
Inspect Manual
Abstract

This manual describes Inspect, a command-line tool for debugging TNS C/C++,
COBOL, FORTRAN, Pascal, Screen COBOL, and TAL programs and snapshots on HP
NonStop™ TNS/R and TNS/E systems.

Product Version

Inspect H01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, G01.00 and all subsequent G-series RVUs, and D40.00
and all subsequent D-series RVUs, until otherwise indicated by its replacement
publications.

Part Number Published

429164-006 April 2013

Document History
Part Number Product Version Published

118810 Inspect D40 December 1995

429164-002 Inspect H01 July 2005

429164-003 Inspect H01 January 2006

429164-004 Inspect H01 August 2010

429164-005 Inspect H01 February 2012

429164-006 Inspect H01 April 2013

Legal Notices
 Copyright 2013 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,
Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

Inspect Manual
Glossary Index Examples Figures Tables
Legal Notices

What’s New in This Manual xxvii

Manual Information xxvii

New and Changed Information xxvii

About This Manual xxxi

Related Documentation xxxi

Organization of This Manual xxxi

Notation Conventions xxxiii

 Change Bar Notation xxxv

HP Encourages Your Comments xxxvi

1. Introduction
Inspect Features 1-1

Interactive Control of Program Execution 1-2

Concurrent Debugging of All Parts of an Application 1-2

Debugging of PATHWAY Applications 1-2

Saving and Examining a Process State 1-2

Source-Level and Machine-Level Program Access 1-3

Support for Many Source Languages 1-3

Support of Optimizing Compilers 1-4

Support for Programs with Multilanguage Source 1-4

Local System Customization 1-4

Personal Customization 1-4

Code and Data Breakpoints 1-5

Conditional Breakpoints 1-5

Distributed Debugging Across a Network 1-5

Debugging Programs Executed on TNS/R Systems 1-5

Debugging Programs Executed on TNS/E Systems 1-5

Debugging Programs in the OSS Environment 1-5

Inspect Command Modes 1-6

High-Level Mode 1-6
 Hewlett-Packard Company—429164-006
i

Contents 1. Introduction (continued)
1. Introduction (continued)
Low-Level Mode 1-6

Automatic Command Mode Selection 1-7

Inspect Components 1-7

The Inspect Process 1-8

The IMON Process Pair 1-8

The DMON Process 1-9

Inspect, IMON, and DMON Swap and Extended Swap Files 1-9

Remote Debugging 1-9

2. Inspect Concepts
Inspect Sessions 2-1

Starting an Inspect Session 2-2

Prompting for Commands 2-3

Reporting Events 2-3

Ending an Inspect Session 2-4

What Inspect Debugs 2-4

Processes 2-4

Save Files 2-5

PATHWAY Servers 2-6

PATHWAY Requester Programs 2-6

Debugging Multiple Programs 2-7

Execution States of a Program 2-7

The Run State 2-7

The Hold State 2-8

The Stop State 2-8

The Gone State 2-8

Debug Events 2-8

Breakpoints and Break Events 2-9

Setting Breakpoints 2-9

Processing Breakpoints 2-11

Source Languages and Inspect 2-11

Scope of Identifiers 2-11

Activation of Scope Units 2-13

Expressions 2-15

Code Locations 2-16

Data Locations 2-18
Inspect Manual—429164-006
ii

Contents 3. Inspect Command Overview
3. Inspect Command Overview
Entering Inspect Commands 3-1

Debugging the Current Program 3-2

Managing Multiple Programs 3-3

Managing Source Files 3-3

Entering and Editing Inspect Commands 3-4

Customizing an Inspect Session 3-5

Managing an Inspect Session 3-6

Simplifying an Inspect Session 3-6

4. Debugging Processes and Save Files
Inspect in the Guardian Environment 4-2

Command and Home Terminals 4-3

Debugging Processes 4-3

The Debugging Attributes of a Process 4-4

Preparing and Configuring for Process Debugging 4-8

Starting a Debugging Session 4-8

Guidelines for Debugging a Process 4-10

Ending a Debugging Session 4-12

Examining Save Files 4-13

5. Debugging PATHWAY Applications
Inspect in the PATHWAY Environment 5-2

Application, Command, and Home Terminals 5-3

Debugging PATHWAY Requester Programs 5-3

Preparation and Configuration 5-5

Starting the Debugging Session 5-6

Guidelines for Debugging Requester Programs 5-8

Ending the Debugging Session 5-9

Debugging PATHWAY Servers 5-10

Preparation and Configuration 5-11

Starting the Debugging Session 5-11

Guidelines for Debugging Servers 5-13

Ending the Debugging Session 5-13

Debugging User Conversion Routines 5-13

Preparation and Configuration 5-14

Starting the Debugging Session 5-14

Guidelines for Debugging User Conversion Routines 5-15

Ending the Debugging Session 5-15
Inspect Manual—429164-006
iii

Contents 6. High-Level Inspect Commands
6. High-Level Inspect Commands
Inspect Keywords 6-1

Abbreviations 6-1

Language-Dependent Information 6-1

Machine-Dependent Information 6-1

Command Examples 6-2

Command Summary 6-2

ADD 6-6

ADD ALIAS 6-7

ADD KEY 6-9

ADD PROGRAM 6-10

ADD SOURCE ASSIGN 6-14

ALIAS 6-17

BREAK 6-19

CD 6-27

CLEAR 6-27

Related Commands 6-28

COMMENT 6-28

DELETE 6-29

Related Commands 6-29

DELETE ALIAS 6-30

Usage Consideration 6-30

Related Commands 6-30

DELETE KEY 6-30

Related Commands 6-31

DELETE SOURCE ASSIGN 6-31

Usage Considerations 6-31

Related Commands 6-32

DELETE SOURCE OPEN 6-32

Usage Considerations 6-32

Related Commands 6-32

DISPLAY 6-33

Displaying Program Data 6-37

Default Value 6-39

Usage Considerations 6-39

Examples 6-40

Displaying Program Registers 6-42

Usage Considerations 6-44

Output 6-44
Inspect Manual—429164-006
iv

Contents 6. High-Level Inspect Commands (continued)
6. High-Level Inspect Commands (continued)
Examples 6-45

Displaying Program Code 6-45

Usage Considerations 6-47

Example 6-47

Displaying SPI Data 6-48

General Usage Considerations 6-51

Usage Considerations When Displaying an SPI Buffer 6-52

Usage Considerations When Displaying an SPI Token or List 6-53

Examples that Display SPI Buffers 6-54

Examples that Display SPI Tokens and Lists 6-56

Displaying Strings, Expressions, and Constant Values 6-58

Usage Guidelines 6-59

Examples 6-59

Using the AS Clause 6-61

Using the FOR Clause 6-64

Usage Considerations 6-65

Examples 6-66

Using the FORMAT Clause 6-67

Examples 6-68

Using the IN Clause 6-70

Using the PIC Clause 6-73

Using the TYPE Clause 6-75

ENV 6-81

Related Commands 6-82

EXIT 6-82

Usage Considerations 6-82

FA 6-83

Usage Consideration 6-83

Related Commands 6-83

Example 6-84

FB 6-84

Usage Considerations 6-84

Related Commands 6-84

FC 6-84

Default Value 6-85

FILES 6-89

FK 6-90

Usage Consideration 6-90
Inspect Manual—429164-006
v

Contents 6. High-Level Inspect Commands (continued)
6. High-Level Inspect Commands (continued)
Related Commands 6-91

HELP 6-91

Default Value 6-91

Usage Guidelines 6-91

HISTORY 6-93

Default Value 6-93

Usage Consideration 6-93

Related Commands 6-93

HOLD 6-93

Default Value 6-94

Usage Considerations 6-94

ICODE 6-94

Default Values 6-97

Output 6-97

Usage Considerations 6-98

Usage Considerations for Accelerated Programs on TNS/E Systems 6-98

Usage Considerations for Accelerated Programs on TNS/R Systems 6-98

Related Command 6-99

Examples 6-99

IDENTIFIER 6-102

Related Commands 6-102

IF 6-103

Usage Considerations 6-103

INFO 6-104

INFO IDENTIFIER 6-105

Usage Considerations 6-105

Related Commands 6-107

Examples 6-107

INFO LOCATION 6-108

Default Values 6-109

Usage Considerations 6-109

Usage Considerations for Accelerated Programs 6-110

Related Commands 6-110

Example 6-111

INFO OBJECTFILE 6-111

Usage Considerations 6-111

Related Commands 6-111

Output 6-112
Inspect Manual—429164-006
vi

Contents 6. High-Level Inspect Commands (continued)
6. High-Level Inspect Commands (continued)
Examples 6-113

INFO OPENS 6-114

Default Values 6-116

Usage Considerations 6-116

Output 6-118

Examples 6-118

INFO SAVEFILE 6-120

Usage Considerations 6-120

Related Commands 6-120

Output 6-121

Example 6-122

INFO SCOPE 6-122

Default Value 6-123

Related Commands 6-123

Output 6-124

Examples 6-124

INFO SEGMENTS 6-125

Default Value 6-126

Usage Considerations 6-126

Related Command 6-126

Output 6-126

Example 6-127

INFO SIGNALS 6-127

Default Value 6-128

Output 6-128

Example 6-128

KEY 6-128

Default Values 6-129

Usage Consideration 6-129

Related Commands 6-129

LIST 6-129

Usage Consideration 6-130

Related Commands 6-130

LIST ALIAS 6-131

Default Value 6-131

Usage Consideration 6-131

Related Commands 6-131

LIST BREAKPOINT 6-131
Inspect Manual—429164-006
vii

Contents 6. High-Level Inspect Commands (continued)
6. High-Level Inspect Commands (continued)
Default Values 6-132

Usage Considerations 6-132

Related Commands 6-132

Output 6-133

Examples 6-133

LIST HISTORY 6-135

Default Value 6-136

Related Commands 6-136

LIST KEY 6-136

Default Value 6-137

Related Commands 6-137

LIST PROGRAM 6-137

Usage Considerations 6-137

Related Commands 6-138

Output 6-138

Examples 6-139

LIST SOURCE ASSIGN 6-141

Related Commands 6-141

LIST SOURCE OPEN 6-142

LOG 6-142

Usage Considerations 6-142

Related Commands 6-143

LOW 6-143

Usage Considerations 6-143

Usage Consideration for TNS/R Programs 6-143

Related Commands 6-144

MATCH 6-144

Default Values 6-145

Usage Considerations 6-145

Related Commands 6-145

Examples 6-145

MODIFY 6-146

Default Value 6-149

Usage Considerations 6-149

Usage Considerations for Accelerated Programs 6-150

Related Commands 6-150

Examples 6-150

OBEY 6-152
Inspect Manual—429164-006
viii

Contents 6. High-Level Inspect Commands (continued)
6. High-Level Inspect Commands (continued)
Usage Considerations 6-152

Related Commands 6-153

OBJECT 6-153

OPENS 6-153

Default Values 6-155

OUT 6-155

Usage Considerations 6-155

Related Commands 6-155

PAUSE 6-156

Usage Considerations 6-156

PROGRAM 6-156

Default Value 6-157

Usage Considerations 6-157

Related Commands 6-157

RESUME 6-158

Default Value 6-158

Usage Considerations 6-159

Usage Considerations for Accelerated Programs 6-159

Related Commands 6-160

SAVE 6-160

Usage Considerations 6-161

Related Commands 6-161

SCOPE 6-162

Default Value 6-162

Usage Considerations 6-163

Related Commands 6-163

SELECT 6-164

Usage Consideration 6-164

Related Commands 6-164

SELECT DEBUGGER DEBUG 6-165

General Usage Considerations 6-165

Usage Considerations for Privileged Users 6-166

Usage Consideration for Accelerated Programs 6-166

Related Commands 6-166

SELECT LANGUAGE 6-166

Usage Considerations 6-167

Related Command 6-167

SELECT PROGRAM 6-167
Inspect Manual—429164-006
ix

Contents 6. High-Level Inspect Commands (continued)
6. High-Level Inspect Commands (continued)
Usage Consideration 6-168

Related Commands 6-168

SELECT SEGMENT 6-169

Usage Considerations 6-169

Related Command 6-169

SELECT SOURCE SYSTEM 6-169

Default Value 6-169

Usage Considerations 6-170

Related Commands 6-170

SELECT SYSTYPE 6-170

Usage Consideration 6-170

SET 6-171

SET CHARACTER FORMAT 6-172

Default Value 6-173

Related Commands 6-173

SET DEREFERENCE DEPTH 6-173

Default Value 6-173

Related Commands 6-174

SET ECHO 6-174

Default Value 6-174

Related Command 6-174

SET HELP FILE 6-174

Default Value 6-175

Related Command 6-175

SET LOCATION FORMAT 6-175

Default Value 6-176

Usage Considerations 6-177

SET PRIV MODE 6-177

Usage Consideration 6-177

Related Command 6-177

SET PROMPT 6-178

Default Value 6-180

Usage Consideration 6-180

Related Commands 6-181

SET RADIX 6-181

Default Values 6-182

Usage Considerations 6-182

Related Commands 6-182
Inspect Manual—429164-006
x

Contents 6. High-Level Inspect Commands (continued)
6. High-Level Inspect Commands (continued)
Example 6-182

SET SOURCE BACK and SET SOURCE FOR 6-183

Default Value 6-184

Related Commands 6-184

SET SOURCERANGE 6-184

Default Value 6-185

Related Commands 6-185

SET SOURCE WRAP 6-185

Default Value 6-185

Related Commands 6-185

SET STATUS ACTION 6-186

Usage Consideration 6-186

Default Values 6-186

Related Commands 6-187

SET STATUS LINE25 and SET STATUS SCROLL 6-187

Default Values 6-190

Usage Considerations for SET STATUS LINE25 6-190

Related Commands 6-191

SET SUBPROC SCOPING 6-191

Usage Considerations 6-191

Related Commands 6-192

Example 6-192

SET SYSTYPE 6-192

Usage Consideration 6-192

SET TRACE 6-193

Default Value 6-193

Usage Considerations 6-194

Related Commands 6-194

SHOW 6-194

Usage Consideration 6-194

Related Commands 6-195

SIGNALS 6-195

Default Value 6-195

SOURCE 6-196

Default Values 6-198

Usage Considerations 6-199

Usage Consideration for Accelerated Programs on TNS/R Systems 6-201

Usage Consideration for Accelerated Programs on TNS/E Systems 6-201
Inspect Manual—429164-006
xi

Contents 6. High-Level Inspect Commands (continued)
6. High-Level Inspect Commands (continued)
Related Commands 6-201

Examples 6-202

SOURCE ASSIGN 6-202

Default Values 6-203

Related Commands 6-204

SOURCE ICODE 6-204

Default Value 6-205

Usage Considerations 6-205

Usage Considerations for TNS/R Programs 6-205

Related Command 6-206

Example 6-206

SOURCE OFF 6-207

Related Commands 6-207

SOURCE ON 6-208

Related Commands 6-208

SOURCE OPEN 6-208

SOURCE SEARCH 6-208

Usage Consideration 6-209

Examples 6-210

SOURCE SYSTEM 6-211

Default Value 6-212

Related Commands 6-212

STEP 6-212

Default Value 6-213

Usage Considerations 6-213

Usage Consideration for Accelerated Programs 6-214

Limitation of the STEP Command 6-215

Related Commands 6-215

STOP 6-215

Default Value 6-216

Usage Considerations 6-216

Related Commands 6-216

Example 6-216

SYSTEM 6-217

Default Value 6-217

Usage Consideration 6-217

Related Commands 6-217

TERM 6-218
Inspect Manual—429164-006
xii

Contents 6. High-Level Inspect Commands (continued)
6. High-Level Inspect Commands (continued)
Usage Considerations 6-218

Related Commands 6-218

TIME 6-219

Usage Considerations 6-219

TRACE 6-219

Usage Considerations 6-219

Related Commands 6-221

Examples 6-221

VOLUME 6-223

Default Value 6-224

Usage Considerations 6-224

Related Commands 6-224

XC 6-224

Default Value 6-225

Usage Consideration 6-225

Related Commands 6-225

7. Low-Level Inspect
Low-Level Inspect Commands 7-1

Syntax of Low-Level Command Elements 7-2

Symbolic References 7-2

Multiple Code Segment Programs 7-2

I and S Suffixes 7-3

Expressions in Low-Level Inspect 7-3

Using Low-Level Inspect 7-4

Differences Between Low-Level and High-Level Inspect 7-4

Differences Between Low-Level Inspect and Debug 7-5

Default Volume and Subvolume 7-7

8. Using Inspect With C
Starting to Debug a C Program 8-1

Scope Units and Scope Paths 8-1

Code Locations 8-2

Usage Considerations 8-3

Examples 8-4

Data Locations 8-5

Default Values 8-6

Usage Considerations 8-6
Inspect Manual—429164-006
xiii

Contents 8. Using Inspect With C (continued)
8. Using Inspect With C (continued)
Examples 8-6

Expressions 8-7

Usage Considerations 8-7

C Data Types and Inspect 8-8

Bit Fields 8-8

Arrays 8-8

Structure Pointers 8-8

Self-Referential Structures 8-9

Unions 8-9

Inspect Enhancements and Restrictions for C 8-10

Uppercase and Lowercase Letters 8-10

Defining Objects in Block Structure 8-10

Command Usage Guidelines for C Programmers 8-11

BREAK 8-11

DISPLAY 8-11

HELP 8-11

INFO IDENTIFIER 8-11

INFO OPENS 8-11

SCOPE 8-12

SET RADIX 8-12

STEP 8-12

9. Using Inspect With C++
Starting to Debug a C++ Program 9-1

Scope Units and Scope Paths 9-1

Code Locations 9-2

Usage Considerations 9-3

Examples 9-4

Data Locations 9-5

Default Values 9-6

Usage Considerations 9-6

Examples 9-6

Expressions 9-7

Usage Considerations 9-7

C++ Data Types and Inspect 9-8

Bit Fields 9-8

Arrays 9-8

Structure Pointers 9-8
Inspect Manual—429164-006
xiv

Contents 9. Using Inspect With C++ (continued)
9. Using Inspect With C++ (continued)
Unions 9-9

Inspect Enhancements and Restrictions for C++ 9-9

Uppercase and Lowercase Letters 9-9

Defining Objects in Block Structure 9-9

Overloaded Functions 9-9

Overloaded Operators 9-10

Static Data 9-10

The this Pointer 9-11

Usage Considerations 9-11

Command Usage Guidelines for C++ Programmers 9-13

BREAK 9-13

DISPLAY 9-13

HELP 9-13

INFO IDENTIFIER 9-13

INFO OPENS 9-13

MATCH 9-14

SCOPE 9-14

SET RADIX 9-14

STEP 9-14

10. Using Inspect With COBOL and SCREEN COBOL
Scope Units and Scope Paths 10-1

Usage Considerations 10-1

Code Locations 10-2

Usage Considerations 10-3

COBOL 74 and SCREEN COBOL Examples 10-4

COBOL85 Examples 10-5

Data Locations 10-5

Usage Considerations 10-6

Examples 10-7

Special Registers 10-7

Expressions 10-8

Usage Considerations 10-8

COBOL Data Types and Inspect 10-9

Record Types 10-9

Inspect Enhancements and Restrictions for SCREEN COBOL 10-10

Command Usage Guidelines for COBOL Programmers 10-11

BREAK 10-11
Inspect Manual—429164-006
xv

Contents 10. Using Inspect With COBOL and SCREEN
COBOL (continued)
10. Using Inspect With COBOL and SCREEN COBOL (continued)
DISPLAY 10-12

HELP 10-12

INFO IDENTIFIER 10-12

MODIFY 10-13

SCOPE 10-13

SET RADIX 10-13

STEP 10-13

11. Using Inspect With FORTRAN
Scope Units and Scope Paths 11-1

Usage Consideration 11-1

Code Locations 11-2

Usage Considerations 11-3

Examples 11-4

Data Locations 11-5

Default Values 11-6

Usage Considerations 11-6

Examples 11-7

Expressions 11-8

Usage Considerations 11-8

FORTRAN Data Types and Inspect 11-8

Arrays 11-9

Examples 11-9

Records 11-10

Inspect Enhancements and Restrictions for FORTRAN 11-11

Spaces in Identifiers 11-11

Command Usage Guidelines for FORTRAN Programmers 11-11

BREAK 11-12

DISPLAY 11-12

HELP 11-12

INFO IDENTIFIER 11-12

INFO OPENS 11-13

MODIFY 11-13

SCOPE 11-13

SET RADIX 11-13

STEP 11-14

TRACE 11-14
Inspect Manual—429164-006
xvi

Contents 12. Using Inspect With Pascal
12. Using Inspect With Pascal
Scope Paths and Scope Units 12-1

Usage Guidelines 12-1

Code Locations 12-2

Usage Considerations 12-3

Examples 12-4

Data Locations 12-5

Default Values 12-6

Usage Considerations 12-6

Examples 12-6

Expressions 12-7

Usage Considerations 12-7

Pascal Data Types and Inspect 12-7

Array Types 12-8

Enumerated Types 12-8

File Types 12-9

Pointer Types 12-9

Record Types 12-10

Set Types 12-12

Subrange Types 12-13

Inspect Enhancements and Restrictions for Pascal 12-15

Length of Identifiers 12-15

Command Usage Guidelines for Pascal Programmers 12-15

BREAK 12-15

HELP 12-15

INFO IDENTIFIER 12-15

MODIFY 12-16

SCOPE 12-16

SET RADIX 12-16

13. Using Inspect With TAL and pTAL
Scope Units and Scope Paths 13-1

Code Locations 13-1

Usage Considerations 13-3

Examples 13-4

Data Locations 13-5

Default Values 13-6

Usage Considerations 13-6

Usage Considerations for TAL Programs 13-6
Inspect Manual—429164-006
xvii

Contents 13. Using Inspect With TAL and pTAL (continued)
13. Using Inspect With TAL and pTAL (continued)
Expressions 13-8

Usage Considerations 13-9

TAL and pTAL Data Types and Inspect 13-9

Arrays 13-9

Structures and Substructures 13-10

Command Usage Guidelines for TAL and pTAL Programmers 13-11

BREAK 13-11

DISPLAY 13-12

HELP 13-12

INFO IDENTIFIER 13-12

MODIFY 13-13

SCOPE 13-13

SET RADIX 13-13

STEP 13-13

TRACE 13-14

14. Using Inspect in an OSS Environment
Starting an Inspect Session 14-1

Ending an Inspect Session 14-2

Inspect’s System Type 14-2

File Name Resolution 14-2

Save Files 14-3

Signals 14-3

Source Files 14-4

Usage Guidelines 14-4

15. Using Inspect on a TNS/R System
TNS/R Overview 15-2

Executing Non-Accelerated Programs 15-2

Executing Accelerated Programs 15-3

General TNS/R Debugging Considerations 15-5

Debugging Non-Accelerated Programs 15-5

Debugging Accelerated Programs 15-5

Debugging TNS/R Native Programs 15-7

Performance and Debugging of TNS/R Programs 15-7

Register Usage 15-7

Pipeline Instruction Processing 15-8

Optimizations With Loads 15-8
Inspect Manual—429164-006
xviii

Contents 15. Using Inspect on a TNS/R System (continued)
15. Using Inspect on a TNS/R System (continued)
Optimizations With Branches 15-9

TNS Instruction Side Effects 15-10

Debugging Programs at the TNS/R Machine Level 15-10

What You Need to Know 15-10

TNS/R Breakpoints 15-11

TNS/R Machine Registers 15-11

Machine Code Addresses 15-12

Save Files 15-13

TNS/R Machine-Level Commands 15-13

16. Using Inspect With Accelerated Programs on TNS/R
Systems
Accelerated Program Debugging Overview 16-1

Assumptions 16-2

Variances 16-2

Performance and Debugging of Accelerated Programs 16-3

Accelerated Program Transitions 16-3

Accelerated Program Debugging Concepts 16-4

Debugging Boundaries 16-5

Accelerator Debugging Options 16-6

Using Inspect to Debug Accelerated Programs 16-8

Program Libraries 16-8

Code Breakpoints 16-8

Data Breakpoints 16-9

Event Reporting 16-14

Data Access Limitations 16-15

TNS Register Access Limitations 16-16

Commands Useful When Debugging Accelerated Programs 16-17

INFO LOCATION 16-17

INFO OBJECTFILE 16-18

LIST PROGRAM 16-18

RESUME AT 16-19

SET PROMPT/SET STATUS 16-20

SOURCE 16-20

STEP 16-21

Annotated ICODE 16-22
Inspect Manual—429164-006
xix

Contents 17. Using Inspect With TNS/R Native Programs
17. Using Inspect With TNS/R Native Programs
TNS/R Native Overview 17-1

TNS/R Native Program Debugging Concepts 17-1

TNS/R Native Compilers and Linkers 17-2

Optimization Levels 17-3

Using Inspect to Debug TNS/R Native Programs 17-4

SRLs 17-4

Dynamic-Link Libraries (DLLs) 17-5

Code Breakpoints 17-6

Signals 17-6

Commands Useful When Debugging Native Programs 17-6

ADD PROGRAM 17-6

BREAK 17-6

DISPLAY REGISTER 17-7

ICODE 17-7

INFO IDENTIFIER 17-8

INFO OBJECTFILE 17-8

INFO SAVEFILE 17-9

INFO SCOPE 17-9

INFO SIGNALS 17-10

LIST PROGRAM 17-10

MODIFY SIGNALS 17-11

SELECT PROGRAM 17-11

SOURCE ICODE 17-11

 TRACE REGISTERS 17-12

Debugging at the TNS/R Native Machine Level 17-12

Examples 17-13

18. Using Inspect on a TNS/E System
Capabilities of Inspect on TNS/E Systems 18-1

Acceleration on TNS/E Systems 18-2

Accelerating TNS Processes 18-3

Debugger Selection on TNS/E Systems 18-4

Using Inspect to Debug TNS Programs on TNS/E Systems 18-8

A. Error and Warning Messages
Fatal Errors During Session Start-Up A-1

HELP Availability A-1
Inspect Manual—429164-006
xx

Contents B. Syntax Summary
B. Syntax Summary
High Level Inspect Commands B-1

ADD B-1

ALIAS B-2

BREAK B-2

CD B-3

CLEAR B-3

COMMENT B-3

DELETE B-3

DISPLAY B-4

ENV B-7

EXIT B-7

FA B-7

FB B-7

FC B-7

FILES B-7

FK B-8

HELP B-8

HISTORY B-8

HOLD B-8

ICODE B-9

IDENTIFIER B-10

IF B-10

INFO B-10

KEY B-11

LIST B-11

LOG B-11

LOW B-12

MATCH B-12

MODIFY B-13

OBEY B-14

OBJECT B-14

OPENS B-14

OUT B-14

PAUSE B-14

PROGRAM B-14

RESUME B-15

SAVE B-15

SCOPE B-15
Inspect Manual—429164-006
xxi

Contents B. Syntax Summary (continued)
B. Syntax Summary (continued)
SELECT B-16

SET B-17

SHOW B-19

SOURCE B-20

STEP B-20

STOP B-21

SYSTEM B-21

TERM B-21

TIME B-21

TRACE B-21

VOLUME B-21

XC B-21

Language-Dependent Parameters for C B-22

C Scope Paths B-22

C Code Locations B-22

C Data Locations B-22

C Expressions B-23

Language-Dependent Parameters for C++ B-23

C++ Scope Paths B-23

C++ Code Locations B-24

C ++ Data Locations B-24

C++ Expressions B-25

Language-Dependent Parameters for COBOL and SCREEN COBOL B-25

COBOL 74 and SCOBOL Scope Paths B-25

COBOL85 Scope Paths B-25

COBOL Code Locations B-26

COBOL Data Locations B-26

COBOL Expressions B-27

Language-Dependent Parameters for FORTRAN B-27

FORTRAN Scope Paths B-27

FORTRAN Code Locations B-28

FORTRAN Data Locations B-28

FORTRAN Expressions B-29

Language-Dependent Parameters for Pascal B-29

Pascal Scope Paths B-29

Pascal Code Locations B-30

Pascal Data Locations B-30

Pascal Expressions B-31
Inspect Manual—429164-006
xxii

Contents B. Syntax Summary (continued)
B. Syntax Summary (continued)
Language-Dependent Parameters for TAL and pTAL B-31

TAL and pTAL Scope Paths B-31

TAL and pTAL Code Locations B-32

TAL and pTAL Data Locations B-32

TAL and pTAL Expressions B-33

Low-Level Inspect Commands B-33

A B-34

B B-34

BM B-34

C B-34

CM B-34

D B-35

F B-35

FN B-35

HIGH B-35

I B-35

M B-36

P B-36

R B-36

S B-36

T B-36

VQ B-36

= B-36

? B-36

Low-Level Addresses B-37

Low-Level Code Addresses B-37

Low-Level Data Addresses B-37

Low-Level Expressions B-38

C. Notes for System Operators
Starting the IMON Process Pair C-1

Default Values C-1

Usage Considerations C-2

IMON and CMON C-2

Stopping IMON and DMON Processes C-2

IMON and DMON Errors C-3

Errors Common to IMON and DMON C-3

IMON Errors C-3
Inspect Manual—429164-006
xxiii

Contents C. Notes for System Operators (continued)
C. Notes for System Operators (continued)
DMON Errors C-5

Glossary

Index

Examples
Example 5-1. Starting a TCP for Requester Program Debugging 5-5

Example 5-2. Starting a Requester Program in the Hold State 5-7

Example 5-3. Starting a Server in the Hold State 5-12

Example 5-4. Starting a TCP in the Hold State 5-14

Figures
Figure 1-1. Inspect Components 1-8

Figure 1-2. Inspect Across a Network 1-10

Figure 4-1. Inspect in the Guardian Environment 4-2

Figure 4-2. Debugging Processes 4-3

Figure 4-3. Debugger Selection on a TNS/R System 4-6

Figure 4-4. Examining Save Files 4-13

Figure 5-1. Inspect in the PATHWAY Environment 5-2

Figure 5-2. Debugging PATHWAY Requester Programs 5-4

Figure 5-3. Debugging PATHWAY Servers 5-10

Figure 15-1. TNS Program Execution on a TNS/R System 15-4

Figure 15-2. Memory Access by Optimized vs. Non-Optimized Code 15-8

Figure 16-1. Acceleration of TNS Code on TNS/R Systems 16-2

Figure 18-1. Acceleration of TNS Object Code on TNS/E Systems 18-3

Figure 18-2. Debugger Selection for a TNS Process on a TNS/E System 18-6

Figure 18-3. Debugger Selection for a TNS/E Native Process 18-7

Tables
Table i. Contents of the Inspect Manual xxix

Table 3-1. Commands for Debugging the Current Program 3-2

Table 3-2. Commands for Managing Multiple Tables 3-3

Table 3-3. Commands for Managing Source Files 3-4

Table 3-4. Commands for Entering and Editing Inspect Commands 3-4

Table 3-5. Commands for Customizing an Inspect Session 3-5

Table 3-6. Commands for Managing and Inspect Session 3-6

Table 3-7. Commands for Simplifying an Inspect Session 3-6

Table 6-1. High-Level Inspect Commands 6-2
Inspect Manual—429164-006
xxiv

Contents Tables (continued)
Tables (continued)
Table 6-2. SPI Token Formatting by the DISPLAY Command 6-53

Table 7-1. Machine-Level Inspect Commands 7-1

Table 14-1. DBX/Inspect Command Map 14-4

Table 14-2. Inspect Commands Without a DBX Counterpart 14-6

Table 16-1. Debugging Capabilities in Accelerated Programs on TNS/R
Systems 16-7

Table 17-1. Optimization Levels 17-4

Table 18-1. Debugger Precedence on TNS/E Systems 18-4

Table 18-2. Considerations for Inspect Commands on TNS/E Systems 18-8
Inspect Manual—429164-006
xxv

Contents
Inspect Manual—429164-006
xxvi

What’s New in This Manual

Manual Information
Inspect Manual

Abstract

This manual describes Inspect, a command-line tool for debugging TNS C/C++,
COBOL, FORTRAN, Pascal, Screen COBOL, and TAL programs and snapshots on HP
NonStop™ TNS/R and TNS/E systems.

Product Version

Inspect H01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, G01.00 and all subsequent G-series RVUs, and D40.00
and all subsequent D-series RVUs, until otherwise indicated by its replacement
publications.

Document History

New and Changed Information

Changes to the 429164-006 manual:

 Added a new paragraph on page 2-5.

Changes to the H06.24/J06.13 manual:

 Added new error messages, 1106, 1107 on page A-50.

Part Number Published

429164-006 April 2013

Part Number Product Version Published

118810 Inspect D40 December 1995

429164-002 Inspect H01 July 2005

429164-003 Inspect H01 January 2006

429164-004 Inspect H01 August 2010

429164-005 Inspect H01 February 2012

429164-006 Inspect H01 April 2013
Inspect Manual—429164-006
xxvii

What’s New in This Manual Changes to the H06.21/J06.10 manual:
Changes to the H06.21/J06.10 manual:

 Supported release statements have been updated to include J-series RVUs.

 Added a new section, Limitation of the STEP Command on page 6-215.

 Updated the description of IMON and CMON on page C-2.

Changes in the January 2006 revision of the Manual

 Updated an example for the MODIFY command to include the & operator on page
6-151.

 Updated a usage guideline for COBOL programmers about the & operator in the
MODIFY command under MODIFY on page 10-13.

 Added a missing error, 123 on page A-21.

Changes to the Original Inspect H01 Manual

 Throughout the manual:

 Updated the product information and company names that have been changed
during the previous RVUs.

 Added the new system procedures PROCESS_CREATE and
PROCESS_LAUNCH with NEWPROCESS and NEWPROCESSNOWAIT
procedures. For example, see Starting a Debugging Session on page 4-8,
What Inspect Debugs on page 2-4, and Debug Events on page 2-8.

 Added a new Inspect feature Debugging Programs Executed on TNS/E Systems
on page 1-5.

 Updated the native linkers for TNS/R and TNS/E systems under Processes on
page 2-4.

 Added a new table that lists rules for the debugger selection under The Debugging
Attributes of a Process on page 4-4.

 Added a new figure, Figure 4-3 on page 4-6 to illustrate the rules for debugger.

 Added a note to use either Visual Inspect or Native Inspect to debug a Pathway
server under Debugging PATHWAY Servers on page 5-10.

 The changes made in Section 6, High-Level Inspect Commands are:

 Added a new usage consideration for the ADD Program on page 6-13.

 Updated the description of BACKUP on page 6-20 and BOTH on page 6-43.

 Usage Considerations for Accelerated Programs on TNS/E Systems on
page 6-98 shows safe-point annotations for an OCA process but not for a
snapshot of an OCA process.
Inspect Manual—429164-006
xxviii

What’s New in This Manual Changes to the Original Inspect H01 Manual
 Added the information that the BOTH option does not show TNS/E instructions
for an OCA process on a TNS/E system on page 6-97.

 Updated the usage guideline of INFO OBJECTFILE on page 6-111 and INFO
SAVEFILE on page 6-120.

 Added two examples to show the listing for an accelerated TNS program
running on a TNS/R and TNS/E system on page 6-140 and 6-141.

 The SELECT DEBUGGER DEBUG on page 6-165 selects Native Inspect
instead of Debug on TNS/E systems.

 Added a limitation that CODE or LIB cannot be used to specify a TNS/E native
object file on page 6-168.

 Updated the usage consideration for Accelerated programs on TNS/R and
TNS/E systems on page 6-201.

 Updated the usage consideration for TRACE on page 6-221.

 Section 16 title has been changed from “Using Inspect With Accelerated
Programs” to Section 16, Using Inspect With Accelerated Programs on TNS/R
Systems. A new figure, Figure 16-1 on page 16-2 has been added to illustrate
acceleration by Axcel.

 Added a new subsection Dynamic-Link Libraries (DLLs) on page 17-5.

 Added a new section,Section 18, Using Inspect on a TNS/E System that describes
how to use Inspect to debug emulated TNS processes running on a TNS/E
system.

 Added new error messages, 406 on page A-48, 450 on page A-49, and 1003 on
page A-49 through 1009 on page A-50.

 Added a new error under DMON Errors in Appendix C on page C-6.
Inspect Manual—429164-006
xxix

What’s New in This Manual Changes to the Original Inspect H01 Manual
Inspect Manual—429164-006
xxx

About This Manual
This manual describes the Inspect interactive symbolic debugger for TNS/R and
TNS/E systems. This manual is intended for system and application programmers.

Related Documentation
For more information about debugging on the TNS/E platform, see:

 Inspect online help (and the description of HELP on page 6-91).

 TNSVU Manual

 Native Inspect Manual and Native Inspect online help

 Visual Inspect online help

Organization of This Manual
Table i lists and describes the sections and appendixes in this manual.

Table i. Contents of the Inspect Manual
Section Title Contents

1 Introduction Contains an overview of Inspect, including a
definition of Inspect, its features, command
modes, and components.

2 Inspect Concepts Explains basic and advanced concepts, including
what Inspect can debug, execution states, debug
events, and language-specific Inspect elements.
Also describes Inspect terms such as scope path,
code location, and data location.

3 Inspect Command
Overview

Introduces the high-level Inspect commands,
grouping them by function. Also describes how to
enter Inspect commands.

4 Debugging Processes
and Save Files

Explains how to use Inspect to debug processes
and to examine save files.

5 Debugging PATHWAY
Applications

Explains how to use Inspect to debug Pathway
applications: requester programs, servers, and
user conversion routines.

6 High-Level Inspect
Commands

Contains an alphabetic list of all high-level Inspect
commands, including descriptions, syntax, default
values, and examples.

7 Low-Level Inspect Describes low-level Inspect, contrasting it with
DEBUG and high-level Inspect. Also presents the
low-level Inspect commands.
Inspect Manual—429164-006
xxxi

About This Manual Organization of This Manual
8 Using Inspect With C Provides the language-specific information
necessary to debug C programs using Inspect.

9 Using Inspect With C++ Provides the language-specific information
necessary to debug C++ programs using Inspect.

10 Using Inspect With
COBOL and SCREEN
COBOL

Provides the language-specific information
necessary to debug COBOL 74, COBOL85, and
Screen COBOL programs using Inspect.

11 Using Inspect With
FORTRAN

Provides the language-specific information
necessary to debug FORTRAN programs using
Inspect.

12 Using Inspect With
Pascal

Provides the language-specific information
necessary to debug Pascal programs using
Inspect.

13 Using Inspect With TAL
and pTAL

Provides the language-specific information
necessary to debug TAL and pTAL programs using
Inspect.

14 Using Inspect in an
OSS Environment

Provides information necessary to debug in the
OSS environment using Inspect.

15 Section 15, Using
Inspect on a TNS/R
System

Provides information necessary to debug
accelerated programs using Inspect on a TNS/R
system.

16 Using Inspect With
Accelerated Programs
on TNS/R Systems

Provides information necessary to debug
accelerated TNS programs using Inspect on a
TNS/R system.

17 Section 17, Using
Inspect With TNS/R
Native Programs

Provides information necessary to debug TNS/R
native programs using Inspect on a TNS/R
system.

18 Using Inspect on a
TNS/E System

Describes debugging emulated TNS programs and
TNS/R snapshots on a TNS/E system.

Appendix A Appendix A, Error and
Warning Messages

Contains a numeric list of all error and warning
messages that Inspect produces.

Appendix B Appendix B, Syntax
Summary

Provides a summary of high-level Inspect
commands. It also provides a summary of the
language-specific information for each source
language.

Appendix C Appendix C, Notes for
System Operators

Discusses topics concerning the installation and
maintenance of Inspect.

Glossary Glossary Defines Inspect and related terms.

Table i. Contents of the Inspect Manual
Section Title Contents
Inspect Manual—429164-006
xxxii

About This Manual Notation Conventions
Notation Conventions

Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address
Inspect Manual—429164-006
xxxiii

About This Manual General Syntax Notation
{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
Inspect Manual—429164-006
xxxiv

About This Manual Change Bar Notation
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

 Change Bar Notation
Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of changed
portions of text, figures, tables, examples, and so on. Change bars highlight new or
revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.
Inspect Manual—429164-006
xxxv

About This Manual HP Encourages Your Comments
HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement you have concerning this document.
Inspect Manual—429164-006
xxxvi

1 Introduction

 Inspect Features

 Inspect Command Modes on page 1-6

 High-Level Mode on page 1-6

 Low-Level Mode on page 1-6

 Automatic Command Mode Selection on page 1-7

 Inspect Components on page 1-7

 The Inspect Process on page 1-8

 The IMON Process Pair on page 1-8

 The DMON Process on page 1-9

 Remote Debugging on page 1-9, or using Inspect across a network

Inspect Features
Inspect is an interactive symbolic debugger that enables you to isolate program bugs
quickly. Inspect provides several features that help you shorten the debugging phase
of a project:

 Interactive control of program execution

 Concurrent debugging of all parts of an application

 Debugging of PATHWAY applications

 Support for saving and examining a process state

 Source-level and machine-level program access

 Support for many source languages

 Support of optimizing compilers

 Support for programs written in multiple source languages

 Local system customization

 Personal customization

 Code and data breakpoints

 Conditional breakpoints

 Distributed debugging across a network

 Debugging programs executed on TNS/R systems

 Debugging programs executed on TNS/E systems
Inspect Manual—429164-006
1-1

Introduction Interactive Control of Program Execution
 Debugging programs in an OSS environment

Interactive Control of Program Execution

Inspect enables you to look at your program while it is running. Without interactive
control of program execution, take these actions:

1. Edit your source code, adding statements that write out status messages.

2. Recompile your source program.

3. Execute the resultant object program.

4. Examine the status messages.

5. Return to Step 1.

Interactive execution control enables you to bypass this time-consuming procedure. It
enables you to stop and resume execution of your program selectively. Using this “stop
and go” technique, you can quickly find out how your program is malfunctioning.

Using an interactive debugger is more efficient than using the primitive cycle. For
example, communicating by telephone is more efficient than by telegram.

Concurrent Debugging of All Parts of an Application

Large applications tend to consist of several programs working together, passing status
messages and data back and forth to each other. Inspect enables you to debug such
multiprogram applications, because it can debug more than one program at a time.
Although Inspect permits concurrent debugging of several programs, it tracks each
program separately. This separate treatment enables to debug a multiprogram
application as easily as a single-program application.

Debugging of PATHWAY Applications

PATHWAY uses the requester/server approach to application design. The requester
provides the terminal management functions, and the server provides the database
management functions. Inspect, with the PATHWAY Terminal Control Process (TCP),
enables you to debug requesters, servers, or complete PATHWAY applications.

Saving and Examining a Process State

Inspect allows the state of processes that are being debugged to be saved to a save
file. In addition, if you enable the SAVEABEND attribute of a process, DMON will
create a file containing an image of that process if it abends. You can use Inspect to
examine this file, enabling you to view a process in a normally inaccessible state—at
abnormal termination. In addition, Inspect allows the state of processes that are being
debugged to be saved to a save file.
Inspect Manual—429164-006
1-2

Introduction Source-Level and Machine-Level Program Access
Source-Level and Machine-Level Program Access

When you debug a program written in a high-level language, the debugger should
provide source-level access to the program. Machine registers, absolute addresses,
and internal storage schemes generally are not a concern. Inspect provides this type of
source-level, or symbolic, access. The symbolic access provided by Inspect lets you:

 Refer to a location by the high-level name you've given it in your source code.

 Refer to a source location by its line number in a source file.

 Evaluate expressions using the operators and operator precedence of your source
language.

 Display source code.

 Display and modify the current data segment ID.

 Control program execution on a statement-by-statement basis.

Symbolic debugging eases the task of debugging and decreases your debugging time,
but sometimes you need to have machine-level access to your program. The machine-
level access provided by Inspect lets you:

 Refer to an item by its absolute or relative address.

 Display and modify machine registers.

 Display machine code.

 Control program execution on an instruction-by-instruction basis (except for
accelerated programs running on a TNS/R machine). For more information, see
Section 16, Using Inspect With Accelerated Programs on TNS/R Systems.

Support for Many Source Languages

Inspect enables you to debug applications written in any of these source languages:

C
C++
COBOL (COBOL 74 or COBOL85)
FORTRAN
Pascal
pTAL
SCREEN COBOL
TAL

High-level Inspect supports the same set of commands for all the languages, with
minor variances for language-dependent extensions. For example, to ask Inspect for
the current value of a data item name rate, enter the high-level command DISPLAY
rate, regardless of the program's source language.
Inspect Manual—429164-006
1-3

Introduction Support of Optimizing Compilers
Although the functions and names of high-level commands are uniform across all
supported languages, the parameters to several of the commands are language-
dependent. Therefore, you have the flexibility needed to offer you symbolic access to
your program. When debugging a COBOL program, use this COBOL syntax to refer to
a data item:

However, when debugging a TAL program, use this TAL syntax:

The Inspect command is the same (DISPLAY), but the way you refer to the data item is
different.

Support of Optimizing Compilers

Inspect recognizes optimization performed across statements, but it issues a message
when optimization has:

 Removed the code for a statement

 Altered the code so that Inspect might report incorrect results

For details about optimization, see the respective language reference manual. For
more information about Inspect and optimization, see Debug Events on page 2-8 and
Code Locations on page 2-16.

Support for Programs with Multilanguage Source

Using the Binder (TNS) or nld (TNS/R) utility, you can create programs whose source
code is written in more than one language. Inspect enables you to debug these multi-
source programs. Inspect also automatically selects the appropriate source language
to use to interpret high-level Inspect commands.

Local System Customization

When an Inspect session begins, Inspect looks for an EDIT file named INSPLOCL in
the volume and subvolume containing the Inspect program file. If this INSPLOCL file
exists, Inspect reads and executes the Inspect commands it contains. Consequently,
your system manager can customize the Inspect environment for all Inspect sessions
that run on your system.

Personal Customization

After reading the INSPLOCL file, Inspect looks for an EDIT file named INSPCSTM in
your logon volume and subvolume. If this file exists, Inspect reads and executes the
Inspect commands it contains. Consequently, you can customize your Inspect
environment by creating an INSPCSTM file that includes Inspect commands to

DISPLAY first-name OF manager OF department (dept-num)

DISPLAY department[dept^num].manager.first^name
Inspect Manual—429164-006
1-4

Introduction Code and Data Breakpoints
configure the environment any way you want. Note that the commands in the
INSPCSTM file override those in the INSPLOCL file because Inspect processes the
INSPCSTM file after the INSPLOCL file. When debugging PATHWAY requestor
programs, your logon volume and subvolume may differ from the owner of the process
ID of the TCP’s volume and subvolume.

Code and Data Breakpoints

Inspect lets you set breakpoints at both code and data locations within your program.
In addition, Inspect lets you select what type of access (write or read/write or change)
triggers a data breakpoint. Note that write access is not available on TNS/R systems.

Conditional Breakpoints

Inspect lets you limit a breakpoint so that it suspends program execution only if certain
conditions exist. This enables you to avoid repeated execution interruptions before
arriving at the location of a bug.

Distributed Debugging Across a Network

Inspect enables you to debug applications whose components are distributed across
an EXPAND network. The distributed components can include:

Processes or programs
Source files
Program (object) files

Debugging Programs Executed on TNS/R Systems

Inspect supports the debugging of TNS, accelerated TNS, and native TNS/R programs
on TNS/R systems.

Debugging Programs Executed on TNS/E Systems

Inspect supports the debugging of emulated TNS programs on TNS/E systems, in
addition to snapshots of TNS/R native processes. Emulated TNS programs are TNS
programs that either have been accelerated beforehand with the TNS Object Code
Accelerator (OCA) or run in TNS interpreted mode.

Debugging Programs in the OSS Environment

Inspect supports the debugging of programs in the Open System Services (OSS)
environment. Processes that run in the OSS environment use the OSS application
program interface. Interactive users of the OSS environment use the OSS shell for the
command interpreter. Debugging support in the OSS environment includes OSS file
descriptors, signals, and program IDs (PIDs).
Inspect Manual—429164-006
1-5

Introduction Inspect Command Modes
Although there are no TNS OSS processes on TNS/E systems, you can use Inspect to
debug a TNS OSS snapshot on a TNS/E system.

Inspect Command Modes
Inspect provides two command modes: high-level mode and low-level mode. High-
level mode provides source-level access to your program, while low-level mode
provides machine-level access.

Each mode has its own set of commands, but they offer many of the same functions.
Besides display, modify, break, and trace capabilities, both modes provide
convenience commands such as HELP, FC, LOG, and OBEY.

High-Level Mode

To take full advantage of high-level Inspect, you should ensure that your program file
includes symbol information. Consequently, you must include the SYMBOLS compiler
directive in the source code or on the command line when you compile the source
code.

High-level Inspect provides features that let you:

 Refer to code and data locations using source identifiers.

 Modify the value or values of a data item.

 Display the value or values of a data item, with extensive control of the display
format.

 Step through your program in source or machine oriented increments.

 Provide aliases for command strings.

 Suspend program execution and automatically perform a specified action.

 Save an image of a process for later examination.

Low-Level Mode

Low-level Inspect resembles Debug. To use either effectively, you must understand
the architecture of HP NonStop computer systems.

Your program file does not need to include symbol information to use low-level (or
high-level) Inspect. If it does have this information, you can use the high-level INFO
command instead of compiler listings or binder maps to discover the address,
addressing mode, and size of any symbol in your program. However, if your object
code does not contain symbols, you can point Inspect at a corresponding version of
the object.

Note. You can debug SCREEN COBOL programs in high-level mode only.
Inspect Manual—429164-006
1-6

Introduction Automatic Command Mode Selection
Low-level Inspect offers these special features that are not available in Debug:

 Recognition of source-language names of code blocks.

 Stepping through your program by machine instructions (on TNS/R systems, this
can be done with non-accelerated programs only).

Automatic Command Mode Selection

When the execution of your program is suspended, Inspect automatically selects its
command mode, depending on the availability of symbol information.

If the scope containing the current execution location includes symbol information,
Inspect automatically enters high-level mode; otherwise, it enters low-level mode.
Once Inspect has made its selection, you can switch to the other command mode
using the LOW command in high-level Inspect or HIGH command in low-level Inspect.

Inspect Components
The Inspect interactive symbolic debugger consists of three groups of processes:
Inspect processes, the IMON process pair, and DMON processes. These component
groups perform these functions:

 Inspect processes provide the terminal interface to Inspect. There is one Inspect
process for each terminal in use for debugging.

 The IMON process pair monitors the operation of Inspect for an entire system.
There is one IMON process pair for each system.

 DMON processes provide the execution control facilities of Inspect. There is one
DMON process for each CPU within a system.
Inspect Manual—429164-006
1-7

Introduction The Inspect Process
Figure 1-1 presents a conceptual overview of these component processes and their
interaction.

The Inspect Process

An Inspect process provides the terminal interface through which you interact with the
Inspect debugger. The other functions of an Inspect process include:

 Retrieving source code from source files.

 Retrieving machine code from program files.

 Retrieving symbol information from program files.

 Communicating with DMON, making execution control and program data requests.

IMON starts an Inspect process on the home terminal of a process for which a
debugging event occurs or on which a debug request is issued, or if you enter the
command interpreter Inspect command. Note that IMON does not start Inspect, if you
enter the command interpreter Inspect command, for example RUN INSPECT and
INSPECT.

The IMON Process Pair

The IMON process runs as a fault-tolerant process pair named $IMON. Your system
manager starts IMON at the same time as the operating system, and determines what
processors run IMON. The functions of IMON include:

Figure 1-1. Inspect Components

$DM00

$DM01

$DM15

INSPECT

INSPECT

\SYS01 CPU00

CPU01

CPU15

$IMON

INSPECT

VST101.vsd
Inspect Manual—429164-006
1-8

Introduction The DMON Process
 Starting a DMON process on each processor in your system

 Monitoring the status of the DMON processes, ensuring that a DMON is always
running in each CPU

 Starting Inspect processes

The DMON Process

A DMON process runs on each processor in a system that has IMON running. The
name of the DMON process running on processor number nn is $DMnn. A DMON
process provides debugging functions for all programs running in its processor; these
functions include:

 Setting or clearing data and code breakpoints

 Retrieving values from or storing values in the program's data space

 Informing Inspect when a breakpoint has been reached

Creating an image of a program and storing it in a save file for later examination

Inspect, IMON, and DMON Swap and Extended Swap Files

The Inspect, IMON, and DMON swap files do not need to be located on the $SYSTEM
volume. IMON and DMON swap files are on the swap file volume specified when the
$IMON process is started. Inspect processes that are started by IMON have the same
swap file volume as the first process that is debugged; for example:

For SCREEN COBOL programs, the swap file volume of the TCP is used, which is the
volume specified in the TCP configuration parameter, “Guardian Swap.” To override,
start Inspect from the command interpreter Inspect command. Note that IMON does
not start Inspect if you enter the command interpreter Inspect command.

Remote Debugging

Inspect enables you to debug a program running on another system in an EXPAND
network. When debugging such a program, the Inspect process runs on the remote
system. If you want to debug a process on a remote node, the process must have

Note. The TCP, not DMON, provides these execution control functions for PATHWAY
requester programs.

> ALTER DEFINE =_DEFAULTS, SWAP $DISK4
> IMON /NAME $IMON, SWAP $DISK4/ -- IMON and DMON swap files are on $DISK4
 .
 .
 .
> RUND -- INSPECT’s extended swap files are also on $DISK4

> INSPECT / SWAP $DISK4, EXTSWAP $DISK4/ -- INSPECT's swap
and extended swap files are on $DISK4
Inspect Manual—429164-006
1-9

Introduction Remote Debugging
been started remotely or you will receive a security error from the operating system on
the remote node. Figure 1-2 shows the configuration when debugging across a
network.

.

Figure 1-2. Inspect Across a Network

$DM00

$DM01

$DM15

INSPECT

INSPECT

\SYS01
CPU00

CPU01

CPU15

$IMON

$DM00

$DM01

$DM15INSPECT

INSPECT

\LOCAL
CPU00

CPU01

CPU15

$IMON

INSPECT

VST102.vsd
Inspect Manual—429164-006
1-10

2 Inspect Concepts

 Inspect Sessions

 Starting an Inspect Session on page 2-2

 Prompting for Commands on page 2-3

 Reporting Events on page 2-3

 Ending an Inspect Session on page 2-4

 What Inspect Debugs on page 2-4

 Processes on page 2-4

 Save Files on page 2-5

 PATHWAY Servers on page 2-6

 PATHWAY Requester Programs on page 2-6

 Debugging Multiple Programs on page 2-7

 Execution States of a Program on page 2-7

 The Run State on page 2-8

 The Hold State on page 2-8

 The Hold State on page 2-8

 The Gone State on page 2-8

 Debug Events on page 2-8

 Breakpoints and Break Events on page 2-9

 Source Languages and Inspect on page 2-11

 Scope Paths on page 2-12

 Activation of Scope Units on page 2-13

 Expressions on page 2-15

 Code Locations on page 2-16

 Data Locations on page 2-18

Inspect Sessions
An Inspect session is the time period during which you debug interactively using the
same Inspect process. The session begins when IMON first creates an Inspect
process on your terminal, and continues until you terminate that process or exit
Inspect.
Inspect Manual—429164-006
2-1

Inspect Concepts Starting an Inspect Session
Starting an Inspect Session

There are four ways to start an Inspect session:

 Run Inspect directly.

 From the TACL prompt, enter:

>RUN INSPECT

or:

>INSPECT

 From the OSS shell, enter:

gtacl -p inspect

 Run your program with the debug option.

 From the TACL prompt, enter:

>RUND program

 From the OSS shell, enter:

run -debug -inspect=on program

 Issue a debug request on a running program.

 A debug event occurs in a program that has your terminal specified as its home
terminal or debugging terminal. For more information, see Debug Events on
page 2-8.

The first of these events always starts a new Inspect session. The second, third and
forth start a new Inspect session if your terminal does not already have an Inspect
session.

The first two options have been enhanced to support the OSS shell. In all cases,
Inspect will be started as a Guardian process.

To avoid incompatibilities between Guardian and the OSS terminal I/O when
debugging an OSS process, change Inspect’s command terminal to an existing
Guardian terminal using the TERM command as soon as Inspect comes up.

At the start of an Inspect session, the Inspect process displays a banner similar to this:

This banner signifies the start of the session (\sysname is the system on which the
Inspect process is running).

After printing the banner, the Inspect process looks for an EDIT file named INSPLOCL
in the volume and subvolume containing the Inspect program file. If this INSPLOCL
file exists, Inspect reads and executes the Inspect commands it contains.

INSPECT - Symbolic Debugger - T9673D40 - (29JUL03) System \sysname
Copyright Tandem Computers Incorporated 1983, 1985-1993
--
Inspect Manual—429164-006
2-2

Inspect Concepts Prompting for Commands
Consequently, your system manager can customize the Inspect environment for all
Inspect sessions that run on your system.

After reading the INSPLOCL file, the Inspect process looks for an EDIT file named
INSPCSTM in the logon volume and subvolume of the creator of the process being
debugged. However, for PATHWAY programs, Inspect uses the default volume and
subvolume of the individual who started PATHMON.

If the INSPCSTM file exists, Inspect reads and executes the Inspect commands it
contains. Consequently, you can customize your Inspect environment by creating an
INSPCSTM file that includes Inspect commands to configure the environment the way
you like it. Note that the commands in the INSPCSTM file override those in the
INSPLOCL file because Inspect processes the INSPCSTM file after the INSPLOCL
file.

Prompting for Commands

Whenever Inspect expects you to enter a command, it prints the Inspect prompt. By
default, the prompt has this form:

The dashes enclosing the program name (PRGOBJ) signify that Inspect is in high-level
mode; underscores enclosing the program name, as in _PRGOBJ_, denote low-level
mode.

The name between the dashes is the name of the program that you are currently
debugging. If you are not currently debugging any program, Inspect prompts you with
two dashes or two underscores, depending upon the current mode.

The SET PROMPT command enables you to customize the Inspect prompt to show
other types of information as well. For more information, see SET PROMPT on
page 6-178.

Reporting Events

When a debug event occurs, Inspect displays a status message that provides
information regarding the event. By default, the status message has this form:

The message begins with the text “INSPECT” to indicate that Inspect is generating the
message. Following this text is a description of the type of event that occurred. In the
example, the debug event is a break event caused by breakpoint number 1. The
definition of the breakpoint (#MAIN) follows the breakpoint number.

The second line of the message indicates where the event occurred. Inspect displays
the PID and name of the program in which the event occurred. It then shows the code

-PRGOBJ-

INSPECT BREAKPOINT 1: #MAIN
175,05,00066 TALOBJ #MAIN.#1862(TALSRC)
Inspect Manual—429164-006
2-3

Inspect Concepts Ending an Inspect Session
location where the event occurred: line number 1862 within the scope unit MAIN,
whose source file is TALSRC.

The SET STATUS command enables you to customize Inspect event reporting. For
more information, see SET STATUS ACTION on page 6-186 and SET STATUS
LINE25 and SET STATUS SCROLL on page 6-187.

Ending an Inspect Session

An Inspect session can be stopped in several ways:

 You exit, either by using the EXIT command or the RESUME * EXIT command

 Your last program has completed

 Your program is stopped by someone else

When you use EXIT to end an Inspect session, Inspect will prompt you for
confirmation. If you have not removed all breakpoints from the programs you have
been debugging before attempting to exit Inspect, Inspect will mention that all
breakpoints have not been removed and prompt you for confirmation.

What Inspect Debugs
You can debug or examine any of these program types with Inspect:

 Processes

 Save files

 PATHWAY servers

 PATHWAY requester programs

Inspect groups these four types under the common term “program.”

Processes

Processes are running machine-code programs. More specifically, a process is the
unique executing entity that is created when:

 Someone runs object code from a program file by entering an explicit or implicit
TACL RUN command.

 An existing process runs object code from a program file by calling the
NEWPROCESS, NEWPROCESSNOWAIT, PROCESS_CREATE_, or
PROCESS_LAUNCH_ system procedure.

Note. Inspect’s usage of the term program differs slightly from the general usage. Inspect
defines program as a file that contains a series of instructions. In this manual, such a file is
called a program file, and the term program is used to mean “a process, a save file, a
PATHWAY server, or a PATHWAY requester program.”
Inspect Manual—429164-006
2-4

Inspect Concepts Save Files
Inspect enables you to debug processes started from program files whose object code
was compiled from C, COBOL, COBOL85, FORTRAN, Pascal, or TAL source code.

With Inspect, you can also debug processes started from program files whose object
code was produced from one or more object files (compiled from any of these
languages) either by the BINDER utility or by a native linker such as nld (on TNS/R
systems), ld (for Position-Independent Code on TNS/R systems), or eld (on TNS/E
systems).

Inspect allocates heap during debugging a process (that is, setting a breakpoint,
resuming, displaying a variable and for various other Inspect debugging commands).
The limit for this heap for Inspect is 127.5 MB. If this limit exceeds, Inspect terminates.

Inspect also supports the debugging of TNS processes, in addition to emulated TNS
processes on TNS/R and TNS/E systems. An emulated TNS process is a TNS process
whose object file has been processed by the Axcel accelerator (on a TNS/R system) or
by OCA (on a TNS/E system) to optimize the process for the native system. For more
information about using Inspect on a TNS/E system, see Section 18, Using Inspect on
a TNS/E System.

Many of the high-level Inspect commands permit you to refer to items using the names
or identifiers you gave them in your source code. To take full advantage of these
commands, you should ensure that your program file includes symbol information.
Consequently, you must include the SYMBOLS compiler directive in the source code
or on the command line when you compile the source code.

Save Files

Save files are “snapshots” or “images” of a process or PATHWAY server stored on
disk. If a process or PATHWAY server terminates abnormally (abends) and its
SAVEABEND attribute is set, DMON creates a save file just before termination. You
can direct DMON to create a save file using the Inspect SAVE command.

A save file contains information regarding the state of the process or PATHWAY server
at the moment the image was created. This information includes:

 The user data space (including extended data segments)

 The values of machine registers

 The names and status of any files opened by the process or PATHWAY server

 Information about the programs execution environment.

Save files contain additional information about the TNS/R execution environment. This
includes an indication of whether the program has been accelerated and the current
instruction set that is being executed. For accelerated and TNS/R native programs, it
also stores TNS/R machine registers.
Inspect Manual—429164-006
2-5

Inspect Concepts PATHWAY Servers
Inspect pairs a save file with the program file that created the saved process; it
therefore enables you to examine a “frozen” process. Such examination makes the
task of finding and eliminating fatal bugs (those that cause an ABEND) much easier.

Save files are not upwardly compatible. You will receive this error message if you
attempt to add a save file newer than the current version of Inspect to an older version
of Inspect.

PATHWAY Servers

A PATHWAY server is the half of a PATHWAY application that manages database files.
Some of the tasks handled by a PATHWAY server include:

 Updating the database files (additions, deletions, corrections)

 Retrieving information from the database files

 Communicating with TCPs

PATHWAY servers are processes, so they share most of the traits of processes;
however, because the PATHWAY system oversees the creation and operation of
servers, servers differ from processes in some important ways, including how you start
them. You start a PATHWAY server by entering the START SERVER command from
PATHCOM.

PATHWAY Requester Programs

A PATHWAY requester program is the half of a PATHWAY application that manages
transaction data at the terminal. Some of the tasks handled by a PATHWAY requester
program include:

 Displaying data-entry forms on terminals associated with the application

 Accepting data entered at the terminals

 Checking input for errors

 Passing data requests and updates along to a PATHWAY server for processing

PATHWAY requester programs are written in SCREEN COBOL and compiled into an
intermediary form of object code called pseudocode, which is executed by a Terminal
Control Process (TCP). Compilation to pseudocode distinguishes PATHWAY requester
programs from processes and PATHWAY servers because they are compiled directly
into machine code, which is then executed by a processor.

Note. Save files include an indication of whether the program has been accelerated and the
current instruction set that is being executed. For accelerated programs, it also stores TNS/R
machine registers.

** Inspect error 90 ** Incompatible Save File version
Inspect Manual—429164-006
2-6

Inspect Concepts Debugging Multiple Programs
PATHWAY requester programs can be started by entering one of these PATHCOM
commands:

 START TERM starts the PATHWAY requester program associated with a given
terminal by an earlier SET TERM command.

 RUN PROGRAM starts a given PATHWAY requester program at the PATHCOM
command terminal.

 Inspect enables you to debug PATHWAY requester programs compiled with the
SCREEN COBOL directive SYMBOLS.

Debugging Multiple Programs

Inspect enables you to debug more than one program in a single Inspect session; in
fact, you can debug several programs concurrently. When you debug multiple
programs, Inspect retains a list of the programs that you are debugging. This list is
called the program list.

Although you can debug multiple programs concurrently, most Inspect commands
affect only one program: the current program. Whenever a debug event occurs in one
of the programs you're debugging, Inspect automatically makes it the current program.
In addition, you can choose the current program using the SELECT PROGRAM
command.

Execution States of a Program
Inspect separates the execution of a program into four distinct phases, called
execution states. These states describe the current activity of a program, and
determine the availability and significance of certain Inspect commands. Because
save files are not executable, the execution state of a save file cannot change. A save
file merely records the execution state of the process that it is an image of.

All other program types can assume one of three possible Inspect execution states:

 Run State—the program is executing.

 Hold State—the program is temporarily suspended, but can resume execution
again.

 Stop State—the program has completed execution, whether normally or
abnormally.

 Gone State—the program has stopped executing, but has not been cleared.

Several Inspect commands produce relevant information only when a program is in the
hold or stop state, while other commands are valid only when a program is in the hold
state.
Inspect Manual—429164-006
2-7

Inspect Concepts The Run State
The Run State

A program is in the run state as long as it is executing. A program enters the run state
when it is first created (and it is not configured to enter the hold state immediately) or
when you enter a RESUME or STEP command to release it from the hold state.

A program leaves the run state when it completes execution, whether normally or
abnormally, or when a debug event occurs. In the former case, the program enters the
stop state. In the latter case, the program enters the hold or stop state, depending on
the nature of the debug event.

The Hold State

A program is in the hold state while its execution is suspended. A program enters the
hold state as the result of a debug event. Many Inspect commands are valid only when
the program is in the hold state. For example, you can use MODIFY to change data
values only when execution is suspended.

A program leaves the hold state (and re-enters the run state) when you enter a
RESUME or STEP command.

The Stop State

A program is in the stop state just after it completes execution, whether normally
(STOP) or abnormally (ABEND). A program enters the stop state when it calls the
STOP or ABEND system procedure, when another program stops it by calling the
STOP system procedure, or when you stop it using the TACL STOP command.

Normally a program is removed (that is, its code and data areas are freed for other
use) after it enters the stop state; however, a program is also in the stop state if:

 The program was suspended by a breakpoint set on STOP/ABEND.

 You examine a save file that was created from a program in the stop state.

Once a program is in the stop state, it cannot enter the run or hold state. Furthermore,
you cannot set breakpoints in it, modify its data, or resume its execution.

The Gone State

A program is in the gone state after you have stopped program execution and a
message has been sent to DMON. Processes only exist in the gone state for as long
as it takes DMON to compete the stopping process. Your program is not cleared from
the list until DMON returns a message. It is possible to catch a program you have
stopped if the program is still in the gone state.

Debug Events
A debug event is an action that causes Inspect to suspend the execution of a program.
Because save files are not executable, debug events do not apply to them.
Inspect Manual—429164-006
2-8

Inspect Concepts Breakpoints and Break Events
All these actions cause a debug event to occur:

 You enter the DEBUG or RUND command from TACL.

 You enter the START TERM command from PATHCOM for a terminal that you've
configured with a SET TERM INSPECT ON command.

 You enter an Inspect command from PATHCOM.

 You enter a HOLD or ADD PROGRAM command from Inspect.

 Program execution (or termination) activates a breakpoint, and the breakpoint
triggers a break event.

 A TACL routine or macro calls the built-in TACL function #DEBUGPROCESS

 A process calls the Debug system procedure.

 A process starts another process by calling the NEWPROCESS,
NEWPROCESSNOWAIT, PROCESS_CREATE_, or PROCESS_LAUNCH_
system procedure with the debug bit set.

 A process encounters a trap for which it does not have a trap handler.

 A process attempts to call an unresolved external routine.

After Inspect suspends program execution, it displays the status message and then
prompts you for a command. Inspect might report incorrect information for programs
that have been optimized. Therefore, if the current location in the program has been
optimized in such a way that incorrect information might result, Inspect displays this
warning message for debug events:

Breakpoints and Break Events
A breakpoint is a location in your program where you tell Inspect to suspend execution
so you can examine the program's state and perhaps modify its variables. Inspect
breakpoints can consist of three parts:

 Break location—where the break event should occur

 Break condition—under what conditions the break event should occur

 Break action—what to do after the break event occurs

 Break duration—how long the break exists

The condition and action parts are optional features that extend the capabilities of
simple breakpoints.

A break event occurs when program execution reaches a breakpoint, provided that the
conditions (if any) limiting that breakpoint are fulfilled. Once the break event occurs,

** Inspect warning 198 ** Results might be unexpected due to optimization
Inspect Manual—429164-006
2-9

Inspect Concepts Setting Breakpoints
Inspect puts the program into the hold state, reports the breakpoint, and then performs
any break action associated with the breakpoint.

Setting Breakpoints

Inspect maintains a breakpoint list for each program you are debugging, and enables
you to add breakpoints to or to remove breakpoints from the current program's
breakpoint list. The time at which you set a breakpoint is called breakpoint definition.

Code Breakpoints

A breakpoint whose break location refers to object code (whether at the source or
machine level) is called a code breakpoint. In Inspect, you specify the location of a
code breakpoint using a code location. Code breakpoints are activated when the code
specified by the code location is about to be executed.

When debugging on a TNS/R system, code breakpoints may be set at any location in
non-accelerated or TNS/R native programs. However, when debugging accelerated
programs, Inspect only allows TNS code breakpoints to be set at location that are
memory-exact points. An attempt to set a TNS breakpoint at a location that is not a
memory-exact will result in an error. Fore more information, see Section 16, Using
Inspect With Accelerated Programs on TNS/R Systems.

When debugging PATHWAY requester programs, you can put code breakpoints in
inactive scope units only at the entry point of the scope unit.

Data Breakpoints

A breakpoint whose break location refers to a data item is called a data breakpoint. In
Inspect, you specify the location of a data breakpoint using a data location. Data
breakpoints are activated when the data word specified by the data location is stored to
or (optionally) read from or changed. This detection of read access extends to the
special, read-only data types provided by some languages (for example, P-relative
arrays in TAL).

The default type for high-level data breakpoints is change (formerly write). The new
default applies to both TNS and TNS/R systems. Data breakpoints are only reported if
the value of the variable has changed; writes that store the same value already

Note. Inspect does not limit the number of breakpoints you can set in a single program.
However, after breakpoint ninety-nine, Inspect will stop numbering them. The total number of
code breakpoints in all processes and PATHWAY servers running in a single processor is
further limited; it is specified by BREAKPOINT_CONTROL_BLOCKS at system generation
time. Consult your system operator or system manager for the maximums used in your
system's processors.

The total number of code breakpoints in all PATHWAY requester programs under the control of
a single TCP cannot exceed twenty.
Inspect Manual—429164-006
2-10

Inspect Concepts Processing Breakpoints
contained in the variable are not reported. You can have only one data breakpoint at a
time in each program that you are debugging.

Conditional and Unconditional Breakpoints

A breakpoint whose definition includes a break condition is called a conditional
breakpoint. If a breakpoint's definition does not include a break condition, it is called
an unconditional breakpoint. The conditionality of a breakpoint affects how Inspect
processes the breakpoint, as discussed in the following subsection.

Processing Breakpoints

Whenever one of the programs you are debugging encounters a break location,
Inspect begins processing the breakpoint at that break location. This is called
breakpoint activation. If the breakpoint is unconditional, Inspect generates a break
event immediately. On the other hand, if the breakpoint is conditional, Inspect does not
generate a break event unless the specified break condition is met. Once the break
event occurs, Inspect suspends the program containing the breakpoint.

After recording the current breakpoint, Inspect performs any break action associated
with the breakpoint. If the break action concludes with a RESUME command, Inspect
does not display the status messages and prompt as it normally would; instead, it
resumes execution immediately.

Source Languages and Inspect
To support several source languages, Inspect uses generic concepts to describe a
program and its contents. These concepts include:

 Scope of identifiers

 Scope units and scope paths

 Activation of scope units, including recreative activation

 Expressions

 Code locations

 Data locations

The availability and applicability of these concepts differ from language to language;
however, Inspect presents them similarly whenever possible.

Note. Specific constraints apply to data breakpoints when executing accelerated programs on
TNS/R systems. For more information, see Section 16, Using Inspect With Accelerated
Programs on TNS/R Systems. In addition, data breakpoints are not valid in PATHWAY
requester programs
Inspect Manual—429164-006
2-11

Inspect Concepts Scope of Identifiers
Scope of Identifiers

The concept of scope is central to several programming languages. The scope of an
identifier determines the portion of the program in which that identifier is defined (also
referred to as the domain of an identifier). All the languages that use the concept of
scope provide some construct by which the programmer can define the boundaries of
a specific scope domain. Each language has its own name for these constructs (for
example, C calls them functions and COBOL85 calls them program units), but Inspect
groups them all under the term scope unit.

Some languages even allow one scope unit to contain other scope units (COBOL85
and Pascal, for example). In this case, the domain of an interior scope unit is defined
by the boundaries of its containing, or parent, scope unit.

Compilers for scope-dependent languages use the scope of an identifier to distinguish
it from similarly named identifiers in other scope units. Inspect uses the scope of an
identifier for exactly the same purpose.

Scope Paths

In Inspect, you define the scope of an identifier by specifying the scope path to that
identifier. The scope path is the list of scope units containing the identifier, starting with
the outermost and working down to innermost (the one containing the identifier). In
some cases, the scope path consists of a single scope unit, while in other cases it
might consist of ten or more scope units.

The general syntax you use to specify a scope path to Inspect is common to all
languages:

As an example, examine this code fragment (written in a simple pseudolanguage):

scope-unit main begin
 ...
 scope-unit deep begin
 identifiers: a,b,c
 ...
 scope-unit deeper begin
 ...
 scope-unit deepest begin
 identifiers: x,y,z
 ...
 end; {end of deepest}
 ...
 end; {end of deeper}
 ...
 end; {end of deep}
 ...
end; {end of main}

#scope-unit [.scope-unit]...
Inspect Manual—429164-006
2-12

Inspect Concepts Activation of Scope Units
According to the general syntax, the scope path for the identifiers A, B, and C is:

#main.deep

The scope path for the identifiers X, Y, and Z is:

#main.deep.deeper.deepest

Refer to the language-specific portions of this manual for language-specific syntax.

The Current Scope Path

If you do not specify a scope path when you refer to an identifier, Inspect assumes that
the identifier is in the current scope path. You can set the current scope path using the
SCOPE command. In addition, Inspect sets the current scope path whenever a debug
event occurs. In this case, Inspect sets the current scope path to the scope path
defining the scope unit in which the debug event occurred.

Using the code fragment from the previous subsection, assume that a breakpoint is set
at the entry of the DEEPEST scope unit. When that breakpoint halts as a result of that
breakpoint, Inspect sets the current scope path to:

#main.deep.deeper.deepest

To look at the value of the identifier X, you could then enter:

Alternatively, you can use the current scope path and simply enter:

Inspect will automatically qualify the identifier X using the current scope path.

Activation of Scope Units

Scope paths qualify and define specific scope units, but they are not related to the
execution of a scope unit. Execution is controlled by the control flow in a program.
When a program firsts begins, only the main scope unit is active. When that scope unit
calls some other scope unit, the other scope unit becomes active as well. This second
scope unit remains active until it returns control to the scope unit that called it.

When a scope unit is activated, space for its local variables is allocated. When it is
deactivated (that is, when it returns control to its caller), its local variable space is
deallocated. As a result, data breakpoints referring to local variables become useless
when their scope unit is deactivated.

When debugging, you can examine the list of active scope units using the TRACE
command. This command displays the call history from the scope unit currently being

-SAMPLE-DISPLAY #main.deep.deeper.deepest.x

-SAMPLE-DISPLAY x
Inspect Manual—429164-006
2-13

Inspect Concepts Activation of Scope Units
executed back to the main scope unit in the program. If a scope unit does not appear
in the call history, it is called an inactive scope unit.

Recursive Activation

Recursion occurs when a scope unit calls itself or another active scope unit.
Recursion causes two or more activations, or instances, of a single scope unit to
appear in the call history. Because each such instance has its own local variables, a
data reference to one of these variables is ambiguous.

To specify the particular activation to which a local data reference refers, you add an
instance number to the end of the scope path. If you do not specify an instance
number, Inspect assumes that the reference is to the most recent activation of the
variable's parent scope unit. When you give an instance number (for example,
1,2,3,…), you can specify it relative to the most recent activation or the earliest
activation, where 1 is the first, 2 is the second, and so on:

To examine an element as it exists during a particular instance, include an instance
number when you specify the scope path. You can count from either direction using
these conventions:

 Instance 1 is the least recent instance—that is, the oldest chronologically. Positive
values count from the base of the stack toward the top.

 Instance 0 is the most recent instance—that is, the current scope path.

 Instance -1 is the next most recent—that is, the youngest chronologically.
Negative values count from the top of the stack toward the base.

A scope instance is either a relative instance or an absolute instance. Both are useful;
a user can easily specify the first occurrence of a scope of the last occurrence without

Note. Inspect permits a limited set of operations for inactive scope units. In an inactive scope
unit, you can:

 Set or clear breakpoints.

 Display the attributes of an identifier.

 Display object code and source text (but not data values).

Zero (0) Specifies the most recent activation.

Negative
(-1,-2,-3,…)

Specifies the instance relative to the most recent activation: -1 is
the second-most recent, -2 is the third-most recent, and so on.

Positive
(1,2,3,…)

Specifies the instance relative to the first activation: 1 is the first,
2 is the second, and so on.
Inspect Manual—429164-006
2-14

Inspect Concepts Expressions
knowing the number of instances. This example illustrates the difference between
relative and absolute instances:

The number in the leftmost columns is the scope ordinal. Scope 0 is always the most
recent scope, or the current execution scope. Its caller is scope ordinal 1; the caller of
scope 1 is scope ordinal 2 and so on. Scope ordinals number all active scopes; scope
instances number all active instances of the same scope.

In the previous example, A at statement 42 is relative instance 0, A at 101 is relative
instance -1, A at statement 4 is relative instance -2 and A at statement 78 is relative
instance -3. Alternatively, A at statement 78 can be referred to as absolute instance 1,
A at statement 4 as absolute instance 2, A at statement 101 as absolute instance 3
and A at statement 42 as absolute instance 4.

Expressions

An Inspect expression is a list of operands and operators which, when evaluated,
result in a number or string. The operators you can use are based on the source
language of the program you're debugging.

-PROGRAM-TRACE
Num Lang Location
 0 TAL #A.#42
 1 TAL #B.#57
 2 TAL #A.#101
 3 TAL #A.#4
 4 TAL #C.#67
 5 TAL #B.#49
 6 TAL #A.#78
 7 TAL #M.#3

Scope
Ordinal

Scope
Name

Line
Number

Relative
Instance

Absolute
Instance

0 A 42 0 4

1 B 57 0 2

2 A 101 -1 3

3 A 4 -2 2

4 C 67 0 1

5 B 49 -1 1

6 A 78 -3 1

7 M 3 0 1

Note. You can specify instances for active scope units only. In addition, an instance must
already exist—that is, you cannot refer to the tenth instance of a local variable when only eight
activations of its parent scope unit are in the call history.

Note. Inspect does not permit function calls as operands
Inspect Manual—429164-006
2-15

Inspect Concepts Code Locations
Code Locations

A code location is a symbolic reference to a specific location in the object code of a
program. Although the syntax used to specify a code location varies slightly for each
source language, the general syntax is the same for all languages.

scope-path

specifies the scope path to the scope unit containing the code location. When
used alone (the first option in the main syntax), scope-path specifies the primary
entry point of the last scope unit named in the scope path.

[scope-path.] code-reference

specifies a named or numbered location in the scope unit defined by the given
scope path (or the current scope path if no scope path is given). The exact form of
code-reference varies from language to language, but options shown in the
previous diagram are generally available.

scope-unit [FROM source-file]

specifies the primary entry point of the scope unit. scope-unitmust be the
same as the last scope unit named in scope-path (or in the current scope
path).

The FROM clause identifies the scope unit by the source file in which it is
found; therefore, Inspect can distinguish between scope units that have the
same name, but reside in different modules.

{ scope-path }
{ } [code-offset [1] [2] [3]
{ [scope-path.] code-reference }

code-reference: one of

 scope-unit [FROM source-file]
 label [FROM source-file]
 #line-number [(source-file)]

code-offset:

 { + | - } num-units [code-unit]
 { + | - } num-units [code-unit]
 { + | - } num-units [code-unit]

code-unit: one of

 INSTRUCTION[S] STATEMENT[S] VERB[S]
Inspect Manual—429164-006
2-16

Inspect Concepts Code Locations
label [FROM source-file]

specifies the statement following a given label in the source code.

The FROM clause identifies the label by the source file in which it is found;
therefore, Inspect can distinguish between labels that have the same name.

#line-number [(source-file)]

specifies the statement starting at a given line number in the source file. If no
statement begins at the specified line number, Inspect issues this warning:

A subsequent line number is assumed: line-num

Inspect then uses the statement starting at lineline-num. If more than one
statement begins on the specified line, Inspect uses the start of the first
statement.

The (source-file) option identifies #line-number by the source file in
which it is found. You need to use this option only if the source code for the
given scope unit is in more than one file.

code-offset

specifies an offset from the code location defined by the preceding options. A
positive offset (+) denotes code following the specified code location; a negative
offset (-) denotes code preceding the specified code location. The amount to offset
is specified by a given number of units. If you omit the unit specifier, Inspect
selects a default unit depending upon the current source language. This default
unit will always be a statement.

Usage Considerations

 Using source-file with #line-number

Inspect assumes that the source code for a scope unit is in a single file. When it is
not in a single file, using#line-number alone to identify a code location will not
work if the line number you want isn't in the first file. To direct Inspect to the correct
file, use the source-file option shown in the general syntax.

 Optimized Statements

If optimization has removed the code for a statement and Inspect encounters the
statement, Inspect displays the message:

You cannot set a breakpoint for a deleted statement.

**** ERROR 197 **** Location deleted due to optimizations
Inspect Manual—429164-006
2-17

Inspect Concepts Data Locations
Data Locations

A data location is a symbolic reference to a data item within a program. Although the
syntax used to specify a data location varies for each source language, the general
syntax is the same for all languages.

scope-path

specifies the scope path to the scope unit containing the data item.

instance

specifies a specific activation of the scope unit containing the data item.

data-reference

specifies a data item using the syntax of the source language.

Usage Considerations

These considerations are valid for all source languages.

 Modifying and Displaying Program Data

When program execution begins, the compilers add code in front of the first
program statement which initializes the run-time library and sets up the variables.
When you inspect a program, step to the first statement of your code before
accessing variables.

 How Inspect Displays Names of Data Items

When Inspect displays the name of a data item (for example, when you direct
Inspect to display the value of a data item), Inspect uses a form similar to Pascal or
TAL. Assume you request Inspect to display the value of this COBOL data item:

hours OF overtime OF weeks-work (3)

Inspect displays its name as follows:

WEEKS-WORK[3].OVERTIME.HOURS

 Specifying Subscript Ranges

When referring to arrays, Inspect enables you to specify a subscript range instead
of a single subscript value. For example, suppose the following data item occurs in
a COBOL program:

01 lumber-table.
 03 thickness OCCURS 2 TIMES.
 05 width OCCURS 6 TIMES.
 07 price PICTURE 99V99.

[scope-path [(instance)] .] data-reference
Inspect Manual—429164-006
2-18

Inspect Concepts Data Locations
You can display the value of PRICE for the fourth through sixth occurrences of
WIDTH of the second occurrence of THICKNESS by entering the command:

You can modify the value of PRICE for the third through fifth occurrences of
WIDTH of the first occurrence of THICKNESS by entering the command:

-COBOBJ-DISPLAY price(2,4:6)
LUMBER-TABLE.THICKNESS[2].WIDTH[4].PRICE= 1.89
LUMBER-TABLE.THICKNESS[2].WIDTH[5].PRICE= 2.09
LUMBER-TABLE.THICKNESS[2].WIDTH[6].PRICE= 2.29

-COBOBJ-MODIFY price(1,3:5) = 1.29,1.49,1.69
Inspect Manual—429164-006
2-19

Inspect Concepts Data Locations
Inspect Manual—429164-006
2-20

3 Inspect Command Overview

 Debugging the Current Program

 Managing Multiple Programs on page 3-3

 Managing Source Files on page 3-3

 Entering and Editing Inspect Commands on page 3-4

 Customizing an Inspect Session on page 3-5

 Managing an Inspect Session on page 3-6

For detailed descriptions of the high-level and low-level Inspect commands, see
Section 6, High-Level Inspect Commands, and Section 7, Low-Level Inspect.

Entering Inspect Commands
Inspect processes commands on a line-by-line basis. When it reads a line, whether
from the Inspect command terminal, the INSPLOCL file, the INSPCSTM file, or an
OBEY file, Inspect expects that line to be either:

 A blank line

 A command list

A command list consists of either a single Inspect command or a list of Inspect
commands separated by semicolons. If a command list includes an alias name,
Inspect substitutes the alias's replacement text for its name.

If a command list is too long to fit on a single line, you can continue it on the next line
by ending the first line with an ampersand (&). For example, assume you enter this:

The effect is that same as this:

Using the ampersand to continue the command list, you can create command lists of
up to 512 characters, including the space required to expand any aliases in the
command list.

There are two cases for pressing the BREAK key:

 When entering an Inspect command

Pressing BREAK returns you to the TACL prompt. Enter PAUSE to return to
Inspect.

 When fixing a command (within the FC command)

-PRG-DISPLAY height, width, &
-PRG-depth, (height*width*depth)

-PRG-DISPLAY height, width, depth, (height*width*depth)
Inspect Manual—429164-006
3-1

Inspect Command Overview Debugging the Current Program
Pressing BREAK returns you to the Inspect prompt.

If you press the BREAK key when entering a command (even if you are on a
continuation line), Inspect retains the accumulated command list, except for commands
on the line that you were entering. However, Inspect does not interpret the command
list; instead, it prompts for another command. Consequently, if you find that you have
made a mistake in a line, you can use the FC command to correct all but the last input
line of the command list and then reissue it.

Debugging the Current Program
The basic debugging commands that Inspect offers affect only one program: the
current program. Table 3-1 lists the basic debugging commands that fall into three
categories:

 Commands that control program execution

 Commands that access program information

 Commands that simplify program debugging

Caution. A COMMENT (“- -”) command causes Inspect to ignore any commands that follow it
in the command list.

Table 3-1. Commands for Debugging the Current Program (page 1 of 2)

Command Description

Commands that Control Program Execution

BREAK Sets one or more breakpoints in the current program or display
current breakpoints.

CLEAR Clears one or more breakpoints in the current program.

HOLD Suspends the execution of a program on the program list, placing it in
the hold state.

RESUME Reactivates a suspended program, changing its state from hold to
run.

STEP Resumes execution of the current program at the point where it was
last suspended, and then suspends execution after the program has
executed a certain number of units.

STOP Stops one or more programs and removes them from the program list.

Commands that Access Program Information

DISPLAY Formats and displays the value of variety of items, including
constants, expressions, code, and data.

INFO Displays internal information about various entities in the current
program.

MATCH Searches for scope-unit names or other identifiers in the current
program.
Inspect Manual—429164-006
3-2

Inspect Command Overview Managing Multiple Programs
Managing Multiple Programs
Inspect enables you to debug more than one program in a single Inspect session.
Table 3-2 lists the commands that you use to manage multiple programs.

Managing Source Files
When you debug a program written in a high-level programming language, you often
need to examine the program's source code to pinpoint a bug. However, if the source
code is moved between the time that the program was compiled and the time that you
debug it, Inspect cannot retrieve the source code from its new location automatically.
Consequently, Inspect provides several commands that enable you to inform Inspect of
changes to the location of source code, as listed in Table 3-3 on page 3-4.

MODIFY Changes the value of a data item or register in the current program.

SAVE Creates a save file of the current program, including its extended
segments.

SOURCE Displays source code.

TRACE Displays the call history for the current program location.

Commands that Simplify Program Debugging

LIST
BREAKPOINT

Displays one or all breakpoints defined in the current program.

SCOPE Changes or displays the current scope path.

Table 3-2. Commands for Managing Multiple Tables

Command Description

ADD PROGRAM Adds a process or save file to the program list for the current
Inspect session.

PROGRAM Adds a process or save file to the program list for the current
Inspect session.

LIST PROGRAM Displays the list of programs being debugged.

SELECT PROGRAM Selects a program from the program list as the current program.

Table 3-1. Commands for Debugging the Current Program (page 2 of 2)

Command Description
Inspect Manual—429164-006
3-3

Inspect Command Overview Entering and Editing Inspect Commands
Entering and Editing Inspect Commands
Like TACL, Inspect maintains a history buffer that records the commands you enter.
Inspect provides commands that enable you to display, edit, and reissue commands in
this buffer. Inspect also provides commands that enable you to edit and reissue
commands that define aliases, function keys, and breakpoints. Table 3-4 lists these
commands, in addition to others that affect or explain how you enter Inspect
commands.

Table 3-3. Commands for Managing Source Files

Command Description

ADD SOURCE ASSIGN Adds a source assignment to the current program’s
source assignment list.

DELETE SOURCE ASSIGN Removes one or all source assignments from the current
program’s source assignment list.

DELETE SOURCE OPEN Closes one or all source files that Inspect has opened as
the result of previous SOURCE commands.

LIST SOURCE ASSIGN Displays the source assignments from the source-
assignment list for the current Inspect session.

LIST SOURCE OPEN Displays the names of all source files that Inspect has
opened as the result of previous SOURCE commands.

SELECT SOURCE SYSTEM Directs Inspect to retrieve source files from a specific
system when a source file name in the current program
does not explicitly include a system name.

SOURCE ASSIGN Sets or displays source assignments from the source-
assignment list for the current Inspect session.

Table 3-4. Commands for Entering and Editing Inspect Commands (page 1 of 2)

Command Description

FA Enables you to retrieve, edit, and reissue an existing alias
definition.

FB Enables you to retrieve, edit, and reissue an existing breakpoint
definition.

FC Enables you to retrieve, edit, and execute a command line in the
history buffer.

FK Enables you to retrieve, edit, and reissue an existing function-key
definition.

HELP Displays information regarding the syntax and usage of Inspect
commands and command options.

HISTORY Displays the most recently executed command lines.
Inspect Manual—429164-006
3-4

Inspect Command Overview Customizing an Inspect Session
Customizing an Inspect Session
Inspect provides several commands that enable you to customize your Inspect
session. Table 3-5 lists these commands.

LIST HISTORY Displays a portion of or the entire history buffer.

SELECT LANGUAGE Changes the current source language, therefore changing the
acceptable syntax of language-dependent entities.

XC Reexecutes a command line in the history buffer.

Table 3-5. Commands for Customizing an Inspect Session

Command Description

ADD ALIAS Adds an alias to the alias list for the current Inspect session.

ADD KEY Adds a function-key definition to the function-key list for the current
Inspect session.

ALIAS Adds an alias to the alias list or displays aliases for the current Inspect
session.

DELETE ALIAS Removes one or all aliases from the alias list for the current Inspect
session.

DELETE KEY Removes one or all function-key definitions from the function-key list
for the current Inspect session.

ENV Displays the current settings of the Inspect environment parameters,
including the parameters controlled by the SELECT command.

LIST ALIAS Displays one or all aliases from the alias list for the current Inspect
session.

LIST KEY Displays one or all function-key definitions from the function-key list for
the current Inspect session.

SET Changes the status of one of the settable Inspect parameters.

SHOW Shows the status of one or all the Inspect parameters controlled by the
SET command.

SYSTEM Sets the default system for expansion of any file names.

VOLUME Sets the default volume and subvolume for expansion of any file
names.

Table 3-4. Commands for Entering and Editing Inspect Commands (page 2 of 2)

Command Description
Inspect Manual—429164-006
3-5

Inspect Command Overview Managing an Inspect Session
Managing an Inspect Session
Inspect provides several commands that enable you to manage and control your
Inspect session. Table 3-6 lists these commands.

Simplifying an Inspect Session
Inspect provides several commands that simplify working with Inspect. Table 3-7 lists
these commands.

Table 3-6. Commands for Managing and Inspect Session

Command Description

COMMENT (OR “- -”) Directs Inspect to ignore the remainder of the command line,
therefore enabling you to add remarks in a LOG file, an OBEY
file, or the INSPLOCL or INSPCSTM configuration files.

EXIT Stops the Inspect process, therefore terminating the Inspect
session.

HIGH Causes Inspect to change from low-level to high-level command
mode or to remain in high-level if you are in high level command
mode.

IF Provides conditional execution of an Inspect command or alias.

LOG Records the session input, output, or both input and output on a
permanent file.

LOW Causes Inspect to change from high-level to low-level command
mode or to remain in low-level if you are in low-level command
mode.

OBEY Causes Inspect to read commands from a specified file.

OUT Directs the output listing to a specified file.

PAUSE Suppresses Inspect prompts until a debug event occurs in any of
the programs on the program list.

TERM Changes which terminal or process is the Inspect command
terminal.

Table 3-7. Commands for Simplifying an Inspect Session (page 1 of 2)

Command Description

ALIAS Adds a name or a command string, to the alias list for the current
Inspect session.

BREAK Clears one or more breakpoints in the current program.

FILES Shows the status of files that have been opened by the current
program. The FILES command is a synonym for the INFO OPENS
command.

HISTORY Displays the most recently executed command lines.I
Inspect Manual—429164-006
3-6

Inspect Command Overview Simplifying an Inspect Session
IDENTIFIER Displays information about the internal characteristics of a given data
location or of all data locations in one or more scope units. The
IDENTIFIER command is a synonym for the INFO IDENTIFIER
command.

KEY Adds a function-key definition or displays one or all function-key
definitions in the function-key list for the current Inspect session.

OBJECT Displays information about the current program's object file.

OPENS Shows the status of files that have been opened by the current
program. It is a synonym for the INFO OPENS command.

PROGRAM Displays the programs in the program list or selects a program as
the current program.

SOURCE ASSIGN Sets or displays source assignments from the source-assignment list
for the current Inspect session.

SOURCE OFF Disables automatic source display at each event.

SOURCE ON Enables automatic source display at each event.

SOURCE OPEN Displays the names of the files that are currently open as a result of
previous SOURCE commands. The SOURCE OPEN command is a
synonym for the LIST SOURCE OPEN command.

SOURCE SYSTEM Directs Inspect to retrieve source files from a specific system when
the current name of a source file in the current program does not
explicitly include a system name. SOURCE SYSTEM is a synonym
for the SELECT SOURCE SYSTEM command.

Table 3-7. Commands for Simplifying an Inspect Session (page 2 of 2)

Command Description
Inspect Manual—429164-006
3-7

Inspect Command Overview Simplifying an Inspect Session
Inspect Manual—429164-006
3-8

4
Debugging Processes and Save
Files

 Inspect in the Guardian Environment on page 4-2

 Command and Home Terminals on page 4-3

 Debugging Processes on page 4-3

 The Debugging Attributes of a Process on page 4-4

 Preparing and Configuring for Process Debugging on page 4-8

 Starting a Debugging Session on page 4-8

 Guidelines for Debugging a Process on page 4-10

 Ending a Debugging Session on page 4-12

 Examining Save Files on page 4-13
Inspect Manual—429164-006
4-1

Debugging Processes and Save Files Inspect in the Guardian Environment
Inspect in the Guardian Environment
Figure 4-1 shows the various components involved when you debug processes and
save files in the Guardian environment.

The Inspect process retrieves symbol information from the program files of the
processes and save files, and retrieves source code from the source files. DMON
provides the Inspect execution control services for process debugging.

These control services include:

 Setting and clearing breakpoints (non save files)

 Providing execution status information

 Retrieving machine code and data values for display

 Modifying data values

Figure 4-1. Inspect in the Guardian Environment

Note. To debug processes, $IMON must be running on the system hosting the Inspect
command terminal, that is the system that you want to debug the process on and DMON must
be running on the same CPU. If $IMON is not on the system hosting the command terminal
and $DMnn is not on the same processor, you will invoke Debug, to examine save files,
however, neither $IMON nor $DMnn is required. $IMON is usually started at the same time as
the operating system. If no $IMON is running on your system, contact your system manager.

DMONUser
Process

INSPECT

Save
file

Program
Files

Source
Files

INSPECT Command
Terminal and User

Process Home Terminal

VST401.vsd
Inspect Manual—429164-006
4-2

Debugging Processes and Save Files Command and Home Terminals
Command and Home Terminals

Command terminals are terminals where system managers, developers, and
programmers interact with system-level utility programs. When debugging processes
or examining save files, only one command terminal is involved: the Inspect command
terminal.

Home terminals are terminals where a process is started. Each process has a home
terminal; if a process is started by another process (instead of from a terminal), it
inherits the home terminal of its creator. Inspect uses the home terminals of the
process to determine which terminal it should use as its command terminal.

Debugging Processes
Figure 4-2 highlights the components involved in process debugging.

Before you can begin to debug a process with Inspect, you must first ensure that the
operating system will select Inspect, not Debug, as the debugging tool for the process.
The software makes this selection based upon the debugging attributes of the process.
The following subsections introduce these attributes and describe how you can control
their values.

Figure 4-2. Debugging Processes

DMONUser
Process

INSPECT

Save
file

Process's
Program

File

Process's
Source
File(s)

INSPECT Command
Terminal and User

Process Home Terminal

VST402.vsd
Inspect Manual—429164-006
4-3

Debugging Processes and Save Files The Debugging Attributes of a Process
The Debugging Attributes of a Process

Each process has two debugging attributes, INSPECT and SAVEABEND. The
software sets the values of these attributes for a process when it starts the process.
The Inspect attribute determines which debugging tool (Inspect or Debug) to use for
the process.

Specifically, on a TNS/R system, these debugger selection rules apply:

The SAVEABEND attribute controls whether a save file is created automatically if the
process abends, and the SAVEABEND attribute interacts with the INSPECT attribute.

Specifically, on a TNS/R system, these rules apply for the SAVEABEND attribute:

For more information about debugger selection and debugging attributes on a TNS/E
system see Section 18, Using Inspect on a TNS/E System.

The system software sets the debugging attributes of a process when it starts the
process. To select the proper values, the operating system compares these three sets
of attribute values:

 The attribute values found in the program file.

 The attribute values of the creator of the process.

 The attribute values specified in the call that creates the process. TACL specific
attribute values exist when the process is created based on the TACL SET
INSPECT command and the run line.

INSPECT
Attribute Meaning

INSPECT ON Selects either Inspect or Visual Inspect as the debugging tool for the
process.

To use Visual Inspect, you must have a client connection set up before
the debugger is invoked.

If neither Visual Inspect nor Inspect is available, Debug is selected as
the debugger of last resort.

Only Visual Inspect (not Inspect) can be used to debug TNS/R native
position-independent code (PIC) program files.

INSPECT OFF Selects Debug as the debugging tool for the process.

SAVEABEND
Attribute Meaning

SAVEABEND ON Specifies that a save file should be created if the process abends.
Setting SAVEABEND ON also sets INSPECT ON.

SAVEABEND OFF Specifies that a save file should not be created if the process abends.
Inspect Manual—429164-006
4-4

Debugging Processes and Save Files The Debugging Attributes of a Process
If the Inspect attribute of any of these is ON, then the system software sets the
process's INSPECT attribute to ON. If the SAVEABEND attribute of any of these is ON,
then the system sets the process's SAVEABEND attribute to ON.

Figure 4-3 on page 4-6, debugger selection criteria are defined as:

Figure 4-3 on page 4-6 shows the debugger selection process on a TNS/R system.
The selection rules are the same for TNS programs and for those TNS/R native
programs that are not PIC (Position-Independent Code). Note, however, that Inspect
cannot be used to debug TNS/R PIC programs.

Note. If the creator of the process does not have read access to the program file, the system
software sets both the Inspect and the SAVEABEND attributes to OFF.

Criteria Meaning

INSPECT attribute on? The setting for INSPECT is set ON for the process you
will debug (set with TACL, the compiler, or the linker).

Visual Inspect session? You have started Visual Inspect and have connected to
the NonStop host on which the process to be debugged
will run. The user ID of the process must match the user
ID that was used to log on to Visual Inspect.

Inspect available? The Inspect subsystem (IMON, DMON, $DMnn) is
running, and the Inspect command-line interface is
available.
Inspect Manual—429164-006
4-5

Debugging Processes and Save Files The Debugging Attributes of a Process
On a TNS/R system, the precedence of debuggers is as follows:

Figure 4-3. Debugger Selection on a TNS/R System

Start

VST0403.vsd

INSPECT
attribute

off?

PIC?

Select
Debug

End

Visual
Inspect

available?
Select

Visual Inspect

Inspect
available?

Select
Inspect

No

Yes

Yes

No

Yes

No

No

Yes
Inspect Manual—429164-006
4-6

Debugging Processes and Save Files The Debugging Attributes of a Process
Note that Visual Inspect can only be selected when a matching client connection
already exists. If the Inspect subsystem is not available, the debugger of last resort is
the TNS/R system debugger, Debug.

Debugging Attributes in a Program File

Either Binder (for TNS program files) or the native linker (for TNS/R program native
files) sets the INSPECT and SAVEABEND attribute values of a program file when it
creates that program file. You can control the values set by Binder or the native linker
by using compiler directives, the BIND process's SET INSPECT and SET
SAVEABEND commands, or native linker options, as appropriate.

On a TNS/R system, the nld native linker sets INSPECT ON and SAVEABEND OFF by
default.

In most source languages, the compiler directives are called INSPECT and
SAVEABEND, but consult the appropriate reference manual for their exact form. For
more information about the SET INSPECT and SET SAVEABEND commands, see the
Binder Manual (for TNS or TNS/R systems), the nld Manual and noft Manual (for PIC
code on TNS/R systems), or the ld and rld Reference Manual (for TNS/E systems).

Debugging Attributes of a Process's Creator

Because the creator of a process is also a process (remember, the command
interpreter is a process too), the system selects the INSPECT and SAVEABEND
attribute values for the creator.

Debugging Attributes in the Call to Start a Process

There are several ways to start a process:

 The command interpreter RUN[D] command

 The TACL #NEWPROCESS built-in function

 The system procedure calls NEWPROCESS, NEWPROCESSNOWAIT,
PROCESS_CREATE_, and PROCESS_LAUNCH_

Process Type INSPECT Attribute Debugger Precedence

TNS INSPECT ON Visual Inspect, Inspect, Debug

TNS INSPECT OFF Debug

TNS/R Native
non-PIC

INSPECT ON Visual Inspect, Inspect, Debug

TNS/R Native
non-PIC

INSPECT OFF Debug

TNS/R Native PIC INSPECT ON Visual Inspect, Debug

TNS/R Native PIC INSPECT OFF Debug
Inspect Manual—429164-006
4-7

Debugging Processes and Save Files Preparing and Configuring for Process Debugging
RUN[D] and #NEWPROCESS. When you start a process using the RUN[D] command
or the #NEWPROCESS built-in function, the Inspect state of the command interpreter
session determines the attribute values of the start-up command. The Inspect state
has one of three values: OFF, ON, or SAVEABEND. These state values correspond to
these debugging attribute values:

You can control the value of the Inspect state using the SET INSPECT command, or
you can override the default state value in the RUN command itself with the Inspect
run-option. For more information, see the TACL Reference Manual.

NEWPROCESS, NEWPROCESSNOWAIT, PROCESS_CREATE_, and
PROCESS_LAUNCH_. These system procedure calls enable an existing process to
create a process. All these procedures include a parameter that contains bits
corresponding to the INSPECT and SAVEABEND debugging attributes for the call. To
find out how to set these bits, see the Guardian Procedure Calls Reference Manual.

Preparing and Configuring for Process Debugging

To use all the symbolic debugging capabilities of Inspect, you must ensure that your
program file includes symbol information. Consequently, you must include the
SYMBOLS compiler directive in the source code or on the command line when you
compile the source code.

Starting a Debugging Session

A process debugging session can start in several ways, as shown in the following list.
The first two methods shown start a process in the hold state. All the other methods
put a running process in the hold state.

 You enter a command interpreter RUND command, starting the process in the hold
state.

 An existing process invokes the NEWPROCESS, NEWPROCESSNOWAIT,
PROCESS_CREATE_, or PROCESS_LAUNCH_ procedure with the debug bit set,
starting the process in the hold state.

 You enter a command interpreter DEBUG command, putting a running process in
the hold state.

 You use the TACL #DEBUGPROCESS built-in function, putting a running process
in the hold state.

Inspect State Debugging Attribute Values

OFF INSPECT OFF, SAVEABEND OFF

ON INSPECT ON, SAVEABEND ON

SAVEABEND INSPECT ON, SAVEABEND ON
Inspect Manual—429164-006
4-8

Debugging Processes and Save Files Starting a Debugging Session
 A process invokes the DEBUGPROCESS procedure, putting another process in
the hold state.

 The process itself invokes the operating system software's Debug procedure,
putting itself in the hold state.

 The process encounters a trap for which it does not have a trap handler, putting
the process in the hold state.

RUND, NEWPROCESS, NEWPROCESSNOWAIT,
PROCESS_CREATE_, or PROCESS_LAUNCH_

When you start a process using the TACL RUND command, or when an existing
process starts a process using the NEWPROCESS, NEWPROCESSNOWAIT,
PROCESS_CREATE_, or PROCESS_LAUNCH_ procedure, the operating system
starts the process in the hold state. The system then starts the debugging tool
specified by the Inspect attribute of the process on the process's home terminal. For
more information about debugging attributes and how the operating system sets them,
see The Debugging Attributes of a Process on page 4-4.

When entering the RUND command, you can ensure that the operating system
software selects Inspect as the debugging tool with the Inspect run-option:

You don't need to include this option if the Inspect attribute of the program file is ON, or
if the Inspect state of the command interpreter session is ON or SAVEABEND (you can
check the Inspect state using the command interpreter SHOW INSPECT command).

When invoking NEWPROCESS, NEWPROCESSNOWAIT, PROCESS_CREATE_, or
PROCESS_LAUNCH_, an existing process can ensure that the operating system
selects Inspect as the debugging tool by setting the appropriate bit of the flags
parameter in the call. The process does not need to set this bit if the Inspect attribute
of the program file is ON.

DEBUG Command, #DEBUGPROCESS, and
DEBUGPROCESS

When you enter the command interpreter DEBUG command or use the TACL
#DEBUGPROCESS built-in function, or when a process invokes the
DEBUGPROCESS procedure, a debug event occurs for the specified process.

Note. A process must exit out of system code before it enters the HOLD state.

17> RUND program-file /INSPECT ON/
Inspect Manual—429164-006
4-9

Debugging Processes and Save Files Guidelines for Debugging a Process
The operating system then starts the debugging tool specified by the Inspect attribute
of the process on the process's home terminal.

These three methods of starting an Inspect session can direct Inspect to use a terminal
other than the process's home terminal as the Inspect command terminal. Selecting a
different command terminal is useful when the process you're going to debug requires
exclusive or extensive use of its home terminal, or if it owns the BREAK key.

Debug Procedure and Unhandled Traps

When a process invokes the Debug procedure or encounters a trap for which it has not
established a handler, a debug event occurs for that process. The operating system
then starts the debugging tool specified by the Inspect attribute of the process on the
process's home terminal.

Guidelines for Debugging a Process
The following subsections offer guidelines that make the task of debugging processes
easier.

Debugging with Two Terminals

If the process you are debugging requires exclusive or extensive use of its home
terminal, or if it owns the BREAK key (see “Break Feature” in the Guardian
Programmer’s Guide), you can direct Inspect to use a terminal other than the process's
home terminal in a variety of ways:

 You can enter an Inspect TERM command.

 You can use the TERM clause of the command interpreter DEBUG command.

 You can use the TERM clause of the TACL #DEBUGPROCESS built-in function.

 A process specifies the term parameter when invoking the DEBUGPROCESS
procedure.

The first method changes the Inspect command terminal after the Inspect session has
begun, while the others redirect the Inspect command terminal just as the session
begins.

Note. The process enters the hold state as soon as it completes the machine-code instruction
that was executing when the debug event occurred. If the process has invoked a procedure, it
will not enter the hold state until the procedure returns control to the process.

Note. Changing to a terminal other than your home terminal changes the home terminal of the
process being debugged.
Inspect Manual—429164-006
4-10

Debugging Processes and Save Files Guidelines for Debugging a Process
Pressing the BREAK Key

Pressing the BREAK key on the Inspect command terminal has various results,
depending on the status of the session at the moment you press BREAK:

 If the current program is in the run state, pressing the BREAK key causes Inspect
to issue a prompt. Inspect does not, however, place the current program in the
hold state: you must enter a HOLD command.

 If you have paused Inspect (using the high-level PAUSE command), pressing the
BREAK key causes Inspect to issue a prompt.

 If Inspect has prompted you and is awaiting a command, pressing the BREAK key
causes the command interpreter to issue a prompt. In this case, Inspect is not
paused. Consequently, Inspect and the command interpreter will compete for
control of the terminal until you enter a command interpreter PAUSE command.

 If Inspect is displaying information, pressing the BREAK key causes Inspect to stop
the display and issue a prompt.

 If a process running on the Inspect command terminal has ownership of the
BREAK key, pressing BREAK has whatever effect the process assigns to it. If this
process stops while Inspect is suspended by a PAUSE command, the BREAK key
cannot be used to activate Inspect.

You can activate the Inspect process by forcing a debug event. Enter the
command interpreter command DEBUG, giving the process that owns BREAK as
the process to debug, or enter the command interpreter command RUND to start
debugging another process. Once Inspect regains controls of the terminal, use the
TERM command to change the Inspect command terminal to avoid further BREAK
problems.

Freeing the Inspect Command Terminal

If you need to communicate with some process other than Inspect or the process you
are debugging, you can free the Inspect command terminal temporarily using the low-
level PAUSE command. Follow these steps:

1. Enter the LOW command to go into low-level Inspect (if you are not there already).

2. Enter the PAUSE command:

The pause-time parameter specifies the number of centiseconds (hundredths of a
second) you want Inspect to pause.

3. Press the BREAK key, therefore returning control to the command interpreter.

When you have finished using the command interpreter, enter the command interpreter
PAUSE command and Inspect will again control the terminal. If Inspect has already

_PRG_P pause-time
Inspect Manual—429164-006
4-11

Debugging Processes and Save Files Ending a Debugging Session
used up its pause time, it will start prompting you again, perhaps before you pause the
command interpreter process.

Ending a Debugging Session

If you want your process to continue running after you end the debugging session, use
the EXIT command or the RESUME * EXIT command. If you want to terminate your
process, use the STOP command.

When you enter the EXIT command, Inspect terminates the Inspect session, but it
leaves the programs that you were debugging in their current states. Consequently,
you should use the EXIT command only after you have cleared all breakpoints in all
programs and resumed execution of any programs in the hold state. The RESUME *
EXIT command performs these cleanup tasks for you.

When you enter the RESUME * EXIT command, Inspect clears all breakpoints from all
programs on the program list and resumes execution of any programs in the hold state.
It then terminates the Inspect session. If you attempt to leave an active process, all
EXIT commands prompt you for a confirmation.

When you enter the STOP command, Inspect stops the process. If it was the only
program in the program list, Inspect ends the session as well.

If you have paused the command interpreter on the Inspect command terminal, you
might have to press the BREAK key to signal the command interpreter that it should
prompt again.
Inspect Manual—429164-006
4-12

Debugging Processes and Save Files Examining Save Files
Examining Save Files
Figure 4-4 highlights the components involved when examining save files.

The Inspect process provides all the necessary services when you are examining a
save file; neither IMON nor DMON is involved.

To start examining a save file, enter the command interpreter Inspect command:

When the Inspect session starts, Inspect displays its banner line and then issues an
Inspect prompt. To retrieve a save file for examination, enter an ADD PROGRAM
command specifying the name of the save file. Inspect reads the file from disk and
delivers a status line showing the state of the process when the save file was created.

