
NonStop Server for Java 7.0 Tools Reference
Pages

HP Part Number: 693950-002
Published: March 2014
Edition: J06.26 and all subsequent J-series RVUs and H06.15 and all subsequent H-series RVUs

© Copyright 2013, 2014 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S. Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone and The Open Group are trademarks of The Open
Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in connection with the furnishing, performance, or use
of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. The OSF documentation and the OSF software to which it relates are derived in part
from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation. © 1985, 1988, 1989, 1990 Encore
Computer Corporation. © 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987,
1988, 1989, 1990, 1991, 1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of Technology. © 1988,
1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens
Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution under license from The Regents of the University of
California. OSF acknowledges the following individuals and institutions for their role in its development: Kenneth C.R.C. Arnold, Gregory S. Couch,
Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents
of the University of California.

Printed in the US

Contents
About this Manual...6

Product Version..6
Supported Hardware..6
Supported Release Version Updates (RVUs)..6
Document history..6
New and Changed Information for March 2014 (693950–002)...6
New and Changed Information for February 2013 (693950–001)...6
Notation Conventions..6
HP Encourages Your Comments..10

NonStop Server for Java 7.0 Tools Reference Pages..11
1 apt: Annotation Processing Tool..13

Synopsis..13
See Also:...13

2 extcheck: JAR Conflict Detection Tool...14
Synopsis..14
See Also:...14

3 idlj: IDL-to-Java Compiler...15
Synopsis..15

4 jar: Java Archive Tool..16
Synopsis..16

5 jarsigner: JAR Signing and Verification Tool...17
Synopsis..17
See Also:...17

6 java: Java Application Launcher...18
Synopsis..18
Deviations from Standard Java Options...18
–d64..18
-Xeprof..18

Synopsis...18
-Xeprof options..19

—Xverbosegc...20
Synopsis...21

-Xverbosegc:help for Java 7.0...21
Nonstandard Java Options..23
Deviations from Nonstandard Java Options..23
HP Extensions to Standard Java Options..23
HP Extensions to NonStandard Java Options..24
See Also:...24

7 javac: Java Programming Language Compiler..25
Synopsis..25
See Also:...25

8 javadoc: Java API Documentation Generator..26
Synopsis..26
See Also:...26

9 javah: C Header and Stub File Generator..27
Synopsis..27
See Also:...27

Contents 3

10 javap: Java Class File Disassembler...28
Synopsis..28
See Also:...28

11 jdb: Java Debugger...29
Synopsis..29
Description..29
Starting a jdb Session...29
Basic jdb Commands..30
Breakpoints..31
Stepping...31
Exceptions...31
Command Line Options...31
Deviations from Standard Java...32
Options Forwarded to the Process Being Debugged..32
Connecting for Remote Debugging...33
Transports..33
See Also:...34

12 jrunscript: Command Line Script Shell..35
Synopsis..35

13 keytool: Key and Certificate Management Tool...36
Synopsis..36
See Also:...36

14 native2ascii: Native-to-ASCII Converter..37
Synopsis..37

15 orbd: Object Request Broker Daemon..38
Synopsis..38
See Also:...38

16 rmic: Java RMI Compiler..39
Synopsis..39
See Also:...39

17 rmid: Java RMI Activation System Daemon...40
Synopsis..40
See Also:...40

18 rmiregistry: Java Remote Object Registry..41
Synopsis..41
See Also:...41

19 schemagen: Java Architecture for XML Binding Schema Generator................42
Synopsis..42

20 serialver: Serial Version Command..43
Synopsis..43
See Also:...43

21 servertool: Java IDL Server Tool...44
Synopsis..44
See Also:...44

22 tnameserv: Naming Service Access...45
Synopsis..45

23 nsjps: NonStop Java Virtual Machine Process Status Tool.............................46
Synopsis..46

4 Contents

24 wsgen : Java API for XML Web Services (JAX-WS) 2.0.................................51
Synopsis..51

25 wsimport: JAX-WS 2.0...52
Synopsis..52

26 xjc: Java Architecture for XML Binding Compiler...53
Synopsis..53

Contents 5

About this Manual
This document contains the Tools Reference Pages for the HP NonStop™ Server for Java™, based
on the Java Platform Standard Edition 7.

Product Version
HP NonStop Server for Java, based on Java Platform Standard Edition 7

Supported Hardware
All HP Integrity NonStop NS-series servers

Supported Release Version Updates (RVUs)
This manual supports J06.15 and all subsequent J-series RVUs and H06.26 and all subsequent
H-series RVUs, until otherwise indicated by its replacement publications.

Document history

PublishedProduct versionPart number

February 2013HP NonStop Server for Java, based
on Java Platform Standard Edition 7

693950–001

March 2014HP NonStop Server for Java, based
on Java Platform Standard Edition 7

693950–002

New and Changed Information for March 2014 (693950–002)
Changes to 693950–002 manual are as follows:
• Updated the section and added a note in “Connecting for Remote Debugging” (page 33).

• Replaced “–Xrunjdwp:” with “–agentlib:jdwp=” in “Starting a jdb Session” (page 29) and
“Connecting for Remote Debugging” (page 33).

New and Changed Information for February 2013 (693950–001)
Changes to 693950–001 manual are as follows:
• Updated the section “nsjps: NonStop Java Virtual Machine Process Status Tool” (page 46).

Notation Conventions

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.
UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown.
Items not enclosed in brackets are required. For example:
MAXATTACH

lowercase italic letters
Lowercase italic letters indicate variable items that you supply. Items not enclosed in brackets
are required. For example:
file-name

6

computer type
Computer type letters within text indicate C and Open System Services (OSS) keywords
and reserved words. Type these items exactly as shown. Items not enclosed in brackets are
required. For example:
myfile.c

italic computer type
Italic computer type letters within text indicate C and Open System Services (OSS)
variable items that you supply. Items not enclosed in brackets are required. For example:
pathname

[] Brackets
Brackets enclose optional syntax items. For example:
TERM [\.system-name]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or none.
The items in the list can be arranged either vertically, with aligned brackets on each side of
the list, or horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:
FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces
A group of items enclosed in braces is a list from which you are required to choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side of the
list, or horizontally, enclosed in a pair of braces and separated by vertical lines. For example:
LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:
INSPECT { OFF | ON | SAVEABEND }

… Ellipsis
An ellipsis immediately following a pair of brackets or braces indicates that you can repeat
the enclosed sequence of syntax items any number of times. For example:
M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax
item any number of times. For example:
“s-char”

Punctuation
Parentheses, commas, semicolons, and other symbols not previously described must be typed
as shown. For example:
error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a required
character that you must type as shown. For example:
"[" repetition-constant-list "]"

Notation Conventions 7

Item Spacing
Spaces shown between items are required unless one of the items is a punctuation symbol such
as a parenthesis or a comma. For example:
CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no spaces
are permitted between the period and any other items:
$process-name.#su-name

Line Spacing
If the syntax of a command is too long to fit on a single line, each continuation line is indented
three spaces and is separated from the preceding line by a blank line. This spacing distinguishes
items in a continuation line from items in a vertical list of selections. For example:
ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o
In procedure calls, the !i notation follows an input parameter (one that passes data to the called
procedure); the !o notation follows an output parameter (one that returns data to the calling
program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o
In procedure calls, the !i,o notation follows an input/output parameter (one that both passes
data to the called procedure and returns data to the calling program). For example:
error := COMPRESSEDIT (filenum) ; !i,o

!i:I
In procedure calls, the !i:i notation follows an input string parameter that has a corresponding
parameter specifying the length of the string in bytes. For example:
error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:I
In procedure calls, the !o:i notation follows an output buffer parameter that has a corresponding
input parameter specifying the maximum length of the output buffer in bytes. For example:
error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed messages in this
manual.
Bold Text

Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE
?123
CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
Nonitalic text

Nonitalic letters, numbers, and punctuation indicate text that is displayed or returned exactly
as shown. For example:
Backup Up.

