involved in converting a typical application. The steps
described in this subsection apply to the requester process $REQ, which creates the
high-PIN server process $SRV.

Figure 4-3. Converting a COBOL85 Program to Create and Manage a High-PIN Process

$SRV

$REQ

COBOL85 Requester
Process

 Server
Process

TACL

This subsection covers the following topics:

Programmatically creating a new process at a high PIN

Managing a high-PIN process, including activating, suspending, stopping, and
abending the process, as well as invoking Inspect or Debug for the process

For information on how to interactively create a high-PIN process using TACL, refer to
Section 7, “Converting TACL Programs.”

Creating and Managing a High-PIN Process

Converting COBOL85 Applications

4–14 096047 Tandem Computers Incorporated

Creating a High-PIN
Process

If you have already converted your program to run at a high PIN as described earlier
in this section under “Converting a COBOL85 Program to Run at a High PIN,” then
your program will automatically create any new processes at a high PIN, assuming:

The process you are creating is designed to run at a high PIN (that is, it has its
HIGHPIN object-file attribute set). See “Setting the HIGHPIN Object-File
Attribute” earlier in this section.

The program you are converting is not started by another low-PIN process that
has its inherited force-low characteristic set. See Appendix C, “System
Compatibility,” for a discussion of the inherited force-low characteristic.

Starting a new process at a high PIN is automatic because compiling with the CRE
forces the object file to make Guardian procedure calls through the D-series enhanced
interface rather than the C-series-compatible interface.

See “Selecting the Common Run-Time Environment (CRE)” earlier in this section for
details on how to compile with the CRE.

Managing a High-PIN
Process

Managing a process can involve suspending and activating the process, and stopping
or abending the process. To perform these operations on a high-PIN process, you
simply need to recompile your COBOL85 program to select the CRE. Doing so causes
the object code to use the D-series interface to the operating system, which is necessary
to manage a process at a high PIN.

See “Selecting the Common Run-Time Environment (CRE)” earlier in this section for
details on how to compile with the CRE.

Opening and Communicating With a High-PIN Server

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–15

Opening and
Communicating With a

High-PIN Server

This subsection describes how to convert a COBOL85 requester to communicate with
and monitor a high-PIN server. For the requester, you have the following options:

The requester remains unconverted, but the server has the RUNNAMED object-
file attribute set.

The requester is converted to run at a high PIN and its interface with the server
process is also converted for communication with a high-PIN process.

If your requester does not need converting, then you can let it continue to run at a low
PIN by setting the RUNNAMED object-file attribute in the server. This attribute
makes sure that the server is named and therefore allows the requester to open it even
though the requester runs at a low PIN and the server at a high PIN. “Setting the
RUNNAMED Object-File Attribute” later in this subsection explains how to do this.

If your requester does need to be converted, you must first make it run at a high PIN
as described in “Converting a COBOL85 Program to Run at a High PIN” earlier in this
section. Then, if necessary, convert the following parts of the program:

Communication with the server

Server monitoring functions

System message reception

See “Converting a Requester,” later in this section, for details on how to convert these
parts of your program.

For information about converting a server to monitor a high-PIN requester process,
including maintaining an opener table, refer to “Being Opened by and Communicating
With a High-PIN Requester” later in this section.

Setting the RUNNAMED
Object-File Attribute

The RUNNAMED object-file attribute causes a process to run as a named process even
if you do not provide a name for it. Because you can then open the process by name,
you can run the process at a high PIN under the D-series operating system and have
that process opened by an unconverted process using the Guardian OPEN procedure.

For more information about how an unconverted process running on a D-series system
can communicate with a named high-PIN process, refer to Appendix C, “System
Compatibility.”

You set the RUNNAMED object-file attribute either during compilation using a
compiler directive or after compilation using the Binder program.

To set the attribute when you compile your program, specify the RUNNAMED
compiler directive in your source code or as a compiler option in the TACL RUN
command for the COBOL85 compiler. The BINSERV program then sets the
RUNNAMED attribute in the object file. An example of this directive (with the ENV
and HIGHPIN directives) in a source file is:

?ENV COMMON; HIGHPIN; RUNNAMED

Opening and Communicating With a High-PIN Server

Converting COBOL85 Applications

4–16 096047 Tandem Computers Incorporated

An example of this directive as a compiler option is:

10> COBOL85 / ... / cobobj; ENV COMMON; HIGHPIN; RUNNAMED

You need only specify the RUNNAMED directive once during a compilation.
However, you can specify it any number of times and the compiler will not generate
an error.

If you do not set the RUNNAMED attribute when you compile your program, you can
set it after compilation using Binder. For a single object file, use the Binder CHANGE
command:

@CHANGE RUNNAMED ON IN cobobj

If you are binding more than one object file into a single target object file, use the
Binder SET command to set the object-file attribute. If any of the constituent object
files used to build the target file has the RUNNAMED object-file attribute set, Binder
sets the attribute in the target object file.

Converting a Requester This subsection describes how to convert your COBOL85 requester program.
Figure 4-4 shows the processes involved in converting a typical application. The steps
in this subsection apply to the requester process $REQ.

Figure 4-4. Converting a COBOL85 Requester to Communicate With a High-PIN Server

$SRV

$REQ

COBOL85 Requester
Process

 Server
Process

TACL

This subsection describes the following topics:

Opening and communicating with a high-PIN server

Monitoring a High-PIN server

Opening and reading $RECEIVE

Converting the RECEIVE-CONTROL Paragraph

Opening and Communicating With a High-PIN Server

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–17

Opening and Communicating With a High-PIN Server

To use the D-series enhanced interface for opening and communicating with a high-
PIN server, you simply need to recompile your COBOL85 program using the CRE.

See “Selecting the Common Run-Time Environment (CRE)” earlier in this section for
details on how to compile with the CRE.

Monitoring a High-PIN Server

If your requester program monitors a server, then it must read and handle process-
deletion and status-change messages. To do so for a high-PIN server, your program
must:

Declare a read buffer large enough for D-series enhanced system messages.

Check for and process the new D-series process-deletion and status change
messages.

The following paragraphs describe these operations.

Once again, to receive the D-series system messages, your program must be
recompiled with the CRE.

Opening and Reading $RECEIVE

You might need to convert the part of your program that opens and reads $RECEIVE
as follows:

1. Your OPEN statement for $RECEIVE should not require any changes.

2. When you read a D-series message from $RECEIVE using the READ statement,
use a message record area that is at least 256 characters in length.

The ZSYSCOB file contains a data structure for each system message. Because
each system-message data structure is in a separate section of ZSYSCOB, you can
copy only the data structures for the messages you actually read.

3. If necessary, modify the parts of your program that process each system message.
Refer to Table 4-2 for the D-series system messages that supersede C-series system
messages.

4. Your CLOSE statement for $RECEIVE should not require any changes.

Converting the RECEIVE-CONTROL Paragraph

The RECEIVE-CONTROL paragraph allows a program to read system messages by
defining the receive-control and reply tables. The parts of the RECEIVE-CONTROL
paragraph that you might need to convert are:

The REPORT clause, which specifies the system messages a program reads from
$RECEIVE

The MESSAGE SOURCE clause, which identifies the process that sent a system
message

Opening and Communicating With a High-PIN Server

Converting COBOL85 Applications

4–18 096047 Tandem Computers Incorporated

The REPORT Clause. The REPORT clause in the RECEIVE-CONTROL paragraph
specifies the specific system messages that your program reads from $RECEIVE.

You might need to convert this clause to specify the D-series messages you want to
read from $RECEIVE.

Table 4-2 shows the REPORT clause message-type keywords and the corresponding
C-series and D-series system messages that each keyword allows a program to read
from $RECEIVE.

Table 4-2. Message-Type Keywords (Page 1 of 2)

COBOL85 Keyword
C-Series System Message
(ENV is OLD or omitted)

D-Series System Message
(ENV is COMMON or LIBRARY)

ABEND -6 Process abnormal deletion: Abend Not used; see PROCESS-DELETION

BREAK -20 Break on device -105 Break on device

CLOSE -31 Process close -104 Process close

CONTROL -32 Process CONTROL -32 Process CONTROL

CONTROLBUF -35 Process CONTROLBUF -35 Process CONTROLBUF

CPU-DOWN -2
-2

CPU down: process MONITORCPUS
CPU down: named process deletion

-2
-101

CPU down: process MONITORCPUS
Process deletion for CPU down

CPU-UP -3 CPU up -3 CPU up

DEVICE-INFO -40 Device type inquiry -106 Device type inquiry

DEVICEINFO2-
COMPLETION

-41 Nowait device type inquiry -41 Nowait device type inquiry

FILE-GETINFOBYNAME-
COMPLETION

None -108 Nowait FILE_GETINFOBYNAME_
completion

FILENAME-FILENEXT-
COMPLETION

None -109 Nowait FILENAME_FINDNEXT_
completion

JOB-PROCESS-CREATION -9 Job process creation -112 Job process creation

LOGICAL-CLOSE Logical open Logical open

LOGICAL-OPEN Logical open Logical open

MEMORY-LOCK-
COMPLETION

-23 Memory lock completion -23 Memory lock completion

MEMORY-LOCK-FAILURE -24 Memory lock failure -24 Memory lock failure

MESSAGE-CANCELLED -38 Queued message cancellation -38 Queued message cancellation

MESSAGE-MISSED -13 System message buffer overrun -13 System message buffer overrun

NETWORK -8 Change in status of network node Not used; see NODE-DOWN,
NODE-UP, REMOTE-CPU-DOWN, and
REMOTE-CPU-UP

NEWPROCESSNOWAIT-
COMPLETION
or
NEWPROCESS-
COMPLETION

-12 NEWPROCESSNOWAIT completion -12 NEWPROCESSNOWAIT completion

Opening and Communicating With a High-PIN Server

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–19

Table 4-2. Message-Type Keywords (Page 2 of 2)

COBOL85 Keyword
C-Series System Message
(ENV is OLD or omitted)

D-Series System Message
(ENV is COMMON or LIBRARY)

NODE-DOWN -8 Change in status of network node -110 Loss of communication with node

NODE-UP -8 Change in status of network node -111 Establishment of communication with
node

OPEN -30 Process open -103 Process open

POWER-ON -11 Power on -11 Power on

PROCESS-CREATE-
CREATION

None -102 Nowait PROCESS_CREATE_
completion

PROCESS-DELETION -2
-5
-6

CPU down: named process deletion
Stop
Abend

-101 Process deletion: STOP, ABEND, or
CPU down

PROCESS-TIME-SIGNAL -26 Process time timeout -26 Process time timeout

REMOTE-CPU-DOWN -8 Change in status of network node -100 Remote CPU down

REMOTE-CPU-UP -8 Change in status of network node -113 Remote CPU up

RESETSYNC -34 Process RESETSYNC -34 Process RESETSYNC

SETMODE -33 Process SETMODE -33 Process SETMODE

SETPARAM -37 Process SETPARAM -37 Process SETPARAM

SETTIME -10 SETTIME -10 SETTIME

STATUS-3270 -21 3270 device status received -21 3270 device status received

STOP -5 Process normal deletion: Stop Not used; see PROCESS-DELETION

SUBORDINATE-NAME None -107 Subordinate name inquiry

SYSTEM Specifies system messages –5, –6,
–12, –22, –23, –24, –30, –31, –32,
–33, –34, and –35

Specifies all system messages except
LOGICAL-OPEN and LOGICAL-CLOSE

TIME-SIGNAL -22 Elapsed time timeout -22 Elapsed time timeout

The following paragraphs identify the system messages that are most likely affected
by the conversion of a requester. These messages include the process-deletion system
messages and the status-change system messages.

Opening and Communicating With a High-PIN Server

Converting COBOL85 Applications

4–20 096047 Tandem Computers Incorporated

Reading Process-Deletion System Messages. Your requester might monitor a server
process by using the following keywords to read process-deletion system messages
from $RECEIVE:

COBOL85 Keyword C-Series System Message (ENV is OLD or Omitted)

CPU-DOWN -2 CPU down: named process deletion

STOP -5 Process normal deletion: Stop

ABEND -6 Process abnormal deletion: Abend

PROCESS-DELETION -2
-5
-6

CPU down: named process deletion
Process normal deletion: Stop
Process abnormal deletion: Abend

Convert your requester to use the PROCESS-DELETION keyword to read and process
message -101 (Process deletion), which supersedes all the above messages:

COBOL85 Keyword D-Series System Message (ENV is COMMON or LIBRARY)

PROCESS-DELETION -101 Process deletion

Reading Status-Change System Messages. Your requester might monitor a server process
using the following keywords to read status-change system messages from $RECEIVE:

COBOL85 Keyword C-Series System Message (ENV is OLD or Omitted)

CPU-DOWN -2 Process MONITORCPUS

NETWORK -8 Change in status of network node

NODE-DOWN -8 Change in status of network node

NODE-UP -8 Change in status of network node

REMOTE-CPU-DOWN -8 Change in status of network node

REMOTE-CPU-UP -8 Change in status of network node

Convert your program as follows:

Continue to use the CPU-DOWN keyword to read system message -2.

Replace the use of the NETWORK keyword with one of NODE-DOWN, NODE-
UP, REMOTE-CPU-DOWN, or REMOTE-CPU-UP, which now correspond to new
system messages as shown in the table below.

Continue with your current use of keywords NODE-DOWN, NODE-UP,
REMOTE-CPU-DOWN, and REMOTE-CPU-UP, but note that these keywords
now read the new D-series system messages as listed in the following table:

COBOL85 Keyword D-Series System Message (ENV is COMMON or LIBRARY)

CPU-DOWN -2 Process MONITORCPUS

NODE-DOWN -110 Loss of communication with node

NODE-UP -111 Establishment of communication with node

REMOTE-CPU-DOWN -100 Remote CPU down

REMOTE-CPU-UP -113 Remote CPU up

Opening and Communicating With a High-PIN Server

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–21

The MESSAGE SOURCE Clause. If your existing program receives system messages, the
MESSAGE SOURCE clause in the RECEIVE-CONTROL paragraph identifies the
process that sent the message. The C-series MESSAGE SOURCE clause uses a process
ID to identify the sender process:

* C-series receive-control table.

 RECEIVE-CONTROL.
 TABLE OCCURS 1 TIMES
 SYNCDEPTH LIMIT IS 1
 MESSAGE SOURCE IS MESSAGE-SENDER.

...

 01 MESSAGE-SENDER.
 05 SYSTEM-FLAG PIC S9 COMPUTATIONAL.
 05 ENTRY-NUMBER PIC 999 COMPUTATIONAL.
 05 FILLER PIC X(4).
 05 PROCESS-ID.
 10 PROCESS-NAME PIC X(6).
 10 CPU-PIN PIC S9(2) COMPUTATIONAL.
 05 FILLER PIC X(16).

Convert your existing program to identify the sender process using a process handle
rather than a process ID:

* D-series receive-control table.

 RECEIVE-CONTROL.
 TABLE OCCURS 1 TIMES
 SYNCDEPTH LIMIT IS 1
 MESSAGE SOURCE IS MESSAGE-SENDER.

...

 01 MESSAGE-SENDER.
 05 SYSTEM-FLAG PIC S9 COMPUTATIONAL.
 05 ENTRY-NUMBER PIC 999 COMPUTATIONAL.
 05 FILLER PIC X(4).
 05 MSG-SOURCE PIC X(20).
 05 FILLER PIC X(4).

After conversion, the overall length of the MESSAGE SOURCE data item is the same
(32 characters), but the process-handle declaration replaces the process-ID declaration.
If you need values from the process-handle data item (for example, the CPU and PIN
values), use the PROCESSHANDLE_DECOMPOSE_ procedure.

Being Opened by and Communicating With a High-PIN Requester

Converting COBOL85 Applications

4–22 096047 Tandem Computers Incorporated

Being Opened by and
Communicating With a

High-PIN Requester

This subsection describes how to convert a COBOL85 server to communicate with a
high-PIN requester. Whether you need to convert the server process depends in part
on whether the server tracks its openers. If the server does keep track of its openers,
you should enable the server to run at a high PIN as described in “Converting a
COBOL85 Program to Run at a High PIN,” earlier in this section, and then convert the
server as described under “Converting a Server,” later in this subsection.

If the server does not track its openers, or if you choose not to perform the conversion,
then you can keep the server process at a low PIN and not convert it, except for setting
the HIGHREQUESTERS object-file attribute as described under “Setting the
HIGHREQUESTERS Attribute to Allow High-PIN Openers,” later in this subsection.
Setting this attribute enables a high-PIN requester to open a low-PIN server.

Converting a Server If your server program tracks its openers and uses the PIN to identify each opener,
then you must convert the server. Figure 4-5 shows the processes involved in
converting a typical application. The steps described in this subsection apply to the
server process $SRV.

Figure 4-5. Converting a COBOL85 Server to Communicate With a High-PIN Requester

$SRV

$REQ

 Requester
Process

COBOL85
Server

Process

TACL

You must convert the following parts of your program:

The RECEIVE-CONTROL paragraph, so that

Your program accepts D-series enhanced interface messages instead of
C-series-compatible messages

The MESSAGE SOURCE clause identifies processes by process handle rather
than by process ID

The opener table, so that it identifies openers by process handle instead of process
ID

$RECEIVE handling, to have a read buffer large enough for D-series enhanced
interface system messages

Being Opened by and Communicating With a High-PIN Requester

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–23

Converting the RECEIVE-CONTROL Paragraph

The RECEIVE-CONTROL paragraph allows a program to read system messages by
defining the receive-control and reply tables. The parts of the RECEIVE-CONTROL
paragraph that you might need to convert are:

The REPORT clause, which specifies the system messages a program reads from
$RECEIVE

The MESSAGE SOURCE clause, which identifies the process that sent a system
message

The REPORT Clause. The REPORT clause in the RECEIVE-CONTROL paragraph
specifies the specific system messages that your program reads from $RECEIVE.

You might need to convert this clause to specify the D-series messages you want to
read from $RECEIVE.

Table 4-2 shows the REPORT clause message-type keywords and the corresponding
C-series and D-series system messages that each keyword allows a program to read
from $RECEIVE.

The following paragraphs identify the system messages that are most likely affected
by converting a server. These messages include the Open and Close system messages
and the status-change system messages.

Reading Open and Close System Messages. If your server maintains an opener table, then
it will read all Open and Close system messages. Your existing program uses the
following keywords to read these messages:

COBOL85 Keyword C-Series System Message (ENV is OLD or Omitted)

OPEN -30 Process open

CLOSE -31 Process close

For these keywords, no conversion is necessary because the same keywords are used
to read the corresponding system messages generated by the D-series enhanced
interface when you recompile your program with CRE. The correspondence between
the keywords and the system messages is shown below:

COBOL85 Keyword D-Series System Message (ENV is COMMON or LIBRARY)

OPEN -103 Process open

CLOSE -104 Process close

Being Opened by and Communicating With a High-PIN Requester

Converting COBOL85 Applications

4–24 096047 Tandem Computers Incorporated

Reading Status-Change System Messages. Your server might also monitor the status of its
requesters by using the following keywords to read status-change system messages
from $RECEIVE:

COBOL85 Keyword C-Series System Message (ENV is OLD or Omitted)

CPU-DOWN -2 Process MONITORCPUS

NETWORK -8 Change in status of network node

NODE-DOWN -8 Change in status of network node

NODE-UP -8 Change in status of network node

REMOTE-CPU-DOWN -8 Change in status of network node

REMOTE-CPU-UP -8 Change in status of network node

Convert your program as follows:

Continue to use the CPU-DOWN keyword to read system message -2.

Replace the use of the NETWORK keyword with one of NODE-DOWN, NODE-
UP, REMOTE-CPU-DOWN, or REMOTE-CPU-UP, which now correspond to new
system messages as shown in the table below.

Continue with your current use of keywords NODE-DOWN, NODE-UP,
REMOTE-CPU-DOWN, and REMOTE-CPU-UP, but note that these keywords
now read the new D-series system messages as listed in the following table.

COBOL85 Keyword D-Series System Message (ENV is COMMON or LIBRARY)

CPU-DOWN -2 Process MONITORCPUS

NODE-DOWN -110 Loss of communication with node

NODE-UP -111 Establishment of communication with node

REMOTE-CPU-DOWN -100 Remote CPU down

REMOTE-CPU-UP -113 Remote CPU up

Being Opened by and Communicating With a High-PIN Requester

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–25

The MESSAGE SOURCE Clause. If your existing program receives system messages, the
MESSAGE SOURCE clause in the RECEIVE-CONTROL paragraph identifies the
process that sent the message. The C-series MESSAGE SOURCE clause uses a process
ID to identify the sender process:

* C-series receive-control table.

 RECEIVE-CONTROL.
 TABLE OCCURS 1 TIMES
 SYNCDEPTH LIMIT IS 1
 MESSAGE SOURCE IS MESSAGE-SENDER.

...

 01 MESSAGE-SENDER.
 05 SYSTEM-FLAG PIC S9 COMPUTATIONAL.
 05 ENTRY-NUMBER PIC 999 COMPUTATIONAL.
 05 FILLER PIC X(4).
 05 PROCESS-ID.
 10 PROCESS-NAME PIC X(6).
 10 CPU-PIN PIC S9(2) COMPUTATIONAL.
 05 FILLER PIC X(16).

Convert your existing program to identify the sender process using a process handle
rather than a process ID:

* D-series receive-control table.

 RECEIVE-CONTROL.
 TABLE OCCURS 1 TIMES
 SYNCDEPTH LIMIT IS 1
 MESSAGE SOURCE IS MESSAGE-SENDER.

...

 01 MESSAGE-SENDER.
 05 SYSTEM-FLAG PIC S9 COMPUTATIONAL.
 05 ENTRY-NUMBER PIC 999 COMPUTATIONAL.
 05 FILLER PIC X(4).
 05 MSG-SOURCE PIC X(20).
 05 FILLER PIC X(4).

After conversion, the overall length of the MESSAGE SOURCE data item is the same
(32 characters), but the process-handle declaration replaces the process-ID declaration.
If you need values from the process-handle data item (for example, the CPU and PIN
values), use the PROCESSHANDLE_DECOMPOSE_ procedure.

Being Opened by and Communicating With a High-PIN Requester

Converting COBOL85 Applications

4–26 096047 Tandem Computers Incorporated

Defining an Opener Table

If your program is a server that tracks its openers, you might define an opener table
using a process ID to identify an opener:

* C-series opener table.

 01 OPENER-TABLE.
 03 OPENERS OCCURS 15 TIMES.
 05 CURRENT-COUNT PIC 999 COMPUTATIONAL.
 05 PRIMARY-OPENER.
 07 PROCESS-NAME PIC X(6).
 07 CPU-PIN PIC S9(5).
 05 BACKUP-OPENER.
 07 PROCESS-NAME PIC X(6).
 07 CPU-PIN PIC S9(5).

Convert your opener table to identify an opener using a process handle rather than a
process ID. For example:

* D-series opener table.

 01 OPENER-TABLE.
 03 OPENERS OCCURS 15 TIMES.
 05 CURRENT-COUNT PIC 999 COMPUTATIONAL.
 05 PRIMARY-OPENER PIC X(20).
 05 BACKUP-OPENER PIC X(20).

Opening and Reading $RECEIVE

You might need to convert the part of your program that opens and reads $RECEIVE
as follows:

1. Your OPEN statement for $RECEIVE should not require any changes.

2. When you read a D-series system message from $RECEIVE using the READ
statement, use a message record area that is at least 256 characters in length.

The ZSYSCOB file contains a data structure for each system message. Because
each system-message data structure is in a separate section of ZSYSCOB, you can
copy only the data structures for the messages you actually read.

3. If necessary, modify the parts of your program that process each system message.
Refer to Table 4-2 for the D-series messages that supersede C-series messages.

4. Your CLOSE statement for $RECEIVE should not require any changes.

Being Opened by and Communicating With a High-PIN Requester

Converting COBOL85 Applications

096047 Tandem Computers Incorporated 4–27

Setting the
HIGHREQUESTERS

Attribute to Allow High-PIN
Openers

The HIGHREQUESTERS object-file attribute allows a process to support requests from
high-PIN requesters. Use this attribute only for a COBOL85 main program. You can
set the HIGHREQUESTERS object-file attribute by including a compiler directive in
your source file, or you can set it after you have finished converting your source code
either with a compiler option or after compilation using the Binder program.

To set the attribute when you compile your program, specify the HIGHREQUESTERS
directive in your source code or as a compiler option in the TACL RUN command for
the COBOL85 compiler. The BINSERV program then sets the HIGHREQUESTERS
attribute in the object file. An example of this directive in a source file is:

?HIGHREQUESTERS

An example of this directive as a compiler option is:

10> COBOL85 /IN cobsrc, ... / cobobj ; HIGHREQUESTERS

You need to specify the HIGHREQUESTERS directive only once during a compilation.
If your existing program copies source code from another file, specify the
HIGHREQUESTERS directive only in the main program file; do not specify the
directive in the other file (or files).

If you do not set the HIGHREQUESTERS attribute when you compile your program,
you can set it after compilation using Binder. For a single object file, use the Binder
CHANGE command:

@CHANGE HIGHREQUESTERS ON IN cobobj

If you are binding more than one object file into a single target object file, use the
Binder SET command to set the HIGHREQUESTERS object-file attribute. For Binder
to set the HIGHREQUESTERS object-file attribute in a target object file, the object file
containing the main program must have this object-file attribute set.

For more information about the HIGHREQUESTERS object-file attribute, refer to
“Allowing Opens by High-PIN Requesters” in Appendix C, “System Compatibility.”

5 Converting C Applications

096047 Tandem Computers Incorporated 5–1

A C program can run at a low PIN on a D-series operating system without any
changes. However, for a C program to use the extended features of the D-series
operating system, specific parts of it must be converted.

The topics in this section are:

Recompiling your C program

Program elements affected by D-Series system enhancements

Making the C compiler run as a high PIN process

Converting a C program to run at a high PIN

Converting a C program to create a high-PIN process

Converting a requester to open and communicate with a high-PIN server

Converting a server to be opened by and communicate with a high-PIN requester

Section 8, “Converting Other Parts of an Application,” contains information about
converting other parts of a C application. For additional information about the
Tandem implementation of C, refer to the C Reference Manual.

Figure 5-1 shows a typical application. The box shows which processes this part of the
conversion applies to. Converting basic elements of a C program applies to both of
these processes.

Figure 5-1. Converting Basic Elements of a C Program

$SRV

$REQ

C Requester
Process

C Server
Process

TACL

Recompiling Your C Program

Converting C Applications

5–2 096047 Tandem Computers Incorporated

Recompiling Your C
Program

Some elements of a C-series C program must be changed if you recompile the program
on a D-series system. To recompile your program, you must:

Compile all program modules with a D-series C compiler

Use the D-series CEXTDECS file (external declarations for Guardian procedures)

Use the D-series ZSYSC file (source declarations for Guardian procedures and
system messages)

Change memory-model file references in SEARCH compiler pragmas

Open temporary files using either the ANSI tempfile function or the Guardian
FILE_CREATE_ procedure

Replace min and max macros

Declare the the NULL macro

Change macro definitions that replace parameters inside a literal string

Specify a FIELDALIGN SHARED2 pragma for type long used in bit-field
declarations

Use the new definition for errno

Change code that relies on the sizeof operator returning 2 for a constant
operand

Change code that relies on size_t, the result of the sizeof operator, being of
type long

Change code that uses the fflush function to flush partial lines to stdout or
stderr

Change code that relies on the return value of the sscanf function

Additional elements of a C-series C program must be changed if you want the
program to be compliant with ANSI C. You do not have to change these elements at
this time. However, Tandem recommends that you change these elements now
because future releases of the Tandem C compiler might not support these elements.
To make your program ANSI C compliant, you must:

Change certain keywords

Replace obsolete TAL function declarations

Declare a function prototype within the scope of each call to a function

These topics are discussed in this subsection.

D-Series and C-Series
Object Modules

You cannot bind modules that have been compiled by a D-series compiler with
modules that have been compiled by a C-series compiler. If you compile any module
with a D-series compiler, you must also recompile any other modules that you bind
with it.

Recompiling Your C Program

Converting C Applications

096047 Tandem Computers Incorporated 5–3

D-Series
CEXTDECS Declarations

The $SYSTEM.SYSTEM.CEXTDECS file contains external declarations for Guardian
procedures. Some C-series Guardian procedures have been replaced by new D-series
procedures. The D-series CEXTDECS file contains declarations for both the C-series
version and D-series version of these procedures.

Convert your #include compiler directive to specify D-series declarations instead of
C-series declarations. Then replace the C-series procedure names in your program
with the new D-series procedure names.

For example:

#include Specifying
Superseded C-Series Procedures

#include Specifying
D-Series Procedures

#include <cextdecs (OPEN, \
 READX, \
 WRITEX,\
 CLOSE)>

#include <cextdecs(FILE_OPEN_,\
 READX, \
 WRITEX, \
 FILE_CLOSE_)>

Appendix A lists the D-series procedures that supersede C-series procedures. For a
description of each procedure, refer to the Guardian Procedure Calls Reference Manual.

D-Series
ZSYSC Declarations

The $SYSTEM.ZSYSDEFS.ZSYSC file contains source declarations for Guardian
procedures and system messages.

Note Contact your system manager if you cannot find $SYSTEM.ZSYSDEFS.ZSYSC. The file may have been
relocated.

To use these declarations, include them with your source code using the #include
compiler directive.

The following directive includes the entire ZSYSC file without printing the contents of
the file in a compiler listing:

#include "$system.zsysdefs.zsysc" nolist

The ZSYSC file is divided into sections, which allows you to include only the sections
your program actually needs. The following directive includes only the process-
creation and system-message constant declarations and prints the contents of each
section in a compiler listing:

#include "$system.zsysdefs.zsysc (process_constant, \
 system_messages_constant)"

To print a listing of the ZSYSC file to check the declarations that are available for your
program, use the FUP COPY command:

10> FUP COPY $SYSTEM.ZSYSDEFS.ZSYSC, $s.#lineptr

Recompiling Your C Program

Converting C Applications

5–4 096047 Tandem Computers Incorporated

Changing Memory-Model
File References

If your program uses a SEARCH compiler pragma to specify a memory-model file (to
search when resolving external references), you must change the name of the
memory-model file as follows:

C-Series pragma Format (Superseded) D-Series pragma Format

#pragma SEARCH smallc #pragma SEARCH csmall

#pragma SEARCH largec #pragma SEARCH clarge

#pragma SEARCH widec #pragma SEARCH cwide

Opening Temporary Files Temporary files must be opened with either the ANSI tempfile function or the
Guardian FILE_CREATE_ procedure.

C-Series open Supplementary Function (Superseded)

char temp_file[26] = "$spool ";
int status;
status = open (temp_file, O_CREATE | O_BINARY);

D-Series FILE_CREATE_ Procedure

char temp_file[26] = "$spool";
short error;
short volume_length = 6;
error = FILE_CREATE_ (temp_file, volume_length,
 filename_length);

Replacing min and max
Macros

You must change the following macros in your program:

C-Series Macro (Superseded) D-Series Macro

min _min

max _max

Including the Macro NULL
Definition

The definition of the object-like macro NULL was removed from the C header files
ASSERTH, CTYPEH, ERRNOH, FLOATH, LIMITSH, MATHH, and SETJMPH to
make these header files conform to the ANSI standard.

If your program uses the macro NULL, you must include a standard library header file
which declares the macro, such as STDIOH.

Changing Macro
Definitions

The D-series compiler macro processing has been changed to conform to the ANSI
standard. You must change your macros to use a # directive to replace parameters
inside a literal string.

The following macro is valid for C-series compilers:

#define pr(x, format) printf("The x = %format\n", (x))

You must change this macro for D-series compilers as follows:

#define pr(x, format) printf("The " #x " = %% " #format \
 "\n", (x))

Recompiling Your C Program

Converting C Applications

096047 Tandem Computers Incorporated 5–5

Using Type long in Bit-field
Declarations

Programs should only use the type int in bit-field declarations. ANSI C only supports
type int for bit field declarations. However, the D-series compiler continues to support
bit field declarations of type short for large-memory model and type long for wide-
data model. To continue to use type long in bit-field declarations under the wide-data
model, you must specify a FIELDALIGN SHARED2 pragma for the module that
contains the declarations. The pragma can be specified either in the compiler
command line or at the beginning of the source file before any other text except
comments.

Using the New Definition
for errno

The C-series compiler defines errno as a variable with negative values. The D-series
compiler defines errno as a macro with positive values. You might need to recompile
your program using the new errno definitions in the errnoh header file. You must
modify and recompile your program if:

It explicitly examines errno values or performs a general check for negative
errno values.

It uses literal values for errno that have changed.

It declares errno as:

extern int errno

Replace this declaration with:

#include <errno.h>

It has the potential to export errno values to another process that expects to
receive the old values (you can remap the new values to the old values).

Result of the sizeof
Operator

Under the wide-data model, the sizeof operator returns a different value for
constant operands. On C-series systems, sizeof returns 2 or 4. On D-series systems,
sizeof always returns 4. This change was made for ANSI compliance. You must
change programs that rely on the sizeof operator returning a 2 for constant
operands.

Type of size_t size_t, the result of the sizeof operator, has changed from type long to type
unsigned long for programs that use the large-memory model or the wide-data model.
You must change programs that rely on size_t being of type long.

fflush Function On C-series systems, the fflush function can flush partial lines to stdout (standard
output) or stderr (standard error) file if the file is redirected to type 101 edit files. On
D-series systems, the fflush function cannot flush partial lines to stdout and
stderr because these files are shared resources under the Common Run-Time
Environment, the CRE.

If your program must flush partial lines to stdout or stderr, you can either open
the file using the freopen function or close and reopen the file using the fopen
function. In both cases, the file cannot be shared.

Program Elements Affected by D-Series System Enhancements

Converting C Applications

5–6 096047 Tandem Computers Incorporated

sscanf Function The sscanf function returns a value that is the number of items scanned and converted.
On C-series systems, the sscanf function returns a -1 if no conversion takes place. On
D-series systems, the sscanf function returns a 0 if no conversion takes place. You
must change your programs if they rely on sscanf returning a -1.

Changing Keywords You should change the following keywords in your program:

C-Series Keyword (Superseded) D-Series Keyword

cc_status _cc_status

lowmem _lowmem

extensible _extensible

variable _variable

tal _tal

Replacing Obsolete TAL
Function Declarations

You should declare TAL functions using a format like that used in the following
example:

_tal long tal_function (extptr char *p, short i);

Declaring Function
Prototypes

The C-series compiler generates an implicit function prototype at the call to a function
that does not have a function prototype specified in the scope of the call. This implicit
prototyping violates the ANSI standard and results in code that is not portable.

The D-series compiler does not generate these prototypes. You should include a
function prototype within the scope of each call to a function. If you do not include a
function prototype, the compiler promotes parameters at each call site according to the
ANSI standard rules.

Program Elements
Affected by D-Series

System Enhancements

D-Series system changes that enhance system performance can affect a C-series
program running on a D-series system. You may need to modify the following
program elements:

CPU and PIN variables

File-system error numbers

File names, including disk file names, device names, and process file names

Process identifiers, including process IDs, process handles, and process descriptors

Subvolume defaulting in disk file names

Guardian procedure calls

Program Elements Affected by D-Series System Enhancements

Converting C Applications

096047 Tandem Computers Incorporated 5–7

Declaring CPU and PIN
Variables

Declare all PIN values, including backup-process PIN values, as short variables.
Declare all CPU values as a separate short variables.

For example:

C-Series Declarations (Superseded) D-Series Declarations

short cpu_pin; short cpu, pin;

char pin;

Declaring and Checking
File-System Error Numbers

A D-series file-system error number can be a maximum of 16 bits. If you call
Guardian procedures, you might need to convert the parts of your program that
declare and check file-system errors.

To accommodate the expanded format, declare a file-system error number as a short
variable:

For example:

C-Series Declaration (Superseded) D-Series Declaration

char fs_error_number; short fs_error_number;

Your program might also include code that sets a maximum value for a file-system
error number (for example, 255). Therefore, make sure that your code does not
exclude any new error numbers. Also, because Tandem might define additional error
numbers in future releases, do not consider currently undefined numbers as invalid.

For a list and description of all file-system error numbers, refer to the Guardian
Procedure Errors and Messages Manual.

Using Guardian File Names Guardian file names include:

Disk file names

Device names (such as a printer or terminal name)

Process file names

You might need to convert the parts of your program that declare and use file-name
variables.

Disk File Names. Your existing program might declare a Guardian disk-file-name
variable. The largest D-series disk file names are:

For permanent files 35 bytes (one byte larger than the external form of a
C-series network file name)

For temporary files 26 bytes (4 bytes larger than the external form of a
C-series network file name)

When accessing Guardian disk files on remote D-series systems in a network, a
converted program can use a network disk file name with an eight-character volume
name (one to seven characters after the dollar sign). A C-series network disk file name
allows a maximum of six characters after the dollar sign in the volume name.

Program Elements Affected by D-Series System Enhancements

Converting C Applications

5–8 096047 Tandem Computers Incorporated

Therefore, you might need to declare your network file-name variables large enough
to include this extra character and the terminating null character. To ensure that your
declaration is long enough, use the ZSYS_VAL_LEN_FILENAME constant from the
ZSYSC file and add one for the null character. For example:

char employee[ZSYS_VAL_LEN_FILENAME + 1] =
 "\\newyork.$payroll.july1990.employee";
char managers[ZSYS_VAL_LEN_FILENAME + 1] =
 "\\newyork.$disk4.level1.managers";

Device Names. Your existing program might declare a variable for a Guardian device
name. The largest D-series device names are:

Device name without a node name or qualifier 8 characters
Device name without a node name but with a qualifier 17 characters
Network device name without a qualifier 17 characters
Network device name with a qualifier 26 characters

When accessing devices on remote D-series systems in a network, a converted
program can use eight-character network device names (one to seven characters after
the dollar sign). A C-series network device name allows a maximum of six characters
after the dollar sign.

Therefore, you might need to declare your network device names large enough to
include this extra character and the terminating null character. If you use the ZSYSC
file, use the ZSYS_VAL_LEN_FILENAME constant and add one for the null character.
For example:

/* Network device name without a qualifier */

char device_name[19] = "\\hamburg.$term001";

/* Network device name with a qualifier */

char network_device_name[ZSYS_VAL_LEN_FILENAME + 1] =
 "\\hamburg.$lineptr.#room025";

Process File Names. Your existing program might declare a variable for a C-series
process file name. The D-series operating system uses D-series process file names
instead of C-series process file names. Use C-series process file names for
compatibility with unconverted C-series procedures.

D-series process files names are variable-length string data items with their lengths
specified as separate data items. The following example uses declarations from the
ZSYSC file to declare a process file name:

/* process file name: */
char process_filename[ZSYS_VAL_LEN_FILENAME + 1];

The process-file-name declaration has an extra byte for the terminating null character.

Program Elements Affected by D-Series System Enhancements

Converting C Applications

096047 Tandem Computers Incorporated 5–9

Declaring
Process Identifiers

Your existing program might declare a process-ID variable to identify a process (for
example, an opener in an opener table):

short process_id[4];

Convert the process-ID variable declaration to a process-handle variable for process-
control operations or to a process-descriptor variable for returning information from a
Guardian procedure. Use a process-ID variable for compatibility with unconverted
C-series procedures.

A process handle is a 20-byte fixed-length structure. A process descriptor is a specific
form of process file name that always includes a node name and sequence number.
The following examples use declarations from the ZSYSC file to declare a process
handle and a process descriptor:

/* process handle: */
short process_handle[ZSYS_VAL_PHANDLE_WLEN];

/* process descriptor: */
char process_descriptor[ZSYS_VAL_LEN_PROCESSDESCR + 1];

The process-descriptor declaration has an extra byte for the terminating null character.

Avoiding Subvolume
Defaulting in Disk File

Names

Your existing program might use subvolume defaulting to represent a Guardian disk
file name in the form volume.file-id. For example:

char disk_file[17] = "$diskvol.filename";

Avoid subvolume defaulting in your program. If a file name requires the volume
name, also include the subvolume name:

char disk_file[ZSYS_VAL_LEN_FILENAME + 1] =
 "$diskvol.subvol.filename";

Converting Guardian
Procedure Calls

Guardian procedure calls that you might need to convert are procedure calls that
accept or return:

A PIN parameter for a high-PIN process

A process-ID parameter

D-series procedures use a process handle (which includes the CPU and PIN values)
rather than a process ID to identify a process.

If you convert your program to run at a high PIN, then you must replace MYPID
procedure calls with calls to the PROCESS_GETINFO_ and
PROCESSHANDLE_DECOMPOSE_ procedures. “Converting a C Program to Run at
a High PIN,” later in this section, describes how to do this.

Appendix A lists the D-series procedures that supersede C-series procedures. For a
description of each procedure, refer to the Guardian Procedure Calls Reference Manual.

Making the C Compiler Run as a High PIN Process

Converting C Applications

5–10 096047 Tandem Computers Incorporated

For examples of Guardian procedure calls, refer to Section 3, “Converting TAL
Applications.” If you are converting a C program, you must convert the TAL
procedure calls shown in Section 3 to C. The Common Run-Time Environment (CRE)
Programmer’s Guide provides information about converting TAL procedure calls to C.

Note If you are converting an existing C program (or writing a new program), Tandem recommends that you
use Guardian procedures rather than ANSI or supplementary I/O C functions for:

Performing interprocess communication

Opening $RECEIVE and reading or replying to system messages

Making the C Compiler
Run as a High-PIN

Process

When you start the C compiler using the TACL RUN command, TACL calls the
PROCESS_CREATE_ procedure to create the C compiler process and the resulting
BINSERV and SYMSERV processes at low PINs.

To run the C compiler process (and the BINSERV and SYMSERV processes) at a high
PIN, you must use the Binder program to set the HIGHPIN object-file attribute to ON
in the C compiler object file (provided you have the proper authority to change this
file). TACL then runs the C compiler (and the BINSERV and SYMSERV processes) at a
high PIN if one is available. For more information about TACL, refer to the TACL
Reference Manual.

Converting a C Program to Run at a High PIN

Converting C Applications

096047 Tandem Computers Incorporated 5–11

Converting a
C Program to Run

at a High PIN

This subsection describes how to convert your C program to run at a high PIN under
the D-series operating system. Figure 5-2 shows a typical application. The box shows
which processes this part of the conversion applies to. Converting a C program to run
at a high PIN applies to both of these processes.

Figure 5-2. Converting a C Program to Run at a High PIN

$SRV

$REQ

C Requester
Process

C Server
Process

TACL

To convert your program, you must:

Set the HIGHPIN object-file attribute (which tells the system that your program
can run at a high PIN)

Make sure that each library file your program uses also has its HIGHPIN object-
file attribute set (and is capable of running at a high PIN)

Declare PIN variables large enough to hold high-PIN values

Convert all MYPID Guardian procedure calls

These topics are described in the following subsections.

Converting a C Program to Run at a High PIN

Converting C Applications

5–12 096047 Tandem Computers Incorporated

Setting the HIGHPIN
Object-File Attribute

The HIGHPIN object-file attribute directs the system to run a program at a high PIN if
one is available. If a high PIN is not available, the program runs at a low PIN if one is
available. You set the HIGHPIN object-file attribute either during compilation using a
compiler pragma or after compilation using the Binder program.