You can then examine the values of variables, display the call history, or view source
files. The Inspect commands that you cannot use when examining a save file are:

BREAK
CLEAR
HOLD
MODIFY

Figure 4-4. Examining Save Files

5> INSPECT

DMONUser
Process

INSPECT

Saved
Process's
Program

File

INSPECT Command
Terminal and User

Process Home Terminal

VST403.vsd

Saved
Process's

Source
File(s)

Save
file
Inspect Manual—429164-006
4-13

Debugging Processes and Save Files Examining Save Files
RESUME
SAVE
SELECT DEBUGGER DEBUG
STEP

If you attempt to use one of these commands, Inspect displays the message:

The TYPE clause of the DISPLAY command may yield different results for a save file
than for the equivalent running process. These types rely on dynamic information that
may have changed since the save file was created:

 PROCESS HANDLE

 SSID

 TRANSID

These types may be affected if the save file is moved to another node on the network:

 USERID

 USERNAME

These types are affected if the save file is removed from one network to another:

 CRTPID

 DEVICE

 FILENAME

 FILENAME32

 SYSTEM

Type TIMESTAMP will use the daylight saving time table and Greenwich Mean Time
offset of the current node to format and display the local civil time.

You can transport save files between systems for examining problems. It may be
necessary to point Inspect at the object file(s) for the process. This can be done using
the CODE and LIB clauses of the ADD PROGRAM command. It may also be
necessary to point to the locations of source files, which is described in the SOURCE
ASSIGN command portion of Section 6, High-Level Inspect Commands.

When transporting save files to systems running different releases of Inspect, it may be
necessary to transport the Inspect component of the Inspect sub-system for use in
examining the save file if the installed version of Inspect does not recognize the
version of the save file. When this is done, the Inspect can only be used for the
purpose of examining save files.

When you are finished examining a save file, you use the STOP command to notify
Inspect that you are done with the save file.

** Inspect error 21 ** Invalid operation on a saved program
Inspect Manual—429164-006
4-14

Debugging Processes and Save Files Examining Save Files
If you have been using Inspect solely to examine save files, a series of STOP
commands (or STOP *) closes all the save files, but Inspect continues to execute. You
can use the EXIT command at any time and Inspect closes all save files and exits. You
will only receive a confirmation that you want to exit if you have active processes.
Inspect Manual—429164-006
4-15

Debugging Processes and Save Files Examining Save Files
Inspect Manual—429164-006
4-16

5
Debugging PATHWAY Applications

 Inspect in the PATHWAY Environment on page 5-2

 Application, Command, and Home Terminals on page 5-3

 Debugging PATHWAY Requester Programs on page 5-3

 Preparation and Configuration on page 5-5

 Starting the Debugging Session on page 5-6

 Guidelines for Debugging Requester Programs on page 5-8

 Ending the Debugging Session on page 5-9

 Debugging PATHWAY Servers on page 5-10

 Preparation and Configuration on page 5-11

 Starting the Debugging Session on page 5-11

 Guidelines for Debugging Servers on page 5-13

 Ending the Debugging Session on page 5-13

 Debugging User Conversion Routines on page 5-13

 Preparation and Configuration on page 5-14

 Starting the Debugging Session on page 5-14

 Guidelines for Debugging User Conversion Routines on page 5-15

 Ending the Debugging Session on page 5-15
Inspect Manual—429164-006
5-1

Debugging PATHWAY Applications Inspect in the PATHWAY Environment
Inspect in the PATHWAY Environment
Figure 5-1 shows how Inspect interacts with the PATHWAY system to provide
debugging facilities for PATHWAY applications.

The Inspect process retrieves symbol information from the program files of the
requester programs and servers, and retrieves source code from the source files of the
requester programs and servers. DMON provides the Inspect execution control
services for server debugging, while the TCP, in addition to its normal functions in the
PATHWAY environment, provides these services for requester program debugging.

Figure 5-1. Inspect in the PATHWAY Environment

Note. To debug PATHWAY applications, $IMON must be running on the system hosting the
application. $IMON is usually started at the same time as the operating system. If no $IMON is
running on your system, contact your system manager.

INSPECT

VST501.vsd

TCP

DMON

PATHMONPATHCOM

Requester's
Program

FilePATHCOM
Command
Terminal

PATHWAY
Terminals

Server Class

Server

Requester's
and Server's
Source File

Server's
Program

File

INSPECT
Command
Terminal
Inspect Manual—429164-006
5-2

Debugging PATHWAY Applications Application, Command, and Home Terminals
Application, Command, and Home Terminals

Application terminals are terminals where users interact with PATHWAY applications.
TCPs manage these terminals and PATHWAY requesters (that is, a TCP executing a
requester program) control them. Sometimes they are called PATHWAY terminals.

Command terminals are terminals where system managers, developers, and
programmers interact with system-level utility programs. There are two command
terminals involved in PATHWAY application debugging: the PATHCOM command
terminal and the Inspect command terminal.

Home terminals are terminals where a process is started. Each process has a home
terminal; if a process is started by another process (instead of from a terminal), it
inherits the home terminal of its creator. Inspect uses home terminals to determine
which terminal it should use as its command terminal.

Debugging PATHWAY Requester Programs
This subsection applies to TNS/R systems, and in some cases to TNS/E systems.
Pathway requestors on TNS/E systems (also known as ServerclassSend) can be TNS,
TNS/E, or Java, and must be debugged with the appropriate tool. Screen COBOL
requestors, however, must be debugged using Inspect. For more information about
debugging TNS code accelerated on TNS/E systems, see the TNSVU Manual and the
Object Code Accelerator (OCA) Manual.

Figure 5-2 on page 5-4 highlights the components of Inspect and the PATHWAY
system used when debugging requester programs.
Inspect Manual—429164-006
5-3

Debugging PATHWAY Applications Debugging PATHWAY Requester Programs
The Inspect process retrieves symbol information from the requester program's
program file, and retrieves source information from the requester program's source file
or files.

The TCP retrieves pseudocode from the requester program's program file and
executes it, controlling one or more PATHWAY application terminals. In addition, the
TCP provides the execution control services normally handled by DMON, including:

 Setting and clearing breakpoints

 Providing execution status information

 Retrieving code and data values for display

 Modifying data values

Although PATHCOM and PATHMON are not directly involved in requester program
debugging, you use them to configure and prepare the PATHWAY system for requester
program debugging. Servers are not directly involved in requester program debugging

Figure 5-2. Debugging PATHWAY Requester Programs

INSPECT

VST502.vsd

TCP

DMON

PATHMONPATHCOM

Requester's
Program

FilePATHCOM
Command
Terminal

PATHWAY
Terminals

Server Class

Server

Requester's
and Server's
Source File

Server's
Program

File

INSPECT
Command
Terminal
Inspect Manual—429164-006
5-4

Debugging PATHWAY Applications Preparation and Configuration
either, but the data access and retrieval services they provide are required to insure
the requester program's proper functioning.

Preparation and Configuration

To use Inspect to debug a requester program, you must first ensure that the requester
program's program file includes symbol information. Consequently, you must include
the SYMBOLS compiler directive in the source code or on the command line when you
compile a SCREEN COBOL program (SCREEN COBOL defaults to NOSYMBOLS).

The symbol information produced by the SYMBOLS directive enables Inspect to
associate names of data items with data storage locations, and names of labels and
programs with pseudocode locations. If a requester program's program file does not
include symbol information, all attempts to debug the requester program with Inspect
will produce the error message “Symbol not defined.”

Configuring the TCP

Before you can start debugging a requester program, you must configure its TCP so
that the TCP can perform the execution control tasks.

If you are creating a TCP specifically to debug the requester program, you can
configure the TCP using the SET TCP INSPECT command provided by PATHCOM:

This SET command performs three functions:

 Configures the TCP so that it can provide execution control services

 Enables the communication link between the TCP and the Inspect process

 Specifies the command terminal on which the Inspect process will run and prompt

Example 5-1 presents an example of configuring and starting a TCP, highlighting the
PATHCOM command that enables requester program debugging.

If you are using an existing TCP, you must configure the TCP using the ALTER TCP
Inspect command provided by PATHCOM:

=SET TCP INSPECT ON (FILE $INSPECT-command-term)

Example 5-1. Starting a TCP for Requester Program Debugging

=SET TCP CPUS 8:9
=SET TCP MAXTERMS 5
=SET TCP TCLPROG $pway.reqpgms.pobj
=SET TCP INSPECT ON (FILE $mydbug)
=ADD TCP debug-tcp
=START TCP debug-tcp

=ALTER TCP TCP-name, INSPECT ON (FILE $INSPECT-command-term)
Inspect Manual—429164-006
5-5

Debugging PATHWAY Applications Starting the Debugging Session
Because you can alter the configuration of a TCP only when it is stopped, the actual
sequence of commands is:

If you do not include the FILE option in the SET or ALTER command, the Inspect
process uses the TCP's home terminal as its command terminal.

After you are finished debugging the requester program, you can turn off the TCP's
Inspect capabilities using the ALTER TCP Inspect command again:

Starting the Debugging Session

After configuring the TCP for requester program debugging, you can begin debugging
requester programs in one of two ways:

 Start the requester program in the Inspect hold state.

 Put a running requester program into the Inspect hold state.

Starting a Requester Program in the Hold State

Starting a requester program in the hold state enables you to put breakpoints in it
before the TCP begins executing it. To start a requester program in the hold state, you
need to make it the initial program of a PATHWAY terminal, configure that terminal for
Inspect debugging, and then start the terminal. The PATHCOM commands SET TERM
INITIAL and SET TERM INSPECT enable you to do this:

Example 5-2 on page 5-7 presents an example of starting a requester program,
highlighting the PATHCOM commands that start it in the hold state. Note that the TCP
specified in this example is the one configured for requester program debugging in
Example 5-2.

=STOP TCP TCP-name
=ALTER TCP TCP-name, INSPECT ON (FILE $INSPECT-command-term)
=START TCP TCP-name

=STOP TCP TCP-name
=ALTER TCP TCP-name, INSPECT OFF
=START TCP TCP-name

Note. At one time, a TCP can control a maximum of eight terminals that are involved in
Inspect debugging. A TCP can process a total of 20 breakpoints for the set of all requester
programs being debugged with Inspect under that TCP.

=SET TERM INITIAL requester-program
=SET TERM INSPECT ON (FILE $INSPECT-command-term)
Inspect Manual—429164-006
5-6

Debugging PATHWAY Applications Starting the Debugging Session
If you do not include the FILE option in the SET TERM INSPECT command, the
Inspect process uses the terminal specified in the SET TCP INSPECT command as its
command terminal.

Starting to Debug a Running Requester Program

To debug a running requester program, you must force it into the hold state, regardless
of how the requester program was started.

To put a running requester program into the hold state, use the PATHCOM INSPECT
TERM command:

This command directs the TCP to put the requester program running on the given
application terminal into the hold state, and directs Inspect to use the given command
terminal as the Inspect command terminal (provided that the TCP or the terminal has
not already specified the command terminal). The TCP puts the requester program
into the hold state after it finishes executing the current pseudocode instruction.

If you do not include the FILE option in the INSPECT TERM command, Inspect selects
its command terminal as follows:

1. The command terminal specified by the FILE option of the SET TERM INSPECT
command for the given application terminal.

2. The command terminal specified by the FILE option of the SET TCP INSPECT
command.

3. The TCP's home terminal.

If there is not an Inspect process active on the selected command terminal, $IMON
starts one automatically.

If an Inspect process is already active for the selected command terminal, PATHCOM
issues a warning and does not change the Inspect command terminal if you specify a
different command terminal in the INSPECT TERM command.

Example 5-2. Starting a Requester Program in the Hold State

=SET TERM FILE $mypway
=SET TERM INITIAL req-pgm
=SET TERM TCP debug-tcp
=SET TERM INSPECT ON (FILE $mydbug)
=ADD TERM req-term
=START TERM req-term

=INSPECT TERM application-term, FILE $INSPECT-command-term
Inspect Manual—429164-006
5-7

Debugging PATHWAY Applications Guidelines for Debugging Requester Programs
Requester Programs Started Using the RUN PROGRAM
Command

When you start a requester program using the PATHCOM command RUN PROGRAM,
the PATHCOM command terminal usually becomes the application terminal.
PATHMON assigns the terminal a synthetic application terminal name.

In this case, you need to determine the synthetic name before you can use the
INSPECT TERM command to begin debugging the requester program. Start
PATHCOM on another terminal and enter the command:

Look for a terminal name of the form nnn-term-mmm, where nnn and mmm are
sequence numbers and term is the device name (without the leading dollar sign) of the
terminal on which the requester program is running. You use this synthetic name in
the INSPECT TERM command to debug the requester program.

Guidelines for Debugging Requester Programs

The following subsections present guidelines that make the task of debugging
requester programs easier.

Breakpoints in Requester Programs

 You can set code breakpoints anywhere in an active scope unit of a requester
program, and at the entry point of any inactive scope unit.

 Data breakpoints are not permitted in requester programs.

 A TCP can manage a total of twenty breakpoints, regardless of the number of
requester programs it is running. For example, if one requester program has ten
breakpoints, and two others have five each, you cannot set any more breakpoints
in any of the requester programs running under that TCP until you clear one of the
existing breakpoints.

 When a requester program reaches a breakpoint, the TCP places the requester
program into a debugging hold state and informs the Inspect process, which then
performs the break action (if any) associated with the breakpoint. If there is no
break action, or if the action did not restore the PATHWAY requester program to
the run state, Inspect prompts at its command terminal for a command. When you
issue a RESUME or STEP command, Inspect informs the TCP, which then places
the PATHWAY requester program back into the run state and resumes executing it.

=STATUS TERM *

Note. When you use RUN PROGRAM to start a requester program, the TCP to which you
assign that program (using the SET PROGRAM TCP command) must be configured for
Inspect debugging; otherwise, you will not be able to debug the requester program.
Inspect Manual—429164-006
5-8

Debugging PATHWAY Applications Ending the Debugging Session
Using the PATHCOM Terminal as the Inspect Terminal

When debugging requester programs, you should use three terminals: one for the
application, one for the PATHCOM command terminal, and one for the Inspect
command terminal. You can, however, debug with only two terminals: one for the
application and one for both the PATHCOM and Inspect command terminals. Simply
specify the PATHCOM command terminal as the parameter to the FILE clause of the
INSPECT TERM, SET TERM INSPECT, or SET TCP INSPECT command. After the
debugging session begins, you can stop PATHCOM and let Inspect assume complete
control of the terminal; follow these steps:

1. Enter the PAUSE command at the Inspect prompt. This command returns terminal
control to PATHCOM.

2. Enter the EXIT command at the PATHCOM prompt. This command stops
PATHCOM and returns control to the command interpreter.

3. Enter the PAUSE command at the command interpreter prompt. This command
pauses the command interpreter and notifies Inspect to start prompting for
commands again.

4. You can skip the first step if you are already at the PATHCOM prompt.

Ending the Debugging Session

You can end the debugging session by entering either the EXIT command or the
RESUME * EXIT command. Neither of these commands alters the PATHWAY
environment, so you should enter PATHCOM and restore PATHWAY to the status it
had before you began debugging. This includes such tasks as stopping the requester
program and deleting or altering the TCP you configured for Inspect debugging.

When you enter the EXIT command, Inspect terminates the Inspect session, but it
leaves the programs that you were debugging in their current states. Consequently,
you should use the EXIT command only after you have cleared all breakpoints in all
programs and resumed execution of any programs in the hold state. Inspect will
prompt you for confirmation if you have any breakpoints set. The RESUME * EXIT
command performs these cleanup tasks for you.

When you enter the RESUME * EXIT command, Inspect clears all breakpoints from all
programs on the program list and resumes execution of any programs in the hold state.
It then terminates the Inspect session.

If you have paused the command interpreter on the Inspect command terminal, you
might have to press the BREAK key to signal the command interpreter that it should
prompt again.
Inspect Manual—429164-006
5-9

Debugging PATHWAY Applications Debugging PATHWAY Servers
Debugging PATHWAY Servers
Figure 5-3 highlights the components of Inspect and the PATHWAY system used when
debugging PATHWAY servers.

Generally, Inspect treats a PATHWAY server like any other process. For example,
DMON performs the execution control services for processes and PATHWAY servers,
whereas the TCP performs these services for PATHWAY requester programs.

PATHCOM configures servers, PATHMON starts them, and requesters (TCPs running
requester programs) control their activity by making data requests. As a result,
PATHCOM and PATHMON are involved in configuring a server for debugging, and the
server's associated requester must be active to ensure proper execution of the server.

Note that to debug a Pathway server on a TNS/E system, you must use either Visual
Inspect or Native Inspect.

Figure 5-3. Debugging PATHWAY Servers

INSPECT

VST503.vsd

TCP

DMON

PATHMONPATHCOM

Requester's
Program

FilePATHCOM
Command
Terminal

PATHWAY
Terminals

Server Class

Server

Requester's
and Server's
Source File

Server's
Program

File

INSPECT
Command
Terminal
Inspect Manual—429164-006
5-10

Debugging PATHWAY Applications Preparation and Configuration
Preparation and Configuration

To take full advantage of Inspect, you should ensure that the server's program file
includes symbol information. Consequently, you must include the SYMBOLS compiler
directive in the source code or on the command line when you compile the server's
source code.

Debugging Attributes

As with a process, the debugging attributes of a server and of its creator determine
which debugger (Inspect or DEBUG) is used to debug the server. A server's creator is
always PATHMON, so you probably cannot control its debugging attributes (unless, of
course, you create your own PATHMON specifically for server debugging). As a result,
you should compile the server with the Inspect or SAVEABEND debugging attribute on.
For more information about debugging attributes and how to set them, see The
Debugging Attributes of a Process on page 4-4.

Server Versus Server Class

From an application standpoint, the PATHWAY environment manages server classes,
starting and stopping servers in a class as usage demands rise and fall. Inspect, on
the other hand, debugs a single server process. You must insure that the server
process you are debugging is the same one that PATHWAY will link to your requester.
You may want to configure (or reconfigure) the server class so that it represents a
single server process, using the PATHCOM commands:

If the server is running, you can freeze the server class, stop it, reconfigure it, and then
restart it:

Starting the Debugging Session

You can start debugging a server in one of two ways:

 Start the server in the Inspect hold state.

 Put a running server into the Inspect hold state.

=SET SERVER MAXSERVERS 1
=SET SERVER NUMSTATIC 1

=FREEZE SERVER server-class, WAIT
=STOP SERVER server-class
=ALTER SERVER server-class, MAXSERVERS 1
=ALTER SERVER server-class, NUMSTATIC 1
=START SERVER server-class
Inspect Manual—429164-006
5-11

Debugging PATHWAY Applications Starting the Debugging Session
Starting a Server in the Hold State

Starting a server in the hold state enables you to put breakpoints in it before it begins
executing. To start a server in the hold state, you need to set the DEBUG status of its
server class before you add the server class. The PATHCOM command SET SERVER
DEBUG sets the DEBUG status of a server class:

Example 5-3 presents an example of starting a server, highlighting the PATHCOM
command that starts the server in the hold state. Note that the example includes the
configuration commands to limit the server class to a single server and to assign the
server's home terminal to the Inspect command terminal.

If you do not use the SET SERVER HOMETERM command, Inspect will use
PATHMON's home terminal as its command terminal.

Starting to Debug a Running Server

If you want to debug a running PATHWAY server, you can start to debug it with Inspect
by entering the command interpreter DEBUG command:

This command activates Inspect, assuming that you have set the debugging attribute
of the server (or its controlling PATHMON) to INSPECT ON or SAVEABEND ON. If
you do not use the TERM clause, Inspect will use PATHMON's home terminal as the
Inspect command terminal.

To discover the process-id of the server, use the PATHCOM STATUS SERVER
command:

Provided that you have limited the server class to a single server (as discussed in
Server Versus Server Class on page 5-11.), the STATUS SERVER command will
display a single process ID.

=SET SERVER DEBUG ON

Example 5-3. Starting a Server in the Hold State

.=SET SERVER CPUS 8:9
=SET SERVER PROGRAM $pway.servers.myserver
=SET SERVER MAXSERVERS 1
=SET SERVER NUMSTATIC 1
=SET SERVER HOMETERM $mydbug
=SET SERVER DEBUG ON
=ADD SERVER debug-server
=START SERVER debug-server

17> DEBUG process-id, TERM $INSPECT-command-term

=STATUS SERVER server-class, DETAIL
Inspect Manual—429164-006
5-12

Debugging PATHWAY Applications Guidelines for Debugging Servers
After you enter the DEBUG command, the server enters the hold state as soon as it
completes executing the current machine-code instruction. If the server has invoked a
procedure, it will not enter the hold state until the procedure returns control to the
server.

Guidelines for Debugging Servers

Because servers are simply processes, the guidelines for debugging processes apply
to servers as well. For more information, see Guidelines for Debugging a Process on
page 4-10.

Ending the Debugging Session

You can end the debugging session by entering either the EXIT command or the
RESUME * EXIT command. Neither of these commands alters the PATHWAY
environment, so you should enter PATHCOM and restore PATHWAY to the status it
had before you began debugging. This includes such tasks as stopping and deleting
or altering the server.

When you enter the EXIT command, Inspect terminates the Inspect session, but it
leaves the programs that you were debugging in their current states. Consequently,
you should use the EXIT command only after you have cleared all breakpoints in all
programs and resumed execution of any programs in the hold state. The
RESUME * EXIT command performs these cleanup tasks for you.

When you enter the RESUME * EXIT command, Inspect clears all breakpoints from all
programs on the program list and resumes execution of any programs in the hold state.
It then terminates the Inspect session.

If you have paused the command interpreter on the Inspect command terminal, you
might have to press the BREAK key to signal the command interpreter that it should
prompt again.

Debugging User Conversion Routines
A PATHWAY application can modify the TCP's terminal control logic by adding user
conversion routines to the TCP library and then building a new library file for the TCP.
For more information about user conversion routines, see the TS/MP Management
Programming Manual.

Because user conversion routines become part of the TCP's new library file, the TCP
must be configured for Inspect before you can debug the user conversion routines that
you have written. To ensure that the TCP is configured for Inspect, the Inspect
attribute of the TCP's program file, PATHTCP2, is set ON. Consequently, you do not
have to take any special configuration steps to debug user conversion routines.
Inspect Manual—429164-006
5-13

Debugging PATHWAY Applications Preparation and Configuration
Preparation and Configuration

To take full advantage of Inspect, you should ensure that your user conversion routines
include symbol information. Consequently, you must include the SYMBOLS compiler
directive in the source code or on the command line when you compile the source
code for the user conversion routines.

Starting the Debugging Session

You can start debugging user conversion routines in one of two ways:

 Start the TCP in the Inspect hold state.

 Put a running TCP into the Inspect hold state.

Starting a TCP in the Hold State

Starting a TCP in the hold state enables you to put breakpoints in the user conversion
routines before the TCP begins executing. To start a TCP in the hold state, you need
to set the TCP's DEBUG status before you add the TCP. The PATHCOM command
SET TCP DEBUG sets the DEBUG status of a TCP:

Example 5-4 presents an example of starting a TCP, highlighting the PATHCOM
command that configures the TCP to start in the hold state.

If you do not use the SET TCP HOMETERM command, Inspect will use PATHMON's
home terminal as its command terminal.

If the TCP is running, you can stop it, alter its DEBUG status, and then restart it by
entering these commands:

This sequence effectively restarts the TCP in the hold state.

=SET TCP DEBUG ON

Example 5-4. Starting a TCP in the Hold State

=SET TCP CPUS 8:9
=SET TCP MAXTERMS 5
=SET TCP TCLPROG $pway.reqpgms.pobj
=SET TCP HOMETERM $mydbug
=SET TCP DEBUG ON
=ADD TCP debug-conv-rtns
=START TCP debug-conv-rtns

=STOP TCP tcp-name
=ALTER TCP tcp-name, DEBUG ON
=START tcp-name
Inspect Manual—429164-006
5-14

Debugging PATHWAY Applications Guidelines for Debugging User Conversion Routines
Starting to Debug a Running TCP

If you want to debug the user conversion routines in a running TCP, you can start to
debug the TCP using one of two methods:

 You can enter the command interpreter command DEBUG:

If you do not use the TERM clause, Inspect will use the TCP's home terminal as the
Inspect command terminal.

 You can enter the Inspect command ADD PROGRAM:

Both of these methods require that you know the process ID of the TCP. To discover
the process ID of the TCP, use the PATHCOM command STATUS TCP:

After you enter the DEBUG or ADD PROGRAM command, the TCP enters the hold
state as soon as it completes executing the current machine-code instruction. If the
TCP has invoked a procedure, it will not enter the hold state until the procedure returns
control to the TCP.

Guidelines for Debugging User Conversion Routines

Because the TCP is a process, the guidelines for debugging processes apply to user
conversion routines as well. For more information, see Guidelines for Debugging a
Process on page 4-10.

Ending the Debugging Session

You can end the debugging session by entering either the EXIT command or the
RESUME * EXIT command. Neither of these commands alters the PATHWAY
environment, so you should enter PATHCOM and restore PATHWAY to the status it
had before you began debugging.

When you enter the EXIT command, Inspect terminates the Inspect session, but it
leaves the programs that you were debugging in their current states. Consequently,
you should use the EXIT command only after you have cleared all breakpoints in all
programs and resumed execution of any programs in the hold state. The RESUME *
EXIT command performs these cleanup tasks for you.

When you enter the RESUME * EXIT command, Inspect clears all breakpoints from all
programs on the program list and resumes execution of any programs in the hold state.
It then terminates the Inspect session after a prompt.

17> DEBUG process-id, TERM $INSPECT-command-term

--ADD PROGRAM process-id

=STATUS TCP tcp-name
Inspect Manual—429164-006
5-15

Debugging PATHWAY Applications Ending the Debugging Session
If you have paused the command interpreter on the Inspect command terminal, you
might have to press the BREAK key to signal the command interpreter that it should
prompt again.
Inspect Manual—429164-006
5-16

6 High-Level Inspect Commands

This section describes the high-level Inspect commands in detail. The high-level
commands are summarized in Table 6-1 on page 6-2. If you want to make full use of
high-level Inspect, your program must be compiled with the SYMBOLS compiler
directive or have access to an object with symbols.

Inspect Keywords
Inspect does not reserve its keywords (command names and clause names).
Consequently, refer to identifiers such as BREAK, EVERY, and STEP in your program,
assuming that the compiler for the language you are using allows them as identifiers.

Abbreviations

You can abbreviate many Inspect keywords. In this section, keyword abbreviations are
shown in boldface type. These abbreviations might change to accommodate additional
commands in future releases of Inspect, so you should not use the abbreviations in
OBEY files, the INSPLOCL file, or the INSPCSTM file.

Language-Dependent Information
Several of the high-level Inspect commands require information that is language-
dependent; the syntax and validity of this information is based on the current source
language. The command descriptions in this section discuss how the information is
used, but you must refer to the particular language sections for details regarding the
syntax of the information. The language-dependent information required by a high-
level command can be one of these five items:

 Code location—A location in the program's object code area

 Data location—The location of a data item

 Expression—An expression that evaluates to a numeric, boolean (true/false), or
string value

 Scope path—A path used to identify specific code and data locations

 Scope unit—The entity (or entities) into which source code is grouped

Machine-Dependent Information
Some high-level Inspect commands may be affected by the type of machine, TNS or
TNS/R, on which the current program is executing. The behavior of some commands
may be slightly different depending on the machine. Some commands have machine
dependent arguments that can only be used on a particular machine, and some
commands may report different information depending on the machine. Machine
Inspect Manual—429164-006
6-1

High-Level Inspect Commands Command Examples
dependencies are noted where appropriate. For more information about TNS/R related
features, see Section 15, Using Inspect on a TNS/R System.

Command Examples
This section includes examples that show common usage of the high-level Inspect
commands. The examples reflect the output format of the current release of Inspect.

All commands (except the fix commands) have an optional /OUT file-name/ clause
following the command name.

Command Summary
Table 6-1 lists and describes all the Inspect commands.

Table 6-1. High-Level Inspect Commands (page 1 of 5)

Command Description

ADD ALIAS Adds a name to the alias list for the current Inspect session.

ADD KEY Adds a function-key definition to the function-key list for the
current Inspect session.

ADD PROGRAM Adds a process or save file to the program list for the current
Inspect session.

ADD SOURCE ASSIGN Adds a source assignment to the source assignment list.

ALIAS Adds a name to the alias list or displays aliases for the current
Inspect session.

BREAK Sets or displays one or more breakpoints in the current program.

CD Changes the current OSS directory

CLEAR Clears one or more breakpoints in the current program.

COMMENT (--) Directs Inspect to ignore the remainder of the command line,
therefore enabling you to include remarks in a LOG file, an
OBEY file, or the INSPLOCL or INSPCSTM configuration files. A
double hyphen can be used instead of COMMENT.

DELETE ALIAS Removes one or all names from the alias list for the current
Inspect session.

DELETE KEY Removes one or all function-key definitions from the function-
key list.

DELETE SOURCE
ASSIGN

Removes one or all source assignments from the source
assignment list for the current Inspect session.

DELETE SOURCE
OPEN

Closes one or all source files that Inspect has opened as the
result of previous SOURCE commands.

DISPLAY Formats and displays a variety of items, including constants,
expressions, code, and data.
Inspect Manual—429164-006
6-2

High-Level Inspect Commands Command Summary
ENV Displays one or all the current settings of the Inspect
environment parameters.

EXIT Stops the Inspect process, therefore terminating the Inspect
session.

FA Enables you to retrieve, edit, and redefine the replacement
string for an existing alias.

FB Enables you to retrieve, edit, and replace the definition of an
existing code breakpoint in the current program.

FC Enables you to retrieve, edit, and execute a command line in the
history buffer.

FILES Shows the status of files that have been opened by the current
program.

FK Enables you to retrieve, edit, and redefine the replacement
string for an existing function-key definition.

HELP Displays information regarding the syntax and usage of Inspect
commands and command options.

HISTORY Displays the most recently executed command lines.

HOLD Suspends the execution of one or more programs on the
program list, placing the program or programs in the hold state.

ICODE Displays instruction mnemonics starting at the specified code
address. For accelerated programs, this command may be used
to list TNS instructions, TNS/R instructions, or a combination of
both.

IDENTIFIER Displays information about the internal characteristics of a given
data location or of all data locations in one or more scope units.
The IDENTIFIER command is a synonym for the INFO
IDENTIFIER command.

IF Provides conditional execution of an Inspect command or an
alias.

INFO IDENTIFIER Displays information about the internal characteristics of a given
data location or of all data locations in one or more scope units.

INFO LOCATION Displays information about a code location in the current
program.

INFO OBJECTFILE Displays information about a current or specified program’s
object file.

INFO OPENS Shows the status of files that have been opened by the current
program.

INFO SAVEFILE Displays information about a current or specified save file.

INFO SCOPE Displays information about a given scope unit in the current
program.

Table 6-1. High-Level Inspect Commands (page 2 of 5)

Command Description
Inspect Manual—429164-006
6-3

High-Level Inspect Commands Command Summary
INFO SEGMENTS Displays information about the extended segments allocated for
or by the current program.

INFO SIGNALS Displays signal information for the current program.

KEY Adds a function-key definition or displays one or all function-key
definitions in the function-key list for the current Inspect session.
The KEY command is a synonym for the ADD KEY and the LIST
KEY commands.

LIST ALIAS Displays one or all aliases from the alias list for the current
Inspect session.

LIST BREAKPOINT Displays one or all breakpoints defined in the current program.

LIST HISTORY Displays a portion of or the entire history buffer.

LIST KEY Displays one or all function-key definitions from the function-key
list for the current Inspect session.

LIST PROGRAM Displays the list of programs being debugged.

LIST SOURCE ASSIGN Displays the source assignments from the source-assignment
list for the current Inspect session.

LIST SOURCE OPEN Displays the names of all source files that Inspect has opened
as the result of previous SOURCE commands.

LOG Records the session input, output, or both input and output on a
permanent file.

LOW Switches Inspect from high-level to low-level command mode.

MATCH Searches for scope-unit names or other identifiers in the current
program.

MODIFY Changes the value of a data item or register in the current
program.

OBEY Causes Inspect to read commands from a specified file.

OBJECT Displays information about the current program’s object file.

OPENS Shows the status of files that have been opened by the current
program.

OUT Directs the output listing to a specified file.

PAUSE Suppresses Inspect prompts until a debug event occurs in any
of the programs on the program list.

PROGRAM Displays the programs in the program list or selects a program
as the current program.

RESUME Reactivates one or more suspended programs, changing the
program’s state from hold to run.

SAVE Creates a save file of the current program.

SCOPE Changes or displays the current scope path.

Table 6-1. High-Level Inspect Commands (page 3 of 5)

Command Description
Inspect Manual—429164-006
6-4

High-Level Inspect Commands Command Summary
SELECT DEBUGGER
DEBUG

Invokes Debug on the current program. Once you have used
this command, you interact with Debug until issuing the Debug
command “INSPECT” to return control of the program to
Inspect.

SELECT LANGUAGE Changes the current source language, changing the acceptable
syntax of language-dependent entries.

SELECT PROGRAM Selects a program from the program list as the current program.

SELECT SEGMENT Selects extended data segments in which extended data
addresses are to be resolved.

SELECT SOURCE
SYSTEM

Directs Inspect to retrieve source files from another system
when the object file has moved but the source has not.

SELECT SYSTYPE Changes the current systype of Inspect.

SET Changes the status of one of the settable Inspect parameters.

SHOW Shows the status of one or all the settable Inspect parameters.

SIGNALS Displays signal information for the current program.

SOURCE Displays source code.

SOURCE ASSIGN Sets or displays source assignments from the source-
assignment list for the current Inspect session.

SOURCE ICODE Lists instruction mnemonics corresponding to listed source text.

SOURCE OFF Disables automatic source display at each event.

SOURCE ON Enables automatic source display at each event.

SOURCE OPEN Displays the names of the files that are currently open as a
result of previous SOURCE commands.

SOURCE SEARCH Displays source text that matches a specified string.

SOURCE SYSTEM Directs Inspect to retrieve source files from another system
when the object file has moved but the source has not.

STEP Resumes execution of the current program at the point where it
was last suspended, and then suspends execution after the
program has executed a certain number of units.

STOP Stops one or more programs and removes them from the
program list.

SYSTEM Sets the default system for expansion of any file names.

TERM Changes which terminal or process is the Inspect command
terminal.

TIME Directs Inspect to display the time.

Table 6-1. High-Level Inspect Commands (page 4 of 5)

Command Description
Inspect Manual—429164-006
6-5

High-Level Inspect Commands ADD
ADD
The ADD command adds an item to one of the lists of information that Inspect
maintains. This diagram shows the complete syntax for the ADD command and its
clauses. Detailed descriptions of the clauses, including usage considerations and
examples, are presented in the following subsections.

TRACE Displays the call history for the current program location.

VOLUME Sets the default volume and subvolume for expansion of any file
names.

XC Reissues a command line in the history buffer.

ADD list-item

list-item: one of

ALIAS alias-name [=] command-string
KEY key-name [=] command-string
PROGRAM program-spec
SOURCE ASSIGN [original-name ,] new-name

command-string: one of

" [character]... "
' [character]... '

key-name: one of

F1 F2 F3 F4 F5 F6 F7 F8
F9 F10 F11 F12 F13 F14 F15 F16
SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16

program-spec: one of

process
save-file [CODE code-file]
 [LIB lib-file]
 [SRL {(srl-file [, srl-file,...])}]

Table 6-1. High-Level Inspect Commands (page 5 of 5)

Command Description
Inspect Manual—429164-006
6-6

High-Level Inspect Commands ADD ALIAS
Related Commands

 DELETE on page 6-29

 LIST on page 6-129

 SELECT on page 6-164

ADD ALIAS
The ADD ALIAS command adds a name for a command string to the alias list for the
current Inspect session. To add an alias, you provide ADD ALIAS with:

 The name of the alias

 The command string that the alias name represents

After you add an alias, you can use its name whenever you would normally enter its
replacement string.

alias-name

specifies the name of the alias. This name can contain up to 31 alphanumeric
characters; the first character must be alphabetic. An alias name cannot be the
same as an Inspect command name or command name abbreviation.

replacement-string

specifies the command string to associate with the alias name. The command
string is a group of zero or more characters enclosed in either quotes (") or

original-name: one of

[\system.] $volume [.subvolume [.file]]
[\system.] $process [.#qual-1 [.qual-2]]
[\system.] cpu, pin
[\system.] $volume.#number
/oss-pathname [/oss-pathname...]

new-name:

[\system.] $volume [.subvolume [.file]]
/oss-pathname [/oss-pathname...]

ADD ALIAS alias-name [=] replacement-string

replacement-string: one of

" [character]... "
' [character]... '
Inspect Manual—429164-006
6-7

High-Level Inspect Commands ADD ALIAS
apostrophes ('). To include a quote in a quote-delimited replacement string, use a
pair of quotes. Likewise, to include an apostrophe in an apostrophe-delimited
replacement string, use a pair of apostrophes.

Usage Considerations

 Restrictions on the Contents of the Replacement String

An alias replacement string can refer to other aliases (by name), but it cannot
contain the XC command or any of the Fix commands (FA, FB, FC, and FK).

 Alias Restrictions

 Aliases are not expanded for a pattern in the MATCH IDENTIFIER or the
MATCH SCOPE commands.

 Aliases are not expanded in HELP command parameters or with the HELP
command.

 Aliases are not expanded following the keyword ALIAS in the ALIAS, ADD
ALIAS, DELETE ALIAS, and LIST ALIAS commands.

 Using Aliases in the BREAK THEN Clause

You can use an alias name as the parameter to the THEN clause of the BREAK
command; for example:

When the break event occurs, Inspect executes the command list specified in the
alias replacement string. If the command list includes a RESUME command,
Inspect does not prompt for a command; instead, it resumes execution
immediately.

 Recursive Problems with Aliases

This examples illustrate how attempting to add a recursive alias will cause direct
recursion, as in:

will cause this error:

Indirect recursion, as in:

ADD ALIAS ShowMe = "DISPLAY pitch,roll,yaw,speed;RESUME"
BREAK #inject.verify THEN ShowMe

ADD ALIAS MYPROC = "MYPROC"

** Inspect error 380 ** Recursive alias definition

ADD ALIAS MYPROC = "MYPROC;DISPLAY MYDATA;RESUME"
Inspect Manual—429164-006
6-8

High-Level Inspect Commands ADD KEY
will result in this error message being displayed:

 Related Commands

 ALIAS on page 6-17

 DELETE ALIAS on page 6-30

 FA on page 6-83

 LIST ALIAS on page 6-131

 SET ECHO with the ALIAS option on page 6-174

Examples

Using the IF command and references to other aliases within an alias:

Entering XHACK causes expansion of OLDVAL and XSET.

Using aliases as abbreviations for long scope or identifier names:

ADD KEY
The ADD KEY command adds a function-key definition to the function-key list for the
current Inspect session. To add a function-key definition, you provide ADD KEY with:

 The name of the function key

** Inspect error 4 ** Effective input record is too long

-PRG-ADD ALIAS oldval = "IF x < 99 THEN DISPLAY 'X hack ',X"
-PRG-ADD ALIAS xset = "DISPLAY 'X being set to 99';MOD X=99"
-PRG-ADD ALIAS xhack = "oldval;xset"

-PRG-xhack
x hack x=50
x being set to 99
-PRG-DISPLAY X
x=99

-PRG-ADD ALIAS myproc = “A_Very_Long_Procedure_Name”
-PRG-BREAK #myproc
Inspect Manual—429164-006
6-9

High-Level Inspect Commands ADD PROGRAM
 The command string that the function key will execute

key-name

specifies the function key for which you want to provide a definition. Valid function
keys include F1 through F16 and shifted F1 (SF1) through shifted F16 (SF16).

command-string

specifies the replacement string to associate with the given function key. The
replacement string is a group of zero or more characters enclosed in either quotes
(") or apostrophes ('). To include a quote in a quote-delimited replacement string,
use a pair of quotes. Likewise, to include an apostrophe in an apostrophe-
delimited replacement string, use a pair of apostrophes.

Usage Consideration

A function key's replacement string cannot contain the XC command or any of the Fix
commands (FA, FB, FC and FK).

Related Commands

 DELETE KEY on page 6-30

 FK on page 6-90

 LIST KEY on page 6-136

 SET ECHO on page 6-174

ADD PROGRAM
The ADD PROGRAM command adds a process or save file to the program list for the
current Inspect session. This command is used to place a process under Inspect’s

ADD KEY key-name [=] command-string

key-name: one of
F1 F2 F3 F4 F5 F6 F7 F8
F9 F10 F11 F12 F13 F14 F15 F16
SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16

command-string: one of
" [character]... "
' [character]... '
Inspect Manual—429164-006
6-10

High-Level Inspect Commands ADD PROGRAM
control (instead of using the TACL RUND command) or to examine the contents of a
save file.

process

specifies a process as the program to add. $name identifies the process by its
process name, cpu,pin identifies it by its process ID (CPU number and process
number), and oss-pid identifies an OSS process by its OSS process ID.

{ save-file [CODE code-file [LIB lib-file]]
 [SRL {(srl-file [, srl-file,...])}]

specifies a save file as the program to add. Inspect retrieves the file, adds it to the
program list, and makes it the current program. Depending on Inspect’s current
systype, this can either be a Guardian file name, or an OSS pathname.

The systype determines the syntax of the file name, not the type of the process
being added. The CODE and LIB clauses enable you to associate alternate code
and library files with the given save file. The SRL clause is a single filename, or a
comma separated list of SRL object files within parentheses. If the process used
more SRLs than you specified, Inspect will emit a warning.

CODE code-file

directs Inspect to retrieve symbol information from an object code file other than
the one specified internally in the save file.

LIB lib-file

directs Inspect to retrieve symbol information from a library file other than the one
specified internally in the save file.

SRL srl-file

directs Inspect to retrieve symbol information from a shared runtime library file
other than the one specified internally in the save file.

ADD PROGRAM { process }
{ save-file [CODE code-file]
 [LIB lib-file]]
 [SRL {(srl-file [, srl-file,...])}]

process:

 [\system-name.] { $name | cpu,pin | oss-pid }

Note. The SELECT PROGRAM command can be used to specify alternate code and library
files with a running process after it has been successfully added.
Inspect Manual—429164-006
6-11

High-Level Inspect Commands ADD PROGRAM
Usage Considerations

 PATHWAY Requester Programs

To add a PATHWAY requester program to the Inspect program list, you must use
the PATHCOM command INSPECT TERM.

 Cautions When Adding Processes

When you use ADD PROGRAM to add a process, the process will not be added to
the current Inspect session in these cases:

 If the Inspect attribute of the process is not set. In this case, the operating
system starts a Debug session for the process.

 If the process is executing on a remote system. In this case, IMON starts an
Inspect process (and, consequently, a new Inspect session) on the remote
process's host system.

 If your user ID does not have permission to control the process.

After all these checks pass, the process will be added to the Inspect program list
after the process exits system code.

 Using the CODE and LIB Clauses

The CODE and LIB clauses enable you to associate save files with object and
library files other than those specified internally in the save file. Inspect provides
these clauses so that you can obtain symbol information even when the object or
library file doesn't contain symbols. For example, most applications include
symbols only during their development; the symbol information is stripped out
before distribution. If a bug is then discovered, the customer can make a save file
and return it to the developers. Using the CODE and LIB clauses, the developers
can then associate their versions of the object and libraries (with symbols) to the
save file, therefore enabling them to use high-level, symbolic Inspect to pinpoint
the problem more quickly.

These clauses are also useful when the code or library files are no longer stored at
the location saved in the save file.

 Save Files Created when a Process ABENDs

When a process, which has its SAVEABEND attribute set, terminates abnormally,
DMON automatically creates a save file in the volume and subvolume containing
the program file. The save file that DMON creates has a file code of 130 and a
name of the form ZZSAdddd, where dddd is a number chosen by DMON.

When DMON creates the save file, it prints this message at the home terminal of
the abending process:

If the home terminal is not available or is busy, DMON does not print the message.

Savefile File Created: file-name
Inspect Manual—429164-006
6-12

High-Level Inspect Commands ADD PROGRAM
The ZZSA file is created in the same subvolume the program is running from. This
could be different from your logon subvolume. Enter this command at the TACL
prompt:

Then look for the save file whose modification timestamp matches the time of the
abnormal termination.

 Save Files and Timestamps

When Inspect retrieves a save file for analysis, you can receive warning messages
giving timestamp information.

Each object file in the system contains a BINDER timestamp. When the Inspect
command SAVE creates a save file, it includes this timestamp. If you use the ADD
PROGRAM command to fetch a save file and the recorded timestamp in the save
file does not match the timestamp in the corresponding program file on disk, you
receive a warning message because the program file might have been modified.

 Adding Programs on a TNS/E System

You cannot add a TNS/E process or a TNS/E snapshot file to an Inspect session
on a TNS/E system. Instead, you must use either Visual Inspect or Native Inspect
to debug a TNS/E process or snapshot.

Related Commands

 INFO SAVEFILE on page 6-120

 LIST PROGRAM on page 6-137

 PROGRAM on page 6-156

 SELECT PROGRAM on page 6-167

 STOP on page 6-215

Examples

1. This example assumes there is a previously created save file for $NAMEX.

5>FILEINFO zzsa*

--ADD PROGRAM zzsa1630
-$NAMEX-
...
-$NAMEX-STOP
--COMMENT STOP closes the save file without terminating INSPECT
--EXIT
Inspect Manual—429164-006
6-13

High-Level Inspect Commands ADD SOURCE ASSIGN
2. In this example, a new object file is associated with a save file. The new object file
might have been compiled with the SYMBOLS compiler directive; the old one was
not.

or

ADD SOURCE ASSIGN
The ADD SOURCE ASSIGN command adds a source assignment to the current
program’s source assignment list.

When a program is compiled, the fully qualified names of the source files that compose
it are recorded as part of the symbol information. Inspect uses this information to
determine what file to retrieve source text from. If a source file has been moved since
a program was compiled, Inspect will be unable to locate source text to display. The
ADD SOURCE ASSIGN command enables you to inform Inspect where to find source
files when their location has changed.

 original-name

specifies the name of a volume, subvolume, file (permanent or temporary), or
process where Inspect would normally look for source code. Note that the volume
name is required for a permanent or temporary file. If omitted, Inspect uses the file
of the current scope. Inspect does not allow you to omit the original-name
when debugging SCOBOL programs.

--ADD PROGRAM zzsa5362 CODE testprog

--ADD PROGRAM zzsa4513 LIB sort

ADD SOURCE ASSIGN [original-name ,] new-name

original-name: one of

 [\system.] $volume [.subvolume [.file]]
 [\system.] $process [.#qual-1 [.qual-2]]
 [\system.] cpu, pin
 [\system.] $volume.#number
 /oss-pathname [/oss-pathname...]

new-name: one of

 [\system.] $volume [.subvolume [.file]]
 /oss-pathname [/oss-pathname...]
Inspect Manual—429164-006
6-14

High-Level Inspect Commands ADD SOURCE ASSIGN
new-name

specifies the name of the volume, subvolume, or file where you want Inspect to
look for source code when it would normally look in original-name. Note that
volume is required.

new-name must be qualified down to the same level as original-name. That
is, if original-name is a volume, new-name must be a volume; if original-
name is a subvolume, new-name must be a subvolume; if original-name is a
file or process, new-name must be a file. If original-name is omitted, new-
name must be fully qualified.

Usage Considerations

 How Inspect Applies Source Assignments

After Inspect retrieves a compilation name, it scans the source assignment list for
original names that match the compilation name. Inspect matches names from left
to right, and tests for both partial and complete matches. If, for example, the
compilation name is $vol.svol.file, Inspect matches it with these source
assignments:

ADD SOURCE ASSIGN $vol, $vol1
ADD SOURCE ASSIGN $vol.svol, $vol2.subvol2
ADD SOURCE ASSIGN $vol.svol.file, $vol3.subvol3.file3

When more than one original name matches a source assignment, Inspect
chooses the one that matches the source file to the greatest length. Using the
preceding assignments, this table lists the selection and effect of various
assignments:

The final example in this table demonstrates that Inspect does not match on a
character-by-character basis; instead, it matches on a name-by-name basis. The
original name of the third assignment ($vol.svol.file) is a character match of the
source assignment $vol.svol.filename, but Inspect does not use it because the two
filenames (“file” and “filename”) do not match. Instead, Inspect uses the second
assignment because its original name ($vol.svol) is an exact name match of the
original name down to the subvolume level.

 Name Qualification of Compilation Names

Compilation names in the symbol region are qualified up to the system level. As a
result, all source assign references to such compilation names must include the
system name as well. For example, if the compilation name is

Compilation Name
Assignment

Applied Resulting Current Name

$vol.test.file first $vol.test.file

$vol.svol.oldfile second $vol2.subvol2.oldfile

$vol.svol.file third $vol3.subvol3.file3

$vol.svol.filename second $vol2.subvol2.filename
Inspect Manual—429164-006
6-15

High-Level Inspect Commands ADD SOURCE ASSIGN
\sys1.$devel.work.v1, and if this source file has been moved to \archive.$source,
the assignment is:

ADD SOURCE ASSIGN \sys1.$devel, \archive.$source

If \sys1 cannot be seen from the system Inspect is running on, you need to use
the ADD SOURCE ASSIGN command without specifying the original-name.
Alternatively, you can omit the system-name in the original-name. For example:

 Restrictions on the New Name

The new name you provide must refer to a permanent disk file; it cannot refer to a
process or a temporary file.

 Location of Source Files

If you used a C-series compiler and your object file has been moved to another
node on a network and the source files are at the same location as when the object
file was compiled, use the SELECT SOURCE SYSTEM command to identify the
node that the files reside on.

 OSS Pathnames as Source Assigns

OSS pathnames are accepted as source assigns. In this case, filenames are not
dependent on the current systype of Inspect. All OSS pathnames must begin with
a “/” character.

 Source Assigns from an OSS file to an Guardian EDIT File

When adding a source assign from an OSS file to a Guardian EDIT file, or vice
versa, unless the EDIT file line numbers match the sequential line ordinal of the
ASCII file, Inspect may not display the correct source.

 Compilation Filename Matching

Inspect requires complete filenames for a source assign to match. For example,
the command ADD SOURCE ASSIGN /usr/s, /usr/tmp will not match with a
compilation filename of /usr/src/file.c, but will match against /usr/s/file.c. The
resulting source file will be usr/tmp/file.c. In other words, Inspect will match on a
name-by-name basis, not a character-by-character basis.

 Guardian Compilation Filenames

Inspect will only compare Guardian compilation file names against Guardian
original-names, and vice versa. The new-name can be from a different file system
than the compilation name. For example:

-PROGRAM-ADD SOURCE ASSIGN $OLDVOL.OLDSUBV, \SYS2.$NEWVOL.NEWSUBV
Created: Original $OLDVOL.OLDSUBV Current \SYS2.$NEWVOL.NEWSUBV

-PROG-ADD SOURCE ASSIGN /usr/src/file.c,$vol.subvol.filec
Created: Original /usr/src/file.c Current $VOL.SUBVOL.FILEC
-PROG-ADD SOURCE ASSIGN $vol.subvol.module, /usr/src/module.c
Created: Original $vol.subvol.module Current /usr/src/module.c
Inspect Manual—429164-006
6-16

High-Level Inspect Commands ALIAS
Related Commands

 DELETE SOURCE ASSIGN on page 6-31

 LIST SOURCE ASSIGN on page 6-141

 SELECT SOURCE SYSTEM on page 6-169

 SOURCE on page 6-196

 SOURCE ASSIGN on page 6-202

 SOURCE SYSTEM on page 6-211

Examples

1. If the source files have been moved to another volume, but have the same
subvolume name, issue a command of this form:

2. If the source files have been moved to another volume and subvolume, issue a
command of this form:

3. If the location of a single source file has changed, issue a command of this form:

ALIAS
The ALIAS command adds a name or replacement string or displays aliases and
replacement strings for the current Inspect session. The ALIAS command is a
synonym for the ADD ALIAS and LIST ALIAS commands. To add an alias, you provide
ALIAS with:

 The name of the alias

 The replacement string that the alias name represents

After you add an alias, you can use its name whenever you would normally enter its
replacement string. To display an alias, provide the name only.

ADD SOURCE ASSIGN $oldvol, $newvol

ADD SOURCE ASSIGN $oldvol.oldsubv, $newvol.newsubv

ADD SOURCE ASSIGN $oldvol.oldsubv.oldfile, $newvol.newsubv.newfile

ALIAS[ES] [alias-name [[=] replacement string]]

replacement-string: one of

" [character]..."]
' [character]...']
Inspect Manual—429164-006
6-17

High-Level Inspect Commands ALIAS
alias-name

specifies the name of the alias. This name can contain up to 31 alphanumeric
characters; the first character must be alphabetic. An alias name cannot be the
same as an Inspect command name or a command name abbreviation.

replacement-string

specifies the replacement string to associate with the alias name. The
replacement string is a group of zero or more characters enclosed in either
quotation marks (") or apostrophes ('). To include a quote in a quote-delimited
replacement string, use a pair of quotes. Likewise, to include an apostrophe in an
apostrophe-delimited replacement string, use a pair of apostrophes.

Default Values

 If you do not specify an alias-name or a replacement-string, ALIAS
displays all alias definitions.

 If you specify an alias-name but not a replacement-string, ALIAS displays
the alias definition for alias-name.

Usage Considerations

 If you specify alias-name and replacement-string, ALIAS will add an alias
definition for alias-name.

 Aliases are not allowed with the MATCH command.

Related Commands

 ADD ALIAS on page 6-7

 DELETE ALIAS on page 6-30

 FA on page 6-83

 LIST ALIAS on page 6-131
Inspect Manual—429164-006
6-18

High-Level Inspect Commands BREAK
BREAK
The BREAK command allows you to display all breakpoints or set one or more
breakpoints in the current program. The BREAK command, when used without any
parameters, is a synonym for the LIST BREAKPOINT command.

breakpoint

defines the attributes of a breakpoint. These attributes consist of:

 Location—where the break event is to occur

 Conditions—under what conditions the break event is to occur

 Actions—what to do after the break event occurs

brk-location

specifies the location of the breakpoint.

BREAK [breakpoint [, breakpoint]...]

breakpoint:

 brk-location [brk-condition]... [brk-action]...

brk-location:

 { code-location } [BACKUP]
 { data-location [data-subtype] [BACKUP] }
 { [#] ABEND }
 { [#] STOP }

data-subtype: one of
 ACCESS
 CHANGE
 READ
 WRITE
 READ WRITE
 WRITE READ

brk-condition: one of
 EVERY integer
 IF expression

brk-action: one of
 TEMP [integer]
 THEN { command-string | alias-name }
Inspect Manual—429164-006
6-19

High-Level Inspect Commands BREAK
code-location

specifies the location of a code breakpoint. It must be the location of an
executable instruction in the user code or user library code.

For PATHWAY requester programs, code-location must be in an active scope unit
or at the start of an inactive scope unit.

BACKUP

specifies that the breakpoint refers to the backup process of a fault-tolerant
process pair.

The BACKUP clause is invalid for PATHWAY requester programs and is not
supported on TNS/E systems.

data-location

specifies the location of a data breakpoint. If data-location specifies a data item
that occupies more than one word (16 bits) of memory, Inspect sets the data
breakpoint at the first word of the data item.

The data-location parameter is invalid for PATHWAY requester programs.

data-subtype

specifies where the break event should occur.

ACCESS

specifies that a break event should occur on both read and write access of
the data item. This keyword can be used as a substitute for the keywords
READ WRITE or WRITE READ.

CHANGE

specifies that a break event should occur only when the value of the data
item changes. Change is the default.

READ

specifies that a break event should occur on both read and write access of
the data item.

WRITE

specifies that a break event should occur on write access of the data item.

READ WRITE

specifies that a break event should occur on both read and write access of
the data item.
Inspect Manual—429164-006
6-20

High-Level Inspect Commands BREAK
WRITE READ

specifies that a break event should occur on both read and write access of
the data item.

ABEND

specifies a break on ABEND is a break on the event for the process being
debugged, not the system procedure.

The ABEND clause is invalid for PATHWAY requester programs.

STOP

specifies a break on STOP is a break on the event for the process being
debugged, not the system procedure.

The STOP clause is invalid for PATHWAY requester programs.

brk-condition

specifies whether encountering the break location should trigger a break event.
Inspect provides two brk-condition clauses, EVERY and IF; you can use these
clauses separately or together. When they are used together, the EVERY clause is
evaluated before the IF clause.

EVERY integer

specifies that the breakpoint should trigger a break event every integer times
the break location is encountered.

The maximum value of integer is 32767.

IF expression

specifies that the breakpoint should trigger a break event only if expression
evaluates to TRUE (that is, a nonzero value). Because Inspect performs this
test when the break location is encountered, all unqualified variable references
in expression inherit the scope path of the scope unit containing the break
location. Syntax and semantic checking are not done until the breakpoint has
been triggered.

brk-action

specifies what actions are to occur automatically when the breakpoint generates a
break event. Inspect provides two brk-action clauses, TEMP and THEN; you
can use these clauses separately or together.

TEMP [integer]

directs Inspect to clear the breakpoint after it triggers a break event integer
times. If you omit integer, Inspect assumes the integer value 1.
Inspect Manual—429164-006
6-21

High-Level Inspect Commands BREAK
THEN { command-string | alias-name }

directs Inspect to execute a list of commands when the breakpoint triggers a break
event. This list of commands is defined either by an explicit command string or by
an alias name.

command-string

is an Inspect command list enclosed in either quotation marks (") or
apostrophes (').

alias-name

is the name of an alias whose replacement text is a command list. The alias
need not exist when you define the breakpoint; however, it must exist when the
breakpoint is activated. Syntax and semantic checking are not done until the
breakpoint has been triggered.

General Usage Considerations

 Listing All Breakpoints

Use the BREAK command without any parameters to list all breakpoints in your
current program.

 Breakpoints at Primary Entry Points

A break event at the primary entry point of a scope unit suspends execution before
the scope unit allocates and initializes its local data. In general, you can perform
the initialization by entering a STEP 1 STATEMENT command after the break
event.

 Breakpoints Limits

The numbered breakpoint limit in a program is 99. After you have exceeded 99
breakpoints, Inspect maintains the breakpoint list, but no longer numbers them.
For more numbered breakpoints, delete unnecessary breakpoints. The breakpoint
limit in a TCP is 20 per TCP.

 Changing the Conditions and Actions of a Breakpoint

You can alter a breakpoint's conditions and actions by entering a BREAK
command with the same break location but different break conditions and break
actions. No prior CLEAR is needed. Inspect will report that the old breakpoint was
replaced.

 Breakpoint Definition versus Breakpoint Activation

Inspect processes some of a breakpoint's attributes when you define the
breakpoint (breakpoint definition), and others when the breakpoint is encountered
(breakpoint activation). Because the scope path and input radix used for
qualification might change between definition and activation, you should exercise
caution when using unqualified identifiers or numbers in a breakpoint definition.
Inspect Manual—429164-006
6-22

High-Level Inspect Commands BREAK
This item is qualified using the scope path current at breakpoint definition:

 Identifiers used to specify the break location

These items are qualified using the input radix and the scope path current at
breakpoint activation:

 Numbers appearing in the expression of the IF clause

 Identifiers appearing in the expression of the IF clause

 Identifiers appearing in the command string of the THEN clause

 Debugging Loops

When debugging loops, you can use the EVERY clause to break only on certain
iterations. For example, suppose a loop malfunctions on the 32nd iteration (or
every 32nd iteration). If you set an unconditional breakpoint in the loop, it will stop
execution 31 times before getting to the point at which the loop malfunctions. If
you add EVERY 32 to that unconditional breakpoint, execution won't be stopped
until it gets to the point you want.

 Testing EVERY and IF Clauses

If you use EVERY and IF together, Inspect tests the EVERY clause before testing
the IF clause. That is, Inspect tests the IF clause only if the EVERY test passes.
For example, Inspect tests the IF clause of this breakpoint only on every 42nd
activation:

BREAK para-1 EVERY 42 IF c < 100

The condition of this breakpoint is “on every 42nd iteration break if C is less than
100” instead of “break every 42nd time that C is less than 100.”

 Debugging a Backup Process

When debugging a fault-tolerant process pair on a TNS/R system, remember that
Inspect puts breakpoints in the primary process unless you use the BACKUP
clause. After you have put breakpoints in the backup process, you can stop the
primary process (using either the command interpreter STOP command or the
INSPECT STOP command) to force control to pass to the backup process.

If a fault-tolerant process pair alters its home terminal, activation of a breakpoint in
the backup process might cause IMON to start a new Inspect process.

Note that you cannot debug a backup process on a TNS/E system; the BACKUP
option is disabled because the backup process is not owned by the debugger on a
TNS/E system.

 Using the TEMP Clause

A breakpoint normally remains in effect until you explicitly clear it using the CLEAR
command. Frequently, however, you might want a breakpoint that triggers a break
event a limited number of times (usually once), and then clears itself automatically.
The TEMP clause provides this feature.
Inspect Manual—429164-006
6-23

High-Level Inspect Commands BREAK
For example, this breakpoint generates break events on its 10th, 20th, and 30th
activations, and is then cleared:

BREAK para-1 EVERY 10 TEMP 3

 Using the THEN Clause

The THEN clause, which requires quotes, enables you to execute a list of
commands whenever a break event is triggered. If you use RESUME in the
command list (it must be the last command in the list), Inspect resumes execution
of the current program. This stop-and-go feature has a variety of uses, including:

 Resetting the value of a variable:

BREAK #loop.init THEN "MODIFY counter=1;RESUME"

 Tracking the value of a variable:

BREAK #main.status THEN "DISPLAY status;RESUME"

 Flagging execution of a certain piece of code:

BREAK #parse THEN "DISPLAY 'Parsing input';RESUME"

 Setting a local data breakpoint, which must be done when the associated
procedure is active:

BREAK #loop.init THEN "BREAK counter; RESUME"

If you STEP onto a breakpoint with a RESUME in the THEN clause, your program
resumes.

 Using OBEY in a THEN Clause

Using an OBEY command in a THEN clause can cause unexpected
synchronization behavior. For more information, see OBEY on page 6-152.

Usage Considerations for Data Breakpoints

 Restrictions on Data Breakpoints

Inspect does not allow data breakpoints in PATHWAY requester programs. In
addition, Inspect allows only one data breakpoint at a time in each process or
PATHWAY server.

 Change is the Default

If the type of data access that triggers the data breakpoint event is not specified,
the default is change. When data breakpoint is set to change, only memory writes
that change the value of the data location triggers the breakpoint.

The READ clause specifies that a break event should occur on both read and write
access of the data item.
Inspect Manual—429164-006
6-24

High-Level Inspect Commands BREAK
 Write Availability

Write breakpoints are available on all TNS processors, but not on NSR-L
processors. When a high-level write breakpoint is reported (TNS systems only) and
the value of the variable has not changed, Inspect issues this warning:

 Machine Dependency

The program location after a data breakpoint is triggered is machine-dependent.
On TNS systems, it might differ by an instruction. On TNS/R systems, it might differ
by more than an instruction. For more information, see Section 15, Using Inspect
on a TNS/R System.

 Single-Byte Data Objects

A data breakpoint is associated with a single 16-bit word; therefore, if you set a
breakpoint on a data object that occupies a single byte, the breakpoint is
associated with the word that contains the data object. Subsequent access of
either byte of the word generates a break event for read and write breakpoints.

 Multi-Word Data Objects

A data breakpoint is associated with a single 16-bit word; therefore, if you set a
breakpoint on a data object that occupies multiple words (a floating point value, or
character field in record or structure, for example), the breakpoint is associated
with the first word of the data object. If your program accesses one of the other
words of the data object without affecting the first word, a break event does not
occur.

 Byte Data starting on an Odd Byte

A field in a record or structure might start on an odd byte boundary. Setting a write
or read/write data breakpoint for the field might result in unrelated breakpoints
being reported when the trailing byte of the previous field is accessed.

 Initialization

Data breakpoints should be set after initialization has taken place. Variable
locations might not be established in memory until initialization is complete.

 Local and Sublocal Data Objects

A data breakpoint set on a local or a sublocal variable persists even after its
containing scope unit has completed execution. It persists because it is associated
with a given physical address. Consequently, if a scope unit later allocates a local
or sublocal variable at the same physical address, that new variable has the old
data breakpoint associated with it.

** Inspect warning 364 ** Value of variable did not change;
 breakpoint may have been triggered by an access
 to the containing 16-bit word
Inspect Manual—429164-006
6-25

High-Level Inspect Commands BREAK
This illustrates how to set a data breakpoint on a local variable to avoid unrelated
data breakpoints being reported for the local variable when the procedure is no
longer active.

 TAL P-Relative Arrays

Because TAL P-relative arrays are stored in the code space rather than the data
space, you must use the READ clause to set a data breakpoint at a P-relative
array.

Usage Consideration for Code Breakpoints

 STOP and ABEND for Code Breakpoints

If you have a data item or a code label named STOP visible from the current scope
unit, the command BREAK STOP sets a breakpoint on the data item or the code
label. To set a breakpoint that is reported when the program stops, preface the
word STOP with a “#”, as in BREAK #STOP.

Conversely, if you have a scope unit in your program named STOP, and you issue
the command BREAK #STOP, a breakpoint is placed in your program. If you have
both a data item or a code label named STOP and a scope unit named STOP, you
cannot set a breakpoint at STOP. The same alternatives and restrictions apply for
setting a breakpoint at ABEND. To avoid restrictions on the use of STOP and
ABEND breakpoints, refrain from declaring data items, labels, or scopes named
STOP or ABEND.

Related Commands

 CLEAR on page 6-27

 FB on page 6-84

 IF on page 6-103

 LIST BREAKPOINT on page 6-131

#10 PROC X;
#11 BEGIN
#12 INT I;
#13
#14 CALL Y(i);
 .
 .
 .
#42 END;

-PROGRAM-BREAK #X THEN "BREAK I;RESUME"
-PROGRAM-BREAK #X.#42 THEN "CLEAR I;RESUME"
Inspect Manual—429164-006
6-26

High-Level Inspect Commands CD
Example

This example illustrates a frequent use of the THEN clause—modifying a variable and
then continuing execution:

CD
The CD command changes the current OSS directory.

oss-pathname

specifies an OSS pathname.

Default Value

If the oss-pathname is omitted, the current OSS directory is changed to your initial
OSS directory.

CLEAR
The CLEAR command clears one or more breakpoints in the current program.

*

clears all breakpoints in the current program.

clear-spec

identifies the breakpoint to clear. This breakpoint identifier can be the number of
the breakpoint (as shown by the LIST BREAKPOINT command) or the location of
the breakpoint (a code location, a data location, the keyword STOP, or the keyword
ABEND).

-PRG-BREAK rachets+3I THEN "MODIFY fsize:=15; RESUME"

CD [oss-pathname]

CLEAR { * | clear-spec }

clear-spec: one of

 breakpoint-number [, breakpoint-number]
 CODE code-location-list [, code-location]
 DATA data-location [, data-location]
 EVENT { ABEND | STOP }
Inspect Manual—429164-006
6-27

High-Level Inspect Commands Related Commands
breakpoint-number

specifies the number of the breakpoint to clear.

code-location

specifies the location of a code breakpoint. It must be the location of an executable
instruction in the user code or user library code.

data-location

specifies the location of a data breakpoint.

Related Commands

 BREAK on page 6-19

 LIST BREAKPOINT on page 6-131

COMMENT
The COMMENT command directs Inspect to ignore the remainder of the command list.
It is a way to document commands in an OBEY file or the INSPLOCL or INSPCSTM
configuration files. If you are logging input, the file will contain any comments entered.

text

is any text.

Usage Consideration

There are two forms of the COMMENT command in Inspect; COMMENT and “--”.
COMMENT must appear at the beginning of a command to be recognized. “--” may
appear within a command; subsequent text is then ignored.

Related Command

 LOG

Examples

1. This is an example of a valid comment using COMMENT.

COMMENT | -- [text]

-PROG-BREAK #PROC.#42;COMMENT Set a breakpoint in #PROC
Inspect Manual—429164-006
6-28

High-Level Inspect Commands DELETE
2. This is an example of an invalid comment; Inspect will issue an invalid syntax
error.

3. This is an example of a comment using “--”.

DELETE
The DELETE command removes an item from one of the lists of information that
Inspect maintains.

This diagram shows the complete syntax for the DELETE command and its clauses.
Detailed descriptions of the clauses, including usage considerations and examples, are
presented in the following subsections.

Related Commands

 ADD on page 6-6

 LIST on page 6-129

-PROG-BREAK X COMMENT BREAK when X changes.

-PROG-BREAK X -- BREAK when X changes.

DELETE list-item

list-item: one of

 ALIAS[ES] { * | alias-name }
 KEY[S] { * | key-name }
 SOURCE ASSIGN { * | original-name }
 SOURCE OPEN[S] { * | source-file }

key-name: one of
 F1 F2 F3 F4 F5 F6 F7 F8
 F9 F10 F11 F12 F13 F14 F15 F16
 SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
 SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16

original-name: one of
 [\system.] $volume [.subvolume [.file]]
 [\system.] $process [.#qual-1 [.qual-2]]
 [\system.] cpu, pin
 [\system.] $volume.#number
 /oss-pathname [/oss-pathname...]
Inspect Manual—429164-006
6-29

High-Level Inspect Commands DELETE ALIAS
DELETE ALIAS
The DELETE ALIAS command removes one or all aliases from the alias list for the
current Inspect session.

*

directs Inspect to remove all aliases.

alias-name

directs Inspect to remove a specific alias.

Usage Consideration

Aliases are not expanded following the keywords DELETE ALIAS.

Related Commands

 ADD ALIAS on page 6-7

 ALIAS on page 6-17

 LIST ALIAS on page 6-131

DELETE KEY
The DELETE KEY command removes one or all function-key definitions from the
function-key list for the current Inspect session.

*

directs Inspect to remove all function-key definitions.

DELETE ALIAS[ES] { * | alias-name }

DELETE KEY[S] { * | key-name }

key-name: one of

 F1 F2 F3 F4 F5 F6 F7 F8
 F9 F10 F11 F12 F13 F14 F15 F16
 SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
 SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16
Inspect Manual—429164-006
6-30

High-Level Inspect Commands Related Commands
key-name

directs Inspect to remove a specific function-key definition. Valid key names
include F1 through F16 and shifted F1 (SF1) through shifted F16 (SF16).

Related Commands

 ADD KEY on page 6-9

 KEY on page 6-128

 LIST KEY on page 6-136

DELETE SOURCE ASSIGN
The DELETE SOURCE ASSIGN command removes one or all source assignments
from the current program's source assignment list.

*

directs Inspect to remove all source assignments from the current program’s
source assignment list.

original-name

directs Inspect to remove a specific source assignment from the current program’s
source assignment list.

Usage Considerations

 Inspect does not perform partial matching when comparing the original name in
DELETE SOURCE ASSIGN with the original names in the source assignments.
The original name you specify in DELETE SOURCE ASSIGN must match a source
assignment’s original name exactly before Inspect will remove that assignment.

 OSS pathnames must be absolute pathnames. For example:

DELETE SOURCE ASSIGN { * | original-name }

original-name: one of

 [\system.] $volume [.subvolume [.file]]
 [\system.] $process [.#qual-1 [.qual-2]]
 [\system.] cpu, pin
 [\system.] $volume.#number
 /oss-pathname [/oss-pathname...]

-PROG-DELETE SOURCE ASSIGN /usr/fred/src/file.c
Inspect Manual—429164-006
6-31

High-Level Inspect Commands Related Commands
Related Commands

 ADD SOURCE ASSIGN on page 6-14

 LIST SOURCE ASSIGN on page 6-141

 SOURCE ASSIGN on page 6-202

DELETE SOURCE OPEN
The DELETE SOURCE OPEN command closes one or all source files that Inspect had
opened as the result of previous SOURCE commands.

*

directs Inspect to close all open source files.

source-file

directs Inspect to close a specific source file.

Usage Considerations

 Inspect opens source files in protected mode to prohibit modification of a file during
an Inspect session. DELETE SOURCE OPEN enables you to close the file so that
you can modify it.

 OSS pathnames must be qualified to the root level.

 If Inspect has not opened the given source file, it reports this message:

Related Commands

 LIST SOURCE OPEN on page 6-142

 SOURCE on page 6-196

 SOURCE OPEN on page 6-208

DELETE SOURCE OPEN[S] { * | source-file }

** Inspect error 120 ** Source file is not recognized: file-name
Inspect Manual—429164-006
6-32

High-Level Inspect Commands DISPLAY
DISPLAY
The DISPLAY command formats and displays these types of items:

 Data location, including SPI buffers and tokens

 Program registers (TNS and TNS/R)

 Program code

 Quoted strings

 Expressions (after evaluating them)

 Integral values (as a specified data type)

In addition, the DISPLAY command provides several clauses that enable you to control
the size, type, and formatting of the items you display.

The complete syntax for the DISPLAY command and its clauses:

DISPLAY item [, item]... [formatting-clause]

item: one of

 display-data [WHOLE] [PLAIN] [FOR for-spec]
 display-code [FOR group-spec]
 REGISTER register-item [TYPE display-type]
 spi-buffer
 spi-token [AS data-type] [FOR for-count]
 string
 (expression)
 VALUE value-list [TYPE display-type]

display-data: one of

 identifier
 data-location AS data-type
 data-location TYPE display-type

data-location: one of

 (expression) [SG]
 identifier
Inspect Manual—429164-006
6-33

High-Level Inspect Commands DISPLAY
display-type: one of

 CHAR CRTPID DEVICE ENV
 FILENAME FILENAME32 FIXED FLOAT
 INT INT16 INT32 LOCATION
 PROCESS HANDLE REAL REAL32 REAL64
 SSID STRING SYSTEM TIMESTAMP
 TIMESTAMP48 TOSVERSION TRANSID USERID
 USERNAME

for-spec:

 for-count [BYTE[S] | WORD[S] | DOUBLE[S] | QUAD[S]]

display-code: one of

 scope-path
 [scope-path] code-reference

code-reference: one of

 scope-unit [FROM source-file]
 label [FROM source-file]
 #line-number [(source-file)]
for-count: one of

 non-negative integer
 data-location

register-item: one of

 ALL BOTH TNS TNS/R register-name

register-name: one of

 tns-register-name
 tns/r-register-name

tns-register-name: one of

 P E L S
 R0 R1 R2 R3 R4 R5 R6 R7
 RA RB RC RD RE RF RG RH
Inspect Manual—429164-006
6-34

High-Level Inspect Commands DISPLAY
tns/r-register-name: one of

 $0 $1 $2 $3...$31
 $HI $LO
 $PC
 tns/r-register-alias

tns/r-register-alias: one of

 $AT $V0 $V1 $A0 $A1 $A2 $A3
 $S0 $S1 $S2 $S3 $S4 $S5 $S6 $S7
 $T0 $T1 $T2 $T3 $T4 $T5 $T6 $T7 $T8 $T9
 $K0 $K1 $GP $SP $FP $RA

spi-buffer:

 data-location TYPE spi-type

spi-type: one of

 EMS EMS-NUM SPI SPI-NUM
spi-token:

 data-location : token-spec [TYPE spi-type]
 [POSITION token-spec [, token-spec]...]

token-spec:

 token-code [: token-index] [SSID ssid-string]
token-code: one of

 token-index
 ssid-string

value-list: one of

 integer
 integer , integer
 integer , integer , integer , integer

formatting-clause: one of

 IN base [base]...
 { FORMAT | FMT } format-list
 PIC mask-string [, mask-string]...
Inspect Manual—429164-006
6-35

High-Level Inspect Commands DISPLAY
These subsections show you how to use the DISPLAY command to display different
types of items:

 Displaying Program Data on page 6-37

 Displaying Program Registers on page 6-42

 Displaying Program Code on page 6-45

 Displaying SPI Data on page 6-48

 Displaying Strings, Expressions, and Constant Values on page 6-58

These subsections are six additional subsections that describe the major clauses of
the DISPLAY command:

 Using the AS Clause on page 6-61 shows you how to use the AS clause to display
an item using the attributes of a program-defined data type.

 Using the FOR Clause on page 6-64 shows you how to use the FOR clause to
display an item for a number of simple or complex groups (for more than two
elements).

 Using the FORMAT Clause on page 6-67 shows you how to use the FORMAT
clause to format items using the operating system formatter.

 Using the IN Clause on page 6-70 shows you how to use the IN clause to display
items in one or more bases.

 Using the PIC Clause on page 6-73 shows you how to use the PIC clause to
format items using mask strings and the M edit descriptor of the operating
systemþ90 formatter.

 Using the TYPE Clause on page 6-75 shows you how to use the TYPE clause to
display an item using the attributes of a predefined data type.

base: one of

 BINARY OCT[AL] DEC[IMAL] HEX[ADECIMAL]
 ASCII XASCII GRAPHIC[S]
 ICODE

format-list:

 an edit-descriptor list for the operating system formatter

 mask-string:

 a mask string for the M edit descriptor
Inspect Manual—429164-006
6-36

High-Level Inspect Commands Displaying Program Data
Displaying Program Data
DISPLAY command is used to format and display data in the current program,
including SPI buffers and tokens.

This subsection shows how to display non-SPI data. Displaying SPI Data on page 6-48
shows how to display SPI data.

item [, item]...

specifies the list of items to display. Inspect determines the default display format
of an item based on the type of value that the item represents.

program-data [WHOLE] [PLAIN] [FOR for-spec]

directs Inspect to display a value found in the data space of the current program.
The type of value that program-data represents determines the default unit used
by the FOR clause.

The WHOLE clause directs Inspect to display the value as a character string. If the
value is a group item (such as a structure or record), Inspect displays it as a single
string.

Note. Data location is different for different languages. For more information, see language-
specific sections.

DISPLAY item [, item]... [formatting-clause]

item:

 display-data [WHOLE] [PLAIN] [FOR for-spec]

display-data: one of

 identifier
 data-location AS data-type
 data-location TYPE display-type

data-location: one of

 (expression) [SG]
 identifier

formatting-clause: one of

 IN base [base]...
 { FORMAT | FMT } format-list
 PIC mask-string [, mask-string]...
Inspect Manual—429164-006
6-37

High-Level Inspect Commands Displaying Program Data
Inspect ignores the WHOLE clause if you use the FOR or IN ICODE clause. The
WHOLE clause is also invalid for PATHWAY requester programs.

The PLAIN clause directs Inspect to suppress the identifying information it normally
displays for an item, including:

 The name of the item

 The names of the elements of a group item

 The quotation marks that delimit string values

The FOR clause directs Inspect to display the specified number of elements.

For more information, see Using the FOR Clause on page 6-64.

As shown in the diagram, the program-data parameter is one of these:

identifier
data-location AS data-type
data-location TYPE display-type

identifier

specifies constants and variables defined by the program.

data-location AS data-type

specifies the starting address and data type of a data value. The AS clause directs
Inspect to display a data value using the attributes of a data type defined in the
current program. The parameter data-type is a data location identifying a data-
type definition or a variable. If data-type refers to a variable, Inspect uses the
type attributes of that variable.

The AS clause is invalid for PATHWAY requester programs.

For more information, see Using the AS Clause on page 6-61.

data-location TYPE display-type

specifies the starting address and display type of a data value. The TYPE clause
causes Inspect to display a data value using the attributes of a specific display
type.

data-location

specifies the memory location starting at which data is to be formatted as data-
type.

(expression)

specifies a memory address. If the expression evaluates to a 16-bit value, this
value is interpreted as a 16-bit word address. If the expression evaluates to a
32-bit value, this value is interpreted as an extended address.
Inspect Manual—429164-006
6-38

High-Level Inspect Commands Default Value
SG

specifies that the 16-bit expression is interpreted as a System Global address.
SG is not allowed with 32-bit addresses.

identifier

specifies a variable defined by the program. The form of identifier allowed is
any legal variable specification, such as i, struct.r1.r2, or a[30].

For more information, see Using the TYPE Clause on page 6-75.

formatting-clause

specifies the format Inspect should use when displaying each item. Inspect
provides three format clauses: FORMAT, IN, and PIC. For more information about
these clauses, see Using the FORMAT Clause on page 6-67, Using the IN Clause
on page 6-70, and Using the PIC Clause on page 6-73.

Default Value

If you do not specify formatting-clause, Inspect displays numeric values in the current
output radix and delimits character and string values with quotes (").

Usage Considerations

 Displaying Items in a Running Program

If you enter a DISPLAY command while the current program is running, the data
values that Inspect displays might not be valid.

 Displaying FILLER Data Items

Inspect does not display FILLER elements in group data items unless you use the
WHOLE clause, the FOR clause, or one of the formatting clauses.

 Displaying Records

If the item being displayed is a record or structure, the item name and its
components are displayed. Components follow the record name and are indented
to denote inclusion. For example, assume this COBOL definition:

01 person-name.
 03 last-n PICTURE X(20).
 03 rest PICTURE X(20).

Inspect then displays this item as follows:

 Displaying Arrays

-PRG-DISPLAY person-name
PERSON-NAME =
 LAST-N = "DINGERDORFF "
 REST = "MOSTOK R. "
Inspect Manual—429164-006
6-39

High-Level Inspect Commands Examples
Items declared as arrays are displayed using the subscript range specified in the
command. If none is specified, then the items are displayed in their entirety.

A one-dimensional item is displayed as a row of values, the name indicating the
beginning subscript value. For example, assume this COBOL definition:

01 person-name.
 03 last-n.
 05 last-char PICTURE X OCCURS 20 TIMES.
 03 rest.
 05 first-char PICTURE X OCCURS 20 TIMES.

Inspect then displays this item as follows:

Examples

These examples display program data, based on this source code.

1. This example shows the result of displaying an array of 8 elements.

-PRG-DISPLAY person-name
PERSON-NAME =
 LAST-N =
 LAST-CHAR[1] = "DINGERDORFF "
 REST =
 FIRST-CHAR[1] = "MOSTOK R. "

?inspect,symbols

STRUCT S^Def (*);
BEGIN

 INT one^field;
 INT two^field;
END;

 PROC example MAIN;
BEGIN
 INT arr[0:7] := [12345, 5, 123, 2, 901, 89, 567, 0];
 STRING s1 [0:6]; STRUCT def^one(S^Def);
 STRING .string_ptr;

 def^one.one^field := 1;
 def^one.two^field := 22;

 s1 ':=' "example";
 @string_ptr := @s1;

END;

-EX2OBJ-DISPLAY arr
ARR[0] = 12345 5 123 2 901 89 567 0
Inspect Manual—429164-006
6-40

High-Level Inspect Commands Examples
2. This example shows the usage of the WHOLE clause with the DISPLAY command
on the same array of 8 elements. Specifying the WHOLE clause will cause the
elements in the array to be displayed in string format.

3. This example shows the usage of the PLAIN clause with the DISPLAY command
on the same array of 8 elements. Notice that by specifying the PLAIN clause, the
name of the item, in this case arr, was not displayed.

4. This example shows the usage of the FOR clause with the DISPLAY command.

5. This example shows the usage of the DISPLAY command on a structure with two
fields.

6. This example shows the usage of the AS clause with the DISPLAY command.

7. This example shows the display of a string array.

8. This example shows the display of a string pointer.

-EX2OBJ-DISPLAY arr WHOLE
ARR[0] = "09" ?0 ?5 ?0 "{" ?0 ?2 ?3 ?133 ?0 "Y" ?2 "7" ?0 ?0

-EX2OBJ-DISPLAY arr PLAIN
12345 5 123 2 901 89 567 0

-EX2OBJ-DISPLAY arr FOR 5
ARR[0] = 12345 5 123 2 901

-PROGRAM-DISPLAY def^one
DEF^ONE =
 ONE^FIELD = 1
 TWO^FIELD = 22

-PROGRAM-DISPLAY def^one.two^field
DEF^ONE.TWO^FIELD = 22

-PROGRAM-DISPLAY arr AS s^def
S^DEF =
 ONE^FIELD = 12345
 TWO^FIELD = 5

T-PROGRAM-DISPLAY s1
S1[0] = "example"

-PROGRAM-DISPLAY string_ptr
STRING_PTR = "e"
-PROGRAM-DISPLAY string_ptr[0:6]
STRING_PTR[0] = "example"
-PROGRAM-DISPLAY string_ptr FOR 7 BYTES
STRING_PTR[0] = "example"
Inspect Manual—429164-006
6-41

High-Level Inspect Commands Displaying Program Registers
Displaying Program Registers
You can use the DISPLAY command to format and display registers in the current
program. For accelerated programs, you can use this command to display the values
of TNS machine registers.

Note. The DISPLAY REGISTER command is invalid for PATHWAY requester programs.

DISPLAY item [, item]... [formatting-clause]

item:

 REGISTER register-item [TYPE display-type]

register-item: one of
 ALL
 BOTH
 TNS
 TNS/R
 register-name

register-name: one of

 tns-register-name
 tns/r-register-name

 tns-register-name: one of

 P E L S
 R0 R1 R2 R3 R4 R5 R6 R7
 RA RB RC RD RE RF RG RH

tns/r-register-name: one of

 $0 $1 $2 $3...$31
 $HI $LO
 $PC
 tns/r-register-alias
Inspect Manual—429164-006
6-42

High-Level Inspect Commands Displaying Program Registers
item [, item]...

specifies the list of items to display. Inspect determines the default display format
of an item based on the type of value that the item represents.

REGISTER register-item [TYPE display-type]

directs Inspect to display the current value of a program register.

The TYPE clause causes Inspect to display the register using the attributes of a
specific display type.

For more information, see Using the TYPE Clause on page 6-75.

register-item:

is the name of a TNS or TNS/R register.

ALL

displays the default set of machine registers.

BOTH

when debugging a program on a TNS/R system displays both TNS and TNS/R
machine registers. To display TNS/E registers when debugging any program
on a TNS/E system, you must use Visual Inspect.

TNS

is specified to display TNS machine registers.

TNS/R

is specified when debugging a program on a TNS/R system to display the
values of the TNS/R machine registers.

formatting-clause

specifies the format Inspect should use when displaying each item. Inspect
provides three format clauses: FORMAT, IN, and PIC. For more information about

tns/r-register-alias: one of

 $AT $V0 $V1 $A0 $A1 $A2 $A3
 $S0 $S1 $S2 $S3 $S4 $S5 $S6 $S7
 $T0 $T1 $T2 $T3 $T4 $T5 $T6 $T7 $T8 $T9
 $K0 $K1 $GP $SP $FP $RA

 formatting-clause: one of
 IN base [base]...
 { FORMAT | FMT } format-list
 PIC mask-string [, mask-string]...
Inspect Manual—429164-006
6-43

High-Level Inspect Commands Usage Considerations
these clauses, see Using the FORMAT Clause on page 6-67, Using the IN Clause
on page 6-70, and Using the PIC Clause on page 6-73.

Usage Considerations

 When debugging an emulated TNS program on a TNS/E system, the DISPLAY
command cannot display TNS/E registers. You must use either Visual Inspect or
Native Inspect to display TNS/E registers.

 When you use the TYPE clause with the DISPLAY REGISTER command:

 For TNS registers, display-type values must be 2-byte.

 For TNS/R registers, display-type values must be 2-byte or 4-byte.

 When listing all TNS registers, the register that is at the top of the register stack is
marked with “<--”.

 If an accelerated program is not executing TNS/R instructions or the TNS/R or
BOTH clause is used when debugging a program that has not been processed by
the Axcel accelerator, this error message is displayed:

 The virtual frame pointer (VFP) for native stack frames is displayed. In addition,
the contents of the registers will be relative to the current stack frame. In other
words, as the current scope is changed to an active stack frame, the register
values will be what they were in that stack frame. If the current scope is changed
to a non-active stack frame, the register values will be what are current in the
program. Note that not all registers are saved in every procedure. This may result
in some registers having values left over from the preceding stack frame.

Output

This example output illustrates all registers.

** Inspect error 371 ** Program is not executing TNS/R instructions

-PROGRAM-DISPLAY REGISTER ALL

 $PC: 1879048880 $HI: 926 $LO: 3976303904 VFP: 1342177056

 $0 0 $AT: 134217732 $VO: 0 $V1: 1
 $4: $A0 0 $A1 0 $A2 134230564 $A3: 92
 $8: $T0 134230560 $T1 4 $T2 66 $T3 1879082720
$12: $T4 65043 $T5 262144 $T6 0 $T7 0
$16: $S0 4294967295 $S1 4294967295 $S2 4294967295 $S3 4294967295
$20: $S4 4294967295 $S5 4294967295 $S6 4294967295 $S7 4294967295
$24: $T8 134230656 $T9 2 $K0 2803083027 $K1 2803083027
$28: $GP 134254384 $SP 1342177016 $FP 4294967295 $RA 1879082720
Inspect Manual—429164-006
6-44

High-Level Inspect Commands Examples
Examples

1. This command displays all TNS registers in octal:

2. This command displays TNS/R registers in hexadecimal:

Displaying Program Code
You can use the DISPLAY command to format and display object code in the current
program.

-C000OTCE-DISPLAY REGISTER ALL IN OCTAL
R0 %077777 RH P = %003105
R1 %174030 RG E = %000207 (RP=7,CCG,T)
R2 %105260 RF L = %005022
R3 %144402 RE
R4 %107571 RD S = %005034
R5 %011674 RC
R6 %160413 RB SPACE = %000000 UC.0
R7 %062400 RA <--

-C000OTCE-DISPLAY REGISTER TNS/R IN HEXADECIMAL
 $PC: %H70421D60 $HI: %H7FFFFC0B $LO: %H74FB5D47 VFP: %H729F2176
 $0: %H00000000 $AT: %H70000000 $V0: %H00000000 $V1: %H7FFFF818
 $4: $A0: %H7FFFF818 $A1: %H00000003 $A2: %H00000645 $A3: %H74FB5D47
 $8: $T0: %H70421D60 $T1: %H70421D44 $T2: %H70400000 $T3: %H70400000
$12: $T4: %H00000002 $T5: %H00000002 $T6: %H00000000 $T7: %H7FFFF819
$16: $S0: %H00007FFF $S1: %HFFFFF818 $S2: %HFFFF8AB0 $S3: %HFFFFC902
$20: $S4: %H0A548F79 $S5: %H000013BC $S6: %HDD7EE10B $S7: %H00006500
$24: $T8: %H70000000 $T9: %H00000080 $K0: %HA713A713 $K1: %HA713A713
$28: $GP: %H70401000 $SP: %H00001438 $FP: %H00001424 $RA: %H724201D4

Note. You cannot display the pseudocode in a PATHWAY requester program.

DISPLAY item [, item]... [formatting-clause]

item:

 display-code [FOR for-spec]

display-code: one of

 scope-path
 [scope-path] code-reference

code-reference: one of

 scope-unit [FROM source-file]
 label [FROM source-file]
 #line-number [(source-file)
Inspect Manual—429164-006
6-45

High-Level Inspect Commands Displaying Program Code
item [, item]

specifies the list of items to display. Inspect determines the default display format
of an item based on the type of value that the item represents.

display-code

specifies a code location to display. scope-path and code-referenceare
described in Section 2, Inspect Concepts.

WHOLE

directs Inspect to display the value as a character string. Inspect ignores the
WHOLE clause if you use the FOR or IN ICODE clause.

PLAIN

directs Inspect to suppress the identifying information it normally displays for an
item, including:

 The name of the item

 The names of the elements of a group item

 The quotation marks that delimit string values

FOR for-spec

directs Inspect to display the value as a number of groups. The FOR clause uses
WORD as the default unit when displaying program code. For more information,
see Using the FOR Clause on page 6-64.

formatting-clause

specifies the format Inspect should use when displaying each item. Inspect
provides three format clauses: FORMAT, IN, and PIC. For more information about
these clauses, see Using the FORMAT Clause on page 6-67, Using the IN Clause
on page 6-70, and Using the PIC Clause on page 6-73.

formatting-clause: one of

 IN base [base]...
 { FORMAT | FMT } format-list
 PIC mask-string [, mask-string]...
Inspect Manual—429164-006
6-46

High-Level Inspect Commands Usage Considerations
Usage Considerations

 You can display code from user library routines if you have read access to the code
file.

 The ICODE command provides a more powerful mechanism for displaying
program code.

Example

This example illustrates the differences between using the DISPLAY and ICODE
commands to display program code. Note that the ICODE output indicates which
source line numbers correspond to which instructions. In addition, the ICODE
command recognizes where the procedure ends, as opposed to DISPLAY which
displays only the exact amount you specified.

-PROGRAM-DISPLAY #m IN I FOR 40 WORDS
M = ADDS +012 LDI +065 STOR L+001 LDI +146
 STOR L+002 LADR L+003 LLS 01 RDP
 LDI +011 ORLI 000 LADD LLS 01
 LDI +013 MOVB 047 ZERD PUSH 711
 XCAL 000 STOR G+145 STD G+154,6 STD L+040,7
 LDB L+157,7 LADR G+154,5 LDD G+000,6 NOP
 NOP NOP NOP NOP
 NOP NOP NOP NOP
 NOP NOP NOP NOP
 NOP NOP NOP NOP
-PROGRAM-ICODE AT #m FOR 40 STATEMENTS
#9
 %000003: ADDS +012
#18
 %000004: LDI +065 STOR L+001
#19
 %000006: LDI +146 STOR L+002
#20
 %000010: LADR L+003 LLS 01 RDP
 %000013: LDI +011 ORLI 000 LADD
 %000016: LLS 01 LDI +013 MOVB 047
#23
 %000021: ZERD PUSH 711 XCAL 000
 %000024: STOR G+145 STD G+154,6 STD L+040,7
 %000027: LDB L+157,7 LADR G+154,5 LDD G+000,6
 ** Inspect warning 388 ** Listing ends at procedure end
Inspect Manual—429164-006
6-47

High-Level Inspect Commands Displaying SPI Data
Displaying SPI Data
You can use the DISPLAY command to format and display SPI buffers and SPI tokens
in the current program.

item [, item]...

specifies the list of items to display. Inspect determines the default display format
of an item based on the type of value that the item represents.

spi-buffer

directs Inspect to display an entire SPI buffer. The syntax of spi-buffer is:

data-location TYPE spi-type

DISPLAY item [, item]... [IN base [base]...]

item: one of

 spi-buffer
 spi-token [AS data-type] [FOR for-count]

spi-buffer:

 data-location TYPE spi-type

data-location: one of

 (expression) [SG]
 identifier

spi-type: one of

 EMS EMS-NUM SPI SPI-NUM

spi-token:

 data-location : token-spec [TYPE spi-type]
 [POSITION token-spec [, token-spec]...]

token-spec:

 token-code [: token-index] [SSID ssid-string]
Inspect Manual—429164-006
6-48

High-Level Inspect Commands Displaying SPI Data
The data-location parameter specifies the location of the SPI buffer, and the
TYPE clause specifies how you want Inspect to interpret and format the buffer.
Here are the SPI types that Inspect supports:

 EMS directs Inspect to interpret the buffer as an EMS buffer and presents its
contents in a labelled format.

 EMS-NUM directs Inspect to interpret the buffer as an EMS buffer and
presents its contents in a numeric format.

 SPI directs Inspect to interpret the buffer as an SPI buffer and presents its
contents in a labelled format.

 SPI-NUM directs Inspect to interpret the buffer as an SPI buffer and presents
its contents in a numeric format.

data-location

specifies the memory location starting at which data is to be formatted as data-
type.

(expression)

specifies a memory address. If the expression evaluates to a 16-bit value, this
value is interpreted as a 16-bit word address. If the expression evaluates to a
32-bit value, this value is interpreted as an extended address.

SG

specifies that the 16-bit expression is interpreted as a System Global
address. SG is not allowed with 32-bit addresses.

identifier

specifies a variable defined by the program. The form of identifier
allowed is any legal variable specification, such as i, struct.r1.r2, or a[30].

uses the indirect address as a system global byte address.

spi-token [AS data-type] [FOR for-count]

directs Inspect to display an individual token or list within an SPI buffer.

The AS clause causes Inspect to display a data value using the attributes of a data
type defined in the current program. The parameter data-type is a data location
identifying a data-type definition or a variable. If data-type refers to a variable,
Inspect uses the type attributes of that variable.

The FOR clause directs Inspect to display a given number of occurrences of the
token or list within its containing SPI buffer.
Inspect Manual—429164-006
6-49

High-Level Inspect Commands Displaying SPI Data
spi-token

specifies the location of the SPI token or list. The syntax for spi-token is:

data-location : token-spec [TYPE spi-type]
 [POSITION token-spec [, token-spec]...]

The data-location parameter specifies the location of the SPI buffer containing the
token or list, and the TYPE clause specifies how you want Inspect to interpret and
format the buffer.

For the SPI types that Inspect supports refer to the spi-type discussion above.

The token-spec parameter identifies the token or list for Inspect to display. If you
specify a list token, Inspect displays all tokens in the list.

The POSITION clause specifies the position of the token in the buffer. When used
with the POSITION clause, token-spec provides a path to a token that is within
one or more lists.

token-spec

identifies the token or list for Inspect to display. If you specify a list token,
Inspect displays all tokens in the list. The syntax for token-spec is:

token-code [: token-index] [SSID ssid-string]

The token-code parameter is an integer that specifies the token type and token
number of the token to display; it can be a 32bit value or a data location
containing a 32-bit value. Inspect passes this value to the SSGET or EMSGET
procedure.

For more information about command and response message buffers, see the
DSM/SCM Event Management Programming Manual.

The token-index parameter is an integer that specifies a specific
occurrence of the token indicated by token-code; it can be a 16-bit value or a
data location containing a 16bit value. Inspect passes token-index to an
SSGET or EMSGET procedure.

Here are the possible values for token-index:

 Inspect displays the next occurrence of the token after the current position
in the buffer. The current position marks the last token selected from the
buffer by the application with an SSGET procedure. For more information
about the current position, see the DSM/SCM Event Management
Programming Manual.

 Inspect displays the nth occurrence of the token.

If you do not specify a token-index, Inspect displays all occurrences of the
token.
Inspect Manual—429164-006
6-50

High-Level Inspect Commands General Usage Considerations
SSID ssid-string

specifies a subsystem ID for the token or list. The said-string parameter is
a string enclosed by quotation marks. It has one of these forms:

"owner.subsys-name.version"
"owner.subsys-number.version"

owner is an eight-character ASCII string that identifies the name of the
company or organization providing the definition for the token. Owner
corresponds to the Z-OWNER field in the subsystem ID structure.

For NonStop subsystems, owner is “TANDEM.” Users select a name of their
own when defining their tokens.

subsys-name specifies the subsystem name for the token. Examples are
FUP, PUP, and TMF.

The subsys-number parameter is a signed integer value that identifies the
subsystem. subsys-number corresponds to the Z-NUMBER field in the
subsystem ID structure.

The subsystem owner provides a subsystem number for each subsystem. For
Tandem subsystems, the subsystem numbers are in the ZSPIDEF.ZSPIDDL
file.

version is the software release version of the subsystem. Examples are C00
and C10. version corresponds to the Z-VERSION field in the subsystem ID
structure.

Note that owner, subsystem-name, and version are case-sensitive and
must be entered as they are defined.

IN base [base] ...

directs Inspect to display each item in one or more bases. For more information,
see Using the IN Clause on page 6-70.

General Usage Considerations

 Displaying Items in a Running Program

If you enter a DISPLAY command while the current program is running, the data
values that Inspect displays might not be valid.

 Displaying SPI Data

To ensure that displaying SPI data doesn't affect the position pointers for an SPI
buffer, Inspect does not extract information from the actual SPI buffer. Instead, it
makes a private copy of the SPI buffer and extracts information from this copy.
Inspect Manual—429164-006
6-51

High-Level Inspect Commands Usage Considerations When Displaying an SPI
Buffer
 SPI Types in the TYPE Clause

If you specify SPI or SPI-NUM as the SPI type, Inspect uses the SSGET system
procedure to extract information from the SPI command or response buffer. If you
specify EMS or EMS-NUM as the SPI type, Inspect uses the EMSGET system
procedure to extract information from the event-message buffer. If the buffer is a
command or response buffer, Inspect uses SSGET, even if you specify EMS or
EMS-NUM as the SPI type.

For more information about command and response message buffers, see the
DSM/SCM Event Management Programming Manual. For more information about
event-message buffers, see the Event Management Service (EMS) Analyzer
Manual (formerly the Event Management System (EMS) Manual).

Usage Considerations When Displaying an SPI Buffer

 Inspect displays each token in the buffer sequentially; header tokens appear first
and the remaining tokens next. The maximum buffer length is shown after the last
header token as:

where max-bytes is the maximum number of bytes in the buffer. This value is
taken from the Z-BUFLEN field in the buffer.

 When you specify EMSNUM or SPINUM as the SPI type, Inspect can display a
buffer up to 4K bytes in length. When you specify EMS or SPI as the SPI type,
Inspect can display a buffer up to 64K bytes in length. If you attempt to display a
buffer that is too large, Inspect displays this error message:

 Inspect displays the subsystem ID for each token and the data-length word for
each variable-length token. Inspect also marks two specific tokens in the buffer
with these special characters:

 Data lists, error lists, and generic lists are marked at the beginning and end of each
list, as shown in Table 6-2 on page 6-53. Tokens within a list are indented two
spaces.

BUFFER LENGTH = max-bytes

** Inspect error 189 ** SPI buffer too large

* Marks the token at the current position in the buffer. This token was the last token
that your program selected by calling an SSGET or EMSGET procedure.

- Marks the token at the last position in the buffer. This token was the last token
added to the buffer with an SSPUT procedure.
Inspect Manual—429164-006
6-52

High-Level Inspect Commands Usage Considerations When Displaying an SPI
Token or List
Usage Considerations When Displaying an SPI Token or List

 Inspect always points to the start of the SPI buffer, unless you specify zero for
token-index or the POSITION clause. If you access the SPI buffer with Inspect,
the current position in the SPI buffer does not change. If you specify zero for
token-index, Inspect searches for the requested token beginning at the current
position in the buffer.

The current position points to the last token selected by an SSGET procedure in a
program and is marked by an asterisk when you display the entire buffer. For more
information about the current position, see the DSM/SCM Event Management
Programming Manual.

 You must specify the subsystem ID for a token whenever the subsystem ID for the
token differs from the current subsystem ID. The current subsystem ID is the
subsystem ID of the SPI buffer, unless you use the POSITION clause to select a
token within a list; in this case, the current subsystem ID is that of the list. For more
information about the subsystem ID, see the DSM/SCM Event Management
Programming Manual.

 If you use the AS clause with a variable-length token, you must ensure that the
template specified for data-type matches the actual data.

 You can use the symbolic names of tokens as defined by any subsystem (including
SPI or EMS tokens) to display data from an SPI buffer, provided that the names
have been defined as symbols to the compiler. To use tokens from a specific
subsystem, you must compile the source file containing the tokens with the ?
SYMBOLS compiler directive. For example, a COBOL85 application that uses FUP
definitions must include the ZFUPCOB file during compilation.

 To display a token within a list that is within a second list, use the POSITION
clause with two token-spec parameters. The first token-spec parameter
positions within the first list, and the second token-spec parameter positions
within the second list.

Table 6-2. SPI Token Formatting by the DISPLAY Command (page 1 of 2)

Token Type Formatting Description

BOOLEAN F if zero (0);T if a value other than zero

BYTE, UNIT Unsigned number

CHAR Enclosed in quotation marks if displayable; otherwise, as an unsigned
numeric byte value preceded by a question mark

CRTPID [\system.][$process-name]cpu,pin

DEVICE [\system.]$device

ENUM Signed integer

ERROR Subsystem ID (as described under SSID), followed by a signed integer
for the error number

FLT, FLT2 Signed floating-point
Inspect Manual—429164-006
6-53

High-Level Inspect Commands Examples that Display SPI Buffers
Examples that Display SPI Buffers

The symbolic names in the following examples are in DDL format, which uses hyphens
as separators. If your application is written in TAL, Inspect displays symbolic names
using the circumflex symbol (^) rather than the hyphens.

1. The following command displays an SPI response buffer named SPI-BUFFER.
Inspect uses the SSGET procedure to extract the information from the buffer. The

FNAME [\system.]

FNAME32 \system.$volume.subvolume.filename

INT, INT2, INT4 Signed integer

LIST The word LIST for a generic list, the words ERROR LIST for an error list,
or the words DATA LIST for a data list

MAP Enclosed in quotation marks if displayable; otherwise, as an unsigned
numeric byte value preceded by a question mark

MARK The word MARK or the words SUBJECT MARK for the ZEMS-
SUBJECT-MARK token

SSCTL The words END LIST

SSID owner.ssname.version-text if the SSNAME record for the subsystem ID
is available, or owner.ssnumber.version-number converted using the
SSIDTOTEXT procedure

SSTBL The word TABLE

STRUCT Enclosed in quotation marks if displayable; otherwise, as an unsigned
numeric byte value preceded by a question mark

SUBVOL [system.]$volume.subvolume.

TIMESTAMP YYYY-MM-DD HH:MM:SS.mmm.nnn timestamp converted from GMT to
local civil time (LCT), or, if the timestamp is less than year one before the
conversion to LCT, as the elapsed time in microseconds

TOKENCODE 32-bit signed number for the token code, followed by the token data type,
token length, and token number in parentheses

TRANSID TMF transaction ID converted using the TRANSIDTOTEXT procedure

USERNAME group.user group-id, user-id

Table 6-2. SPI Token Formatting by the DISPLAY Command (page 2 of 2)

Token Type Formatting Description
Inspect Manual—429164-006
6-54

High-Level Inspect Commands Examples that Display SPI Buffers
asterisk marks the token at the current position in the buffer. In this example, a
parameter was missing from the command buffer:

2. This command displays an event-message buffer named EVENT-BUFFER.
Inspect uses the EMSGET procedure to extract information from the buffer:

-OBJ-DISPLAY spi-buffer TYPE SPI-NUM
ZSPI-TKN-HDRTYPE = 0 (ZSPI-VAL-CMDDHR)
ZSPI-TKN-CHECKSUM = 0
ZSPI-TKN-COMMAND = 2
ZSPI-TKN-LASTERR = -8 (ZSPI-TKN-MISTKN) - Token not found
ZSPI-TKN-LASTERRCODE = 486866497 (29,4,-506)
ZSPI-TKN-MAX-FIELD-VERSION = 0
ZSPI-TKN-MAX-RESP = 0
ZSPI-TKN-OBJECT-TYPE = 13
ZSPI-TKN-SERVER-VERSION = 17152 C10
ZSPI-TKN-SSID = TANDEM.DNS.C10
ZSPI-TKN-USEDLEN = 128
BUFFER LENGTH = 4196

TANDEM.DNS.C10 (11,2,7) = 26
TANDEM.DNS.C10 *(11,2,0) = -33
TANDEM.DNS.C10 (37,0,-252) - ERROR LIST
TANDEM.DNS.C10 (28,14,-251) = TANDEM.DNS.C10 33
TANDEM.DNS.C10 (7,255,-250) - LENGTH 3 = ?1 ?0 ?1
TANDEM.DNS.C10 (11,2,78) = 2
TANDEM.DNS.C10 (2,4,77) = 5
TANDEM.DNS.C10 (39,0,-254) - END LIST

-OBJ-DISPLAY event-buffer TYPE EMS-NUM
ZSPI-TKN-HDRTYPE = 1 (ZSPI-VAL-EVTHDR)
ZSPI-TKN-CHECKSUM = 0
ZSPI-TKN-LASTERR = 0 (ZSPI-ERR-OK) - Operation successful
ZSPI-TKN-LASTERRCODE = 0 (0,0,0)
ZSPI-TKN-MAX-FIELD-VERSION = 0
ZSPI-TKN-SSID = TANDEM.MSGSYS.C00
ZSPI-TKN-USEDLEN = 128
ZEMS-TKN-CONSOLE-PRINT = 0 (FALSE)
ZEMS-TKN-CPU = 10
ZEMS-TKN-CRTPID = \COMM.10,0
ZEMS-TKN-EMPHASIS = 0 (FALSE)
ZEMS-TKN-EVENTNUMBER = 104
ZEMS-TKN-GENTIME = 1987-09-04 17:48:13.993.437
ZEMS-TKN-LOGTIME = 1987-09-04 17:48:16.447.002
ZEMS-TKN-PIN = 0ZEMS-TKN-SUPPRESS-DISPLAY = 0 (FALSE)
ZEMS-TKN-SYSTEM = 116 \COMM
ZEMS-TKN-USERID = 255,255 SYSTEM.MANAGERBUFFER LENGTH = 128

TANDEM.MSGSYS.0 *(31,0,-523) - SUBJECT MARK
TANDEM.MSGSYS.0 (9,2,2) = 10
TANDEM.MSGSYS.0 (9,2,4) = 15
TANDEM.GUARDLIB.0 (12,2,26) = 77 0
TANDEM.GUARDLIB.0 -(9,2,25) = 3
Inspect Manual—429164-006
6-55

High-Level Inspect Commands Examples that Display SPI Tokens and Lists
3. This command displays a user-defined command and response buffer named SPI-
BUFFER:

Examples that Display SPI Tokens and Lists

The symbolic names in the following examples are in DDL format, which uses hyphens
as separators. If your application is written in TAL, Inspect displays symbolic names
using the circumflex symbol (^) rather than the hyphens.

1. This command displays a timestamp token from SPI-BUFFER:

2. This command displays all occurrences (the default) of a token from SPIBUFFER:

3. This command displays the default subsystem ID for SPIBUFFER:

-OBJ-DISPLAY spi-buffer TYPE SPI-NUM
ZSPI-TKN-HDRTYPE = 0 (ZSPI-VAL-CMDHDR)
ZSPI-TKN-CHECKSUM = 0
ZSPI-TKN-COMMAND = 2
ZSPI-TKN-LASTERR = 0 (ZSPI-ERR-OK) - Operation successful
ZSPI-TKN-LASTERRCODE = 486866497 (29,4,-506)
ZSPI-TKN-MAX-FIELD-VERSION = 0
ZSPI-TKN-MAX-RESP = 0
ZSPI-TKN-OBJECT-TYPE = 10
ZSPI-TKN-SERVER-VERSION = 0
ZSPI-TKN-SSID = CUST.600.0
ZSPI-TKN-USEDLEN = 250
BUFFER LENGTH = 2048

CUST.600.0 (2,2,6020) = 42
UST.600.0 (20,24,6010) = $DSK02.VOLSPI.COMMUP
CUST.600.0 (7,255,6055) - LENGTH 4 = ?0 ?1 ?128 ?255
CUST.600.0 (7,255,6055) - LENGTH 12 = ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0
?0
CUST.600.0 (10,2,6005) = T
CUST.600.0 (10,2,6005) =
CUST.600.0 (28,14,6095) = CUST.600.0 -1
CUST.600,0 (23,8,6060) = 123 milliseconds 456 microseconds
CUST.600.0 *(23,8,6060) = 1988-03-08 21:00:00.000.000
CUST.600.0 (37,0,6253) - LIST
CUST.600.0 (22,8,6090) = \SYS02.$CCEG 11,106
CUST.600.0 (21,16,6085) = $CLIFF
CUST.600.0 (2,6,6075) = 10 5 27
CUST.600.0 (39,0,6254) - END LIST
CUST.600.0 -(1,255,6040) - LENGTH 14 = "Cust Computers"

-OBJ-DISPLAY spi-buffer:zems-tkn-gentime
TANDEM.PUP.C10 (23,8,-514) = 1988-04-15 10:16:28.092.163

-OBJ-DISPLAY spi-buffer:zfup-tkn-source-file
TANDEM.FUP.C00 (25,32,2)[1] = \SYS2.$DSK2.SAL88.TAB1
TANDEM.FUP.C00 (25,32,2)[2] = \SYS2.$DSK2.SAL88.TAB2
TANDEM.FUP.C00 (25,32,2)[3] = \SYS2.$DSK2.SAL88.TAB3
TANDEM.FUP.C00 (25,32,2)[4] = \SYS2.$DSK2.SAL88.TAB4

-OBJ-DISPLAY spi-buffer:zspi-tkn-ssid
TANDEM.TMF.C00 (24,12,-505) = TANDEM.TMF.C00
Inspect Manual—429164-006
6-56

High-Level Inspect Commands Examples that Display SPI Tokens and Lists
4. This command displays a token within an error list that is also within a second error
list in SPI-BUFFER. The first POSITION parameter positions Inspect within the first
error list, and the second POSITION parameter positions Inspect within the second
error list. The token ZSPI-TKN-ERROR shows file-system errorþ11 (file is not in
the directory):

5. This command displays a data list from SPI-BUFFER. The display includes all
tokens within the list; each token is indented two spaces:

6. This command displays a user-defined token from SPIBUFFER using a data type
named MESSAGE-DEF:

7. This command displays a user-defined token within an error list from SPI-BUFFER.
The subsystem ID of the token is different from the subsystem ID of the error list,
and the subsystem ID of the error list is different from the default subsystem ID for
the buffer.