8

lowercase italic letters
Lowercase italic letters indicate variable items whose values are displayed or returned. For
example:
p-register

process-name

[] Brackets
Brackets enclose items that are sometimes, but not always, displayed. For example:
Event number = number [Subject = first-subject-value

A group of items enclosed in brackets is a list of all possible items that can be displayed, of
which one or none might actually be displayed. The items in the list can be arranged either
vertically, with aligned brackets on each side of the list, or horizontally, enclosed in a pair of
brackets and separated by vertical lines. For example:
proc-name trapped [in SQL | in SQL file system]

{ } Braces
A group of items enclosed in braces is a list of all possible items that can be displayed, of
which one is actually displayed. The items in the list can be arranged either vertically, with
aligned braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:
obj-type obj-name state changed to state caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:
Transfer status: { OK | Failed }

% Percent Sign
A percent sign precedes a number that is not in decimal notation. The % notation precedes an
octal number. The %B notation precedes a binary number. The %H notation precedes a
hexadecimal number. For example:
%005400

%B101111

%H2F

P=% p-register E=% e-register

Notation for Management Programming Interfaces
This list summarizes the notation conventions used in the boxed descriptions of programmatic
commands, event messages, and error lists in this manual.
UPPERCASE LETTERS

Uppercase letters indicate names from definition files. Type these names exactly as shown. For
example:
ZCOM-TKN-SUBJ-SERV

lowercase letters
Words in lowercase letters are words that are part of the notation, including Data Definition
Language (DDL) keywords. For example:
token-type

Notation Conventions 9

!r
The !r notation following a token or field name indicates that the token or field is required. For
example:
ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o. The !o notation following a token or field name indicates that the token or field is optional.
For example:
ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to providing
documentation that meets your needs. Send any errors found, suggestions for improvement, or
compliments to docsfeedback@hp.com.
Include the document title, part number, and any comment, error found, or suggestion for
improvement concerning this document.

10

mailto:docsfeedback@hp.com

NonStop Server for Java 7.0 Tools Reference Pages
This section provides information about the tools used in NonStop Server for Java 7.0. Table 1
(page 11), illustrates the commands, tools, and its relative functionality.

Table 1 NonStop Server for Java 7.0 Tools Reference Pages

FunctionTool NameCommand

Processes program annotations through
a set of reflective APIs and a supporting
infrastructure.

Annotation Process Tool“apt: Annotation Processing Tool”
(page 13)

Detects version conflicts between a
target Java Archive (JAR) file and
currently installed extension JAR files.

JAR Conflict Detection Tool“extcheck: JAR Conflict Detection Tool”
(page 14)

Generates Java bindings from a
specified IDL file.

IDL-to-Java Compiler“idlj: IDL-to-Java Compiler” (page 15)

Combines multiple files into a single
JAR file and retrieves files from a JAR
file.

Java Archive Tool“jar: Java Archive Tool” (page 16)

Generates signatures for JAR files and
verifies signatures of signed JAR files.

JAR Signing and Verification Tool“jarsigner: JAR Signing and
Verification Tool” (page 17)

Launches a Java application by starting
a Java run time environment, loading

Java Application Launcher“java: Java Application Launcher”
(page 18)

a specified class, and invoking that
class's main method.

Compiles Java source code into
bytecode.

Java Programming Language Compiler“javac: Java Programming Language
Compiler” (page 25)

Generates API documentation in HTML
or MIF format from Java source code.

Java API Documentation Generator“javadoc: Java API Documentation
Generator” (page 26)

Generates C header files and C stub
files from a Java class. These files

C Header and Stub File Generator“javah: C Header and Stub File
Generator” (page 27)

provide the connections that allow your
Java and C code to interact.

Disassembles compiled Java files.Java Class File Disassembler“javap: Java Class File Disassembler”
(page 28)

Helps you find and fix bugs in Java
programs.

Java Debugger“jdb: Java Debugger” (page 29)

Supports both an interactive
(read-eval-print) mode and a batch (-f
option) mode of script execution.

Command Line Script Shell“jrunscript: Command Line Script
Shell” (page 35)

Manages a database of private keys
and their associated certificate chains

Key and Certificate Management Tool“keytool: Key and Certificate
Management Tool” (page 36)

authenticating the corresponding public
keys.

Converts a file with Native-encoded
characters to one with
Unicode-encoded characters.

Native-to-ASCII Converter“native2ascii: Native-to-ASCII
Converter” (page 37)

Enables clients to transparently locate
and invoke persistent objects on servers
in the CORBA environment.

Object Request Broker Daemon“orbd: Object Request Broker
Daemon” (page 38)

Generates stubs and skeletons for
remote objects that use either the JRMP

Java RMI Compiler“rmic: Java RMI Compiler” (page 39)

11

Table 1 NonStop Server for Java 7.0 Tools Reference Pages (continued)

FunctionTool NameCommand

or IIOP. Also, generates OMG Interface
Definition Language (IDL).

Starts the activation system daemon that
allows objects to be registered and

Java RMI Activation System Daemon“rmid: Java RMI Activation System
Daemon” (page 40)

activated in a Java virtual machine
(VM).

Starts a remote object registry on the
specified port on the current host.

Java Remote Object Registry“rmiregistry: Java Remote Object
Registry” (page 41)

Creates a schema file for each
namespace referenced in your Java

Java Architecture for XML Binding
Schema Generator

“schemagen: Java Architecture for
XML Binding Schema Generator”
(page 42) classes generator for Java Architecture

for XML Binding.

Returns the serialVersionUID of
one or more classes.

Serial Version Command“serialver: Serial Version Command”
(page 43)

Provides a command line interface for
application programmers to register,

Java IDL Server Tool“servertool: Java IDL Server Tool”
(page 44)

unregister, start up, and shut down a
persistent server.

Provides access to the naming service.Naming Service Access“tnameserv: Naming Service Access”
(page 45)

Lists and monitors the Java processes
running on a system.

NonStop Java Virtual Machine Process
Status Tool

“nsjps: NonStop Java Virtual Machine
Process Status Tool” (page 46)

Generates JAX-WS portable artifacts
used in JAX-WS web services.

Java API for XML Web Services
(JAX-WS) 2.0

“wsgen : Java API for XML Web
Services (JAX-WS) 2.0” (page 51)

Generates JAX-WS portable artifacts.JAX-WS 2.0“wsimport: JAX-WS 2.0” (page 52)

Compiles schemas.Java Architecture for XML Binding“xjc: Java Architecture for XML
Binding Compiler” (page 53)

NOTE: The 64–bit version of NSJ7 tools are available at the location $JAVA_HOME/bin/oss64.
The 32–bit version of the tools are available at the location $JAVA_HOME/bin1.

1. $JAVA_HOME is the installation location of Java in the NonStop system. For example,
/usr/tandem/nssjava/jdk170_h70.

12

1 apt: Annotation Processing Tool
The apt tool processes program annotations through a set of reflective APIs and a supporting
infrastructure. For more information on apt tool, see the Oracle Java documentation for apt.

Synopsis
apt [-classpath classpath] [-sourcepath sourcepath] [-d directory] [-s
directory] [-factorypath path] [-factory class] [-print] [-nocompile]
[-Akey[=val] ...] [javac option] sourcefiles [@files]

See Also:
• “java: Java Application Launcher” (page 18)

• “javac: Java Programming Language Compiler” (page 25)

Synopsis 13

http://docs.oracle.com/javase/7/docs/technotes/guides/apt/index.html

2 extcheck: JAR Conflict Detection Tool
The extcheck tool detects version conflicts between a target Java Archive (JAR) file and currently
installed extension JAR files. For more information on extcheck tool, see the Oracle Java
documentation for extcheck.

Synopsis
extcheck [-verbose] targetfile.jar

See Also:
“jar: Java Archive Tool” (page 16)

14 extcheck: JAR Conflict Detection Tool

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/extcheck.html
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/extcheck.html

3 idlj: IDL-to-Java Compiler
The idlj tool generates Java bindings from a specified IDL (Interface Definition Language) file. For
more information on idlj tool, see the Oracle Java documentation for idlj.

Synopsis
idlj [options] idl-file

Synopsis 15

http://download.oracle.com/javase/7/docs/technotes/tools/share/idlj.html

4 jar: Java Archive Tool
The jar tool combines multiple files into a single Java Archive (JAR) file or retrieves files from a JAR
file. For more information on jar tool, see the Oracle Java documentation for jar.

