NonStop Servlets for
JavaServer Pages
(NSJSP) 6.1 System
Administrator’s Guide

Abstract

NonStop™ Servlets for JavaServer Pages (NSJSP) is a container that runs Java
servlets and JavaServer Pages (JSPs) that are platform-independent server-side
programs, which programmatically extend the functionality of web-based applications
by providing dynamic content from a web server to a client browser over the HTTP
protocol.

Product Version
NonStop Servlets for JavaServer Pages 6.1 (T1222H60"AAN)
Supported Release Version Updates (RVUSs)

This publication supports J06.04 and all subsequent J-series RVUs and H06.15 and all
subsequent H-series RVUSs, until otherwise indicated by its replacement publications.

Part Number Published
596210-006 June 2013

Document History

Part Number Product Version Published
596210-001 NonStop Servlets for JavaServer Pages June 2010
6.1 (T1222H60"AAN)
596210-002 NonStop Servlets for JavaServer Pages November 2011
6.1 (T1222H60"AAN)
596210-005 NonStop Servlets for JavaServer Pages March 2012
6.1 (T1222H60"AAN)
596210-006 NonStop Servlets for JavaServer Pages June 2013

6.1 (T1222H60"AAN)

— Legal Notices

© Copyright 2012 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Javais a U.S. trademark of Sun Microsystems, Inc.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Moatif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.

© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,

Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

— NonStop Servlets for
— JavaServer Pages (NSJSP) 6.1
—— System Administrator’s Guide

Legal Notices

What's New in This Manual xv
Manual Information xv
New and Changed Information xv

About This Manual xvii
Who Should Read This Guide xvii
Organization of This Guide xviii
Related Manuals xix
Online Resources xxi
Notation Conventions xxii
Abbreviations xxvii
HP Encourages Your Comments XXX

1. Introduction to NSJSP

Overview 1-2
NSJSP Product 1-2
Apache Tomcat - A Container for Java Servlets and JSSP 1-2
The HP NonStop Servlet and JSP Container 1-2
Installing NSJSP 1-3
Configuring NSJSP 1-8
Management in NSJSP 1-9
Securing Web Applications 1-10
NSJSP Features 1-11
Architecture 1-13
Apache Tomcat Components 1-13
NSJSP Architecture 1-16

2. Installing NSJSP

Prerequisites 2-1
Installing NSJSP from the CD 2-2

Running the IPSetup Program 2-2

Hewlett-Packard Company—596210-006
i

Contents 3. Configuring NSJSP

Running the setup Script 2-14
Creating an NSJSP Installation 2-16
Verifying the NSJSP Installation 2-18
NSJSP Installation Directory Structure 2-20
Creating an NSJSP Manager Installation 2-21
Verifying the NSJSP Manager Application Installation 2-23
Updating an NSJSP Installation 2-24
Removing an NSJSP Configuration 2-25

Support for Multiple NSJSP Installations in a Single iTP Secure WebServer
Environment 2-26

3. Configuring NSJSP

Overview 3-2
Configuration Files for the Server Classes 3-5
The Generic servlet.config File 3-6
The Installation-Specific servlet.config File 3-7
The nsjspadmin.config File 3-29
The fFilemaps.config File 3-32
The jdbc.config File 3-34
Configuration Files for the Servlet Container 3-36
The server.xml File 3-36
The context.xml File 3-58
The web.xml File 3-65
Virtual Hosts 3-72
Configuring Virtual Hosts 3-73
Session Management 3-74
Sessions in NSJSP 3-74
In-Memory Sessions (SessionBasedLoadBalancing = true) 3-74
Persistent Manager Sessions (SessionBasedLoadBalancing = false) 3-79
Mixed-Mode Sessions 3-87
Determining the Storage Capacity of the Persistent Store 3-91
Configuring the Manager Element 3-95

4. Managing NSJSP

NSJSP Manager Application 4-1
Overview 4-1
NSJSP Manager Features 4-2
NSJSP Security 4-3
NSJSP Manager Operations 4-3
Admin Web Application 4-56

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
ii

Contents

Overview and Architecture 4-57

Admin Web Application Features 4-59
Login and Security Considerations 4-59
Managing Admin Web Application Operations 4-62
Administering the Server 4-62
Administering a Service 4-64
Administering a Connector 4-66
Administering a Host 4-67
Administering a Context 4-69
Administering a Realm 4-71
Administering a Valve 4-72
Administering Resources 4-74
Administering User Definitions 4-79
Access Security Considerations 4-83

5. Logging in NSJSP

Persisting Changes to the server .xml File and Context Files 4-83

Manager Web Application 4-85

Operations Using the Command-line Interface 4-85

Manual Deployment and Undeployment of Web Applications 4-90

iTP Secure WebServer Operations 4-85
Server Class Operations 4-86

Deploying Applications at Startup 4-90
Deploying Applications on a Running NSJSP Server

Comparison of the Management Applications 4-92

Comparison of Architectures 4-92
Comparison of Features 4-98

Comparison of Management Application Access Roles 4-100

Single Point of Management Using the NSJSP Manager

The Architecture of the NSJSP Manager 4-104

5. Logging in NSJSP

Logging Architecture 5-1

Apache Tomcat Enhancements to the Logging Architecture 5-4

Loggers 5-1
Handlers 5-2

Formatters 5-2
Log Manager 5-3

4-91

4-100

NSJSP Enhancements to the Logging Architecture 5-5

NSJSP Formatter 5-5
NSJSP Log Handler 5-5

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

Contents 6. Debugging NSJSP

Log Rollover 5-6
Logging Configuration 5-9
Configuring Handlers 5-10
Configuring Loggers 5-13
Configuring the NSJSP Formatter Class 5-14
Configuring for Log Rollover 5-15
Configuring the logging.properties File 5-20
Configuring Logging for the NSJSP Container and Web Applications 5-24
Log Files Related to NSJSP 5-27
The out and err Log Files 5-27
Log File Created by JULI 5-28
Programming Considerations for Logging 5-28
LogFactory 5-28
Log 5-29
Commons Logging 5-30

6. Debugging NSJSP

Debugging using Java Debugger tool 6-1
Debugging using Eclipse platform 6-2

7. Migrating to NSJSP 6.1

Comparison of NSJSP 5.0, NSJSP 6.0, and NSJSP 6.1 7-1
Comparing Installation Properties in NSJSP 5.0, NSJSP 6.0, and NSJSP 6.1 7-1

Comparing Configuration Properties in NSJSP 5.0, NSJSP 6.0, and NSJSP
6.1 74

Comparing Management Properties in NSJSP 5.0, NSJSP 6.0, and NSJSP
6.1 7-14

Comparing Logging Infrastructure in NSJSP 5.0, NSJSP 6.0, and NSJSP
6.1 7-15

Logging Configuration of Servlet Container Components 7-15

Comparing Miscellaneous Properties 7-18
Considerations for Migrating Web Applications from NSJSP 5.0 to NSJSP 6.1 7-19
Considerations for Migrating Web Applications from NSJSP 6.0 to NSJSP 6.1 7-26
Migrating the Session Store 7-27
Migrating to NSJSP Manager Application in NSJSP 6.1 7-27

Support for Multiple NSJSP Installations in a Single iTP Secure WebServer
Environment 7-27

8. Security Considerations

Securing Web Applications 8-1
Establishing a Secure Link 8-2

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
iv

Contents A. MBeans in the NSJSP Container

Authenticating a User 8-3
HTTP Basic Authentication 8-3
HTTP Digest Authentication 8-4
Form-Based Authentication 8-5
HTTPS Client Authentication 8-7
Realms 8-7
Digested Passwords 8-28
Single Sign-On 8-28
Authorizing a User 8-29
Web Resource Collection 8-30
Authorization Constraint 8-31
User Data Constraint 8-31
Validating the Sender 8-33
Remote Host Filter 8-33
Remote Address Filter 8-34
Java Security Manager 8-35
Configuring the Java Security Manager 8-35
Starting NSJSP with the Java Security Manager 8-37
Securing NSJSP Resources Using the permissions Directive 8-38
Package Protection in NSJSP 8-40
Troubleshooting the Java Security Manager 8-41
Manager Web Application and NSJSP Manager Security 8-41
Using Realms to Implement Security 8-42
Monitoring Server Classes and Hosts 8-42

A. MBeans in the NSJSP Container

Prerequisites A-1
Overview A-1

Object Names and Attributes of MBeans A-2
MBeans Representation in NSJSP Manager A-4
Commonly Used MBeans in NSJSP A-10

Glossary
Index

Examples

Example 3-1. A Generic servlet.configFile 3-6
Example 3-2. The httpd.config File Referencing servlet.confiqg File 3-7
Example 3-3. An Installation-Specific servlet.config File 3-8

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
%

Contents

Examples

Example 3-4. A Sample Configuration of the server objectcode Variable 3-12

Example 3-5. The Default Value of the NSJSP_HOME Variable 3-12

Example 3-6. The Default Value of the JVM POLICY_ FILE Variable 3-13

Example 3-7. The Default Value of the NSJSP SECMGR POLICY Variable 3-13

Example 3-8. The Default Value of the NSJSP SECMGR Variable 3-13

Example 3-9. The Default Value of the JAAS CONFIG FILE Variable 3-14

Example 3-10. The Default Value of the NSJSP JAAS CONFIG Variable 3-14

Example 3-11. The Default Value of the JAVA HOME Variable 3-15

Example 3-12. The Default Value of the JVCP Variable 3-15

Example 3-13. The Default Value of the USRCP Variable 3-16

Example 3-14. Default Value of the SERVLET BANK Variable 3-17

Example 3-15. Default Value of the NSJSP DLL PATH Variable 3-17

Example 3-16. The Default Value of the CLASSPATH Variable 3-17

Example 3-17. The Default Value of the JAVA HOME Variable 3-18

Example 3-18. The Default Value of the JREHOME Variable 3-18

Example 3-19. The Default Value of the RLD LIB PATH Variable 3-18

Example 3-20. The Default Value of the TANDEM FILEMAPS CONFIG
Variable 3-18

Example 3-21. The Default Value of the BANK CATALOG Variable 3-19

Example 3-22. The Default Value of the NSJSP CONFIG FILE Variable 3-19

Example 3-23. The Default Value of the TANDEM RECEIVE DEPTH Variable 3-19

Example 3-24. The Default Xmx, Xms, Xss, and Xnoclassqgc Variables 3-20

Example 3-25. The Default Value of the java.util. logging.manager
Variable 3-20

Example 3-26. The Default Value of the java.util.logging.config.file
Variable 3-21

Example 3-27. The Default Value of the javax.management.builder.initial
Variable 3-21

Example 3-28. The Default Value of the java.1o.tmpdir Variable 3-21

Example 3-29. The Default Values for catalina.home and catalina.base
Variables 3-22

Example 3-30. A Sample Configuration of the SessionBasedCookieExpiry
Variable 3-23

Example 3-31. New Filemap Information 3-24

Example 3-32. Filemap History Available as a Comment 3-24

Example 3-33. Configuration for IMXProxyServlet in the web.xml file 3-25

Example 3-34. The Default Value of the SaveSessionOnCreation Variable 3-25

Example 3-35. The Default Configuration of the Region Directive 3-28

Example 3-36. The Default Configuration of the Filemap Directive 3-29

Example 3-37. The nsjspadmin.config File 3-30

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

Vi

Contents Examples

Example 3-38. Checking for the presence of the nsjspadmin.config file and
sourcing the nsjspadmin.config file in the servlet.config
file 3-31

Example 3-39. The filemaps.config File 3-32

Example 3-40. Checking for the presence of the filemaps.config file and
sourcing the filemaps.config file in the servlet.config
file 3-32

Example 3-41. Specific User Application Filemap Definitions 3-33

Example 3-42. The jdbc.config File 3-35

Example 3-43. The server.xml File 3-38

Example 3-44. The Default Value for the GlobalNamingResources Element 3-42

Example 3-45. The Default Values for the Service Element 3-43

Example 3-46. The Default Values for the Connector Element 3-45

Example 3-47. The Default Values of JIMX Connection Listener 3-49

Example 3-48. The Default Values for the Engine Element 3-50

Example 3-49. The Default Values for Realm Element 3-52

Example 3-50. The Default Values for the Host Element 3-53

Example 3-51. The Default Values for the RequestTrackerValve 3-58

Example 3-52. The default context.xml File 3-59

Example 3-53. Configuration of the Default Servlet 3-66

Example 3-54. Configuration of the Invoker Servlet 3-67

Example 3-55. Configuration of the JSP Page Compiler and Execution Servlet 3-68

Example 3-56. Configuration of the SSI Servlet 3-69

Example 3-57. Configuration of the CGI processing Servlet 3-70

Example 3-58. Configuration of the Static Content Filter 3-71

Example 3-59. Configuration of the Session Timeout Parameter 3-71

Example 3-60. Configuring Virtual Hosts 3-73

Example 3-61. Arglist from a servlet.config file with
SessionBasedLoadBalancing Enabled 3-76

Example 3-62. The Default Configuration of the NSJSP Specific Standard

Manager 3-76
Example 3-63. The Default Configuration of session-timeout in the
<NSJSP HOME>/conf/web.xml File 3-79

Example 3-64. An Arglist from a servlet.config file with
SessionBasedLoadBalancing setto false 3-81

Example 3-65. The Sample Configuration of the Manager Element 3-81

Example 3-66. Default Configuration of session-timeout in the
<NSJSP HOME>/conf/web.xml File 3-83

Example 3-67. SQL/MP script to create a Persistent Store 3-84
Example 3-68. SQL/MX script to create a Persistent Store 3-85
Example 3-69. Sample Configuration of the Store Element 3-85

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Vii

Contents

Example 3-70.

Figures

An Arglist from a servlet.config file with

Example 3-71.

SessionBasedLoadBalancing Setto true 3-88
The Sample Configuration of the Manager Element

3-89

Example 3-72.

Default Configuration of session-timeout in the

Example 3-73.

<NSJSP HOME>/conf/web.xml File 3-90
The Sample Output of a showddl Command 3-92

Example 3-74.

The Sample Output of a fup info <filename>,detail

Example 3-75.

Command 3-93
SQL Session Data Cleanup Script 3-94

Example 3-76.

Using the nsjsp cleanSessionData Script 3-94

Example 3-77.

Creating A Session Data Table with Four Partitions Across Four

Different Disks 3-95

Figures

Example 3-78. Sample Context Configured with a Persistent Manager 3-96

Example 3-79. Default Configuration of the Manager Element 3-97

Example 8-1. Creating SOL/MX Tables for use in a JDBCRealm 8-18

Example 8-2. Sample Realm Configuration 8-19

Example 8-3. Sample UserDataBase Definition 8-20

Example 8-4. Defining a Global JNDI Datasource 8-25

Example 8-5. Sample DataSourceRealm Configuration 8-25

Example 8-6. Configuring a UserDatabaseRealm and DataSourceRealm Within a
CombinedRealm 8-26

Example 8-7. Configuring an NSJSPLockOutRealm 8-27

Example 8-8. Java Policy File Entry 8-35

Example 8-9. Policy File Entry for the NSJSP Container 8-36

Example 8-10. Starting NSJSP with the Java Security Manager 8-38

Example 8-11. Setting the Java Security Debug Information 8-41

Example 8-12. Sample host-access.properties File 8-42

Example 8-13. Role Definitions 8-43

Figure 1-1. Fresh Installation of NSJSP in an iTP Secure WebServer

Environment 1-4

Figure 1-2. NSJSP 5.0/NSJSP 6.0 Installation in an iTP Secure WebServer
Environment 1-5

Figure 1-3. Multiple NSJSP Installations in an iTP Secure WebServer
Environment 1-6

Figure 1-4. NSJSP 6.1 in an iTP Secure WebServer Environment Configured for
Online-Upgrade 1-7

Figure 1-5. Multiple NSJSP Installations in an iTP Secure WebServer Environment

Configured for Online-Upgrade 1-8

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

viii

Contents Figures

Figure 1-6. NSJSP in an iTP Secure WebServer Environment Configured for
Online-Upgrade 1-12

Figure 1-7. Standalone Apache Tomcat Using the HTTP Connector 1-14

Figure 1-8. Apache Tomcat with the Apache Web Server 1-15

Figure 1-9. NSJSP Architecture 1-17

Figure 2-1. The NSJSP 6.1 Home Page 2-19

Figure 2-2. The NSJSP Admin Web Application Login Page 2-20

Figure 2-3. The NSJSP Manager Application Login Page 2-24

Figure 3-1. Files used to Configure NSJSP 6.1 3-4

Figure 3-2. Maximum Wait Time for a Message with Size = 1MB 3-27

Figure 3-3. The Element Hierarchy and Relationships in the server.xml
file 3-37

Figure 3-4. Virtual Hosting in a Sample iTP Secure WebServer Environment 3-72

Figure 3-5. Request Routing within NSJSP Sessions when
SessionBasedLoadBalancing is true 3-75

Figure 3-6. Session Object Handling by NSJSP with the Persistent Store

Configuration 3-80
Figure 4-1. NSJSP Manager Application Login Page 4-4

Figure 4-2. NSJSP Manager Application Functions 4-8

Figure 4-3. Applications Page 4-9

Figure 4-4. Application Summary Page 4-11

Figure 4-5. Application Summary Page After Clicking Process View 4-15
Figure 4-6. In-Memory Sessions Page 4-17