The POSITION clause directs Inspect to find the token within the error list, and the
SSID clause specifies the subsystem ID for the token and error list:

-OBJ-DISPLAY spi-buffer:zspi-tkn-error &
POSITION zspi-tkn-errlist, zspi-tkn-errlist
TANDEM.FUP.C10 (28,14,-251) = TANDEM.68.C10 11

-OBJ-DISPLAY spi-buffer:zspi-tkn-datalist
TANDEM.FUP.C00 (37,0,-253) - DATA LIST
TANDEM.FUP.C00 (25,32,2) = \SYS1.$DSK1.PAY.ACCTS
TANDEM.FUP.C00 (11,2,0) = 0
TANDEM.FUP.C00 (39,0,-254) - END LIST

-OBJ-DISPLAY spi-buffer:cust-abend-message AS message-def
MESSAGE-DEF =
 MESSAGE-LENGTH = 30
 MESSAGE-TEXT = "$BM01: ERROR - PROCESS ABENDED"

-OBJ-DISPLAY spi-buffer:cust2-err-ipc-error SSID "CUST2.600.0" &
POSITION cust1-tkn-errlist SSID "CUST1.500.0"
CUST2.600.0 (28,14,6251) = CUST2.600.0 200
Inspect Manual—429164-006
6-57

High-Level Inspect Commands Displaying Strings, Expressions, and Constant
Values
Displaying Strings, Expressions, and Constant
Values

You can use the DISPLAY command to format and display strings, expressions (after
Inspect evaluates them), and constant values. You can use the FORMAT, IN, and PIC
clauses to format any of these items. You can also use the TYPE clause to format
constant values.

item [, item]...

specifies the list of items to display. Inspect determines the default display format
of an item based on the type of value that the item represents.

string

specifies a string of characters to display. This string is a group of zero or more
characters enclosed in either quotes or apostrophes. To include a quote in a quote-
delimited string, use a pair of quotes. Likewise, to include an apostrophe in an
apostrophe-delimited string, use a pair of apostrophes.

(expression)

specifies an expression to evaluate and display. The expression must use the
syntax appropriate for the current source language. Note that this is not true for
“@” used in an expression in COBOL85. For more information, see Section 10,
Using Inspect With COBOL and SCREEN COBOL.

DISPLAY item [, item]... [formatting-clause]

item: one of

 string
 (expression)
 VALUE value-list [TYPE display-type]

value-list: one of
 integer
 integer , integer
 integer , integer , integer , integer

formatting-clause: one of
 IN base [base]...
 { FORMAT | FMT } format-list
 PIC mask-string [, mask-string]...
Inspect Manual—429164-006
6-58

High-Level Inspect Commands Usage Guidelines
VALUE value-list [TYPE display-type]

specifies a list of one, two, or four integer values to display. The TYPE clause causes
Inspect to display the values using the attributes of a specific display type. For more
information about the TYPE clause, see formatting-clause

specifies the format Inspect should use when displaying each item. Inspect
provides three format clauses: FORMAT, IN, and PIC. For more information, see
Using the FORMAT Clause on page 6-67, Using the IN Clause on page 6-70, and
Using the PIC Clause on page 6-73.

Usage Guidelines

 Displaying Strings

If you are logging your Inspect session to a disk file, you might want to display a
character string when the program reaches a certain point in its execution. Here is
an example of using a DISPLAY command to report only a character string:

 Using TYPE with VALUE

When you use the VALUE clause with the TYPE clause, you must ensure that the
size of the values you provide matches the size of the display type you specify.

 Displaying Types

Display types CRTPID, DEVICE, FILENAME, FILENAME32, PROCESS HANDLE,
SSID, and USERNAME may not be used with VALUE.

Examples

1. This example shows converting two integer values into an INT(32) value.

2. This example illustrates converting four integer values into a quad word value.

3. This example illustrates using the VALUE clause with the TYPE clause for ENV.

-PRG-BREAK stage-two THEN "DISPLAY 'Finished stage 1';RESUME"

--DISPLAY VALUE %10,0
524288

--DISPLAY VALUE 748,50977,49935,40960
 210762230400000000.

--DISPLAY VALUE %4207 TYPE ENV
(RP=7,CCG,T,LS) UL.7
Inspect Manual—429164-006
6-59

High-Level Inspect Commands Examples
4. This shows a legal and illegal system value. If the system number is not legal or if
it does not match a system number on the current network, Inspect displays

5. This example illustrates using the VALUE clause with the TYPE clause for
TIMESTAMP48.

6. This example illustrates using the VALUE clause with the TYPE clause for
TIMESTAMP64.

7. This example illustrates using the VALUE clause with the TYPE clause for
TOSVERSION.

8. This example illustrates using the VALUE clause with the TYPE clause for
USERID.

9. This shows using TYPE LOCATION with and without the space ID. If you omit the
space ID, Inspect uses the current space. You must be debugging a program to
use TYPE LOCATION.

10. This example illustrates the displaying of a string constant and an expression.

11. This example illustrates displaying a string.

--DISPLAY VALUE 42 TYPE SYSTEM
\SYS
--DISPLAY VALUE 12345 TYPE SYSTEM
\??

--DISPLAY VALUE 0,8,62563,12864 TYPE TIMESTAMP48
1987-03-09 09:00:00.00

--DISPLAY VALUE 748,50977,49935,40960 TYPE TIMESTAMP64
1966-09-08 21:00:00.000.000

--DISPLAY VALUE 19978 TYPE TOSVERSION
N10

--DISPLAY VALUE 65535 TYPE USERID
255,255 SUPER.SUPER

-PROGRAM-DISPLAY VALUE 188 TYPE LOCATION
#CCL.1, #CCL.#700(\BONDS.$DEBUG.CCLSRC.UMCCL), #CCL + %0I
-PROGRAM-DISPLAY VALUE 188 TYPE LOCATION UC.1
#SHOW^TERM.1, #SHOW^TERM.#4919(\BONDS.$DEBUG.CCLSRC.TMCCLSHW), #SHOW^TERM +
%0I

-PROGRAM-DISPLAY ("A") in OCTAL
%101
-PROGRAM-DISPLAY (%777) in BINARY
0000000111111111

-PROGRAM-DISPLAY "Hello World"
"Hello World"
Inspect Manual—429164-006
6-60

High-Level Inspect Commands Using the AS Clause
12. This is an example of using an apostrophe in an apostrophe-delimited string.

13. This example shows the use of displaying a string with the IN clause.

14. The next example shows the use of displaying a simple expression.

15. This example shows the use of expressions with the IN clause.

16. This example displays the address of a variable

Using the AS Clause

The AS clause directs Inspect to display an item using the attributes of a data type
defined in the current program.

item

specifies the item you want to display. You can specify a data address or an SPI
token as the item.

-PROGRAM-DISPLAY 'T''s value is ', T PLAIN
"T's value is ", 53

-PROGRAM-DISPLAY "Hello" IN OCTAL
%110 %145 %154 %154 %157

-PROGRAM-DISPLAY (132 + 98)
230

-PROGRAM-DISPLAY (231) IN BINARY
0000000011100111

-PROGRAM-DISPLAY (@two_var)
6

Note. The AS clause is invalid for PATHWAY requester programs.

DISPLAY item AS data-type

item: one of

 data-location
 spi-token

data-location: one of

 (expression) [SG]
 identifier
Inspect Manual—429164-006
6-61

High-Level Inspect Commands Using the AS Clause
AS data-type

directs Inspect to display the item using the attributes of the given data type. The
data-type parameter is a data type identifier or a variable. If data-type refers
to a variable, Inspect uses the type attributes of that variable.

data-location

specifies the memory location starting at which data is to be formatted as data-
type.

(expression)

specifies a memory address. If the expression evaluates to a 16-bit value, this
value is interpreted as a 16-bit word address. If the expression evaluates to a
32-bit value, this value is interpreted as an extended address.

SG

specifies that the 16-bit expression is interpreted as a System Global address.
SG is not allowed with 32-bit addresses.

identifier

specifies a variable defined by the program. The form of identifier allowed is
any legal variable specification, such as i, struct.r1.r2, or a[30].

Examples

This TAL source code was used to generate the examples for the AS clause of the
DISPLAY command.

?symbols

STRUCT S^Def(*);
 BEGIN
 INT one_field;
 INT two_field;
 END;

PROC M MAIN;
BEGIN
 LITERAL STRING_BLEN = 11;
 STRUCT one_var(S^Def);
 STRING two_var[0:STRING_BLEN-1];
 INT three_var[0:7] := [12345, 5, 123, 2, 901, 89, 567, 0];
 STRING .string_ptr;
 INT .int_ptr;
 INT(32) address_ext;
 INT address_word;
 INT .EXT extended_array[0:1];
Inspect Manual—429164-006
6-62

High-Level Inspect Commands Using the AS Clause
1. This example uses the AS clause with a structure variable.

2. This example uses the AS clause with a structure template.

3. This example uses the AS clause when a 16-bit word address is stored in an
integer variable. An expression that evaluates to a 16-bit value is interpreted as a
16-bit word address.

4. This example uses the AS clause when an extended address is stored in an
INT(32) variable. An expression that evaluates to a 32-bit value is interpreted as an
extended address.

 one_var.one_field := 53;
 one_var.two_field := 102;
 two_var ':=' "Hello World";
 @string_ptr := @two_var;
 @int_ptr := @one_var;
 address_ext := $XADR(one_var);
 address_word := @one_var;
 extended_array ':=' [17, 18];
END;

-PROGRAM-DISPLAY int_ptr AS one_var
ONE_VAR =
 ONE_FIELD = 53
 TWO_FIELD = 102

-PROGRAM-DISPLAY int_ptr AS s^def
S^DEF =
 ONE_FIELD = 53
 TWO_FIELD = 102

-PROGRAM-DISPLAY (address_word) AS s^def
S^DEF =
 ONE_FIELD = 53
 TWO_FIELD = 102

-PROGRAM-DISPLAY (address_ext) AS s^def
S^DEF =
 ONE_FIELD = 53
 TWO_FIELD = 102
Inspect Manual—429164-006
6-63

High-Level Inspect Commands Using the FOR Clause
5. This example uses the AS clause when the data address is already known.

6. This example uses the AS clause in conjunction with the IN clause to display the
data in ASCII and in an alternate base.

7. Since a 16-bit expression is interpreted as a 16-bit word address, you must divide
by 2 when the address is a 16-bit byte address.

Using the FOR Clause

The FOR clause directs Inspect to display multiple items of program data or program
code. When used to display an SPI token, the FOR clause directs Inspect to display a
given number of occurrences of the token within its containing SPI buffer.

-PROGRAM-DISPLAY address_word
ADDRESS_WORD = 1
-PROGRAM-DISPLAY address_ext
ADDRESS_EXT = 2
-PROGRAM-DISPLAY (@extended_array)
524294
-PROGRAM-DISPLAY (1) AS s^def
S^DEF =
 ONE_FIELD = 53
 TWO_FIELD = 102
-PROGRAM-DISPLAY (2D) AS s^def
S^DEF =
 ONE_FIELD = 53
 TWO_FIELD = 102
-PROGRAM-DISPLAY (524294) AS s^def
S^DEF =
 ONE_FIELD = 17
 TWO_FIELD = 18

-PROGRAM-DISPLAY (address_word) AS s^def IN ASCII
S^DEF =
 ONE_FIELD = ?0 "5"
 TWO_FIELD = ?0 "f"
-PROGRAM-DISPLAY (address_word) AS s^def IN OCTAL
S^DEF =
 ONE_FIELD = %65
 TWO_FIELD = %146

-PROGRAM-DISPLAY (@string_ptr[6]/2) AS s^def IN ASCII
S^DEF =
 ONE_FIELD = "Wo"
 TWO_FIELD = "rl"

Note. The FOR clause is invalid for PATHWAY requester programs.
Inspect Manual—429164-006
6-64

High-Level Inspect Commands Usage Considerations
for-spec

defines the format of the groups as a specific number of units. To specify the
number, you can use an integer or a data location that contains an integer value.
When specifying the units, you must use one of these:

BYTE[S] WORD[S] DOUBLE[S] QUAD[S]

If you do not specify a unit, Inspect uses the default unit attributes of the item being
displayed.

for-count

specifies how many units or occurrences of an SPI token to display. To specify the
count, you can use an expression or a data location that contains an integer value.

Usage Considerations

 Using a Data Location as the count Parameter

The data location you use to specify the count parameter must evaluate to a
nonnegative integer value; otherwise, Inspect displays this error message:

This example shows how the FOR clause with a variable used for the count affects
the DISPLAY command output.

 { display-data FOR for-spec }
DISPLAY { display-code FOR for-spec }
 { spi-token FOR for-count }

for-spec:

 for-count [BYTE[S] | WORD[S] | DOUBLE[S] | QUAD[S]]

for-count: one of

 expression
 data-location

** Inspect error 183 ** Invalid length specified for DISPLAY

-OTEST1-DISPLAY string_ptr
STRING_PTR = "H"
-OTEST1-DISPLAY string_ptr FOR string_blen
STRING_PTR = "Hello World"
Inspect Manual—429164-006
6-65

High-Level Inspect Commands Examples
 Using FOR with FORMAT and PIC

When you use the FOR clause with the FORMAT or PIC clauses, the FOR clause
determines how much data to display and the FORMAT or PIC clause determines
how to format the data.

Examples

The FOR clause examples are based on this TAL source code.

1. This example displays struct^x, i^arr, str, and str^blen without any special
formatting.

2. This example displays the first four doublewords of struct^x.

3. This example displays the first eight words of i^arr in octal (note that % appears
only if the value exceeds eight).

 #1 ?SYMBOLS,NOLIST
 #2
 #3 STRUCT struct^def (*);
 #4 BEGIN
 #5 INT i;
 #6 STRING s[0:29];
 #7 END;
 #8
 #9 STRUCT struct^x (struct^def);
 #10
 #11 PROC example MAIN;
 #12 BEGIN
 #13 STRING .ptr;
 #14 INT str^blen;
 #15 STRING .str[0:25];
 #16 INT .i^arr[0:10];
 #17
 #18 struct^x.i ':=' 16 * [0];
 #19 struct^x.s ':=' "This is example number one" -> @ptr;
 #20 struct^x.i := @ptr '-' @struct^x.s;
 #21
 #22 i^arr ':=' [0, 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046
];
 #23 str ':=' "Example text number two" -> @ptr;
 #24 str^blen := @ptr - @str;
 #25 END;

-PROGRAM-DISPLAY struct^x
STRUCT^X =
 I = 26
 S[0] = "This is example number one" ?0 ?0 ?0 ?0
-PROGRAM-DISPLAY i^arr
I^ARR[0] = 0 2 6 14 30 62 126 254 510 1022 2046
-PROGRAM-DISPLAY str,str^blen
STR[0] = "Example text number two" ?0 ?0 ?0, STR^BLEN = 23

-PROGRAM-DISPLAY struct^x FOR 4 DOUBLES
STRUCT^X = 1725544 1769152617 1931502968 1634562156

-PROGRAM-DISPLAY i^arr FOR 2 QUADS IN OCTAL
I^ARR[0] = 0 2 6 %16 %36 %76 %176 %376
Inspect Manual—429164-006
6-66

High-Level Inspect Commands Using the FORMAT Clause
4. This example displays eight bytes of str in hexadecimal.

5. This example displays the first 33 (value of str^blen) bytes of str.

6. This example displays the first 10 words of struct^x in ASCII (note that “-” is the
ASCII equivalent of 45, which is the value of struct^x.i).

7. This example displays the first 45 (value of sstruct^x.i) bytes of struct^x.

Using the FORMAT Clause

The FORMAT clause directs Inspect to format a list of items using the operating
system formatter.

item [, item]

specifies the list of items you want to display.

-PROGRAM-DISPLAY str FOR 8 IN HEX
STR[0] = %H45 %H78 %H61 %H6D %H70 %H6C %H65 %H20

-PROGRAM-DISPLAY str FOR str^blen
STR[0] = "Example text number two"

-PROGRAM-DISPLAY struct^x FOR 10 WORDS IN ASCII
STRUCT^X = ?0 ?26 "This is example nu"

-PROGRAM-DISPLAY struct^x FOR struct^x.i BYTES
STRUCT^X = ?0 ?26 "This is example number o"

DISPLAY item [, item]... { FORMAT | FMT } format-list

item: one of

 display-data [WHOLE] [PLAIN] [FOR group-spec]
 display-code [WHOLE] [PLAIN] [FOR group-spec]
 REGISTER register-item [TYPE display-type]
 spi-buffer
 spi-token [AS data-type] [FOR count]
 string
 (expression)
 VALUE value-list [TYPE display-type]

format-list:

 an edit-descriptor list for the operating system formatter
Inspect Manual—429164-006
6-67

High-Level Inspect Commands Examples
{ FORMAT | FMT } format-list

directs Inspect to format items using the operating system formatter. format-list is a
list of edit descriptors (with optional modifiers, decorations, and so on), separated
by commas. The edit descriptors available in HP FORTRAN are also available in
Inspect.

The operating system formatter provides several additional descriptors. For more
information, see the Guardian Programmer’s Guide.

Usage Considerations

 Size Limits on DISPLAY FORMAT Formatting

Displays using the FORMAT clause cannot exceed one screen (24 lines) or 3168
bytes of data. Exceeding these limits causes Inspect to report an error instead of
formatting and displaying the data.

 Using DISPLAY FORMAT in Command Lists

If you use DISPLAY FORMAT in a command list, it must be the last command in
the list because Inspect interprets all text following the FORMAT (or FMT) keyword
as the format list.

 Using FORMAT with AS

When you use the FORMAT clause with the AS clause, the AS clause determines
how much data to display and the FORMAT clause determines how to format the
data.

 Using FORMAT with FOR

When you use the FORMAT clause with the FOR clause, the FOR clause
determines how much data to display and the FORMAT clause determines how to
format the data.

 Using FORMAT with TYPE

You cannot use the FORMAT clause with the TYPE clause. If the TYPE clause
precedes the FORMAT clause, the TYPE clause is ignored. If the TYPE clause
follows the FORMAT clause, it is assumed to be part of the FORMAT clause text
and will most likely yield an invalid FORMAT clause.

Examples

The variables used in the DISPLAY commands were declared as shown in this
FORTRAN source program fragment:

 INTEGER i(8)
 REAL x(8)
 DOUBLE PRECISION d(8)
 LOGICAL ERROR
 CHARACTER*40 stringvar
Inspect Manual—429164-006
6-68

High-Level Inspect Commands Examples
1. In this example, the integer array I is displayed. The second instance uses the
FORMAT clause to display I as eight seven-digit integers using the I edit
descriptor.

2. In this example, the real array X is displayed. The second instance uses the
FORMAT clause with the repeatable edit descriptors E, F and G to display X as
various ten-digit fields.

3. In this example, the real array D is displayed. The second instance uses the
FORMAT clause with the repeatable edit descriptor D. The third instance shows
the effect of the FOR clause when used in combination with the FORMAT clause.

4. This example shows the logical variable ERROR is displayed using the L edit
descriptor.

-FOROBJ-DISPLAY i
I[1] = 1 2 3 4 5 6 7 8
-FOROBJ-DISPLAY i FORMAT (8I7)
 1 2 3 4 5 6 7 8

-FOROBJ-DISPLAY x
X[1] = 3.1416 6.2832 9.424801 12.5664 15.708 18.8496 21.9912
25.1328
-FOROBJ-DISPLAY x FORMAT (E10.4,E10.2E2,F10.4,G10.4)
0.3142E+01 0.63E+01 9.4248 12.57
0.1571E+02 0.19E+02 21.9912 25.13

-FOROBJ-DISPLAY d
D[1] = 9.8696517944335936 39.478607177734376 88.826873779296876
 157.9144287109375 246.74127197265625 355.3074951171875 483.61285400390626
 631.65771484375
-FOROBJ-DISPLAY d FOR 8 FORMAT (D20.12)
 0.986965179443E+01
 0.394786071777E+02
 0.888268737793E+02
 0.157914428711E+03
 0.246741271973E+03
 0.355307495117E+03
 0.483612854004E+03
 0.631657714844E+03
-FOROBJ-DISPLAY d[2] FOR 4 FORMAT (D20.12) -- Start at second element.
 0.394786071777E+02
 0.888268737793E+02
 0.157914428711E+03
 0.246741271973E+03

-FOROBJ-DISPLAY error FORMAT (L3)
 F
Inspect Manual—429164-006
6-69

High-Level Inspect Commands Using the IN Clause
5. This example shows the character string STRINGVAR is displayed. The second
instance uses the A edit descriptor. The third instance adds the characters “e!” to
the output being displayed.

6. This example shows how the FORMAT clause can be used with the VALUE clause
to display an integer and a real value.

Using the IN Clause

The IN clause directs Inspect to display a list of items in one or more bases.

item [, item]...

specifies the list of items you want to display.

IN base [base]...

directs Inspect to display each item in one or more of these eight bases:

 ;BINARY displays items as binary values.

 OCTAL displays items as octal values.

-FOROBJ-DISPLAY stringvar
STRINGVAR = "This is a forty character string variabl"
-FOROBJ-DISPLAY stringvar FORMAT (A40)
This is a forty character string variabl
-FOROBJ-DISPLAY stringvar FORMAT (A40,'e!') -- complete the string!
This is a forty character string variable!

-FOROBJ-DISPLAY VALUE 10 FORMAT (I4)
 10
-FOROBJ-DISPLAY VALUE 25.678 FORMAT (E10.4)
0.2568E+05

DISPLAY item [, item]... IN base [base]...

item: one of

 display-data [WHOLE] [PLAIN] [FOR for-spec]
 display-code [WHOLE] [PLAIN] [FOR for-spec]
 REGISTER register-item [TYPE display-type]
 spi-buffer
 spi-token [AS data-type] [FOR for-count]
 string
 (expression)
 VALUE value-list [TYPE display-type]

base: one of
 BINARY OCT[AL] DEC[IMAL] HEX[ADECIMAL]
 ASCII XASCII GRAPHIC[S]
 ICODE
Inspect Manual—429164-006
6-70

High-Level Inspect Commands Using the IN Clause
 DECIMAL displays items as decimal values.

 HEXADECIMAL displays items as hexadecimal values.

 ASCII displays items as printable 7-bit ASCII characters. Inspect represents
unprintable characters as a question mark followed by the character's numeric
value expressed in the current output radix. For the ASCII base, unprintable
characters are those with a decimal value less than 32 or greater than 126.

 XASCII displays items as printable 8-bit extended ASCII characters. Inspect
represents unprintable characters as a question mark followed by the character's
numeric value expressed in the current output radix. For the XASCII base,
unprintable characters are those with a decimal value less than 32.

 GRAPHICS displays items as characters, including control characters.

 ICODE displays items as TNS instruction mnemonics, so it is invalid for PATHWAY
requester programs.

Usage Considerations

 Displaying Items in Different Bases

Because the IN clause applies to all the items listed, a single DISPLAY command
cannot display one item using one base and another item using another base.
This restriction can surface when you attempt to display code in ICODE and data
in some other base. You can achieve this only indirectly, by displaying both items
in both bases; for example:

 Using IN for Data Conversion

The IN format clause can be used for quick data conversion:

Examples

1. This example illustrates displaying an integer array in octal.

2. This example illustrates displaying the same array in binary.

-PRG-DISPLAY #main.label, #main.array IN ICODE ASCII

-PRG-DISPLAY "A" IN OCTAL
 %101
-PRG-DISPLAY (%167) IN ASCII
?0 "w"

-PROGRAM-DISPLAY three_var IN octal
THREE_VAR[0] = %30071 5 %173 2 %1605 %131 %1067 0

-PROGRAM-DISPLAY three_var IN binary
THREE_VAR[0] = 0011000000111001 0000000000000101 0000000001111011
0000000000000010 0000001110000101 0000000001011001 0000001000110111
0000000000000000
Inspect Manual—429164-006
6-71

High-Level Inspect Commands Using the IN Clause
3. This example illustrates using the IN clause with the FOR clause.

4. This TAL source code was used to generate this example.

5. This example illustrates using the FOR clause with the IN clause to display a code-
location in both ASCII and ICODE.

6. This TAL declarations apply to this example.

7. This example illustrates displaying an element of an array in HEX.

8. This example illustrates displaying a structure member in DECIMAL.

-PROGRAM-DISPLAY string_ptr IN a FOR 5
STRING_PTR = "Hello"

PROC CODELOC;
BEGIN

 INT VARONE = 'P' := "LOCAL P RELATIVE ARRAY"; ! 11 WORDS
 INT VARTWO,I;

END;

-PROGRAM-DISPLAY #CODELOC FOR 4 IN ASCII
CODELOC = "LOCAL P "
-PROGRAM-DISPLAY #CODELOC FOR 4 IN ICODE
CODELOC = STOR G+117,6 LOAD L+101,5 STOR G+040,6 LDB G+040

 INT INTARRAY[0:1] := [%H0,%H1234];

 STRUCT .STRUCTARRAY[-1:1];
 BEGIN

 STRING S[0:1];
 INT IR = S;

 END;

-PROGRAM-DISPLAY INTARRAY[1] IN HEX
INTARRAY[1] = %H1234

-PROGRAM-MODIFY STRUCTARRAY[1].S[0] := 4
-PROGRAM-MODIFY STRUCTARRAY[1].S[0] := 5

-PROGRAM-DISPLAY STRUCTARRAY[1].IR WHOLE IN DECIMAL
STRUCTARRAY[1].IR = 1029
Inspect Manual—429164-006
6-72

High-Level Inspect Commands Using the PIC Clause
Using the PIC Clause

The PIC clause directs Inspect to format a list of items using mask strings and the M
edit descriptor of the operating system formatter.

The M edit descriptor provides a formatting mechanism called “mask formatting,” which
is similar to the COBOL PICTURE clause. For more information, consult the formatter
documentation in the Guardian Programmer’s Guide.

item [, item]...

specifies the list of items you want to display.

PIC mask-str [, mask-str]...

directs Inspect to format items using mask strings and the Edit descriptor of the
operating system formatter. These characters have special functions in mask-
string :

The formatter displays all other characters (including lowercase z and v) exactly as
they appear in mask-string. Mask strings and the M edit descriptor are
described fully in the Guardian Programmer’s Guide.

DISPLAY item [, item]... PIC mask-str [, mask-str]...

item: one of

 display-data [WHOLE] [PLAIN] [FOR for-spec]
 display-code [WHOLE] [PLAIN] [FOR for-spec]
 REGISTER register-item [TYPE display-type]
 spi-buffer
 spi-token [AS data-type] [FOR for-count]
 string
 (expression)
 VALUE value-list [TYPE display-type]

mask-str:

 a mask string for the M edit descriptor

V (uppercase V only)

Z (uppercase Z only)

9

.

Inspect Manual—429164-006
6-73

High-Level Inspect Commands Using the PIC Clause
Usage Considerations

 Size Limits on DISPLAY PIC Formatting

Displays using the PIC clause cannot exceed one screen (24 lines) or 3168 bytes
of data. If these limits have been exceeded, the data is displayed and Inspect
issues this warning message:

 Differences between PIC and PICTURE

Note that there are significant differences between the INSPECT PIC clause and
the COBOL PICTURE clause. The PICTURE clause is part of a data item's
definition, while the PIC clause is simply a template for formatting a data item.
Also, the PIC clause is case-sensitive, excludes constructs such as parenthesized
repetition counts, and does not perform floating replacement.

 Using PIC with AS

When you use the PIC clause with the AS clause, the AS clause determines how
much data to display and the PIC clause determines how to format the data.

 Using PIC with FOR

When you use the PIC clause with the FOR clause, the FOR clause determines
how much data to display and the PIC clause determines how to format the data.

 Using PIC with TYPE

You cannot use the PIC clause with the TYPE clause.

Examples

This source code was used to generate the examples for the PIC clause.

** Inspect warning 87 ** Maximum lines exceeded for format output

?INSPECT, SYMBOLS

 IDENTIFICATION DIVISION.
 PROGRAM-ID. example.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 var1 PIC 99 COMP VALUE 2.
 01 var2 PIC X(8).
 01 arr1 GLOBAL.
 02 sub1-arr PIC XXXXX VALUE "12345".
 02 sub2-arr PIC X VALUE "5".
 02 sub3-arr PIC XXX VALUE "123".
 02 sub4-arr PIC XX VALUE "2".

 PROCEDURE DIVISION.
 exampletoshow.
 MOVE "12.34" TO var2.
 DISPLAY "Hello World".
 STOP RUN.
Inspect Manual—429164-006
6-74

High-Level Inspect Commands Using the TYPE Clause
1. This example displays sub-elements of ARR1 using the PIC clause.

2. This example displays var1 and arr1 with decimal alignment as stated in the PIC
clause.

3. This example displays arr1 with implied decimal alignment as stated in the PIC
clause.

4. This example shows the usage of the PIC clause of the DISPLAY command with
the FOR clause.

Using the TYPE Clause

The TYPE clause directs Inspect to display an item using the attributes of a display
type defined by Inspect.

-PROGRAM-DISPLAY arr1 PIC "ZZZ999"
 12345
 005
 123
 02

-PROGRAM-DISPLAY var1 PIC "ZZ99.99"
 02.00
-PROGRAM-DISPLAY arr1 PIC "ZZZ.99"
 123.45
 05
 1.23
 2

-PROGRAM-DISPLAY arr1 PIC "ZZZZZV99"
 12345
 05
 123
 2

-PROGRAM-DISPLAY arr1 FOR 1 PIC "ZZ.99"
 01
-PROGRAM-DISPLAY arr1 FOR 5 PIC "ZZ99"
 01
 02
 03
 04
 05

Note. The TYPE clause can also direct Inspect to display an SPI buffer or token. This second
usage of the TYPE clause is described in the subsection “Displaying SPI Data.”
Inspect Manual—429164-006
6-75

High-Level Inspect Commands Using the TYPE Clause
item

specifies the item you want to display. You can specify a data address, a program
register, or a list of values as the item.

TYPE display-type

directs Inspect to display the item using the attributes of the given display type.

CRTPID

interprets the item as an 8-byte process identifier and displays it in this form:

[\system.][$process-name] cpu,pin

For more information on CRTPIDs, see the Guardian Programmer’s Guide.

DEVICE

interprets the item as an 8-byte device name and displays it in this form:

[\system.]$device-name

ENV

interprets the item as a 16-bit environment register and displays it in this form:

(RP=rp,condition-code[,flag]...) space-id

FILENAME

interprets the item as a 24-byte internal file name and displays it in one of
these forms:

[\system.]$volume.subvolume.filename
[\system.]$volume.#number

DISPLAY item [TYPE display-type]

item: one of

 data-location
 REGISTER register-item
 VALUE value-list

display-type: one of

 CRTPID DEVICE ENV FILENAME
 FILENAME32 LOCATION PROCESS HANDLE SSID
 SYSTEM TIMESTAMP TIMESTAMP48 TOSVERSION
 TRANSID USERID USERNAME
Inspect Manual—429164-006
6-76

High-Level Inspect Commands Using the TYPE Clause
The first form represents a permanent file and the second form represents a
temporary file.

FILENAME32

interprets the item as a 32-byte internal file name and displays it in one of
these forms:

\system.$volume.subvolume.filename
\system.$volume.#number

The first form represents a permanent file and the second form represents a
temporary file.

LOCATION

interprets the item as a 1word code address and displays it using all location
formats: STATEMENTS OFFSET, LINES FILE ALL OFFSET, and
INSTRUCTIONS.

You can specify that the address is from a different code segment by entering a
segment identifier after the LOCATION display type. The segment identifier
has this form:

{ UC | UL } [.segment-number]

UC indicates that the address is in the user code space; UL indicates that it is
in the user library space. segment-number specifies the particular code
segment within the code space; it must be a number in the range zero through
31. If you omit the segment number, Inspect uses the value zero.

PROCESS HANDLE

interprets the item as an 10-word process identifier and displays it in this form:

\system.[$process-name:]cpu:pin:verification-sequence-
number

For more information on process handles, see the Guardian Programmer’s
Guide. Note that process handle may not work if the current program is a
savefile because it is not active.

SSID

interprets the item as a 12-byte subsystem identifier and displays it in one of
these forms:

owner.subsys-name.version
owner.subsys-number.version

SYSTEM

interprets the item as a 2-byte field and displays it in this form:

\system
Inspect Manual—429164-006
6-77

High-Level Inspect Commands Using the TYPE Clause
TIMESTAMP

interprets the item as a 64-bit timestamp and displays it in one of these forms:

year-month-day hour:min:sec:millisec:microsec
n days, n hours, n min, n sec, n millisec, n microsec

The first form represents a date and time and the second form represents
elapsed time. Inspect uses elapsed time if the year is less than one.

TIMESTAMP48

interprets the item as a 48-bit timestamp and displays it in this form:

year-month-day hour:min:sec:centisec

TOSVERSION

interprets the item as a 2-byte operating system version identifier and displays
it in this form:

Rnn

TRANSID

interprets the item as an 8-byte TMF transaction identifier and displays it in the
form defined by the TRANSIDTOTEXT system procedure.

USERID

interprets the item as a 2byte user identifier and displays it in this form:

group-number,user-number [group-name.user-name]

Inspect includes group-name.user-name if the given user identifier is
defined on the system hosting the Inspect process.

USERNAME

interprets the item as a 16-byte user name and displays it in this form:

group-name.user-name [group-number,user-number]

Inspect includes group-number,user-number if the given user name is
defined on the system hosting the Inspect process.

Usage Considerations

 Using TYPE with Save files

When you use the TYPE clause to display data from a save file, Inspect uses the
local system and current network to expand system names and user names. If the
save file was created on another system or another network, Inspect might report
incorrect or undefined system names and user names.
Inspect Manual—429164-006
6-78

High-Level Inspect Commands Using the TYPE Clause
 Using TYPE with REGISTER

When you use the TYPE clause with the REGISTER clause, you can only specify
display types that represent 2byte values.

 Using TYPE with VALUE

When you use the TYPE clause with the VALUE clause, you must ensure that the
size of the values you provide matches the size of the display type you specify.

Display types CRTPID, DEVICE, FILENAME, FILENAME32, PROCESS HANDLE,
SSID, and USERNAME may not be used with VALUE.

 Using TYPE with FOR

When you use the TYPE clause with the FOR clause, the display type in the TYPE
clause overrides the unit in the FOR clause.

 Using TYPE with FORMAT and PIC

You cannot use the TYPE clause with the FORMAT or PIC clauses.

 Using TYPE with IN

When you use the TYPE clause with the IN clause, the TYPE clause determines
how much data to display and the IN clause determines how to format the data. In
addition, the IN clause cannot be used with the TYPE clause of the DISPLAY
command.

Examples

1. This example displays a TYPE CRTPID.

2. This example displays a TYPE DEVICE.

3. This example displays a TYPE ENV.

4. This example displays a TYPE FILENAME.

-PROGRAM-DISPLAY variable TYPE CRTPID
$Y667 11,53
-PROGRAM-DISPLAY variable TYPE CRTPID FOR 2
$Y667 11,53
$Z534 8,100

-PROGRAM-DISPLAY variable TYPE DEVICE
$DISK

-PROGRAM-DISPLAY variable TYPE ENV
(RP=7,CCG,T) UC.7

-PROGRAM-DISPLAY variable TYPE FILENAME
$DATA.SUBVOL.FILE
Inspect Manual—429164-006
6-79

High-Level Inspect Commands Using the TYPE Clause
5. This example displays a TYPE FILENAME32.

6. This example displays a TYPE LOCATION.

7. This example displays a TYPE PROCESS HANDLE. A process handle can be for
a named or unnamed process. The first example shows the format Inspect uses for
a named process; the second shows the format Inspect uses for an unnamed
process.

8. This example displays a TYPE SSID.

9. This example displays a TYPE SYSTEM.

10. This example displays a TYPE TIMESTAMP.

11. This example displays a TYPE TIMESTAMP48.

12. This example displays a TYPE TOSVERSION.

-PROGRAM-DISPLAY variable TYPE FILENAME32
\SYS.$DISK.SUBVOL.FILENAME

-PROGRAM-DISPLAY variable TYPE LOCATION
#TEST^PROC.7 + %3I, #TEST^PROC.#223.2(\SYS.$DATA.SUBVOL.FILENAME) + %3I,
#TEST^PROC +
%1030I
-PROGRAM-DISPLAY variable TYPE LOCATION UC.3
#READ^INFO.15 + %5I, #READ.INFO.#553(\SYS.$DATA.SUBVOL.FILENAME) + %5I,
#READ^INFO +
%756I

-PROGRAM-DISPLAY variable TYPE PROCESS HANDLE
\SYS.$Z365:3:60:10352657
-PROG-DISPLAY variable2 TYPE PROCESS HANDLE
\SYS.4:42:10931482

-PROGRAM-DISPLAY variable TYPE SSID
TANDEM.EMS.C00

-PROG-DISPLAY variable TYPE SYSTEM
\SYS

-PROGRAM-DISPLAY variable TYPE TIMESTAMP
1987-09-30 19:47:14.072.397

-PROGRAM-DISPLAY variable TYPE TIMESTAMP48
2002-05-04 18:39:01.76

-PROGRAM-DISPLAY variable TYPE TOSVERSION
D10
Inspect Manual—429164-006
6-80

High-Level Inspect Commands ENV
13. This example displays a TYPE TRANSID.

14. This example displays a TYPE USERID.

15. This example displays a TYPE USERNAME.

ENV
The ENV command displays the current settings of the Inspect environment and
selectable parameters.

Default Value

If no options are specified, Inspect displays the values for all parameters.

Usage Considerations

 Establishing a new default system

When ENV displays blanks after the word SYSTEM, it means that you have not
used the Inspect command SYSTEM to establish a new default system. Inspect
will use the system it was installed on.

 Valid systypes

Inspect’s systype can be either Guardian or OSS.

-PROGRAM-DISPLAY variable TYPE TRANSID
\SYS.14.904

-PROGRAM-DISPLAY variable TYPE USERID
255,255 SUPER.SUPER

-PROGRAM-DISPLAY variable TYPE USERNAME
SUPER.SUPER 255,255

ENV [env-parameter]

env-parameter: one of

 DIRECTORY
 LANGUAGE
 LOG
 PROGRAM
 SCOPE
 SOURCE SYSTEM
 SYSTEM
 SYSTYPE
 VOLUME
Inspect Manual—429164-006
6-81

High-Level Inspect Commands Related Commands
 Default Volume and Subvolume

If an Inspect session starts as a result of a debug event—for example, RUND
PRG—Inspect uses your logon volume and subvolume as the default volume and
subvolume for the session. If you start an Inspect session using the TACL
command RUN INSPECT, then Inspect uses your current volume and subvolume
as the default volume and subvolume.

 SOURCE SYSTEM and SYSTEM

Inspect uses both SOURCE SYSTEM and SYSTEM to expand partially qualified
file names. Inspect uses the current SOURCE SYSTEM value to expand source
file names, and it uses the current SYSTEM value to expand all other file names.

Related Commands

 LOG on page 6-142

 PROGRAM on page 6-156

 SCOPE on page 6-162

 SELECT LANGUAGE on page 6-166

 SELECT PROGRAM on page 6-167

 SELECT SOURCE SYSTEM on page 6-169

 SOURCE SYSTEM on page 6-211

 SYSTEM on page 6-217

 VOLUME on page 6-223

EXIT
The EXIT command stops the Inspect process. Programs being debugged with
Inspect are not stopped.

Usage Considerations

 Pressing CTRL/Y is the same as entering EXIT.

 Entering an EXIT command does not alter any of the programs you are debugging.
Consequently, you should stop all programs or clear all breakpoints from all
programs and RESUME them before you enter an EXIT command.

 Use the TACL commands ACTIVATE and STOP to control a suspended process.
Use the PATHCOM command ABORTþTERM to stop suspended PATHWAY
terminals.

EXIT
Inspect Manual—429164-006
6-82

High-Level Inspect Commands FA
 If you issue an EXIT command interactively and one or more active processes are
running under the control of Inspect, Inspect displays a warning message. Inspect
emits a second warning message if you have any breakpoints set. For example:

Entering “Y” at the confirmation prompt will exit Inspect, but will not stop the
processes under the control of Inspect. All processes will remain under the control
of Inspect in their current state. If you do not enter a Y, Inspect does not exit;
instead, it issues a prompt. If you respond “Yes” when prompted for exit
confirmation, you can reactivate your process with the TACL ACTIVATE command.

 If you are running a PATHWAY requester program and you type EXIT, you will not
be prompted to confirm that you want to stop Inspect unless you have breakpoints
set.

Related Command

RESUME with the * EXIT option

FA
The FA (“Fix Alias”) command enables you to retrieve, edit, and reissue an existing
alias definition.

When you enter an FA command, Inspect presents the ADD ALIAS command for the
specified alias in an editing template. For more information, see Editing Templates on
page 6-85.

alias-name

specifies the name of the alias you want to fix.

Usage Consideration

Aliases are not expanded when you use the FA command.

Related Commands

 ADD ALIAS on page 6-7

 ALIAS on page 6-17

-PROGRAM-EXIT
WARNING - You have 2 active processes:
 Program
Num PID Name Type State Location
 1 01,00307 X003OBJ1 TNS HOLD #X001A.#27.4(X003TAL) + %2I
 *2 09,00282 X003OBJ0 TNS HOLD #main.#8(X003SRC)
WARNING - The processes above will not be stopped.

FA alias-name
Inspect Manual—429164-006
6-83

High-Level Inspect Commands Example
 LIST ALIAS on page 6-131

Example

This example illustrates the FA command.

FB
The FB (“Fix Breakpoint”) command enables you to retrieve, edit, and reissue an
existing breakpoint definition.

When you enter an FB command, Inspect presents the BREAK command for the
specified breakpoint in an editing template (for code breakpoints only). For more
information, see Editing Templates on page 6-85.

breakpoint-number

specifies the number (as shown by the LIST BREAKPOINT command) of the
breakpoint to fix.

Usage Considerations

 You cannot use the FB command with data breakpoints or breakpoints created in
Debug or a previous Inspect session.

 You can only edit code breakpoints that have an ordinal number. The maximum
ordinal number is 99; therefore, you cannot edit code breakpoints listed after
breakpoint 99.

 Aliases are not expanded with the FB command.

Related Commands

 BREAK on page 6-19

 LIST BREAKPOINT on page 6-131

FC
The FC (“Fix Command”) command enables you to retrieve, edit, and reissue a
command line in the history buffer.

-PRG-FA ShowVars
-ADD ALIAS SHOWVARS = "DISPLAY height, width, depth"
. ddddiWatch// i; RESUME
-ADD ALIAS WatchVARS = "DISPLAY height, width, depth; RESUME"
.

FB breakpoint-number
Inspect Manual—429164-006
6-84

High-Level Inspect Commands Default Value
When you enter an FC command, Inspect presents the specified command line (up to
255 characters) in an editing template. Inspect will issue a warning if you exceed 255
characters on an insert or a replace.

For more information, see Editing Templates on page 6-85.

cmd-line-specifier

specifies which command line to retrieve from the history buffer.

pos-num

is a positive integer that refers to the command-line number in the history
buffer that you want to retrieve.

neg-num

is a negative number that refers to a command line in the history buffer relative
to the current command line.

search-text

is the most recent command line in the history buffer that begins with the text
you specify. You need to specify only as many characters as necessary to
identify the command line uniquely.

"search-text"

is similar to search-text except it the text may appear anywhere in a line.

Default Value

If you do not specify a command line, Inspect retrieves the last command line you
entered, excluding FA, FB, FC, FK, XC, and “!”.

Editing Templates

FC [command-line-specifier]

command-line-specifier: one of

 pos-num
 neg-num
 search-text
 "search-text"
Inspect Manual—429164-006
6-85

High-Level Inspect Commands Default Value
When you use one of the Fix commands—FA, FB, FC, or FK—Inspect retrieves a
command line and presents it in an editing template. You can then alter and reissue
the command or command line. A editing template has the form:

The first line is the contents line; it displays the text that you are editing. The second
line is the editing line; here, you enter replacement text and editing commands.

Note that the contents line in the preceding example begins with a dash, which is the
command-mode indicator. A dash indicates high-level Inspect and an underscore
indicates low-level Inspect. When you reissue the command or command line that you
are editing, Inspect uses the current command mode to interpret it.

On the editing line, use the space bar and the backspace key to position the cursor
under the text in the contents line that you want to change. Do not use the arrow keys
to move the cursor.

After you make changes, press the RETURN key. Inspect then redisplays the editing
template; the contents line reflects the changes you have made. You can add more
changes at this point. However, if the command is correct, press the RETURN key
again, and Inspect executes the command. If you want to terminate editing without
reissuing the edited command, enter two slashes at the start of the editing line and
then press RETURN. Alternatively, you can press CTRL/Y or BREAK at any time to
terminate editing.

Using the Editing Characters D, I, and R

On the editing line you can use three editing commands:

You must begin your correction with these editing characters if the first character of the
change is I, D, or R. Type the D or R under the character to be deleted or replaced.
Type the I under the character that follows the insert position.

Spaces typed after the I or R command are part of the text to insert or replace. If you
want to make more than one change on a line, end the text string with two slashes (//)
and space over to make additional changes; for example:

-current template contents
.

D or d Deletes the character above the D

I or i Inserts the text following the I into the command line; text is inserted in front
of the character above the I.

R or r Replaces characters in the command line (beginning with the character
above the R) with the text following the R.

-PRG-FA ShowVars
-ADD ALIAS SHOWVARS = "DISPLAY height, width, depth"
. ddddiWatch// i; RESUME
-ADD ALIAS WatchVARS = "DISPLAY height, width, depth; RESUME"
.

Inspect Manual—429164-006
6-86

High-Level Inspect Commands Default Value
In the example, the D commands delete “SHOW”; the first I command inserts a
“Watch” before “VARS.” The two slashes indicate the end of this insertion. The
second I command inserts the string “; RESUME” before the quotation mark that
terminates the alias's replacement string. After you press the RETURN key, Inspect
redisplays the editing template and prompts you for any further changes. Because the
command is now correct, make no changes before you press RETURN; Inspect then
executes the modified command.

Replacing and Inserting Text without Using D, I, and R

You can enter a replacement string on the editing line without using the R command.
You can also insert text at the end of the line by typing it in without using the I
command; for example:

However, if your proposed replacement or inserted text begins with any of the letters D,
I, or R (or their lowercase counterparts), Inspect considers that letter to be an editing
command, and you do not get the result you want; for example:

The intent of this Fix command was to change the code units in the STEP command
from STATEMENTS to INSTRUCTIONS. However, Inspect read the I in
“INSTRUCTIONS” as the I command, and so inserted “NSTRUCTIONS” in front of
“STATEMENTS” instead. At this point, rather than trying to execute or edit the
command, you can enter two slashes and press the RETURN key. The FC command
terminates and Inspect prompts for a command. All changes to the line are
abandoned.

Usage Consideration

Aliases are not expanded with the FC command.

Related Commands

 HISTORY on page 6-93

 LIST HISTORY on page 6-135

 XC on page 6-224

-PRG-FC
-D currec.next.
M
-M currec.next
 = 0
-M currec.next = 0
.

-PRG-FC
-STEP 5 STATEMENTS
. INSTRUCTIONS
-STEP 5 NSTRUCTIONSSTATEMENT
.

Inspect Manual—429164-006
6-87

High-Level Inspect Commands Default Value
Example

This example illustrates the FC command:

--ALIAS mult ="display (5*5)"
 --key f1 = "resume"
 --set radix output octal
 --history
1: ALIAS mult ="display (5*5)"
2: KEY F1 = "resume"
3: SET RADIX output octal
--fc 1
-ALIAS mult ="DISPLAY (5*5)".
 6
-ALIAS mult ="DISPLAY (5*6)"
.
--FC -2
-SET RADIX output octal.
 rdecimal
-SET RADIX output decimal
.
--HISTORY
1: ALIAS mult ="display (5*5)"
2: KEY f1 = "resume"
3: SET RADIX output octal
4: ALIAS mult ="display (5*6)"
5: SET RADIX output decimal
--FC ali
-ALIAS mult ="display (5*6)"
. i in octal
-ALIAS mult ="display (5*6) in octal"
.
--FC "f1"
-KEY f1 = "resume"
. imult;
-KEY f1 = "mult;resume"
.
--
Inspect Manual—429164-006
6-88

High-Level Inspect Commands FILES
FILES
The FILES command shows the status of files that have been opened by the current
program. The FILES command is a synonym for the INFO OPENS command.

*

requests the status of all files opened by the current program.

file-list

requests the status of specific files. file-list is a list of file numbers identifying
the desired files.

file-number

specifies a single file. file-number can be:

A COBOL FD name
An expression that evaluates to an integer value
A data location identifying an integer value

Inspect interprets the integer values as file-system numbers, unless you
specify the F clause; Inspect would then interpret the values as FORTRAN
logical unit-numbers. If a FD clause is used, Inspect interprets the values as
OSS file descriptors.

DETAIL

directs Inspect to display the maximum available information for the specified files.

file-type

indicates to Inspect what type of file to display. file-type can be one of the
following:

Note. The FILES command is invalid for PATHWAY requester programs.

FILES [{ * | file-list } [DETAIL] [file-type]

file-list
 file-number [, file-number]...

file-type: one of

 FORTRAN FD GUARDIAN
Inspect Manual—429164-006
6-89

High-Level Inspect Commands FK
FORTRAN

indicates that file-number values specify FORTRAN logical-unit numbers,
not file system file numbers. Files without FORTRAN logical units will not be
displayed.

The F clause is valid only in FORTRAN scope units.

FD

indicates that file-number values specify OSS file descriptors. Files without
OSS file descriptors will not be displayed.

GUARDIAN

indicates that file-number values specify Guardian system file numbers.
Files without Guardian file system numbers will not be displayed.

FK
The FK (“Fix Key”) command enables you to retrieve, edit, and reissue an existing
function-key definition.

When you enter an FK command, Inspect presents the ADD KEY command for the
specified function-key definition in an editing template. For more information, see
Editing Templates on page 6-85.

key-name

specifies the function key you want to fix. Valid function keys include F1 through
F16 and shifted F1 (SF1) through shifted F16 (SF16).

Usage Consideration

Aliases are not expanded with the FK command.

FK key-name

key-name: one of

 F1 F2 F3 F4 F5 F6 F7 F8
 F9 F10 F11 F12 F13 F14 F15 F16
 SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
 SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16
Inspect Manual—429164-006
6-90

High-Level Inspect Commands Related Commands
Related Commands

 ADD KEY on page 6-9

 DELETE KEY on page 6-30

 KEY on page 6-128

 LIST KEY on page 6-136

HELP
The HELP command displays information about Inspect commands, features, and
concepts. HELP text is organized in a hierarchical fashion; general topics at the top
level, with more specific subtopics at each lower level. After displaying help for a topic,
Inspect will display a list of subtopics, if any, and prompt you for the subtopic for which
you desire information.

topic

is an Inspect help topic. A help topic consists of a main topic and up to two levels
of subtopics. Aliases may not be used in topics or within HELP.

Default Value

If you enter the HELP command without specifying a topic, Inspect displays what main
topics are valid for the current mode (high-level or low-level).

Usage Guidelines

 Help Topics

The HELP command provides helpful information about various topics, including:

 Inspect commands, both low-level and high-level

 Language-dependent parameters such as code locations

 Errors

 Highlights from the current and earlier releases

 Corrected and known problems

HELP [topic]

topic:

 main-topic [sub-topic [sub-topic]]
Inspect Manual—429164-006
6-91

High-Level Inspect Commands Usage Guidelines
 Help Subtopics

The HELP command provides subtopic options within topic descriptions. Subtopics
might include:

 Command descriptions

 Syntax

 Examples

 Usage considerations

 Related commands

 Default values

 Errors

To receive information on a specific error, at the first-level Inspect HELP
prompt enter:

Error num

 More Help ([Y]/N)? prompt

When you request help for a topic, Inspect displays information for the topic. If
the information exceeds 23 lines, Inspect displays the first 23 lines and then
prompts you:

More Help ([Y]/N)?

Enter Y or a carriage return to continue the display. Entering “N” will end the
current display and back you out of the current level of help.

 Using Online HELP from within HELP

After displaying the information for a topic, Inspect prompts you for a subtopic,
if any exist for the given topic. You can then select a subtopic or press
RETURN to exit HELP and return to the Inspect prompt. You can exit HELP
and return to the Inspect prompt by pressing CTRL/Y at any help prompt.

When a list of topics is presented, you only need qualify the topic name with as
many characters needed to provide uniqueness. If the number of characters
does not uniquely qualify a topic, the first topic in the list that matches the
input will be chosen.

 Using Online HELP from the Inspect command line

You will achieve better results if you completely spell out the topic and/or the
subtopic name. If, for example, you want help on INFO OPEN, do not type
“HELP I O”, you will receive help on INFO OBJECTFILE instead of INFO
OPEN. Similarly, “HELP C” will return help on the CLEAR command instead of
the C language, because Inspect interprets C as an abbreviation for the
CLEAR command.
Inspect Manual—429164-006
6-92

High-Level Inspect Commands HISTORY
HISTORY
The HISTORY command displays the most recently executed command lines.

num

is the number of commands to display.

Default Value

If no number is specified, the last 10 commands are displayed.

Usage Consideration

The HISTORY command is equivalent to LIST HISTORY -num/-1, except when less
than num command lines are in the history buffer, in which case all lines in the history
buffer are displayed.

Related Commands

 FC on page 6-84

 LIST HISTORY on page 6-135

 XC on page 6-224

HOLD
The HOLD command suspends the execution of a program on the program list, placing
it in the hold state. Inspect does not begin prompting again until all suspensions are
accomplished.

program

specifies a program using one of several formats. program-number identifies the
program by its program number (as shown by the LIST PROGRAM command).
program-name identifies the program by its program name (as shown by the LIST

HISTORY [num]

HOLD [program [, program]...]
 [*]

program: one of

 program-number
 program-name
 cpu,pin
 Pathway-term-name
Inspect Manual—429164-006
6-93

High-Level Inspect Commands Default Value
PROGRAM command). cpu,pin identifies a process by its process ID.
PATHWAY-term-name identifies a PATHWAY requester program by the name of its
logical PATHWAY terminal.

*

specifies all executable programs in the program list.

Default Value

Entering HOLD without parameters suspends the current program.

Usage Considerations

 Holding a Program

When a program enters the hold state, it becomes the current program. In the
case of multiple suspensions, the last one suspended becomes the current
program. To determine the current program, enter the LIST PROGRAM command;
an asterisk precedes the program number of the current program. Use SELECT
PROGRAM to change the current program.

 HOLD During a System Procedure Call

If program execution is in a system procedure call, Inspect will wait until the system
procedure returns control to the program before suspending execution. Therefore,
when you suspend several programs, the order of suspension can be different
from the order of the HOLD commands.

 Pressing the BREAK Key

Pressing the BREAK key while the current program is running does not place the
program in the hold state; you must use the HOLD command.

ICODE
The ICODE command displays instruction mnemonics starting at a specified statement
or code address. For accelerated programs, the ICODE command may be used to list
TNS instructions, TNS/R instructions, or a combination of both.

Note. The ICODE command is invalid for PATHWAY requester programs.
Inspect Manual—429164-006
6-94

High-Level Inspect Commands ICODE
location

specifies the location to begin listing instruction mnemonics.

ICODE location [FOR count [unit]] [report]

location: one of

 [AT display-code]
 [tns/r tns/r-address-expression]
 [tns-address-expression] [UC.number | UL.number]

unit: one of

 INSTRUCTION[S]
 STATEMENT[S]
 VERB[S]

report: one of

 TNS
 tns/r
 BOTH

tns/r: one of

 TNSR
 TNS/R
 R

tns/r-address-expression:

 tns/r-value [operator tns/r-value]...

tns-address-expression:

 tns-value [operator tns-value]...

operator: one of

 * / << >> + -

tns-value: one of

 (tns-expression)
 16-bit number
 tns-register

tns/r-value: one of
 (tns/r-address-expression)
 32-bit number
 16-bit number [.16-bit number]
 tns/r-register
Inspect Manual—429164-006
6-95

High-Level Inspect Commands ICODE
AT display-code

specifies a source-level code location (such as a line number) starting at which
instructions are to be listed.

TNS/R tns/r-address-expression

specifies the TNS/R machine address, for accelerated or native programs,
starting at which instructions are to be listed.

tns-address-expression [UC.number | UL.number]

specifies the TNS code address beginning where instructions are to be listed.
The code segment number must be in the range zero through 31.

count

specifies the number of instruction units to be displayed.

unit

specifies whether the instructions to be listed are in the form of statements,
instructions, or verbs.

STATEMENTS

specifies that instructions are to be listed in units of statements. (This is the
default when the AT clause is used.)

INSTRUCTIONS

specifies that count is the number of instructions to be listed. (This is the
default when an address expression is specified.)

VERBS

specifies that the instructions are to be listed in units of verbs (for COBOL and
COBOL85 programs).

report

specifies what type of instructions are to be displayed.

TNS

instructs the ICODE command to list TNS instructions.

TNS/R

instructs the ICODE command to list TNS/R instructions.
Inspect Manual—429164-006
6-96

High-Level Inspect Commands Default Values
BOTH

instructs the ICODE command to list the correspondence between TNS and
TNS/R instructions for accelerated programs. Refer to the examples for more
details. The BOTH option does not show TNS/E instructions for an OCA
process on a TNS/E system.

Default Values

 INSTRUCTIONS are assumed if no unit is specified and an address expression is
specified.

 STATEMENTS are assumed for non-COBOL programs if no unit is specified and a
source-level location is specified using the AT clause.

 VERBS are assumed for COBOL and COBOL85 programs if no unit is specified
and a source-level location is specified using the AT clause.

 A count of one is assumed if no count is specified.

 By default, this command lists TNS instructions, unless the BOTH or TNS/R
options are specified.

 As with the SOURCE command, pressing RETURN immediately after an ICODE
command has been issued will repeat the ICODE command, starting at the
location following the last location listed.

Output

 TNS addresses are output in 5-digit octal with a leading “%”.

 TNS/R addresses are output in 8-digit hexadecimal with a leading “%h”.

 When listing TNS/R call instructions (JAL and JR) the name of the target
procedure or millicode routine is listed.

 When a source location is specified, output includes line and/or statement numbers
(depending on the current LOCATION FORMAT).

 The BOTH report lists the correspondence between TNS and TNS/R instructions in
a vertical format. It lists a block of TNS instructions and the corresponding block of
TNS/R instructions. Memory-exact points determine the block boundaries. In
output, blocks are separated by a blank line or a line/statement number (if
applicable). This output is illustrated in the examples section.

 For accelerated programs, instructions are annotated in the standard way to mark
memory-exact and register-exact points, a “>” and an “@”, respectively.

 Since procedure names may be up to 255 characters in length, strings listed for
some call instructions may overflow the allocated field width. If the string will fit on
the current output line, it is allowed to overflow into subsequent fields as
necessary. If not, it is output at the beginning of the next line and folded across as
many lines as necessary.
Inspect Manual—429164-006
6-97

High-Level Inspect Commands Usage Considerations
Usage Considerations

 The AT clause and the STATEMENTS and VERBS units can only be used when
symbol information is available.

 If the AT clause is used with a line number for which there is no corresponding
statement, a warning is issued and the next line number for which there is a
corresponding statement is assumed.

 When a code source-level location is specified, instructions cannot be listed past
the end of the containing procedure.

 When an address is specified and STATEMENTS are specified as the unit,
instructions are listed from the address to the end of the containing statement.

Usage Considerations for Accelerated Programs on TNS/E
Systems

 The ICODE command shows safe-point annotations for an OCA process on a
TNS/E system, but not for an OCA snapshot. For example, the > shown here is
displayed for an OCA process (but does not appear for a snapshot of the same
process):

#36
 %000037: > LWP +021 LBA STB L+001

The ICODE command shows only TNS instructions for an accelerated program on
the TNS/E platform. However, you can use Visual Inspect or TNSVU to view
safepoints and corresponding TNS and TNS/E instructions in an OCA process or
snapshot on a TNS/E system.

 The BOTH report does not show TNS/E instructions for OCA processes.

Usage Considerations for Accelerated Programs on TNS/R
Systems

 Listings that depend on the mapping between TNS and TNS/R addresses begin at
the previous memory-exact point if the given address is not a memory-exact point.
This occurs in these cases:

 When listing TNS instructions given a TNS/R address that is not a memory-
exact point.

 When listing TNS/R instructions given a TNS address that is not a memory-
exact point.

 When listing TNS/R instructions given a source-level location or unit. In such
an event, this warning is reported:

** Inspect warning 372 ** Starting location is not a memory-exact point;
 listing begins at preceding memory-exact point
Inspect Manual—429164-006
6-98

High-Level Inspect Commands Related Command
 If the location at the end of the range is not an exact point, instructions are
listed till the next exact point and this warning is issued:

 If a TNS/R code address that is not 32-bit aligned is input, it is rounded up to
the next 32-bit boundary and this warning is issued:

 The TNS/R and BOTH clauses cannot be used when debugging a program
that has not been processed by the Axcel accelerator. An attempt to do so will
result in this error:

 Use of the STATEMENTS unit with a TNS/R address will list the proper number
of instructions only when the address corresponds to or is rounded to the
beginning of the statement.

Related Command

SOURCE ICODE

Examples

1. These are the examples of possible ICODE commands.

 To list four TNS instructions, starting three instructions before the current
location:

ICODE p - 3 FOR 4

 To list two TNS/R instructions, starting one instruction before the current
location:

ICODE R $PC - 4 FOR 2

 To list 10 TNS instructions, starting at the computed address:

ICODE %2323 + %57 FOR 10

 The Debug/CRUNCH/low-level Inspect dot operator is supported, allowing this
TNS/R address notation to be used:

ICODE %h70420.%h00AA

** Inspect warning 387 ** Ending location is not a memory-exact point;
 listing ends at following memory-exact point

** Inspect warning 389 ** Address is not aligned to a TNS/R instruction
 boundary it will be rounded down to the previous
 instruction

** Inspect error 361 ** Operation available only on an accelerated program
Inspect Manual—429164-006
6-99

High-Level Inspect Commands Examples
2. This illustrates listing TNS instructions starting at a given line for two statements.
Note that pressing RETURN lists the ICODE of two additional statements.

3. This illustrates listing TNS instructions starting at a given TNS address. Note that
statement numbers are not listed when an address is specified.

4. This is an example of listing TNS/R instructions from an Accelerated program.

5. This command lists the TNS/R instructions from an Accelerated program for the
statement at #80.

-OTALIN- ICODE at #73 for 2s
#73
 %000052: LDI +001 ADDS -002 RSUB 01
 %000055: ADDS +002 LDI +010 LDI +000
 %000060: PUSH 711
#75.1
 %000061: LDI +001 STOR G+000
-OTALIN-
#76
 %000063: LDI +001 STOR L+001
#77
 %000065: BSUB -033

-OTALIN-ICODE %65 for 20
 %000065: BSUB -033 LOAD L+001 LADR L+001
 %000070: LOAD L+001 PUSH 722 BSUB -033
 %000073: BSUB -025 STRP 7 LOAD L+001
 %000076: STOR L+002 LDI +001 LDI +000
 %000101: LDI +002 LDD L+003 PUSH 744
 %000104: PCAL 002 LDI +001 LDI +000
 %000107: LDI +002 LDD L+003

-PTALIN-ICODE r %h70420194 for 10
 %h70420194: > LI s0,1 SH s0,0($0) > SH s0,2(fp)
 %h704201A0: > JAL LM^FREELIST LI a0,54 @ LH t5,2(fp)
 %h704201AC: ADDI t0,fp,2 SRL s1,t0,1 ADDIU sp,sp,6
 %h704201B8: SH t5,-4(sp)

-PTALIN-ICODE AT #80 FOR 1 S

#80

%h70420230: LI s0,1 LI s2,2 LWL s3,6(fp)
%h7042023C: LWR s3,9(fp) ADDIU sp,sp,10 SH s0,-8(sp)
%h70420248: SH $0,-6(sp) SH s2,-4(sp) SWL s3,-2(sp)
%h70420254: SWR s3,1(sp) JAL PROC1 LI a0,69
Inspect Manual—429164-006
6-100

High-Level Inspect Commands Examples
6. This command lists the correspondence between TNS instructions and TNS/R
instructions starting at TNS address %75 and extending for 11 TNS instructions.

7. This example illustrates the listing of native TNS/R instructions. TNS/R instructions
from a previous source line are annotated with a “-” and TNS/R instructions from
proceeding lines are annotated with a “+”. Lines containing TNS/R instructions also
contain the source file line number that the instruction is for.

-PTALIN-ICODE %75 FOR 11 BOTH

%000100: > LDI +000 %h70420230: LI s0,1
%000101: LDI +002 %h70420234: LI s2,2
%000102: LDD L+003 %h70420238: LWL s3,6(fp)
%000103: PUSH 744 %h7042023C: LWR s3,9(fp)
%000104: PCAL PROC1 %h70420040: ADDIU sp,sp,10
 %h70420044: SH s0,-8(sp)
 %h70420248: SH $0,-6(sp)
 %h7042024C: SH s2,-4(sp)
 %h70420250: SWL s3,-2(sp)
 %h70420254: SWR s3,1(sp)
 %h70420258: JAL PROC1
%000105: @ LDI +001 %h70420260: LI s01
%000106: LDI +000 %h70420264: LI s2,2
%000107: LDI +002 %h70420268: LWL s3,6(fp)
%000110: LDD L+003 %h7042026C: LWR s3,9(fp)
%000111: PUSH 744 %h70420270: ADDIU sp,sp,10
%000112: PCAL PROC2 %h70420274: SH s0,-8(sp)
 %h70420278: SH $0,-6(sp)
 %h7042027C: SH s2,-4(sp)
 %h70420280: SWL s3,-2(sp)
 %h70420284: SWR s3,1(sp)
 %h70420288: JAL PROC2

-PROGRAM-ICODE AT #PROC FOR 3 STATEMENTS

 #10
 10.000 %h700002B0: addiu $sp,$sp, -32
 10.000 %h700002B4: sw $4,32($sp)
 10.000 %h700002B8: sw $5,36($sp)
 #17
 17.000 %h700002BC: lw $15,36($sp)
 17.000 %h700002C0: lw $14,32($sp)
 - 10.000 %h700002B4: sw $6,40($sp)
 17.000 %h700002C8: lw $25,40($sp)
 - 10.000 %h700002CC: sw $7,44($sp)
 17.000 %h700002D0: lw $9,44($sp)
 17.000 %h700002D4: add $24,$14,$15
 + 18.000 %h700002D8: sw $11,$48($sp)
 17.000 %h700002DC: add $8,$24,$25
 - 10.000 %h700002E0: sw $31,28$sp)
 17.000 %h700002E4: add $10,$8,$9
 17.000 %h700002E8: lw $10,16($gp)
 #18
 18.000 %h700002EC: move $5,$15
 18.000 %h700002F0: move $4,$14
 18.000 %h700002F4: move $6,$15
 18.000 %h700002F8: move $7,$9
 18.000 %h700002FC: jal 0x70000290
 18.000 %h70000300: sw $11,$16($sp)
-PROGRAM-
Inspect Manual—429164-006
6-101

High-Level Inspect Commands IDENTIFIER
IDENTIFIER
The IDENTIFIER command displays information about the internal characteristics of a
given data location or of all data locations in one or more scope units. The
IDENTIFIER command is a synonym for the INFO IDENTIFIER command.

*

specifies all identifiers in the scope unit identified by the current scope path.

identifier-spec

specifies a given identifier or group of identifiers.

[scope-path.] identifier [.identifier]

specifies a unique identifier.

scope-path

specifies all identifiers in a given scope unit.

#data-block

specifies all identifiers in a given data block.

##GLOBAL

specifies all identifiers in the global data block implicitly named by TAL.

Related Commands

 INFO IDENTIFIER on page 6-105

 MATCH with the IDENTIFIER option on page 6-144

IDENTIFIER { * | identifier-spec }

identifier-spec: one of

 [scope-path.] identifier [.identifier]...
 scope-path
 #data-block
 ##GLOBAL
Inspect Manual—429164-006
6-102

High-Level Inspect Commands IF
IF
The IF command provides conditional execution of an Inspect command.

expression

specifies the expression that must evaluate to TRUE (that is, a nonzero value)
before Inspect will execute the command or alias following THEN.

command

is any Inspect command except FA, FB, FC, FK, or XC.

alias-name

is the name of a previously defined alias. The replacement string for the given alias
must be a valid command list.

Usage Considerations

 The IF Command and the BREAK THEN Clause

You can use the IF command within the THEN clause of the BREAK command to
execute a break action conditionally. Given the following breakpoint, Inspect will
modify A only if its value is >100 when the breakpoint is triggered:

BREAK tax-section THEN "D a;IF a>100 THEN M a=1;R"

After the break event, Inspect displays the value of A, resets it to 1 if it exceeds
100, and then resumes execution. If A is less than 100, execution will not be
resumed.

Note the use of quotes when IF is used as part of the BREAK command compared
to when it is used IN an IF.

Note that using the THEN command in the THEN clause of a BREAK serves a purpose
different from the IF clause of the BREAK command. If the condition is specified in the
IF clause, Inspect breaks only when the condition is met:

The result is that A is displayed only when its value exceeds 100.You can use the
IF command within the BREAK command in the command file.

 If an expression contains a string, each element of the string must be evaluated
individually. For example:

IF expression THEN { command | alias-name }

IF J=3 THEN RESUME
IF J=3 THEN DISPLAY 'Not far enough';RESUME

BREAK tax-section IF a>100 THEN "D a;M a=1;R"
Inspect Manual—429164-006
6-103

High-Level Inspect Commands INFO
Given the TAL declaration:

then for an expression to evaluate to TRUE, the IF command must be entered as
follows:

INFO
The INFO command displays information about various types of items in the current
program.

This diagram shows the complete syntax for the INFO command and its clauses.
Detailed descriptions of the clauses, including usage considerations and examples, are
presented in the following subsections.

INT Animal[0:3] := "bird";

IF Animal[0] = "b" AND Animal[1] = "i" AND &
 Animal[2] = "r" AND Animal[3] = "d" &
THEN DISPLAY Tree;RESUME

INFO info-item

info-item: one of

 IDENTIFIER { * | identifier-spec }
 LOCATION [code-location | * [SCOPE { scope-spec }]]
 OBJECTFILE [FILE filename]
 OPEN[S] [{ * | file-list } [DETAIL] [file-type]]
 SAVEFILE [FILE filename]
 SCOPE [scope-spec]
 SEGMENT[S] [* | segment-id]
 SIGNAL[S] [* | signal-id [, signal-id...]]

identifier-spec: one of

 scope-path
 [scope-path.] identifier [.identifier]...
 #data-block
 ##GLOBAL

scope-spec: one of

 scope-path
 scope-ordinal

 #file-list:

 file-number [, file-number]...
Inspect Manual—429164-006
6-104

High-Level Inspect Commands INFO IDENTIFIER
INFO IDENTIFIER
The INFO IDENTIFIER command displays information about the internal
characteristics of a given data location or of all data locations in one or more scope
units, including native symbols.

*

specifies all identifiers in the scope unit identified by the current scope path.

identifier-spec

specifies a given identifier or group of identifiers.

[scope-path.] identifier [.identifier]...

specifies a unique identifier.

scope-path

specifies all identifiers in a given scope unit.

#data-block

specifies all identifiers in a given data block.

##GLOBAL

specifies all identifiers in the global data block implicitly named by TAL.

Usage Considerations

 When You Can Use INFO IDENTIFIER

The INFO IDENTIFIER command can be used for active and for inactive scope
units in processes, PATHWAY servers, and save files. In a PATHWAY requester
program, the INFO IDENTIFIER command can be used only for active scope units.

INFO IDENTIFIER { * | identifier-spec }

identifier-spec: one of

 [scope-path.] identifier [.identifier]...
 scope-path
 #data-block
 ##GLOBAL
Inspect Manual—429164-006
6-105

High-Level Inspect Commands Usage Considerations
 Types of Entities

The form of the output produced by INFO IDENTIFIER for a given identifier
depends on the type of entity the identifier denotes. The distinct types of entities
that INFO IDENTIFIER recognizes are:

 INFO IDENTIFIER Presentation for Variables

A typical program contains more identifiers for variables than for any other entity
class. Here is the form of the INFO IDENTIFIER report for a variable:

The information that INFO IDENTIFIER provides is:

The data types that appear in storage^info is:

BLOCK DATA BLOCK NAME CONDITION

DEFINED TYPE ENTRY FILE NAME

FORMAT IN CONTAINING SCOPE INDEX

INLINE PROC LABEL LITERAL

MACRO MNEMONIC NAME NAMED CONST

PROC PROCEDURE PARAM REGISTER

SCREEN SUBPROC VARIABLE

identifier: VARIABLE
storage^info:
TYPE=data-type, ELEMENT LEN=len BITS, UNIT SIZE=size ELEMENTS, SCALE=scale
access^info:
location
dimension^info:
dimension
structure^info:
PARENT=parent, CHILD=child, SIBLING=sibling

storage^info Reports the data type, the size of the element in bits, the
number of elements that make up the entity, and any scale
factor.

access^info Reports the location of the entity. If the entity is on a word-
aligned boundary, INFO IDENTIFIER displays the location in
words; otherwise, INFO IDENTIFIER displays the location in
words and bytes.

dimension^info Reports the dimensions of the entity, if it is an array.

structure^info Identifies the parent (group item to which the entity belongs),
the child (first entity contained within the entity whose attributes
are being displayed), and the sibling (next entity in the same
group as that whose attributes are being displayed).

BIN SIGN Binary signed

BIN UNSIGN Binary unsigned

BYTE STRUCT Byte-addressed structure

CHAR Character
Inspect Manual—429164-006
6-106

High-Level Inspect Commands Related Commands
Note that these data types do not correspond exactly to any one language's types.
Because Inspect supports several different programming languages, it uses
generic terms to denote data types.

Other entity classes have other forms, depending on the types of attributes each
entity class has.

If a portion of the report does not apply to a particular variable, that portion is not
displayed. For example, if a variable has no parent, the PARENT entry is omitted
from the report.

Related Commands

 DISPLAY on page 6-33

 IDENTIFIER on page 6-102

 MATCH with the IDENTIFIER option on page 6-144

Examples

1. A COBOL or SCREEN COBOL alphanumeric data item named THICKNESS can,
for example, have these attributes:

COMPLEX Complex

DEFINED TYPE Defined type

LOGICAL Logical

NUM LD EM Numeric, sign leading, embedded

NUM LD SP Numeric, sign leading, separate

NUM TR EM Numeric, sign trailing, embedded

NUM TR SP Numeric, sign trailing, separate

NUM UNSIGN Numeric unsigned

PAK SIGNED Packed numeric signed

PAK UNSIGN Pack numeric unsigned

REAL Real

WORD STRUCT Word-addressed structure

-PRG-INFO IDENTIFIER thickness
THICKNESS: VARIABLE
storage^info:
TYPE=CHAR, ELEMENT LEN=8 BITS, UNIT SIZE=24 ELEMENTS
access^info:
'L' + %22S WORDS
dimension^info:
[1:2]
structure^info:
PARENT=LUMBER-TABLE,CHILD=WIDTH
Inspect Manual—429164-006
6-107

High-Level Inspect Commands INFO LOCATION
2. A FORTRAN real variable named P will have these attributes:

3. A TAL integer array named D^ARRAY could have these attributes:

4. A COBOL numeric unsigned data item named PRIMARY-CPU could have these
attributes:

In this example, PRIMARY-CPU is not on a word boundary; therefore, Inspect
displays access^info showing the specific byte.

INFO LOCATION
The INFO LOCATION command displays information about a statement in the current
program. Additional information is listed for accelerated programs, including the effects
that accelerator optimizations have on source statements.

code-location

specifies the statement you want information about.

*

specifies all statements in the current scope unit.

-PRG-INFO IDENTIFIER p
P: VARIABLE
storage^info:
TYPE=REAL, ELEMENT LEN=32 BITS, UNIT SIZE=1 ELEMENTS
access^info:
'L' + %15 WORDS

-PRG-INFO IDENTIFIER d^array
D^ARRAY: VARIABLE
storage^info:
TYPE=BIN SIGN, ELEMENT LEN=16 BITS, UNIT SIZE=1 ELEMENTS
access^info:
'L' + 1 WORD
dimension^info:
[0:9]

-PRG-INFO IDENTIFIER primary-cpu
PRIMARY-CPU: VARIABLE
storage^info:
TYPE=NUM UNSIGNED, ELEMENT LEN=8 BITS, UNIT SIZE=1 ELEMENTS
access^info:
'L' + %20 WORDS + 1 BYTE

INFO LOCATION [code-location | * [SCOPE { scope-spec }]]

scope-spec: one of

 scope-path
 scope-ordinal
Inspect Manual—429164-006
6-108

High-Level Inspect Commands Default Values
scope-spec: one of

scope-path

specifies a scope unit by name.

scope-ordinal

specifies a scope unit by its scope number as displayed by the TRACE
command.

Default Values

If you enter INFO LOCATION alone, Inspect uses the current scope path to determine
what statement to use:

 If the current scope path denotes an active scope unit, the INFO LOCATION
command provides information about the statement containing the current code
location in the scope unit.

 If the current scope path denotes an inactive scope unit, the INFO LOCATION
command provides information about the first statement in the scope unit.

Usage Considerations

 Location Information

INFO LOCATION displays these information:

 The name of the scope unit containing the statement.

 The compilation name and modification timestamp of the source file from which
the statement was compiled. If a SOURCE ASSIGN has been applied to the
file, the name of the ASSIGN file is also listed.

This illustrates the form of this output:

 The statement number of the statement.

 The EDIT line number at which the statement starts.

 The offset in words of the statement from the base of its containing scope unit.

 An optimize verb denoting what optimization (if any) the compiler performed on
the statement. Possible optimize verbs are Deleted and Merged. Deleted
indicates that the compiler deleted the statement or incorporated it in another

 Scope: scope-name

 Compile File: filename Modified: timestamp
 [ASSIGN File: filename]
 [Source System: system]
Inspect Manual—429164-006
6-109

High-Level Inspect Commands Usage Considerations for Accelerated Programs
statement. Merged indicates that the compiler merged the statement with one
or more other statements.

You cannot set a breakpoint on a deleted statement; you can set one on a
merged statement. However, when a breakpoint on a merged statement
generates a break event, Inspect displays this message:

Usage Considerations for Accelerated Programs

 For accelerated programs, output contains an additional column titled “Register-
Exact.” “Yes” is listed in this column if TNS registers are valid at the beginning of
the statement.

 Register-exact points do not exist at the beginning of many statements For
programs translated at the ProcDebug level of optimization.

 The INFO LOCATION command does not report register-exact points that exist
within a statement.

 If the location of a statement is not a memory-exact point, “Deleted” is listed in the
Optimize column.

Related Commands

 ADD SOURCE ASSIGN on page 6-14

 SELECT SOURCE SYSTEM on page 6-169

 SOURCE ASSIGN on page 6-202

 SOURCE SYSTEM on page 6-211

** Inspect warning 198 ** Results might be unexpected due to optimization

Note. “deleted” does not mean that the actions of your statements have been deleted, but that
optimization has merged the statement with another, which resulted in the statement not being
available for debugging.
Inspect Manual—429164-006
6-110

High-Level Inspect Commands Example
Example

This example output illustrates, for accelerated programs, the inclusion of the
indication of whether or not a statement is a register-exact point.

INFO OBJECTFILE
The INFO OBJECTFILE command displays information about the current program’s
object files, or any specified object file. It provides additional information for object files
created by the accelerator and native object files.

filename

is the name of an object file. Depending on the current systype of Inspect,
filename may either be a Guardian filename or an OSS pathname.

Usage Considerations

 Inspect need not be debugging a program to use the FILE clause form of this
command.

 INFO OBJECTFILE does not read TNS/E native object files. An error message is
displayed if you enter INFO OBJECTFILE and specify a TNS/E object file. Instead,
you can use TNSVU to examine safepoints and corresponding TNS and TNS/E
instructions.

Related Commands

 INFO SAVEFILE on page 6-120

 LIST PROGRAM on page 6-137

Scope: M

Compile File: $GOLF.GREEN.TALIN Modified: 1988-10-03
12:15:20.02

 Word
Num Line Offset Optimize Verb Register-exact
1 #41 %0
2 #52 %1 Deleted
3 #52 %3
4 #52 %6 Yes
5 #64 %10

Note. The INFO OBJECTFILE command is invalid for PATHWAY requester programs.

INFO OBJECTFILE [FILE filename]
Inspect Manual—429164-006
6-111

High-Level Inspect Commands Output
Output

This output template illustrates the INFO OBJECTFILE command:

timestamp is of the form:

YYYY-MM-DD HH:MM:SS.DD

accelerator options: one from each line of:

target is one of:

TNS
TNS/R
ANY
UNSPECIFIED
UNKNOWN

 Accelerator-related information is listed only for object files that have been
processed by an accelerator (Axcel on TNS/R systems, OCA on TNS/E systems).

[Library | Program]Object File: filename

 General Information

[BINDER Region: YES | NO]*1
[BINDER Timestamp: timestamp]*1
[NLD Timestamp: timestamp]*3
[Data Pages: integer]*1
 Debugger: DEBUG | INSPECT
 INSPECT Region: YES | NO
 System Type: GUARDIAN | OSS
 Process Subtype: integer
 Program File Segment: integer WORDS
 Highrequesters: ON | OFF
 Runnamed: ON | OFF
 Highpin: ON | OFF
 Saveabend: ON | OFF
 SRL Name: name]*4
 SRLs Used: name]*4
 Segments: integer]*1
 Target: target]*1

[Accelerator Information]*2
[]*2
[Accelerated Execution: ENABLED | DISABLED]*2
[Optimization: PROCDEBUG | STMTDEBUG | UNKNOWN]*2
[Global Options: accelerator options]*2
[Timestamp: timestamp]*2
[Version: timestamp]*2

ATOMIC_ON ATOMIC_OFF

OVTRAP_ON OVTRAP_OFF

INHERITSCC_ON INHERITSCC_OFF

SAFEALIASINGRULES_ON SAFEALIASINGRULES_OFF

TRUNCATEINDEXING_ON TRUNCATEINDEXING_OFF
Inspect Manual—429164-006
6-112

High-Level Inspect Commands Examples
 If a program has a user library, information is listed for the program file and the
library file.

 If the filename parameter is omitted, Inspect will display information about all object
files used by the current process (user code plus all libraries plus all system files).
Items labeled with “*1” apply only to TNS object files, items with “*2” apply only to
accelerated object files, items with “*3” apply only to native object files, and items
with “*4” apply only to native SRL object files.

Examples

1. This example illustrates the information the INFO OBJECTFILE command
presents for a program accelerated with the ProcDebug option.

2. This example illustrates the information the INFO OBJECTFILE command
presents for a TNS/R program.

-PROGRAM-INFO OBJECTFILE
Program Object File: \SYSTEM.$DISK.SUBVOL.OBJECT

 General Information

 BINDER Region: YES
 BINDER Timestamp: 1992-08-13 17:46:40.57
 Data Pages: 64
 Debugger: INSPECT
 INSPECT Region: YES
 System Type: Guardian
 Process Subtype: 0
 Program File Segment: 0 WORDS
 Highrequesters: OFF
 Runnamed: OFF
 Highpin: OFF
 Saveabend: OFF
 Segments: 1
 Target: UNSPECIFIED

 Accelerator Information

 Accelerated Execution: ENABLED
 Optimization: PROCDEBUG
 Global Options: ATOMIC_OFF, INHERITSCC_OFF, OVTRAP_ON,
 SAFEALIASINGRULES_OFF, TRUNCATEINDEXING_ON
 Timestamp: 1992-08-13 18:29:17.52
 Version: 1992-02-25 10:18:32.46

-DEMO-INFO OBJECT
Program Object File: \FOLK.$LORE.EXAMPLE.DEMO

 General Information

 NLD Timestamp: 1995-08-11 14:27:01.00
 Debugger: DEBUG
 Process Subtype: 0
 Program File Segment: 0 WORDS
 Highrequesters: OFF
 Runnamed: OFF
 Highpin: OFF
 Saveabend: OFF

Inspect Manual—429164-006
6-113

High-Level Inspect Commands INFO OPENS
3. This example illustrates the information the INFO OBJECTFILE command
presents for a TNS/R program using SRLs.

INFO OPENS
The INFO OPENS command shows the status of files that have been opened by the
current program. Although all opened files contain a Guardian file number, you can
refer to opened OSS files using OSS concepts and terminology.

-DEMO-INFO OBJECT
Program Object File: \FOLK.$LORE.EXAMPLE.DEMO

 General Information

 NLD Timestamp: 1995-08-11 14:27:01.00
 Debugger: DEBUG
 Process Subtype: 0
 Program File Segment: 0 WORDS
 Highrequesters: OFF
 Runnamed: OFF
 Highpin: OFF
 Saveabend: OFF
 SRLs Used: ZCRTLSRL
 ZCRESRL

 Library Object File: \FOLK.$SYSTEM.SYS01.ZCRESRL

 General Information

 NLD Timestamp: 1995-10-16 10:33:41.00
 Debugger: DEBUG
 Process Subtype: 0
 Program File Segment: 0 WORDS
 Highrequesters: OFF
 Highpin: ON
 Saveabend: OFF
 SRL Name: ZCRESRL

 Library Object File: \FOLK.$SYSTEM.SYS01.ZCRTLSRL

 General Information

 NLD Timestamp: 1995-10-19 13:39:13.00
 Debugger: DEBUG
 Process Subtype: 0
 Program File Segment: 0 WORDS
 Highrequesters: OFF
 Runnamed: OFF
 Highpin: ON
 Saveabend: OFF
 SRL Name: ZCRTLSRL
 SRLs Used: ZCRESRL
 ZI18NSRL
 ZOSSKSRL
 ZICNVSRL

Note. The INFO OPENS command is invalid for PATHWAY requester programs.
Inspect Manual—429164-006
6-114

High-Level Inspect Commands INFO OPENS
*

requests the status of all files opened by the current program.

file-list

requests the status of specific files. file-list is a list of file numbers identifying
the desired files.

file-number

specifies a single file. file-number can be:

A COBOL FD name
An expression that evaluates to an integer value
A data location identifying an integer value

Inspect interprets the integer values as file-system file numbers, unless you
specify the F clause; Inspect would then interpret the values as FORTRAN
logical-unit numbers. If a FD clause is used, Inspect interprets the values as
OSS file descriptors.

DETAIL

directs Inspect to display the maximum available information for the specified files.

file-type

indicates to Inspect what type of file to display. file-type can be one of the
following:

FORTRAN

indicates that file-number values specify FORTRAN logical-unit numbers, not
file system file numbers. Files without FORTRAN logical units will not be
displayed.

INFO OPENS [{ * | file-list } [DETAIL] [file-type]]

file-list

 file-number [, file-number]...

file-type: one of

 FORTRAN FD GUARDIAN
Inspect Manual—429164-006
6-115

High-Level Inspect Commands Default Values
FD

indicates that file-number values specify OSS file descriptors. Files without
OSS file descriptors will not be displayed.

GUARDIAN

indicates that file-number values specify Guardian system file numbers.
Files without Guardian file system numbers will not be displayed.

Default Values

 The default file type is Guardian file system numbers.

 If you enter the INFO OPENS command without parameters, Inspect displays the
Guardian file number, physical file name, and last error of all files opened by the
current program.

Usage Considerations

 Open File Information

INFO OPENS displays these information:

 The file-system file number (as returned by the OPEN system procedure)

 The physical file name

 The file-system error number associated with the last operation on the file

 The fields of the INFO OPENS command DETAIL clause

This table describes information Inspect displays for the INFO OPENS command,
DETAIL clause.

DETAIL Field Name Field Description (page 1 of 2)

FILE NUMBER File number of the opened file.

LAST ERROR Error of last operation on file.

NAME Name of file.

PRE-D00 MSGS ($RECEIVE only) reading C-series format messages or D-
series format.

DEVICE TYPE Device type of the device associated with the file.

OPEN FLAGS Flags used to open the file with.

REQUESTS OUT Type of the oldest outstanding nowaited operation.

LOG DEV Logical device number of the device where the file resides.

FILE CODE File code of file.

CUR REC Current record pointer.

PEXT SIZE Primary extent size.

NEXT REC Next record pointer.
Inspect Manual—429164-006
6-116

High-Level Inspect Commands Usage Considerations
For more information, see the description of FILEINFO in Guardian Procedure
Calls Reference Manual.

 Using the DETAIL clause

When you use the DETAIL clause, Inspect displays system message information
indicating whether $RECEIVE is reading C-series format messages or D-series
format messages.

 Most Recent File Accessed

If you enter the INFO OPENS command with a file-number of -1, Inspect reports
the file-system error number for the last CREATE, PURGE, or OPEN.

 Shared Files

Because the Common Run-Time Environment (CRE) provides multiple
connections to a single open of a file, the INFO OPENS command shows only one
open for each standard file, regardless of how many connections the CRE had
granted for the file. If none of the routines have the standard file open, the file
does not appear in the file list displayed by Inspect.

 Unnamed File Types

OSS pipes and temporary files (files created using tmpfile()) do not have a name.
Inspect will display the text “<<unknown >“ as the name for these types of files.

 OSS pathnames

Inspect will display the OSS pathname for all OSS opens that have a name, even if
a Guardian file system number was specified.

SEXT SIZE Secondary extent size.

EOF Relative byte address of the end-of-file location.

LAST MODIFIED Time the file was last modified.

DETAIL Field Name Field Description (page 2 of 2)
Inspect Manual—429164-006
6-117

High-Level Inspect Commands Output
Output

The DETAIL clause of the INFO OPENS command produces output of this form for
OSS file descriptors.

Examples

1. This example lists the information for each open Guardian file. By default, the
INFO OPENS command lists information for all open Guardian files.

Descriptor: integer
Number: integer
Name: pathname

 OSS File Information

 File Type: file-type
 Last Error: integer
 Close on Exec: ON | OFF

 OSS Disk File Information

 Serial Number: double
 Device ID: double
 RDev: double
 Link Count: integer
 UID: uid
 GID: gid
 End of file: double
 Access Timestamp: timestamp
 Change Timestamp: timestamp

Note. The detailed output for OSS files will be slightly different depending on whether
Guardian file numbers or OSS file descriptors are specified. If Guardian file numbers are
specified, then the list of OSS file descriptors that correspond to this file will be displayed. If
OSS file descriptors are specified, then the Guardian file number that corresponds to this file
will be displayed. In addition, lines bracketed with [] might not be listed for some file types
(such as non-disk files) or when examining pre-D20 save files.

-I001OBF0-INFO OPEN *
File Last
Number Filename Error
 1 \CUBS.$BOB.QAT9252I.NEW 0
 2 \CUBS.$BOB.QAT9252I.NEW 0
 3 \CUBS.$BOB.QAT9252I.I000DAT0 0
Inspect Manual—429164-006
6-118

High-Level Inspect Commands Examples
2. For FORTRAN programs where logical units have been defined, the F clause lists
information for all defined logical units. Logical units followed by “Not Assigned”
have not been assigned a Guardian file number.

3. This example shows INFO OPENS output for a disk file. Information is organized
into two sections with general information listed first followed by information
specific to that disk file. The true value of items listed mnemonically is listed
parenthetically. Also note that the current record pointer indicates where you are
currently in the file.

4. This example shows Inspect’s display for the INFO OPENS command without the
DETAIL, F, or FD clause. Note that Guardian file numbers 1,2, and 3 have an OSS
pathname, instead of their equivalent Guardian file names.

-I001OBF0-INFO OPEN * f
Logical File Last
Unit Number Filename Error
 0 Not Assigned
 1 1 \CUBS.$BOB.QAT9252I.NEW 0
 2 2 \CUBS.$BOB.QAT9252I.NEW 0
 3 Not Assigned
 4 \CUBS.$ZTNT.#PTY23
 5 \CUBS.$ZTNT.#PTY23
 6 \CUBS.$ZTNT.#PTY23
 7 Not Assigned
 8 Not Assigned
 9 \CUBS.$BOB
 10 3 \CUBS.$BOB.QAT9252I.I000DAT0 0

-I001OBF0-INFO OPEN 1, dNumber: 1Name: \CUBS.$BOB.QAT9252I.NEW
General File Information Device Type: 3
Device Subtype: 18 File Type: UNSTRUCTURED (0)
Last Error: 0 Logical Device Number: 35 Open
Access: READ-WRITE (0) Open Exclusion: SHARED (0)
Open NOWAIT Depth: 0 Open Options: %0 Open
Sync Depth: 0 Outstanding Requests: 0 Physical Record
Length: 4096 Bytes Disk File Information
Block Length: 0 Bytes End of file: 264 Bytes
Current Record Pointer: 132 Extent Size: 2 Pages, 2 Pages
Flags: AUDITED, DEMOUNTABLE, WRITE-THRU File Code: 0
Logical Record Length: 0 Bytes Maximum Extents: 0
Modification Timestamp: 1993-06-03 11:19:18.870.999 Next Record
Pointer: 264 Partitions: 0

-PROGRAM-INFO OPENS *
 #1 /dev/tty0 #0000
 #2 /dev/tty1 #0000
 #3 /usr/src/file.c #0000
 #4 \CUBS.$ERROR.SUBVOL.FILE1 #0000
Inspect Manual—429164-006
6-119

High-Level Inspect Commands INFO SAVEFILE
5. Using the previous example, the following output illustrates what the INFO OPENS
command displays when the FD clause is used. Only files that have an OSS file
descriptor associated with them are displayed.

INFO SAVEFILE
The INFO SAVEFILE command displays information about the save file for the current
program (if any) or a specified save file.

filename

is the name of a save file. Depending on the current systype of Inspect, filename
may be either a Guardian filename or an OSS pathname.

Usage Considerations

 When a process with its SAVEABEND attribute set terminates abnormally, DMON
automatically creates a save file in the volume and subvolume containing the
program file. The save file that DMON creates has a file code of 130 and a name
of the form ZZSAdddd, where dddd is a number chosen by DMON.

 This command is useful for determining why a save file was created and the
program and library file information associated with a save file.

 Inspect need not be debugging a program to use the FILE clause form of this
command.

 INFO SAVEFILE cannot read TNS/E native snapshot files. If you enter an INFO
SAVEFILE command and specify a TNS/E native snapshot, an error message is
displayed: “Inspect cannot read TNS/E snapshot files.”

Related Commands

 INFO OBJECTFILE on page 6-111

 LIST PROGRAM on page 6-137

 SAVE on page 6-160

-test4-INFO OPENS * FD
File File Last
 Descriptor Number Filename Error
 0 4 /G/ztnt/#pty0025 0
 1 5 /G/ztnt/#pty0025 0
 2 6 /G/ztnt/#pty0025 0
 3 1 /usr/morris/test1.c 0

INFO SAVEFILE [FILE filename]
Inspect Manual—429164-006
6-120

High-Level Inspect Commands Output
Output

The INFO SAVEFILE command produces output of this form:

family is one of:

TNS
TNS/R

processor is one of:

TNSII
TXP
VLX
CLX
Cyclone
NSR-L
NSR-N

 Fields listed in square brackets are only listed when appropriate.

 Information about the cause of save file creation is only listed for C30 or later
versions of save files.

 Truncated file information is listed when it was not possible to save information
about all open files in the save file.

 Truncated segment information is listed when it was not possible to save
information about all data segments in the save file.

 The Processor field is only listed for versions of save files in which this information
is stored (C30 or later).

 Library information will be repeated for each library used by the process. Items
marked with “*1” are mutually exclusive (only one will be displayed) and will only

Save File: savefile name

[Cause: COMMAND | ABEND | SIGNAL]
 Creator: CRUNCH | DMON | INSPECT
 Creation Timestamp: timestamp
 Creator's User ID: userid
 Guardian Version: Lnn
[Trap Number: integer] *1
[Signal Number: integer] *1
[Wait Status: integer] *2
 Processor: family
 Program File: filename
 Program Binder Timestamp: timestamp
 Program Modification Timestamp: timestamp
 System: name (number)
[Truncated File Info: YES]
[Truncated Segment Info: YES]

[Library Information]
[Library File: filename]
[Library Binder Timestamp: timestamp]
[Library Modification Timestamp: timestamp]
Inspect Manual—429164-006
6-121

High-Level Inspect Commands Example
be displayed if the process terminated due to a trap (or signal if a native process),
and items marked with “*2” are for OSS processes only.

Example

An example of information the INFO SAVEFILE command produces is:

INFO SCOPE
The INFO SCOPE command displays information about a given scope unit in the
current program, including the optimization level a TNR/S native program was
compiled with.

-DEMO-INFO SAVEFILE
Save File: \FOLK.$LORE.HELP.DEMOS
 Cause: COMMAND
 Creator: INSPECT
 Creation Timestamp: 1995-11-12 22:46:58.269.416
 Creator's User ID: SUPER.SUPER (255,255)
 Guardian 90 Version: D40
 Processor: TNS/R (NSR-L)
 Program File: \FOLK.$LORE.EXAMPLE.DEMO
 Program Link Timestamp: 1995-08-11 14:27:01.000.000
 Program Modification Timestamp: 1995-08-11 14:25:41.048.850
 System: \FOLK (241)

 Library InformationFile:

 \FOLK.$SYSTEM.SYS01.ZCRESRL
 Link Timestamp: 1995-10-16 10:33:41.000.000
 Modification Timestamp: 1995-10-16 10:33:49.530.000

 File: \FOLK.$SYSTEM.SYS01.ZCRTLSRL
 Link Timestamp: 1995-10-19 13:39:13.000.000
 Modification Timestamp: 1995-10-23 22:43:11.030.000

File: \FOLK.$SYSTEM.SYS01.ZOSSKSRL
 Link Timestamp: 1995-10-19 11:20:36.000.000
 Modification Timestamp: 1995-10-19 11:20:40.150.000

 File: \FOLK.$SYSTEM.SYS01.ZI18NSRL
 Link Timestamp: 1995-10-16 21:01:17.000.000
 Modification Timestamp: 1995-10-18 08:22:55.850.000

 File: \FOLK.$SYSTEM.SYS01.ZICNVSRL
 Link Timestamp: 1995-10-16 10:06:42.000.000
 Modification Timestamp: 1995-10-18 08:15:38.150.000

Note. The INFO SCOP command is invalid for PATHWAY requester programs.
Inspect Manual—429164-006
6-122

High-Level Inspect Commands Default Value
scope-spec

specifies the scope unit you want.

scope-number

specifies a scope unit by its scope number as displayed by the TRACE
command.

scope-path

specifies a scope unit by name. INFO SCOPE displays information about the
last scope unit specified in the scope path.

#data-block

specifies a named data block as the scope unit.

##GLOBAL

specifies the implicitly named global data block in TAL as the scope unit.

Default Value

If you enter INFO SCOPE alone, Inspect displays information about the scope unit
denoted by the current scope path.

Related Commands

 ADD PROGRAM on page 6-10

 ADD SOURCE ASSIGN on page 6-14

 LIST PROGRAM on page 6-137

 MATCH with the SCOPE option on page 6-144

 SET RADIX on page 6-181

 TRACE on page 6-219

INFO SCOPE [scope-spec]

scope-spec: one of

 scope-number
 scope-path
 #data-block
 ##GLOBAL
Inspect Manual—429164-006
6-123

High-Level Inspect Commands Output
Output

The INFO SCOPE command produces output of this form:

Items labelled with “*1” are only present for native code scopes.

Examples

1. This example shows what information the INFO SCOPE command presents for a
code block:

Note that base, entry, and length are shown in the current output radix.

2. This example shows what information the INFO SCOPE command presents for a
data block:

Scope Name: name
Source File: file
Modification timestamp: timestamp
Compilation timestamp: timestamp
Language: lang
Type: CODE
Base: integer
Entry: integer
Length: integer words
[Optimization level: integer] *1

-PROGRAM-INFO SCOPE #MAIN1A
Scope Name: MAIN1A
Source file: \SYS.$DATA1.TALSUBV.A001TAL0
Modification timestamp: 1987-02-27 18:05:28.87
Compilation timestamp: 1992-10-23 17:12:26.580.000
Language: TAL
Type: CODE
Base: 2744
Entry: 3277
Length: 2594 words
Attributes: MAIN

-PROGRAM-INFO SCOPE #m0
Scope Name: M0
Compilation timestamp: 1992-10-23 17:12:26.580.000
Language: TAL
Type: DATA
Location: G+90
Size: 30 bytes
Inspect Manual—429164-006
6-124

High-Level Inspect Commands INFO SEGMENTS
3. This example illustrates the information presented by the INFO SCOPE command
for a TNS/R native program at optimization level zero.

4. This example illustrates the information presented by the INFO SCOPE command
for a TNS/R native program at optimization level two.

INFO SEGMENTS

The INFO SEGMENTS command displays information about the
extended segments allocated for or by the current program.

*

requests information for all segments the current program has allocated.

segment-id

is a 16-bit integer.

-DEMO-INFO SCOPE
Scope Name: main
Source file: \FOLK.$LORE.EXAMPLE.DEMO
Compilation timestamp: 1995-08-11 14:19:18.000.000
Language: C
Type: CODE
Base: 939524552
Entry: 939524552
Length: 40 words
Optimization Level: 0

-OPT2SCOP-INFO SCOPE
Scope Name: OPT2SCOP
Source file: \FOLK.$LORE.EXAMPLE.OPT2SCOP
Modification timestamp: 1995-11-12 23:18:31.00
Compilation timestamp: 1995-11-12 23:19:09.000.000
Language: TAL
Type: CODE
Base: 939524552
Entry: 939524552
Length: 114 words
Attributes: MAIN
Optimization Level: 2
** Inspect warning 397 ** Optimization level for scope OPT2 is not supported
by Inspect

INFO SEGMENT[S] [* | segment-id] [[,] DETAIL]

segment-id: one of

 integer
 data-location
Inspect Manual—429164-006
6-125

High-Level Inspect Commands Default Value
Default Value

If you enter INFO SEGMENTS alone, Inspect displays information on segments the
process has allocated.

Usage Considerations

 Segment Information

When Inspect displays segment information, it uses this format:

The description field describes the type of the extended segment: user defined,
language defined, or one of the reserved system segments.

The type field indicates the type of the segment (CODE or DATA) and any special
attributes of the segment. Possible attributes are:

EXTENSIBLE
READONLY
RESIDENT
SHARED num-users

If all attributes will not fit in the field on one line, some are printed on the following
line.

 Warnings and Errors

If no segments are allocated, Inspect displays the warning:

If a specified segment is not allocated, Inspect displays the warning:

Related Command

SELECT SEGMENT

Output

This output template illustrates the information the INFO SEGMENT command
displays without the DETAIL clause.

Seg ID Length Description Type Swap File
 nnnn nnnnnnnn xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx

** Inspect warning 239 ** No segments are allocated

** Inspect warning 40 ** Segment not allocated

Seg ID Length Description Type Swap File
 nnnn nnnnn <text> <type> <volume>
Inspect Manual—429164-006
6-126

High-Level Inspect Commands Example
This template shows the information displayed using the DETAIL clause.

Example

This example shows the information that INFO SEGMENTS presents. The “*”
annotates the current segment in use by the program and the “>“ indicates the current
segment selected for viewing by Inspect. If the current user segment and the current
Inspect segment are the same, only the “*” annotation will be used.

INFO SIGNALS
The INFO SIGNALS command displays signal information for the current program.

The INFO SIGNALS command displays signal information for the current program.

*

requests the status of all signals of the current program.

signal-id

requests the status of a specific signal, one of:

 SIGABRT SIGALRM SIGFPE
 SIGHUP SIGILL SIGINT
 SIGIO SIGKILL SIGPIPE
 SIGQUIT SIGRECV SIGSEGV
 SIGTERM SIGUSR1 SIGUSR2
 SIGCHLD SIGCONT SIGSTOP

Segment ID: nnnn (text description)

 Base: double
 Current Length: double
 Description: text
[Flags: [[EXTENSIBLE] [RESIDENT] [READONLY] [SHARED]]
 Limit: double
[Swap File: filename]
 Type: DATA | CODE

-PROGRAM-INFO SEGMENTS
Seg ID Length Description Type Swap File
* 1 500000 User defined CODE READONLY
\SHARK.$TOOLS.TDM.SWAP
 SHARED 12
> 1024 1200000 Compiler defined DATA EXTENSIBLE \SHARK.$SYSTEM.#4343

INFO SIGNAL[S] [* | signal-id [, signal-id...]]
 [[,] DETAIL]

INFO SIGNAL[S] [* | signal-id [, signal-id...]]
 [[,] DETAIL]
Inspect Manual—429164-006
6-127

High-Level Inspect Commands Default Value
 SIGTSTP SIGTTIN SIGTTOU
 SIGABEND SIGLIMIT SIGSTK
 SIGMEMMGR SIGNOMEM SIGMEMERR
 SIGTIMEOUT

Default Value

If you enter INFO SIGNALS alone, Inspect displays information on all the signals of the
current program.

Output

This output illustrates the information displayed using the DETAIL clause.

Example

This example shows the information that the INFO SIGNAL command displays without
the DETAIL clause. Information for each signal is split across two lines.

KEY
The KEY command adds a function-key definition or displays one or all function-key
definitions in the function-key list for the current Inspect session. The KEY command
is synonym for the ADD KEY and LIST KEY commands.

 Signal: signal-id
 Handler: SIG_DFL | SIG_IGN | SIG_DEBUG | #function-name
 Mask: NONE | signal-id [, signal-id ...]
 Flags: flags-word

-ETEST-INFO SIGNAL SIGFPE
Signal
 Handler Mask Flags
SIGFPE(8)
 CRE_TRAP_HANDLER_ (0 0 0 0) 0

KEY[S] [key-name [[=] replacement-string]]

key-name: one of

 F1 F2 F3 F4 F5 F6 F7 F8
 F9 F10 F11 F12 F13 F14 F15 F16
 SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
 SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16

replacement string: one of:

 " [character] "
 ' [character] '
Inspect Manual—429164-006
6-128

High-Level Inspect Commands Default Values
key-name

specifies the function key for which you want to provide or display a definition.
Valid function keys include F1 through F16 and shifted F1 (SF1) through shifted
F16 (SF16).

replacement string

specifies the replacement string to associate with the given function key. The
replacement string is a group of zero or more characters enclosed in either quotes
(") or apostrophes ('). To include a quote in a quote-delimited replacement string,
use a pair of quotes. Likewise, to include an apostrophe in an apostrophe-delimited
replacement string, use a pair of apostrophes.

Default Values

 If you do not specify a key-name nor a replacement-string, KEY displays all
function-key definitions.

 If you specify a key-name but not a replacement-string, KEY displays the function-
key definition for key-name.

Usage Consideration

If you specify key-name and replacement-string, KEY adds a function-key definition for
key-name.

Related Commands

 ADD KEY on page 6-9

 DELETE KEY on page 6-30

 FK on page 6-90

 LIST KEY on page 6-136

LIST
The LIST command displays the contents either of the history buffer or of one of the
lists that Inspect maintains.

This diagram shows the complete syntax for the LIST command and its clauses.
Detailed descriptions of the clauses, including usage considerations and examples, are
presented in the following subsections.

LIST list-spec

 list-spec: one of
Inspect Manual—429164-006
6-129

High-Level Inspect Commands Usage Consideration
Usage Consideration

The AS COMMANDS clause directs LIST to display a list as executable Inspect
commands; for example:

If you use the AS COMMANDS clause with the OUT clause, you can create a
command file. You can then incorporate this file in an OBEY file or the INSPLOCL or
INSPCSTM customization files; for example:

Note that if the file already exists, output will be appended to it rather than overriding
existing data.

Related Commands

 ADD on page 6-6

 DELETE on page 6-29

 SELECT on page 6-164

 ALIAS[ES] [alias-name] [AS COMMAND[S]]
 BREAKPOINT[S] [breakpoint-number | *] [options]
 HISTORY [command-range] [AS COMMAND[S]]
 KEY[S] [key-name] [AS COMMAND[S]]
 PROGRAM[S] [program | *] [[,] DETAIL]
 SOURCE ASSIGN[S] [AS COMMAND[S]]
 SOURCE OPEN[S]

options: one of

 [[,] DETAIL] | [AS COMMAND[S]]

key-name: one of

 F1 F2 F3 F4 F5 F6 F7 F8
 F9 F10 F11 F12 F13 F14 F15 F16
 SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
 SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16

program: one of

 program-number
 program-name

-PRG-LIST ALIASES AS COMMANDS
ADD ALIAS SHOWVARS = "DISPLAY height, width, depth"
ADD ALIAS WATCHVARS = "DISPLAY height, width, depth; RESUME"

-PRG-LIST /OUT alias/ ALIASES AS COMMANDS
Inspect Manual—429164-006
6-130

High-Level Inspect Commands LIST ALIAS
LIST ALIAS
The LIST ALIAS command displays either one or all aliases from the alias list for the
current Inspect session.

alias-name

specifies the name of a previously defined alias.

AS COMMAND[S]

directs LIST ALIAS to display each alias definition as an ADD ALIAS command.

Default Value

If you do not specify an alias name, LIST ALIAS displays all alias definitions.

Usage Consideration

Aliases are not expanded with the LIST ALIAS command.

Related Commands

 ADD ALIAS on page 6-7

 ALIAS on page 6-17

 DELETE ALIAS on page 6-30

LIST BREAKPOINT
The LIST BREAKPOINT command displays either one or all breakpoints defined in the
current program. This command applies to breakpoints set by both Inspect and
DEBUG.

breakpoint-number

specifies the number of a previously defined breakpoint.

LIST ALIAS[ES] [alias-name] [AS COMMAND[S]]

LIST BREAKPOINT[S] [breakpoint-number | *] [options]

options: one of

 [,] DETAIL
 AS COMMAND[S]
Inspect Manual—429164-006
6-131

High-Level Inspect Commands Default Values
*

lists all breakpoints.

AS COMMAND[S]

directs LIST BREAKPOINT to display the breakpoint definition as a BREAK
command.

Default Values

 If no breakpoint number is specified, LIST BREAKPOINT displays all breakpoints
defined in the current program.

 The asterisk (*) lists information for all breakpoints.

Usage Considerations

 Data, low-level, or Debug breakpoints cannot be used in conjunction with AS
COMMANDS.

 AS COMMANDS cannot be used with DETAIL.

 When debugging accelerated programs, Debug may be used to set
breakpoints at any TNS/R code address. As example 4 illustrates, such
breakpoints are listed by printing TNS/R followed by the address in hex.

 When listing all breakpoints with the AS COMMANDS option, breakpoints that
were not set in the current Inspect session are not listed. When using this
option to list a specific breakpoint, the following error is reported if the
breakpoint was not set in the current Inspect session:

Related Commands

 BREAK on page 6-19

 CLEAR on page 6-27

 SELECT DEBUGGER DEBUG on page 6-165

** Inspect error 350 ** Breakpoint was not set in this INSPECT session
Inspect Manual—429164-006
6-132

High-Level Inspect Commands Output
Output

The DETAIL clause results in the following output format:

The notes indicate:

(1) Listed only for Inspect breakpoints with EVERY clause; every-count only
shown if less than every-limit.

(2) Listed only for Inspect conditional breakpoints.

(3) Listed only for Inspect breakpoints.

(4) Listed only for Debug breakpoints; options is a comma-separated list of PRIV,
CONDITIONAL, and ALL.