Synopsis

Create jar file
jar c[v0M]f jarfile [-C dir] inputfiles [-Joption]

jar c[v0]mf manifest jarfile [-C dir] inputfiles [-Joption]

jar c[v0M] [-C dir] inputfiles [-Joption]

jar c[v0]m manifest [-C dir] inputfiles [-Joption]

Update jar file
jar u[v0M]f jarfile [-C dir] inputfiles [-Joption]

jar u[v0]mf manifest jarfile [-C dir] inputfiles [-Joption]

jar u[v0M] [-C dir] inputfiles [-Joption]

jar u[v0]m manifest [-C dir] inputfiles [-Joption]

Extract jar file
jar x[v]f jarfile [inputfiles] [-Joption]

jar x[v] [inputfiles] [-Joption]

List table of contents of jar file
jar t[v]f jarfile [inputfiles] [-Joption]

jar t[v] [inputfiles] [-Joption]

Add index to jar file
jar i jarfile [-Joption]

16 jar: Java Archive Tool

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/jar.html

5 jarsigner: JAR Signing and Verification Tool
The jarsigner tool generates signatures for Java Archive (JAR) files and verifies the signatures of
signed JAR files. For more information on jarsigner tool, see the Oracle Java documentation for
jarsigner.

Synopsis
For signing:
jarsigner [options] jar-file alias

For verifying:
jarsigner -verify [options] jar-file

See Also:
• “jar: Java Archive Tool” (page 16)

• “keytool: Key and Certificate Management Tool” (page 36)

• The Security trail of the Java Tutorial for examples of the use of the jarsigner tool

Synopsis 17

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
http://docs.oracle.com/javase/tutorial/security/index.html
http://java.sun.com/webservices/tutorial.html

6 java: Java Application Launcher
The java tool launches a Java application by starting a Java run time environment, loading a
specified class, and invoking that class' main method. For more information on java tool, see the
Oracle Java documentation for java.

Synopsis
java [options] classname [arguments]

java [options] -jar file.jar [arguments]

classname

Name of the class to be invoked.
file.jar

Name of the jar file to be invoked. Used only with -jar.
arguments

Arguments passed to the main function.

Deviations from Standard Java Options
-client

Selects the Java HotSpot Client virtual machine (VM).

NOTE: The -client option is not valid with NonStop Server for Java 7.0.

If -client option is used, then the following error message is displayed:
Unrecognized option: -client
Error: Could not create the Java virtual machine.
Error: A fatal exception has occurred. Program will exit.

–d64
After 64–bit NSJ7 is installed on the system, the following standard Java command is used to
launch the 64–bit NSJ7 from 32–bit NSJ7:
$ /usr/tandem/nssjava/jdk170_h70/bin/java -d64 <java application>

-Xeprof
The —Xeprof option generates profile data for HPjmeter. The —Xeprof option controls profiling
of Java applications running on JRE for NonStop operating system for the Java 2 Platform and
collects method clock and CPU times, method call count, and call graph. (For more information
on HPjmeter, see www.hp.com/go/hpjmeter.)

NOTE: Zero preparation profiling is started from the command line by sending a signal to the
JVM to start eprof. Engaging zero preparation profiling might have a short term impact on
application performance as the JVM adjusts to the demands of performing dynamic measurements.

Synopsis
To profile your application, use:
java -Xeprof:options ApplicationClassName

where
options

18 java: Java Application Launcher

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/java.html

is a list of key[=value] arguments separated by commas.
The following options are used in most of the cases:

• For CPU time metrics with minimal intrusion:
-Xeprof

• Exact call count information and object creation profiling:
-Xeprof:inlining=disable

• To see the complete list of available options, use:
java -Xeprof:helps

After the profiled application terminates execution, the Java Virtual Machine writes the profile data
to a file in the current directory. Use HPjmeter to analyze the file.

-Xeprof options
Generally, expect a two-fold decrease of your Java application performance when profiling with
-Xeprof. Depending on your JRE version or platform, dynamically enabling and disabling profiling
(see below) might introduce much higher overhead for several minutes. It is advised that the data
collection period is no shorter than 30 minutes.
The -Xeprof option needs to allocate memory to store the profile data. Therefore, it uses the same
memory pool as the JVM. If you specify a very large heap size (generally greater than 1GB), the
JVM may run out of address space before it runs out of memory.

off
Turn off -Xeprof profiling entirely. This is the default behavior for all SDKs up to 5.0.02. For SDK
5.0.03 and later, if no -Xeprof option is specified, it is equivalent to:
-Xeprof:time_on=sigusr2,time_slice=sigusr2

There is no degradation of performance unless you actually start profiling by the specified signal.

times=quick|thorough
The quick value instructs the profiler to use the hardware Interval Timer register for time measurement.
This value results in faster profiling runs, but in extremely rare circumstances, it can produce incorrect
data. This is the default value. If you ever suspect that the profile data generated using the quick
value is incorrect, rerun the quick command and verify whether the results can be replicated.
The thorough or strict value is the opposite of quick, and disables the use of the Interval Timer. The
profiling runs are longer, and provides timing data with the same (relatively poor) quality as the
system calls used to measure the time. The profiling intrusion and overhead also increases. This is
the default value.
Do not specify this option unless you know what you are doing. The collected profile data will
almost certainly have less accuracy than when collected using the quick value.

time_on=<integer>
Specifies the time in seconds between the application start and the time when the profile data
collection starts. If no time_on option is present, the data collection begins at the VM initialization.

time_on=sigusr1|sigusr2
Specifies which signal causes profiling to begin (profile data collection). Ensure that the application
or the VM may already be using the sigusr signals for their own purposes; see the documentation.
Specifying a signal and a timeout at the same time is possible by repeating the time_on option.
Only one of the two signals can be declared to use as the signal to start profiling. During the
application's run, the specified signal can be delivered to the Java process multiple times.

-Xeprof 19

time_slice=<integer>
Specifies the time in seconds between the profiling start and the time when profiling will be
terminated. When the profiling is terminated, the profile data is written to a file. The application
will continue running. If time_slice is not specified, or if the application terminates before the
specified time elapses but the profiling has started, the profile data is written after the termination
of the application.

time_slice=sigusr1|sigusr2
Specifies which signal causes profiling termination and the profile data output. The signals for
profiling start and profiling termination can be the same. Specifying a signal and a timeout at the
same time is possible by repeating the time_slice option - termination of profiling occurs when
the first qualifying event takes place. The application continues running. Only one of the two signals
can be declared to use as the signal to terminate profiling. During the application's run, the signal
to terminate profiling can be delivered to the Java process multiple times. However, profiling is
terminated and a result file generated, if profiling is active when the termination signal is delivered.

file=<filename>
The profile data is written to the named file. If time_on=sig... has not been specified, the
default is java<pid> .eprof, where <pid> is the integer number representing the process ID
of the Java VM process. If a signal has been specified to start profiling, several data files are
created, with names java<pid>_<t>.eprof, where <t> is the time in seconds between the
application start and the profiling start.

inlining=disable|enable
The compiler in the HotSpot VM optimizes Java applications by inlining frequently called methods.
Execution of inlined methods is not reported as "calls", since the actual calls have been eliminated.
Instead, the time spent in an inlined method is attributed to its "caller".
The default value for this option is enable. The other way of disabling inlining is to collect the
profile data while running the VM in interpreted mode (-Xint), although this is usually much
slower.
The consequences of inlining for the profiling are:

• The obtained profile data does not reflect faithfully all the calls within the Java code as written
by the programmer, but rather as it is actually executed by the VM. For most performance
analysis cases, this is a desired feature.

• As the calls within the Java application are eliminated, the corresponding calls to the profiler
are eliminated too, resulting in lower profiling overhead.

• The count of created objects cannot be reliably estimated from the call graph in the presence
of inlining, because the calls to the constructors may have been inlined.

ie=yes|no
Enables or disables the profiling intrusion estimation.
ie=yes, the default value, specifies that the profiler estimates the profiling intrusion and writes
the estimated values to the profile data file. HPjmeter uses this data to compensate for intrusion,
which means that the estimated intrusion is subtracted from the CPU times before they are presented
to the user. Disabling intrusion estimation slightly reduces the size of the data files, but also disables
the intrusion compensation feature. This option has no impact on the actual profiling overhead.