To set the attribute when you compile your program, specify the HIGHPIN pragma in
your source code or as a compiler option in the TACL RUN command for the
C compiler. The BINSERV program then sets the HIGHPIN attribute in the object file.
An example of this pragma in a source file is:

#pragma HIGHPIN

An example of this pragma as a compiler option is:

10> C /IN csrc, OUT $s.#clst, NOWAIT/ cobj; HIGHPIN

You need to specify the HIGHPIN pragma only once during a compilation. However,
you can specify it any number of times and the compiler will not generate an error.

If you do not set the HIGHPIN attribute when you compile your program, you can set
it after compilation using Binder. For a single object file, use the Binder CHANGE
command:

@CHANGE HIGHPIN ON IN cobj

If you are binding more than one object file into a single target object file, use the
Binder SET command to set the HIGHPIN object-file attribute in the target file. For the
target object file to have its HIGHPIN object-file attribute set, each constituent object
file must also have its HIGHPIN attribute set.

Using a Library File If your existing program uses a library file, the library file must also have its HIGHPIN
object-file attribute set. To determine the current setting of the HIGHPIN attribute for
a library file, use the Binder SHOW command:

@SHOW SET HIGHPIN FROM libfile

If necessary, set this attribute as described in the previous subsection (provided the
library file has been converted to support a high-PIN process).

Declaring CPU and PIN
Variables

As stated earlier under “Declaring and Using Guardian Variables,” your existing
program might declare a short variable for both the CPU and PIN values or a char
variable for a PIN value:

short cpu_pin;
char pin;

Declare all PIN values, including backup-process PIN values, as short variables.
Declare a CPU value as a separate short variable:

short cpu, pin;

Converting a C Program to Run at a High PIN

Converting C Applications

096047 Tandem Computers Incorporated 5–13

Converting MYPID
Procedure Calls

Your existing program might call the MYPID procedure to obtain its CPU and PIN
values:

short cpu_pin;

...

cpu_pin = MYPID();

If a high-PIN process calls MYPID, a trap condition occurs. You must convert all
MYPID calls into calls to the PROCESSHANDLE_DECOMPOSE_ procedure.

The PROCESSHANDLE_DECOMPOSE_ procedure requires a process handle as an
input parameter. If you do not know the process handle of your process, first call the
PROCESSHANDLE_GETMINE_ procedure. Then pass the result to
PROCESSHANDLE_DECOMPOSE_ , which returns the CPU and PIN values as
separate integer values. For example:

short my_cpu, my_pin;
...

/* Return my process handle */
status = PROCESSHANDLE_GETMINE_(my_phandle);

if (status != 0) err_routine (status);

/* Return my CPU and PIN values */
status = PROCESSHANDLE_DECOMPOSE_ (my_phandle,
 my_cpu,
 my_pin);
if (status != 0) err_routine (status);

Your existing program might also call the MYPID procedure within another Guardian
procedure call (for example, in a SETMODE function 11, GETCRTPID, or
PROCESSINFO call). This example shows MYPID in a SETMODE (function 11)
procedure call:

status = SETMODE (file_number,
 11,
 MYPID(), /* return cpu and pin */
 0,
 previous_owner);

For SETMODE function 11, you are not required to set the parameter_1 value to the
CPU and PIN values. Instead, set parameter_1 to any positive value:

...
status = SETMODE (file_number,
 11,
 1, /* set to any positive value */
 0,
 previous_owner);

Creating a High-PIN Process

Converting C Applications

5–14 096047 Tandem Computers Incorporated

Creating a High-PIN
Process

You can create a high-PIN process programmatically or interactively. This subsection
describes how to programmatically create a high-PIN process. For information on
how to interactively create a high-PIN process using TACL, see Section 7, “Converting
TACL Programs.”

Figure 5-3 shows the processes involved in converting a typical application. The steps
described in this subsection apply to the requester process $REQ, which creates the
high-PIN server process $SRV.

Figure 5-3. Converting a C Program to Create a High-PIN Process

$SRV

$REQ

C Requester
Process

 Server
Process

TACL

Your existing program might create a new process using the
NEWPROCESS[NOWAIT] procedure:

#include <cextdecs(OPEN, \
 NEWPROCESS, \
 WRITEREADX, \
 CLOSE)> nolist
#include "$system.zsysdefs.zsysc"
...

lowmem short program_file[12];
lowmem short home_terminal[12];
lowmem short process_id[4];
lowmem short process_name[3];
short err_return, priority, memory_pages, cpu;
short error_info[2];
...

Creating a High-PIN Process

Converting C Applications

096047 Tandem Computers Incorporated 5–15

NEWPROCESS (program_file,
 priority,
 memory_pages,
 cpu,
 process_id,
 &err_return,
 process_name,
 home_terminal,
 /* flags */ 0,
 /* job_id */ ,
 error_info);

On a D-series system, the NEWPROCESS[NOWAIT] procedure can create only a
low-PIN process. The D-series operating system provides the PROCESS_CREATE_
procedure to create a new low-PIN or high-PIN process in a waited or nowait manner.

The following procedure creates a new process in a waited manner. The system
returns the results in the returned value error and error_detail parameter:

#include <cextdecs(FILE_OPEN_, \
 PROCESS_CREATE_ , \
 WRITEREADX, \
 FILE_CLOSE_)> nolist
...

char program_file[ZSYS_VAL_LEN_FILENAME + 1];
short process_handle[ZSYS_VAL_PHANDLE_WLEN];

short pf_length;
short error, priority, memory_pages, cpu, error_detail;

...
error = PROCESS_CREATE_(program_file, pf_length,
 /* library_file */ ,
 /* lf_length */ ,
 /* swapfile */ ,
 /* sf_length */ ,
 /* ext_swapfile */ ,
 /* esf_length */ ,
 priority,
 cpu,
 process_handle,
 error_detail);

If your program creates a new process in a nowait manner, the system returns the
results in system message -102 (PROCESS_CREATE_ completion), which is analogous
to system message -12 (NEWPROCESSNOWAIT completion). You read system
message -102 from $RECEIVE using the READ[X] or READUPDATE[X] procedure.

For additional information on creating processes in a nowait manner, creating
processes at a low PIN, and other information about the PROCESS_CREATE_
procedure, refer to Section 3, “Converting TAL Applications.”

Opening and Communicating With a High-PIN Server

Converting C Applications

5–16 096047 Tandem Computers Incorporated

Opening and
Communicating With a

High-PIN Server

Your existing program might be a requester that communicates with a server. For
example, you might open a server, send it a request, and then process its reply. You
might also open a server for a backup requester if your program is running as a
process pair.

The degree of conversion you need to perform depends on whether your server is
named or unnamed, and, if the server is named, on how long the name is. Your
options are as follows:

If the server is local and named or if the server is remote with a name of five
characters or less (including the dollar sign), then no conversion is necessary. You
can still open the high-PIN server using the Guardian C-series-compatible OPEN
procedure. See Appendix C, “System Compatibility,” for further information on
communicating with a named high-PIN process.

If the server is remote and has a six-character name, then you need to first convert
your requester to run at a high PIN as described under “Converting a C Program
to Run at a High PIN” earlier in this section, and then complete the conversion as
described under “Communicating With a High-PIN Server” and “Monitoring a
High-PIN Server,” later in this section. See Appendix C, “System Compatibility,”
for further information on communicating with a named high-PIN process.

If the server is unnamed, then you have the following options:

Set the RUNNAMED object-file attribute in the server so that the system
provides a name for the server, and pass the system-assigned name to the
requester; for example, in a DEFINE or an ASSIGN. See “Setting the
RUNNAMED Object-File Attribute” later in this section for details.

Convert the requester to run at a high PIN as described under “Converting a C
Program to Run at a High PIN” earlier in this section, and then complete the
conversion as described under “Communicating With a High-PIN Server” and
“Monitoring a High-PIN Server,” later in this section.

For information about converting a server to monitor a high-PIN requester process,
including maintaining an opener table, refer to “Being Opened by and Communicating
With a High-PIN Requester,” later in this section.

Opening and Communicating With a High-PIN Server

Converting C Applications

096047 Tandem Computers Incorporated 5–17

Setting the RUNNAMED
Object-File Attribute

The RUNNAMED object-file attribute causes a process to run as a named process even
if you do not provide a name for it. Thus, a process can run at a high PIN under the
D-series operating system and be opened by an unconverted process using the
Guardian OPEN procedure. For more information about how an unconverted process
running on a D-series system can communicate with a named high-PIN process, refer
to Appendix C, “System Compatibility.”

You set the RUNNAMED object-file attribute either during compilation using a
compiler pragma or after compilation using the Binder program.

To set the attribute when you compile your program, specify the RUNNAMED
pragma in your source code or as a compiler option in the TACL RUN command for
the C compiler. The BINSERV program then sets the RUNNAMED attribute in the
object file. An example of this pragma (with the HIGHPIN pragma) in a source file is:

#pragma HIGHPIN, RUNNAMED

An example of this pragma as a compiler option is:

10> C /IN csrc, OUT $s.#clst, NOWAIT/ cobj; HIGHPIN, RUNNAMED

You need to specify the RUNNAMED pragma only once during a compilation.
However, you can specify it any number of times and the compiler will not generate
an error.

If you do not set the RUNNAMED attribute when you compile your program, you can
set it after compilation using Binder. For a single object file, use the Binder CHANGE
command:

@CHANGE RUNNAMED ON IN cobj

If you are binding more than one object file into a single target object file, use the
Binder SET command to set the RUNNAMED object-file attribute. If any of the
constituent object files used to build the target file has the RUNNAMED object-file
attribute set, Binder sets this attribute in the target object file.

Opening and Communicating With a High-PIN Server

Converting C Applications

5–18 096047 Tandem Computers Incorporated

Communicating With a
High-PIN Server

A requester can open and communicate with a high-PIN named server by opening the
server using the OPEN procedure. However, you must convert your requester to open
the server using the FILE_OPEN_ procedure if the server:

Is unnamed

Is on a remote D-series system and has a six-character name (a dollar sign and five
alphanumeric characters)

Figure 5-4 shows the processes involved in converting this part of a typical
application. The steps in this subsection apply to the requester process $REQ.

Figure 5-4. Converting a C Requester to Communicate With a High-PIN Server

$SRV

$REQ

C Requester
Process

 Server
Process

TACL

This subsection discusses converting the following operations:

Opening and closing the high-PIN server

Opening and closing the high-PIN server for a backup process

Sending requests to the high-PIN server

Opening a High-PIN Server

Your requester might open the server using the OPEN procedure:

short server_name[12] = "$SRV ";

...

c_code = OPEN (server_name,
 server_file_number,
 nowait_depth,
 sync_depth);

Convert your requester to open the high-PIN server using the FILE_OPEN_
procedure. The FILE_OPEN_ procedure requires a variable-length string for the
server file-name input parameter rather than the 12-word internal-format file name.

Opening and Communicating With a High-PIN Server

Converting C Applications

096047 Tandem Computers Incorporated 5–19

Note If the file-name input parameter is incomplete (that is, not fully qualified), FILE_OPEN_ uses the current
settings, including the system name, in the =_DEFAULTS DEFINE for the unspecified parts.

FILE_OPEN_ also accepts a DEFINE name that represents a valid file name in this
format.

FILE_OPEN_ accepts an integer options parameter to specify certain file
characteristics. The options bit positions represent these options:

options
Bit Position Description

 0 Allow unstructured access for a disk file (must be 0 for other files and devices)

 1 Execute a nowait open

 2 Do not execute an update when the file is opened

 3 Use any available file number for backup open (0 means use the same file number as
in the primary open)

 4 through 13 Reserved; must be 0

 14 Receive C-series system messages ($RECEIVE only)

 15 Do not receive process open and close system messages ($RECEIVE only)

The ZSYSC file contains constant declarations that you can use with the options
parameter.

If you started the server using the PROCESS_CREATE_ procedure, you can use the
PROCESS_CREATE_ process-descriptor output parameter directly in the
FILE_OPEN_ procedure call (shown below as the server_name parameter). Refer to
“Creating and Managing a High-PIN Process” earlier in this section for details.

error = FILE_OPEN_(server_name,
 server_length,
 server_file_number,
 exclusion_mode,
 nowait_operations,
 sync_depth,
 options);

If you open the server using the nowait open option, you must call the AWAITIO[X]
procedure to complete the open. To determine the error and options values, call
the FILE_GETINFOLIST_ procedure and check the items specified by
ZSYS_VAL_FINF_LASTERROR and ZSYS_VAL_FINF_OPENOPTS, respectively
(provided you use the ZSYSC file).

Opening and Communicating With a High-PIN Server

Converting C Applications

5–20 096047 Tandem Computers Incorporated

Opening a High-PIN Server for a Backup Requester Process

If your requester is running as a process pair, it might open the server for its backup
process using the CHECKOPEN procedure:

c_code = CHECKOPEN (server_name,
 server_file_number,
 nowait_depth,
 sync_depth,
 /* seq_block_buffer */ ,
 /* buffer_length */ ,
 back_error);

Figure 5-5 shows a requester process pair and a server process.

Figure 5-5. Opening a High-PIN Server for a Backup Process

$SRV

 Server
Process

TACL

C Requester
Process Pair

$REQ
Primary

$REQ
Backup

Convert your requester to open the high-PIN server for its backup process using the
FILE_OPEN_CHKPT_ procedure. To identify the high-PIN server,
FILE_OPEN_CHKPT_ requires the file number returned by the FILE_OPEN_
procedure call in the primary process. The system returns a file-system error (if a file-
system error occurs) in the returned value error and the status of the backup open in
an output parameter, which is the backup_open_status parameter in this example:

error = FILE_OPEN_CHKPT_(server_file_number,
 backup_open_status);

If you opened the server using the nowait open option, you must call the AWAITIO[X]
procedure to complete the open. To determine the error and
backup_open_status values, call the FILE_GETINFOLIST_ procedure and check
the items specified by ZSYS_VAL_FINF_LASTERROR and
ZSYS_VAL_FINF_LASTERRORDETAIL, respectively (provided you use the ZSYSC
file).

Opening and Communicating With a High-PIN Server

Converting C Applications

096047 Tandem Computers Incorporated 5–21

Sending a Request to a High-PIN Server

Your requester might send a request to a high-PIN server using the WRITE[X] or
WRITEREAD[X] procedure:

c_code = WRITEREADX (server_file_number,
 sbuffer,
 write_count,
 read_count,
 count_read);

Your WRITE[X] or WRITEREAD[X] procedure call should not require any changes to
send a request to a high-PIN server.

Closing a High-PIN Server

Your requester might close the server using the CLOSE procedure:

CLOSE (server_file_number);

You can close a high-PIN server using either the CLOSE or FILE_CLOSE_ procedure:

error = FILE_CLOSE_(server_file_number);

Closing a High-PIN Server for a Backup Requester Process

Your requester might close the server for the backup process using the CHECKCLOSE
procedure:

CHECKCLOSE (server_file_number);

You can close the server for the backup process using either the CLOSE procedure or
the FILE_CLOSE_CHKPT_ procedure:

error = FILE_CLOSE_CHKPT_(server_file_number);

Opening and Communicating With a High-PIN Server

Converting C Applications

5–22 096047 Tandem Computers Incorporated

Monitoring a High-PIN
Server

If your program monitors a high-PIN server, you must convert the following
operations:

Opening and closing $RECEIVE

Reading process-deletion and status-change messages

Using the CHILD_LOST_ procedure

The following paragraphs describe how to convert these operations. These steps also
can apply to any creator process that monitors a process that it has created.

Opening $RECEIVE

Your requester might open $RECEIVE using the OPEN procedure:

short receive_name[12] = "$RECEIVE ";

...

c_code = OPEN (receive_name,
 receive_file_number,
 read_open_close_msgs,
 receive_depth);

Convert your requester to open $RECEIVE using the FILE_OPEN_ procedure. Use a
file-name string for the $RECEIVE file name instead of the internal file-name format.
Specify the length as a separate integer value.

Bit 14 of the options parameter must be zero (which is the default value) for the
system to send D-series system messages to $RECEIVE; otherwise, the system sends
C-series system messages to $RECEIVE for the requester.

An example of a FILE_OPEN_ procedure call for $RECEIVE is:

#define receive_name_length 8;

char receive_name[receive_name_len + 1] = "$RECEIVE";

...

/* Open $RECEIVE to read D-series system messages */

error = FILE_OPEN_(receive_name,
 receive_name_length,
 receive_file_number,
 /* access_mode */ ,
 /* exclusion_mode */ ,
 /* nowait_operations */ ,
 receive_depth,
 options);

Opening and Communicating With a High-PIN Server

Converting C Applications

096047 Tandem Computers Incorporated 5–23

Reading System Messages From $RECEIVE

Your requester might read system messages from $RECEIVE using the READ[X] or
READUPDATE[X] procedure:

char message_buffer[200]; /* Message buffer (200 bytes) */

...

read_count = 200;

c_code = READX (receive_file_number,
 message_buffer,
 read_count,
 bytes_read);

The lengths shown for each system message are subject to change. In a future release,
Tandem might add new fields to the end of a system message (while maintaining the
layout of the existing fields). Therefore, use a READ[X] or READUPDATE[X] message
buffer at least 250 bytes in length. Also, use a read_count parameter of 250 bytes.

If you use the ZSYSC file, use the ZSYS_VAL_SMSG_LEN constant declaration to
specify the system message length in bytes. If you work in words you can use the
ZSYS_VAL_SMSG_WLEN constant declaration instead.

char message_buffer[ZSYS_VAL_SMSG_LEN];

...

read_count = ZSYS_VAL_SMSG_LEN;

c_code = READX (receive_file_number,
 message_buffer,
 read_count,
 bytes_read);

The ZSYSC file also contains structures that you can use when your requester reads
system messages.

Reading Process-Deletion System Messages. Your requester might monitor a server
process by reading these process-deletion system messages from $RECEIVE:

-2 CPU down: named process deletion
-5 Process normal deletion: stop
-6 Process abnormal deletion: abend

Convert your requester to read and process the D-series system message -101 (Process
deletion), which supersedes all the above messages.

Opening and Communicating With a High-PIN Server

Converting C Applications

5–24 096047 Tandem Computers Incorporated

Reading Status-Change System Messages. Your requester might monitor a server process
by reading these status-change system messages from $RECEIVE:

-2 CPU down: local CPU failure after process called MONITORCPUS
-8 Change in status of network node

Continue to read system message -2. Then, convert your requester to read these new
status-change messages, all of which supersede system message -8:

-100 Remote CPU down
-110 Loss of communication with node
-113 Remote CPU up

To receive system messages -100, -110, and -113, first call the MONITORNET
procedure with the enable parameter set to 1.

Processing System Messages Using the CHILD_LOST_ Procedure

Your requester might call a user-written routine to determine whether a process-
deletion or status-change message affects the server.

You might convert your requester to call the new CHILD_LOST_ procedure. The
CHILD_LOST_ procedure accepts the process handle of a process you are monitoring
and either a C-series (-2, -5, -6, or -8) or D-series (-2, -100, -101, -110, or -113) process-
deletion or status-change system message:

error = CHILD_LOST_(message,
 message_length,
 process_handle);

The CHILD_LOST_ error returned value indicates whether the process (or process
pair) is lost:

0 The process (or process pair) is not lost.
4 The process (or process pair) is lost.

Note System message -101 (Process deletion) contains the process handle and process descriptor of the
process that terminated. If a named process (or process pair) has terminated, this is the last opportunity
for you to save the process name of the process (or process pair).

Closing $RECEIVE

Your requester might close $RECEIVE using the CLOSE procedure:

CLOSE (receive_file_number);

You can close $RECEIVE using either the CLOSE or FILE_CLOSE_ procedure:

error = FILE_CLOSE_(receive_file_number);

Being Opened by and Communicating With a High-PIN Requester

Converting C Applications

096047 Tandem Computers Incorporated 5–25

Being Opened by and
Communicating With a

High-PIN Requester

This subsection describes how to convert a server process written in C to communicate
with a high-PIN requester. Whether you need to convert the server process depends
in part on whether the server tracks its openers. If the server does keep track of its
openers, you should enable the server to run at a high PIN as described in “Converting
a C Program to Run at a High PIN,” earlier in this section, and then convert the server
as described under “Converting a Server,” later in this subsection.

If the server does not track its openers, or if you choose not to perform the conversion,
then you can keep the server process at a low PIN and not convert it, except for setting
the HIGHREQUESTERS object-file attribute as described under “Setting the
HIGHREQUESTERS Attribute to Allow High-PIN Openers,” later in this subsection.
Setting this attribute enables a high-PIN requester to open a low-PIN server.

Converting a Server If your server process tracks its openers, you must convert the following parts of your
program:

Defining an opener table

Opening $RECEIVE

Reading D-series system messages from $RECEIVE

Getting information about system messages

Processing system messages

Replying to a system message

Using the OPENER_LOST_ procedure to maintain an opener table

Figure 5-6 shows the processes involved in converting an application. The steps
described in this subsection apply to the server process $SRV.

Figure 5-6. Converting a C Server to Communicate With a High-PIN Requester

$SRV

$REQ

 Requester
Process

C Server
Process

TACL

Being Opened by and Communicating With a High-PIN Requester

Converting C Applications

5–26 096047 Tandem Computers Incorporated

Defining an Opener Table

If your server tracks its openers, it might define an opener table that uses a process ID
to identify an opener (primary process opener and backup process opener):

struct opener_table
 {
 short current_count;
 struct openers[max_openers]
 {
 short primary_process_id[4];
 short primary_file_number;
 short backup_process_id[4];
 short backup_file_number;
 };
 };

Convert your opener table to identify an opener using a process handle rather than a
process ID. To use the OPENER_LOST_ procedure (which is described later in this
subsection) to manage your opener table, define the table as follows:

Use a process handle to identify both a primary-process and backup-process
opener.

Declare the process-handle field for the backup-process opener immediately after
the process-handle field for the primary-process opener (that is, the fields must be
stored in a 20-word contiguous part of an entry).

Declare table entries as fixed length and contiguous.

Do not store variable-length items in the table. If necessary, save a pointer in the
table to a variable-length item.

Set the process handles for primary and backup openers in unused entries to null
values (all -1s).

An example of an opener table that the OPENER_LOST_ procedure can process is:

struct opener_table
 {
 short current_count;
 struct openers[max_openers]
 {
 short primary_process_handle[ZSYS_VAL_PHANDLE_WLEN];
 short backup_process_handle[ZSYS_VAL_PHANDLE_WLEN];
 short primary_file_number;
 short backup_file_number;
 };
 };

Being Opened by and Communicating With a High-PIN Requester

Converting C Applications

096047 Tandem Computers Incorporated 5–27

Opening $RECEIVE

Your server might open $RECEIVE using the OPEN procedure with bit 1 of the flags
parameter set to 1 (flags = 040000). This allows you to receive system messages
such as -30 (Process open) and -31 (Process close):

short receive_name[12] = "$RECEIVE ";

short read_open_close_msgs = 040000 ;

...

status = OPEN (receive_name,
 receive_file_number,
 read_open_close_msgs, /* Value = octal 40000*/
 receive_depth);

Convert your server to open $RECEIVE using the FILE_OPEN_ procedure:

1. Use a file-name string for the $RECEIVE file name instead of the internal file-name
format. Specify the length as a separate integer value.

2. Make sure that bit 15 of the FILE_OPEN_ options parameter is zero (the default
value). If this bit is not zero, system messages such as -103 (Process open) and -104
(Process close) are not sent to $RECEIVE.

3. Make sure that bit 14 of the FILE_OPEN_ options parameter is zero (the default
value) so that the system sends D-series system messages to $RECEIVE. If this bit
is not zero, the system sends C-series system messages to $RECEIVE.

4. Set any other FILE_OPEN_ input parameters as required and call the procedure:

#define receive_name_length 8;

char receive_name[receive_name_length + 1] = "$RECEIVE";

...

/* Open $RECEIVE to read D-series system messages */

error = FILE_OPEN_(receive_name,
 receive_name_length,
 receive_file_number,
 /* access_mode */ ,
 /* exclusion_mode */ ,
 nowait_operations,
 receive_depth);

If you open $RECEIVE using the FILE_OPEN_ procedure, the system assumes that
you support high-PIN requesters (provided bit 14 of the options parameter is zero).
You do not need to explicitly set the HIGHREQUESTERS object-file attribute in your
server’s object file.

When you close $RECEIVE, use either the CLOSE or FILE_CLOSE_ procedure.

Being Opened by and Communicating With a High-PIN Requester

Converting C Applications

5–28 096047 Tandem Computers Incorporated

Reading System Messages From $RECEIVE

Your server might read system messages from $RECEIVE using the READ[X] or
READUPDATE[X] procedure:

char message_buffer[200]; /* Message buffer (200 bytes) */

...

read_count = 200;

c_code = READX (receive_file_number,
 message_buffer,
 read_count,
 bytes_read);

The lengths shown for each system message are subject to change. Use a READ[X] or
READUPDATE[X] message buffer at least 250 bytes in length. Also, use a
read_count parameter value of 250 bytes.

If you use the declarations in the ZSYSC file, use the ZSYS_VAL_SMSG_LEN constant
for the system-message length in bytes or the ZSYS_VAL_SMSG_WLEN constant for
the length in words:

char message_buffer[ZSYS_VAL_SMSG_LEN];

...

read_count = ZSYS_VAL_SMSG_LEN;

c_code = READX (receive_file_number,
 message_buffer,
 read_count,
 bytes_read);

Getting Information About System Messages

Your server might call the RECEIVEINFO or LASTRECEIVE procedure to obtain
information about the last message read from $RECEIVE:

RECEIVEINFO (process_id,
 message_tag,
 sync_id,
 file_number,
 read_count,
 io_type);

Convert the RECEIVEINFO or LASTRECEIVE call into a call to the
FILE_GETRECEIVEINFO_ procedure:

/* Return information about the last message */

error = FILE_GETRECEIVEINFO_(message_info);

Being Opened by and Communicating With a High-PIN Requester

Converting C Applications

096047 Tandem Computers Incorporated 5–29

FILE_GETRECEIVEINFO_ returns information in the 17-word message_info
parameter, which has the format shown in Table 5-1. The ZSYSC file contains a
structure that you can use for the message_info format.

Table 5-1. FILE_GETRECEIVEINFO_ message_info Parameter Format

Word Description

0 I/O type for the message:
0 = A system message was sent.
1 = The sender called WRITE[X].
2 = The sender called READ[X].
3 = The sender called WRITEREAD[X].

1 The maximum reply count in bytes

2 The message tag identifying the message

3 The file number for the message

4 through 5 The sync ID for the message

6 through 15 The process handle of the process sending the message

16 The open_label from a previous reply (or -1 if unavailable or for a C-series message)

Reading and Processing Open and Close System Messages

To monitor an opener, your server might read the C-series -30 (Process open) and -31
(Process close) system messages from $RECEIVE.

To monitor a high-PIN process, convert your server to read the D-series -103 (Process
open) and -104 (Process close) system messages. When your server is opened or closed
by a process pair, it receives a process-open or process-close message from each
process of the pair.

If you call the RECEIVEINFO or LASTRECEIVE procedure to obtain information
about the process-open or process-close message, convert the call into a call to the
FILE_GETRECEIVEINFO_ procedure as described under “Getting Information About
System Messages,” earlier in this section.

After calling FILE_GETRECEIVEINFO_, update your opener table using the process
handle rather than the process ID to identify the opener.

Being Opened by and Communicating With a High-PIN Requester

Converting C Applications

5–30 096047 Tandem Computers Incorporated

System Message -103 (Process Open). Check bit 15 of sysmsg[7] of the process open
message (or zsys_ddl_smsg_open.z_flags if you use the ZSYSC file), which
indicates whether the opener is a primary or backup process:

Primary open (sysmsg[7] bit 15 is 0): Add an entry in your opener table for the
process.

Backup open (sysmsg[7] bit 15 is 1): Process a backup open as follows:

1. Get the process handle for the primary opener from the process-open system
message (-103). This process handle is in sysmsg[8] for ten words (or the
zsys_ddl_smsg_open.z_primary field if you use the ZSYSC file).

2. Use the process handle to search your opener table for the corresponding
primary-process open entry. If you find this entry but there is no backup open
yet (the backup process handle is null), add the backup process handle to the
table entry.

3. If the primary-process open entry is not found, reject the backup open with a
file-system error greater than 9.

System Message -104 (Process Close). Delete the opener-table entry for this process. You
should receive a process-close message from each process of a process pair.

Reading and Processing Status-Change Messages

If one of your openers has a CPU failure, or if its system fails or becomes partitioned
from your system because of a network failure, you do not receive a process-close
message (-31). Therefore, when maintaining an opener table, your server might read
and process these status-change messages:

-2 CPU down: local CPU failure after the process called MONITORCPUS
-8 Change in status of network node

Continue to read system message -2. In addition, read these new status-change
messages (all of which supersede C-series system message -8):

-100 Remote CPU down
-110 Loss of communication with node
-113 Remote CPU up

To receive system messages -100, -110, and -113, first call the MONITORNET
procedure with the enable parameter set to 1.

Replying to a System Message

Your server might reply to a system message using the Guardian REPLY[X]
procedure:

status = REPLYX (reply_buffer,
 write_count,
 count_written,
 message_tag,
 error_return);

Being Opened by and Communicating With a High-PIN Requester

Converting C Applications

096047 Tandem Computers Incorporated 5–31

Replying to System Message -103 (Process Open). The D-series system supports returning a
label value in the reply to a system message -103 (Process open). Typically, an opener-
table index gets sent in this way. This label then appears in the open_label field of
future FILE_GETRECEIVEINFO_ procedure calls that provide information about
messages received from the same requester. To support this feature, the file system
expects a reply buffer with a length of 0 to 4 bytes; otherwise, the open in the requester
returns an error.

Your server might reply to an Open message as follows:

write_count = any_valid_integer;
status = REPLYX(reply_buffer,
 write_count,
 /* count_written */ ,
 /* message_tag */ ,
 error_return);

To make use of the open_label field in the FILE_GETRECEIVEINFO_ procedure,
you must convert your code to reply to the Open message as follows:

reply_buffer[0] = -103;
reply_buffer[1] = open_label_value;
write_count = 4;
status = REPLYX (reply_buffer,
 write_count,
 /* count_written */ ,
 /* message_tag */ ,
 error_return);

If you do not want to use the open_label field, you still need to be sure that the
reply buffer has a length of 0 to 4 bytes. Convert your server as follows:

write_count = 0;
status = REPLYX (reply_buffer,
 write_count,
 /* count_written */ ,
 /* message_tag */ ,
 error_return);

Replying to an Unknown System Message. Your server should be able to handle an
unknown system message. If the first word of a message contains an unknown
message number, call the REPLY[X] procedure with an error indication of 2 (invalid
operation):

status = REPLYX (/* reply_buffer */ ,
 /* write_count */ ,
 /* count_written */ ,
 /* message_tag */ ,
 invalid_operation); /* Value is 2 */

Being Opened by and Communicating With a High-PIN Requester

Converting C Applications

5–32 096047 Tandem Computers Incorporated

Using the OPENER_LOST_ Procedure to Maintain an Opener Table

After receiving a status-change message, your server might call one or more routines
to maintain its opener table.

You might want to use the OPENER_LOST_ procedure to maintain your opener table.
OPENER_LOST_ determines whether a status-change message affects your opener
table and updates the appropriate table entry if an opener was lost.

OPENER_LOST_ accepts a C-series (-2 or -8) or D-series (-2, -100, -110, or -113) status-
change message and searches your opener table for any processes affected by the
message. If OPENER_LOST_ determines that an opener has been lost, it updates the
opener-table entry and returns the index of the entry and an error value. The error
value indicates the reason for the opener-table change:

error
Value Reason

 4 A backup process opener is lost

 5 A primary process opener is lost; the backup process is now the primary process

 6 The primary process and backup process (if it exists) openers for a table entry are lost; the
table entry is now free

When OPENER_LOST_ returns an error value of zero, processing is complete for the
message.

To process all entries in your opener table for a status-change message, set up a loop
similar to the one shown below. The opener table must be defined as described under
“Defining an Opener Table,” earlier in this subsection.

done = 0; /* Set control for start of loop */
index = -1; /* Set index for start of loop */

do
 {
 error = OPENER_LOST_(message,message_length,
 opener_table.openers,
 index,
 opener_table.current_count,
 $LEN(opener_table.openers));

 switch (error)
 {
 case 4 : /* Processing for lost backup opener */
 case 5 : /* Processing for lost primary opener */
 case 6 : /* Processing for lost opener */
 /* (primary and backup for a process pair) */
 default : done = -1 /* Processing is finished or */
 /* error occurred */
 };
}
while (done == 0);

Being Opened by and Communicating With a High-PIN Requester

Converting C Applications

096047 Tandem Computers Incorporated 5–33

Setting the
HIGHREQUESTERS

Attribute to Allow High-PIN
Openers

The HIGHREQUESTERS object-file attribute allows a process to support requests from
high-PIN requesters. Use the HIGHREQUESTERS object-file attribute only for a
source program that contains the main function. You can set the HIGHREQUESTERS
object-file attribute by including a compiler pragma in your source file, or you can set
it after you have finished converting your source code either using a compiler option
or after compilation using the Binder program.

To set the attribute when you compile your program, specify the HIGHREQUESTERS
pragma in your source code or as a compiler option in the TACL RUN command for
the C compiler. The BINSERV program then sets the HIGHREQUESTERS attribute in
the object file. An example of this pragma in a source file is:

#pragma HIGHREQUESTERS

An example of this pragma as a compiler option is:

10> C /IN csrc, OUT $s.#clst, NOWAIT/ cobj; HIGHREQUESTERS

You need to specify the HIGHREQUESTERS pragma only once during a compilation.
If your existing program includes source code from another file, specify the
HIGHREQUESTERS pragma only in the program file that contains the main function;
do not specify the pragma in the included file (or files).

If you do not set the HIGHREQUESTERS attribute when you compile your program,
you can set it after compilation using Binder. For a single object file, use the Binder
CHANGE command:

@CHANGE HIGHREQUESTERS ON IN cobj

If you are binding more than one object file into a single target object file, use the
Binder SET command to set the HIGHREQUESTERS object-file attribute. For Binder
to set the HIGHREQUESTERS object-file attribute in a target object file, the object file
containing the main function must have this object-file attribute set.

For more information about the HIGHREQUESTERS object-file attribute, refer to
“Allowing Opens by High-PIN Requesters” in Appendix C, “System Compatibility.”

6 Converting Pascal Applications

096047 Tandem Computers Incorporated 6–1

A Pascal program can run at a low PIN under the D-series operating system without
any changes. However, for a Pascal program to use the extended features of the
D-series operating system, specific parts of it must be converted.

The topics in this section are:

Converting basic elements of a Pascal program, such as using the PEXTDECS,
PASEXT, and ZSYSPAS files, declaring variables, calling Guardian procedures,
and running the Pascal compiler

Converting a Pascal program to run at a high PIN

Converting a Pascal program to create a high-PIN process

Converting a requester to open and communicate with a high-PIN server

Converting a server to be opened by and communicate with a high-PIN requester

Section 8, “Converting Other Parts of an Application,” contains information about
converting other parts of a Pascal application. For additional information about the
Tandem implementation of Pascal, refer to the Pascal Reference Manual.

Converting Basic Elements of a Pascal Program

Converting Pascal Applications

6–2 096047 Tandem Computers Incorporated

Converting Basic
Elements of a Pascal

Program

This subsection describes conversion that applies to all Pascal programs you need to
convert to run under the D-series operating system, irrespective of what the program
does. Later subsections describe how to convert specific functions of your programs
such as communicating with a high-PIN process.

This subsection discusses the following topics:

Importing source declarations from the PEXTDECS and PASEXT files

Importing source declarations from the ZSYSPAS file

Declaring and using variables for high PINs, file-system error numbers, file names,
and process identifiers

Calling Guardian procedures

Running the Pascal compiler

Binding the Run-time library

Figure 6-1 shows a typical application. The box shows which processes this part of the
conversion applies to. Converting basic elements of a Pascal program applies to both
of these processes.

Figure 6-1. Converting Basic Elements of a Pascal Program

$SRV

$REQ

Pascal Requester
Process

Pascal Server
Process

TACL

Converting Basic Elements of a Pascal Program

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–3

Importing the PEXTDECS
and PASEXT Declarations

The PEXTDECS file contains declarations for Guardian procedures. The PASEXT file
contains declarations for Tandem routines. Your existing program should use the
SOURCE or CSOURCE compiler directive to import the declarations you need from
these files. For example, these SOURCE directives import C-series procedures and
routines:

IMPORT BEGIN
?SOURCE $SYSTEM.SYSTEM.PEXTDECS (TYPES,
? Guardian_OPEN,
? Guardian_READ,
? Guardian_WRITE,
? Guardian_CLOSE)
END; { IMPORT }

IMPORT BEGIN
?SOURCE $SYSTEM.SYSTEM.PASEXT (SYSTEM)
END; { IMPORT }

Convert your SOURCE or CSOURCE directive to specify declarations from D-series
PEXTDECS or PASEXT files. Use the new procedure names for any D-series
procedures. Specify only the D-series PEXTDECS file; the C-series declarations are
also available in this file. For example:

IMPORT BEGIN
?SOURCE $SYSTEM.SYSTEM.PEXTDECS (TYPES,
? FILE_OPEN_,
? Guardian_READ,
? Guardian_WRITE,
? FILE_CLOSE_)
END; { IMPORT }

IMPORT BEGIN
?SOURCE $SYSTEM.SYSTEM.PASEXT (SYSTEM)
END; { IMPORT }

Converting Basic Elements of a Pascal Program

Converting Pascal Applications

6–4 096047 Tandem Computers Incorporated

Importing the
ZSYSPAS Declarations

Tandem provides source declarations for Guardian procedures and system messages
in the ZSYSPAS file. This file is typically found on the $SYSTEM.ZSYSDEFS
subvolume. Contact your system manager to find the location of this file on your
system.

To use these declarations, import them using the SOURCE or CSOURCE compiler
directive. For example, this SOURCE directive imports the entire ZSYSPAS file
without printing the contents of the file:

IMPORT BEGIN
?SOURCE $SYSTEM.ZSYSDEFS.ZSYSPAS, NOLIST
END; { IMPORT }

The ZSYSPAS file is divided into sections, which allows you to import only the
sections your program actually needs. For example, this SOURCE directive imports
only the process-creation and system-message constant declarations and prints the
contents of each section:

IMPORT BEGIN
?SOURCE $SYSTEM.ZSYSDEFS.ZSYSPAS (PROCESS_CONSTANT,
? SYSTEM_MESSAGES_CONSTANT)
END; { IMPORT }

To print a listing of the ZSYSPAS file to check the declarations that are available for
your program, use the FUP COPY command:

10> FUP COPY $SYSTEM.ZSYSDEFS.ZSYSPAS, $s.#lineptr

Naming Standard Files in
the Module Heading

The D-series version of the Pascal compiler requires that you name the INPUT,
OUTPUT, and STDERR files in a module heading if the module accesses these files
using Pascal I/O routines and if the program does not contain a Pascal program
heading (that is, if the main program is written in a language other than Pascal). Such
a module should have a heading like the following:

MODULE chart INPUT, OUTPUT, STDERR

Converting Basic Elements of a Pascal Program

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–5

Declaring and Using
Programming Variables

For your existing program to run at a high PIN, you might need to add or modify
declarations for the following variables:

CPU and PIN variables

File-system error numbers

Guardian file names, including disk file names, device names,
and process file names

Process identifiers, including process IDs, process handles,
and process descriptors

Declaring CPU and PIN Variables

Your existing program might declare a 16-bit variable for both the CPU and PIN
values:

VAR cpu_pin : INTEGER;

Or your program might declare an 8-bit variable for a PIN value:

VAR pin : BYTE;

Declare all PIN values, including backup-process PIN values, as 16-bit variables.
Declare a CPU value as a separate 16-bit variable:

VAR cpu, pin : INTEGER;

Declaring and Checking File-System Error Numbers

A Guardian procedure can return a file-system error number to report an error or
special condition. You might need to convert the parts of your program that declare
and check file-system errors. For example, your program might declare an 8-bit
variable for a file-system error number:

VAR fs_error_number : BYTE;

Declare a file-system error number as a 16-bit variable:

VAR fs_error_number : INTEGER;

Your program might also include code that sets a maximum value for a file-system
error number (for example, 255). A D-series file-system error number can be a
maximum of 16 bits. Therefore, make sure that your code does not exclude any new
error numbers. Also, because Tandem might define additional error numbers in
future releases, do not consider currently undefined numbers as invalid.

For a list and description of all file-system error numbers, refer to the Guardian
Procedure Errors and Messages Manual.

Converting Basic Elements of a Pascal Program

Converting Pascal Applications

6–6 096047 Tandem Computers Incorporated

Using Guardian File Names

Guardian file names include disk file names, device names (such as a printer or
terminal name), and process file names. You might need to convert the parts of your
program that declare and use file-name variables.

Disk File Names. Your existing program might declare a Guardian disk-file-name
variable. The largest D-series disk file names are:

For permanent files 35 bytes (one byte larger than the external form of a
C-series network file name)

For temporary files 26 bytes (4 bytes larger than the external form of a
C-series network file name)

When accessing Guardian disk files on remote D-series systems in a network, a
converted program can use a D-series network disk file name with an eight-character
volume name (one to seven characters after the dollar sign). A C-series network disk
file name allows a maximum of six characters after the dollar sign in the volume name.
Therefore, you might need to declare your network file-name variables large enough
to include this extra character. For example:

VAR employee : STRING(35) :=
 '\newyork.$payroll.july1990.employee';
 managers : STRING(35) :=
 '\seattle.$disk4.level1.managers ';

Device Names. Your existing program might declare a variable for a Guardian device
name. The largest D-series device names are:

Device name without a node name or qualifier 8 characters
Device name without a node name but with a qualifier 17 characters
Network file name without a qualifier 17 characters
Network file name with a qualifier 26 characters

When accessing devices on remote D-series systems in a network, a converted
program can use an eight-character network device name (one to seven characters
after the dollar sign). A C-series network device name allows a maximum of six
characters after the dollar sign. Therefore, you might need to declare your network
device names large enough to include this extra character. For example:

{ Network device name without a qualifier }

VAR device_name : STRING(17) := '\hamburg.$term001';

{ Network device name with a qualifier }

VAR network_device_name : STRING(26) :=
 '\hamburg.$lineptr.#room025';

Converting Basic Elements of a Pascal Program

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–7

Process File Names. Your existing program might declare a variable for a C-series
process file name. The D-series enhanced interface uses D-series process files names
instead of C-series process file names. Use C-series process file names for
compatibility with unconverted C-series procedures.

D-series process file names are variable-length string data items with their lengths
specified as separate data items. For example:

VAR my_process_file : STRING(47); { process file name }

The PASEXT file contains declarations that you can use for declaring D-series process-
file-name variables.