(5) Listed only for temporary Inspect breakpoints.

(6) Listed only for Inspect breakpoints with a THEN action.

(7) Listed only for Inspect breakpoints of type data.

Output from IF, Input Text, Location, and THEN can exceed one line. Data output is
limited to a maximum of 512 characters. If there are more than 512 characters, the
output will be truncated. For all the fields that can exceed one line, excess output will
wrap as a hanging right paragraph, with line breaks indiscriminate with regard to data.

Examples

1. This is an example of possible LIST BREAKPOINT output:

Breakpoint Number: number

 Debugger: Debug | Inspect
[EVERY: Every-limit [(every-count)]] (1)
[IF: condition] (2)
[Input text: command line following BREAK] (3)
 Location: location
[Option: options | None] (4)
[TEMP: temp-remaining] (5)
[THEN: THEN action] (6)
 Type: Code | Data | ABEND | STOP
[Subtype: R/W | Write | Change] (7)

Num Type Subtype Location
 1 Data Access Byte Address %12 "DATA1"
 2 Data Access Byte Address %14 "DATA2"
 3 Data Access Byte Address %16 "DATA3"
Inspect Manual—429164-006
6-133

High-Level Inspect Commands Examples
2. This illustrates the default output of the LIST BREAKPOINT command. Note that
data breakpoints have a subtype, which is one of: Change, Write, or R/W
(Read/Write):

3. This illustrates detailed output for LIST BREAKPOINT DETAIL:

4. This illustrates a TNS/R breakpoint set by Debug:

5. This illustrates LIST BREAKPOINT DETAIL output for all breakpoints:

-PROGSC-LIST BREAKPOINT
Num Type Subtype Location
 1 Code #ER^FATAL.#590
 2 Code #ST^UNIT^HEADER.#4980 IF UNIT^OFFSET = 523222 THEN " t 1 arg"
 3 Data Change Byte Address %1562 "CURRENT^PROGRAM^N"
 4 Code #VA^BUILD^ADDRESS.#2012 EVERY 5

-PROGSC-LIST BREAKPOINT 3 DETAIL
Breakpoint Number: 3

 Debugger: INSPECT
 Input text: CURRENT^PROGRAM^N
 Location: Byte Address %1562 "CURRENT^PROGRAM^N"
 Type: Data
 Subtype: Change

-PTALIN-LIST BREAKPOINT
Num Type Subtype Location
 1 Code DEBUG TNS/R %h704201D0

-PROGSC-LIST BREAKPOINT * DETAIL
Breakpoint Number: 1

 Debugger: INSPECT
 Input text: #ER^FATAL
 Location: #ER^FATAL.#590
 Type: Code

Breakpoint Number: 2

 Debugger: INSPECT
 IF: UNIT^OFFSET = 523222
 Input text: #ST^UNIT^HEADER IF UNIT^OFFSET = 523222 THEN " t 1 arg"
 Location: #ST^UNIT^HEADER.#4980
 THEN: t 1 arg
 Type: Code

Breakpoint Number: 3

 Debugger: INSPECT
 Input text: CURRENT^PROGRAM^N
 Location: Byte Address %1562 "CURRENT^PROGRAM^N"
 Type: Data
 Subtype: Change
Inspect Manual—429164-006
6-134

High-Level Inspect Commands LIST HISTORY
6. This illustrates that Inspect always shows the breakpoint conditions first, followed
by the breakpoint actions. For the two breakpoint conditions, EVERY and IF,
EVERY is always shown first. For the breakpoint actions, THEN and TEMP, THEN
is always shown first.

LIST HISTORY
The LIST HISTORY command displays either a portion of or the entire history buffer.

command-line-range

specifies a range of command lines to list.

number [/ number]

specifies the range of command-line numbers. If the number is positive, the
specified number refers to an absolute command number. If the number is
negative, the specified number is relative to the current command number.

Breakpoint Number: 4

 Debugger: INSPECT
 EVERY: 5
 Input text: #VA^BUILD^ADDRESS EVERY 5
 Location: #VA^BUILD^ADDRESS.#2012
 Type: Code

BREAK #PROC1 IF j = 17 EVERY 2 -- conditions
BREAK #PROC2 TEMP 2 THEN "DISPLAY 'Hit proc2'" -- actions
BREAK #PROC3 TEMP 2 THEN "DISPLAY 'Hit proc3'" IF j = 17 EVERY 2

Num Type Subtype Location
 1 Code #PROC1.#10(FILE) EVERY 2 IF j = 17
 2 Code #PROC2.#20(FILE) THEN "DISPLAY 'Hit proc2'" TEMP 2
 3 Code #PROC3.#30(FILE) EVERY 2 IF j = 17 THEN "DISPLAY
 'Hit proc3'" TEMP 2

LIST HISTORY [command-line-range] [AS COMMAND[S]]

command-line-range: one of

 number [/ number]
 search-text

search-text: one of
 " [character]..."
 ' [character]...'
Inspect Manual—429164-006
6-135

High-Level Inspect Commands Default Value
search-text

is the most recent command line in the history buffer that begins with the text
you specify. You need to specify only as many characters as necessary to
identify the command line uniquely.

AS COMMAND[S]

directs LIST HISTORY to display the command lines as executable Inspect
commands.

Default Value

If you do not specify a command range, LIST HISTORY displays the entire history
buffer.

Related Commands

 FC on page 6-84

 HISTORY on page 6-93

 XC on page 6-224

LIST KEY
The LIST KEY command displays either one or all function-key definitions from the
function-key list for the current Inspect session.

key-name

specifies the function key whose definition you want to list. Valid function keys
include F1 through F16 and shifted F1 (SF1) through shifted F16þ(SF16).

AS COMMAND[S]

directs LIST KEY to display the function-key definition as an ADD KEY command.

LIST KEY[S] [key-name] [AS COMMAND[S]]

key-name: one of

 F1 F2 F3 F4 F5 F6 F7 F8
 F9 F10 F11 F12 F13 F14 F15 F16
 SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
 SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16
Inspect Manual—429164-006
6-136

High-Level Inspect Commands Default Value
Default Value

If you do not specify a function key, LIST KEY displays all function-key definitions.

Related Commands

 ADD KEY on page 6-9

 DELETE KEY on page 6-30

 FK on page 6-90

 KEY on page 6-128

LIST PROGRAM
The LIST PROGRAM command displays the list of programs being debugged.

Usage Considerations

 An asterisk is displayed in front of the current program. If you are debugging a
single program, it is always the current program. If you are debugging multiple
programs, only one is the current program at any time.

 The system number is available in the DETAIL listing.

 The contents of the Type field are TNS, TNS SAVE, TNS/R, TNS/R SAVE, or
PATHWAY. For example:

 Location strings that would extend beyond the last column are broken at the last
column and listed on the next line beginning at the starting column of the Location
field.

 For PATHWAY requester programs, the PID field lists the PATHMON process
name.

LIST PROGRAM[S] [program | * [,] [DETAIL]]

program: one of:

 program-number
 program-name

-PROGRAM-LIST PROGRAM
 Program
Num Program ID Name Type State Location
 *1 13406 a.out TNS/R HOLD #main.#5
 2 5,213 DEMO TNS/R RUN #PROC.#12
Inspect Manual—429164-006
6-137

High-Level Inspect Commands Related Commands
 If no program is specified, or “*” is specified, information is listed about all
programs on the program list.

Related Commands

 ADD PROGRAM on page 6-10

 HOLD on page 6-93

 INFO OBJECTFILE on page 6-111

 INFO SAVEFILE on page 6-120

 PROGRAM on page 6-156

 SELECT PROGRAM on page 6-167

 STOP on page 6-215

Output

Use of the DETAIL clause results in the following output format:

 Fields labelled with a “*1” are listed only for OSS programs. Fields marked with a
“*2” are listed only for programs that use libraries. A program may use zero or
more libraries.

 Fields marked with a “*3” are listed only for TNS/R native programs, which can
have multiple libraries.

 The processor will be listed as “unknown” if the program is a save file that was
created prior to C30 or on D00.

 The processor will be listed as TNS/E for TNS programs on a TNS/E system.

-PROGRAM-LIST PROGRAM 1, DETAIL
Name: name
Number: number
 General Information
 CPU,PIN: cpu,pin
[OSS PID: num] *1
 Guardian Version: tos version
 Instruction Set: TNS | TNS/R
 Location: current loc
 Processor: family (processor)
 Program File: filename
[Libraries: library filename] *2
[library filename] *3
 State: HOLD | STOP | GONE | RUN
 System: name (number)
 Type: TNS [SAVE] | TNS/R [SAVE] | PATHWAY

 INSPECT Information

 ABEND Breakpoint: YES | NO
 Code Breakpoints: integer
 Data Breakpoints: integer
 Source System: None | name (number)
 STOP Breakpoint: YES | NO
Inspect Manual—429164-006
6-138

High-Level Inspect Commands Examples
 The instruction set will be listed as TNS/E for an OCA-accelerated program on a
TNS/E system.

 Location strings and program names that would extend beyond the last column are
broken at the last column and listed in the next line beginning at the starting
column of the Location field, or the Program Name field respectively.

Examples

1. This example shows the LIST PROGRAM command without the DETAIL clause.

2. This example shows output for an OSS program with the DETAIL clause.

-DEMO-LIST PROGRAM
 Program
Num Program ID Name Type State Location
 *1 09,00480 DEMO TNS/R HOLD #main.#5.301(SDEMO)
 2 09,00490 DEMO TNS/R SAVE HOLD #main.#5.301(SDEMO)

-PROGRAM-LIST PROGRAM 1, DETAIL
Name: a.out
Number: 1
 General Information

 CPU,PIN: 8,160
 OSS PID: 13406
 GUARDIAN Version: D2
 Instruction Set: TNS/R
 Location: #main.#5
 Program: /usr/people/paul/bin/a.out
 Libraries: /usr/lib/libc.a
 /usr/lib/libil8n.c
 State: HOLD
 System: \CUBS (175)
 Type: TNS/R

 INSPECT Information

 ABEND Breakpoint: NO
 Code Breakpoints: 1
 Data Breakpoints: 0
 Source System: None
 STOP Breakpoint: NO

Inspect Manual—429164-006
6-139

High-Level Inspect Commands Examples
3. This example shows for a savefile of a TNS/R native program.

4. This example shows the DETAIL program listing for an accelerated TNS object file
on a TNS/R system.

-DEMO-LIST PROGRAM 1, DETAIL
Name: DEMO
Number: 1
 General Information

 Accelerated: NO
 CPU,PIN: 2,33
 GUARDIAN Version: D40
 Instruction Set: TNS/R
 Location: #main.#5.301(SDEMO)
 Processor: TNS/R (NSR-L)
 Program: \FOLK.$LORE.EXAMPLE.DEMO
 Library: \FOLK.$SYSTEM.SYS01.ZCRESRL
 Library: \FOLK.$SYSTEM.SYS01.ZCRTLSRL
 Library: \FOLK.$SYSTEM.SYS01.ZOSSKSRL
 Library: \FOLK.$SYSTEM.SYS01.ZI18NSRL
 Library: \FOLK.$SYSTEM.SYS01.ZICNVSRL
 State: HOLD
 System: \FOLK (241)
 Type: TNS/R SAVE

 INSPECT Information

 Save File: \FOLK.$LORE.HELP.DEMOS
 Source System: None

-CCLR-LIST PROGRAM CCLR DETAIL
Name: CCLR
Number: 1
 General Information

 Accelerated: YES
 Accelerated State: Register-exact
 CPU,PIN: 5,10
 GUARDIAN Version: G06
 Instruction Set: TNS/R
 Location: #CCL.#700(UMCCL)
 Processor: TNS/R (NSR-Y)
 Program: \SPEEDY.$SPIFF.TESTS.CCLR
 State: HOLD
 System: \SPEEDY (72)
 Type: TNS

 INSPECT Information

 ABEND Breakpoint: NO
 Code Breakpoints: 0
 Data Breakpoints: 0
 Source System: None
 STOP Breakpoint: NO
-CCLR-
Inspect Manual—429164-006
6-140

High-Level Inspect Commands LIST SOURCE ASSIGN
5. This example shows the DETAIL listing for an accelerated TNS object file on a
TNS/E system. In this example, the program shown in the previous example has
been processed by the TNS Object Code Accelerator (OCA).

LIST SOURCE ASSIGN
The LIST SOURCE ASSIGN command displays the source assignments from the
source-assignment list for the current Inspect session.

AS COMMAND[S]

directs LIST SOURCE ASSIGN to display the source assignments as ADD
SOURCE ASSIGN commands.

Related Commands

 ADD SOURCE ASSIGN on page 6-14

 DELETE SOURCE ASSIGN on page 6-31

 SOURCE ASSIGN on page 6-202

-CCLE-LIST PROGRAM CCLE DETAIL
Name: CCLE
Number: 1
 General Information

 Accelerated: YES
 Accelerated State: Register-exact
 CPU,PIN: 5,7
 GUARDIAN Version: H06
 Instruction Set: TNS/E
 Location: #CCL.#700(UMCCL)
 Processor: TNS/E (NSE-P)
 Program: \PIPPIN.$D0117.KRIS.CCLE
 State: HOLD
 System: \PIPPIN (22)
 Type: TNS

 INSPECT Information

 ABEND Breakpoint: NO
 Code Breakpoints: 0
 Data Breakpoints: 0
 Source System: None
 STOP Breakpoint: NO
-CCLE-

LIST SOURCE ASSIGN[S] [AS COMMAND[S]]
Inspect Manual—429164-006
6-141

High-Level Inspect Commands LIST SOURCE OPEN
LIST SOURCE OPEN
The LIST SOURCE OPEN command displays the names of the files that are currently
open as a result of previous SOURCE commands.

Related Commands

 DELETE SOURCE OPEN on page 6-32

 SOURCE on page 6-196

 SOURCE OPEN on page 6-208

LOG
The LOG command records the session input, output, or both input and output in a
permanent file.

BOTH

records both input commands and output response into the log file.

INPUT

records input commands to a log file.

OUTPUT

records output results from commands.

file-name

identifies a file to receive the copy of commands and output. If the file does not
exist, a disk file is created with the name file-name.

Usage Considerations

 Logging is initiated when the command specifies a file name. If logging is already
in progress, Inspect closes the previous LOG file and begins logging to the new
file, unless the new file is the same as the previous LOG file. Inspect then ignores
the LOG command.

 The file you specify can be a printer or a spooler collector.

LIST SOURCE OPEN[S]

LOG { [BOTH | INPUT | OUTPUT] TO file-name }
 { STOP }
Inspect Manual—429164-006
6-142

High-Level Inspect Commands Related Commands
 The current log file is closed and all logging is stopped when the LOG STOP
command is entered or the current Inspect session is terminated.

 Inspect qualifies the log file using the current volume and subvolume if Inspect’s
systype is Guardian, otherwise, Inspect will qualify the file name using the current
OSS directory.

 If a disk file is specified, and the file does not exist, Inspect will create a file (EDIT
file if it is a Guardian systype, or a newline-terminated text file if it is an OSS
systype). If the file already exists, Inspect appends the output to the file.

Related Commands

 ENV on page 6-81

 SYSTEM on page 6-217

 VOLUME on page 6-223

LOW
The LOW command switches Inspect from high-level command mode to low-level
command mode. Section 7, Low-Level Inspect describes the low-level Inspect
commands.

Usage Considerations

 Automatic Command Mode Selection

When Inspect receives a debug event, it sets the command mode to high-level or
low-level, depending on the existence of symbol information for the scope unit in
which the event occurred. When a symbol table is present, Inspect selects high-
level mode; otherwise, it selects low-level mode.

 High-level Command Availability

While in low-level, most high-level commands are available; however,
abbreviations for high-level commands cannot be used while in low-level.

Usage Consideration for TNS/R Programs

 The usefulness of debugging accelerated programs at the TNS machine level is
extremely limited. For more information, see Section 16, Using Inspect With
Accelerated Programs on TNS/R Systems.

Note. The LOW command is invalid for PATHWAY requester programs.

LOW
Inspect Manual—429164-006
6-143

High-Level Inspect Commands Related Commands
 Low-level Inspect is not supported for native programs. Use the SELECT
DEBUGGER DEBUG command for TNS/R machine-level debugging.

Related Commands

 HIGH (low-level command)

 SELECT DEBUGGER DEBUG on page 6-165

MATCH
The MATCH command searches for scope-unit names or other identifiers in the current
program.

SCOPE pattern

directs Inspect to search the current program for scope-unit names that match the
pattern you provide. The pattern must be at least one character long, and it can
contain the wild-card characters ? and *. A question mark matches any single
character; an asterisk matches any number of characters, including zero.

IDENTIFIER pattern [SCOPE scope-spec]

directs Inspect to search for identifiers that match the pattern you provide. The
pattern must be at least one character long, and it can contain the wild-card
characters ? and *. A question mark matches any single character; an asterisk
matches any number of characters, including zero.

SCOPE scope-spec

limits the identifier search to a single scope unit. You can specify the scope unit by
its scope number (as shown by the TRACE command) or by its scope path.

If you omit this clause, Inspect first searches the current scope unit, then all
containing scope units, and finally all global scope units.

VERBOSE

displays each scope searched, and any matching symbol.

MATCH { SCOPE pattern }
 { IDENTIFIER pattern [[,] SCOPE scope-spec | [,VERBOSE]]}

scope-spec: one of

 scope-ordinal
 scope-path
Inspect Manual—429164-006
6-144

High-Level Inspect Commands Default Values
Default Values

 If the MATCH IDENTIFIER command is entered with only one pattern, Inspect will
display only the matching symbols, and the scopes they were found in.

 If the VERBOSE clause is omitted, scope names are displayed only if they have a
matching pattern.

Usage Considerations

 Matching Uppercase and Lowercase Letters

The MATCH command does not distinguish between uppercase and lowercase
letters in the pattern unless the current language is C.

 Alias Restrictions with the MATCH command

Aliases are not be expanded in the pattern with the MATCH IDENTIFIER or the
MATCH SCOPE commands.

 Matching Scopes With a Leading “#”

You must include a “#” to match scopes which have a leading “#”. For example, to
match the scope, “#global”, enter:

Related Commands

 INFO IDENTIFIER on page 105

 INFO SCOPE on page 6-122

Examples

1. This example searches for scope-unit names that begin with the characters IO^:

MATCH SCOPE ##global

-TALOGJ-MATCH SCOPE io^*
Program Code:
IO^CLOSE
IO^OPEN
IO^READ
IO^WRITE
Program Data:
IO^DATA
Inspect Manual—429164-006
6-145

High-Level Inspect Commands MODIFY
2. This example searches for identifiers that contain the characters ERR:

3. This example illustrates the VERBOSE clause of the MATCH IDENTIFIER
command.

4. This example illustrates the MATCH IDENTIFIER command without the VERBOSE
clause.

MODIFY
The MODIFY command changes the value of a data item or register in the current
program. The current program must be in the hold state before you can use MODIFY.
You can specify the new values in the MODIFY command, or you can let Inspect
prompt you for them.

-TALOBJ-MATCH IDENTIFIER *err*, VERBOSE
Searching ER^REPORT^ERROR
ERROR^NUMBER

Searching FLAGS^DATA^BLOCK
OVERRIDE^FLAG

Searching #GLOBAL
FILE^ERR
NEWPROCESS^ERROR
SPOOLER^ERROR

-PROGRAM-MATCH IDENTIFIER Global_Var, VERBOSE
Searching main
Searching Global^Block
 Global_var
Searching Proc^A
Searching Proc^B
Searching Proc^C...

-PROGRAM-MATCH IDENTIFIER Global_Var, VERBOSE
Found in scope Global^Block
 Global_Var

MODIFY { data-location [WHOLE] [{ = | := } mod-list] }
 { REGISTER register-name [{ = | := } expression] }
 { SIGNAL signal-id [{ = | := } signal-list] }

mod-list:

 mod-item [, mod-item]...

mod-item:

 [integer COPIES] expression

Inspect Manual—429164-006
6-146

High-Level Inspect Commands MODIFY

register-name: one of
tns-register-name
tns/r-register-name

tns-register-name: one of

 P E L S
 R0 R1 R2 R3 R4 R5 R6 R7
 RA RB RC RD RE RF RG RH

tns/r-register-name: one of

 $PC $H1 $LO $0 $1...$31
 tns/r-register-alias

tns/r-register-alias: one of

 $AT $V0 $V1 $A0 $A1 $A2 $A3
 $S0 $S1 $S2 $S3 $S4 $S5 $S6 $S7
 $T0 $T1 $T2 $T3 $T4 $T5 $T6 $T7 $T8 $T9
 $K0 $K1 $GP $SP $FP $RA

signal-id: one of:

 SIGABRT SIGALRM SIGFPE SIGHUP SIGILL SIGINT
 SIGKILL SIGPIPE SIGQUIT SIGSEGV SIGTERM SIGUSR1
 SIGUSR2 SIGCHLD SIGCONT SIGSTOP SIGTSTP SIGTTIN
 SIGTTOU SIGABEND SIGLIMIT SIGSTK SIGMEMMGR SIGNOMEM
 SIGMEMERR SIGTIMEOUT

 signal-list:

 signal-handler, mask, flags

 signal-handler:

 SIG_DEL | SIG_IGN | #SIG_DEBUG | #function-name

mask:

 double [double [double [double]]]

flags:

 double
Inspect Manual—429164-006
6-147

High-Level Inspect Commands MODIFY
data-location [WHOLE] [{ = | := } mod-list]

modifies the data item specified by data-location. This data item must describe
an area large enough to hold all values specified by mod-list. In addition, the
data item cannot be a read-only array.

WHOLE

causes Inspect to treat the data item as a string of contiguous characters if it is
a group item (a record or structure, for example).

The WHOLE clause is invalid for PATHWAY requester programs.

mod-list

specifies the new value or list of new values to be assigned to the data item. If
mod-list specifies more than one value, data-location must specify a
portion of an array (that is, an array name and subscript range).

mod-item

specifies a single new value or repeated instances of a single value. The
syntax of mod-item is:

[integer COPIES] expression

expression specifies the new value, and the clause integer COPIES
specifies the number of times to repeat the value.

REGISTER register-name [{ = | := } expression]

modifies the register specified by register-name. Inspect assigns the value of
expression to the given register.

TNS/R registers can only be modified when debugging a TNS/R program.

register-name

is the name of a TNS or TNS/R register.

expression

is an expression that yields the value that is to be assigned to the register.

SIGNAL signal-id [{ = | := } signal-list]

modifies the signal specified by signal-id.

signal-id

identifies the signal. signal-id can be identified by letters or a number.

signal-list

is the value of the signal.
Inspect Manual—429164-006
6-148

High-Level Inspect Commands Default Value
Default Value

If you do not supply a new value for the data item, register or signal, Inspect prompts
you for it.

Usage Considerations

 Using the := and = Assignment Operators

There is no difference between the two forms of the assignment operator. Either :=
or = can be used.

 Prompting for New Values

When you modify a data item, Inspect normally prompts you for new values if the
modifier list is not specified or does not contain enough values to fill the given data
item. Inspect will not prompt if you use the WHOLE clause or if the MODIFY
command is in an OBEY command file. In the latter case, if the new values do not
completely fill the data item, the remainder is left unchanged.

Inspect prompts you by displaying each element of the data item with its name and
current value. Entering a value modifies the element, and entering a comma
retains the current value. Inspect continues prompting until the last element of the
data item is displayed, or until you enter only a RETURN (indicating that there are
no further modifications).

 Modifying Registers

If no value is specified, the current value of the register is displayed in the current
output radix and a prompt is issued for a new value.

 Modifying Strings

When you modify a string variable, the new string cannot exceed 250 bytes. If it
does, Inspect displays this warning message:

Inspect changes only the first 250 characters of the string. To avoid this restriction,
modify the string in parts:

 Modifying Signals

There are three pieces of information associated with a signal: the signal handler,
the mask, and a flags word. Inspect prompts you for the values of the mask and
flags word if they have been omitted. The mask is composed of 128-bits split into
4-32 bit double words.

** Inspect warning 95 ** Maximum string length (250 bytes) is exceeded.
 String is truncated.

-PRG-MODIFY string(1:100) = "100 characters..."
-PRG-MODIFY string(101:200) = "100 more characters..."
-PRG-MODIFY string(201:300) = "another 100 characters..."
Inspect Manual—429164-006
6-149

High-Level Inspect Commands Usage Considerations for Accelerated Programs
 Modifying FILLER Elements of a Record

Using the WHOLE clause enables you to assign values to all elements of a record,
including those designated FILLER.

 Interactive MODIFY in a Command List

If you include an interactive MODIFY command (one where Inspect needs to
prompt you for values) in a command list, it must be the last command in the
command list.

Usage Considerations for Accelerated Programs

 When debugging an accelerated program on a TNS/R system, values may be
cached in machine registers when the current location is not a register-exact point.
In such an event, the modify operation may have no effect.

 TNS/R registers can only be modified when debugging an accelerated or native
program on a TNS/R system. An error is reported if you attempt to modify
registers on a non-accelerated program.

 When debugging accelerated programs, TNS registers can only be modified at
register-exact points. For more information, see Section 15, Using Inspect on a
TNS/R System.

 When debugging accelerated programs, the P register can only be set to a value
that is the address of a register-exact point. For more information, see RESUME
on page 6-158.

Related Commands

 DISPLAY on page 6-33

 INFO IDENTIFIER on page 6-105

Examples

1. This example demonstrates how various MODIFY commands affect this COBOL
data structure:

01 B.
 05 C PICTURE X(10) VALUE IS "Jelvo, B. ".
 05 D PICTURE S99 USAGE IS COMP VALUE IS 45.
 05 E PICTURE 9(10) VALUE IS 4085551212.
 05 F PICTURE X(24) VALUE IS "Alvin's Place".
Inspect Manual—429164-006
6-150

High-Level Inspect Commands Examples
Before making modifications, display B field-by-field and then as a single string:

Change the C field and then DISPLAY to verify the change:

Try a MODIFY WHOLE, and then DISPLAY to verify the changes:

Use the & operator to concatenate ASCII and Non-ASCII values in the
alphanumeric data item C and then DISPLAY to verify the changes:

DISPLAY D in several bases:

2. This example demonstrates various MODIFY commands applied to these
FORTRAN data structures:

REAL A
CHARACTER*6 S

-COBOLOBJ-DISPLAY B
B =
 C = "Jelvo, B. "
 D = 45
 E = 4085551212.
 F = "Alvin's Place
 "
-COBOLOBJ-DISPLAY B WHOLE
B = "Jelvo, B. " ?0 "-4085551212Alvin's Place "

-COBOLOBJ-MODIFY C OF B = "Manley, G."
-COBOLOBJ-DISPLAY B
B =
 C = "Manley, G."
 D = 45
 E = 4085551212.
 F = "Alvin's Place "

-COBOLOBJ-MODIFY B WHOLE = "Wirble, U.--6662325468Willy"
-COBOLOBJ-DISPLAY B WHOLE
B = "Wirble, U.--6662325468Willy's Place "
-COBOLOBJ-DISPLAY B
B =
 C = "Wirble, U."
 D = 11565
 E = 6662325468.
 F = "Willy's Place "

-COBOLOBJ-DISPLAY C of B
B.C = "Jelvo, B. "
-COBOLOBJ-MODIFY C of B
B.C = "Jelvo, B. " := "Paul,"&%hff&%hff&"D. "
-COBOLOBJ-DISPLAY C of B
B.C = "Paul," ?255 ?255 "D. "

-COBOLOBJ-DISPLAY D IN OCTAL DECIMAL HEX ASCII
B.D = %26455 11565 %H2D2D "--"
Inspect Manual—429164-006
6-151

High-Level Inspect Commands OBEY
INTEGER K(10,10)
INTEGER ARR (12)

Use Inspect to prompt for new values:

The comma above leaves ARR(6) unchanged, and pressing carriage return aborts
the Inspect prompting, leaving ARR(8) through ARR(11) unchanged.

OBEY
The OBEY command causes Inspect to read commands from a specified file. A file
named in an OBEY command is called an OBEY file.

filename

is the file name to obey.

Usage Considerations

 Inspect reads and processes commands from the named file until it encounters the
end-of-file. At this point, Inspect closes the OBEY file and reverts to its previous
input file, normally the Inspect command terminal.

 Additional OBEY commands can appear within an OBEY file; OBEY files can be
nested to a depth of four.

 Inspect qualifies the log file using the current volume and subvolume if Inspect’s
systype is Guardian, otherwise, Inspect will qualify the file name using the current
OSS directory.

 Inspect generates an error if any part of the specification is invalid, if the file does
not exist, or if the file cannot be opened. Inspect displays an error message and
prompts for input if the input file is a terminal. If the input file was not a terminal,
Inspect terminates.

 If you use an OBEY command in the THEN clause of a BREAK command, an error
can occur if the OBEY file contains a RESUME command. The first time the

-FORTOBJ-MODIFY A=5
-FORTOBJ-MODIFY S="Falcon"
-FORTOBJ-MODIFY K(1:5,3) := 4,7,9,15,22
-FORTOBJ-MODIFY K(1:5,4) := 5 COPIES 0
-FORTOBJ-DISPLAY A, S, K(1:5, 3:4)
A = 5, S = "Falcon"
K[1,3] = 4 7 9 15 22
K[1,4] = 0 0 0 0 0

-FORTOBJ-MODIFY ARR(6:11)
 ARR(6)=49 := ,
 ARR(7)=50 := 37
 ARR(8)=51 :=

OBEY filename
Inspect Manual—429164-006
6-152

High-Level Inspect Commands Related Commands
breakpoint is activated, Inspect opens and reads commands from the OBEY file.
When Inspect encounters the RESUME command in the OBEY file, it lets the
program resume execution but does not close the OBEY file. The next time the
breakpoint is activated, Inspect will again try to open the OBEY file. However, the
OBEY file is still open as a result of the first breakpoint activation. Consequently,
Inspect reports the error:

 You should not use abbreviations of Inspect keywords in an OBEY file because the
abbreviations might change in future releases of Inspect.

Related Commands

 OUT on page 6-155

 SYSTEM on page 6-217

 TERM on page 6-218

 VOLUME on page 6-223

OBJECT
The OBJECT command displays information about the current program's object
file. The OBJECT command is a synonym for the INFO OBJECTFILE command.

Related Commands

 INFO OBJECTFILE on page 6-111

 INFO SAVEFILE on page 6-120

OPENS
The OPENS command shows the status of files that have been opened by the current
program. The OPENS command is a synonym for the INFO OPENS command.

** Inspect error 14 ** Illegal OBEY file - ignored

Note. The OBJECT command is invalid for PATHWAY requester programs.

Note. The OPENS command is invalid for PATHWAY requester programs.
Inspect Manual—429164-006
6-153

High-Level Inspect Commands OPENS
*

requests the status of all files opened by the current program.

file-list

requests the status of specific files. file-list is a list of file numbers identifying
the desired files.

file-number

specifies a single file. file-number can be:

A COBOL FD name
An expression that evaluates to an integer value
A data location identifying an integer value

Inspect interprets the integer values as file-system file numbers, unless you
specify the F clause; Inspect would then interpret the values as FORTRAN
logical-unit numbers. If a FD clause is used, Inspect interprets the values as
OSS file descriptors.

DETAIL

directs Inspect to display the maximum available information for the specified files.

file-type

indicates to Inspect what type of file to display. file-type can be one of the
following:

FORTRAN

indicates that file-number values specify FORTRAN logical-unit numbers,
not file system file numbers. Files without FORTRAN logical units will not be
displayed.

FD

indicates that file-number values specify OSS file descriptors. Files without
OSS file descriptors will not be displayed.

OPENS [{ * | file-list } [DETAIL] [file-type]]

file-list:

 file-number [, file-number]...

file-type: one of

 FORTRAN FD GUARDIAN
Inspect Manual—429164-006
6-154

High-Level Inspect Commands Default Values
GUARDIAN

indicates that file-number values specify Guardian system file numbers.
Files without Guardian file system numbers will not be displayed.

Default Values

 The default file type is Guardian file system numbers.

 If you enter the OPENS command without parameters, Inspect displays the status
of all files opened by the current program.

OUT
The OUT command directs the output listing to a specified file.

filename

is a file name.

Usage Considerations

 The first form of the OUT command causes permanent redirection of the output.

 The second form of the OUT command causes temporary redirection of the output.
This form is specified as part of another command. You must enter it immediately
after the other command name and before any other part of that command; for
example:

HELP /OUT newuser/ NEW-USER

 If filename specifies a disk file and the file does not exist, an EDIT file is created. If
the named file is an existing disk file, the output is appended to the file.

 If the file name is invalid or if the file cannot be opened, an error occurs. An error
message is displayed and the command is not executed.

 Inspect qualifies filename using the current volume and subvolume of the Inspect
session. If you have not set these explicitly, they are the default volume and
subvolume of the Inspect session. You can use the ENV command to determine
the current defaults.

Related Commands

 OBEY on page 6-152

 SYSTEM on page 6-217

{ OUT filename }
{ /OUT filename/ }
Inspect Manual—429164-006
6-155

High-Level Inspect Commands PAUSE
 TERM on page 6-218

 VOLUME on page 6-223

PAUSE
The PAUSE command suppresses Inspect prompts until a debug event occurs in any
of the programs on the program list.

Usage Considerations

 Inspect begins prompting after a PAUSE when:

 You press the BREAK key, assuming that the program has not taken control of
the BREAK key.

 Any running program under the control of Inspect generates a debug event.
(see the information on debug events and execution states in Section 2,
Inspect Concepts).

 Inspect receives a wake-up message from any process. For more information,
see the TACL Programmer’s Guide.

 Using PAUSE to Share the Inspect Command Terminal

If Inspect and the program you are debugging share the same terminal, you can
use the PAUSE command to return control of the terminal to your program.

PROGRAM
The PROGRAM command displays the programs in the program list or selects a
program as the current program.

program

specifies a program using one of several formats. Program-number identifies a
program by its program number (as shown by the LIST PROGRAM command).

PAUSE

PROGRAM[S] [program [CODE code-file]
 [LIB lib-file]
 [SRL {(srl-file [, srl-file,...])}]

program: one of

 program-number
 program-name
 cpu,pin
Inspect Manual—429164-006
6-156

High-Level Inspect Commands Default Value
program-name identifies a program by its program name (as shown by the LIST
PROGRAM command). cpu,pin identifies a process by its process ID (CPU
number and process number).

CODE code-file

directs Inspect to retrieve symbol information from an object code file different from
the one used to create the process (or the process that was saved).

LIB lib-file

directs Inspect to retrieve symbol information from a library file different from the
one associated with the process (or the process that was saved).

SRL srl-file

directs Inspect to retrieve symbol information from a SRL file different from the one
associated with the process (or the process that was saved). The SRL clause is a
single filename, or comma separated list of filenames.

Default Value

If you do not specify program, PROGRAM displays all programs in the current
sessions.

Usage Considerations

 If you specify programwith optional CODE, LIB, or SRL clauses, PROGRAM
selects the named program from the program list as the current program.

 The PROGRAM command will not add the program if program is not currently on
the program list.

 You cannot select programs using an OSS PID. Use the cpu,pin of the process
or the program ordinal.

 The file name type of the CODE, LIB, or SRL clauses is determined by the current
systype of Inspect.

Related Commands

 ADD PROGRAM on page 6-10

 LIST PROGRAM on page 6-137

 SELECT PROGRAM on page 6-167

 STOP on page 6-215
Inspect Manual—429164-006
6-157

High-Level Inspect Commands RESUME
RESUME
The RESUME command reactivates a suspended program, changing the program’s
state from hold to run. The RESUME command is not valid for save files.

* [EXIT]

resumes all executable programs currently in the hold state.

The optional EXIT clause directs Inspect to clear all breakpoints in all programs on the
program list and then terminate the Inspect session after it resumes the programs.

[program] [AT code-location [, RP integer]]

resumes a single executable program. You can specify the program using one of
several formats. program-number identifies the program by its program number (as
shown by the LIST PROGRAM command). program-name identifies the program by
its program name (as shown by the LIST PROGRAM command). cpu,pin identifies
a process by its process ID. PATHWAY-term-name identifies a PATHWAY requester
program by the name of its logical PATHWAY terminal.

The AT clause specifies that execution is to resume at a location other than the next
sequential one. The code location you provide in the AT clause must represent the
location of an executable instruction within the current scope unit. Using the AT clause
might require that you adjust the register pointer (RP) field of the E-register before
execution resumes.

The RP clause specifies the value for the RP field of the E-register. The integer you
provide in the RP clause must be in the range 0 to 7.

You should not use the RP clause unless you understand the underlying machine
structure, particularly the relationship of the RP field to instruction execution. For more
information, see the System Description Manual.

The AT and RP clauses are invalid for PATHWAY requester programs, and the RP
clause is invalid for accelerated programs.

Default Value

Entering RESUME without parameters resumes the execution of the current program.

RESUME [* [EXIT]]
 [program] [AT code-location [, RP integer]]

program: one of

 program-number
 program-name
 cpu,pin
 PATHWAY-terminal-name
Inspect Manual—429164-006
6-158

High-Level Inspect Commands Usage Considerations
Usage Considerations

 RESUME in Command Lists

In a command list, RESUME must be the last command.

 RESUME in OBEY Files

If you use RESUME in an OBEY file and then refer to that OBEY file in the THEN
clause of the BREAK command, Inspect reports an error. For more information,
see the description of the OBEY on page 6-152.

 Resuming by Program Name

If you are debugging more than one process with the same program name, Inspect
resumes the oldest process when you use the program-name form of program. To
override, use the program-number or cpu,pin form of program.

Usage Considerations for Accelerated Programs

 When debugging accelerated programs on a TNS/R system, it is not possible to
transfer program execution to arbitrary program locations as it is on the TNS. The
current location must be a register-exact point, the destination must also be a
register-exact point, and the value of RP must be the same at both locations. If the
target location is not a register-exact point, this error is reported:

If your current location is not a register-exact point, this error is reported:

 The effect of the RESUME AT command can also be achieved by using either the
MODIFY REGISTER command or the low-level M command to modify the value of
the P register. As described previously, register modification commands are
restricted to operate only at register-exact points. When the operand is the P
register, they are further restricted to accept only values that are the address of
register-exact points. This error is reported if the value is not the address of a
register-exact point:

 It is not possible for Inspect to determine the value of RP at the source and
destination locations. You must therefore ensure that the destination location has
the same RP value when changing the value of the P register. In general, the RP

** Inspect error 357 ** Target location must be a register-exact point

** Inspect error 370 ** Current location must be a register-exact point

Note. The register-pointer (RP) clause of the RESUME command is not supported for
accelerated programs.

** Inspect error 356 ** Value must be the address of a register-exact point
Inspect Manual—429164-006
6-159

High-Level Inspect Commands Related Commands
value usually corresponds to the return value size at return points, and is 7 at other
register-exact points.

Related Commands

 HOLD on page 6-93

 STEP on page 6-212

 STOP on page 6-215

SAVE
The SAVE command creates a save file of the current program. A save file is a
“snapshot” or “image” of a process or PATHWAY server stored on disk. A save file
contains information regarding the state of the process or PATHWAY server at the
moment the image was created. This information includes:

 The user data space (including extended data segments).

 The values of TNS machine registers.

 The values of TNS/R machine registers for accelerated programs or native
programs.

 The names and status of any files opened by the process or PATHWAY server.

 General information, including: the TOS version, the processor type, the last
debugging event, the user ID and name of the creator, and the creation timestamp.

filename

specifies the name of the save file.

!

specifies that if a file named file-name already exists, it must be replaced by the
new save file. If you omit the exclamation point, an attempt to use an existing file
produces a file system error 10 and leaves the old file intact.

Note. The SAVE command is invalid for Pathway requester programs.

SAVE filename [!]
Inspect Manual—429164-006
6-160

High-Level Inspect Commands Usage Considerations
Usage Considerations

 All save files created by Inspect are of type unstructured and have a file code
ofþ130.

 Inspect qualifies filename using the current subvolume if systype is Guardian or the
current working directory if systype is OSS. If you have not set the volume and
subvolume explicitly, they are the default volume and subvolume of the Inspect
session. Use the ENV command to determine these defaults.

 If the only program you are debugging is a save file, entering the STOP command
closes the save file but does not end the Inspect session, as it does for processes.
In this case, you must enter the EXIT command or press CTRL/Y.

 To begin analyzing a save file, enter an ADD PROGRAM command with the save
file name. You can use any high-level or low-level command that does not change
the execution state of the process; therefore, you can display code values, data
values, attributes, and a stack trace. Many commands that are available when a
process is in the hold state, however, are unavailable when you are working with a
save file. These commands include:

BREAK
CLEAR
FB
HOLD
LIST BREAKPOINT
MODIFY
RESUME
SELECT DEBUGGER DEBUG
STEP

Related Commands

 ADD PROGRAM on page 6-10

 INFO SAVEFILE on page 6-120

 STOP on page 6-215
Inspect Manual—429164-006
6-161

High-Level Inspect Commands SCOPE
SCOPE
The SCOPE command changes or displays the current scope path. For more
information about scopes, see Scope Paths on page 2-12.

scope-spec

specifies the scope path that Inspect is to use as the current scope path when
qualifying unqualified identifiers.

scope-number

specifies the path to an active scope unit by the unit's scope number (as
displayed by the TRACE command).

scope-path [(instance)]

specifies a named scope path as the current scope path. You can include an
instance to differentiate activations of the same scope unit.

The (instance) option is invalid for COBOL programs.

 #data-block

specifies a named data block as the current scope path.

##GLOBAL

specifies the implicitly named global data block in TAL as the current scope
path.

Default Value

If you enter the SCOPE command without any parameters, Inspect displays the current
scope path.

SCOPE [scope-spec]

scope-spec: one of

 scope-number
 scope-path [(instance)]
 #data-block
 ##GLOBAL
Inspect Manual—429164-006
6-162

High-Level Inspect Commands Usage Considerations
Usage Considerations

 To examine an element as it exists during a particular instance, include an instance
number when you specify the scope path. You can count from either direction
using these conventions:

 Instance 1 is the least recent instance—that is, the oldest chronologically.
Positive values count from the base of the stack toward the top.

 Instance 0 is the most recent instance—that is, the current scope path.

 Instance -1 is the next most recent—that is, the youngest chronologically.
Negative values count from the top of the stack toward the base.

 There is a subtle difference between an unspecified instance and instanceþ0.
Suppose you have a scope unit named BINK. You can set your scope path to
#BINK whether BINK is active or not; you can set your scope path to #BINK(0)
only if BINK is active. If you set your scope path to #BINK and the scope unit is
active, then #BINK(0) and #BINK are identical.

 If the current program is not in the hold state when you enter a SCOPE command
without parameters, Inspect displays the scope path that was active at the time the
command was received.

 If you set your scope path to a data block, you cannot set unqualified code
breakpoints.

 Whenever a debug event occurs, Inspect sets the current scope path to the path
that specifies the scope unit containing the location at which the event occurred.

Related Commands

 ENV on page 6-81

 INFO SCOPE on page 6-122

 MATCH with the SCOPE option on page 6-144

 TRACE on page 6-219
Inspect Manual—429164-006
6-163

High-Level Inspect Commands SELECT
SELECT
This diagram shows the complete syntax for the SELECT command and its clauses.
Detailed descriptions of the clauses, including usage considerations and examples, are
presented in the following subsections.

Usage Consideration

Anything you select may be overridden by Inspect when a subsequent event is
received. The SELECT command differs from the SET command, which maintains its
setting until you change it.

Related Commands

 ADD on page 6-6

 ENV on page 6-81

 LIST on page 6-129

SELECT select-option

select-option: one of

 DEBUGGER DEBUG
 LANGUAGE language
 PROGRAM program [CODE file-name]
 [LIB file-name]
 [SRL {(srl-file [, srl-file,...])}]
 SEGMENT [segment id]
 SOURCE SYSTEM [\system]
 SYSTYPE { GUARDIAN | OSS }

language: one of
 C C++ COBOL COBOL85
 FORTRAN Pascal SCOBOL TAL

program: one of

 program-number
 program-name
 cpu,pin
Inspect Manual—429164-006
6-164

High-Level Inspect Commands SELECT DEBUGGER DEBUG
SELECT DEBUGGER DEBUG
The SELECT DEBUGGER DEBUG command allows you to invoke an alternate
debugger:

 On a TNS/R system, Debug is the alternate debugger for TNS or TNS/R programs.
You interact with Debug until issuing the Debug command “INSPECT”, which
returns control of the program to Inspect.

 On a TNS/E system, Native Inspect is the alternate debugger for TNS/E native
programs (Native Inspect replaces Debug as the system debugger on TNS/E
systems). You interact with Native Inspect until you issue the Native Inspect switch
command, which returns control of the program to Inspect.

TNS programs running on a TNS/E system can only be debugged using Inspect.

General Usage Considerations

 When you return to Inspect from Debug, the Inspect breakpoint list is updated to
reflect breakpoints that have been set in Debug.

If the addition of breakpoints to the Inspect breakpoint list would cause the number
of breakpoints to exceed the Inspect limit on numbered breakpoints (99),
breakpoints that are added are not assigned an ordinal number.

 Debug can only be invoked on a process or PATHWAY server that is in the HOLD
state.

 Conditional breakpoints set by Inspect are reported unconditionally while in Debug.

 Conditional breakpoints set by Debug are always evaluated conditionally,
regardless of whether Inspect or Debug is being used.

 When Debug is invoked from within Inspect and the process terminates, control
returns to Inspect. Inspect terminates if there are no other processes being
debugged; otherwise, Inspect resets the current program and issues a prompt.

 When Debug is invoked from an Inspect being used to debug multiple processes,
Inspect waits either for a debugging event to be reported for another process or for
the control to return from Debug. If an event is received, Inspect reports the event
and issues a prompt. This may cause Inspect and Debug to compete for control of
the terminal. The Inspect PAUSE and Debug P commands can be useful in this
case.

 If Inspect is used to set breakpoints on STOP and/or ABEND, the breakpoints are
reported by Inspect, even if the process calls STOP and/or ABEND while Debug is
being used to debug it.

SELECT DEBUGGER DEBUG
Inspect Manual—429164-006
6-165

High-Level Inspect Commands Usage Considerations for Privileged Users
 In some debugging situations, the differences between Inspect and Debug may be
important. Inspect runs as an application process while Debug actually runs as
part of the process being debugged. As a result, Inspect may affect the state of
the system more than Debug. Debug, on the other hand, makes use of the
program's stack, which can affect program behavior.

 If the breakpoint has attributes which are unique to Debug, such as conditional, the
breakpoint is listed as either type “Code DEBUG” or type “Data DEBUG”. The text
field of such breakpoints lists the breakpoint's attributes. These tokens may be
listed:

Usage Considerations for Privileged Users

 Care must be exercised when returning control to Inspect when Debug has been
used to set “all process” breakpoints in System Code and System Library spaces.
A deadlock can occur if Inspect inadvertently calls the procedure in which the
breakpoint is set.

 Privileged breakpoints are added to the Inspect breakpoint list only if PRIV MODE
is set ON.

 Debug does not retain any state information between invocations from Inspect. As
a result, privileged Debug mode is reset when control is returned to Inspect; the
Debug PRV command must be reissued after re-entering Debug. Inspect on the
other hand does retain state information when switching to and from Debug.

Usage Consideration for Accelerated Programs

 When debugging programs on a TNS/R system, Debug can be used to debug at
the TNS/R machine level.

Related Commands

 INFO on page 6-104

 LIST BREAKPOINT on page 6-131

SELECT LANGUAGE
The SELECT LANGUAGE command changes the current source language. The
current source language affects the acceptable syntax of language-dependent entities
such as code locations, data locations, and expressions.

Inspect provides the SELECT LANGUAGE command to aid in debugging a program
compiled from more than one source language. SELECT LANGUAGE enables you to

CONDITIONAL - The breakpoint is Debug conditional

ALL PROCESSES - The breakpoint applies to all processes

PRIV - The breakpoint was set by PRIV Debug
Inspect Manual—429164-006
6-166

High-Level Inspect Commands Usage Considerations
switch between language-dependent syntaxes; therefore, you can avoid
incompatibilities between languages. The difference between the use of the caret (^) in
TAL and Pascal is an example of a language incompatibility.

language

specifies which source language Inspect should make current.

Usage Considerations

 Automatic Selection of the Current Language

Whenever a debug event occurs, Inspect sets the current language to the
language specified by the language attribute of the scope unit containing the
location at which the event occurred.

 Mixing C with other languages

If the current language is C, Inspect will not upshift identifiers, otherwise, Inspect
upshifts all program identifiers and keywords.

Related Command

ENV

SELECT PROGRAM
The SELECT PROGRAM command selects a program from the program list as the
current program.

SELECT LANGUAGE language

language: one of

 C C++ COBOL COBOL85
 FORTRAN Pascal SCOBOL TAL

SELECT PROGRAM program [CODE code-file]
 [LIB lib-file]
 [SRL {(srl-file [, srl-file,...])}]

program: one of

 program-number
 program-name
 cpu,pin
Inspect Manual—429164-006
6-167

High-Level Inspect Commands Usage Consideration
program

specifies a program using one of several formats. program-number identifies a
program by its program number (as shown by the LIST PROGRAM command).
program-name identifies a program by its program name (as shown by the LIST
PROGRAM command). cpu,pin identifies a process by its process ID (CPU
number and process number).

CODE code-file

directs Inspect to retrieve symbol information from an object code file different from
the one used to create the process (or the process that was saved). Cannot be
used to specify a TNS/E native object file.

LIB lib-file

directs Inspect to retrieve symbol information from a library file different from the
one associated with the process (or the process that was saved). Cannot be used
to specify a TNS/E native object file.

SRL srl-file

directs Inspect to retrieve symbol information from a SRL file different from the one
associated with the process (or the process that was saved). The SRL clause is a
single filename, or comma separated list of filenames.

Usage Consideration

 Using the CODE and LIB Clauses

Inspect provides the CODE and LIB clauses so that you can obtain symbol
information even when the object or library file does not contain symbols. For
example, most applications include symbols only during their development—the
symbol information is stripped out before distribution. If a bug is then discovered,
the customer can make a save file and return it to the developers. Using the CODE
and LIB clauses, the developers can then associate their versions of the object and
libraries (with symbols) to the save file, therefore enabling them to use high-level,
symbolic Inspect to locate the problem more quickly.

On a TNS/E system, the CODE and LIB clauses cannot be used to specify a
TNS/E native object file. If you do so, Inspect displays an error message (“Inspect
cannot read a TNS/E object file”).

Related Commands

 ADD PROGRAM on page 6-10

 LIST PROGRAM on page 6-137

 PROGRAM on page 6-156

 STOP on page 6-215
Inspect Manual—429164-006
6-168

High-Level Inspect Commands SELECT SEGMENT
SELECT SEGMENT
The SELECT SEGMENT command selects extended data segments in which
extended data addresses are to be resolved. In effect, this controls the extended data
segment viewed by Inspect.

segment-id

is the ID of an extended segment. Any selectable segment ID listed by the INFO
SEGMENTS command is valid. If segment-id is not specified, the extended
data segment used by Inspect is that which is currently in use by the program.

Usage Considerations

 If the extended data segment selected by Inspect is different than the process’s
current extended segment, the segment is marked with a “>“ in the output of the
INFO SEGMENTS command.

 Although any flat data segment can be displayed using the INFO SEGMENTS
command, selecting the segment using the SELECT SEGMENT command will
result in this error:

Related Command

INFO SEGMENTS

SELECT SOURCE SYSTEM
The SELECT SOURCE SYSTEM command directs Inspect to retrieve source files
from a specific system when the object file has moved but the source has not.

system

specifies the system from which Inspect should retrieve source files.

Default Value

If you do not specify a system name in a SELECT SOURCE SYSTEM command,
Inspect uses the name of your current system.

SELECT SEGMENT[S] [segment-id]

** Inspect error 70 ** Specified segment can not be selected

SELECT SOURCE SYSTEM [\system]
Inspect Manual—429164-006
6-169

High-Level Inspect Commands Usage Considerations
Usage Considerations

 Inspect provides the SELECT SOURCE SYSTEM command for one common
context in particular: when a program's object code is copied to another system,
but its source code is not.

 SELECT SOURCE SYSTEM sets the source system for the current program.
Each program that you are debugging can have its own source system.

 Inspect determines whether it should add the system name specified by SELECT
SOURCE SYSTEM after it formulates the current name (by applying any matching
source assignment to the compilation name).

 The SELECT SOURCE SYSTEM command cannot be used if the current name of
a source file in the current program explicitly includes a system name. Use the
ADD SOURCE ASSIGN command instead.

 If you used a C-series compiler and your object file has been moved to another
node on a network and the source files are at the same location as when the object
file was compiled, use the SELECT SOURCE SYSTEM command to identify the
node that the files reside on.

 To determine the source system for the current program, use the ENV command.

Related Commands

 ADD SOURCE ASSIGN on page 6-14

 ENV on page 6-81

 SOURCE on page 6-196

 SOURCE SYSTEM on page 6-211

SELECT SYSTYPE
The SELECT SYSTYPE command allows you to change the current systype of
Inspect.

Usage Consideration

Inspect may override any user selected systype when a subsequent event is received.

SELECT SYSTYPE { GUARDIAN | OSS }
Inspect Manual—429164-006
6-170

High-Level Inspect Commands SET
SET
The SET command controls Inspect parameters that enable you to customize your
Inspect session.

This is the complete syntax for the SET command and its clauses. Detailed
descriptions of the clauses, including usage considerations and examples, are
presented in the following subsections.

SET set-assignment

set-assignment: one of

 CHARACTER FORMAT [=] [ASCII | XASCII | GRAPHIC[S]]
 DEREFERENCE DEPTH [=] integer
 ECHO echo-item [=] { ON | OFF }
 HELP FILE [=] filename
 LOCATION FORMAT [level] [=] loc-fmt [, loc-fmt]...
 PRIV MODE [=] ON | OFF
 PROMPT [=] [prompt-item [, prompt-item]...]
 RADIX [INPUT | OUTPUT] [level] [=] radix
 SOURCE BACK [=] count
 SOURCE FOR [=] count
 SOURCE RANGE [=] range / range
 SOURCE WRAP [=] { ON | OFF }
 STATUS ACTION [level] [=] [cmd-string]
 STATUS LINE25 [level] [=] [status-item-list]
 STATUS SCROLL [level] [=] [status-item-list]
 SUBPROC SCOPING [=] [SUBLOCAL | LOCAL]
 SYSTYPE { GUARDIAN | OSS }
 TRACE trace-level [=] { ON | OFF }

echo-item: one o

 ALIAS[ES] HISTORY KEY[S]

level: one of

 BOTH HIGH LOW

loc-fmt: one of

 INSTRUCTION[S]
 LINE[S] [FILE [ALL]] [OFFSET]
 STATEMENT[S] [OFFSET]
Inspect Manual—429164-006
6-171

High-Level Inspect Commands SET CHARACTER FORMAT
SET CHARACTER FORMAT
The SET CHARACTER FORMAT command changes the default output format for
character identifiers.

prompt-item: one of

 string ACCELERATOR STATE COMMAND
 DIRECTORY ICODE INSTRUCTION SET
 LEVEL FN PROCESSOR
 PROGRAM FILE PROGRAM NAME PROGRAM ORDINAL
 PROGRAM PID RADIX SOURCE
 STEP SUBVOL[UME] SYSTEM
 SYSTYPE VOLUME

radix: one of

 DEC[IMAL] HEX[ADECIMAL] OCT[AL]

count:

 integer [STATEMENT[S] | LINE[S] | INSTRUCTION[S]]

range: one of

 F L #line-number statement-number

status-item-list:

 status-item [, status-item]...

status-item: one of

 string ACCELERATOR STATE EVENT
 INSTRUCTION SET LANGUAGE LOCATION
 PROCESSOR NEW LINE PROGRAM FILE
 PROGRAM NAME PROGRAM ORDINAL PROGRAM PID
 SCOPE STATE SYSTYPE
 TYPE

trace-level: one of

 ARGUMENT[S] SCOPE[S] STATEMENT[S]

SET CHARACTER FORMAT [=] [ASCII | XASCII | GRAPHIC[S]]
Inspect Manual—429164-006
6-172

High-Level Inspect Commands Default Value
ASCII

displays items as printable 7-bit ASCII characters. If a byte value is not 7-bit ASCII
(32-127), it is shown as ?nnn, in the current output radix.

XASCII

displays items as printable 8-bit extended ASCII characters. If a byte value is not
8-bit ASCII (32-255), it is shown as ?nnn, in the current output radix.

GRAPHICS

displays items as characters, including control characters.

Default Value

The default INSPLOCL file sets the character format as follows:

Related Commands

 DISPLAY on page 6-33

 SET RADIX on page 6-181

 SHOW command with CHARACTER FORMAT option on page 6-194

SET DEREFERENCE DEPTH
The SET DEREFERENCE DEPTH command allows you to control automatic
dereferencing within TAL STRUCTs.

integer

specifies how many times Inspect should recursively dereference a pointer within a
TAL structure.

Default Value

The default INSPLOCL file sets the dereference depth as follows:

SET CHARACTER FORMAT = ASCII

SET DEREFERENCE DEPTH [=] integer

SET DEREFERENCE DEPTH = 0
Inspect Manual—429164-006
6-173

High-Level Inspect Commands Related Commands
Related Commands

 DISPLAY on page 6-33

 SHOW command with DEREFERENCE DEPTH option on page 6-194

SET ECHO
The SET ECHO command controls whether Inspect redisplays, or echoes, command
lines when you use an alias, a function key, or the XC command.

echo-item

specifies which echo control you want to set. ALIAS controls echoing of command
lines containing aliases. HISTORY controls echoing of command lines reissued by
the XC command. KEY controls echoing of command lines entered by pressing a
function key.

Default Value

The default INSPLOCL file sets the echo controls as follows:

Related Command

SHOW with ECHO option

SET HELP FILE
The SET HELP FILE command specifies the location of the data file containing the
help text for Inspect. This command is intended for system administrators wishing to
offload files from $SYSTEM onto another volume.

filename

specifies the name of a file.

SET ECHO echo-item [=] { ON | OFF }

echo-item: one of

 ALIAS[ES] HISTORY KEY[S]

SET ECHO ALIASES = OFF
SET ECHO HISTORY = ON
SET ECHO KEYS = OFF

SET HELP FILE [=] filename
Inspect Manual—429164-006
6-174

High-Level Inspect Commands Default Value
Default Value

By default, Inspect looks for a file named INSPHELP in the same subvolume as the
Inspect object file. Typically, the Inspect object file is located in the SYSnn subvolume.

Related Command

SHOW with HELP FILE option

SET LOCATION FORMAT
The SET LOCATION FORMAT command controls how Inspect displays code
locations. In addition, the SET LOCATION FORMAT command allows you to
differentiate between statement numbers and labels within FORTRAN programs.

level

specifies the command-mode level whose location format you want to set. HIGH
specifies high-level Inspect, LOW specifies low-level Inspect, and BOTH specifies
both high-level and low-level Inspect. If you omit level, SET LOCATION
FORMAT affects the current command mode.

loc-fmt [, loc-fmt]...

specifies one or more location formats for Inspect to use when displaying code
locations.

INSTRUCTIONS

directs Inspect to display a code location as an octal offset from the base of its
containing scope unit:

scope-path + %octal-numI

SET LOCATION FORMAT [level] [=] loc-fmt [, loc-fmt]...

level: one of

 BOTH HIGH LOW

loc-fmt: one of

 INSTRUCTION[S]
 LINE[S] [FILE [ALL]] [OFFSET]
 STATEMENT[S] [OFFSET]
Inspect Manual—429164-006
6-175

High-Level Inspect Commands Default Value
LINE[S] [FILE [ALL]] [OFFSET]

directs Inspect to display the scope path for a code location followed by the
EDIT line number corresponding to the location:

scope-path.#line-number

The FILE clause directs Inspect to add the eight-character name of the source
file; ALL directs Inspect to use the fully qualified file name:

scope-path.#line-number (source-file)

The OFFSET clause directs Inspect to add the octal instruction offset of a
location from the start of its containing statement:

scope-path.#line-number + %octal-numI

The OFFSET clause is useful when execution has been suspended in the
middle of a statement; this often happens with data breakpoints.

STATEMENT[S] [OFFSET]

directs Inspect to display the scope path for a code location followed by the
location's statement number within its containing scope unit:

scope-path.statement-number

Additionally, the STATEMENT clause is used to determine if statement
numbers or labels will be used for FORTRAN code locations. If the location
format is STATEMENTS, then the location by statement-number is used. If the
location format does not include STATEMENT, then statement-label is used.

For more information, see Section 11, Using Inspect With FORTRAN.

The OFFSET clause directs Inspect to add the octal instruction offset of a
location from the start of its containing statement:

scope-path.statement-number + %octal-numI

Default Value

The default INSPLOCL file sets the location format as follows:

SET LOCATION FORMAT HIGH = LINES FILE OFFSET
SET LOCATION FORMAT LOW = INSTRUCTIONS
Inspect Manual—429164-006
6-176

High-Level Inspect Commands Usage Considerations
Usage Considerations

 When Inspect Uses the Location Format

Inspect uses the location format whenever it displays a code location.
Consequently, the location format affects the information provided by such
commands as:

BREAK ICODE LIST BREAKPOINT
LIST PROGRAM SOURCE SET STATUS LINE25
SET STATUS SCROLL TRACE

 Code Locations in Scope Units without Symbols

When Inspect displays a code location in a scope unit that does not have symbols,
it cannot provide the scope path, line number, or statement number. For code
locations without symbols, Inspect displays the name of the code block containing
the location, followed by the octal instruction offset of the location from the block's
base, regardless of the LOCATION FORMAT.

SET PRIV MODE
The SET PRIV MODE command enables you to perform operations requiring
privileged system access. The SET PRIV MODE command is valid only if the user ID
of the Inspect process is 255,255.

ON

enables privileged debugging.

OFF

disables privileged debugging.

Usage Consideration

The SET PRIV MODE command provides an extra level of safety by requiring the user
to be logged on as the super ID and having the SET PRIV MODE command set
properly.

Related Command

SHOW with PRIV MODE option

SET PRIV MODE [=] ON | OFF
Inspect Manual—429164-006
6-177

High-Level Inspect Commands SET PROMPT
SET PROMPT
The SET PROMPT command controls the format of the Inspect prompt.

prompt-item [, prompt-item]...

is a list of prompt items that defines the content of the Inspect prompt. When it
issues a prompt, Inspect displays the prompt items in the order they appear in the
list.

string

directs Inspect to display a string of text in the prompt. This string is a group of
zero or more characters enclosed in either quotes (") or apostrophes ('). To
include a quote in a quote-delimited string, use a pair of quotes. To include an
apostrophe in an apostrophe-delimited string, use a pair of apostrophes.

ACCELERATOR STATE

directs Inspect to indicate the program state at the current location. This token
applies only to accelerated programs. If the program is not running on a TNS/R
or TNS/E system or has not been accelerated, nothing is shown. One of these
accelerator state values is listed:

Register-exact
Memory-exact
Non-exact

COMMAND

directs Inspect to display the command number (as used by FC, XC, and LIST
HISTORY).

SET PROMPT [=] [prompt-item [, prompt-item]...]

prompt-item: one of

 string ACCELERATOR STATE COMMAND
 DIRECTORY FN ICODE
 INSTRUCTION SET LEVEL PROCESSOR
 PROGRAM FILE PROGRAM NAME PROGRAM ORDINAL
 PROGRAM PID RADIX SOURCE
 STEP SUBVOL[UME] SYSTEM
 SYSTYPE VOLUME

string: one of

 " [character]... "
 ' [character]... '
Inspect Manual—429164-006
6-178

High-Level Inspect Commands SET PROMPT
DIRECTORY

directs Inspect to display the current OSS directory. Directory remains blank if
there is no current OSS directory.

FN

directs Inspect to display “(FN)”. You can continue the previous low-level FN
(Find Number) command by pressing RETURN.

ICODE

directs Inspect to display “(ICODE)”. You can continue the previous ICODE
command by pressing RETURN.

INSTRUCTION SET

directs Inspect to display the name of the machine instructions currently being
executed by your program.

One of: TNS | TNS/R

This indicates whether the program is executing TNS instructions or TNS/R
instructions produced by the Axcel accelerator.

LEVEL

directs Inspect to display the command-mode level. For high-level mode,
Inspect displays a dash; for low-level mode, it displays an underscore.

PROCESSOR

directs Inspect to display the machine family name and processor name on
which the current program is executing.

Output is of the form: family (processor)

For example, TNS/R (NSR-L).

PROGRAM FILE

directs Inspect to display the name of the current program’s program file.

PROGRAM NAME

directs Inspect to display the current program’s program name (as displayed by
the LIST PROGRAM command).

PROGRAM ORDINAL

directs Inspect to display the current program’s program number (as displayed
by the LIST PROGRAM command).
Inspect Manual—429164-006
6-179

High-Level Inspect Commands Default Value
PROGRAM PID

directs Inspect to display the current program’s process ID in the form
sys,cpu,pin.

RADIX

directs Inspect to display the current input radix: DEC, HEX, or OCTAL.

SOURCE

directs Inspect to display “(SOURCE)” if you can continue the previous
SOURCE command by pressing RETURN.

STEP

directs Inspect to display “(STEP count unit)” if you can repeat the previous
STEP command by pressing RETURN. Inspect displays the count if it is not
one, and displays the unit if it is not the default for the current level
(STATEMENTS is the high-level default; INSTRUCTIONS is the low-level
default).

SUBVOLUME

directs Inspect to display the current default subvolume.

SYSTEM

directs Inspect to display the current default system.

SYSTYPE

directs Inspect to display the current systype, either Guardian or OSS.

VOLUME

directs Inspect to display the current default volume.

Default Value

The default INSPLOCL file sets the prompt as follows:

Usage Consideration

The maximum length of Inspect’s prompt is 70 characters. Any text exceeding 70
characters will be truncated.

SET PROMPT = LEVEL,PROGRAM NAME,STEP,LEVEL
Inspect Manual—429164-006
6-180

High-Level Inspect Commands Related Commands
Related Commands

 LIST PROGRAM on page 6-137

 SET STATUS LINE25 and SET STATUS SCROLL on page 6-187

 SHOW with PROMPT option on page 6-194

SET RADIX
The SET RADIX command changes the default radix (numeric base) for integer
representations of input, output, or both. Inspect uses the default input radix to qualify
integer values that are unqualified—that is, integers whose base is not specified. Each
source language provides its own mechanism for specifying bases.

INPUT

specifies that radix applies only to input data.

OUTPUT

specifies that radix applies only to output data.

level

specifies the command-mode level whose radix you want to set. HIGH specifies
high-level Inspect, LOW specifies low-level Inspect, and BOTH specifies both high-
level and low-level Inspect. If you omitlevel, SET RADIX affects the current
command mode.

radix

selects the new default radix, and is one of:

DECIMAL
HEXADECIMA
OCTAL

SET RADIX [INPUT | OUTPUT] [level] [=] radix

level: one of

 BOTH HIGH LOW

radix: one o

 DEC[IMAL] HEX[ADECIMAL] OCT[AL]
Inspect Manual—429164-006
6-181

High-Level Inspect Commands Default Values
Default Values

 If you specify neither INPUT nor OUTPUT, Inspect sets both the input and output
radixes to radix.

 If you omit level, SET RADIX affects the current command mode.

 The default INSPLOCL file sets the radixes as follows:

Usage Considerations

 Hexadecimal Numbers

Inspect accepts the hexadecimal digits A through F in either uppercase or
lowercase. To specify a hexadecimal number whose first digit is in the range A
through F, you must prefix it with a zero or the hexadecimal qualifier (%h or %H).
For example, once you've set your input radix to hexadecimal, the value 9FF is
acceptable without qualification, but the value A00 must be entered as
0A00,%hA00, or %HA00.

 When Inspect Uses the Input Radix

Inspect uses the current input radix to interpret values in expressions. It does not
use the current input radix to interpret line numbers, statement numbers,
breakpoint numbers, and other such measurement or identifier numbers.

Related Commands

 DISPLAY on page 6-33

 SET CHARACTER FORMAT on page 6-172

 SHOW with RADIX option on page 6-194

Example

This example demonstrates various SET RADIX commands using the integer variable
GABRIEL. Note that the initial default radix is decimal:

Switch both radixes and display:

SET RADIX INPUT HIGH = DECIMAL
SET RADIX OUTPUT HIGH = DECIMAL
SET RADIX INPUT LOW = OCTAL
SET RADIX OUTPUT LOW = OCTAL

-TALOBJ-DISPLAY gabriel
GABRIEL = 135

-TALOBJ-SET RADIX = OCTAL; DISPLAY gabriel
GABRIEL = %207
Inspect Manual—429164-006
6-182

High-Level Inspect Commands SET SOURCE BACK and SET SOURCE FOR
Set GABRIEL to a binary value and display:

Show GABRIEL in a new default radix:

Modify it to show that the default input radix is 10:

Set the input radix to octal, and leave the output radix at decimal:

Enter a new octal value; displaying it results in decimal:

Enter a new value explicitly as decimal:

SET SOURCE BACK and SET SOURCE FOR
The SET SOURCE BACK and SET SOURCE FOR commands control the defaults the
SOURCE command uses when displaying source code. SET SOURCE BACK
controls how much source code SOURCE displays preceding the requested location,
and SET SOURCE FOR controls how much source code SOURCE displays.

count

specifies the amount of source code as a number of statements, source lines, or
instructions.

-TALOBJ-MODIFY gabriel = %b00110100; DISPLAY gabriel
GABRIEL = %64

-TALOBJ-SET RADIX = DECIMAL; DISPLAY gabriel
GABRIEL = 52

-TALOBJ-MODIFY gabriel = 12; DISPLAY gabriel
GABRIEL = 12

-TALOBJ-SET RADIX INPUT = OCTAL; DISPLAY gabriel
GABRIEL = 12

-TALOBJ-MODIFY gabriel = 45; DISPLAY gabriel
GABRIEL = 37

-TALOBJ-MODIFY gabriel= %D45; DISPLAY gabriel
GABRIEL = 45

SET SOURCE { BACK | FOR } [=] count

count:

 integer [STATEMENT[S] | LINE[S] | INSTRUCTION[S]]
Inspect Manual—429164-006
6-183

High-Level Inspect Commands Default Value
Default Value

The default INSPLOCL file sets SOURCE BACK and SOURCE FOR as follows:

Related Commands

 SET SOURCERANGE on page 6-184

 SELECT SOURCE SYSTEM on page 6-169

 SHOW with SOURCE BACK option on page 6-194

 SHOW with SOURCE FOR option on page 6-194

 SOURCE on page 6-196

SET SOURCERANGE
The SET SOURCE RANGE command controls the default range used by the
SOURCE SEARCH command.

range / range

specifies the beginning and ending of the default range.

F

specifies the first line in the source file being searched.

L

specifies the last line in the source file being searched.

#line-number

specifies a given line in the source file being searched.

statement-number

specifies the line at which a given statement begins.

SET SOURCE BACK = 4 LINES
SET SOURCE FOR = 10 LINES

SET SOURCE RANGE [=] range / range

range: one of

 F L #line-number statement-number
Inspect Manual—429164-006
6-184

High-Level Inspect Commands Default Value
Default Value

The default INSPLOCL file sets SOURCE RANGE as follows:

Related Commands

 SELECT SOURCE SYSTEM on page 6-169

 SET SOURCE BACK and SET SOURCE FOR on page 6-183

 SHOW with SOURCE RANGE option on page 6-194

 SOURCE on page 6-196

SET SOURCE WRAP
The SET SOURCEþWRAP command controls whether the SOURCE command
truncates or wraps long source lines by default. When source wrapping is on, the
SOURCE command displays the full length of each source line, wrapping it onto the
next screen line if necessary.

Default Value

The default INSPLOCL file sets SOURCE WRAP as follows:

Related Commands

 SHOW on page 6-194

 SOURCE on page 6-196

SET SOURCE RANGE = F / L

SET SOURCE WRAP [=] { ON | OFF }

SET SOURCE WRAP = OFF
Inspect Manual—429164-006
6-185

High-Level Inspect Commands SET STATUS ACTION
SET STATUS ACTION
The SET STATUS ACTION command specifies actions that Inspect is to perform after
it displays the event status message.

level

specifies the command-mode level whose status action you want to set. HIGH
specifies high-level Inspect, LOW specifies low-level Inspect, and BOTH specifies
both high-level and low-level Inspect. If you omit level, SET STATUS ACTION
affects the current command mode.

cmd-string

specifies a string of Inspect commands to be performed. This command string is a
group of one or more Inspect commands separated by semicolons (;) and
enclosed in either quotes (") or apostrophes ('). To include a quote in a quote-
delimited command string, use a pair of quotes. To include an apostrophe in an
apostrophe-delimited command string, use a pair of apostrophes.

Usage Consideration

The SET STATUS ACTION command overrides the SOURCE ON command.

Default Values

 If you omit level, SET STATUS ACTION affects the current command mode.

 If you omit cmd-string, Inspect sets the status action to nothing.

 The default INSPLOCL file sets the status action to nothing, as follows:

SET STATUS ACTION [level] [=] [cmd-string]

level: one of

 BOTH HIGH LOW

cmd-string: one of

 " command [; command]... "
 ' command [; command]... '

SET STATUS ACTION BOTH
Inspect Manual—429164-006
6-186

High-Level Inspect Commands Related Commands
Related Commands

 SET STATUS LINE25 and SET STATUS SCROLL on page 6-187

 SHOW with STATUS ACTION option on page 6-194

SET STATUS LINE25 and SET STATUS
SCROLL

The SET STATUS LINE25 and SET STATUS SCROLL commands control the
information Inspect displays in the event-status message. The SET STATUS LINE25
command controls what information appears on the 25th line of the terminal; the SET
STATUS SCROLL command controls what information appears in the scrolling portion
of the terminal.

level

specifies the command mode level whose status message you want to set. HIGH
specifies high-level Inspect, LOW specifies low-level Inspect, and BOTH specifies
both high-level and low-level Inspect. If you omit level, SET STATUS LINE25 and
SET STATUS SCROLL affect the current command mode.

SET STATUS { LINE25 | SCROLL } [level] [OUT filename] [=]
 [status-item [, status-item]...]

level: one of

 BOTH HIGH LOW

status-item: one of

 string ACCELERATOR STATE EVENT
 INSTRUCTION SET LANGUAGE LOCATION
 NEW LINE PROCESSOR PROGRAM FILE
 PROGRAM NAME PROGRAM ORDINAL PROGRAM PID
 SCOPE STATE SYSTYPE
 TYPE

string: one of

 " [character]... "
 ' [character]... '
Inspect Manual—429164-006
6-187

High-Level Inspect Commands SET STATUS LINE25 and SET STATUS SCROLL
status-item [, status-item]...

is a list of status items that defines the lineþ25 or scrolling content of the Inspect
event status message. Inspect displays the status items in the order that they
appear in the list.

OUT filename

allows you to specify what out file you want data to go to when an event occurs.

string

directs Inspect to display a string of text. This string is a group of zero or more
characters enclosed in either quotes (") or apostrophes ('). To include a quote in a
quote-delimited string, use a pair of quotes. To include an apostrophe in an
apostrophe-delimited string, use a pair of apostrophes.

ACCELERATOR STATE

directs Inspect to indicate the program state at the current location. This token
applies only to accelerated programs running on a TNS/R system. If the program is
not running on a TNS/R system or has not been accelerated, nothing is shown.
One of these values is listed:

Register-exact
Memory-exact
Non-exact

EVENT

directs Inspect to display the type of event that occurred:

ABEND
BREAKPOINT #brkpt-number: code-location
CALL
MEMORY ACCESS BREAKPOINT
brkpt-number: data-location [OCCURRED AT code-location]

PATHWAY ERROR CODE: error-code
STEP [IN | OUT]
STOP
TRAP trap-number - trap-text

INSTRUCTION SET

directs Inspect to display the type of machine instructions currently being executed
by your program.

One of: TNS | TNS/R

This indicates whether the current program is executing TNS instructions or TNS/R
instructions.
Inspect Manual—429164-006
6-188

High-Level Inspect Commands SET STATUS LINE25 and SET STATUS SCROLL
LANGUAGE

directs Inspect to display the current language.

LOCATION

directs Inspect to display the location at which the event occurred. Inspect uses the
format specified by SET LOCATION FORMAT to display the location.

NEW LINE

directs Inspect to go to the next screen line. Inspect ignores NEW LINE for SET
STATUS LINE25.

PROCESSOR

directs Inspect to display the machine family name and processor name the
current program is executing on.

Output is of the form: family (processor)

family is one of:

TNS
TNS/R

processor is one of:

TNSII
TXP
VLX
CLX
Cyclone
NSR-L
NSR-N
NSE-P

For example: TNS/R (NSR-L) and TNS/E (NSE-P)

PROGRAM FILE

status message; directs Inspect to display the name of the current program’s file.

PROGRAM NAME

directs Inspect to display the current program’s process name. If the program is not
named, Inspect used the name of the current program’s program file.

PROGRAM ORDINAL

directs Inspect to display the current program’s program number (as displayed by
the LIST PROGRAM command).
Inspect Manual—429164-006
6-189

High-Level Inspect Commands Default Values
PROGRAM PID

directs Inspect to display the current program’s process ID in the form sys,cpu,pin.

SCOPE

directs Inspect to display the current scope path.

STATE

directs Inspect to display the current program's execution state: RUN, HOLD,
STOP or GONE.

For more information about execution states, see Section 2, Inspect Concepts.

SYSTYPE

directs Inspect to display the current systype, either Guardian or OSS.

TYPE

directs Inspect to display the current program’s type.

For more information, see Scope Paths on page 2-12.

Default Values

 If you omit level, SET STATUS LINE25 and SET STATUS SCROLL affect the
current command mode.

 If you do not specify a list of status items, Inspect sets the specified status
message (line 25 or scrolling) to nothing.

 The default INSPLOCL file sets the scrolling and line 25 portions of the event-
status message as follows (note that it sets the line 25 portion to display nothing):

Usage Considerations for SET STATUS LINE25

 When Inspect Updates Line 25

Inspect updates the line 25 status message when a debug event occurs. In
addition, Inspect updates the line 25 status message when the value of one of its
status items changes. For example, if you set the line 25 status message to
include the current language, Inspect will update the line 25 status message
whenever the current language changes.

SET STATUS SCROLL BOTH = "INSPECT ",EVENT,NEW LINE,PROGRAM PID," ", &
 PROGRAM NAME," ",LOCATION
SET STATUS LINE25 BOTH
Inspect Manual—429164-006
6-190

High-Level Inspect Commands Related Commands
 Maximum Length of the Line 25 Status Message

The line 25 status message accommodates up to 64 characters. If the list of status
items you specify results in a longer status message, Inspect truncates it to 64
characters.

 Maximum Amount Written in the Event-Status Message

The maximum amount that is written out in the event-status message is
determined by the record length of the device being written to.

Related Commands

 LIST PROGRAM on page 6-137

 SET PROMPT on page 6-178

 SHOW with STATUS LINE25 option on page 6-194

 SHOW with STATUS SCROLL option on page 6-194

SET SUBPROC SCOPING
The SET SUBPROC SCOPING command allows you to specify whether Inspect first
looks in a subprocedure for an identifier or first looks in the encompassing procedure.

SUBLOCAL

specifies that the sublocal identifier will take precedence.

LOCAL

specifies that the local identifier will take precedence.

Usage Considerations

 If SUBPROC SCOPING is set to SUBLOCAL, when a sublocal in the current TAL
subprocedure has the same name as a local in the containing procedure, the
sublocal will take precedence. The local cannot be accessed.

 If SUBPROC SCOPING is set to LOCAL, when a sublocal in the current TAL
subprocedure has the same name as a local in the containing procedure, the local
will take precedence. The sublocal can still be accessed by qualifying it with the
subprocedure name.

SET SUBPROC SCOPING [=] [SUBLOCAL | LOCAL]
Inspect Manual—429164-006
6-191

High-Level Inspect Commands Related Commands
Related Commands

 DISPLAY on page 6-33

 SHOW with SUBPROC SCOPING option on page 6-194

Example

This example illustrates the SET SUBPROC SCOPING command. Note that the
current location is within subprocedure “s”.

SET SYSTYPE
The SET SYSTYPE command allows you to change the current systype of Inspect.

Usage Consideration

Inspect may override any user selected systype when a subsequent event is received.

-TEST(STEP)-SOURCE #0 FOR 24 LINES
 #1 ?PAGE "PROC p"
 #2 PROC p MAIN;
 #3
 #4 BEGIN
 #5
 #6 INT
 #7 i := 42;
 #8
 #9 ?PAGE "SUBPROC s of PROC p"
 #10 SUBPROC s;
 #11
 #12 BEGIN
 #13
 #14 INT
 #15 i := 101;
 #16
 *#17 END;-- of SUBPROC s
 #18 -- ********************End of SUBPROC s *********************
 #19 ?PAGE "PROC p"
 #20
 #21 CALL s;
 #22
 #23 END;-- of PROC p
 #24 -- ******************** End of PROC p **********************
-TEST-SHOW SUBPROC SCOPING
SUBLOCAL
-TEST-DISPLAY i
I = 101
-TEST-SET SUBPROC SCOPING = LOCAL
-TEST-DISPLAY i
** Inspect warning 99 ** Access is local (sublocal reference must be
qualified): I
I = 42
-TEST-DISPLAY S.I
S.I = 101

SET SYSTYPE { GUARDIAN | OSS }
Inspect Manual—429164-006
6-192

High-Level Inspect Commands SET TRACE
SET TRACE
The SET TRACE command controls the dynamic trace facility of Inspect. When
dynamic tracing is activated, Inspect displays trace information concerning the current
program as it executes. SET TRACE enables you to activate this facility and control
the level of tracing.

trace-level

specifies the level of dynamic tracing you want to set.

ARGUMENT

specifies dynamic tracing of arguments. When tracing of arguments is on, Inspect
displays a trace message each time execution control passes to a scope unit as
the result of a call to the scope unit. The trace message displays the arguments (if
any) specified in the call. In general, the ARGUMENT option is used with the
SCOPE option, however, SET TRACE ARGUMENTS is inactive when SET
TRACE SCOPES is off. SET TRACE ARGUMENT is resource-intensive; it should
be used over a limited execution range in your program.

SCOPE

specifies dynamic tracing of scope units. When scope tracing is on, Inspect
displays a trace message each time execution control passes from one scope unit
to another.

 STATEMENT

specifies dynamic tracing of statements. When statement tracing is on, Inspect
displays a trace message each time a statement executes. Inspect uses the format
specified by SET LOCATION FORMAT to display the location of the statement.

Default Value

The default INSPLOCL file sets the dynamic trace controls as follows:

Note. The SET TRACE command is invalid for Pathway requester programs.

SET TRACE trace-level [=] { ON | OFF }

trace-level: one of

 ARGUMENT[S] SCOPE[S] STATEMENT[S]

SET TRACE ARGUMENTS = OFF
SET TRACE SCOPES = OFF
SET TRACE STATEMENTS = OFF
Inspect Manual—429164-006
6-193

High-Level Inspect Commands Usage Considerations
Usage Considerations

 The SET TRACE command is ignored when the STEP command is used.

 SCOPE TRACE and ARGUMENT TRACE information is not reported when a
breakpoint is hit.

Related Commands

 RESUME on page 6-158

 SHOW with TRACE ARGUMENT option on page 6-194

 SHOW with TRACE SCOPE option on page 6-194

 SHOW with TRACE STATEMENTS option on page 6-194

SHOW
The SHOW command displays the status of one or all the Inspect parameters
controlled by the SET command.

Usage Consideration

Using AS COMMANDS

The AS COMMANDS clause directs SHOW to display settings as executable Inspect
commands. If you use the AS COMMANDS clause with the OUT command, you can

SHOW { ALL [AS COMMAND[S]] }
 { set-object }

set-object: one of

 CHARACTER FORMAT
 DEREFERENCE DEPTH
 ECHO { ALL | ALIAS[ES] | HISTORY | KEYS }
 HELP FILE
 LOCATION FORMAT [level]
 PRIV MODE
 PROMPT
 RADIX [INPUT | OUTPUT] [level]
 SOURCE { ALL | BACK | FOR | RANGE | WRAP }
 STATUS { ALL | ACTION | LINE25 | SCROLL } [level]
 SUBPROC SCOPING
 TRACE { ALL | ARGUMENT[S] | SCOPE[S] | STATEMENT[S] }

level: one of

 BOTH HIGH LOW
Inspect Manual—429164-006
6-194

High-Level Inspect Commands Related Commands
create a command file. You can then incorporate this file in an OBEY file or the
INSPLOCL or INSPCSTM customization files; for example:

Related Commands

 ENV on page 6-81

 LIST on page 6-129

 SET on page 6-171

SIGNALS
The SIGNALS command displays signal information for the current program; it does
not support Guardian processes. The SIGNALS command is an alias for the INFO
SIGNALS command.

*

requests the status of all signals of the current program.

signal-id

requests the status of a specific signal, one of:

 SIGABRT SIGALRM SIGFPE
 SIGHUP SIGILL SIGINT
 SIGIO SIGKILL SIGPIPE
 SIGQUIT SIGRECV SIGSEGV
 SIGTERM SIGUSR1 SIGUSR2
 SIGCHLD SIGCONT SIGSTOP
 SIGTSTP SIGTTIN SIGTTOU
 SIGABEND SIGLIMIT SIGSTK
 SIGMEMMGR SIGNOMEM SIGMEMERR
 SIGTIMEOUT

Default Value

If you enter SIGNALS alone, Inspect displays information on all the signals of the
current program.

-PRG-SHOW /OUT mysets/ ALL AS COMMANDS

SIGNAL[S] [* | signal-id [, signal-id...]]
 [[,] DETAIL]
Inspect Manual—429164-006
6-195

High-Level Inspect Commands SOURCE
SOURCE
The SOURCE command's primary function is to display source text. It performs other
functions, including searching for source text, displaying text from an arbitrary file, and
allowing you to redefine the location of source files.

source-locator

specifies what source text to display or search for.

AT code-location

specifies the source text corresponding to the given code location.

SOURCE [source-locator] [limit-spec]...
 [file-locator] [WRAP]

source-locator: one of

 AT code-location
 ICODE [AT code-location]
 [LINE] #line-number
 [STATEMENT] statement-number
 SEARCH string [CASE] [position / position]

limit-spec: one of

 FOR count [STATEMENT[S] | LINE[S] | INSTRUCTION[S]]
 BACK count [STATEMENT[S] | LINE[S] | INSTRUCTION[S]]
 / position

position: one of

 F L #line-number statement-number

string: one of

 " [character]... "
 ' [character]... '

file-locator: one of

 FILE file-name
 LOCATION code-location
 SCOPE scope-number
Inspect Manual—429164-006
6-196

High-Level Inspect Commands SOURCE
ICODE [AT code-location]

specifies instruction-code presentation of the source text corresponding to the
code location given in the AT clause.

LINE #line-number

specifies the source text corresponding to the given line number. Inspect uses
the current scope path to qualify this line number unless you specify file-
locator.

[STATEMENT] statement-number

specifies the source text corresponding to the given statement number. Inspect
uses the current scope path to qualify this statement number unless you
specify file-locator.

limit-spec

specifies the amount of source text to display.

You cannot specify a limit specifier when using SOURCE SEARCH.

FOR count [STATEMENT[S] | LINE[S]]

specifies the amount of source text to display. The count parameter specifies
the number of units (statements or lines) to display. Inspect selects the default
unit based on the current setting of the LOCATION FORMAT environment
parameter. If the setting specifies STATEMENTS, Inspect uses STATEMENTS
as the default unit; otherwise, it uses LINES.

BACK count [STATEMENT[S] | LINE[S]]

specifies the amount of source text preceding source-locator to display. The
count parameter specifies the number of units (statements or lines) to display.
If you omit the unit, Inspect selects a default based on the current setting of the
LOCATION FORMAT environment parameter. If the setting specifies
STATEMENTS, Inspect uses STATEMENTS as the default unit; otherwise, it
uses LINES.

You cannot specify the BACK clause when using SOURCE ICODE.

/ position

specifies one endpoint of a range whose other endpoint is source-locator.
Inspect displays the source text in this range. You can specify the endpoint by
line number, statement number, or by the letters F or L. F specifies the first line
in the file; L specifies the last line in the file.

You cannot specify this clause with the FOR or BACK clauses.

When you use this clause in a SOURCE ICODE command, you cannot use the
letters F or L to specify the endpoint of the range.
Inspect Manual—429164-006
6-197

High-Level Inspect Commands Default Values
file-locator

directs Inspect to read from a file other than the one containing the source text for
the current scope path. In this context, the SOURCE command is used to browse
through edit files. Inspect does not annotate the source with information such as
statement numbers, memory-exact points or the current location. The file-
locator clause accepts both Guardian filenames and OSS pathnames,
depending on the current systype of Inspect. If no file-locator is specified,
Inspect uses the source file specified in the object file for the current scope, which
can be either a Guardian file name or an OSS pathname.

You cannot specify a file locator when using SOURCE AT or SOURCE ICODE.

FILE file-name

directs Inspect to read from the given file.

You cannot specify the FILE clause when using SOURCE STATEMENT.

LOCATION code-location

directs Inspect to read from the file containing the source text for the given
code location.

You cannot specify the LOCATION clause when using SOURCE STATEMENT.

SCOPE scope-number

directs Inspect to read from the file containing the source text for the active
scope unit whose scope number (as shown by the TRACE command) is
scope-number.

WRAP

directs Inspect to display the full length of each source line, wrapping it onto the
next line if necessary.

Default Values

 If you do not specify source-locator, the SOURCE command uses the current
scope path to determine what source text to display:

 If the current scope path denotes an active scope unit, the SOURCE command
displays source text associated with the next code location in the scope unit.

 If the current scope path denotes an inactive scope unit, the SOURCE
command displays source text associated with the first code location in the
scope unit.

 If you do not specify limit-spec, the SOURCE command uses the current
values of the SOURCE FOR and SOURCE BACK environment parameters. You
can use the SET command to change these parameters.
Inspect Manual—429164-006
6-198

High-Level Inspect Commands Usage Considerations
 If you do not specify file-locator, the SOURCE command reads from the file
associated with source-locator.

 If you do not specify WRAP, the SOURCE command uses the current value of the
SOURCE WRAP environment parameter. You can use the SET command to
change this parameter.

Usage Considerations

 Components of the Source Display

When you use the SOURCE command, Inspect displays the source text
corresponding to the location you provide. In addition, Inspect also displays:

 An asterisk next to the source line containing the current location.

 Breakpoint numbers next to source lines containing break locations.

 Statement numbers if the LOCATION FORMAT session parameter includes
STATEMENTS.

 Line numbers if the LOCATION FORMAT session parameter includes LINES.

 Continuing the Last SOURCE Command

After you enter a SOURCE command, you can continue it by pressing RETURN at
the next Inspect prompt. The ability to repeat continues until you enter any other
Inspect command.

When you repeat a SOURCE command, Inspect continues from the source line
where the previous SOURCE command ended.

When you repeat a SOURCE SEARCH command, Inspect searches for the next
occurrence of the original string.

 Accessing Source Text

In order for SOURCE to access and display the source text, the scope unit
containing source-locator must have symbol information associated with it. If no
symbol information is available, Inspect cannot display any source text and
therefore issues the error message:

 Timestamps of Source Files

When Inspect first opens a source file, it checks the file’s current modification
timestamp. If this timestamp differs from the timestamp recorded in the program
file, Inspect issues this warning:

** Inspect error 36 ** No symbols available in scope: scope-unit

** Inspect warning 49 ** Timestamp mismatch for file-name
 Source modification time at present: current-timestamp
 Source modification time at compilation: compile-timestamp
Inspect Manual—429164-006
6-199

High-Level Inspect Commands Usage Considerations
Inspect issues this warning once when it first opens the file; subsequent accesses
to the file do not produce the warning.

Modifying a source file after it was compiled will result in a timestamp mismatch. In
this case, the correspondence between code locations and source lines might be
invalid.

Moving or renaming a source file and then using ADD SOURCE ASSIGN to
associate the new name with the object code can also result in a timestamp
mismatch, even when the source itself has not changed. To avoid a mismatch of
this type, use either the SAVEALL or SOURCEDATE clause of the File Utility
Program (FUP) DUPLICATE command. For more information, see the File Utility
Program (FUP) Reference Manual.

 Types of Source Files

Source files must be EDIT files. Inspect reports an error if a source file is not of
this type.

 Renumbering a Source File

If you renumber the lines in a source file after compiling it, the correspondence
between line numbers and code locations might become invalid, therefore causing
the SOURCE command to produce incorrect results.

 Pressing the BREAK Key

You can halt a source display at any time by pressing the BREAK key. Inspect
stops displaying source text and issues an Inspect prompt.

 Displaying Source from Multiple Files

A single SOURCE command can display source text from one file only. Inspect
does not interpret toggles, source directives, or copy directives in the source file. If
Inspect encounters an end-of-file or beginning-of-file when displaying the source
text, it shortens the display accordingly.

 Displaying Source with the FILE Clause

The intent of the SOURCE FILE form of the SOURCE command is to allow you to
browse through EDIT files while in Inspect. This form of the SOURCE command
does not use symbol information; hence, it does not annotate the listing when the
file happens to be a source file for the program.
Inspect Manual—429164-006
6-200

High-Level Inspect Commands Usage Consideration for Accelerated Programs on
TNS/R Systems
Usage Consideration for Accelerated Programs on TNS/R
Systems

When debugging accelerated programs, the SOURCE command annotates the listed
statements to mark statements that are register-exact points with a “@” and those that
have been “Deleted” (that is, are not memory-exact points) with a “–”.

Usage Consideration for Accelerated Programs on TNS/E
Systems

The SOURCE command shows register-exact points(“@”) and deleted statement
annotations (“–”) for an OCA process, but not for an OCA snapshot.

Related Commands

 ADD SOURCE ASSIGN on page 6-14

 DELETE SOURCE ASSIGN on page 6-31

 DELETE SOURCE OPEN on page 6-32

 LIST SOURCE ASSIGN on page 6-141

 LIST SOURCE OPEN on page 6-142

 SELECT SOURCE SYSTEM on page 6-169

 SET LOCATION FORMAT on page 6-175

 SET with SOURCE option on page 6-171

 SOURCE ASSIGN on page 6-202

 SOURCE OPEN on page 6-208

 SOURCE SYSTEM on page 6-211

Note. The annotation character is listed in the same column that Inspect lists the asterisk
when marking the current location. The asterisk always takes precedence; information about
the program state at the current location is available from the ACCELERATOR status/prompt
token and the LIST PROGRAM DETAIL and the INFO LOCATION commands.
Inspect Manual—429164-006
6-201

High-Level Inspect Commands Examples
Examples

1. When the LOCATION FORMAT is set to STATEMENTS, the SOURCE command
does not list statement numbers for statements deleted by TNS optimizations. In
this example, the statement number 15 is not listed because it was deleted by
optimizations.

2. For an accelerated program on TNS/R systems, when the LOCATION FORMAT is
set to LINES, the SOURCE command uses a dash (-) to annotate lines deleted by
accelerator optimizations. In this example, the line number 80 has a dash because
it was deleted by optimizations.

3. This example illustrates that when a breakpoint at STOP or ABEND is recognized,
Inspect shows the current location at the call statement. The annotation character,
“*”, denotes the current location. In this example, assume a breakpoint at ABEND
has been hit and the user typed “SOURCE.”

SOURCE ASSIGN
The SOURCE ASSIGN command redefines the location of source files and sets or
displays source assignments from the source-assignment list for the current Inspect
session. The SOURCE ASSIGN command is a synonym for the ADD SOURCE
ASSIGN and LIST SOURCE ASSIGN commands. For more information, see ADD
SOURCE ASSIGN and LIST SOURCE ASSIGN commands.

When a program is compiled, the fully qualified names of the source files that compose
it are recorded as part of the symbol information. Inspect uses this information to

12 z := x;
13 z := y;
14 GOTO bar;
 GOTO foo;
16 z := 1;

@#76 a :=1;
 #77 CALL s1;
@#78 CALL s2 (a, a, a);
@#79 CALL s3;
-#80 b :=a;
 #81
 #82 CALL PROC1 (1, 2D, sptr);

 100 IF j = 17
 200 THEN
 300 BEGIN
 500 IF e <> s OR j <> e
 600 THEN
 *700 CALL ABEND;
 800 END
 900 ELSE
 910 BEGIN
 920 J := 17;
Inspect Manual—429164-006
6-202

High-Level Inspect Commands Default Values
determine what file to retrieve source text from. If a source file has been moved since
a program was compiled, Inspect will be unable to locate source text to display. The
SOURCE ASSIGN command enables you to inform Inspect where to find source files
when their location has changed.

original-name

specifies the name of a volume, subvolume, file (permanent or temporary), or
process where Inspect would normally look for source code. Note that the volume
name is required for a permanent or temporary file.

new-name

specifies the name of the volume, subvolume, or file where you want Inspect to
look for source code when it would normally look in original-name. Note that
the volume is required.

new-name must be qualified down to the same level as original-name. That is,
if original-name is a volume,new-name must be a volume; if original-
name is a subvolume, new-name must be a subvolume; if original-name is a
file or process, new-name must be a file.

Default Values

 If you do not specify original-name or new-name, SOURCE ASSIGN displays
the source assignments from the source-assignment list for the current Inspect
session.

 If you do not specify original-name, Inspect uses the same source file with the
current scope.

SOURCE ASSIGN[S] [[original-name,] new-name]

original-name: one of

 [\system.] $volume [.subvolume [.file]]
 [\system.] $process [.#qual-1 [.qual-2]]
 [\system.] cpu, pin
 [\system.] $volume.#number
 /oss-pathname [/oss-pathname ...]

new-name:

 [\system.] $volume [.subvolume [.file]
 /oss-pathname [/oss-pathname ...]
Inspect Manual—429164-006
6-203

High-Level Inspect Commands Related Commands
Related Commands

 ADD SOURCE ASSIGN on page 6-14

 DELETE SOURCE ASSIGN on page 6-31

 LIST SOURCE ASSIGN on page 6-141

 SELECT SOURCE SYSTEM on page 6-169

 SOURCE on page 6-196

 SOURCE SYSTEM on page 6-211

SOURCE ICODE
The SOURCE ICODE command lists the instruction mnemonics corresponding to
listed source text.

AT code-location

specifies a code location relative to which source and instructions are to be listed.

limit-spec

specifies the amount of source text to display.

FOR count [STATEMENTS | LINES]

specifies the amount of source text to display. The count parameter specifies
the number of units (statements or lines) to display. Inspect selects the default
unit based on the current setting of the LOCATION FORMAT environment
parameter. If the setting specifies STATEMENTS, Inspect uses STATEMENTS
as the default unit; otherwise, it uses LINES.

BACK count [STATEMENTS | LINES]

specifies the amount of source text preceding source-locator to display. The
count parameter specifies the number of units (statements or lines) to display.
If you omit the unit, Inspect selects a default based on the current setting of the
LOCATION FORMAT environment parameter.

SOURCE ICODE [AT code-location] [limit-spec] [WRAP]

limit-spec: one of

 FOR count [STATEMENT[S] | LINE[S]]
 BACK count [STATEMENT[S] | LINE[S]]
Inspect Manual—429164-006
6-204

High-Level Inspect Commands Default Value
WRAP

directs Inspect to display the full length of each source line, wrapping it onto the
next line if necessary.

Default Value

The SOURCE ICODE command lists the same range of lines as listed by the
SOURCE command.

Usage Considerations

 When displaying source and instruction mnemonics, Inspect lists source lines until
the beginning of a statement/verb is encountered, at which point instructions for
the preceding statement/verb are listed.

 Lines that do not generate code, such as comments, may therefore be listed
before the instructions for the preceding statement.

 Changing the current scope to an active procedure on the stack changes the
default display location.

 The SOURCE ICODE command requires that a program be compiled with
symbols. Use the ICODE command if your program does not have symbols.

Usage Considerations for TNS/R Programs

 When debugging accelerated programs, the SOURCE ICODE command marks
TNS instructions which are at memory-exact points and register exact-points.
These symbols are used:

 > memory-exact point
@ register-exact points

 When debugging accelerated programs, the SOURCE ICODE command
annotates the listed statements to mark statements that are register-exact points
and those that have been “Deleted” (that is, are not memory-exact points). The
annotation character is listed in the column before the line/statement number:

- The statement is deleted (that is, it is not a memory-exact point).

@ The statement is a register-exact point; the RESUME AT command and
register modification commands can be used as such statements.

 When debugging TNS/R native programs, the SOURCE ICODE command
displays a “-” character next to RISC instructions which are from previous source
lines and a “+” next to RISC instructions which are from subsequent lines. Lines
containing RISC instructions also contain the source file line number that the
instruction is for.
Inspect Manual—429164-006
6-205

High-Level Inspect Commands Related Command
Related Command

ICODE

Example

1. This example illustrates the SOURCE ICODE command.

-PROGRAM-SOURCE ICODE AT #open^file FOR 7 statements
#398 INT PROC open^file(fcb, fname^int);
 ADDS +013 LADR L+020 LLS 01
 PUSH 700 ADDS +025
#399 STRING .EXT fcb;
#400 INT .fname^int;
#401 BEGIN
#402 STRING buf[0:10];
#403 INT dtype;
#404 INT error;
#405 INT error^subcode;
#406 INT file^code;
#407 INT fn;
#408 STRING .fname^ext[0:EXT^FNAME^SIZE];
#409 INT fname^len;
#410 INT reclen;
#411 INT version;
#412
#413 fname^len := FNAMECOLLAPSE(fname^int, fname^ext);
 LADR L-003,I LADR L+014,I PUSH 711
 XCAL 121 STOR L+015
#414 CALL DEVICEINFO(fname^int, dtype, reclen);
 LADR L-003,I LADR L+007 LADR L+016
 PUSH 722 XCAL 043
#415 IF dtype.DEVTYPE^TYPE <> DEVTYPE^DISC
#416 THEN
 LOAD L+007 LRS 06 ANRI +077
 CMPI +003 BEQL +010
#417 CALL ER^Write(ERR^NOT^DISC^FILE, 0, ,
 #417.1 fname^ext, fname^len)
 LDI +101 ZERD LADR L+014,I
 LOAD L+015 ZERD LDI +154
 PUSH 777 XCAL 057
#418 fn := -1; LDI -001 STOR L+013
#419 CALL OPEN(fname^int, fn, OPEN^READONLY);
 LADR L-003,I LADR L+013 LDLI +004
 PUSH 722 ADDS +006 LDLI +340
 LDI -011 PUSH 711 XCAL 222
Inspect Manual—429164-006
6-206

High-Level Inspect Commands SOURCE OFF
2. This example illustrates the SOURCE ICODE command listing TNS/R native
programs.

SOURCE OFF
The SOURCE OFF command disables automatic source display at each event.
SOURCE OFF is equivalent to the alias SOURCEOFF and the command SET
STATUS ACTION HIGH.

Related Commands

 SET STATUS ACTION on page 6-186

 SOURCE ON on page 6-208

-PROGRAM-SOURCE ICODE FOR 3 STATEMENTS
*#10.000 Proc P(u, v, w, x, y);

 10.000 addiu $sp,$sp, -32
 10.000 sw $4,32($sp)
 10.000 sw $5,36($sp)

 #11.000 int(32) u;
 #12.000 int(32) v;
 #13.000 int(32) w;
 #14.000 int(32) x;
 #15.000 int(32) y;
 #16.000 Begin
 #17.000 m := u + v + w + x;

 17.000 lw $15,35($sp)
 17.000 lw $14,32($sp)
 - 10.000 sw $6, 40($sp)
 17.000 lw $25,40($sp)
 - 10.000 sw $7, 44($sp)
 17.000 lw $9, 44($sp)
 17.000 add $24,$14,$15
 + 18.000 lw $11,48($sp)
 17.000 add $8,$24,$25
 - 10.000 sw $31,28($sp)
 17.000 add $10,$8,$9
 17.000 sw $10,16($gp)

 #18.000 call p(u, v, w, x, y);

 18.000 move $5,15
 18.000 move $4,14
 18.000 move $6,25
 18.000 move $7,9
 18.000 jal 0x70000290
 18.000 sw $11,16

-PROGRAM-

SOURCE OFF
Inspect Manual—429164-006
6-207

High-Level Inspect Commands SOURCE ON
SOURCE ON
The SOURCE ON command enables automatic source display at each event.
SOURCE ON is equivalent to the command SET STATUS ACTION HIGH = “SOURCE
FOR 1”.

Related Commands

 SET STATUS ACTION on page 6-186

 SOURCE OFF on page 6-207

SOURCE OPEN
The SOURCE OPEN command displays the names of the files currently open as a
result of previous SOURCE commands.

The SOURCE OPEN command is a synonym for the LIST SOURCE OPEN command.

Related Commands

 DELETE SOURCE OPEN on page 6-32

 LIST SOURCE OPEN on page 6-142

 SOURCE on page 6-196

SOURCE SEARCH
The SOURCE SEARCH command displays source text that matches a specified
string.

SEARCH string [CASE] [position / position]

specifies the source text corresponding to the first match of a given string. Inspect
searches for the string in the source file containing the current scope path unless
you specify file-locator.

SOURCE ON

SOURCE OPEN[S]

SOURCE SEARCH string [CASE] [position / position]
 [file-locator] [WRAP]
Inspect Manual—429164-006
6-208

High-Level Inspect Commands Usage Consideration
string

is a string of characters enclosed in quotes. To include a quote in the string, use a
pair of quotes.

CASE

directs Inspect to distinguish between uppercase and lowercase letters as it
searches. If you omit CASE, Inspect does not differentiate uppercase from
lowercase.

position / position

specifies the range of lines to search. The first position denotes the start of the
range, and the second position denotes the end of the range. You can specify a
position by line number, statement number, or by the letters F or L. The letter F
specifies the first line in the file; L specifies the last line in the file.

If the ending position precedes the starting position, Inspect searches backwards
through the range.

If you do not specify a range, Inspect uses the current value of the SOURCE
RANGE environment parameter. You can use the SET command to change this
parameter.

file-locator

directs Inspect to read from a file other than the one containing the source text for
the current scope path. An OSS pathname is valid as a file-locator if the current
systype is OSS.

WRAP

directs Inspect to display the full length of each source line, wrapping it onto the
next line if necessary.

Usage Consideration

To find the next occurrence of a string, press the return key as illustrated.

-OBJECT-SOURCE SEARCH 'owner_id'
#20 int owner_id = 0;
-OBJECT-
#29 owner_id = (int) val3 >> 16;
-OBJECT-
#30 val2 = proc2(val1, owner_id);
Inspect Manual—429164-006
6-209

High-Level Inspect Commands Examples
Examples

This examples for the SOURCE SEARCH command are based on the source code.
LOCATION FORMAT has been set to LINES, STATEMENTS to display both edit line
and statement numbers.

1. Here are two examples of using SOURCE SEARCH to find a string of text within a
source file.

2. Here are two examples of SOURCE SEARCH which show the effect of the case
clause. When CASE is used, note that the search is restricted. When a string is
not located, Warning 203, “String not found,” will be issued.

3. These three examples illustrate the use of the SOURCE SEARCH command when
specifying position.

-PROGRAM-SOURCE FOR 5 STATEMENTS
 *3 #25 val3 = 0x7DF4;
 4 #26 val1 = 0;
 #27
 #28
 5 #29 owner_id = (int) val3 >> 16;
 6 #30 val2 = proc2(val1, owner_id);
 #31
 #32 /* test should match first compare. */
 7 #33 if (val2 == 0)

-PROGRAM-SOURCE SEARCH "owner_id"
#20 int owner_id = 0;
-PROGRAM-SOURCE SEARCH 'owner_id'
#20 int owner_id = 0;

-OBJECT-SOURCE SEARCH 'OWNER_ID'
#PROGRAM int owner_id = 0;
-OBJECT-COMMENT OWNER_ID does not appear in upper-case anywhere
-OBJECT-COMMENT in the source. Warning 203 will be given.
-OBJECT-SOURCE SEARCH 'OWNER_ID' CASE
 ** Inspect warning 203 ** String not found

-PROGRAM---COMMENT Using the letters F and L.
-PROGRAM-SOURCE SEARCH 'owner_id' F/L
#20 int owner_id = 0;
-PROGRAM---COMMENT Using an edit line number and the letter L.
-PROGRAM-SOURCE SEARCH 'owner_id' #21/L
#29 owner_id = (int) val3 >> 16;
-PROGRAM---COMMENT Using a statement number and an edit line number.
-PROGRAM-SOURCE SEARCH 'owner_id' 3/#33
#29 owner_id = (int) val3 >> 16;
Inspect Manual—429164-006
6-210

High-Level Inspect Commands SOURCE SYSTEM
4. This example illustrates backward searching.

5. This example illustrates the use of FILE as the file-locator to search for source
from an arbitrary file.

6. This example shows using the SOURCE SEARCH command with SCOPE as the
file-locator.

7. This example illustrates using the SOURCE SEARCH command with LOCATION
as the file-locator.

SOURCE SYSTEM
The SOURCE SYSTEM command directs Inspect to retrieve source files from a
another system when the object file has moved but the source has not. SOURCE
SYSTEM is a synonym for the SELECT SOURCE SYSTEM command.

-PROGRAM-SOURCE SEARCH 'owner_id' #34/#20
#30 val2 = proc2(val1, owner_id);
-PROGRAM-
#29 owner_id = (int) val3 >> 16;
-PROGRAM-
#20 int owner_id = 0;
-PROGRAM-SOURCE SEARCH 'owner_id' #34/F
#30 val2 = proc2(val1, owner_id);
-PROGRAM-
#29 owner_id = (int) val3 >> 16;
-PROGRAM-
#20 int owner_id = 0;

-PROGRAM-SOURCE SEARCH 'readupdate' F/L FILE $system.system.extdecs
#4684 ?SECTION READUPDATE

-PROGRAM-TRACE
Num Lang Location
 0 C #proc2.1, #proc2.#61
 1 C #main.6, #main.#30
 2 C #_MAIN.3, #_MAIN.#64.001
-PROGRAM-SOURCE SEARCH 'owner_id' 1/7 SCOPE 1
#20 int owner_id = 0;
-PROGRAM-SOURCE
 #57
 #58 int proc2 (x,y)
 #59 int x;
 #60 long y;
 *1 #61 {
 2 #62 x = x + (int) y;
 3 #63 return (int) x;
 #64 }
 ** Inspect warning 126 ** End-of-file on: \SYS.$DATA.CSUBV.SOURCE
-PROGRAM-SOURCE SEARCH 'owner_id' 1/7 SCOPE 0
 ** Inspect warning 203 ** String not found

-PROGRAM-SOURCE SEARCH 'owner_id' F/L LOCATION #main
#20 int owner_id = 0;

SOURCE SYSTEM [\system]
Inspect Manual—429164-006
6-211

High-Level Inspect Commands Default Value
system

specifies the system from which Inspect should retrieve source files.

Default Value

If you do not specify a system name in a SOURCE SYSTEM command, Inspect uses
the name of your current system.

Related Commands

 ADD SOURCE ASSIGN on page 6-14

 ENV on page 6-81

 SELECT SOURCE SYSTEM on page 6-169

 SOURCE ASSIGN on page 6-202

STEP
The STEP command resumes execution of the current program at the point where it
was last suspended, and then suspends execution after the program has executed a
certain number of units.

step-spec

specifies how much code to execute before re-suspending execution.

num-units [code-unit]

specifies the step amount as a number of code units. When you use this form,
STEP treats calls to other scope units as a single code unit.

The default for code-unit is STATEMENT. Code units map to slightly
different entities in each source language. Refer to the source language
sections for details regarding the size of a code unit.

STEP [step-spec]

step-spec: one of

 num-units [code-unit]
 IN [num-units [code-unit]]
 OUT [num-calls] [PROC[S] | SUBPROC[S]]

code-unit: one of

 INSTRUCTION[S] STATEMENT[S] VERB[S]
Inspect Manual—429164-006
6-212

High-Level Inspect Commands Default Value
IN [num-units [code-unit]]

specifies the step amount as a number of code units. The IN clause directs
STEP to step into a called scope unit if a call occurs in that step range. The
default for num-units is 1; the default for code-unit is STATEMENT.