—Xverbosegc
The -Xverbosegc option prints out a detailed information about the spaces within the Java Heap
before and after garbage collection.

20 java: Java Application Launcher

The process ID is automatically appended to the verbosegc filename you specify. This helps you
to associate a verbosegc output with the corresponding Java process, especially in cases where
an application executes several Java processes.

Synopsis
The syntax of the option is:
-Xverbosegc[:help]|[0|1][:file=[stdout|stderr|<filename>]

-Xverbosegc:help for Java 7.0
NOTE: Parallel and Concurrent GC are available in NSJ 7. Therefore, the -Xverbosegc options
pertaining to them are applicable to NSJ 7.

-Xverbosegc options

:help prints this message

0|1 controls the printing of heap information:

0 Print after every Old Generation GC or Full GC

1 (default) Print after every Scavenge and Old Generation GC or Full
GC

:file=[stdout|stderr|<filename>] specifies output file

stderr (default) directs output to standard error stream

stdout directs output to standard output stream

<filename> file to which the output will be written

n — prevents appending pid to gclog filename

h — appends hostname to gclog filename

u — appends username to gclog filename

d — appends date to gclog filename

t — appends time to gclog filename

At every garbage collection, the following 20 fields are printed:

<GC: %1 %2 %3 %4 %5 %6 %7 %8 %9 %10 %11 %12 %13 %14 %15 %16 %17 %18 %19
%20>

%1 Indicates the type of the garbage collection.

1: represents a Scavenge (GC of New Generation only)

%2: indicates if this is a parallel scavenge.

0: non-parallel scavenge

n(>0): parallel scavenge, n represents the number of parallel GC threads

2: represents an Old Generation GC or a Full GC

%2: indicates the GC reason:

1: Allocation failure, followed by a failed scavenge, leading to a Full
GC

2: Call to System.gc

3: Tenured Generation full

4: Permanent Generation full

5: Scavenge followed by a Train collection

6: Concurrent-Mark-Sweep (CMS)eneration full

-Xverbosegc:help for Java 7.0 21

7: Old generation expanded on last scavenge

8: Old generation too full to scavenge

9: FullGCAlot

10: Allocation profiler triggered

11: JVMTI force GC

12: Adaptive Size Policy

13: Last ditch collection

3: represents a complete background CMS GC

• %2: indicates the GC reason:

1: Occupancy > initiatingOccupancy◦
◦ 2: Expanded recently

◦ 3: Incremental collection will fail

◦ 4: Linear allocation will fail

◦ 5: Anticipated promotion

◦ 6: Incremental CMS

• m indicates the background CMS state when yielding:

0: Resetting◦
◦ 1: Idling

◦ 2: InitialMarking

◦ 3: Marking

◦ 4: FinalMarking

◦ 5: Precleaning

◦ 6: Sweeping

◦ 7: AbortablePreclean

(exited after yielding to foreground GC)

%3: Program time at the beginning of the collection, in seconds

%4: Garbage collection invocation. Counts of background CMS GCs and
other GCs are maintained separately

%5: Size of the object allocation request that forced the GC, in bytes

%6: Tenuring threshold - determines how long the new born object remains
in the New Generation

The report includes the size of each space:

• Occupied before garbage collection (Before)

• Occupied after garbage collection (After)

• Current capacity (Capacity)

All values are in bytes

22 java: Java Application Launcher

Eden Sub-space (within the New Generation)

• %7: Before

• %8: After

• %9: Capacity

Survivor Sub-space (within the New Generation)

• %10: Before

• %11: After

• %12: Capacity

Old Generation

• %13: Before

• %14: After

• %15: Capacity

Permanent Generation (Storage of Reflective Objects)

• %16: Before

• %17: After

• %18: Capacity

• %19: The total stop-the-world duration, in seconds.

• %20: The total time used in collection, in seconds.

Could not create the Java virtual machine.

Nonstandard Java Options
The nonstandard options are:
-Xssn

Sets the thread stack size.
Every thread spawned while a Java program runs has its own stack. This thread stack is shared
by Java program code, any native (JNI) code, and the Java VM code. The default stack size is
512 kilobytes (-Xss512k). You can use this option to increase the stack size if you experience
stack overflow exceptions. The default units for n are bytes; n must be greater than 1000 bytes.
To modify the meaning of n, append either the letter k (or K) to indicate kilobytes, or the letter m
(or M) to indicate megabytes. For example, –Xss10240 and –Xss10k are equal.
-Xincgc

Specifies using the incremental low-pause garbage collector. This option is supported but using it
can lead to about a 10% decrease in garbage collection performance.

Deviations from Nonstandard Java Options
-Xmsn

Specifies the initial size, in bytes, of the memory allocation pool. The default value is implementation
specific; the value is about 3.6 megabytes.

HP Extensions to Standard Java Options
-nsjversion

Prints the NonStop Server for Java 7.0 build version.

Nonstandard Java Options 23

HP Extensions to NonStandard Java Options
-Xabend

Turns on the abend option to abort the process instead of exiting with a non-zero exit code. If the
NonStop Server for Java 7.0 application runs as a Pathway server, you can enable this option to
alert Pathmon to restart the server after NSJ7 application shuts down.
-XX:GuaranteeFreeHeapSizeAfterGC=<number>

Prevents excessive garbage collection (GC) activity in Java applications that have not been tuned
well with respect to GC. If the application uses most of the memory heap and the Java virtual
machine is unable to collect much garbage, excessive GC activity might occur to satisfy the demand
for allocation of new objects. This activity may result in a busy CPU in which the Java application
is executing. To prevent this occurrence, use the
-XX:GuaranteeFreeHeapSizeAfterGC=<number> option, where <number> is specified in
bytes, kilobytes (k), or megabytes (m). After a GC, if the Java virtual machine cannot free the heap
size more than the value specified with the GuaranteeFreeHeapSizeAfterGC option, the Java
virtual machine throws an OutOfMemoryError.
-XX:+ForceStopableMode

Forces the Java process stop mode to 1 (stoppable) when a Java thread transitions to native state.
Under certain rare conditions, the Java Virtual Machine (JVM) can incorrectly be running in
unstoppable mode, which can result in a processor halt if the JVM process hits a trap or exception.
Normally, the process stop mode is set to unstoppable by privileged code when the code is run,
and set back to stoppable mode on exit to the calling routine. While Java itself does not run in
privileged mode when executing Java byte codes, Java application code as well as the JVM can
make calls to native code or system APIs that run privileged code. If any of these privileged routines
do not reset the stop mode on exit, it can result in a processor halt if a trap occurs. Enable this flag
to avoid a processor halt in case the stop mode has been set incorrectly by privileged code. Some
applications may see performance degradation when this flag is enabled.

See Also:
• “javac: Java Programming Language Compiler” (page 25)

• “jdb: Java Debugger” (page 29)

• “javah: C Header and Stub File Generator” (page 27)

• “jar: Java Archive Tool” (page 16)

• The Java Extensions Framework

• Security Features

• Garbage Collection (GC) in the NonStop Server for Java 7.0 Programmer's Reference for
more implementation-specific information on options

24 java: Java Application Launcher

http://docs.oracle.com/javase/7/docs/technotes/guides/extensions/spec.html
http://docs.oracle.com/javase/7/docs/api/java/security/Security.html

7 javac: Java Programming Language Compiler
The javac tool compiles Java source code into bytecode. For more information on javac tool, see
the Oracle Java documentation for javac.

Synopsis
javac [options] [sourcefiles] [@argfiles]

Arguments may be in any order.
options

Command line options.
sourcefiles

One or more source files to be compiled (such as MyClass.java).
@argfiles

One or more files that list options and source files. The -J options are not allowed in these files.