Figure 4-7. URI Statistics Page 4-19

Figure 4-8. HTTP Method Statistics Page 4-20

Figure 4-9. Context Descriptor Page 4-21

Figure 4-10. Deployment Descriptor Page 4-22

Figure 4-11. Servlet Mappings Page 4-23

Figure 4-12. Filters Page 4-24

Figure 4-13. Initialization Parameters Page 4-25

Figure 4-14. Application Summary Page Showing the Down Status 4-27
Figure 4-15. Application Summary Page Showing the Running Status 4-28
Figure 4-16. Application Summary Page Showing the Reloaded Status 4-29
Figure 4-17. NSJSP Information Page 4-30

Figure 4-18. Server Class Processes Page 4-32

Figure 4-19. NSJSP Connector Stats Page 4-34

Figure 4-20. Configuration Parameters Page 4-35

Figure 4-21. Server Class Statistics Page 4-37

Figure 4-22. Server Class with the $YSB6 PATHMON in the FROZEN State 4-40
Figure 4-23. Server Class with the $YSB6 PATHMON in the RUNNING State 4-41

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
iX

Contents

Figures

Figure 4-24. Server Class with the $ZSB6 PATHMON in the FROZEN State 4-43

Figure 4-25. Server Class with the $ZSB6 PATHMON in the RUNNING State 4-44

Figure 4-26. NSJSP MBeans Page 4-45

Figure 4-27. List of MBeans 4-47

Figure 4-28. Compare - NSJSP MBeans Page 4-48

Figure 4-29. Comparison Result for the modelerType Attribute 4-49

Figure 4-30. Modify MBean Page 4-52

Figure 4-31. Web Application Deployment from Server 4-54

Figure 4-32. Web Application Deployment from Desktop 4-56

Figure 4-33. Admin Operations followed by SAVE 4-58

Figure 4-34. Operator Commit Changes Command 4-58

Figure 4-35. Admin Login page 4-60

Figure 4-36. Admin Web Application Home Page 4-61

Figure 4-37. The Tomcat Server Element 4-63

Figure 4-38. The Service Element 4-65

Figure 4-39. The Connector Element 4-67

Figure 4-40. The Host Element 4-68

Figure 4-41. The Context Element 4-70

Figure 4-42. The Properties of MemoryRealm 4-72

Figure 4-43. The Properties of AccessLogValve 4-73

Figure 4-44. The Data Sources Element 4-75

Figure 4-45. The Properties Displayed After Selecting the Create New Mail Session
Action 4-76

Figure 4-46. The Properties Displayed After Selecting the Create New Env Entry
Action 4-77

Figure 4-47. The Properties of the Default User Database 4-78

Figure 4-48. The Properties Displayed After Selecting the Create New Resource Link
Action 4-79

Figure 4-49. User Properties for the Admin User 4-80

Figure 4-50. New Group Properties 4-81

Figure 4-51. Roles List 4-82

Figure 4-52. Architecture of the Old Manager Application 4-93

Figure 4-53. Architecture of the Admin Web Application 4-95

Figure 4-54. Architecture of the NSJSP Manager Application 4-96

Figure 4-55. NSJSP Manager Supporting Multiple Hosts 4-101

Figure 4-56. Multiple NSJSP Installations 4-102

Figure 4-57. NSJSP in a Pathway Domain 4-103

Figure 4-58. NSJSP Manager 4-104

Figure 5-1. Logging Work Flow 5-4

Figure 7-1. Sample conf Directory Created After NSJSP 6.0 Installation 7-29

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

X

Contents

Tables

Tables
Figure 7-2. Sample conf Directory Contents After NSJSP 6.1 Installation 7-29
Figure 7-3. NSJSP 6.0 and NSJSP 6.1 Installation Locations 7-31
Figure 8-1. Flow of User Request 8-2
Figure 8-2. Logon Page for HTTP Basic Authentication 8-4
Figure 8-3. Logon Page for HTTP Digest Authentication 8-5
Figure 8-4. Logon Page for a Form-Based Authentication 8-7
Figure A-1. Tree View of an MBean A-4
Figure A-2. Tree View of an MBean Under the Servlet Node A-6
Figure A-3. Tree View of an MBean Under the Valve Node A-7
Figure A-4. Node with Value none A-8
Figure A-5. Values of the MBean Attributes A-9
Figure A-6. Description of the MBean Attributes A-10
Table 2-1. NSJSP 6.1 Installation Directories and Files 2-20
Table 3-1. Terms and Definition 3-1
Table 3-2. Configuration Files for Server Classes 3-3
Table 3-3. Configuration Files for the NSJSP Servlet Container and All Web
Applications hosted by an NSJSP Installation 3-3
Table 3-4. The Generic servlet.confiqg File 3-6
Table 3-5. The Installation-Specific servlet.confiq File 3-7
Table 3-6. Overview of the nsgspadmin.config File 3-29
Table 3-7. Overview of the filemaps.config File 3-32
Table 3-8. The jdbc.config File 3-34
Table 3-9. Overview of the server.xml File 3-36
Table 3-10. Attribute List for the Server element 3-40
Table 3-11. Descriptions of Listeners configured as child elements of the Server
element 3-41
Table 3-12. Attribute List of the Service Element 3-44
Table 3-13. Attribute List for the Connector Element in NSJSP 3-46
Table 3-14. Attribute List for the Engine Element 3-51
Table 3-15. Attribute List for the Host Element 3-54
Table 3-16. The default context.xml File 3-59
Table 3-17. Attribute List for the Context Element 3-60
Table 3-18. Attribute List for the NSJSPStandardManager 3-77
Table 3-19. Attribute List for the Manager element 3-82
Table 3-20. Attribute List for the Store Element 3-86
Table 3-21. Attribute List of the Manager Element. 3-90
Table 4-1. Attributes in the Applications Page 4-10
Table 4-2. Operations in the Application Summary Page 4-12

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

Xi

Contents

Tables

Table 4-3. Attributes in the Application Summary Page 4-13
Table 4-4. Submenu Items Under the Applications Tab 4-13
Table 4-5. Attributes in the Process View Page 4-16
Table 4-6. Operations in the In-Memory Sessions Page 4-18
Table 4-7. Attributes in the In-Memory Sessions Page 4-18
Table 4-8. Attributes in the URI Statistics Page 4-19
Table 4-9. Attributes in the HTTP Method Statistics Page 4-21
Table 4-10. Attributes in the Servlet Mappings Page 4-24
Table 4-11. Attributes in the Filters Page 4-25
Table 4-12. Context Initialization Parameters 4-25
Table 4-13. Attributes in the NSJSP Information Page 4-31
Table 4-14. Submenu Items Under the Server Class 4-31
Table 4-15. Attributes in the Server Class Processes Page 4-33
Table 4-16. Attributes in the NSJSP Connector Statistics page 4-34
Table 4-17. Server Class Configuration Parameters 4-36
Table 4-18. Server Class Statistics 4-38
Table 4-19. Parameters for Viewing MBeans and their Attributes 4-45
Table 4-20. Parameters in the Comparing MBeans Across NSJSP
Processes Page 4-50
Table 4-21. Parameters in the Modify MBean Page 4-52
Table 4-22. Attributes on the Web Application Deployment from Server Page 4-54
Table 4-23. Attributes on the Web Application Deployment from Desktop
Page 4-56
Table 4-24. Comparison of Features of NSJSP Manager, Old Manager, and Admin
Web Applications 4-98
Table 4-25. Comparing Roles 4-100
Table 5-1. Handlers in the Java Logging Package 5-2
Table 5-2. Configuration Properties of FileHandler 5-10
Table 5-3. Configuration Properties of NSJSPLogHandler 5-11
Table 5-4. Literals in the Format Attribute 5-15
Table 5-5. Behavior of Log Files in maxfi lesize-based Rollover 5-16
Table 5-6. Timestamp Attributes 5-17
Table 5-7. Time Intervals for Rollover 5-18
Table 5-8. Behavior of Log Files in datepattern-based Rollover 5-19
Table 5-9. Mapping of Logging Methods 5-29
Table 7-1. Comparison of Installation Properties of NSJSP Versions 7-2
Table 7-2. Differences in the NSJSP 5.0 and NSJSP 6.1 server.xml Files 7-5
Table 7-3. Differences in the NSJSP 6.0 and NSJSP 6.1 server.xml Files 7-9
Table 7-4. Differences in the NSJSP 5.0 and NSJSP 6.1 servlet.config

Files 7-11

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

Xii

Contents

Table 7-5. Differences in the NSJSP 6.0 and NSJSP 6.1 servlet.config
Files 7-13

Table 7-6. Differences and Similarities in Management Properties of NSJSP
Versions 7-14

Table 7-7. Differences and Similarities in NSJSP Versions 7-15

Table 7-8. Miscellaneous Properties of NSJSP Versions 7-18

Table 7-9. Prerequisites of NSJSP 5.0 and NSJSP 6.1 7-19

Table 7-10. Context Definition Attributes in NSJSP 5.0 and NSJSP 6.1 7-21

Table 7-11. Session Manager Configuration 7-22

Table 7-12. Prerequisites of NSJSP 6.0 and NSJSP 6.1 7-26

Table 8-1. Attributes in the INDIRealm 8-12

Table 8-2. MemoryRealm Attributes 8-15

Table 8-3. JDBCRealm Attributes 8-16

Table 8-4. UserDatabaseRealm Attributes 8-20

Table 8-5. JAASRealm Attributes 8-22

Table 8-6. DataSourceRealm Attributes 8-24

Table 8-7. NSJSPLockOutRealm Attributes 8-27

Table 8-8. Types of Transport Guarantee 8-32

Table 8-9. Remote Host Filter Attributes 8-34

Table 8-10. Remote Address Filter Attributes 8-34

Table A-1. Attributes Associated with Thread Pool A-10

Table A-2. Attributes Associated with Host A-11

Table A-3. Attributes Associated with Request Dumper A-11

Table A-4. Attributes Associated with Application Context A-12

Table A-5. Attributes Associated with JSP Statistics A-12

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

Xiii

Contents

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Xiv

—— What's New In This Manual

Manual Information

Abstract

NonStop™ Servlets for JavaServer Pages (NSJSP) is a container that runs Java
servlets and JavaServer Pages (JSPs) that are platform-independent server-side
programs, which programmatically extend the functionality of web-based applications
by providing dynamic content from a web server to a client browser over the HTTP
protocol.

Product Version
NonStop Servlets for JavaServer Pages 6.1 (T1222H60"AAN)

Supported Release Version Updates (RVUSs)

This publication supports J06.04 and all subsequent J-series RVUs and H06.15 and all
subsequent H-series RVUSs, until otherwise indicated by its replacement publications.

Part Number Published
596210-006 June 2013

Document History

Part Number Product Version Published
596210-001 NonStop Servlets for JavaServer Pages June 2010
6.1 (T1222H60"AAN)
596210-002 NonStop Servlets for JavaServer Pages November 2011
6.1 (T1222H60"AAN)
596210-005 NonStop Servlets for JavaServer Pages March 2012
6.1 (T1222H60"AAN)
596210-006 NonStop Servlets for JavaServer Pages June 2013

6.1 (T1222H60"AAN)

New and Changed Information

Changes to 596210-006 Manual:

Updated the manual with information about Xnoclassgc on page 3-20.

Changes to 596219-005 Manual:

Added maxParameterCount parameter to the list of Connector element attributes in chapter
3.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
XV

What's New in This Manual New and Changed Information

Changes to 596210-002 Manual:
Added Debugging NSJSP chapter.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
XVi

— About This Manual

This guide describes the architecture of NSJSP 6.1, procedures for installing, updating,
and removing NSJSP 6.1 and NSJSP Manager, the management tasks you can
perform using the NSJSP Manager and Admin Web applications, how to configure
NSJSP, logging functionality in NSJSP, a comparison of NSJSP 5.0, 6.0, and 6.1,
considerations before migrating user applications from NSJSP 5.0 or NSJSP 6.0 to
NSJSP 6.1, and application security and considerations for securing data transfer from
a web browser to the web server.

Who Should Read This Guide

The NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’s
Guide is intended for experienced HP NonStop system administrators and operators
who need to install, configure, and manage NSJSP.

It is assumed that you are an experienced user of HP products and are familiar with:
® The Open System Services (OSS) environment
® The PATHCOM interface of NonStop TS/MP and iTP Secure WebServer

® The Common Gateway Interface (CGI/1.1) standard and the HyperText Transfer
Protocol (HTTP/1.1)

® The Java language and tools
® Network security and authentication techniques

This guide also assumes that you have experience operating a secure computing
system. For an introduction to the basic network security concepts, see the iTP Secure
WebServer System Administrator’s Guide.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
XVii

About This Manual

Chapter

1, Introduction to
NSJSP

2, Installing NSJSP

3, Configuring
NSJSP

4, Managing NSJSP

5, Logging in
NSJSP

6, Debugging
NSJSP

7, Migrating to
NSJSP 6.1

8, Security
Considerations

Appendix A,
MBeans in the
NSJSP Container

Organization of This Guide

Organization of This Guide

Description

Provides an overview of the NSJSP product. This chapter also
describes the NSJSP architecture and its features.

Provides the procedures to install, verify, and remove NSJSP and
the NSJSP Manager. This chapter also lists the modifications made
to support multiple NSJSP installations.

Describes the files for configuring NSJSP in detail. This chapter also
discusses specific instances of configuration, such as Virtual Hosts
and Session Management.

Describes the new NSJSP Manager application that enables you to
manage user web applications, server classes, and MBeans. This
chapter also describes the Admin Web application and how it
enables you to manage the servlet container components.

Describes the logging architecture, logging configuration, and log
files in NSJSP. This chapter also describes how to configure logging
for user web applications.

Describes the various ways of debugging applications deployed in
NSJSP.

Describes the installation, configuration, management, and logging
characteristics relevant to migrating applications from NSJSP 5.0
and NSJSP 6.0 to NSJSP 6.1. This chapter also describes the
procedures involved in migrating web applications from NSJSP 5.0
and NSJSP 6.0 to NSJSP 6.1.

Describes how to secure a web application by establishing a secure
link, authenticating a user, and validating the sender. This chapter
also discusses how to secure a web application using the Java
Security Manager.

Describes NSJSP MBeans and how the MBeans are represented in
the NSJSP Manager application. This chapter also lists the MBeans
that are commonly used in NSJSP.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

XViii

About This Manual

Related Manuals

Related Manuals

NonStop Servlets for JavaServer Pages (NSJSP) Manuals

For information about the features of the NonStop Servlets for JavaServer Pages
(NSJSP) 6.0, see NonStop Servlets for JavaServer Pages (NSJSP) 6.0 System

Administrator’s Guide.

ITP manuals

For more information specific to the iTP Secure WebServer environment, see:

iTP Secure
WebServer System
Administrator’s Guide

WEBSERV
Messages chapter of
the Operator
Messages Manual

describes how to install, configure, and manage the iTP
Secure WebServer. It also discusses how to develop and
integrate Common Gateway Interface (CGI) applications and
Java Servlets and JSPs into an iTP Secure WebServer
environment. This guide is intended for experienced HP
NonStop system administrators and operators who need to
install, configure, and manage the iTP Secure WebServer on
an HP NonStop system.

describes the operator messages reported by components
of the iITP Secure WebServer and related products.

The following manuals contain additional information about installing, configuring, and
managing HP NonStop systems or other products that may be used with NSJSP.

TCP/IP Manuals

For information specific to managing the TCP/IP subsystem, see:

TCP/IP Configuration
and Management
Manual

HP NonStop
TCP/IPv6
Configuration and
Management Manual

HP NonStop TCP/IP
Programming Manual

describes the installation, configuration, and management of
the NonStop TCP/IP subsystem, which is also called
conventional TCP/IP. It is for system managers, operators,
and others who require a basic understanding of the HP
NonStop TCP/IP implementation.

describes the installation, configuration, and management of
the NonStop TCP/IPv6 subsystem. It is for system
managers, operators, and others who require a basic
understanding of the HP NonStop TCP/IPv6 implementation.

describes how to program to the Guardian sockets library for
NonStop TCP/IP, Parallel Library TCP/IP, and NonStop
TCP/IPV6.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

XiX

About This Manual

Open System Services (OSS) Manuals

Open System Services (OSS) Manuals

For information specific to the OSS environment, see:

Open System
Services User’s
Guide

Open System
Services Installation
Guide

Open System
Services
Management and
Operations Guide

describes the Open System Services (OSS) environment:
the shell, file-system, and user commands.

describes how to install and configure the HP NonStop
Kernel OSS environment.

describes how to manage and operate the NonStop Kernel
OSS environment.

NonStop Transaction Services/MP (NonStop TS/MP) Manuals

For information specific to managing PATHMON environments and managing Pathway

domain, see:

TS/MP System
Management Manual

TS/MP Management
Programming Manual

TS/MP Release
Supplement

describes the PATHCOM and TACL commands used to
configure and manage PATHMON environments. This
manual also includes manageability guidelines, information
about monitoring and tuning a PATHMON environment to
optimize performance, and methods for diagnosing and
correcting problems.

describes how to start, configure, and manage PATHMON
environments programmatically and describes the event
messages that report errors and other occurrences of
interest to operators.

describes how to start and use the new command line
interface called Pathway Domain Management Command
interpreter (PDMCOM). PDMCOM provides an easy
configuration and management interface for multiple
Pathway environments grouped together in a domain.

NonStop Java Manuals

For information about the features of the NonStop Server for Java, or if you plan to use
JDBC, see NonStop Server for Java (NSJ) Programmer’s Guide.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

XX

About This Manual NonStop SQL Manuals

NonStop SQL Manuals

For information specific to the NonStop SQL environment, see:

SQL/MP Reference describes NonStop SQL/MP, the HP relational database
Manual management system that uses SQL to describe and

manipulate data in a NonStop SQL/MP database. The
manual includes information about SQLCI, the
conversational interface to NonStop SQL/MP.