The IN clause is invalid for PATHWAY requester programs.

OUT [num-calls] [PROC[S] | SUBPROC[S]]

specifies the step amount as a number of call exits; that is, how many scope
unit calls to return from. The default for num-calls is 1; the maximum value
allowed is 10.

The OUT clause is invalid for PATHWAY requester programs.

The PROCS clause specifies a TAL procedure and can be used in a
subprocedure to step out of the containing procedure. The SUBPROCS clause
specifies a TAL subprocedure and can be used to step out of a TAL
subprocedure. If you specify neither PROCS nor SUBPROCS, STEP OUT
defaults to SUBPROCS if the current location is within a subprocedure;
otherwise, it defaults to PROCS.

Default Value

STATEMENT is the default with code-unit for high-level and INSTRUCTION is the
default for code-unit in low-level. When you omit step-spec entirely, STEP uses 1
STATEMENT in high-level and 1 INSTRUCTION in low-level.

Usage Considerations

 Using STEP in Command Lists

If STEP is in a command list, it must be the last command in the list.

 Code Units

A code unit consists of the code from the beginning of one unit up to, but not
including, the beginning of the next unit.

Within a single scope unit, code units are counted in logical order of execution.
Consequently, a branch to a label causes the branch target to be counted as the
next unit. (The BSUB machine instruction is not a branch in this sense. Because it
invokes a subprocedure, it is a calling instruction.)

The capability to step by STATEMENTS or VERBS is a high-level capability. If you
are in low-level mode, you can step only by INSTRUCTIONS.

 Repeating the Last STEP Command

After you enter a STEP command, you can repeat it by pressing RETURN at the
next Inspect prompt. This ability to repeat continues until you enter any other
Inspect Manual—429164-006
6-213

High-Level Inspect Commands Usage Consideration for Accelerated Programs
Inspect command. When a debug event (such as a break event) interrupts the
sequence, a RETURN continues to mean “redo the STEP.”

 Breakpoints in Called Scope Units

If you attempt to step over a call to a scope unit that contains a breakpoint, Inspect
terminates the STEP command and stops in the called scope unit.

 Considerations when Using STEP IN

 If you enter a STEP IN command and a procedure call is not within the range
of the step, the command executes as though you had not specified the IN
parameter.

 If you enter a STEP IN command and step into the wrong procedure, enter a
STEP OUT to return to the calling procedure.

 If you enter a STEP IN command, execution stops when a new procedure is
entered, regardless of the remaining range specified by the command.

 Considerations when using STEP OUT

 The SUBPROCS clause prevents stepping out of the containing procedure if
you issue a STEP OUT SUBPROC command and then repeat the command
by pressing the RETURN key.

 If you use the SUBPROCS clause when you are not in a TAL subprocedure,
Inspect displays this warning message:

 If your program modified the S register and you issue a STEP OUT command
when the current location is within a subprocedure, Inspect displays this warning
message:

 When using STEP OUT, you cannot step out of the main scope unit (that is, the
scope unit controlling the program). If you attempt to step out, Inspect displays the
message:

Usage Consideration for Accelerated Programs

The STEP command can behave differently when stepping an accelerated program on
a TNS/R system because you will only be prompted at memory-exact points.

For more information, see Section 15, Using Inspect on a TNS/R System.

** Inspect warning 191 ** Current location is not a subproc

** Inspect warning 192 ** Unable to step subproc(s) due to 'S' register
modification

** Inspect error 173 ** STEP OUT is not allowed from main scope unit
Inspect Manual—429164-006
6-214

High-Level Inspect Commands Limitation of the STEP Command
Limitation of the STEP Command

Inspect does not support stepping execution from the throw statement to the catch
statement. When issuing the STEP command on the throw statement, the program
execution resumes. To suspend the program execution when an exception is thrown,
set a breakpoint on a statement in the appropriate catch block.

For example,

1. void func (int x) {
2. try {
3. if (x == 0)
4. throw "exception";
5. cout << x;
6. }
7. catch(...) {
8. cout << "In Catch block";
9. }
10. }

If you issue the STEP command on line 4 of the above program, the program
execution resumes. To suspend the program execution, set a breakpoint at line 8.

Related Commands

 BREAK on page 6-19

 CLEAR on page 6-27

 RESUME on page 6-158

STOP
The STOP command stops one or more programs, removing the stopped programs
from the program list.

If the program is a save file, the STOP command also closes the save file. If the
program is a process or PATHWAY server, and if it is the only program being
debugged, the STOP command terminates the Inspect session after stopping the
program.

Note. The STOP command is invalid for PATHWAY requester programs; you must use
PATHCOM to stop them.
Inspect Manual—429164-006
6-215

High-Level Inspect Commands Default Value
*

specifies all programs in the program list.

program

specifies a program using one of several formats. program identifies the program
by its program number (as shown by the LIST PROGRAM command). program
identifies the program by its name (as shown by the LIST PROGRAM command).
program identifies the program by its process ID (CPU number and process
number).

Default Value

If you enter the STOP command without any parameter, Inspect stops the current
program.

Usage Considerations

 The STOP command can only stop programs on the program list; you cannot use it
to stop any process.

 The Inspect STOP command stops only the primary process of a fault-tolerant
process pair; it does not stop the backup process. If you need to stop both the
primary and backup simultaneously, use the TACL command STOP.

Related Commands

 ADD PROGRAM on page 6-10

 HOLD on page 6-93

 RESUME on page 6-158

 SELECT PROGRAM on page 6-167

Example

This example illustrates the starting of a second process in debugging mode. First, the
Inspect command PAUSE is used to ignore the previously existing process while
issuing Inspect commands for the second process. Then the Inspect command STOP

STOP [* | program]

program: one of

 program-number
 program-name
 cpu,pin
Inspect Manual—429164-006
6-216

High-Level Inspect Commands SYSTEM
is used to terminate the second process. Inspect automatically prompts for commands
for the earlier process:

SYSTEM
The SYSTEM command sets the default system for expanding file names as operands
to Inspect commands.

system

is an HP NonStop system name. A system name always begins with a backslash
and has one to seven additional alphanumeric characters; the first character after
the backslash must be alphabetic.

Default Value

If you omit system, Inspect sets the default system to the host system of the Inspect
command terminal.

Usage Consideration

Inspect does not use the default system name you set using the SYSTEM command to
expand names of source files. To change the default system name for source files,
use the SELECT SOURCE SYSTEM command.

Related Commands

 ENV on page 6-81

 VOLUME on page 6-223

_$UT_HIGH
-$UT-COMMENT Press BREAK key and pause to start second process
-$UT-{ BREAK key pressed }
5>RUND OBJECT /NAME $UT2/
-$UT-PAUSE
 :
 :
-$UT2-COMMENT stopping $UT2 gives prompt for remaining $UT
-$UT2-STOP
-$UT- COMMENT pause or press BREAK key to start another process

SYSTEM [\system]
Inspect Manual—429164-006
6-217

High-Level Inspect Commands TERM
TERM
The TERM command alters Inspect’s command terminal by changing the home
terminal of the Inspect process to another terminal or a process. All programs being
debugged retain their original home terminal.

terminal

specifies a terminal by its device name.

process

specifies a process name with an optional system name.

Usage Considerations

 You must enter the TERM command interactively from the keyboard; you cannot
use it in:

An OBEY file
The INSPLOCL file
The INSPCSTM file

 If the process you are debugging requires exclusive or extensive use of its home
terminal, or if it owns the BREAK key, you can use the TERM command to direct
Inspect to use another terminal as the Inspect command terminal.

Related Commands

 OBEY on page 6-152

 OUT on page 6-155

 SYSTEM on page 6-217

TERM { terminal | process }

terminal:

 [\system.] $term-name

process:

 [\system.] $name
Inspect Manual—429164-006
6-218

High-Level Inspect Commands TIME
TIME
The TIME command enables you to obtain the current time within Inspect.

file

specifies the file to which TIME will write its output.

Usage Considerations

 The TIME command is useful when performance measurements figures are
needed against Inspect.

 The current time will be output in this form:

YYYY-MM-DDhh.mm.ss.cc

TRACE
The TRACE command displays the call history of active scopes for the current
program location. Inspect displays the call history sequentially, from the most recent to
the oldest.

num-calls

specifies the number of calls to list, beginning from the most recent call (that is, the
call to the scope unit containing the current code location). If you do not specify
num-calls, Inspect lists all outstanding calls.

REGISTERS

directs Inspect to interpret and display the TNS stack marker for each call listed.

The REGISTERS clause is invalid for PATHWAY requester programs and of limited
usefulness in accelerated programs.

ARGUMENTS

directs Inspect to display the formal parameter names and actual parameter values
for each call listed.

Usage Considerations

 When using the REGISTERS clause, Inspect displays each P-register value in
normal Inspect form as a scope unit and code offset. Inspect displays the L
register value in octal, the ENV register value decoded into mnemonics, and the

TIME [/OUT/ <file>]

TRACE [num-calls] [REGISTERS] [ARGUMENTS]
Inspect Manual—429164-006
6-219

High-Level Inspect Commands Usage Considerations
space identifier (space ID). For the ENV register, the RP and CC values appear
only for the first scope unit in the trace.

 If you specify ARGUMENTS, Inspect lists the formal parameter names and the
actual parameter values for each call. If the scope unit has the VARIABLE or
EXTENSIBLE attribute, only the supplied parameters are displayed.

 Numeric values (except the value of the L register) are displayed in the current
output radix. Numbers in octal or hexadecimal notation have the % or %H prefix,
respectively.

 The space identifier (space ID) is of the form:

{ UC | UL }.segment-num

;UC specifies that the code segment is within the user code space. UL specifies
that the code segment is within the user library space. segment-num defines the
particular code segment as an octal number. For more information about the space
ID, see the System Description Manual.

 Trap Handler

The operating system does not create a typical stack marker to describe the
location of a trap. If a trap handler occurs anywhere in the stack, TRACE will show
an incorrect trap location. For more information about trap handlers, see the
ARMTRAP and SIGACTION_INIT_ routines in the Guardian Procedure Calls
Reference Manual.

 Inspect lists the ENV register using these mnemonics:

For information about the ENV register, see the System Description Manual.

 Inspect displays all active TAL subprocedure calls (that is, subprocedures that
have been entered but not yet exited). Here are considerations for TAL
subprocedures:

 If the num-calls parameter is specified, Inspect does not count calls to
subprocedures as procedure levels.

CCE Condition code equal

CCG Condition code greater

CCL Condition code less

CS System code space bit is set

DS System data space bit is set

K Carry bit is set

LS Library space bit is set

PRIV Privileged bit is set

RP Register stack pointer

T Trap enable bit is set

V Overflow bit is set
Inspect Manual—429164-006
6-220

High-Level Inspect Commands Related Commands
 If the REGISTERS clause is specified, Inspect does not display stack marker
information for subprocedures.

 If the ARGUMENTS clause is specified, Inspect does not display parameter
names and values for subprocedures.

 Inspect excludes subprocedure entries from the call history if symbol
information for the containing procedure does not exist.

 If your program modified the S register, Inspect might not be able to display all
subprocedure entries in the call history. In this case, Inspect displays this
warning message:

 For TNS/R native processes, Inspect displays the PC register in the normal Inspect
form as a scope name and offset. Inspect also displays the virtual frame pointer
(VFP) for that frame.

 Inspect does not support debugging TNS/E native processes, but a TNS process
can be held at a TNS/E code location due, for example, to a memory access
breakpoint (MAB), a stop event, or an abend event.

The TRACE output on TNS/E systems will not show any TNS/E native frames. If a
TNS process is held at a TNS/E native address, the first line of the TRACE output
shows “Unknown TNS/E Address.”

To view both TNS and TNS/E frames, you must use Visual Inspect for TNS/E
systems.

Related Commands

 LIST PROGRAM on page 6-137

 SELECT PROGRAM on page 6-167

Examples

1. When using the REGISTERS clause, the TRACE command displays the L register,
ENV register, and space ID information in parentheses:

2. This example shows a TRACE command without clauses. When an entry in the
call history has only the notation SYSTEM CODE or SYSTEM LIB and an octal

** Inspect warning 185 ** Unable to trace subproc(s) due to 'S' register
modification

-TALOBJ-TRACE REGISTERS
Num Lang Location (Registers)
 0 TAL #APPLY.#537(BNK) (L=%21023,RP=7,CCE,K,T,UC.0)
 1 TAL #PARSER^HIGH.#240(MAIN) (L=%20730,T,UC.0)
 2 TAL #MAIN.#168(MAIN) (L=%20547,T,UC.0)
Inspect Manual—429164-006
6-221

High-Level Inspect Commands Examples
value, or if an entry is shown as a block name and offset with no source line
location, no symbols were available in that procedure; for example:

3. A TRACE command with both REGISTERS and ARGUMENTS requested (in
either order) lists the heading line first; then for each scope unit with a symbol table
it lists:

 The symbolic information about the called routine.

 The argument values (limited to 35 characters), as if requested in a DISPLAY
command.

The next example shows a COBOL program UPSHIFT calling a COBOL program
TAILOR to shift lowercase letters to uppercase. The three arguments are IN-
ARRAY, MAX-I, and OUT-ARRAY. Each of the two arrays is 25 characters long.

4. This example shows how call history entries for subprocedures differ from entries
for procedures. The following TRACE command shows that the procedure MAIN
called the subprocedure SPROC1, which called the subprocedure SPROC2.
SPROC2 then called the procedure PROC1, which called the subprocedure
SPROC3. SPROC3 is the currently executing subprocedure in PROC1:

Note that the subprocedures do not have a scope number. Also, note that the
subprocedure names are prefixed with a period rather than a pound sign.

5. This example shows TRACE and TRACE ARGUMENTS within a Pascal private
procedure. The SOURCE command shows the procedure specification. The first

-PRG-TRACE
Num Lang Location
 0 CBL #ATTEMPTDISPLAY.#1.4(QUEENSCS)
 1 #APPLY + %17
 2 CBL #QUEENSCO.#57(QUEENSCS)

-COBOBJ-TRACE REGISTERS ARGUMENTS
Num Lang Location (Registers) (Arguments)
 0 CBL #TAILOR.#462(UTLIB) (L=%1014,RP=7,CCG,K,UC.0)
IN-ARRAY =
 A[1] = "delREY "
MAX-I = 15, OUT-ARRAY =
 B[1] = "DELREY "
 1 CBL #UPSHIFT.#320(UPSHIFT) (L=%756,RP=7,CCG,K,UC.0)

-TALOBJ-TRACE
Num Lang Location
 TAL .SPROC3: #PROC1.#150(SOURCE)
 0 TAL #PROC1.#200(SOURCE)
 TAL .SPROC2: #MAIN.#50(SOURCE)
 TAL .SPROC1: #MAIN.#40(SOURCE)
 1 TAL #MAIN.#80(SOURCE)
Inspect Manual—429164-006
6-222

High-Level Inspect Commands VOLUME
TRACE command shows the calling stack. The second TRACE command includes
the ARGUMENT clause and shows the name and value of the parameters passed.

VOLUME
The VOLUME command sets the default volume and subvolume for expansion of any
file names.

volume

is a volume name. A volume name always begins with a dollar sign and has one to
seven additional alphanumeric characters; the first character after the dollar sign
must be alphabetic.

subvol

is a subvolume name. A subvolume name has one to eight alphanumeric
characters; the first character must be alphabetic.

-P008OBJ0-SOURCE
 #64
 #65
 #66
 #67
1 *#68 procedure proc1(g1 : boolean; var g2 : boolean;
 #69 c1 : char; var c2 : char;
 #70 b1 : byte; var b2 : byte;
 #71 i1 : integer; var i2 : integer;
 #72 u1 : cardinal;var u2 : cardinal;
 #73 d1 : longint; var d2 : longint;
-P008OBJ0-
 #74 r1 : real; var r2 : real;
 #75 l1 : longreal;var l2 : longreal;
 #76 s1 : colors; var s2 : colors;
 #77 e1 : fruit; var e2 : fruit);
 #78
 #79 {*

 #80 * Local variables:
 #81 *}
 #82
 #83 var
-P008OBJ0-TRACE
Num Lang Location
 0 PAS #P008SRC1.PROC1.#68(P008SRC1)
 1 PAS #P008SRC1.#251(P008SRC1)
-P008OBJ0-TRACE ARGUMENT
Num Lang Location (Arguments)
 0 PAS #P008SRC1.PROC1.#68(P008SRC1)
G1 = F, G2 = F, C1 = ?0, C2 = "y", B1 = 0, B2 = 126, I1 = 650, I2 = 651,
U1 = 60000, U2 = 60001, D1 = 87542, D2 = 87543, R1 = 7.5, R2 = 7.6, L1 = 8.8,
L2 = 8.9, = [GREEN RED], S2 = [BLUE GREEN], E1 = APPLES, E2 = BANANAS
 1 PAS #P008SRC1.#251(P008SRC1)

VOLUME { $volume }
 { [$volume.] subvol }
Inspect Manual—429164-006
6-223

High-Level Inspect Commands Default Value
Default Value

If the volume/subvolume specification is omitted, the current Guardian subvol is
changed to your initial Guardian subvolume.

Usage Considerations

 Note that the VOLUME command requires a parameter; it cannot be used without
parameters to restore original defaults.

 If Inspect is started using the command interpreter command Inspect, the default
volume and subvolume in Inspect will be the command interpreter defaults. In all
other cases— such as RUND and Debug, the default volume and subvolume will
be the logon defaults of the creator of the program being debugged.

Related Commands

 ENV on page 6-81

 SYSTEM on page 6-217

XC
The XC (“eXecute Command”) command reissues a command line from the history
buffer.

command-line-specifier

specifies which command line from the history buffer to reissue.

pos-num

is a positive integer that refers to the command-line number in the history
buffer that you want to reissue.

neg-num

is a negative number that refers to a command line in the history buffer relative
to the current command line.

XC | ! [command-line-specifier]

command-line-specifier: one of

 pos-num
 neg-num
 search-text
 "search-text"
Inspect Manual—429164-006
6-224

High-Level Inspect Commands Default Value
search-text

is the most recent command line in the history buffer that begins with the text
you specify. You need to specify only as many characters as necessary to
identify the command line uniquely.

"search-text”

is like search-text except that the text may be anywhere in the line.

Default Value

If you do not specify a command line, Inspect reissues the last command line in the
history buffer (excluding FA, FB, FC, XC, and !).

Usage Consideration

The XC command re-executes a command without storing it into the history buffer.

Related Commands

 FC on page 6-84

 HISTORY on page 6-93

 LIST HISTORY on page 6-135
Inspect Manual—429164-006
6-225

High-Level Inspect Commands Related Commands
Inspect Manual—429164-006
6-226

7 Low-Level Inspect

 Low-Level Inspect Commands on page 7-1

 Syntax of Low-Level Command Elements on page 7-2

 Expressions in Low-Level Inspect on page 7-3

 Using Low-Level Inspect on page 7-4

Low-Level Inspect Commands
Low-level Inspect is similar to Debug, and this section discusses the major differences
between the two debuggers. For more information on Debug for NonStop systems, see
the Debug Manual. Table 7-1 shows how low-level Inspect commands correspond to
Debug commands.

Low-level Inspect supports all high-level commands except:

BREAK CLEAR DISPLAY MODIFY SCOPE

Table 7-1. Machine-Level Inspect Commands

Inspect Command Debug Equivalent Description

A A Displays data and registers in ASCII

B B Sets a code breakpoint

BM BM Sets a data breakpoint

C C Clears a code breakpoint

CM CM Clears a data breakpoint

D D Displays data and registers

F F Shows status of files

FN FN Searches memory for a number

HIGH - Returns to high-level Inspect

I I Displays data and registers in ICODE

M M Modifies data and registers

P P Pauses Inspect

R R Resumes program execution

S S Stops the current program

T T Displays a trace listing of stack markers

VQ VQ Changes extended segment

? ? Displays segment ID

= = Computes and displays a value
Inspect Manual—429164-006
7-1

Low-Level Inspect Syntax of Low-Level Command Elements
Syntax of Low-Level Command Elements
Low-level Inspect command syntax is based on the syntax of Debug commands.
Inspect, however, allows symbolic references to code or data blocks in the break and
clear commands. Inspect supports Debug syntax for referencing specific code and
library segments in a multiple code segment program.

For a detailed syntax description of each of the low-level Inspect commands, use the
low-level Inspect HELP command.

Symbolic References

In the B (break) and C (clear) commands, low-level Inspect allows symbolic references
to a procedure name or a data block name:

B #block-name + nnnn

or

C #block-name + nnnn

where nnnn is the offset in words from block-name.

These symbolic references allow you to use a compilation listing without a load map to
determine the program-relative address of the breakpoint.

No other symbolic references can be used in the low-level Inspect command syntax.

Multiple Code Segment Programs

For multiple code segment programs, you must specify the code segment where the
address is located, in addition to the address. To specify a code segment, use the
following address modes:

{ UC | UL } [.segment-number,]

UC indicates that the address is in the user code space. UL indicates that the
address is in the user library space. Segment-number defines the particular code
segment within the user space; it must be a number in the range zero through 31
decimal. If you omit the segment number, Inspect uses zero.

C

indicates an address in the current code segment (user code space or user library
space).

For example, if #block-name is the name of a procedure in the first code segment of
the user code space, the command to set a breakpoint at this location has the format:

B UC.1, #block-name + nnnn

In a multiple code segment program, if you specify a code block name and you omit
the address mode, Inspect assumes the code segment to be the same as that of the
Inspect Manual—429164-006
7-2

Low-Level Inspect I and S Suffixes
code block. If the address expression includes more than one code block reference,
the first code block you specify determines the code segment.

I and S Suffixes

In low-level command syntax, the suffixes I and S always mean “indirect” and “string
indirect” respectively; they do not mean “instructions” and “statements.”

Expressions in Low-Level Inspect
The syntax you use to enter an expression in low-level Inspect is based on Debug
expression syntax. Here is the syntax you use to create expressions in low-level
Inspect.

number

The options of number have the following meanings:

+ denotes a positive value

- denotes a negative value

expression:

value [operator value]

operator: one of

* / << >> + -

value: one of

(expression)
‘ASCII-character ASCII-character
#code-block
#data-block
number [.number]
register

number is:

[+ | -] [#] integer

register: one of

P E L S
R0 R1 R2 R3 R4 R5 R6 R7
RA RB RC RD RE RF RG RH
Inspect Manual—429164-006
7-3

Low-Level Inspect Using Low-Level Inspect
indicates a decimal, not octal, integer

If you do not use any of these options, Inspect interprets number as a positive
integer in octal notation.

number [.number]

specifies left and right words of a doubleword.

Using Low-Level Inspect
When using low-level Inspect, you need to know how low-level Inspect differs from
high-level Inspect and how low-level Inspect differs from Debug. The following
subsections discuss the differences.

Differences Between Low-Level and High-Level Inspect

The following subsections highlight the differences between low-level and high-level
Inspect.

Default Radix

The high-level radix default is decimal; the low-level default is octal. Remember that
these defaults differ when switching between low and high levels. You can use the
SHOW RADIX command to check the current default radix.

Code Offset Units

The low-level default for code units is word instructions. The high-level default for code
units varies with the particular language.

The T Command

The low-level T (Trace) command includes an indication of the code segment for each
stack frame if the program has multiple code or library segments; for example:

The low-level T command differs slightly from the high-level TRACE command. The
high-level command includes an entry for the current scope unit; the low-level
command does not.

021021: 150551 000202 020743 #PARSER + %12670I UC.2
020741: 047317 000200 020730 #MA^PARSER + %166I UC.0
020726: 047063 000200 020547 #MA^MAIN + %255I UC.0
Inspect Manual—429164-006
7-4

Low-Level Inspect Differences Between Low-Level Inspect and Debug
Differences Between Low-Level Inspect and Debug

The following subsections highlight the differences between low-level Inspect and
Debug.

 Low-level Inspect does not support the DEBUG ALL parameter when setting
breakpoints.

 Low-level Inspect allows B (break) and C (clear) to refer to breakpoints by block
name, representing the base of a program unit.

 Low-level Inspect allows you to write the output of a display to a disk file or to a
nondisk file. Debug allows you to write only to a nondisk file.

Example of low-level Inspect commands:

D /OUT \sys.$vol.subvol.file/ 0,10 (Disk file)
D /OUT $s.#lp3/ 0,10 (Nondisk file)

Example of Debug commands:

D0,10,$s.#lp3 (Nondisk file)

 Debug allows you to modify code locations. You cannot modify code locations with
either low-level or high-level Inspect.

 The low-level Inspect commands D and M display extended addresses rather than
16-bit word addresses when the memory resides in an extended data segment.
For example, this D command displays memory from an extended data segment:

The A Command

The low-level A command without parameters provides an interpretation of the ENV
register and an indication of the current code segment.

The D Command

The D command in low-level Inspect differs from the D command in Debug. Here is the
syntax you use in Inspect.

_OBJECT_D 2000000, 4
00002000000: 000000 000000 000000 000000

D [[unit] address [, amount]] [: base]
 [register]

unit: one of

 B W D F
Inspect Manual—429164-006
7-5

Low-Level Inspect Differences Between Low-Level Inspect and Debug
The = Command

In Debug, the = command supports these conversion modes:

In low-level Inspect, the = command supports these additional modes:

When you use the C, UC, or UL conversion modes, Inspect displays the value using all
location formats: STATEMENTS OFFSET, LINES FILE ALL OFFSET, and
INSTRUCTIONS; for example:

amount: one of

 num
 T width * height

base: one of

 A B D H I O X #

register: one of

 P E L S
 R0 R1 R2 R3 R4 R5 R6 R7
 RA RB RC RD RE RF RG RH

Decimal

A ASCII

B Binary

I ICODE

E Environmental register (flags, RP setting)

D Decimal

H Hexadecimal

O Octal

X Hexadecimal

ENV Same format as E (environmental register)

C Current code segment (code block plus offset)

UC [.seg-num,] User code segment (code block plus offset)

UL [.seg-num,] User library segment (code block plus offset)

PROG= 500 : UC.0
 = #MAIN.6 + %11I, #MAIN.#16.41($VOL.SVOL.PRGSRC) + %11I, #MAIN + %45I
Inspect Manual—429164-006
7-6

Low-Level Inspect Default Volume and Subvolume
When you use the E or ENV conversion modes, Inspect translates and displays the
value as the stack marker ENV register; for example:

Default Volume and Subvolume

In both high and low levels, the default volume and subvolume for an Inspect process
started by the debugging facility are from your logon defaults, even if you have issued
a command interpreter VOLUME command to change your session defaults. If you
started Inspect with a command interpreter RUN INSPECT command, Inspect uses the
current session defaults.

PROG= 301 : env
 = (L=0,RP=1,CCG,K,T) UC.1
Inspect Manual—429164-006
7-7

Low-Level Inspect Default Volume and Subvolume
Inspect Manual—429164-006
7-8

8 Using Inspect With C

 Starting to Debug a C Program on page 8-1

 Scope Units and Scope Paths on page 8-1

 Code Locations on page 8-2

 Data Locations on page 8-5

 Expressions on page 8-7

 C Data Types and Inspect on page 8-8

 Inspect Enhancements and Restrictions for C on page 8-10

 Command Usage Guidelines for C Programmers on page 8-11

Starting to Debug a C Program
When you start a C program, the C library performs certain start-up operations before
your program begins executing. To execute the start-up code and get to your program,
set a breakpoint in your program then resume execution; for example:

Scope Units and Scope Paths
C has only one type of scope unit: the function. When debugging a program written in
C, you must specify a function name whenever an Inspect command expects a scope
unit.

Use this syntax to identify C scope paths in Inspect:

-COBJ- BREAK #main
-COBJ- RESUME

scope-path:
 #function
Inspect Manual—429164-006
8-1

Using Inspect With C Code Locations
Code Locations
Here is the syntax you use to identify C code locations in Inspect.

scope-path

specifies the function containing the code location. When followed by a code
offset, scope-path specifies the base of the function; otherwise, it specifies the
primary entry point of the function.

[scope-path.] code-spec

specifies a named or numbered location in the function defined by the given scope
path (or the current scope path if you omit the scope path).

function

specifies the primary entry point of the function. function must be the same
as the function named in scope-path (or the current scope path).

label

specifies the statement following a given label in the source code.

statement-number

specifies the statement beginning at the given statement number. To see
statement numbers, use the SOURCE command after you have set your
location format to statements. For more information, see SET LOCATION
FORMAT on page 6-175.

#line-number [(source-file)]

specifies the statement beginning at a given line number in the source file.

code-location:
 { scope-path } [FROM module] [offset]...
 { [scope-path.]code-spec }

code-spec: one of
 function
 label
 statement-number
 #line-number [(source-file)]

offset:
{ + | - } num [code-unit]

code-unit: one of
 INSTRUCTION[S]
 STATEMENT[S]
 VERB[S]
Inspect Manual—429164-006
8-2

Using Inspect With C Usage Considerations
() qualifies the line number by the source file containing it. Use this option only
if the source code for the given function is in more than one file.

FROM module

specifies the module in which the function containing the code location is defined.
In HP C, the module name is the file name of the module’s base source file (the file
specified as input to the HP C compiler). Use the FROM clause only if you have
two functions of the same name.

offset

specifies an offset from the code location defined by the preceding options. A
positive offset denotes code following the specified code location; a negative offset
denotes code preceding the specified code location. The amount to offset is
specified as a given number of units. If you omit the unit specifier, Inspect selects
a default unit of STATEMENT for C programs. Inspect code units correspond to C
code units as follows:

INSTRUCTION Specifies a machine-code instruction in compiled C program.

STATEMENT Specifies a C statement.

VERB Specifies a C statement, as does STATEMENT.

Usage Considerations

 Low-level code locations

Low-level Inspect recognizes function names, but does not use any other symbol
information. In low-level Inspect, therefore, you can only use code locations of the
form:

#scope-path [code-offset]

This form represents an offset from the code base of a function. Also, the code
unit of code-offset in low-level Inspect is always INSTRUCTION.

 High-level code locations

High-level Inspect recognizes function names as does low-level Inspect, but it also
uses the symbol information created when you compile a function with the
SYMBOLS pragma. Therefore, code locations in high-level Inspect can include
label identifiers or line numbers.

 Specifying code locations by label

You can use a C label as the code reference in a code location. However, because
Inspect also accepts scope units as code references, a conflict arises if a label’s
identifier is the same as the identifier for its containing function. Inspect interprets
the identifier as a reference to the function, not to the label. Consequently, you
must specify the code location of the label by its statement number, its line number,
or its instruction offset.
Inspect Manual—429164-006
8-3

Using Inspect With C Examples
 Specifying code locations by line number

If no statement begins at the line number you specify, Inspect issues this warning:

Inspect then uses the statement starting at the given line number. If more than one
statement begins on the line you specify, Inspect uses the start of the first
statement.

 The STATEMENT code unit and C statements

Inspect recognizes these as statements:

 Simple C statements that are not part of a compound or composite statement

 C statements in a compound statement, delimited by braces

 The parts of a composite C statement (if, for, and so on)

 Using the FROM Clause in a Command List

You can use the FROM clause only once in a command list.

Examples

Given a function named cfunct that contains a labeled statement named
error_fix, you can specify these code locations:

These example code locations assume the current scope path #cfunct:

** Inspect warning 117 ** A subsequent line number is assumed: line-number

Code Location Specifies

#cfunct The primary entry point of the function cfunct.

#cfunct.error_fix The code immediately following the label error_fix.

Code Location Specifies

cfunct The primary entry point of the function cfunct.

error_fix = 3S Three statements past the label error_fix.
Inspect Manual—429164-006
8-4

Using Inspect With C Data Locations
Data Locations
Here is the syntax you use to identify C data locations in Inspect.

scope-path [(instance)]

specifies the function containing the data item.

(instance)

identifies a specific activation of the data item’s parent function. You should
specify an instance only when you want to identify a local data item in a
recursive function.

#data-block

specifies the global data block containing the object specified by data-
reference. In HP C, the name of a module’s global data block is a circumflex (^)
followed by the file name of the module’s base source file (the file specified as
input to the HP C compiler). For example, the name of the global data block for
the module compiled from the file MODULE1 is ^MODULE1.

You should specify a global data block only when you have two global objects of
the same name in two different modules; neither module can be declared extern.

data-reference

specifies the data item using C syntax. The recursion in the definition of data-
reference enables you to refer to complex C data structures.

identifier

specifies a simple or pointer object. When used in the DISPLAY command,
identifier can also be the name of a structured object; identifier then
specifies the entire object. When used in the INFO IDENTIFIER command,

data-location:
 [scope-path [(instance)] .] data-reference
 [#data-block.]

instance:
 [+ | -] integer
data-reference: one of

 identifier
 data-reference '[' subscript-range ']'
 data-reference.identifier
 data-reference->identifier
 *data-reference

subscript-range:
 expression [:expression]
Inspect Manual—429164-006
8-5

Using Inspect With C Default Values
identifier can also be the name of a structured object or user-defined data
type; identifier then specifies the entire object or the type definition.

data-reference '[' subscript-range ']'

specifies an array object.

subscript-range

specifies the subscript of an array element or the subscript range of a
group of array elements.

data-reference.identifier

specifies a field of a structure object.

data-reference->identifier

specifies a field of a structure referenced using a structure pointer.

*data-reference

specifies the value referenced by a pointer object.

Default Values

If you do not specify scope-path, Inspect uses the current scope path.

Usage Considerations

 You must compile with the SYMBOLS pragma to use data-location.

 A data location must specify a data object in an active scope unit.

Examples

Given a C function named cfunct that contains the object declaration int bytes,
you can have these data location expressions:

Data Location Specifies

#cfunct.nbytes The most recent instance of nbytes.

#cfunct(-1).nbytes The second-most recent instance of nbytes.

#cfunct(1).nbytes The oldest (first) instance of nbytes.
Inspect Manual—429164-006
8-6

Using Inspect With C Expressions
Expressions
Here is the syntax you use to create C expressions in Inspect.

Usage Considerations

 Operator precedence is the same as that defined in C.

 Inspect does not support the C comma expression and operator; for example:

x = 4, x + 2

 Inspect does not support the C conditional expression and operator, which requires
three operands; for example:

a ? b : c

 Inspect does not support the C assignment operators (=, +=, =, and so on).

 You can perform an arithmetic operation on two character constants.

 When you use a string constant in an arithmetic expression, Inspect evaluates the
string constant as a character constant.

 Inspect supports type letters such as U (unsigned) and L (long).

expression: one of
 primary
 *expression
 &expression
 -expression
 !expression
 ~expression
 expression binary-op expression

primary: one of
 data-location
 constant
 string
 (expression)

binary-op: one of
 * / % + - >>
 << < > <= >= ==
 != & ^ | && ||
Inspect Manual—429164-006
8-7

Using Inspect With C C Data Types and Inspect
C Data Types and Inspect
The following subsections discuss how Inspect handles and presents various C data
types.

Bit Fields

Inspect can access C bit fields for display or for expression evaluation. For example, in
these Inspect session the identifiers are binary objects:

Arrays

When you use an array name in an expression, Inspect interprets the array name as a
pointer value. However, when you display an unsubscripted array name, Inspect
displays a pointer value and the contents of the array.

For example, assume this C array declaration:

int z[10]

Inspect would process references to this array in these ways:

 If z appears in an expression, the value of z is the address of array element z[0].

 If z appears as a display item, Inspect displays the address of array element z[0]
and the contents of array z.

Structure Pointers

If you display a structure pointer but do not also select a field within the referenced
structure, Inspect displays the whole structure. To select a field within the referenced
structure, use the C arrow operator; for example:

This example shows how to display a structure and how to display the value of the
pointer to the structure:

-COBJ-DISPLAY (tstor) ;COMMENT Display value
 0
-COBJ-DISPLAY (tstor | tstand ;COMMENT Bitwise OR
1
-COBJ-DISPLAY (tstand & b) ;COMMENT Bitwise AND
1
-COBJ-DISPLAY (tstand ^ b) ;COMMENT Bitwise XOR
0

-COBJ-DISPLAY structptr->field

-COBJ-DISPLAY *structptr ;COMMENT - displays the structure
-COBJ-DISPLAY structptr ;COMMENT - displays the pointer value
Inspect Manual—429164-006
8-8

Using Inspect With C Self-Referential Structures
Self-Referential Structures

This example displays two elements in a self-referential structure, using the C
declarations:

struct tnode { /* the basic node */
 char *word; /* points to text */
 struct tnode *left; /* left child */
 struct tnode *right; /* right child */
 };

struct tnode s, *sp;

This example displays the structure s:

This example displays the data to which sp points, using tnode as a template.

Note that if you display sp instead of *sp, Inspect displays the address of sp instead of
the data to which it points.

Unions

To access a particular union member, you must explicitly qualify that member. This
qualification determines which field of the union Inspect accesses (which field type is
actually accessed). In a display item, if you do not explicitly define the union member,
Inspect displays the first member.

This examples show how to display union members, using the C declaration:

union u_tag {
 int ival;
 float fval;
 char *pval;
} uval;

-COBJ-DISPLAY s
S =
 WORD = the value of word
 LEFT = pointer value
 RIGHT = pointer value

-COBJ-DISPLAY *sp
 WORD = value of word
 LEFT = pointer value
 RIGHT = pointer value
Inspect Manual—429164-006
8-9

Using Inspect With C Inspect Enhancements and Restrictions for C
In this examples, the member is explicitly defined so that the value selected will be
processed:

In this example, Inspect displays all members because no member is specified:

Inspect Enhancements and Restrictions for C
The following subsections discuss certain differences between programming with C
and using Inspect to debug C programs.

Uppercase and Lowercase Letters

For C identifiers, Inspect distinguishes between uppercase and lowercase letters. In a
multi-language environment, however, Inspect requires that you represent the data in
the form that the particular language demands. For example, if C is the language of
the current scope, any reference to TAL must be in uppercase. If a TAL identifier is
entered in lowercase, Inspect will not upshift the identifier for resolution; it remains
undefined. For example, if you are inspecting a C routine, you can display the TAL
variables VAR_A and VAR^B by entering:

Defining Objects in Block Structure

When you define a block of objects by putting them after the left brace that introduces
a compound (block) statement, Inspect only resolves object references that are not
duplicates. If there are duplicates, they are ambiguous to Inspect; therefore, Inspect
displays the error message:

-COBJ-DISPLAY uval.ival ;COMMENT integer value displayed
UVAL.IVAL = integer value

-COBJ-DISPLAY uval.fval ;COMMENT floating point value
UVAL.FVAL = floating point value

-COBJ-DISPLAY uval.pval ;COMMENT pointer type
UVAL.PVAL = pointer to string

-COBJ-DISPLAY uval
UVAL =
 IVAL = integer value
 FVAL = floating point value
 PVAL = pointer to string

--DISPLAY VAR_A, VAR^B

** Inspect error 98 ** Qualification required to resolve ambiguous reference:
identifier
Inspect Manual—429164-006
8-10

Using Inspect With C Command Usage Guidelines for C Programmers
Command Usage Guidelines for C
Programmers

Guidelines for C programmers using Inspect are arranged alphabetically by Inspect
command name. Not all commands are listed.

BREAK

 A breakpoint set at the entry point to a function will occur before any initialization.
If you set a breakpoint at an entry point, you should enter a STEP 1 STATEMENT
command when Inspect stops there.

DISPLAY

 The default for numeric value conversion in C, both for input and output, is
DECIMAL. If you want to use DISPLAY for a quick calculation when you are in a C
environment, and you want to enter octal numbers, you must either prepare for it
with a SET RADIX OCTAL command or preface each octal value with a leading
zero.

HELP

 You can ask for help on the definitions of Inspect command parameters. Therefore,
you can find out what Inspect recognizes as a C data location, a C code location,
or a C expression.

INFO IDENTIFIER

 In addition to providing attribute information for code and data locations, Inspect
can provide information about macros made using #define. When you request
the attributes of a macro, Inspect displays the replacement text associated with the
macro.

INFO OPENS

 C programs begin execution with these three files already open:

stdin Standard input

stdout Standard output

stderr Standard error

These files are part of the run-time environment for C.
Inspect Manual—429164-006
8-11

Using Inspect With C SCOPE
SCOPE

 If you have identifiers of the same name in different scope units, be sure that you
qualify the identifiers enough for Inspect to distinguish them.

SET RADIX

 Even if you set your input radix to hexadecimal, you must still prefix a hexadecimal
value with 0x or 0X if its first digit is aboveþ9; otherwise, Inspect interprets the
value as an identifier.

STEP

 The STEP command defaults to STATEMENTS if no code-unit is specified. All
other instances of STATEMENTS and INSTRUCTIONS in using Inspect with C (all
code-location offsets as used in the BREAK command, for example) default to
INSTRUCTIONS if neither is specified.

 The STEP command requires caution if switch statements or for loops are in
the path. The stepping behavior of these two statements is unexpected.

Recall that a switch selects one statement from a set of statements, depending
on the value of a numeric expression. A STEP of one statement from the
beginning of a switch statement takes you to the end of the entire switch
statement. A subsequent STEP of one statement will take you to the selected
case or default statement.

If your process is at the beginning of a single-statement for loop (the loop body is
a single statement, not a block), entering STEP 1S gets you to the beginning of the
single statement, and entering STEP 2S completes execution of the loop.
Inspect Manual—429164-006
8-12

9 Using Inspect With C++

 Starting to Debug a C++ Program on page 9-1

 Scope Units and Scope Paths on page 9-1

 Code Locations on page 9-2

 Data Locations on page 9-5

 Expressions on page 9-7

 C++ Data Types and Inspect on page 9-8

 Inspect Enhancements and Restrictions for C++ on page 9-9

 Command Usage Guidelines for C++ Programmers on page 9-13

Starting to Debug a C++ Program
When you start a C++ program, the C++ library performs certain start-up operations
before your program begins executing. To execute the start-up code and get to your
program, set a breakpoint in your program then resume execution; for example:

Scope Units and Scope Paths
C++ has three types of scope units: function, class, and object, of which, Inspect
supports only functions. When debugging a program written in C++, you must specify
a function name whenever an Inspect command expects a scope unit.

Here is the syntax you use to identify C++ scope paths in Inspect.

-COBJ- BREAK #main
-COBJ- RESUME

scope-path:

 #function

Note. The class name is included in the member function.
Inspect Manual—429164-006
9-1

Using Inspect With C++ Code Locations
Code Locations
Here is the syntax you use to identify C++ code locations in Inspect.

scope-path

specifies the function containing the code location. When followed by a code
offset, scope-path specifies the base of the function; otherwise, it specifies the
primary entry point of the function.

[scope-path.] code-spec

specifies a named or numbered location in the function defined by the given scope
path (or the current scope path if you omit the scope path).

function

specifies the primary entry point of the function. function must be the same
as the function named in scope-path (or the current scope path).

label

specifies the statement following a given label in the source code.

statement-number

specifies the statement beginning at the given statement number. To see
statement numbers, use the SOURCE command after you have set your
location format to statements. For more information, see SET LOCATION
FORMAT on page 6-175.

code-location:

 { scope-path } [FROM module] [offset]...
 { [scope-path.]code-spec }

code-spec: one of
 function
 label
 statement-number
 #line-number [(source-file)]
 class::function

offset:
 { + | - } num [code-unit]

code-unit: one of
 INSTRUCTION[S]
 STATEMENT[S]
 VERB[S]
Inspect Manual—429164-006
9-2

Using Inspect With C++ Usage Considerations
#line-number [(source-file)]

specifies the statement beginning at a given line number in the source file.

() qualifies the line number by the source file containing it. Use this option only
if the source code for the given function is in more than one file.

FROM module

specifies the module in which the function containing the code location is defined.
In HP C++, the module name is the file name of the module’s base source file (the
file specified as input to the HP C++ compiler). The FROM clause can be used to
restrict the number of ambiguous functions. Inspect will continue to prompt you to
resolve the ambiguity if there is more than one matching function. In C++, the
FROM clause can still be used to specify non-static overloaded functions.

offset

specifies an offset from the code location defined by the preceding options. A
positive offset denotes code following the specified code location; a negative offset
denotes code preceding the specified code location. The amount to offset is
specified as a given number of units. If you omit the unit specifier, Inspect selects
a default unit of STATEMENT for C++ programs. Inspect code units correspond to
C++ code units as follows:

INSTRUCTION Specifies a machine-code instruction in compiled C++ program.

STATEMENT Specifies a C++ statement.

VERB Specifies a C++ statement, as does STATEMENT.

Usage Considerations

 Low-level code locations

Low-level Inspect recognizes function names, but does not use any other symbol
information. In low-level Inspect, therefore, you can only use code locations of the
form:

#scope-path [code-offset]

This form represents an offset from the code base of a function. Also, the code
unit of code-offset in low-level Inspect is always INSTRUCTION.

 High-level code locations

High-level Inspect recognizes function names as does low-level Inspect, but it also
uses the symbol information created when you compile a function with the
SYMBOLS pragma. Therefore, code locations in high-level Inspect can include
label identifiers or line numbers.
Inspect Manual—429164-006
9-3

Using Inspect With C++ Examples
 Specifying code locations by label

You can use a C++ label as the code reference in a code location. However,
because Inspect also accepts scope units as code references, a conflict arises if a
label’s identifier is the same as the identifier for its containing function. Inspect
interprets the identifier as a reference to the function, not to the label.
Consequently, you must specify the code location of the label by its statement
number, its line number, or its instruction offset.

 Specifying code locations by line number

If no statement begins at the line number you specify, Inspect issues this warning:

Inspect then uses the statement starting at the given line number. If more than one
statement begins on the line you specify, Inspect uses the start of the first
statement.

 The STATEMENT code unit and C++ statements

Inspect recognizes these as statements:

 Simple C++ statements that are not part of a compound or composite
statement

 C++ statements in a compound statement, delimited by braces

 The parts of a composite C++ statement (if, for, and so on)

 Using the FROM Clause in a Command List

You can use the FROM clause only once in a command list.

Examples

Given a function named class::funct that contains a labeled statement named
error_fix, you can specify these code locations:

These example code locations assume the current scope path #class::funct:

** Inspect warning 117 ** A subsequent line number is assumed: line-number

Code Location Specifies

#class::funct The primary entry point of the function class::funct.

#class::funct.error_fix The code immediately following the label error_fix.

Code Location Specifies

class::funct The primary entry point of the function class::funct.

error_fix + 3S Three statements past the label error_fix.
Inspect Manual—429164-006
9-4

Using Inspect With C++ Data Locations
Data Locations
Here is the syntax you use to identify C++ data locations in Inspect.

scope-path [(instance)]

specifies the function containing the data item.

(instance)

identifies a specific activation of the data item’s parent function. You should
specify an instance only when you want to identify a local data item in a
recursive function.

#data-block

specifies the global data block containing the object specified by data-reference. In
HP C++, the name of a module’s global data block is a circumflex (^) followed by
the file name of the module’s base source file (the file specified as input to Cfront).
For example, the name of the global data block for the module compiled from the
file MODULE1 is ^MODULE1.

You should specify a global data block only when you have two global objects of
the same name in two different modules; neither data block can be declared
extern.

data-reference

specifies the data item using C++ syntax. The recursion in the definition of data-
reference enables you to refer to complex C++ data structures.

identifier

specifies a simple or pointer object. When used in the DISPLAY command,
identifier can also be the name of a structured object; identifier then

data-location:
 [scope-path [(instance)] .] data-reference
 [#data-block.]

instance:
 [+ | -] integer
data-reference: one of

 identifier
 data-reference '[' subscript-range ']'
 data-reference.identifier
 data-reference->identifier
 *data-reference

subscript-range:
 expression [:expression]
Inspect Manual—429164-006
9-5

Using Inspect With C++ Default Values
specifies the entire object. When used in the INFO IDENTIFIER command,
identifier can also be the name of a structured object or user-defined data
type; identifier then specifies the entire object or the type definition.

data-reference '[' subscript-range ']'

specifies an array object.

subscript-range

specifies the subscript of an array element or the subscript range of a
group of array elements.

data-reference.identifier

specifies a field of a structure object.

data-reference->identifier

specifies a field of a structure referenced using a structure pointer.

*data-reference

specifies the value referenced by a pointer object.

Default Values

If you do not specify scope-path, Inspect uses the current scope path.

Usage Considerations

 You must compile with the SYMBOLS pragma to use data-location.

 A data location must specify a data object in an active scope unit.

Examples

Given a C++ function named class::funct that contains the object declaration int
nbytes, you can have these data location expressions:

Data Location Specifies

#class::funct.nbytes The most recent instance of nbytes.

#class::funct(-1).nbytes The second-most recent instance of nbytes.

#class::funct(1).nbytes The oldest (first) instance of nbytes.
Inspect Manual—429164-006
9-6

Using Inspect With C++ Expressions
Expressions
Here is the syntax you use to create C++ expressions in Inspect.

Usage Considerations

 Expression handling within Inspect does not support overloaded or redefined
operators.

 Operator precedence for C++ is the same as that defined in C.

 Inspect does not support the C++ comma expression and operator; for example:

x = 4, x + 2

 Inspect does not support the C++ conditional expression and operator, which
requires three operands; for example:

a ? b : c

 Inspect does not support the C++ assignment operators (=, +=, =, and so on).

 You can perform an arithmetic operation on two character constants.

 When you use a string constant in an arithmetic expression, Inspect evaluates the
string constant as a character constant.

 Inspect supports type letters such as U (unsigned) and L (long).

expression: one of
 primary
 *expression
 &expression
 -expression
 !expression
 ~expression
 expression binary-op expression

primary: one of
 data-location
 constant
 string
 (expression)

binary-op: one of
 * / % + - >>
 << < > <= >= ==
 != & ^ | && ||
Inspect Manual—429164-006
9-7

Using Inspect With C++ C++ Data Types and Inspect
C++ Data Types and Inspect
The following subsections discuss how Inspect handles and presents various C++ data
types.

Bit Fields

Inspect can access C bit fields for display or for expression evaluation. For example, in
these Inspect session the identifiers are binary objects:

Arrays

When you use an array name in an expression, Inspect interprets the array name as a
pointer value. However, when you display an unsubscripted array name, Inspect
displays a pointer value and the contents of the array. For example, assume this C
array declaration:

int z[10]

Inspect would process references to this array in these ways:

 If z appears in an expression, the value of z is the address of array element z[0].

 If z appears as a display item, Inspect displays the address of array element z[0]
and the contents of array z.

Structure Pointers

If you display a structure pointer but do not also select a field within the referenced
structure, Inspect displays the whole structure. To select a field within the referenced
structure, use the C++ arrow operator; for example:

-COBJ-DISPLAY this->class::field

This example shows how to display a structure and how to display the value of the
pointer to the structure:

-COBJ-DISPLAY *this COMMENT - displays the object
-COBJ-DISPLAY this COMMENT - displays the pointer value

-COBJ-DISPLAY (tstor) ;COMMENT Display value
 0
-COBJ-DISPLAY (tstor | tstand ;COMMENT Bitwise OR
1
-COBJ-DISPLAY (tstand & b) ;COMMENT Bitwise AND
1
-COBJ-DISPLAY (tstand ^ b) ;COMMENT Bitwise XOR
0

Inspect Manual—429164-006
9-8

Using Inspect With C++ Unions
Unions

To access a particular union member, you must explicitly qualify that member. This
qualification determines which field of the union Inspect accesses (which field type is
actually accessed). In a display item, if you do not explicitly define the union member,
Inspect displays the first member.

Inspect Enhancements and Restrictions for
C++

The following subsections discuss certain differences between programming with C++
and using Inspect to debug C++ programs.

Uppercase and Lowercase Letters

For C++ identifiers, Inspect distinguishes between uppercase and lowercase letters. In
a multi-language environment, however, Inspect requires that you represent the data in
the form that the particular language demands. For example, if C++ is the language of
the current scope, any reference to TAL must be in uppercase.

If a TAL identifier is entered in lowercase, Inspect will not upshift the identifier for
resolution; it remains undefined. For example, if you are inspecting a C++ function,
you can display the TAL variables VAR_A and VAR^B by entering:

--DISPLAY VAR_A, VAR^B

Defining Objects in Block Structure

When you define a block of objects by putting them after the left brace that introduces
a compound (block) statement, Inspect only resolves object references that are not
duplicates. If there are duplicates, they are ambiguous to Inspect; therefore, Inspect
displays the error message:

Overloaded Functions

Inspect will detect when an ordinary function or member function is overloaded, and
prompt you to resolve the ambiguity. For example:

** Inspect error 98 ** Qualification required to resolve ambiguous reference:
identifier
Inspect Manual—429164-006
9-9

Using Inspect With C++ Overloaded Operators
The FROM clause can be used to specify which functions you want. In this example,
ctest1 is the source file for funct(void) and ctest2 is the source file for funct
(int) and funct (int,int).

 Note that because there is only one function named #funct in source file ctest1,
Inspect can uniquely identify the function.

Overloaded Operators

Expression handling within Inspect does not support overloaded operators. Inspect
does allow you to set breakpoints in the overloaded operator. For example:

Static Data

Static data items have global scope in C++, which means that they are not allocated
within each object. Inspect will only display the data members that are local to that
object. This is source code followed by an example of displaying an object with static
data.

class Example_Class {
 public:
 int local_var1;
 int local_var2;

-EDEMO-MATCH SCOPE funct
Program Procedures:
funct(void)
funct(int)
funct(int,int)
-EDEMO-BREAK #funct
Specified scope is ambiguous
 [1] funct(void)
 [2] funct(int)
 [3] funct(int,int)
Which scope do you mean ([1], 2, ...)? 2
Num Type Subtype Location
 1 Code #funct(int).#11
-EDEMO-LIST BREAK
Num Type Subtype Location
 1 Code #funct(int).#11
-EDEMO-

-EDEMO-BREAK #funct FROM ctest1
 Num Type Subtype Location
 1 Code #funct(void).#4

-ETST1-BREAK #Cat::operator=
Num Type Subtype Location
 1 Code #Cat::operator=(Cat&).#26
-ETST1-LIST BREAK
Num Type Subtype Location
 1 Code #Cat::operator=(Cat&).#26
-ETST1-
Inspect Manual—429164-006
9-10

Using Inspect With C++ The this Pointer
 static int global_var;
 void member_func(void);
};
int Example_Class::global_var;

The MATCH SCOPE command may be used to find the names of static data
members. For example:

The this Pointer

When the current scope is a nonstatic member function, local member data items must
be qualified with the “this” pointer. For example:

To display all the variables local to the object that invoked the member function, use
the command:

-PROGRAM-DISPLAY *this
Example_Class =
 Example_Class::local_var_1 = 99
 Example_Class::local_var_2 = 45

Usage Considerations

The HP C++ translator, Cfront, translates a C++ program into an equivalent C program.
Translation results in some restrictions with debugging C++ programs.

These restrictions are:

 “References” are not supported. Cfront implements references as pointers. To
display a reference to an object, use the “*” operator to dereference it. In this
example, “i” is an integer and “r” a reference to “i”:

-PROGRAM-DISPLAY Example_Object
Example_Object =
 Example_Class::local_var1 = 99
 Example_Class::local_var2 = 45

-PROGRAM-MATCH SCOPE Example_Class::*
Program Procedures:Example_Class::member_func(void)

Program Data:
Example_Class::global_var

-PROGRAM-DISPLAY this->Example_Class::local_var_2
Example_Class.Example_Class::local_var_2 = 45
Inspect Manual—429164-006
9-11

Using Inspect With C++ Usage Considerations
 Inspect does not support pointers to data members.

 Breakpoints are not supported for:

 Inlined functions

 Member functions of locally defined classes

 Cfront treats structures like classes. Inspect requires class-like syntax to access
fields of structures. The source below was used to generate this example.

struct Example {
 int i;
 int j;
};
struct Example var;

 Inspect allows you to shorten data member names for C++ objects. Using the
previous example:

 Inspect adds an “_” character to conversion operator functions and the new and
delete operators. For example, to set a breakpoint at the new operator type:

-PROGRAM-BREAK #operator_new

 Note that Cfront may add intermediate fields in classes, thereby making it difficult
to display them.

-PROGRAM-DISPLAY r
r = 52
-PROGRAM-DISPLAY i
i = -10
-PROGRAM-DISPLAY *r
short = -10

-PROGRAM-DISPLAY var
var =
 Example::i = 10
 Example::j = 52

-PROGRAM-DISPLAY var.i
var.i = 10
-PROGRAM-DISPLAY var.Example::i
var.Example::i = 10
Inspect Manual—429164-006
9-12

Using Inspect With C++ Command Usage Guidelines for C++ Programmers
Command Usage Guidelines for C++
Programmers

The following guidelines for C++ programmers using Inspect are arranged
alphabetically by Inspect command name. Not all commands are listed.

BREAK

 A breakpoint set at the entry point to a function will occur before any initialization.
If you set a breakpoint at an entry point, you should enter a step over initialization
before accessing any data. Alternatively, a break set at the first line of a function
will have the desired effect.

DISPLAY

 The default for numeric value conversion in C++, both for input and output, is
DECIMAL. If you want to use DISPLAY for a quick calculation when you are in a
C++ environment, and you want to enter octal numbers, you must either prepare
for it with a SET RADIX OCTAL command or preface each octal value with a
leading zero.

HELP

 You can ask for help on the definitions of Inspect command parameters. Therefore,
you can find out what Inspect recognizes as a C++ data location, a C++ code
location, or a C++ expression.

INFO IDENTIFIER

 In addition to providing attribute information for code and data locations, Inspect
can provide information about macros made using #define. When you request
the attributes of a macro, Inspect displays the replacement text associated with the
macro.

INFO OPENS

 C++ programs begin execution with the following three files already open:

stdin Standard input

stdout Standard output

stderr Standard error

These files are part of the run-time environment for C++.
Inspect Manual—429164-006
9-13

Using Inspect With C++ MATCH
MATCH

 Use the SCOPE clause of the MATCH command to find all the member functions
of a given class. For example:

-PROGRAM-MATCH SCOPE Class::*

It can also be used to find all classes that implement a given function. For
example:

-PROGRAM-MATCH SCOPE *error

SCOPE

 If you have identifiers of the same name in different scope units, be sure that you
qualify the identifiers enough for Inspect to distinguish them. If you have a function
named the same, Inspect will prompt you to resolve the ambiguity.

 Since scope units may be overloaded in C++, Inspect may not be able to
determine the specified scope. In the case of ambiguity, you will be prompted for
clarification.

SET RADIX

 Even if you set your input radix to hexadecimal, you must still prefix a hexadecimal
value with 0x or 0X if its first digit is aboveþ9; otherwise, Inspect interprets the
value as an identifier.

STEP

The STEP command requires caution if switch statements or for loops are in
the path. The stepping behavior of these two statements is unexpected.

Recall that a switch selects one statement from a set of statements, depending
on the value of a numeric expression. A STEP of one statement from the
beginning of a switch statement takes you to the end of the entire switch
statement. A subsequent STEP of one statement will take you to the selected
case or default statement.

If your process is at the beginning of a single-statement for loop (the loop body is
a single statement, not a block), entering STEP 1S gets you to the beginning of the
single statement, and entering STEP 2S completes execution of the loop.
Inspect Manual—429164-006
9-14

10
Using Inspect With COBOL and
SCREEN COBOL

 Scope Units and Scope Paths on page 10-1

 Code Locations on page 10-2

 Data Locations on page 10-5

 Expressions on page 10-8

 COBOL Data Types and Inspect on page 10-9

 Inspect Enhancements and Restrictions for SCREEN COBOL on page 10-10

 Command Usage Guidelines for COBOL Programmers on page 10-11

Scope Units and Scope Paths
COBOL has only one type of scope unit: the program unit. When debugging a
program written in COBOL, you must specify a program unit name whenever an
Inspect command expects a scope unit.

Here is the syntax you use to identify COBOL scope paths in Inspect.

COBOL 74 and SCREEN COBOL

scope-path:
 #program-unit

COBOL85

scope-path:
 #program-unit [.program-unit]...

program-unit

is the name of a program unit.

Usage Considerations

 COMMON program units

Inspect does not support the special scoping rules that COBOL85 provides for
COMMON program units. In COBOL85, such program units are globally visible,
regardless of where they are declared. In Inspect, however, you must provide the
scope path to a COMMON program unit.

Note. In this section, the term COBOL refers to COBOL 74, COBOL85, and SCREEN
COBOL.
Inspect Manual—429164-006
10-1

Using Inspect With COBOL and SCREEN COBOL Code Locations
Code Locations
Here is the syntax you use to identify COBOL code locations in Inspect.

scope-path

specifies the scope path to the program unit containing the code location. When
used alone, scope-path specifies the primary entry point of the last program unit
named in the scope path. When followed by a code offset, scope-path specifies
the base of the program unit.

[scope-path.] code-spec

specifies a named or numbered location in the program unit defined by the given
scope path (or the current scope path if you omit the scope path).

program-unit

specifies the primary entry point of the program unit. program-unit must be the
same as the last program unit named in scope-path (or the current scope
path).

section

specifies a section within the program unit.

paragraph [OF section]

specifies a paragraph within the program unit. If a paragraph named
paragraph exists in two different sections of the program unit, you must use
the OF clause to qualify the paragraph name.

code-location:
 { scope-path } [offset]...
 { [scope-path.]code-spec }

code-spec: one of
 program-unit
 section
 paragraph [OF section]
 statement-number
 #line-number [(source-file)]

offset:
 { + | - } num [code-unit]

code-unit: one of
 INSTRUCTION[S]
 STATEMENT[S]
 VERB[S]
Inspect Manual—429164-006
10-2

Using Inspect With COBOL and SCREEN COBOL Usage Considerations
statement-number

specifies the statement beginning at the given statement number. To see
statement numbers, use the SOURCE command after you have set your
location format to statements. For more information, see SET LOCATION
FORMAT on page 6-175.

#line-number [(source-file)]

specifies the COBOL statement beginning at a given line number in the source
file.

(source-file) qualifies the line number by the source file containing it. You
need to use this option only if the source code for the given program unit is in
more than one file.

offset

specifies an offset from the code location defined by the preceding options. A
positive offset (+) denotes code following the specified code location; a negative
offset (-) denotes code preceding the specified code location. The amount to offset
is specified as a given number of units. If you omit the unit specifier, Inspect selects
STATEMENT as the code unit for COBOL. Inspect code units correspond to
COBOL code units as follows:

Usage Considerations

 Low-level code locations

Low-level Inspect recognizes program unit names but does not use any other
symbol information. In low-level Inspect, therefore, you can only use code
locations of the form:

#scope-path [code-offset]

This form represents an offset from the code base of a scope unit. Also, the code
unit of code-offset in low-level Inspect is always INSTRUCTION.

 High-level code locations

High-level Inspect recognizes program unit names as does low-level Inspect, but it
also uses the symbol information created when you compile a program unit with
the SYMBOLS directive. Therefore, code locations in high-level Inspect can
include section names, paragraph names, or line numbers.

INSTRUCTION Specifies a machine-code instruction in COBOLþ74 and
COBOL85, or a pseudocode instruction in SCREEN COBOL.

STATEMENT Specifies a COBOL sentence.

VERB Specifies a COBOL statement.
Inspect Manual—429164-006
10-3

Using Inspect With COBOL and SCREEN COBOL COBOL 74 and SCREEN COBOL Examples
 Specifying code locations by line number

If no COBOL statement begins at the line number you specify, Inspect issues this
warning:

Inspect then uses the statement starting at the given line number. If more than one
COBOL statement begins on the line you specify, Inspect uses the start of the first
statement.

COBOL 74 and SCREEN COBOL Examples

This example assume the COBOL program fragment:

IDENTIFICATION DIVISION.
PROGRAM-ID. prg.
 ...
PROCEDURE DIVISION.
 SECTION. s1.
 PARAGRAPH. p1.
 ...
 PARAGRAPH. p2.
 ...
 SECTION. s2.
 PARAGRAPH. p1.
 ...END PROGRAM prg.

Here are some code locations:

These code locations assume a current scope path of #PRG:

** Inspect warning 117 ** A subsequent line number is assumed: line-number

Code Location Specifies

PRG.PRG The primary entry point of program unit PRG.

#PRG.P2 Paragraph P2 of section S1 of program unit PRG.

#PRG.P1 OF S2 Paragraph P1 of section S2 of program unit PRG. The clause OF S2
is required to distinguish between the paragraph P1 in section S1 and
the one in section S2.

Code Location Specifies

S2 Section S2 of program unit PRG.

S1 + 3S Three COBOL sentences past the start of section S1 of program unit
PRG (the fourth sentence of S1).

S1 + 3S + 2V Two COBOL statements past three COBOL sentences past the start of
section S1 of program unit PRG (the third statement of the fourth
sentence of S1).
Inspect Manual—429164-006
10-4

Using Inspect With COBOL and SCREEN COBOL COBOL85 Examples
COBOL85 Examples

This example assume the COBOL85 program fragment:

IDENTIFICATION DIVISION.
PROGRAM-ID. a.
 ...
 IDENTIFICATION DIVISION.
 PROGRAM-ID. b.
 ...
 IDENTIFICATION DIVISION.
 PROGRAM-ID. c.
 ...
 END PROGRAM c.
 END PROGRAM b.
END PROGRAM a.

Here are some code locations:

Data Locations
Here is the syntax you use to identify COBOL data locations in Inspect.

scope-path

specifies the scope path to the program unit containing the data item.

data-reference

specifies a data item in the program unit defined by the given scope path (or the
current scope path if none is given).

Code
Location Specifies

#A The primary entry point of program unit A.

#A.B The primary entry point of program unit B.

#A.A +1V One COBOL statement past the primary entry point of program
unit A. If any of the data declarations in A include a VALUE
clause, the code offset +1V will perform them. Consequently, this
code location specifies the first user-written sentence in the
program unit.

data-location:
 [scope-path.] data-reference

data-reference:
 identifier [OF identifier]... [(index [,index]...)]
index:
 expression [:expression]
Inspect Manual—429164-006
10-5

Using Inspect With COBOL and SCREEN COBOL Usage Considerations
identifier

specifies a data item in the program unit.

OF identifier

specifies the group data-item in which the given data item is declared. Like
COBOL, Inspect requires only enough qualification to identify the data item
uniquely.

index

specifies the subscript of an array element or the subscript range of a group of
array elements.

Usage Considerations

 Any COBOL data location to which you refer must be a data item defined in a
program unit that was compiled with the SYMBOLS directive. The location can be
anywhere in the DATA DIVISION of an active scope unit.

 You must qualify a data reference enough to identify a data item uniquely. If a data
reference identifies more than one data item, Inspect issues an error message
stating that the reference is ambiguous (except when you are using the INFO
IDENTIFIER command; in this case, Inspect reports all occurrences of the
identifier in the scope unit).

 Inspect does not support the examination or modification of items in the SCREEN
SECTION of a SCREEN COBOL program.

 You can use the regular COBOL subscripts to refer to a specific item in a table.
Inspect also allows you to specify a range of subscripts for DISPLAY or MODIFY
commands. For example:

-COBOBJ-DISPLAY payscale-table(1:3, 1:4)

 Inspect requires that subscripts be separated by commas; in COBOL, commas are
optional.

 A data location cannot include mnemonic names.

 Inspect does not support the examination or modification of COBOL items whose
usage is INDEX. For example, if the table X-TAB is indexed by X, Inspect will
reject commands such as:

-COBOBJ-DISPLAY x-tab(x)
-COBOBJ-MODIFY x
-COBOBJ-MODIFY zz = z + x-tab (x)
Inspect Manual—429164-006
10-6

Using Inspect With COBOL and SCREEN COBOL Examples
Inspect, however, allows you to use subscripts instead of indices, so it will accept
commands such as:

-COBOBJ-DISPLAY x-tab(1), x-tab(5:9)
-COBOBJ-MODIFY x-tab(r:r+9) ;COMMENT R is not USAGE INDEX
-COBOBJ-BREAK x-handling+3S IF x-tab(1) > 2145

Examples

This example assume these COBOL declarations:

01 master-file-rec.
 03 mfr-employee-name.
 05 lastname PICTURE X(20).
 05 firstname PICTURE X(20).
 03 mfr-employee-number PICTURE 99999.
 88 hired-before-merger VALUE IS 1 THROUGH 35929.
 88 hired-after-merger VALUE IS 35930 THROUGH 99999.
 ...

01 paytable.
 03 payscale OCCURS 20 TIMES
 PICTURE 999V99
 USAGE IS COMPUTATIONAL.
 ...77 week-of-year PICTURE 99.

Here are some data locations:

Special Registers

If you compile a COBOL 74 or COBOL85 program with or without the WITH
DEBUGGING MODE clause in the SOURCE COMPUTER paragraph, these data
items are available:

Data Location Specifies

MFR-EMPLOYEE-NAME MFR-EMPLOYEE-NAME OF MASTER-FILE-REC

FIRSTNAME FIRSTNAME OF MFREMPLOYEENAME OF MASTERFILEREC

WEEK-OF-YEAR WEEK-OF-YEAR

PAYSCALE (3) PAYSCALE OF PAYTABLE (3)

PROGRAM-
STATUS

Indicates the outcome of the STARTBACKUP, OPEN, CLOSE,
and CHECKPOINT NonStop Facility operations. For more
information, see the discussion of fault-tolerant processes in the
COBOL85 for NonStop Systems Manual.

GUARDIAN-ERR Indicates the latest file system error number. For more
information about run-time diagnostic messages, see the
COBOL85 for NonStop Systems Manual.
Inspect Manual—429164-006
10-7

Using Inspect With COBOL and SCREEN COBOL Expressions
However, if you compile your program using the WITH DEBUGGING MODE clause in
the SOURCE COMPUTER paragraph, these data item is available:

DEBUG-ITEM is mainly used for non-interactive debugging, but the PROGRAM-
STATUS and GUARDIAN-ERR registers can be helpful in debugging with Inspect.

Expressions
Here is the syntax you use to create COBOL expressions in Inspect.

Usage Considerations

 Operator precedence is the same as the precedence defined in COBOL.

 When you use the minus sign (-) as an operator, you must delimit it with spaces.

 Inspect does not support these in expressions:

Class conditions, such as ALPHABETIC and NUMERIC
Sign conditions, such as NEGATIVE and POSITIVE
Figurative constants, such as HIGH-VALUES, SPACES, and so on
Abbreviated compound conditions, such as (A > B OR C)

DEBUG-ITEM Is a part of the ANSI Standard debugging mechanism. For more
information, see the description of the USE statement in the
COBOL85 for NonStop Systems Manual.

expression:
 condition [{ AND | OR } condition]...

condition:
 [NOT] { simple-exp [rel-op simple-exp]... }
 { level-88-condition }

rel-op:
 [NOT] { > = < GREATER EQUAL LESS }

simple-exp:
 [+ | -] term [{ + | - } term]...

term:
 factor [{ * | / } factor]...

factor:
 primary [**primary]

primary: one of
 data-location
 "@data-location"
 number
 (expression)
Inspect Manual—429164-006
10-8

Using Inspect With COBOL and SCREEN COBOL COBOL Data Types and Inspect
COBOL Data Types and Inspect
The following subsections discuss how Inspect handles and presents various COBOL
data types.

Record Types

This example assume these COBOL record declarations:

01 office-record.
 05 room-number PIC X9(4) VALUE "A4294".
 05 address PIC X(35) VALUE "555 12th Street".
 05 square-footage PIC 999V99 VALUE 113.40
 USAGE IS COMPUTATIONAL.
 05 phone-number PIC 9(10) VALUE 9113732411.01
 lumber-table.
 03 thickness OCCURS 2 TIMES.
 05 width OCCURS 6 TIMES.
 07 price PICTURE 99V99.

This example displays the entire record, including the names of the record fields:

-COBOLOBJ-DISPLAY office-record
OFFICE-RECORD =
 ROOM-NUMBER = "A4294"
 ADDRESS = "555 12th Street
 SQUARE-FOOTAGE = 113.40
 PHONE-NUMBER = 9113732411.

This example displays the record as a contiguous block of characters. The ?0 ?0
represent octal values that cannot be displayed as characters:

-COBOLOBJ-DISPLAY office-record WHOLE
OFFICE-RECORD = "A4294555 12th Street " ?0 ?0 ",L9113732411"

This example displays the record without field names:

-COBOLOBJ-DISPLAY office-record PLAIN
A4294
555 12th Street
113.4
9113732411.

This example displays the record as a contiguous block of characters, suppressing the
record name:

-COBOLOBJ-DISPLAY office-record WHOLE PLAIN
A4294555 12th Street ?0 ?0,L9113732411

This example shows the internal attributes of some record fields:

-COBOBJ-INFO IDENTIFIER price
PRICE: VARIABLE
storage^info:
TYPE=NUM UNSIGN, ELEMENT LEN=8 BITS, UNIT SIZE=4 ELEMENTS,
SCALE=2
Inspect Manual—429164-006
10-9

Using Inspect With COBOL and SCREEN COBOL Inspect Enhancements and Restrictions for
SCREEN COBOL
access^info:
'L'+%22S WORDS
dimension^info:
[1:2,1:6]
structure^info:
PARENT=WIDTH

-COBOBJ-INFO IDENTIFIER width
WIDTH: VARIABLE
storage^info:
TYPE=CHAR, ELEMENT LEN=8 BITS, UNIT SIZE=4 ELEMENTS
access^info:
'L'+%22S WORDS
dimension^info:
[1:2,1:6]
structure^info:
PARENT=THICKNESS,CHILD=PRICE

-COBOBJ-INFO IDENTIFIER thickness
THICKNESS: VARIABLE
storage^info:
TYPE=CHAR, ELEMENT LEN=8 BITS, UNIT SIZE=24 ELEMENTS
access^info:
'L'+%22S WORDS
dimension^info:
[1:2]
structure^info:
PARENT=LUMBER-TABLE,CHILD=WIDTH

Inspect Enhancements and Restrictions for
SCREEN COBOL

Because the TCP, not DMON, provides the execution control services needed to
debug SCREEN COBOL programs, certain Inspect commands and options are not
applicable to SCREEN COBOL. They are:

 Data breakpoints

 The BREAK command's ABEND, BACKUP, READ, and STOP clauses

 Code locations in the DISPLAY command

 The DISPLAY command's AS, FOR, and WHOLE clauses

 The INFO OBJECT, INFO OPENS, INFO SCOPE, and INFO SEGMENTS
commands

 The LOW command

 The MATCH SCOPE command

 The MODIFY command's WHOLE clause

 The SAVE command
Inspect Manual—429164-006
10-10

Using Inspect With COBOL and SCREEN COBOL Command Usage Guidelines for COBOL
Programmers
 The STEP IN and STEP OUT commands

 The STOP command

 The TRACE command's REGISTERS clause

Command Usage Guidelines for COBOL
Programmers

The following guidelines for COBOL programmers using Inspect are arranged
alphabetically by Inspect command name. Not all commands are listed.

BREAK

 You can set a breakpoint at a line number, a paragraph, a paragraph of a section, a
section, or the program entry point. You can qualify the following names with a
scope name.

You can also set a breakpoint at an offset from a line number, a paragraph, a
paragraph of a section, a section, or the program entry point. Offsets are given as
a number of sentences (Inspect calls them STATEMENTS), statements (Inspect
calls them VERBS), or machine instructions or pseudo instructions (Inspect calls
them INSTRUCTIONS).

 For SCREEN COBOL, you can set a breakpoint only at the start of an inactive
program unit. Also, when you set a breakpoint at the entry of a program unit,
Inspect does not check your SCREEN COBOL library to ensure that the given
program unit exists. Consequently, if you set a breakpoint at a nonexistent
program unit, Inspect does not display a warning message.

 When you run COBOL-compiled processes, you can also set and clear a single
breakpoint in the data area. Because a data breakpoint monitors only one word in
the data area, any operation that changes the contents of that word (alone, or as
part of a group item) will trigger the Inspect break event.

 A break set at the entry point to a program unit will occur before any initialization
(VALUE clause actions). If you set a breakpoint at a program unit entry point, you
should enter a STEP 1 VERB command when Inspect stops there. Alternatively, a
break set at the first paragraph of a program unit will have the desired effect.

 If you set a breakpoint at ABEND and your COBOL program terminates
abnormally, you will find that your program is executing system code instead of
user code. To access code or data in your program, you must qualify code and
data references to include a scope path. Alternatively, you can change the current
scope path with the SCOPE command.

 If you have a paragraph name in your program called ABEND, entering BREAK
ABEND causes Inspect to set a breakpoint at the paragraph, not at abnormal
program end.
Inspect Manual—429164-006
10-11

Using Inspect With COBOL and SCREEN COBOL DISPLAY
 If you set a data breakpoint within a group item, and your program moves a value
to the group, the break event occurs before the move operation is complete
because COBOL always uses byte moves for group items.

DISPLAY

 The DISPLAY command does not display FILLER items in records unless you use
the WHOLE clause.

 There are significant differences between the PIC clause of the DISPLAY
command and the COBOL PICTURE clause. The PICTURE clause is part of a
data item's definition, while the PIC clause is simply a template for formatting a
data item. Also, the PIC clause is case-sensitive, excludes constructs such as
parenthesized repetition counts, and does not perform floating replacement. In
fact, the only characters that have special meaning in the mask string you provide
in DISPLAY's PIC clause are:

V (uppercase V only
Z (uppercase Z only)
9

The formatter displays all other characters (including “z” and “v”) exactly as they
appear in the mask string.

In addition, the mask string must be enclosed in either quotes (") or apostrophes
('). To include a quote in a quote-delimited mask string, use a pair of quotes. To
include an apostrophe in an apostrophe-delimited mask string, use a pair of
apostrophes.

 The DISPLAY command can display COBOL items that have been declared in the
Extended-Storage Section. To display these items, use the standard DISPLAY
command syntax described in Section 6, High-Level Inspect Commands.

HELP

You can ask for help on the definitions of Inspect command parameters. Therefore,
you can find out what Inspect recognizes as a COBOL data location, a COBOL code
location, or a COBOL expression.

INFO IDENTIFIER

 If you request a listing of the attribute of an unqualified data name, Inspect will list
all possible instances of that data name in the current scope.

 The data types reported by Inspect are not designated in terms of any one
language. Therefore, COBOL computational items of up to four digits are marked
BIN SIGN, while COBOL alphanumeric items are marked CHAR. A number of
data types in Inspect are directly COBOL oriented, such as NUM LD EM (numeric,
sign leading, embedded) and NUM TR SP (numeric, sign trailing, separate).
Inspect Manual—429164-006
10-12

Using Inspect With COBOL and SCREEN COBOL MODIFY
 When you request information about all identifiers in a program unit, Inspect lists
the identifiers in the reverse order of declaration for COBOL 74 and COBOL85;
Inspect lists the identifiers in alphabetical order for SCREENþCOBOL.

MODIFY

 A MODIFY command operating on an edited field does not edit. Inspect functions
just as the VALUE clause does, inserting a character value into the data item
unchanged.

 When you use a MODIFY command to assign a value to a group item, you must
use the MODIFY WHOLE form. The value you provide in the command must be a
quoted string value.

 When you specify the name of a group item in a MODIFY WHOLE command,
Inspect requires the new value to be in the command list. Inspect will not prompt
for a new value.

 When an alphanumeric data item in a COBOL program is being modified, the &
operator can be used to concatenate bytes with a string. The values can be in
binary, octal, or hex format.

 The MODIFY command does not restrict COMPUTATIONAL items to 18-digit
values; it will allow you to store a 19-digit value. However, COBOL cannot
manipulate COMPUTATIONAL values in excess of 18 digits.

 The MODIFY command can modify COBOL items that have been declared in the
Extended-Storage Section. To modify these items, use the standard MODIFY
command syntax described in Section 6, High-Level Inspect Commands.

SCOPE

 For COBOL, the scope of an identifier is always the program-ID of the program unit
in which the identifier is declared.

 If you have identifiers of the same name in different program units, be sure that you
qualify the identifiers enough for Inspect to distinguish them.

SET RADIX

 Even if you set your input radix to hexadecimal, you must still prefix a hexadecimal
value with zero or “%H” if its first digit is above nine; otherwise, Inspect interprets
the value as an identifier.

STEP

 The STEP command considers COBOL CALL, ENTER, and PERFORM
statements as one verb. If you step through a portion of the program and come to
a PERFORM statement, a subsequent STEP 1 VERB command executes the
Inspect Manual—429164-006
10-13

Using Inspect With COBOL and SCREEN COBOL STEP
entire PERFORM scope (including any TIMES or UNTIL constraints) before you
are prompted again.

If you want to step through the code within the PERFORM scope, you must set a
breakpoint at the label that marks the beginning of the PERFORM scope. You can
then enter a STEP command when Inspect reports the break event.

If you are stepping within a performed or called scope, and control returns to the
statement following the PERFORM, CALL, or ENTER, stepping does not cease. In
other words, you can step out of a PERFORM, CALL, or ENTER statement, but
you cannot step into one.
Inspect Manual—429164-006
10-14

11 Using Inspect With FORTRAN

 Scope Units and Scope Paths on page 11-1

 Code Locations on page 11-2

 Data Locations on page 11-5

 Expressions on page 11-8

 FORTRAN Data Types and Inspect on page 11-8

 Inspect Enhancements and Restrictions for FORTRAN on page 11-11

 Command Usage Guidelines for FORTRAN Programmers on page 11-11

Scope Units and Scope Paths
FORTRAN has three types of scope units: program, subroutine, and function. When
debugging a program written in FORTRAN, you must specify one of these types
whenever an Inspect command expects a scope unit.

Here is the syntax you use to identify FORTRAN scope paths in Inspect.

scope-path:
 #scope-unit

scope-unit: one of
 program
 subroutine
 function

Usage Consideration

 BLOCK DATA

Note that BLOCK DATA subprograms are not listed as a type of FORTRAN scope
unit. You cannot directly access the data initialization in a BLOCK DATA
subprogram; however, you can access the initialized common data through the
variables you associate with common data in a COMMON statement.
Inspect Manual—429164-006
11-1

Using Inspect With FORTRAN Code Locations
Code Locations
.Here is the syntax you use to identify FORTRAN code locations in Inspect.

scope-path

specifies the program unit containing the code location. When used alone,
scope-path specifies the primary entry point of the last program unit. When
followed by a code offset, scope-path specifies the base of the program unit.

[scope-path.] code-spec

specifies a named or numbered location in the program unit defined by the given
scope path (or the current scope path if you omit the scope path).

scope-unit

specifies the primary entry point of the program unit. scope-unit must be
the same as the program unit named in scope-path (or the current scope
path).

statement-function

specifies a statement function.

statement-label

specifies the statement following a statement label. The SET LOCATION
FORMAT command is used to differentiate between statement-label and
statement-number. See Usage Considerations on page 11-3.

code-location:
 { scope-path } [offset]...
 { [scope-path.]code-spec }

code-spec: one of
 scope-unit
 statement-function
 statement label
 entry point
 statement-number
 #line-number [(source-file)]

offset:
 { + | - } num [code-unit]

code-unit: one of
 INSTRUCTION[S]
 STATEMENT[S]
 VERB[S]
Inspect Manual—429164-006
11-2

Using Inspect With FORTRAN Usage Considerations
entry-point

specifies an entry point.

statement-number

specifies the statement beginning at the given statement number. The SET
LOCATION FORMAT command is used to differentiate between statement-
label and statement-number. For more information, see Usage Considerations.

To see statement numbers, use the SOURCE command after you have set
your location format to statements. For more information, see SET LOCATION
FORMAT on page 6-175.

#line-number [(source-file)]

specifies the statement beginning at a given line number in the source file.

(source-file) qualifies the line number by the source file containing it. You
need to use this option only if the source code for the given program unit is in
more than one file.

offset

specifies an offset from the code location defined by the preceding options. A
positive offset (+) denotes code following the specified code location; a negative
offset (-) denotes code preceding the specified code location. The amount to offset
is specified by a given number of units. If you omit the unit specifier, Inspect selects
STATEMENT as the code unit for FORTRAN. Inspect code units correspond to
FORTRAN code units as follows:

Usage Considerations

 Inspect does not recognize variables used as labels (by the ASSIGN statement) as
code locations.

 Certain labeled or unlabeled FORTRAN statements might not generate any code;
they mark locations in the program. Among these statements are CONTINUE,
END, and ENDIF. Because such statements do not generate any code, Inspect
does not recognize them as statements.

A CONTINUE statement that ends a DO loop does generate code because the
code for the DO loop control is located there. (For more information about the
STEP command, see Command Usage Guidelines for FORTRAN Programmers on
page 11-11.)

INSTRUCTION Specifies a machine-code instruction.

STATEMENT Specifies a FORTRAN statement.

VERB Specifies a FORTRAN statement, as does STATEMENT
Inspect Manual—429164-006
11-3

Using Inspect With FORTRAN Examples
 Specifying code locations by line number

If no statement begins at the line number you specify, Inspect issues this warning:

Inspect then uses the statement starting at the given line number. If more than one
statement begins on the line you specify, Inspect uses the start of the first
statement.

 Specifying statement-number or statement-label.

In order for Inspect to determine if a number given for a code location is a
statement-number or statement-label, the setting of LOCATION FORMAT is used.

 The current setting can be checked by using the SHOW LOCATION FORMAT
command. If the LOCATION FORMAT includes STATEMENTS, the number is
interpreted to mean statement-number. If STATEMENTS does not appear in the
LOCATION FORMAT, then the number is interpreted to mean statement-label.

Examples

 This example shows the effect of using number with combinations of LOCATION
FORMAT with and without STATEMENT.

When the LOCATION FORMAT includes STATEMENT, the number in the code
location is interpreted to mean statement 20.

-FOROBJ-SET LOCATION FORMAT LINE, STATEMENT
-FOROBJ-SOURCE AT 20
 16 #42 ll
 = .not. ll 17 #43 goto 25
 18 #44 else
 19 #45 assign 30 to next
 20 #46 goto next
 #47 endif
 21 #48 goto bad
 #49
 22 #50
 30 assign 50 to next
 23 #51 if (ir .eq. 0) then

When the LOCATION FORMAT does not include STATEMENT, the number in the
code location is interpreted to mean label 20.

-FOROBJ-SET LOCATION FORMAT LINE
-FOROBJ-SOURCE AT 20
 #36 goto bad
 #37 endif
 #38 goto bad
 #39
 #40 20 ll = .false.
 #41 25 if (.not. ll) then
 #42 ll = .not. ll

** Inspect error 117 ** A subsequent line number is assumed: line-number
Inspect Manual—429164-006
11-4

Using Inspect With FORTRAN Data Locations
 #43 goto 25
 #44 else
 #45 assign 30 to next

 This example assume this FORTRAN program fragment in a subroutine named
LOSSES:

Here are some code locations:

 SUBROUTINE LOSSES
 COMMON /TALLIES/ COLLAPSE, OSCILLATE
 ...
 THRESHOLD(I) = MIN (I*1.E-2, X(I,1))
 ...
 DO 120 I = 1, 26
 DO 110 J = 1, 26
100 MARGIN (I) = MARGIN (I) - X(I,J)
 IF (MARGIN (I) .LT. THRESHOLD (Z)) THEN
 MARGIN (I) = 0
 COLLAPSE = COLLAPSE + 1
 END IF
110 CONTINUE
120 CONTINUE

Data Locations
Here is the syntax you use to identify FORTRAN data locations in Inspect.

scope-path [(instance)]

specifies the program unit containing the data item.

Code Location Specifies

#LOSSES The primary entry point of subroutine LOSSES.

#LOSSES.100 The statement at label 100.

#LOSSES.100 -1S The statement before label 100.

#LOSSES.THRESHOLD The statement function THRESHOLD.

data-location:
 [scope-path [(instance)] .] data-reference

instance:
 [+ | -] num

data-reference: one of

 identifier
 data-reference (index [,index]...)
 data-reference^identifier

subscript-range:
 expression [:expression]
Inspect Manual—429164-006
11-5

Using Inspect With FORTRAN Default Values
(instance) identifies a specific activation of the data item's parent program unit.
You need to specify an instance only when you want to identify a local data item in
a recursive program unit.

data-reference

specifies the data item using FORTRAN syntax. The recursion in the definition of
data-reference enables you to refer to complex FORTRAN data structures.

identifier

specifies a simple variable. When used in the INFO IDENTIFIER or DISPLAY
command, identifier can also be the name of a structured variable; identifier
then specifies the entire variable.

data-reference (index [,index]...)

specifies an array variable.

index

specifies the subscript of an array element or the subscript range of a
group of array elements.

data-reference^identifier

specifies a field of a record variable.

Default Values

If you do not specify a scope path, Inspect uses the current scope path.

When you refer to an element of a FORTRAN record, you must qualify the element
name completely.

Usage Considerations

 Any FORTRAN data location to which you refer must be a data item defined in a
program unit that was compiled with the SYMBOLS directive. The location can be
anywhere in an active scope unit.

 If you declare a variable but never refer to it, FORTRAN does not include it in the
data area. Consequently, Inspect has no information about the variable and will
issue a message.

 You cannot set a data breakpoint to detect the use of a FORTRAN FORMAT
statement by a READ or WRITE statement.
Inspect Manual—429164-006
11-6

Using Inspect With FORTRAN Examples
 Subscripting data locations in Inspect is the same as in FORTRAN. For example,
this DDL structure requires three subscripts when you refer to the data item
SUBFIELD:

RECORD REC.
 03 SUBREC OCCURS ...
 05 FIELD OCCURS ...
 07 SUBFIELD OCCURS ...

A data reference to SUBFIELD must include subscripts for all of its parent data
items:

REC^SUBREC(X)^FIELD(Y)^SUBFIELD(Z)

 Statement functions are treated as subprocedures. Suppose, for example, there is
an identifier POMME local to a statement function, and the program unit that
contains the statement function also contains an identifier named POMME.
Inspect provides no way for the user to qualify a mention of POMME (such as for
DISPLAY or for setting a data breakpoint).

Examples

This example assume the FORTRAN program fragment in a subroutine named
LOSSES:

 COMMON /TALLIES/ COLLAPSE, OSCILLATE
 ...
 THRESHOLD(I) = MIN (I*1.E-2, X(I,1))
 ...
 DO 120 I = 1, 26
 DO 110 J = 1, 26
100 MARGIN (I) = MARGIN (I) - X(I,J)
 IF (MARGIN (I) .LT. THRESHOLD (Z)) THEN
 MARGIN (I) = 0
 COLLAPSE = COLLAPSE + 1
 END IF
110 CONTINUE
120 CONTINUE

Here are some data locations:

Data Location Specifies

#LOSSES.J The loop variable J.

#LOSSES.I The loop variable I, not the variable I in the statement function
THRESHOLD. To refer to a variable in a statement function, you must
find its address with the INFO IDENTIFIER command and use low-
level mode to display or modify it.
Inspect Manual—429164-006
11-7

Using Inspect With FORTRAN Expressions
These data locations assume a current scope path of #LOSSES:

Expressions
Here is the syntax you use to create FORTRAN expressions in Inspect.

Usage Considerations

 Operator precedence is the same as the precedence defined for FORTRAN.

 ASSIGN statements and the integer variables to which label values are assigned
are ignored by Inspect.

FORTRAN Data Types and Inspect
The following subsections discuss how Inspect handles and presents various
FORTRAN data types.

Data Location Specifies

X(5+I,4) An element of the array X.

COLLAPSE The variable COLLAPSE in the COMMON block TALLIES. Note that
the elements of a COMMON block have a subprogram as their scope
unit, not the COMMON block.

expression:
 condition [bool-op condition]...

bool-op: one of
 .AND. .OR. .EQV. .NEQV.

condition:
 [.NOT.] simple-exp [rel-op simple-exp]

rel-op: one of
 .LT. .LE. .GT. .GE. .EQ. .NE.

simple-exp:
 [+ | -] term [{ + | - } term]...

term:
 factor [{ * | / } factor]...

factor:
 primary [**primary]

primary: one of
 data-location
 constant
 (expression)
Inspect Manual—429164-006
11-8

Using Inspect With FORTRAN Arrays
Arrays

Inspect supports all FORTRAN array types, including multidimensional arrays and
arrays of records. You can use a single element, a group of elements, or an entire
array as the data-reference part of a data location:

If you use the array name only in any command other than INFO IDENTIFIER or
DISPLAY, Inspect displays the error:

Examples

This example assume the FORTRAN declaration:

INTEGER A(10,20)

This example shows the internal attributes of the array:

-FORTOBJ-INFO IDENTIFIER a
A: VARIABLE
storage^info:
TYPE=BIN SIGN, ELEMENT LEN=16 BITS, UNIT SIZE=1 ELEMENTS
access^info:
'L'+2I+%13 WORDS
dimension^info:
[1:10,1:20]

This example displays a single element of the array:

-FORTOBJ-DISPLAY a(2,2)
A[2,2] = 202

This example displays a range of elements:

-FORTOBJ-DISPLAY a(2:6,2)
A[2,2] = 202 302 402 502 602

-FORTOBJ-DISPLAY a(2,2:6)
A[2,2] = 202
A[2,3] = 203
A[2,4] = 204
A[2,5] = 205
A[2,6] = 206

Data Reference Example Where Valid

Single element MYARRAY(5) In any Inspect command

Range of elements MYARRAY(1:7) In any Inspect command except BREAK

Entire array MYARRAY In the INFO IDENTIFIER and DISPLAY
commands only

** Inspect error 80 ** Required subscript missing: identifier
Inspect Manual—429164-006
11-9

Using Inspect With FORTRAN Records
This example displays the entire array:

-FORTOBJ-DISPLAY a
A[1,1] = 101 201 301 401 501 601 701 801 901 1001
A[1,2] = 102 202 302 402 502 602 702 802 902 1002
A[1,3] = 103 203 303 403 503 603 703 803 903 1003
A[1,4] = 104 204 304 404 504 604 704 804 904 1004
A[1,5] = 105 205 305 405 505 605 705 805 905 1005
A[1,6] = 106 206 306 406 506 606 706 806 906 1006
A[1,7] = 107 207 307 407 507 607 707 807 907 1007
A[1,8] = 108 208 308 408 508 608 708 808 908 1008
A[1,9] = 109 209 309 409 509 609 709 809 909 1009
A[1,10] = 110 210 310 410 510 610 710 810 910 1010
A[1,11] = 111 211 311 411 511 611 711 811 911 1011
A[1,12] = 112 212 312 412 512 612 712 812 912 1012
A[1,13] = 113 213 313 413 513 613 713 813 913 1013
A[1,14] = 114 214 314 414 514 614 714 814 914 1014
A[1,15] = 115 215 315 415 515 615 715 815 915 1015
A[1,16] = 116 216 316 416 516 616 716 816 916 1016
A[1,17] = 117 217 317 417 517 617 717 817 917 1017
A[1,18] = 118 218 318 418 518 618 718 818 918 1018
A[1,19] = 119 219 319 419 519 619 719 819 919 1019
A[1,20] = 120 220 320 420 520 620 720 820 920 1020

Records

Inspect supports FORTRAN records, as shown in this example, which assume this
FORTRAN declaration:

RECORD REC
 CHARACTER*6 DATE
 FILLER*4
 CHARACTER*6 AMOUNT
END RECORD

This example shows the internal attributes of the record:

-FORTOBJ-INFO IDENTIFIER rec
REC: VARIABLE
storage^info:
TYPE=BYTE STRUCT, ELEMENT LEN=8 BITS, UNIT SIZE=16 ELEMENTS
access^info:
'L'+%11S WORDS
structure^info:
CHILD=DATE

This example shows the internal attributes of one of the fields:

-FORTOBJ-INFO IDENTIFIER rec^date
DATE: VARIABLE
storage^info:
TYPE=CHAR, ELEMENT LEN=8 BITS, UNIT SIZE=6 ELEMENTS
access^info:
(parent)+0 WORDS
structure^info:
PARENT=REC,SIBLING=AMOUNT
Inspect Manual—429164-006
11-10

Using Inspect With FORTRAN Inspect Enhancements and Restrictions for
FORTRAN
This example displays the record using Inspect's default formatting:

-FORTOBJ-DISPLAY rec
REC =
 DATE = "082282"
 AMOUNT = "000405"

This example displays a single field of the record:

-FORTOBJ-DISPLAY rec^amount
REC^AMOUNT = "000405"

This example displays the record, suppressing the identifiers and quotes:

-FORTOBJ-DISPLAY rec PLAIN
082282
000405

This example displays the whole record, including the FILLERs:

-FORTOBJ-DISPLAY rec WHOLE
REC = "082282 000405"

This example displays the whole record, suppressing the identifiers and quotes:

-FORTOBJ-DISPLAY rec WHOLE PLAIN
082282
000405

Inspect Enhancements and Restrictions for
FORTRAN

The following subsection discusses the difference between programming with
FORTRAN and using Inspect to debug FORTRAN programs.

Spaces in Identifiers

Unlike FORTRAN, Inspect does not allow embedded spaces in identifiers. If your
FORTRAN program includes identifiers that contain embedded spaces, you must
remember to enter them without spaces in Inspect.

Command Usage Guidelines for FORTRAN
Programmers

The following guidelines for FORTRAN programmers using Inspect are arranged
alphabetically by Inspect command name. Not all commands are listed.
Inspect Manual—429164-006
11-11

Using Inspect With FORTRAN BREAK
BREAK

 A break set at the entry point to a scope unit occurs before any initialization. If you
set a breakpoint at a scope unit's entry point, you should enter a STEP 1S
command after the breakpoint is triggered.

 Because a data breakpoint is associated with a single word, an identifier
designating multiple words (such as COMPLEX, DOUBLE PRECISION, or
RECORD) has only its first word marked as the breakpoint. If an EQUIVALENCE
declaration allows you to read or modify a subsequent word of such a variable
without affecting the primary word, the debugging facility will not signal a debug
event.

 If you set a data breakpoint within a record, and your program moves a value into
the entire record, the break event occurs before the move operation is complete.

 BREAK at a code location that contains a number, for example BREAK 10 or
BREAK #CONTROL.10, will cause the breakpoint to be placed on the statement
number, if the LOCATION FORMAT includes STATEMENT, or on the label if
LOCATION FORMAT does not include statement. Use the SHOW LOCATION
FORMAT to check the current setting. Use the SET LOCATION FORMAT to
change the setting.

DISPLAY

 Inspect does not allow commands after a FORMAT specification in the DISPLAY
command. If a FORMAT clause is present, it must be the last item in a command
list.

 Inspect encloses complex values in parentheses when it displays them.

HELP

You can ask for help on the definitions of Inspect command parameters. Therefore,
you can find out what Inspect recognizes as a FORTRAN data location, a FORTRAN
code location, a FORTRAN expression, or a FORTRAN conditional expression.

INFO IDENTIFIER

 Inspect requires complete qualification of names of record elements. If you
request a listing of the attributes of an unqualified data name, and the only
instance of that name is in a record, Inspect will give you an error message. If the
data name occurs in the scope twice—once as a simple variable and once as part
of a record—requesting a listing of the attributes of the unqualified data name will
produce an attribute listing for only the simple variable. You must qualify the name
completely when you request a listing of the attributes for a record element.

 FORTRAN statement functions are treated as equivalent to TAL subprocedures.
Inspect tags statement functions as being subprocedures of the procedures
(program units) in which they are declared. Inspect requires full qualification of
Inspect Manual—429164-006
11-12

Using Inspect With FORTRAN INFO OPENS
names, so you must qualify a statement function name with its scope name if you
want to request information on the attributes of a statement function.

 The data types reported by Inspect are not designated in terms of any one
language. Therefore, FORTRAN integers are marked as BIN SIGN, while
FORTRAN real, complex, logical, and character items are marked as REAL,
COMPLEX, LOGICAL, and CHAR, respectively.

 If you request a listing of the attributes of an entire program unit, they are listed in
an order determined by the FORTRAN compiler:

 All identifiers that are not components of records are listed in alphabetical
order. When a record identifier is listed, its components and their attributes are
immediately listed in record-layout order.

 All statement labels are listed in numeric order.

INFO OPENS

The suffix “F” indicates that numeric values are FORTRAN logical unit numbers. If you
do not include this suffix, Inspect assumes file system numbers.

MODIFY

 Just as in FORTRAN itself, you can MODIFY a variable that is named in an
EQUIVALENCE statement.

 A complex constant is represented as a pair of numeric values separated by a
comma and delimited by parentheses, just as the constant would appear in a
FORTRAN program.

 Record elements named FILLER cannot be explicitly modified, and an interactive
MODIFY command will not prompt you for them. A MODIFY WHOLE will assign
characters to all positions in a record, including those designated FILLER.

SCOPE

 In FORTRAN, the scope of an identifier is always the name of the scope unit in
which the identifier is declared. COMMON blocks and statement functions are not
really scope units; they refer to identifiers declared in other scope units.

 If you have identifiers of the same name in different scope units, be sure that you
qualify the identifiers enough for Inspect to distinguish them.

SET RADIX

Even if you set your input radix to hexadecimal, you must still prefix a hexadecimal
value with zero or “%H” if its first digit is above nine; otherwise, Inspect interprets the
value as an identifier.
Inspect Manual—429164-006
11-13

Using Inspect With FORTRAN STEP
STEP

FORTRAN tests for continuation of a DO loop at the end of the loop. Consequently, a
STEP 1S command at the beginning of a DO loop takes you to the terminal statement
of the loop. A subsequent STEP 1S command takes you to the statement following the
DO.

TRACE

The TRACE ARGUMENTS command shows the arguments for the primary entry point
of a scope unit. If a secondary entry point has a different set of arguments, TRACE
ARGUMENTS does not display them.
Inspect Manual—429164-006
11-14

12 Using Inspect With Pascal

 Scope Paths and Scope Units on page 12-1

 Code Locations on page 12-2

 Data Locations on page 12-5

 Expressions on page 12-7

 Pascal Data Types and Inspect on page 12-7

 Inspect Enhancements and Restrictions for Pascal on page 12-15

 Command Usage Guidelines for Pascal Programmers on page 12-15

Scope Paths and Scope Units
Pascal has two types of scope units: procedure and function. When debugging a
program written in Pascal, you must specify one of these types whenever an Inspect
command requires or expects a scope unit.

Here is the syntax you use to identify Pascal scope paths in Inspect.

Usage Guidelines

Exported procedures: If an exported procedure (a procedure declared in another
compilation unit) has the same name as a module, Inspect cannot access its symbol
information.

scope-path:

 #scope-unit [.scope-unit]...

scope-unit: one of
 function
 procedure
Inspect Manual—429164-006
12-1

Using Inspect With Pascal Code Locations
Code Locations
Here is the syntax you use to identify Pascal code locations in Inspect.

scope-path

specifies the function containing the code location. When followed by a code
offset, scope-path specifies the base of the function; otherwise, it specifies the
primary entry point of the function.

[scope-path.] code-spec

specifies a named or numbered location in the function defined by the given scope
path (or the current scope path if you omit the scope path).

scope-unit

specifies the primary entry point of the scope unit. scope-unit must be the
same as the last scope unit named in scope-path (or the current scope
path).

label

specifies the statement following a given label in the source code.

statement-number

specifies the statement beginning at the given statement number. To see
statement numbers, use the SOURCE command after you have set your
location format to statements. For more information, see SET LOCATION
FORMAT on page 6-175.

code-location:
 { scope-path } [FROM module] [offset]...
 { [scope-path.]code-spec }

code-spec: one of
 scope-unit
 label
 statement-number
 #line-number [(source-file)]

offset:
{ + | - } num [code-unit]

code-unit: one of
 INSTRUCTION[S]
 STATEMENT[S]
 VERB[S]
Inspect Manual—429164-006
12-2

Using Inspect With Pascal Usage Considerations
#line-number [(source-file)]

specifies the statement beginning at a given line number in the source file.

(source-file) qualifies the line number by the source file containing it. Use
this option only if the source code for the given function is in more than one file.

FROM module

specifies the module in which the function containing the code location is defined.
In Tandem Pascal, the module name is the file name of the module’s base source
file (the file specified as input to the Tandem Pascal compiler). Use the FROM
clause only if you have two functions of the same name.

offset

specifies an offset from the code location defined by the preceding options. A
positive offset denotes code following the specified code location; a negative offset
denotes code preceding the specified code location. The amount to offset is
specified as a given number of units. If you omit the unit specifier, Inspect selects
a default unit of STATEMENT for Pascal programs. Inspect code units correspond
to Pascal code units as follows:

INSTRUCTION Specifies a machine-code instruction in compiled Pascal program.

STATEMENT Specifies a Pascal statement.

VERB Specifies a Pascal statement, as does STATEMENT.

Usage Considerations

 Low-level code locations

Low-level Inspect recognizes function names, but does not use any other symbol
information. In low-level Inspect, therefore, you can only use code locations of the
form:

#scope-path [code-offset]

This form represents an offset from the code base of a function. Also, the code
unit of code-offset in low-level Inspect is always INSTRUCTION.

 High-level code locations

High-level Inspect recognizes function names as does low-level Inspect, but it also
uses the symbol information created when you compile a function with the
SYMBOLS pragma. Therefore, code locations in high-level Inspect can include
label identifiers or line numbers.

 Specifying code locations by line number

If no statement begins at the line number you specify, Inspect issues this warning:

** Inspect warning 117 ** A subsequent line number is assumed: line-number
Inspect Manual—429164-006
12-3

Using Inspect With Pascal Examples
Inspect then uses the statement starting at the given line number. If more than one
statement begins on the line you specify, Inspect uses the start of the first
statement.

 The STATEMENT code unit and Pascal statements

Inspect recognizes these as statements:

 Simple Pascal statements that are not part of a conditional or repetitive
structured statement

 Pascal statements in a compound statement (BEGIN...END)

 The parts of a conditional or repetitive statement

 Using the FROM Clause in a Command List

You can use the FROM clause only once in a command list.

Examples

This example assume this Pascal code fragment:

PROCEDURE a;
 ...
 PROCEDURE b;
 ...
 FUNCTION c : integer;
 ...
 END;
 ...
 END;
 ...
END;

Here are some code locations:

Code Location Specifies

#A The primary entry point of procedure A.

#A.B The primary entry point of procedure B.

#A.B.C The primary entry point of function C.
Inspect Manual—429164-006
12-4

Using Inspect With Pascal Data Locations
Data Locations
Here is the syntax you use to identify Pascal data locations in Inspect.

scope-path [(instance)]

specifies the scope path to the scope unit containing the data item.

(instance) identifies a specific activation of the data item's parent scope unit.
You need to specify an instance only when you want to identify a local data item in
a recursive scope unit.

#data-block

specifies the global data block containing a nonexported global variable. data-
block is the name of the module containing the global variable specified by data-
reference. The name of the data block for the main program is
_MAIN_MODULE, not the program name.

You need to specify a data block only when you have two nonexported global
variables of the same name in two different modules.

data-reference

specifies the data item using Pascal syntax. The recursion in the definition of
data-reference enables you to refer to complex Pascal data structures.

identifier

specifies a simple or pointer variable. When used in the DISPLAY command,
identifier can also be the name of a structured variable; identifier
then specifies the entire variable. When used in the INFO IDENTIFIER
command, identifier can also be the name of a structured variable or user-
defined data type; identifier then specifies the entire variable or the type
definition.

data-location:
 [scope-path [(instance)] .] data-reference
 [#data-block.]

instance:
 [+ | -] integer
data-reference: one of

 identifier
 data-reference '[' index [,index]... ']'
 data-reference.identifier
 data-reference^

index:
 expression [:expression]
Inspect Manual—429164-006
12-5

Using Inspect With Pascal Default Values
data-reference '[' index [,index]... ']'

specifies an array variable.

index

specifies the subscript of an array element or the subscript range of a
group of array elements.

data-reference.identifier

specifies a field of a record variable.

data-reference^

specifies the value referenced by a pointer or buffer (file) variable.

Default Values

If you do not specify scope-path, Inspect uses the current scope path.

Usage Considerations

 Any Pascal data location to which you refer must be declared in a scope unit that
was compiled with the SYMBOLS directive. The location can be anywhere in an
active scope unit.

Examples

This example assume the Pascal program fragment:

PROGRAM nested;
 VAR y,z : integer;
 ...
 PROCEDURE outer;
 VAR a,b : integer;
 ...
 PROCEDURE inner;
 VAR c,d : integer;
 ...
 END;
 END;
END;

Here are some data locations:

Data Location Specifies

#OUTER.INNER.C The most recent instance of C.

#OUTER.INNER(-1).C The second-most recent instance of C.

#OUTER.A The most recent instance of A.

#OUTER.INNER(1).D The oldest (first) instance of D.
Inspect Manual—429164-006
12-6

Using Inspect With Pascal Expressions
Expressions
Here is the syntax you use to create Pascal expressions in Inspect.

Usage Considerations

 The precedence of operators is the same as the precedence defined in Pascal.

 Inspect does not support function calls in expressions.

 Inspect does not support set expressions.

Pascal Data Types and Inspect
The following subsections discuss how Inspect handles and presents various Pascal
data types.

expression:
 simple-exp [rel-op simple-exp]...

rel-op: one of
 = <> < > <= >=

simple-exp: [+ | -] term [add-op term]...

add-op: one of
 + - OR

term:
 factor [mult-op factor]...

mult-op: one of
 * / DIV MOD AND << >>

factor: one of
 data-location
 unsigned-constant
 NOT factor
 (expression)
Inspect Manual—429164-006
12-7

Using Inspect With Pascal Array Types
Array Types

Inspect supports all Pascal array types, including multidimensional arrays and arrays of
records. You can use a single element, a group of elements, an entire array, or an
array type itself as the data-reference part of a data location:

If you use the array name only in any command other than INFO IDENTIFIER or
DISPLAY, Inspect displays the error:

Inspect performs bounds checking on Pascal arrays. If you attempt to access an
element outside of the array bounds, Inspect displays the error:

Examples

This example assume these Pascal declarations:

CONST subscript = 100;

TYPE intarray = ARRAY [1..subscript] OF INTEGER;
 chararray = PACKED ARRAY [1..subscript] OF CHAR;

VAR a1 : intarray;
 a2 : chararray;

This example displays an array element and then displays both arrays:

-PASOBJ-DISPLAY a1[5]
A1[5] = value of fifth element

-PASOBJ-DISPLAY a1
A1 = values of all elements of a1

-PASOBJ-DISPLAY a2
A2 = values of all elements of a2 as a string of CHARs

Enumerated Types

Inspect supports variables of enumerated types.

Data Reference Example Where Valid

Single element MYARRAY[5] In any Inspect command

Range of elements MYARRAY[1:7] In any Inspect command except BREAK

Entire array MYARRAY In the INFO IDENTIFIER and DISPLAY
commands only

Array type INTARRAY In the INFO IDENTIFIER command only

** Inspect error 80 ** Required subscript missing: identifier

** Inspect error 79 ** Subscript value outside of declared bounds: identifier
Inspect Manual—429164-006
12-8

Using Inspect With Pascal File Types
Examples

This example assume these Pascal declarations:

TYPE
 fruit_type = (apples, oranges, bananas)

VAR fruit : fruit_type

When you use an identifier of enumerated type in a DISPLAY command, Inspect
displays the enumeration value as declared in the TYPE declaration. If you want
Inspect to display the ordinal representation, specify a numeric format along with the
identifier:

-PASOBJ-DISPLAY fruit
FRUIT = ORANGES

-PASOBJ-DISPLAY fruit IN DECIMAL
FRUIT = 1

You can modify a variable of an enumerated type using an enumeration value or an
ordinal value:

-PASOBJ-MODIFY fruit = apples
-PASOBJ-MODIFY fruit = 0

The INFO IDENTIFIER command gives this information:

-PASOBJ-INFO IDENTIFIER fruit
FRUIT: VARIABLE
storage^info:
TYPE=DEFINED TYPE, ELEMENT LEN=8 BITS, UNIT SIZE=1 ELEMENTS
access^info:
#GLOBAL+1 WORDS
structure^info:
CHILD= FRUIT_TYPE-PASOBJ-INFO IDENTIFIER fruit_type
FRUIT_TYPE: DEFINED TYPE
access^info:
TYPE= ENUMERATION
-PASOBJ-INFO IDENTIFIER oranges
ORANGES: NAMED CONST
storage^info:
TYPE=BIN SIGN, ELEMENT LEN=16 BITS, UNIT SIZE=1 ELEMENTS
access^info:VALUE= 1

File Types

Inspect can access file variables; however, Inspect cannot recognize that the variable
actually pertains to a file. Inspect represents a file variable as a 16bit unsigned integer.