See Also:
• “java: Java Application Launcher” (page 18)

• “jdb: Java Debugger” (page 29)

• “javah: C Header and Stub File Generator” (page 27)

• “javap: Java Class File Disassembler” (page 28)

• “javadoc: Java API Documentation Generator” (page 26)

• “jar: Java Archive Tool” (page 16)

• The Java Extensions Framework

Synopsis 25

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javac.html
http://docs.oracle.com/javase/7/docs/technotes/guides/extensions/spec.html

8 javadoc: Java API Documentation Generator
The javadoc tool generates API documentation in HTML format from Java source code. For more
information on javadoc tool, see the Oracle Java documentation for javadoc.

Synopsis
javadoc [options] { packagenames] [sourcefilenames] [- subpackages
pkg1:pkg2:...] [@argfiles]

See Also:
• “javac: Java Programming Language Compiler” (page 25)

• “java: Java Application Launcher” (page 18)

• “jdb: Java Debugger” (page 29)

• “javah: C Header and Stub File Generator” (page 27)

• “javap: Java Class File Disassembler” (page 28)

• Javadoc Home Page

• How to Write Doc Comments for Javadoc

26 javadoc: Java API Documentation Generator

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

9 javah: C Header and Stub File Generator
The javah tool generates C header files and stub C source files from a Java class. These files
provide the connections that allow your Java code and C code to interact. For more information
on javah tool, see the Oracle Java documentation for javah.

Synopsis
For files that are needed to implement native methods:
javah [options] fully-qualified-classname ...

See Also:
• “javac: Java Programming Language Compiler” (page 25)

• “java: Java Application Launcher” (page 18)

• “jdb: Java Debugger” (page 29)

• “javadoc: Java API Documentation Generator” (page 26)

Synopsis 27

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javah.html

10 javap: Java Class File Disassembler
The javap tool disassembles compiled Java files. For more information on javap tool, see the Oracle
Java documentation for javap.

Synopsis
javap [options] class ...

See Also:
• “javac: Java Programming Language Compiler” (page 25)

• “rmic: Java RMI Compiler” (page 39)

• “java: Java Application Launcher” (page 18)

• “jdb: Java Debugger” (page 29)

• “javah: C Header and Stub File Generator” (page 27)

• “javadoc: Java API Documentation Generator” (page 26)

28 javap: Java Class File Disassembler

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javap.html
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javap.html

11 jdb: Java Debugger
The jdb tool helps you to find and fix errors in Java programs. For more information on jdb tool,
see the Oracle Java documentation for jdb.

Synopsis
jdb [options] [class] [arguments]

options

See “Command Line Options” (page 31).
class

Name of the class to begin debugging.
arguments

Arguments passed to the main() method of class.

Description
The Java Debugger, jdb, is a simple command line debugger for Java classes. It is an example
of the use of the Java Platform Debugger Architecture that provides inspection and debugging of
a local or remote Java virtual machine (VM).

Starting a jdb Session
There are many ways to start a jdb session. The most frequent way is to have jdb launch a new
Java VM with the main class of application to be debugged. Perform this by substituting the
command jdb for the command java in the command line. For example, if your application's
main class is named MyClass, you use the following command to debug it under JDB:
jdb MyClass

When started this way, jdb invokes a second Java VM with any specified parameters, loads the
specified class, and stops the Java VM before executing the first instruction of that class.
Another way to use jdb is by attaching it to a Java VM that is already running. A Java VM that
is to be debugged with jdb must be started with the following java options:

PurposeOption

Enables debugging support in the Java VM.-Xdebug

Loads in-process debugging libraries and specifies the kind
of connection to be made.

–agentlib:jdwp=transport=dt_socket,
server=y,suspend=n

For example, the following command runs the MyClass application and allows jdb to connect
to the application at a later time.
java -Xdebug –agentlib:jdwp=transport=dt_socket,\
address=8000,server=y,suspend=n MyClass

You can then attach jdb to the Java VM with the following command:
jdb -attach 8000

NOTE: MyClass is not specified in the jdb command line in this case because jdb connects
to an existing Java VM instead of launching a new one.
There are many other ways to connect the debugger to a Java VM, and all of them are supported
by jdb, as specified in “Connecting for Remote Debugging” (page 33).

Synopsis 29

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.htmll
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/index.html

Basic jdb Commands
The following is a list of the basic jdb commands. The Java debugger supports other commands,
which you can list by using the jdb help command.
{help | ?}

Displays the list of recognized commands with a brief description.
run

After starting jdb and setting any necessary breakpoints, you can use this command to start the
execution of the debugged application. This command is available only when jdb launches the
debugged application (as opposed to attaching to an existing Java VM).
cont

Continues execution of the debugged application after a breakpoint, exception, or step.
print

Displays Java objects and primitive values. For variables or fields of primitive types, the actual
value is printed. For objects, a short description is printed. See the dump command below for
getting more information about an object.

NOTE: To display local variables, the containing class must have been compiled with the javac
-g option.
print supports many simple Java expressions including those with method invocations, for example:

• print MyClass.myStaticField

• print myObj.myInstanceField

• print i + j + k (i, j, k are primitives and either fields or local
variables)

• print myObj.myMethod() (to print the value if myMethod() returns a
non-null)

• print new java.lang.String("Hello").length()

dump

For primitive values, this command is identical to print. For objects, it prints the current value of
each field defined in the object. Static and instance fields are included.
The dump command supports the same set of expressions as the print command.
thread

List the threads that are currently running. For each thread, its name and current status are printed,
as well as an index that can be used for other commands, for example:
(java.lang.Thread)0x1 main running

In this example, the thread index is 4, the thread is an instance of java.lang.Thread, the
thread name is main, and it is currently running.
thread

Select a thread to be the current thread. Many jdb commands are based on the setting of the
current thread. The thread is specified with the thread index described in the threads command.
where

where with no arguments dumps the stack of the current thread. where all dumps the stack of
all threads in the current thread group. where threadindex dumps the stack of the specified
thread.

30 jdb: Java Debugger

If the current thread is suspended (either through an event such as a breakpoint or through the
suspend command), local variables and fields can be displayed with theprint anddump
commands. The up and down commands select which stack frame is current.

Breakpoints
Breakpoints can be set in jdb at line numbers or at the first instruction of a method, for example:

• stop at MyClass:22 (sets a breakpoint at the first instruction for line 22 of the source file
containing MyClass)

• stop in java.lang.String.length (sets a breakpoint at the beginning of the method
java.lang.String.length)

• stop in MyClass.init (init identifies the MyClass constructor)

• stop in MyClass.clinit(clinit identifies the static initialization code for MyClass)
If a method is overloaded, you must also specify its argument types so that the proper method can
be selected for a breakpoint. For example, MyClass.myMethod(int,java.lang.String),
or MyClass.myMethod().
The clear command removes breakpoints by using a syntax as in clear MyClass:45. Using the
clear command with no argument displays a list of all breakpoints currently set. The cont command
continues execution.

Stepping
The step command advances execution to the next line whether it is in the current stack frame or
a called method. The next command advances execution to the next line in the current stack
frame.

Exceptions
When an exception occurs for which there is not a catch statement anywhere in the throwing
thread's call stack, the Java VM normally prints an exception trace and exits. When running under
jdb, however, control returns to jdb at the offending throw. You can then use jdb to diagnose
the cause of the exception.
Use the catch command to cause the debugged application to stop at other thrown exceptions,
for example: catch java.io.FileNotFoundException or catch
mypackage.BigTroubleException. Any exception that is an instance of the specified class
(or of a subclass) stops the application at the point where it is thrown.
The ignore command negates the effect of a previous catch command.

NOTE: The ignore does not cause the debugged VM to ignore specific exceptions, only the
debugger.

Command Line Options
When you use jdb in place of the Java application launcher on the command line, jdb accepts
many of the same options as the “java: Java Application Launcher” (page 18) command, including
-D, -classpath, and -Xoption.
The following additional options are accepted by jdb:
-help

Displays a help message.
-sourcepath directory1 [:directory2]...

Uses the given path in searching for source files in the specified path. If this option is not specified,
the default path of "." is used.