SQL/MX Reference describes SQL language elements—data types, literals,
Manual expressions, functions, and predicates—and SQL

statements of NonStop SQL/MX, the HP relational database
management system based on ANSI SQL-92. It also
includes MXCI commands.

These manuals contain additional information about NonStop systems:

HO06.nn Release provides a summary for the products that have major
Version Update changes in the H-series, including the products’ new
Compendium features, migration issues, and fallback considerations. The

compendium is written for system managers or anyone who
needs to understand how migrating to H-series RVU affects
installation, configuration, operations, system management,
maintenance, applications, networks, and databases.

NonStop NS-Series describes the HP Integrity NonStop NS-series system
Planning Guide hardware and provides examples of system configurations

to assist in planning for installation of a new system. It also
provides a guide to other Integrity NonStop NS-series
manuals.

Online Resources

These URL references are available on the Internet:

General references:
http://www.w3.0rg

HyperText Transfer Protocol (HTTP) references:
http://www.w3.org/Protocols/rfc2616/rfc2616.txt

Common Gateway Interface (CGI) references:
http://hoohoo.ncsa.uiuc.edu/cqi

Tomcat 6.0 Documentation:
http://tomcat.apache.org/tomcat-6.0-doc/index.html

Java Servlet Specification Version 2.5:
http://icp.org/aboutJava/communityprocess/mrel/jsr154/index2.html

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

XX1

http://www.w3.org
http://www.w3.org/Protocols/rfc2616/rfc2616.txt
http://hoohoo.ncsa.uiuc.edu/cgi
http://tomcat.apache.org/tomcat-6.0-doc/index.html

About This Manual Notation Conventions

® JavaServer Pages API Specification Version 2.1:
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html

Notation Conventions

Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described in Backup DAM Volumes and Physical Disk Drives
on page 3-2.

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

Ffile-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. 1talic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:
TERM [\system-name.]$terminal-name
INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
XXii

http://java.sun.com/products/jsp

About This Manual General Syntax Notation

each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
[-num]
[text]

K[X] D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
{ $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

. Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]...
L -1 {O1112]131415161718]9%}...

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char..."

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error = NEXTFILENAME (file-name) ;
LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"['" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
XXiii

About This Manual Notation for Messages

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/7 OUT file-spec /7] LINE
[, attribute-spec]...

li and !'o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id Ll
, error) ; 10

li,0. In procedure calls, the !i,0 notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; li,o

lizi. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME COMPARE_ (filenamel:length hi:
, Filename2:length) ; hi:

lo:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error = FILE_GETINFO_ (Tfilenum hi
, [filename:maxlen]) ; 1o:i
Notation for Messages

This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
XXiv

About This Manual Notation for Messages

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register
process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
XXV

About This Manual Notation for Management Programming Interfaces

Notation for Management Programming Interfaces

This list summarizes the notation conventions used in the boxed descriptions of
programmatic commands, event messages, and error lists in this manual.

UPPERCASE LETTERS. Uppercase letters indicate names from definition files. Type these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters. Words in lowercase letters are words that are part of the notation,
including Data Definition Language (DDL) keywords. For example:

token-type

Ir. The Ir notation following a token or field name indicates that the token or field is
required. For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. Ir

lo. The lo notation following a token or field name indicates that the token or field is
optional. For example:

ZSP1-TKN-MANAGER token-type ZSPI-TYP-FNAME32. Io

Change Bar Notation

Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of changed
portions of text, figures, tables, examples, and so on. Change bars highlight new or
revised information. For example:

The message types specified in the REPORT clause are different in the COBOL
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
XXVi

About This Manual Abbreviations

Abbreviations

This list defines abbreviations and acronyms used in this guide. Both industry-standard
terms and HP terms are included.

AWT. Abstract Windowing Toolkit

ARPA. Advanced Research Project Agency
ATP. Active Transaction Pages

BSD. Berkeley Software Distribution

C. Country

CA. Certificate Authority

CBC. Cipher Block Chaining

CCITT. Consultative Committee for International Telegraph and Telephone
CGIl. Common Gateway Interface

CN. Common Name

CWD. Current Working Directory

DES. Data Encryption Standard

DN. Distinguished Name

DNS. Domain Name Server

DSM/SCM. Distributed Systems Management/Software Configuration Manager
DSV. distribution subvolume

DTD. Document Type Definition

EAS. Enterprise Application Server

EMS. Event Management Service

FBA. Forms Based Administration

FTP. File Transfer Protocol

GIF. Graphics Interchange Format

GUI. Graphical User Interface

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
XXVii

About This Manual Abbreviations

HTML. HyperText Markup Language

HTTP. HyperText Transfer Protocol

HTTPD. HyperText Transfer Protocol Daemon
IEEE. Institute of Electrical and Electronics Engineers
IEN. Internet Engineering Note

IP. Internet Protocol

ISV. installation subvolume

J2EE. Java 2 Enterprise Edition

JAR. Java Archive Tool

JDBC. Java DataBase Connectivity

JDK. Java Development Kit

JIT. Just-In-Time (Java compiler)

JNDI. Java Naming and Directory Interface
JNI. Java Native Interface

JSP. JavaServer Pages

JVCP. Java Visual Class Package

JVM. Java Virtual Machine

KEK. Key Exchange Key

L. Locality

LAN. Local Area Network

LDAP. Lightweight Directory Access Protocol
LDIF. LDAP Data Interchange Format

MAC. Message Authentication Code

MD5. Message Digest

MFK. Master File Key

MIME. Multipurpose Internet Mail Extensions

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
XXViii

About This Manual Abbreviations

NCSA. National Center for Supercomputing Applications
NSJ. NonStop Java

NSJSP. NonStop Servlets for JavaServer Pages
O. Organization

OLTP. Online Transaction Processing

OSS. Open System Services

OU. Organizational Unit

PAID. Process Accessor ID

PCT. Private Communication Technology

PDF. Portable Document Format

PEM. Privacy Enhanced Message

PKS. Public Key Certificate Standard

PPP. Point to Point Protocol

QIO. Queued Input Output

RFC. Request for Comments

RLS. Resource Locator Service

RSA. Rivest, Shamir, and Adelman

SCF. Subsystem Control Facility

SCT. Secure Configuration Terminal

SGC. Server Gated Cryptography (Microsoft)
SGML. Standard Generalized Markup Language
SHAL. Secure Hash Algorithm

SI. Session Identifier

SLIP. Serial Line IP

SMTP. Simple Mail Transfer Protocol

SSC. Servlet ServerClass (for Java)

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
XXiX

About This Manual HP Encourages Your Comments

SSI. Server Side Include

SSL. Secure Sockets Layer

ST. State

TACL. Tandem Advanced Command Language

TAL. Transaction Application Language

Tcl. Tool Command Language

Tcl/CGI. Tool Command Language/Common Gateway Interface
TCP/IP. Transmission Control Protocol/Internet Protocol
TS/MP. Transaction Services/Massively Parallel

URI. Uniform Resource Identifier

URL. Uniform Resource Locator

WAR. Web Application Archive

WID. WebSafe2 Interface Driver

WISP. WebSafe2 Internet Security Processor

X.509. CCITT Recommendation for Security Service

XML. Extended Markup Language

HP Encourages Your Comments

HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement you have concerning this document.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
XXX

1 Introduction to NSJSP

This chapter describes NonStop Servlets for JavaServer Pages (NSJSP), its
components, and its architecture.

To understand NSJSP, prior knowledge of the following topics is required:
® Java Servlets and JavaServer Pages (JSP)

A Java Servlet is a programming object that runs in a server application. It receives
client requests, processes them, and generates responses. For more information
on the Java Servlet 2.5 specification, see
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index2.html.

JSP is a server side technology that enables you to develop and maintain dynamic
web pages. It extends the functionality of web-based applications by providing
dynamic content from a web server to a client browser over the Hypertext Transfer
Protocol (HTTP). For more information on the JavaServer Pages 2.1 specification,
see http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html.

® (TP Secure WebServer concepts, such as, how the iTP Secure WebServer
components are deployed as TS/MP server classes and how the HTTP daemon
(HTTPD) interacts with other components, such as the Common Gateway Interface
(CGI)-Server using pathsend calls.

For more information on the iTP Secure WebServer concepts, see the iTP Secure
WebServer System Administrator’'s Guide.

This chapter discusses the following topics:
® Overview on page 1-2

® NSJSP Product on page 1-2

© Apache Tomcat - A Container for Java Servlets and JSP on page 1-2

© The HP NonStop Servlet and JSP Container on page 1-2

© Installing NSJSP on page 1-3

© Configuring NSJSP on page 1-8

© Management in NSJSP on page 1-9

© Securing Web Applications on page 1-10

® NSJSP Features on page 1-11

® Architecture on page 1-13

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-1

http://java.sun.com/products/jsp

Introduction to NSJSP Overview

Overview

NSJSP is a Java Servlets and JavaServer Pages (JSP) container available on HP
NonStop operating systems. A servlet container provides an environment in which you
can deploy, execute, and manage web applications based on servlets or JSPs. NSJSP
is written in Java, and it offers a standards-based environment to host Java Servlet and
JSP applications.

NSJSP Product

The NSJSP architecture is derived from the Apache Tomcat servlet container.

Apache Tomcat - A Container for Java Servlets and JSP

Apache Tomcat is a servlet container that implements the Java Servlet and the JSP
specifications. It was developed, and is currently maintained by the Apache Software
Foundation (ASF) project team.

The default installation of Apache Tomcat includes a servlet and JSP container, and a
web server. However, the most commonly used configuration is to not use the built-in
web server, but to use the Apache Web Server as the front-end. The Apache Web
Server communicates with Apache Tomcat using the Apache JServ Protocol (AJP).
The Apache Tomcat component that implements the protocol and provides connectivity
between the web server and the container is called a connector.

Apache Tomcat is implemented in Java; it can run on any platform that supports a
current Java Virtual Machine (JVM).

The HP NonStop Servilet and JSP Container

NSJSP 6.1 is an enhanced implementation of the Apache Tomcat 6.0.20 release.
NSJSP is designed to be installed in an iITP Secure WebServer environment and to
use the web server to handle the HTTP protocol. A NonStop connector was developed
for NSJSP to enable communication between the iTP Secure WebServer and NSJSP,
using Interprocess Communication (IPC). NSJSP processes are also designed to run
in server classes, which are defined as part of an iTP Secure WebServer TS/MP
configuration.

For more information on TS/MP and server classes, see the TS/MP System
Management Manual.

NSJSP processes are multi-threaded. Because each process in an NSJSP Server
Class has the same configuration, servlet/JSP requests can be load balanced across
all the processes in the server class. You can also increase the number of processes in
the server class statically or dynamically, which allows for significant scaling of web
application capacity.

NSJSP provides the following:

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-2

Introduction to NSJSP Installing NSJSP

An implementation of the Java Servlets 2.5 and JSP 2.1 specifications.

A platform to host applications developed using the Java Open Source
frameworks, including:

© MyFaces - An Apache implementation of JavaServer Faces (JSF)
© Apache Axis2 - An open source web services engine and framework.

© Spring - A Plain Old Java object (POJO) oriented application framework for
development and deployment of Java applications. For more information, see
WWW.Springsource.org

© Hibernate - A popular (Object Relational Mapping) ORM solution for database
access.

Database access through JDBC drivers for NonStop SQL/MP and SQL/MX.

Additional APIs, such as, the Pathsend and Pathway APIs implemented in the
JToolkit, which can be used in web applications that are deployed in NSJSP.

Note. JToolkit is not bundled with NSJSP.

Installing NSJSP

Each NSJSP Server Class runs in an iTP Secure WebServer environment. The iTP
WebServer installation consists of a set of directories with executable files, libraries,
configuration files, log files, and a TS/MP configuration for one or two PATHMONS.

NSJSP provides a setup script to perform basic installation-related tasks. The setup
script is located in the NSJSP release version directory and is run from that
location.The setup script enables you to perform the following installation-related
tasks:

Install NSJSP in an iTP Secure WebServer environment. Starting with the NSJSP
6.1 release, you can install NSJSP in a directory location of your choice. You can
also can create multiple NSJSP installations in an iTP Secure WebServer
environment. NSJSP 6.1 can coexist with other NSJSP 6.1 installations. NSJSP
6.1 can also coexist with either NSJSP 5.0 or NSJSP 6.0 in the same iTP Secure
WebServer environment.

You can also install NSJSP in an iTP Secure WebServer environment configured
for online-upgrade. In this case, the iITP Secure WebServer installation spans two
PATHMONSs. For more information on installing, see Chapter 2, Installing NSJSP.

Install the NSJSP Manager, which is a new application introduced in NSJSP 6.1.
The NSJSP Manager runs in its own server class called MANAGER. You can
create only one installation of the NSJSP Manager application in an iTP Secure
WebServer environment.

Update an existing NSJSP 6.1 installation with a newer NSJSP version.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

1-3

Introduction to NSJSP Installing NSJSP

® Remove an NSJSP installation and optionally delete the installation directories and
files.

The following section describes the various installation scenarios.

Installing NSJSP in Different Environments Using the setup
Script

You can use the setup script to install NSJSP in the following environments:

® AniTP Secure WebServer Environment

® AniTP Secure WebServer Environment Containing Older NSJSP Installations

® AniTP Secure WebServer Environment Configured for Online-Upgrade

An ITP Secure WebServer Environment

You can create a fresh installation of NSJSP 6.1 in an iTP Secure WebServer
environment. In Figure 1-1, the $zweb PATHMON environment denotes an iTP Secure
WebServer environment, which includes one NSJSP 6.1 installation.

Figure 1-1. Fresh Installation of NSJSP in an iITP Secure WebServer
Environment

HTTP Requests |

4 })

iTP
Secure HTTPD
WebServer

Szweb

Environment
| NSJSP 6.1 !II

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-4

Introduction to NSJSP Installing NSJSP

An iTP Secure WebServer Environment Containing Older NSJSP
Installations

NSJSP 6.1 can coexist with other NSJSP 6.1 installations, and either an NSJSP 5.0 or
an NSJSP 6.0 installation. As a result, you can install NSJSP 6.1 in an iTP Secure
WebServer environment that includes one or more NSJSP 6.1 installations, and either
an NSJSP 5.0 or an NSJSP 6.0 installation. However, you must install each NSJSP
installation in a unique directory location.

Note. In the same iTP Secure WebServer environment, NSJSP 6.1 can coexist with either
NSJSP 5.0 or NSJSP 6.0, but not with both NSJSP 5.0 and NSJSP 6.0.

NSJSP 6.1 installations will only be included in the iITP Secure WebServer
configuration if NSJSP 6.1 is installed after NSJSP 5.0 or NSJSP 6.0 has been
installed. If you attempt to install NSJSP 5.0 or NSJSP 6.0 in an iTP Secure
WebServer environment that already includes NSJSP 6.1, the older version of NSJSP
overwrites part of the NSJSP 6.1 configuration.

In Figure 1-2, the $zweb PATHMON environment denotes an iTP Secure WebServer
environment that includes an NSJSP 5.0 or an NSJSP 6.0 installation.

Figure 1-2. NSJSP 5.0/NSJSP 6.0 Installation in an iTP Secure WebServer
Environment

HTTP Requests

(- |)
iTP Secure HTTPD
WebServer

ﬁ Szweb

NSJSP Environment
5.0/NSISP 6.0

NG /

In this environment, you can create one or more NSJSP 6.1 installations. Figure 1-3
illustrates an iTP Secure WebServer environment that includes one installation of
either NSJSP 5.0 or NSJSP 6.0, and two NSJSP 6.1 installations.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-5

Introduction to NSJSP Installing NSJSP

Figure 1-3. Multiple NSJSP Installations in an iTP Secure WebServer
Environment

HTTP Requests
/ 7 \
iTP Secure HTTPD
WebServer
@ $zweb
< > Environment

NSJSP 6.1 NSJSP 6.1 NSJSP
5.0/NSJSP 6.0

C T G
K\ | w . /

An iTP Secure WebServer Environment Configured for Online-Upgrade

You can install NSJSP 6.1 in an iTP Secure WebServer environment that is configured
for online-upgrade.

Note. iTP Secure WebServer 7.0 and later versions provide the capability of online-upgrades.
This online-upgrade capability allows an iTP Secure WebServer to be upgraded to a newer
version with zero downtime. It requires configuring an iTP Secure WebServer in a Pathway
domain that spans two PATHMONS.

For more information on Pathway domains, see the TS/MP Release Supplement.

In Figure 1-4, the iTP Secure WebServer environment is configured for online-upgrade.
It spans two PATHMONSs: $zweb and $yweb. You install NSJSP 6.1 in an iTP Secure
WebServer environment the same way that it is installed in a single PATHMON
environment. In an online-upgrade configuration, however, the iTP Secure WebServer
will divide the NSJSP Server Class configuration between the two PATHMONS.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-6

Introduction to NSJSP Installing NSJSP

Figure 1-4. NSJSP 6.1 in an iTP Secure WebServer Environment Configured for
Online-Upgrade

HTTP Requests l

/ PATHWAY ~

/ / \ DOMAIN / \ \
e HTTPD HTTPD D
Secure

WebServer \ /
[\

_) U Y

Environment
You can also create multiple NSJSP 6.1 installations in this iTP Secure WebServer
environment. However, each NSJSP installation requires a unique directory location.
Each NSJSP installation under this iTP Secure WebServer will have its server class
processes defined in and run under both the $zweb and $yweb PATHMON
environments. Figure 1-5 illustrates an iTP Secure WebServer environment spanning
two PATHMONSs, and including multiple NSJSP 6.1 installations.