Pointer Types

Inspect supports variables of pointer types. Inspect also supports dereferencing of
pointer variables using the circumflex (^) operator.
Inspect Manual—429164-006
12-9

Using Inspect With Pascal Record Types
Examples

In the following type and variable declarations, link is defined as a pointer type
pointing to a record of type object. The variables base and p are declared as
pointers of type link:

TYPE
 link = ^object;
 object = RECORD
 next : link;
 data : char
 END;
VAR
 base, p : link;

This example displays the pointer variable p, the record to which it points, a field of that
record, and then a field in the record to which the record p^.next points:

-PASOBJ-DISPLAY p
P= value of the pointer

-PASOBJ-DISPLAY p^
NEXT= value of field in record to which p points
DATA= value of field in record to which p points

-PASOBJ-DISPLAY p^.next
P.NEXT= value of field in record to which p points

-PASOBJ-DISPLAY p^.next^.data
P.NEXT.DATA= value of field in next record in chain

Record Types

Inspect supports Pascal standard records, variant records, and free type-unions.

When you refer to a variable of a variant record type, Inspect accesses only the active
fields and displays the proper values. Inspect does not display irrelevant fields.

When you refer to a field of a free type-union variable, the data type of the field
determines how Inspect displays the values. If you refer to a free type-union variable
without specifying a field, Inspect displays each of the possible field variants.

Examples Using a Standard Record

To access a single element of a structure, Inspect requires full name qualification. This
code fragment declares a standard record:

TYPE
 tmprec =
 RECORD
 var1 : integer;
 var2 : integer
 END;
Inspect Manual—429164-006
12-10

Using Inspect With Pascal Record Types
VAR
 record_structure : tmprec;

Inspect accesses records of this type as follows:

-PASOBJ-DISPLAY record_structure
RECORD_STRUCTURE =
 VAR1 = value of var1
 VAR2 = value of var2

-PASOBJ-DISPLAY record_structure.var1
RECORD_STRUCTURE.VAR1 = value of var1

Examples Using a Variant Record

This example shows implicit and explicit qualification of a variant record, assuming this
Pascal program fragment:

TYPE
 sidetype = (offense,defense);
 positiontype = (line,back);
 team = RECORD
 CASE side : sidetype OF
 offense:
 (CASE o_position : positiontype OF
 line: (o_lineman : (TE,SE,Guard,Tackle,Center));
 back:(o_back : (Quarterback,Halfback,Fullback))
);
 defense:
 (CASE d_position : positiontype OF
 line : (d_lineman : (End,Tackle,Nosetackle));
 back : (d_back : (Linebacker,Safety,Cornerback))
)
 END;

VAR football : team;

BEGIN
 football.side := offense;
 football.o_position := back;
 football.o_back := Quarterback;
 ...

This example shows implicit qualification. Inspect determines which path to take by
evaluating variant indicator fields as it processes the variant record:

-PASOBJ-DISPLAY football
FOOTBALL =
 SIDE = OFFENSE
 O_POSITION = BACK
 O_BACK = QUARTERBACK
Inspect Manual—429164-006
12-11

Using Inspect With Pascal Set Types
This example shows explicit name qualification. Inspect follows the path given in the
data location. The element can then be processed and displayed:

-PASOBJ-DISPLAY football.d_backFOOTBALL.D_BACK =
LINEBACKER

Examples Using a Free TypeUnion

This example shows implicit and explicit qualification of a free type-union, assuming
this Pascal program fragment:

TYPE
 thingtype = (int,re,bool);
 thing = RECORD
 CASE thingtype OF
 int : (intval : integer);
 re : (reval : real);
 bool: (boolval: boolean)
 END;

VAR
 something : thing;

This example displays the entire record. Inspect cannot know what path to take, so it
displays all paths:

-PASOBJ-DISPLAY something
SOMETHING.INTVAL = value displayed as an integer
SOMETHING.REVAL = value displayed as a real
SOMETHING.BOOLVAL = value displayed as a boolean

This example specifies an explicit path. Inspect takes this particular path to the
variable:

-PASOBJ-DISPLAY something.boolval
SOMETHING.BOOLVAL = value displayed as a boolean

Set Types

Inspect allows you to use the INFO IDENTIFIER, BREAK, and DISPLAY commands
with set variables.

Examples

This example assume these Pascal declarations:

TYPE
 colorset = (red,white,blue,yellow);
 colors = SET OF colorset;

VAR
 flag : colors;

BEGIN
Inspect Manual—429164-006
12-12

Using Inspect With Pascal Subrange Types
 flag := (red,white,blue);
 ...

This example displays the set variable flag:

-PASOBJ-DISPLAY flag
FLAG = (RED, WHITE, BLUE)

This example shows the internal attributes of the objects from the previous
declarations:

-PASOBJ-INFO IDENTIFIER flag
FLAG: VARIABLE
storage^info:
TYPE=DEFINED TYPE, ELEMENT LEN=256 BITS, UNIT SIZE=1 ELEMENTS
access^info:
#GLOBAL+1 WORDS
structure^info:
CHILD= COLORS

-PASOBJ-INFO IDENTIFIER colors
COLORS: DEFINED TYPE
access^info:
TYPE= SET, COMPONENT= COLORSET

-PASOBJ-INFO IDENTIFIER colorset
COLORSET: DEFINED TYPE
access^info:
TYPE= ENUMERATION

-PASOBJ-INFO IDENTIFIER blue
BLUE: NAMED CONST
storage^info:
TYPE=BIN SIGN, ELEMENT LEN=16 BITS, UNIT SIZE=1 ELEMENTS
access^info:
VALUE= 2

Subrange Types

Inspect allows a variable of subrange type as a data location parameter in any Inspect
command. Inspect allows integer, boolean, character, and enumeration (scalar)
subrange types.

Examples

This example assume these Pascal declarations:

TYPE
 days = (mon,tue,wed,thu,fri,sat,sun);
 weekday = mon..fri;
 index = 0..75;

VAR workday : weekday;
 array_index : index;
Inspect Manual—429164-006
12-13

Using Inspect With Pascal Subrange Types
When you use a variable of subrange type in a DISPLAY command, Inspect displays
the variable of the host type. If you want Inspect to display the ordinal representation
of the variable, specify a numeric format; for example:

-PASOBJ-DISPLAY workday
WORKDAY = THU

-PASOBJ-DISPLAY workday IN DECIMAL
WORKDAY = 3
-PASOBJ-DISPLAY array_index
ARRAY_INDEX = 10

You can modify variables of subrange type using the host type of the variable or an
ordinal value of the subrange; for example:

-PASOBJ-MODIFY workday = mon
-PASOBJ-MODIFY workday = 0

This example shows the internal attributes of the objects from the previous
declarations:

-PASOBJ-INFO IDENTIFIER workday
WORKDAY: VARIABLE
storage^info:
TYPE=DEFINED TYPE, ELEMENT LEN=8 BITS, UNIT SIZE= 1 ELEMENTS
access^info:
#GLOBAL+1 WORDS
structure^info:
CHILD= WEEKDAY

-PASOBJ-INFO IDENTIFIER array_index
ARRAY_INDEX: VARIABLE
storage^info:
TYPE=DEFINED TYPE, ELEMENT LEN=16 BITS, UNIT SIZE= 1 ELEMENTS
access^info:
#GLOBAL+2 WORDS
structure^info:
CHILD= INDEX

-PASOBJ-INFO IDENTIFIER weekday
WEEKDAY: DEFINED TYPE
access^info:
TYPE= SUBRANGE, SUBRANGE CLASS= ENUMERATION, HOST ID= DAYS,
LOWER= MON, UPPER= FRI

-PASOBJ-INFO IDENTIFIER index
INDEX: DEFINED TYPE
access^info:
TYPE= SUBRANGE, SUBRANGE CLASS= INTEGER, LOWER= 0, UPPER= 75
Inspect Manual—429164-006
12-14

Using Inspect With Pascal Inspect Enhancements and Restrictions for Pascal
Inspect Enhancements and Restrictions for
Pascal

The following subsection discusses the difference between programming with Pascal
and using Inspect to debug Pascal programs.

Length of Identifiers

Note that a Pascal identifier can be any length, but Inspect only accepts the first 31
characters.

Command Usage Guidelines for Pascal
Programmers

The following guidelines for Pascal programmers using Inspect are arranged
alphabetically by Inspect command name. Not all commands are listed.

BREAK

 You can set a code breakpoint at a line number, procedure name, or label name. If
the number or name is not in the current scope, you must qualify it with a scope
name.

You can also set a code breakpoint at an offset from a line number or label, or at
an offset from a primary entry point. Specify offsets as a number of statements or
instructions.

 If you set a breakpoint at the entry point of a scope unit, the break event it triggers
will occur before any initialization. Consequently, you should enter a STEP 1 S
command after the break event.

 Because a data breakpoint is associated with a single word, an identifier
designating multiple words (such as LONGINT) has only its first word marked as
the breakpoint.

HELP

You can ask for help on the definitions of Inspect command parameters. Therefore,
you can find out what Inspect recognizes as a Pascal data location, a Pascal code
location, a Pascal expression, or a Pascal conditional expression.

INFO IDENTIFIER

 Like Pascal, Inspect requires complete name qualification of record elements. If
you request a listing of the attributes of an unqualified data name, and the only
instance of that name is in a record, Inspect will give you an error message. If the
data name occurs in the scope twice—once as a simple variable and once as part
Inspect Manual—429164-006
12-15

Using Inspect With Pascal MODIFY
of a record—requesting a listing of the attributes of the unqualified data name will
produce an attribute listing for only the simple variable. You must qualify the name
completely when you request a listing of the attributes for a record element.

 The data types reported by Inspect are not designated in terms of any one
language. Therefore, Pascal integers are marked as BIN SIGN, while Pascal real,
logical, and character items are marked as REAL, LOGICAL, and CHAR,
respectively.

MODIFY

You can specify the name of a record in a MODIFY WHOLE command, but Inspect
requires that you include the new values in the command. MODIFY does not prompt
for values when you use the WHOLE clause.

SCOPE

If you have identifiers of the same name in different scope units, be sure that you
qualify the identifiers enough for Inspect to distinguish them.

SET RADIX

Even if you set your input radix to hexadecimal, you must still prefix a hexadecimal
value with a zero (or 16#) if its first digit is above nine; otherwise, Inspect interprets the
value as an identifier.
Inspect Manual—429164-006
12-16

13
Using Inspect With TAL and pTAL

 Scope Units and Scope Paths on page 13-1

 Code Locations on page 13-1

 Data Locations on page 13-5

 Expressions on page 13-8

 TAL and pTAL Data Types and Inspect on page 13-9

 Command Usage Guidelines for TAL and pTAL Programmers on page 13-11

Scope Units and Scope Paths
TAL and pTAL have only one type of scope unit: the procedure. When debugging a
program written in TAL and pTAL, you must specify a procedure name whenever an
Inspect command expects a scope unit.

Here is the syntax you use to identify TAL and pTAL scope paths in Inspect.

Code Locations
Here is the syntax you use to identify TAL and pTAL code locations in Inspect.

scope-path:
 #procedure

code-location:

 { scope-path } [code-offset]
 { [scope-path.] code-reference }

code-reference: one of

 procedure
 subproc
 [subproc.] label
 [subproc.] entry-point
 statement-number
 #line-number
 [(source-file)]
Inspect Manual—429164-006
13-1

Using Inspect With TAL and pTAL Code Locations
scope-path

specifies the procedure containing the code location. When followed by a code
offset, scope-path specifies the base of the procedure; otherwise, scope-path
specifies the primary entry point of the procedure.

[scope-path.] code-reference

specifies a named or numbered location in the procedure defined by the given
scope path (or the current scope path if you omit the scope path).

procedure

specifies the primary entry point of the procedure. procedure must be the
same as the procedure named in scope-path (or the current scope path).

subproc

specifies the entry point of a subprocedure.

[subproc.] label

specifies the statement following a given label in the source code. If the label is
within a subprocedure, you must include subproc.

[subproc.] entry-point

specifies a secondary entry point. If the entry point is within a subprocedure,
you must include subproc.

statement-number

specifies the statement beginning at the given statement number. To see
statement numbers, use the SOURCE command after you have set your
location format to statements. For more information, see SET LOCATION
FORMAT on page 6-175.

#line-number [(source-file)]

specifies the statement beginning at a given line number in the source file.

(source-file) qualifies the line number by the source file containing it. You
need to use this option only if the source code for the given procedure is in
more than one file.

code-offset:
 { + | - } num [code-unit]

code-unit: one of
 INSTRUCTION[S]
 STATEMENT[S]
Inspect Manual—429164-006
13-2

Using Inspect With TAL and pTAL Usage Considerations
code-offset

specifies an offset from the code location defined by the preceding options. A
positive offset (+) denotes code following the specified code location; a negative
offset (-) denotes code preceding the specified code location. The amount to offset
is specified by a given number of units. If you omit the unit specifier, Inspect
selects INSTRUCTION as the code unit for TAL or pTAL. Inspect code units
correspond to TAL and pTAL code units as follows:

Usage Considerations

 Low-level code locations

Low-level Inspect recognizes procedure names, but does not use any other symbol
information. In low-level Inspect, therefore, you can only use code locations of the
form:

#scope-path [code-offset]

This form represents an offset from the code base of a scope unit. Also, the code
unit of code-offset in low-level Inspect is always INSTRUCTION.

 High-level code locations

High-level Inspect recognizes procedure names as does low-level Inspect, but it
also uses the symbol information created when you compile a scope unit with the
SYMBOLS directive. Therefore, code locations in high-level Inspect can include
label identifiers or line numbers.

 Specifying code locations by label

You can use a TAL or pTAL label as the code reference in a code location.
However, because Inspect also accepts scope units as code references, a conflict
arises if a label's identifier is the same as the identifier for its containing scope unit.
Inspect interprets the identifier as a reference to the scope unit, not to the label.
Consequently, you must specify the code location of the label by its statement
number, its line number, or its instruction offset.

 Specifying code locations by line number

If no statement begins at the line number you specify, Inspect issues this warning:

Inspect then uses the statement starting at the given line number. If more than one
statement begins on the line you specify, Inspect uses the start of the first
statement.

INSTRUCTION Specifies a machine-code instruction in the compiled TAL or
pTAL program.

STATEMENT Specifies a TAL or pTAL statement.

** Inspect error 117 ** A subsequent line number is assumed: line-number
Inspect Manual—429164-006
13-3

Using Inspect With TAL and pTAL Examples
 A code location must include scope-name qualification if it refers to a location
outside the current scope. Inspect assumes a code location is in the current scope
if no explicit scope qualifier is stated.

 The STATEMENT code unit and TAL or pTAL statements

Inspect recognizes these as statements:

 Simple statements (including machine instructions in a CODE statement) that
are not part of a composite statement

 Statements in a compound statement (BEGIN...END)

 The parts of a composite statement

 For TAL programs, use caution when specifying the procedure base as the location
of a code breakpoint; doing so can result in the modification of P-relative data or
alteration of subprocedure code.

Examples

The following examples assume a TAL procedure named TPROC that contains the
label T^LABEL and the subprocedure TSUB, which in turn contains the label
T^SUBLABEL:

These examples assume a current scope path of #TPROC:

Code Location Specifies

#TPROC The code base of the procedure TPROC.

#TPROC.TSUB The entry point of subprocedure TSUB.

#TPROC.T^LABEL The statement following the label T^LABEL.

Code Location Specifies

TPROC The primary entry point of the procedure TPROC.

TSUB.T^SUBLABEL The statement following the label T^SUBLABEL.
Inspect Manual—429164-006
13-4

Using Inspect With TAL and pTAL Data Locations
Data Locations
Here is the syntax you use to identify TAL and pTAL data locations in Inspect.

scope-path [(instance)]

specifies the procedure containing the data item.

(instance) identifies a specific activation of the data item's parent procedure.
You need to specify an instance only when you want to identify a local data item in
a recursive procedure.

[scope-path.] subproc [(instance)].

specifies the subprocedure containing the data item.

#data-block

specifies the data block containing the data item.

##GLOBAL

specifies the implicitly named global data block in a TAL or pTAL program.

data-reference

specifies the data item using TAL or pTAL syntax. The recursion in the definition of
data-reference enables you to refer to complex TAL and pTAL data structures.

identifier

specifies a simple or pointer variable. When used in the DISPLAY command,
identifier can also be the name of a structured variable; identifier
then specifies the entire variable. When used in the INFO IDENTIFIER
command, identifier can also be the name of a structured variable or user-

data-location:
 [scope-path [(instance)] .]
 [[scope-path.] subproc [(instance)].] data-reference
 [#data-block.]
 [##GLOBAL.]

instance:
 [+ | -] integer

data-reference: one of
 identifier
 data-reference '[' subscript-range ']'
 data-reference.identifier

subscript-range:
 expression [:expression]
Inspect Manual—429164-006
13-5

Using Inspect With TAL and pTAL Default Values
defined data type; identifier then specifies the entire variable or the type
definition.

data-reference '[' subscript-range ']'

specifies an array variable.

subscript-range

specifies the subscript of an array element or the subscript range of a
group of array elements.

data-reference.identifier

specifies a field of a structure variable.

Default Values

If you do not specify scope-path, Inspect uses the current scope path.

Usage Considerations

 A data location must refer to an object defined in a procedure that was compiled
with the SYMBOLS directive. The location can be anywhere in an active scope
unit.

 You must qualify an identifier to denote a data item uniquely. If an unqualified
identifier could refer to more than one data item, Inspect issues an error message
stating that the reference is ambiguous (except when you are using the INFO
IDENTIFIER command, which reports all occurrences of the identifier).

 To qualify a sublocal, you must precede the sublocal with it's subprocedure name.

 Inspect will not automatically expand a TAL identifier that was described by a TAL
DEFINE declaration; however, the defined text is displayed when the identifier is
specified in the INFO IDENTIFIER command.

Usage Considerations for TAL Programs

 Inspect recognizes the name associated with an index register by a USE statement
as a data location identifier. You can display and modify the TAL index registers—
R[5], R[6], and R[7]—by referring to the name associated with the index register.

If you drop or push the name assigned to an index register, Inspect still allows
access to the index register without displaying a warning.

 The values of sublocal variables and subprocedure arguments are accessible only
if the subprocedure is current and if the stack pointer (S register) has not been
modified by the subprocedure or by any subprocedure called by that
subprocedure. The concept of instance does not apply to sublocal variables and
subprocedure arguments.
Inspect Manual—429164-006
13-6

Using Inspect With TAL and pTAL Usage Considerations for TAL Programs
 Within a scope, you can access the same index register with the USE and DROP
statements more than once, as long you do not use the same name. In this
example, the name INDEX^REG is assigned to a register more than once in a
scope:

USE index^reg;
FOR index^reg := 1 TO 10 DO
 X[index^reg] := index^reg;
DROP index^reg;
...
USE index^reg;

If you attempt to display or modify INDEX^REG, Inspect displays this error message:

You cannot further qualify the index register.

Examples

Given a TAL procedure named TPROC that contains INT T^INT and subprocedure
TSUB, which in turn contains INT T^SUBINT, examples of data locations are:

This example assumes a current scope path of #TPROC:

The example on the following page uses a stack TRACE to illustrate this behavior in
subprocedures. Also notice that even though the subprocedure has parameters,
Inspect cannot display them.

-C20FOBJ2-TRACE
Num Lang Location
 TAL .SUB_SCOPE_N: #SCOPE_N.#37(C20FTALK)
 0 TAL #SCOPE_N.#25(C20FTALL)
 1 TAL #C20FTAL2.#8(C20FTALP)
-C20FOBJ2-SOURCE
 #33
 #34 sub_scope_early:
 #35 ! get current value of interval timer:
 #36 !
 *#37 call timestamp (time);
 #38 !
 #39 ! convert the time
 #40 !
 #41 sub_scope_middle: call contime (date^time, time,
 #42 time[1], time[2]);

** Inspect error 98 ** Qualification required to resolve
ambiguous reference: identifier

Data Location Specifies

#TPROC.T^INT The most recent instance of T^INT.

#TPROC(-1).T^INT The second-most recent instance of T^INT.

#TPROC(1).T^INT The oldest (first) instance of T^INT.

Data Location Specifies

TSUB.T^SUBINT The current instance of T^SUBINT. Note that you cannot refer to
instances of variables in subprocedures.
Inspect Manual—429164-006
13-7

Using Inspect With TAL and pTAL Expressions
-C20FOBJ2-SOURCE BACK 40
 #1 ! ++++ subprocedure heading ++++
 #2
 #3 subproc sub_scope_n (sub_scope_level, subparam_s8,
 #4 subparam_i16, subparam_i32,
 #5 subparam_f64, subparam_r32,
 #6 subparam_r64, subparam_s8p,
 #7 subparam_i16p, subparam_i32p,
 #8 subparam_f64p, subparam_r32p,
 #9 subparam_r64p);
 #10
-C20FOBJ2-TRACE ARG
Num Lang Location (Arguments)
 TAL .SUB_SCOPE_N: #SCOPE_N.#37(C20FTALK)
 0 TAL #SCOPE_N.#25(C20FTALL)
SCOPE_LEVEL = 3, PARAM_S8 = ?6, PARAM_I16 = 20, PARAM_I32 = 72, PARAM_F64 =
272., PARAM_R32 = 2112., PARAM_R64 = 8320., PARAM_S8P = ?3, PARAM_I16P =
5,PARAM_I32P = 9, PARAM_F64P = 17., PARAM_R32P = 33., PARAM_R64P = 65.
 1 TAL #C20FTAL2.#8(C20FTALP)
-C20FOBJ2-LOG STOP

Expressions
Here is the syntax you use to create TAL and pTAL expressions in Inspect.

expression:
 condition [{ AND | OR } condition]...

condition:
 [NOT] simple-exp [rel-op simple-exp]...

rel-op: one of
 < <= = >= > <>
 '<' '<=' '=' '>=' '>' '<>'

simple-exp:
 [+ | -] term [add-op term]...

add-op: one of
 + - '+' '-'
 LOR LAND XOR

term:
 factor [mult-op factor]...

mult-op: one of
 * / '*' '/' '\'
 << >> '<<' '>>'

factor: one of
 primary primary.<primary[:primary]>
Inspect Manual—429164-006
13-8

Using Inspect With TAL and pTAL Usage Considerations
Usage Considerations

 Operator precedence is the same as the precedence defined for TAL and pTAL.

 To refer to the contents of the pointer named XX, use the expression (@XX). To
refer to the contents of the indirect variable to which XX points, use XX.

 Inspect does not support the IF or CASE constructions in expressions; for
example, these two Inspect commands are invalid:

-TALPGM-MODIFY x := IF y>5 THEN 12 ELSE 24
-TALPGM-MODIFY x := CASE r OF BEGIN y; y*y; y*y*y; OTHERWISE z; END

TAL and pTAL Data Types and Inspect
The following subsections discuss how Inspect handles and presents various TAL and
pTAL data types.

Arrays

Inspect supports all TAL and pTAL array types, including arrays of structures. You can
use a single element, a group of elements, or an entire array as the data-reference
part of a data location:

Examples

This example assumes the TAL declaration:

INT d^array [0:9]

Here are the attributes of the array:

-TALOBJ-INFO IDENTIFIER d^array
D^ARRAY: VARIABLE
storage^info:
TYPE=BIN SIGN, ELEMENT LEN=16 BITS, UNIT SIZE=1 ELEMENTS

primary: one of
 data-location
 .data-location
 @data-location
 number
 (expression)

Data Reference Example Where Valid

Single element MYARRAY[5] In any Inspect command

Range of elements MYARRAY[1:7] In any Inspect command except BREAK

Entire array MYARRAY In the INFO IDENTIFIER and DISPLAY commands
only
Inspect Manual—429164-006
13-9

Using Inspect With TAL and pTAL Structures and Substructures
access^info:
'L' + 1 WORDS
dimension^info:
[0:9]

Structures and Substructures

Inspect supports TAL and pTAL structures and substructures, as shown in the following
example, which assume these TAL declarations:

STRUCT alphabetics;
 BEGIN
 STRING caps [1:26];
 STRING smalls [1:26];
 STRING misc [1:10];
 END;

STRUCT name^middle^last;
 BEGIN
 STRING first^initial;
 STRING middle^name [0:19];
 STRING last^name [0:19];
 STRUCT birth;
 BEGIN
 INT year;
 INT month;
 INT day;
 END;
 END;

Here are the internal attributes of the structure ALPHABETICS:

-TALOBJ-INFO IDENTIFIER alphabetics
ALPHABETICS: VARIABLE
storage^info:
TYPE=WORD STRUCT, ELEMENT LEN=16 BITS, UNIT SIZE=31 ELEMENTS
access^info:
'L' + %136 WORDS
structure^info:
CHILD=CAPS

Here are the internal attributes of one of the fields in the structure ALPHABETICS:

-TALOBJ-INFO IDENTIFIER alphabetics.smalls
SMALLS: VARIABLE
storage^info:
TYPE=CHAR, ELEMENT LEN=8 BITS, UNIT SIZE=1 ELEMENTS
access^info:
(parent) + 0 + %15 WORDS
dimension^info:
[1:26]
structure^info:
PARENT=ALPHABETICS,SIBLING=MISC
Inspect Manual—429164-006
13-10

Using Inspect With TAL and pTAL Command Usage Guidelines for TAL and pTAL
Programmers
This example displays the structure NAME^MIDDLE^LAST:

-TALOBJ-DISPLAY name^middle^last
NAME^MIDDLE^LAST =
 FIRST^INITIAL = "M"
 MIDDLE^NAME[0] = "Treuhardt " ?0
 LAST^NAME[0] = "Korhummel " ?0
 BIRTH =
 YEAR = 1844
 MONTH = 10
 DAY = 31

This example displays the structure NAME^MIDDLE^LAST, suppressing the identifiers
and quotes:

-TALOBJ-DISPLAY name^middle^last PLAIN
M
Treuhardt ?0
Korhummel ?0
 1844
 10
 31

This example displays a field of the structure NAME^MIDDLE^LAST:

-TALOBJ-DISPLAY name^middle^last.last^name
NAME^MIDDLE^LAST.LAST^NAME[0] = "Korhummel " ?0

This example displays the substructure BIRTH. Note that you must specify its parent
structure, NAME^MIDDLE^LAST:

-TALOBJ-DISPLAY name^middle^last.birth
NAME^MIDDLE^LAST.BIRTH =
 YEAR = 1844
 MONTH = 10
 DAY = 31

This example displays a field of the substructure BIRTH:

-TALOBJ-DISPLAY name^middle^last.birth.year
NAME^MIDDLE^LAST.BIRTH.YEAR = 1844

Command Usage Guidelines for TAL and pTAL
Programmers

The following guidelines for TAL and pTAL programmers using Inspect are arranged
alphabetically by Inspect command name. Not all commands are listed.

BREAK

 If you set a breakpoint at the entry point of a scope unit, the break event it triggers
will occur before any initialization. Consequently, you should enter a STEPþ1S
command after the break event.
Inspect Manual—429164-006
13-11

Using Inspect With TAL and pTAL DISPLAY
 When you use a code offset to specify the location of a code breakpoint, Inspect
does not ensure that the location specifies executable code. If the location is in a
P-relative array, the breakpoint may alter the data in the array.

 Because a data breakpoint is associated with a single word, an identifier
designating multiple words (STRUCT, INT(32), REAL(64) and so on) has only its
first word marked as the breakpoint. If an identifier is declared to be at an address
within such a multiple-word item, allowing you to read or modify a subsequent word
of such a variable without affecting the primary word, the debugging facility will not
signal a debug event.

 If you set a data breakpoint within a string item, and your program uses a move
statement (X ':=' Y FOR 25) to move a value to the string, the break event will
occur before the move operation is complete.

DISPLAY

To display the contents of a TAL or pTAL pointer (that is, the address to which it
points), use an address-of expression; for example:

-TALOBJ-DISPLAY (@pointer)

HELP

You can ask for help on the definitions of Inspect command parameters. Therefore,
you can find out what Inspect recognizes as a TAL or pTAL data location, a TAL or
pTAL code location, a TAL or pTAL expression, or a TAL or pTAL conditional
expression.

INFO IDENTIFIER

 If you request a listing of the attribute of an unqualified data name, Inspect will list
all possible instances of that data name (that is, the same name in various
subprocedures or substructures).

 If you request a listing of the attributes of an entire procedure, they are listed in an
order determined by the compiler. For TAL and pTAL, this order is:

1. Data identifiers that are not structure names

2. Structure names

3. Labels

 In addition to providing attribute information for code and data locations, Inspect
can provide information about TAL and pTAL defines. When you request the
attributes of a define, Inspect displays the first 68 characters of the text associated
with the define.
Inspect Manual—429164-006
13-12

Using Inspect With TAL and pTAL MODIFY
MODIFY

 To modify a string data item, use the subscript range form:

-TALOBJ-MODIFY x^string [0:10] := "abcdefghij"

 You can specify the name of a structure in a MODIFY WHOLE command, but
Inspect requires that you include the new values in the command. MODIFY does
not prompt for values when you use the WHOLE clause.

 As in TAL and pTAL, you can MODIFY a variable that is equated to another
variable.

 As in TAL and pTAL, you can apply a subscript to a data item that is not declared
to be an array.

SCOPE

 In TAL, the scope of an identifier is always the name of the procedure (not
subprocedure) or data block in which the identifier is declared. TAL and pTAL
provide the ##GLOBAL data block for all global variables that are not declared in a
named block or a private block.

 If you have identifiers of the same name in different scope units, be sure that you
qualify the identifiers enough for Inspect to distinguish them.

SET RADIX

Even if you set your input radix to hexadecimal, you must still prefix a hexadecimal
value with a zero (or %H) if its first digit is above nine; otherwise, Inspect interprets the
value as an identifier.

STEP

 The STEP command defaults to STATEMENTS if no code-unit is specified.

 The STEP command requires caution if CASE statements or FOR loops are in the
path. The stepping behavior of these two statements is unexpected.

Remember that a CASE selects one statement from a set of statements,
depending on the value of a numeric expression. A STEP of one statement from
the beginning of a CASE statement takes you to the end of the entire CASE
statement. A subsequent STEP of one statement will take you to the selected
case or default statement.

If your process is at the beginning of a single-statement FOR loop (the loop body is
a single statement, not a block), entering STEPþ1S gets you to the beginning of
the single statement, and entering STEPþ2S completes execution of the loop.

 By default the STEP command steps over procedure and subprocedure calls. In
IN option can be used to step into calls made to procedures/subprocedures that
are contained in the user code or the user library.
Inspect Manual—429164-006
13-13

Using Inspect With TAL and pTAL TRACE
If you are stepping over a procedure and a debugging event occurs while that
procedure/subprocedure is executing or a procedure/subprocedure that it calls is
executing, execution is suspended where the event occurs. Among other reasons,
this can happen if you placed a breakpoint in a called procedure/subprocedure.
You can use the STEP OUT command to return back to the level at which
execution was originally stepped.

TRACE

The TRACE ARGUMENTS command shows the arguments for the primary entry point
of a scope unit. If a secondary entry point has a different set of arguments, TRACE
ARGUMENTS does not display them.
Inspect Manual—429164-006
13-14

14
Using Inspect in an OSS
Environment

 Starting an Inspect Session on page 14-1

 Ending an Inspect Session on page 14-2

 Inspect’s System Type on page 14-2

 File Name Resolution on page 14-2

 Signals on page 14-3

 Source Files on page 14-4

 Usage Guidelines on page 14-4

Starting an Inspect Session
You can start an Inspect session in OSS in any of these four ways:

 From the TACL prompt, enter:

>RUN INSPECT or INSPECT

From the OSS shell, enter:

gtacl -p inspect

 From TACL prompt, you enter:

RUND program

From the OSS shell, you enter:

run -debug -inspect=on program

 Issue a debug request on a running process.

 A debug event occurs in a program.

In all cases, Inspect will be started as a Guardian process.

Inspect looks for an EDIT file named INSPLOCL in the volume and subvolume
containing the Inspect program file. After reading the INSPLOCL file, the Inspect
process looks for an EDIT file named INSPCSTM in the logon volume and subvolume
of the creator of the process being debugged. All OSS users have a corresponding
Guardian logon volume and subvolume.

To avoid incompatibilities between Guardian and the OSS terminal I/O when
debugging an OSS process, change Inspect’s command terminal to an existing
Guardian terminal using the TERM command as soon as Inspect comes up.
Inspect Manual—429164-006
14-1

Using Inspect in an OSS Environment Ending an Inspect Session
Ending an Inspect Session
Ending an Inspect session is the same regardless of the platform or environment. An
Inspect session can be stopped in the following ways:

 You exit by using the EXIT command or the RESUME * EXIT command.

 Your last program has completed.

 Your program is stopped by someone else.

Inspect’s System Type
Inspect uses the systype to determine certain command option defaults and to
determine the type of the file names accepted. A program can have a Guardian or an
OSS systype, Inspect’s systype will change to the systype of the current program.

Inspect commands accept different syntax depending on the current systype. For
example, if the current program is an OSS process, but Inspect’s systype is Guardian,
the following command results in a syntax error because the file specified is an OSS
pathname and not a Guardian file name.

-PROG- SOURCE AT #200 FILE /usr/src.file.c

A program’s systype is determined by the type of process it is (Guardian for Guardian
processes, or OSS for OSS processes). Commands have been added to Inspect to
change and display the current systype. For more information, see SET SYSTYPE on
page 6-192 and SELECT SYSTYPE on page 6-170.

The main result of the systype setting is the type of file name Inspect accepts. If the
current systype is Guardian, Inspect reads all file names as Guardian file names.
Inspect’s systype resets at each event. Inspect’s default systype is Guardian.

File Name Resolution
Inspect maintains a default subvolume and a default OSS directory. The current
default subvolume is used to resolve file names when Inspect’s systype is Guardian.
The current default OSS directory is used to resolve pathnames when Inspect has an
OSS systype.

If Inspect is started using the command interpreter (either TACL or at the OSS shell),
the default subvolume and default OSS directory are the command interpreter defaults,
that is, current working subvolume or current working directory. In all other cases,
such as RUND from TACL or run -debug from the OSS shell, the default subvolume
and default OSS directory is the logon defaults of the creator of the program being
debugged.

These commands can be used to resolve file name inconsistencies:

 The VOLUME command can be used to change the default subvolume.
Inspect Manual—429164-006
14-2

Using Inspect in an OSS Environment Save Files
 The CD command can be used to change the default OSS directory.

 The ENV command can be used to display both the defaults.

For more information, see VOLUME on page 6-223, CD on page 6-27, or ENV on
page 6-81.

Save Files
The same events that cause a save file to be created for Guardian processes cause
save files to be created for OSS processes. That is, if the process ABENDs or
otherwise terminates abnormally, or you type Inspect’s SAVE command to create a
save file explicitly, a save file will be created.

If your process terminates abnormally, save files are only created if the SAVEABEND
flag is on that process, as opposed to Inspect’s SAVE command which creates a save
file regardless of the value of the SAVEABEND flag. In addition, a save file will only be
created if the process is being actively debugged, or the parent process has sufficient
access to the debug process.

Process save files for OSS processes are created in the current working directory of
the ABENDing process. The files are owned by the effective User ID (UID) of the
process requesting the save file (in the case of ABEND, the process itself is requesting
the file). Save files are created with permission bits allowing read and write access to
owner, read access to group, and read access to other. Process save files created
automatically by a process ABENDing will be named ZZSAnnnn, where nnnn is a four
digit number.

Signals
Two complimentary Inspect commands support OSS signals, INFO SIGNALS and
MODIFY SIGNALS. INFO SIGNALS displays signal information for the current
program and MODIFY SIGNALS changes signal handlers for OSS processes which
are the current program. Use the commands HELP INFO SIGNALS and HELP
MODIFY SIGNALS for an in-depth description of signals.

Signals allow two processes to communicate with each other. Two complimentary
Inspect commands support OSS signals, INFO SIGNALS and MODIFY SIGNALS.
INFO SIGNALS displays signal information for the current program and MODIFY
SIGNALS changes signal handlers for OSS processes which are the current program.
Refer to the Open System Services Programmer’s Guide for an in-depth description of
signals.

Considerations

 You cannot set breakpoints on signal events, but you can set a breakpoint on a
signal handler.

 Inspect cannot be used to send signals to other processes.
Inspect Manual—429164-006
14-3

Using Inspect in an OSS Environment Source Files
Examples

1. This example illustrates the MODIFY command with default arguments.

2. This example illustrates MODIFY without default arguments.

Source Files
Inspect displays source from OSS files. OSS files consist of ASCII text with lines
terminated with a (new-line) ASCII 10 character. Because line numbers automatically
increment for OSS files, but not for Guardian files, lines numbers for corresponding
converted source files may differ. If your file was originally compiled in an OSS
environment, the lines numbers will correspond.

Usage Guidelines
This section presents guidelines for OSS programmers using Inspect. Table 14-1 maps
DBX commands to equivalent Inspect commands. “N/A” indicates that no
corresponding command exists.

-test4--- Default arguments for MODIFY SIGNALS
-test4---
-test4-MODIFY SIGNAL SIGUSR1
Signal SIGUSR1(16)
Handler = SIG_DFL := #func_1
Mask = 0 := 100
Flags = 0 := 500
-test4-INFO SIGNAL SIGUSR1
Signal Handler Mask Flags
SIGUSR1(16) func_1 100 500

-test4-INFO SIGNAL SIGUSR1 DETAIL

Signal: SIGUSR1(16)
Handler: func_1

Mask: 100
Flags: 500

-test4-SIGNAL SIGUSR2 := #func_2, 150, 700
-test4-INFO SIGNAL SIGUSR2 DETAIL

Signal: SIGUSR2(17)

Handler: func_2
Mask: 150
Flags: 700

Table 14-1. DBX/Inspect Command Map

DBX Inspect DBX Inspect

/ SOURCE SEARCH quit STOP/EXIT

? SOURCE SEARCH record input LOG with the INPUT
option

address DISPLAY, ICODE record output LOG with the
OUTPUT option
Inspect Manual—429164-006
14-4

Using Inspect in an OSS Environment Usage Guidelines
alias ADD ALIAS, LIST ALIAS return STEP with the OUT
option

assign MODIFY run RESUME

catch N/A rerun N/A

cont RESUME set N./A

conti N/A sh N/A

delete DELETE, CLEAR source OBEY

down SCOPE status LIST BREAKPOINT

dump INFO SCOPE, TRACE
command with
ARGUMENTS option

step STEP with the IN
option

edit N/A stepi STEP with the ICODE
option

file N/A stop BREAK

func SCOPE stopi BREAK

goto RESUME AT trace BREAK with the
THEN clause

help HELP tracei N/A

history HISTORY unalias DELETE ALIAS

ignore MODIFY with the SIGNAL
option

unset N/A

list SOURCE up SCOPE

next STEP use SOURCE ASSIGN

nexti STEP with the ICODE option whatis INFO IDENTIFIER

playback input OBEY when BREAK with
the.IF...THEN clauses

playback output N/A where TRACE

print DISPLAY whereis MATCH with the
IDENTIFIER option,
MATCH with the
SCOPE option

printregs DISPLAY with the
REGISTER option

which N/A

Table 14-1. DBX/Inspect Command Map

DBX Inspect DBX Inspect
Inspect Manual—429164-006
14-5

Using Inspect in an OSS Environment Usage Guidelines
Table 14-2. Inspect Commands Without a DBX Counterpart

Command Description

Info Segment List currently allocated extended segments

Info Opens List files opened by current process

Add Program Add a program to the current Inspect session

List Program Inspect is able to debug multiple programs

Select Program Select the current program. This can also be used to load new
symbol files for the specified program.

Display Inspect’s Display command has a richer set of options and
arguments than DBX’s print command

Info Object Displays information about the current processes object files
Inspect Manual—429164-006
14-6

15
Using Inspect on a TNS/R System

 TNS/R Overview on page 15-2

 Executing Non-Accelerated Programs on page 15-2

 Executing Accelerated Programs on page 15-3

 General TNS/R Debugging Considerations on page 15-5

 Debugging Non-Accelerated Programs on page 15-5

 Debugging Accelerated Programs on page 15-5

 Debugging TNS/R Native Programs on page 15-7

 Performance and Debugging of TNS/R Programs on page 15-7

 Register Usage on page 15-7

 Pipeline Instruction Processing on page 15-8

 Optimizations With Loads on page 15-8

 Optimizations With Branches on page 15-9

 Debugging Programs at the TNS/R Machine Level on page 15-10

 TNS/R Breakpoints on page 15-11

 TNS/R Machine Registers on page 15-11

 Machine Code Addresses on page 15-12

 TNS/R Machine-Level Commands on page 15-13

If you want to use Inspect on a TNS/R system, you should read this section as an
introduction, in addition to one of the following sections, as appropriate for your
debugging target (TNS/R native code or TNS accelerated code):

Section 16, Using Inspect With Accelerated Programs on TNS/R Systems

Section 17, Using Inspect With TNS/R Native Programs
Inspect Manual—429164-006
15-1

Using Inspect on a TNS/R System TNS/R Overview
TNS/R Overview
TNS/R computers support the HP NonStop operating system and existing applications,
but are based on reduced instruction set computing (RISC) technology. Inspect
supports the debugging of TNS, accelerated, and native TNS/R programs on TNS/R
systems.

Much of the code in HP-supplied software products for TNS/R systems has been
produced by TNS/R native compilers. You can also use native compilers to produce
your own native TNS/R code. (Refer to the C/C++ Programmer’s Guide, the COBOL
Manual for TNS and TNS/R Programs, and the pTAL Reference Manual.) TNS/R
native code consists of RISC instructions that have been optimized to take advantage
of the RISC architecture. Program files containing such code are called native program
files.

RISC technology uses hardware and software components to increase program
performance. Hardware features which result in increased program performance
include the pipelining of instructions, which allows multiple instructions to be executed
in parallel, and an increased number of general purpose registers. Native TNS/R
programs require no additional optimizations to achieve optimum program
performance.

TNS programs, produced by TNS compilers rather than TNS/R native compilers, also
execute on TNS/R systems. TNS programs contain TNS object code. Program files
containing TNS object code are called TNS program files. (Even though TNS
processors are no longer supported, programs executed on TNS processors can
execute on TNS/R processors with very few exceptions. These exceptions are
described in the Accelerator Manual and the Guardian Application Conversion Guide.)

For some TNS program files, you can significantly improve performance by processing
them with the Axcel accelerator to make use of performance features of the RISC
instruction set. The accelerator processes a standard TNS object file and augments
that file by adding the equivalent RISC instructions. TNS object files that have been
optimized by the accelerator are called accelerated object files, or accelerated program
files if they include a main procedure. Running accelerated program files can
significantly improve performance over simply running TNS program files directly on
the TNS/R processor. The accelerator, however, provides optimization options that can
affect program debugging. For more information, see Section 16, Using Inspect With
Accelerated Programs on TNS/R Systems.

To make debugging easier than with most RISC-based systems, Inspect determines
the consistency of the program state, classifying synchronization points as either
memory-exact or register-exact points. These points give you information about your
program, such as whether memory and registers are up to date.

Executing Non-Accelerated Programs

You can execute TNS object files on a TNS/R machine without any change. Use of the
Axcel accelerator is only necessary when program performance is an issue.
Inspect Manual—429164-006
15-2

Using Inspect on a TNS/R System Executing Accelerated Programs
When you execute a TNS object file on a TNS/R machine, the TNS instructions that it
contains are executed by means of millicode. Millicode implements the actions of TNS
machine instructions using the appropriate TNS/R instructions. It may be easier to
debug a program executing TNS object code than to debug a program executing code
generated by the accelerator.

When TNS instructions are executed on a TNS/R system, the TNS machine state (the
register stack, S, P, E, and L registers) is maintained as if you were executing your
program on a TNS machine. Because the TNS machine state is maintained, no
change is required to run existing TNS programs on TNS/R systems and, with very few
exceptions, debugging is the same.

Figure 15-1 illustrates the methods of executing TNS programs on a TNS/R system.

On a TNS/R machine, Inspect supports the debugging of two types of programs:

 Non-accelerated programs, programs that are executed as is.

 Accelerated programs, programs that have been optimized by the accelerator.

Three mechanisms maintain the TNS machine state sufficiently to ensure correct
program behavior, but they differ in the extent to which the machine state is
maintained. The first, TNS object code execution, most faithfully maintains the TNS
machine state—for instance, all TNS instruction side effects, such as changes to ENV
register flags, even if not used by the program code, are maintained.

Executing Accelerated Programs

The Axcel accelerator can be used to optimize program performance. The accelerator
generates optimized TNS/R code, which is written to an object file that is a superset of
the original object file. The TNS/R instructions contained in this object file can be
directly executed by the TNS/R machine. The accelerator produces programs that
execute significantly faster, but may be more difficult to debug.

The accelerator takes as input an executable TNS object file, and produces as output a
file containing both that original code and logically equivalent optimized TNS/R (RISC)
instructions. The accelerator produces for each TNS instruction its functional
equivalent for the TNS/R system, in the form of either:

 A sequence of TNS/R instructions

 A call to a millicode routine

Sequences of TNS/R instructions that correspond to individual TNS instructions may
be interleaved as a result of optimizations.

The accuracy with which TNS/R code maintains the TNS machine state varies. Based
on its analysis of the program, the accelerator is able to generate code that maintains
only the portions of the TNS machine state that are required by the program. The
optimization level and options used with the Axcel accelerator also have some effect
on the extent to which the TNS machine state is maintained. For more information, see
Section 16, Using Inspect With Accelerated Programs on TNS/R Systems.
Inspect Manual—429164-006
15-3

Using Inspect on a TNS/R System Executing Accelerated Programs
Some TNS program constructs require evaluation at execution time, and their behavior
in all cases cannot be predicted by the accelerator. For such constructs, such as a
SETP instruction, the accelerator generates code that checks if the conditions required
by the generated code are met. If so, execution of TNS/R instructions continues; if not,
execution transfers to the corresponding TNS instructions, which are executed until a
point is reached where the execution of TNS/R instructions can resume.

With programs that use user libraries, one component may be accelerated while the
other component is not. For example, you can call an accelerated user library from a
program that has not been accelerated. Similarly, it is possible to call a user library
that has not been accelerated from a program that has been accelerated.

Figure 15-1. TNS Program Execution on a TNS/R System

Millicode

TNS/R
Microprocessor

AcceleratorTNS
Code

TNS
Code

Accelerated
Code

TNS
Object File

TNS
Instructions

TNS/R
Instructions

Nonaccelerated
Execution

Accelerated
Object File

TNS/R
Instructions

Accelerated
Execution

VST1501.vsd
Inspect Manual—429164-006
15-4

Using Inspect on a TNS/R System General TNS/R Debugging Considerations
General TNS/R Debugging Considerations

These considerations apply when debugging non-accelerated, accelerated, and native
programs on a TNS/R machine.

 Data breakpoints

Data breakpoints might be reported at different locations than on a TNS system.

 Data representation

Data is represented the same as on TNS systems. Data pointer values and stack
frames are the same. The one exception is 32-bit code pointers, such as extended
pointers to P-relative arrays, which might have different values on a TNS/R system
due to differences in the extended addressing of code. References through such
pointers will yield the same results as on TNS systems.

 System Global Space

TNS/R systems differ in how they handle nonprivileged references to the System
Global (SG) space. TNS systems redirect such references to the user data space,
whereas a trap is reported on a TNS/R machine.

When performing nonprivileged debugging on a TNS/R processor, Inspect reports
an error if a System Global address is specified.

 Address Wrap

The TNS and TNS/R systems differ in how they handle data stack addresses that
overflow 16 bits. TNS systems discard the high-order bits, in effect wrapping the
address to the beginning of the data stack. A trap is reported if this occurs on a
TNS/R machine.

Debugging Non-Accelerated Programs

Debugging non-accelerated programs on a TNS/R processor is nearly identical to
debugging them on a TNS system. The only difference is in the area of data
breakpoints, which may be reported at slightly different locations than on a TNS
machine. You can debug non-accelerated programs both at the source level and at
the TNS machine level.

Debugging Accelerated Programs

When debugging accelerated programs, there are minor restrictions when you debug
at the source level and significant restrictions when you debug at the TNS machine
level. Limited debugging is available at the TNS/R machine level.

Inspect supports the existing TNS model of debugging for accelerated programs,
subject to certain constraints. Source-level debugging is least affected by these
constraints, while TNS machine-level debugging is significantly limited. This TNS view
of an accelerated program may be inconsistent at some locations because:
Inspect Manual—429164-006
15-5

Using Inspect on a TNS/R System Debugging Accelerated Programs
 The contents of memory might be stale, that is, data may be stored in registers and
will be stored in memory later.

 Data may be pre-fetched from memory into registers, causing the modification of
memory to have no effect on program behavior.

 The TNS registers may not be up to date.

The run-time differences between running programs on TNS and TNS/R systems,
some of which can have an important effect on debugging, are described in the
Accelerator Manual. As that manual notes, programs executed on the TNS/R systems
might fail differently than when executed on a TNS system; for example, traps can be
detected at different locations.

Recommendations

To simplify debugging:

 Complete application development and debugging before using the accelerator.

 Optimize a version of the program containing symbols with the accelerator, using
the default debugging option, ProcDebug, and perform final testing.

 Examine your program for variances if there are differences in program behavior.

Debugging Accelerated Programs at the Source Level

Debugging accelerated programs at the source level is very similar to debugging TNS
programs at the source level, with these exceptions:

 Data breakpoints, also referred to as memory-access breakpoints, may be reported
at different locations.

 Some statement boundaries may have been deleted (for example, code for one
statement may be combined with code for an adjacent statement).

 Stepping may leave a program at a different location when statements have been
deleted and for some loop constructs.

 The locations to which execution can be arbitrarily resumed are limited.

 At some statements, memory modification could have no effect.

 After data breakpoints, displayed memory may be out of date.

Debugging Accelerated Programs at the TNS Machine Level

When debugging accelerated programs at the TNS machine level, you will notice these
significant differences and limitations:

 Code breakpoints cannot be set at most instructions that are not at the beginning
of statements.
Inspect Manual—429164-006
15-6

Using Inspect on a TNS/R System Debugging TNS/R Native Programs
 Displayed TNS register values are often out of date.

 You can rarely modify TNS registers to affect program behavior.

Debugging Accelerated Programs at the TNS/R Machine
Level

Although it is rarely necessary to debug accelerated programs at the TNS/R machine
level, Inspect provides a limited set of features which allow you to:

 Display instructions, including the correspondence between TNS and TNS/R
instructions

 Display TNS/R registers

 Modify TNS/R registers

The SELECT DEBUGGER DEBUG command can be used to access other TNS/R
debugging functionalities.

Debugging TNS/R Native Programs

Debugging a TNS/R native program is similar to debugging the RISC portions of an
accelerated program, but there are a few differences.

 In TNS/R native mode, local variables are sometimes cached in registers.
Attempting to modify a local variable or use it for setting a memory access
breakpoint, for example, can have unexpected results.

 In highly optimized native object code, parameter values are sometimes cached in
registers, making their exact location unpredictable.

 In TNS/R native mode, unlike accelerated mode, there are no TNS instructions
corresponding to the RISC instructions.

Performance and Debugging of TNS/R
Programs

The following subsections detail how RISC processors improve program performance
and how specific performance elements may affect your code.

Register Usage

The TNS/R machine has 32 general purpose registers that can be used to store values
and intermediate results of computations. It is much faster to access values stored in
registers than to fetch them from memory. Therefore, an optimization strategy is used
to generate code such that frequently used values are available in registers. Storing
frequently used values minimizes the number of memory loads and stores that are
Inspect Manual—429164-006
15-7

Using Inspect on a TNS/R System Pipeline Instruction Processing
performed while also ensuring that locations exist, usually at the beginning of
statements, where the TNS program state is consistent.

Example

This example illustrates how optimized code increases performance by utilizing
registers to reduce memory accesses.

The use of general purpose registers by the accelerator can have a number of effects
on debugging. It may change the memory reference patterns of the program, causing
some data breakpoints, particularly read breakpoints, not to be triggered. It also results
in locations at which displayed memory may not be accurate (if a more recent value is
stored in a register) and locations at which memory cannot be “safely” modified (a
more recent copy may be stored in registers).

Pipeline Instruction Processing

Like other RISC processors, TNS/R processors pipeline instruction execution, allowing
components of instructions to be decoded and executed in parallel. This allows the
execution of most instructions to complete in one cycle. The exceptions are load and
branch instructions, which require an additional cycle.

The effect that pipelining has on debugging is that it results in a four cycle delay before
data breakpoints are reported.

Optimizations With Loads

Load instructions load values from memory. On TNS/R processors, load instructions do
not complete in the single cycle required to complete most instructions.

Figure 15-2. Memory Access by Optimized vs. Non-Optimized Code

Statement #1: C=A+B

Statement #2: E=C+A

Non-Optimized Code Optimized Code

Memory
DataRegs DataRegs

#1 Load A
 Load B
 Add (A+B)C
 Store C

#2 Load C
 Load A
 Add (C+A)E
 Store E

A

B

C

E

A
B
C

C
A
E

A
B
C
E

#1 Load A
 Load B

 Add (A+B)C
 Store C

 #2 Add (C+A)E
 Store E

VST1502.vsd
Inspect Manual—429164-006
15-8

Using Inspect on a TNS/R System Optimizations With Branches
The position following a load instruction is referred to as a load delay slot. Dummy
instructions or NOP instructions can always be placed in delay slots. As part of its
optimization process, the compiler attempts to place useful instructions in load delay
slots. The only requirement is that the instruction cannot depend on the data being
loaded. Filling delay slots with useful instructions changes the order of instructions but
yields improved program performance. Reordering of instructions usually has little
effect on source-level debugging, but it may affect machine-level debugging.

Optimizations With Branches

Branch instructions control the path of instructions executed by a program. On TNS/R
processors, branch instructions require an extra machine cycle to complete. The
position following a branch instruction is referred to as a branch delay slot; it contains
an instruction that will be executed before the branch occurs.

One of the optimizations performed by the accelerator is the filling of such branch
delay slots with useful instructions; otherwise, delay slots are filled with NOP
instructions. Filling delay slots often results in the instruction sequence being
reordered, yielding improved program performance. Branch optimizations can result in
statements being merged, thereby reducing the number of breakpoint locations.

Another optimization performed involves branch instructions is the elimination of
“branch chains.” In instances where a branch instruction branches to another branch
instruction, a single branch instruction may be generated that branches to the target of
the second instruction.

Example

This example illustrates how the accelerator fills load and branch delay slots with
useful instructions.

This example sows the TNS and TNS/R instructions for the preceding source code:

The accelerator has placed the LI instruction in the delay slot of the LH instruction and
the SH instruction in the delay slot of the BNE instruction. This results in the following
operations being performed:

1. Load the value of j

2. Load the value 4

3. Branch if j <> 4

 #22 i := j;
 #23 IF j = 4 THEN

#22
 %000006: > LOAD L+006 %h70420030: > LH t5,12(fp)
 %000007: STOR L+005 %h70420034: LI at,4
 %000010: LOAD L+006 %h70420038: BNE t5,at,0x70420088
 %000011: CMPI +004 %h7042003C: SH t5,10(fp)
 %000012: BNEQ +010
Inspect Manual—429164-006
15-9

Using Inspect on a TNS/R System TNS Instruction Side Effects
4. Store the value of j in i

TNS Instruction Side Effects

Many TNS instructions update the machine state, such as registers R0-R7 and status
flags in the TNS environment register, the most common being the condition code
flags. The effects that instructions have on environment register flags are often
referred to as instruction side effects.

The TNS/R processor does not have the same registers as the TNS processor.
Therefore, when the accelerator translates a program, it must generate code that
updates the TNS execution model to reflect instruction side effects used by the
program. Since programs often do not make use of instruction side effects, the
accelerator does not generate code for side effects that are not used.

This has little impact on source-level debugging. When debugging at the TNS
machine level, it could result in the displayed TNS registers having different values
than they would on a TNS machine. For example, the condition code flags are only
valid if they are used by the program.

Debugging Programs at the TNS/R Machine
Level

Inspect provides some functionality for examining the TNS/R machine state when
debugging either TNS/R native or accelerated programs. This includes the ability to
display and modify TNS/R machine registers and to display TNS/R instructions. A
complete set of TNS/R machine-level debugging functionalities, including the ability to
set breakpoints on TNS/R instructions, is available by invoking Debug from within
Inspect.

What You Need to Know

To debug at the TNS/R machine level, you must have knowledge of the TNS/R
architecture, including the instruction set, registers usage, addressing, transitions from
TNS/R to TNS code, and variances between TNS and TNS/R systems.

 For more information about TNS/R instruction set, see MIPS RISC Architecture, by
Gerry Kane, Prentice Hall: 1989.

 For more information about the accelerator, transitions into TNS code and
variances between TNS and TNS/R systems, see the Accelerator Manual.

 For more information about register usage and addressing, see the NonStop S-
Series Server Description Manual.

 For more information about Debug, see the Debug Manual.

Note. Debugging at the TNS/R machine level is rarely necessary
Inspect Manual—429164-006
15-10

Using Inspect on a TNS/R System TNS/R Breakpoints
 For more information about compilers, see the C/C++ Programmer’s Guide, the
COBOL Manual for TNS and TNS/R Programs, and the pTAL Reference Manual.

TNS/R Breakpoints

When debugging Accelerated programs, you can list and clear TNS/R breakpoints, but
not set them. You must set TNS/R breakpoints from Debug. There are specific rules
that apply to setting TNS/R breakpoints; for more information, see the Debug Manual.
If you set a TNS/R breakpoint and the program transfers to execute TNS code (as
opposed to TNS/R instructions) at that point in the program, the TNS/R breakpoint will
not be triggered.

When debugging TNS/R native programs, you can set breakpoints at any location in
the program. To set a breakpoint in native code, you can either specify a scope name
or a machine-level code address.

Example

This example shows using Debug to set a TNS/R breakpoint and clearing TNS/R
breakpoints using the CLEAR command with the appropriate breakpoint ordinal:

TNS/R Machine Registers

Within Inspect, you can display the value of these TNS/R machine registers when
debugging TNS/R programs:

-PTALIN-SELECT DEBUGGER DEBUG
DEBUG 000061, 000207, UC.00
244,00,083-bn 704201d0
 N: 7042.01D0 INS: SH t5,-4(sp)
244,00,083-INSPECT
INSPECT
244,00,083 PTALIN #M.#75.1(TALIN)
-PTALIN-LIST BREAKPOINT
Num Type Subtype Location
 1 Code DEBUG TNS/R %h704201D0
-PTALIN-RESUME
INSPECT TNS/R BREAKPOINT 1: TNS/R %h704201D0
244,00,083 PTALIN #M.#78(TALIN)
 ** Inspect warning 359 **** Current location is not a memory-exact point;
 displayed values may be out of date;
 the location reported is an approximate TNS
location
-PTALIN-CLEAR 1
Breakpoint cleared: 1 Code DEBUG TNS/R %h704201D0
-PTALIN-LIST BREAKPOINT
 ** Inspect warning 202 **** No breakpoints exist

tns/r-register: one of

 $0 $1 $2 $3...$31
 $HI $LO
 $PC
 tns/r-register-alias
Inspect Manual—429164-006
15-11

Using Inspect on a TNS/R System Machine Code Addresses
Register aliases are used when TNS/R instructions are displayed. General purpose
TNS/R registers may also be identified using one or more aliases.

These mapping of aliases to registers is supported by Inspect:

Register Alias Register Alias

$1 $AT $17 $S1
$2 $V0 $18 $S2
$3 $V1 $19 $S3
$4 $A0 $20 $S4
$5 $A1 $21 $S5
$6 $A2 $22 $S6
$7 $A3 $23 $S7
$8 $T0 $24 $T8
$9 $T1 $25 $T9
$10 $T2 $26 $K0
$11 $T3 $27 $K1
$12 $T4 $28 $GP
$13 $T5 $29 $SP
$14 $T6 $30 $FP
$15 $T7 $31 $RA
$16 $S0

Machine Code Addresses

Several of the commands described in the following sections accept machine code
addresses. When debugging accelerated programs, TNS/R code addresses must be
preceded by the TNS/R clause to be distinguished from TNS addresses. (The TNS/R
clause can also be abbreviated as “R”.

TNS/R code addresses can be specified as any expression that computes an integer
result that can be expressed in 32 bits. Examples of TNS/R address expressions as
used with the ICODE command include:

1. This lists the instruction three instructions prior to the specified address
(instructions are four bytes long).

2. This lists three instructions starting two instructions prior to the current instruction.

Usage Considerations

 The current input radix is used to evaluate all numbers unless a different base is
explicitly specified (using one of the standard base prefixes). It is most useful to
use hexadecimal when inputting TNS/R addresses.

 Register names can be used in expressions.

ICODE R %h70421164
ICODE R %h70421164 - 3 * 4 (1)
ICODE R $pc - 2 * 4 for 3 (2)
Inspect Manual—429164-006
15-12

Using Inspect on a TNS/R System Save Files
Save Files

TNS/R register values are stored in save files created for accelerated and native
programs.

TNS/R Machine-Level Commands

Inspect provides minimal support for machine-level debugging of native and
accelerated programs. The following subsections briefly describe the commands
Inspect supports. For more information, see Section 6, High-Level Inspect Commands.

DISPLAY REGISTER

You can use the DISPLAY REGISTER command to format and display registers in the
current program. The DISPLAY REGISTER command also allows you to display the
values of TNS/R machine registers.

ICODE

The ICODE command displays instruction mnemonics starting at the specified code
address. For accelerated programs, this command can be used to list TNS
instructions, TNS/R instructions, or a combination of both.

For accelerated programs, it might be easier to understand the TNS/R instruction
sequence by also looking at the TNS instruction sequence that it corresponds to. This
can be done using the BOTH option of the ICODE command.

-PMON-DISPLAY REGISTER $PC IN H
REGISTER $PC = %H70420250
-PMON-DISPLAY REGISTER TNSR IN H

 $PC: %H70420250 $HI: %H00000000 $LO: %H00000000

 $0: %H00000000 $AT: %H0001FFFF $V0: %H00000002 $V1: %H0008EC03
 $4: $A0: %H000013F4 $A1: %H700000E0 $A2: %H00000000 $A3: %H00000001
 $8: $T0: %H0001019A $T1: %H00000000 $T2: %H00000001 $T3: %H00000000
$12: $T4: %H0000095E $T5: %H0000822D $T6: %H00000000 $T7: %H00010000
$16: $S0: %H0000012F $S1: %H000013E6 $S2: %H000080CD $S3: %H00000C08
$20: $S4: %H0008003A $S5: %H00000006 $S6: %H00000003 $S7: %HFFFF8061
$24: $T8: %H70000000 $T9: %H00000080 $K0: %HA713A713 $K1: %HA713A713
$28: $GP: %H70401000 $SP: %H00001406 $FP: %H000013AA $RA: %H704201EC

Note. It is recommended that you display the value of TNS/R registers in hexadecimal
Inspect Manual—429164-006
15-13

Using Inspect on a TNS/R System TNS/R Machine-Level Commands
For example:

This example shows three blocks of corresponding TNS and TNS/R code. Each
“block” begins with a memory-exact or a register-exact point. All intermediate code
within the block is non-exact.

MODIFY REGISTER

The MODIFY REGISTER command can be used to modify the value of a specific
TNS/R machine register.

SELECT DEBUGGER DEBUG

When debugging native and accelerated programs, especially at the machine level, it
may be necessary or desirable to use Debug rather than Inspect. You can switch
between Inspect and Debug during the same debugging session with the SELECT
DEBUGGER DEBUG command. To return control of the program to Inspect, issue the
Debug command “INSPECT.”

For more information about the SELECT DEBUGGER DEBUG command, see
Section 6, High-Level Inspect Commands.

When debugging an accelerated program at a TNS/R machine level, Debug is
particularly useful for setting breakpoints on TNS/R instructions. The Inspect
breakpoint list is updated from the breakpoint table when a process first enters Inspect
and when control returns to Inspect from Debug; it will reflect any breakpoints you set
or cleared while in Debug.

For more information, see the Debug Manual.

-ICODE AT #15 FOR 3 BOTH
#15
 %001354: > LOAD L+002 %h7042003C: LH s0,4(fp)
 %001355: LDI +005 %h70420040: NOP
 %001356: IMPY %h70420044: SLL s0,s0,16
 %001357: STOR L+001 %h70420048: ANDI t9,t9,0xFFDF
 %h7042004C: MOVE at,s0
 %h70420050: ADD s0,at,at
 %h70420054: ADD s0,s0,s0
 %h70420058: ADD s0,s0,at
 %h7042005C: SRL s0,s0,16
 %h70420060: SH s0,2(fp)
#16
 %001360: > LDI +001 %h70420064: LI s0,1
 %001361: STOR L+002 %h70420068: SH s0,4(fp)
#17
 %001362: > LDI +000 %h7042006C: LI s0,0
 %001363: EXIT 03 %h70420070: LI t7,0
 %h70420074: LI a1,8
 %h70420078: JAL $m_EXIT
 %h7042007C: ADDIU sp,fp,-6
 %h70420080: ADDIU sp,sp,4
Inspect Manual—429164-006
15-14

16
Using Inspect With Accelerated
Programs on TNS/R Systems

 Accelerated Program Debugging Overview

 Assumptions on page 16-2

 Variances on page 16-2

 Performance and Debugging of Accelerated Programs on page 16-3

 Accelerated Program Transitions on page 16-3

 Accelerated Program Debugging Concepts on page 16-4

 Debugging Boundaries on page 16-5

 Accelerator Debugging Options on page 16-6

 Using Inspect to Debug Accelerated Programs on page 16-8

 Program Libraries on page 16-8

 Code Breakpoints on page 16-8

 Data Breakpoints on page 16-9

 Event Reporting on page 16-14

 Data Access Limitations on page 16-15

 TNS Register Access Limitations on page 16-16

 Commands Useful When Debugging Accelerated Programs on page 16-17

Accelerated Program Debugging Overview
TNS programs, compiled on TNS/R systems by TNS compilers rather than TNS/R
native compilers, also execute on TNS/R systems. TNS programs can be accelerated
to run more efficiently on TNS/R systems.

Inspect supports the debugging of both accelerated and non-accelerated TNS
programs on HP NonStop TNS/R systems. Debugging non-accelerated programs on a
TNS/R system is nearly identical to debugging them on a TNS system. The only
difference is in the area of data breakpoints, which might be reported at slightly
different locations than on a TNS system. On a TNS/R system, you can debug non-
accelerated TNS programs both at the source level and at the TNS system level.

Accelerating a TNS program yields improved program performance, but can make the
program more difficult to debug. When debugging an accelerated program on a
TNS/R system, synchronization points—points at which there is a direct
Inspect Manual—429164-006
16-1

Using Inspect With Accelerated Programs on TNS/R
Systems

Assumptions
correspondence between the state of the accelerated program and the state it would
have if executed on a TNS system—do not exist at all program locations. When not at
a synchronization point, memory and TNS registers may be “out of date.”

Both the hardware features of the system and the optimizations performed by OCA
may result in some debugging and execution differences when compared with
execution on a TNS system. Differences in program execution are referred to as
variances. The primary debugging difference for accelerated programs is that at some
points, the program may not have the same state that it would on a TNS system.

Figure 16-1 illustrates acceleration by Axcel, the accelerator for TNS/R systems. The
end product of acceleration by Axcel is a program file containing both TNS object code
and accelerated (RISC) object code.

Assumptions

If you use the Axcel accelerator to accelerate your program, you should have an
understanding of the accelerator. This not only includes the operation and syntax of the
accelerator, but also a conceptual understanding of its function. See the Accelerator
Manual for additional information.

To debug accelerated programs at the machine level, you should understand the
limitations and the TNS/R system variances. For more information, see Debugging
Programs at the TNS/R Machine Level on page 15-10 and the Accelerator Manual for
additional information.

Variances

Some infrequently used programming constructs do not work on TNS/R systems when
a program has been accelerated. Variances are differences between TNS and TNS/R
systems which can affect program execution. An example of a variance is the wrapping
of user data stack addresses. For more information about variances on TNS/R
systems, see the Accelerator Manual.

Figure 16-1. Acceleration of TNS Code on TNS/R Systems

TNS
Compiler

TNS
Object Code

Axcel
TNS

Object Code

vst1801.vsd

Accelerated
Object Code
(RISC)
Inspect Manual—429164-006
16-2

Using Inspect With Accelerated Programs on TNS/R
Systems

Performance and Debugging of Accelerated
Programs
Performance and Debugging of Accelerated Programs

When you accelerate your program, instructions have been reordered and some may
have been eliminated as a result of optimizations. As a result, the correspondence
between TNS and TNS/R instructions has disappeared at most locations. A block of
TNS/R instructions corresponding to a TNS instruction may be interleaved with other
TNS/R instructions.

Listed is a summary of the primary ways that OCA improves program performance.
The sections that follow explain these methods in detail and how they affect
debugging.

 Retaining the values of frequently used variables in TNS/R system registers

Inspect does not have information about when variables are stored in registers.
The storing of values in registers can result in displayed memory values being out
of date, memory modifications having no effect, and data breakpoints not being
reported when expected.

 The elimination of unused code and the reordering of code

Elimination of unused code can mean that you will not be able to place breakpoints
at some code locations. This elimination and reordering of code also affects
stepping and statement tracing, which skips any statements for which code has
been eliminated or combined with the code for a previous statement.

 The elimination of branch chains

If a program contains a branch to a label at which there is a branch to another
location, the accelerator may generate code that branches directly to the target
location. Such optimizations could alter the flow of control in the program.

 TNS instruction side effects

When the accelerator optimizes code, it may eliminate TNS instruction side effects
that are not used by the program. On TNS/R systems, TNS side effects such as
setting the condition codes are not part of the hardware, whereas on TNS systems
they are. If the logic of your program depends on the condition codes, the
accelerator will generate code to preserve them; otherwise, they are not preserved.

Accelerated Program Transitions

To generate an accelerated program, the accelerator must be able to predict the
possible execution paths in the program and be able to predict the value of the TNS
register pointer (RP) at each location. Some TNS program constructs require
evaluation at execution time and their behavior cannot be reliably predicted by the
accelerator. For such constructs—such as the SETP instruction—the accelerator
generates code that checks if the conditions required by the generated code are met. If
they are met, execution of TNS/R instructions continues; if not, execution transfers to
the corresponding TNS instructions which are executed using millicode. Execution of
TNS/R instructions will resume as soon as possible.
Inspect Manual—429164-006
16-3

Using Inspect With Accelerated Programs on TNS/R
Systems

Accelerated Program Debugging Concepts
Execution can only switch between TNS and TNS/R instructions at points where all
values have been saved from the TNS/R system registers into memory and the
representation of the TNS machine state is accurate. The accelerator defines such
points, referred to as register-exact points, where necessary for this purpose. Register-
exact points are most commonly found following procedure and subprocedure calls.

Transitions do not affect program accuracy or debugging unless you attempt to perform
an operation, such as setting a TNS/R register, that depends on TNS/R instructions
being executed.

Accelerated Program Debugging Concepts
The debugging option used with the accelerator slightly affects source-level debugging
and significantly affects TNS machine-level debugging. Most source-level debugging
capabilities are preserved. Source-level debugging restrictions include the possibility of
deleted statements and the ability to modify memory safely. TNS machine level
restrictions include the fact that breakpoints are restricted to memory-exact points and
register modification is restricted to register-exact points.

Accelerated programs run faster than TNS programs, in part because the accelerated
code is optimized. Traditionally, optimized code is difficult to debug because
instructions can be reordered enough to blur the correspondence of instructions to
source code. With the default accelerator option, ProcDebug, the accelerator optimizes
over as large an area as possible to gain the maximum program performance.

The three key differences between debugging non-accelerated programs and
accelerated programs are:

 Code breakpoint restrictions

When debugging accelerated programs, code breakpoints are restricted to a
subset of TNS instruction addresses. These points, referred to as memory-exact
points, are the locations at which the state of displayed memory is consistent.

 Modify restrictions

Memory-exact points, defined at the beginning of most source statements, are
defined such that all writes to memory for preceding source statements have
occurred. It might be the case, however, that values used by subsequent
statements are already loaded in system registers. As a result, modify operations,
which modify the copy in memory, might have no effect on program behavior.
Register-exact points, a subset of memory-exact points, are defined so that no
optimizations cross these points. Memory can be modified reliably at register-
exact points. These are also points at which a program may transfer between
executing TNS and TNS/R instructions.

Note. When accelerated programs begin execution, they begin executing TNS
instructions and immediately transfer to executing TNS/R instructions.
Inspect Manual—429164-006
16-4

Using Inspect With Accelerated Programs on TNS/R
Systems

Debugging Boundaries
 Data display restrictions

The accelerator improves program performance by keeping the values of
frequently used variables in TNS/R system registers. The debugger does not have
information indicating when variables are stored in these registers. Such
optimizations may therefore result in displayed memory values being out of date,
because a more recent copy is stored in memory.

Debugging Boundaries

Inspect provides special support to aid in debugging the optimized code generated by
the accelerator. Most source-level debugging capabilities have been preserved and
boundaries for debugging have been clearly defined.

Register-Exact Points

Register-exact points are locations in an accelerated program at which the values in
both memory and the TNS register stack are the same as they would be if the program
were executing on a TNS processor. No optimizations cross register-exact points.
Complex statements might contain several such points: at each function call,
privileged instruction, and embedded assignment. Register-exact points are a subset
of memory-exact points.

By default, the accelerator defines register-exact points only where necessary; for
example, following procedure calls. Register-exact points are the only points at which
an accelerated program makes transitions to and from executing TNS instructions.

Memory-Exact Point

Memory-exact points are locations in an accelerated program at which the values in
memory (but not necessarily in the register stack) are the same as they would be if the
program were running on a TNS processor. Modifying memory at these points might
not achieve the desired results because memory might have already been loaded in
registers. Most source statement boundaries are memory-exact points. Note that
register-exact points are a subset of memory-exact points.

Non-Exact Points

Non-exact points are locations in an accelerated program that are not memory-exact
points. Most code locations in a accelerated program are non-exact points. At non-
exact points, the TNS program state is not consistent, displayed memory may be out of
date, and the reported current location is only approximate. Attempting to modify
memory at a non-exact point may result in the data being overwritten by a subsequent
store operation.

Note. If you are debugging at the TNS machine level, debug programs before
accelerating for the most accurate representation of the TNS machine state.
Inspect Manual—429164-006
16-5

Using Inspect With Accelerated Programs on TNS/R
Systems

Accelerator Debugging Options
Accelerator Debugging Options

The accelerator debugging option you use slightly affects source-level debugging and
significantly affects machine-level debugging. It affects the organization of TNS/R
instructions, and the number of register-exact points in your program. The accelerator
offers you two debugging options—ProcDebug and StmtDebug.

ProcDebug

ProcDebug, the default optimization level, results in optimizations that may blur
statement boundaries. Blurred statement boundaries result in some statements
becoming inaccessible for debugging purposes. TNS/R instructions for statements may
be interleaved as long as all the stores for a previous statement are completed before
the next statement. These characteristics are unique to programs accelerated with the
ProcDebug option:

 Memory-exact points exist at the beginning of most statements and at some
locations within statements.

 Register-exact points only occur as required by the accelerator. They often follow
procedure calls within statements.

 Code optimized with the ProcDebug option produces more efficient TNS/R code
than code optimized with the StmtDebug option.

StmtDebug

At this level of optimization, the TNS/R code that is generated for individual TNS
instructions is not necessarily grouped in a contiguous block. Instructions may be
rearranged to fill load and branch delay slots. TNS/R code for different statements is
not interleaved. These characteristics are unique to programs accelerated with the
StmtDebug option:

 Register-exact points occur at the beginning of most statements and at some
locations within statements. As a result, the state of memory is consistent at the
beginning of most statements, as is the view of the TNS machine state.

 Code optimized with the StmtDebug option is not as fast or as efficient as code
generated using ProcDebug.

Summary

This table summarizes the various levels at which Accelerated programs may be
debugged and your capabilities at the various levels.
Inspect Manual—429164-006
16-6

Using Inspect With Accelerated Programs on TNS/R
Systems

Accelerator Debugging Options
Level

Required
User
Knowledge Where Capabilities

Source
level

User’s own
program

Memory-exact
points

Statement
breakpoints,
stepping, display
variables

TNS
machine
level

TNS system Register-exact
points

TNS instructions
breakpoints,
stepping, display and
modify data and TNS
system registers

TNS/R
machine
level

TNS/R
system,
Accelerator

Anywhere
(requires Debug
to set TNS/R
instruction
breakpoints)

TNS/R instruction
breakpoints, display
and modify data and
TNS/R system
registers

Note. The accelerator defines memory-exact points at the beginning of most statements and
at other locations where necessary. When the input object file to the accelerator contains
symbols, the accelerator uses this information to determine the location of source statements.
When a program does not contain symbols, locations at which the environment register RP
field is 7 are treated as statement delimiters.

Table 16-1. Debugging Capabilities in Accelerated Programs on TNS/R
Systems (page 1 of 2)

Action
TNS
Program

Accelerated
Program at a
Register-
Exact Point

Accelerated
Program at a
Memory-
Exact Point

Accelerated
Program at a
Non-Exact
Point

Add
breakpoint

Yes Yes1 Yes1 Yes1

Statement
stepping

Yes Yes Yes Yes - only to
the next
memory-exact
point

Instruction
stepping

Yes No No No

Display
variables

Yes Yes Yes Yes2
Inspect Manual—429164-006
16-7

Using Inspect With Accelerated Programs on TNS/R
Systems

Using Inspect to Debug Accelerated Programs
1 Code breakpoints can only be set on locations that are memory-exact points.
2 Data might still be in registers; therefore, displayed memory might be out of date.
3 Memory values might be preloaded in registers so modification might have not effect.
4 Register information might be out of date. i.

Using Inspect to Debug Accelerated Programs
The following subsections provide useful information for using Inspect to debug
accelerated programs. Section 6, High-Level Inspect Commands provides complete
syntax and detailed explanations of all commands discussed in this section.

Program Libraries

It is possible to call an accelerated user library from a program that has not been
accelerated. Similarly, it is possible to call a user library that has not been accelerated
from a program that has been accelerated.

When debugging such programs, the constraints and functionality that apply to
debugging accelerated programs apply to the accelerated portion of the program, but
not to the portion that has not been accelerated. i

Code Breakpoints

When debugging a TNS program, you can set code breakpoints at any location in the
program. When debugging accelerated programs, however, Inspect only allows TNS
code breakpoints to be set at locations that are memory-exact points.

If you attempt to set a TNS code breakpoint at a location that is not a memory-exact
point, the following error message is issued:

.

** Inspect error 197 ** Location deleted by optimizations

Modify
variables

Yes Yes Yes3 Yes3

Display
TNS
registers

Yes Yes Yes4 Yes4

Modify TNS
registers

Yes Yes No No

Table 16-1. Debugging Capabilities in Accelerated Programs on TNS/R
Systems (page 2 of 2)

Action
TNS
Program

Accelerated
Program at a
Register-
Exact Point

Accelerated
Program at a
Memory-
Exact Point

Accelerated
Program at a
Non-Exact
Point
Inspect Manual—429164-006
16-8

Using Inspect With Accelerated Programs on TNS/R
Systems

Data Breakpoints
Usage Considerations for Accelerated Programs

 The INFO LOCATION command marks statement locations at which breakpoints
cannot be set as “deleted.”

 When the LOCATION FORMAT command is set to STATEMENTS, statement
ordinals for statements at which breakpoints cannot be set are emitted when
displaying program source. For more information, see SOURCE on page 6-196.

 The SOURCE command marks deleted statements with a “-”.

Data Breakpoints

Data breakpoints, also referred to as memory access breakpoints (MABs), are
available on TNS/R systems, but there are some important considerations when you
use them with accelerated programs.

Data breakpoints, also referred to as memory access breakpoints (MABs), are
available on TNS/R systems.

On all systems, the default type of data breakpoints is changed from WRITE to
CHANGE. Change data breakpoints are like write breakpoints, except that they are
only reported when the value of the variable changes.

WRITE breakpoints are not supported on TNS/R machines.

Data breakpoints may behave differently when debugging programs on a TNS/R
system, especially if the program has been accelerated.

The following considerations apply when using data-breakpoints with accelerated
programs.

 There is a four TNS/R instruction delay between when data breakpoints are
detected and reported.

This may result in the current program location being different from the location at
which the breakpoint was detected. When this is the case, the MEMORY ACCESS
BREAKPOINT event string is followed by “OCCURRED AT src-loc.“

 The hardware sets data breakpoints on 32-bit words. With 16-bit variables, an
access to an adjacent variable may therefore trigger an unrelated breakpoint.
GUARDIAN is able to filter some but not all unrelated breakpoints.

When CHANGE breakpoints are set, unrelated breakpoints are filtered by Inspect.
When READ/WRITE breakpoints are set, you must use program context
information to determine which breakpoints are related to the data of interest. i

Note. Note that “deleted” does not mean that the actions of your statements have
been deleted, but that optimization has merged the statement with another which
resulted in the statement not being available for debugging.
Inspect Manual—429164-006
16-9

Using Inspect With Accelerated Programs on TNS/R
Systems

Data Breakpoints
Four Cycle Delay Reporting Data Breakpoints

The pipelined TNS/R system architecture results in data breakpoints being reported
four cycles after the access occurs. If a branch or procedure return occurred during
that time, the current location when the breakpoint is reported could be far from the
location that made the memory access. No additional data breakpoints will be triggered
during the four cycle delay.

The output of the EVENT status item lists the location where the data breakpoint
occurred:

MEMORY ACCESS BREAKPOINT bp-num:data-location [OCCURRED AT code-location]

The OCCURRED AT portion is printed if the accessing location, as represented using
the LOCATION FORMAT, is different from the current location. You can use the
location with the SOURCE AT command to display the source where the data access
occurred.

Due to accelerator optimizations, the location reported may occasionally indicate a
source line that is one or two lines before the statement accessing the data location.
The actual location may be between the OCCURRED AT location and the current
location.

Example

Suppose you place a breakpoint on the variable main-flag in a sample COBOL
program. The memory access event will be triggered when the value of main-flag
changes to one.

-C000OTCE-BREAK main-flag IF main-flag = 1Num Type Subtype Location 1 Data
Change Byte Address %14252 "MAIN-FLAG" IF MAIN-FLAG = 1

The program is allowed to continue with the RESUME command and it encounters the
data breakpoint.

-C000OTCE-RESUMEINSPECTMEMORY ACCESS BREAKPOINT 1: MAIN-FLAG OCCURRED AT
#LEVEL-1-PROGRAM-1.#13970(C000COBE)244,00,092 C000OTCE #LEVEL-1-PROGRAM-
1.#13990(C000COBE)

Notice that the status line indicates the program has stopped at line #13990, but the
memory access OCCURRED AT line #13970. The SOURCE command is used to look
at this area of the source program.

The current location, #13990, is indicated by the “*”. This is where the program is
currently suspended.

The actual memory access occurred earlier at line #13970, according to the
OCCURRED AT clause. Looking at the source, it does not appear that the value of

-C000OTCE-SOURCE #13950 Read-seq2-file SECTION. #13960
Read-seq2-file-para. #13970 READ seq2-file AT END -#13980
MOVE 1 TO main-flag. *#13990 IF (seq2-status NOT = ZEROS) AND
(NOT eof) #14000 MOVE 2 TO main-flag. #14010 #14020
CALL-TEST-1 SECTION. #14030 **** Calling level-2-program-1 with 2
BY REFERENCE and 2 BY CONT #14040 PERFORM test-init.
Inspect Manual—429164-006
16-10

Using Inspect With Accelerated Programs on TNS/R
Systems

Data Breakpoints
main-flag would have changed in line #13970. The actual place where the memory
access occurred is somewhere between the reported (approximate) location, line
#13970, and the next exact point (note that line #13980 is deleted, so the next exact
point is line #13990).

Therefore, in this case the actual memory access occurred somewhere during
execution of lines #13970 or #13980. Looking at the source, it becomes obvious that
the actual memory access of main-flag occurred on line #13980.

The following illustrate a number of anomalies that can occur when the variable that
triggers a data breakpoint is accessed again during the four cycle delay.

This pseudocode illustrates several of these anomalies:

 Data breakpoints

A breakpoint is set on the data item X prior to reaching line #110. When the
program reaches #110, the data breakpoint cycle will be triggered. When the
program stops four cycles later, the current location might be line #130 with a
report that the data breakpoint took place at line #110. Examining X might show 2
or 3 rather than the 1 stored at line #110.

 Code breakpoints and data breakpoints

If a code breakpoint is at the same location that accesses memory on which a data
breakpoint is set, the code breakpoint is reported first.

Using the same pseudocode as before and the same data breakpoint on X,
consider the results of putting a breakpoint at line #120. When the program
reaches line #110 the data breakpoint cycle will start; however, it will not complete
before the code breakpoint at line #120 is encountered. This will give the
appearance that the data breakpoint did not occur even though an examination of
the data shows the value has been stored. Attempting to STEP or RESUME from
this point will release the data breakpoint cycle and the data breakpoint will
eventually be reported.

 Stepping

Using the same pseudocode shown above, a data breakpoint is set on X prior to
line #110. Stepping a line at a time starting at #110 might not report that
breakpoint occurred at #110 until you reach line #120 or #130.

Note. The anomalies discussed below are unlikely to occur unless simple assignment
statements are used in succession.

#110 X :=1
#120 X :=2
#130 X :=3
Inspect Manual—429164-006
16-11

Using Inspect With Accelerated Programs on TNS/R
Systems

Data Breakpoints
 Data breakpoints of type change

There may be occasions when data breakpoints will not be reported. Consider the
following pseudocode:

If the current location of Inspect within the program is line #110 and a change data
breakpoint is set on X (note that change is the default for data breakpoints), when
the program is resumed the data breakpoint cycle will begin when the store to X
occurs at line #120. Before the four cycles have elapsed, X might be restored to a
value of 1 and the data breakpoint will not be reported because it appears that the
data did not change.

Accesses to 32-Bit Words

The TNS/R system reports data breakpoints on accesses to 32-bit words. For
variables that occupy fewer than 32 bits, this can result in unrelated breakpoints being
reported when an access is made to the other portion of the 32-bit word.

When data breakpoints of type change are used, Inspect can filter out such unrelated
breakpoints, reporting only when the value of the variable has changed. When
read/write data breakpoints are used, data breakpoints may be reported as a result of
memory accesses to the 32-bit word containing the variable. i

Data Breakpoints

The following considerations apply to data breakpoints:

 The default type for high-level data breakpoints is change.

This applies to both TNS and TNS/R processors. Data breakpoints of type change
are only reported if the value of the variable has changed; writes that store the
same value already contained in the variable are not reported. Use of the change
breakpoint allows Inspect to filter all unrelated breakpoints.

 Write breakpoints are available on TNS processors, but not on NSR-L processors.

You receive the following error message if you attempt to set a write data
breakpoint in a program executing on a NSR-L processor:

Because write breakpoints are not supported on NSR-L processors, use change
breakpoints instead.

#100 X :=1
#110 Y :=1
#120 X :=3
#130 Y :=X
#140 X :=1

** Inspect error 365 ** Machine does not support write memory access
breakpoints
Inspect Manual—429164-006
16-12

Using Inspect With Accelerated Programs on TNS/R
Systems

Data Breakpoints
 Read/write data breakpoints are available on both TNS and TNS/R processors.

When data breakpoints are set on read/write access on a TNS/R system, the
operating system or Inspect cannot filter unrelated accesses. You will have to use
context information associated with the program's current location to determine
breakpoints of interest.

Inspect issues the following warning message if you set a data breakpoint on a
variable that is larger than the 16-bit word size of the TNS system:

Inspect issues the following warning message when you set a write data breakpoint on
a variable that is smaller than the word size of the system (which is 32 bits on a TNS/R
system):

Usage Considerations for Accelerated Programs

The following additional considerations should be noted when using data breakpoints
with accelerated programs:

 If an instruction accesses a memory location on which a data breakpoint is set, any
memory accesses made by subsequent instructions before the original breakpoint
is reported are not detected.

 Data breakpoints most likely suspend the program at non-exact points; that is,
locations that are not memory-exact points.

 Some read data breakpoints may not be reported because no memory operation
has taken place. The accelerated program may keep values of frequently used
variables in registers, avoiding the need to go to memory to fetch them, which then
results in those read data breakpoints not being reported.

COBOL85 Example

When a COBOL object file is accelerated, the accelerator often has a wide range of
instructions over which to apply optimizations since many COBOL constructs, such as
INITIALIZE, SEARCH, or UNSTRING, require a large number of instructions to
implement. This optimization may affect debugging in the following ways:

 It may reduce the correspondence between the generated instructions and source
constructs.

 It also increases the likelihood that a data breakpoint will leave the program at a
non-exact point.

** Inspect warning 363 ** Breakpoint is set on the first 16-bit word
 containing the variable

** Inspect warning 127 ** Breakpoint will occur upon access to containing
word
Inspect Manual—429164-006
16-13

Using Inspect With Accelerated Programs on TNS/R
Systems

Event Reporting
Some COBOL constructs, such as IF or AT END, may not result in memory-exact
points, and section and paragraph names may not result in register-exact points even if
the accelerator optimization level is set to StmtDebug. Therefore, it may not be
possible to set code breakpoints at some such locations or to use the RESUME AT
command.

This example shows the effect ProcDebug optimizations can have on your program
and reaching a non-exact point.

This shows the result of accelerating the code with StmtDebug:

Event Reporting

The consistency of the state of an accelerated program depends on the current
location when a debugging event is reported. Code breakpoints and many other
debugging events are reported when the current location is either a memory-exact
point or a register-exact point.

-C000TTPT-BREAK main-flag if main-flag = 1
Num Type Subtype Location 1 Data Change Byte Address %11750 "MAIN-FLAG"
IF MAIN-FLAG = 1
-C000TTPT-RESUME
INSPECT
MEMORY ACCESS BREAKPOINT 1: MAIN-FLAG OCCURRED AT #LEVEL-1-PROGRAM-
1.#13970(C000COLD) 244,01,083 C000TTPT #LEVEL-1-PROGRAM-
1.#13990(C000COLD) ** Inspect warning 359 **** Current location is not a
memory-exact point;
 displayed values may be out of date;
 the location reported is an approximate TNS
location-C000TTPT-SOURCE
#13950 Read-seq2-file SECTION.
#13960 Read-seq2-file-para.
#13970 READ seq2-file AT END
 -#13980 MOVE 1 TO main-flag.
 *#13990 IF (seq2-status NOT = ZEROS) AND (NOT eof)
#14001 MOVE 2 TO main-flag.
#14010
#14020 CALL-TEST-1 SECTION.
#14030 *** Calling level-2-program-1 with 2 BY REFERENCE and 2 BY CONTE
#14040 PERFORM test-init.

-C000TTPT-BREAK main-flag if main-flag = 1
Num Type Subtype Location
 Data Change Byte Address %11750 "MAIN-FLAG" IF MAIN-FLAG = 1
-C0000TCE-RESUME
INSPECT
MEMORY ACCESS BREAKPOINT 1: MAIN-FLAG OCCURRED AT #LEVEL-1-PROGRAM-
1.#13980(C000COBE)244,00,092 C000OTCE #LEVEL-1-PROGRAM-
1.#13990(C000COBE)
-C000TTPE-SOURCE
 #13950 Read-seq2-file SECTION.
 #13960 Read-seq2-file-para.
 #13970 READ seq2-file AT END
@#13980 MOVE 1 TO main-flag.
*#13990 IF (seq2-status NOT = ZEROS) AND (NOT eof)
@#14000 MOVE 2 TO main-flag.
 #14010
 #14020 CALL-TEST-1 SECTION.
 #14030 **** Calling level-2-program-1 with 2 BY REFERENCE and 2 BY
CONT
 #14040 PERFORM test-init.
Inspect Manual—429164-006
16-14

Using Inspect With Accelerated Programs on TNS/R
Systems

Data Access Limitations
There are some debugging events that may be reported when the current location is a
non-exact (not a memory-exact) point: i

 A data breakpoint.

 A process entry into Inspect.

 A run-time trap.

 An INSPECT HOLD command issued to suspend a running process.

 A TNS/R code breakpoint. (TNS/R code breakpoints may only be set in Debug.)

When a debugging event occurs, Inspect determines the consistency of the program
state at the current program location. The current location can be one of the following:

 Register-exact point

Inspect presents you with the most information about the TNS view of the current
program state at register-exact points. At a register-exact point, TNS registers and
memory are consistent.

 Memory-exact point

Inspect presents you with less up to date information at memory-exact points. At a
memory-exact point, displayed memory is accurate and some TNS register values
may be out of date.i

 Non-exact point

Inspect presents you with the least accurate information at non-exact points. The
reported current program location is only approximate. Displayed memory may be
out of date, memory modifications may have no effect, and TNS registers are out
of date.

If your current program location is a non-exact point, Inspect will issue the following
warning when a debugging event is reported:

Data Access Limitations

The following paragraphs describe data access limitations that exist at various points in
your program.

At Register-Exact Points

When the current program location is a register-exact point, all memory has been
updated and no data is loaded into TNS/R registers. You can display and modify
variables without concern that memory is out of date.

** Inspect warning 359 ** Current location is not a memory-exact
point;displayed values may be out of date; the location reported is an
approximate TNS location
Inspect Manual—429164-006
16-15

Using Inspect With Accelerated Programs on TNS/R
Systems

TNS Register Access Limitations
At Memory-Exact Points

When the current program location is a memory-exact point that is not a register-exact
point, you can display memory with reliable results.

The accelerator defines memory-exact points such that all preceding memory store
operations have completed. Unless the point is a register-exact point, values used by
subsequent statements might already be loaded in TNS/R registers. In this case,
modifying the value of the variable in memory has no effect. Inspect has no way of
determining when this is the case; therefore, the commands that modify memory,
MODIFY and low-level M, report the following warning when the current location is a
memory-exact point:

As a guideline, values that have been accessed recently, are just about to be
accessed, or are accessed frequently are likely to be stored in registers.

At Non-Exact Points

When the current program location is a non-exact point, the TNS program state cannot
be mapped directly from TNS/R to TNS machine locations. Displayed memory may be
out of date. Attempting to modify memory at a non-exact point has the same
limitations as at memory-exact points.

In addition, it may result in the data being overwritten on a pending store operation.

TNS Register Access Limitations

The following paragraphs describe TNS register access limitations that exist at various
points in your program.

At Register-Exact Points

Register-exact points are locations in an accelerated program at which the values in
both memory and the register stack are up to date. You can both display and modify
TNS registers at register-exact points.

Even at register-exact points, the value of a given register will match what you would
see at the same point if running on a TNS system only if the register value is used by
subsequent TNS instructions. For example, TNS load instructions cause the condition
code to be set (N and Z bits in environment register), but the accelerated code will only
set the condition code if the program actually references it.

** Inspect warning 358 ** Modify may have no effect; data that is about to
be used may be stored in registers

Note. The usefulness of modifying TNS system register values is extremely limited
because of the limited number of register-exact points.
Inspect Manual—429164-006
16-16

Using Inspect With Accelerated Programs on TNS/R
Systems

Commands Useful When Debugging Accelerated
Programs
At Memory-Exact Points

You can display values of TNS registers at a memory-exact point; however, displayed
values may be out of date.

 Commands that display register values (DISPLAY and low-level D) report the
following warning:

** Inspect warning 354 ** Register values are out of date

 Commands used to modify registers (MODIFY REGISTER, and low-level M) report
the following error when at a memory-exact point that is not a register-exact point:

** Inspect error 355 ** Register values are out of date; they cannot be modified

At Non-Exact Points

The memory-exact point restrictions apply when the current location is not a memory-
exact point.

Commands Useful When Debugging
Accelerated Programs

The Commands explained are useful when debugging Accelerated programs. For
more information, see Section 6, High-Level Inspect Commands.

INFO LOCATION

The INFO LOCATION command gives information about a statement in the current
program. If you are executing an accelerated program, displayed information includes
the effects that accelerator optimizations have on source statements.

Example

You can use the INFO LOCATION command to determine your program’s current
location. A “Yes” in the Register-Exact column indicates that the beginning of the
source line is a register-exact point.

-SERVER-INFO LOCATION #78Scope: MCompile File: $TOOLS.SRVSRC.SVRMN
Modified: 1988-10-13 12:15:12.98 Word
Register- Num Line Offset Optimize
Verb Exact 12 #78 %33
Yes

Note. When the current executing TNS/R code location is a non-exact point, the
reported source line location is approximate. To advance to the next memory-exact
point, use the STEP command.
Inspect Manual—429164-006
16-17

Using Inspect With Accelerated Programs on TNS/R
Systems

INFO OBJECTFILE
INFO OBJECTFILE

The INFO OBJECTFILE command gives information about the current program’s
object file. If you are running an accelerated program, displayed information includes
the options with which your program was accelerated and when it was accelerated.

Example

This example shows, the INFO OBJECTFILE command was used to show that the
program was accelerated with the ProcDebug option, which provides more
optimizations but less debugging information than the StmtDebug option.

LIST PROGRAM

The LIST PROGRAM command identifies the type of program—TNS/R or TNS:

When debugging an accelerated program, some of the information listed by the LIST
PROGRAM DETAIL command may be of particular interest, including an indication that
the program has been accelerated and:

 The instruction set

The instruction set indicates whether TNS or TNS/R code is currently executing.
TNS is listed for an accelerated program when the program temporarily transfers to
executing TNS instructions. “Type” indicates what type of program it is and
“instruction set” indicates what code is currently executing.

 The accelerator state

The accelerator state indicates whether the location where the program is currently
suspended is a register-exact, memory-exact, or non-exact point. This information
indicates information you need to determine what debugging actions will provide
reliable results. For example, if you are at a memory-exact point, you can display
memory reliably, but not modify. The accelerator state is not listed if an
accelerated program is executing TNS instructions.

-PROGRAM-INFO OBJECTFILEObject File: \SYS.$VOL.SUBVOL.PROGRAM
General Information BINDER Region: YES BINDER
Timestamp: 1992-08-13 17:46:40.57 Data Pages: 64
Debugger: INSPECT INSPECT Region: YES System
Type: GUARDIAN Process Subtype: integer Program File
Segment: 0 WORDS Highrequesters: OFF
Runnamed: OFF Highpin: OFF
Saveabend: OFF Segments: 1 Target:
UNSPECIFIED Accelerator Information Accelerated
Execution: ENABLED Optimization: PROCDEBUG
Global Options: ATOMIC_OFF, INHERITSCC_OFF, OVTRAP_ON,
SAFEALIASINGRULES_OFF, TRUNCATEINDEXING_ON Timestamp:
1992-08-13 18:29:17.52 Version: 1992-02-25 10:18:32.46

 ProgramNum Program ID Name Type State
Location *1 06,081 OTALIN TNS HOLD #M.#8 2
07,172 PTALIN TNS/R HOLD #M.#64
Inspect Manual—429164-006
16-18

Using Inspect With Accelerated Programs on TNS/R
Systems

RESUME AT
When the accelerator state is at a memory-exact or a register-exact point, the
reported current location is exact. When the accelerator state is a non-exact point,
the current location is a approximate. This means that the program is suspended
between the reported location and the next exact point.\

Example

The accelerator state shows that the program is at a memory-exact location and the
instruction set TNS/R is displayed to indicate that the accelerated program is executing
TNS/R instructions.

RESUME AT

When debugging accelerated programs, you cannot transfer program execution to
arbitrary program locations (as you can on TNS machines). The source and
destination locations must both be register-exact points.

As with TNS systems, you need to ensure that the value of the TNS register pointer
(RP) is the same at both locations. RP usually has a value of seven at the beginning of
most statements.

If the target location is not a register-exact point, the following error message is
reported:

If your current location is not a register-exact point, the following error message is
reported:

-C000TTST-LIST PROGRAM *, DETAILName: C000TTSTNumber: 1
General Information Accelerated: YES Accelerated State:
Memory-exact CPU,PIN: 0,89 Guardian Version: C30
Instruction Set: TNS/R Location: #LEVEL-1-PROGRAM-
1.#13990(C000COLD) Processor: TNS/R (NSR-L) Program
File: $OCT.QAT9257I.C000TTST Library File:
$OCT.QAT9257I.C000OBF3 State: HOLD
System: \BASTILL (244) Type: TNS/R INSPECT
Information ABEND Breakpoint: NO Code Breakpoints: 0
Data Breakpoints: 1 Source System: None STOP Breakpoint:
NO

Note. When a program has been accelerated with the ProcDebug option, the
usefulness of the RESUME AT command is constrained by the limited number of
register-exact points at the beginning of statements. The StmtDebug option, however,
results in register-exact points at the beginning of most statements.

** Inspect error 357 ** Target location must be a register-exact point

** Inspect error 370 ** Current location must be a register-exact point

Note. The register-pointer (RP) clause of the RESUME command is not supported for
accelerated programs.
Inspect Manual—429164-006
16-19

Using Inspect With Accelerated Programs on TNS/R
Systems

SET PROMPT/SET STATUS
SET PROMPT/SET STATUS

The following status tokens could be helpful when used with the SET STATUS and
SET PROMPT commands:

 ACCELERATOR STATE

 INSTRUCTION SET

 PROCESSOR

Examples

 This example shows, how you might set your prompt to include accelerator state
information:

This will result in prompts of the following form:

In this case, the location in TNS/R code where the program suspended is a memory-
exact point.

SOURCE

When debugging accelerated programs on TNS/R systems, the SOURCE command
annotates statements that are register-exact points and those that have been deleted
(that is, statements that are not memory-exact points). The annotation character is
listed in the column before the line/statement number: i

Character Description

– The statement is “deleted” (it is not a memory-exact point).

@ The statement is a register-exact point; the RESUME AT command and
register modification commands can be used at such statements.

Usage Consideration for Accelerated Programs

The annotation character is listed in the same column that Inspect lists the asterisk
when marking the current location; the asterisk always takes precedence. Information
about the program state at the current location is available from the ACCELERATOR
STATE status and prompt tokens and the LIST PROGRAM DETAIL command.

SET PROMPT = LEVEL,PROGRAM NAME,"[",ACCELERATOR STATE, "]", STEP, LEVEL

-ATMSRV[memory-exact]-
Inspect Manual—429164-006
16-20

Using Inspect With Accelerated Programs on TNS/R
Systems

STEP
Example

The following example illustrates use of the SOURCE command to determine your
program’s current location and identify points that are register-exact or memory-exact
points.

STEP

The STEP command allows you to STEP statements and verbs in accelerated
programs, but not instructions. If you attempt to STEP instructions in an accelerated
program, Inspect issues the following error message:

Usage Considerations for Accelerated Programs

Stepping the execution of an accelerated program is subject to the following
considerations:

 The STEP command always leaves an accelerated program at a memory-exact
point. (Note that register-exact points are a subset of memory-exact points.)

 When the current program location is not a memory-exact point, entering a STEP
or STEP IN command advances the program to the next memory-exact point. In
some instances, this could be in the middle of a source statement. If you have
been advanced to the next memory-exact point Inspect will issue the following
warning message:

 A multi-statement or multi-verb step command does not always produce the same
results as issuing an equivalent number of single statement/verb commands.

If one or more statements at the end of the step range have been deleted, stepping
continues to the next memory-exact point. However, a multi-statement or multi-
verb step is not affected by deleted statements that are contained within the step
range.

 Transitions between TNS and accelerated code execution do not affect stepping.

-PTALIN-SOURCE FOR 10*#75.1 i := 1;
#76 a := 1;
#77 CALL s1;
@#78 CALL s2(a, a, a);
@#79 CALL s3;
-#80 b := a;
#81
#82 CALL PROC1(1, 2D, sptr);
@#84 CALL PROC2(1, 2D, sptr); #84.1

** Inspect error 353 ** Current location is accelerated; stepping
instructions is not allowed.

** Inspect warning 391 ** Current location is not a memory-exact
point; execution will be stepped to the next memory-exact point
Inspect Manual—429164-006
16-21

Using Inspect With Accelerated Programs on TNS/R
Systems

Annotated ICODE
 Accelerating a program may cause fewer step operations to be required to step
execution through some looping constructs. Depending on compiler code
generation, the accelerator may branch execution to the middle of a statement,
where there is no memory-exact point. Since STEP operations always leave a
program at a memory-exact point, execution of the program will not be suspended
until the next memory-exact point is reached. Usually, this is the next statement.

Example

The following example illustrates that Inspect STEP behavior within loops may differ
between TNS programs and accelerated programs, as illustrated with using this
sample code written in C.

The following illustrates the result of issuing successive STEP commands. Each line
shows the line from the preceding source that execution has been advanced to.

Note, in the accelerated program, Inspect does not stop on statement 3 after the first
time through the loop. At the locations where it stops in both the TNS and TNS/R
code, both programs will be in the same state. For example, displaying the value of I
while at the second instance of statement 4, yields the same results for both programs.

Annotated ICODE

When debugging accelerated programs, TNS instruction code mnemonics listed by the
SOURCE ICODE and ICODE command and the low-level I command are annotated to
indicate which locations are register-exact points (@) and which are memory-exact
points (>).

Statement
Number func1()
* 1 {
 int i,j,k;
 2 k = 1;
 3 for (i=0; i<2; i++) {
 4 j = 50 * i;
 5 k += 100 + j;
 6 } /* end for */
 7 printf ("i=%d, j=%d, k=%d\n", i, j, k);
 8 }

Stepping a TNS program Stepping an Accelerated program
1 { 1 {
2 k = 1; 2 k = 1;
3 for (i=0; i<2; i++) { 3 for (i=0; i<2; i++) {
4 j = 50 * i; 4 j = 50 * i;
5 k += 100 + j; 5 k += 100 + j;
6 } /* end for */ 6 } /* end for */
3 for (i=0; i<2; i++) {
4 j = 50 * i; 4 j = 50 * i;
5 k += 100 + j; 5 k += 100 + j;
6 } /* end for */ 6 } /* end for */
3 for (i=0; i<2; i++) {
7 printf ("i=%d, j=%d, 7 printf ("i=%d, j=%d,
 k=%d\n", i, j, k); k=%d\n", i, j, k);
Inspect Manual—429164-006
16-22

Using Inspect With Accelerated Programs on TNS/R
Systems

Annotated ICODE
When debugging accelerated programs, TNS instruction code mnemonics listed by the
SOURCE ICODE and ICODE command and the low-level I command are annotated to
indicate which locations are register-exact points (@) and which are memory-exact
points (>). i

Character Description

@ The instruction is at a register-exact point.

> The instruction is at a memory-exact point.

Examples

 The SOURCE ICODE command could produce the following output:

 For example, the low-level I command could produce the following output:

#417 CALL ER^Write(ERR^NOT^DISC^FILE, 0, , fname^ext,
fname^len LDI +101 ZERD LADR L+014,I
LOAD L+015 ZERD LDI +154 PUSH 777
XCAL 070#418 fn := -1; LDI -001 STOR
L+013#419 CALL OPEN(fname^int, fn, OPEN^READONLY);
LADR L-003,I LADR L+013 LDLI +004 PUSH 722
ADDS +006 LDLI +340 LDI -011 PUSH 711
XCAL 257

000006: > LOAD L+006 STOR L+005 LOAD L+006000011:
CMPI 004 BNEQ 010 @ LDI +007000014: STOR L+006
> LDI 010 STOR L+002
Inspect Manual—429164-006
16-23

Using Inspect With Accelerated Programs on TNS/R
Systems

Annotated ICODE
Inspect Manual—429164-006
16-24

17
Using Inspect With TNS/R Native
Programs

 TNS/R Native Overview

 TNS/R Native Program Debugging Concepts on page 17-1

 TNS/R Native Compilers and Linkers on page 17-2

 Optimization Levels on page 17-3

 Using Inspect to Debug TNS/R Native Programs on page 17-4

 SRLs on page 17-4

 Dynamic-Link Libraries (DLLs) on page 17-5

 Code Breakpoints on page 17-6

 Signals on page 17-6

 Commands Useful When Debugging Native Programs on page 17-6

 Debugging at the TNS/R Native Machine Level on page 17-12

 Examples on page 17-13

TNS/R Native Overview
Three modes of execution are possible on a TNS/R system: TNS/R native mode, TNS
mode, and accelerated mode.

Much of the code in HP-supplied software products for TNS/R systems has been
produced by TNS/R native compilers. Users can also use TNS/R native compilers to
produce their own native TNS/R code. (Refer to the C/C++ Programmer’s Guide and
the pTAL Reference Manual.) TNS/R native code consists of RISC instructions that
have been optimized to capitalize on the RISC architecture. Program files containing
such code are called native program files.

TNS programs, produced by TNS compilers executing on TNS/R systems, also can
execute on TNS/R systems. TNS programs contain TNS object code, and program
files containing TNS object code are called TNS program files.

TNS/R Native Program Debugging Concepts
TNS/R native programs run faster than accelerated or TNS programs, in part because
the native code is optimized. The optimization level option used when compiling
TNS/R native programs directly affects source-level debugging. (Most source-level
debugging capabilities are preserved. Source-level debugging restrictions include
Inspect Manual—429164-006
17-1

Using Inspect With TNS/R Native Programs TNS/R Native Compilers and Linkers
deleted statements and the inability to modify memory safely.) Traditionally, optimized
code is difficult to debug because instructions can be reordered enough to blur the
correspondence of instructions to source code.

Debugging a TNS/R native program is similar to debugging the RISC portions of an
accelerated program, but you should be aware of a few differences.

 In TNS/R native mode, local variables are sometimes cached in registers.
Attempting to modify a local variable or use it for setting a memory access
breakpoint, for example, can have unexpected results.

 In highly optimized TNS/R native object code, parameter values are sometimes
cached in registers, making their exact location unpredictable.

 In TNS/R native mode, unlike accelerated mode, there are no TNS instructions
corresponding to the RISC instructions.

 Inspect allows you to display register-based variables in any stack frame.
However, Inspect only allows modification of register-based variables if the current
scope is active, that is, the top of the stack.

 Inspect creates and reads save files from TNS/R native processes. This includes
saving stack frames, Global data and heap areas, main stack, and SRL instance
data. Inspect also includes the trap or signal number in the save file if the
application ABENDed due to a trap.

 To display TNS/R frames, use the TRACE REGISTERS command. For TNS/R
frames, Inspect displays the PC register in the normal Inspect form as a scope
name and offset. Inspect also displays the virtual frame pointer (VFP) for that
frame.

 To set a breakpoint in TNS/R native code, you can either specify a scope name or
a machine-level code address.

TNS/R Native Compilers and Linkers

TNS/R systems support the following native compilers (manuals are listed also):

C/C++ C/C++ Programmer’s Guide

COBOL85 COBOL85 for NonStop Systems Manual

pTAL pTAL Reference Manual

These compilers produce only RISC instructions.

On TNS/R systems, Binder is replaced by the native link editor (nld) and the native
object file tool (noft). Additionally, for position-independent code (PIC) programs on
TNS/R, you must use the ld linker in place of nld, and also use the PIC run-time loader,
rld. For more information, see the nld and noft Manual and the ld and rld Reference
Manual.
Inspect Manual—429164-006
17-2

Using Inspect With TNS/R Native Programs Optimization Levels
To debug a TNS/R program that contains position-independent code (PIC), you must
use Visual Inspect.

Optimization Levels

Debugging TNS/R native processes differs from debugging TNS or accelerated
processes. Unlike TNS and accelerated processes, TNS/R native processes do not
maintain the TNS process environment, such as the TNS environment registers.

The C, C++, and pTAL compilers support three optimization levels: 0, 1, and 2.
Source-level debugging capabilities are directly related to the optimization level of the
compiler.

Optimize 0

At this level of optimization, no optimizations occur. There is no scheduling, all delay
slots are filled with a NOP, and memory is immediately updated after calculations.
That is, variables are placed in registers, necessary calculations are performed, and
the variables are immediately updated.

Optimize 1

At this level of optimization, as many delay slots as possible are filled and updating of
memory is sometimes deferred because of forward motion of store instructions by the
scheduler.