Declaring Process Identifiers

Your existing program might declare a process-ID variable to identify a process (for
example, an opener in an opener table). This example uses the process-ID declaration
from the TYPES section of the PEXTDECS file:

TYPE process_id = Process_Id_Type;

Convert the process-ID variable declaration to a process-handle variable for process-
control operations or to a process-descriptor variable for returning information from a
Guardian procedure. Use a process-ID variable for compatibility with unconverted
C-series procedures.

A process handle is a 10-word (20-character) fixed-length structure. A process
descriptor is a specific form of the D-series process file name that always includes the
node name and sequence number. For example:

VAR my_phandle : ARRAY[1..10] OF INTEGER; { process handle }

 my_process_desc : STRING(33); { process descriptor }

The PASEXT file contains declarations that you can use for declaring process-handle
and process-descriptor variables.

Avoiding Subvolume Defaulting in Disk File Names

Your existing program might use subvolume defaulting to represent a Guardian disk
file name in the form volume.file-id. For example:

VAR disk_file : STRING(17) := '$diskvol.filename';

Avoid subvolume defaulting in your program. If a file name requires the volume
name, also include the subvolume name:

VAR disk_file : STRING(26) := '$diskvol.subvol.filename ';

Converting Basic Elements of a Pascal Program

Converting Pascal Applications

6–8 096047 Tandem Computers Incorporated

Converting Guardian
Procedure Calls

Guardian procedures that you might need to convert are procedures that accept or
return:

A PIN parameter for a high-PIN process

A process-ID parameter

D-series procedures use a process handle (which includes the CPU and PIN values)
rather than a process ID to identify a process.

If you convert your program to run at a high PIN, then you must replace MYPID
procedure calls with calls to the PROCESS_GETINFO_ and
PROCESSHANDLE_DECOMPOSE_ procedures. “Converting a Pascal Program to
Run at a High-PIN,” later in this section, describes how to do this.

Appendix A lists the D-series procedures that supersede C-series procedures. For a
description of each procedure, refer to the Guardian Procedure Calls Reference Manual.

For examples of Guardian procedure calls, refer to Section 3, “Converting TAL
Applications.” If you are converting a Pascal program, you must convert the TAL
procedure calls shown in Section 3 to Pascal.

Running the
Pascal Compiler

When you start the Pascal compiler using the TACL RUN command, TACL calls the
PROCESS_CREATE_ procedure to create the Pascal compiler process and the resulting
BINSERV and SYMSERV processes at low PINs.

To run the Pascal compiler process (and the BINSERV and SYMSERV processes) at a
high PIN, you must use the binder program to set the HIGHPIN object-file attribute to
ON in the Pascal compiler object file (provided you have the proper authority to
change this file). TACL then runs the Pascal compiler (and the BINSERV and
SYMSERV processes) at a high PIN if one is available. For more information about
TACL, refer to the TACL Reference Manual.

Binding the Run-Time
Library

When binding your program on C-series systems, you had the option of selecting
either the PASRUN or the PASRUNS run-time support library, depending on the
nature of the object that you were binding.

In the D-series version of Pascal, the PASRUN and PASRUNS libraries have been
merged into one library called PASLIB. PASLIB resides in the system library by
default. If PASLIB does not reside in the system library, you must specify PASLIB
when you bind your programs.

Using the Binder With
Converted Object Files

You cannot bind modules that have been compiled with the D-series compiler with
modules that have been compiled with a C-series compiler. If you compile any
module with the D-series compiler, you must also recompile any other modules that
you bind it with.

Converting a Pascal Program to Run at a High PIN

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–9

Converting a
Pascal Program to
Run at a High PIN

This subsection describes how to convert your Pascal program to run at a high PIN
under the D-series operating system. Figure 6-2 shows a typical application. The box
shows which processes this part of the conversion applies to. Converting a Pascal
program to run at a high PIN applies to both of these processes.

Figure 6-2. Converting a Pascal Program to Run at a High PIN

$SRV

$REQ

Pascal Requester
Process

Pascal Server
Process

TACL

To convert your program, you must:

Set the HIGHPIN object-file attribute (which tells the system that your program
can run at a high PIN)

Make sure that each library file your program uses also has its HIGHPIN object-
file attribute set (and is capable of running at a high PIN)

Declare PIN variables large enough to hold high-PIN values

Convert MYPID procedure calls into calls to the PROCESS_GETINFO_ and
PROCESSHANDLE_DECOMPOSE_ procedures

These topics are described in the following subsections.

Setting the HIGHPIN
Object-File Attribute

The HIGHPIN object-file attribute directs the system to run a process at a high PIN if
one is available. If a high PIN is not available, the process runs at a low PIN if one is
available. You set the HIGHPIN object-file attribute either during compilation using a
compiler directive or after compilation using the Binder program.

To set the attribute when you compile your program, specify the HIGHPIN directive
in your source code or as a compiler option in the TACL RUN command for the Pascal
compiler. The BINSERV program then sets the HIGHPIN attribute in the object file.
An example of this directive in your source file is:

?HIGHPIN

An example of this directive as a compiler option is:

10> PASCAL /IN passrc,OUT $s.#paslst,NOWAIT/ pasobj; HIGHPIN

Converting a Pascal Program to Run at a High PIN

Converting Pascal Applications

6–10 096047 Tandem Computers Incorporated

You need to specify the HIGHPIN directive only once during a compilation.
However, you can specify it any number of times and the compiler will not generate
an error.

If you do not set the HIGHPIN attribute when you compile your program, you can set
it after compilation using Binder. For a single object file, use the Binder CHANGE
command:

@CHANGE HIGHPIN ON IN pasobj

If you are binding more than one object file into a single target object file, use the
Binder SET command to set the HIGHPIN object-file attribute in the target file. For the
target object file to have its HIGHPIN object-file attribute set, each constituent object
file must also have its HIGHPIN attribute set.

Using a Library File If your existing program uses a library file, the library file must also have its HIGHPIN
object-file attribute set. To determine the current setting of the HIGHPIN attribute for
a library file, use the Binder SHOW command:

@SHOW SET HIGHPIN FROM libfile

If necessary, set this attribute as described in the previous subsection (provided the
library file has been converted to support a high-PIN process).

Declaring CPU and PIN
Variables

As stated earlier under “Converting Basic Elements of a Pascal Program,” your
existing program might declare a 16-bit variable for both the CPU and PIN values:

VAR cpu_pin : INTEGER;

Or your program might declare an 8-bit variable for a PIN value:

VAR pin : BYTE;

Declare all PIN values, including backup-process PIN values, as 16-bit variables.
Declare a CPU value as a separate 16-bit variable:

VAR cpu, pin : INTEGER;

Converting MYPID
Procedure Calls

Your existing program might call the MYPID procedure to obtain its CPU and PIN
values:

VAR cpu_pin : INTEGER;

...

cpu_pin := MYPID;

If a high-PIN process calls MYPID, a trap condition occurs. You must convert MYPID
procedure calls into calls to the PROCESSHANDLE_DECOMPOSE_ procedure.

Converting a Pascal Program to Run at a High PIN

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–11

The PROCESSHANDLE_DECOMPOSE_ procedure requires a process handle as an
input parameter. If you do not know the process handle of your process, first call the
PROCESSHANDLE_GETMINE_ procedure. Then pass the result to
PROCESSHANDLE_DECOMPOSE_ , which returns the CPU and PIN values as
separate integer values. For example:

VAR my_phandle : ARRAY[1..10] OF INTEGER;
 my_cpu, my_pin : INTEGER;
 status : INTEGER;

{ Return my process handle. }

status := PROCESSHANDLE_GETMINE_(my_phandle);

IF status <> 0 THEN error_routine (status);

{ Return my CPU and PIN values. }

status := PROCESSHANDLE_DECOMPOSE_(my_phandle,
 my_cpu,
 my_pin);
IF status <> 0 THEN error_routine (status);

Your existing program might also call the MYPID procedure within another Guardian
procedure call (for example, in a SETMODE function 11, GETCRTPID, or
PROCESSINFO call). This example shows MYPID in a SETMODE (function 11)
procedure call:

status := SETMODE (file_number,
 11,
 MYPID, { Set to the CPU and PIN. }
 0,
 previous_owner);

For SETMODE function 11, you are not required to set the parameter_1 value to the
CPU and PIN values. Instead, set parameter_1 to any positive value:

status := SETMODE (file_number,
 11,
 1, { Set to any positive value. }
 0,
 previous_owner);

Creating a High-PIN Process

Converting Pascal Applications

6–12 096047 Tandem Computers Incorporated

Creating a
High-PIN Process

You can create a high-PIN process programmatically or interactively. This subsection
describes how to programmatically create a high-PIN process. For information on
how to interactively create a high-PIN process using TACL, see Section 7, “Converting
TACL Programs.”

Figure 6-3 shows the processes involved in converting a typical application. The steps
described in this subsection apply to the requester process $REQ, which creates the
high-PIN server process $SRV.

Figure 6-3. Converting a Pascal Program to Create a High-PIN Process

$SRV

$REQ

Pascal Requester
Process

 Server
Process

TACL

Your existing program might create a new process using the
NEWPROCESS[NOWAIT] procedure:

IMPORT BEGIN
?SOURCE $SYSTEM.SYSTEM.PEXTDECS (TYPES,
? NEWPROCESS,
? Guardian_OPEN,
? Guardian_READ,
? Guardian_WRITE,
? Guardian_CLOSE)
END; { IMPORT }
...

int program_file[12];
int home_terminal[12];
int process_id[4];
int process_name[4];
int err_return, priority, memory_pages, cpu;
int error_info[2];
int status;

...

Creating a High-PIN Process

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–13

status := NEWPROCESS (program_file,
 priority,
 memory_pages,
 cpu,
 process_id,
 err_return,
 process_name,
 home_terminal,
 { flags } 0,
 { job_id } ,
 error_info);

On a D-series system, the NEWPROCESS[NOWAIT] procedure can create only a low-
PIN process. The D-series operating system provides the PROCESS_CREATE_
procedure to create a new low-PIN or high-PIN process in a waited or nowait manner.

The following procedure creates a new process in a waited manner. The system
returns the results in the returned value error and error_detail parameter:

IMPORT BEGIN
?SOURCE $SYSTEM.SYSTEM.PEXTDECS (TYPES,
? PROCESS_CREATE_,
? FILE_OPEN_,
? Guardian_READ,
? Guardian_WRITE,
? FILE_CLOSE_)
END; { IMPORT }
...

char program_file[36];
char process_handle[20];

int pf_length;
int err, priority, memory_pages, cpu, error_detail;
...
error := PROCESS_CREATE_(program_file:pf_length,
 { library_file:lf_length } ,
 { swapfile:sf_length } ,
 { ext_swapfile:esf_length } ,
 priority,
 cpu,
 process_handle,
 error_detail);

If your program creates a new process in a nowait manner, the system returns the
results in system message -102 (PROCESS_CREATE_ completion), which is analogous
to system message -12 (NEWPROCESSNOWAIT completion). You read system
message -102 from $RECEIVE using the READ or READUPDATE procedure.

For additional information on creating processes in a nowait manner, creating
processes at a low PIN, and other information about the PROCESS_CREATE_
procedure, refer to Section 3, “Converting TAL Applications.”

Opening and Communicating With a High-PIN Server

Converting Pascal Applications

6–14 096047 Tandem Computers Incorporated

Opening and
Communicating With a

High-PIN Server

Your existing program might be a requester that communicates with a server. For
example, you might open a server, send it a request, and then process its reply. You
might also open a server for a backup requester if your program is running as a
process pair.

The degree of conversion you need to perform depends on whether your server is
named or unnamed, and, if the server is named, on how long the name is. Your
options are as follows:

If the server is local and named or if the server is remote with a name of five
characters or less (including the dollar sign), then no conversion is necessary. You
can still open the high-PIN server using the Guardian C-series-compatible OPEN
procedure. See Appendix C, “System Compatibility,” for further information on
communicating with a named high-PIN process.

If the server is remote and has a six-character name, then you need to first convert
your requester to run at a high PIN as described under “Converting a Pascal
Program to Run at a High PIN” earlier in this section, and then complete the
conversion as described under “Communicating with a High-PIN Server” and
“Monitoring a High-PIN Server,” later in this section. See Appendix C, “System
Compatibility” for further information on communicating with a named high-PIN
process.

If the server is unnamed, then you have the following options:

Set the RUNNAMED object-file attribute in the server so that the system
provides a name for the server, and pass the system-assigned name to the
requester; for example, in a DEFINE or an ASSIGN. See “Setting the
RUNNAMED Object-File Attribute” later in this section for details.

Convert the requester to run at a high PIN as described under “Converting a
Pascal Program to Run at a High PIN” earlier in this section, and then
complete the conversion as described under “Communicating with a High-
PIN Server” and “Monitoring a High-PIN Server,” later in this section.

For information about converting a server to monitor a high-PIN requester process,
including maintaining an opener table, refer to “Being Opened by and Communicating
With a High-PIN Requester,” later in this section.

Opening and Communicating With a High-PIN Server

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–15

Setting the RUNNAMED
Object-File Attribute

The RUNNAMED object-file attribute causes a process to run as a named process even
if you do not provide a name for it. Thus, a process can run at a high PIN under the
D-series operating system and still be opened by an unconverted process using the
Guardian OPEN procedure. For more information about how an unconverted process
running on a D-series system can communicate with a named high-PIN process, refer
to Appendix C, “System Compatibility.”

You set the RUNNAMED object-file attribute either during compilation using a
compiler directive or after compilation using the Binder program.

To set the attribute when you compile your program, specify the RUNNAMED
directive in your source code or as a compiler option in the TACL RUN command for
the Pascal compiler. The BINSERV program then sets the RUNNAMED attribute in
the object file. An example of this directive (with the HIGHPIN directive) in your
source file is:

?HIGHPIN, RUNNAMED

An example of this directive as a compiler option is:

10> PASCAL /IN passrc, ... / pasobj; HIGHPIN, RUNNAMED

You need to specify the RUNNAMED directive only once during a compilation.
However, you can specify it any number of times and the compiler will not generate
an error.

If you do not set the RUNNAMED attribute when you compile your program, you can
set it after compilation using Binder. For a single object file, use the Binder CHANGE
command:

@CHANGE RUNNAMED ON IN pasobj

If you are binding more than one object file into a single target object file, use the
Binder SET command to set the RUNNAMED object-file attribute. If any of the
constituent object files used to build the target file has the RUNNAMED object-file
attribute set, Binder sets this attribute in the target object file.

Opening and Communicating With a High-PIN Server

Converting Pascal Applications

6–16 096047 Tandem Computers Incorporated

Communicating With a
High-PIN Server

A requester can open and communicate with a high-PIN named server by opening the
server using the Guardian OPEN procedure. However, you must convert your
requester to open the server using the FILE_OPEN_ procedure if the server:

Is unnamed

Is on a remote D-series system and has a six-character name (a dollar sign and five
alphanumeric characters)

Figure 6-4 shows the processes involved in converting this part of a typical
application. The steps in this subsection apply to the requester process $REQ.

Figure 6-4. Converting a Pascal Requester to Communicate With a High-PIN Server

$SRV

$REQ

Pascal Requester
Process

 Server
Process

TACL

This subsection discusses converting the following operations:

Opening and closing the high-PIN server

Opening and closing the high-PIN server for a backup process

Sending requests to the high-PIN server

Opening a High-PIN Server

Your requester might open the server using the Guardian OPEN procedure:

VAR server_name: ARRAY[1..12] = OF INTEGER

...

server_name := "$SRV ";
status := Guardian_OPEN (server_name,
 server_file_number,
 nowait_depth,
 sync_depth);

Convert your requester to open the high-PIN server using the FILE_OPEN_
procedure. The FILE_OPEN_ procedure requires a variable-length string for the
server file-name input parameter rather than the 12-word internal-format file name.

Opening and Communicating With a High-PIN Server

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–17

Note If the file-name input parameter is incomplete (that is, not fully qualified), FILE_OPEN_ uses the current
settings, including the system name, in the =_DEFAULTS DEFINE for the unspecified parts.

FILE_OPEN_ also accepts a DEFINE name that represents a valid file name in this
format.

FILE_OPEN_ accepts an integer options parameter to specify certain file
characteristics. The options bit positions represent these options:

options
Bit Position Description

 0 Allow unstructured access for a disk file (must be 0 for other files and devices)

 1 Execute a nowait open

 2 Do not execute an update when the file is opened

 3 Use any available file number for backup open (0 means use the same file number as
in the primary open)

 4 through 13 Reserved; must be 0

 14 Receive C-series system messages ($RECEIVE only)

 15 Do not receive process open and close system messages ($RECEIVE only)

The ZSYSPAS file contains constant declarations that you can use with the options
parameter.

If you started the server using the PROCESS_CREATE_ procedure, you can use the
PROCESS_CREATE_ process-descriptor output parameter directly in the
FILE_OPEN_ procedure call (shown below as the server_name parameter). Refer to
“Creating and Managing a High-PIN Process” earlier in this section for details.

error := FILE_OPEN_(server_name:server_length,
 server_file_number,
 exclusion_mode,
 nowait_operations,
 sync_depth,
 options);

If you open the server using the nowait open option, you must call the AWAITIO[X]
procedure to complete the open. To determine the error and options values, call
the FILE_GETINFOLIST_ procedure and check the items specified by
ZSYS_VAL_FINF_LASTERROR and ZSYS_VAL_FINF_OPENOPTS, respectively
(provided you use the ZSYSPAS file).

Opening and Communicating With a High-PIN Server

Converting Pascal Applications

6–18 096047 Tandem Computers Incorporated

Opening a High-PIN Server for a Backup Requester Process

If your requester is running as a process pair, it might open the server for its backup
process using the CHECKOPEN procedure:

status := CHECKOPEN (server_name,
 server_file_number,
 nowait_depth,
 sync_depth,
 { seq_block_buffer } ,
 { buffer_length } ,
 back_error);

Figure 6-5 shows a requester process pair and a server process.

Figure 6-5. Opening a High-PIN Server for a Backup Process

$SRV

 Server
Process

TACL

Pascal
Requester

Process Pair
$REQ
Primary

$REQ
Backup

Convert your requester to open the high-PIN server for its backup process using the
FILE_OPEN_CHKPT_ procedure. To identify the high-PIN server,
FILE_OPEN_CHKPT_ requires the file number returned by the FILE_OPEN_
procedure call in the primary process. The system returns a file-system error (if a file-
system error occurs) in the returned value error and the status of the backup open in
an output parameter, which is the backup_open_status parameter in this example:

error := FILE_OPEN_CHKPT_(server_file_number,
 backup_open_status);

If you opened the server using the nowait open option, you must call the AWAITIO[X]
procedure to complete the open. To determine the error and
backup_open_status values, call the FILE_GETINFOLIST_ procedure and check
the items specified by ZSYS_VAL_FINF_LASTERROR and
ZSYS_VAL_FINF_LASTERRORDETAIL, respectively (provided you use the ZSYSPAS
file).

Opening and Communicating With a High-PIN Server

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–19

Sending a Request to a High-PIN Server

Your requester might send a request to a high-PIN server using the Guardian
WRITE[X] or WRITEREAD[X] procedure:

status := WRITEREADX (server_file_number,
 sbuffer,
 write_count,
 read_count,
 count_read);

Your Guardian WRITE[X] or WRITEREAD[X] procedure call should not require any
changes to send a request to a high-PIN server.

Closing a High-PIN Server

Your requester might close the server using the Guardian CLOSE procedure:

status := Guardian_CLOSE (server_file_number);

You can close a high-PIN server using either the Guardian CLOSE or FILE_CLOSE_
procedure:

error := FILE_CLOSE_(server_file_number);

Closing a High-PIN Server for a Backup Requester Process

Your requester might close the server for the backup process using the CHECKCLOSE
procedure:

status := CHECKCLOSE(server_file_number);

You can close the server for the backup process using either the Guardian CLOSE
procedure or the FILE_CLOSE_CHKPT_ procedure:

error := FILE_CLOSE_CHKPT_(server_file_number);

Opening and Communicating With a High-PIN Server

Converting Pascal Applications

6–20 096047 Tandem Computers Incorporated

Monitoring a High-PIN
Server

If your program monitors a high-PIN server, you must convert the following
operations:

Opening and closing $RECEIVE

Reading process-deletion and status-change messages

Using the CHILD_LOST_ procedure

The following paragraphs describe how to convert these operations. These steps also
can apply to any creator process that monitors a process that it has created.

Opening $RECEIVE

Your requester might open $RECEIVE using the Guardian OPEN procedure:

VAR receive_name: ARRAY [1..12] OF INT;
CONST read_open_close_msgs = 8#40000;

...

receive_name := "$RECEIVE ";
status := Guardian_OPEN (receive_name,
 receive_file_number,
 read_open_close_msgs,
 receive_depth);

Convert your requester to open $RECEIVE using the FILE_OPEN_ procedure. Use a
file-name string for the $RECEIVE file name instead of the internal file-name format.
Specify the length as a separate integer value.

Bit 14 of the options parameter must be zero (which is the default value) for the
system to send D-series system messages to $RECEIVE; otherwise, the system sends
C-series system messages to $RECEIVE for the requester.

An example of a FILE_OPEN_ procedure call for $RECEIVE is:

CONST receive_name_length = 8;

VAR receive_name: ARRAY [1..receive_name_len] OF CHAR

...

{ Open $RECEIVE to read D-series system messages }

receive_name := "$RECEIVE";
 error := FILE_OPEN_(receive_name:receive_name_length,
 receive_file_number,
 { access_mode } ,
 { exclusion_mode } ,
 { nowait_operations } ,
 receive_depth,
 options);

Opening and Communicating With a High-PIN Server

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–21

Reading System Messages From $RECEIVE

Your requester might read system messages from $RECEIVE using the Guardian
READ[X] or READUPDATE[X] procedure:

{ Message buffer (200 bytes) }
VAR message_buffer : ARRAY[1..200] OF CHAR;

...

read_count := 200;

status := READX (receive_file_number,
 message_buffer,
 read_count,
 bytes_read);

The lengths shown for each system message are subject to change. In a future release,
Tandem might add new fields to the end of a system message (while maintaining the
layout of the existing fields). Therefore, use a Guardian READ[X] or
READUPDATE[X] message buffer at least 250 bytes in length. Also, use a
read_count parameter of 250 bytes.

If you use the ZSYSPAS file, use the ZSYS_VAL_SMSG_LEN constant declaration to
specify the system message length in bytes. If you work in words you can use the
ZSYS_VAL_SMSG_WLEN constant declaration instead.

VAR message_buffer : ARRAY [1..ZSYS_VAL_SMSG_LEN] OF CHAR;

...

read_count := ZSYS_VAL_SMSG_LEN;

status := READX (receive_file_number,
 message_buffer,
 read_count,
 bytes_read);

The ZSYSPAS file also contains structures that you can use when your requester reads
system messages.

Reading Process-Deletion System Messages. Your requester might monitor a server
process by reading these process-deletion system messages from $RECEIVE:

-2 CPU down: named process deletion
-5 Process normal deletion: stop
-6 Process abnormal deletion: abend

Convert your requester to read and process the D-series system message -101 (Process
deletion), which supersedes all the above messages.

Opening and Communicating With a High-PIN Server

Converting Pascal Applications

6–22 096047 Tandem Computers Incorporated

Reading Status-Change System Messages. Your requester might monitor a server process
by reading these status-change system messages from $RECEIVE:

-2 CPU down: local CPU failure after process called MONITORCPUS
-8 Change in status of network node

Continue to read system message -2. Then, convert your requester to read these new
status-change messages, all of which supersede system message -8:

-100 Remote CPU down
-110 Loss of communication with node
-113 Remote CPU up

To receive system messages -100, -110, and -113, first call the MONITORNET
procedure with the enable parameter set to 1.

Processing System Messages Using the CHILD_LOST_ Procedure

Your requester might call a user-written routine to determine whether a process-
deletion or status-change message affects the server.

You might convert your requester to call the new CHILD_LOST_ procedure. The
CHILD_LOST_ procedure accepts the process handle of a process you are monitoring
and either a C-series (-2, -5, -6, or -8) or D-series (-2, -100, -101, -110, or -113) process-
deletion or status-change system message:

error := CHILD_LOST_(message:message_length,
 process_handle);

The CHILD_LOST_ error returned value indicates whether the process (or process
pair) is lost:

0 The process (or process pair) is not lost.
4 The process (or process pair) is lost.

Note System message -101 (Process deletion) contains the process handle and process descriptor of the
process that terminated. If a named process (or process pair) has terminated, this is the last opportunity
for you to save the process name of the process (or process pair).

Closing $RECEIVE

Your requester might close $RECEIVE using the Guardian CLOSE procedure:

status := Guardian_CLOSE (receive_file_number);

You can close $RECEIVE using either the Guardian CLOSE or FILE_CLOSE_
procedure:

error := FILE_CLOSE_(receive_file_number);

Being Opened by and Communicating With a High-PIN Requester

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–23

Being Opened by and
Communicating With a

High-PIN Requester

This subsection describes how to convert a Pascal server to communicate with a high-
PIN requester. Whether you need to convert the server process depends in part on
whether the server tracks its openers. If the server does keep track of its openers, you
should enable the server to run at a high PIN as described in “Converting a Pascal
Program to Run at a High PIN,” earlier in this section, and then convert the server as
described under “Converting a Server,” later in this subsection.

If the server does not track its openers, or if you choose not to perform the conversion,
then you can keep the server process at a low PIN and not convert it, except for setting
the HIGHREQUESTERS object-file attribute as described under “Setting the
HIGHREQUESTERS Attribute to Allow High-PIN Openers,” later in this subsection.
Setting this attribute enables a high-PIN requester to open a low-PIN server.

Converting a Server If your server process tracks its openers, you must convert the following parts of your
program:

Defining an opener table

Opening $RECEIVE

Reading D-series system messages from $RECEIVE

Getting information about system messages

Processing system messages

Replying to a system message

Using the OPENER_LOST_ procedure to maintain an opener table

Figure 6-6 shows the processes involved in converting an application. The steps
described in this subsection apply to the server process $SRV.

Figure 6-6. Converting a Pascal Server to Communicate With a High-PIN Requester

$SRV

$REQ

 Requester
Process

Pascal Server
Process

TACL

Being Opened by and Communicating With a High-PIN Requester

Converting Pascal Applications

6–24 096047 Tandem Computers Incorporated

Defining an Opener Table

If your server tracks its openers, it might define an opener table that uses a process ID
to identify an opener (primary process opener and backup process opener):

TYPE opener = RECORD
 primary_process_id: ARRAY [1..4] OF INTEGER;
 primary_file_number: INTEGER;
 backup_process_id: ARRAY [1..4] OF INTEGER;
 backup-file_number: INTEGER;
 END;

TYPE opener_table = RECORD
 current_count: INTEGER;
 opener_list: ARRAY [1..max_openers] OF opener;
 END;

Convert your opener table to identify an opener using a process handle rather than a
process ID. To use the OPENER_LOST_ procedure (which is described later in this
subsection) to manage your opener table, define the table as follows:

Use a process handle to identify both a primary-process and backup-process
opener.

Declare the process-handle field for the backup-process opener immediately after
the process-handle field for the primary-process opener (that is, the fields must be
stored in a 20-word contiguous part of an entry).

Declare table entries as fixed length and contiguous.

Do not store variable-length items in the table. If necessary, save a pointer in the
table to a variable-length item.

Set the process handles for primary and backup openers in unused entries to null
values (all -1s).

An example of an opener table that the OPENER_LOST_ procedure can process is:

TYPE opener = RECORD
 primary_process_handle:
 ARRAY [1..ZSYS_VAL_PHANDLE_WLEN] OF INTEGER;
 backup_process_handle:
 ARRAY [1..ZSYS_VAL_PHANDLE_WLEN] OF INTEGER;
 primary_file_number: INTEGER;
 backup_file_number: INTEGER;
 END;

TYPE opener_table = RECORD
 current_count: INTEGER;
 opener_list: ARRAY [1..max_openers] OF opener;
 END;

Being Opened by and Communicating With a High-PIN Requester

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–25

Opening $RECEIVE

Your server might open $RECEIVE using the OPEN procedure with bit 1 of the flags
parameter set to 1 (flags = 8#40000). This allows you to receive system messages
such as -30 (Process open) and -31 (Process close):

VAR receive_name: ARRAY[1..12] OF INTEGER;
CONST read_open_close_msgs = 8#40000;

...
receive_name := "$RECEIVE ";
status := Guardian_OPEN (receive_name,
 receive_file_number,
 read_open_close_msgs, { octal 40000}
 receive_depth);

Convert your server to open $RECEIVE using the FILE_OPEN_ procedure:

1. Use a file-name string for the $RECEIVE file name instead of the internal file-name
format. Specify the length as a separate integer value.

2. Make sure that bit 15 of the FILE_OPEN_ options parameter is zero (the default
value). If this bit is not zero, system messages such as -103 (Process open) and -104
(Process close) are not sent to $RECEIVE.

3. Make sure that bit 14 of the FILE_OPEN_ options parameter is zero (the default
value) so that the system sends D-series system messages to $RECEIVE. If this bit
is not zero, the system sends C-series system messages to $RECEIVE.

4. Set any other FILE_OPEN_ input parameters as required and call the procedure:

CONST receive_name_length = 8;
VAR receive_name: ARRAY [1..receive_name_length] OF CHAR;

...
{ Open $RECEIVE to read D-series system messages }

receive_name := "$RECEIVE";
error := FILE_OPEN_(receive_name:receive_name_length,
 receive_file_number,
 { access_mode } ,
 { exclusion_mode } ,
 nowait_operations,
 receive_depth);

If you open $RECEIVE using the FILE_OPEN_ procedure, the system assumes that
you support high-PIN requesters (provided bit 14 of the options parameter is zero).
You do not need to explicitly set the HIGHREQUESTERS object-file attribute in your
server’s object file.

When you close $RECEIVE, use either the Guardian CLOSE or FILE_CLOSE_
procedure.

Being Opened by and Communicating With a High-PIN Requester

Converting Pascal Applications

6–26 096047 Tandem Computers Incorporated

Reading System Messages From $RECEIVE

Your server might read system messages from $RECEIVE using the Guardian
READ[X] or READUPDATE[X] procedure:

{ Message buffer (200 bytes) }
VAR message_buffer: ARRAY [1..200] OF CHAR;

...
read_count := 200;

status := READX (receive_file_number,
 message_buffer,
 read_count,
 bytes_read);

The lengths shown for each system message are subject to change. Use a Guardian
READ[X] or READUPDATE[X] message buffer at least 250 bytes in length. Also, use a
read_count parameter value of 250 bytes.

If you use the declarations in the ZSYSPAS file, use the ZSYS_VAL_SMSG_LEN
constant for the system-message length in bytes or the ZSYS_VAL_SMSG_WLEN
constant for the length in words:

VAR message_buffer: ARRAY [1..ZSYS_VAL_SMSG_LEN] OF CHAR;

...

read_count := ZSYS_VAL_SMSG_LEN;

status := READX (receive_file_number,
 message_buffer,
 read_count,
 bytes_read);

Getting Information About System Messages

Your server might call the RECEIVEINFO or LASTRECEIVE procedure to obtain
information about the last message read from $RECEIVE:

status := RECEIVEINFO (process_id,
 message_tag,
 sync_id,
 file_number,
 read_count,
 io_type);

Convert the RECEIVEINFO or LASTRECEIVE call into a call to the
FILE_GETRECEIVEINFO_ procedure:

{ Return information about the last message }

error := FILE_GETRECEIVEINFO_(message_info);

Being Opened by and Communicating With a High-PIN Requester

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–27

FILE_GETRECEIVEINFO_ returns information in the 17-word message_info
parameter, which has the format shown in Table 6-1. The ZSYSPAS file contains a
structure that you can use for the message_info format.

Table 6-1. FILE_GETRECEIVEINFO_ message_info Parameter Format

Word Description

0 I/O type for the message:
0 = A system message was sent.
1 = The sender called Guardian WRITE[X] procedure.
2 = The sender called Guardian READ[X] procedure.
3 = The sender called WRITEREAD[X] procedure.

1 The maximum reply count in bytes

2 The message tag identifying the message

3 The file number for the message

4 through 5 The sync ID for the message

6 through 15 The process handle of the process sending the message

16 The open_label from a previous reply (or -1 if unavailable or for a C-series message)

Reading and Processing Open and Close System Messages

To monitor an opener, your server might read the C-series -30 (Process open) and -31
(Process close) system messages from $RECEIVE.

To monitor a high-PIN process, convert your server to read the D-series -103 (Process
open) and -104 (Process close) system messages. When your server is opened or closed
by a process pair, it receives a process-open or process-close message from each
process of the pair.

If you call the RECEIVEINFO or LASTRECEIVE procedure to obtain information
about the process-open or process-close message, convert the call into a call to the
FILE_GETRECEIVEINFO_ procedure as described under “Getting Information About
System Messages,” earlier in this section.

After calling FILE_GETRECEIVEINFO_, update your opener table using the process
handle rather than the process ID to identify the opener.

Being Opened by and Communicating With a High-PIN Requester

Converting Pascal Applications

6–28 096047 Tandem Computers Incorporated

System Message -103 (Process Open). Check bit 15 of sysmsg[7] of the process-open
message (or ZSYS_DDL_SMSG_OPEN.Z_FLAGS if you use the ZSYSPAS file), which
indicates whether the opener is a primary or backup process:

Primary open (sysmsg[7] bit 15 is 0): Add an entry in your opener table for the
process.

Backup open (sysmsg[7] bit 15 is 1): Process a backup open as follows:

1. Get the process handle for the primary opener from the process-open system
message (-103). This process handle is in sysmsg[8] for ten words (or the
ZSYS_DDL_SMSG_OPEN.Z_PRIMARY field if you use the ZSYSPAS file).

2. Use the process handle to search your opener table for the corresponding
primary-process open entry. If you find this entry but there is no backup open
yet (the backup process handle is null), add the backup process handle to the
table entry.

3. If the primary-process open entry is not found, reject the backup open with a
file-system error greater than 9.

System Message -104 (Process Close). Delete the opener-table entry for this process. You
should receive a process-close message from each process of a process pair.

Reading and Processing Status-Change Messages

If one of your openers has a CPU failure, or if its system fails or becomes partitioned
from your system because of a network failure, you do not receive a process-close
message (-31). Therefore, when maintaining an opener table, your server might read
and process these status-change messages:

-2 CPU down: local CPU failure after the process called MONITORCPUS
-8 Change in status of network node

Continue to read system message -2. In addition, read these new status-change
messages (all of which supersede C-series system message -8):

-100 Remote CPU down
-110 Loss of communication with node
-113 Remote CPU up

To receive system messages -100, -110, and -113, first call the MONITORNET
procedure with the enable parameter set to 1.

Replying to a System Message

Your server might reply to a system message using the Guardian REPLY[X]
procedure:

status := REPLYX (reply_buffer,
 write_count,
 count_written,
 message_tag,
 error_return);

Being Opened by and Communicating With a High-PIN Requester

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–29

Replying to System Message -103 (Process Open). The D-series system supports returning a
label value in the reply to a system message -103 (Process open). Typically, an opener-
table index gets sent in this way. This label then appears in the open_label field of
future FILE_GETRECEIVEINFO_ procedure calls that provide information about
messages received from the same requester. To support this feature, the file system
expects a reply buffer with a length of 0 to 4 bytes; otherwise, the open in the requester
returns an error.

Your server might reply to an Open message as follows:

write_count := any_valid_integer;
CALL REPLYX(reply_buffer,
 write_count,
 ! count_written ! ,
 ! message_tag ! ,
 error_return);

To make use of the open_label field in the FILE_GETRECEIVEINFO_ procedure,
you must convert your code to reply to the Open message as follows:

reply_buffer[0] := -103;
reply_buffer[1] := open_label_value;
write_count := 4;
CALL REPLYX (reply_buffer,
 write_count,
 { count_written } ,
 { message_tag } ,
 error_return);

If you do not want to use the open_label field, you still need to be sure that the
reply buffer has a length of 0 to 4 bytes. Convert your server as follows:

write_count := 0;
CALL REPLYX (reply_buffer,
 write_count,
 { count_written } ,
 { message_tag } ,
 error_return);

Replying to an Unknown System Message. Your server should be able to handle an
unknown system message. If the first word of a message contains an unknown
message number, call the REPLY[X] procedure with an error indication of 2 (invalid
operation):

status := REPLYX ({ reply_buffer } ,
 { write_count } ,
 { count_written } ,
 { message_tag } ,
 invalid_operation); /* Value is 2 */

Being Opened by and Communicating With a High-PIN Requester

Converting Pascal Applications

6–30 096047 Tandem Computers Incorporated

Using the OPENER_LOST_ Procedure to Maintain an Opener Table

After receiving a status-change message, your server might call one or more routines
to maintain its opener table.

You might want to use the OPENER_LOST_ procedure to maintain your opener table.
OPENER_LOST_ determines whether a status-change message affects your opener
table and updates the appropriate table entry if an opener was lost.

OPENER_LOST_ accepts a C-series (-2 or -8) or D-series (-2, -100, -110, or -113) status-
change message and searches your opener table for any processes affected by the
message. If OPENER_LOST_ determines that an opener has been lost, it updates the
opener-table entry and returns the index of the entry and an error value. The error
value indicates the reason for the opener-table change:

error
Value Reason

 4 A backup process opener is lost

 5 A primary process opener is lost; the backup process is now the primary process

 6 The primary process and backup process (if it exists) openers for a table entry are lost; the
table entry is now free

When OPENER_LOST_ returns an error value of zero, processing is complete for the
message.

To process all entries in your opener table for a status-change message, set up a loop
similar to the one shown below. The opener table must be defined as described under
“Defining an Opener Table,” earlier in this subsection.

done := 0; { Set control for start of loop }
index := -1; { Set index for start of loop }

REPEAT
 error := OPENER_LOST_(message:message_length,
 opener_table.opener_list,
 index,
 opener_table.current_count,
 $LEN(opener_table.opener_list));

 CASE error OF
 4: { Processing for lost backup opener }
 5: { Processing for lost primary opener }
 6: { Processing for lost opener }
 { (primary and backup for a process pair) }
 OTHERWISE: done = -1 { Processing is finished or }
 { error occurred }
 END
UNTIL done = 0

Being Opened by and Communicating With a High-PIN Requester

Converting Pascal Applications

096047 Tandem Computers Incorporated 6–31

Setting the
HIGHREQUESTERS

Attribute to Allow High-PIN
Openers

The HIGHREQUESTERS object-file attribute allows a process to support requests from
high-PIN requesters. Use this attribute only for a Pascal main program. You can set
the HIGHREQUESTERS object-file attribute by including a compiler directive in your
source file, or you can set it after you have finished converting your source code either
using a compiler option or after compilation using the Binder program.

To set the attribute when you compile your program, specify the HIGHREQUESTERS
directive in your source code or as a compiler option in the TACL RUN command for
the Pascal compiler. The BINSERV program then sets the HIGHREQUESTERS
attribute in the object file. An example of this directive in your source file is:

?HIGHREQUESTERS

An example of this directive as a compiler option is:

10> PASCAL / IN passrc, ... / pasobj; HIGHREQUESTERS

You need to specify the HIGHREQUESTERS directive only once during a compilation.
If your program file copies source code from another file, specify the
HIGHREQUESTERS directive only in the program file that contains the main
program; do not specify the directive in the other file (or files).

If you do not set the HIGHREQUESTERS attribute when you compile your program,
you can set it after compilation using Binder. For a single object file, use the Binder
CHANGE command:

@CHANGE HIGHREQUESTERS ON IN pasobj

If you are binding more than one object file into a single target object file, use the
Binder SET command to set the HIGHREQUESTERS object-file attribute. For Binder
to set the HIGHREQUESTERS object-file attribute in a target object file, the object file
containing the main program must have this object-file attribute set.

For more information about the HIGHREQUESTERS object-file attribute, refer to
“Allowing Opens by High-PIN Requesters” in Appendix C, “System Compatibility.”

7 Converting TACL Programs

096047 Tandem Computers Incorporated 7–1

Whether you use TACL commands and functions interactively or write TACL
programs, you might need to make some changes to take advantage of the D-series
enhanced interface.

This section describes how to convert your TACL programs. The topics covered are:

How to declare and use TACL variables such as CPU and PIN variables

How to create and manage high-PIN processes, including how to obtain
completion information

How to handle D-series variances in the information returned by some TACL
functions

How to obtain information about file and record locks.

Section 8, “Converting Other Parts of an Application,” contains information about
converting other parts of a TACL program. For further information about TACL
programming, including new features, see the TACL Reference Manual and the TACL
Programmer’s Guide.

Declaring and Using TACL Variables

Converting TACL Programs

7–2 096047 Tandem Computers Incorporated

Declaring and Using
TACL Variables

This subsection describes how to change TACL declarations for:

File-system error numbers

CPU and PIN variables

Process identifiers

This subsection also provides information on how to:

Avoid subvolume defaulting

Convert between process handles and process file names

Declaring File-System Error
Numbers

File-system error numbers under the C-series operating system are all in the range 0
through 255. The C-series-compatible interface retains the same set of error numbers.
The D-series enhanced interface, however, extends this range beyond 255.

Your existing program might use a BYTE field in a STRUCT for storing a returned file-
system error number. For example:

[#DEF error^info STRUCT
 BEGIN
 BYTE file^error;
 ...
 END;
]

Change the BYTE field to an INT field to allow for the extended range of file system
error numbers. For example:

[#DEF error^info STRUCT
 BEGIN
 INT file^error;
 ...
 END;
]

Declaring CPU and PIN
Variables

The C-series-compatible interface allows for PIN values up to 255. Using the D-series
enhanced interface, you can still use low PINs in the range 1 through 254, or you can
use high PINs in the range 256 up to the limit for the CPU.

Your existing program might declare BYTE or INT data types in STRUCTs for CPU
and PIN values. The following example uses BYTE data types:

[#DEF cpu^and^pin STRUCT
 BEGIN
 BYTE cpu;
 BYTE pin;
 END;
]

Declaring and Using TACL Variables

Converting TACL Programs

096047 Tandem Computers Incorporated 7–3

To allow for high-PIN processes, convert your program to use INT data types for both
CPU and PIN values. For example:

[#DEF cpu^and^pin STRUCT
 BEGIN
 INT cpu;
 INT pin;
 END;
]

Declaring Process
Identifiers

The C-series interface uses 4-word process IDs to identify processes. The D-series
enhanced interface instead uses 20-byte process handles or process descriptor strings,
depending on what the identifier is used for.

Your existing program might declare a STRUCT containing a process ID. For example:

[#DEF process^identifier STRUCT
 BEGIN
 INT process^id(0:3);
 BYTE cpu;
 BYTE pin;
 END;
]

You need to change the declaration to contain either a process handle (for process-
control operations) or a process descriptor (used by Guardian procedures to return the
identity of a process).

A process handle is a series of 10 numbers in the range 0 through 65535 separated by
periods. You declare a process handle using the new PHANDLE data type.

A process descriptor is represented by a string of at most 29 bytes for an unnamed
process or 33 bytes for a named process. For example:

[#DEF process^information STRUCT
 BEGIN
 PHANDLE process^handle;
 CHAR process^descriptor(0:32);
 INT cpu;
 INT pin;
 END;
]

If your existing program is part of a DSM application and uses SPI buffers, the process
IDs might be identified by a ZSPI-TYP-CRTPID token type.