Szweb

Environment NSJSP 6.1

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-7

Introduction to NSJSP Configuring NSJSP

Figure 1-5. Multiple NSJSP Installations in an iTP Secure WebServer
Environment Configured for Online-Upgrade

HTTP Requests l

/ PATHWAY ~

S\ oo N\ \

HTTPD

iTP
Secure
WebServer

NSJSP 6.1 U]
Szweb -

Environment I I

NSJSP 6.1 U]

NSJSP 6.1]]
\ e — . /

Syweb
Environment

For more information on installing NSJSP, see Chapter 2, Installing NSJSP.

Configuring NSJSP

An NSJSP installation includes a conf directory, which contains a servlet.config
file. If there are multiple NSJSP installations in the ITP Secure WebServer
environment, each installation will include its own servlet.config file. The
servlet.config file contains the details of the NSJSP installation, including the
TS/MP server class configuration. The TS/MP server class configuration includes the
server class name, the URI name that identifies the server class, the JVM
configuration, the number of processes, and other PATHMON configuration
information.

Additionally, a new servlet.config file is created in the conT directory within the
iITP Secure WebServer installation. This new servlet.config file is a generic
configuration file. It includes pointers to each of the NSJSP installation-specific
servlet.configfiles and a pointer to the NSJSP Manager servlet.configfile, if
the NSJSP Manager is also installed in the iTP Secure Webserver installation directory.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-8

Introduction to NSJSP Management in NSJSP

An NSJSP installation also includes a server class for the NSJSP Admin Web
application and the old Manager application (Manager Web Application). The
configuration file for this server class is located in the conT directory within the NSJSP
installation, and is called nsjspadmin.config.

ITP Secure WebServer Online-Upgrade Configuration
Considerations for NSJSP

In a single PATHMON environment, the iTP Secure WebServer creates the NSIJSP
Server Class as defined in the conf/servlet.config file within the NSJSP
installation directory. However, if the iTP Secure WebServer is configured for online-
upgrade, that is with two PATHMONSs in a Pathway domain, the PATHMON
configuration is handled differently. The iTP Secure Webserver defines the server class
for both Pathmons, but also divides the NSJSP Server Class configuration between the
two PATHMONS. One half of the NSJSP Server Class will be configured in one
PATHMON and the other half will be configured in the second PATHMON.

Management in NSJSP

Starting with the NSJSP 6.1 release, the new NSJSP Manager application is included.
The NSJSP Manager enables single point management of all NSJSP installations
within the iTP Secure WebServer environment. The following are some of the
important tasks that you can perform:

® Dynamically deploy user web applications on an active NSJSP installation. Also,
you can dynamically deploy an application on all the server class processes in an
iITP Secure Webserver Pathway domain. Using the old Manager (NSJSP Manager
Web Application), you can only deploy an application on the NSJSP Server Class
processes running in one PATHMON within a Pathway domain.

Note. You can also deploy a web application to the NSJSP Server Class processes by
copying the .war file of the application to the webapps directory of the NSJSP installation
or by copying the application directory, subdirectories, and files to the webapps directory
of the NSJSP installation.

® View application statistics. You can obtain detailed information about applications,
such as, the distribution of application requests across NSJSP Server Class
processes and the time taken to process requests.

® View server class statistics, which you can use to tune the server class
configuration. You can also perform tasks, such as start and stop the NSJSP
Server Class. The new NSJSP Manager provides detailed status and statistics of
the server class processes. The old Manager provides limited status and statistics.

Note. Because NSJSP processes run in TS/MP server classes, you can also use
PATHCOM and PDMCOM to view the status of server class processes or to display server
class statistics.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-9

Introduction to NSJSP Securing Web Applications

Starting, Stopping, and Restarting the iTP Secure WebServer

Because NSJSP installations are created in an iTP Secure WebServer environment,
when the iTP Secure WebServer environment is stopped, started, or restarted, all the
NSJSP installations in the iITP Secure WebServer environment are also stopped,
started, or restarted respectively. You can perform these operations on the iTP Secure
WebServer by using the scripts located in the iTP Secure Webserver conf directory or
by using the iTP Secure WebServer Admin application.

You can perform operations on the NSJSP installation server classes by using the
NSJSP Manager, PATHCOM, or PDMCOM.

Modifying the NSJSP Configuration

You can make changes to the NSJSP Server Class processes by using the NSJSP
Manager and the Admin Web application. Also, you can modify the NSJSP MBeans
and any user-defined application MBeans by using the NSJSP Manager.

Note. If you make changes to the configuration files in an NSJSP installation, you must restart
the iTP Secure WebServer for the changes to take effect.

Note. When the iTP Secure WebServer is configured for online-upgrade, each NSJSP
installation is split across the two PATHMONS. Only the new NSJSP Manager can manage the
NSJSP Server Class processes and configurations in both PATHMONSs. The old Manager and
the Admin Web application can manage only one PATHMON.

For more information on Management in NSJSP, see Chapter 4, Managing NSJSP.

Securing Web Applications

NSJSP enables you to secure user web applications.

NSJSP can validate and authenticate users when they attempt to access a web
application, and authorize users to access resources. The user credentials required for
authentication and authorization are stored in an NSJSP repository.

NSJSP also provides the option of using the Java security manager. The Java security
manager is used to safeguard application data and services and ensure the security
and reliability of NSJSP.

NSJSP also provides advanced security features, such as locking and filtering of
requests. The locking feature ensures that users whose credentials are not valid and
who have exceeded the maximum allowed attempts are locked out. The filtering
feature ensures that only requests received from specified sources are allowed to
execute.

For more information on security, see Chapter 7, Migrating to NSJSP 6.1.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-10

Introduction to NSJSP NSJSP Features

NSJSP Features

NSJSP is distinguished by the following key features:
® Scalability

Scalability in NSJSP refers to its ability to increase its capacity to process a large
number of servlet and JSP requests simultaneously, by adding resources, such as
additional processes and logical processors, to a system. The request throughput
rate for NSJSP increases in proportion to the increase in system resources, such
as logical processors and the number of cores in multi-core processors. NSJSP is
highly scalable because it uses the highly scalable iTP Secure WebServer as a
front-end and because it runs as a TS/MP server class, it inherits the scalability
features from TS/MP.

® Load balancing

With NSJSP, load balancing is achieved through the use of multiple HP NonStop
subsystems, including HP NonStop TCP/IPv6, TS/MP, iTP Secure Webserver, and
NSJSP. Using NonStop TCP/IPv6 ensures that the incoming HTTP requests are
distributed equally across the HTTPD processes running on all the processors.
Also, because HTTPD communicates with NSJSP using server class send calls,
TS/MP link management can help ensure that HTTPD requests for NSJSP
services are balanced across all the available server class processes of NSJSP.

® High-availability

High-availability guarantees continuous availability of services even during a failure
of some system resources, such as processors. Because NSJSP is installed as a
TS/MP server class, if there is a processor failure, TS/MP ensures that new
processes are started on processors that are still available. In addition to the high-
availability features provided by TS/MP, NSJSP itself provides features, such as
session persistence to ensure that the state of an application is not lost in the
event of a resource failure.

If NSJSP is installed in an iTP Secure WebServer environment configured for
online-upgrade (that is, the iTP Secure WebServer is configured in two
PATHMONS, within a Pathway domain), you can modify the NSJSP configuration
while maintaining continuous access to all NSJSP applications and services.

® (TP Secure WebServer Online-Upgrade

iITP Secure Webserver 7.0 includes the online-upgrade feature, which enables you
to perform modifications to the web server or user applications hosted on the iTP
Secure WebServer at run time. The online-upgrade feature is enabled by installing
the iTP Secure WebServer in a TS/MP Pathway domain environment that includes
two PATHMONSs. While applications in processes under one PATHMON are shut
down for an upgrade, user requests will continue to be processed by the
applications running in processes under the other PATHMON.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-11

Introduction to NSJSP NSJSP Features

Starting with the NSJSP 6.1 release, you can install and manage NSJSP in an iTP
Secure WebServer 7.0 environment that is configured for online-upgrade.

For more information on the online-upgrade feature, see An iTP Secure
WebServer Environment Configured for Online-Upgrade on page 1-6.

Figure 1-6 illustrates NSJSP in an iTP Secure Webserver environment that is
configured for online-upgrade.

Figure 1-6. NSJSP in an iTP Secure WebServer Environment Configured for
Online-Upgrade

HTTP Requests l

DOMAIN

-
core | HTTPD HTTPD
WebServer

< Pathsend or M&Tm APT

~
>

] =) & ==
NSJSP Installation
Szweb / \ Syweb /

In Figure 1-6, $zweb and $yweb denote two PATHMONS configured in a Pathway
domain. The iTP Secure WebServer and the NSJSP installations are distributed
across both PATHMONSs. The NSJSP processes running in the Servlet Server
Class are divided between the two PATHMONS. User requests can be routed to
the processes under each PATHMON. If one PATHMON needs to be upgraded or
if the processes in one PATHMON are stopped, the processes in the other
PATHMON can continue to service the requests, thereby ensuring that NSJSP
application services are continuously available.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-12

Introduction to NSJSP Architecture

Architecture

This section discusses the relevant components of Apache Tomcat that will help
describe how Apache Tomcat was ported onto the HP NonStop platform as NSJSP,
and the NSJSP architecture.

Apache Tomcat Components

The connector component of Apache Tomcat provides the capabilities of a web server
and the container component provides a servlets and JSP container. The connector
and the container components are called Coyote and Catalina respectively.

Coyote includes an HTTP connector and an Apache JServ Protocol (AJP) connector.
The HTTP connector implements the HTTP/1.1 protocol and the AJP connector
implements the AJP 1.3 protocol.

The HTTP Connector allows Apache Tomcat to function as a standalone web server,
by listening to and handling HTTP connection requests on a TCP port.

The AJP connector is used to integrate Apache Tomcat with an Apache Web Server. In
this case, the Apache Web Server acts as the front end web server for Apache Tomcat.
Apache Tomcat then only handles servlet and JSP requests.

Figure 1-7 illustrates a standalone Apache Tomcat servlet container using the HTTP
Connector.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-13

Introduction to NSJSP Apache Tomcat Components

Figure 1-7. Standalone Apache Tomcat Using the HTTP Connector

@

vy

HTTP/1.1

IHTTP/l.l

HTTP Connector
Apache

Tomcat

Connector
threads

Catalina Container

K (Servlet/JSP Container) /

Figure 1-8 illustrates the Apache Tomcat servlet container with the Apache Web
Server.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-14

Introduction to NSJSP Apache Tomcat Components

Figure 1-8. Apache Tomcat with the Apache Web Server

HTTP/1.1

{ Network)
I HTTP/1.1

&—===| ApacheWeb Server (===

N

Apache
Tomcat

AJP Connector AJP Connector

Connector
threads

Connector

threads
Apache

Tomcat

Catalina Container Catalina Container

k (Servlet/JSP Container)) K (Servlet/JSP Container) /

The connector validates an incoming message from the web client or the web server
for compliance with the respective protocol, such as, HTTP /1.1 or AJP1.3.
Subsequently, it creates and allocates a thread for processing the message. The
message is then passed to the Catalina component for processing. Each message is
processed in a dedicated thread for the duration of message processing.

Catalina processes each request and further invokes a chain of configured Catalina
components, such as, the Engine, a Host, and Valves until the request has been
completely processed. Catalina loads all deployed web applications upon server
startup, maintains a distinct context for each web application that is deployed,
maintains all the resources for each web application, prevents unauthorized access of
resources, maintains the state of each web application stored in sessions, and
provides security to the web applications.

After a message is processed by Catalina, Coyote returns the message response
using the configured protocol, such as, HTTP/1.1 or AJP1.3, and sends the data to the

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-15

Introduction to NSJSP NSJSP Architecture

source of the request, such, the web client or the Apache Web Server. After sending
the response, the thread is free to process a new message.

NSJSP Architecture

This section discusses the NSJSP architecture.

HTTPD processes convert the HTTP or Hypertext Transfer Protocol Secure (HTTPS)
requests into a set of variables, including environment, HTTP header, and Pathway
variables, sets their values, and passes them to the NSJSP processes either through
Pathsends or the file system API. The NSJSP connector receives the request data
from the HTTPD processes through the NSJSP connector's $SRECE1VE, which is an
Interprocess Communication (IPC) request queue through which NSJSP processes
receive messages. The NSJSP connector reads the message contents from
$RECEIVE, extracts the necessary HTTP request data from the message, and passes
the message contents to the Catalina container.

The Catalina container processes the requests it receives from the NSJSP connector,
and sends the response back to the NSJSP connector. The NSJSP connector builds a
message from the response data returned by Catalina, and returns it to HTTPD.
Subsequently, HTTPD sends the response to the originator of the request.

Figure 1-9 illustrates the NSJSP architecture.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-16

Introduction to NSJSP

NSJSP Architecture

Figure 1-9. NSJSP Architecture

\

VL

4\

Network l_;}

1
TCP/IP V6 >

HTTPD D

HTTPD Il

Pathsend oir File si:/stem API i !

NSJSP

ﬂ

l

NSJSP

|

l

NSJSP | NSJSP ||

NSJSP Installation

iTP Secure
WebServer

In Figure 1-9, NSJSP architecture shows the following:

® AniTP Secure WebServer installation in a TS/MP environment with a PATHMON,
called $zweb. The iTP Secure WebServer Server Class has multiple HTTPD
processes distributed across four CPUs.

® A single NSJSP installation in this iTP Secure WebServer environment. The
NSJSP installation also comprises multiple NSJSP processes distributed across

the four CPUs.

® The HTTPD processes communicate with NSJSP processes using either Pathsend
Application Programming Interface (API) or the filesystem API.

The following is the sequence of events that occur in the processing of an HTTP

request by NSJSP:

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

1-17

Introduction to NSJSP NSJSP Architecture

1. NonStop TCP/IPv6 distributes the HTTP(S) user requests across the HTTPD
processes.

2. The HTTPD processes map the HTTP requests into a set of variables with values.
This information is passed in a message to the NSJSP Server Class through a
Pathsend or the File system API.

3. The NSJSP connector receives the request information from an HTTPD process
and extracts the required HTTP request data from the message.

For more information on request information variables, see the chapter on Using
Common Gateway Interface Programs in the iTP Secure WebServer System
Administrator’s Guide.

4. Subsequently, the connector passes the request information to the Catalina
container for further processing.

5. The Catalina container processes the request. The container will invoke any
relevant filters and valves, and will pass the request information to the user web
application for processing.

6. Catalina sends the application response to the NSJSP connector.

7. The NSJSP connector converts the received response data into an HTTP
response message, which is sent to an HTTPD process.

8. The HTTPD process converts the response message to an HTTP protocol
response and sends the response to the web client.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
1-18

—2Z— Installing NSJSP

This chapter discusses the NonStop Servlets for JavaServer Pages (NSJSP)
installation script and the prerequisites for NSJSP. This chapter also describes the
procedures to install, update, and remove NSJSP and the NSJSP Manager.

Note. NSJSP operates with both iTP Secure WebServer and iTP WebServer. Although this
chapter primarily mentions the iTP Secure WebServer, those references apply to the basic iTP
WebServer as well. You can install NSJSP in either version of the iTP WebServer.

In the NSJSP context, an iTP Secure WebServer installation creates a TS/MP environment
with a PATHMON (or two, if a Pathway domain is configured). Therefore, references to the iTP
Secure WebServer environment in this chapter will also include the associated TS/MP
environment.

For more information on iTP Secure WebServer and its TS/MP environment, see the
iTP Secure WebServer System Administrator’s Guide.

This chapter discusses the following topics:

Prerequisites on page 2-1
Installing NSJSP from the CD on page 2-2

Creating an NSJSP Installation on page 2-16

Creating an NSJSP Manager Installation on page 2-21

Updating an NSJSP Installation on page 2-24

Removing an NSJSP Configuration on page 2-25

Support for Multiple NSJSP Installations in a Single iTP Secure WebServer
Environment on page 2-26

Prerequisites

Before installing NSJSP 6.1, ensure that the following products are installed on your
NonStop system:

® One of the following NonStop operating systems:
© J06.04 or later J-series
© H06.15 or later H-series
® OSS subsystem
® (TP Secure Webserver 7.0 (T8996H02 or T8997H02) or later

® NSJ5.1(SPR ABS or later of T2766H51) or NSJ 6.0 (SPR ABP or later of
T2766H60)

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
2-1

Installing NSJSP Installing NSJSP from the CD

® JDBC/MX T2 or T4 driver

Note. To run the sample Bank application, which is integrated with the NSJSP PAX, you
must have the JDBC T2 or JDBC T4 driver installed on your system.

Installing NSJSP from the CD

This section describes the procedure to run the IPSetup program and the NSJSP 6.1
setup script.

This section includes the following topics:

® Running the IPSetup Program on page 2-2

® Running the setup Script on page 2-14

Running the IPSetup Program

The NSJSP software is available on the NSJSP product CD. Use the IPSetup program
to move the NSJSP software from the product CD to a NonStop system.

To run the IPSetup program, perform the following steps:

1. Double-click the CD drive to open the product CD and then click the Setup.exe
file.
The Independent Products Setup screen appears.