Breakpoints 31

-attach address

Attaches the debugger to the previously running Java VM by using the default connection
mechanism.
-listen address

Waits for a running VM to connect to the specified address through a standard connector.
-listenany

Waits for a running VM to connect to any available address through a standard connector.
-launch

Launches the debugged application immediately upon startup of jdb. This option removes the need
for using the run command. The debugged application is launched and then stopped just before
the initial application class is loaded. At that point you can set any necessary breakpoints and use
the cont to continue execution.
-connect connector-name:name1=value1,...

Connects to the target VM through a named connector that uses the listed argument values.
-dbgtrace [flags]

Prints information for debugging jdb.
-Joption

Pass option to the Java virtual machine, where option is one of the options described on the
reference page for the java application launcher. For example, -J-Xms48m sets the startup memory
to 48 megabytes.
Other options are supported for alternate mechanisms for connecting the debugger and the Java
VM it is to debug. The Java Platform Debugger Architecture has additional documentation on these
connection alternatives.

Deviations from Standard Java
-tclient

Runs the application in the Java HotSpot client VM.

NOTE: The -tclient option is not valid with NonStop Server for Java 7.0.

-tserv

Runs the application in the Java HotSpot server VM.

NOTE: -tserv is the default option for NonStop Server for Java 7.0; therefore, specifying
-tserv is optional.

Options Forwarded to the Process Being Debugged
-v -verbose[:class|gc|nji]

Turns on verbose mode.
-D name=value

Sets a system property.
-classpath directory1 [:directory2]...

Lists directories in which to look for classes.
-X option

Sets a nonstandard target VM option.

32 jdb: Java Debugger

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/java.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/conninv.html

Connecting for Remote Debugging
1. The Debugger launches the target Java VM.

-launch

jdb -launch ClassName

2. The Debugger attaches to a previously running Java VM.
-attach

jdb -attach hostname:portnum

For this command, the JVM must already be running as a server at
[<hostname>:]<portnum>|<start port>-<end port>

To start the server, use the following command :
java -Xnoagent -Xdebug -Djava.complier=NONE \
–agentlib:jdwp=transport=dt_socket,\
nl

address=[<hostname>:]<portnum>|<start port>-<end port>,server=y \
ClassName

If address option is not given, the server will start on any
available port on the local host and print portnum. This portnum
should be used by the jdb to attach.

NOTE: In NonStop, there is an additional option to specify the port range, where, <start
port> and <end port> are the starting and ending port numbers for a range of ports.

3. The target JVM attaches to previously running debugger.
-listen

jdb -listen hostname:portnum

To attach a target JVM, use the following command:
java -Xnoagent -Xdebug -Djava.complier=NONE \
–agentlib:jdwp=transport=dt_socket, address=hostname:portnum \
ClassName

4. The Debugger selects a connector.
-connect

jdb -connect option

NOTE: Only the com.sun.jdi.SocketListen option is supported.
The target Java VM can then attach as:
java -Xnoagent -Xdebug -Djava.compiler=NONE \
–agentlib:jdwp=transport=dt_socket, address=hostname:portnum \
ClassName

Transports
A Java Platform Debugger Architecture (JPDA) transport is a form of inter-process communication
used by a debugger application and the debuggee. NonStop Server for Java 7.0 provides a socket
transport that uses the standard TCP/IP sockets to communicate between debugger and the
debuggee.
NonStop Server for Java 7.0 defaults to socket transport. NonStop Server for Java 7.0 does not
support shared memory transport.

Connecting for Remote Debugging 33

See Also:
“javac: Java Programming Language Compiler” (page 25)
“java: Java Application Launcher” (page 18)
“javah: C Header and Stub File Generator” (page 27)
“javap: Java Class File Disassembler” (page 28)
“javadoc: Java API Documentation Generator” (page 26)

34 jdb: Java Debugger

12 jrunscript: Command Line Script Shell
jrunscript is a command line script shell that supports an interactive (read-eval-print) mode
and a batch (-f option) mode of script execution. This is a scripting language-independent shell.
By default, JavaScript is the language used, but the -l option can be used to specify a different
language. Through Java to scripting language communication,jrunscript supports "exploratory
programming" style. For more information on jrunscript tool, see the Oracle Java documentation
for jrunscript.

Synopsis
jrunscript [options] [arguments...]

Synopsis 35

http://docs.oracle.com/javase/7/docs/technotes/tools/share/jrunscript.html
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jrunscript.html

13 keytool: Key and Certificate Management Tool
The keytool tool manages a keystore (database) of private keys and their associated X.509
certificate chains authenticating the corresponding public keys. For more information keytool on
tool, see the Oracle Java documentation for keytool.

Synopsis
keytool [commands]

See Also:
• “jar: Java Archive Tool” (page 16)

• “jarsigner: JAR Signing and Verification Tool” (page 17)

• The Security trail of the Java Tutorial for examples of the use of keytool

36 keytool: Key and Certificate Management Tool

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html
http://docs.oracle.com/javase/tutorial/security/index.html
http://java.sun.com/webservices/tutorial.html

14 native2ascii: Native-to-ASCII Converter
The native2ascii tool converts a file that has native-encoded characters (characters that are
not Latin-1 and not Unicode) to a file with Unicode-encoded characters. For more information on
native2ascii tool, see the Oracle Java documentation for native2ascii.

Synopsis
native2ascii [options] [inputfile [outputfile]]

Synopsis 37

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/native2ascii.html

15 orbd: Object Request Broker Daemon
The server manager included with the orbd tool enables clients to transparently locate and invoke
persistent objects on servers in the CORBA environment. For more information on orbd tool, see
the Oracle Java documentation for orbd.

Synopsis
orbd -ORBInitialPort nameserverport [options]

See Also:
• Naming Service

• servertool

38 orbd: Object Request Broker Daemon

http://docs.oracle.com/javase/7/docs/technotes/tools/share/orbd.html
http://docs.oracle.com/javase/7/docs/technotes/guides/idl/jidlNaming.html
http://docs.oracle.com/javase/7/docs/technotes/tools/share/servertool.html

16 rmic: Java RMI Compiler
The rmic tool generates stubs and skeletons for remote objects that use either the JRMP or Internet
Inter-ORB Protocol (IIOP). The rmic tool also generates Object Management Group (OMG) Interface
Definition Language (IDL). For more information on rmic tool, see the Oracle Java documentation
for rmic.

Synopsis
rmic [options] package-qualified-classname ...

See Also:
• “java: Java Application Launcher” (page 18)

• “javac: Java Programming Language Compiler” (page 25)

• CLASSPATH in the NonStop Server for Java 7.0 Programmer's Reference

Synopsis 39

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/rmic.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/rmic.html

17 rmid: Java RMI Activation System Daemon
The rmid tool starts the activation system daemon that allows objects to be registered and activated
in a Java virtual machine (VM). For more information on rmid tool, see the Oracle Java
documentation for rmid.

Synopsis
rmid [options]

See Also:
• “java: Java Application Launcher” (page 18)

• CLASSPATH in the NonStop Server for Java 7.0 Programmer's Reference

• “rmic: Java RMI Compiler” (page 39)

40 rmid: Java RMI Activation System Daemon

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/rmid.html
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/rmid.html

18 rmiregistry: Java Remote Object Registry
The rmiregistry tool starts a remote object registry on the specified port on the current host.
For more information on rmiregistry tool, see the Oracle Java documentation for rmiregistry.

Synopsis
rmiregistry [port]

See Also:
• “java: Java Application Launcher” (page 18)

• java.rmi.registry.LocateRegistry

• java.rmi.Naming

Synopsis 41

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/rmiregistry.html
http://docs.oracle.com/javase/7/docs/api/java/rmi/registry/LocateRegistry.html
http://docs.oracle.com/javase/7/docs/api/java/rmi/Naming.html

19 schemagen: Java Architecture for XML Binding Schema
Generator

The schemagen tool creates a schema file for each namespace referenced in your Java class
generator for Java Architecture for XML Binding. For more information on schemagen tool, see the
Oracle Java documentation for schemagen.

Synopsis
schemagen [-options ...] <java files>

The following table lists the schemagen options.

DescriptionOption

Specifies where to place the processor and javac generated
class files.