Convert your application to use either a process-descriptor token or a process-handle
token instead of the process identifier. You need to use a process descriptor when the
token contains information returned from a Guardian procedure. You can use the
token type ZSPI-TYP-STRING for a process descriptor.

For process-control information, the token contains a process handle. You should use
the ZSPI-TDT-PHANDLE token data type.

Declaring and Using TACL Variables

Converting TACL Programs

7–4 096047 Tandem Computers Incorporated

For details of converting DSM applications, see Section 8, “Converting Other Parts of
an Application.”

Avoiding Subvolume
Defaulting

Your existing program might use subvolume defaulting to represent a Guardian disk
file name in the form volume.file-id. For example:

$MYVOL.MYFILE

If you are using the D-series programmatic interface, you must explicitly specify the
subvolume. If a file name requires the volume name, also include the subvolume
name:

$MYVOL.MYSUBVOL.MYFILE

Your existing TACL program might use the #FILEINFO built-in function to obtain the
volume part of the current default values as follows:

#FILEINFO /VOLUME/ [#DEFAULTS]

#FILEINFO now requires a file identifier which is not supplied by the defaults. You
must therefore supply a file ID. Replace the call with:

#FILEINFO /VOLUME/ [#DEFAULTS].X

Converting Between
Process Handles and

Process File Names

A new built-in function, #CONVERTPHANDLE, converts process handles to process
descriptors and process file names to process handles.

Converting Process Handles to Process Descriptors

You can convert a process handle into a process descriptor using
#CONVERTPHANDLE as shown in the following example:

[#DEF process^name STRUCT
 BEGIN
 CHAR process^file^name(0:46);
 END;
]

[#DEF process^handle STRUCT
 BEGIN
 PHANDLE proc^handle;
 END;
]

...
#SET process^name &
 [#CONVERTPHANDLE /PROCESSID/ process^handle]

Converting Process File Names to Process Handles

The following example converts a process file name into a process handle using the
same STRUCT definitions as the previous example:

#SET process^handle [#CONVERTPHANDLE /INTEGERS/ process^name]

Creating and Managing a High-PIN Process

Converting TACL Programs

096047 Tandem Computers Incorporated 7–5

Creating and
Managing a High-PIN

Process

This subsection describes:

How to use TACL to run processes at a high PIN

How to receive completion code information using the D-series enhanced interface

Creating a High-PIN
Process

This subsection describes how you can use TACL to run a process at a high PIN or at a
low PIN.

You can specify high PIN or low PIN either:

By setting the #HIGHPIN built-in variable to provide the default value for the
RUN command or #NEWPROCESS built-in function

As a parameter of the RUN command or #NEWPROCESS built-in function to
affect only the process you are creating, overriding the default value

Notes As well as selecting a high PIN at the TACL level, the HIGHPIN object-file attribute for the process you
are creating must also be set if the new process is to run at a high PIN. You can set this attribute either at
compile time or bind time. See the section that corresponds to the appropriate programming language
(Sections 3 through 6) for details.

TACL always ignores the inherent force-low characteristic. See Appendix C, “System Compatibility,” for a
discussion of the inherent force-low characteristic.

Setting High PIN as the Default Value

The TACL #HIGHPIN built-in variable provides the default value when you do not
specify the HIGHPIN option in a RUN command or #NEWPROCESS built-in function.
The default setting for the #HIGHPIN variable is ON; however, you can set this
variable using any of the following TACL commands:

SET HIGHPIN { ON | OFF }

SET VARIABLE #HIGHPIN { ON | OFF }

#SET #HIGHPIN { ON | OFF }

To determine the current value of the #HIGHPIN variable, use the TACL SHOW
command:

11> SHOW HIGHPIN

Creating and Managing a High-PIN Process

Converting TACL Programs

7–6 096047 Tandem Computers Incorporated

Setting High PIN for a New Process

You might create a new process (for example, your requester) using the TACL RUN
command or #NEWPROCESS built-in function:

9> SET HIGHPIN ON
10> RUN requestr / CPU 3, NAME $REQ, NOWAIT /

In the above example, TACL creates the $REC process at a high PIN because the
#HIGHPIN built-in variable is set ON. If #HIGHPIN is OFF, you need to specify
#HIGHPIN ON in the RUN command line:

9> SET HIGHPIN OFF
10> RUN requestr / HIGHPIN ON, CPU 3, NAME $REQ, NOWAIT /

When you issue a D-series RUN command, TACL calls the PROCESS_CREATE_
procedure to create the new process. If the RUN command is unsuccessful, TACL sets
the 4-word built-in variable #ERRORNUMBERS to these values:

word [0] 1149
word [1] PROCESS_CREATE_ error returned value
word [2] PROCESS_CREATE_ error-detail parameter
word [3] 0 (zero)

Note that these values are different from the values returned by TACL running under
the C-series operating system. C-series TACL returns 1101 in word 0 and
NEWPROCESS error information in words 1 and 2. You might need to alter your
program if your program controls flow based on these values.

To run a converted process at a low PIN, set the HIGHPIN run option to OFF when
you issue the RUN command. For example, the following RUN command causes
TACL to create the process at a low PIN in CPU 3 (if a low PIN is available):

10> RUN requestr / HIGHPIN OFF, CPU 3, NAME $REQ, NOWAIT /

Receiving Completion
Codes

Batch processes return completion information indicating whether the process stopped
normally or abnormally. D-series TACL uses a new :_COMPLETION^PROCDEATH
structure for completion information while providing C-series compatibility by
continuing to support the use of :_COMPLETION.

In previous releases, TACL saves Stop (-5) and Abend (-6) messages in the variable
:_COMPLETION, if it exists. TACL defines :_COMPLETION as a STRUCT when you
log on and the STRUCT remains unless you remove it with a POP command.

D-series TACL receives process deletion messages (-101) instead of Stop and Abend
messages. TACL saves each Process deletion message in the variable
:_COMPLETION^PROCDEATH, if it exists. TACL defines
:_COMPLETION^PROCDEATH as a STRUCT when you log on. The STRUCT
remains unless you remove it using the POP command.

Creating and Managing a High-PIN Process

Converting TACL Programs

096047 Tandem Computers Incorporated 7–7

Convert your program to reference the :_COMPLETION^PROCDEATH variable
instead of :_COMPLETION to make use of the process deletion message information.
The structure of :_COMPLETION^PROCDEATH is as follows:

[#DEF :_completion^procdeath STRUCT
 BEGIN
 INT z^msgnumber;
 STRUCT z^base
 REDEFINES z^msgnumber;
 BEGIN
 CHAR byte(0:1);
 END;
 PHANDLE z^phandle;
 INT4 z^cputime;
 INT z^jobin;
 INT z^completion^code;
 INT z^termination^code;
 INT z^killer^craid
 REDEFINES z^termination code;
 SSID z^subsystem;
 PHANDLE z^killer;
 INT z^termtext^len;
 STRUCT z^procname;
 BEGIN
 INT zoffset;
 INT zlen;
 END;
 INT z^flags;
 INT z^reserved(0:2);
 STRUCT z^data;
 BEGIN
 CHAR bytes(0:111);
 END;
 STRUCT z^termtext
 REDEFINES z^data;
 BEGIN
 CHAR bytes(0:111);
 END;
 STRUCT z^procname^
 REDEFINES z^data;
 BEGIN
 CHAR bytes(82:193);
 END;
 END;
]

For C-series compatibility, you can continue to use :_COMPLETION. If this variable
exists, then TACL converts each process deletion system message into a C-series-
compatible Stop or Abend message and stores the message in :_COMPLETION. Note,
however, that if the message represents an unnamed high-PIN process, the message
will not fit in :_COMPLETION and TACL fills :_COMPLETION with zeros.

Using TACL Built-in Functions

Converting TACL Programs

7–8 096047 Tandem Computers Incorporated

Using TACL Built-in
Functions

This subsection describes variances between the effect of TACL built-in functions on a
C-series system and the effect of the same built-in functions on a D-series system.
Specifically, the following variances in the D-series TACL language might affect your
TACL programs:

The #STOP built-in function can return additional error numbers when issued
with the ERROR option

The #NEWPROCESS and #PROCESS built-in functions return a node name with a
process file name or CPU, PIN only in certain circumstances.

Checking the Error When
Stopping a Process

Your TACL program might stop a process using the #STOP built-in function and
check the result for a file-system error:

#SET error [#STOP /ERROR/ $proc]
[#IF error <> 0 |THEN|
 == handle error here
]

The D-series TACL process returns value 638 or 639 if the process has been queued for
stopping but not actually stopped. If you do not consider these results to be errors,
then you should convert your code appropriately:

#SET error [#STOP /ERROR/ $proc]
[#IF error <> 0 |THEN|
 == don't consider it an error if the process has been
 == queued for stopping:
 [#IF error <> 638 or error <> 639 |THEN|
 == handle error here
]
]

Returning a Node Name
From #NEWPROCESS or

#PROCESS

Your TACL program might use the #NEWPROCESS or #PROCESS built-in functions
and expect a process file name or CPU,PIN to be returned with a node name in front of
it. In the D-series TACL language:

For #NEWPROCESS, the node name is returned only if the process is created on a
remote node and the process was started in a NOWAIT manner.

For #PROCESS, the node name is returned only if the default process is remote, or
if the current current defaults specify a remote node name.

You might need to convert your TACL program to allow for the absence of the node
name in all other cases.

Obtaining Lock Information

Converting TACL Programs

096047 Tandem Computers Incorporated 7–9

Obtaining Lock
Information

Your existing program might use the #LOCKINFO built-in function to obtain
information about record locks and file locks. For example:

#LOCKINFO lock^spec tag buffer

Convert your program to use the #FILEGETLOCKINFO built-in function to get
information about a lock (either held or pending). Each time you use
#FILEGETLOCKINFO, it returns information about one lock. If you need information
about several locks, invoke #FILEGETLOCKINFO several times.

In addition to providing the name of the file, you must also provide the following
STRUCTs:

control A 10-word variable that controls a series of calls to
#FILEGETLOCKINFO. Set control word [0] to 0 the first time you
call #FILEGETLOCKINFO. On successive calls, simply use the value
of control returned by the previous call.

lockdesc Receives the lock information.

participants Receives process handles or transaction IDs for processes or
transactions that wait for the lock.

In the example below, #FILEGETLOCKINFO returns information about a lock on a
disk file.

[#DEF control STRUCT
 BEGIN
 INT x(0:9);
 END;
]

[#DEF lockdesc STRUCT
 BEGIN
 INT lock^type; == 0 = file, 1 = record
 UINT flags; == <0> set if generic lock
 INT n^participants; == number of holders/waiters

== for lock
 INT key^length; == for key-sequenced record

== locks; 0 if not
== key-sequenced

CHAR key(0:255); == key for key-sequenced
== record locks

 END;
]

Obtaining Lock Information

Converting TACL Programs

7–10 096047 Tandem Computers Incorporated

[#DEF participants STRUCT
 BEGIN
 STRUCT locker(0:mp-1); == mp = max participants
 BEGIN
 UINT flags; == <0> set for process

== clear for
== transaction
== <1:3> 0 = waiting,
== 1 = granted
== <4> internal use
== <5:15> reserved

 FILLER 2; == reserved
 PHANDLE process; == process holding or waiting

== for the lock
 TRANSID transid == transaction holding or

REDEFINES process; == waiting for the lock
 END;
 END;
]

#SET control 0
#FILEGETLOCKINFO myfile control lockdesc participants

8 Converting Other Parts of an
Application

096047 Tandem Computers Incorporated 8–1

This section describes how to convert the parts of a TAL, COBOL85, C, Pascal, or
TACL application that are not described in Sections 3 through 7. The topics in this
section are:

Converting applications that call file-system procedures to manage disk files,
including:

Manipulating and editing disk file names

Maintaining disk files and volumes

Converting applications that use terminal I/O operations, including a command-
interpreter interface and BREAK key handling

Converting applications that call sequential I/O (SIO) procedures

Converting Distributed Systems Management (DSM) applications that use the
Event Management Service (EMS) or the Subsystem Programmatic Interface (SPI)

Improving performance using direct transfers for I/O operations

Converting memory-management procedure calls that allocate, deallocate, and get
information about extended data segments

The box in Figure 8-1 contains the processes involved in converting an application.
The topics in this section might apply to any of the processes shown in the box for a
TAL, COBOL85, C, or Pascal application.

Figure 8-1. Converting Other Parts of an Application

$SRV

$REQ

Requester
Process

Server
Process

TACL

Managing Your Disk Files

Converting Other Parts of an Application

8–2 096047 Tandem Computers Incorporated

Managing Your
Disk Files

This subsection describes how to convert an application that calls Guardian file-system
procedures to:

Manipulate and edit disk file names

Manage disk files and volumes

Converting an application to use D-series file-system procedures is usually optional.
However, you might want to convert it because:

D-series file-system procedures accept and return file-name string parameters
rather than internal-format file-name parameters. You are not required to convert
the name from external to internal format before you call a D-series procedure.

D-series file-system procedures automatically expand a partially qualified file
name to a fully qualified file name using the current settings, including the node
name, from the =_DEFAULTS DEFINE VOLUME attribute. You are not required
to expand the name before you call a D-series procedure.

D-series file-system procedures allow access to remote disk files on other D-series
systems in a network with eight-character volume names (seven alphanumeric
characters after the dollar sign). C-series procedures can access remote files with
volume names that have a maximum of six characters after the dollar sign.

D-series file-system procedures return a file-system error value rather than a
condition code, which not only makes error checking easier but also simplifies
calling file-system procedures from C programs.

The D-series FILE_GETINFOLIST_ and FILE_GETINFOLISTBYNAME_
procedures can return more information about a file than the superseded C-series
procedures can return.

 Manipulating and Editing
Disk File Names

The D-series operating system provides new file-system procedures to manipulate
disk file names, including:

Expanding partially qualified disk file names

Extracting and modifying parts of a file name

Comparing two file names

Using wild-card characters in a file name

Upshifting ASCII strings

Converting file names between C-series and D-series formats

These topics are described in the following subsections.

Managing Your Disk Files

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–3

Expanding Partially Qualified File Names

Your existing program might call the FNAMEEXPAND or FNAME32EXPAND
procedure to expand a partially qualified external file name to a 12-word internal-
format file name:

length := FNAMEEXPAND (external^filename,
 internal^filename,
 default^vol^subvol);

Convert your program to call the FILENAME_SCAN_ and FILENAME_RESOLVE_
procedures. FILENAME_SCAN_ checks the syntax of an input file-name string and
returns the length in bytes of the file name (provided a valid name is found).
FILENAME_RESOLVE_ then converts a partially qualified file name to a fully
qualified file name.

Note If you are passing a file name to a D-series procedure, you do not have to call FILENAME_RESOLVE_
after you call FILENAME_SCAN_. A D-series procedure automatically expands a partially qualified file
name to a fully qualified file name using the current settings, including the node name, from your
=_DEFAULTS DEFINE VOLUME attribute.

In the example below, FILENAME_SCAN_ scans the name parameter for a valid file
name and, if a valid name is found, returns the length of the name in the
name^byte^count parameter.

FILENAME_RESOLVE_ then expands the file name into the file^name parameter
and sets the file^name^length parameter to the length in bytes of the fully
qualified name:

! Check for a valid file name.

error := FILENAME_SCAN_(name:name^length,
 name^byte^count);
IF NOT error THEN
 BEGIN

 ! Expand the file name.

 error := FILENAME_RESOLVE_(name:name^byte^count,
 file^name:max^length,
 file^name^length);
 END;

Managing Your Disk Files

Converting Other Parts of an Application

8–4 096047 Tandem Computers Incorporated

Extracting Parts of a File Name

Your existing program might extract parts from an internal-format file name. For
example, you might extract the volume name from a file name.

Convert your program to call the FILENAME_DECOMPOSE_ procedure, which
returns one or more parts of a file-name string. You specify the parts that are to be
returned with the level input parameter. In this example,
FILENAME_DECOMPOSE_ returns the volume name and its length. The level
parameter is set to ZSYS^VAL^FNAME^LEVEL^DEVICE to specify the volume:

level := ZSYS^VAL^FNAME^LEVEL^DEVICE; ! Value = 0.

error := FILENAME_DECOMPOSE_(file^name:file^name^length,
 volume^name:max^length,
 volume^name^length,
 level);

Modifying Parts of a File Name

Your existing program might modify parts of an internal-format file name. For
example, you might change the subvolume name to a new subvolume name without
changing the other parts of the name.

Convert your program to call the FILENAME_EDIT_ procedure, which allows you to
modify one or more parts of a file-name string. You specify the parts that are to be
modified with the level input parameter.

In this example, FILENAME_EDIT_ changes the subvolume name to subvol^name
and leaves the remaining parts of the file name intact. The level parameter is set to
ZSYS^VAL^FNAME^LEVEL^SUBVOL to specify the subvolume:

level := ZSYS^VAL^FNAME^LEVEL^SUBVOL; ! Value = 1.

error := FILENAME_EDIT_ (file^name:max^length,
 file^name^length,
 subvol^name:subvol^name^length,
 level);

Comparing Two File Names

Your existing program might call the FNAMECOMPARE procedure to compare two
file names or device names:

error := FNAMECOMPARE (filename1, filename2);

Convert your program to call the FILENAME_COMPARE_ procedure, which
compares two file-name strings to determine whether they refer to the same file or
device.

FILENAME_COMPARE_ requires a variable-length string for each of the input file
names rather than the 12-word internal-format file names. If the file names are
incomplete, FILENAME_COMPARE_ uses the current settings, including the node
name, from the =_DEFAULTS DEFINE for the unspecified parts.

Managing Your Disk Files

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–5

Each FILENAME_COMPARE_ file-name parameter must be followed by a colon and
an integer value, which specifies the length in bytes of the file name. In this example,
FILENAME_COMPARE_ compares two file names. The error value is then checked
for the results:

! Compare the two file names and check the results.

error := FILENAME_COMPARE_(file^name1:file^name1^length,
 file^name2:file^name2^length);
CASE (error) OF
 BEGIN

-1 -> ... ! The names are different.

 0 -> ... ! The names are the same.

OTHERWISE -> ... ! A file-system error occurred
 END;

Using Wild-Card Characters in a File Name

Your existing program might use wild-card characters in a file name to specify a set of
disk files rather than a single file. The D-series operating system allows the following
wild-card characters in all parts of a file name in procedures such as
FILENAME_FINDNEXT_ and FILENAME_MATCH_ :

* Matches zero or more letters, digits, dollar signs ($), or pound signs (#)
? Matches one letter, digit, dollar sign ($), or pound sign (#)

Examples of wild-card characters in D-series name strings are:

File-Name String Specifies

ZSPI All files in the current subvolume with names containing ZSPI

Z??? All files in the current subvolume with names that begin with the letter Z and
have exactly four characters

*.$DATA All $DATA disk volumes on all nodes in the network

??????00 All files in the current subvolume with names that end with the digits 00 and
have exactly eight characters

..*.* All files on all nodes in the network

* All nodes in the network

Managing Your Disk Files

Converting Other Parts of an Application

8–6 096047 Tandem Computers Incorporated

Upshifting ASCII Strings

Your existing program might call the SHIFTSTRING procedure to upshift all
alphabetic characters in an ASCII string:

CALL SHIFTSTRING (file^name^string,
 string^length,
 shift^param); ! Value = 0 (upshift).

You might want to convert your program to call the STRING_UPSHIFT_ procedure.
This procedure uses both an input and output parameter for the string, which allows
you to preserve the unshifted version of the string. For ASCII strings, the output
parameter has the same length as the input parameter. For example:

error := STRING_UPSHIFT_(in^string:in^string^length,
 out^string:max^length);

Using Both C-Series and D-Series File Names

If you convert your program, it might still contain file names in the C-series 12-word
internal format. To convert file names between the C-series and D-series formats, use
the procedures described below.

Use the FILENAME_TO_OLDFILENAME_ procedure to convert a D-series file-name
string to a C-series 12-word internal-format file name:

STRING .d^name[0:ZSYS^VAL^LEN^FILENAME - 1];

INT .c^name[0:11];

...

error := FILENAME_TO_OLDFILENAME_(d^name:name^length,
 c^name);

Use the OLDFILENAME_TO_FILENAME_ procedure to convert a C-series 12-word
internal-format file name to a D-series file-name string:

STRING .d^name[0:ZSYS^VAL^LEN^FILENAME - 1];

INT .c^name[0:11];

...

error := OLDFILENAME_TO_FILENAME_(c^name,
 d^name:max^length,
 name^length);

The converted D-series name is always fully qualified (including the node name).

Managing Your Disk Files

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–7

Maintaining Disk Files and
Volumes

The D-series operating system provides new file-system procedures to maintain disk
files and volumes, including:

Creating, renaming, and purging disk files

Refreshing a disk volume

Getting information about disk files and volumes

These topics are described in the following paragraphs.

Creating a New Disk File

Your existing program might call the CREATE procedure to create a new permanent
or temporary disk file:

CALL CREATE (disk^file,
 primary^ext^size,
 file^code,
 secondary^ext^size,
 file^type,
 record^length);

Convert your program to call the FILE_CREATE_ or FILE_CREATELIST_ procedure
to create a permanent or temporary disk file.

FILE_CREATE_ and FILE_CREATELIST_ require a string for the filename
parameter rather than the 12-word internal-format file name.

For a permanent file, the input filename parameter must contain the new file name.
If the name is incomplete, both procedures use the current settings, including the node
name, from the =_DEFAULTS DEFINE for the unspecified parts.

For a temporary file, the input filename parameter contains the name of the volume
on which the system creates the temporary file. The system returns the length of the
new temporary file name in a separate integer parameter.

FILE_CREATELIST_ also accepts an array of file attributes and values to specify
characteristics for a file. For example, you can set alternate-key characteristics for an
alternate-key file at the time of creation. The ZSYSDDL file contains LITERAL
declarations that you can use with the FILE_CREATELIST_ parameters, including the
array of file attributes. To use these declarations, include the appropriate file
(ZSYSTAL, ZSYSCOB, ZSYSC, or ZSYSPAS) with your source code file.

In this example, FILE_CREATE_ creates a file named new^file:

error := FILE_CREATE_(new^file:max^length,
 new^file^length,
 file^code,
 primary^ext^size,
 secondary^ext^size,
 max^extents,
 file^type);

Managing Your Disk Files

Converting Other Parts of an Application

8–8 096047 Tandem Computers Incorporated

Renaming a Disk File

Your existing program might call the RENAME procedure to rename an open disk file:

CALL RENAME (file^number,
 new^name);

Convert your program to call the FILE_RENAME_ procedure to rename an open disk
file. If the file is temporary, FILE_RENAME_ causes the file to become permanent.
You must have purge access to the file; otherwise, a security violation (file-system
error 48) occurs.

FILE_RENAME_ requires a string for the new file name rather than the 12-word
internal-format file name. The length of the name is specified by a separate integer
parameter. If the file name is incomplete, FILE_RENAME_ uses the current settings,
including the node name, from the =_DEFAULTS DEFINE for the unspecified parts.

In this example, FILE_RENAME_ renames an open file:

error := FILE_RENAME_(file^number,
 new^file^name:new^file^name^length);

Purging a Disk File

Your existing program might call the PURGE procedure to delete a closed disk file:

CALL PURGE (file^name);

Convert your program to call the FILE_PURGE_ procedure to delete the file.
FILE_PURGE_ deletes the disk file name from the volume's directory and makes any
disk space allocated to the file available to other files.

FILE_PURGE_ requires a string for the file name rather than the 12-word internal-
format file name. The length of the name is specified by a separate integer parameter.
If the file name is incomplete, FILE_PURGE_ uses the current settings, including the
node name, from the =_DEFAULTS DEFINE for the unspecified parts.

To delete a file, you must have purge access to the file; otherwise, a security violation
(file-system error 48) occurs. In this example, FILE_PURGE_ deletes a closed file:

error := FILE_PURGE_(file^name:file^name^length);

Managing Your Disk Files

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–9

Refreshing a Disk Volume

Your existing program might call the REFRESH procedure to refresh a disk volume:

CALL REFRESH (volume^name);

Convert your program to call the DISK_REFRESH_ procedure. DISK_REFRESH_
writes control information from the file control blocks (FCBs) to the disk volume. It
should be used only before the disk volume is brought down (for example,
immediately before a cold load).

DISK_REFRESH_ requires a string for the disk name rather than the 12-word internal-
format name. The length of the name is specified by a separate integer parameter. In
this example, DISK_REFRESH_ refreshes the disk volume indicated by the
volume^name parameter:

error := DISK_REFRESH_(volume^name:volume^name^length);

Getting Information About a Disk Volume or File

Your existing program might call one of these procedures to get information about a
disk file or volume:

DEVICEINFO FILEINFO
DEVICEINFO2 FILEINQUIRE
DISKINFO FILERECINFO

Convert your program to call the FILE_GETINFO_ , FILE_GETINFOLIST_ ,
FILE_GETINFOBYNAME_ , or FILE_GETINFOLISTBYNAME_ procedure.

FILE_GETINFO_ and FILE_GETINFOLIST_ accept a file number of an open file, while
FILE_GETINFOBYNAME_ and FILE_GETINFOLISTBYNAME_ accept a file name to
identify the file.

To specify the information that FILE_GETINFOLIST_ or
FILE_GETINFOLISTBYNAME_ returns, you set item codes in an item^list array.
Each integer item code represents a file characteristic. Both procedures return the
corresponding file information in a results array in the same order specified in the
item^list array.

The ZSYSDDL file contains LITERAL declarations that you can use with the
item^list array. To use these declarations, include the appropriate file (ZSYSTAL,
ZSYSCOB, ZSYSC, or ZSYSPAS) with your source code file.

If you call FILE_GETINFOBYNAME_ in a waited manner, the system returns the
information in the procedure output parameters. However, if you call this procedure
in a nowait manner, the system returns the information in system message -108
(nowait FILE_GETINFOBYNAME_ completion). Refer to the Guardian Procedure
Errors and Messages Manual for the description and format of this message.

Managing Your Disk Files

Converting Other Parts of an Application

8–10 096047 Tandem Computers Incorporated

In the example below, FILE_GETINFO_ returns the last file-system error for a terminal
I/O operation. Then, FILE_GETINFOLISTBYNAME_ uses the file name to return
information about a disk file.

! Return the last file-system error.

error := FILE_GETINFO_(terminal^file^number,
 last^terminal^file^error);

...

! Return information for the file indicated by file^name.

error := FILE_GETINFOLISTBYNAME_(file^name:file^name^length,
 item^list,
 number^of^items,
 results,
 maximum^results,
 results^length,
 error^item);

Getting Lock Information About a Disk File

Your existing program might call the LOCKINFO procedure to get information about
a lock (either held or pending) on a disk volume, disk file, process, or TMF transaction:

error := LOCKINFO (search^id,
 search^type,
 control^words,
 buffer^size,
 buffer);

Convert your program to call the FILE_GETLOCKINFO_ procedure to get information
about a lock (either held or pending). Each FILE_GETLOCKINFO_ call returns
information about one lock. To get information about all locks for an object, make
repeated calls to FILE_GETLOCKINFO_.

FILE_GETLOCKINFO_ requires a string for the name rather than the 12-word
internal-format name. If the name specifies a disk volume or disk file,
FILE_GETLOCKINFO_ uses the current settings, including the node name, from the
=_DEFAULTS DEFINE for any unspecified parts. However, if the name specifies a
process or TMF TRANSID, the name must include a volume name.

Managing Your Disk Files

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–11

FILE_GETLOCKINFO_ returns information about the lock in the
lock^description buffer in this format:

word[0] Lock type (0 = file, 1 = record)
word[1] Flags: .<0> Lock is generic

.<1:15> Reserved
word[2] Number of participants
word[3:4] Record ID (if the lock is a record type and the file is not

key-sequenced)
word[5] Key length: Number of bytes in the keys for key-sequenced

record locks, or zero for non-key-sequenced record locks
word[6:n] Locked-key value (where n is determined by the length of the buffer)

The participants output parameter of FILE_GETLOCKINFO_ describes the
processes (or TRANSIDs) that hold or wait for the lock. The total size of
participants depends on the max^participants parameter. Each 12-word
element in participants describes one process or TRANSID in this format:

word[0] Flags: .<0> Participant (0 = TRANSID, 1 = process handle)
.<1:3> Grant state (0 = waiting, 1 = granted)
.<4> Intent flag (0 = lock is not internally set by DP2,

1 = lock is internally set by DP2)
.<5:15> Reserved

word[1] Reserved
word[2:11] Process handle if word [0].<0> is 1; otherwise, a TRANSID

The ZSYSDDL file contains LITERAL declarations that you can use with the
lock^description and participants parameters. To use these declarations,
include the appropriate file (ZSYSTAL, ZSYSCOB, ZSYSC, or ZSYSPAS) with your
source code file.

In the example below, FILE_GETLOCKINFO_ obtains information about a lock on a
disk file. The 10-word control parameter is used on a series of
FILE_GETLOCKINFO_ calls. On the first call, set control to zero; on successive
calls, return the unchanged value from the previous call.

! Return lock information for a disk file.

error := FILE_GETLOCKINFO_(file^name:file^name^length,
 ! process^handle ! ,
 ! trans^id ! ,
 control,
 lock^description,
 lock^desc^length,
 participants,
 max^participants);

Managing Your Disk Files

Converting Other Parts of an Application

8–12 096047 Tandem Computers Incorporated

Getting Open Information About a Disk File

Your existing program might call the OPENINFO procedure to get information about
the opens for a disk file or device:

error := OPENINFO (search^name,
 previous^tag,
 primary^process^id,
 backup^process^id,
 access^mode,
 exclusion^mode,
 sync^depth,
 file^name,
 paid,
 valid^info^mask);

Convert your program to call the FILE_GETOPENINFO_ procedure.

FILE_GETOPENINFO_ requires a string rather than the 12-word internal-format name
for the input file name or device name parameter. If a file name is incomplete,
FILE_GETOPENINFO_ uses the current settings, including the node name, from the
=_DEFAULTS DEFINE for the unspecified parts.

FILE_GETOPENINFO_ returns a process handle for the primary and backup opener
processes. If a backup opener process does not exist, the backup process handle
contains a null value (a -1 in each word).

When you are searching for all opens on a disk volume or for all subdevices for a
device, FILE_GETOPENINFO_ returns the output file^name parameter. The
file^name is a variable-length string rather than a 12-word internal-format file
name.

In this example, FILE_GETOPENINFO_ obtains information about an open for a disk
file. The search^name parameter contains the name of the file:

! Return information about the last open for a disk file.

error := FILE_GETOPENINFO_(search^name:search^name^length,
 previous^tag,
 primary^process^handle,
 backup^process^handle,
 access^mode,
 exclusion^mode,
 sync^depth,
 ! file^name:max^buffer^size ! ,
 ! file^name^length ! ,
 paid,
 valid^info^mask);

Using Terminal I/O Operations

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–13

Using Terminal I/O
Operations

If your existing program uses terminal I/O, it might include:

A command-interpreter interface

BREAK key handling

These topics are described in the following subsections.

Converting a Command-
Interpreter Interface

A command-interpreter interface might involve accepting and displaying items such
as a CPU value and PIN value or a file name. You might need to modify your existing
program to accept and display D-series items (for example, a field for a PIN value for a
high-PIN process). The considerations in this subsection also apply to a program that
generates printed reports containing D-series items.

Accepting and Displaying CPU and PIN Values

Your existing program might accept, display, or print a three-digit PIN value.

Convert your program to accept, display, or print five-digit PIN values (or six digits if
you represent PIN values in octal). Define any PIN variables as integers (or five-digit
data items). If you have an error-checking routine for the PIN value, allow PINs with
a maximum value of 65535 (or the maximum value allowed for your system).

If your CPU variables or fields hold two or more digits, no changes are necessary.
However, if you define a single integer variable for both the CPU and PIN values,
redefine each item as a separate integer variable.

Accepting and Displaying Network File and Device Names

Your existing program might accept, display, or print a remote file name or the name
of a remote I/O device.

A converted program can access remote files with eight-character volume names or
I/O devices with eight-character device names (seven characters after the dollar sign)
on other D-series systems in a network. Convert your program to accept, display, or
print eight-character remote volume or device names.

Accepting and Displaying Network Process Names

Your existing program might accept, display, or print a remote process name.

A converted program can access remote processes with six-character names (five
characters after the dollar sign) on other D-series systems in a network. Convert your
program to accept, display, or print six-character remote process names.

Using Sequence Numbers

Usually, a command interpreter operates on the current instance of a process, which is
represented by a CPU value and PIN value or by a process name. Tandem does not
recommend that you convert your program to accept, display, or print sequence
numbers. However, if you must accept, display, or print sequence numbers, allow a
maximum of 13 digits for each number.

Using Terminal I/O Operations

Converting Other Parts of an Application

8–14 096047 Tandem Computers Incorporated

Displaying File-System Error Numbers

Your existing program might display or print three-digit file-system error numbers.

A D-series file-system error number is an integer variable, which allows a maximum of
five digits. Convert your program to display or print five-digit error numbers (or six
digits if you display the numbers in octal).

Avoiding Subvolume Defaulting for Disk Files

Your existing program might use subvolume defaulting to represent a disk file name
in the form:

volume.fileid

The D-series operating system does not support subvolume defaulting for disk files.
The defaulting scheme for partially qualified file names that are passed to Guardian
procedures does not resolve this form of a file name. Also, you cannot use the
FILENAME_RESOLVE_ procedure to resolve a name in this form.

Avoid subvolume defaulting in your program. If a disk file name requires the volume
name, it must also include the subvolume name.

Accepting a Process String From a Terminal

If your existing program accepts a process string in an input buffer entered at a
terminal, you might want to use the PROCESSSTRING_SCAN_ procedure to scan the
buffer to extract the process string. In this example, PROCESSSTRING_SCAN_ scans
the input buffer named buffer and returns a process string in string^name and the
length of the string in string^name^length:

error := PROCESSSTRING_SCAN_(buffer:buffer^length,
 string^length,
 process^handle,
 string^type,
 string^name:max^length,
 string^name^length,
 cpu,
 pin);

The format for string^name is:

[\node-name.]{ }name
cpu,pin

PROCESSSTRING_SCAN_ includes the node (or system) name if it was entered in the
input buffer. If requested, PROCESSSTRING_SCAN_ also returns other items such as
the process handle and the CPU and PIN values (if they exist).

Using Terminal I/O Operations

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–15

Displaying Information About a Process

Your existing program might display or print information about a process using a
process ID to identify the process.

In D-series procedures, the process handle replaces the process ID. However, a
process handle is not suitable to display or print. To convert a process handle to a
process string that is suitable to display or print, use the
PROCESSHANDLE_TO_STRING_ procedure:

error := PROCESSHANDLE_TO_STRING_(process^handle,
 string:max^length,
 string^length);

In the previous example, PROCESSHANDLE_TO_STRING_ returns a process string in
the string parameter. The format of the string is:

[\node-name.]{ }name
cpu,pin

The process string includes the node (or system) name only if the process is running
on a remote node. You can also use the PROCESSHANDLE_DECOMPOSE_
procedure to return the individual parts of a process handle to display or print. For
example:

error := PROCESSHANDLE_DECOMPOSE_
 (process^handle,
 cpu,
 pin,
 system^number,
 system^name:max^sn^len,
 system^name^length,
 process^name:max^pn^length,
 process^name^length,
 seq^no);

Getting Information About a Process

Your existing program might call one of these procedures to get information about one
or more processes:

CREATORACCESSID MYTERM
GETCPCBINFO PRIORITY
GETCRTPID PROCESSFILESECURITY
GETREMOTECRTPID PROCESSINFO
LOOKUPPROCESSNAME PROCESSTIME
MOM or MYGMOM PROGRAMFILENAME

For information about converting these procedures, refer to “Getting Information
About a High-PIN Process” in Section 3, “Converting TAL Applications.”

Using Terminal I/O Operations

Converting Other Parts of an Application

8–16 096047 Tandem Computers Incorporated

Converting BREAK Key
Handling

BREAK key handling might involve taking ownership of the BREAK key and sending
and receiving system message -20 (Break).

Taking BREAK Key Ownership

If your existing program calls the SETMODE 11 procedure to take BREAK key
ownership, do not use the MYPID procedure to set parameter-1. for SETMODE 11.
Instead, set parameter-1 to any positive value. For more information about
converting a SETMODE 11 procedure call, refer to the subsection about converting a
program to run at a high PIN in the respective section for the language you are using
(Sections 3 through 6).

Receiving the Break-on-Device System Message

If your existing program issues the SETMODE 11 call and the BREAK key is pressed,
the system sends C-series system message -20 (Break) to your program. Convert your
program to receive the D-series system message -105 (Break-on-device). The format of
this message is:

sysmsg[0] -105
sysmsg[1] File number of the receiver's open file for the terminal that

indicated the break, or -1 if the file number is unavailable
(for example, from a C-series system)

sysmsg[2] FOR 2 Break tag value specified with a SETPARAM (if used)

Sending a Break-on-Device Message to a High-PIN Process

Your existing program might send a Break-on-device system message to a process
using the SENDBREAKMESSAGE procedure:

error := SENDBREAKMESSAGE (process^id,
 break^tag);

To send a Break-on-device system message to a high-PIN process, convert your
program to use the BREAKMESSAGE_SEND_ procedure.

BREAKMESSAGE_SEND_ requires a process handle rather than a process ID to
identify the process. The receiver^file^number parameter is the file number in
the process that indicates which of the files in the process generated the break.
Usually, a program saves this number when it opens the process.

An example of the BREAKMESSAGE_SEND_ procedure is:

error := BREAKMESSAGE_SEND_(process^handle,
 receiver^file^number,
 break^tag);

Using Sequential I/O (SIO) Procedures

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–17

Using Sequential I/O
(SIO) Procedures

An existing program that calls Sequential Input/Output (SIO) procedures can run
under the D-series operating system without any changes. However, you must
convert specific SIO procedure calls and declarations in a program if:

The program uses SIO procedures to read D-series system messages from
$RECEIVE

The program identifies high-PIN process openers using process handles rather
than process IDs

The D-series SIO procedures include these changes:

There are no new SIO procedures; the SET^FILE, CHECK^FILE, and OPEN^FILE
procedures are modified to support D-series features.

The GPLDEFS file contains the D-series SIO declarations, including LITERAL and
DEFINE declarations.

The file control block (FCB) is 20 words larger and contains new fields for primary
and backup process handles.

The conversion required for applications that call SIO procedures is described in the
following subsections. For a description of each SIO procedure, refer to the Guardian
Procedure Calls Reference Manual.

Using the GPLDEFS File Your existing program should copy the $SYSTEM.SYSTEM.GPLDEFS file, which
contains TAL DEFINE and LITERAL declarations required by the SIO procedures.
Make sure that your program copies a D-series version of the GPLDEFS file. This file
contains a new section called FCB^DEFS^D00, which has these additions:

The LITERAL declaration for the size of a D-series FCB is FCBSIZE^D00. Each
D-series FCB, including the common FCB, uses 80 words of user data space
(a C-series FCB is 60 words).

The DEFINE declaration for allocating the common FCB is ALLOCATE^CBS^D00.

The DEFINE declaration for allocating the FCB for each file is
ALLOCATE^FCB^D00.

The DEFINE and LITERAL declarations for the SET^FILE, CHECK^FILE, and
OPEN^FILE procedures are revised as described in the following subsections.

Using Sequential I/O (SIO) Procedures

Converting Other Parts of an Application

8–18 096047 Tandem Computers Incorporated

Allocating FCBs Using the
INITIALIZER

The D-series INITIALIZER procedure supports creator processes that are running at a
high PIN. If your existing program calls the INITIALIZER only to read its STARTUP,
ASSIGN, or PARAM messages and not to set up its required FCBs, you do not need to
make any changes. However, if your program calls the INITIALIZER to allocate its
required FCBs, convert the program as follows.

Your existing program might call the INITIALIZER to allocate the run-unit control
block (CBS) and the common FCB using the ALLOCATE^CBS DEFINE. In this
example, ALLOCATE^CBS allocates a run-unit control block for three I/O files:

ALLOCATE^CBS (rucb, ! Run-unit control block.
 common^fcb, ! Common FCB.
 3); ! Number of files.

Convert your program to allocate the run-unit control block (CBS) and the common
FCB using the ALLOCATE^CBS^D00 DEFINE:

ALLOCATE^CBS^D00 (rucb, ! Run-unit control block.
 common^fcb, ! Common FCB.
 3); ! Number of files.

Your existing program might call the INITIALIZER to allocate an FCB for $RECEIVE:

ALLOCATE^FCB (rec^file,
 "$RECEIVE ");

If you want your process to receive D-series system messages then you should use the
ALLOCATE^FCB^D00 DEFINE instead if the ALLOCATE^FCB DEFINE, otherwise
your process will receive C-series system messages:

ALLOCATE^FCB^D00 (rec^file,
 "$RECEIVE ");

You do not need to change the DEFINE for other files. It does no harm to use
ALLOCATE^FCB^D00 for other files except to use additional space.

Using Sequential I/O (SIO) Procedures

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–19

Allocating FCBs Using
Declarations

Your existing program might allocate the common FCB and $RECEIVE FCB using the
FCBSIZE LITERAL declaration (60 words). This example shows the allocation of the
common FCB, $RECEIVE FCB, and a file FCB for an input file:

INT .common^fcb [0:FCBSIZE - 1], ! Common FCB.
 .receive^file [0:FCBSIZE - 1], ! $RECEIVE FCB.
 .input^file [0:FCBSIZE - 1]; ! File FCB.

Convert your program to allocate the common FCB and $RECEIVE FCB using the
FCBSIZE^D00 LITERAL (80 words):

INT .common^fcb [0:FCBSIZE^D00 - 1], ! Common FCB.
 .receive^file [0:FCBSIZE^D00 - 1], ! $RECEIVE FCB.
 .input^file [0:FCBSIZE - 1]; ! File FCB.

Initializing the Common
FCB Using SET^FILE

Your existing program might initialize the common FCB as shown in the following
example:

common^fcb := 0;

To initialize a D-series common FCB, you need to convert your program to use the
INIT^FILEFCB^D00 parameter in the SET^FILE procedure call as follows:

error := SET^FILE (common^fcb, INIT^FILEFCB^D00);

Also, make sure that you allocate the common FCB using the FCBSIZE^D00 LITERAL
(80 words) as shown above under “Allocating FCBs Using Declarations.”