2. Click View the Readme File option.
The readme. txt file opens in Notepad.

3. Review the information provided in the readme . txt file and go back to the
Independent Products Setup screen.

4. Click Run IPSetup option to launch IPSetup.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-2

Installing NSJSP Running the IPSetup Program

The Welcome screen appears.

Setup for Independent Products and NonStop Software

Welcome
Welcome to the installation wizard For Independent Products and MonSkop Software

IPSetup places software on wour HP MonStop Kernel system or
wour workskation, It is skrongly recommended that wou exit all
WWindows programs before running this program,

Click Cancel o quit and close any programs wou have running,
Click Mext ko conkinue with software placement,

WARNING: This program is protected by copyright law and
international kreaties,

Unauthorized reproduction or distribution of this program, or
any portion of it, may result in severe civil and criminal
penalties, and will be prosecuked ko the maximum exkent

| Mexk = | Zancel Help

Note. HP strongly recommends that you exit all Windows applications before running the
IPSetup program.

5. Do one of the following:

a. Click Cancel to exit the IPSetup program and close any other programs that
are running.

b. Click Next > to continue with the IPSetup program.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-3

Installing NSJSP Running the IPSetup Program

The Software License Agreement screen appears.

Setup for Independent Products and Non5Stop Software

Software License Agreement

Please read the Following license agreement, To continue with software
placement, vou must accepk this agreement,

Copyright 2010 Hewlett-Packard Company ~

This software is provided subject to the terms af ywour
existing license agreement with Hewlett Packard
Development Companyy, L.P. ar its reseller, integratar,
diskributor or other authorized sub-licensor for the
use of Licensed Producks ar Saftware supplied by
Hewilett Packard Development Company, L.P..

Third party softwares/applications used by N3JSP v6.1;
- Apache Tomcak v&.0.20 - Base for developing MSISP,
- Lambda Probe w1.7b - Base for developing M3J3F Manager application,
M3J5P Manager source code is bundled in the MSJSP Pax F

" I agree ko the above conditions

" I do mok agree to the above conditions

Cancel Help

6. Review the License Agreement and do one of the following:

a. If you do not want to accept the terms of the agreement, select | do not agree
to the above conditions and click Cancel to exit the IPSetup program.

b. To accept all the terms of the agreement, select | agree to the above
conditions and click Next >.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-4

Installing NSJSP Running the IPSetup Program

The Placement Options screen appears.

Setup for Independent Products and Non5top Software

Flacement Options
wiehat is wour target platform?

Select a target plakform:

Platfarmm -
e
OTHE

* TNS/E

7 Workskation

I Use DSMISCM ko complete installation on the host

< Back | Plext = | Cancel Help

7. Select one of the following as a target platform for your IP software:
a. TNS/E for H-series and J-series.
b. Workstation to install the IP on your workstation.

8. Do one of the following and click Next >:

a. Select the Use DSM/SCM to complete installation on the host check box to
launch the DSM/SCM planner interface after completing the IPSetup program.

b. If you do not want to launch the DSM/SCM after completing the IPSetup
program, clear the Use DSM/SCM to complete installation on the host
check box.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-5

Installing NSJSP Running the IPSetup Program

The Product Selection screen appears.

Setup for Independent Products and MonStop Software

Product Selection
Please select products,

Available Products: Selected Products;
ManStop Servlets For JavaServer Pai MonStop Servlets for JavaServer Pag

&dd -

=- Remove

Flil

Properties
5 | X il ! i
Product
| CRAMSKVCD_IMAGESIA, 10603 HSIZEEELI1 Sk _ShW Browse, .,
= Back Zancel Help

9. From the Available Products: list, select NonStop Servlet for JavaServer Pages
as the product you want to install.

10. Click Add->.

The selected product moves to the Selected Products list.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-6

Installing NSJSP

11. Click Next >.
The Host Information screen appears.

Setup for Independent Products and NonStop Software

Running the IPSetup Program

Host Information
IPSetup will nove gather a lisk of the available wolumes on the host,

Click Mext to log on ko the host where you would like to place this software,

Host name: | 128.88,143,161 |
ser narne: I super. super

Password! | ke

Loganservice: | kacl

Select Communication Mode

* Telnet " 554
Telnetport; | 23
Etpport: |21
S5H{SFppart: | 7

< Back | Mexk = I Zancel

Help

12. Log on to the Host by performing the following steps:

a. From the Host name: list, select the IP address of a host system where you

want to place the selected product.

Note. If the IP address of a Host system is not available in
the IP address.

the Host name: list, type

b. Enter a user name and password.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

2-7

Installing NSJSP Running the IPSetup Program

c. Select the communication mode.

Note. Starting with TO316HO1"AAK (version 4.1.00.0), IPSetup supports two modes
of communication: Telnet and Secure SHell (SSH). To use the SSH mode of
communication, ensure that the SSH server is configured correctly and is running on
the NonStop server. If the SSH server is not configured or not running on the NonStop
server, you will not be allowed to proceed with this mode of communication.

For a secure mode of communication, select SSH. Otherwise, accept the
default Telnet, which sends data in an unsecure mode.

For Telnet mode, enter the logon service that will call the Safeguard prompt.
The default service is TACL.

Note.

® HP recommends that you do not change the default service value unless it is
required.

® The following are the default port numbers:
© SSH port — 22
© Telnet port — 23
© FTP port— 21

For additional port numbers, consult the system administrator.

a. Click Next >.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-8

Installing NSJSP Running the IPSetup Program

The Host Target Settings screen appears.

Setup for Independent Products and Non5Stop Software

Host Target Settings
IPSetup will use the Following host Earget settings when placing the software,

Wark subvolume

A_ Copy packed files ko this temparaty host subvolume:

HALDIT. IMSTALL Browse. ..

B ¥ Back up existing haost files to;

1 $£ALIDIT. ZIPSBACK Browse, ..

MonSkop Kernel Open System Services

{:AE I Extract files From ustar archives ko QS5 file syskem

< Back | ext = I Cancel Help

1. Do one of the following:

a. Accept the default location for the work subvolume and the subvolume where
the existing files will be backed up from the work subvolume.

b. Browse the location for a work subvolume and backup of your choice.

Note. If you want to back up the existing files in the work subvolume to another
subvolume, select the Back up existing host files to: check box.

2. Select the Extract files from ustar archives to OSS file system check box to
extract the ustar files to the OSS file system and click Next >.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-9

Installing NSJSP Running the IPSetup Program

The Host File Placement screen appears.

Setup for Independent Products and NonStop Software

Host File Placement

Feview where each product file will be placed on the host, Yolume settings may be
changed by selecting an appropriate karget File,

= f&2 E1222HE0

[+-[Z] A0CINFO

[+-[Z] AFCINFO

+-[Z] COPYOSS

+-[2] T1z22HE0

=-[Z] T1zz2Pay
(B2 $AUIDIT.E1222HA0. T1222P4%
- $3¥STEM.Z05SUTL. T1Z22PAY

- Product i Disk Browser -
Monstop Serviets for JavaServer Pages Molume: [falinn .
Space Required; 39.5 ME Space Available; 15.2 GE

= Back | Mexk = I Zancel Help

3. Verify the location where the product files will be placed on the Host system and
click Next >.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-10

Installing NSJSP

The Placement Manifest screen appears.

Running the IPSetup Program

Setup for Independent Products and Non5Stop Software

Placement Manifest
IPSetup will place the following software on the selected host, Please confirm syour

selections and click Mest,

Flatfarm:

Hosk name!

User name:

Ise DSM{SCM:
Wark subvolume:
Backup existing files:
Backup subvalume:
Extract ustar files:

THS/E

128,88, 143,161
SUpEr, sUper

Mo

£0LDIT. INSTALL
Yes

£ALDIT, ZIPSEACE
Yes

MonStop Servlets for lavaServer Pages

DY targets:
ISV kargets:

$ALDIT.E1Z222H60
$SYSTEM. SOFTDOC
$5YSTEM.ZO55UTL
£SYSTEM. ZMSISP
$SYSTEM. ZPHICHFL

< Back

Help

4. Verify the details displayed on the Placement Manifest screen and click Next >.

If you select the Back up existing host files to: check box in the Host Target
Settings screen, IPSetup backs up any existing files to the backup subvolume. If
you do not select this check box, IPSetup purges any files in the work subvolume
or in the distribution subvolume (DSV) (and installation subvolume (ISV) for IPs)

with names identical to files that are about to be placed.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

2-11

Installing NSJSP Running the IPSetup Program

IPSetup then transfers the installation files to the work subvolume and creates
DSVs and ISVs. It displays the Placement Status screen, which shows the
progress throughout the entire placement process.

Setup for Independent Products and NonStop Software

Placement Status
IPSetup is communicaking wikth the host, Please wait,

Backing up existing host: files, .,

& O

Duplicating file to backup subvalume:
From '$aUDIT.E1222H50, T1222P A% to "$ALUDIT. ZIPSEACK'

Help

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-12

Installing NSJSP Running the IPSetup Program

After transferring the installation files, the Placement Complete screen appears.

Setup for Independent Products and Non5Stop Software

Placement Complete
¥ou have successfully completed placement of the selected independent products,

v Wiew the Readme File:

| Finish I Cancel Help

5. Complete your IPSetup program:
a. Select the View the Readme File check box.
b. Click Finish.
The IPSetup program completes and opens the readme . txt file.

The program saves the contents of the T1222PAX file in the version-specific OSS
directory located at <NSJSP base>/<version>,
where:

<NSJSP base> is the Zusr/tandem/nsjsp directory.
version is the VPROC string (T1222H60_27APR2010_AAN_V610_1).

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-13

Installing NSJSP

Running the setup Script

Note. The Zusr/tandem/nsjsp directory is referred to as the <NSJSP base> directory
throughout this chapter.

After the NSJSP files are transferred to a NonStop system using the IPSetup program,
complete the Running the setup Script on page 2-14 procedure to install NSJSP 6.1.

Running the setup Script

Run the setup script to complete the NSJSP 6.1 installation. By default, the script is
located in the <version> directory:

<NSJSP base>/<version>

Note. A user ID other than super .super should be used when running the setup script.

To run the setup script, complete the following steps:

1. Go to the directory where the setup script is located:

0SS: cd <NSJSP base>/<version>

2. Run the setup script at the OSS prompt:

0SS:

./setup

Note. You can exit the setup script at any time by typing quit at a prompt. For example:

Enter the directory for NonStop™ Server for Java™
[/usr/tandem/java]: quit

The following options are displayed:

a. Create an NSJSP installation

This option enables you to install NSJSP in any of the following environments:

An iTP Secure WebServer environment.

An iTP Secure WebServer environment that includes at least one other
NSJSP installation—You can install NSJSP 6.1 in an iTP Secure
WebServer environment that includes one or both of the following types of
installations:

© one or more NSJSP 6.1 installations
© an NSJSP 5.0 installation or an NSJSP 6.0 installation

An iTP Secure WebServer environment configured for online-upgrade—
You can install NSJSP 6.1 in a Pathway domain, which is required for an
iITP Secure WebServer that is configured for online-upgrade.

An iTP Secure WebServer environment configured for online-upgrade, and
including at least one other NSJSP installation—You can install NSJSP 6.1

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

2-14

Installing NSJSP Running the setup Script

in a Pathway domain that includes one or both of the following types of
installations:

© one or more NSJSP 6.1 installations
© an NSJSP 5.0 installation or an NSJSP 6.0 installation

For more information on these environments, see Installing NSJSP in Different
Environments Using the setup Script on page 1-4.

For more information on installing NSJSP, see Creating an NSJSP Installation
on page 2-16.

The Create an NSJSP installation option also asks if you want to
install the NSJSP Manager application if it is not already installed and
configured in the selected iTP Secure WebServer environment.

Create an NSJSP Manager installation

This option enables you to install the NSJSP Manager application. The NSJSP
Manager application is used to perform management tasks for the NSJSP
server classes and web applications.

For more information on the NSJSP Manager application, see the NSJSP
Manager Application on page 4-1.

For more information on how to install the NSJSP Manager application, see
Creating an NSJSP Manager Installation on page 2-21.

Update an NSJSP installation

This option enables you to update an existing NSJSP 6.1 installation with a
later NSJSP version.

For more information on how to update an NSJSP installation, see Updating an
NSJSP Installation on page 2-24.

Remove an NSJSP configuration

This option enables you to remove an NSJSP configuration or an NSJSP
Manager configuration, and optionally to remove the installation directory and
files.

For more information on removing an NSJSP configuration or an NSJSP
Manager configuration, see Removing an NSJSP Configuration on page 2-25.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

2-15

Installing NSJSP Creating an NSJSP Installation

Creating an NSJSP Installation

After running the setup script at the OSS prompt, you must select the Create an
NSJSP i1nstallation option to install NSJSP 6.1. Starting with the NSJSP 6.1
release, the setup script can be used to create multiple NSJSP 6.1 installations.

To create an NSJSP installation, complete the following steps:

1.
2.
3.

Run the setup script, as described in Running the setup Script on page 2-14.

To install NSJSP 6.1, enter 1 at the setup script prompt.

Enter the directory where the iTP Secure WebServer is installed or press Enter to
use the default directory, Zusr/tandem/webserver.

Enter a name for the NSJSP installation directory or press Enter to use the default
directory name, servlets.

If you enter a directory that already has an NSJSP 6.1 installation, the setup
script displays the following message:

The directory <NSJSP 6.1 Installation Directory> already
contains an NSJSP installation.

Use the “Update an NSJSP installation” option to update this
installation.

If you enter a directory that already exists, but that does not contain an NSJSP 6.1
installation, the script displays the following message:

The directory <user specified directory> already exists.
Files may be overlaid, do you want to continue <y or [n]>:

Enter the directory that contains the JDBC/MX JAR and library files or press Enter
to use the default location, Zusr/tandem/ jdbcMx/current/11ib.

Enter the directory for NonStop Server for Java or press Enter to use the default
directory, /usr/tandem/java.

The script then displays the following message:

The initial user name for the Admin and Manager applications
is “admin’.

Enter the password for the admin user. After installation, you can log in to the
NSJSP Admin Web application or the NSJSP Web Application Manager with the
admin user ID and password.

Note. The password must contain at least eight characters, with a combination of upper
and lower case characters.

Re-enter the password to confirm the value.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

2-16

Installing NSJSP Creating an NSJSP Installation

10.

11.

Enter the NSJSP server class name for this installation or press Enter to use the
displayed default.

Note. The NSJSP server class name must start with a letter and must contain 1 to 11
alphanumeric or hyphen characters.

Enter the uniform resource identifier (URI) name for mapping requests to this
installation or press Enter to use the displayed default.

For example, if you enter the URI name as testenviron, the NSJSP home page
can be accessed using the following web address:

http://15.148.2.1:1088/testenviron
where,

15.148.2.1 specifies the IP address.
1088 specifies the Port number.

testenviron specifies the NSJSP_6.1 Installation_URI.

Note. Each NSJSP installation requires a unique URI name.

The script then displays the following information:
iTP Secure WebServer installation directory
NSJSP installation directory

JDBC/MX library directory

NonStop Server for Java directory

NSJSP installation server class

NSJSP URI name

Review the information that will be used for the installation and if it is correct, type
y and press Enter to complete the installation.

The setup script copies all the required files from the <NSJSP base>/<version>
directory to the specified NSJSP 6.1 installation directory. It also adds the path of the
NSJSP 6.1 installation directory to the servlet.config file located in the <1 TP
Installation Directory>/conf directory.

The script then displays ‘Instal lation complete’, and shows the URL that can be
used to access the NSJSP 6.1 installation and the URL that can be used to access the
Admin Web application for this installation.

Note. All the operations performed by the setup script are logged to the install . log file.

To verify that NSJSP 6.1 is installed successfully, complete the steps described in
Verifying the NSJSP Installation on page 2-18.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

2-17

Installing NSJSP Verifying the NSJSP Installation

After you install NSJSP 6.1, the setup script prompts you to install the NSJSP
Manager application, if it is not installed in the iTP Secure WebServer. If you have
already installed the NSJSP Manager application, the script exits. To create an NSJSP
Manager installation, complete the steps described in Creating an NSJSP Manager
Installation on page 2-21.

Verifying the NSJSP Installation

After you have installed NSJSP 6.1, the iTP Secure WebServer must be cold started
for the changes to take effect. You can verify the installation by accessing either the
NSJSP home page or the Admin Web application login page. The setup script
displays the uniform resource locators (URLS) for these web pages after completing
the installation.

To cold start the iTP Secure WebServer and to verify if NSJSP 6.1 has been
successfully installed, complete the following steps:

1. Perform one of the following steps depending on the state of the iTP Secure
WebServer:

® Stop and start the iTP Secure WebServer if it is in the running state:

0SS: cd <iTP Installation Directory>/conf
0SS: ./stop
0SS: ./start

® Run the start script from the <iTP Installation Directory>/conf
directory if the iITP Secure WebServer is not in the running state:

0SS: cd <iTP Installation Directory>/conf
0SS: ./start

2. Enter the URL for the NSJSP home page into your browser.
The URL must be in the following format:

http://<IP address>:<Port number>/<URI for NSJSP 6.1
Installation>

For example:

http://15.148.2.1:1088/SCP1URI
where,

15.148.2.1 specifies the IP address.
1088 specifies the Port number.
SCP1URI specifies the NSISP_6.1_Installation_URI.

Note. The URL for the NSJSP home page can also be retrieved from the <NSJSP 6.1
Installation Directory>/install.logfile.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-18

Installing NSJSP Verifying the NSJSP Installation

Figure 2-1 shows the NSJSP home page for a successful NSJSP 6.1 installation.