-d <path>

Specifies where to find user-specified files.-cp <path>

Specifies where to find user-specified files.-classpath <path>

Displays this usage message.-help

42 schemagen: Java Architecture for XML Binding Schema Generator

http://docs.oracle.com/javase/7/docs/technotes/tools/share/schemagen.html

20 serialver: Serial Version Command
The serialver tool returns the serialVersionUID of one or more classes. For more information
on serialver command, see the Oracle Java documentation for serialver.

Synopsis
serialver [option] [classname ...]

See Also:
• java.io.ObjectStreamClass

Synopsis 43

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/serialver.html
http://docs.oracle.com/javase/7/docs/api/java/io/ObjectStreamClass.html

21 servertool: Java IDL Server Tool
The servertool tool provides a command line interface for application programmers to register,
unregister, start up, and shut down a persistent server. For more information in servertool tool,
see the Oracle Java documentation for servertool.

Synopsis
servertool -ORBInitialPort nameserverport options [commands]

See Also:
• “orbd: Object Request Broker Daemon” (page 38)

44 servertool: Java IDL Server Tool

http://docs.oracle.com/javase/7/docs/technotes/tools/share/servertool.html

22 tnameserv: Naming Service Access
The tnameserv tool starts the Java Interface Definition Language (IDL) name server to provide
access to the CORBA Common Object Services (COS) Naming Service. For more information on
tnameserv tool, see the Oracle Java documentation for Naming Service.

Synopsis
tnameserv [-ORBInitialPort n]

Synopsis 45

http://docs.oracle.com/javase/7/docs/technotes/guides/idl/jidlNaming.html

23 nsjps: NonStop Java Virtual Machine Process Status Tool
The nsjps tool is a process status tool that lists and monitors the Java processes running on a system.
The input and output options of nsjps tool are enhanced in the 64–bit version of NSJ7.

NOTE: The nsjps tool can list or monitor NSJ7 Java applications. To list or monitor previous Java
applications, use previous version of nsjps tool.

Synopsis
nsjps [<options>]

The following options are supported:

PurposeOption

Lists the Java and GC processes separately.-gc

Lists the Java process corresponding to the GC process.-gcpid

Lists the Java processes running on the specified CPU.-cpu <cpuNumber>

Lists the Java processes owned by specified user.-user <userId|userName>

Lists the Java processes with matching heap.-heap { < | = | > } <size {K|M|G|k|m|g} >

Lists the children of the specified Java process.-parent <pid>

Displays the current heap size.-h

Displays Java or GC processes in long format.-l

Includes argument in the display.-v

Includes the Guardian pin in the output.-p

Includes the owner in the output.-u

Displays the process and elapsed time.-t

Provides cross reference of parent and child Java processes.-x

Prints the nsjps help text.-help

Repeats the listing of Java or GC process for the specified
number of times.

-count <cnt>

Specifies the time to sleep before the next sample.-delay <time>

Input Options
The input option is used to invoke the nsjps tool with various options to select the Java process
based on the selection criteria.

-gc

In NSJ7, parallel and concurrent mark sweep GCs (CMS GC) are enabled for
J-series systems. To utilize the multi-core capabilities of Integrity platform, the parallel
and CMS GCs are run as a separate process in the same processor where the Java
process is running. Because of this, in NSJ7, a Java application consists of a Java
process, and one or more GC processes (if parallel or CMS GC is enabled).
By default, nsjps lists only the Java processes. NSJ7 provides the -gc input option
to obtain details about GC processes. If -gc option is specified, GC process details
are printed with the corresponding Java process. If -gc is not specified, the heap

46 nsjps: NonStop Java Virtual Machine Process Status Tool

size and process time are consolidated values for the Java and corresponding GC
processes.

NOTE: This option is applicable only for J-series systems.

The following example shows the usage and sample output for -gc option:
nsjps —gc

PID Cmd
45676 java
67894 javagc

-gcpid <pid>

To obtain details about the Java process corresponding to a GC process, -gcpid
<pid> is provided, where, <pid> refers to the <pid> of the GC process.

NOTE: This option is applicable only for J-series systems.

The following example shows the usage and sample output for -gcpid option:
nsjps —gcpid 67894

PID Cmd
45676 java

-cpu <cpuNumber>

This option lists the Java process running on the CPU specified by the cpuNumber.
The following example shows the usage and output for -cpu option:
nsjps —cpu 1

PID Cmd
50331674 java

-user <UserID | username>

This option lists the Java process run by the user specified by userID or userName.
The following example shows the usage and output for -user option:
nsjps -user nsjava.guest

PID Cmd
50331674 java

Specifying Heap Size
The -heap option lists the Java processes. This option accepts heap sizes in kilobyte
and megabyte by suffixing the value with K or M(the suffix character is not case
sensitive). In a 64–bit JVM, the heap sizes are large, therefore, the heap size can
be suffixed with G (indicates that value is in Gigabyte). The following example
shows the usage and output for -heap option:
nsjps —heap \> 1G

PID Cmd
79289 java
45678 java

-parent <pid>

This option lists the child process of the given process ID of the Java process. The
following example shows the usage and output for -parent option:

Synopsis 47

nsjps -parent 16777243

PID Cmd
754974740 java

Cross Reference Option
NSJPS provides -x option that prints the parent-child Java process relationships.
This helps to identify the child Java processes started by a particular parent process.
In the cross reference listing, only the Java processes are considered and not the
GC processes. The following example shows the usage and output for -x option.
nsjps —x

PID ParentPID Cmd
743899154 911671351 java
89587743 1062666314 java

Child processes for parent 911671351
743899154

Child processes for parent 1062666314
89587743

Output Options
The output options are used to print details such as, PIN, User ID, and process ID on the selected
Java processes.

Heap Sizes
NSJPS prints the heap size only in bytes. Therefore, even if the heap size is large,
for example 24 GB, NSJPS displays it as 25769803776 bytes. Note that with
NSJ7, the heap space required for JVM and Java heap are allocated from flat
segments and the size output of a Java or GC process includes the size of these
segments in addition to the native C-heap. The following example shows the usage
and output for -h option:
/home/daya/ACC/nssjava/jdk170_h70/bin/nsjps -h
PID Cmd Heap
16777243 java 377126912

-h option
If —h option is used with —gc option, then the heap size for each process in the
Java process group is listed separately. The following example shows the usage
and output for -h option:
nsjps —h —gc
PID Cmd Heap
251658247 java 1963311104
67108872 javagc 278528
33554441 javagc 278528
16777226 javagc 278528

-l option
This option lists the Java or GC process command in long format. The following
example shows the usage and output for -l option:
nsjps —l
PID Full Path
1040187405 /usr/tandem/nssjava/jdk170_h70/bin/java

48 nsjps: NonStop Java Virtual Machine Process Status Tool

-v option
This option lists the argument passed to the Java process. The following example
shows the usage and output for -v option:
nsjps —v
PID Cmd arguments
989855920 java -XX:+UseParallelGC HelloWorld

-p option
This option lists the Guardian pin of the Java or GC process. The following example
shows the usage and output for -p option:
nsjps —p
PID Cmd PIN
989855920 java 1,1173
922747051 java 1,390

-u option
This option lists the Java process and the owner of this Java or GC process. The
following example shows the usage and output for -u option:
nsjps —u
PID Cmd User
989855920 java SUPER.SUPER
922747051 javagc SUPER.SUPER

-t option
This option displays the process and elapsed time of a Java Process. If —gc option
is specified then the time specified is separate for Java and GC process. Otherwise,
the time is a consolidated output time of Java and GC process. The following
example shows the usage and output for -t option:
nsjps —t
PID Cmd CpuTime ElapseTime
1895825444 java 0:00:23.346 0:33:10.325

nsjps —t —gc
PID Cmd CpuTime ElapseTime
989855920 java 0:26:28.543 2:01:17.923
922747051 javagc 0:00:01.085 2:01:05.844
1090519214 javagc 0:00:00.799 2:01:05.594

-count <cnt> option
This option repeats the listing of Java process specified by number in <cnt>. The
following example shows the usage and output for -count option:
nsjps -count 2 -delay 1

PID Cmd
1895825444 java
1040187405 java

1895825444 java
1040187405 java

-delay <time> option
This option lists the Java process listing after specified delay <time>. The following
example shows the usage and output for -delay option:
nsjps -count 2 -delay 1

Synopsis 49

PID Cmd
1895825444 java
1040187405 java

1895825444 java
1040187405 java

Help Command Output
The help command reflects the command line options and they are listed in “Synopsis” (page 46).