Initializing a New FCB
Using SET^FILE

Your existing program might initialize a new FCB using the SET^FILE procedure and
the INIT^FILEFCB parameter. In this example, SET^FILE initializes a new FCB for
$RECEIVE:

error := SET^FILE (receive^file, INIT^FILEFCB);

Convert your program to use the INIT^FILEFCB^D00 parameter:

error := SET^FILE (receive^file, INIT^FILEFCB^D00);

Using Sequential I/O (SIO) Procedures

Converting Other Parts of an Application

8–20 096047 Tandem Computers Incorporated

Specifying an Opener
for $RECEIVE Using the

SET^FILE Procedure

Your existing program might specify an allowable opener for $RECEIVE (and
therefore a process that is allowed to send you messages) using the SET^FILE
procedure and the SET^OPENERSPID parameter:

error := SET^FILE (receive^file,
 SET^OPENERSPID,
 @mom^pid);

Convert your program to use the SET^OPENERSPHANDLE parameter in the
SET^FILE call. The system then uses a process handle rather than a process ID to
identify the allowable opener. In this example, SET^FILE sets the opener's process-
handle address for the $RECEIVE FCB to mom^phandle:

error := SET^FILE (receive^file,
 SET^OPENERSPHANDLE,
 @mom^phandle);

Specifying System
Messages Using the
SET^FILE Procedure

Your existing program might specify the system messages it wants to read from
$RECEIVE using the SET^FILE procedure and the SET^SYSTEMMESSAGES or
SET^SYSTEMMESSAGESMANY parameter.

Setting a bit in the one-word SET^SYSTEMMESSAGES sys-msg-mask parameter or
the four-word SET^SYSTEMMESSAGESMANY sys-msg-mask-words parameter
specifies a system message that a program can read:

error := SET^FILE (receive^file,
 SET^SYSTEMMESSAGES,
 receive^msg^mask,
 old^msg^mask);

The SET^SYSTEMMESSAGES sys-msg-mask parameter has the new bit values
shown in Table 8-1. The SET^SYSTEMMESSAGESMANY sys-msg-mask-words
parameter has the new bit values shown in Table 8-2. The values for the remaining
bits for each parameter are listed in the Guardian Procedure Calls Reference Manual.

Table 8-1. SET^SYSTEMMESSAGES Parameter

Bit D-Series System Message C-Series System Message

sys-msg-mask [0]:

.<5> -101 (Process deletion) -5 (Process deletion: Stop)

.<6> Unused -6 (Process deletion: Abend)

.<8> Unused; see sys-msg-mask-words [3].<4:7> -8 (MONITORNET)

Using Sequential I/O (SIO) Procedures

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–21

Table 8-2. SET^SYSTEMMESSAGESMANY Parameter

Bit D-Series System Message C-Series System Message

sys-msg-mask-words [0]:

.<5> -101 (Process deletion) -5 (Process deletion: Stop)

.<6> Unused -6 (Process deletion: Abend

.<8> Unused; see sys-msg-mask-words [3].<4:7> -8 (MONITORNET)

.<9> -112 (Job process creation) Unused

sys-msg-mask-words [1]:

.<4> -105 (Break on device) -20 (Break on device)

.<14> -103 (Process open) -30 (Process open)

.<15> -104 (Process close) -31 (Process close)

sys-msg-mask-words [2]:

.<8> -106 (Device type inquiry) Unused

sys-msg-mask-words [3]:

.<0> -102 (Nowait PROCESS_CREATE_ completion) Unused

.<1> -107 (Subordinate name inquiry) Unused

.<2> -108 (Nowait FILE_GETINFOBYNAME_ completion) Unused

.<3> -109 (Nowait FILENAME_FINDNEXT_ completion) Unused

.<4> -110 (Loss of communication with node) Unused

.<5> -111 (Establishment of communication with node) Unused

.<6> -100 (Remote CPU down) Unused

.<7> -113 (Remote CPU up) Unused

Determining an Opener
Using the

CHECK^FILE Procedure

Your existing program might obtain the address of an opener’s process ID using the
CHECK^FILE procedure and the FILE^OPENERSPID^ADDR parameter. For
example:

@opener^pid^addr := CHECK^FILE (common^fcb,
 FILE^OPENERSPID^ADDR);

Convert your program to call the CHECK^FILE procedure using the
FILE^OPENERSPHANDLE^ADDR parameter. CHECK^FILE then returns the
address of the process handle rather than the process ID to identify the opener. For
example:

@opener^phandle^addr := CHECK^FILE (common^fcb,
 FILE^OPENERSPHANDLE^ADDR);

Using Sequential I/O (SIO) Procedures

Converting Other Parts of an Application

8–22 096047 Tandem Computers Incorporated

Opening $RECEIVE to Read
System Messages

Your existing program might open $RECEIVE using the OPEN^FILE procedure to
read system messages:

error := OPEN^FILE (common^fcb,
 receive^file,
 ! block^buffer ! ,
 ! block^buffer^size ! ,
 NOWAIT, ! flags
 nowait^io^mask); ! flags^mask

The OPEN^FILE flags parameter defines a list of LITERAL declarations that can be
used with the flags^mask parameter to set file-transfer characteristics. A new
LITERAL declaration named OLD^RECEIVE is defined for the flags.<0> bit.
OLD^RECEIVE applies only to $RECEIVE and is ignored for all other files. The
values for OLD^RECEIVE are:

0 (the default) A program reads D-series system messages from $RECEIVE.
1 A program reads C-series system messages from $RECEIVE.

Therefore, if the flags.<0> bit is zero in your OPEN^FILE procedure call, no changes
are necessary to read D-series system messages provided you have declared and
initialized the common FCB and $RECEIVE FCB using the D-series declarations.

If you declare and initialize the common FCB and $RECEIVE FCB using C-series
declarations, then the system sends C-series system messages to $RECEIVE regardless
of the setting of the flags.<0> bit.

If you use a C-series common FCB and a D-series FCB for $RECEIVE, the system
returns the SIOERR^OLDCOMMFCB (536) error when you open $RECEIVE.

To read C-series messages after you have declared and initialized the $RECEIVE FCB
using D-series declarations, open $RECEIVE using the OLD^RECEIVE LITERAL:

error := OPEN^FILE (common^fcb,
 receive^file,
 ! block^buffer ! ,
 ! block^buffer^size ! ,
 OLD^RECEIVE,
 old^msg^mask);

Converting Distributed Systems Management (DSM) Applications

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–23

Converting Distributed
Systems Management

(DSM) Applications

This subsection describes how to convert Distributed Systems Management (DSM)
applications that:

Use the Event Management Service (EMS) to receive and interpret event messages
from a Tandem subsystem

Use EMS to generate and report event messages

Use the Subsystem Programmatic Interface (SPI) to communicate with a Tandem
subsystem

Note Except for the examples in TAL, the symbolic names in this subsection are in DDL (or COBOL85) format
with hyphens (-) as separators. If you are writing a TAL program, substitute a circumflex (^) for each
hyphen. If you are writing a C or Pascal program, substitute an underscore (_) for each hyphen.

Using the DSM Definition
Files

If you are converting a DSM application, make sure that it copies D-series versions of
the appropriate DSM definition files that are required for the source language you are
using (TAL = TAL, COB = COBOL85, C = C, PAS = Pascal):

SPI definitions ZSPITAL, ZSPICOB, ZSPIC, or ZSPIPAS

EMS definitions ZEMSTAL, ZEMSCOB, ZEMSC, or ZEMSPAS

Data communications definitions ZCOMTAL, ZCOMCOB, ZCOMC,
or ZCOMPAS

Subsystem definitions ZsssTAL, ZsssCOB, ZsssC, or ZsssPAS (where
sss is the specific subsystem abbreviation)

Receiving and Interpreting
Event Messages

This subsection describes how to convert a DSM application that receives and
interprets event messages from a Tandem subsystem.

If you are converting an application, you also need to refer to the Tandem subsystem
manual that describes the specific event messages that your application receives from
the subsystem. For example, if your application receives event messages generated by
the labeled-tape server ($ZSVR), refer to the Tandem NonStop Kernel Event Management
Programming Manual for a description of the labeled-tape event messages and the
tokens in each message.

You might need to convert a DSM application if it receives event messages from a
converted subsystem on a D-series system. The converted subsystem can generate
event messages that contain D-series tokens, which are unknown to an unconverted
application.

For example, suppose an unconverted application tries to extract the process-ID token,
ZEMS-TKN-CRTPID, from an event message generated by a converted subsystem. If
the event message describes a high-PIN process, the converted subsystem substitutes
the process-descriptor token, ZEMS-TKN-PROC-DESC, for the process-ID token.
Thus, the unconverted application does not find a process-ID token and does not try to
extract the process-descriptor token.

Converting Distributed Systems Management (DSM) Applications

Converting Other Parts of an Application

8–24 096047 Tandem Computers Incorporated

Defining the Event-Message Buffer

Your DSM application might define a buffer to receive the event message. The
D-series event-message header contains the new variable-length process-descriptor
token, ZEMS-TKN-PROC-DESC, which makes the D-series header approximately 24
bytes larger than a C-series header. Also, because the process-descriptor token is a
variable-length string, a D-series event message has a variable length.

If necessary, modify the event-message buffer in your DSM application to hold a
larger variable-length event message.

Processing D-Series Tokens

Table 8-3 shows the D-series EMS tokens. You might need to convert your application
to process these new tokens. (The D-series EMS tokens that are specific to a subsystem
are described in the subsystem’s management programming manual.)

Table 8-3. D-Series Event Management Service (EMS) Tokens

Token Name
(ZEMS-TKN-)

Token Type
(ZSPI-TYP-) Description

D00 BOOLEAN Header token that specifies whether the event message
is generated by a D-series system or C-series system.
Supported only by EMSGET[TKN].

EVTHDR-VSN ENUM Header token containing the event-header version. The
value for the initial release is 1.

LDEVNUMBER INT2 Token used for a logical device number (32 bits).

NODENAME STRING Token containing the node (system) name of the
subsystem that created the event.

NODENUM INT2 Header token containing the node (system) number of
the subsystem that created the event. Replaces
ZEMS-TKN-SYSTEM.

PROC-DESC STRING Header token containing the process descriptor of the
subsystem that created the event. Replaces ZEMS-
TKN-CRTPID.

XLDEVNAME STRING Token used for a logical device name.

XSENDERID STRUCT Token containing the system number (32 bits), CPU (16
bits), and PIN (16 bits) that created the event.
Supported only by EMSGET[TKN].

XSENDERID-PD STRING Token containing the process descriptor of the
subsystem that created the event. Supported only by
EMSGET[TKN].

Converting Distributed Systems Management (DSM) Applications

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–25

Handling Superseded C-Series Tokens

Your DSM application might try to extract one or more C-series tokens that are
superseded by D-series tokens. Table 8-4 shows the C-series tokens that are
superseded by D-series tokens. You might need to modify the parts of your
application (including any filters and templates) that refer to these superseded
C-series tokens.

Table 8-4. Event Management Service (EMS) Superseded Tokens

C-Series Token
(ZEMS-TKN-)

D-Series Token
(ZEMS-TKN-) D-Series Token Description

Header
Token

CRTPID PROC-DESC Process descriptor Yes

LDEV LDEVNUMBER Logical device number No

LDEVNAME XLDEVNAME Logical device name No

SENDERID XSENDERID CPU, PIN, and system number No

SENDERID XSENDERID-PD Process descriptor No

SYSTEM NODENAME Node (system) name Yes

SYSTEM NODENUM Node (system) number Yes

Converting Distributed Systems Management (DSM) Applications

Converting Other Parts of an Application

8–26 096047 Tandem Computers Incorporated

Handling Cross-Version Tokens

A D-series event-message header might contain a C-series header token (for example,
ZEMS-TKN-CRTPID), if the token can hold the required information. If the C-series
token cannot hold the required information, the subsystem omits the token from the
header. In this case, if your application tries to extract the token, it will receive the
missing token error (ZSPI-ERR-MISTKN). If necessary, modify your application to
handle the missing token error.

Whether your application is allowed to read tokens from or write tokens in an event
message depends on:

Whether your application runs on a C-series system or a D-series system

Whether the token is a D-series token or a C-series token

Whether the token is part of an event message header

Whether the token header is a D-series header or a C-series header

Table 8-5 summarizes the cross-version access restrictions for EMS tokens. The
column headers indicate whether you are trying to read or write a token and whether
your application is running on a C30 system or a D-series system.

Table 8-5. Cross-Version Access Restrictions for EMS Tokens

C30 System D System

Token to Access Read Write Read Write

Nonheader token in C-series message 1 Yes Yes Yes Yes

Nonheader token in D-series message 1 Yes Yes Yes Yes

C-Series token in D-series header Yes2 Yes Yes2 Yes

C-Series token in C-series header Yes Yes Yes Yes

D-Series token in D-series header No No Yes Yes

D-Series token in C-series header No No Yes No3

1 For information about a nonheader token, refer to the management programming manual for the
subsystem that generated the event message.

2 If the data does not fit in the token, the token is omitted. The application receives the ZSPI-ERR-
MISTKN (-8) error.

3 The application receives the ZSPI-ERR-NOTIMP (-11) error.

Converting Distributed Systems Management (DSM) Applications

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–27

Replacing a Process-ID Token

Your DSM application might extract a process-ID token from the event-message buffer
(for example, a token with token type ZSPI-TYP-CRTPID).

A Tandem subsystem usually substitutes a process-descriptor token for a process-ID
token that represents a high-PIN process. However, if it is necessary to supply also the
CPU or PIN for a named process, then the process-descriptor token is not enough. The
subsystem must supply either a token for the CPU and PIN, or a process handle token.
Convert your application to extract the new tokens.

If your application extracts a process-descriptor token, the data is suitable to display or
print. However, data in a process-handle token is not suitable to display or print. If
you extract a process-handle token, first use a procedure such as
PROCESSHANDLE_TO_FILENAME_ or PROCESSHANDLE_DECOMPOSE_ to
convert the token data to individual data items before you display or print them.

In the next TAL example, the PROCESSHANDLE_TO_FILENAME_ procedure
converts the process handle specified by process^handle to a process name in the
proc^name parameter. The process name always includes the system name. It also
includes the sequence number if the options.<15> bit is zero (or if the options
parameter is omitted).

error := PROCESSHANDLE_TO_FILENAME_(process^handle,
 proc^name:pn^max^len,
 proc^name^length,
 options);

In this TAL example, the PROCESSHANDLE_DECOMPOSE_ procedure returns the
parts of the process handle specified by process^handle:

error := PROCESSHANDLE_DECOMPOSE_(process^handle,
 cpu^number,
 pin,
 system^number,
 system^name:sn^max^len,
 system^name^length,
 process^name:pn^max^len,
 process^name^length,
 seq^number);

Converting Distributed Systems Management (DSM) Applications

Converting Other Parts of an Application

8–28 096047 Tandem Computers Incorporated

Using EMS Filters

If your DSM application uses filters to select specific event messages, EMS provides
the D-series FILENAMECOMPARE, DECOMPOSE, and DECOMPOSEERROR
functions to use in your filters.

FILENAMECOMPARE compares two variable-length file-name strings. It returns
TRUE if the file names are identical; otherwise, it returns FALSE. In this example,
FILENAMECOMPARE compares the process-descriptor token,
ZEMS-TKN-PROC-DESC, to a specific process-descriptor value:

-- Pass the event if the process descriptor matches.

IF FILENAMECOMPARE (ZEMS^TKN^PROC^DESC, "\west.$yab")
THEN PASS;

DECOMPOSE returns the parts of a 12-word internal-format file name, a file-name
string, or a process handle. DECOMPOSEERROR returns the most recent
DECOMPOSE file-system error if an error occurred, or it returns zero if an error did
not occur. In this example, DECOMPOSE returns the parts of a process descriptor,
and then DECOMPOSEERROR checks for an error:

-- Pass events generated by processes on system \WEST.

IF DECOMPOSE (ZEMS^TKN^PROC^DESC, SYSTEM NAME) = "\WEST"
 AND DECOMPOSEERROR = 0 THEN PASS;

-- Pass events generated by the process named $ZA10.

IF DECOMPOSE (ZEMS^TKN^PROC^DESC,
 DESTINATION NAME, NAME PART) = "$ZA10"
 AND DECOMPOSEERROR = 0 THEN PASS;

For more information about EMS filters, refer to the Event Management Service (EMS)
Manual.

Converting Distributed Systems Management (DSM) Applications

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–29

Generating Event
Messages

This subsection describes how to convert a DSM application (or a user-written
subsystem) that uses EMS to generate and report event messages.

Calling the EMSINIT Procedure

When your unconverted application calls the C-series EMSINIT procedure to build the
event-message header, EMSINIT places the process-ID token, ZEMS-TKN-CRTPID, in
the event-message header. The D-series EMSINIT procedure substitutes the process-
descriptor token, ZEMS-TKN-PROC-DESC, for ZEMS-TKN-CRTPID. The D-series
EMSINIT also places the node (system) name and number of the subsystem reporting
the event in the ZEMS-TKN-NODENAME and ZEMS-TKN-NODENUMBER tokens.

A D-series event message is larger than a C-series event message, because the D-series
header is approximately 24 bytes larger than the C-series header. A D-series event
message also has a variable-length structure, because the process-descriptor token
ZEMS-TKN-PROC-DESC in the header is a variable-length string. If necessary,
modify the event-message buffer in your application to hold the larger variable-length
event message.

Specifying File Names

Your DSM application might define a file-name token as a 12-word internal-format file
name. For example, it might define a file-name token using token type
ZSPI-TYP-FNAME.

Define a file-name token as a variable-length string using a token type such as
ZSPI-TYP-STRING. You can use this token for any kind of file name: disk file name,
device file name, or D-series process file name.

Specifying Node (System) Names and Numbers

Your DSM application might include a node (system) name or number token in your
event message other than in the header tokens described above.

If possible, use a node-name token rather than a node-number token in your event
messages. If you define a node-name token, use a variable-length string token with a
token type such as ZSPI-TYP-STRING.

In most cases, an 8-bit token for a node number is sufficient. However, if you define a
new node-number token, use a 32-bit token with a token type such as ZSPI-TYP-INT2.
Put zeros in the first three bytes and the node number in the last byte of this new
token.

Specifying CPU and PIN Values

Your DSM application might include an 8-bit CPU or PIN token or a 16-bit token for
both the CPU and PIN values in an event message. For example, you might define a
CPU or PIN value using token type ZSPI-TYP-BYTE, or a combined CPU and PIN
value using token type ZSPI-TYP-INT, ZSPI-TYP-UINT, or ZSPI-TYP-BYTE-PAIR.

Define separate unsigned integer tokens for the CPU and PIN values using a token
type such as ZSPI-TYP-UINT.

Converting Distributed Systems Management (DSM) Applications

Converting Other Parts of an Application

8–30 096047 Tandem Computers Incorporated

Specifying a File-System Error

Your DSM application might include an 8-bit token for a file-system error in an event
message. For example, you might define an error token using token type
ZSPI-TYP-BYTE.

Define file-system error-number tokens as integers using a token type such as
ZSPI-TYP-UINT.

Specifying Sequence Numbers

A sequence number is part of a process handle and of a process descriptor (unless it
has been removed) and usually does not need to be stored in a separate token.
However, if you define a separate token for a sequence number, use a fixed-point
number token with a token type such as ZSPI-TYP-INT4.

Specifying Process Handles and Process Descriptors

Your DSM application might include a process-ID token to identify a process in your
event message. For example, you might define a process-ID token using token type
ZSPI-TYP-CRTPID, ZSPI-TYP-FNAME, or ZSPI-TYP-FNAME32.

Convert your application to define a process-descriptor token or a process-handle
token (or both) to identify a process. Tandem recommends that you do not return a
synthetic process ID in an event message.

Define a process-descriptor token as a variable-length string using a token type such as
ZSPI-TYP-STRING. If you define a process-handle token, use a token type such as
ZSPI-TYP-PHANDLE.

Note Tandem recommends that you use a process-descriptor token because:

It is in external format, which makes it suitable to display or print.

It contains the node (system) and process name, if it exists. After a process pair terminates, you
cannot determine the process name from a process handle.

Converting Distributed Systems Management (DSM) Applications

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–31

Specifying Device Numbers and Names

Your DSM application might put a logical device number in an integer token such as
ZEMS-TKN-LDEV or in a token with token type ZSPI-TYP-INT or ZSPI-TYP-UINT.

A D-series logical device number requires 32 bits. Place a logical device number in the
ZEMS-TKN-LDEVNUMBER token or define another 32-bit token using a token type
such as ZSPI-TYP-INT2.

Place a device name in the ZEMS-TKN-XLDEVNAME token or define a variable-
length string token using a token type such as ZSPI-TYP-STRING.

Note Logical device numbers are often unreliable (for example, with Dynamic System Configuration).
Therefore, whenever possible, use a logical device name rather than a logical device number.

Converting Structured Tokens That Contain Obsolete Fields

Your DSM application might define a structured token that contains an obsolete field
(that is, a field that cannot hold the required information). For example, you might
define a structured token that contains an 8-bit field for a PIN value. If you convert
your application, consider the following choices for an obsolete field.

New Structured Token. Define a new structured token with a new field to replace the
obsolete field. If you include the old token in the event message, put data in the
obsolete field only if it is meaningful; otherwise, put a null value in the field.

If you cannot put either meaningful data or a null value in the obsolete field, omit the
old token from the buffer. If a DSM application tries to extract this missing token, it
will receive the missing-token error (ZSPI-ERR-MISTKN).

An extensible structured token cannot contain a variable-length field. Therefore,
define a separate variable-length token to hold an item such as a process descriptor.

Separate New Simple Tokens. Define a new simple token to replace the obsolete field.
For example, you can replace a process-ID field (token type ZSPI-TYP-CRTPID) with a
new simple process-descriptor token. Then, define either a new structured token or
new simple tokens for the remaining fields.

Converting Distributed Systems Management (DSM) Applications

Converting Other Parts of an Application

8–32 096047 Tandem Computers Incorporated

Converting DSM
Applications That Use SPI

This subsection describes how to convert a DSM application that uses the Subsystem
Programmatic Interface (SPI) to communicate with a Tandem subsystem.

You need to refer to the management programming manual for the specific subsystem.
For example, if your application communicates with FUP, refer to the File Utility
Program (FUP) Management Programming Manual for a description of the tokens and
error lists for the FUP programmatic commands and responses.

Extracting Simple Tokens From the Response Buffer

Your DSM application might try to extract a superseded C-series simple token from
the SPI response buffer.

If the information does not fit into a simple token (for example, a high PIN in an 8-bit
token), a Tandem subsystem does not return the token in the response buffer. Instead,
the subsystem returns a new simple token to hold the value but does not return an
error in ZSPI-TKN-RETCODE.

For example, a subsystem might return a process-descriptor token or process-handle
token (or both) to represent a high-PIN process. (A subsystem never returns a
synthetic process ID to represent a high-PIN process.)

If your application calls the SSGET procedure to extract a token that has been omitted
from the response buffer, it will receive SPI error number -8 (token not found). If
necessary, convert your application to handle this error.

Extracting Structured Tokens From the Response Buffer

Your DSM application might try to extract a C-series structured token that contains an
obsolete field. If the information does not fit into a field of a structured token, the
subsystem returns the token as follows:

If the field has a defined null value, the subsystem sets the field to its null value
and returns the structured token in the response buffer.

If the field does not have a defined null value, the subsystem omits the token from
the response buffer.

In either case, the subsystem returns the information in a new field of the structured
token or a new simple token; it does not return an error in ZSPI-TKN-RETCODE.
Refer to the specific management programming manual to determine the token your
application should extract.

Converting Distributed Systems Management (DSM) Applications

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–33

Processing File-System Error Lists

Your DSM application might process file-system error lists from a subsystem. A
subsystem returns a file-system error list when a file-system error occurs during a
procedure call from the subsystem. The subsystem nests the file-system error list
within a subsystem error list.

For example, if you send a LOAD programmatic command to FUP, FUP in turn calls
the file-system WRITE procedure. If a file-system error occurs for the WRITE
procedure call, FUP returns a nested error list in the response buffer. The first error
list describes the LOAD command error and the second error list describes the WRITE
file-system error.

The D-series file-system error-list tokens are:

ZFIL-TKN-ERRORDETAIL (token-type ZSPI-TYP-STRING)

is a conditional token that a subsystem returns if an error condition contains more
information than the Z-ERROR integer field can hold.

ZFIL-TKN-XFILENAME (token-type ZSPI-TYP-STRING)

is a conditional token that a subsystem returns if the procedure specified a file-
name string parameter. It contains either a file name (including the node name) or
a null value if the system could not return a valid file name (for example, an
operation on an unopened file).

An error list can also contain a second ZFIL-TKN-XFILENAME token if a
procedure specifies a second file-name string parameter (for example, parameters
for the FILENAME_COMPARE_ procedure).

ZFIL-TKN-STATUS (token-type ZSPI-TYP-INT)

is a conditional token that a subsystem returns if it calls the FILE_OPEN_ or
FILE_OPEN_CHKPT_ procedure.

For FILE_OPEN_ , it is the value of the file-number parameter.

For FILE_OPEN_CHKPT_ , it is the value of the FILE_OPEN_CHKPT_ status
parameter, which can have these values:

0 The system opened the backup process successfully.
1 The system opened the backup process successfully,

but a warning occurred.
2 An error occurred when the system tried to open the backup process.
3 The system could not communicate with the backup process.
4 The system tried to open the backup process, but an error occurred for

the primary process.

The D-series file-system error lists are shown in Table 8-6. For additional information
about error lists and extracting tokens from them, refer to the Subsystem Programmatic
Interface (SPI) Programming Manual.

Converting Distributed Systems Management (DSM) Applications

Converting Other Parts of an Application

8–34 096047 Tandem Computers Incorporated

Table 8-6. D-Series File-System Error Lists

Error
Number

ZSPI-TKN-PROC-ERR Value
(ZFIL-VAL-)

Name of the Procedure That Returned a
Nonzero Value

65 FILE-OPEN-CHKPT FILE_OPEN_CHKPT_

66 FILE-CREATELIST FILE_CREATELIST_

67 FILE-OPEN FILE_OPEN_

68 FILE-PURGE FILE_PURGE_

69 FILE-CLOSE FILE_CLOSE_

70 FILE-GETINFOBYNAME FILE_GETINFOBYNAME_

71 FILE-GETRECEIVEINFO FILE_GETRECEIVEINFO_

72 FILENAME-COMPARE FILENAME_COMPARE_

73 FILE-GETOPENINFO FILE_GETOPENINFO_

74 DISK-REFRESH DISK_REFRESH_

75 FILE-RENAME FILE_RENAME_

76 FILENAME-FINDSTART FILENAME_FINDSTART_

77 FILENAME-FINDNEXT FILENAME_FINDNEXT_

78 FILENAME-FINDFINISH FILENAME_FINDFINISH_

80 FILE-CREATE FILE_CREATE_

Improving I/O Performance Using Direct I/O Transfers

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–35

Improving I/O
Performance Using
Direct I/O Transfers

The D-series operating system can improve the performance of I/O operations by
transferring data directly between a program's I/O buffers and the I/O device without
first allocating an intermediate buffer in the program's process file segment (PFS). A
C-series operating system I/O operation uses an intermediate buffer in a program's
PFS to transfer data, except when using the SETMODE 141 function (enable or disable
large transfers for disk files).

By default, the D-series operating system uses direct transfers for I/O operations.
However, the SETMODE 72 function allows a program to control whether direct I/O
transfers or intermediate PFS buffers are used for I/O operations.

Using Direct I/O Transfers Your existing program might use PFS buffers in I/O operations for a file. To convert
your program to use direct I/O transfers for a file, open the file using the FILE_OPEN_
procedure. The FILE_OPEN_ default mode for I/O operations is direct transfers.

You can also open the file using the OPEN procedure and then execute a SETMODE 72
function as described in the following subsection.

Using the
SETMODE 72 Function

Regardless of the open procedure you use, you can set the I/O transfer mode using the
SETMODE 72 function. The SETMODE 72 parameters are:

parameter-1 1 = Force the system to use an intermediate buffer in
the PFS for I/O transfers for this file.

0 = Allow the system to make direct I/O transfers to
and from user buffers for this file.

parameter-2 Is not used and should be zero if it is supplied.

If you open a file using the OPEN procedure but need the performance improvement
of direct I/O transfers, execute a SETMODE 72 as follows:

LITERAL force^pfs^buffers = 72,
 direct^transfers = 0;
...

CALL SETMODE (file^number,
 force^pfs^buffers,
 direct^transfers);

Conversely, if you open a file using the FILE_OPEN_ procedure but need to use PFS
buffers for the I/O transfer, execute a SETMODE 72 as follows:

LITERAL force^pfs^buffers = 72,
 use^pfs^buffers = 1;
...

CALL SETMODE (file^number,
 force^pfs^buffers,
 use^pfs^buffers);

Improving I/O Performance Using Direct I/O Transfers

Converting Other Parts of an Application

8–36 096047 Tandem Computers Incorporated

When You Must Use
PFS Buffers

Your existing program might execute one or more of the following types of nowait
I/O operations. In each case, you must avoid using direct I/O transfers.

Multiple nowait READ[X] operations

If you execute a second nowait READ[X] before you call AWAITIO[X] to complete
the previous nowait READ[X] and you are using the same I/O buffer, use PFS
buffers; otherwise, your data might be overwritten.

Multiple nowait WRITE[X] operations

If you initiate more than one nowait WRITE[X] using the same I/O buffer and you
change the contents of the buffer between initiation and completion of a WRITE[X]
operation, you might write incorrect data. Whether you are using PFS buffers or
direct transfers, avoid changing the contents of your WRITE[X] buffer between
initiation and completion of the WRITE[X] operation.

Multiple nowait WRITEREAD[X] operations

If multiple WRITEREAD[X] operations share the same I/O buffer, use PFS buffers
and restore the buffer to the same value immediately after each WRITEREAD[X]
finishes.

For the above cases, if you open a file using the OPEN procedure, no conversion is
necessary. When you execute the OPEN procedure, the system uses PFS buffers by
default for nowait I/O operations.

However, if you open a file using the FILE_OPEN_ procedure, issue a SETMODE 72
function with parameter-1 set to 1 to force the use of PFS buffers. Refer to “Using
the SETMODE 72 Function” in the previous subsection for more information.

Converting Memory-Management Procedure Calls

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–37

Converting
Memory-Management

Procedure Calls

The D-series operating system provides new memory-management procedures to
allocate, make accessible, deallocate, and get information about extended data
segments. It also provides a new procedure for checking the address limits of either
your process’s data segment or an extended data segment. These new procedures are
described in the following subsections.

Note Converting an application to use the D-series memory-management procedures is necessary only if the
application shares an extended data segment with a high-PIN process using the PIN method. Converting
to use the SEGMENT_USE_ and ADDRESS_DELIMIT_ procedures is optional at this time but will be
required under future versions of the operating system.

Allocating an Extended
Data Segment

Your existing program might call the ALLOCATESEGMENT procedure to allocate an
extended data segment:

error := ALLOCATESEGMENT (segment^id,
 segment^size,
 swap^file^name);

Convert your program to call the SEGMENT_ALLOCATE_ procedure. If you specify
a swap file, use a variable-length string file name rather than the 12-word internal file
name. Specify the length in bytes of the swap file name as a separate integer
parameter.

In the following example, SEGMENT_ALLOCATE_ allows the calling process to share
the extended data segment identified by segment^id using the PIN method. The
system returns the base address of the segment in base^address:

error := SEGMENT_ALLOCATE_(segment^id,
 segment^size,
 ! swap^file^name:length ! ,
 error^detail,
 ! pin ! ,
 ! segment^type ! ,
 @base^address);

To allocate an extended data segment for a backup process, call the
SEGMENT_ALLOCATE_CHKPT_ procedure from the primary process. This
procedure supersedes the CHECKALLOCATESEGMENT procedure.

Making an Extended Data
Segment Accessible

Your existing program that calls the ALLOCATESEGMENT procedure probably calls
the USESEGMENT procedure to make the segment current and therefore accessible to
your application:

old^segment^id := USESEGMENT (segment^id);

You can optionally convert your program to call the SEGMENT_USE_ procedure. In
this example, the ID of the extended segment that was accessible before this call to
SEGMENT_USE_ is returned in the output parameter old^segment^id. If no
extended segment was accessible before this call, -1 is returned.

Converting Memory-Management Procedure Calls

Converting Other Parts of an Application

8–38 096047 Tandem Computers Incorporated

error := SEGMENT_USE_ (segment^id,
 old^segment^id,
 ! base^address ! ,
 error^detail);

Deallocating an Extended
Data Segment

Your existing program might call the DEALLOCATESEGMENT procedure to
deallocate an extended data segment:

CALL DEALLOCATESEGMENT (segment^id);

Convert your program to call the SEGMENT_DEALLOCATE_ procedure. The flags
integer parameter specifies whether dirty pages are written to the swap file. (A dirty
page is a page in memory that has been updated but not written to the swap file.) The
flags.<0:14> bits must be zero; flags.<15> can be:

0 Dirty pages are written to the swap file (the default action).
1 Dirty pages are not written to the swap file.

In this example, SEGMENT_DEALLOCATE_ deallocates the extended data segment
identified by segment^id. The procedure uses the default flags value:

error := SEGMENT_DEALLOCATE_(segment^id,
 ! flags ! ,
 error^detail);

To deallocate an extended data segment for a backup process, call the
SEGMENT_DEALLOCATE_CHKPT_ procedure from the primary process. This
procedure supersedes the CHECKDEALLOCATESEGMENT procedure.

Getting Information About
an Extended Data Segment

Your existing program might call the SEGMENTSIZE procedure to get information
about a currently allocated extended data segment:

segment^size := SEGMENTSIZE (segment^id);

Convert your program to call the SEGMENT_GETINFO_ procedure, which returns
this information:

The size of the segment in bytes

The swap file name associated with the segment

The length in bytes of the swap file name

The base address of the segment

In this example, SEGMENT_GETINFO_ returns information about the extended data
segment identified by segment^id:

error := SEGMENT_GETINFO_(segment^id,
 segment^size,
 swap^file^name:max^length,
 swap^file^length,
 error^detail,
 base^address);

Converting Memory-Management Procedure Calls

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–39

To return the same information about an extended data segment that is currently
allocated by the backup process of a process pair, call the
SEGMENT_GETBACKUPINFO_ procedure from the primary process.

Extended Segment Size On both TNS and TNS/R systems, the maximum size of an extended segment is 127.5
megabytes as of the C30.06 release. The SEGMENT_ALLOCATE_ and
RESIZESEGMENT Guardian procedures no longer allocate extended segments larger
than 127.5 megabytes.

Change your program if it uses more than the new maximum size. If a program
allocates extended segments that are too large, SEGMENT_ALLOCATE_ returns
error 5.

Checking Address Limits Your existing program might call the LASTADDR procedure to obtain the relative
address of the last word in your application process’s user data segment:

last^address := LASTADDR;

Or your existing program might call the LASTADDRX procedure to obtain the last
relative address available in the specified relative data segment (which must be
accessible at the time of the call):

last^ext^address := LASTADDRX (rel^segment^num);

You can optionally convert your program to call the ADDRESS_DELIMIT_ procedure.
This procedure obtains the addresses of the first and last bytes of a particular area of
your logical address space. You can use it to obtain the boundaries of either your
process’s user data segment or of a currently accessible extended data segment.

You supply an address contained within the address area of interest, passing it to
ADDRESS_DELIMIT_ in the value parameter address. Optionally, you can use the
segment-id output parameter to obtain the segment ID of the area if it is an
extended data segment. You can also use the address-descriptor output
parameter to obtain a set of flags that describe the area.

In the following example, the address of a local variable contained in the user data
segment is passed to ADDRESS_DELIMIT_. The procedure returns the addresses of
the first and last bytes of the user data segment.

This example shows that the output addresses can be assigned either to a simple
variable (LOW^ADDR) or to a pointer variable (HIGH^ADDR). After a successful call to
ADDRESS_DELIMIT_, HIGH^ADDR designates the last byte of the user data segment.

Converting Memory-Management Procedure Calls

Converting Other Parts of an Application

8–40 096047 Tandem Computers Incorporated

INT LOCAL^VARIABLE;
INT(32) LOW^ADDR;
STRING .EXT HIGH^ADDR;
INT ERROR,
 ERROR^DETAIL;
 .
 .
 .
ERROR := ADDRESS_DELIMIT_ ($XADR(LOCAL^VARIABLE),
 LOW^ADDR,
 @HIGH^ADDR,
 ! address^descriptor ! ,
 ! segment^ID ! ,
 ERROR^DETAIL);

IF ERROR <> 0 THEN CALL ERROR^HANDLER;

Handling the Message System Interface

Converting Other Parts of an Application

096047 Tandem Computers Incorporated 8–41

Handling the Message
System Interface

Prior to the D-series versions of the operating system, the RESERVELCBS procedure
allowed you to reserve link control blocks (LCBs) for sending and receiving messages.
It also performed certain secondary functions concerning the limits on the number of
extended memory link control blocks (XLBs).

Under the D-series versions of the operating system, RESERVELCBS performs no
function but can still be used without error. Reserving link control blocks is no longer
applicable, and the secondary functions of the procedure can be accomplished by
calling CONTROLMESSAGESYSTEM.

If your existing program calls RESERVELCBS specifically to reserve LCBs, then you
can safely remove the call. Such calls typically specify a number of LCBs significantly
greater than 1. For example, the following call reserves 20 receive LCBs and 20 send
LCBs:

CALL RESERVELCBS(20, !receive LCBs
 20); !send LCBs

If your existing program calls RESERVELCBS to raise the limit on the number of XLBs,
then you should convert your program to use the CONTROLMESSAGESYSTEM
procedure. For such programs, the default limit of 255 XLBs for receive XLBs or 1023
for send XLBs was considered inadequate. Programs typically remove the limit by
specifying a 1 for the number of send or receive LCBs. For example, your existing
program might remove the limit on receive XLBs as follows:

CALL RESERVELCBS(1, !receive LCBs
 0); !send LCBs

Replace this call to RESERVELCBS with a call to the CONTROLMESSAGESYSTEM
procedure. Choose a value for the limit on XLBs that is suitable for your application.
A typical value might be 2000:

LITERAL receive^xlbs^limit = 0;
...
value := 2000;
CALL CONTROLMESSAGESYSTEM(receive^xlbs^limit,
 value);

9 Converting to TNS/R Systems

096047 Tandem Computers Incorporated 9–1

Most TNS programs written for the C30 and D-series versions of the operating system
can run on a TNS/R system without modification. Variances between TNS and
TNS/R systems, however, might require modification in some programs, particularly
in privileged TAL programs. One variance (see “Odd-Byte References,” later in this
subsection) applies to C programs as well.

Before you run a TNS object file on a TNS/R system, you can accelerate it (optimize it
to take advantage of the TNS/R architecture). Most accelerated object files run faster
than nonaccelerated object files. The Accelerator Manual tells how to accelerate object
files.

This section discusses general considerations about and variances between the TNS
and TNS/R systems.

General
Considerations

The following considerations apply to all object files (whether accelerated or not) that
you are running on a TNS/R system:

Extended segment limit checking

Overflow results

Extended Segment
Limit Checking

On both TNS and TNS/R systems, the maximum size of an extended segment is 127.5
megabytes as of the C30.06 release. Extended segments on TNS and TNS/R systems
differ as follows:

System
Number of
Memory Pages

Size of Memory
Page

Address Boundary Checking
by the Processor

TNS 64 2048-byte To a byte boundary

TNS/R 32 4096-byte To a memory page boundary

Eliminate any references to data beyond the extended segment’s logical limit.
Addressing past the end of extended segments fails differently on TNS/R systems
than on TNS systems. You can notice the difference when debugging addressing
errors:

On TNS systems, programs that reference data beyond their extended segment’s
logical limit fail immediately.

On TNS/R systems, programs that reference data beyond their extended
segment’s logical limit might or might not fail. For example, programs that
reference data between the logical end of an extended segment and the next 4-KB
memory-page boundary continue executing without an exception. That is, a
program can reference data located between the end of the segment and the end of
the memory page (unshaded area) without an exception. Addresses are shown
here in hexadecimal.

General Considerations

Converting to TNS/R Systems

9–2 096047 Tandem Computers Incorporated

1

2

3

4

Page

00080000 – 00080FFF

00081000 – 00081FFF

00082000 – 00082FFF

00083000 – 000837FF

00083800 – 00083FFF

Addresses (%h)

 901

Overflow Results Multiplication and division overflow results are undefined on all Tandem systems.
Furthermore, overflow results of integer multiplication and division instructions
(except LMPY) are incompatible between the TNS and TNS/R systems. The
incompatible instructions are:

IDIV DDIV QDIV LDIV
IMPY DMPY QMPY

Overflow results of addition and subtraction instructions (and LMPY) are compatible
on both systems. The compatible instructions are:

IADD DADD QADD LMPY
ISUB DSUB QSUB
INEG DNEG QNEG

You must test for overflow if your program expects multiplication or division
overflow. Use $OVERFLOW in an IF statement immediately after the operation that
might overflow:

FIXED(0) count, time, result;

CODE (RDE; ANRI %577; SETE); !Disable overflow traps
result := count * time;
IF $OVERFLOW THEN !Test for overflow
 result := 0D; !Fix the overflow result

General-Case Variances

Converting to TNS/R Systems

096047 Tandem Computers Incorporated 9–3

General-Case
Variances

The following variances apply to all object files (whether accelerated or not) that you
are running on a TNS/R system:

Trap handlers that use the register stack
Trap handlers that use the program counter
Privileged instructions
Nonprivileged references to system global data
Stack wrapping
Odd-byte references
Data swap file size
Passing the address of P-relative objects
Shift instructions with dynamic shift counts

Trap Handlers That
Use the Register Stack

During program execution, the trap mechanism handles all error and exception
conditions not related to input or output. User-written trap handlers differ on TNS
and TNS/R systems as follows:

On TNS systems, trap handlers can be functions and they can change the register
stack (registers R0 through R7).

On TNS/R systems, the reported register stack contents are imprecise. Trap
handlers must not be functions and they can reliably change only certain registers.
The trap handlers, however, can:

Print error messages and abend

Clear overflow and resume

Resume after a loop timer

Jump to a restart point by changing the trap variables P, L, ENV, space ID, and
S

Within a trap handler, you can put values into global variables. You can also save
the register stack contents (although imprecise) as follows:

CODE (PUSH %777); !Save register stack contents

Change your programs to comply with the preceding restrictions. Find trap handlers
by looking for calls to the system procedure ARMTRAP with parameters (address of
label, address of data area). ARMTRAP specifies an entry point into the program
where execution is to begin if a trap occurs. You need not change ARMTRAP (-1,-1)
calls that cause programs to abend on traps.

Trap Handlers That
Use the Program Counter

The reported program counter register, P, is imprecise for all code. Do not rely on the
value of P to determine program flow or to calculate the target of a jump.

You can change the P trap variable to a valid restart point (such as a cleanup point in
the outer block). When doing so, you can make changes that are consistent with this to
ENV and the space ID. However, do not perform arithmetic on P.

General-Case Variances

Converting to TNS/R Systems

9–4 096047 Tandem Computers Incorporated

For example, the results of the following operations are undefined:

INT trap_p = 'L' - 2; !Location of the P register
trap_p := trap_p '+' 1; !Undefined
trap_p := trap_p '-' 1; !Undefined

Change your programs to comply with the preceding restrictions. Find trap handlers
by looking for calls to the system procedure ARMTRAP with parameters (address of
label, address of data area). ARMTRAP specifies an entry point into the application
program where execution is to begin if a trap occurs. You do not need to change
ARMTRAP (-1,-1) calls that cause programs to abend on traps.