Figure 2-1. The NSJSP 6.1 Home Page

NonStop™ Servlets For JavaServer Pages™

Adm.ihfw'éh‘an If you're seeing this page via a web browser, it means you've setup NSJSP successfully. Congratulations!
ﬁ{’?fél’ o Ag you may have guassed by now, this is the default NSJ5P home page. It can be found on the local Rlesystan at:
HSJSP Adminishation

HSJSP Manager SCATALINA HOME/webapps/ROOT/index. html
where "SCATALINA_HOME" is the root of the MSJ5F installation directory.

Dﬂﬂ”mﬂ"mk}ﬂ . Thanks you for using MonStop™ Sendels For JavaServer Pages™
Documentation

Examples
Bank Application

JSP/ISarvist Examples

You can also verify the NSJSP 6.1 installation by accessing the NSJSP Admin Web

application. To access the NSJSP Admin Web application, enter a URL in the following
format:

http://1P address:Port number/<URI for NSJSP 6.1
Installation>/admin

The NSJSP Admin login page appears.

Note. The URL for the NSJSP Admin Web application can be retrieved from the <NSJSP 6.1
Installation Directory>/install._log file.

Figure 2-2 shows the NSJSP Admin Web application login page.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-19

Installing NSJSP NSJSP Installation Directory Structure

Figure 2-2. The NSJSP Admin Web Application Login Page

Py -

— . P = — — — I ol - BB N

-

 ADMINISTRATION
g 8 1

T

User Name | IEEEEEENEENN
Password [N

En E3

NSJSP Installation Directory Structure

Table 2-1 describes the NSJSP 6.1 installation directories located in the NSJSP home
directory.

Table 2-1. NSJSP 6.1 Installation Directories and Files (page 1 of 2)

Directory Description

README Contains information that will help you to set up an NSJSP environment.
bin/ Contains JAR files that will be included in the classpath.

conf/ Contains NSJSP configuration files and scripts.

deployer/ Contains configuration files used by the Client Deployer.

install_log Contains log entries for operations performed by the setup script, such
as copying the files, making directories, and providing URLSs for the
NSJSP 6.1 Installation and for the NSJSP Manager application.

lib/ Contains DLLs and the JAR files required for the NSJSP server at
runtime.
logs/ Contains the NSJSP log files.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
2-20

Installing NSJSP Creating an NSJSP Manager Installation

Table 2-1. NSJSP 6.1 Installation Directories and Files (page 2 of 2)

Directory Description

temp/ Stores temporary working files. This directory is for NSJSP internal use.

webapps/ Contains web applications included within NSJSP and user written web
applications.

work/ It is for internal use by the NSJSP servlet container.

Creating an NSJSP Manager Installation

NSJSP 6.1 introduces a new management application, called the NSJSP Manager.
The NSJSP Manager application can be used to manage NSJSP server classes
running under an iTP Secure WebServer environment. For more information on the
NSJSP Manager application, see NSJSP Manager Application on page 4-1.

Note. You can install only one NSJSP Manager application per iTP Secure WebServer
environment.

To install the NSJSP Manager application, complete the following steps:

Note. If you install the NSJSP Manager application as a part of setup script option 1,
Creating an NSJSP Installation, you will only be asked to perform steps 4, 5, 8, 9,
and 10 from the following procedure.

1. Run the setup script, as described in Running the setup Script on page 2-14.

2. Toinstall the NSJSP Manager application, enter 2 at the setup script prompt.

3. Enter the directory where the iTP Secure WebServer is installed or press Enter to
use the default directory, /usr/tandem/webserver.

4. Enter a name for the NSJSP Manager installation directory or press Enter to use
the default directory, manager.

If you enter a directory that already contains an NSJSP 6.1 installation or an
NSJSP Manager application, the script displays the following message:

The directory <NSJSP 6.1 Installation Directory> already
contains an NSJSP 6.1.0 installation.

Use the “Update an NSJSP installation” option to update this
installation.

5. Typey at the setup script prompt and press Enter to create the NSJSP Manager
installation directory.

6. Enter the directory that contains the JDBC/MX JAR and library files or press Enter
to use the default location, Zusr/tandem/ jdbcMx/current/lib.

7. Enter the directory for NonStop Server for Java or press Enter to use the default
directory, /usr/tandem/java.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-21

Installing NSJSP Creating an NSJSP Manager Installation

10.

The script then displays the following message:

The i1nitial user name for the Admin and Manager applications
iIs “admin’.

Note. If you continue to install the NSJSP Manager application after the NSJSP 6.1
installation is complete, the setup script uses the same iTP Secure WebServer
installation, JDBC/MX library, and NSJ directories that you specified during the NSJSP 6.1
installation.

Enter the password for the admin user. After installation, you can log in to the
NSJSP Manager application with the admin user ID and password.

Note. The password must contain at least eight characters, with a combination of upper
and lower case characters.

Re-enter the password to confirm the value.

The setup script then displays the following information:
iTP Secure WebServer installation directory

NSJSP Manager installation directory

JDBC/MX library directory

NonStop Server for Java directory

NSJSP Manager server class name
The script also displays the following message:

This manager will be configured to manage all NSJSP
installations under the PATHMON<s> <user specified PATHMON
names>.

Note. By default, the NSJSP Manager Server Class name is manager.

Review the information that will be used for the NSJSP Manager installation and if
it is correct, type y at the setup script prompt and press Enter to install the
NSJSP Manager application.

The setup script copies the NSJSP Manager files from the <NSJSP
base>/<version> directory to the specified NSIJSP Manager installation directory. It
also adds the path of this NSJSP Manager installation directory to the
servlet.configfile located in the <iTP Installation Directory>/conf
directory.

The script then displays the following message:

The NSJSP Manager has been successfully installed.

The script will then display the URL that can be used to access the NSJSP Manager.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

2-22

Installing NSJSP Verifying the NSJSP Manager Application

Installation

Verifying the NSJSP Manager Application Installation

After you have installed the NSJSP Manager application, the iTP Secure WebServer
must be cold started for the changes to take effect. You can verify the installation by
accessing the NSJSP Manager application login page. The setup script displays the
URL of the login page after completing the installation.

To access the NSJSP Manager application, complete the following steps:

1.

Run the start script from the <iTP Installation Directory>/conf
directory of the iTP Secure WebServer that was specified during installation of the
NSJSP Manager application:

0SS: cd <iTP Installation Directory>/conf
0SS: ./start

Note. If the iITP Secure WebServer is in the running state while installing the NSJSP
Manager application, you must stop it and then run the start script.

Enter the URL for the NSJSP Manager application into your browser.
The URL must be in the following format:

http://1P address:Port number/manager
For example:

http://15.148.2.1:1088/manager
where,

15.148.2.1 specifies the IP address.
1088 specifies the Port number.
manager is the NSJSP Manager server class name.

The NSJSP Manager login page appears.

Note. The URL of the NSJSP Manager application can also be retrieved from the
<NSJSP Manager Installation Directory>/install.logfile.

Figure 2-3 shows the NSJSP Manager application login page.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

2-23

Installing NSJSP Updating an NSJSP Installation

Figure 2-3. The NSJSP Manager Application Login Page

NSJSP Manager

User Name |

Pazsword

Sign in

@ Copyright 2010 Hewlett-Padkard Development Compamy, L.P.

Updating an NSJSP Installation

The setup script includes an option to update an NSJSP installation with a later
NSJSP version.

Note. You must copy the new version of NSJSP to the <NSJSP base> directory.

To update an existing NSJSP 6.1 installation, complete the following steps:

1. Run the setup script, as described in Running the setup Script on page 2-14.

2. To update an existing installation of NSJSP, enter 3 at the setup script prompt.

3. Enter the directory where the iTP Secure WebServer is installed or press Enter to
use the default directory, Zusr/tandem/webserver.

4. Enter the name of the NSJSP 6.1 installation directory or the NSJSP Manager
installation directory with the version you want to update.

The script displays the list of NSJSP files that will be updated and prompts for the
following:

Do you want to proceed with the upgrade <y or [n]>:

5. Typey at the setup script prompt and press Enter to update the existing
installation with the new version of NSJSP.

The setup script creates a backup of the old files and replaces them with the new
files. It then displays the following message:

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-24

Installing NSJSP Removing an NSJSP Configuration

Update successful. The 1TP Secure Webserver needs to be
restarted for the upgrade to take effect.

Removing an NSJSP Configuration

The setup script enables you to remove an NSJSP 6.1 configuration or an NSJSP
Manager configuration from the iTP Secure WebServer installation using the Remove
an NSJSP Configuration option. The setup script also provides the option to
delete the NSJSP installation files and directories.

To remove an NSJSP configuration, complete the following steps:

1.
2.
3.

Run the setup script, as described in Running the setup Script on page 2-14.

To remove the NSJSP configuration, enter 4 at the setup script prompt.

Enter the iTP Secure WebServer installation directory that contains the NSJSP
installation to be removed or press Enter to use the default directory,
/usr/tandem/webserver.

Enter the name of the NSJSP 6.1 installation directory or the NSJSP Manager
installation directory to be removed. The script displays the following message:

Are you sure you want to remove <NSJSP 6.1 Installation
Directory> from the 1TP Secure WebServer configuration
<y or [n]>:

Type y and press Enter to remove the NSJSP configuration.

Note. Before removing an NSJSP configuration, ensure that the NSJSP server class or
the NSJSP Manager server class is not in the running state. Otherwise, the setup script
exits and displays the following message at the command prompt:

The installation server class i i i
<installation server class name> is still running.
Please shutdown the server class before removing the installation.

For an NSJSP 6.1 installation, the script removes the <NSJSP server class
name>_ssc and <NSJSP server class name>-adm.ssc files located in the
<iTP Installation Directory>/bin directory. The script also removes the
path of the NSJSP installation directory from the servlet.config file located in
the <iTP Installation Directory>/conf directory.

For an NSJSP Manager installation, the script removes the manager . ssc file
located in the <iTP Installation Directory>/bin directory. The script also
removes the path of the NSJSP Manager installation directory from the
servlet.configfile located in the <iTP Installation Directory>/conf
directory.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

2-25

Installing NSJSP Support for Multiple NSJSP Installations in a Single
iTP Secure WebServer Environment

The script then displays the following message:

Before deleting <NSJSP 6.1 Installation Directory> ensure
that this installation was not linked to another webserver.

Do you want to delete the directory and its contents
<y or [n]>:

6. To remove the NSJSP 6.1 installation directory or the NSJSP Manager installation
directory, and its contents, type y and press Enter.

The NSJSP 6.1 installation directory or the NSJSP Manager installation directory, and
its contents are deleted from the ITP Secure WebServer installation directory.

Support for Multiple NSJSP Installations in a
Single iITP Secure WebServer Environment

The NSJSP installation script supports multiple NSJSP installations in a single iTP
Secure WebServer environment. Following are the modifications made to support
multiple NSJSP installations:

® NSJSP installation directory

In releases prior to NSJSP 6.1, NSJSP was installed in the directory (<i TP
Installation Directory>/servlet_ jsp). This default NSJSP location was
derived from the location of the iTP Secure WebServer, and it could not be
modified. An iITP Secure WebServer directory could include only one
servlet_jsp directory. As a result, you could have only one NSJSP installation
in an iTP Secure WebServer environment. Starting with the NSJSP 6.1 release,
you can install NSJSP 6.1 with a directory name of your choice. You can also have
multiple NSJSP 6.1 installations in the same iTP Secure WebServer environment.
However, each installation must be present in a separate directory, have a unique
server class name, and be assigned a unique Uniform Resource Identifier (URI)
name.

® NSJSP configuration files required by the iTP Secure WebServer

In releases prior to NSJSP 6.1, during the NSJSP installation, the following iTP
Secure WebServer related configuration files were created in <i TP
Installation Directory>/conf:

© jdbc.config

©° nsjspadmin.config
° servlet.config

° filemaps.config

Starting with the NSJSP 6.1 release, each NSJSP 6.1 installation includes its own
set of the listed configuration files. The configuration files for NSJSP 6.1
installations are no longer present in the iTP Secure WebServer conT directory.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-26

Installing NSJSP Support for Multiple NSJSP Installations in a Single
iTP Secure WebServer Environment

Instead, the files are present in the conT directory within each NSJSP installation.
The location of these NSJSP 6.1

installation-specific configuration files is

<NSJSP 6.1 Installation Directory>/conft.

Note. Within the same iTP Secure WebServer environment, configuration files for NSJSP
versions earlier than NSJSP 6.1 will be present in the
<iTP Installation Directory>/conf directory.

For more information about multiple NSJSP installations in a single iTP Secure
WebServer environment, see Chapter 6, Migrating to NSJSP 6.1.

Note. Multiple NSJSP installations are accessible only if NSJSP 6.1 is installed after installing
NSJSP 5.0 or NSJSP 6.0. If you attempt to install or update an NSJSP 5.0 or NSJSP 6.0
installation in an iTP Secure WebServer environment that already includes NSJSP 6.1, the
servlet.config file of the pre-NSJSP 6.1 version will replace the NSJSP 6.1 generic
servlet.configfile. As aresult, the iTP Secure WebServer will not detect the NSJSP 6.1
configurations.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-27

Installing NSJSP Support for Multiple NSJSP Installations in a Single
iTP Secure WebServer Environment

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
2-28

~3— Configuring NSJSP

This chapter describes how to configure NSJSP. This chapter assumes that you have
installed NSJSP 6.1. For more information on Installing NSJSP, see Chapter 2,

Installing NSJSP.

This chapter discusses the following topics:

Overview

Configuration Files for the Server Classes

Configuration Files for the Servlet Container

Virtual Hosts

Session Management

Table 3-1 lists the terms and definitions used in this chapter.

Table 3-1. Terms and Definition (page 1 of 2)

Term

JSP

Servlet

NSJSP Servlet
Container

Servlet Server Class

Definition

A server side technology that enables you to develop and
maintain dynamic web pages. It extends the functionality of web-
based applications by providing dynamic content from a web
server to a client browser over the Hypertext Transfer Protocol
(HTTP).

A Java Servlet is a programming object that generates dynamic
content and runs as part of a server application. It receives client
requests, processes them, and generates responses.

A servlet container is a program that executes servlets. A servlet
container provides an environment in which you can deploy,
execute, and manage web applications implemented with servlets
or JSPs.

Refers to one of the server classes configured with an installation
of NSJSP. Each installation of NSJSP results in two server
classes. One server class hosts web applications and processes
requests for user applications and the other contains the Admin
application and the old Manager Web Application. The server
class that will host web applications and process requests for
user applications is referred to as the Servlet Server Class. With
NSJSP 6.1, the name of the Servlet Server Class is specified
during installation.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’s Guide—596210-006

3-1

Configuring NSJSP

Overview

Table 3-1. Terms and Definition (page 2 of 2)

Term
Admin Server Class

Session object

Session

<iITP Secure
WebServer Home>

<NSJSP_HOME>

Definition

Refers to one of the server classes configured with an installation
of NSJSP. Each installation of NSJSP results in 2 server classes.
One server class will host web applications and process requests
for user applications and the other contains the Admin application
and the old Manager Web Application. The server class that is
used by the Admin application is referred to as the Admin Server
Class. With NSJSP 6.1, the name of the Servlet Server Class is
specified during installation and the Admin server class name is
automatically created by appending -ADM to the name of the
servlet server class specified during installation.

Also called an HTTP Session Obiject, it is a Java object. It is used
to store state between client interactions with web application
servlets executing in NSJSP.

A session, also called an HTTP session, provides the means to
associate an HTTP Client and an HTTP Server. This association
or session, persists over multiple connections and/or requests
during a given time period. Sessions are used to maintain the
state and identity a user across multiple requests and
connections. An example of session state would be the contents
of a shopping cart, which is stored in a session object.

Refers to the directory where iTP Secure WebServer has been
installed.

Refers to the directory where NSJSP has been installed.

Overview

NSJSP is configured to meet specific user requirements by modifying the configuration
files installed with NSJSP 6.1. This section provides an overview of the files used to

configure NSJSP 6.1.

The files used to configure NSJSP are broadly classified into the following categories:

® Configuration files that describe the NSJSP server classes and how they are used
by the iTP Secure WebServer. Table 3-2 provides a brief description of these files.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-2

Configuring NSJSP

Overview

Table 3-2. Configuration Files for Server Classes

Configuration File
Generic servlet.config

Installation-specific
servlet.config

nsjspadmin.config

filemaps.config
Jjdbc.config

Description

Provides an iTP Secure WebServer with links to the
installation-specific servlet._configfiles. Itis
common to all NSJSP installations.

Contains the server class specific information used to
configure a servlet server class. For more information,
see the definition for Servlet Server Class in Table 3-1.

Contains the configuration information required by the
Admin Server Class.
Contains the dynamically added Filemaps.

Contains the JDBC-specific configuration for an
NSJSP installation.

® Configuration files for the NSJSP servlet container and configuration files for web
applications hosted on NSJSP. Table 3-3 provides a brief description of these files.

Table 3-3. Configuration Files for the NSJSP Servlet Container and All Web
Applications hosted by an NSJSP Installation

Configuration File Description

server.xml Contains the configuration information for the NSJSP
servlet container.

context.xml The default context loaded by all applications. Each web
application can create an application-specific context.

web . xml A deployment descriptor file containing a set of servlets,
such as default, invoker, jsp, ssi, and cgi, along with
other definitions that are available to all web
applications.