Optimize 1 offers full debugging support. However, statement boundaries can be
blurred. Inspect will choose a sensible location when you request a breakpoint on a
source statement. Inspects statement boundaries do not necessarily coincide directly
with source statements and will emit a warning when a process is held (e.g., hits a
breakpoint) at a statement for which some code associated with a previous source
statement, e.g. a store instruction, has yet to execute.

Optimize 2

At this level of optimization, the compiler performs all of its possible optimizations–
register allocation, code motion, and instruction scheduling. The register allocation
algorithm cannot be tracked with the current debugger symbol table information.
Practically, there is no symbolic debugging support for Optimize 2.
Inspect Manual—429164-006
17-3

Using Inspect With TNS/R Native Programs Using Inspect to Debug TNS/R Native Programs
The compiler performs most optimizations. Statement boundaries are blurred as the
compiler moves instructions corresponding to one statement into forward or backward
statements. Inspect emits a warning if it finds a statement containing code for a
backward statement that has not been executed.

Using Inspect to Debug TNS/R Native
Programs

The following subsections provide information about using Inspect to debug TNS/R
native programs. Section 6, High-Level Inspect Commands, provides complete syntax
and detailed explanations of all commands discussed in this section.

SRLs

Inspect supports native SRLs (shared run-time libraries) on TNS/R systems. You can
set code and data breakpoints in SRLs per process, create save files for applications
that use SRLs, and display and modify identifiers from SRLs.

An SRL is an object file that the operating system links to a program file at run time. C,
C++, TAL, and pTAL programs can have a user library. On a TNS/R system, there are
two types of user libraries: TNS user libraries and TNS/R native user libraries. TNS
user libraries can be called by TNS and accelerated processes. TNS/R native user
libraries can be called by TNS/R native processes.

Table 17-1. Optimization Levels

Level Optimization Performed Debugging Capabilities

0 None. Variables are loaded into
registers, calculations are
performed, and variables are
immediately updated in memory.
Statement boundaries are
maintained. Delay slots in
instructions sequence are filled
with no-operation instructions.

Full source-level debugging capability.
Inspect sets code and data breakpoints
and steps similar to TNS processes.

1 Most optimizations performed.
Statement boundaries are
blurred. Instructions are moved
forward and backward to fill
delay slots.

Nearly full source-level debugging
capability. Inspect makes a best-guess
at where statements begin and end.
Inspect emits a warning if finds a
statement for which some code
associated with a previous statement that
has yet to execute.

2 The compiler performs all of its
possible optimizations.

Limited source-level debugging
capabilities. Statements may have been
deleted and/or merged with other
statements.
Inspect Manual—429164-006
17-4

Using Inspect With TNS/R Native Programs Dynamic-Link Libraries (DLLs)
TNS/R native user libraries are implemented as a special form of a native shared run-
time libraries (SRLs). From a debugging perspective, this special form of SRL behaves
the same as a TNS user library.

The process memory architecture and implementation of TNS/R native user libraries
differs from TNS user libraries. The distinction between user code and user library
space (UC and UL) does not exist in TNS/R native processes. There is one address
space for TNS/R native processes. Because of this difference in process memory, you
no longer need to specify a code location as user code (UC) or user library (UL).

By default, Inspect will not load public SRLs. Inspect does load ULs and private SRLs.
Use the SELECT PROGRAM command to load SRL files.

For more information on TNS user libraries, see the Binder Manual.

For more information on TNS/R native user libraries, see the nld Manual and noft
Manual.

Dynamic-Link Libraries (DLLs)

Inspect does not support debugging of any TNS/R native process that uses Dynamic-
Link Libraries (DLLs). To debug a process that uses DLLs, you must use either Visual
Inspect or Debug.

For more information about programming with DLLs, see the DLL Programmer’s Guide
for TNS/R Systems.

Example

Inspect does not automatically load the symbol files for Public SRLs. The ADD
PROGRAM and SELECT PROGRAM command can be used to load an SRL if
necessary. For example, to set a break point in the function printf. Using the SELECT
PROGRAM command, you can load the SRL which contains the printf function, and
set the break point.

-PROG-MATCH SCOPE printf
No scopes found that match printf
-PROG-SELECT PROGRAM 1 SRL ($SYSTEM.SYS00.ZCRTLSRL)
 Program
Num Program ID Name Type State Location
 *1 00,00034 ETEST TNS/R HOLD #main.#
-PROG-MATCH SCOPE printf
Library Procedures (\CHIMP.$SYSTEM.SYS00.ZCRTLSRL):
printf
-PROG-BREAK #printf
Num Type Subtype Location
 2 Code #printf.#73
-PROG-RESUME
INSPECT TNS/R BREAKPOINT 2: #printf
241,00,00034 ETEST #printf.#73
-PROG-TRACE
Num Lang Location
 0 C #printf.#73
 1 C #main.#13
 2 C #_MAIN.#36
-PROG-
Inspect Manual—429164-006
17-5

Using Inspect With TNS/R Native Programs Code Breakpoints
Code Breakpoints

When debugging a TNS/R program, you can set code breakpoints at any location in
the program. To set a breakpoint in native code, you can either specify a scope name
or a machine-level code address.

Signals

TNS and accelerated processes use a trap mechanism for exception handling. TNS
and accelerated processes in the OSS environment can also use a signal mechanism
for exception handling. (A signal is a means by which a process can be notified of or
affected by an event occurring in the system.)

TNS/R native processes, regardless of whether they are in the Guardian or OSS
environment, use a signal mechanism for exception handling. (OSS processes can
also use signals for communicating between processes.) The SIG_DEBUG parameter
was added to the MODIFY SIGNAL command to specify that when a signal is
delivered, the debugger will be invoked.

For example, where a TNS process might enter a trap handler on an arithmetic
overflow, a TNS/R native process might enter a signal handler.

Refer to the Guardian Programmer’s Guide and the Open System Services
Programmer’s Guide for details on signal handlers.

Commands Useful When Debugging Native
Programs

The commands listed are beneficial when debugging TNS/R native programs. For
more information, see Section 6, High-Level Inspect Commands.

ADD PROGRAM

The ADD PROGRAM command accepts the names of one or more SRLs. The SRL
clause is a single filename, or a comma separated list of SRL object files within
parentheses. If the process used more SRLs than you specified, Inspect will emit a
warning indicating this. By default, Inspect does not load public SRL object files.

BREAK

The BREAK command supports memory access breakpoints on TNS/R native
addresses. The support of MABs on native addresses applies to all data breakpoint
subtypes (ACCESS, CHANGE, READ, WRITE, READ WRITE, WRITE READ).
Inspect Manual—429164-006
17-6

Using Inspect With TNS/R Native Programs DISPLAY REGISTER
DISPLAY REGISTER

The DISPLAY REGISTER command displays the virtual frame pointer (VFP) for TNS/R
native stack frames. In addition, the contents of the registers will be relative to the
current stack frame. This means that as the current scope is changed to an active
stack frame, the register values will be what they were in that stack frame. If the
current scope is changed to a non-active stack frame, the register values will be what
are current in the program. Note that not all registers are saved in every procedure.
This may result in some registers having values left over from the preceding stack
frame.

Output

This example output shows all registers.

ICODE

The ICODE command displays TNS/R native instructions.

RISC instructions from a previous source line are annotated with a “-” and RISC
instructions from proceeding lines are annotated with a “+”. Lines containing RISC
instructions also contain the source file line number that the instruction is for.

-PROGRAM-DISPLAY REGISTER ALL

 $PC: 1879048880 $HI: 926 $LO: 3976303904 VFP: 1342177056

 $0 0 $AT: 134217732 $VO: 0 $V1: 1
 $4: $A0 0 $A1 0 $A2 134230564 $A3: 92
 $8: $T0 134230560 $T1 4 $T2 66 $T3 1879082720
$12: $T4 65043 $T5 262144 $T6 0 $T7 0
$16: $S0 4294967295 $S1 4294967295 $S2 4294967295 $S3 4294967295
$20: $S4 4294967295 $S5 4294967295 $S6 4294967295 $S7 4294967295
$24: $T8 134230656 $T9 2 $K0 2803083027 $K1 2803083027
$28: $GP 134254384 $SP 1342177016 $FP 4294967295 $RA 1879082720

-PROGRAM-ICODE AT #PROC FOR 3 STATEMENTS

 #10
 10.000 %h700002B0: addiu $sp,$sp, -32
 10.000 %h700002B4: sw $4,32($sp)
 10.000 %h700002B8: sw $5,36($sp)
 #17
 17.000 %h700002BC: lw $15,36($sp)
 17.000 %h700002C0: lw $14,32($sp)
 - 10.000 %h700002B4: sw $6,40($sp)
 17.000 %h700002C8: lw $25,40($sp)
 - 10.000 %h700002CC: sw $7,44($sp)
 17.000 %h700002D0: lw $9,44($sp)
 17.000 %h700002D4: add $24,$14,$15
 + 18.000 %h700002D8: sw $11,$48($sp)
 17.000 %h700002DC: add $8,$24,$25
 - 10.000 %h700002E0: sw $31,28$sp)
 17.000 %h700002E4: add $10,$8,$9
Inspect Manual—429164-006
17-7

Using Inspect With TNS/R Native Programs INFO IDENTIFIER
INFO IDENTIFIER

The INFO IDENTIFIER command displays information about TNS/R native symbols.
Relevant information includes: parameters and local variables will be relative to the
virtual frame pointer (VFP), not the L register, and register based variables will display
the RISC register name.

INFO OBJECTFILE

The INFO OBJECTFILE command displays information from TNS/R native object files.

Output

This output template shows the information of the INFO OBJECTFILE command
displays.

If the filename parameter is omitted, Inspect will display information about all object
files used by the current process (user code plus all libraries plus all system files).
Items labeled with “*1” apply only to TNS object files, items with “*2” apply only to

 17.000 %h700002E8: lw $10,16($gp)
 #18
 18.000 %h700002EC: move $5,$15
 18.000 %h700002F0: move $4,$14
 18.000 %h700002F4: move $6,$15
 18.000 %h700002F8: move $7,$9
 18.000 %h700002FC: jal 0x70000290
 18.000 %h70000300: sw $11,$16($sp)
-PROGRAM-

[Library | Program]Object File: filename

 General Information

[BINDER Region: YES | NO] *1
[BINDER Timestamp: timestamp] *1
[NLD Timestamp: timestamp] *3
[Data Pages: integer] *1
 Debugger: DEBUG | INSPECT
 INSPECT Region: YES | NO
 System Type: GUARDIAN | OSS
 Process Subtype: integer
 Program File Segment: integer WORDS
 Highrequesters: ON | OFF
 Runnamed: ON | OFF
 Highpin: ON | OFF
 Saveabend: ON | OFF
 SRL Name: name] *4
 Segments: integer] *1
 Target: target] *1

[Accelerator Information] *2
[]*2
[Accelerated Execution: ENABLED | DISABLED] *2
[Optimization: PROCDEBUG | STMTDEBUG | UNKNOWN] *2
[Global Options: accelerator options] *2
[Timestamp: timestamp] *2
[Version: timestamp] *2
Inspect Manual—429164-006
17-8

Using Inspect With TNS/R Native Programs INFO SAVEFILE
accelerated object files, items with “*3” apply only to TNS/R native object files, and
items with “*4” apply only to native SRL object files.

INFO SAVEFILE

The INFO SAVEFILE command displays information about save files. Save files can
be located within the Guardian file system, or the OSS file system. The output displays
new information related to SRLs and native processes.

Output

The INFO SAVEFILE command produces output of the following form:

Library information will be repeated for each library used by the process. Items
marked with “*1” are mutually exclusive (only one will be displayed) and will only be
displayed if the process terminated due to a trap (or signal if a TNS/R native process),
items marked with “*2” are for OSS processes only.

INFO SCOPE

The INFO SCOPE command includes information about the level the scope was
compiled with. This will only be displayed for native code scopes. Items labelled with
“*1” are only present for TNS/R native code scopes.

Save File: savefile name

[Cause: COMMAND | ABEND | SIGNAL]
 Creator: CRUNCH | DMON | INSPECT
 Creation Timestamp: timestamp
 Creator's User ID: userid
 Guardian Version: Lnn
[Trap Number: integer] *1
[Signal Number: integer] *1
[Wait Status: integer] *2
 Processor: family
 Program File: filename
 Program Binder Timestamp: timestamp
 Program Modification Timestamp: timestamp
 System: name (number)
[Truncated File Info: YES]
[Truncated Segment Info: YES]

[Library Information]
[Library File: filename]
[Library Binder Timestamp: timestamp]
[Library Modification Timestamp: timestamp]
Inspect Manual—429164-006
17-9

Using Inspect With TNS/R Native Programs INFO SIGNALS
Output

INFO SIGNALS

The accepted syntax of the INFO SIGNALS command has not changed. The
command will no longer be restricted to OSS processes, and the output will change to
accommodate a 128-bit signal mask. The signal mask will be separated into four 32-
bit numbers.

Output

The output template shows the information the INFO SIGNAL command displays
without the DETAIL clause. Information on each signal is split across two lines.

LIST PROGRAM

The accepted syntax of the LIST PROGRAM command has not changed, but the
information displayed will. The detailed output will include the filename of all libraries
used by this process.

Example

This example shows the previous output type.

Scope Name: name
Source File: file
Modification timestamp: timestamp
Compilation timestamp: timestamp
Language: lang
Type: CODE
Base: integer
Entry: integer
Length: integer words
[Optimization level: integer] *1

-ETEST-INFO SIGNAL SIGFPE
Signal
 Handler Mask Flags
SIGFPE(8)
 CRE_TRAP_HANDLER_ (0 0 0 0) 0

-PROGRAM-LIST PROGRAM 1, DETAIL
Name: a.out
Number: 1
 General Information

 CPU,PIN: 8,160
[OSS PID: 13406]*1
 GUARDIAN Version: D20
 Instruction Set: TNS/R
 Location: #main.#5
 Processor: TNS/R (CLX)

Inspect Manual—429164-006
17-10

Using Inspect With TNS/R Native Programs MODIFY SIGNALS
Fields labelled with a “*1” are listed only for OSS programs. Fields marked with a “*2”
are listed only for programs that use libraries. A program may use zero or more
libraries.

Usage Consideration

Location strings and program names that would extend beyond the last column are
broken at the last column and listed in the next line beginning at the starting column of
the Location field, or the Program Name field respectively.

MODIFY SIGNALS

The MODIFY SIGNALS command supports native NSK processes. Also, the action of
SIG_DEBUG will be added to specify that when a signal is delivered, the debugger is
to be invoked.

SELECT PROGRAM

The SELECT PROGRAM command allows multiple library files to be specified using
the SRL clause.

SOURCE ICODE

The SOURCE ICODE command displays native RISC instructions. Inspect displays a
minus (“-”) character next to RISC instructions which are from previous source lines
and a plus (“+”) next to RISC instructions which are from subsequent lines. Lines
containing RISC instructions also contain the source file line number that the
instruction is for.

 Program File: /usr/people/paul/bin/a.out
[Libraries: /usr/lib/libc.a]*2
[/usr/lib/libil8n.c]*2
 State: HOLD
 System: \CUBS (175)
 Type: TNS/R

 INSPECT Information

 ABEND Breakpoint: NO
 Code Breakpoints: 1
 Data Breakpoints: 0
 Source System: None
 STOP Breakpoint: NO
Inspect Manual—429164-006
17-11

Using Inspect With TNS/R Native Programs TRACE REGISTERS
 TRACE REGISTERS

The TRACE REGISTERS command displays TNS/R frames. For TNS/R frames,
Inspect displays the PC register in the normal Inspect form as a scope name and
offset. Inspect also displays the virtual frame pointer (VFP) for that frame.

Debugging at the TNS/R Native Machine Level
Inspect provides some functionality for examining the TNS/R machine state when
debugging native programs. For more information about debugging at the TNS/R
native machine level, see Section 15, Using Inspect on a TNS/R System, and the
Debug Manual.

-PROG-SOURCE ICODE
 #3.1
 #4 int global_1;
 #4.1 long global_2;
 #4.2
1 *#5 main()
 #6 {
 #7 int a;
 #8 short b;
 #9
 #5 00000000 BREAK INSPECT OCT
 #5 00000004 SW ra,20(sp)

 #10 a = 13406544;
 #10 00000008 LUI t6,0xCC
 #10 0000000C ORI t6,t6,0x9150
 #10 00000010 SW t6,28(sp)
 #11
 #12 printf("Hello World\n");
 #12 00000014 LUI a0,0x800
 #12 00000018 ADDIU a0,a0,0
 #12 0000001C JAL 0x760E0940
 #12 00000020 NOP

 #13 if (errno)
 #13 00000024 LUI t7,0x5800
 #13 00000028 LW t7,72(t7)
 #13 0000002C NOP

 #13 00000030 BEQ t7,$0,0x700003D0
 #13 00000034 NOP

 #13.1 b = 88;
 #13.1 00000038 LI t8,88
 #13.1 000003C SH t8,26(sp)

 #14 }
 #14 00000040 OR v0,$0,$0
 #14 00000044 BEQ $0,$0,0x700003DC
 #14 00000048 NOP
 #14 0000004C LW ra,20(sp)
 #14 00000048 NOP
 #14 0000004C LW ra,20(sp)
 #14 00000050 NOP
 #14 00000054 JR ra
 #14 00000058 ADDIU sp,sp,32
Inspect Manual—429164-006
17-12

Using Inspect With TNS/R Native Programs Examples
Examples

1. Translating Machine Addresses into Procedure names

Inspect can be used to convert machine level TNS/R code addresses into
procedure names. The following example displays the RISC $PC register as TYPE
LOCATION. The output indicates that the current value of the $PC register is at
procedure #M statement 2, line number 34 in source file
\SYS.$VOL.SUBVOL.FILE, and at hexadecimal offset F.

The following example uses an arbitrary code address instead of the $PC register.

This can be useful if you want to determine where a TNS/R JAL instruction will
jump to.

2. Compiling at Optimization Level 1

The following source code has been compiled at optimization 1.

Inspect emits warning 198 at the first statement of the program, which indicates
that an optimization has occurred on this statement. The SOURCE ICODE and
INFO LOCATION commands can be used to determine the effects.

-PROG-DISPLAY REGISTER $PC TYPE LOCATION
REGISTER $PC = #M.2, #M.#34(\SYS.$VOL.SUBVOL.FILE), #M + %HFI

-PROG-DISPLAY VALUE %H70000390 TYPE LOCATION
#A.1, #A.#23(\SYS.$VOL.SUBVOL.FILE), #A + %H0I

-PROG-SOURCE ICODE FOR 1 STATEMENT
 *#38.1 CALL B (Def^1+1, Local^1);
 #38.1 00000080 LI a0,11
 #38.1 00000084 JAL 0x70000560
 #38.1 00000088 ADDIU a1,sp,62

-PROG-DISPLAY VALUE %h70000560 TYPE LOCATION
 #B.1, #B.#75(\SYS.$VOL.SUBVOL.FILE), #B + %H0I

#28 PROC M MAIN;
#29 BEGIN
#30 INT Local^1;
#31 INT Local^2;
#32 INT Local^3;
#32.01
#32.1 Local^1 := Lit^1 + 60;
#33 Local^1 := Local^1 / 2;
#34 CALL A (Def^1, Local^2);
#36 Local^1 := (Def^1*6) / 2;
#38 Local^3 := Local^1 + Local^2;
#38.1 CALL A (Def^1+1, Local^1);
#40 END;
Inspect Manual—429164-006
17-13

Using Inspect With TNS/R Native Programs Examples
This example illustrates that two instructions have been moved into statement #33
from the prolog code at statement #28. The same is true for statement #32.1.
The INFO LOCATION command can be used to display information about the
statements of a procedure.

This example illustrates that statements 1 and 3 have been affected by some type
of compiler optimization. Inspect will emit warning 198 whenever it encounters one
of these statements.

Contrast the previous output with the same procedure compiled at optimization 0.

$VOL SUBVOL 61> RUND PROG
INSPECT - Symbolic Debugger - T9673D40 - (29JUL03) System \SYS
Copyright Tandem Computers Incorporated 1983, 1985-1995
INSPECT
175,09,00207 PROG #M.#33(FILE)
** Inspect warning 198 ** Results might be unexpected due to optimization.
Executing command file $VOL.SUBVOL.INSPCSTM

-PROG-SOURCE ICODE FOR 2 STATEMENTS
 *#33 Local^1 := Local^1 / 2;
 #33 00000000 LI t7,80
 #33 00000000 LI t7,80
 #28 - 00000004 ADDIU sp,sp,-64
 #32.1 - 00000008 LI t6,160
 #28 - 0000000C SW ra,52(sp)
 #32.1 - 00000010 SH t6,62(sp)
 #33 00000014 LI at,0x8000
 #33 00000018 SLT at,t7,at
 #33 0000001C BNE at,$0,0x70000314
 #33 00000020 NOP
 #33 00000024 BREAK BOUNDS
 #33 00000028 SLTI at,t7,-32768
 #33 0000002C BEQ at,$0,0x70000324
 #33 00000030 NOP
 #33 00000034 BREAK BOUNDS
 #33 00000038 SH t7,62(sp)

 #34 CALL A (Def^1, Local^2);
 #34 0000003C LI a0,10
 #34 00000040 JAL 0x70000220
 #34 00000044 ADDIU a1,sp,60

-PROGC-INFO LOCATION *
Scope: M

Compile File: \SYS.$VOL.SUBVOL.FILE Modified:
1995-08-03 17:13:42.00
 Byte
Num Line Offset Optimize Verb
1 #33 %0 Merged
2 #34 %74
3 #38 %110 Merged
4 #38.1 %200
5 #40 %214
Inspect Manual—429164-006
17-14

Using Inspect With TNS/R Native Programs Examples
Statements #28, #32.1, and #36 have not been combined with neighboring
statements.

3. Support of Register-based Variables

The following source compiled at optimization 1, illustrates how Inspect supports
register-based variables.

The INFO IDENTIFIER command provides information about a symbol.

-EPTAL2-INFO LOCATION *
Scope: M

Compile File: \SYS.$VOL.SUBVOL.FILE Modified:
1995-08-03 17:13:42.00
 Byte
Num Line Offset Optimize Verb
1 #28 %0
2 #32.1 %10
3 #33 %20
4 #34 %120
5 #36 %140
6 #38 %150
7 #38.1 %240
8 #40 %260

#16 PROC A(Param^1, Param^2);
#17 INT Param^1;
#18 INT .Param^2;
#19 BEGIN
#20 INT Local^1;
#21
#22 Local^1 := 15;
#23 IF Param^1 = Def^1 THEN
#24 Param^2 := Lit^1
#25 ELSE IF Param^1 = Def^1 + 1 THEN
#25.1 BEGIN
#26 Local^1 := Local^1 - 15;
#26.001 Param^2 := Param^2 * 31000;
#26.01 END;
#26.1 END;
Inspect Manual—429164-006
17-15

Using Inspect With TNS/R Native Programs Examples
The output above illustrates that parameter Param^1 is stored in register $4 or $A0
and that parameter Param^2 is stored in register $5 or $A1 and is indirect. The
Inspect DISPLAY and DISPLAY REGISTER commands can be used to display the
contents of these variables.

4. Using a Signal Handler to Control Program Flow

Inspect allows you to change a signal handler to several values, including
SIG_DEBUG which can be used to gain control of a program when a signal is
delivered. For example, if a TNS/R native application is receiving an arithmetic
overflow trap (signal SIGFPE), change the signal handler for SIGFPE and rerun
the program. For example:

-PROG-INFO IDENTIFIER Param^1
PARAM^1: VARIABLE
storage^info:
TYPE=BIN SIGN, ELEMENT LEN=16 BITS, UNIT SIZE=1
ELEMENTS
access^info:
REGISTER 4 ($A0)

-PROG-INFO IDENTIFIER Param^2
PARAM^2: VARIABLE
storage^info:
TYPE=BIN SIGN, ELEMENT LEN=16 BITS, UNIT SIZE=1
ELEMENTS access^info:
REGISTER 5 ($A1)X

-PROG-DISPLAY Param^1
PARAM^1 = 10
-PROG-DISPLAY REGISTER $4
REGISTER $4 = 10

-PROG-DISPLAY Param^2
PARAM^2 = 99
-PROG-DISPLAY REGISTER $5
REGISTER $5 = 1342177068
-PROG-DISPLAY (1342177068) TYPE INT
99
Inspect Manual—429164-006
17-16

Using Inspect With TNS/R Native Programs Examples
Statement 26.001 in procedure A is the location of the arithmetic overflow.

-PROG-MODIFY SIGNAL SIGFPE
Signal SIGFPE(8)
Handler = SIG_DFL := SIG_DEBUG
Mask = 0 0 0 0 :=
Flags = 0 :=

-PROG-INFO SIGNAL SIGFPE, DETAIL

 Signal:SIGFPE(8)
 Handler:SIG_DEBUG
 Mask:0 0 0 0
 Flags:0

-PROG-RESUME
INSPECT SIGNAL %10 - Entered debug due to non
deferrable signal
241,00,00274 PROG #A.#26.001(FILE) + %H10I
-PROG-TRACE
Num Lang Location
 0 TAL #A.#26.001(FILE) + %HFI
 1 TAL #M.#40(FILE)
-PROG-INFO SIGNAL %10, DETAIL

 Signal:SIGFPE(8)
 Handler:SIG_DEBUG
 Mask:0 0 0 0
 Flags:0
Inspect Manual—429164-006
17-17

Using Inspect With TNS/R Native Programs Examples
Inspect Manual—429164-006
17-18

18
Using Inspect on a TNS/E System

 Capabilities of Inspect on TNS/E Systems

 Acceleration on TNS/E Systems on page 18-2

 Debugger Selection on TNS/E Systems on page 18-4

 Using Inspect to Debug TNS Programs on TNS/E Systems on page 18-8

Capabilities of Inspect on TNS/E Systems

What Inspect Does

On a TNS/E system, you can use Inspect to debug the following:

 TNS processes emulated on a TNS/E system. Emulated TNS processes are TNS
processes that either:

 Were accelerated beforehand with the TNS Object Code Accelerator (OCA)
and are running in TNS accelerated mode

 Are being interpreted and are running in TNS interpreted mode

 Snapshots of emulated TNS processes generated on either a TNS/R or TNS/E
system

 Snapshots of TNS/R native processes

What Inspect Does Not Do

Inspect cannot be used to debug TNS/E native processes or TNS/E native snapshots
on a TNS/E system.

New Features

No new features have been added to Inspect for deployment on TNS/E systems.

Inspect behaves essentially the same on a TNS/E system as on a TNS/R system, with
a few exceptions and restrictions as noted in Table 18-2 on page 18-8. Restrictions are
also described in the individual command descriptions in Section 6, High-Level Inspect
Commands.

Languages Supported

Programming languages supported by Inspect on TNS/E systems include TNS Fortran,
Screen COBOL, TNS COBOL85, Pascal, TAL, and TNS C/C++.
Inspect Manual—429164-006
18-1

Using Inspect on a TNS/E System Acceleration on TNS/E Systems
Acceleration on TNS/E Systems
TNS program files that have been accelerated with the TNS Object Code Accelerator
(OCA) run in TNS accelerated mode on TNS/E systems. If a TNS program file has not
been accelerated, it will run in TNS interpreted mode. These two execution modes are
further described in the following paragraphs.

TNS Accelerated Mode

 The TNS Object Code Accelerator (OCA) translates TNS instructions to equivalent
Itanium instructions. OCA augments a type-100 TNS object file with a new region
containing the Itanium instructions (the Itanium region, shown in Figure 18-1,
Acceleration of TNS Object Code on TNS/E Systems, on page 18-3).

TNS object files that have been optimized by OCA are called accelerated object files,
or accelerated program files if they include a main procedure. Programs that have
been accelerated run in TNS accelerated mode, which is significantly faster than TNS
interpreted mode. You must apply OCA once to the object file before run time, or the
TNS program runs in TNS interpreted mode, which is considerably slower.

TNS Interpreted Mode

In TNS interpreted mode, individual TNS 16-bit stack machine instructions are
repeatedly decoded at run time and simulated one at a time, using only the in-memory
image of TNS code segments (ignoring any optional file augmentation).

TNS interpreted mode interoperates with TNS accelerated mode, in which entire
programs or libraries have been previously translated into equivalent but optimized
sequences of TNS/E machine instructions.

Programs switch automatically between execution modes when branching from
untranslated object files to OCA-augmented object files, and vice versa. For example,
a program file might run in accelerated mode but a user library might be interpreted.

Interpreted TNS mode is used when executing TNS object files that could not be
accelerated. It might also be used for brief periods with accelerated programs, when
the TNS code sequence could not be translated.
Inspect Manual—429164-006
18-2

Using Inspect on a TNS/E System Accelerating TNS Processes
Accelerating TNS Processes

Figure 18-1 illustrates acceleration on a TNS/E system by both the TNS Object Code
Accelerator (OCA) and the TNS/R accelerator, Axcel.

You can run OCA on a TNS object file that has already been accelerated using the
TNS/R accelerator (Axcel).

You can also accelerate a TNS object file using both OCA and Axcel in any order. For
example, you can run OCA on a TNS object file that has previously been accelerated
for a TNS/R system using the Axcel accelerator. And you can run Axcel on a TNS
object file that has been previously accelerated for a TNS/E system using OCA.

The result of this double acceleration (shown in Figure 18-1) is a doubly augmented
object file that contains three code areas:

 TNS object code generated by a TNS compiler

 Accelerated (RISC) object code generated by Axcel

 Accelerated Itanium object code generated by OCA

A doubly augmented file can run in accelerated mode on both TNS/R and TNS/E
machines.

For more information about using OCA and about running and debugging accelerated
programs, see:

 H-Series Application Migration Guide

 Object Code Accelerator (OCA) Manual

Figure 18-1. Acceleration of TNS Object Code on TNS/E Systems

TNS
Compiler

TNS
Object Code

TNS
Compiler

TNS
Object Code

Axcel OCA
TNS

Object Code

TNS
Object Code

vst1801.vsd

Accelerated
Object Code
(RISC)

Accelerated
Object Code
(Itanium)

Accelerated
Object Code
(RISC)

TNS/R Acceleration TNS/E Acceleration
Inspect Manual—429164-006
18-3

Using Inspect on a TNS/E System Debugger Selection on TNS/E Systems
Debugger Selection on TNS/E Systems
Debugger selection is determined by the debugging attributes of a process. The rules
for debugger selection differ according to system type (TNS/R or TNS/E). The rules
followed on a TNS/R system are different from the rules on a TNS/E system. In
addition, the TNS/R system debugger is Debug, but the system debugger on TNS/E
systems is Native Inspect.

When a debugger is invoked on a TNS/E system, the system software selects the
debugger according to the rules of precedence described in Table 18-1.

Considerations About Debugger Selection

 Visual Inspect can only be selected when you have already established a matching
Visual Inspect client connection.

 If the Inspect subsystem is not able to find a suitable debugger (either Visual
Inspect or Inspect), the debugger selected is the TNS/E system debugger, Native
Inspect, which is not part of the Inspect subsystem.

 Native Inspect has extremely limited support for debugging TNS processes.
Therefore, Inspect is the preferred debugger for TNS processes even if INSPECT
is set to OFF.

 COBOL programs on a TNS/E system must be debugged using either:

 Inspect for TNS COBOL85 programs

 Visual Inspect for either TNS COBOL85 or TNS/E COBOL programs

Table 18-1 illustrates that on a TNS/E system, Inspect is invoked as the chosen
debugger to debug a TNS emulated process in only two cases -- when the INSPECT
attribute is ON and Visual Inspect is not available, or when INSPECT is OFF (also see
Figure 18-2 on page 18-6).

For background information about the debugging attributes of a process, see The
Debugging Attributes of a Process on page 4-4.

Table 18-1. Debugger Precedence on TNS/E Systems

Process Type INSPECT Attribute Debugger Precedence

TNS INSPECT ON Visual Inspect, Inspect, Native Inspect

TNS INSPECT OFF Inspect, Native Inspect

TNS/E Native INSPECT ON Visual Inspect, Native Inspect

TNS/E Native INSPECT OFF Native Inspect
Inspect Manual—429164-006
18-4

Using Inspect on a TNS/E System Debugger Selection on TNS/E Systems
Debugger Selection Criteria

In the flowcharts shown in both Figure 18-2 on page 18-6, and Figure 18-3 on
page 18-7, debugger selection criteria are defined:

Criteria Meaning

INSPECT attribute on? The setting for the INSPECT attribute is set ON for the
process you will debug (set with TACL, the compiler, or
the linker).

Visual Inspect session? You have started Visual Inspect and have connected to
the NonStop host on which the process to be debugged
will run. The user ID of the process must match the user
ID that was used to log on to Visual Inspect.

Inspect available? The Inspect subsystem (IMON, DMON, $DMnn) is
running, and the Inspect command-line interface is
available.
Inspect Manual—429164-006
18-5

Using Inspect on a TNS/E System Debugger Selection on TNS/E Systems
Figure 18-2 illustrates the debugger selection process for an emulated TNS process on
a TNS/E system. Figure 18-2 demonstrates that to debug a TNS process on a TNS/E
system, you can use either Visual Inspect (the preferred debugger) or Inspect.

Note that Native Inspect can in some cases be selected as the debugger for a TNS
process on TNS/E. Native Inspect provides very limited debugging for TNS processes,
but can provide views of the TNS/E instructions and registers for TNS processes
accelerated with OCA. In addition, only Inspect or Visual Inspect can be used to debug
COBOL programs on a TNS/E system.

Figure 18-2. Debugger Selection for a TNS Process on a TNS/E System

Select
Native Inspect

End

Visual
Inspect

session?

Select
Visual Inspect

Inspect
available?

Select
Inspect

Yes Yes

No No

VST01802.vsd

Emulated TNS
Process
Inspect Manual—429164-006
18-6

Using Inspect on a TNS/E System Debugger Selection on TNS/E Systems
Figure 18-3 illustrates the debugger selection process for a native TNS/E program file
on a TNS/E system.

Note that to debug a TNS/E native process, you must use either Visual Inspect or
Native Inspect; you cannot use Inspect to debug a TNS/E native process. In addition,
only Inspect or Visual Inspect can be used to debug COBOL programs on a TNS/E
system.

Figure 18-3. Debugger Selection for a TNS/E Native Process

TNS/E Native
Process

INSPECT
attribute

on?

Select
Native Inspect

End

Visual
Inspect

session?

Select
Visual Inspect

Yes

No

Yes

No

VST1803.vsd
Inspect Manual—429164-006
18-7

Using Inspect on a TNS/E System Using Inspect to Debug TNS Programs on TNS/E
Systems
Using Inspect to Debug TNS Programs on
TNS/E Systems

Debugging TNS programs on TNS/E systems is virtually the same as debugging TNS
programs on TNS/R systems. The capabilities of Inspect are the same on the two
platforms, except that a few Inspect commands have the limitations listed in
Table 18-2.

Much of the information in Section 16, Using Inspect With Accelerated Programs on
TNS/R Systems also applies to debugging TNS programs on TNS/E systems, with the
exceptions noted in Table 18-2.

In general, descriptions throughout this manual that pertain to debugging accelerated
programs on TNS/R systems also apply to debugging TNS programs on TNS/E
systems.

Table 18-2. Considerations for Inspect Commands on TNS/E Systems

Command Limitation on TNS/E Systems

ADD PROGRAM You cannot add a TNS/E process or a TNS/E snapshot to
an Inspect debugging session on a TNS/E system.

DISPLAY REGISTER BOTH TNS/E registers cannot be viewed using Inspect.
Inspect displays only the TNS registers on TNS/E systems.

ICODE

ICODE BOTH

The ICODE output for an OCA process will show safe-point
annotations, but the ICODE output for a snapshot of an
OCA process will not show safe-point annotations. There is
no display of TNS/E ICODE.

Inspect does not display Itanium processor instruction
codes.

INFO OBJECTFILE Inspect does not read TNS/E native object files.

INFO SAVEFILE Inspect does not read TNS/E snapshot files.

SOURCE Shows register-exact point and deleted statement
annotations for an OCA process but not for an OCA
snapshot.

TRACE Does not show any information about TNS/E native frames.
Inspect Manual—429164-006
18-8

A Error and Warning Messages

Inspect scans command lists command by command and notifies you of an error or
potential error by issuing an error or warning message:

 An error message indicates that Inspect could not execute the command. When
Inspect generates an error message, it disregards the command that caused the
error and any commands that followed it in the command list.

 A warning message indicates that Inspect was able to execute the command, but
that the user should be made aware of some detected condition. When Inspect
generates a warning message, it completes the command that caused the warning
and continues to the next command in the command list.

Fatal Errors During Session Start-Up
If IMON encounters a system error that prohibits it from creating an Inspect process, it
reports a fatal error and does not start an Inspect session. For example, if the
intended swap volume for the Inspect process is full, the operating system reports a
system error to IMON; IMON then reports a fatal error.

If Inspect encounters a fatal error, it will issue an internal stack trace and then ABEND.
On TNS/R systems, you must stop any processes you were debugging. On TNS/E
systems, the process will be activated. Report any fatal errors to your HP
representative.

HELP Availability
Error and warning message descriptions are available in online help. To access the
message descriptions from online help, enter “HELP ERROR” followed by the error or
warning number.

1

The sequence of input characters does not result in a valid Inspect command. Inspect
redisplays the input and places a caret (^) under the point where it detected the error.

Note. The file INSPMSG must be located in the same volume and subvolume as Inspect in
order for Inspect to access the textual messages it contains. If this file cannot be located,
Inspect issues only a number associated with a particular error or warning. No message
appears to help you diagnose the cause of the error.

Invalid syntax
Inspect Manual—429164-006
A-1

Error and Warning Messages 2
2

While scanning for the remainder of a continuation line, a line following a line ending
with a “&,” Inspect encountered the end-of-file. This generally occurs only when
Inspect is reading commands from INSPLOCL, INSPCSTM, or an OBEY file.
However, Inspect also generates this message if you press CTRL/Y when entering a
continuation line.

3

This is a warning. You attempted to display registers in a program while in the
STOP/ABEND state.

4

The command list exceeded 512 characters after Inspect expanded any aliases it
contained.

5

The command list specified an invalid integer.

6

A string specified in the command list is missing its closing delimiter (apostrophe or
quotation mark).

7

The command list included an identifier longer than the Inspect maximum of 31
characters.

Unterminated continuation line

Registers R0-R7 and E are not valid in the STOP state

Effective input record is too long

Integer conversion error

Unterminated string

Identifier too long
Inspect Manual—429164-006
A-2

Error and Warning Messages 8
8

The given file name does not conform to syntax conventions.

9

A volume or subvolume name specified in the command list is too long (longer than
eight characters), contains an invalid character, or specifies a volume that does not
exist.

10

A system name specified in the command list is too long, contains an invalid character,
or specifies a system that does not exist.

11

A number specified in the command exceeds the allowed range. For example, there is
a well-defined limit for an input value used with a TEMP clause, bit-field or segment ID.

12

The OBEY command would cause nesting of OBEY commands beyond four levels,
which is the maximum Inspect supports.

13

This is a warning. You attempted to display registers in a program while in the STOP
state.

Invalid file name file-name

Invalid Subvolume name

Invalid System name

Numeric range exceeded

OBEY nesting exceeds maximum

Registers are not valid in the STOP state
Inspect Manual—429164-006
A-3

Error and Warning Messages 14
14

The OBEY file specified in the command list is already in use as an input file or has a
file code of 100.

15

The LOG file specified in the command list is already in use as an input file or as an
OUT file.

16

The SET RADIX command specified a radix other than DECIMAL, HEXADECIMAL, or
OCTAL.

17

This is a warning. When the location displayed is not a memory-exact point, Inspect
rounds the starting location to the next memory-exact point.

18

You attempted a command on a operation valid only on OSS systems.

19

The specified object file does not have the file code 100, which signifies a program file.

Invalid OBEY file - ignored

Invalid LOG file - ignored

Invalid RADIX value

Starting Location is not a memory-exact point:
listing starts at next memory-exact point

Operation allowed on OSS systems only

File is not an object file: file-name
Inspect Manual—429164-006
A-4

Error and Warning Messages 21
21

The current program is a save file, and the requested operation is not allowed on a
save file. When examining save files, you can display data, but you cannot modify
data or use execution control commands.

22

An address specified in the command list is not a valid address in the current program.

23

This is a warning. You attempted to display a specific register in a program while in the
STOP/ABEND state.

24

The command list specified a process that is no longer under the control of the current
Inspect session.

25

The requested operation is not allowed for security reasons. For example, data and
registers may not be modified while a process is executing system code.

26

A data address specified in the command list is not a valid data address in the current
program.

Invalid operation on saved program

Invalid address

All TNS registers are out of date

Non-existent program

Security error

Invalid data address
Inspect Manual—429164-006
A-5

Error and Warning Messages 27
27

A code address specified in the command list is not a valid code address in the current
program.

28

The requested operation is not valid given the execution state of the current program.
For example, the MODIFY command is invalid when the current program is in the run
state.

29

An internal error occurred on a TCP process.

30

The Inspect process is unable to communicate with the DMON process in the
processor executing the requested program. You should end the current Inspect
session and start a new one.

31

Inspect is unable to communicate with the TCP process controlling with the requested
SCREEN COBOL program. You should end the current Inspect session and start a
new one.

32

The command list specified a process that has stopped, or the program name is not
properly specified.

Invalid code address

Request invalid in current state

TCP internal error

DMON not open

TCP not open.

Program not found
Inspect Manual—429164-006
A-6

Error and Warning Messages 33
33

The requested operation is not supported for SCREEN COBOL programs.

34

The requested operation is not supported on a NonStop 1+ system.

35

Inspect could not find the specified scope unit in the current program.

36

The program file does not include symbols for the specified scope unit.

38

A breakpoint already exists at the specified break location. When using low-level
Inspect, you must clear a breakpoint before you reset it.

39

The address specified is not in the range of valid addresses in the segment.

40

An extended data segment specified in the command list has not been allocated by the
current program.

Operation not supported for SCOBOL

Invalid operation on a NonStop I+ system

Proc undefined: scope-unit

No symbols available in scope: scope-unit

Breakpoint already set

Address out of bounds

Segment not allocated
Inspect Manual—429164-006
A-7

Error and Warning Messages 41
41

The process specified for debugging does not have the Inspect attribute set.

42

The BREAK command specified the BACKUP clause, and the CPU executing the
backup process has no active DMON process. Contact your system manager or
system operator.

43

The BREAK command included the BACKUP option, but the current program has no
backup process.

44

The command specified requires an active program.

45

The requested operation is not valid on the current program, possibly due to the type of
the program or its state.

46

Inspect cannot create the specified breakpoint because the breakpoint table for the
CPU or TCP executing the current program is full. For CPUs, the maximum number of
breakpoints is set at system generation. For TCPs, the maximum number of
breakpoints is 20.

Inspect not enabled for process

Required DMON not active

No backup process active

No active program

Invalid request

Breakpoint table full
Inspect Manual—429164-006
A-8

Error and Warning Messages 47
47

The specified argument to the TERM command is not a Guardian device.

48

The file specified in the DELETE SOURCE OPEN command refers to a source file that
is not open. Use the LIST SOURCE OPEN command to display the list of open source
files.

49

Following this warning, Inspect displays the current timestamp and the recorded
timestamp. Both program files and source files can generate this warning:

 For program files, this warning indicates that the file's timestamp differs from the
timestamp recorded in the save file. Note that modifications to the program file
might invalidate the correspondence between the symbol information in the
program file and references to symbols in the save file.

 For source files, this warning indicates that the file's timestamp differs from the
timestamp recorded in the program file. Note that modifications to the source file
might invalidate the correspondence between code locations and source lines.

50

This error is emitted for commands entered on Guardian programs but intended for
OSS programs only, such as MODIFY or INFO SIGNAL.

51

If you use DISPLAY FORMAT in a command list, it must be the last command in the
list because Inspect interprets all text following the FORMAT (or FMT) keyword as the
format list.

Terminal must be a Guardian device

Requested file is not available file-name

Timestamp mismatch for file-name

Operation allowed only on OSS programs

Format string invalid
Inspect Manual—429164-006
A-9

Error and Warning Messages 52
52

The DISPLAY FORMAT specified a format longer than 24 lines, which is the maximum
that the FORMAT clause can display.

53

The command list specified a nonexistent instance of the given scope unit.

54

There is no help information available for the given topic.

55

A device other than a terminal was specified when a terminal was expected.

56

The TERM command was issued from a non-interactive source, such as an OBEY file.
The TERM command is valid only when entered interactively.

57

The specified signal is not a valid signal type.

58

You specified an incorrect range with the FOR clause of the SOURCE command. A
range of 0 or greater than 32767 is not valid.

Format data buffer overflow

No such instance of procedure on stack: scope-unit

No help available for topic

File is not a terminal

Invalid TERM command - ignored

Unknown signal: signal id

Value must be in the range 1 to 32767 inclusive
Inspect Manual—429164-006
A-10

Error and Warning Messages 59
59

The FORMATDATA procedure returned the reported error number. Refer to the
manual for interpretation of the error number.

60

An expression that in the command list contained an unknown identifier or caused an
overflow or type conflict.

61

Inspect could not find the specified identifier.

62

The file specified for use as a save file does not have the file code 130, which signifies
a save file.

63

The current program has been held at a system code location. For security reasons,
no data modification is allowed. A breakpoint may be placed at the first user code
location on the stack. When this breakpoint is reached, then the MODIFY command
may be reentered.

64

The MODIFY command specified a data location to be modified which cannot be
modified.

FORMATDATA conversion error: error-number

Expression evaluation error

Undefined variable: identifier

Save file code not 130: file-name

Modification is not allowed while in system code

Invalid target symbol for modify
Inspect Manual—429164-006
A-11

Error and Warning Messages 65
65

The specified file was expected to be a disk device.

66

The specified target data location in the MODIFY command does not contain as many
elements as are specified in the modify item list. Note that a subscript range may be
specified on the data location, indicating which elements of an array are to be modified.

67

The item specified as the target of a MODIFY command is a group-level item. Element
level items must be specified, or the WHOLE option used.

68

The current program is in the stop state. The requested operation is not allowed in the
stop state.

69

The current program is in the run state. The requested operation is not allowed in the
run state. Use the HOLD command to put the program into the hold state.

70

You attempted to select an unselectable data segment.

Not a disk file: file-name

Too many values for modify variable

Modify location must be element level

Invalid operation in stop state

Invalid operation in run state

Specified segment can not be selected
Inspect Manual—429164-006
A-12

Error and Warning Messages 72
72

For an inactive SCREEN COBOL program unit, Inspect will allow only references to
scope names with no offset and no paragraph or section name attached. A breakpoint
must be set at the beginning of the scope. When that breakpoint is reached, then
breakpoints may be set at offsets within the program unit.

73

A code offset specified results in an address outside the scope unit. Note that in high-
level Inspect the default radix is decimal and the default code unit is STATEMENTS.

74

This error might result when there is insufficient disk space for Inspect to allocate its
extended data segment; Inspect uses the same volume as the swap volume of the
initial process that requested Inspect services. Refer to the Guardian Procedure Errors
and Messages Manual.

75

A File System Error has occurred. Inspect will issue this error followed by the number.

76

The identifier reported has a variable size which evaluates to an invalid value.

77

The identifier reported was declared with one or more variables as its dimensions.
One of these variables is undefined or evaluated to an invalid value.

Inactive program unit reference may not contain offset

Offset specified exceeds locations in scope unit

Paging file error: file error message(nnn)
 ALLOCATESEGMENT error code nnn

File System Error

Invalid value for variable size item: identifier

Invalid value for variable dimension: identifier
Inspect Manual—429164-006
A-13

Error and Warning Messages 78
78

An identifier in a subscript expression is undefined or a specified lower bound is
greater than a specified upper bound.

79

The specified identifier was declared to have dimension bounds, but the subscript
value specified is outside these bounds.

80

The specified identifier was declared to be used with subscripts. Subscripts must be
added to the identifier reference in the command.

81

The specified identifier was declared to be used with fewer subscripts than appear in
the command. One or more of the subscripts should be removed.

82

The IMON process is of an incompatible version code. The number printed is the
version code. An Inspect version upgrade may be required.

83

The DMON process in the CPU executing the program is of an incompatible version
code. The number printed is the version code. An Inspect version upgrade may be
required.

Invalid subscript value(s) for variable: identifier

Subscript value outside of declared bounds: identifier

Required subscript missing: identifier

Too many subscripts for variable: identifier

Incompatible IMON version: version-code

Incompatible DMON version: version-code
Inspect Manual—429164-006
A-14

Error and Warning Messages 84
84

The TCP process is an incompatible version code. The number printed is the version
code. An Inspect version upgrade may be required.

85

The specified variable is local to a scope unit which is not currently active. No instance
of the scope unit appears in the call history. The TRACE command displays active
scope units.

87

A warning. The maximum number of lines which may be produced by a single
DISPLAY command with the FORMAT option is 24. This maximum was exceeded.

88

The object file specified contains conflicting internal data.

89

An invalid COPIES value was specified on the MODIFY command. The value must
not exceed 32767.

90

The save file specified contains an incompatible version code. The number printed is
the snapshot file version code. An Inspect version upgrade may be required.

Incompatible TCP version: version-code

Variable is local to inactive scope: identifier

Maximum lines exceeded for format output

Invalid object file: file-name

Invalid copy value on modify

Incompatible Save File version: version-code
Inspect Manual—429164-006
A-15

Error and Warning Messages 91
91

The DMON process has detected an incompatible version code. A DMON version
upgrade may be required.

92

A warning. The item being displayed has been truncated to 1014 bytes for the display.
The WHOLE option may be used to display the entire item.

93

The requested display will show instructions, but you entered a data location instead of
a code location.

94

A warning. The maximum length constant (string) allowed is 238 bytes. Characters
beyond this length have been truncated.

95

A warning. The maximum length string allowed is 250 bytes. Characters beyond this
length have been truncated.

96

A warning. The BREAK command specified a breakpoint requiring replacement of a
previously set breakpoint.

Incompatible Inspect version

Display item is truncated

Specified location is a data address

Maximum constant length (238 bytes) is exceeded. Value is
truncated.

Maximum string length (250 bytes) is exceeded. String is
truncated.

Previous breakpoint is replaced.
Inspect Manual—429164-006
A-16

Error and Warning Messages 98
98

The specified identifier must be qualified further to distinguish it from other identifiers of
the same name.

99

A warning. The specified TAL variable is declared as a local in the current procedure
and as a sublocal in the current subprocedure. The local variable is used. If access to
the sublocal is desired then the identifier must be qualified with the subprocedure
name.

100

The MODIFY command with the WHOLE option cannot specify a target data location
with a subscript range. Each element of the array must be modified by a separate
command.

101

The command preceding the indicator must be the last command in a command list.
The commands this applies to are RESUME, STEP, and interactive modify.

102

The INFO OPENS command specified the F option, but the current program does not
contain FORTRAN scope units.

Qualification required to resolve ambiguous reference:
identifier

Access is local (sublocal reference must be qualified):
identifier

Subscript range is not allowed in MODIFY WHOLE target
variable.

No commands can follow fix commands, RESUME, or STEP in a
command list

'F' option is valid only for Fortran programs
Inspect Manual—429164-006
A-17

Error and Warning Messages 103
103

The MODIFY command with a WHOLE option may not be interactive. The
modification string must be included in the command.

104

The TCP process for the current PATHWAY requester program has stopped and its
backup has taken over. All breakpoints in the program have been lost and must be
reset.

105

The listed program is removed from the Inspect program list. If the program was the
only program being debugged, then the Inspect process will stop. A likely cause of this
error is that the DMON process has been stopped or the processor has halted. If the
processor has not halted, then the program being debugged may still be running.

106

The indicated digit is not valid in the current input base.

107

BREAK command parameters may not be repeated in the command. The command is
ignored.

108

A warning. The operation required a conversion from an integer to string.

Modify string must be provided

TCP backup takeover. All requestor breakpoints must be
reentered.

DMON communication lost. Program is deleted: program-file

Invalid numeric digit for current input base

Break parameter is repeated in command

Integer to string conversion required
Inspect Manual—429164-006
A-18

Error and Warning Messages 109
109

A warning. A numeric string variable being displayed contains nonnumeric characters.
The displayed value is probably incorrect.

111

Inspect does not recognize the specified scope at the current location in the program.
For programs that are not SCREEN COBOL programs, you can use the MATCH
SCOPE command to list the scope names that match a given pattern.

113

You made a request that you do not have the authority to make. For example,
nonprivileged users cannot display or modify system data.

114

Certain Inspect commands, such as the SET PRIV MODE command, require that the
Inspect process have the user.ID 255,255.

115

In a saved program, some portions of the environment are not available. You
accessed one of these portions.

116

The line number you entered is not a valid line number.

Non-numeric character in numeric string

Scope undefined: scope-unit

Privilege is required for specified access

Super-super id is required for command

Data not accessible in a saved program

Invalid line number
Inspect Manual—429164-006
A-19

Error and Warning Messages 117
117

A warning. A line number specified as a code-location or data-location in a command
had no executable statement associated with it. The next executable statement begins
at line number line-number.

118

Inspect does not recognize the given line number for one of these reasons:

1. It is less than the first line number defined in the scope unit.

2. It is greater than the last line number defined in the scope unit.

3. It is in a source file other than the one containing the declaration of the scope unit.

120

Inspect cannot find a source file that you specified in the command list either as part of
a code location or as the parameter to DELETE SOURCE OPEN.

121

Inspect has encountered a trap at the given location; a stack trace usually follows this
message. Contact your Tandem representative.

122

For multiple code segment programs in low-level Inspect, you must indicate the code
segment in addition to the address for the scope unit. If the scope unit is not in the
code segment you specified, Inspect displays this error.

A subsequent line number is assumed: line-number

Line number is not recognized, try specifying source file
also: line-number

Source file is not recognized: file-name

Fatal Trap trap-number AT P = %nnnnnn IN space-id

Specified proc refers to a different code segment: space-id
Inspect Manual—429164-006
A-20

Error and Warning Messages 123
123

Inspect displays this warning message when you enter a TRACE command and
Inspect detects that a stack marker contains an impossible L register. Inspect can
detect when a stack is corrupt in a TNS program.

124

Inspect displays this message when you make a reference to a nonexistent line
number. The line number might be nonexistent because you modified the source file
during an edit session prior to debugging.

125

Inspect issues this error if you give the SOURCE command a scope unit name that
does not refer to a source file. A scope unit refers to the source file from which it is
compiled. If you change this source file to another type of file, say an object file,
Inspect displays this error.

126

Inspect displays this warning when you are using the SOURCE command to
repeatedly display blocks of source lines by hitting the RETURN key, and you reach
the end of the source file.

127

This warning is reported when you set a write or read/write breakpoint on a variable
that is less than 16 bits in size. When this is the case, memory access breakpoints will
be reported when the variable is accessed in addition to when the portions of the word
not containing the variable are accessed.

Unexpected frame data was encountered; stack is probably
corrupt

Line no longer exists: line-number

Not an Edit file: file-name

End-of-file on: file-name

Breakpoint will occur upon access to containing word
Inspect Manual—429164-006
A-21

Error and Warning Messages 128
128

In low-level Inspect, a display command using the table format exceeded the maximum
table size for the Inspect message buffer. Inspect truncated the table to the maximum
size.

129

The symbols cannot be accessed because Inspect detected an inconsistency in the
Inspect region of the object file. The object file was compiled with a compiler from a
release that is more recent than the release of the Inspect you are using (for example,
a C10 compiler and a C00 version of Inspect). Inspect defaults to the low-level mode
for this session. Use Inspect from the same release as the compiler used to compile
the object file.

130

An attempt was made to display an enumerated type for which the literal
corresponding to its value was not saved. The number of enumerated type literals
stored in older object file versions was limited.

131

Inspect encountered an invalid network volume name in a SOURCE command when a
SOURCE SYSTEM command was in effect. Inspect cannot retrieve the source file
from the remote system.

132

This is a warning. When a program has no active user library and you want to select
that program as the current program, the above warning is displayed.

Maximum table size exceeded. Table size truncated.

New object file format, symbols cannot be accessed.

Following value was too large, INSPECT cannot access
enumeration identifier

Volume name is too long to be used with a system
specification

Program has no active user library; Library file will
be used for static symbol access only
Inspect Manual—429164-006
A-22

Error and Warning Messages 133
133

If you specify a user library to use, as in SELECT PROGRAM, and the program does
not have a user library, subsequent commands will be rejected with the above error if
they involve locations from the new user library.

134

This error is reported when Inspect attempts to look up a procedure name and finds
that BINDER information has been stripped from the object file.

136

All available breakpoint numbers have been used. Inspect supports up to 99
breakpoints in each program. Remove any unneeded breakpoints to make more
numbers available.

137

You used the ADD PROGRAM command to add a save file that was created prior to
B00.

138

This error is reported when a file name cannot be converted into an internal format.

139

This error is reported when given data is not a valid PROCESS HANDLE. An
otherwise valid PROCESS HANDLE is invalid if it refers to a named process that is no
longer running.

Location is in an inactive user library

Location not contained in valid code block

No breakpoint number is available.

Save files created prior to B00 not supported

The file name cannot be converted into internal format

Invalid PROCESS HANDLE data format
Inspect Manual—429164-006
A-23

Error and Warning Messages 140
140

This warning is reported when the environment mode in a program block is not
compatible with the current runtime environment. mode is one of NEUTRAL,
COMMON, HISTORIC, or UNKNOWN.

141

This error is reported when Inspect detects a common runtime environment error.

142

This warning is reported when you enter an invalid data breakpoint type on a read-only
array. The data breakpoint type must be read. It cannot be change, write, or access.

143

You attempted to enter an integer that cannot be represented in 64 bits. Enter an
integer in the range of -9,223,372,036,854,775,808 through
+9,223,372,036,854,775,807.

144

This warning is reported when Inspect attempts to associate a location with a
procedure in an object file associated with a process or save file.

145

This warning is emitted when Inspect attempts to associate a location, either from the
operating system or found within a save file, when a procedure in some object file
associated with the process or save file. The warning message is followed by output
which identifies the location as an octal word offset in some code segment.

Incompatible run-time environment. Environment is mode

Common Run-time error number

Variable is read-only; breakpoint is set for read access

Number cannot be represented in 64 bits

Current location is not within any procedure in any object
file associated with your program.

There is no scope associated with this location
Inspect Manual—429164-006
A-24

Error and Warning Messages 146
146

This error is reported when you enter a break command with an illegal combination of
data breakpoint types. ACCESS specifies a break event should occur on read access,
in addition to write access of the data item.

169

An attempt was made to display an enumerated type that contains a value for which
there is no corresponding enumeration. The program might have accidentally
overwritten a variable with a value outside of the enumeration range.

170

A dereferencing operator was applied to the item indicated by item, but item is not a
pointer.

171

The value indicated was found in the tag field of a Pascal variant record, but it does not
have a variant defined for it. Your program might have accidentally overwritten the tag
field.

172

A STEP OUT command was issued with a count greater than 10. Inspect allows a
maximum of 10 procedure levels to be stepped with one command. If you want to step
more than 10 levels, issue several STEP OUT commands.

173

A STEP OUT command was issued when the program's main procedure was the only
active procedure.

ACCESS is not allowed with READ or WRITE

Following value was invalid for enumerated type

Only pointers may be dereferenced: item

Value of tag field has no associated variant item

Step out maximum is 10

Step out is not allowed from the main scope unit
Inspect Manual—429164-006
A-25

Error and Warning Messages 174
174

The original and new names you use in an ADD SOURCE ASSIGN command must
include a volume name.

176

The original name and new name you use in an ADD SOURCE ASSIGN command
must both be qualified to the same level. If the original name is a volume, the new
name must be a volume; if the original name is a subvolume, the new name must be a
subvolume.

177

The original name you provided in a DELETE SOURCE ASSIGN command does not
have a source assignment. Use the LIST SOURCE ASSIGN command to display the
existing source assignments.

183

The value in a FOR clause of a DISPLAY command evaluated to a negative number.
This number must be a non-negative value.

184

This error may be reported when examining save files created from system dumps. It
is reported when the specified variable is contained in a data page that was not
present at the time that the system dump was taken. (This only applies to save files
that were created from a system dump by CRUNCH.)

Source assign name must include a volume name

Source assign original name and current name must have the
same qualification

This source assign name does not exist

Invalid length specified for DISPLAY

Data page containing variable was not saved
Inspect Manual—429164-006
A-26

Error and Warning Messages 185
185

Inspect cannot display all subprocedures entries in the call history because the
program has an unexpected S register value. The stack markers that link
subprocedure calls are addresses relative to the S register. If the program modifies the
S register, Inspect cannot locate subprocedures stack markers.

188

The SSGET system procedure returned the reported error number. See the Guardian
Procedure Errors and Messages Manual for interpretation of the error number.

189

The DISPLAY command specified the SPI-NUM or EMS-NUM clause to display an SPI
buffer whose used length exceeded 4K bytes.

190

An error occurred on a call to the TEXTTOSSID or SSIDTOTEXT procedure. The n-n
values are the error status codes returned by the procedure. For a description of these
codes, see the Guardian Procedure Calls Reference Manual.

191

A STEP OUT SUBPROCS command was issued, but the current location is not within
a subprocedure.

192

A STEP OUT command was issued from a subprocedure, but Inspect cannot step out
of the subprocedure(s) because the program has modified the S register. The stack

Unable to trace subproc(s) due to 'S' register modification

SSGET: error-specification

SPI buffer too large

SSID conversion error n-n

Current location is not a subproc

Unable to step subproc(s) due to 'S' register modification
Inspect Manual—429164-006
A-27

Error and Warning Messages 194
markers that link subprocedure calls are addressed relative to the S register. If the
program modifies the S register, Inspect cannot locate the subprocedure stack marker.

To step out of a subprocedure, set a temporary breakpoint on the statement following
the subprocedure call and issue a RESUME command. To step out of a containing
procedure, issue a STEP OUT PROC command.

194

An ADD SOURCE ASSIGN command was issued with a process or file for the original
name, but the new name was not a permanent disk file. The new name must be a
permanent disk file because the SOURCE can only read from permanent disk files.

195

An operation was issued for a deleted program. When you enter a STOP command,
Inspect awaits confirmation of the stop from the operating system before removing the
program from the program list. Therefore, the stopped program might still appear on
the program list for a brief period of time.

196

Inspect encountered an invalid timestamp (the year was greater than 4000).

197

Inspect encountered a statement that was deleted during optimization. If optimization
across statements (using compiler directive OPTIMIZE 2) was performed, usually
some statements are deleted. Because instructions for deleted statements do not
exist, certain Inspect commands cannot be applied to them.

For accelerated programs executed on a TNS/R machine, Inspect only allows TNS
code breakpoints to be set at locations that are memory-exact points. If you attempt to
set a TNS code breakpoint at a location that is not a memory-exact point you will
receive this error.

Target must be a permanent disk file: file-name

Invalid operation in deleted program

Invalid timestamp

Location deleted due to optimizations
Inspect Manual—429164-006
A-28

Error and Warning Messages 198
198

If optimization across statements was performed, the instructions for statements are
sometimes merged. Therefore, some Inspect operations (for example, MODIFY) might
not produce the expected results.

199

The system is unavailable because all network paths to it are down.

201

The LIST PROGRAM command found no programs on the program list for the current
session.

202

The LIST BREAKPOINT command found no breakpoints defined in the current
program.

203

The search text specified in the FC, XC, or LIST HISTORY command was not found in
the history buffer.

204

The FC, XC, or LIST HISTORY command specified a command number that does not
yet exist.

Results might be unexpected due to optimization.

System is unavailable

No programs exist

No breakpoints exist

String not found

Command number command-number has not yet been entered
Inspect Manual—429164-006
A-29

Error and Warning Messages 205
205

The FC, XC, or LIST HISTORY command found the history buffer empty.

206

The FC, XC, or LIST HISTORY command specified a command number that is no
longer in the history buffer.

207

The command list specified a scope number greater than the number of calls in the call
history. The TRACE command lists legal scope ordinals.

208

The ADD KEY, LIST KEY, DELETE KEY, or FK command specified an invalid function
key.

209

You pressed a function key that Inspect does not support.

210

The function key you pressed has no definition.

211

The ADD KEY command specified too long a replacement string.

History buffer is empty

Command number not found

Call history ordinal exceeds the number of calls

Invalid function key specified

Unknown function key

Function key undefined

Function key buffer full
Inspect Manual—429164-006
A-30

Error and Warning Messages 212
212

The CLEAR, FB (fix breakpoint), or LIST BREAKPOINT command specified a
breakpoint that is not defined in the current program.

213

The LIST ALIAS or DELETE ALIAS command specified an alias name that is not
defined in the current session.

214

The LIST ALIAS or DELETE ALIAS command found no aliases defined in the current
session.

215

The command list specified a breakpoint number less than 1 or greater than 99.

216

The LIST KEY command found no function keys defined in the current session.

218

The INSPLOCL file or the INSPCSTM file included one of these commands, which are
not valid in customization files:

ADD PROGRAM
EXIT
HOLD
PAUSE
RESUME
SELECT PROGRAM

Breakpoint not found

Alias not found

Alias table empty

Invalid breakpoint number

Function key buffer empty

Command invalid in profile
Inspect Manual—429164-006
A-31

Error and Warning Messages 219
STEP
STOP

219

The command list, which Inspect read from an OBEY file, INSPLOCL, or INSPCSTM,
included a command that can only be used interactively.

220

The DISPLAY REGISTER command specified a display type that requires more data
than a register contains.

221

The ADD SOURCE ASSIGN command specified an original name that already had an
assignment. Inspect replaced the assignment.

222

The LIST SOURCE ASSIGN command found no source assignments defined in the
current session.

223

The LIST SOURCE OPEN command found no open source files.

224

The DISPLAY VALUE command specified a display type that requires more data than
specified in the VALUE clause.

Command reserved for interactive users

Type too large for register

Previous assign for original name replaced

SOURCE ASSIGN list is empty

SOURCE OPEN list is empty

Type too large for value
Inspect Manual—429164-006
A-32

Error and Warning Messages 228
228

The command list specified a statement number less than one.

229

The command list specified a statement number beyond the last statement in the
scope unit.

231

The SET STATUS LINE25 or SET STATUS SCROLL command specified too many
status items.

232

The ADD PROGRAM command did not specify a process or a save file as the program
to add.

233

The ADD PROGRAM command specified a nonexistent process.

234

The SOURCE STATEMENT command specified a FILE or LOC clause. These
clauses are not valid in the SOURCE STATEMENT command.

Ordinal statement-number is less than 1, not a valid ordinal

Ordinal statement-number exceeds the number of statements in
the scope

Too many items in STATUS list

program is not a process

Process not found

FILE and LOC clause not allowed with STATEMENT ordinals
Inspect Manual—429164-006
A-33

Error and Warning Messages 235
235

The SOURCE ICODE command specified a range using the F (first line) or the L (last
line) position option. These options cannot be used with SOURCE ICODE.

237

The SPI_BUFFER_FORMATSTART_, SPI_BUFFER_FORMATNEXT_, or
SPI_BUFFER_FORMATFINISH_ system procedure returned the reported error
number. For more information about the interpretation of the error number, see the
Guardian Procedure Errors and Messages Manual.

238

A code location was specified with the INFO IDENTIFIER command. Use INFO
LOCATION to retrieve information about code locations.

239

This warning is issued when the INFO SEGMENTS command did not find any
extended segments allocated for the current program.

240

A file number that is not open was specified with the INFO OPENS command.

241

This warning is issued when the INFO OPENS command found no files opened by the
current program.

File position range (F or L) not allowed

SPI FORMATTING ERROR: error

Invalid data location- Use INFO LOCATION for code locations

No segments are allocated

File is not open: file-number

No files are open
Inspect Manual—429164-006
A-34

Error and Warning Messages 253
253

A search string was not specified with the SOURCE SEARCH command.

254

A parameter or clause was specified more than once with the SOURCE SEARCH
command.

259

This error is reported when the file specified with the SAVE command already exists. If
you want to overwrite the file, specify a “!” following the file name.

273

The amount of data specified when you modified a variable of a SCOBOL program
exceeded the limit of the TCP.

274

This error is reported if you issue a STOP command and the process has called
SETSTOP to disable external stop requests. This is usually done when a process is
performing critical operations that should not be interrupted. You should resume the
process to allow it to complete these operations. The process will stop when it calls
SETSTOP again to enable external stop requests.

275

This error is reported if you attempt to define an alias having the same name as an
Inspect command or abbreviation.

Search pattern required

Search clause already specified

File already exists: file-name

Target field exceeds TCP modification limit

Process has disabled STOP; it will be stopped after it
reenables STOP

Command names may not be used as aliases
Inspect Manual—429164-006
A-35

Error and Warning Messages 276
276

This error is reported when a structure or record variable is used in an expression and
an element was not specified.

278

You will receive this warning if you use SET LANGUAGE instead of SELECT
LANGUAGE.

279

This warning is issued when the SET SOURCE SYSTEM command is issued rather
than the SELECT SOURCE SYSTEM command. This SET command only applies to
the current program; not to the Inspect session as SET commands usually do.

280

You typed SET SOURCE SYSTEM and carriage return.

292

This error is issued if you specify a variable that is local to a TAL subprocedure that is
currently not active. You can use the TRACE command to display the procedures and
subprocedures that are currently active.

293

The requested operation demanded the conversion of an expression to a true or false
value and Inspect could not perform the conversion. For example, an expression
used in the BREAK command's IF clause must result in a true or false value.

Expression items must be element level: expression

Current language might change at the next event

system-name has been selected as the SOURCE SYSTEM for the
current program only

The SOURCE SYSTEM has been cleared for the current program
only

Variable is local to inactive subprocedure: variable name

Unable to convert expression to a TRUE or FALSE value
Inspect Manual—429164-006
A-36

Error and Warning Messages 294
294

The requested operation required a conversion between incompatible types.

295

The requested operation required a conversion between incompatible types. For
example, a file number must be a positive integer value and Inspect was unable to
convert the entered expression into a integer value.

296

The specified variable is a type for which no address information is available. Inspect
does not have access to the variable.

297

The count specified in a STEP command must be a positive integer less that or equal
to 32767.

298

You requested access to a particular activation of a subprocedure. This particular
instance does not exist. For example, DISPLAY subproc^ name(3).sublocal would get
this message when there are only two instances of subproc^name on the stack.

299

The number specified for a subprocedure instance must be a signed 16-bit integer. For
example, the instance shown here, DISPLAY subproc^name (3000000).sublocal, is
invalid.

Unable to convert the expression to the type of the variable
being modified

A file number must be an integer expression

No address for variable ID

Step count maximum is 32767

No such instance of subprocedure on stack

A subprocedure instance must be a signed 16-bit integer:
subprocedure name
Inspect Manual—429164-006
A-37

Error and Warning Messages 300
300

Inspect was unable to find a value on the data stack that matched a subprocedure's
return address. This could be due to a program’s manipulation of the “S” register
within a subprocedure.

301

The number specified in the command exceeded the allowed range. Segment
numbers must be positive, signed 16-bit numbers.

302

The number specified in the command exceeded the allowed range. The register
pointer value in the RP clause of the RESUME AT command must be in the range 0-7;
numbers in that range are the only legal register values.

303

The maximum number of CPUs in a Tandem system is 16, and they are numbered
from 0-15. The number you specified in the command exceeded the allowed range.

304

The maximum number of processes in a CPU is 256. They are numbered from 0 to
255. The number you specified in the command exceeded the allowed range.

305

This is a warning. Inspect cannot scale a constant to match the pointer type in an
expression.

Unable to traverse subprocedure calls

Segment number maximum is 32767

RP value must be in the range 0-7

A CPU value must be in the range 0-15

A PIN value must be in the range 0-255

Expression is not scaled to match pointer type
Inspect Manual—429164-006
A-38

Error and Warning Messages 306
306

You attempted to set a breakpoint on a code location when the break event specified is
not allowed, that is, ACCESS, CHANGE, or WRITE on a code breakpoint.

307

DMON and Inspect encountered an error attempting to retrieve stack frames. You
cannot access data from frames other than the current location frame. Use the
SELECT DEBUGGER DEBUG command followed by TN as an alternative.

350

An FB (fix breakpoint) command was issued on a breakpoint that was set from Debug
or a previous Inspect session.

351

When you are debugging an accelerated program on a TNS/R system, this error is
issued if the specified code location does not have a corresponding TNS/R code
location.

352

This error is issued if you attempt to perform an operation that is specific to a TNS/R
system when debugging a program executing on a TNS system.

353

When debugging an accelerated program on a TNS/R or TNS/E system, this error is
issued if you attempt to step execution in terms of instructions. Accelerated programs
can only be stepped using source-level units.

[ACCESS/CHANGE/WRITE] is not allowed with a code location

Internal Frame Error

Breakpoint was not set in this INSPECT session.

TNS program location is unavailable

Invalid operation on a TNS system

Current location is accelerated; stepping instructions is not
allowed.
Inspect Manual—429164-006
A-39

Error and Warning Messages 354
354

This warning is reported for accelerated programs when TNS registers are displayed
and the current location is not a register-exact point. TNS register values are only
guaranteed to be accurate at register-exact points.

355

This error is reported for accelerated programs when a command is issued to modify a
TNS machine register and the current location is not a register-exact point.

The usefulness of modifying TNS registers when debugging accelerated programs is
significantly limited by the fact that they can only be modified at register-exact points.

356

This error is reported for accelerated programs when you attempt to modify the TNS P
register and specify an address value that is not the address of a register-exact point.

You can use the high-level ICODE and the low-level I command to determine if there
are any register-exact points near the address; instructions at register-exact points are
marked with a “@.”

357

This error is reported for accelerated programs if the target location specified with a
RESUME AT command is not a register-exact point.

358

This warning is reported for accelerated programs when you issue a command that
modifies memory and the current program location is not a register-exact point. Under
these circumstances, data that is about to be used may have already been loaded from
memory into registers, in which case modifying the value in memory would have no
effect on program behavior.

The values in registers R0-R7 and E are out of date

Current location is not a register-exact point; registers
cannot be modified

Value must be the address of a register-exact point

Target location must be a register-exact point

Modify may have no effect; data that is about to be used may
be stored in registers
Inspect Manual—429164-006
A-40

Error and Warning Messages 359
Inspect cannot predict when a modify operation may have no effect. Chances are
highest when you are modifying a variable that has been used recently or is about to
be used.

359

This warning is reported for accelerated programs when Inspect reports a debugging
event and the current location is not a memory-exact point. In this case, some values
in memory may be out of date, because more recent values are stored in registers.
This is most likely to be the case for variables to which values have been recently
stored.

Most commonly, programs are left at non-exact points as a result of data access
breakpoints. Issuing a STEP command will advance the program to the next memory-
exact point, at which displayed memory will be consistent.

360

The DMON process reported an internal error. You should record any information that
is reported and contact your Tandem representative. Such an error will prevent you
from performing the operation that you attempted; however, other operations should
still work.

361

This error is reported if you attempt an operation that only applies to an accelerated
program when you are debugging a program that has not been accelerated or is not
executing on a TNS/R system.

362

The version of the accelerator used to create the object file is a version that is not
recognized by Inspect. You may need to use a newer version of Inspect.

Current location is not a memory-exact point;
displayed values may be out of date;
the location reported is an approximate TNS location

DMON internal error: number
Contact your Tandem representative

Operation available only on an accelerated program

Object file was created by an unrecognized Accelerator
version; file: file-name
Inspect Manual—429164-006
A-41

Error and Warning Messages 363
363

This warning is reported if you set a data breakpoint on a variable that is larger than 16
bits in size. In this case, the breakpoint can only be set on the first word of memory
that the variable occupies.

364

This warning is only reported for write memory access breakpoints. It is reported when
the value of the variable has not changed and the size of the variable is less than 16
bits. In this case, the breakpoint may have been triggered by a store to the portion of
the word that does not contain the variable. Inspect cannot determine if the breakpoint
was triggered by a store or if you simply stored the same value in the variable.

365

This error is reported if you attempt to set a write memory access breakpoint on a
NSR-L processor. You must set either a change breakpoint or a read/write breakpoint.
Refer to the discussion of data breakpoints in Section 15, Using Inspect on a TNS/R
System, for important considerations in using data breakpoints on TNS/R systems.

366

This warning is reported when loading a save file in which it was not possible to save
information about all the open files that a process had open at the same time. This only
occurs when a process has had more than 500 files open.

367

This warning is reported when loading a save file in which it was not possible to save
the information about all the extended data segments that a process had allocated.
This occurs when the amount of extended data allocated by the process is greater than

Variable is larger than 16-bits in size
breakpoint is set on the first 16-bit word

Value of variable did not change; breakpoint may have been
triggered by an access to the containing 16-bit word

Machine does not support write memory access breakpoints; use
change breakpoints

Information about all open files could not be saved

All data segments could not be saved
Inspect Manual—429164-006
A-42

Error and Warning Messages 368
the capacity of a file. Segments are saved in the order that they were allocated, so, in
this case, data for segments allocated later may not be available.

368

The command that was issued can only be used when the current program is a save
file.

369

This error is reported for accelerated programs if you attempt to use the RP clause with
the RESUME AT command. This clause is not supported for accelerated programs
since the TNS register pointer is only updated and used at certain locations.

370

This error is reported for accelerated programs when the current location must be a
register-exact point. For instance, this requirement exists when using the RESUME AT
command to cause the program to begin execution at a specified location.

371

This error is reported for accelerated programs by commands that require the program
to be executing TNS/R instructions. For instance, you can only display or modify
TNS/R registers in an accelerated program when the program is executing TNS/R
instructions.

The LIST PROGRAM DETAIL command displays whether the program is currently
executing TNS/R or TNS instructions.

372

This warning is reported for accelerated programs by the ICODE command when it is
necessary for a TNS address to be mapped to a TNS/R address and the specified
location is not a memory-exact point. Most commonly, this occurs when BOTH is

The current program is not a save file

The RP clause cannot be used with an accelerated program

Current location must be a register-exact point

Program is not executing TNS/R instructions

Starting location is not a memory-exact point;
listing begins at preceding memory-exact point
Inspect Manual—429164-006
A-43

Error and Warning Messages 374
specified to list the correspondence between TNS and TNS/R instructions. It can also
occur when listing TNS instructions given a TNS/R address or listing TNS/R
instructions given a TNS address.

374

This error is reported only for accelerated programs in the rare instance when a
memory access breakpoint, or data breakpoint, has suspended the program in
millicode routine that will alter the flow of program execution. If this is reported, set a
temporary breakpoint at the appropriate location and resume program execution.

375

You cannot use the FB command or AS COMMANDS clause with data (memory
access) breakpoints.

376

You cannot specify READ or WRITE clauses in combination with the CHANGE clause
when setting a data breakpoint.

377

This error is reported if you attempt to select a program that has been added to the
program list as a result of setting a breakpoint in the backup process of a fault-tolerant
process pair. You must wait until the program becomes the primary process.

378

This warning is reported by the FA, FB, FC and FK commands when text insertion or
replacement would cause the command line length to exceed 255 characters.

A memory access breakpoint has left the program at a location
where execution cannot be stepped

Memory access breakpoints not allowed with FB or AS COMMANDS

CHANGE not allowed with READ or WRITE

Cannot select program until it becomes the primary

Insert or replace would have caused command line to exceed
255 characters
Inspect Manual—429164-006
A-44

Error and Warning Messages 379
379

This warning is reported by the DISPLAY command if an error occurred while
formatting data to be displayed. In such a case, any values that were formatted before
the error occurred are displayed.

380

This warning is reported if you attempt to define an alias that calls itself.

381

This warning is reported by the DISPLAY command if the specified variable or address
resides in an extended data segment and there is no extended data segment currently
selected.

You can use the INFO SEGMENTS command to list the extended data segments
currently allocated by the program and the SELECT SEGMENT command to select the
extended segment that Inspect is to use.

382

This warning is reported for accelerated programs by the TRACE REGISTERS
command. For accelerated programs, saved TNS environment register values may be
out of date.

383

This warning is reported when a write data breakpoint is triggered and the value of the
variable on which the breakpoint is set did not change. In this case, the breakpoint
might have been triggered by the program storing the same value into the variable.

The following was formatted for display when an error was
encountered

Recursive alias definition

No extended data segment currently selected

The saved environment register settings are out of date

Value of variable did not change
Inspect Manual—429164-006
A-45

Error and Warning Messages 384
384

This error is reported if an attempt is made to use the FB command or the AS
COMMANDS clause with breakpoints that were set from low-level Inspect.

385

This warning is reported by the ADD PROGRAM command when a save file for an
accelerated program is added and the file specified with the CODE clause does not
contain accelerator information. When this is the case, you can examine most state
information contained in the save file, with the exception of information that is specified
to accelerator programs.

386

This warning is issued when Inspect reports an event and the backup process of a
fault-tolerant process pair in which a backup breakpoint is set has taken over.

387

This warning is reported for accelerated programs by the ICODE command when it is
necessary for a TNS address to be mapped to a TNS/R address and the end of the
specified range is not a memory-exact point. Most commonly, this occurs when BOTH
is specified to list the correspondence between TNS and TNS/R instructions. It can
also occur when listing TNS instructions given a TNS/R address or listing TNS/R
instructions given a TNS address.

388

This warning is reported by the ICODE command when a source-level location was
specified and the specified range exceeded the bounds of the procedure. In this case,
ICODE is listed until the end of the procedure is reached.

Low-level breakpoints not allowed with FB or AS COMMANDS

Object file file does not contain accelerator information

Backup for program has taken over

Ending location is not a memory-exact point;
listing ends at following memory-exact point

Listing ends at procedure end
Inspect Manual—429164-006
A-46

Error and Warning Messages 389
389

This warning is reported for accelerated programs if the specified TNS/R address is not
32-bit word aligned.

390

This warning is reported when a memory access breakpoint is set on a variable that is
that is not word aligned larger than 16 bits in size. In this case, the breakpoint is set on
the first word of memory that contains the variable.

391

This warning is reported for accelerated programs when a STEP command is issued
and the current location is not a memory-exact point. Under these circumstances, the
STEP command will advance the program to the next memory-exact point.

392

This warning is reported when a save file for an accelerated program is added and the
object file was created by a version of the accelerator that is not recognized by Inspect.
You will still be able to access program state information except that which is specific to
accelerated programs.

393

This error is reported if you attempt to specify a TNS/R machine register that is not in
the range $0 - $31.

Address is not aligned to a TNS/R instruction boundary
it will be rounded down to the previous instruction

Variable is larger than 16-bits and is not word aligned;
breakpoint is set on the first 16-bit word containing the
variable

Current location is not a memory-exact point;
execution will be stepped to the next memory-exact point

Object file file was created by an unrecognized Accelerator
version;
Accelerator information will be unavailable

A TNS/R register must be in the range 0-31
Inspect Manual—429164-006
A-47

Error and Warning Messages 394
394

This error is reported when using the ADD PROGRAM command to add a save file
and the program file specified in the save file cannot be found. You must use the
CODE clause of the ADD PROGRAM command to specify where the object file can be
found.

395

This error is reported when using the ADD PROGRAM command to add a save file
and the user library file specified in the save file cannot be found. You must use the
LIB clause of the ADD PROGRAM command to specify where the object file can be
found.

396

This warning is reported when a error nnn occurs during communication to the
SAFEGUARD SPI process ($ZSMP), or when an SPI error is returned from $ZSMP.

397

Inspect supports TNS/R native compiler optimizations 0 and 1. When debugging
TNS/R native programs compiled with optimization level 2, output and actions may be
unexpected for commands DISPLAY, MODIFY and STEP.

406

This error message is reported when the user enters an ADD PROGRAM command
and attempts to add a process that uses DLLs. Inspect does not support the debugging
of DLLs. You must use either Visual Inspect or Debug on TNS/R systems. On TNS/E
systems, use either Visual Inspect or Native Inspect.

Non-existent program object file: file

Non-existent library object file: file

Safeguard error [nnn on $ZSMP], save file might retain
SUPER.SUPER default protection

Optimization level for scope <name> is not supported by
Inspect

Process uses dynamic link libraries. Visual Inspect is
required.
Inspect Manual—429164-006
A-48

Error and Warning Messages 450
450

This error message is reported when the user enters an ADD PROGRAM command
and attempts to open a snapshot file that contains DLL information. Inspect does not
support the debugging of DLLs. You must use either Visual Inspect or Debug on
TNS/R systems. On TNS/E systems, use either Visual Inspect or Native Inspect.

1003

This error is reported when the ADD PROGRAM command is used to add a TNS/E
process to an Inspect debugging session on a TNS/E system. Inspect can only be
used to debug TNS programs and TNS and TNS/R snapshots on a TNS/E system.

1004

This error is reported when the ADD PROGRAM command is used to add a TNS/E
snapshot to a debugging session on a TNS/E system. Inspect can only be used to
debug TNS programs and TNS and TNS/R snapshots on a TNS/E system.

1005

A command such as the DISPLAY REGISTER BOTH command was entered, and the
current program is a TNS program on a TNS/E system. Inspect will display the TNS
registers as if the DISPLAY REGISTER ALL command was entered.

1006

A command such as the ICODE address BOTH command was entered, and the
current program is a TNS program on a TNS/E system. Inspect will display the TNS
instructions as if the command ICODE address was entered, where address is a
TNS address.

This snapshot file contains dynamic link library information.
Visual Inspect is required.

Process name cpu,pin is a TNS/E process. Visual Inspect or
Native Inspect is required.

This is a snapshot of a TNS/E process. Visual Inspect or
Native Inspect is required.

Inspect cannot display TNS/E registers.

Inspect cannot display TNS/E instructions.
Inspect Manual—429164-006
A-49

Error and Warning Messages 1007
1007

A command such as INFO SAVEFILE was entered, specifying a TNS/E object file. To
debug TNS/E native object files, use either Visual Inspect or Native Inspect.

1008

The BREAK command was specified with the BACKUP option to debug a backup
process. On TNS/E, the backup process is not owned by the debugger when the user
tries to set the backup breakpoint.

1009

A TNS process can be suspended at a TNS/E location if, for example, the process hits
a data breakpoint in TNS/E system library code. If you enter STEP OUT number, the
number is ignored and Inspect returns the process to the TNS call site.

1106

This error occurs when the ADD PROGRAM command is used to add a TNS/E 64-bit
snapshot to a debugging session in a TNS/E system. Inspect is used only to debug
TNS programs and both TNS and TNS/R snapshots on a TNS/E system.

1107

This error occurs when the ADD PROGRAM command is used to add a TNS/E 64-bit
process to an Inspect debugging session in a TNS/E system. Inspect is used only to
debug TNS programs and both TNS and TNS/R snapshots on a TNS/E system.

Inspect cannot read a TNS/E object file.

BACKUP option is not supported on TNS/E.

STEP OUT count is ignored when process is at a TNS/E address.

Incompatible snapshot file version. Native Inspect is
required.

Process name cpu,pin is a TNS/E 64-bit process. Native
Inspect is required.
Inspect Manual—429164-006
A-50

B Syntax Summary

 High Level Inspect Commands

 Language-Dependent Parameters for C on page B-22

 Language-Dependent Parameters for C++ on page B-23

 Language-Dependent Parameters for COBOL and SCREEN COBOL on
page B-25

 Language-Dependent Parameters for FORTRAN on page B-27

 Language-Dependent Parameters for Pascal on page B-29

 Language-Dependent Parameters for TAL and pTAL on page B-31

 Low-Level Inspect Commands on page B-33

High Level Inspect Commands
The syntax of the four following high-level parameters depends on the programming
language you are using:

scope-path code-location data-location expression

The language subsections of this appendix describe these parameters.

ADD

ADD list-item

list-item: one of

ALIAS alias-name [=] command-string
KEY key-name [=] command-string
PROGRAM program-spec
SOURCE ASSIGN [original-name ,] new-name

command-string: one of

" [character]... "
' [character]... '

key-name: one of

F1 F2 F3 F4 F5 F6 F7 F8
F9 F10 F11 F12 F13 F14 F15 F16
SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
SF10 SF11 SF12 SF13 SF14 SF15 SF16
Inspect Manual—429164-006
B-1

Syntax Summary ALIAS
program-spec: one of

process

save-file [CODE code-file]
 [LIB lib-file]
 [SRL {(srl-file [, srl-file,...])}]

original-name: one of

[\system.] $volume [.subvolume [.file]]
[\system.] $process [.#qual-1 [.qual-2]]
[\system.] cpu, pin
[\system.] $volume.#number
/oss-pathname [/oss-pathname...]

new-name: either of

[\system.] $volume [.subvolume [.file]]

/oss-pathname [/oss-pathname...]

ALIAS

ALIAS[ES] [alias-name [, [=] replacement string]]

replacement-string: one of

" [character]..."]
' [character]...']

BREAK

BREAK [breakpoint [, breakpoint]...]

breakpoint:

brk-location [brk-condition]... [brk-action]...

brk-location:

{ code-location } [BACKUP]
{ data-location }
{ [#] ABEND }
{ [#] STOP }

brk-condition: one of

EVERY integer
IF expression
Inspect Manual—429164-006
B-2

Syntax Summary CD
data-subtype: one of

ACCESS CHANGE READ WRITE READ WRITE WRITE READ

brk-action: one of

TEMP [integer]

THEN { command-string | alias-name }

CD

CD { oss-pathname }

CLEAR

CLEAR { * | clear-spec }

clear-spec: one of

breakpoint-number [, breakpoint-number]
CODE code-location [, code-location]
DATA data-location [, data-location]
EVENT { ABEND | STOP }

COMMENT

COMMENT | -- [text]

DELETE

DELETE list-item

list-item: one of

ALIAS[ES] { * | alias-name }
KEY[S] { * | key-name }
SOURCE ASSIGN { * | original-name }
SOURCE OPEN[S] { * | source-file }

key-name: one of

F1 F2 F3 F4 F5 F6 F7 F8
F9 F10 F11 F12 F13 F14 F15 F16
SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8
SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16

original-name: one of

[\system.] $volume [.subvolume [.file]]
[\system.] $process [.#qual-1 [.qual-2]]
[\system.] cpu, pin
Inspect Manual—429164-006
B-3

Syntax Summary DISPLAY
[\system.] $volume.#number
/oss-pathname [/oss-pathname...]

DISPLAY

DISPLAY item [, item]... [formatting-clause]

item: one of

display-data [WHOLE] [PLAIN] [FOR for-spec]
display-code [FOR for-spec]
REGISTER register-item [TYPE display-type]
spi-buffer
spi-token [AS data-type] [FOR for-count]
string
(expression)
VALUE value-list [TYPE display-type]

display-data: one of

 identifier
 data-location AS data-type
 data-location TYPE display-type

identifier

specifies constants and variables defined by the program.

data-location: one of

 (expression) [SG]
 identifier

display-type: one of

CHAR CRTPID DEVICE ENV
FILENAME FILENAME32 FIXED FLOAT
INT INT16 INT32 LOCATION
PROCESS HANDLE REAL REAL32 REAL64
SSID STRING SYSTEM TIMESTAMP
TIMESTAMP48 TOSVERSION TRANSID USERID
USERNAME

for-spec:

for-count [BYTE[S] | WORD[S] | DOUBLE[S] | QUAD[S]]

display-code: one of

scope-path
Inspect Manual—429164-006
B-4

Syntax Summary DISPLAY
[scope-path] code-reference

code-reference: one of

scope-unit

label

#line-number

for-count: one of

non-negative integer

data-location

register-item: one of

ALL BOTH TNS TNS/R register-name

register-name: one of

tns-register-name

tns/r-register

tns-register-name: one of

P E L S

R0 R1 R2 R3 R4 R5 R6 R7

RA RB RC RD RE RF RG RH

tns/r-register: one of

$PC $H1 $LO $0 $1...$31

tns/r-register-alias

tns/r-register-alias: one of

$AT $V0 $V1 $A0 $A1 $A2 $A3

$S0 $S1 $S2 $S3 $S4 $S5 $S6 $S7

$T0 $T1 $T2 $T3 $T4 $T5 $T6 $T7 $T8 $T9

$K0 $K1 $GP $SP $FP $RA

spi-buffer:

data-address TYPE spi-type
Inspect Manual—429164-006
B-5

Syntax Summary DISPLAY
spi-type: one of

EMS EMS-NUM SPI SPI-NUM

spi-token:

data-address : token-spec [TYPE spi-type]

[POSITION token-spec [, token-spec]...]

token-spec:

token-code [: token-index] [SSID ssid-string]

token-code: one of

token-index

ssid-string

value-list: one of

integer

integer , integer

integer , integer , integer , integer

formatting-clause: one of

IN base [base]...

{ FORMAT | FMT } format-list

PIC mask-string [, mask-string]...

base: one of

BINARY OCT[AL] DEC[IMAL] HEX[ADECIMAL]

ASCII XASCII GRAPHICS

ICODE

format-list:

an edit-descriptor list for the operating system formatter

mask-string:

a mask string for the M edit descriptor
Inspect Manual—429164-006
B-6

Syntax Summary ENV
ENV

ENV [env-parameter]

env-parameter: one of

DIRECTORY

LANGUAGE

LOG

PROGRAM

SCOPE

SOURCE SYSTEM

SYSTEM

SYSTYPE

VOLUME

EXIT

EXIT

FA

FA alias-name

FB

FB breakpoint-number

FC

FC [command-line-specifier]

command-line-specifier: one of

pos-num

neg-num

search-text

" search-text"

FILES

FILES [{ * | file-list > } [DETAIL] [file-type]
Inspect Manual—429164-006
B-7

Syntax Summary FK
file-list:

file-number [, file-number]

file-type:

FORTRAN FD GUARDIAN

FK

FK key-name

key-name: one of

F1 F2 F3 F4 F5 F6 F7 F8

F9 F10 F11 F12 F13 F14 F15 F16

SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8

SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16

HELP

HELP [topic]

topic:

main-topic [sub-topic [sub-topic]]

HISTORY

HISTORY [num]

num

HOLD

HOLD [program [, program]...]

 [*]

program: one of

program-number

program-name

cpu, pin
Inspect Manual—429164-006
B-8

Syntax Summary ICODE
ICODE

ICODE location [FOR count [unit]] [report]

location: one of

[AT code-location]

[tns/r tns/r-address-expression]

[tns-address-expression] [UC.number | UL.number]

unit: one of

INSTRUCTION[S]

STATEMENT[S]

VERB[S]

report: one of

TNS

tns/r

BOTH

tns/r: one of

TNSR

TNS/R

R

tns/r-address-expression:

tns/r-value [operator tns/r-value]...

tns-address-expression:

tns-value [operator tns-value]...

operator: one of

* / << >> + -

tns-value: one of

(tns-expression)

16-bit number

tns-register

tns/r-value: one of

(tns/r-address-expression)

32-bit number

16-bit number [.16-bit number]

tns/r-register
Inspect Manual—429164-006
B-9

Syntax Summary IDENTIFIER
IDENTIFIER

IDENTIFIER { * | identifier-spec }

identifier-spec: one of

[scope-path.] identifier [.identifier]...

scope-path

#data-block

##GLOBAL

IF

IF expression THEN { command | alias-name }

INFO

INFO info-item

info-item: one of

IDENTIFIER { * | identifier-spec }

LOCATION [* | [SCOPE scope-path | scope-ordinal]]

OBJECTFILE [FILE filename]

OPENS [{ * | file-list } [DETAIL] [file-type]

SAVEFILE [FILE filename]

SCOPE [scope-number | scope-path]

SEGMENT[S] [* | segment-id] [[,] DETAIL]

SIGNALS[S] [* | signal-id [, signal-id ...]]

identifier-spec: one of

scope-path

[scope-path.] identifier [.identifier]...

#data-block

##GLOBAL

file-list:

file-number [, file-number]
Inspect Manual—429164-006
B-10

Syntax Summary KEY
KEY

KEY[S] [key-name [[=] replacement-string]]

key-name: one of

F1 F2 F3 F4 F5 F6 F7 F8

F9 F10 F11 F12 F13 F14 F15 F16

SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8

SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16

LIST

LIST list-spec [AS COMMAND[S]]

list-spec: one of

ALIAS[ES] [alias-name]

BREAKPOINT[S] [breakpoint-number]

HISTORY [command-range]

KEY[S] [key-name]

PROGRAM[S] [program]

SOURCE ASSIGN[S]

SOURCE OPEN[S]

options: one of

[[,] DETAIL] | [AS COMMAND[S]]

key-name: one of

F1 F2 F3 F4 F5 F6 F7 F8

F9 F10 F11 F12 F13 F14 F15 F16

SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8

SF9 SF10 SF11 SF12 SF13 SF14 SF15 SF16

program: one of

program-number

program-name

LOG

LOG { [BOTH | INPUT | OUTPUT | AS COMMAND[S]] TO file-name }

 { STOP }
Inspect Manual—429164-006
B-11

Syntax Summary LOW
LOW

LOW

MATCH

MATCH { SCOPE pattern }

 { IDENTIFIER pattern [[,] SCOPE scope-spec |[,VERBOSE]]}

scope-spec: one of

scope-number

scope-path
Inspect Manual—429164-006
B-12

Syntax Summary MODIFY
MODIFY

MODIFY { data-location [WHOLE] [{ = | := } mod-list] }

 { REGISTER register-name [{ = | := } expression] }

 { SIGNAL signal-id [{ = | := } signal-list] }

mod-list:

mod-item [, mod-item]...

mod-item:

[integer COPIES] expression

register-name: one of

tns-register-name

tns/r-register

tns-register-name: one of

P E L S

R0 R1 R2 R3 R4 R5 R6 R7

RA RB RC RD RE RF RG RH

tns/r-register: one of

$PC $H1 $LO $0 $1...$31

signal-id: one of

SIGABRT SIGALRM SIGFPE SIGHUP SIGILL SIGINT

SIGKILL SIGPIPE SIGQUIT SIGSEGV SIGTERM SIGUSR1

SIGUSR2 SIGCHLD SIGCONT SIGSTOP SIGTSTP SIGTTIN

SIGTTOU SIGABEND SIGLIMIT SIGSTK SIGMEMMGR SIGNOMEM

SIGMEMERR SIGTIMEOUT

signal-list:

signal-handler, mask, flags

signal-handler:

SIG_DEL | SIG_IGN | SIG_DEBUG | # function-name

mask:

double [double [double [double]]]

flags:

double
Inspect Manual—429164-006
B-13

Syntax Summary OBEY
OBEY

OBEY file-name

OBJECT

OBJECT

OPENS

OPENS [{ * | file-list } [DETAIL] [file-type]]

file-list:

file-number [, file-number]

file-type: one of

FORTRAN FD GUARDIAN

OUT

{ OUT file-name }

{ /OUT file-name/ }

PAUSE

PAUSE

PROGRAM

PROGRAM[S] [program [CODE file-name]

 [LIB lib-file]

 [SRL {(srl-file [, srl-file,...])}]

program: one of

program-number

program-name

cpu, pin
Inspect Manual—429164-006
B-14

Syntax Summary RESUME
RESUME

RESUME [* [EXIT]]

 [program [AT code-location [, RP integer]]]

program: one of

program-number

program-name

cpu, pin

Pathway-terminal-name

SAVE

SAVE filename [!]

SCOPE

SCOPE [scope-spec]

scope-spec: one of

scope-number

scope-path [(instance)]

#data-block

##GLOBAL
Inspect Manual—429164-006
B-15

Syntax Summary SELECT
SELECT

SELECT select-option

select-option: one of

DEBUGGER DEBUG

SEGMENT [segment id]

LANGUAGE language

PROGRAM program [CODE file-name]

 [LIB file-name]

 [SRL {(srl-file [, srl-file,...])}]

SOURCE SYSTEM [\system]

SYSTYPE { GUARDIAN | OSS }

language: one of

C C++ COBOL COBOL85

FORTRAN Pascal pTAL SCOBOL TAL

program: one of

program-number

program-name

cpu, pin
Inspect Manual—429164-006
B-16

Syntax Summary SET
SET

SET set-assignment

set-assignment: one of

CHARACTER FORMAT [=] { ASCII | GRAPHICS | XASCII }

DEREFERENCE DEPTH [=] integer

ECHO echo-item [=] { ON | OFF }

LOCATION FORMAT [level] [=] loc-fmt [, loc-fmt]...

PRIV MODE [=] { ON | OFF }

PROMPT [=] [prompt-item [, prompt-item]...]

RADIX [INPUT | OUTPUT] [level] [=] radix

SOURCE BACK [=] count

SOURCE FOR [=] count

SOURCE RANGE [=] range / range

SOURCE WRAP [=] { ON | OFF }

STATUS ACTION [level] [=] [cmd-string]

STATUS LINE25 [level] [=] [status-item-list]

STATUS SCROLL [level] [=] [status-item-list]

SUBPROC SCOPING [=] [SUBLOCAL | LOCAL]

SYSTYPE { GUARDIAN | OSS }

TRACE trace-level [=] { ON | OFF }

echo-item: one of

ALIAS[ES] HISTORY KEY[S]

level: one of

BOTH HIGH LOW

loc-fmt: one of

INSTRUCTION[S]

LINE[S] [FILE [ALL]] [OFFSET]

STATEMENT[S] [OFFSET]

prompt-item: one of

string ACCELERATOR STATE COMMAND

DIRECTORY FN ICODE

INSTRUCTION SET LEVEL PROCESSOR

PROGRAM FILE PROGRAM NAME PROGRAM ORDINAL
Inspect Manual—429164-006
B-17

Syntax Summary SET
PROGRAM PID RADIX SOURCE

STEP SUBVOL[UME] SYSTEM

SYSTYPE VOLUME

radix: one of

DEC[IMAL] HEX[ADECIMAL] OCT[AL]

count:

integer [STATEMENT[S] | LINE[S] | INSTRUCTION[S]]

range: one of

F L #line-number statement-number

status-item-list:

status-item [, status-item]...

status-item: one of

string ACCELERATOR STATE EVENT

INSTRUCTION SET LANGUAGE LOCATION

NEW LINE PROCESSOR PROGRAM FILE

PROGRAM NAME PROGRAM ORDINAL PROGRAM PID

SCOPE STATE SYSTYPE

TYPE

trace-level: one of

ARGUMENT[S] SCOPE[S] STATEMENT[S]
Inspect Manual—429164-006
B-18

Syntax Summary SHOW
SHOW

SHOW { ALL [AS COMMAND[S]] }

 { set-object }

set-object: one of

CHARACTER FORMAT [=] { ASCII | GRAPHICS | XASCII }

DEREFERENCE DEPTH integer

ECHO { ALL | ALIAS[ES] | HISTORY | KEYS }

LOCATION FORMAT [level]

PRIV MODE [=] ON | OFF

PROMPT

RADIX [INPUT | OUTPUT] [level]

SOURCE { ALL | BACK | FOR | RANGE | WRAP }

STATUS { ALL | ACTION | LINE25 | SCROLL } [level]

SUBPROC SCOPING [=] [SUBLOCAL | LOCAL]

TRACE { ALL | ARGUMENT[S] | SCOPE[S] | STATEMENT[S] }

level: one of

BOTH HIGH LOW
Inspect Manual—429164-006
B-19

Syntax Summary SOURCE
SOURCE

SOURCE [source-locator] [limit-spec]...

[file-locator] [WRAP]

source-locator: one of

AT code-location

ICODE [AT code-location]

[LINE] #line-number

[STATEMENT] statement-number

SEARCH string [CASE] [position /position]

limit-spec: one of

FOR count [STATEMENT[S] | LINE[S] | INSTRUCTION[S]]

BACK count [STATEMENT[S] | LINE[S] | INSTRUCTION[S]]

/position

position: one of

F L #line-number statement-number

string: one of

" [character]... "

' [character]... '

file-locator: one of

FILE file-name

LOCATION code-location

SCOPE scope-number

STEP

STEP [step-spec]

step-spec: one of

num-units [code-unit]

IN [num-units [code-unit]]

OUT [num-calls] [PROC[S] | SUBPROC[S]]

code-spec: one of

INSTRUCTION[S] STATEMENT[S] VERB[S]
Inspect Manual—429164-006
B-20

Syntax Summary STOP
STOP

STOP [* | program]

program: one of

program-number

program-name

cpu,pin

SYSTEM

SYSTEM [\system]

TERM

TERM { terminal | process }

process:

[\system.] $name

TIME

TIME [/OUT/ <file>]

TRACE

TRACE [num-calls] [REGISTERS] [ARGUMENTS]

VOLUME

VOLUME { $volume }
 { [$volume.] subvol }

XC

XC [command-line-specifier]

command-line-specifier: one of

pos-num

neg-num

search-text

"search-text"
Inspect Manual—429164-006
B-21

Syntax Summary Language-Dependent Parameters for C
Language-Dependent Parameters for C

C Scope Paths

scope-path:

#function

C Code Locations

code-location:

{ scope-path } [FROM module°] [offset°]...

{ [scope-path.] code-spec }

code-spec: one of

function

label

statement-number

#line-number [(source-file)]

offset:

{ + | - } num [code-unit]

code-unit: one of

INSTRUCTION[S] STATEMENT[S] VERB[S]

C Data Locations

data-location:

[scope-path [(instance)] .] data-reference

[#data-block.]

instance:

[+ | -] integer

data-reference: one of

identifier

data-reference '[' subscript-range ']'

data-reference.identifier

data-reference->identifier

*data-reference

subscript-range:

expression [:expression]
Inspect Manual—429164-006
B-22

Syntax Summary C Expressions
C Expressions

expression: one of

primary

*expression

&expression

-expression

!expression

~expression

expression binary-op expression

primary: one of

data-location constant string (expression)

binary-op: one of

* / % + - >>

<< < > <= >= ==

!= & ^ | && ||

Language-Dependent Parameters for C++

C++ Scope Paths

scope-path:

#function
Inspect Manual—429164-006
B-23

Syntax Summary C++ Code Locations
C++ Code Locations

code-location:

{ scope-path } [FROM module°] [offset°]...

{ [scope-path.] code-spec }

code-spec: one of

function

label

statement-number

#line-number [(source-file)]

offset:

{ + | - } num [code-unit]

code-unit: one of

INSTRUCTION[S] STATEMENT[S] VERB[S]

C ++ Data Locations

data-location:

[scope-path [(instance)] .] data-reference

[#data-block.]

instance:

[+ | -] integer

data-reference: one of

identifier

data-reference '[' subscript-range ']'

data-reference.identifier

data-reference->identifier

*data-reference

subscript-range:

expression [:expression]
Inspect Manual—429164-006
B-24

Syntax Summary C++ Expressions
C++ Expressions

expression: one of

primary

*expression

&expression

-expression

!expression

~expression

expression binary-op expression

primary: one of

data-location constant string (expression)

binary-op: one of

* / % + - >>

<< < > <= >= ==

!= & ^ | && ||

Language-Dependent Parameters for COBOL
and SCREEN COBOL

COBOL 74 and SCOBOL Scope Paths

scope-path:

#program-unit

COBOL85 Scope Paths

scope-path:

#program-unit [.program-unit]...
Inspect Manual—429164-006
B-25

Syntax Summary COBOL Code Locations
COBOL Code Locations

code-location:

{ scope-path } [offset]...

{ [scope-path.] code-spec }

code-spec: one of

program-unit

section

paragraph [OF section]

statement-number

#line-number [(source-file)]

offset:

{ + | - } num [code-unit]

code-unit: one of

INSTRUCTION[S] STATEMENT[S] VERB[S]

COBOL Data Locations

data-location:

[scope-path.] data-reference

data-reference:

identifier [OF identifier]... [(index [, index]...)]

index:

expression [:expression]
Inspect Manual—429164-006
B-26

Syntax Summary COBOL Expressions
COBOL Expressions

expression:

condition [{ AND | OR } condition]...

condition:

[NOT] { simple-exp [rel-op simple-exp]... }

 { level-88-condition }

rel-op:

[NOT] { > = < GREATER EQUAL LESS }

simple-exp:

[+ | -] term [{ + | - } term]...

term:

factor [{ * | / } factor]...

factor:

primary [**primary]

primary: one of

data-location "@data-location" number (expression)

Language-Dependent Parameters for
FORTRAN

FORTRAN Scope Paths

scope-path:

#scope-unit

scope-unit: one of

program subroutine function
Inspect Manual—429164-006
B-27

Syntax Summary FORTRAN Code Locations
FORTRAN Code Locations

code-location:

{ scope-path } [offset]...

{ [scope-path.] code-spec }

code-spec: one of

scope-unit

statement-function

statement-label

entry-point

statement-number

#line-number [(source-file)]

offset:

{ + | - } num [code-unit]

code-unit: one of

INSTRUCTION[S] STATEMENT[S] VERB[S]

FORTRAN Data Locations

data-location:

[scope-path [(instance)] .] data-reference

instance:

[+ | -] num

data-reference: one of

identifier

data-reference (index [, index]...)

data-reference^identifier

index:

expression [:expression]
Inspect Manual—429164-006
B-28

Syntax Summary FORTRAN Expressions
FORTRAN Expressions

expression:

condition [bool-op condition]...

bool-op: one of

.AND. .OR. .EQV. .NEQV.

condition:

[.NOT.] simple-exp [rel-op simple-exp]

rel-op: one of

.LT. .LE. .GT. .GE. .EQ. .NE.

simple-exp:

[+ | -] term [{ + | - } term]...

term:

factor [{ * | / } factor]...

factor:

primary [**primary]

primary: one of

data-location constant (expression)

Language-Dependent Parameters for Pascal

Pascal Scope Paths

scope-path:

#scope-unit [.scope-unit]...

scope-unit: one of

function procedure
Inspect Manual—429164-006
B-29

Syntax Summary Pascal Code Locations
Pascal Code Locations

code-location:

{ scope-path } [FROM module°] [offset°]...

{ [scope-path.] code-spec }

code-spec: one of

scope-unit

label

statement-number

#line-number [(source-file)]

offset:

{ + | - } num [code-unit]

code-unit: one of

INSTRUCTION[S] STATEMENT[S] VERB[S]

Pascal Data Locations

data-location:

[scope-path [(instance)] .] data-reference

[#data-block.]

instance:

[+ | -] integer

data-reference: one of

identifier

data-reference '[' index [, index]... ']'

data-reference.identifier

data-reference^

index:

expression [:expression]
Inspect Manual—429164-006
B-30

Syntax Summary Pascal Expressions
Pascal Expressions

expression:

simple-exp [rel-op simple-exp]...

rel-op: one of

= <> < > <= >=

simple-exp:

[+ | -] term [add-op term]...

add-op: one of

+ - OR

term:

factor [mult-op factor]...

mult-op: one of

* / DIV MOD AND << >>

factor: one of

data-location

unsigned-constant

NOT factor

(expression)

Language-Dependent Parameters for TAL and
pTAL

TAL and pTAL Scope Paths

scope-path:

#procedure
Inspect Manual—429164-006
B-31

Syntax Summary TAL and pTAL Code Locations
TAL and pTAL Code Locations

code-location:

{ scope-path } [code-offset]

{ [scope-path.] code-reference }

code-reference: one of

procedure

subproc

[subproc.] label

[subproc.] entry-point

statement-number

#line-number [(source-file)]

code-offset:

{ + | - } num [code-unit]

code-unit: one of

INSTRUCTION[S] STATEMENT[S]

TAL and pTAL Data Locations

data-location:

[scope-path [(instance)] .]

[[scope-path.] subproc [(instance)].] data-reference

[#data-block.]

[##GLOBAL.]

instance:

[+ | -] integer

data-reference: one of

identifier

data-reference '[' subscript-range ']'

data-reference.identifier

subscript-range:

expression [:expression]
Inspect Manual—429164-006
B-32

Syntax Summary TAL and pTAL Expressions
TAL and pTAL Expressions

expression:

condition [{ AND | OR } condition]...

condition:

[NOT] simple-exp [rel-op simple-exp]...

rel-op: one of

< <= = >= > <>

'<' '<=' '=' '>=' '>' '<>'

simple-exp:

[+ | -] term [add-op term]...

add-op: one of

+ - '+' '-'

LOR LAND XOR

term:

factor [mult-op factor]...

mult-op: one of

* / '*' '/' '\'

<< >> '<<' '>>'

factor: one of

primary

primary.<primary[:primary]>

primary: one of

data-location

.data-location

@data-location

number

(expression)

Low-Level Inspect Commands
Low-level Inspect supports all high-level commands except:

BREAK CLEAR DISPLAY MODIFY SCOPE
Inspect Manual—429164-006
B-33

Syntax Summary A
The following low-level Inspect command parameters are described after the low-level
commands themselves:

address code-address data-address expr

A

A address [, { count | T entry-size*entry-count }]

count:

expr

B

B [code-address [, data-address test-op expr]]

test-op: one of

= < > <> ?