For more guidelines on writing trap handlers, see “Trap Handlers That Use the
Register Stack” earlier in this section.

Privileged Instructions TOTQ and RCPU are currently nonprivileged instructions on TNS processors; they
are privileged instructions on TNS/R processors.

TOTQ Test the out queue
RCPU Read the CPU number

Remove these instructions from nonprivileged programs. On TNS/R systems,
nonprivileged programs that use these instructions fail with an Instruction Failure
exception.

Nonprivileged References
to System Global Data

Only privileged programs can access system global data. When a nonprivileged
program references system global data, results differ depending on the system:

On TNS processors, the program accesses the user global data segment instead.

On TNS/R processors, the program fails with an Instruction Failure exception.

Use a text editor to search for ‘SG’ in nonprivileged programs and remove references
to system global data from nonprivileged programs.

The following nonprivileged procedure references the system data at SG[0].

INT cpuno = 'SG' + 0; !SG equivalencing
INT .EXT xcpuno; !Extended pointer

PROCEDURE foo; !Nonprivileged procedure
 BEGIN
 IF cpuno = 1 THEN !TNS/R system traps
 BEGIN !TNS system accesses G[0]
 !Lots of code
 END;
 @xcpuno := $XADR(cpuno);
 IF xcpuno = 1 THEN !TNS/R system traps
 . . . !TNS system accesses G[0]
 END;

General-Case Variances

Converting to TNS/R Systems

096047 Tandem Computers Incorporated 9–5

Stack Wrapping If a nonprivileged program tries to allocate variables past the end of the user data
segment, results might differ depending on the system:

On TNS processors, the allocation wraps back to the user data segment.

On TNS/R processors, the allocation is unpredictable; it might wrap or trap.

Remove any constructs that result in stack wrapping. Change addressing operations
so that they stay within the user data segment.

The following examples show addressing operations that might not wrap back on the
stack on TNS/R processors as they do on TNS processors.

STRUCT s(*);
 BEGIN
 INT i;
 INT(32) d;
 INT j;
 END;

PROC exam;
 BEGIN
 INT .p (s);
 STRUCT s2(s);
 @p := -1; !-1 = 65535 (unsigned); structure starts
 ! at the end of the user data segment
 s2 ':=' p FOR $LEN(s2) BYTES; !On TNS/R systems,
 p.d := %h12345678%d; ! these operations
 p.j := 6; ! might wrap or trap
 END;

On TNS processors, structure P starts at the end of the user data segment and wraps
back to G[0], as shown by the dotted line in the following figure. On TNS/R
processors, structure P might wrap or trap.

G [0]

G [65535]

SG [0]

User Data Segment
(Relative Segment 0)

System Data Segment
(Relative Segment 1)

P

 902

General-Case Variances

Converting to TNS/R Systems

9–6 096047 Tandem Computers Incorporated

Odd-Byte References TNS/R systems do not support the same odd-byte references to doublewords (4-byte
units) or quadruplewords (8-byte units) as TNS systems do. Odd-byte references are
made when the least significant bit (bit 31) of an extended pointer is set.

TNS systems ignore bit 31 of an extended pointer and fetch or store data starting
from the byte prior to the addressed one to ensure that the address is on a word
boundary. This behavior is probably not what you intended.

On TNS/R systems, odd-byte references to doublewords or quadruplewords are
unpredictable; programs might trap or they might continue executing. Extended
pointers to variables accessed as doublewords or quadruplewords must not have their
least significant bit set. If your program was written following good TAL
programming practices, odd-byte references are not a concern.

In TAL, data types stored as doublewords or quadruplewords include INT(32),
FIXED(n), INT(64), REAL, and REAL(64). In C, data types stored as doublewords or
quadruplewords include long, unsigned long, long long, float, and double.

To correct your program, remove odd-byte references to doublewords or
quadruplewords. Also, make sure that all pointers contain addresses. Many odd-byte
references to doublewords and quadruplewords are caused by uninitialized pointers.
(%37777000000D, the null address, is an appropriate value to use for initializing a
pointer until it is given another address.)

The results of the following example are unpredictable on a TNS/R system:

REAL(64) .EXT rptr;
STRING .EXT sptr = rptr; !Same pointer as RPTR
@sptr := @sptr + 1d;
IF sptr = "Z" THEN ... !OK
IF rptr = 0.0L0 THEN ... !Results are unpredictable

In the following example, an odd-byte alignment error occurs on a TNS/R system
because the program refers to a nil pointer. The extended pointer P contains a byte
address. When P is set to -1, the structure starts on an odd-byte boundary. The
program might trap or it might continue executing.

STRUCT s(*);
 BEGIN
 INT i;
 INT(32) d;
 INT j;
 END;

PROC test;
 BEGIN
 INT .EXT p(s);
 @p:= -1d; !Nil 32-bit pointer to structure
 p.d := %habcd1234%d; !Results are unpredictable
 END;

General-Case Variances

Converting to TNS/R Systems

096047 Tandem Computers Incorporated 9–7

Data Swap File Size On all TNS/R systems, the amount of memory allotted to a process for user data is
rounded up to the nearest multiple of 4 KB. Additionally, on D20 TNS/R systems, the
data swap file for the process requires 16 disk pages (32 KB) beyond this amount.

For example, if you call the PROCESS_CREATE_ procedure on a TNS system and
specify a value of 3 for the memory-pages parameter, 6 KB of memory would be
allotted to the new process for user data and 6 KB of disk space would be required for
the data swap file. But on a D20 TNS/R system, the amount of memory allotted to the
new process would be rounded up to 8 KB while an additional 32 KB of disk space
would be required for the swap file, making the size of the swap file 40 KB.

When creating a process on a TNS/R system, if you specify the name of an existing
disk file as the data swap file, you must ensure that the file has sufficient disk space
allocated to satisfy these requirements.

Passing the Addresses of
P-Relative Objects

Do not pass the address of a P-relative object to other routines in programs larger than
one TNS code segment. Programs access the wrong object or an address fault occurs if
you pass a:

16-bit address on TNS systems
16-bit address on TNS/R systems
32-bit extended address on TNS systems

However, if you pass a 32-bit extended address on TNS/R systems, programs access
the specified object and continue execution. This is a program error that TNS/R
systems do not detect.

Do not write programs that rely on this feature. There is one supported exception to
this restriction: you can pass user code addresses into user library, system code, or
system library routines.

Look for statements that pass a 32-bit extended address of a P-relative object to other
routines. Recode statements that pass a 32-bit extended address of a P-relative object
to other routines.

Shift Instructions With
Dynamic Shift Counts

The implementation of TNS instructions for signed arithmetic and unsigned logical
shifts with dynamic shift counts differs between TNS and TNS/R systems. This
difference applies to both single-word (16-bit) and double-word (32-bit) shift
instructions.

For single-word shift operations with dynamic shift counts:

TNS systems accept counts within the range of 0 to 255. Shift counts of 16 to 255
are treated as 16.

TNS/R systems counts within the range of 0 to 31. Shift counts of 16 to 31 are
treated as 16. Shift counts greater than 31 give undefined results.

General-Case Variances

Converting to TNS/R Systems

9–8 096047 Tandem Computers Incorporated

For double-word shift operations with dynamic shift counts:

TNS systems accept counts within the range of 0 to 255. Shift counts of 32 to 255
are treated as 32.

TNS/R systems accept counts within the range of 0 to 32,767. Shift counts greater
than 32 are treated as 32.

Dynamic shift counts that fall outside of the acceptable ranges give undefined results.

The ALS, LLS, ARS, and LRS instructions implement single-word shifts and the DALS,
DLLS, DARS, and DLRS instructions implement double-word shifts.

The TAL compiler generates these instructions for the bit-shift operators ('<<', '>>', <<,
and >>) if the operand to the right of the operators is not a constant. These
instructions can also be found in TAL CODE statements. Refer to the appropriate
system description manual for more information about the TNS instruction set. Refer
to the TAL Reference Manual for details on TAL bit-shift operators.

To correct your program, you must recode statements that use dynamic shift counts
greater than 31. Use a text editor to search for “ALS 0”, “LLS 0”, “ARS 0”, and “LRS 0”
in TAL CODE statements. Make sure that the operands for these instructions do not
use shift counts greater than 31. Also search for the TAL bit-shift operators: unsigned
left and right shift ('<<' and '>>') and signed left and right shift (<< and >>). Make
sure that in cases where the left operand is a 16-bit unit and the shift count is dynamic,
the count is never greater than 31.

In the following example, the value of p is arithmetically shifted to the right 35
positions. The value of differs on TNS and TNS/R systems.

INT p, nbits, q; ! INT variables
p := -128;
nbits := 35; ! Shift value of 35-bits
q := p >> nbits; ! On TNS systems,
 ! same as p >> 16, q = -1
 ! On TNS/R systems,
 ! same as p >> (35-32), q = -16

Appendix A Guardian Procedures

096047 Tandem Computers Incorporated A–1

This appendix lists the D-series Guardian procedures that supersede C-series
Guardian procedures. If you are converting an application, find each C-series
procedure used in your application in the left-hand column of Table A-1. The
corresponding item in the right-hand column shows the D-series procedure used for
conversion. A hyphen (-) in the right-hand column means that there is no new D-
series procedure and that you should continue to use the C-series procedure.

For a description of each procedure, refer to the Guardian Procedure Calls Reference
Manual.

Table A-1. Guardian Procedures (Page 1 of 8)

C-Series Procedure D-Series Procedure Used for Conversion

ABEND PROCESS_STOP_

ACTIVATEPROCESS PROCESS_ACTIVATE_

ADDDSTTRANSITION –

ADDRTOPROCNAME –

ALLOCATESEGMENT SEGMENT_ALLOCATE_

ALTER FILE_ALTERLIST_

ALTERPRIORITY PROCESS_SETINFO_

ARMTRAP –

AWAITIO[X] –

CANCEL –

CANCELPROCESSTIMEOUT –

CANCELREQ –

CANCELTIMEOUT –

CHANGELIST –

CHECK^BREAK –

CHECK^FILE –

CHECKALLOCATESEGMENT SEGMENT_ALLOCATE_CHKPT_

CHECKCLOSE FILE_CLOSE_CHKPT_

CHECKDEALLOCATESEGMENT SEGMENT_DEALLOCATE_CHKPT_

CHECKDEFINE –

CHECKMONITOR –

CHECKOPEN FILE_OPEN_CHKPT_

Guardian Procedures

A–2 096047 Tandem Computers Incorporated

Table A-1. Guardian Procedures (Page 2 of 8)

C-Series Procedure D-Series Procedure Used for Conversion

CHECKPOINT –

CHECKPOINTMANY –

CHECKPOINTMANYX –

CHECKPOINTX –

CHECKRESIZESEGMENT –

CHECKSETMODE –

CHECKSWITCH –

CLOSE FILE_CLOSE_

CLOSE^FILE –

COMPUTEJULIANDAYNO –

COMPUTETIMESTAMP –

CONTIME –

CONTROL –

CONTROLBUF –

CONTROLMESSAGESYSTEM –

CONVERTPROCESSNAME FILENAME_RESOLVE_

CONVERTPROCESSTIME –

CONVERTTIMESTAMP –

CPUTIMES –

CREATE FILE_CREATE[LIST]_

CREATEPROCESSNAME PROCESSNAME_CREATE_

CREATEREMOTENAME PROCESSNAME_CREATE_

CREATORACCESSID PROCESS_GETINFO[LIST]_

CURRENTSPACE –

DAYOFWEEK –

DEALLOCATESEGMENT SEGMENT_DEALLOCATE_

DEBUG –

DEBUGPROCESS PROCESS_DEBUG_

DEFINEADD –

DEFINEDELETE –

DEFINEDELETEALL –

DEFINEINFO –

Guardian Procedures

096047 Tandem Computers Incorporated A–3

Table A-1. Guardian Procedures (Page 3 of 8)

C-Series Procedure D-Series Procedure Used for Conversion

DEFINELIST –

DEFINEMODE –

DEFINENEXTNAME –

DEFINEPOOL –

DEFINEREADATTR –

DEFINERESTORE –

DEFINERESTOREWORK[2] –

DEFINESAVE –

DEFINESAVEWORK[2] –

DEFINESETATTR –

DEFINESETLIKE –

DEFINEVALIDATEWORK –

DELAY –

DEVICEINFO[2] FILE_GETINFOBYNAME_, DEVICE_GETINFOBYNAME_, or
DEVICE_GETINFOBYLDEV_

DISKINFO FILE_GETINFOLISTBYNAME_

DNUMIN –

DNUMOUT –

EDITREAD –

EDITREADINIT –

EMSADDBUFFER –

EMSADDSUBJECT –

EMSADDSUBJECTMAP –

EMSADDTOKENMAPS –

EMSADDTOKENS –

EMSGET –

EMSGETTKN –

EMSINIT[MAP] –

EMSTEXT –

FILEERROR –

FILEINFO FILE_GETINFO[LIST][BYNAME]_

FILEINQUIRE FILE_GETINFO[LIST][BYNAME]_

FILERECINFO FILE_GETINFO[LIST][BYNAME]_

Guardian Procedures

A–4 096047 Tandem Computers Incorporated

Table A-1. Guardian Procedures (Page 4 of 8)

C-Series Procedure D-Series Procedure Used for Conversion

FIXSTRING –

FNAME32COLLAPSE –

FNAME32EXPAND FILENAME_SCAN_ and FILENAME_RESOLVE_

FNAME32TOFNAME –

FNAMECOLLAPSE –

FNAMECOMPARE FILENAME_COMPARE_

FNAMEEXPAND FILENAME_SCAN_ and FILENAME_RESOLVE_

FNAMETOFNAME32 –

FORMATCONVERT[X] –

FORMATDATA[X] –

GETCPCBINFO PROCESS_GETINFOLIST_

GETCRTPID PROCESS_GETINFO[LIST]_

GETDEVNAME FILENAME_FINDNEXT_

GETPOOL –

GETPPDENTRY PROCESS_GETPAIRINFO_

GETREMOTECRTPID PROCESS_GETINFO[LIST]_

GETSYNCINFO –

GETSYSTEMNAME NODENUMBER_TO_NODENAME_

GETTMPNAME –

GETTRANSID –

GIVE^BREAK –

GROUPIDTOGROUPNAME –

GROUPNAMETOGROUPID –

HALTPOLL –

HEAPSORT –

INITIALIZER –

INTERPRETINTERVAL –

INTERPRETJULIANDAYNO –

INTERPRETTIMESTAMP –

JULIANTIMESTAMP –

Guardian Procedures

096047 Tandem Computers Incorporated A–5

Table A-1. Guardian Procedures (Page 5 of 8)

C-Series Procedure D-Series Procedure Used for Conversion

KEYPOSITION[X] –

LABELEDTAPESUPPORT –

LASTADDR[X] ADDRESS_DELIMIT_

LASTRECEIVE FILE_GETRECEIVEINFO_

LOCATESYSTEM NODENAME_TO_NODENUMBER_

LOCKFILE –

LOCKINFO FILE_GETLOCKINFO_

LOCKREC –

LOOKUPPROCESSNAME PROCESS_GETPAIRINFO_

MESSAGESTATUS –

MESSAGESYSTEMINFO –

MOM PROCESS_GETINFO[LIST]_

MONITORCPUS –

MONITORNET –

MONITORNEW –

MOVEX –

MYGMOM PROCESS_GETINFO[LIST]_

MYPID PROCESS_GETINFO_ and
PROCESSHANDLE_DECOMPOSE_

MYPROCESSTIME –

MYSYSTEMNUMBER PROCESS_GETINFO_ and
PROCESSHANDLE_DECOMPOSE_

MYTERM PROCESS_GETINFO[LIST]_

NEWPROCESS[NOWAIT] PROCESS_CREATE_

NEXTFILENAME FILENAME_FINDNEXT_

NO^ERROR –

NUMIN –

NUMOUT –

OPEN FILE_OPEN_

OPEN^FILE –

OPENEDIT OPENEDIT_

OPENINFO FILE_GETOPENINFO_

Guardian Procedures

A–6 096047 Tandem Computers Incorporated

Table A-1. Guardian Procedures (Page 6 of 8)

C-Series Procedure D-Series Procedure Used for Conversion

POSITION –

PRIORITY (obtain priority) PROCESS_GETINFO[LIST]_

PRIORITY (alter priority) PROCESS_SETINFO_

PROCESSACCESSID PROCESS_GETINFO[LIST]_

PROCESSFILESECURITY PROCESS_SETINFO_

PROCESSINFO PROCESS_GETINFO[LIST]_

PROCESSORSTATUS –

PROCESSORTYPE –

PROCESSTIME PROCESS_GETINFOLIST_

PROGRAMFILENAME PROCESS_GETINFO[LIST]_

PURGE FILE_PURGE_

PUTPOOL –

READ[X] –

READ^FILE –

READLOCK[X] –

READUPDATE[X] –

READUPDATELOCK[X] –

RECEIVEINFO FILE_GETRECEIVEINFO_

REFRESH DISK_REFRESH_

REMOTEPROCESSORSTATUS –

REMOTETOSVERSION –

RENAME FILE_RENAME_

REPLY[X] –

REPOSITION –

RESERVELCBS –

RESETSYNC –

RESIZEPOOL –

RESIZESEGMENT –

Guardian Procedures

096047 Tandem Computers Incorporated A–7

Table A-1. Guardian Procedures (Page 7 of 8)

C-Series Procedure D-Series Procedure Used for Conversion

SAVEPOSITION –

SEGMENTSIZE SEGMENT_GET[BACKUP]INFO_

SENDBREAKMESSAGE BREAKMESSAGE_SEND_

SET^FILE –

SETLOOPTIMER –

SETMODE –

SETMODENOWAIT –

SETMYTERM PROCESS_SETSTRINGINFO_

SETPARAM –

SETSTOP –

SETSYNCINFO –

SETSYSTEMCLOCK –

SHIFTSTRING STRING_UPSHIFT_

SIGNALPROCESSTIMEOUT –

SIGNALTIMEOUT –

SPI_BUFFER_FORMATFINISH_ –

SPI_BUFFER_FORMATNEXT_ –

SPI_BUFFER_FORMATSTART_ –

SPI_FORMAT_CLOSE_ –

SSGET –

SSGETTKN –

SSIDTOTEXT –

SSINIT –

SSMOVE –

SSMOVETKN –

SSNULL –

SSPUT –

SSPUTTKN –

STEPMOM PROCESS_SETINFO_

STOP PROCESS_STOP_

SUSPENDPROCESS PROCESS_SUSPEND_

SYSTEMENTRYPOINTLABEL –

Guardian Procedures

A–8 096047 Tandem Computers Incorporated

Table A-1. Guardian Procedures (Page 8 of 8)

C-Series Procedure D-Series Procedure Used for Conversion

TAKE^BREAK –

TEXTTOSSID –

TIME –

TIMESTAMP –

TOSVERSION –

TRANSIDTOTEXT –

UNLOCKFILE –

UNLOCKREC –

USERDEFAULTS –

USERIDTOUSERNAME –

USERNAMETOUSERID –

USESEGMENT SEGMENT_USE_

VERIFYUSER –

WAIT^FILE –

WRITE[X] –

WRITE^FILE –

WRITEREAD[X] –

WRITEUPDATE[X] –

WRITEUPDATEUNLOCK[X] –

XBNDSTEST –

XSTACKTEST –

Appendix B System Messages

096047 Tandem Computers Incorporated B–1

Table B-1 lists the C-series and corresponding D-series user-level system messages.
For the description and format of these system messages, refer to the Guardian
Procedure Errors and Messages Manual.

Table B-1. System Messages

C-Series System Message D-Series System Message

–2 CPU down: process MONITORCPUS –2 CPU down: process MONITORCPUS

–2 CPU down: named process deletion –101 Process deletion: CPU down

–3 CPU up –3 CPU up

–5 Process deletion: Stop –101 Process deletion: Stop

–6 Process deletion: Abend –101 Process deletion: Abend

–8 Change in status of network node –100 Remote CPU down

–8 " –110 Loss of communication with node

–8 " –111 Establishment of communication with node

–8 " –113 Remote CPU up

–9 Job process creation –112 Job process creation

–10 SETTIME –10 SETTIME

–11 Power on –11 Power on

–12 NEWPROCESSNOWAIT completion –102 PROCESS_CREATE_ completion

–13 System message buffer overrun –13 System message buffer overrun

–20 Break on device –105 Break on device

–21 3270 device status received –21 3270 device status received

–22 Elapsed time timeout –22 Elapsed time timeout

–23 Memory lock completion –23 Memory lock completion

–24 Memory lock failure –24 Memory lock failure

–26 Process time timeout –26 Process time timeout

–30 Process open –103 Process open

–31 Process close –104 Process close

–32 Process CONTROL –32 Process CONTROL

–33 Process SETMODE –33 Process SETMODE

–34 Process RESETSYNC –34 Process RESETSYNC

–35 Process CONTROLBUF –35 Process CONTROLBUF

–37 Process SETPARAM –37 Process SETPARAM

–38 Queued message cancellation –38 Queued message cancellation

–40 Device type inquiry –106 Device type inquiry

–41 Nowait DEVICEINFO2 completion –41 Nowait DEVICEINFO2 completion

None –107 Subordinate name inquiry

None –108 Nowait FILE_GETINFOBYNAME_ completion

None –109 Nowait FILENAME_FINDNEXT_ completion

Appendix C System Compatibility

096047 Tandem Computers Incorporated C–1

This appendix describes the compatibility between processes on C-series and D-series
systems in a network. A typical network has C-series systems with all processes at low
PINs and D-series systems with low-PIN unconverted processes, low-PIN converted
processes, and high-PIN converted processes. Figure C-1 shows three systems in a
typical network.

Figure C-1. Network of C-Series and D-Series Systems

Low PINs
(0-255)

System \CENT
(C-Series System)

High PINs
(≥ 256)

Low PINs
(0-254)

System \WEST
(D-Series System)

System \EAST
(D-Series System)

Low PINs
(0-254)

Converted Process

Unconverted Process

High PINs
(≥ 256)

This appendix describes these compatibility issues for processes on C-series systems
and D-series systems in a network:

Identifying disks and devices using C-series and D-series file names

Identifying processes using C-series and D-series process identifiers

Ensuring compatibility between processes running on a C-series system and
descendent processes that run on a D-series system

Allowing opens by high-PIN requesters of an unconverted process

Communicating with a high-PIN process from an unconverted process

These issues do not consider Guardian file and process security or security provided
by the Safeguard subsystem. For more information about file and process security,
refer to the D-series Guardian Programmer's Guide.

Identifying Disks and I/O Devices

System Compatibility

C–2 096047 Tandem Computers Incorporated

Identifying Disks and
I/O Devices

A process uses a file name to identify a disk volume or an I/O device such as a printer
or tape drive. An unconverted process can use eight-character file names (one to
seven characters after the dollar sign) to identify local disk volumes or I/O devices.
However, an unconverted process cannot use an eight-character name to identify
remote disk volumes or I/O devices.

Using D-series file names, a converted process on a D-series system can identify local
or remote disk volumes or I/O devices with eight-character names if they are on other
D-series systems in the network. However, a converted process on a D-series system
follows the C-series file-name identification rules when accessing remote C-series
systems: it cannot identify remote disk volumes or I/O devices with an eight-
character name if they are on C-series systems in the network.

Figure C-2 shows the use of eight-character file names to identify disk volumes and
I/O devices in a network.

Figure C-2. Identifying Disk Volumes and I/O Devices

Low PINs
(0-255)

System \CENT
(C-Series System)

Low PINs
(0-254)

System \WEST
(D-Series System)

System \EAST
(D-Series System)

Low PINs
(0-254)

$DISKVOL $LINEPTR

$DISKVOL $LINEPTR

Disks and I/O devices that cannot be identified
from a process on system \WEST or \EAST
using 8-character D-series file names, but can
be identified by a process on system \CENT
using 8-character C-series file names.

Disks and I/O devices that can be identified
from a converted process on system \WEST or
\EAST using 8-character D-series file names.

$DISKVOL $LINEPTR

High PINs
(≥ 256)

High PINs
(≥ 256)

Identifying Processes

System Compatibility

096047 Tandem Computers Incorporated C–3

Identifying Processes The D-series operating system uses D-series process file names and process handles to
identify processes. For compatibility with C-series operating systems, the D-series
operating system also supports C-series process file names and process IDs. The
following paragraphs describe the use of C-series and D-series process identifiers.

Note that the ability to identify a process does not imply that you can open it and
communicate with it. For rules about which processes you can and cannot open, see
“Allowing Opens by High-PIN Requesters” and “Communicating With a Named
High-PIN Process” later in this appendix.

 Using C-Series
Process Identifiers

When you are identifying processes in a network, a C-series process file name or
process ID has certain restrictions. You cannot identify a high-PIN process on either a
local or remote D-series system. You can identify a local or remote low-PIN process on
a C-series system or D-series system using:

The timestamp form of an unnamed C-series process file name or process ID, as
long as the PIN is less than 255

The network named form of a C-series process file name or process ID, if the
process name has fewer than five characters after the dollar sign

Figure C-3 shows the use of C-series process file names and process IDs to identify
processes in a network.

Figure C-3. Identifying Processes Using C-Series Process Identifiers

Low PINs
(0-255)

System \CENT
(C-Series System)

Low PINs
(0-254)

System \WEST
(D-Series System)

System \EAST
(D-Series System)

Low PINs
(0-254)

Processes that can be identified from
system \WEST using the network and
timestamp forms of process file names
and process IDs.

Processes that can be identified from
system \WEST using either of:
-- the local form of process file names
and process IDs
-- the network and timestamp forms of
process file names and process IDs

Processes that cannot be identified
using C-series process identifiers.

High PINs
(≥ 256)

High PINs
(≥ 256)

Identifying Processes

System Compatibility

C–4 096047 Tandem Computers Incorporated

 Using D-Series
Process File Names

Using a D-series process file name, a converted process can identify a high-PIN or low-
PIN process with a name that has up to five characters after the dollar sign (for
example, $ZAB22) on D-series systems in a network.

However, a process on a D-series system follows the C-series process-identification
rules when accessing remote C-series systems: it cannot identify a remote process with
a name that has five characters after the dollar sign on C-series systems in the network.

Figure C-4 shows the use of D-series process file names to identify processes in a
network.

Figure C-4. Identifying Processes Using D-Series Process File Names

Processes that can be addressed from
system \WEST or \EAST using D-series
process file names with process names
that have fewer than 5 characters after
the $.

Processes that can be addressed from
system \WEST or \EAST using D-series
process file names with process names
that have 5 characters after the $, or fewer
than 5 characters after the $.

Low PINs
(0-255)

System \CENT
(C-Series System)

Low PINs
(0-254)

System \WEST
(D-Series System)

System \EAST
(D-Series System)

Low PINs
(0-254)

High PINs
(≥ 256)

High PINs
(≥ 256)

Ensuring Compatibility: The Inherited Force-Low Characteristic

System Compatibility

096047 Tandem Computers Incorporated C–5

Ensuring
Compatibility: The

Inherited Force-Low
Characteristic

Processes that create other processes often need to communicate with their descendent
processes. Communication problems can occur when a process running on a C-series
system creates a process running on a D-series system that in turn creates additional
processes, some of which run at a high PIN. Figure C-5 shows the problem.

Figure C-5. Process Creation Between C-Series and D-Series Systems

$A $B

$C

$D

High PINs

Low PINsLow PINs

C-Series System D-Series System

Process $B can run only at a low PIN because it is created by a process running on a
C-series system and must therefore have been created by the NEWPROCESS
procedure. Processes created by $B, however, can run at a high PIN or low PIN,
because $B is running on a D-series system and therefore can use the
PROCESS_CREATE_ procedure.

Using the Inherited Force-
Low Characteristic

To help ensure compatibility, all processes created by process $B run at a low PIN by
default. The mechanism used to achieve this default action is the inherited force-low
characteristic.

If a process is started on a D-series system by a process on a C-series system, then the
new process not only runs at a low PIN but also has its inherited force-low
characteristic set. Because this flag normally propagates to all its descendent
processes, all descendents of the C-series process normally run at a low PIN.

A process also has its inherited force-low characteristic set if its creator used
PROCESS_CREATE_ with create-options.<15> set to 1 (the force-low flag), or if it
was created using the C-series-compatible NEWPROCESS procedure.

Allowing Opens by High-PIN Requesters

System Compatibility

C–6 096047 Tandem Computers Incorporated

Overriding the Inherited
Force-Low Characteristic

If there is no need for a process to communicate with an ancestor process that runs at a
low PIN, then you can override the inherited force-low characteristic and allow the
new process to run at a high PIN or low PIN, depending on the force-low flag and on
whether the HIGHPIN object-file attribute is set.

You use create-options.<10> in the PROCESS_CREATE_ procedure to override
the inherited force-low characteristic (the ignore force-low flag). The new process does
not have its inherited force-low characteristic set.

Allowing Opens by
High-PIN Requesters

An unconverted process on a D-series system can be opened by a high-PIN requester
process and receive requests from the requester process if the unconverted process:

Has its HIGHREQUESTERS object-file attribute set

Does not examine the identity of its openers or requesters

Figure C-6 shows an unconverted process and a high-PIN requester.

Figure C-6. Allowing Opens by High-PIN Requesters

High PINs: ≥256

Low PINs: 0 – 254

Tandem
Subsystems

Operating
System

Unconverted
Process

High-PIN
Requester

HIGHREQUESTERS Attribute = ON

Operating
System

Tandem
Subsystems

A high-PIN process cannot open an unconverted process unless the unconverted
process has the HIGHREQUESTERS object-file attribute set. If a high-PIN process
attempts to open a low-PIN process that does not have this attribute set, the high-PIN
process receives file-system error 560. The unconverted process is not affected.

For information about setting the HIGHREQUESTERS object-file attribute, refer to
“Setting the HIGHREQUESTERS Attribute to Allow High-PIN Openers” in the
respective section for each language (Sections 3 through 6).

Allowing Opens by High-PIN Requesters

System Compatibility

096047 Tandem Computers Incorporated C–7

Using Synthetic Process
IDs

A synthetic process ID is a process name or timestamp followed by the CPU number
and a PIN value of 255. A synthetic process ID allows an unconverted server to
support high-PIN openers (for example, in an opener table).

If the low-PIN process enables high-PIN requesters with the HIGHREQUESTERS
object-file attribute, the system returns a synthetic process ID for these cases:

As the output process-ID parameter for a high-PIN process from a RECEIVEINFO
or LASTRECEIVE procedure call after the low-PIN process reads a system
message from $RECEIVE.

As the output process-ID parameter for a high-PIN process from a MOM
procedure or the ancestor process ID field of a LOOKUPPROCESSNAME or
GETPPDENTRY procedure call.

As the process ID of a primary high-PIN process in the C-series system message
-30 (Process open) when receiving notification of the backup-process open.

As the process-ID for a high PIN primary or backup process identified by the
OPENINFO procedure as the owner of an open file.

As the process-ID of a high PIN process identified by a LOCKINFO procedure as
holding a lock on the specified file.

Note Because a synthetic process ID cannot uniquely describe a high-PIN process, Tandem recommends that
you do not use them for other cases. For example, do not use a synthetic process ID in C-series
procedures such as PROCESSINFO and SENDBREAKMESSAGE, extract information from them, display
them, or put them in messages (including event messages).

Communicating With a Named High-PIN Process

System Compatibility

C–8 096047 Tandem Computers Incorporated

Communicating With a
Named High-PIN

Process

An unconverted process running on a D-series system can communicate with a named
high-PIN process as described in the following paragraphs. However, to communicate
with an unnamed high-PIN process, the process must be converted.

Figure C-7 shows an unconverted process and a named high-PIN process.

Figure C-7. Communicating With a Named High-PIN Process

High PINs: ≥256

Low PINs: 0 – 254

Unconverted
Process

Named
Process

An unconverted process can open a named high-PIN process using the OPEN
procedure. The OPEN procedure uses the process name to determine the process (or
process pair) and does not require the CPU and PIN values from the process ID:

CALL OPEN (process^file^name,
 file^number);

After opening the high-PIN process, the unconverted process can send requests using
a procedure such as WRITE[X] or WRITEREAD[X]. These procedures do not require
any conversion to send or receive messages from high-PIN processes.

An unconverted process can close a high-PIN process using the CLOSE procedure:

CALL CLOSE (file^number);

Appendix D Considerations for Migrating
Any Application

096047 Tandem Computers Incorporated D–1

This appendix provides information about processing changes that may require minor
conversion of your application even if you do not intend to take advantage of the
D-series extensions. Without these modifications, your C-series application might:

Fail to run on a D-series system

Produce erroneous or unexpected results when run on a D-series system

Potential Application
Problems

Potential application problems on a D-series system can be caused by:

Using undocumented procedures

Relying on undocumented side effects of documented procedures

Undocumented Procedures Some undocumented C-series procedures are not supported on D-series systems. The
following table lists some of the most commonly used undocumented procedures.

Undocumented Procedure Documented Procedure Replacement

BULKREAD, BULKWRITE, BULKAWAITIO READX, WRITEX, AWAITIOX
(with SETMODE 141 for transfers of up to 56 KB)

GETPEEKXGLOBAL PROCESS_GETINFOLIST_

SETDATAFREELIST or SETINDEXFREELIST None. These procedures apply only to DP1 files. DP1
cannot exist in a D-series system

To ensure that your C-series application runs successfully on a D-series system,
modify your application to eliminate the use of undocumented procedures.

Undocumented Side
Effects of Documented

Procedures

If your application relies on undocumented side effects of documented procedures, it
might function differently on your D-series system than it did on your C-series system.

To ensure that your C-series application runs successfully on a D-series system,
modify your application to eliminate the use of undocumented side effects.

Other Potential Application
Problems

Other potential application problems are summarized in table D-1 and described in
detail in subsequent subsections.

Potential Application Problems

Considerations for Migrating Any Application

D–2 096047 Tandem Computers Incorporated

Table D-1. Potential Application Problems

Affected application
component Cause of potential problem

Refer to the following subsection for more
information

Condition codes Application checks undefined condition codes “Undefined Condition Codes Contain Meaningless
Information”

DEFINEREADATTR and
DEFINEINFO attributes

Application does not account for the system name in file
names or does not provide for zero suppression

“Enhanced Attribute Values Returned From
DEFINEs”

Device names Application relies on device names of unacceptable
length

“D-Series Systems Must Be Named”

Device simulator process Application propagates TMF transactions to a device
simulator process

“TMF Transactions Not Propagated to Device
Simulator Process Automatically”

INITIALIZER procedure Application estimates FCBs for INITIALIZER procedure “INITIALIZER Procedure Enhanced”

Nowait write buffer Application uses nowait write buffers incorrectly “Nowait Write Buffer Integrity”

Pool space Application relies on a precisely calculated amount of
pool space

“Pool Space Address Adjustment”

Process IDs Application receives a process ID from a process that
runs on a C-series system with a PIN of 255

“For a Process ID of 255 it is Important to Know the
Source System”

Process names Application relies on process names of unacceptable
length

“D-Series Systems Must Be Named”

Process pairs Application (process pair) does not account for CPU
down system message (-2)

“System-Message Protocol for Process Pairs
Includes CPU Down Message”

SDU buffer Application uses SDU buffers that are too small “Aggregate SDU Length Checking Enhanced”

System naming Application assumes a system can be unnamed “D-Series Systems Must Be Named”

Temporary file names Application relies on 4-digit temporary file names “Temporary File Names Have 7 Digits”

Application relies on first 4 digits of file names being
unique

“Temporary File Names Have 7 Digits”

TERMPROCESS Application uses TERMPROCESS “TERMPROCESS Replaced by ATP6100”

Aggregate SDU Length Checking Enhanced

Considerations for Migrating Any Application

096047 Tandem Computers Incorporated D–3

INITIALIZER Procedure
Enhanced

For D-series systems, the number of FCBs specified in the INITIALIZER procedure
must match the number of FCBs actually allocated for the RUCB and common FCB. If
the numbers do not match, the INITIALIZER issues the message “INITIALIZER:
Invalid format or wrong number of FCBs specified” and terminates.

For C-series systems, specifying the wrong number of FCBs did not cause a processing
error.

To ensure that your C-series application runs successfully on a D-series system, if it
uses the INITIALIZER procedure, ensure that the number of specified FCBs for the
procedure is correct.

Undefined Condition
Codes Contain

Meaningless
Information

For D-series and TNS/R systems, undefined condition codes are set by accidental side
effects. A condition code is considered to be undefined for a Guardian procedure if
the documentation for the procedure does not explicitly refer to condition code values.

For example, although the NEWPROCESS procedure has never returned a condition
code, a program that checks the condition code might have run successfully on a
C-series system:

CALL NEWPROCESS (file^name, ...);
IF <> THEN ...

To ensure that your C-series application runs successfully on a D-series system,
modify your application to eliminate checking of undefined condition codes.

Aggregate SDU Length
Checking Enhanced

For D-series systems, the TLAM PORT interface performs enhanced length checking
on aggregate SDUs and aggregate SDU buffers.

On D-series systems, if the total specified length of incoming aggregate SDUs exceeds
the length of an aggregate SDU buffer in your application, the I/O operation is not
executed. File-system error 22 (application buffer address out of bounds) is returned
to your application.

On C-series systems, if the total specified length of incoming aggregate SDUs exceeded
the length of an aggregate SDU buffer in your application, the I/O operation was
executed but a truncated SDU was put into the buffer. and no warning was returned
to your application.

To ensure that your C-series application runs successfully on a D-series system, if it
uses aggregate SDU buffers, ensure that a total aggregate SDU data size cannot be
greater than an aggregate SDU buffer size.

All D-Series Systems Must Be Named

Considerations for Migrating Any Application

D–4 096047 Tandem Computers Incorporated

D-Series Systems
Must Be Named

All D-series systems, unlike C-series systems, must be named, even if they are not part
of an Expand network. Migrating your C-series application from an unnamed system
to a named D-series system might cause problems if:

Your application does not expect a file name to contain a system (node) name.

The D-series system to which your C-series application is migrated is configured
with 8-character (including the dollar sign, $) device names or 6-character
(including the dollar sign, $) process names.

Your program calls the DEFINEREADATTR procedure or the DEFINEINFO
procedure.

File Names Always Include
a System Name

If your C-series application does not expect file names returned to Guardian
procedures to include a system (node) name, buffers allocated for file names might not
be large enough to include the system (node) name.

For example, your C-series application might use the FNAMECOLLAPSE procedure
to convert the internal format of a file name into its external format. If your
application assumes that it is running on an unnamed system, it might allocate
insufficient buffer space for the fully-qualified file name returned by the procedure.

To ensure that your C-series application runs successfully on a D-series system,
modify your application to allow room for the system (node) name in buffers that
might contain a file name returned from a Guardian procedure.

Device Names Should Not
Exceed 7 Characters

Some applications will work incorrectly when the system is given a name, if the
application provides for device names or process names that exceed 7 characters
(including the dollar sign, $).

To ensure that your C-series application runs successfully on a D-series system,
modify your application and your system configuration so that device names and
process names do not exceed 7 characters, including the dollar sign ($).

DEFINEREADATTR and
DEFINEINFO Return a

System Name

The D-series DEFINEREADATTR and DEFINEINFO procedures always include the
system (node) name in file names returned to an application. The =_DEFAULTS
VOLUME attribute is unchanged.

C-series DEFINEREADATTR and DEFINEINFO procedures return the system (node)
name only for remote systems.

To ensure that your C-series application runs successfully on a D-series system,
modify your application to allow room for the system (node) name in buffers that
might contain a file name returned from a DEFINEREADATTR or DEFINEINFO
procedure.

Pool Space Address Adjustment

Considerations for Migrating Any Application

096047 Tandem Computers Incorporated D–5

Temporary File Names
Have 7 Digits

On D-series systems, the number of concurrent temporary files allowed per volume
has been increased. As a consequence, temporary file names now have 7 digits in their
name, after the pound sign (#).
On C-series systems, temporary file names had only 4 digits in their name

To ensure that your C-series application runs successfully on a D-series system,
modify your application if:

 It expects the length of a temporary file name to be 4 digits.

 It expects the (first) four digits of a temporary file name to be unique.

System-Message
Protocol for Process

Pairs Includes CPU
Down Message

On D-series systems, when a backup process takes over as the primary process
(following return from the CHECKMONITOR procedure) after the CPU of the
primary process fails, the backup process subsequently receives a CPU down (-2)
system message if it is reading system messages. Sending a CPU down (-2) system
message to the backup process ensures that the backup process sees all status
messages not seen by the primary process.

On C-series systems, the CPU down (-2) system message is not sent to a backup
process when it takes over as the primary process.

To ensure that your C-series application runs successfully on a D-series system, if it
accepts system messages but does not account for the CPU down (-2) message, you
might need to modify your application to take note of or react to the CPU down (-2)
system message.

Pool Space Address
Adjustment

Starting with the D20 release, the DEFINEPOOL and RESIZEPOOL procedures
sometimes adjust the starting address of a pool for address alignment. These
procedures also ensure that pool space overhead and adjustments for alignment do
not cause the pool to extend beyond the address that is the sum of the address
specified for the beginning of the pool plus the specified pool size.

If your application attempts to calculate precisely the amount of pool space that it
needs and does not allow for adjustment and alignment, it might not allocate adequate
pool space.

To ensure that your C-series application runs successfully on a D-series system, it
should not attempt to calculate precisely the amount of pool space that it needs (when
using the DEFINEPOOL and RESIZEPOOL procedures).

TERMPROCESS Replaced by ATP6100

Considerations for Migrating Any Application

D–6 096047 Tandem Computers Incorporated

TERMPROCESS
Replaced by ATP6100

TERMPROCESS, which provided I/O support for asynchronous terminals, is not
supported on D-series systems. On D-series systems, 6100/3600-class controllers are
now the only option for asynchronous terminal support, and these controllers require
ATP6100 rather than TERMPROCESS.

If your application performs I/O processing involving asynchronous terminals, you
therefore might need to:

Change your program to accommodate the longer device names supported by
ATP6100.

Be aware of the differences between TERMPROCESS and other protocols.

Device and Subdevice
Names for ATP6100

TERMPROCESS supports terminal names consisting of a maximum of 8 characters,
including the dollar sign ($), with the following format:

$device

ATP6100 supports terminal names with the following format:

$device.#subdevice

where the device name consists of a maximum of 8 characters including the dollar sign
($) and the subdevice consist of a maximum of 8 characters, including the pound
sign(#).

Applications that support the TERMPROCESS format but do not support the ATP6100
format may have insufficient buffer space declared for terminal names.

To ensure that your C-series application runs successfully on a D-series system do one
of the following:

Have your system configured to keep $device.#subdevice to 8 or fewer
characters.

Modify your application to support the ATP6100 terminal-name format.