Figure 3-1 shows the relationship between the configuration files across NSJSP

installations.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-3

Configuring NSJSP

Overview

Figure 3-1. Files used to Configure NSJSP 6.1

TS/MP Environment

httpd.config

iTP Secure Webserver]

NSJSP|Environment

NSJSP 5.00r 6.0

servlet.config I

((—)

Generic

servlet.config

jdbc.config

Installation

specific

I nsjspadmin.config servlet.config

jdbc.config

Installation
specific
servlet.config

]

NSJSP 6.1 A

server.xml

I nsjspadmin.config

NSJSP 6.1 B

context.xml

web.xml

I i . i I xml
filemaps.config server.xm filemaps config

context.xml I web.xm/

Figure 3-1 shows two NSJSP 6.1 installations NSJSP 6.1 A and NSJSP 6.1 B
along with their configuration files. It also shows an older NSJSP installation that may
be either an NSJSP 5.0 or NSJSP 6.0 installation. The httpd.config file in the iTP
Secure WebServer references the generic servlet.config file. The generic
servlet.config file has links to each installation-specific servlet.config file of
each NSJSP installation.

Each installation-specific servlet.config file in NSJSP 6.1 has links to a
jdbc.configfile, an nsyspadmin.config file, and a filemaps.config file. The
server .xml file, the context.xml file, and the web .xml file are independent of

each other.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-4

Configuring NSJSP Configuration Files for the Server Classes

Note. You can use the default NSJSP configuration settings for development activities
without making any changes. However, when deploying NSJSP in a production
environment, the configuration might have to be modified to address the load, degree of
fault tolerance in the production environment and other considerations. For more
information on tuning NSJSP for performance, see the NonStop Servlets for JavaServer
Pages (NSJSP) Configuration White Paper at the following location:
http://www.docs.hp.com/en/588255-001/588255-001.pdf.

Configuration Files for the Server Classes

An NSJSP installation, by default, creates two server classes, the Servlet server class and the
Admin server class. For definitions of the Servlet and the Admin Server Classes, see
Table 3-1.

The following files are used to configure these server classes and how they are used
by ITP Secure WebServer:

® The Generic servlet.config File

The Installation-Specific servlet.config File

The nsjspadmin.config File

The filemaps.config File

The jdbc.config File

Note. The syntax used in the generic servlet.config, installation-specific
servlet_config, nsjspadmin.config, filemaps.config, and jdbc.config
files is from the Tool Command Language (Tcl) and the configuration directives are defined
by iTP Secure WebServer. For more information about Tcl and the configuration directives,
see the iTP Secure WebServer System Administrator's Guide.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-5

Configuring NSJSP The Generic servlet.config File

The Generic servlet.config File

Table 3-4 provides an overview of the generic servlet.config file.

Table 3-4. The Generic servlet.config File

Location <iTP Secure WebServer Home>/conf

Description Contains references to all the active NSJSP installations in an iTP
Secure WebServer environment. A source directive is included for
each active NSJSP installation in the iTP Secure WebServer
environment. Each source directive includes a fully qualified file
reference for the installation-specific servlet.config file.

Recommendation The source directives in the generic servlet.confTig file should
be managed by using the setup script.

Note. New source directives are created when the script is used to
create a new NSJSP or NSJSP Manager installation and when the
script is used to remove an NSJSP installation, the corresponding
source directive is removed.

Example 3-1 shows the sample content of a generic servlet.configfile.

Example 3-1. A Generic servlet.config File

#
VERSION=GENERIC
#

HH AR R R R R R R R R R R R R R R R R
#

The configuration for SSCAUX will be removed in subsequent

releases of NSJSP. NSJSP6.1 does not make use of sscaux any more.
#

P
#
#Server $root/bin/sscaux {

eval $DefaultServerAttributes

CWD [pwd]

Env TANDEM_RECEIVE_DEPTH=1

Arglist -server -noautoaccept [HTTPD_CONFIG_FILE]
Priority 170

Maxservers 5

Numstatic 0

Maxlinks 16

#}

HHHH I
List of individual NSJSP configuration files, if any.
B

source /usr/tandem/webserver/instA/conf/servlet._config
source /usr/tandem/webserver/manager/conf/servlet.config
source /home/usra/nsjsp/priv/conf/serviet.config

In Example 3-1, the directories /usr/tandem/webserver/instA/,
/usr/tandem/webserver/manager/, and /home/usra/nsjsp/priv/ refer to the active
NSJSP installations within an iTP Secure WebServer environment. An NSJSP

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-6

Configuring NSJSP The Installation-Specific servlet.config File

installation that was removed using the setup script may still be present, including its
servlet.config file. However, the source directive for the installation would have
been removed from the generic servlet.config file. That would be an example of
an inactive NSJSP installation.

The httpd.config file uses the source directive to access the generic
servlet.config file as shown in the following example.

Note. source is a Tcl command and it executes the contents of the file as a Tcl script. It is
also referred as the source directive.

Example 3-2. The httpd.config File Referencing servlet.config File

THHHHHH
#
This does an existential check for a servlet.config file. If
it is there, it will be included in the configuration.
#
it { [File exists $root/conf/servlet.config] } {
source $root/conf/servilet.config
}

The Installation-Specific servlet.config File

Table 3-5 provides an overview of the installation-specific servlet.config file.

Table 3-5. The Installation-Specific servlet.config File

Location <NSJSP_HOME>/conf

Description Contains configuration parameters required to configure the Servlet
Server Class.

Recommendation Read this complete section to understand the available configuration
options. Configuration parameters may need to be changed, based
on specific requirements. For more information on performance
tuning recommendations, see the NonStop Servlets for JavaServer
Pages (NSJSP) Configuration White Paper at the following location:
http://www.docs.hp.com/en/588255-001/588255-001.pdf.

Example 3-3 shows the default content of the installation-specific servlet.config
file.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-7

Configuring NSJSP The Installation-Specific servlet.config File

Example 3-3. An Installation-Specific servlet.config File

VERSION=6.1.0

The server_objectcode represents a SYMBOLIC LINK to your installed
copy of the JVM (default /usr/tandem/java/bin/java)

et server_objectcode $root/bin/instA._ssc

The NSJSP installation directory.

HHHFE OFHEHHF HHH

set env(NSJSP_HOME) /usr/tandem/java/
HHH

Security Manager options. This allows the Java?2 system code to check
the policy currently in effect and perform access control checks. This
enables us to allow the application and user Servlet/JSP code to run
inside i1ts own sandbox.

NSJSP Java2 System policy file and Java2 VM option.

Note: the "double"™ equalto signs "==" is not a typo!! This informs the
JVM to use this file exclusively and that all others are to be ignored.

HHEHFHHHHHH

set env(JVM_POLICY_FILE) $env(NSJSP_HOME)/conf/i1TP_catalina.policy
set NSJSP_SECMGR_POLICY -Djava.security.policy==%env(JVM_POLICY_FILE)

#
By default, the JVM is run without a security manager.

set NSJSP_SECMGR -Dnsjsp.security.manager=none

#

1f you wish to run with a securlty Manager, uncomment the next
statement (“'set NSJSP_SECMGR ...").
#
#

set NSJSP_SECMGR -Djava.security.manager
BRI O R R R R R R R R R

#

NSJSP JAAS NonStopLoginModule configuration file.

#

set env(JAAS_CONFIG_FILE) $env(NSJISP_HOME)/conf/iTP_jaas.config

#

By default, the JVM is run without a JAAS configuration file.
#

set NSJSP_JAAS CONFIG -Dnsjsp-jaas.login.config=none

IT you wish to use the NSJSP JAAS NonStopLoglnModule uncomment the
next statement ('set NSJSP_JAAS CONFIG ...").

Note: the "double"™ equalto signs "==" is not a typo!! This informs the
JVM to use this file exclusively and that all others are to be ignored.

set NSJSP_JAAS_CONFIG
-Djava.security.auth.login.config==$env(JAAS_CONFIG_FILE)

HHHEHEFFH R

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-8

Configuring NSJSP The Installation-Specific servlet.config File

HEHHH AR R R R R R

#

Set the JAVA_HOME and GUARDIAN_SUBVOL

#

set env(JAVA_HOME) /nsjsp/software/java6.0/java

if {I[info exists env(GUARDIAN_SUBVOL)]} {
set env(GUARDIAN_SUBVOL) /G/system/zweb
}

HHAHHHHAHH A AR R R AR

#
The following code sets up the Java Specific class PATH variables into
a Tcl variable called JVCP. JVCP will be prepended to the classpath of
the JVM.

#

set JvCP "

append JVCP $env(NSJSP_HOME) "/bin/bootstrap.jar:"

append JVCP $env(NSJSP_HOME) "/bin/commons-daemon.jar:"
append JVCP $env(NSJSP_HOME) "/bin/tomcat-juli._jar:"
append JVCP $env(NSJSP_HOME) "/bin/ns-logger.jar:"

append JVCP $env(NSJSP_HOME) "/bin/nsjspmbeanserver.jar:"

#

This trims off the rightmost colon char.

#

set JVCP [string trimright $JVCP ":"]

#

Set the default value of the User ClassPath blank

#

set USRCP ™"

HH AR R R R R R R R R R R R R R R R
#

Related to the BankDemo example application provided with NSJSP
#

The value of SERVLET BANK should be <catalog>.<schema>.<tablename>
Catalog and schema should have been created. The application will create
the given table if one is not present

set SERVLET BANK bankcat.banksch.sraccts

HHH AR R AR A
#

NSJSP SHARED RUNTIME LIBRARY (SRL) location

#

set NSJSP_DLL_PATH $env(NSJSP_HOME)/lib

BHHA R R R R R R R
Do an existence check on the JDBC specific configuration

Tile (Jdbc.config). If the file exists, it will be

included in the configuration.

if { [file exists $env(NSIJSP_HOME)/conf/jdbc.config] } {

source $env(NSJSP_HOME)/conf/jdbc.config

}

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-9

Configuring NSJSP The Installation-Specific servlet.config File

if {[info exists jdbcMx_LIB PATH]} {
if {[info exists jdbcMp_LIB_PATH]} {
set NSJSP_DLL_PATH $env(NSJSP_HOME)/Iib:$jdbcMx_LIB_PATH:$jdbcMp_LI1B_PATH
} else
set NSJSP_DLL_PATH $env(NSJSP_HOME)/lib:$jdbcMx_LIB_PATH

Any custom classpaths can be added by uncommentlng and modifying
the next statement (“append USRCP ...'").

append USRCP ":<Custom-ClassPath>":

Add region commands to deny access to internal Catalina Servlets.

HHHFE HHHFHHFE W

Region */servlet/org.apache.catalina.servlets.* {
DenyHost *

¥

Region */servlet/jsp/* {
DenyHost *

}

Server $server_objectcode {
CWD $env(NSJSP_HOME)
Env CLASSPATH=$JVCP:$USRCP
Env JAVA_HOME=$env(JAVA_HOME)
Env JREHOME=$env(JAVA HOME)/jre
Env _RLD_LIB_PATH=$NSJSP_DLL_PATH
Env TANDEM_FILEMAPS_CONFI1G=%$env(NSJSP_HOME)/conf/filemaps.config
Env BANK_CATALOG=$SERVLET_BANK
MapDefine =TCPIP~APROCESS"NAME $transport
Maxservers 4
Numstatic 4
Maxlinks 50

Linkdepth 50
Env TANDEM_RECEIVE_DEPTH=50

#

File locations to direct standard input, output and error.
#

Stdin /dev/null

Stdout $env(NSJSP_HOME)/logs/sca3.out

Stderr $env(NSJSP_HOME)/logs/sca3.err

#
This is the actual Arglist used to start up the NSJSP
Container.

Arglist -Xmx64m -Xms64m -Xss128k -Xnoclassgc \
-Djava.util.logging.manager=org.apache. juli.ClassLoaderLogManager \
-Djava.util_logging.config.file=$env(NSJSP_HOME)/conf/logging.properties \
-Djavax.management.builder.initial=

com.tandem.servlet. jmx.NSJSPMBeanServerBuilder \
$NSISP_SECMGR \

$NSISP_SECMGR_POLICY \

$NSISP_JAAS_CONFIG \

-Dcom.tandem.servlet_ CONTEXT_PREFIXES=/sca3url \

-Dcatalina.home=$env(NSJSP_HOME) \

-Dcatalina.base=$env(NSJSP_HOME) \

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-10

Configuring NSJSP The Installation-Specific servlet.config File

-Djava.io.tmpdir=$env(NSJSP_HOME)/temp \
org.apache.catalina.startup.Bootstrap start

}
HHAHHHHAHH A R AR AR
#

Do an existence check on the nsjspadmin configuration
Tile (nsjspadmin.config). If it exists, source it in.
#

if { [file exists $env(NSISP_HOME)/conf/nsjspadmin.config] } {
source $env(NSJISP_HOME)/conf/nsjspadmin.config

}

HAHHHHH AR R R R R
#

Do an existence check on the filemaps configuration

Tile (filemaps.config). If it exists, source it in.

#

it { [file exists $env(NSJISP_HOME)/conf/filemaps.config] } {
source $env(NSJSP_HOME)/conf/filemaps.config

(]

#

The filemap directive should always map to wherever you have installed
the NonStop(tm) Servlets For JavaServer Pages(tm) server object code.
#
Fi

lemap /sca3url $server_objectcode

The contents of the installation-specific servlet.conTig file are broadly classified as
shown below:

Environment Variables Sets all the necessary environment variables that are used
in the Server directive to configure the server class.

Server Class Configuration The actual configuration of the server class using the

using the Server Directive Server directive.

Miscellaneous Configuration that is used by the HTTPD component of the
iTP Secure WebServer, such as Region and Fi lemap
directives.

Environment Variables

This section describes the environment variables that are explicitly set in the
installation-specific servlet.config file. Environment variables are used to
configure the Servlet Server Class. The installation-specific servlet.config file also
sources in the variables defined in other configuration files, such as jdbc.config.

server_objectcode

The server_objectcode variable is used to set the complete path of the object
file of the server class. The name of the server_objectcode must be
<svc>.ssc. Where <svc> is the name provided for the Servlet Server Class
when the installation script was run. The extension ssc is recognized by the iTP

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-11

Configuring NSJSP The Installation-Specific servlet.config File

Secure WebServer. In NSJSP, the server_objectcode is a symbolic link to the
Java executable. For example, Zusr/tandem/java/bin/java.

Note. The value for this variable is set by the setup script. Do not modify this
value.

Example 3-4 shows a sample configuration of the server_objectcode variable.

Example 3-4. A Sample Configuration of the server_objectcode Variable

#

The server_objectcode represents a SYMBOLIC LINK to your installed
copy of the JVM (default /usr/tandem/java/bin/java)

#

set server_objectcode $root/bin/instA_ssc

NSJSP_HOME

The NSJISP_HOME variable is used to set the full path of the directory where
NSJSP is installed.

Note. The value for this variable is set by the setup script. Do not modify this
value.

Example 3-5 shows the default value of the NSJSP_HOME variable, where the iTP
Secure WebServer is installed in the default location Zusr/tandem/webserver,
and that the default NSJSP installation directory is used, which is servlets.

Example 3-5. The Default Value of the NSJSP_HOME Variable

#

The NSJSP installation directory.

#

set env(NSJSP_HOME) /usr/tandem/webserver/servlets

JVM_POLICY_FILE

The JVM_POLICY_FILE variable specifies the security policy file that needs to be
used if NSJSP is run with a security manager. The default security policy file in
NSJSP is <NSJSP_HOME>/conf/iTP_catalina.policy. The
JVM_POLICY_FILE variable is used to set the value of the
NSJSP_SECMGR_POLICY variable to indicate the security policy file. For more
information about the security policy file and syntax of the file, see Chapter 7,
Migrating to NSJSP 6.1.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-12

Configuring NSJSP The Installation-Specific servlet.config File

Example 3-6 shows the default value of the JVM_POLICY_FILE variable.

Example 3-6. The Default Value of the JVM_POLICY_FILE Variable
set env(JVM_POLICY_FILE) $env(NSJISP_HOME)/conf/iTP_catalina.policy

NSJISP_SECMGR_POLICY

The value of this variable is the Java command-line argument that is used to
indicate a security policy file. The value reads
-Djava.security.policy==%env(JVM_POLICY_FILE). The == signis
intentional and indicates to the JVM that it must only use the mentioned policy file.

Example 3-7 shows the default value of the NSIJSP_SECMGR_POLICY variable.

Example 3-7. The Default Value of the NSJSP_SECMGR_POLICY Variable

set NSJSP_SECMGR_POLICY
-Djava.security.policy==%env(JVM_POLICY_FILE)

NSJISP_SECMGR

The value of NSJSP_SECMGR variable is the Java command-line argument that is
used to enable the Java Security Manager. The default value of this variable is
-Dnsjsp.security.manager=none and by default the Java Security Manager
is not enabled. If this variable is set to -Djava.security.manager, the security
manager is enabled.

Note. Based on the Java Security Specification, a security policy file must be used
only if Java is configured to run with the security manager enabled. The
NSJSP_SECMGR_POLICY variable is effective only if the Java Security Manager
has been enabled using the NSJSP_SECMGR variable .

Example 3-8 shows the default value of the NSJSP_SECMGR variable.

Example 3-8. The Default Value of the NSJSP_SECMGR Variable
#

If you wish to run with a security Manager, uncomment the next

#
statement ('set NSJSP_SECMGR ...'").

#

set NSJSP_SECMGR -Djava.security.manager

JAAS_CONFIG_FILE

The JAAS CONFIG_FILE variable specifies the location of Java Authentication
and Authorization Service (JAAS) configuration file. The default JAAS configuration
file in NSJSP is <NSJSP_HOME>/conf/iTP_jaas.config. The

JAAS CONFIG_FILE variable is used by the NSJSP_JAAS CONFIG variable to

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-13

Configuring NSJSP The Installation-Specific servlet.config File

obtain the location of the JAAS configuration file. For more information on JAAS,
see http://java.sun.com/javase/6/docs/quide/security/jaas/JAASRefGuide.html.