BM

BM address , type [, data-address test-op expr]

test-op: one of

= < > <> ?

type: one of

R W RW

C

C [code-address]

CM

CM
Inspect Manual—429164-006
B-34

Syntax Summary D
D

D [[unit] address [,amount]] [:base]

 [register]

unit: one of

B W D F

amount: one of

num

T width * height

base: one of

A B D H I O X #

register: one of

P E L S

R0 R1 R2 R3 R4 R5 R6 R7

RA RB RC RD RE RF RG RH

F

F [expr]

FN

FN [address [,value] [&mask]]

HIGH

HIGH

I

I address [,amount]

amount: one of

num

T width * height
Inspect Manual—429164-006
B-35

Syntax Summary M
M

M { register | data-address } [,expr]...

register: one of

P E L S

R0 R1 R2 R3 R4 R5 R6 R7

RA RB RC RD RE RF RG RH

P

P expr

R

R

S

S

T

T [data-address]

VQ

VQ segment-id

=

= expr [: display-type]

display-type: one of

A B D H O X #

C E I

UC [.space-id]

UL [.space-id]

?

?

Inspect Manual—429164-006
B-36

Syntax Summary Low-Level Addresses
Low-Level Addresses

address: one of

code-address

data-address

Low-Level Code Addresses

code-address:

[base-mode] expr

base-mode: one of

C

UC [.space-id]

UL [.space-id]

Low-Level Data Addresses

data-address:

[base-mode] expr [indirection-mode [expr]]

base-mode: one of

L S Q

indirection-mode: one of:

I S IX SX
Inspect Manual—429164-006
B-37

Syntax Summary Low-Level Expressions
Low-Level Expressions

expr:

value [operator value]...

operator: one of

* / << >> + -

value: one of

(expression)

'ASCII-character ASCII-character

#code-block

#data-block

number [.number]

register

number is:

[+ | -] [#] integer

register: one of

P E L S

R0 R1 R2 R3 R4 R5 R6 R7

RA RB RC RD RE RF RG RH
Inspect Manual—429164-006
B-38

C Notes for System Operators

 Starting the IMON Process Pair

 Stopping IMON and DMON Processes on page C-2

 IMON and DMON Errors on page C-3

Starting the IMON Process Pair
You should start the IMON process pair as part of your standard system startup
procedure. Start $IMON using the command interpreter RUN command.

IMON-program-file

specifies IMON's program file. If you use an implicit RUN command, IMON's
program file must be in the $SYSTEM.SYSTEM subvolume or the currently
running $SYSTEM.SYSnn subvolume. If you enter RUN explicitly, the normal file
name expansion rules apply if you specify a partial file name.

NAME $IMON

specifies the process name of the IMON process pair. This run option is required.

PRI PPP

specifies the priority at which $IMON should be run. It is recommended that IMON
be started at a relatively high priority.

CPU nn

specifies the number of the processor in which the primary IMON process is to run.

bb

specifies the number of the processor in which the backup IMON process is to run.

Default Values

If you do not specify the processor, the primary IMON process runs in the processor
where the $CMON process directs it to run. If no $CMON process is present, or if the
$CMON process does not specify a processor, the primary IMON process runs in the
same processor as the command interpreter from which you entered the RUN
command.

Note. IMON contains privileged procedures and consequently must be owned by the super id
(255,255).

[RUN] IMON-program-file /NAME $IMON, [PRI PPP,]
 [CPU nn,] NOWAIT/ bb
Inspect Manual—429164-006
C-1

Notes for System Operators Usage Considerations
If you do not specify a backup processor, the primary IMON process selects a
processor for the backup process using these guidelines:

 IMON regards the system as a group of even-odd processor pairs (0,1), (2,3), and
so on.

 If the primary IMON process is running in one processor of such a pair, the backup
IMON process will be run in the other member of the pair.

Consequently, if your system has an odd number of processors, and the primary IMON
process is in the last processor, IMON cannot create a backup because the other
member of the pair doesn't exist. In this case, you must specify a backup processor.

Usage Considerations

 IMON assumes that the program files for the DMON and Inspect processes are in
the same volume and subvolume as the IMON program file.

 Users can issue an implicit RUN command to start Inspect only if the Inspect
program file is in the $SYSTEM.SYSTEM subvolume or the currently running
$SYSTEM.SYSnn subvolume.

IMON and CMON

The IMON process always communicates with the CMON process (if present) for the
CPU number and priority to start Inspect. Inspect should be started at the same priority
as command interpreters or other interactive programs. The IMON process sends the
request to the CMON process with the Inspect file name in the local internal file format,
which implies that the Inspect file name does not contain the node number.

Stopping IMON and DMON Processes
To stop the Inspect subsystem, stop the IMON process and then stop all DMON
processes. To stop IMON, use the name form of the TACL command STOP. For
example:

> STOP $IMON

Only the super ID (255,255) user can stop the primary IMON process.

Stopping the $IMON process pair by name stops only the IMON processes, not the
DMON processes. You should stop all the DMON processes after a $IMON pair has
been stopped. No special shutdown procedures are required for IMON and DMON
processes.

IMON restarts DMON processes when DMON ABENDs or STOPs. If DMON
repeatedly ABENDs, IMON will not restart DMON, and issue an error message. To
restart DMON, you must restart IMON.

Note. If the CMON process is not present or the IMON process is unable to communicate with
the CMON process, the IMON process starts Inspect at its own priority.
Inspect Manual—429164-006
C-2

Notes for System Operators IMON and DMON Errors
IMON and DMON Errors
Errors occurring during IMON startup are displayed on the home terminal. Internal
IMON and DMON errors that occur during operation are reported on the operator
console. Errors related to a user processes are sent to the process's home terminal.

DMON and IMON error messages are displayed in this format:

where message describes the particular error and nn identifies an individual DMON
process.

Errors Common to IMON and DMON

This message is reported when the IMON process or one of the DMON processes is
recovering from an internal error. It should be ignored, unless the users of Inspect are
experiencing problems; in this case, the error should be reported to your Tandem
representative.

IMON Errors

You omitted the NAME $IMON option from the RUN command.

IMON must be started by user id 255,255.

Process creation failed for the reason indicated by the error number. The program file
name is displayed. This message will appear on the user's terminal if a debug event
triggered an attempt by IMON to start an Inspect process, and PROCESS_CREATE_
was unable to comply. It will appear on the operator console if an IMON process
attempted to start the a DMON process and PROCESS_CREATE_ was unable to
comply.

*** IMON ERROR *** message

*** $DMnn ERROR *** message

Internal error at P=%nnnnnn.

IMON must be named $IMON

IMON must be started by the Super ID

PROCESS_CREATE_ error: nn error detail: nn
Filename: file

PROCESS_GETINFO_ error: nn error detail: nn
on cpu,pin
Inspect Manual—429164-006
C-3

Notes for System Operators IMON Errors
IMON will print this out when the procedure PROCESS_GETINFO_ returns an error.

You tried to run the program with an incompatible version of the operating system.

This message is reported when DMON repeatedly ABENDs or STOPs. IMON will mark
it as down, and will not attempt to restart it. IMON must be re-started to mark this
DMON up again.

The NAME $IMON option was omitted from the RUN command.

IMON is in a loop trying to create its backup. IMON will stop itself.

Inspect terminal name cannot be converted into internal format.

You specified an invalid CPU in the RUN command.

IMON will print this out when an error on $RECEIVE occurs.

There was an error opening or writing to an Inspect process.

There was an error opening or writing to a DMON process.

A checkpoint with IMON's backup failed.

Wrong Guardian version

DMON in CPU nn marked down by $IMON

IMON must be named $IMON

Backup creation loop

INSPECT command terminal name cannot be converted to internal
format

Illegal startup parameter

$RECEIVE - error-text

INSPECT - error-text

DMON - error-text

Checkpoint with backup failed. [error-text]
Inspect Manual—429164-006
C-4

Notes for System Operators DMON Errors
DMON Errors

The following errors are reported by DMON.

This error is reported at DMON start up time if, for some reason, the initialization of the
operating system mechanism that reports debugging events to DMON failed.

This error is reported if DMON receives a debugging event and no IMON process
exists.

This error is reported if the DMON process encounters a run-time trap. n is the trap
number (in octal), and xxxxxx is the address.

This error is reported if an attempt is made to start DMON by running the DMON
program file. To start DMON, you must start IMON, IMON then starts a DMON in each
CPU.

This error is reported if, when DMON is processing a debugging event, it finds that the
process no longer exists. Process is a string of the form cpu,pin [(name)]. For example,
1,30 ($DBMON).

DMON reports this error if an error occurs during the creation of a save file for a
process. Depending on the error, this could indicate a resource shortage, such as disk
space.

This error is reported if an internal error is detected. If this error occurs, contact your
Tandem representative.

This error is reported if DMON's attempt to stop a process fails. (when a process that
has its Inspect bit set stops or abends, control of the process is given to DMON,
allowing it to create a save file if appropriate. DMON then calls STOP to complete

Initialization of Guardian event reporting failed

IMON ($IMON) does not exist

Fatal trap %n at P = %xxxxxx

DMON must be started by $IMON

Process deleted during DMON processing: process

Save file error nn, volume vol, process id, object file

Save file error - internal, P-%nnnnnn, process id, object
file

Unable to stop process: process
Inspect Manual—429164-006
C-5

Notes for System Operators DMON Errors
stopping the process. This error is reported if the STOP operation fails). When this
event occurs, the process still exists.

This error is reported when DMON begins execution if its attempt to allocate an
extended data segment fails.

User tried to run DMON on a incompatible version of the operating system.

DMON reports this error when an error occurs during the communication to
SAFEGUARD ($ZSMP).

DMON reports this error when an SPI error occurs during the SAFEGUARD operations
on a save file being created.

IMON reports this error when you try to invoke Inspect to debug a TNS/E native
process. To transfer the process to Visual Inspect,:

1. Start the Visual Inspect client and connect to the NonStop system.

2. From the Visual Inspect client, select the Open Program command and specify the
process name or CPU, PIN.

At the Native Inspect prompt, enter the switch command.

ALLOCATESEGEMENT failed: Volume volume, Error error

Incompatible GUARDIAN version

SAFEGUARD error nnn on $ZSMP, save file might retain
SUPER.SUPER default protection.

SAFEGUARD error nnn (SPI) from $ZSMP, save file might retain
SUPER.SUPER default protection.

Process name CPU,PIN is a TNS/E process and requires the use
of Native Inspect or Visual Inspect. Inspect does not support
TNS/E native processes.
Inspect Manual—429164-006
C-6

Glossary
accelerate. To speed up emulated execution of a TNS object file by applying either the

Axcel accelerator for TNS/R system execution or the Object Code Accelerator (OCA)
for TNS/E system execution before running the object file.

accelerated mode. See TNS accelerated mode.

accelerated object code. Either the MIPS RISC instructions (in the MIPS region) that result
from processing a TNS object file with the Axcel accelerator on a TNS/R system or the
Intel® Itanium® instructions (in the Itanium instruction region) that result from
processing a TNS object file with the TNS Object Code Accelerator (OCA) on a TNS/E
system.

accelerated object file. A TNS object file that contains accelerated object code. An
accelerated object file can contain both an Axcel region and an Itanium instruction
region.

Accelerator. A program optimization tool that processes a TNS object file and produces an
accelerated object file that contains equivalent native instructions. On TNS/R systems,
the accelerator is named Axcel. On TNS/E systems, the accelerator is the TNS Object
Code Accelerator (OCA),

Accelerator mode. An operational environment in which an object file executes accelerated
code, as follows:

 On TNS/E systems, Itanium instructions are executed that were generated by the
Object Code Accelerator (OCA)

 On TNS/R systems, RISC instructions are executed that were generated by the
Axcel accelerator

Contrast with TNS/R native mode. See also TNS mode and TNS/R native mode.

Accelerator region of an object file. The region (called the MIPS region on TNS/R
systems, and the Itanium region on TNS/E systems) of an object file that contains
instructions and tables necessary to execute the object file on a TNS/R or TNS/E
system in accelerated mode. The accelerator creates this region. Contrast with OCA
region of an object file. See also accelerated object file.

Active scope units. Any scope unit that has been called but has not yet been exited. The
call history displayed by the TRACE command lists all active scope units.

Banner line. The line of information Inspect displays when you begin an Inspect session.

Break action. The part of a breakpoint's definition that specifies what to do after the
breakpoint triggers a break event.

Break condition. The part of a breakpoint's definition that specifies under what conditions
the breakpoint is to trigger a break event.
Inspect Manual—429164-006
Glossary-1

Glossary Break event
Break event. The type of debug event that occurs when a breakpoint causes a program's
execution to halt.

Break location. The part of a breakpoint's definition that specifies where the breakpoint is
located.

Breakpoint. A location (or point) in a program where execution is to be suspended so that
you can then examine and perhaps modify the program’s state. You can set and clear
breakpoints with Inspect commands. In this manual, a breakpoint is assumed to be in
TNS memory unless the location is called a “TNS/R breakpoint.”

Breakpoint activation. The time at which program execution encounters a breakpoint.
Breakpoint activation results in a break event if the breakpoint has no conditions or if
its conditions are met.

Breakpoint definition. The time at which you set a breakpoint (using the BREAK
command).

Breakpoint list. The list of breakpoints defined in a program. When debugging several
programs concurrently, Inspect maintains a separate breakpoint list for each program.

Call history. The list of scope-unit activations (calls) displayed by the TRACE command.
TRACE orders this list from the most recent to the earliest call.

Clause. An extension to an Inspect command. All command clauses start with or include a
descriptive keyword that identifies the clause.

CISC. See complex instruction-set computing (CISC).

Code base. The address at which the code for a scope unit begins—not to be confused
with the primary entry point, which is the address at which execution of a scope unit
begins.

Code block. The smallest cluster of object code that BINDER can relocate separately from
the rest of the object code. BINDER code blocks and Inspect scope units are roughly
equivalent, but they are not interchangeable terms.

Code breakpoint. A breakpoint set at a code location.

Code location. A specific location within a program's object code. Inspect lets you define
code locations using source-language expressions and identifiers in addition to
machine-level addresses and offsets.

Code offset. An offset from a named code location. Code offsets are specified as a number
of code units.

Code unit. A measure of code. There are three code units: INSTRUCTION, STATEMENT,
and VERB.
Inspect Manual—429164-006
Glossary-2

Glossary Command list
Command list. A list of one or more Inspect commands, separated by semicolons.

Command mode. An operating mode of Inspect that defines the type of access you have
to your program. The low-level command mode provides machine-level access, and
high-level command mode provides source-level access.

Command terminal. A terminal at which system managers, developers, and programmers
interact with system-level utility programs.

Common Run-Time Environment (CRE). A set of services implemented by the CRE
library that supports mixed-language programs on D-series systems. Contrast with
language-specific run-time environment.

Common Run-Time Environment (CRE) library. A collection of routines that supports
requests for services managed by the CRE, such as I/O and heap management, math
and string functions, exception handling, and error reporting. CRE library routines can
be called by C, COBOL85, FORTRAN, Pascal, and TAL user routines and run-time
libraries.

compiler extended-data segment. A selectable segment, with ID 1024, created and
selected automatically in many (but not all) TNS processes. Within this segment, the
compiler automatically allocates global and local variables and heaps that would not fit
in the TNS user data segment. A programmer must keep this segment selected
whenever those items might be referenced. Any alternative selections of segments
must be temporary and undone before returning.

complex instruction-set computing (CISC). A processor architecture based on a large
instruction set, characterized by numerous addressing modes, multicycle machine
instructions, and many special-purpose instructions. Contrast with reduced
instruction-set computing (RISC).

conditional breakpoint. A breakpoint defined with break conditions that govern its ability
to trigger a break event.

CRE. See Common Run-Time Environment (CRE).

current breakpoint. The breakpoint that caused the most recent break event in a program,
and beyond which that program's execution has not advanced.

current program. The program that you are currently debugging. If you are debugging
several programs concurrently, you use the PROGRAM command to specify which of
them is the current program.

current scope path. The scope path that Inspect uses to complete any partially qualified
code or data references. Whenever a debug event occurs in a program you are
debugging, Inspect automatically sets the current scope path to the path that defines
the scope unit where the event occurred. You can set the current scope path explicitly
using the SCOPE command.
Inspect Manual—429164-006
Glossary-3

Glossary data block
data block. A collection of static data items that BINDER can relocate separately from the
rest of a program's static data. Dynamic data items (local variables, file buffers, and so
on) are not part of any data block.

data breakpoint. A breakpoint set at a data location.

data location. A specific location within a program's static or dynamic data area. Inspect
lets you define data locations using source-language symbols and identifiers.

Debug event. Any event that forces a program into the hold state.

debugging attributes. Two attributes of a process or PATHWAY server. The Inspect
attribute determines which debugging tool (Inspect or Debug) should respond to a
debug event, and the SAVEABEND attribute determines whether the program state is
recorded in a save file if the program terminates abnormally (abends).

debugging session. Another name for an Inspect session.

DMON process; DMON, $DMnn. The process that enables Inspect to access processes
and PATHWAY servers. Its duties include setting and clearing breakpoints, storing and
retrieving data, informing the Inspect process when a breakpoint is encountered, and
creating save files.

D-series system. . An HP NonStop system that is running a D-series version of the
operating system.

dynamic-link library (DLL). A collection of procedures whose code and data can be loaded
and executed at any virtual memory address, with run-time resolution of links to and
from the main program and other independent libraries. The same DLL can be used by
more than one process. Each process gets its own copy of DLL static data. Contrast
with shared run-time library (SRL). See also TNS/R library.

eld utility. The utility that collects, links, and modifies code blocks and data blocks from one
or more object files to produce a target TNS/E native object file with shared code (PIC).
Compare to nld utility and ld utility.

enoft utility. The utility that reads and displays information from TNS/E native object files.
Compare to noft utility.

execution states. The phases into which Inspect groups the execution of a program.
These states describe the current activity of a program and determine the availability
and significance of certain Inspect commands. The three execution states are: the run
state, the hold state, and the stop state.

Explicitly Parallel Instruction Computing (EPIC). The technology that forms the basis for
the Intel Itanium architecture of the TNS/E system. EPIC technology allows parallel
processing opportunities to be explicitly identified by the compiler before the software
code is executed by the processor.
Inspect Manual—429164-006
Glossary-4

Glossary expression
expression. A list of operands and operators which, when evaluated, results in a number
or a string.

gone state. A state where the program has been stopped, but the program will not be
cleared from the list until DMON sends a message back. When the program is in this
state it is possible to catch it before it actually stops.

G-series system. .An HP NonStop system that is running a G-series version of the
operating system.

Guardian. An environment available for interactive or programmatic use with the NonStop
operating system. Processes that run in the Guardian environment use the system
procedure calls as their application program interface; interactive users of the Guardian
environment use the HP Tandem Advanced Command Language (TACL) or another
product’s command interpreter. Contrast with Open System Services (OSS).

high-level mode; high-level Inspect. The Inspect command mode that provides source-
level access to your program.

high PIN. A process identification number (PIN) that is greater than 255. Contrast with low
PIN.

Hold state. The execution state describing a program that has been suspended
temporarily, but can resume execution again.

H-series system. .An HP NonStop system that is running an H-series version of the
operating system.

home terminal. The terminal from which a process is started.

identifier. A name that symbolically identifies an object. Most programming languages use
identifiers to define data and code items.

IMON process pair; IMON, $IMON. The fault-tolerant process pair that manages and
monitors all Inspect sessions on a single system. Its duties include starting and
maintaining DMON processes on each of the CPUs in the system, setting up the link
between a DMON process and an Inspect process, and creating Inspect processes
when necessary.

implicit library or DLL. A library or DLL supplied by HP that is available in the read-only
and execute-only globally mapped address space shared by all processes without
being specified to the linker or loader. See also TNS system library and public library.

inactive scope unit. Any scope unit that does not have a call in effect; that is, a scope unit
that does not appear in the call history.

Inspect command terminal. The terminal by which Inspect communicates with you during
an Inspect session.
Inspect Manual—429164-006
Glossary-5

Glossary Inspect process
Inspect process. The terminal process that enables you to debug programs distributed
across several DMONs and TCPs. In addition, the Inspect process enables Inspect to
access symbol information and source code for programs written in all languages.

Inspect prompt. The prompt that Inspect displays when awaiting your command. See
Prompting for Commands on page 2-3.

Inspect region. The region of a TNS object file that contains symbol tables for all blocks
compiled with the SYMBOLS directive. The Inspect region is sometimes called the
symbols region.

INSPSNAP. The program that provides a process snapshot file for the Inspect subsystem.

Inspect session. The time period during which you debug interactively using the same
Inspect process. An Inspect session begins when IMON first creates an Inspect
process on your terminal, and continues until you terminate that process.

instance. A specific activation of a scope unit. If a scope unit calls itself, several activations
of that scope unit will appear in the call history. Each such activation is an instance.

Intel® Itanium® instructions. Register-oriented Itanium instructions that are native to and
directly executed by a TNS/E system. Itanium instructions do not execute on TNS and
TNS/R systems. Contrast with TNS instructions.

The Object Code Accelerator (OCA) produces Itanium instructions to accelerate TNS
object code. A TNS/E native compiler produces native-compiled Itanium instructions
when it compiles source code.

Intel Itanium instruction region. The region of a TNS object file that contains Itanium
instructions and the tables necessary to execute the instructions in accelerated mode
on a TNS/E system. The Object Code Accelerator (OCA) creates this region and writes
it into the TNS object file. Synonym for OCA region of an object file. Contrast with
MIPS region of a TNS object file

Intel Itanium word. An instruction-set-defined unit of memory. An Itanium word is 4 bytes
(32 bits) wide, beginning on any 4-byte boundary in memory. Contrast with TNS word
and word. See also MIPS RISC word.

interpreted mode. See TNS interpreted mode.

ld utility. The utility (also called the native PIC linker) that collects, links, and modifies code
blocks and data blocks from one or more object files to produce a target TNS/R native
object file with shared code (PIC). Compare to nld utility and eld utility. Compare to nld
utility and ld utility

linker. A system utility that collects, links, and modifies code and data blocks from one or
more object files to produce a target object file or loadfile.

Four linkers are available on NonStop systems:
Inspect Manual—429164-006
Glossary-6

Glossary linkfile
 Binder links TNS object files on TNS/R systems.

 nld links TNS/R native object files to create a linkfile or a loadfile.

 ld, the PIC (Position-Independent Code) linker, links TNS/R PIC object files to
create a PIC executable, which can be either a program file or a dynamic-link
library (DLL).

 eld, the TNS/E linker, links TNS/E object files to a PIC executable, which can be
either a program file or a dynamic-link library (DLL).

linkfile. A linkable object file produced by the compiler from a source code file. Also, a
command file used for input to a linker. See also loadfile.

linking. The operation of examining, collecting, linking, and modifying code and data blocks
from one or more object files to produce a target object file or loadfile.

loadfile. An executable file that is ready for loading and executing on the HP NonStop
server. Examples are programs, user library files, SRLs and DLLs. Compare with
object file.

There are two basic types of loadfiles:

 Programs, which define an entry point where execution of the program begins

 Libraries, which supply functions or data to a client loadfile

low-level mode; low-level Inspect. The Inspect command mode that provides machine-
level access to your program.

low PIN. A process identification number (PIN) in the range 0 through 254. Contrast with
high PIN.

machine (language) instruction. The low-level instructions produced when you compile
programs written in C, COBOL, FORTRAN, Pascal, or TAL. A CPU executes these
instructions.

memory-exact point. A potential breakpoint location within an accelerated object file at
which the values in memory (but not necessarily the values in registers) are the same
as they would be if the object file were running in TNS interpreted mode or on a TNS
system. Most source statement boundaries are memory-exact points. Complex
statements might contain several such points: at each function call, privileged
instruction, and embedded assignment. Contrast with register-exact point and
nonexact point.

millicode. TNS/R instructions that implement various TNS low-level functions such as
exception handling, real-time translation routines, and library routines that implement
the TNS instruction set. TNS/R millicode is functionally equivalent to TNS microcode.

MIPS region of a TNS object file. The region of a TNS object file that contains MIPS
instructions and the tables necessary to execute the instructions in accelerator mode
Inspect Manual—429164-006
Glossary-7

Glossary MIPS RISC word
on a TNS/R system. The accelerator creates this region and writes it into the TNS
object file. Contrast with Intel Itanium instruction region.

MIPS RISC word. An instruction-set-defined unit of memory. A MIPS RISC word is 4 bytes
(32 bits) wide, beginning on any 4-byte boundary in memory. Contrast with TNS word
and word. See also Intel Itanium word.

native. An adjective that can modify object code, object file, process, procedure, and mode
of process execution. Native object files contain native object code, which directly uses
either MIPS or Intel Itanium instructions and the corresponding conventions for register
handling and procedure calls. Native processes are those created by executing native
object files. Native procedures are units of native object code. Native mode execution
is the state of the process when it is executing native procedures.

native mode. See TNS/R native mode and TNS/E native mode.

native object code. See TNS/R native object code and TNS/E native object code.

native object file. See TNS/R native object file and TNS/E native object file.

native object file tool. See noft utility and enoft utility,

native process. See TNS/R native process and TNS/E native process.

native system library or DLL. Synonym for implicit library or DLL.

nld utility. A utility that collects, links, and modifies code and data blocks from one or more
object files to produce a target TNS/R native object file. The nld utility is similar to the
Binder program used in the TNS development environment. Compare to eld utility.

noft utility. A utility that reads and displays information from TNS/R native object files.
Compare to enoft utility

nonexact point. A code location within an accelerated object file that is between memory-
exact points. The mapping between the TNS program counter and corresponding
RISC instructions is only approximate at nonexact points, and interim changes to
memory might have been completed out of order. Breakpoints cannot be applied at
nonexact points. Contrast with memory-exact point and register-exact point.

NSR-L processor. The NonStop System RISC Model L processor (NSR-L processor) is
the first TNS/R processor. NonStop Cyclone/R and CLX 2000 systems contain NSR-L
processors. All documentation that refers to the NSR-L processor and related software
applies to both systems unless explicitly stated otherwise.

object file. A file, generated by a compiler or binder, that contains machine instructions and
other information needed to construct the code spaces and initial data for a process.

object code accelerator (OCA). See TNS Object Code Accelerator (OCA).
Inspect Manual—429164-006
Glossary-8

Glossary OCA
OCA. (1) The command used to invoke the TNS Object Code Accelerator (OCA) on a
TNS/E system. (2) See TNS Object Code Accelerator (OCA).

OCA region loading. A task performed when necessary by the TNS emulation software for
TNS/E machines. This task involves mapping into memory the Intel Itanium
instructions and any tables needed at run time from the OCA-generated object file.

OCA region of an object file. The region of a Object Code Accelerator (OCA)-generated
object file, also called the Intel Itanium instruction region, that contains Itanium
instructions and tables necessary to execute the object file on a TNS/E system in TNS
accelerated mode. The Object Code Accelerator (OCA) creates this region. See also
OCA-accelerated object code. Contrast with Accelerator region of an object file.

OCA-accelerated object code. The Intel Itanium instructions that result from processing a
TNS object file with the Object Code Accelerator (OCA).

OCA-accelerated object file. A TNS object file that has been augmented by the TNS
Object Code Accelerator (OCA) with equivalent but faster Intel Itanium instructions. An
OCA-accelerated object file contains the original TNS object code, the OCA-
accelerated object code and related address map tables, and any Binder and symbol
information from the original TNS object file. An OCA-accelerated object file also can
be augmented by the Axcel accelerator with equivalent MIPS RISC instructions.

OCA-generated Itanium instructions. See Intel® Itanium® instructions.

open file. A file with a file descriptor.

open file description. A data structure within a NonStop node that contains information
about the access of a process or of a group of processes to a file. An open file
description records such attributes as the file offset, file status, and file access modes.
An open file description is associated with only one open file but can be associated
with one or more file descriptors.

Open System Services (OSS). An open system environment available for interactive or
programmatic use with the HP NonStop operating system. Processes that run in the
OSS environment usually use the OSS application program interface. Interactive users
of the OSS environment usually use the OSS shell for their command interpreter.
Synonymous with Open System Services (OSS) environment. Contrast with Guardian.

OSS. See Open System Services (OSS)

OSS process ID (PID). The unique identifier that represents a process during the lifetime of
the process and during the lifetime of the process group of that process. See also
“PID.”

OSS signal. A signal model defined in the POSIX.1 specification and available to TNS
processes and TNS/R native processes in the OSS environment. OSS signals can be
sent between processes.
Inspect Manual—429164-006
Glossary-9

Glossary parameter
parameter. An item you specify in an Inspect command. Parameters always appear in italic
print in the manual.

pathname. The string of characters that uniquely identifies a file within its file system. A
pathname can be either relative or absolute. See also ISO/IEC IS 9945-1:1990
(ANSI/IEEE Std. 1003.1-1990 or POSIX.1), Clause 2.2.2.57.

PATHWAY requester program. A SCREEN COBOL program running under the
supervision of a TCP. A PATHWAY requester is composed of a PATHWAY requester
program and the TCP supervising it.

PATHWAY server. An application process that accepts a request from a PATHWAY
requester, fulfills the request, and returns a reply to the requester.

pending state. .The execution state where you don’t see the program while it is running.

PIC (Position-Independent Code). Executable code that can run at different virtual
addresses.

PID. In the OSS environment, PID stands for OSS process ID, a numeric identifier
assigned to an OSS process and unique within a NonStop node.

In the Guardian environment, PID is used to mean either of these:

 A Guardian process identifier such as the process ID

 The cpu, pin value that is unique to a process within a NonStop node

See also OSS process ID (PID).

PIN. See “Process identification number.”

primary entry point. The address at which execution of a scope unit begins—not to be
confused with code base, which is the address at which the code for a scope unit
begins.

ProcDebug. An accelerator option that directs the accelerator to perform optimization
across statement boundaries. This option typically produces faster-executing code
than the StmtDebug option, but debugging the program might be more difficult because
it might not be possible to set a breakpoint at some statement boundaries. ProcDebug
is the accelerator default. Contrast with StmtDebug.

process. A running machine-code program.

process handle. A system data structure that serves as the address of a named or
unnamed process in the network. A process handle identifies an individual process, not
a process pair.

process ID. A system data structure that serves as a address of a process. The structure
contains a CPU number, PIN, creation timestamp or process name, and system
number (optional). It is sometimes called a creation timestamp process ID (CRTPID).
Inspect Manual—429164-006
Glossary-10

Glossary process identification number (PIN)
process identification number (PIN). An unsigned integer that identifies a process in a
processor module.

process snapshot file. (1) A file containing dump information needed by the system
debugging tool. In UNIX systems, such files are usually called core files or core dump
files. (2) A file containing the state of a running process at a specific moment,
regardless of whether the process terminated abnormally. See also saveabend file.

program. In the general sense, a program is a file that contains a series of instructions. In
Inspect, however, the term “program” has a more specific meaning—a program is a
process, a save file, a PATHWAY server, or a PATHWAY requester program.

program file. An executable object file generated by a compiler or by the accelerator and a
binder program.

program list. The list of programs that you are debugging concurrently. The PROGRAM
command without any parameters displays the program list.

pseudocode. The intermediate-level code produced when you compile a SCREEN
COBOL program. A TCP, not a CPU, executes pseudocode.

public library. A dynamic-link library (DLL) or shared run-time library (SRL) that is known to
the operating system, available for execution by any process or user, and is not an
implicit library.

reduced instruction-set computing (RISC). A processor architecture based on a relatively
small and simple instruction set, a large number of general-purpose registers, and an
optimized instruction pipeline that supports high-performance instruction execution.
Contrast with complex instruction-set computing (CISC) and Explicitly Parallel
Instruction Computing (EPIC).

register-exact point. A synchronization location within an accelerated object file at which
both of these statements are true:

 All live TNS registers plus all values in memory are the same as they would be if
the object file were running in TNS mode or TNS interpreted mode or on a TNS
system.

 All accelerator code optimizations are ended.

Register-exact points are a small subset of all memory-exact points. Procedure entry
and exit locations and call-return sites are usually register-exact points. All places
where the program might switch into or from TNS mode or TNS interpreted mode are
register-exact points. Contrast with memory-exact point and nonexact point.

RISC. See “reduced instruction-set computing (RISC).”

RISC instructions. Register-oriented 32-bit machine instructions that are directly executed
on TNS/R processors. RISC instructions execute only on TNS/R systems. Contrast
with TNS instructions and Intel® Itanium® instructions.
Inspect Manual—429164-006
Glossary-11

Glossary RISC processor
RISC processor. An instruction processing unit (IPU) that is based on reduced
instruction-set computing (RISC) architecture. TNS/R systems contain RISC
processors.

run state. The execution state describing a program while it is running.

save file. A file created by the Inspect subsystem in response to a command from a
debugger. A save file contains enough information about a running process at a given
time to restart the process at the same point in its execution. A save file contains an
image of the process, data for the process, and the status of the process at the time
the save file was created.

A save file can be created through an Inspect SAVE command at any time. A save file
called a saveabend file can be created by DMON if a process’s SAVEABEND attribute
is set and the process terminates abnormally. Other debuggers can create a save file
but refer to the result as a process snapshot file. See also process snapshot file.

saveabend file. A file containing dump information needed by the system debugging tool.
(In UNIX systems, such files are usually called core files or core dump files.) A
saveabend file is a special case of a save file. See also save file and process snapshot
file.

scope of identifiers; scope. The concept that an identifier in a source program has a
defined range, or domain, over which it is valid.

scope path. The list of scope units containing a source identifier, starting with the
outermost and working down to the innermost (the one immediately containing the
identifier).

scope units; scope unit. The entity or entities into which source code is grouped. Scope
units enable programmers to define the boundaries of scope domains.

Shared Millicode Library. An intrinsic library containing privileged or TNS-derived millicode
routines used by many native-compiled programs and by emulated TNS programs.
This library includes efficient string-move operations, TNS floating-point emulation, and
various privileged-only operations. These routines are mode independent. They
comply with native calling conventions but can be directly invoked from any mode
without changing execution modes.

shared run-time library (SRL). A collection of procedures whose code and data can be
loaded and executed only at a specific assigned virtual memory address (the same
address in all processes). SRLs use direct addressing and do not have run-time
resolution of links to and from the main program and other independent libraries.
Contrast with dynamic-link library (DLL). See also TNS shared run-time library (TNS
SRL) and TNS/R native shared run-time library (TNS/R native SRL).

signal. A means by which a process can be notified of or affected by an event occurring in
the system. Signals are used to notify a process when an error not related to input or
Inspect Manual—429164-006
Glossary-12

Glossary signal handler
output has occurred. See also OSS signal, TNS signal, TNS/R native signal, and
TNS/E native signal.

signal handler. A procedure that is executed when a signal is received by a process.

snapshot. An image of the process, its data, and its status at the moment it was saved. In
Inspect, a snapshot, referred to as a save file, is created using the SAVE command.
In Visual Inspect, a snapshot is created using the Save Snapshot command. If the
SAVEABEND attribute for a process is ON and the process abends, the snapshot file
server INSPSNAP creates a snapshot (file code 130). Both Visual Inspect and Inspect
can be used to debug snapshots.

SRL. See “shared run-time library (SRL).”

status message. The informational message that Inspect displays when a debug event
occurs.

StmtDebug. An accelerator option that directs the accelerator to optimize instructions only
within the code produced for any one statement. Instructions are not optimized across
statements. This option typically produces less-optimized code than the ProcDebug
option. However, debugging is easier than with the ProcDebug option because the
beginning of every statement in the source program is a memory-exact point. Contrast
with ProcDebug.

Stop state. The execution state describing a program immediately after it completes
execution (whether normally or abnormally).

super ID. On HP NonStop systems, a privileged user who can read, write, execute, and
purge all files on the system. The super ID is usually a member of a system-supervisor
group.

The super ID has the set of special permissions called appropriate privileges. In the
Guardian environment, the structured view of the super ID, which is (255, 255), is most
commonly used. In the Open System Services (OSS) environment, the scalar view of
the super ID, which is 65535, is most commonly used.

symbol. (The symbolic name of a value, typically a function entry point or a data location. In
the context of loadable libraries, symbols are defined in loadfiles and referenced in the
same or other loadfiles.

symbols region. See Inspect region.

TCP. A process that is responsible for managing PATHWAY application terminals and
executing the pseudo-instructions in PATHWAY requester programs. A PATHWAY
requester is composed of a PATHWAY requester program and the TCP executing it.

TNS. Refers to fault-tolerant HP computers that support the HP NonStop operating system
and are based on microcoded complex instruction-set computing (CISC) technology.
TNS systems run the TNS instruction set. Contrast with TNS/R and TNS/E.
Inspect Manual—429164-006
Glossary-13

Glossary TNS accelerated mode
TNS accelerated mode. A TNS emulation environment on a TNS/R or TNS/E system in
which accelerated TNS object files are run. TNS instructions have been previously
translated into optimized sequences of MIPS or Intel Itanium instructions. TNS
accelerated mode runs much faster than TNS interpreted mode. Accelerated or
interpreted TNS object code cannot be mixed with or called by native mode object
code. See also Accelerator and TNS Object Code Accelerator (OCA). Contrast with
TNS interpreted mode, TNS/R native mode and TNS/E native mode.

TNS C compiler. The C compiler that generates TNS object files. Contrast with TNS/R
native C compiler and TNS/E native C compiler.

TNS code segment. One of up to 32 128-kilobyte areas of TNS object code within a TNS
code space. Each segment contains the TNS instructions for up to 510 complete
routines. Each TNS code segment contains its own procedure entry-point (PEP) table
and external entry-point (XEP) table. It can also contain read-only data.

TNS code segment identifier. A seven-bit value in which the most significant two bits
encode a code space (user code, user library, system code, or system library) and the
five remaining bits encode a code segment index in the range 0 through 31.

TNS code segment index. A value in the range 0 through 31 that indexes a code segment
within the current user code, user library, system code, or system library space. This
value can be encoded in five bits.

TNS code space. One of four addressable collections of TNS object code in a TNS
process. They are User Code (UC), User Library (UL), System Code (SC), and System
Library (SL). UC and UL exist on a per-process basis. SC and SL exist on a per-node
basis.

TNS compiler. A compiler in the TNS development environment that generates 16-bit TNS
object code following the TNS conventions for memory, stacks, 16-bit registers, and
call linkage. The TNS C compiler is an example of such a compiler. Contrast with
TNS/R native compiler and TNS/E native compiler.

TNS Emulation Library. A public dynamic-link library (DLL) on a TNS/E system containing
the TNS object code interpreter, millicode routines used only by accelerated mode, and
millicode for switching among interpreted, accelerated, and native execution modes.
See also Shared Millicode Library.

TNS emulation software. The set of tools, libraries, and system services for running TNS
object code on TNS/E systems and TNS/R systems. On a TNS/E system, the TNS
emulation software includes the TNS object code interpreter, the TNS Object Code
Accelerator (OCA), and various millicode libraries. On a TNS/R system, the TNS
emulation software includes the TNS object code interpreter, the Axcel accelerator, and
various millicode libraries.

TNS fixup. A task performed at process startup time when executing a TNS object file. This
task involves building the procedure entry point (PEP) table and external entry point
Inspect Manual—429164-006
Glossary-14

Glossary TNS instructions
(XEP) table and patching PCAL and XCAL instructions in a TNS object file before
loading the file into memory. See also TNS mode.

TNS instructions. Stack-oriented, 16-bit machine instructions that are directly executed on
TNS systems by hardware and microcode. TNS instructions can be emulated on
TNS/E and TNS/R systems by using millicode, an interpreter, and acceleration.
Contrast with Intel® Itanium® instructions and RISC instructions.

TNS interpreted mode. A TNS emulation environment on a TNS/R or TNS/E system in
which individual TNS instructions in a TNS object file are directly executed by
interpretation rather than permanently translated into MIPS or Intel Itanium instructions.
TNS interpreted mode runs slower than TNS accelerated mode. Each TNS instruction
is decoded each time it is executed, and no optimizations between TNS instructions
are possible. TNS interpreted mode is used when a TNS object file has not been
accelerated for that hardware system, and it is also sometimes used for brief periods
within accelerated object files. Accelerated or interpreted TNS object code cannot be
mixed with or called by native mode object code. Contrast with TNS accelerated mode,
TNS/R native mode, and TNS/E native mode.

TNS library. A single, optional, TNS-compiled loadfile associated with one or more
application loadfiles. If a user library has its own global or static variables, it is called a
TNS shared run-time library (TNS SRL). Otherwise it is called a User Library (UL).

TNS loading. A task performed at process startup time when executing a TNS object file.
This task involves mapping the TNS instructions, procedure entry-point (PEP) table,
and external entry-point (XEP) table from a TNS object file into memory.

TNS mode. The operational environment in which TNS instructions execute by inline
interpretation. See also accelerated mode, TNS/R native mode and TNS interpreted
mode.

TNS object code. The TNS instructions that result from processing program source code
with a TNS compiler. TNS object code executes on TNS, TNS/R, and TNS/E systems.

TNS Object Code Accelerator (OCA). A program optimization tool that processes a TNS
object file and produces an accelerated file for a TNS/E system. OCA augments a TNS
object file with equivalent Intel Itanium instructions. TNS object code that is accelerated
runs faster on TNS/E systems than TNS object code that is not accelerated. See also
Accelerator and TNS Object Code Interpreter (OCI).

TNS Object Code Interpreter (OCI). A program that processes a TNS object file and
emulates TNS instructions on a TNS/E system without preprocessing the object file.
See also TNS Object Code Accelerator (OCA).

TNS object file. An object file created by a TNS compiler or the Binder. A TNS object file
contains TNS instructions. TNS object files can be processed by the Axcel accelerator
or by the TNS Object Code Accelerator (OCA) to produce to produce accelerated
object files. A TNS object file can be run on TNS, TNS/R, and TNS/E systems.
Inspect Manual—429164-006
Glossary-15

Glossary TNS procedure label
TNS procedure label. A 16-bit identifier for an internal or external procedure used by the
TNS object code of a TNS process. The most-significant 7 bits are a TNS code
segment identifier: 2 bits for the TNS code space and 5 bits for the TNS code segment
index. The least-significant 9 bits are an index into the target segment's procedure
entry-point (PEP) table. On a TNS/E system, all shells for calling native library
procedures are segregated within the system code space. When the TNS code space
bits of a TNS procedure label are %B10, the remaining 14 bits are an index into the
system's shell map table, not a segment index and PEP index.

TNS process. A process whose main program object file is a TNS object file, compiled
using a TNS compiler. A TNS process executes in interpreted or accelerated mode
while within itself, when calling a user library, or when calling into TNS system libraries.
A TNS process temporarily executes in native mode when calling into native-compiled
parts of the system library. Object files within a TNS process might be accelerated or
not, with automatic switching between accelerated and interpreted modes on calls and
returns between those parts. Contrast with TNS/R native process and TNS/E native
process.

TNS shared run-time library (TNS SRL). A shared run-time library (SRL) available to TNS
processes in the Open System Services (OSS) environment. A TNS process can have
only one TNS SRL. A TNS SRL is implemented as a special user library that allows
shared global data. See also shared run-time library (SRL) and dynamic-link library
(DLL).

TNS signal. A signal model available to TNS processes in the Guardian environment.

TNS stack segment. See TNS user data segment.

TNS State Library for TNS/E. A library of routines to access and modify the TNS state of a
TNS process running on TNS/E.

TNS system library. A collection of HP-supplied TNS-compiled routines available to all
TNS processes. There is no per-program or per-process customization of this library.
All routines are immediately available to a new process. No dynamic loading of code or
creation of instance data segments is involved. See also native system library or DLL.

TNS to native-mode access shell. A shell object file, generated by the shell generator, that
supports procedure calls from TNS object files to a particular TNS/R native-mode or
TNS/E native-mode library routine. The shell suspends TNS code emulation, copies
and reformats parameters from the TNS execution stack to the native execution stack,
calls the desired routine in native mode, copies back the function result, and resumes
TNS code emulation. A custom shell exists for each native-mode library routine that
can be called from TNS object files.

TNS user data segment. In a TNS process, the segment at virtual address zero. Its length
is limited to 128 kilobytes. A TNS program's global variables, stack, and 16-bit heap
must fit within the first 64 kilobytes. See also compiler extended-data segment.

TNS user library. A user library available to TNS processes in the Guardian environment.
Inspect Manual—429164-006
Glossary-16

Glossary TNS word
TNS word. An instruction-set-defined unit of memory. A TNS word is 2 bytes (16 bits) wide,
beginning on any 2-byte boundary in memory. See also Intel Itanium word, MIPS RISC
word, and word.

TNS/E. Refers to fault-tolerant HP computers that support the HP NonStop operating
system and are based on the Intel Itanium processor. TNS/E systems run the Itanium
instruction set and can run TNS object files by interpretation or after acceleration.
TNS/E systems include all HP NonStop systems that use NSE-x processors. Contrast
with TNS and TNS/R. See also Explicitly Parallel Instruction Computing (EPIC).

TNS/E library. A TNS/E native-mode library. TNS/E libraries are always dynamic-link
libraries (DLLs); there is no native shared run-time library (SRL) format.

TNS/E native C compiler. The C compiler that generates TNS/E object files. Contrast with
TNS C compiler and TNS/R native C compiler.

TNS/E native compiler. A compiler in the TNS/E development environment that generates
TNS/E native object code, following the TNS/E native-mode conventions for memory,
stack, registers, and call linkage. The TNS/E native C compiler is an example of such a
compiler. Contrast with TNS compiler and TNS/R native compiler.

TNS/E native mode. The primary execution environment on a TNS/E system, in which
native-compiled Intel Itanium object code executes, following TNS/E native-mode
compiler conventions for data locations, addressing, stack frames, registers, and call
linkage. Contrast with TNS interpreted mode and TNS accelerated mode. See also
TNS/R native mode.

TNS/E native object code. The Intel Itanium instructions that result from processing
program source code with a TNS/E native compiler. TNS/E native object code
executes only on TNS/E systems, not on TNS systems or TNS/R systems.

TNS/E native object file. An object file created by a TNS/E native compiler that contains
Intel Itanium instructions and other information needed to construct the code spaces
and the initial data for a TNS/E native process.

TNS/E native process. A process initiated by executing a TNS/E native object file. Contrast
with TNS process and TNS/R native process.

TNS/E native signal. A signal model available to TNS/E native processes in both the
Guardian and Open System Services (OSS) environments. TNS/E native signals are
used for error exception handling.

TNS/E native user library. A user library available to TNS/E native processes in both the
Guardian and Open System Services (OSS) environments. A TNS/E native user library
is implemented as a TNS/E native dynamic-link library (DLL).

TNS/R. Refers to fault-tolerant HP computers that support the HP NonStop operating
system and are based on 32-bit reduced instruction-set computing (RISC) technology.
TNS/R systems run the MIPS-1 RISC instruction set and can run TNS object files by
Inspect Manual—429164-006
Glossary-17

Glossary TNS/R library
interpretation or after acceleration. TNS/R systems include all HP systems that use
NSR-x processors. Contrast with TNS and TNS/E.

TNS/R library. A TNS/R native-mode library. For a PIC-compiled application, TNS/R
libraries can be dynamic-link libraries (DLLs) or hybridized native shared runtime
libraries (SRLs). For an application that is not PIC compiled, TNS/R libraries can only
be native SRLs.

TNS/R native C compiler. The C compiler that generates TNS/R object files. Contrast with
TNS C compiler and TNS/E native C compiler.

TNS/R native compiler. A compiler in the TNS/R development environment that generates
TNS/R native object code, following the TNS/R native-mode conventions for memory,
stack, 32-bit registers, and call linkage. The TNS/R native C compiler is an example of
such a compiler. Contrast with TNS compiler and TNS/E native compiler.

TNS/R native mode. The primary execution environment on a TNS/R system, in which
native-compiled MIPS object code executes, following TNS/R native-mode compiler
conventions for data locations, addressing, stack frames, registers, and call linkage.
Contrast with TNS interpreted mode and TNS accelerated mode. See also TNS/E
native mode.

TNS/R native object code. The MIPS RISC instructions that result from processing
program source code with a TNS/R native compiler. TNS/R native object code
executes only on TNS/R systems, not on TNS systems or TNS/E systems.

TNS/R native object file. An object file created by a TNS/R native compiler that contains
MIPS RISC instructions and other information needed to construct the code spaces
and the initial data for a TNS/R native process.

TNS/R native process. A process initiated by executing a TNS/R native object file. Contrast
with TNS process and TNS/E native process.

TNS/R native shared run-time library (TNS/R native SRL). A shared run-time library
(SRL) available to TNS/R native processes in both the Guardian and Open System
Services (OSS) environments. TNS/R native SRLs can be either public or private. A
TNS/R native process can have multiple public SRLs but only one private SRL.

TNS/R native signal. A signal model available to TNS/R native processes in both the
Guardian and Open System Services (OSS) environments. TNS/R native signals are
used for error exception handling.

TNS/R native user library. A user library available to TNS/R native processes in both the
Guardian and Open System Services (OSS) environments. A TNS/R native user library
is implemented as a special private TNS/R native shared run-time library (TNS/R
native SRL).
Inspect Manual—429164-006
Glossary-18

Glossary TNSVU
TNSVU. A tool used on TNS/E systems to browse through TNS object files that have been
accelerated by the TNS Object Code Accelerator (OCA). TNSVU displays Intel Itanium
code in addition to TNS code.

word. An instruction-set-defined unit of memory that corresponds to the width of registers
and to the most common and efficient size of memory operations. A TNS word is
2 bytes (16 bits) wide, beginning on any 2-byte boundary in memory. A MIPS RISC
word is 4 bytes (32 bits) wide, beginning on any 4-byte boundary in memory. An Intel
Itanium word is also 4 bytes (32 bits) wide, beginning on any 4-byte boundary in
memory.

$RECEIVE. A special file name through which a process receives and optionally replies to
messages from other processes.
Inspect Manual—429164-006
Glossary-19

Glossary $RECEIVE
Inspect Manual—429164-006
Glossary-20

Index

Numbers
9 format of DISPLAY PIC command 6-73

A
A command 7-1
Abbreviation of keywords 6-1
ABEND clause,BREAK command 6-21
Accelerate Glossary-1
Accelerated program 15-4

debugging 16-4, 17-2

execution 15-3

on TNS/E system 18-1

program performance 15-3

transitions 16-3

Accelerated program debugging
accesses to 32-bit words 16-12

annotated ICODE 16-23

at a memory-exact point 16-8

at a register-exact point 16-8

COBOL programs 16-13

code breakpoints 16-4, 16-8

data access limitations 16-15, 16-16

data breakpoint restrictions 16-9

data breakpoints 2-10

data display 16-5

event reporting 16-15

INFO LOCATION command 6-108,
16-17

INFO OBJECTFILE command 6-111,
16-18

LIST PROGRAM command 16-19

memory-access breakpoints 16-9

MODIFY command 6-150, 16-16

modify restrictions 16-4

on TNS/E system 18-1

optimizations 16-3

options 16-6

Accelerated program
debugging (continued)

performance 16-3

program libraries 16-8

program state 16-8

RESUME command

description of 6-158, 16-19

STEP 6-160

Usage considerations 6-159

SELECT DEBUGGER DEBUG
command 15-14

SET PROMPT command 6-178, 16-20

SET STATUS command 6-187, 16-20

SOURCE command 6-196, 6-205,
16-20, 16-23

SOURCE ICODE command 6-204,
6-205, 16-23

source level 15-6, 16-6

status tokens 16-20

STEP command 6-212, 16-21

TNS register access limitations 16-16,
16-17

TNS/R machine code addresses 15-12

TNS/R machine level 15-6, 16-6

TNS/R machine level commands 15-13

TNS/R machine registers 15-12

Accelerated program file,execution 15-3
Accelerator

TNS Object Code Accelerator
(OCA) Glossary-15

ACCELERATOR STATE
SET PROMPT 16-20

SET STATUS 16-20

ACCELERATOR STATE item in status
message 6-188
Accelerator,description of Glossary-1
Active scope units Glossary-1

description of 2-13

displaying 6-219
Inspect Manual—429164-006
Index-1

Index B
ADD command 6-6
ADD ALIAS 3-5, 6-7

ADD KEY 3-5, 6-9

ADD PROGRAM 3-3, 6-10

causing a debug event 2-8

on a TNS/E system 18-8

with TNS/R native programs 17-6

ADD SOURCE ASSIGN 3-4, 6-14

ALIAS command 3-5, 3-6, 6-17
Aliases

BREAK THEN command

description of 6-8

used in alias 6-22

deleting 6-30

echoing expansion 6-174

editing 6-83

IF command, used in 6-103

listing 6-131

Aliases,adding 6-7
annotated ICODE with accelerated
programs on TNS/E 6-98
Annotated ICODE,with accelerated
programs 16-23
Application terminal,See PATHWAY
application terminal
ARGUMENTS clause

SET TRACE command 6-193

TRACE command 6-219

Array data types
FORTRAN 11-9

Pascal 12-8

pTAL 13-9

TAL 13-9

AS clause of DISPLAY command 6-61
AS COMMANDS clause,SHOW
command 6-194
ASCII base of DISPLAY IN command 6-71
AT clause

RESUME command 6-158

SOURCE command 6-196

Attributes, debugging 4-4, 4-8

Automatic selection
command mode 1-7

current language 6-167

current program 2-7

current scope path 6-163

B
B command 7-1
BACK clause of SOURCE
command 6-197, 6-204
BACKUP clause of BREAK command 6-20
Backup process, debugging 6-23
Banner line Glossary-1
BINARY base of DISPLAY IN
command 6-70
Bit field data types in C++ 9-7
BM command 7-1
Break action 2-9, Glossary-1
BREAK command

description of 3-2

with TNS/R native programs 17-6

BREAK command,description of 6-19
BREAK command,simplify 3-6
Break condition 2-9
Break duration 2-9
Break event 2-9, Glossary-2
BREAK key

during debugging session 4-11

when entering a command 3-1

Break location 2-9, Glossary-2
Breakpoint Glossary-2
Breakpoint activation 2-11, 6-22,
Glossary-2
Breakpoint definition 2-9, 6-22, Glossary-2
Breakpoint list 2-9, Glossary-2
Breakpoints 2-9

clearing 6-17, 6-27

conditional 2-10

editing 6-84

listing 6-131

maximum number 2-10
Inspect Manual—429164-006
Index-2

Index C
Breakpoints (continued)
processing 2-11

See also Code breakpoints

See also Data breakpoints

setting 2-9, 6-19

unconditional 2-10

BYTE unit in DISPLAY FOR
command 6-65

C
C 8-1
C clause of SELECT LANGUAGE 6-167
C command 7-1
C language,starting to debug a
program 8-1
C space identifier 7-2
Call history 2-13, Glossary-2
Call to unresolved external

causing a debug event 2-9

CASE clause of SOURCE SEARCH
command 6-209
CD command 6-27
CHARACTER FORMAT session parameter

setting 6-172

showing 6-194

CISC Glossary-2
CLEAR command 3-2, 6-27
COBOL

code locations 10-2, 10-5

code unit, default 10-3

command usage guidelines 10-11,
10-14

data locations 10-5, 10-7

data types 10-9, 10-10

data types,records 10-9

expressions 10-8, 10-9

SCOBOL restrictions 10-10

scope paths 10-1

scope units 10-1

special registers 10-7, 10-8

COBOL clause of SELECT
LANGUAGE 6-167
COBOL85 clause of SELECT
LANGUAGE 6-167
Code breakpoints 2-10

maximum number 2-10

restrictions with accelerated
programs 16-4

usage considerations 6-26

with accelerated programs 16-8

Code Breakpoints,usage
considerations 6-26
CODE clause

ADD PROGRAM command 6-11, 6-12

SELECT PROGRAM command 6-168

Code locations
COBOL 10-2, 10-5

C++ 9-5

description of 2-16

FORTRAN 11-2, 11-5

Pascal 12-2, 12-4

primary entry point as 2-16

pTAL 13-1

TAL 13-1, 13-5

Code unit
COBOL default 10-3

FORTRAN default 11-3

low-level default 7-4

pTAL default 13-3

STEP command default 6-213

TAL default 13-3

Code, displaying 6-45
COMMAND item in Inspect prompt 6-178
Command list 3-1

MODIFY used in 6-150

RESUME used in 6-159

STEP used in 6-213

Command modes
automatic selection 1-7

See also High-level mode

See also Low-level mode
Inspect Manual—429164-006
Index-3

Index D
Command modes (continued)
See Command modes

Command terminal 4-3, 5-3
Commands

Annotation 16-22

entering 3-1

high-level 6-1

customizing a session 3-5

debugging current program 3-2

entering and editing commands 3-4

managing a session 3-6

managing multiple programs 3-3

managing source files 3-3

See also individual commands

simplifying a session 3-6

INFO-LOCATION 16-17

INFO-OBJECTFILE 16-18

LIST-PROGRAM 16-18

low-level 7-1

SET 16-20

SOURCE 16-20

STEP 16-21

usability 3-6

COMMENT command 3-6, 6-28
Components of Inspect 1-7
Conditional breakpoints

with DEBUG 2-11

Conditional breakpoints,description of 2-10
Constants, displaying 6-58
CONTROL/Y (CTRL/Y), same as EXIT
command 6-82
COPIES clause of MODIFY
command 6-148
CRTPID display type 6-76
Current language

automatic selection 6-167

displaying 6-81

selecting 6-166

Current program 2-7
automatic selection 2-7

Current program (continued)
displaying 6-81

selecting 6-167

Current scope path 2-13
automatic selection 6-163

displaying 6-81

selecting 6-162

C++ language
code locations 9-5

command usage guidelines 9-13

data locations 9-5, 9-7

data types 9-7, 9-9

bit fields 9-7

structure pointers 9-8

unions 9-9

enhancements and restrictions 9-9

expressions 9-7

D
D command

description of 7-1

editing templates 6-86

Data
displaying 6-37/6-41

EMS, displaying 6-48

modifying 6-146

SPI, displaying 6-48

Data access limitations
at memory-exact points 16-16

at non-exact points 16-16

at register-exact points 16-15

Data block
INFO SCOPE command 6-123

low-level mode 7-2

Pascal data locations 12-5

pTAL data locations 13-5

TAL data locations 13-5

Data breakpoints 2-10
Change 16-12
Inspect Manual—429164-006
Index-4

Index D
Data breakpoints (continued)
default 16-12

maximum number 2-10

Read/Write 16-13

usage considerations 6-24/6-26

Write 16-12

Data display
restrictions with accelerated
programs 16-5

Data locations 2-18
COBOL 10-5, 10-7

C++ 9-5, 9-7

FORTRAN 11-5, 11-8

Pascal 12-5, 12-7

pTAL 13-5

TAL 13-5

Data types
COBOL 10-9, 10-10

C++ 9-7, 9-9

FORTRAN 11-8, 11-11

Pascal 12-7, 12-15

pTAL 13-9, 13-11

TAL 13-9, 13-11

DEBUG
access 15-14

conditional breakpoints 2-11, 15-14

SELECT DEBUGGER DEBUG
command 6-165, 15-14

Debug event 2-8
DEBUG system procedure

causing a debug event 2-9

starting a process debugging
session 4-10

DEBUG TACL command
causing a debug event 2-8

starting a process debugging
session 4-9

Debugger selection
on TNS/E system 18-4

on TNS/R system 4-4, 4-5

Debugging
multiple programs concurrently 2-7

PATHWAY requester programs 5-3/5-9

PATHWAY servers 5-10/5-13

PATHWAY user conversion
routines 5-13/5-16

processes 4-3/4-12

Debugging attributes 4-4
Debugging session,See Inspect session
DEBUGPROCESS system procedure 4-9
DEBUGPROCESS TACL function,See
#DEBUGPROCESS TACL function
DEBUG-ITEM COBOL register 10-8
DECIMAL base

DISPLAY IN command 6-71

RADIX session parameter 6-181

DEFERENCE DEPTH session
parameter,showing 6-194
Defining breakpoints 2-9
DELETE command 6-29

DELETE ALIAS 3-5, 6-30

DELETE KEY 3-5, 6-30

DELETE SOURCE ASSIGN 3-4, 6-31

DELETE SOURCE OPEN 3-4, 6-32

DEREFERENCE DEPTH session
parameter,setting 6-173
DETAIL clause of INFO OPENS
command 6-115
DETAIL clause of OPENS command 6-154
DEVICE display type 6-76
DIRECTORY item in Inspect prompt 6-179
DISPLAY command

COBOL usage guidelines 10-12

code 6-45

constants 6-58

data 6-37/6-41

DISPLAY AS 6-61/6-64

DISPLAY FOR 6-64

DISPLAY FORMAT 6-67

DISPLAY IN 6-70

DISPLAY PIC 6-73
Inspect Manual—429164-006
Index-5

Index E
DISPLAY command (continued)
DISPLAY REGISTER

description of 6-42, 17-7

on a TNS/E system 18-8

DISPLAY TNS/R REGISTER 15-13

DISPLAY TYPE 6-75

DISPLAY VALUE 6-58

EMS data,description of 6-48

EMS data,token formatting 6-53

expressions 6-58, 6-61

registers 6-42

SPI data 6-48

SPI data,token formatting 6-53

strings 6-58

TNS/R registers 15-13

DISPLAY command,description of 3-2
DISPLAY command,functions of 6-33
DMON process 1-7, 1-9

creator of save files 2-5

error messages C-3

function in PATHWAY server
debugging 5-10

function in process debugging 4-2

stopping C-2

DOUBLE unit in DISPLAY FOR
command 6-65

E
E register

See ENV register

ECHO session parameter
setting 6-174

showing 6-194, 6-225

Editing templates 6-86
EMS data

displaying 6-48

token formatting 6-53

EMSGET procedure 6-52
Emulated TNS process 2-5, 18-1
Entering Inspect commands 3-1

Enumerated data types Pascal 12-8
ENV command 3-5, 6-81
ENV display type 6-76
ENV register

displaying 6-43

modifying

recorded in save file 2-5

TRACE command 6-220

Error messages
DMON C-3

IMON C-3, C-4

Inspect A-1

EVENT item in status message 6-188
Event status message

See Status message

EVERY clause of BREAK command 6-19,
6-21, 6-23
Execution states 2-7
EXIT clause of RESUME command 6-158
EXIT command 3-6, 6-82

ending a session 4-12, 5-9, 5-13, 5-15

Expressions 2-15
COBOL 10-8, 10-9

C++ 9-7

displaying 6-58

FORTRAN 11-8

low-level mode 7-3/7-4

Pascal 12-7

pTAL 13-8, 13-9

TAL 13-8, 13-9

Extended addresses 7-5
Extended segments in current
program 6-125

F
F command 7-1
FA command 3-4, 6-83

ADD ALIAS command 6-8

ADD KEY command 6-10

IF command 6-103
Inspect Manual—429164-006
Index-6

Index G
Fatal errors A-1
FB command 3-4, 6-84

ADD ALIAS command 6-8

ADD KEY command 6-10

IF command 6-103

FC command 3-4, 6-84
ADD ALIAS command 6-8

ADD KEY command 6-10

IF command 6-103

Features of Inspect 1-1
FILE clause of SOURCE command 6-198
File data types Pascal 12-9
FILE option of LINE location format 6-176
FILENAME display type 6-76
FILENAME32 display type 6-77
FILES command 3-6, 6-89/6-90
FILLER fields in records

displaying 6-39

modifying 6-150

Fix commands
See FA, FB, FC, and FK commands

FK command 3-4, 6-90
ADD ALIAS command 6-8

ADD KEY command 6-10

IF command 6-103

FN command 7-1
FN item in Inspect prompt 6-179
FOR clause

DISPLAY command, of 6-64

SOURCE command 6-197, 6-204

FORMAT clause of DISPLAY
command 6-67
FORTRAN

code locations 11-2, 11-5

code unit, default 11-3

command usage guidelines 11-11,
11-14

data locations 11-5, 11-8

data types 11-8, 11-11

arrays 11-9

FORTRAN (continued)
records 11-10

enhancements and restrictions 11-11

expressions 11-8

scope paths 11-1

scope units 11-1

FORTRAN clause of SELECT
LANGUAGE 6-167
FROM clause in code locations 2-16, 2-17

Pascal 12-4

Function-key definitions
adding 6-9

deleting 6-30

echoing expansion 6-174

editing 6-90

listing 6-136, 6-137

G
Gone state 2-8
GRAPHICS base of DISPLAY IN
command 6-71

H
HELP command 3-4, 6-91

COBOL usage guidelines 10-12

HELP FILE session parameter 6-174
showing 6-194

HEXADECIMAL base
DISPLAY IN command 6-71

RADIX session parameter 6-181

HIGH command 1-7, 3-6, 7-1
High-level mode 1-6

commands 6-1

customizing a session 3-5

debugging current program 3-2

entering and editing commands 3-4

managing a session 3-6

managing multiple programs 3-3

managing source files 3-3
Inspect Manual—429164-006
Index-7

Index I
High-level mode (continued)
See also individual commands

simplifying a session 3-6

low-level differences 7-4

History buffer
editing command 6-84

executing command 6-224

listing commands 6-135

HISTORY command 3-4, 3-6, 6-93
HOLD command

causing a debug event 2-8

description of 3-2, 6-93

Hold state 2-8
Home terminal 4-3, 5-3

I
I command

description of 7-1

editing templates 6-86

I keyword in low-level mode 7-3
I unit

See INSTRUCTION unit

ICODE base of DISPLAY IN
command 6-71
ICODE clause of SOURCE
command 6-197
ICODE command 6-94

on TNS/E systems 18-8

with TNS/R native programs 17-7

ICODE item in Inspect prompt 6-179
IDENTIFIER command 3-7, 6-102
Identifiers

matching 6-144

scope of 2-11

IF clause of BREAK command
description of 6-19, 6-21

usage consideration 6-23

IF command 3-6, 6-103

IMON process pair 1-7, 1-8
error messages C-3, C-4

starting C-1, C-2

stopping C-2

IN clause
DISPLAY command 6-70

STEP command 6-213

Inactive scope unit 2-13
Index registers, TAL 13-6
INFO command 6-104

INFO IDENTIFIER 6-105

COBOL usage guidelines 10-12

C++ usage guidelines 9-13

FORTRAN usage guidelines 11-12

Pascal usage guidelines 12-15

pTAL usage guidelines 13-12

TAL usage guidelines 13-12

with TNS/R native programs 17-8

INFO LOCATION

description of 6-108

with accelerated programs 16-17

INFO OBJECTFILE 6-111

on TNS/E systems 18-8

with accelerated programs 16-18

with TNS/R native programs 17-8

INFO OPENS 6-114

C++ usage guidelines 9-13

FORTRAN usage guidelines 11-13

INFO SAVEFILE 6-120

on TNS/E systems 18-8

with TNS/R native programs 17-9

INFO SCOPE 6-122

with TNS/R native programs 17-9

INFO SEGMENTS 6-125

INFO SIGNALS 6-127

with TNS/R native programs 17-10

INSPCSTM 2-3, 6-130
Inspect Manual—429164-006
Index-8

Index K
INSPCSTM file
keyword abbreviations 6-1

personal customization 1-4

Inspect
components 1-7

entering commands 3-1

error and warning messages A-1

in the PATHWAY environment 5-2

See also Inspect process

INSPECT attribute 4-4
Inspect banner 2-2
Inspect debugging attribute 4-4
Inspect PATHCOM command

causing a debug event 2-8

Inspect process 1-7, 1-8
function in process debugging 4-2

function in requester program
debugging 5-4

function in save file examination 4-2

Inspect prompt 2-3
setting format 6-178

showing format 6-194

Inspect session 2-1
INSPLOCL

default value 6-174, 6-176, 6-180,
6-182, 6-184, 6-185, 6-193

default values 6-186, 6-190

description of 2-3

usage consideration 6-130

INSPLOCL file
description of 1-4

keyword abbreviations 6-1

Instances of active scope unit
Recursive activation 2-14

SCOPE command 6-162

INSTRUCTION location format 6-175
INSTRUCTION SET

SET PROMPT 16-20

SET STATUS 16-20

INSTRUCTION SET item in Inspect
prompt 6-179
INSTRUCTION SET item in status
message 6-188
INSTRUCTION unit

code locations 2-16

FORTRAN 11-3

pTAL 13-3

TAL 13-3

SET SOURCE BACK command 6-183

SET SOURCE FOR command 6-183

SOURCE BACK command 6-197,
6-204

SOURCE FOR command 6-197, 6-204

STEP command 6-212

Interpreted mode 18-1

K
KEY command 3-7, 6-128
Key definitions

See Function-key definitions

Keywords, abbreviation of 6-1

L
L register

displaying 6-43

modifying

recorded in save file 2-5

LANGUAGE item in status message 6-189
Language, current

automatic selection 6-167

displaying 6-81

Language, current selecting 6-166
ld utility Glossary-7
LEVEL item in Inspect prompt 6-179
LIB clause

ADD PROGRAM command 6-11, 6-12

SELECT PROGRAM command 6-168

LINE clause of SOURCE command 6-197
LINE location format 6-176
Inspect Manual—429164-006
Index-9

Index M
LINE unit
SET SOURCE BACK command 6-183

SET SOURCE FOR command 6-183

SOURCE BACK command 6-197,
6-204

SOURCE FOR command 6-197, 6-204

linkfile Glossary-7
linking Glossary-7
LIST BREAKPOINT command 3-3
LIST command 6-129

LIST ALIAS 3-5, 6-131

LIST BREAKPOINT 6-131

LIST HISTORY 3-5, 6-135

LIST KEY 3-5, 6-136, 6-137

LIST PROGRAM 3-3, 6-137

with accelerated programs 16-19

with TNS/R native programs 17-10

LIST SOURCE ASSIGN 3-4, 6-141

LIST SOURCE OPEN 3-4, 6-142

List, command
See Command list

loadfile Glossary-7
LOCATION clause of SOURCE
command 6-198
LOCATION display type 6-77
LOCATION FORMAT

FORTRAN programs 6-175

LOCATION FORMAT session parameter
setting 6-175

showing 6-194

LOCATION item in status message 6-189
Locations

See Code locations

See Data locations

LOG command 3-6, 6-142
LOG status

setting 6-142

Log status
displaying 6-81

LOW command 1-7, 3-6, 6-143

Low-level mode 1-6
commands 7-1

DEBUG differences 7-5

expression syntax 7-3/7-4

high-level differences 7-4

I keyword 7-3

multiple code segment programs 7-2

S keyword 7-3

symbolic references 7-2

M
M command 7-1
Machine-level program access 1-3
MATCH command 6-144

MATCH IDENTIFIER 6-144

MATCH SCOPE 6-144

Memory-access breakpoints
Change 16-12

changes 16-12

Read/Write 16-13

see also data breakpoints 16-9

with accelerated programs 16-9, 16-13

Write 16-12

Memory-exact point 16-6
add breakpoint 16-8

code breakpoints 16-8

data access limitations 16-16

display registers 16-8

display TNS variables 16-8

event reporting 16-15

instruction stepping 16-8

modify registers 16-8

modify TNS variables 16-8

statement stepping 16-8

TNS register access limitations 16-17

with the STEP command 16-21

Messages, error and warning
DMON C-3

IMON C-3, C-4
Inspect Manual—429164-006
Index-10

Index N
Messages, error and warning (continued)
Inspect A-1

Millicode
execution 15-3

Modify
at register-exact points 16-4

restrictions with accelerated
programs 16-4

MODIFY command 3-3, 6-146
MODIFY REGISTER 6-146

MODIFY SIGNALS 17-11

MODIFY TNS/R registers 15-14

TNS/R debugging restrictions 16-16

TNS/R registers 15-14

with accelerated programs 16-16

Multilanguage programs, support 1-4
Multiple programs, debugging 2-7

N
Native mode debugging (TNS/R) 15-5,
17-2
Native mode (TNS/R)

differences from TNS and accelerated
modes 15-5, 17-2

Network, debugging across 1-5, 1-9
NEW LINE item in status message 6-189
NEWPROCESS system procedure

causing a debug event 2-9

debugging attributes 4-8

starting a process debugging
session 4-9

NEWPROCESSNOWAIT system procedure
causing a debug event 2-9

debugging attributes 4-8

starting a process debugging
session 4-9

newUC 6-13
nld utility Glossary-7
Non-accelerated program

debugging 15-5

Non-exact point
add breakpoint 16-8

data access limitations 16-16

display registers 16-8

display TNS variables 16-8

event reporting 16-15

instruction stepping 16-8

modify registers 16-8

modify TNS variables 16-8

statement stepping 16-8

TNS register access limitations 16-17

Numbering instances
See Instances of active scope unit

O
OBEY command 3-6, 6-152
OBEY file

keyword abbreviations 6-1

RESUME used in 6-159

Object Code Accelerator (OCA) 18-2,
Glossary-15
OBJECT command 3-7, 6-153
OCA

See Object Code Accelerator (OCA)

OCTAL base
DISPLAY IN command 6-70

RADIX session parameter 6-181

OF clause
COBOL code locations 10-2

COBOL data locations 10-6

OFFSET option
FILE location format 6-176

STATEMENT location format 6-176

OPENS command 3-7, 6-153
Operators in expressions

COBOL 10-8

C++ 9-7

FORTRAN 11-8

low-level 7-3

Pascal 12-7
Inspect Manual—429164-006
Index-11

Index P
Operators in expressions (continued)
pTAL 13-9

TAL 13-9

Optimization 2-17
effect on a debug event 2-9

INFO LOCATION, displayed by 6-109

Optimized compilers, support of 1-4
OSS environment

file name resolution 14-2

save file 14-3

signals 14-3

source file 14-4

system type 14-2

OUT clause of STEP command 6-213
OUT command 3-6, 6-155

P
P command 7-1
P register

displaying 6-43

modifying

recorded in save file 2-5

Pascal
code locations 12-2, 12-4

command usage guidelines 12-15,
12-16

data locations 12-5, 12-7

data types 12-7, 12-14

arrays 12-8

enumerated types 12-8

file types 12-9

pointers 12-9

records 12-10

sets 12-12

subranges 12-13

enhancements and restrictions 12-15

expressions 12-7

scope paths 12-1

scope units 12-1

Pascal clause of SELECT
LANGUAGE 6-167
PATHCOM

function in PATHWAY server
debugging 5-10

PATHMON
function in PATHWAY server
debugging 5-10

PATHWAY application terminal 5-3
PATHWAY requester program 2-6

debugging 5-3/5-9

breakpoints in requester
programs 5-8

sharing PATHCOM and Inspect
terminals 5-9

PATHWAY server 2-6
debugging 5-10/5-13

debugging attributes 5-11

server versus server class 5-11

PATHWAY user conversion routines
debugging 5-13/5-16

PAUSE command 3-6, 6-156
PIC clause of DISPLAY command 6-73
PLAIN clause of DISPLAY command 6-38,
6-46
Pointer data types Pascal 12-9
POSITION clause of DISPLAY
command 6-50
Precedence of debuggers

on TNS/E system 18-4

on TNS/R system 4-6

Primary entry point
breakpoints at 6-22

code location 2-16

PRIV MODE session parameter
description of 6-177

showing 6-194

ProcDebug,optimization 17-2
Process

debugging 4-12

debugging attributes 4-4
Inspect Manual—429164-006
Index-12

Index Q
Process (continued)
debugging attributes of creator 4-7

debugging session

BREAK key during 4-11

configuring for 4-8

ending 4-12

starting 4-8

two terminals, using 4-10

startup call, debugging attributes 4-7

PROCESS HANDLE display type 6-77
Processes 2-4
Processing breakpoints 2-11
PROCESSOR

SET PROMP 16-20

SET STATUS 16-20

PROCESSOR item in Inspect
prompt 6-179
PROCESSOR item in status
message 6-189
PROCESS_CREATE_ procedure 4-8
PROCESS_LAUNCH_ procedure 4-8
PROCS clause of STEP OUT
command 6-213
PROGRAM command 3-3, 3-7, 6-156
Program file 2-4

debugging attributes 4-7

PROGRAM FILE item
description of 6-189

Inspect prompt 6-179

Program list 2-7
PROGRAM NAME item

Inspect prompt 6-179

status message 6-189

PROGRAM ORDINAL item
Inspect prompt 6-179

status message 6-189

PROGRAM PID item
Inspect prompt 6-180

status message 6-190

Programs
access to 1-3

adding 6-10

current

See Current program

debugging multiple programs 2-7

execution states of 2-7

multilanguage programs, support 1-4

types 2-4

PROMPT session parameter
setting 6-178

showing 6-194

Prompt, Inspect
See Inspect prompt

pTAL
code locations 13-1

code unit, default 13-3

command usage guidelines 13-11,
13-14

data locations 13-5, 13-7

data types 13-9, 13-11

arrays 13-9

structures and substructures 13-10

expressions 13-8, 13-9

scope paths 13-1

scope units 13-1

Q
QUAD unit in DISPLAY FOR
command 6-65

R
R command

description of 7-1

editing templates 6-86

RADIX item in Inspect prompt 6-180
RADIX session parameter

setting 6-181

showing 6-194
Inspect Manual—429164-006
Index-13

Index S
Record data types
COBOL 10-9

FILLER fields

displaying 6-39

modifying 6-150

FORTRAN 11-10

Pascal 12-10

Recursive activation of scope units 2-14
REGISTER clause

DISPLAY command 6-42

MODIFY command 6-148

TRACE command 6-219

Registers
displaying 6-42

displaying TNS/R registers 15-13

low-level expressions 7-3

modifying 6-146

modifying TNS/R registers 15-14

Register-exact point
add breakpoint 16-8

data access limitations 16-15

display registers 16-8

display TNS variables 16-8

event reporting 16-15

instruction stepping 16-8

modify registers 16-8

modify TNS variables 16-8

statement stepping 16-8

StmtDebug 16-6

TNS register access limitations 16-16

with RESUME command 6-159, 16-19

Requester program
See PATHWAY requester program

RESUME
register-exact points 6-159, 16-19

with accelerated programs 16-19

RESUME command 3-2, 6-158
ending a session 4-12, 5-9, 5-13, 5-15

leaving hold state 2-8

RP clause of RESUME AT command 6-158
Run state 2-7
RUND TACL command

causing a debug event 2-8

debugging attributes 4-8

starting a process debugging
session 4-9

S
S command 7-1
S keyword in low-level mode 7-3
S register

displaying 6-43

modifying

recorded in save file 2-5

S unit,See STATEMENT unit
SAVE command 3-3, 6-160
Save file

creating 6-160

timestamp 6-13

save file
ZZSA 6-12

Save files 2-5
SAVEABEND debugging attribute 4-4
Savefile

examining 4-13

commands available for 4-13

ending 4-14

starting 4-13

transporting 4-14

SCOPE clause
MATCH IDENTIFIER command 6-144

SET TRACE command 6-193

SOURCE command 6-198

SCOPE command 3-3, 6-162
SCOPE item in status message 6-190
Scope of identifiers 2-11
Scope paths 2-12

COBOL 10-1

current
Inspect Manual—429164-006
Index-14

Index S
Scope paths (continued)
See Current scope path

FORTRAN 11-1, 11-2

Pascal 12-1, 12-2

pTAL 13-1

TAL 13-1

scope unit Glossary-12
Scope units 2-11, 2-13, Glossary-12

active Glossary-1

COBOL 10-1

FORTRAN 11-1

history of activation,See Call history

names of, matching 6-144

Pascal 12-1

pTAL 13-1

TAL 13-1

Segments in current program 6-125
SELECT command 6-164

SELECT DEBUGGER DEBUG 6-165

SELECT LANGUAGE 3-5, 6-166

SELECT PROGRAM 3-3, 6-167, 17-11

SELECT SEGMENT 6-169

SELECT SOURCE SYSTEM 6-169

SELECT SYSTYPE 6-170

SOURCE SYSTEM 3-4

SELECT DEBUGGER DEBUG
command 15-14
Selection of a debugger

on TNS/E system 18-4

on TNS/R system 4-4

Server
See PATHWAY server

SET command 3-5, 6-171
SET CHARACTER FORMAT 6-172

SET DEREFERENCE DEPTH 6-173

SET ECHO 6-174

SET HELP FILE 6-174

SET LOCATION FORMAT 6-175

SET PRIV MODE 6-177

SET PROMPT 6-178

SET command (continued)
SET RADIX 6-181

COBOL usage guidelines 10-13

C++ usage guidelines 9-14

FORTRAN usage guidelines 11-13

Pascal usage guidelines 12-16

pTAL usage guidelines 13-13

TAL usage guidelines 13-13

SET SOURCE BACK 6-183

SET SOURCE FOR 6-183

SET SOURCE RANGE 6-184

SET SOURCE WRAP 6-185

SET STATUS ACTION 6-186

SET STATUS LINE25 6-187

SET STATUS SCROLL 6-187

SET SUBPROC SCOPING 6-191

SET SYSTYPE 6-192

SET TRACE 6-193

Set data types Pascal 12-12
Setting breakpoints 2-9
Shared Run-time Libraries 17-4
SHOW command 3-5, 6-194
SIGNAL clause

MODIFY command,MODIFY
SIGNALS 6-148

Signals 17-6
Signals in current program 6-127, 6-195
Signal,modifying 6-146
Source assignments

adding 6-14

applied to sourcefile names 6-15

deleting 6-31

listing 6-141

SOURCE BACK session parameter
setting 6-183

showing 6-194

used by SOURCE command 6-198

SOURCE command 3-3, 6-196
on TNS/E systems 18-8

SOURCE ASSIGN 3-4, 3-7, 6-202
Inspect Manual—429164-006
Index-15

Index S
SOURCE command (continued)
SOURCE ICODE 6-204

with TNS/R native programs 17-11

SOURCE OFF 3-7, 6-207

SOURCE ON 3-7, 6-208

SOURCE OPEN 3-7, 6-208

SOURCE SEARCH 6-208

SOURCE SYSTEM 3-7, 6-211

with accelerated programs 16-20

Source files
closing opened source files 6-32

listing opened source files 6-142

SOURCE FOR session parameter
setting 6-183

showing 6-194

used by SOURCE command 6-198

SOURCE item in Inspect prompt 6-180
SOURCE RANGE session parameter

setting 6-184

showing 6-194

used by SOURCE SEARCH
command 6-209

Source system
applied to sourcefile names 6-170

displaying 6-81

selecting 6-169

SOURCE WRAP session parameter
setting 6-185

showing 6-194

used by SOURCE command 6-199

Source-level program access 1-3
Space identifier

C (current) 7-2

TRACE command 6-220

UC (user code) 6-77, 7-2

UL (user library) 6-77, 7-2

Special registers, COBOL 10-7, 10-8
SPI data, displaying 6-48

token formatting 6-53

SRL clause
ADD PROGRAM command 6-11

SSGET procedure 6-52
SSID clause of DISPLAY command 6-48,
6-51
SSID display type 6-77
START TERM PATHCOM command

causing a debug event 2-8

Starting IMON C-1, C-2
STATE item in status message 6-190
STATEMENT clause

SET TRACE command 6-193

SOURCE command 6-197

STATEMENT location format 6-176
STATEMENT unit

code locations 2-16

FORTRAN 11-3

pTAL 13-3

TAL 13-3

SET SOURCE BACK command 6-183

SET SOURCE FOR command 6-183

SOURCE BACK command 6-197,
6-204

SOURCE FOR command 6-197, 6-204

STEP command 6-212

STATUS ACTION session parameter
setting 6-186

showing 6-194

STATUS LINE25 session parameter
setting 6-187

showing 6-194

Status message 2-3
setting format 6-187

showing format 6-194

STATUS SCROLL session parameter
setting 6-187

showing 6-194

STEP
with accelerated programs 16-21
Inspect Manual—429164-006
Index-16

Index T
STEP command 3-2, 6-212
leaving hold state 2-8

STEP item in Inspect prompt 6-180
StmtDebug

effects on debugging 16-6

STOP clause
BREAK command 6-21

CLEAR command 6-27

STOP command
description of 3-2, 6-215

ending a session 4-12

Stop state 2-8
Stopping DMON C-2
Stopping IMON C-2
Strings

displaying 6-58

Inspect prompt 6-178

status message 6-188

Structure data types
pointers to, C++ 9-8

pTAL 13-10

TAL 13-10

SUBPROC SCOPING session parameter
setting 6-191

showing 6-194

SUBPROCS clause of STEP OUT
command 6-213
Subrange data types Pascal 12-13
Substructure data types in pTAL 13-10
Substructure data types in TAL 13-10
Subsystems Programming Interface

See SPI

Subvolume
displaying 6-81

setting 6-223

SUBVOLUME unit in Inspect prompt 6-180
Swap files

Inspect, IMON, and DMON 1-9

Symbol information 2-5, 4-8, 5-5
SYMBOLS compiler directive 2-5, 4-8, 5-5

System
displaying 6-81

setting 6-217

SYSTEM command 3-5, 6-217
SYSTEM display type 6-77
SYSTEM item in Inspect prompt 6-180
System, source

See Source System

SYSTYPE item in Inspect prompt 6-180
SYSTYPE item in status message 6-190
Systype,displaying 6-81

T
T command 7-1
TAL

code locations 13-1, 13-5

code unit, default 13-3

command usage guidelines 13-11,
13-14

data locations 13-5, 13-7

data types 13-9, 13-11

arrays 13-9

structures and substructures 13-10

expressions 13-8, 13-9

index registers 13-6

scope paths 13-1

scope units 13-1

TAL clause of SELECT LANGUAGE 6-167
TCP, in requester program
debugging,configuring for 5-5
TCP, in requester programm debugging 5-4
TEMP clause of BREAK command 6-19,
6-21, 6-23
Templates,editing 6-86
TERM command 3-6, 6-218
Terminal

See Command terminal

See Home terminal

See PATHWAY application terminal
Inspect Manual—429164-006
Index-17

Index T
Terminal control process
See TCP

THEN clause
BREAK command 6-19, 6-22, 6-24

BREAK command, of

alias used in 6-8

OBEY used in 6-152

IF command 6-103

TIME command 6-219
TIMESTAMP display type 6-78
Timestamp of save file 6-13
TNS interpreted mode 18-1
TNS Object Code Accelerator
(OCA) Glossary-15
TNS processes

debugging on TNS/E system 18-1

TNS register access limitations
at memory-exact points 16-17

at non-exact points 16-17

at register-exact points 16-16

TNSVU 6-98
TNS/E system

debugging on 18-1

debugging Pathway servers 5-10

TNS/R
AXCEL-Options 16-6

COBOL 16-13

code-breakpoints 16-8

data-breakpoints 16-9

memory-exact 16-5

non-exact 16-5

register-exact 16-5

TNS/R machine-level debugging 17-12
DISPLAY REGISTER comman 15-13

machine code addresses 15-12

machine level commands 15-13

machine registers 15-12

MODIFY command 15-14

SELECT DEBUGGER DEBUG
command 15-14

TNS/R native debugging 17-3
ADD PROGRAM command 17-6

BREAK command 17-6

code-breakpoints 17-6

DISPLAY REGISTER command 17-7

ICODE command 17-7

INFO IDENTIFIER command 17-8

INFO OBJECTFILE command 17-8

INFO SAVEFILE command 17-9

INFO SCOPE command 17-9

INFO SIGNALS command 17-10

LIST PROGRAM command 17-10

MODIFY SIGNALS command 17-11

optimizations 17-3

SELECT PROGRAM command 17-11

signals 17-6

SOURCE ICODE command 17-11

SRLs 17-4

TRACE REGISTERS command 17-12

TNS/R system
accelerated execution 15-3

accelerated program debugging 16-4,
17-2

data representation 15-5

debugging 15-5

debugging accelerated programs 16-4,
17-2

non-accelerated execution 15-3

transitions 15-4

TOSVERSION display type 6-78
TRACE command 3-3, 6-219

on TNS/E systems 18-8

TRACE REGISTERS, with TNS/R
native programs 17-12

TRACE history
See Call history

TRACE session parameter
setting 6-193

showing 6-194

TRANSID display type 6-78
Inspect Manual—429164-006
Index-18

Index U
Transitions 15-4
Traps

causing a debug event 2-9

starting a process debugging
session 4-10

Triggering breakpoints 2-11
TYPE clause of DISPLAY command

display types 6-75

SPI types 6-49, 6-50

TYPE item in status message 6-190

U
UC space identifier 6-77, 6-220, 7-2
UL space identifier 6-77, 6-220, 7-2
Unconditional breakpoints 2-10
Union data types in C++ 9-9
User conversion routines

See PATHWAY user conversion
routines

User data space
recorded in save file 2-5

User library 15-4
accelerated program 16-8

USERID display type 6-78
USERNAME display type 6-78

V
V format of DISPLAY PIC command 6-73
V unit,See VERB unit
VALUE clause of DISPLAY command 6-58
variances 16-2
VERB unit

code locations 2-16

COBOL 10-3

C++ 9-3

FORTRAN 11-3

STEP command 6-212

Volume
setting 6-223

VOLUME command 3-5, 6-223

VOLUME item in Inspect prompt 6-180
Volume, displaying 6-81
VQ command 7-1

W
Warning messages A-1
WHOLE clause

DISPLAY command 6-37, 6-46

MODIFY command 6-148

with native programs 17-11
with TNS/R native programs 17-11
WORD unit in DISPLAY FOR
command 6-65
WRAP clause of SOURCE
command 6-198, 6-205, 6-209

X
XASCII base of DISPLAY IN
command 6-71
XC command 6-224

ADD ALIAS command 6-8

ADD KEY command 6-10

IF command 6-103

Z
Z format of DISPLAY PIC command 6-73
ZZSA save files 6-12

Special Characters
15-3

! (exclamation point) in SAVE
command 6-160
(pound sign)

code blocks, preceding 7-2

data blocks, preceding 7-2

Pascal data locations 12-5

pTAL data locations 13-5

TAL data locations 13-5

line numbers, preceding 2-16, 2-17
Inspect Manual—429164-006
Index-19

Index Special Characters
(pound sign) (continued)
C code locations 13-2

COBOL code locations 10-3

FORTRAN code locations 11-3

Pascal code locations 12-4

TAL code locations 13-2

scope paths, preceding 2-12

COBOL 10-1

FORTRAN 11-1

Pascal 12-1

TAL 13-1

#data block
INFO IDENTIFIER command 6-105

#DEBUGPROCESS TACL function
causing a debug event 2-9

starting a process debugging
session 4-9

#NEWPROCESS TACL function
debugging attributes 4-8

##GLOBAL
INFO IDENTIFIER command 6-105

INFO SCOPE command 6-123

pTAL data locations,in 13-5

SCOPE command 6-162

TAL data locations,in 13-5

$DMnn,See DMON process
$DMON,See DMON process# C-2
$IMON

See IMON process pair

See IMON process pair# C-1

& (ampersand) to extend command line 3-1
* (asterisk)

CLEAR command 6-27

DELETE ALIAS command 6-30

DELETE KEY command 6-30

DELETE SOURCE ASSIGN
command 6-31

DELETE SOURCE OPEN
command 6-32

HOLD command 6-94

* (asterisk) (continued)
INFO IDENTIFIER command 6-105

INFO LOCATION command 6-108

INFO OPENS command 6-115

INFO SEGMENTS command 6-125

RESUME command 6-158

SOURCE command 6-205

+ (plus),SOURCE ICODE 17-11
- (dash)

editing template 6-86

Inspect prompt 2-3

symbolic SPI and EMS names 6-54,
6-56

- (minus)
SOURCE command 6-201, 16-20

SOURCE ICODE 17-11

. (period)
format of DISPLAY PIC command 6-73

scope paths, separating scope units
in 2-12

= command 7-1
= low-level command

=DEBUG command, versus 7-6

> 6-98
annotated ICODE with accelerated
programs 16-22

SOURCE command 6-205

? command 7-1
@

annotated ICODE with accelerated
programs 16-22, 16-23

SOURCE command 6-201, 16-20

^ (caret) in symbolic SPI and EMS
names 6-56
_ (underscore)

editing template 6-86

Inspect prompt 2-3
Inspect Manual—429164-006
Index-20

	Inspect Manual
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information
	Changes to the 429164-006 manual:
	Changes to the H06.24/J06.13 manual:
	Changes to the H06.21/J06.10 manual:
	Changes in the January 2006 revision of the Manual
	Changes to the Original Inspect H01 Manual

	About This Manual
	Related Documentation
	Organization of This Manual
	Notation Conventions
	Hypertext Links
	General Syntax Notation

	Change Bar Notation
	HP Encourages Your Comments

	1 Introduction
	Inspect Features
	Interactive Control of Program Execution
	Concurrent Debugging of All Parts of an Application
	Debugging of PATHWAY Applications
	Saving and Examining a Process State
	Source-Level and Machine-Level Program Access
	Support for Many Source Languages
	Support of Optimizing Compilers
	Support for Programs with Multilanguage Source
	Local System Customization
	Personal Customization
	Code and Data Breakpoints
	Conditional Breakpoints
	Distributed Debugging Across a Network
	Debugging Programs Executed on TNS/R Systems
	Debugging Programs Executed on TNS/E Systems
	Debugging Programs in the OSS Environment

	Inspect Command Modes
	High-Level Mode
	Low-Level Mode
	Automatic Command Mode Selection

	Inspect Components
	The Inspect Process
	The IMON Process Pair
	The DMON Process
	Inspect, IMON, and DMON Swap and Extended Swap Files
	Remote Debugging

	2 Inspect Concepts
	Inspect Sessions
	Starting an Inspect Session
	Prompting for Commands
	Reporting Events
	Ending an Inspect Session

	What Inspect Debugs
	Processes
	Save Files
	PATHWAY Servers
	PATHWAY Requester Programs
	Debugging Multiple Programs

	Execution States of a Program
	The Run State
	The Hold State
	The Stop State
	The Gone State

	Debug Events
	Breakpoints and Break Events
	Setting Breakpoints
	Processing Breakpoints

	Source Languages and Inspect
	Scope of Identifiers
	Activation of Scope Units
	Expressions
	Code Locations
	Data Locations

	3 Inspect Command Overview
	Entering Inspect Commands
	Debugging the Current Program
	Managing Multiple Programs
	Managing Source Files
	Entering and Editing Inspect Commands
	Customizing an Inspect Session
	Managing an Inspect Session
	Simplifying an Inspect Session

	4 Debugging Processes and Save Files
	Inspect in the Guardian Environment
	Command and Home Terminals

	Debugging Processes
	The Debugging Attributes of a Process
	Preparing and Configuring for Process Debugging
	Starting a Debugging Session

	Guidelines for Debugging a Process
	Ending a Debugging Session

	Examining Save Files

	5 Debugging PATHWAY Applications
	Inspect in the PATHWAY Environment
	Application, Command, and Home Terminals

	Debugging PATHWAY Requester Programs
	Preparation and Configuration
	Starting the Debugging Session
	Guidelines for Debugging Requester Programs
	Ending the Debugging Session

	Debugging PATHWAY Servers
	Preparation and Configuration
	Starting the Debugging Session
	Guidelines for Debugging Servers
	Ending the Debugging Session

	Debugging User Conversion Routines
	Preparation and Configuration
	Starting the Debugging Session
	Guidelines for Debugging User Conversion Routines
	Ending the Debugging Session

	6 High-Level Inspect Commands
	Inspect Keywords
	Abbreviations

	Language-Dependent Information
	Machine-Dependent Information
	Command Examples
	Command Summary
	ADD
	ADD ALIAS
	ADD KEY
	ADD PROGRAM
	ADD SOURCE ASSIGN
	ALIAS
	BREAK
	CD
	CLEAR
	Related Commands

	COMMENT
	DELETE
	Related Commands

	DELETE ALIAS
	Usage Consideration
	Related Commands

	DELETE KEY
	Related Commands

	DELETE SOURCE ASSIGN
	Usage Considerations
	Related Commands

	DELETE SOURCE OPEN
	Usage Considerations
	Related Commands

	DISPLAY
	Displaying Program Data
	Default Value
	Usage Considerations
	Examples

	Displaying Program Registers
	Usage Considerations
	Output
	Examples

	Displaying Program Code
	Usage Considerations
	Example

	Displaying SPI Data
	General Usage Considerations
	Usage Considerations When Displaying an SPI Buffer
	Usage Considerations When Displaying an SPI Token or List
	Examples that Display SPI Buffers
	Examples that Display SPI Tokens and Lists

	Displaying Strings, Expressions, and Constant Values
	Usage Guidelines
	Examples
	Using the AS Clause
	Using the FOR Clause
	Usage Considerations
	Examples
	Using the FORMAT Clause
	Examples
	Using the IN Clause
	Using the PIC Clause
	Using the TYPE Clause

	ENV
	Related Commands

	EXIT
	Usage Considerations

	FA
	Usage Consideration
	Related Commands
	Example

	FB
	Usage Considerations
	Related Commands

	FC
	Default Value

	FILES
	FK
	Usage Consideration
	Related Commands

	HELP
	Default Value
	Usage Guidelines

	HISTORY
	Default Value
	Usage Consideration
	Related Commands

	HOLD
	Default Value
	Usage Considerations

	ICODE
	Default Values
	Output
	Usage Considerations
	Usage Considerations for Accelerated Programs on TNS/E Systems
	Usage Considerations for Accelerated Programs on TNS/R Systems
	Related Command
	Examples

	IDENTIFIER
	Related Commands

	IF
	Usage Considerations

	INFO
	INFO IDENTIFIER
	Usage Considerations
	Related Commands
	Examples

	INFO LOCATION
	Default Values
	Usage Considerations
	Usage Considerations for Accelerated Programs
	Related Commands
	Example

	INFO OBJECTFILE
	Usage Considerations
	Related Commands
	Output
	Examples

	INFO OPENS
	Default Values
	Usage Considerations
	Output
	Examples

	INFO SAVEFILE
	Usage Considerations
	Related Commands
	Output
	Example

	INFO SCOPE
	Default Value
	Related Commands
	Output
	Examples

	INFO SEGMENTS
	Default Value
	Usage Considerations
	Related Command
	Output
	Example

	INFO SIGNALS
	Default Value
	Output
	Example

	KEY
	Default Values
	Usage Consideration
	Related Commands

	LIST
	Usage Consideration
	Related Commands

	LIST ALIAS
	Default Value
	Usage Consideration
	Related Commands

	LIST BREAKPOINT
	Default Values
	Usage Considerations
	Related Commands
	Output
	Examples

	LIST HISTORY
	Default Value
	Related Commands

	LIST KEY
	Default Value
	Related Commands

	LIST PROGRAM
	Usage Considerations
	Related Commands
	Output
	Examples

	LIST SOURCE ASSIGN
	Related Commands

	LIST SOURCE OPEN
	LOG
	Usage Considerations
	Related Commands

	LOW
	Usage Considerations
	Usage Consideration for TNS/R Programs
	Related Commands

	MATCH
	Default Values
	Usage Considerations
	Related Commands
	Examples

	MODIFY
	Default Value
	Usage Considerations
	Usage Considerations for Accelerated Programs
	Related Commands
	Examples

	OBEY
	Usage Considerations
	Related Commands

	OBJECT
	OPENS
	Default Values

	OUT
	Usage Considerations
	Related Commands

	PAUSE
	Usage Considerations

	PROGRAM
	Default Value
	Usage Considerations
	Related Commands

	RESUME
	Default Value
	Usage Considerations
	Usage Considerations for Accelerated Programs
	Related Commands

	SAVE
	Usage Considerations
	Related Commands

	SCOPE
	Default Value
	Usage Considerations
	Related Commands

	SELECT
	Usage Consideration
	Related Commands

	SELECT DEBUGGER DEBUG
	General Usage Considerations
	Usage Considerations for Privileged Users
	Usage Consideration for Accelerated Programs
	Related Commands

	SELECT LANGUAGE
	Usage Considerations
	Related Command

	SELECT PROGRAM
	Usage Consideration
	Related Commands

	SELECT SEGMENT
	Usage Considerations
	Related Command

	SELECT SOURCE SYSTEM
	Default Value
	Usage Considerations
	Related Commands

	SELECT SYSTYPE
	Usage Consideration

	SET
	SET CHARACTER FORMAT
	Default Value
	Related Commands

	SET DEREFERENCE DEPTH
	Default Value
	Related Commands

	SET ECHO
	Default Value
	Related Command

	SET HELP FILE
	Default Value
	Related Command

	SET LOCATION FORMAT
	Default Value
	Usage Considerations

	SET PRIV MODE
	Usage Consideration
	Related Command

	SET PROMPT
	Default Value
	Usage Consideration
	Related Commands

	SET RADIX
	Default Values
	Usage Considerations
	Related Commands
	Example

	SET SOURCE BACK and SET SOURCE FOR
	Default Value
	Related Commands

	SET SOURCERANGE
	Default Value
	Related Commands

	SET SOURCE WRAP
	Default Value
	Related Commands

	SET STATUS ACTION
	Usage Consideration
	Default Values
	Related Commands

	SET STATUS LINE25 and SET STATUS SCROLL
	Default Values
	Usage Considerations for SET STATUS LINE25
	Related Commands

	SET SUBPROC SCOPING
	Usage Considerations
	Related Commands
	Example

	SET SYSTYPE
	Usage Consideration

	SET TRACE
	Default Value
	Usage Considerations
	Related Commands

	SHOW
	Usage Consideration
	Related Commands

	SIGNALS
	Default Value

	SOURCE
	Default Values
	Usage Considerations
	Usage Consideration for Accelerated Programs on TNS/R Systems
	Usage Consideration for Accelerated Programs on TNS/E Systems
	Related Commands
	Examples

	SOURCE ASSIGN
	Default Values
	Related Commands

	SOURCE ICODE
	Default Value
	Usage Considerations
	Usage Considerations for TNS/R Programs
	Related Command
	Example

	SOURCE OFF
	Related Commands

	SOURCE ON
	Related Commands

	SOURCE OPEN
	SOURCE SEARCH
	Usage Consideration
	Examples

	SOURCE SYSTEM
	Default Value
	Related Commands

	STEP
	Default Value
	Usage Considerations
	Usage Consideration for Accelerated Programs
	Limitation of the STEP Command
	Related Commands

	STOP
	Default Value
	Usage Considerations
	Related Commands
	Example

	SYSTEM
	Default Value
	Usage Consideration
	Related Commands

	TERM
	Usage Considerations
	Related Commands

	TIME
	Usage Considerations

	TRACE
	Usage Considerations
	Related Commands
	Examples

	VOLUME
	Default Value
	Usage Considerations
	Related Commands

	XC
	Default Value
	Usage Consideration
	Related Commands

	7 Low-Level Inspect
	Low-Level Inspect Commands
	Syntax of Low-Level Command Elements
	Symbolic References
	Multiple Code Segment Programs
	I and S Suffixes

	Expressions in Low-Level Inspect
	Using Low-Level Inspect
	Differences Between Low-Level and High-Level Inspect
	Differences Between Low-Level Inspect and Debug
	Default Volume and Subvolume

	8 Using Inspect With C
	Starting to Debug a C Program
	Scope Units and Scope Paths
	Code Locations
	Usage Considerations
	Examples

	Data Locations
	Default Values
	Usage Considerations
	Examples

	Expressions
	Usage Considerations

	C Data Types and Inspect
	Bit Fields
	Arrays
	Structure Pointers
	Self-Referential Structures
	Unions

	Inspect Enhancements and Restrictions for C
	Uppercase and Lowercase Letters
	Defining Objects in Block Structure

	Command Usage Guidelines for C Programmers
	BREAK
	DISPLAY
	HELP
	INFO IDENTIFIER
	INFO OPENS
	SCOPE
	SET RADIX
	STEP

	9 Using Inspect With C++
	Starting to Debug a C++ Program
	Scope Units and Scope Paths
	Code Locations
	Usage Considerations
	Examples

	Data Locations
	Default Values
	Usage Considerations
	Examples

	Expressions
	Usage Considerations

	C++ Data Types and Inspect
	Bit Fields
	Arrays
	Structure Pointers
	Unions

	Inspect Enhancements and Restrictions for C++
	Uppercase and Lowercase Letters
	Defining Objects in Block Structure
	Overloaded Functions
	Overloaded Operators
	Static Data
	The this Pointer
	Usage Considerations

	Command Usage Guidelines for C++ Programmers
	BREAK
	DISPLAY
	HELP
	INFO IDENTIFIER
	INFO OPENS
	MATCH
	SCOPE
	SET RADIX
	STEP

	10 Using Inspect With COBOL and SCREEN COBOL
	Scope Units and Scope Paths
	Usage Considerations

	Code Locations
	Usage Considerations
	COBOL 74 and SCREEN COBOL Examples
	COBOL85 Examples

	Data Locations
	Usage Considerations
	Examples
	Special Registers

	Expressions
	Usage Considerations

	COBOL Data Types and Inspect
	Record Types

	Inspect Enhancements and Restrictions for SCREEN COBOL
	Command Usage Guidelines for COBOL Programmers
	BREAK
	DISPLAY
	HELP
	INFO IDENTIFIER
	MODIFY
	SCOPE
	SET RADIX
	STEP

	11 Using Inspect With FORTRAN
	Scope Units and Scope Paths
	Usage Consideration

	Code Locations
	Usage Considerations
	Examples

	Data Locations
	Default Values
	Usage Considerations
	Examples

	Expressions
	Usage Considerations

	FORTRAN Data Types and Inspect
	Arrays
	Examples
	Records

	Inspect Enhancements and Restrictions for FORTRAN
	Spaces in Identifiers

	Command Usage Guidelines for FORTRAN Programmers
	BREAK
	DISPLAY
	HELP
	INFO IDENTIFIER
	INFO OPENS
	MODIFY
	SCOPE
	SET RADIX
	STEP
	TRACE

	12 Using Inspect With Pascal
	Scope Paths and Scope Units
	Usage Guidelines

	Code Locations
	Usage Considerations
	Examples

	Data Locations
	Default Values
	Usage Considerations
	Examples

	Expressions
	Usage Considerations

	Pascal Data Types and Inspect
	Array Types
	Enumerated Types
	File Types
	Pointer Types
	Record Types
	Set Types
	Subrange Types

	Inspect Enhancements and Restrictions for Pascal
	Length of Identifiers

	Command Usage Guidelines for Pascal Programmers
	BREAK
	HELP
	INFO IDENTIFIER
	MODIFY
	SCOPE
	SET RADIX

	13 Using Inspect With TAL and pTAL
	Scope Units and Scope Paths
	Code Locations
	Usage Considerations
	Examples

	Data Locations
	Default Values
	Usage Considerations
	Usage Considerations for TAL Programs

	Expressions
	Usage Considerations

	TAL and pTAL Data Types and Inspect
	Arrays
	Structures and Substructures

	Command Usage Guidelines for TAL and pTAL Programmers
	BREAK
	DISPLAY
	HELP
	INFO IDENTIFIER
	MODIFY
	SCOPE
	SET RADIX
	STEP
	TRACE

	14 Using Inspect in an OSS Environment
	Starting an Inspect Session
	Ending an Inspect Session
	Inspect’s System Type
	File Name Resolution
	Save Files
	Signals
	Source Files
	Usage Guidelines

	15 Using Inspect on a TNS/R System
	TNS/R Overview
	Executing Non-Accelerated Programs
	Executing Accelerated Programs
	General TNS/R Debugging Considerations
	Debugging Non-Accelerated Programs
	Debugging Accelerated Programs
	Debugging TNS/R Native Programs

	Performance and Debugging of TNS/R Programs
	Register Usage
	Pipeline Instruction Processing
	Optimizations With Loads
	Optimizations With Branches
	TNS Instruction Side Effects

	Debugging Programs at the TNS/R Machine Level
	What You Need to Know
	TNS/R Breakpoints
	TNS/R Machine Registers
	Machine Code Addresses
	Save Files
	TNS/R Machine-Level Commands

	16 Using Inspect With Accelerated Programs on TNS/R Systems
	Accelerated Program Debugging Overview
	Assumptions
	Variances
	Performance and Debugging of Accelerated Programs
	Accelerated Program Transitions

	Accelerated Program Debugging Concepts
	Debugging Boundaries
	Accelerator Debugging Options

	Using Inspect to Debug Accelerated Programs
	Program Libraries
	Code Breakpoints
	Data Breakpoints
	Event Reporting
	Data Access Limitations
	TNS Register Access Limitations

	Commands Useful When Debugging Accelerated Programs
	INFO LOCATION
	INFO OBJECTFILE
	LIST PROGRAM
	RESUME AT
	SET PROMPT/SET STATUS
	SOURCE
	STEP
	Annotated ICODE

	17 Using Inspect With TNS/R Native Programs
	TNS/R Native Overview
	TNS/R Native Program Debugging Concepts
	TNS/R Native Compilers and Linkers
	Optimization Levels

	Using Inspect to Debug TNS/R Native Programs
	SRLs
	Dynamic-Link Libraries (DLLs)
	Code Breakpoints
	Signals

	Commands Useful When Debugging Native Programs
	ADD PROGRAM
	BREAK
	DISPLAY REGISTER
	ICODE
	INFO IDENTIFIER
	INFO OBJECTFILE
	INFO SAVEFILE
	INFO SCOPE
	INFO SIGNALS
	LIST PROGRAM
	MODIFY SIGNALS
	SELECT PROGRAM
	SOURCE ICODE
	TRACE REGISTERS

	Debugging at the TNS/R Native Machine Level
	Examples

	18 Using Inspect on a TNS/E System
	Capabilities of Inspect on TNS/E Systems
	Acceleration on TNS/E Systems
	Accelerating TNS Processes

	Debugger Selection on TNS/E Systems
	Using Inspect to Debug TNS Programs on TNS/E Systems

	A Error and Warning Messages
	Fatal Errors During Session Start-Up
	HELP Availability

	B Syntax Summary
	High Level Inspect Commands
	ADD
	ALIAS
	BREAK
	CD
	CLEAR
	COMMENT
	DELETE
	DISPLAY
	ENV
	EXIT
	FA
	FB
	FC
	FILES
	FK
	HELP
	HISTORY
	HOLD
	ICODE
	IDENTIFIER
	IF
	INFO
	KEY
	LIST
	LOG
	LOW
	MATCH
	MODIFY
	OBEY
	OBJECT
	OPENS
	OUT
	PAUSE
	PROGRAM
	RESUME
	SAVE
	SCOPE
	SELECT
	SET
	SHOW
	SOURCE
	STEP
	STOP
	SYSTEM
	TERM
	TIME
	TRACE
	VOLUME
	XC

	Language-Dependent Parameters for C
	C Scope Paths
	C Code Locations
	C Data Locations
	C Expressions

	Language-Dependent Parameters for C++
	C++ Scope Paths
	C++ Code Locations
	C ++ Data Locations
	C++ Expressions

	Language-Dependent Parameters for COBOL and SCREEN COBOL
	COBOL 74 and SCOBOL Scope Paths
	COBOL85 Scope Paths
	COBOL Code Locations
	COBOL Data Locations
	COBOL Expressions

	Language-Dependent Parameters for FORTRAN
	FORTRAN Scope Paths
	FORTRAN Code Locations
	FORTRAN Data Locations
	FORTRAN Expressions

	Language-Dependent Parameters for Pascal
	Pascal Scope Paths
	Pascal Code Locations
	Pascal Data Locations
	Pascal Expressions

	Language-Dependent Parameters for TAL and pTAL
	TAL and pTAL Scope Paths
	TAL and pTAL Code Locations
	TAL and pTAL Data Locations
	TAL and pTAL Expressions

	Low-Level Inspect Commands
	A
	B
	BM
	C
	CM
	D
	F
	FN
	HIGH
	I
	M
	P
	R
	S
	T
	VQ
	=
	?
	Low-Level Addresses
	Low-Level Code Addresses
	Low-Level Data Addresses
	Low-Level Expressions

	C Notes for System Operators
	Starting the IMON Process Pair
	Default Values
	Usage Considerations
	IMON and CMON

	Stopping IMON and DMON Processes
	IMON and DMON Errors
	Errors Common to IMON and DMON
	IMON Errors
	DMON Errors

	Glossary
	Index