Protocol Differences Terminals supported by TERMPROCESS might function differently than they do
when they are supported by ATP6100 and other protocols. For example, if you press a
function key, TERMPROCESS does not echo a line feed (LF) code, whereas some other
protocols do:

TACL dialogue when TERMPROCESS is used:

5> #PUSH F6
6> <press the F6 key>
7>

TACL dialogue when a different protocol is used:

5> #PUSH F6
6> <press the F6 key>

7>

TMF Transactions Not Propagated to Device Simulator Process Automatically

Considerations for Migrating Any Application

096047 Tandem Computers Incorporated D–7

Nowait Write Buffer
Integrity

A program using nowait write operations with Guardian procedures might incorrectly
allow the contents of the buffer being written to be altered before completion of the
operation (with an AWAITIO[X] procedure call).

For both C-series systems and D-series systems, it is possible for data to be moved
from a write buffer after a write procedure call finishes executing but before the
AWAITIO procedure finishes executing (thereby completing the operation). If an
application alters the contents of such a buffer before the data is moved, the altered
data might be moved instead of the original data (or the data that is moved might be a
combination of the original data and the altered data).

It is more important for D-series systems than for C-series systems to be certain that
buffers containing data to be written remain unaltered until the write operation is
completed by the AWAITIO[X] procedure.

Note SETMODE 72 does not solve this problem. SETMODE 72 controls the use of buffers for read operations
but not for write operations.

To ensure that your C-series application runs successfully on a D-series system,
modify your application so that buffers containing data to be written remain unaltered
until the AWAITIO procedure completes the write operation.

TMF Transactions Not
Propagated to Device

Simulator Process
Automatically

In D-series systems, unlike C-series systems, device simulator processes (processes
with device subtype 30) no longer have TMF transactions propagated to them as the
default interprocess-message transfer mode. This change makes device simulator
more correct because real devices do not have TMF transactions propagated to them.

Note This change also applies to spooler collectors (subtype 31) and tape simulators, although these two kinds
of processes are not usually user-written.

To ensure that your C-series application runs successfully on a D-series system if it
requires TMF transactions to be propagated to a device simulation process (subtype
30), modify your application to use SETMODE 117 with parameter 1 equal to 0.

Enhanced Attribute Values Are Returned from DEFINEs

Considerations for Migrating Any Application

D–8 096047 Tandem Computers Incorporated

Enhanced Attribute
Values Returned from

DEFINEs

Some of the attribute values returned by the DEFINE support procedures
DEFINEREADATTR and DEFINEINFO on C-series systems have been enhanced for
D-series systems.

Attributes
DEFINEREADATTR
and DEFINEINFO

Attribute values returned on
C-series system

Attribute values returned on
D-series system

File and subvolume names All attributes representing file names
or subvolume names on the local
system, do not include the system
(node) name (regardless of the
current default system).

All attributes representing file names or
subvolume names are in fully qualified
external format including the system
(node) name (except the VOLUME
attribute of the CLASS DEFAULTS
DEFINE).

Zero suppression Some numeric attributes are not
returned as zero suppressed.

All numerical attributes are returned
as left-justified, zero-suppressed,
variable length strings.

To ensure that your C-series application runs successfully on a D-series system if it
depends on these attribute characteristics, modify your application to accommodate
the new characteristics.

For a Process ID of
255 it is Important to

Know the Source
System

PIN 255 is reserved on D-series systems as the PIN part of a synthetic process ID.
Synthetic process IDs are returned for high-PIN processes by some procedures and
system messages that return only C-series process IDs. However, PIN 255 is still a
valid PIN on C-series systems. Your application might need to process a process ID
with a PIN of 255 in a different way depending on whether the process it identifies is a
D-series process running in a high PIN or a C-series process.

You can determine the version of the operating system as follows:

1. Determine the node number of the system on which the process executes. In all
practical situations you will have access to a C-series process ID in the remote
form. The node number is in word 0, bits <8:15>.

2. Use the REMOTETOSVERSION procedure to determine if the remote system is
running a C-series or D-series version of the operating system.

Glossary

096047 Tandem Computers Incorporated Glossary–1

accelerate. To use the Accelerator program to generate an accelerated object file.

accelerated object code. The RISC instructions that result from processing a TNS object
file with the Accelerator.

accelerated object file. The object file that results from processing a TNS object file with
the Accelerator. An accelerated object file contains the original TNS object code, the
accelerated object code and related address map tables, and any Binder and symbol
information from the original TNS object file.

Accelerator. A program that processes a TNS object file and produces an accelerated
object file. Most TNS object code that has been accelerated runs faster on TNS/R
processors than TNS object code that has not been accelerated.

ancestor. The process that is notified when a named process or process pair is deleted.
It is the process that created the named process or process pair.

application. One or more processes that achieve a specific objective. Multiple processes
in an application often communicate with each other using the message system and
file system. See also “program” and “process.”

C-series-compatible interface. The set of procedure calls, system messages, and event-
message tokens available on a D-series system that permits unconverted applications
to execute.

C-series process file name. A 12-word internal-format file name that identifies a process
either by name or by CPU, PIN on a C-series system or on a D-series system using the
C-series-compatible interface.

C-series system. A system that is running a C-series version of the operating system.

CISC. See “complex instruction-set computing (CISC).”

complex instruction-set computing (CISC). A processor architecture based on a large
instruction set, characterized by numerous addressing modes, multicycle machine
instructions, and many special-purpose instructions. Contrast with “reduced
instruction-set computing (RISC).”

converted application. In the context of operating system releases, an application that
has been modified to use extended features of the D-series operating system (for
example, to run at a high PIN).

CPU, PIN. A C-series process identifier that is an 8-bit CPU number and an 8-bit
process number. It is sometimes called a PID.

creation process ID (CRTPID). See “process ID.”

creator. The process that initiates the execution of another process. Compare with
“mom” and “ancestor.”

CRTPID. See “process ID.”

D-series enhanced interface. The set of procedure calls, system messages, and event-
message tokens available on a D-series system that enable an application to take

Glossary

Glossary–2 096047 Tandem Computers Incorporated

advantage of the extended system limits. Applications must be converted to make use
of this interface.

D-series process file name. A variable-length string that identifies a process by name or
CPU, PIN and can also include the node name, sequence number, and one or two
qualifiers.

D-series system. A system that is running a D-series version of the operating system.

device. An addressable I/O device, independent of its physical environment (for
example, a terminal or printer).

Distributed Systems Management (DSM). A set of software tools that are used in the
management of systems and networks. These tools include the ViewPoint console
application, the Subsystem Control Facility (SCF), the Subsystem Programmatic
Interface (SPI), the Event Management Service (EMS), the Distributed Name Service
(DNS), and the token-oriented programmatic interfaces to the management processes
for various Tandem subsystems.

Distributed Systems Management (DSM) application. An application that issues DSM tools
to issue programmatic commands to a subsystem or retrieve event messages from a
subsystem (or both) to assist in managing a system or network. In the requester-server
approach, a management application is the requester and a subsystem is the server.

DSM. See “Distributed Systems Management (DSM).”

EMS. See “Event Management Service (EMS).”

Event Management Service (EMS). A set of software tools that provide event-message
collection, logging, and distribution for the operating system. EMS provides different
descriptions of events for operators and management applications and allows an
operator or application to select specific event messages using EMS filters. EMS has
programmatic interfaces based on SPI for both event reporting and event retrieval.

event message. In Distributed Systems Management (DSM), a special type of
Subsystem Programmatic Interface (SPI) message that describes an event occurring in
the system or network.

extended data segment. One or more consecutive absolute segments that are
dynamically allocated by a process.

FCB. See “file control block (FCB).”

file. An entity that can be a disk file (all or part of a disk volume), an I/O device (such
as a printer or terminal), or a process (an executing program).

file control block (FCB). (1) A data structure automatically created and managed by the
file system that contains a collection of information about an open file. (2) A data
structure on the user’s data stack used by sequential I/O (SIO) to access SIO files.
These FCBs contain information in addition to the information kept in the FCB
automatically created and managed by the file system.

file number. An integer that represents a particular instance of an open of a file. A file
number is returned by an open procedure and is used in subsequent I/O procedures
to access the file.

Glossary

096047 Tandem Computers Incorporated Glossary–3

file system. A set of operating system procedures and data structures that allows
communication between a process and a file (disk file, I/O device, or another process).

filter. In the Event Management Service (EMS), a file that contains a list of criteria
against which incoming event messages can be compared. Messages are either passed
or not passed based on the list of criteria.

GMOM. See “godmother (GMOM).”

godmother (GMOM). A process that is notified when a process that is part of a job is
deleted. The godmother of a process is the process that created the job to which the
process belongs.

GPLDEFS file. A source file provided by Tandem that contains LITERAL and DEFINE
declarations and data structures that are available for applications to use with
sequential I/O (SIO) procedures.

high PIN. A process identification number (PIN) that is greater than 255. Contrast with
“low PIN.”

inherited force-low characteristic. A characteristic of a process that forces its child
processes into low PINs when set. This characteristic is inherited from the creator of
the process so that low-PIN processes can always communicate with their
descendents. The characteristic can be overridden.

input/output process (IOP). A system process that controls one or more I/O units
attached to the central processing unit (CPU) through I/O channels.

interprocess communication. The exchange of messages between processes in a system or
network.

IOP. See “input/output process (IOP).”

low PIN. A process identification number (PIN) that ranges from 0 through 254.
Contrast with “high PIN.”

management application. See “Distributed Systems Management (DSM) application.”

message. See “system message” and “SPI message.”

message system. A set of operating system procedures and data structures that handle
the mechanics of exchanging system messages between processes.

millicode. RISC instructions that implement various TNS low-level functions such as
exception handling, real-time translation routines, and library routines that implement
the TNS instruction set. Millicode is functionally equivalent to TNS microcode.

mom. A process that is notified when certain other processes are deleted. If a process
is part of a process pair, the mom of the process is the other member of the pair. When
a process is unnamed, its mom is usually the process that created it.

named process. A process to which a name was assigned when the process was created.
Contrast with “unnamed process.”

nested error list. In Distributed Systems management (DSM), an error list within
another error list. When an error in one subsystem or in a library procedure prevents

Glossary

Glossary–4 096047 Tandem Computers Incorporated

another subsystem from performing a command, the calling subsystem reports this
error by nesting error lists in its own response.

node. A system of one or more processor modules. Typically, a node is linked with
other nodes to form a network.

node name. The portion of the file name that identifies the system through which the
file can be accessed.

object file. A file generated by a compiler or Binder that contains machine instructions
and other information needed to construct the executable code spaces and initial data
for a process. The file may be a complete program that is ready for immediate
execution, or it may be incomplete and require binding with other object files before
execution.

object-file attributes. Flags in an object file that specify characteristics about the file or
about its running as a process.

PFS. See “process file segment (PFS).”

physical memory. The semiconductor memory that is part of every processor module.

PID. See “CPU, PIN.”

PIN. See “process identification number (PIN).”

process. An instance of execution of a program.

process descriptor. A process identifier returned by a system procedure call. It always
contains the node name and sequence number as well as the process name or CPU,
PIN designation. Contrast with “D-series process file name” and “C-series process file
name.”

process file name. See “D-series process file name” and “C-series process file name.”

process file segment (PFS). An extended data segment that is automatically allocated to
every process and contains operating system data structures, file-system data
structures, and memory-management data structures.

process handle. A D-series 20-byte data structure that identifies a named or unnamed
process in the network. A process handle identifies an individual process; thus, each
process of a process pair has a unique process handle.

process ID. A C-series 4-word process identifier. A process ID contains a central
processing unit (CPU) number, process identification number (PIN), creation
timestamp or process name, and system number (optional). It is sometimes called a
creation timestamp process ID (CRTPID).

process identification number (PIN). An unsigned integer that identifies a process in a
processor module. Internally, a PIN is used as an index to the process control block
(PCB) table.

process name. A name that is assigned to a process when the process is created. A
process name uniquely identifies a process (or process pair) in a system.

Glossary

096047 Tandem Computers Incorporated Glossary–5

process string. A process identifier that is suitable to display or print. It contains either
the process name or the CPU, PIN, optionally preceded by the node name.

program. A static set of instruction codes and initialized data (for example, the output
of a compiler or the Binder program) that is not executing. A program usually resides
in a program file on disk. See also “process.”

program file. An executable object file. See “object file.”

reduced instruction-set computing (RISC). A processor architecture based on a relatively
small and simple instruction set, a large number of general-purpose registers, and an
optimized instruction pipeline that supports high-performance instruction execution.
Contrast with “complex instruction-set computing (CISC).”

request. A message formatted and sent to a server by a requester. Requests also
include status messages, such as CPU up and CPU down messages, that are placed on
the process message queue of a process by the operating system. Contrast with
“response.”

requester. The process that initiates interprocess communication by sending a message
to another process (usually a server). Contrast with “server.”

response. A message formatted and sent to a requester by a server, usually to answer a
request. In Distributed Systems Management (DSM), a response is the information or
confirmation supplied by a subsystem in reaction to a command. A response is
typically sent as one or more interprocess messages from a subsystem to a
management application. Contrast with “request.”

RISC. See “reduced instruction-set computing (RISC).”

RISC instructions. Register-oriented 32-bit machine instructions that are directly
executed on TNS/R processors. RISC instructions execute only on TNS/R systems,
not on TNS systems. Contrast with “TNS instructions.”

segment. A unit of storage in memory.

segment ID. An integer that a process uses to identify an extended data segment. It can
also specify the type of extended data segment for a C-series system.

sequential I/O (SIO) procedures. A set of related operating system procedures that are
used for reading and writing sequential files.

server. The process that receives, acts upon, and replies to messages from requesters.
Contrast with “requester.”

simple token. In the System Programmatic Interface (SPI), a token consisting of a token
code and a value of the type indicated in the token code. Although simple token
values can have an internal structure, SPI stores and retrieves those values without
any knowledge of their structure.

SIO procedures. See “sequential I/O (SIO) procedures.”

SPI. See “Subsystem Programmatic Interface (SPI).”

Glossary

Glossary–6 096047 Tandem Computers Incorporated

SPI message. A message specially formatted by the Subsystem Programmatic Interface
(SPI) procedures for communication between a management application and a
subsystem, or between one subsystem and another. An SPI message consists of a
collection of tokens.

structured token. In the Subsystem Programmatic Interface (SPI), a token whose value is
a structure. Some structured tokens are simple tokens with fixed structures, while
other structured tokens are extensible and can be extended by adding new fields at the
end.

subsystem. A program or a set of processes or procedures that manages a cohesive set
of objects (for example, a set of files or devices). Each subsystem has a process from
which applications can request services by sending commands (in some cases, this
process is the entire subsystem). See “Distributed Systems Management (DSM)
application.”

Subsystem Programmatic Interface (SPI). A common, message-based interface that can be
used to build and decode messages used for communication between requesters (for
example, a management application) and servers (Tandem subsystems). SPI includes
procedures to build and decode specially formatted messages; source definition files in
TAL, COBOL85, Pascal, C, and TACL; and definition files in DDL for programmers
writing their own subsystems.

swap files. The disk files to and from which data is copied during swapping, which is
the process of copying data between physical memory and disk storage.

synthetic process ID. A process name or timestamp followed by the central processing
unit (CPU) number and a process identification number (PIN) value of 255. The use of
a synthetic process ID is limited; it allows an unconverted process on a D-series
system to support high-PIN openers.

system message. A block of information, usually in the form of a structure, that is sent
from one process to another process.

system process. A process whose primary purpose is to manage system resources such
as memory or I/O devices. It is essential to a system-provided service, and failure of a
system process can cause the processor module to fail. Most system processes are
automatically created when the processor module is cold loaded. Contrast with “user
process.”

Tandem NonStop Series (TNS). Tandem computers that support the operating system and
that are based on complex instruction-set computing (CISC) technology. TNS
processors implement the TNS instruction set. Systems with these processors are the
NonStop II, NonStop TXP, NonStop EXT, NonStop VLX, NonStop Cyclone,
NonStop CLX 600, CLX 700, and CLX 800, and NonStop CLX/R 1100 systems.
Contrast with “Tandem NonStop Series/RISC (TNS/R).”

Tandem NonStop Series/RISC (TNS/R). Tandem computers that support the operating
system and that are based on reduced instruction-set computing (RISC) technology.
TNS/R processors implement the RISC instruction set and are upwardly compatible
with the TNS system-level architecture. Systems with these processors are the

Glossary

096047 Tandem Computers Incorporated Glossary–7

NonStop Cyclone/R, NonStop CLX 2000, and NonStop CLX/R 1200 systems.
Contrast with “Tandem NonStop Series (TNS).”

TNS. See “Tandem NonStop Series (TNS).”

TNS instructions. Stack-oriented, 16-bit machine instructions defined as part of the TNS
environment. On TNS systems, TNS instructions are implemented by microcode; on
TNS/R systems, TNS instructions are implemented by millicode routines or by
translation to an equivalent sequence of RISC instructions. Contrast with “RISC
instructions.”

TNS object file. The object file created by a TNS compiler. The file contains TNS
instructions and other information needed to construct the code spaces and the initial
data for a TNS process.

TNS/R. See “Tandem NonStop Series/RISC (TNS/R).”

token. In SPI, a distinguishable unit of data in an SPI message. A token has two parts:
an identifying code (a token code or token map) and a token value.

unconverted application. In the context of operating system releases, an application that
has not been modified to use extended features of the D-series operating system.

unnamed process. A process to which a name was not assigned when the process was
created. Contrast with “named process.”

user process. A process whose primary purpose is to solve a user’s immediate
problem. A user process is not essential to the availability of a processor module. A
user process is created only when the user explicitly creates it. Contrast with “system
process.”

ZSYSDDL file. A file provided by Tandem that contains DDL definitions of source
declarations for Guardian system procedures and system messages. ZSYSDDL is
used to generate the ZSYSTAL, ZSYSCOB, ZSYSC, and ZSYSPAS files for use with
TAL, COBOL85, C, and Pascal applications, respectively.

$RECEIVE. A special file name through which a process receives and optionally replies
to messages from other processes.

Index

096047 Tandem Computers Incorporated Index–1

A
Abend (-6) system message

in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6
in TAL 3-36

ABEND message-type keyword, COBOL85 4-20
ABEND procedure 3-26
Accelerate GLOSS-1
Accelerated object code GLOSS-1
Accelerated object file GLOSS-1
Accelerator GLOSS-1
ACTIVATEPROCESS procedure 3-24
Address limits

checking for data segment 8-39
checking for extended data segment 8-39

Addresses of P-relative objects, TNS and TNS/R variances 9-7
ADDRESS_DELIMIT_ procedure 8-39
Aggregate SDU buffer D-3
ALLOCATESEGMENT procedure 8-37
ALTERPRIORITY procedure 3-28
Ancestor process GLOSS-1
Application migration

aggregate SDU buffer D-3
ATP6100 D-5, D-6
DEFINEPOOL D-5
DEFINEs D-8
device simulator process D-7
INITIALIZER procedure D-3
node name D-4
nowait write buffer integrity D-7
pool space D-5
potential problems D-1
process pairs D-5
RESIZEPOOL D-5
system name D-4
temporary file names D-5
TERMPROCESS D-6
undefined condition codes D-3

Application program 1-2

Index

Index–2 096047 Tandem Computers Incorporated

Arithmetic operations, TNS and TNS/R variances 9-2
ARMTRAP procedure, in COBOL85 4-11
ARMTRAP procedure, TNS and TNS/R variances 9-3, 9-4
ASCII strings, upshifting 8-6
Asterisk (*) as a wild-card character 8-5
ATP6100 protocol D-6
AWAITIO[X] procedure 3-33, 3-34, 5-19, 5-20, 6-17, 6-18

B
Backup process, opening 3-51, 5-30, 6-28
Base address of an extended data segment 8-38
Batch processing 7-6/7
Binder CHANGE command

setting HIGHPIN attribute
C programs 5-12
COBOL85 programs 4-10
Pascal programs 6-10
TAL programs 3-10

setting HIGHREQUESTERS attribute
C programs 5-33
COBOL85 programs 4-27
Pascal programs 6-31
TAL programs 3-45, 3-54

setting RUNNAMED attribute
C programs 5-17
COBOL85 programs 4-16
Pascal programs 6-15
TAL programs 3-31

Binder program 2-18
CHANGE command 5-17
in Common Run-Time Environment (CRE) 4-9
setting HIGHPIN attribute

C programs 5-12
COBOL85 programs 4-10
Pascal programs 6-10
TAL programs 3-10

setting HIGHREQUESTERS attribute
C programs 5-33
COBOL85 programs 4-27
Pascal programs 6-31
TAL programs 3-45, 3-54

Index

096047 Tandem Computers Incorporated Index–3

Binder program (continued)
setting RUNNAMED attribute

C programs 5-17
COBOL85 programs 4-16
Pascal programs 6-15
TAL programs 3-31

you cannot mix C-series and D-series modules 3-8, 4-8, 5-2, 6-8
Binder SET command

setting HIGHPIN attribute
C programs 5-12
Pascal programs 6-10
TAL programs 3-31

setting HIGHREQUESTERS attribute
C programs 5-33
COBOL85 programs 4-27
Pascal programs 6-31
TAL programs 3-45, 3-54

setting RUNNAMED attribute
C programs 5-17
COBOL85 programs 4-16
Pascal programs 6-15

Binder SHOW command
checking the HIGHPIN attribute

C library file 5-12
COBOL85 library file 4-10
Pascal library file 6-10
TAL library file 3-10

BINSERV process
with C compiler 5-10
with COBOL85 compiler 4-7
with Pascal compiler 6-8
with TAL compiler 3-8

BINSERV program
setting HIGHPIN attribute

C programs 5-12
COBOL85 programs 4-10
Pascal programs 6-9
TAL programs 3-10

Index

Index–4 096047 Tandem Computers Incorporated

BINSERV program (continued)
setting HIGHREQUESTERS attribute

C programs 5-33
COBOL85 programs 4-27
Pascal programs 6-31
TAL programs 3-45, 3-54

setting RUNNAMED attribute
C programs 5-17
COBOL85 programs 4-15
Pascal programs 6-15
TAL programs 3-30

Bounds parameter error 2-5
Break (-20) system message 8-16
BREAK key ownership 8-16
Break-on-device (-105) system message 8-16
BREAKMESSAGE_SEND_ procedure 8-16
Buffer integrity for nowait write D-7
Buffer, event-message 8-24, 8-29

C
C language

changing keywords 5-6
changing macro definitions 5-4
communicating with high-PIN server 5-18/24
communicating with server 5-18/24
compiler

running 5-10
setting HIGHPIN attribute 5-12
setting HIGHREQUESTERS attribute 5-33
setting RUNNAMED attribute 5-17

converting a requester 5-18/24
converting a server 5-25/32
converting an application 5-1/33
converting to D-series Guardian procedures 5-9/10
CPU numbers in 5-12
creating high-PIN process 5-14/15
declaring function prototypes 5-6
device names in 5-8
disk file names in 5-7
fflush function 5-5

Index

096047 Tandem Computers Incorporated Index–5

C language (continued)
file names in 5-7
file-system errors in 5-7
HIGHPIN object-file attribute 5-12
HIGHREQUESTERS object-file attribute 5-33
in Common Run-Time Environment (CRE) 4-9
including macro NULL definition 5-4
memory-mode files 5-4
monitoring a server 5-22/24
monitoring high-PIN server 5-22/24
opening a server 5-18/21
opening high-PIN server 5-18/21
opening temporary file 5-4
PIN in 5-12
process descriptor in 5-9
process file name in 5-8
process handle in 5-9
process ID in 5-9
replacing min and max macros 5-4
replacing obsolete TAL function declarations 5-6
result of the sizeof operator 5-5
RUN command with 5-10
RUNNAMED object-file attribute 5-17
running high-PIN process 5-11/13
sscanf function 5-6
subvolume defaulting 5-9
type of size_t 5-5
using library file from high-PIN process 5-12
using the new definition for errno 5-5
using type long in bit-field declarations 5-5

C-series process file name GLOSS-1
C-series system GLOSS-1
C-series systems

in a network C-1
C-series-compatible interface 1-3, GLOSS-1
CBCINFO procedure 3-27, 8-15
CBL85UTL library file 4-11
Change in status of network node (-8) system message

in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

Index

Index–6 096047 Tandem Computers Incorporated

Channels, I/O 1-1
CHECKALLOCATESEGMENT procedure 8-37
CHECKCLOSE procedure 3-34, 5-21, 6-19
CHECKMONITOR procedure 3-34, 5-20, 6-18
CHECKOPEN procedure 3-33, 5-20, 6-18
CHECK^FILE procedure 8-21
CHILD_LOST_ procedure

in C 5-24
in Pascal 6-22
in TAL 3-37

CHKPT_ in procedure names 2-2
CISC GLOSS-1
clarge file 5-4
Close (-104) system message 3-43, 3-50/51, 4-23, 5-29/30, 6-27/28, B-1
Close (-31) system message 3-43, 3-50, 4-23, 5-29, 6-27, B-1
CLOSE message-type keyword, COBOL85 4-23
CLOSE procedure

high-PIN server in C 5-21
high-PIN server in Pascal 6-19
high-PIN server in TAL 3-34
$RECEIVE in C 5-24
$RECEIVE in Pascal 6-22
$RECEIVE in TAL 3-37

CLOSE statement, COBOL85 4-17, 4-26
COBOL85

ABEND message-type keyword 4-20
ARMTRAP procedure 4-11
CLOSE statement 4-17, 4-26
COBOL85^ARMTRAP routine 4-11
COBOL85^COMPLETION utility routine 4-11
COBOLSPOOLOPEN utility routine 4-11
COBOL_COMPLETION_ utility routine 4-11
COBOL_SPECIAL_OPEN_ utility routine 4-11
communicating with high-PIN server 4-15/21
communicating with server 4-15/21
compiler 4-7, 4-10, 4-27
converting a requester 4-16/21
converting a server 4-22/26
converting an application 4-1/27
converting to D-series Guardian procedures 4-7
COPY statement 4-2

Index

096047 Tandem Computers Incorporated Index–7

COBOL85 (continued)
CPU numbers in 4-3, 4-11
CPU-DOWN message-type keyword 4-20, 4-24
creating high-PIN process 4-14
device names in 4-5
disk file names in 4-4/5
ENTER statement 4-4
fast I/O 4-5
FILE clause 4-4
file names in 4-4/6
FILE-CONTROL paragraph 4-4
file-system errors in 4-4
FUNCTION reserved word 4-7
GIVING phrase

ENTER TAL statement 4-4
SORT or MERGE statement 4-5

HIGHPIN object-file attribute 4-10
HIGHREQUESTERS object-file attribute 4-27
in Common Run-Time Environment (CRE) 4-9
MERGE statement 4-5
MESSAGE SOURCE clause 4-21
message-type keywords

ABEND 4-20
CLOSE 4-23
CPU-DOWN 4-20, 4-24
NETWORK 4-20, 4-24
NODE-DOWN 4-20, 4-24
NODE-UP 4-20, 4-24
OPEN 4-23
PROCESS-DELETION 4-20
REMOTE-CPU-DOWN 4-20, 4-24
REMOTE-CPU-UP 4-20, 4-24
STOP 4-20

monitoring a server 4-17
monitoring high-PIN server 4-17
NETWORK message-type keyword 4-20, 4-24
NODE-DOWN message-type keyword 4-20, 4-24
NODE-UP message-type keyword 4-20, 4-24
OPEN statement 4-17
opener table 4-26
opening a server 4-17
opening high-PIN server 4-17

Index

Index–8 096047 Tandem Computers Incorporated

COBOL85 (continued)
PIN in 4-3, 4-11
process descriptors in 4-6
process file names in 4-5/6
process handle in 4-6
process ID in 4-6
PROCESS-DELETION message-type keyword 4-20
program with no ENTER TAL statements 1-5
READ statement 4-17, 4-26
RECEIVE-CONTROL paragraph 4-17, 4-23
REMOTE-CPU-DOWN message-type keyword 4-20, 4-24
REMOTE-CPU-UP message-type keyword 4-20, 4-24
REPORT clause 4-18, 4-23/25
RUN command with 4-7
RUNNAMED object file attribute 4-15/16
running high-PIN process 4-8/12
SELECT clause 4-4
SORT statement 4-5
SPECIAL-NAMES paragraph 4-4
spooler job file names 4-5
STOP message-type keyword 4-20
subvolume defaulting in 4-6/7
trap handling in 4-11
using library file from high-PIN process 4-10
USING phrase, SORT or MERGE statement 4-5
utility routines 4-11

COBOL85^ARMTRAP routine, COBOL85 4-11
COBOL85^COMPLETION, COBOL85 utility routine 4-11
COBOLFILEINFO utility routine 4-4
COBOLLIB library file 4-11
COBOLSPOOLOPEN, COBOL85 utility routine 4-11
COBOL_COMPLETION_, COBOL85 utility routine 4-11
COBOL_SPECIAL_OPEN_, COBOL85 utility routine 4-11
Command-interpreter interface 8-13
Common FCB, using with SIO procedures 8-19
COMMON option, ENV compiler directive 4-9
Common Run-Time Environment (CRE) 2-19, 4-9
Compatibility, system C-1
Completion codes and TACL 7-6/7
Complex instruction-set computing (CISC) GLOSS-1
Condition code (CC) setting 2-5/6

Index

096047 Tandem Computers Incorporated Index–9

Condition codes
undefined D-3

Configurations, I/O 1-1
CONTROLMESSAGESYSTEM procedure 8-41
Conversion, strategy for 1-4/6
Converted application GLOSS-1
Converting an application

an approach to 1-6
in C 5-1/33
in COBOL85 4-1/27
in Pascal 6-1
in TACL 7-1/10
in TAL 3-1/54
options 1-7

COPY statement, COBOL85 4-2
CPU

concurrent processes in 1-1, 1-2
efficiency of 1-1

CPU down (-2) system message 4-24
local CPU failure after process called CHECKMONITOR D-5
local CPU failure after process called MONITORCPUS

in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

named process deletion
in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TAL 3-36

CPU number
accepting, displaying, and printing variables containing 8-13
defining a variable for

in C 5-12
in COBOL85 4-3, 4-11
in Pascal 6-5, 6-10
in TACL 7-2
in TAL 3-4, 3-10

defining an EMS token for 8-29
in a process handle 2-14
in an unnamed process file name 2-12

CPU, PIN GLOSS-1

Index

Index–10 096047 Tandem Computers Incorporated

CPU-DOWN message-type keyword, COBOL85 4-20, 4-24
CRE 4-9
CREATE procedure 8-7
CREATEPROCESSNAME procedure 3-17
CREATEREMOTENAME procedure 3-17
Creating a high-PIN process using PROCESS_CREATE_ 3-14/15, 3-16,

5-14, 6-12
Creating disk files 8-7
CREATORACCESSID procedure 3-27, 8-15
CRTPID GLOSS-1
csmall file 5-4
CSOURCE directive in Pascal 6-3
Cyclone system 1-1

D
D-series enhanced interface 1-3
D-series process file name GLOSS-2
D-series system GLOSS-2
D-series-enhanced interface GLOSS-1
Data segment

checking address limits of 8-39
Data swap file size, TNS and TNS/R variances 9-7
DEALLOCATESEGMENT procedure 8-38
DEBUGPROCESS procedure 3-25
DECOMPOSE filter function 2-17, 8-28
DECOMPOSEERROR filter function 2-17, 8-28
DEFAULTS DEFINE 3-32, 5-19, 6-17
DEFINEINFO procedure D-4
DEFINEPOOL procedure D-5
DEFINEREADATTR procedure D-4
DEFINEs

file names D-8
zero suppression D-8

DEFINEs, using with PROCESS_CREATE_ 3-22
Device names

accepting, displaying, and printing variables containing 8-13
defining an EMS token for 8-31
format of 2-8/9
in C 5-8
in COBOL85 4-5
in Pascal 6-6

Index

096047 Tandem Computers Incorporated Index–11

Device names (continued)
in TAL 3-6
length D-4
length of for terminals D-6

Device numbers, defining an EMS token for 8-31
Device simulator process and TMF transactions D-7
Device type inquiry (-106) system message B-1
Device type inquiry (-40) system message B-1
Device, I/O 1-2, GLOSS-2
DEVICEINFO[2] procedure 8-9
Direct I/O transfers 8-35
Disk file names

format of 2-6/8
in C 5-7
in COBOL85 4-4/5
in Pascal 6-6
in TAL 3-5
temporary files 2-7

Disk files
creating 8-7
getting information about 8-9
getting lock information about 8-10
getting open information about 8-12
managing 2-6
purging 8-8
refreshing 8-9
renaming 8-8

Disk volumes
managing 2-6
refreshing 8-9

DISKINFO procedure 8-9
DISK_REFRESH_ procedure 8-9
Distributed Systems Management (DSM) 2-17, 8-29, GLOSS-2

applications GLOSS-2
generating event messages 8-29
receiving and interpreting event messages 8-23
using SPI 8-32

using definition files 8-23
Dollar sign ($) in a file name 8-5
DSM

See Distributed Systems Management (DSM)
Dynamic System Configuration (DSC) 8-31

Index

Index–12 096047 Tandem Computers Incorporated

E
EMS

See Event Management Service (EMS)
ENTER statement, COBOL85 4-4, 4-11
ENV compiler directive 4-9
Error return value 2-5
error return value

in PROCESS_CREATE_ 3-16
Error-checking routines, file-system error numbers in

in C 5-7
in COBOL85 4-4
in Pascal 6-5
in TAL 3-4

error-detail parameter 2-5
in PROCESS_CREATE_ 3-16

Error-return conventions in Guardian procedures 2-5/6
Establishment of communication with node (-111) system message 4-20,

4-24
Event Management Service (EMS) 1-2, 2-17, GLOSS-2

EMSINIT procedure 8-29
event messages C-7, GLOSS-2

defining the buffer for 8-24, 8-29
generating 8-29
receiving and interpreting 8-23

filter 8-28, GLOSS-3
filter functions 2-17, 8-28
using definition files 8-23

EXTDECS file 3-2
Extended data segment GLOSS-2

allocating 8-37
base address of 8-38/39
checking address limits of 8-39
deallocating 8-38
getting information about 8-38
making accessible 8-37

Extended memory link control blocks (XLBs) 8-41
Extended segments

maximum size of 8-39

Index

096047 Tandem Computers Incorporated Index–13

Extended segments, TNS and TNS/R variances
limit checking 9-1

Extended swap file parameter, with PROCESS_CREATE_ 3-14, 3-15,
3-22

F
Fast I/O, COBOL85 4-5
FCB

See file control block (FCB)
File GLOSS-2
FILE clause, COBOL85 4-4
File control block (FCB) GLOSS-2

using with SIO procedures 8-17
File lock information, using TACL to obtain 7-9/10
File names

comparing using FILENAME_COMPARE_ 8-4
comparing using FNAMECOMPARE 8-4
DEFINEs D-8
defining an EMS token for 8-29
device 2-8/9
expanding partially qualified 8-3
extracting parts using FILENAME_DECOMPOSE_ 8-4
format of 2-6/9
in C 5-7
in COBOL85 4-4/6
in Pascal 6-6/7
in TACL 7-3
in TAL 3-5/6
modifying using FILENAME_EDIT_ 8-4
process
temporary D-5
using wild-card characters in 8-5

File number GLOSS-2
File system GLOSS-3
File Utility Program (FUP) 8-33
FILE-CONTROL paragraph, COBOL85 4-4
File-system error lists 8-33

Index

Index–14 096047 Tandem Computers Incorporated

File-system errors
accepting, displaying, and printing variables containing 8-14
checking error returned value 2-5
defining an EMS token for 8-30
error-48 8-8
error-560 2-17, C-6
error-561 2-17
error-563 2-17
error-564 2-17
error-565 2-17
error-566 2-17
error-590 2-17
error-593 2-17
error-597 2-17
error-632 2-17
in COBOL85 4-4
in Pascal 6-5
in TACL 7-2
in TAL 3-4

FILEINFO procedure 8-9
FILEINQUIRE procedure 8-9
FILENAMECOMPARE filter function 8-28
FILENAME_COMPARE_ procedure 8-4
FILENAME_DECOMPOSE_ procedure 8-4
FILENAME_EDIT_ procedure 8-4
FILENAME_RESOLVE_ procedure 8-3, 8-14
FILENAME_SCAN_ procedure 8-3
FILENAME_TO_OLDFILENAME_ procedure 8-6
FILERECINFO procedure 8-9
FILE^OPENERSPHANDLE^ADDR parameter 8-21
FILE^OPENERSPID^ADDR parameter 8-21
FILE_CLOSE_ procedure 3-34, 3-37, 5-21, 5-24, 6-19, 6-22
FILE_CLOSE_CHKPT_ procedure 3-34, 5-21, 6-19
FILE_CREATELIST_ procedure 8-7
FILE_CREATE_ procedure 8-7
FILE_EDIT_ procedure 3-22
FILE_GETINFOBYNAME_ procedure 8-9
FILE_GETINFOLISTBYNAME_ procedure 8-9
FILE_GETINFOLIST_ procedure 3-33, 3-34, 5-19, 5-20, 6-17, 6-18, 8-9
FILE_GETINFO_ procedure 8-9
FILE_GETLOCKINFO_ procedure 8-10
FILE_GETOPENINFO_ procedure 8-12

Index

096047 Tandem Computers Incorporated Index–15

FILE_GETRECEIVEINFO_ open-label field 6-29
FILE_GETRECEIVEINFO_ procedure 3-39, 3-44, 3-49, 5-28, 6-26

open-label field 3-52, 5-31, 6-29
FILE_OPEN_ procedure

direct I/O transfers, opening for 8-35
high-PIN server, opening in C 5-18/19
high-PIN server, opening in Pascal 6-16/17
high-PIN server, opening in TAL 3-32/33
process descriptor, opening in TAL 3-22
$RECEIVE, opening in C 5-22, 5-27
$RECEIVE, opening in Pascal 6-20, 6-25
$RECEIVE, opening in TAL 3-35, 3-42, 3-48

FILE_PURGE_ procedure 8-8
FILE_RENAME_ procedure 8-8
Filter functions, EMS

DECOMPOSE 2-17, 8-28
DECOMPOSEERROR 2-17, 8-28
FILENAMECOMPARE 8-28
FNAMECOMPARE 2-17

Filter, EMS GLOSS-3
in DSM application 8-28

FNAMECOLLAPSE procedure D-4
FNAMECOMPARE filter function 2-17
FNAMECOMPARE procedure 8-4
FUNCTION reserved word 4-7
FUP 8-33

G
GETCRTPID procedure

getting process information 3-27, 8-15
using with MYPID

in C 5-13
in Pascal 6-11
in TAL 3-11

GETPCBINFO procedure 3-27, 8-15
GETREMOTECRTPID procedure 3-27, 8-15
GIVING phrase

ENTER TAL statement, COBOL85 4-4
SORT or MERGE statement, COBOL85 4-5

GMOM process 3-26, GLOSS-3

Index

Index–16 096047 Tandem Computers Incorporated

GPLDEFS file GLOSS-3
using with SIO procedures 8-17

Guardian procedures
See Procedures, Guardian

H
High PIN GLOSS-3
High-PIN creator

allowing
High-PIN creator, allowing 1-8, 3-38/45
High-PIN opener, allowing 1-8

in C 5-25/33
in COBOL85 4-22/27
in Pascal 6-23
in TAL 3-46/54

High-PIN process
communicating with 1-8
creating 1-8

in C 5-14/15
in COBOL85 4-13/14
in Pascal 6-12/13
in TACL 7-5/6
in TAL 3-14
with PROCESS_CREATE_ 3-14/15, 3-16
with TACL RUN command 7-6

creating in TAL 3-23
creating using TACL #NEWPROCESS built-in function 7-6
definition 1-3
opening 1-8
running as

in C 5-11/13
in COBOL85 4-8/12
in Pascal 6-9/11
in TAL 3-9/12

High-PIN server
communicating with

in C 5-18/24
in COBOL85 4-15, 4-17/21
in Pascal 6-16/22
in TAL 3-31/37

Index

096047 Tandem Computers Incorporated Index–17

High-PIN server (continued)
monitoring

in C 5-22/24
in COBOL85 4-17
in Pascal 6-20/22
in TAL 3-35/37

opening
in C 5-18/20
in COBOL85 4-17
in Pascal 6-16/18
in TAL 3-31/34

HIGHPIN object-file attribute 2-18, 7-6
displaying

in C 5-12
in COBOL85 4-10
in Pascal 6-10
in TAL 3-10

setting
in C 5-12
in COBOL85 4-10
in Pascal 6-9/10
in TAL 3-10

HIGHPIN TACL RUN option 7-6
HIGHREQUESTERS object-file attribute 2-18/19, 3-39

in C 5-27, 5-33
in COBOL85 4-27
in Pascal 6-25, 6-31
in TAL 3-42, 3-45, 3-48, 3-54

I
I/O, direct 8-35
Identification

device names over a network C-2, C-4
file names over a network C-2, C-4
processes over a network C-3

Inherited force-low characteristic 3-14, 4-14, C-5/6
INITIALIZER procedure D-3

Index

Index–18 096047 Tandem Computers Incorporated

Input/output
channels 1-1
configurations 1-1
devices 1-2
subdevices 1-2

Input/output process (IOP) 1-1, GLOSS-3
Inspect, invoking using Debug 3-25
Interprocess communication GLOSS-3
Invalid operation error 3-52, 5-31, 6-29
IOP 1-1, GLOSS-3

L
largec file 5-4
LASTADDR procedure 8-39
LASTADDRX procedure 8-39
LASTRECEIVE procedure 3-39

in C 5-28
in Pascal 6-26
in TAL 3-44, 3-49
synthetic process ID C-7

LCBs 8-41
Length of device names D-4
Library file

using with a C high-PIN process 5-12
using with a COBOL85 high-PIN process 4-10
using with a Pascal high-PIN process 6-10
using with a TAL high-PIN process 3-10

Library file parameter with PROCESS_CREATE_ 3-14, 3-15
LIBRARY option, ENV compiler directive 4-9
Link control blocks (LCBs) 8-41
LOAD command (FUP) 8-33
Lock information for a file 8-10
LOCKINFO procedure 8-10, C-7
LOOKUPPROCESSNAME procedure 3-27, 3-39, 3-40/41, 8-15, C-7
Loss of communication with node (-110) system message

in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

Index

096047 Tandem Computers Incorporated Index–19

Low PIN GLOSS-3
Low-PIN process

creating using TACL #NEWPROCESS built-in function 7-6
creating using TACL RUN command 7-6
definition 1-3

M
Memory lock completion (-23) system message B-1
Memory lock failure (-24) system message B-1
Memory pages

size, TNS and TNS/R variances 9-1
Memory-management procedure calls 8-37
Memory-model files 5-4
MERGE statement, COBOL85 4-5
MESSAGE SOURCE clause, COBOL85 4-21, 4-25
Message system GLOSS-3
Message system interface 8-41
Messages, system

See System messages
Migrating applications 1-4
Migration considerations

aggregate SDU buffer D-3
application problems D-1
ATP6100 D-5, D-6
DEFINEPOOL D-5
DEFINEs D-8
device simulator process D-7
INITIALIZER procedure D-3
node name D-4
nowait write buffer integrity D-7
pool space D-5
process pairs D-5
RESIZEPOOL D-5
system name D-4
temporary file names D-5
TERMPROCESS D-6
undefined condition codes D-3

Millicode GLOSS-3
Module heading 6-4
Module part of procedure names 2-2
MOM procedure 3-27, 3-39, 3-40, 8-15, C-7