50 nsjps: NonStop Java Virtual Machine Process Status Tool

24 wsgen : Java API for XML Web Services (JAX-WS) 2.0
The wsgen tool generates the JAX-WS portable artifacts used in JAX-WS web services. The tool
reads a web service endpoint implementation class (SEI) and generates all the required artifacts
for web service deployment, and invocation. For more information on wsgen tool, see the Oracle
Java documentation for wsgen.

Synopsis
wsgen.sh <options> <SEI>

The following table lists the wsgen options.

DescriptionOption

Specifies where to find input class files.-classpath <path>

Specifies where to find input class files.-cp <path>

Specifies where to place generated output files.-d <directory>

Allows vendor extensions (functionality not specified by
the specification). Use of extensions may result in

-extension

applications that are not portable or may not interoperate
with other implementations.

Displays help.-help

Keeps generated files.-keep

Used only in conjunction with the -wsdl option. Specifies
where to place generated resource files such as WSDLs.

-r <directory>

Specifies where to place generated source files.-s <directory>

Displays output messages about what the compiler is doing.-verbose

Prints version information. Use of this option will ONLY
print version information. Normal processing will not occur.

-version

By default, wsgen does not generate a WSDL file. This flag
is optional and will cause wsgen to generate a WSDL file

-wsdl[:protocol]

and is usually used so that the user can look at the WSDL
before the endpoint is deployed. The protocol is optional
and is used to specify what protocol should be used in the
wsdl:binding. Valid protocols include: soap1.1 and
Xsoap1.2. The default is soap1.1. Xsoap1.2 is not
standard and can only be used in conjunction with the
-extension option.

Used only in conjunction with the -wsdl option. Specifies
a particular wsdl:service name to be generated in the

-servicename <name>

WSDL. For example, -servicename
"{http://mynamespace/}MyService".

Used only in conjunction with the -wsdl option. Specifies
a particular wsdl:port name to be generated in the

-portname <name>

WSDL. For example, -portname
"{http://mynamespace/}MyPort".

Synopsis 51

http://docs.oracle.com/javase/7/docs/technotes/tools/share/wsgen.html
http://docs.oracle.com/javase/7/docs/technotes/tools/share/wsgen.html

25 wsimport: JAX-WS 2.0
The wsimport tool generates JAX-WS portable artifacts, such as:

• Service Endpoint Interface (SEI)

• Service

• Exception class mapped from wsdl:fault (if any)

• Async Reponse Bean derived from response wsdl:message (if any)

• JAXB generated value types (mapped Java classes from schema types)
For more information on wsimport tool, see the Oracle Java documentation for wsimport.

Synopsis
wsimport [options] <wsdl>

52 wsimport: JAX-WS 2.0

http://docs.oracle.com/javase/7/docs/technotes/tools/share/wsimport.html

26 xjc: Java Architecture for XML Binding Compiler
The xjc tool is the XML binding compiler. The binding compiler can be launched using the
appropriate xjc shell script in the bin directory for your platform. For more information on xjc
tool, see the Oracle Java documentation for xjc.

Synopsis
xjc [-options ...] <schema_file/URL/dir> ... [-b <bindinfo>] ...

The following table lists the xjc options.

DescriptionOption

Does not perform strict validation of the input schema(s).-nv

Allows vendor extensions—does not strictly follow the
Compatibility Rules and App E.2 from the JAXB Spec.

-extension

Specifies external bindings files (each <file> must have
its own -b). If a directory is given, **/*.xjb is searched.

-b <file/dir>

Stores the generated files.-d <dir>

Specifies the target package.-p <pkg>

Sets HTTP/HTTPS proxy. Format is
[user[:password]@]proxyHost:proxyPort.

-httpproxy <proxy>

Sets the proxy string. Format is
[user[:password]@]proxyHost:proxyPort.

-httpproxyfile <file>

Specifies where to find user class files.-classpath <arg>

Specifies catalog files to resolve external entity references
support TR9401, XCatalog, and OASIS XML Catalog
format.

-catalog <file>

Enables the XJC binding compiler to mark the generated
files read-only.

-readOnly

Suppresses generation of package-level annotations (**/
package-info.java).

-npa

Suppresses generation of a file header with timestamp.-no-header

Behaves like XJC 2.0 and generates code that does not
use any 2.1 features.

-target 2.0

Treats input as W3C XML Schema (default).-xmlschema

Treats input as RELAX NG (experimental, unsupported).-relaxng

Treats input as RELAX NG compact syntax (experimental,
unsupported).

-relaxng-compact

Treats input as XML DTD (experimental, unsupported).-dtd

Treats input as WSDL and compile schemas inside it
(experimental, unsupported).

-wsdl

Be extra verbose, such as printing informational messages
or displaying stack traces upon some errors.

-verbose

Suppresses compiler output.-quiet

Displays this help message.-help

Displays version information.-version

Synopsis 53

http://docs.oracle.com/javase/7/docs/technotes/tools/share/xjc.html

	NonStop Server for Java 7.0 Tools Reference Pages
	Contents
	About this Manual
	Product Version
	Supported Hardware
	Supported Release Version Updates (RVUs)
	Document history
	New and Changed Information for March 2014 (693950–002)
	New and Changed Information for February 2013 (693950–001)
	Notation Conventions
	HP Encourages Your Comments

	NonStop Server for Java 7.0 Tools Reference Pages
	1 apt: Annotation Processing Tool
	Synopsis
	See Also:

	2 extcheck: JAR Conflict Detection Tool
	Synopsis
	See Also:

	3 idlj: IDL-to-Java Compiler
	Synopsis

	4 jar: Java Archive Tool
	Synopsis

	5 jarsigner: JAR Signing and Verification Tool
	Synopsis
	See Also:

	6 java: Java Application Launcher
	Synopsis
	Deviations from Standard Java Options
	–d64
	-Xeprof
	Synopsis
	-Xeprof options

	—Xverbosegc
	Synopsis

	-Xverbosegc:help for Java 7.0
	Nonstandard Java Options
	Deviations from Nonstandard Java Options
	HP Extensions to Standard Java Options
	HP Extensions to NonStandard Java Options
	See Also:

	7 javac: Java Programming Language Compiler
	Synopsis
	See Also:

	8 javadoc: Java API Documentation Generator
	Synopsis
	See Also:

	9 javah: C Header and Stub File Generator
	Synopsis
	See Also:

	10 javap: Java Class File Disassembler
	Synopsis
	See Also:

	11 jdb: Java Debugger
	Synopsis
	Description
	Starting a jdb Session
	Basic jdb Commands
	Breakpoints
	Stepping
	Exceptions
	Command Line Options
	Deviations from Standard Java
	Options Forwarded to the Process Being Debugged
	Connecting for Remote Debugging
	Transports
	See Also:

	12 jrunscript: Command Line Script Shell
	Synopsis

	13 keytool: Key and Certificate Management Tool
	Synopsis
	See Also:

	14 native2ascii: Native-to-ASCII Converter
	Synopsis

	15 orbd: Object Request Broker Daemon
	Synopsis
	See Also:

	16 rmic: Java RMI Compiler
	Synopsis
	See Also:

	17 rmid: Java RMI Activation System Daemon
	Synopsis
	See Also:

	18 rmiregistry: Java Remote Object Registry
	Synopsis
	See Also:

	19 schemagen: Java Architecture for XML Binding Schema Generator
	Synopsis

	20 serialver: Serial Version Command
	Synopsis
	See Also:

	21 servertool: Java IDL Server Tool
	Synopsis
	See Also:

	22 tnameserv: Naming Service Access
	Synopsis

	23 nsjps: NonStop Java Virtual Machine Process Status Tool
	Synopsis

	24 wsgen : Java API for XML Web Services (JAX-WS) 2.0
	Synopsis

	25 wsimport: JAX-WS 2.0
	Synopsis

	26 xjc: Java Architecture for XML Binding Compiler
	Synopsis