Index

Index–20 096047 Tandem Computers Incorporated

Mom process 3-26, GLOSS-3
Monitor process pair, converting 1-6, 1-9/10
MONITORCPUS procedure 3-37, 5-24, 6-22
MONITORNET procedure 3-37, 5-24, 6-22
Monolithic program

See Single-process applications
Multiple-process applications 1-5/6
MYGMOM procedure 3-27, 8-15
MYPID procedure

in C 5-13
in COBOL85 4-12
in Pascal 6-10
in TAL 3-11

MYTERM procedure 3-27, 8-15

N
Named process C-8, GLOSS-3
Naming conventions for Guardian procedures 2-2
Nested error list GLOSS-4
Network form of process ID C-3
NETWORK message-type keyword, COBOL85 4-20, 4-24
NEWPROCESS procedure 3-14
NEWPROCESSNOWAIT completion (-12) system message 3-16, 5-15,

6-13
NEWPROCESSNOWAIT procedure 3-15, 5-14, 6-12
Node GLOSS-4
Node (system) name GLOSS-4
Node (system) name, defining an EMS token for 8-29
Node (system) number

defining an EMS token for 8-29
in a process handle 2-14

Node name D-4
NODE-DOWN message-type keyword, COBOL85 4-20, 4-24
NODE-UP message-type keyword, COBOL85 4-20, 4-24
Nowait DEVICEINFO2 completion (-41) system message B-1
Nowait FILENAME_FINDNEXT_ completion (-109) system

message B-1
Nowait FILE_GETINFOBYNAME_ completion (-108) system

message 8-9, B-1

Index

096047 Tandem Computers Incorporated Index–21

Nowait process creation
using NEWPROCESSNOWAIT 3-15
using PROCESS_CREATE_ 3-15

Nowait PROCESS_CREATE_ completion (-102) system message B-1
in C 5-15
in Pascal 6-13
in TAL 3-16, 3-18

Nowait write buffer integrity D-7
Null process handle

using in Guardian procedures 2-16

O
Object file GLOSS-4
Object part of procedure names 2-2
Object-file attributes 1-3, 2-18/19, GLOSS-4
Odd-byte references, TNS and TNS/R variances 9-6
OLD option, ENV compiler directive 4-9
OLDFILENAME_TO_FILENAME_ procedure 8-6
OLD^RECEIVE SIO declaration 8-22
Open (-103) system message B-1

in C 5-29, 5-30
in COBOL85 4-23
in Pascal 6-27, 6-28
in TAL 3-43, 3-50, 3-51

Open (-30) system message B-1, C-7
in C 5-29
in COBOL85 4-23
in Pascal 6-27
in TAL 3-43, 3-50

OPEN message-type keyword, COBOL85 4-23
OPEN procedure C-8

server, opening in C 5-18
server, opening in Pascal 6-16
server, opening in TAL 3-32
$RECEIVE, opening in C 5-22, 5-27
$RECEIVE, opening in Pascal 6-20, 6-25
$RECEIVE, opening in TAL 3-35, 3-41, 3-48

OPEN statement, COBOL85 4-17, 4-26

Index

Index–22 096047 Tandem Computers Incorporated

Opener table C-6
adding an entry after an open

in C 5-30
in Pascal 6-28
in TAL 3-51

defining for OPENER_LOST_
in C 5-26
in Pascal 6-24
in TAL 3-47

deleting an entry after a close
in C 5-30
in Pascal 6-28
in TAL 3-51

identifying an opener in
in C 5-9
in COBOL85 4-26
in Pascal 6-7

maintaining using OPENER_LOST_
in C 5-32
in Pascal 6-30
in TAL 3-53

OPENER_LOST_ procedure 2-16
in C 5-26, 5-32
in Pascal 6-24, 6-30
in TAL 3-47, 3-53

OPENINFO procedure 8-12, C-7
Opens, number of

per disk volume 1-2
per I/O subdevice 1-2

OPEN^FILE flags parameter 8-22
Operating system 1-1

C-series 1-1
D-series 1-1
security C-1

Overflow indicator, TNS and TNS/R variances 9-2

Index

096047 Tandem Computers Incorporated Index–23

P
P register, TNS and TNS/R variances 9-3
P-relative objects, TNS and TNS/R variances 9-7
Page

See Memory pages
Parameter conventions in Guardian procedures 2-2/5
Parameter error 2-5
Pascal

communicating with high-PIN server 6-16/22
communicating with server 6-16/22
compiler 6-8, 6-9, 6-15, 6-31
converting a requester in 6-14, 6-16/22
converting a server 6-23/30
converting an application 6-1
converting to D-series Guardian procedures 6-8
CPU numbers in 6-5, 6-10
creating high-PIN process 6-12/13
device names in 6-6
disk file names in 6-6
file names in 6-6/7
file-system errors in 6-5
HIGHPIN object-file attribute 6-9/10
HIGHREQUESTERS object-file attribute 6-31
in Common Run-Time Environment (CRE) 4-9
monitoring a server 6-20/22
monitoring high-PIN server 6-20/22
opener table 6-7
opening a server 6-16/19
opening high-PIN server 6-16/19
PIN in 6-5, 6-10
process descriptor in 6-7
process file name in 6-7
process handle in 6-7
process ID in 6-7
RUN command with 6-8
RUNNAMED object-file attribute 6-15
running high-PIN process 6-9/11
subvolume defaulting in 6-7
using library file from high-PIN process 6-10

PASEXT file 6-3
Performance, I/O, using SETMODE function-72 1-2, 2-17, 8-35

Index

Index–24 096047 Tandem Computers Incorporated

PEXTDECS file 6-3
PFS

See Process file segment (PFS)
PHANDLE data type 7-3
PID GLOSS-4
PIN GLOSS-4

See Process identification number (PIN)
PIN method, allocating an extended data segment 8-37
Pointers

uninitialized, TNS and TNS/R variances 9-6
Pool space

assuring adequate amount D-5
Pound sign (#) in a file name 8-5
Primary-process open 3-51, 5-30, 6-28
Printed reports, generated by an application 8-13
PRIORITY procedure 3-27, 3-28, 8-15
Procedures

CHECKMONITOR D-5
DEFINEREADATTR D-4
FNAMECOLLAPSE D-4
INITIALIZER D-3

Procedures,
DEFINEINFO D-4

Procedures, D-series
converting to

in C 5-9
in COBOL85 4-7
in Pascal 6-8

error-return conventions 2-5/6
naming conventions 2-2
null process handle in 2-16
parameter conventions 2-2/5
table of A-1/8

Procedures, Guardian 1-2, 2-1
See also Procedures, D-series
ABEND 3-26
ACTIVATEPROCESS 3-24
ADDRESS_DELIMIT_ 8-39
ALLOCATESEGMENT 8-37
ALTERPRIORITY 3-28
ARMTRAP 4-11
AWAITIO[X] 3-33, 3-34, 5-19, 5-20, 6-17, 6-18

Index

096047 Tandem Computers Incorporated Index–25

Procedures, Guardian (continued)
BREAKMESSAGE_SEND_ 8-16
CBCINFO 3-27, 8-15
CHECKALLOCATESEGMENT 8-37
CHECKCLOSE 3-34, 5-21, 6-19
CHECKMONITOR 3-34, 5-20, 6-18
CHECKOPEN 3-33, 5-20, 6-18
CHILD_LOST_

in C 5-24
in Pascal 6-22
in TAL 3-37

CLOSE
high-PIN server using C 5-21
high-PIN server using Pascal 6-19
high-PIN server using TAL 3-34
$RECEIVE using C 5-24
$RECEIVE using Pascal 6-22
$RECEIVE using TAL 3-37

CONTROLMESSAGESYSTEM 8-41
CREATE 8-7
CREATEPROCESSNAME 3-17
CREATEREMOTENAME 3-17
CREATORACCESSID 3-27, 8-15
DEALLOCATESEGMENT 8-38
DEBUGPROCESS 3-25
DEFINEPOOL D-5
DEVICEINFO[2] 8-9
DISKINFO 8-9
DISK_REFRESH_ 8-9
FILEINFO 8-9
FILEINQUIRE 8-9
FILENAME_COMPARE_ 8-4
FILENAME_DECOMPOSE_ 8-4
FILENAME_EDIT_ 8-4
FILENAME_RESOLVE_ 8-3, 8-14
FILENAME_SCAN_ 8-3
FILENAME_TO_OLDFILENAME_ 8-6
FILERECINFO 8-9
FILE_CLOSE_ 3-34, 3-37, 5-21, 5-24, 6-19, 6-22
FILE_CLOSE_CHKPT_ 3-34, 5-21, 6-19
FILE_CREATELIST_ 8-7
FILE_CREATE_ 8-7

Index

Index–26 096047 Tandem Computers Incorporated

Procedures, Guardian (continued)
FILE_EDIT_ 3-22
FILE_GETINFOBYNAME_ 8-9
FILE_GETINFOLISTBYNAME_ 8-9
FILE_GETINFOLIST_ 3-33, 3-34, 5-19, 5-20, 6-17, 6-18, 8-9
FILE_GETINFO_ 8-9
FILE_GETLOCKINFO_ 8-10
FILE_GETOPENINFO_ 8-12
FILE_GETRECEIVEINFO_ 3-39, 3-44, 3-49, 5-28, 6-26
FILE_OPEN_

direct I/O transfers, opening for 8-35
high-PIN server, opening in C 5-18/19
high-PIN server, opening in Pascal 6-16/17
high-PIN server, opening in TAL 3-32/33
process descriptor, opening in TAL 3-22
$RECEIVE, opening in C 5-22, 5-27
$RECEIVE, opening in Pascal 6-20, 6-25
$RECEIVE, opening in TAL 3-35, 3-42, 3-48

FILE_PURGE_ 8-8
FILE_RENAME_ 8-8
FNAMECOMPARE 8-4
GETCRTPID

getting process information 3-27, 8-15
using with MYPID, in C 5-13
using with MYPID, in Pascal 6-11
using with MYPID, in TAL 3-11

GETPCBINFO 3-27, 8-15
GETREMOTECRTPID 3-27, 8-15
LASTADDR 8-39
LASTADDRX 8-39
LASTRECEIVE 3-39, 3-44

in C 5-28
in Pascal 6-26
in TAL 3-49
synthetic process ID C-7

LOCKINFO 8-10
LOOKUPPROCESSNAME 3-27, 3-39, 3-40/41, 8-15
MOM 3-27, 3-39, 3-40, 8-15
MONITORCPUS 3-37, 5-24, 6-22
MONITORNET 3-37, 5-24, 6-22
MYGMOM 3-27, 8-15

Index

096047 Tandem Computers Incorporated Index–27

Procedures, Guardian (continued)
MYPID

in C 5-13
in COBOL85 4-12
in Pascal 6-10
in TAL 3-11

MYTERM 3-27, 8-15
NEWPROCESS 3-14
NEWPROCESSNOWAIT 3-15, 5-14, 6-12
OLDFILENAME_TO_FILENAME_ 8-6
OPEN C-8

$RECEIVE, opening in C 5-22, 5-27
$RECEIVE, opening in Pascal 6-20, 6-25
$RECEIVE, opening in TAL 3-35, 3-41, 3-48

OPENER_LOST_ 2-16
in C 5-26
in Pascal 6-24
in TAL 3-47

OPENINFO 8-12
PRIORITY 3-27, 3-28, 8-15
PROCESSFILESECURITY 3-27, 3-28, 8-15
PROCESSHANDLE_DECOMPOSE_ 8-15

and a process-handle token 8-27
in C 5-13
in COBOL85 4-12, 4-21, 4-25
in Pascal 6-11
in TAL 3-11

PROCESSHANDLE_GETMINE_
in C 5-13
in COBOL85 4-12
in Pascal 6-11
in TAL 3-11

PROCESSHANDLE_NULLIT_ 2-16
PROCESSHANDLE_TO_FILENAME_ 3-21, 8-27
PROCESSHANDLE_TO_STRING_ 8-15
PROCESSINFO 8-15, C-7

in TAL 3-11, 3-27
using with MYPID, in C 5-13
using with MYPID, in Pascal 6-11
using with MYPID, in TAL 3-11

PROCESSSTRING_SCAN_ 8-14
PROCESSTIME 3-27, 8-15

Index

Index–28 096047 Tandem Computers Incorporated

Procedures, Guardian (continued)
PROCESS_ACTIVATE_ 3-24
PROCESS_CREATE_ 2-10, 3-14/15, 3-16
PROCESS_DEBUG_ 3-25
PROCESS_GETINFOLIST_ 3-27, 3-28
PROCESS_GETINFO_ 3-27

getting creators ID 3-40
PROCESS_GETPAIRINFO_ 3-27, 3-40/41
PROCESS_SETINFO_ 3-28/29
PROCESS_SETSTRINGINFO_ 3-28/29
PROCESS_STOP_ 3-26/27
PROCESS_SUSPEND_ 3-24
PROGRAMFILENAME 3-27, 8-15
PURGE 8-8
READUPDATE[X]

reading from $RECEIVE in C 5-23, 5-28
reading from $RECEIVE in Pascal 6-21, 6-26
reading from $RECEIVE in TAL 3-36, 3-43, 3-49

READ[X]
direct I/O transfers 8-36
reading from $RECEIVE in C 5-23, 5-28
reading from $RECEIVE in Pascal 6-21, 6-26
reading from $RECEIVE in TAL 3-36, 3-43, 3-49

RECEIVEINFO 3-39, 3-44, 3-49, 5-28, 6-26, C-7
REFRESH 8-9
RENAME 8-8
RESERVELCBS 8-41
RESIZEPOOL D-5
SEGMENTSIZE 8-38
SEGMENT_ALLOCATE_ 8-37
SEGMENT_ALLOCATE_CHKPT_ 8-37
SEGMENT_DEALLOCATE_ 8-38
SEGMENT_DEALLOCATE_CHKPT_ 8-38
SEGMENT_GETBACKUPINFO_ 8-39
SEGMENT_GETINFO_ 8-38
SEGMENT_USE_ 8-37
SENDBREAKMESSAGE 8-16, C-7
server, opening in C 5-18
server, opening in Pascal 6-16
server, opening in TAL 3-32

Index

096047 Tandem Computers Incorporated Index–29

Procedures, Guardian (continued)
SETMODE

function-11 3-12, 5-13, 6-11, 8-16
function-141 8-35
function-72 1-2, 2-17, 8-35

SETMYTERM 3-28
SHIFTSTRING 8-6
STEPMOM 3-28
STOP 3-26
STRING_UPSHIFT_ 8-6
SUSPENDPROCESS 3-24
USESEGMENT 8-37
WRITEREAD[X] 3-34, 5-21, 6-19, 8-36, C-8
WRITE[X] 8-33, 8-36, C-8

Procedures, sequential I/O (SIO)
See Sequential I/O (SIO) procedures

Procedures, use of undocumented D-1
Procedures, use of undocumented side effects D-1
Process GLOSS-4

abending 3-26, 4-14
activating 3-24, 4-14
debugging 3-25
displaying information about 8-15
getting information about 8-15
high-PIN, managing 3-23/29, 4-14
stopping 3-26, 4-14
suspending 3-24, 4-14

Process abnormal deletion, abend (-6) system message
in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6/7
in TAL 3-36

Process close (-104) system message B-1
in C 5-29, 5-30
in COBOL85 4-23
in Pascal 6-27, 6-28
in TAL 3-43, 3-50, 3-51

Process close (-31) system message B-1
in C 5-29
in Pascal 6-27
in TAL 3-43, 3-50

Index

Index–30 096047 Tandem Computers Incorporated

Process CONTROL (-32) system message B-1
Process CONTROLBUF (-35) system message B-1
Process creation

swap file size, TNS and TNS/R variances 9-7
Process deletion (-101) system message

distinguishing recipient of 3-22/23
in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6/7
in TAL 3-26, 3-36

Process descriptor GLOSS-4
as PROCESS_CREATE_ output parameter 3-18
converting from a process handle 7-4
converting to a process handle 7-4
defining an EMS token for 8-30
format of 2-14
in C 5-9
in COBOL85 4-6
in Pascal 6-7
in TACL 7-3/4
in TAL 3-7
using in FILE_OPEN_ 3-22

Process file names 1-2, GLOSS-4
C-series 2-10/14
D-series 2-10/14
format for a named process 2-11/13
format for an unnamed process 2-12/13
in C 5-8
in COBOL85 4-5/6
in Pascal 6-7
in TACL 7-3
in TAL 3-6

Process file segment (PFS) 1-2, 2-17, 8-35, GLOSS-4
using buffers for nowait I/O 8-36

Process handle 1-2, 2-14/16, GLOSS-4
converting from a process descriptor 7-4
converting to a process descriptor 7-4
defining an EMS token for 8-27, 8-30
in C 5-9
in COBOL85 4-6
in Pascal 6-7

Index

096047 Tandem Computers Incorporated Index–31

Process handle (continued)
in TACL 7-3/4
in TAL 3-7
null 2-4
using as a procedure parameter 2-4

Process ID GLOSS-4
in C 5-9
in COBOL85 4-6
in Pascal 6-7
in TACL 7-3/4
in TAL 3-7
network form of C-3
timestamp form of C-3

Process identification number GLOSS-4
source of PIN 255 D-8

Process identification number (PIN)
accepting, displaying, and printing variables containing 8-13
defining a variable for

in C 5-12
in COBOL85 4-3, 4-11
in Pascal 6-5, 6-10
in TACL 7-2
in TAL 3-4, 3-10

defining an EMS token for 8-29
definition 1-3
in a process handle 2-14
in an unnamed process file name 2-12

Process identifiers 2-16
Process identifiers over a network C-3
Process names GLOSS-4

accepting, displaying, and printing variables containing 8-13
format of 2-10
in a process file name 2-11
specifying using PROCESSNAME_CREATE_ 3-20
specifying using PROCESS_CREATE_ 3-18
system-generated 3-18, 3-20

Process normal deletion, stop (-5) system message
in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6/7
in TAL 3-36

Index

Index–32 096047 Tandem Computers Incorporated

Process open (-103) system message B-1
in C 5-29, 5-30
in COBOL85 4-23
in Pascal 6-27, 6-28
in TAL 3-43, 3-50, 3-51

Process open (-30) system message B-1, C-7
in C 5-29
in COBOL85 4-23
in Pascal 6-27
in TAL 3-43, 3-50

Process pair index, in a process handle 2-15
Process pairs,migrating D-5
Process RESETSYNC (-34) system message B-1
Process SETMODE (-33) system message B-1
Process SETPARAM (-37) system message B-1
Process string GLOSS-5
Process time timeout (-26) system message B-1
PROCESS-DELETION message-type keyword, COBOL85 4-20
PROCESSFILESECURITY procedure 3-27, 3-28, 8-15
PROCESSHANDLE_DECOMPOSE_ procedure 8-15

and a process-handle token 8-27
in C 5-13
in COBOL85 4-12, 4-21, 4-25
in Pascal 6-11
in TAL 3-11

PROCESSHANDLE_GETMINE_ procedure
in C 5-13
in COBOL85 4-12
in TAL 3-11
in Pascal 6-11

PROCESSHANDLE_NULLIT_ procedure 2-16
PROCESSHANDLE_TO_FILENAME_ procedure 3-21, 8-27
PROCESSHANDLE_TO_STRING_ procedure 8-15
PROCESSINFO procedure 8-15

and synthetic process ID C-7
in TAL 3-11, 3-27
using with MYPID

in C 5-13
in Pascal 6-11
in TAL 3-11

PROCESSSTRING_SCAN_ procedure 8-14
PROCESSTIME procedure 3-27, 8-15

Index

096047 Tandem Computers Incorporated Index–33

PROCESS_ACTIVATE_ procedure 3-24
PROCESS_CREATE_ procedure

called by TACL 7-6
running C compiler 5-10
running COBOL85 compiler 4-7
running Pascal compiler 6-8
running TAL compiler 3-8

creating high-PIN process 3-14/15, 3-16
naming processes 2-10

PROCESS_DEBUG_ procedure 3-25
PROCESS_GETINFOLIST_ procedure 3-27, 3-28
PROCESS_GETINFO_ procedure 3-27

getting creators ID 3-40
PROCESS_GETPAIRINFO_ procedure 3-27, 3-40/41
PROCESS_SETINFO_ procedure 3-28/29
PROCESS_SETSTRINGINFO_ procedure 3-28/29
PROCESS_STOP_ procedure 3-26/27
PROCESS_SUSPEND_ procedure 3-24
Program GLOSS-5
Program counter register, TNS and TNS/R variances 9-3
Program file GLOSS-5
PROGRAMFILENAME procedure 3-27, 8-15
PURGE procedure 8-8
Purging a disk file 8-8

Q
Qualifier

device name 2-8/9
named process file name 2-12

Question mark (?) as a wild-card character 8-5
Queued message cancellation (-38) system message B-1

R
RCPU instruction, TNS and TNS/R variances 9-4
READ statement, COBOL85 4-17, 4-26
READUPDATE[X] procedure

reading from $RECEIVE
in C 5-23, 5-28
in Pascal 6-21, 6-26
in TAL 3-36, 3-43, 3-49

Index

Index–34 096047 Tandem Computers Incorporated

READ[X] procedure
direct I/O transfers 8-36
reading from $RECEIVE

in C 5-23, 5-28
in Pascal 6-21, 6-26
in TAL 3-36, 3-43, 3-49

RECEIVE
See $RECEIVE

RECEIVE-CONTROL paragraph, COBOL85 4-17, 4-23
RECEIVEINFO procedure 3-39, 3-44, 3-49, 5-28, 6-26, C-7
Reduced instruction-set computing (RISC) GLOSS-5
REFRESH procedure 8-9
Refreshing a disk file or volume 8-9
Register stack, TNS and TNS/R variances 9-3
Remote CPU down (-100) system message

in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

Remote CPU up (-113) system message
in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

REMOTE-CPU-DOWN message-type keyword, COBOL85 4-20, 4-24
REMOTE-CPU-UP message-type keyword, COBOL85 4-20, 4-24
RENAME procedure 8-8
Renaming a disk file 8-8
REPORT clause, COBOL85 4-18, 4-23/25
Requester GLOSS-5

converting 1-5, 1-6/7
in C 5-18/24
in COBOL85 4-16/21
in Pascal 6-14, 6-16/22
in TAL 3-30/37

Reserved words, converting for new 4-7
RESERVELCBS procedure 8-41
RESIZEPOOL procedure D-5
RISC GLOSS-5
RISC instructions GLOSS-5
RUN command, TACL 2-10, 3-8, 4-7, 5-10, 6-8, 7-6

Index

096047 Tandem Computers Incorporated Index–35

RUNNAMED object-file attribute 2-18/19
in C 5-17
in COBOL85 4-15/16
in Pascal 6-15
in TAL 3-19, 3-20, 3-30/31

S
Safeguard subsystem C-1
SDU buffer D-3
Security

file C-1
operating system C-1
process and file C-1
Safeguard subsystem C-1
violation, when purging a file 8-8
violation, when renaming a file 8-8

Segment GLOSS-5
SEGMENTSIZE procedure 8-38
SEGMENT_ALLOCATE_ procedure 8-37
SEGMENT_ALLOCATE_CHKPT_ procedure 8-37
SEGMENT_DEALLOCATE_ procedure 8-38
SEGMENT_DEALLOCATE_CHKPT_ procedure 8-38
SEGMENT_GETBACKUPINFO_ procedure 8-39
SEGMENT_GETINFO_ procedure 8-38
SEGMENT_USE_ procedure 8-37
SELECT clause, COBOL85 4-4
SENDBREAKMESSAGE procedure 8-16, C-7
Sequence number

accepting, displaying, or printing variables containing 8-13
defining an EMS token for 8-30
in a named process file name 2-11
in an unnamed process file name 2-12

Sequential I/O (SIO) procedures 2-1, 8-17/22, GLOSS-5
CHECK[FILE 8-21
OLD^RECEIVE declaration 8-22
OPEN^FILE flags parameter 8-22
SET[FILE 8-19/20

SET^OPENERSPHANDLE parameter 8-20
SET^OPENERSPID parameter 8-20
SET^SYSTEMMESSAGES parameter 8-20
SET^SYSTEMMESSAGESMANY parameter 8-20

Index

Index–36 096047 Tandem Computers Incorporated

Sequential I/O (SIO) procedures (continued)
using common FCB with 8-19
using FCB with 8-17/19
using GPLDEFS file with 8-17

Server GLOSS-5
communicating with

in C 5-18/24
in COBOL85 4-17/21
in Pascal 6-16/22
in TAL 3-31/37

converting 1-6/7
in C 5-25/32
in COBOL85 4-22/26
in Pascal 6-23/30
in TAL 3-46/53
no opener table 1-5
with opener table 1-6

monitoring
in C 5-22/24
in COBOL85 4-17
in Pascal 6-20/22
in TAL 3-35/37

opening
for backup process using CHECKOPEN 3-33, 5-20, 6-18
in C 5-18/20
in COBOL85 4-17
in Pascal 6-16/18
in TAL 3-31/34
using FILE_OPEN_ 3-32, 5-18, 6-16
using OPEN 3-32, 5-18, 6-16

SET command, TACL 7-6
SETMODE procedure

function-11 3-12, 5-13, 6-11, 8-16
function-141 8-35
function-72 1-2, 2-17, 8-35

SETMYTERM procedure 3-28
SET[FILE procedure 8-19/20
SET^OPENERSPHANDLE parameter 8-20
SET^OPENERSPID parameter 8-20
SET^SYSTEMMESSAGES parameter 8-20
SET^SYSTEMMESSAGESMANY parameter 8-20
Shared files, in Common Run-Time Environment (CRE) 4-9

Index

096047 Tandem Computers Incorporated Index–37

Shift instructions with dynamic shift counts, TNS and TNS/R
variances 9-7

SHIFTSTRING procedure 8-6
SHOW command, TACL 7-6
Simple token GLOSS-5
Single-process applications 1-5
SIO procedures

See Sequential I/O (SIO) procedures
Size

extended segments 8-39
memory pages, TNS and TNS/R variances 9-1

smallc file 5-4
SORT statement, COBOL85 4-5
SOURCE directive

in Pascal 6-3
in TAL 3-2

SPECIAL-NAMES paragraph, COBOL85 4-4
SPI

See Subsystem Programmatic Interface (SPI)
Spooler job file names, in COBOL85 4-5
SSGET SPI procedure 8-32
Stack wrapping, TNS and TNS/R variances 9-5
Status return parameter 2-5
STEPMOM procedure 3-28
Stop (-5) system message

in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6/7
in TAL 3-36

STOP message-type keyword, COBOL85 4-20
STOP procedure 3-26
String parameters

declaring 2-3
specifying length of 2-3/4
using in Guardian procedures 2-3/4

STRING_UPSHIFT_ procedure 8-6
Structured token GLOSS-6
Subdevice, I/O 1-2
Subordinate name inquiry (-107) system message B-1

Index

Index–38 096047 Tandem Computers Incorporated

Subsystem Programmatic Interface (SPI) 1-2, 2-17, GLOSS-6
converting an application 8-32
SSGET procedure 8-32
using definition files 8-23

Subvolume defaulting 2-7, 8-14
in C 5-9
in COBOL85 4-6/7
in Pascal 6-7
in TACL 7-4
in TAL 3-7

SUSPENDPROCESS procedure 3-24
Swap file GLOSS-6

for an extended data segment 8-38
Swap file parameter with PROCESS_CREATE_ 3-14, 3-15
Swap file size, TNS and TNS/R variances 9-7
SYMSERV process

with C compiler 5-10
with COBOL85 compiler 4-7
with Pascal compiler 6-8
with TAL compiler 3-8

Synthetic process ID 1-3, C-7, D-8, GLOSS-6
System global data, TNS and TNS/R variances 9-4
System messages 1-2, 2-16, GLOSS-6

See also System messages, handling
Abend (-6)

in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6
in TAL 3-36

Break (-20) 8-16
Break-on-device (-105) 8-16
Change in status of network node (-8)

in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

Close (-104) 3-43, 3-50/51, 4-23, 5-29/30, 6-27/28, B-1
Close (-31) 3-43, 3-50, 4-23, 5-29, 6-27, B-1

Index

096047 Tandem Computers Incorporated Index–39

System messages (continued)
CPU down (-2) 4-24

local CPU failure after process called CHECKMONITOR D-5
local CPU failure after process called MONITORCPUS, in C 5-24,

5-30
local CPU failure after process called MONITORCPUS, in

COBOL85 4-20, 4-24
local CPU failure after process called MONITORCPUS, in

Pascal 6-22, 6-28
local CPU failure after process called MONITORCPUS, in

TAL 3-37, 3-51
named process deletion 3-36, 4-20, 5-23, 6-21

Device type inquiry (-106) B-1
Device type inquiry (-40) B-1
Establishment of communication with node (-111) 4-20, 4-24
Loss of communication with node (-110)

in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

Memory lock completion (-23) B-1
Memory lock failure (-24) B-1
message-100

in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

message-101
in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6/7
in TAL 3-26, 3-36

message-102 B-1
in C 5-15
in Pascal 6-13
in TAL 3-16, 3-18

message-103 B-1
in C 5-29, 5-30
in COBOL85 4-23
in Pascal 6-27, 6-28
in TAL 3-43, 3-50, 3-51

Index

Index–40 096047 Tandem Computers Incorporated

System messages (continued)
message-104 B-1

in C 5-29, 5-30
in COBOL85 4-23
in Pascal 6-27, 6-28
in TAL 3-43, 3-50, 3-51

message-105 8-16
message-106 B-1
message-107 B-1
message-108 8-9, B-1
message-109 B-1
message-110

in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

message-111 4-20, 4-24
message-113

in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

message-12
in C 5-15
in Pascal 6-13
in TAL 3-16

message-2 4-24
local CPU failure after process called MONITORCPUS, in C 5-24,

5-30
local CPU failure after process called MONITORCPUS, in

COBOL85 4-20, 4-24
local CPU failure after process called MONITORCPUS, in

Pascal 6-22, 6-28
local CPU failure after process called MONITORCPUS, in

TAL 3-37, 3-51
named process deletion 3-36, 4-20, 5-23, 6-21

message-20 8-16
message-23 B-1
message-24 B-1
message-26 B-1

Index

096047 Tandem Computers Incorporated Index–41

System messages (continued)
message-30 B-1, C-7

in C 5-29
in COBOL85 4-23
in Pascal 6-27
in TAL 3-43, 3-50

message-31 4-23, B-1
in C 5-29
in Pascal 6-27
in TAL 3-43, 3-50

message-32 B-1
message-33 B-1
message-34 B-1
message-35 B-1
message-37 B-1
message-38 B-1
message-40 B-1
message-41 B-1
message-5

in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6/7
in TAL 3-36

message-6
in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6/7
in TAL 3-36

message-8
in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

NEWPROCESSNOWAIT completion (-12) 3-16, 5-15, 6-13
Nowait DEVICEINFO2 completion (-41) B-1
Nowait FILENAME_FINDNEXT_ completion (-109) B-1
Nowait FILE_GETINFOBYNAME_ completion (-108) 8-9, B-1

Index

Index–42 096047 Tandem Computers Incorporated

System messages (continued)
Nowait PROCESS_CREATE_ completion (-102) B-1

in C 5-15
in Pascal 6-13
in TAL 3-16, 3-18

Open (-103) B-1
in C 5-29, 5-30
in COBOL85 4-23
in Pascal 6-27, 6-28
in TAL 3-43, 3-50, 3-51

Open (-30) B-1, C-7
in C 5-29
in COBOL85 4-23
in Pascal 6-27
in TAL 3-43, 3-50

Process abnormal deletion, abend (-6)
in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6/7
in TAL 3-36

Process close (-104) B-1
in C 5-29, 5-30
in Pascal 6-27, 6-28
in TAL 3-43, 3-50, 3-51

Process close (-31) B-1
in C 5-29
in Pascal 6-27
in TAL 3-43, 3-50

Process CONTROL (-32) B-1
Process CONTROLBUF (-35) B-1
Process deletion (-101)

distinguishing recipient of 3-22/23
in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6/7
in TAL 3-26, 3-36

Index

096047 Tandem Computers Incorporated Index–43

System messages (continued)
Process normal deletion, stop (-5)

in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6/7
in TAL 3-36

Process open (-103) B-1
in C 5-29, 5-30
in COBOL85 4-23
in Pascal 6-27, 6-28
in TAL 3-43, 3-50, 3-51

Process open (-30) B-1, C-7
in C 5-29
in COBOL85 4-23
in Pascal 6-27
in TAL 3-43, 3-50

Process RESETSYNC (-34) B-1
Process SETMODE (-33) B-1
Process SETPARAM (-37) B-1
Process timeout (-26) B-1
Queued message cancellation (-38) B-1
Remote CPU down (-100)

in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

Remote CPU up (-113)
in C 5-24, 5-30
in COBOL85 4-20, 4-24
in Pascal 6-22, 6-28
in TAL 3-37, 3-51

Stop (-5)
in C 5-23
in COBOL85 4-20
in Pascal 6-21
in TACL 7-6/7
in TAL 3-36

Subordinate name inquiry (-107) B-1

Index

Index–44 096047 Tandem Computers Incorporated

System messages, handling
getting information about 3-49, 5-28, 6-26
opening $RECEIVE to read

in C 5-27
in COBOL85 4-17, 4-26
in Pascal 6-25
in TAL 3-41, 3-48

processing open and close messages 3-43, 3-50, 5-29, 6-27
reading status-change messages 3-37, 3-51, 5-24, 5-30, 6-22, 6-28
reading using READ[X] or READUPDATE[X] 3-36, 3-43, 3-49, 5-23,

5-28, 6-21, 6-26
replying using REPLY[X] procedure 3-51, 5-30, 6-28
selecting for COBOL85 4-18, 4-23
specifying message-buffer length

in C 5-23, 5-28
in COBOL85 4-17, 4-26
in Pascal 6-21, 6-26
in TAL 3-36, 3-43, 3-49

System name D-4
in a named process file name 2-11
in an unnamed process file name 2-12

System process 1-1, GLOSS-6

T
TACL

calling PROCESS_CREATE_ 7-6
for C compiler 5-10
for COBOL85 compiler 4-7
for Pascal compiler 6-8
for TAL compiler 3-8

converting a program 7-1/10
converting built-in functions 7-8
CPU numbers in 7-2
creating high-PIN process 7-5/6
creating low-PIN process 7-6
file names in 7-3
file-system errors in 7-2
HIGHPIN RUN option 7-6
obtaining transaction lock information 7-9/10
PHANDLE data type 7-3
PIN in 7-2

Index

096047 Tandem Computers Incorporated Index–45

TACL (continued)
process descriptor in 7-3/4
process file name in 7-3
process handle in 7-3/4
process ID in 7-3/4
RUN command 2-10, 3-10, 4-15, 7-6

for C compiler 5-10
for COBOL85 compiler 4-7
for Pascal compiler 6-8
for TAL compiler 3-8
using with COBOL85 compiler 4-7
using with high-PIN requester 7-6
using with HIGHPIN directive 4-10, 5-12, 6-9
using with HIGHREQUESTERS directive 3-45, 3-54, 4-27, 5-33, 6-31
using with RUNNAMED directive 3-30, 5-17, 6-15
using with TAL compiler 3-8

SET command 7-6
SHOW command 7-6
subvolume defaulting in 7-4
variables 7-2/4
#CONVERTPHANDLE built-in function 7-4
#ERRORNUMBERS built-in variable 7-6
#FILEGETLOCKINFO built-in function 7-9/10
#FILEINFO built-in function 7-4
#HIGHPIN built-in variable 7-5/6
#LOCKINFO built-in function 7-9/10
#NEWPROCESS built-in function 7-6
#SET built-in function 7-6

TAL
communicating with high-PIN server 3-31/37
communicating with server 3-31/37
compiler 3-8, 3-10, 3-30, 3-45, 3-54, 7-6
converting a requester in 3-31/37
converting a server 3-46/53
converting an application 3-1/54
CPU numbers in 3-4, 3-10
creating a high-PIN process 3-14/23
device names in 3-6
disk file names in 3-5
file names in 3-5/6
file-system errors in 3-4

Index

Index–46 096047 Tandem Computers Incorporated

TAL (continued)
HIGHPIN object-file attribute 3-10
HIGHREQUESTERS object-file attribute 3-45, 3-54
monitoring a server 3-35/37
monitoring high-PIN server 3-35/37
opening a server 3-31/34
opening high-PIN server 3-31/34
PIN in 3-4, 3-10
process descriptor in 3-7
process file name in 3-6
process handle in 3-7
process ID in 3-7
RUN command with 3-8
RUNNAMED object-file attribute 3-30/31
running a high-PIN process 3-9/12
subvolume defaulting in 3-7
using library file from high-PIN process 3-10

Tandem Advanced Command Language (TACL)
See TACL

Tandem NonStop Series (TNS) GLOSS-6
Tandem NonStop Series RISC (TNS/R) GLOSS-6
Temporary disk file name 2-7
Temporary file names D-5
Terminal I/O operations 8-14
Terminal names D-6
TERMPROCESS protocol D-6
Timestamp form of process ID C-3
TMF transaction, getting lock information for 8-10
TMF transactions and device simulator process D-7
TNS GLOSS-7
TNS instructions GLOSS-7
TNS object file GLOSS-7
TNS/R GLOSS-7
TNS/R systems

variances from TNS systems 1-11, 9-1
Token 8-25, GLOSS-7

EMSINIT procedure 8-29
file-system error-list tokens 8-33
obsolete C-system 8-25
simple tokens 8-31, 8-32
structured tokens 8-31, 8-32

TOTQ instruction, TNS and TNS/R variances 9-4

Index

096047 Tandem Computers Incorporated Index–47

Transaction Application Language (TAL)
See TAL

Transaction lock information, obtaining using TACL 7-9/10
Trap handlers

checking overflow 9-2
using P register 9-3
using register stack 9-3

Trap handling, in COBOL85 4-11
Type part of procedure names 2-2

U
Unconverted application GLOSS-7
Unconverted process C-1
Undefined condition codes D-3
Underscore (_) in procedure names 2-2
Undocumented procedures, use of D-1
Undocumented side effects,of documented procedures D-1
Unnamed process C-8, GLOSS-7
Upshifting ASCII strings 8-6
User process GLOSS-7
USESEGMENT procedure 8-37
USING phrase (SORT or MERGE), COBOL85 4-5
Utility routines, COBOL85 4-11

V
Variances, TNS and TNS/R system 1-11, 9-1
Verifier number, in a process handle 2-14
Volume names

format of 2-7
in C 5-8
in COBOL85 4-4
in Pascal 6-6
in TAL 3-5

Volumes
managing 2-6
refreshing 8-9

Index

Index–48 096047 Tandem Computers Incorporated

W
Waited process creation

using NEWPROCESS 3-14
using PROCESS_CREATE_ 3-14

widec file 5-4
Wild-card characters (* and ?) 8-5
wlarge file 5-4
WRITEREAD[X] procedure 3-34, 5-21, 6-19, 8-36, C-8
WRITE[X] procedure 8-33, 8-36, C-8

X
XLBs 8-41

Z
ZCOMC file 8-23
ZCOMCOB file 8-23
ZCOMPAS file 8-23
ZCOMTAL file 8-23
ZEMS-TKN- tokens

CRTPID 8-29
NODENAME 8-29
NODENUMBER 8-29
PROC-DESC 8-29

ZEMSTAL file 8-23
Zero suppression and DEFINEs D-8
ZFIL-TKN-ERRORDETAIL token 8-33
ZSPI-TDT-PHANDLE token data type 7-3
ZSPI-TKN-RETCODE token 8-32
ZSPI-TYP-CRTPID token type 7-3
ZSPI-TYP-STRING token type 7-3
ZSPIC file 8-23
ZSPICOB file 8-23
ZSPIPAS file 8-23
ZSPITAL file 8-23
ZSYSC file 2-1, 5-8, 5-9, GLOSS-7

including in source code 5-3
printing 5-3
using with system messages 5-23, 5-28

ZSYSCOB file 2-1, 4-6, 4-17, 4-26, GLOSS-7
including in source code 4-2
printing 4-3

Index

096047 Tandem Computers Incorporated Index–49

ZSYSDDL file GLOSS-7
including in source code 2-1
using with FILE_GETINFOBYNAME_ 8-7, 8-9, 8-11

ZSYSPAS file 2-1, 6-7, GLOSS-7
including in source code 6-4
printing 6-4
using with system messages 6-21, 6-26

ZSYSTAL file 2-1, 3-7, GLOSS-7
including in source code 3-3
printing 3-3
using with FILE_OPEN_ 3-32, 5-19, 6-17
using with PROCESS_CREATE_ 3-14
using with system messages 3-36, 3-43, 3-49

ZSYS]VAL]LEN]FILENAME LITERAL declaration 2-3
ZSYS]VAL]LEN]PROCESSDESCR LITERAL declaration 2-3
ZSYS]VAL]LEN]SYSTEMNAME LITERAL declaration 2-3

Special characters
(pound sign) in a file name 8-5
#CONVERTPHANDLE built-in TACL function 7-4
#ERRORNUMBERS built-in TACL variable 7-6
#FILEGETLOCKINFO built-in TACL function 7-9/10
#FILEINFO built-in TACL function 7-4
#HIGHPIN built-in TACL variable 7-5
#include directive 5-3
#LOCKINFO built-in TACL function 7-9/10
#NEWPROCESS built-in TACL function 7-6
#SET built-in TACL function 7-6
$ (dollar sign) in a file name 8-5
$RECEIVE GLOSS-7

closing
using CLOSE 3-34, 3-37, 5-21, 5-24, 6-19, 6-22
using FILE_CLOSE_ 3-34, 3-37, 5-21, 5-24, 6-19, 6-22

in COBOL85 4-17, 4-26
in Common Run-Time Environment (CRE) 4-9
opening

using FILE_OPEN_ 3-35, 3-42, 3-48, 5-22, 5-27, 6-20, 6-25
using OPEN 3-35, 3-41, 3-48, 5-22, 5-27, 6-20, 6-25

opening for SIO procedures 8-19

Index

Index–50 096047 Tandem Computers Incorporated

$RECEIVE (continued)
reading process open and close messages 3-43, 3-50, 5-29, 6-27
reading system messages 5-28, 6-26
reading system messages using READ[X] or READUPDATE[X] 3-43,

3-49
'SG'-equivalenced variables, TNS and TNS/R variances 9-4
* (asterisk) as a wild-card character 8-5
=_DEFAULTS DEFINE 3-32, 5-19, 6-17
? (question mark) as a wild-card character 8-5
:_COMPLETION TACL structure 7-6/7
:_COMPLETION[PROCDEATH TACL structure 7-6/7
_ (underscore) in procedure names 2-2

	TPTITLE
	TPDOCHIS
	TPNEWCHG
	TPCONTNT
	TPABOUT
	TPCONVNT
	TPSEC01
	TPSEC02
	TPSEC03
	TPSEC04
	TPSEC05
	TPSEC06
	TPSEC07
	TPSEC08
	TPSEC09
	TPAPPA
	TPAPPB
	TPAPPC
	TPAPPD
	TPGLOSS
	TPINDEX