Example 3-9 shows the default value of the JAAS_CONFIG_FILE variable.

Example 3-9. The Default Value of the JAAS_CONFIG_FILE Variable

#

NSJSP JAAS NonStopLoginModule configuration file.

#

set env(JAAS_CONFIG_FILE) $env(NSJISP_HOME)/conf/iTP_jaas.config

NSJISP_JAAS_CONFIG

The value of the NSJSP_JAAS CONFIG variable is the Java command-line
argument that is used to turn on the JAAS module. This enables the authentication
and authorization procedure to be handled as per the definitions in the JAAS config
file that is specified by the variable JAAS_CONFIG_FILE. For more information on
JAAS configuration, see Realms on page 7-7.

Example 3-10 shows the default value of the NSISP_JAAS CONFIG variable.

Example 3-10. The Default Value of the NSIJSP_JAAS CONFIG Variable

#
By default, the JVM is run without a JAAS configuration file.
#

set NSJSP_JAAS CONFIG -Dnsjsp.jaas.login.config=none

#

1f you wish to use the NSJSP JAAS NonStopLoginModule, uncomment
the

next statement (“'set NSJSP_JAAS CONFIG ...").

#

Note: the "double" equalto signs ''==" is not a typo!! This informs
the # JVM to use this file exclusively and that all others are to be
ignored.

#
set NSJSP_JAAS_CONFIG
-Djava.security.auth.login.config==$env(JAAS_CONFIG_FILE)

JAVA_HOME

The JAVA HOME variable is set to the location where NonStop Server for Java
(NSJ) is installed. The value of the JAVA_HOME variable is set when the setup
script is run. After installing NSJSP, do not modify the value of this variable unless
the NSJ installation is moved to a different directory.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-14

Configuring NSJSP The Installation-Specific servlet.config File

Example 3-11 shows the default value of the JAVA HOME variable.

Example 3-11. The Default Value of the JAVA_HOME Variable
HHH
#

Set the JAVA_HOME and GUARDIAN_SUBVOL
#
set env(JAVA _HOME) /nsjsp/software/java6.0/java

if {I[info exists env(GUARDIAN SUBVOL)]} {
set env(GUARDIAN_SUBVOL) /G/system/zweb

JVCP

The JVCP variable includes additions for the Java classpath and is used to set the
CLASSPATH variable. Do not modify the jar files listed in this variable. Use the
USRCP variable to identify any installation-specific jar files that also need to be
added to the CLASSPATH variable.

Example 3-12 shows the default value of the JVCP variable.

Example 3-12. The Default Value of the JVCP Variable

P HHH I

#

The following code sets up the Java Specific class PATH variables
into

a Tcl variable called JVCP. JVCP will be prepended to the
classpath of

the JVM.
#
set JVCP

append JVCP $env(NSJSP_HOME) "/bin/bootstrap.jar:"

append JVCP $env(NSJISP_HOME) "/bin/commons-daemon.jar:"
append JVCP $env(NSJSP_HOME) "/bin/tomcat-juli.jar:"
append JVCP $env(NSJSP_HOME) "/bin/ns-logger.jar:"

append JVCP $env(NSJSP_HOME) "/bin/nsjspmbeanserver.jar:"

#

This trims off the rightmost colon char.

#

set JVCP [string trimright $JVCP ":"]
USRCP

By default the USRCP variable is empty. This variable can be used to include any
installation-specific jar files that need to be added to the CLASSPATH. If the
USRCP variable is not empty, the format of this variable must be the same as for
JVCP. For example, <full path to jarl>:<full path to jar2>:..

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-15

Configuring NSJSP The Installation-Specific servlet.config File

Example 3-13 shows the default value of the USRCP variable.

Example 3-13. The Default Value of the USRCP Variable

#

Set the default value of the User ClassPath blank
#

set USRCP

SERVLET_BANK

The SERVLET_BANK variable is used to specify the name of the required database
table in the format <catalog>.<schema>.<tablename> used in example bank
application distributed with NSJSP. If the table does not exist, the bank application
uses this variable to create the table at run time. The SERVLET _BANK variable can
be deleted if the bank application is removed.

The bank application is installed by default. The application name is
bankapp -war. This application is located in <NSJSP_HOME>/webapps.

Note. The bank application creates (if it does not already exist) the table specified by
the SERVLET_BANK environment variable. If NSJSP is started by a super group, the
application may attempt to create the table on the $SYSTEM volume. Normally the
$SYSTEM volume is not audited by Transaction Management Facility (TMF). In that
case, the table creation will fail and the sample bank application will not work.

The bank application does not create a new table if it already exists. To prevent an
attempt to create a table on $SYSTEM volume, HP recommends that you create the
table manually. For example, while creating a table in SQL/MX, you can use the
LOCATION clause to specify the volume on which the table is created. A sample
SQL/MX script to create the required table for bank application is as shown
below:

create catalog bankcat;
set catalog bankcat;

create schema banksch;
set schema banksch;

create table bankcat.banksch.bankdata (

acctno smallint unsigned not null,
lastname char(20) not null,
firstname character(20) not null,
city character(20) not null,
balance int not null,
primary key(acctno)) location $DATAO1;

The script to create the table for the sample bankapp application is <NSJSP_HOME>
/conf/bankapp_mx_ddl .sqgl. Before running the script, ensure that you replace
suitable values for catalog, schema, and tablename.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-16

Configuring NSJSP The Installation-Specific servlet.config File

Example 3-14 shows the default value of the SERVLET_ BANK variable.

Example 3-14. Default Value of the SERVLET_BANK Variable
HHH
#

Related to the BankDemo example application provided with NSJSP

#

The value of SERVLET BANK should be <catalog>.<schema>.<tablename>
Catalog and schema should have been created. The application will
create the given table if one is not present

set SERVLET_BANK bankcat.banksch.sraccts

NSJSP_DLL_PATH

The value of the NSJSP_DLL_PATH variable contains the directory where the
NSJSP native libraries are located. This variable can be used to include other
directories where application specific native libraries are located. The value of the
NSJSP_DLL_PATH variable is used to setthe _RLD_LIB_PATH. For more
information on the RLD LIB_PATH, see the RLD Manual.

Example 3-15 shows the default value of the NSJSP_DLL_PATH variable.

Example 3-15. Default Value of the NSJSP_DLL_PATH Variable

HHHHH AR R R H A H R
#

NSJSP SHARED RUNTIME LIBRARY (SRL) location

#

set NSJSP_DLL_PATH $env(NSJSP_HOME)/Ilib

Server Class Configuration using the Server Directive

The Server directive is used to configure the Servlet Server Class. This section
describes the Servlet Server Class configuration. For more information about the
Server directive, see the iTP Secure WebServer System Administrator's Guide.

The following environment variables are defined in the Server directive:

CLASSPATH

The CLASSPATH variable contains the Java classpath. The classpath is defined by
the JVCP and USRCP variables. This environment variable is mandatory and is
used by the JVM when the server class is started. For more information on the
CLASSPATH, see the NonStop Server for Java Reference Manual.

Example 3-16 shows the default value of the CLASSPATH variable.

Example 3-16. The Default Value of the CLASSPATH Variable
Env CLASSPATH=$JVCP:$USRCP

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-17

Configuring NSJSP The Installation-Specific servlet.config File

JAVA_HOME

The JAVA HOME variable is mandatory and specifies the directory where NonStop
Server for Java (NSJ) is installed.

Example 3-17 shows the default value of the JAVA_HOME variable.

Example 3-17. The Default Value of the JAVA_HOME Variable
Env JAVA_HOME=$env(JAVA_HOME)

JREHOME

The JREHOME variable is mandatory and specifies the location of the Java Runtime
Environment (JRE).

Note. This variable is not mandatory in NSJ 6.0 and later versions.

Example 3-18 shows the default value of the JREHOME variable.

Example 3-18. The Default Value of the JREHOME Variable
Env JREHOME=$env(JAVA_HOME)/jre

_RLD_LIB_PATH

The RLD_LIB_PATH variable is mandatory and specifies the location of the
required native libraries.

Example 3-19 shows the default value of the RLD_LIB_ PATH variable.

Example 3-19. The Default Value of the RLD_LIB_PATH Variable
Env _RLD_LIB_PATH=$NSJSP_DLL_PATH

TANDEM_FILEMAPS_CONFIG

The TANDEM_FILEMAPS CONFI1G variable contains the location of the
filemaps.config file. This environment variable is mandatory. For more

information on the filemaps.config file, see The filemaps.config File on
page 3-33.

Example 3-20 shows the default value of the TANDEM _FILEMAPS CONFIG
variable.

Example 3-20. The Default Value of the TANDEM_FILEMAPS_CONFIG Variable
Env TANDEM_FILEMAPS_CONFI1G=$env(NSJSP_HOME)/conf/filemaps.config

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-18

Configuring NSJSP The Installation-Specific servlet.config File

BANK_CATALOG

The BANK_CATALOG variable is set to the value of the $SERVLET_BANK variable.
For more information, see SERVLET BANK on page 3-16.

Example 3-21 shows the default value of the BANK_CATALOG variable.

Example 3-21. The Default Value of the BANK_CATALOG Variable
Env BANK_CATALOG=$SERVLET_BANK

NSJISP_CONFIG_FILE

Specifies the NSJSP configuration file that is used by the NSJSP Manager. This
variable is only present in the NSJSP Manager server class configuration file. For
more information, see Chapter 4, Managing NSJSP.

Example 3-22 shows the default value of the NSJSP_CONFIG_FILE variable.

Example 3-22. The Default Value of the NSJSP_CONFIG_FILE Variable
Env NSJISP_CONFIG_FILE=$env(NSJSP_HOME)/conf/nsjsp_manager .config

TANDEM_RECEIVE_DEPTH

The TANDEM_RECEIVE_DEPTH variable is mandatory and it must have a numeric
value. This variable indicates the maximum number of requests that a single server
class process handles simultaneously. For more information on how this affects the
behavior of NSJSP, see the NonStop Servlets for JavaServer Pages (NSJSP)
Configuration White Paper.

Example 3-23 shows the default value of the TANDEM_RECEIVE_DEPTH variable.

Example 3-23. The Default Value of the TANDEM_RECEIVE_DEPTH Variable
Env TANDEM_RECEIVE_DEPTH=50

The following command-line arguments are passed to the JVM when the server
class is started. The arguments are specified using the Arglist command. The
command-line arguments include the arguments defined by NSJ and NSJSP. Any
command-line argument valid in NSJ can also be used in NSJSP.

Xmx

Specifies the maximum size, in bytes, of the JVM memory allocation pool. The
default value is 64m, which is sufficient to run an application like the Java Pet
Store. This is enough memory to handle about 50 concurrent requests in a single
instance of server class. You can change this number to meet the requirements of
applications that are deployed in NSJSP.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-19

Configuring NSJSP The Installation-Specific servlet.config File

Xms

Specifies the initial memory allocation pool (also called the heap) size that is
allocated when NSJSP starts up. This value is set to the same value as Xmx.

Xss

Specifies the stack size. The default value is 128k . This value should be sufficient
for most applications hosted on NSJSP. If you experience stack overflow
exceptions in your application, consider increasing this value.

Xnoclassgc
Disables the class garbage collection. This argument is specified by NSJ.

When you specify -XnoClassGC in the Arglist of servlet.configfile in
<NSJSP_HOME>/confT directory, the class objects in the web applications are left
as it is during garbage collection, and are always considered to be active. Turning
off the garbage collection class eliminates the overhead of loading and unloading
the same class multiple times. If we want to periodically check and reduce the
consumption of the heap memory, -XnoClassGC can be removed from the
Arglists of servlet.config file. However, this creates a small overhead of
running the garbage collection mechanism to free the heap space occupied.

Example 3-24 shows the default Xmx, Xms, Xss, and Xnoclassgc variables.

Example 3-24. The Default Xmx, Xms, Xss, and Xnoclassgc Variables

Arglist -Xmx64m -Xms64m -Xss128k -Xnoclassgc

jJava.compiler
The java.compiler argument is not set in NSJSP 6.1 for the following reason:

In releases prior to NSJ 4.2 where the Just In Time (JIT) compiler was used, the
jJava.compi ler argument was used to disable JIT compilation. Starting with the
NSJ 4.2 release, the JIT compiler is replaced with the HotSpot compiler. However,
for backward compatibility, the java.compi ler argument is still supported. If you
set the value to none, the HotSpot compiler is disabled, which is the equivalent of
setting the -Xint argument. HP recommends that you must not use the
Java.compi ler argument in order to allow the JVM to use the default value for
the HotSpot compiler.

jJava.util.logging.manager

Specifies the LogManager that must be used for all logging purposes. Do not
modify this value unless you want to implement a new logging infrastructure. For
more information about logging, see Chapter 5, Logging in NSJSP. For more
information about the Java logging infrastructure, see
http://java.sun.com/javase/6/docs/technotes/qguides/logging/index.html

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-20

Configuring NSJSP The Installation-Specific servlet.config File

Example 3-25 shows the default value of the java.util.logging.manager
variable.

Example 3-25. The Default Value of the Java.util.logging.manager Variable

-Djava.util.logging.manager=org.apache. juli.ClassLoaderLogManager

jJava.util._logging.config.file

Specifies the configuration file used by the LogManager. For more information
about the logging configuration file, see Chapter 5, Logging in NSJSP. For more
information about the Java logging infrastructure, see
http://java.sun.com/javase/6/docs/technotes/quides/logging/index.html

Example 3-26 shows the default value of the
jJava.util_logging.config.file variable.

Example 3-26. The Default Value of the jJava.util_logging.config.file
Variable

-Djava.util.logging.config.file=
$env(NSISP_HOME)/conf/logging.properties

jJavax.management.builder.initial

Specifies the NonStop-specific MBean server builder class that NSJSP provides to
create an MBean server to administer NSJSP. The default value is
com.tandem.servlet. ymx_.NSJSPMBeanServerBui lder. This is used by the
NSJSP admin application. Do not modify the default value.

For more information on MBean and the JMX technology, see
http://java.sun.com/javase/6/docs/technotes/qguides/imx/overview/JMXoverviewTO
C.html

Example 3-27 shows the default value of the
Javax.management.builder.initial variable.

Example 3-27. The Default Value of the javax.management.builder.initial
Variable

-Djavax.management.builder.initial=
com.tandem.servlet. jmx.NSJSPMBeanServerBui lder

Java.i1o.tmpdir

Specifies the location of the temp directory. The value can be changed to any
other directory. The directory must be created before the Servlet Server Class is
started. The temp directory is used internally by the NSJSP servlet container.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-21

Configuring NSJSP The Installation-Specific servlet.config File

Example 3-28 shows the default value of the java. 1o.tmpdir variable.

Example 3-28. The Default Value of the Java.1o.tmpdir Variable

-Djava.io.tmpdir=$env(NSJSP_HOME)/temp

catalina.home and catalina.base

The catalina.home and catalina.base arguments are mandatory and
specify the installation directory for NSJSP. The values for these variables must be
the same. The catal ina.home argument is used to identify the directory
containing the common libraries for all the applications in an NSJSP environment.
The catalina.home argument must always point to a directory containing 1ib
and bin directories which include all the container libraries that come with a
default installation of NSJSP. The catal ina.base directory is used to identify the
directory that contains conf¥, logs, temp, webapps, and work directories. These
directories are specific to the container configuration and the web applications.

Note. HP recommends that both catal ina.home and catalina.base should
always point to the same directory location. The update option of the setup script
assumes that an entire NSJSP installation is within a single directory and not split
across two directories.

Example 3-29 shows the default values for catal ina.home and
catalina.base variables.

Example 3-29. The Default Values for catalina.home and catalina.base
Variables

-Dcatal ina.home=$env(NSJISP_HOME)
-Dcatal ina.base=$env(NSJISP_HOME)

SessionBasedLoadBalancing

Specifies a NonStop-specific argument. This value indicates whether sessions
must be considered as sticky sessions. Sticky sessions have an affinity to the
process (a ServerClass instance) where the session was created and all requests
within that session will always go to the same process. The argument can have
two values true or false. The default value is true. If this variable is not set in
the installation-specific servlet.config file, the value is considered to be true.

For more information on how this parameter effects the behavior of NSJSP, see
Session Management on page 3-75.

SessionBasedCookieExpiry

Specifies a NonStop-specific argument. The default value is false. If this value is
set to true, the JSESSIONID cookie has the same expiry date as the
corresponding session object. If the value is False, the cookie persists in the web

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-22

Configuring NSJSP The Installation-Specific servlet.config File

browser as long as the browser is open. If sessions are configured to be persistent
and to expire with short durations, then setting this attribute to true might improve
performance.

When setting this value to true, itis important that the date and time on the
browser workstation match or is very close to that of the NonStop server where
NSJSP is running. If the time are greatly out of synchronization, the cookie in the
browser may expire before the corresponding session expires.

Example 3-30 shows a sample configuration of the
SessionBasedCookieExpiry variable.

Example 3-30. A Sample Configuration of the SessionBasedCookieExpiry
Variable

-DSessionBasedCookieExpiry=false

com.tandem.servlet.nsjsp

Specifies a NonStop-specific argument. This argument indicates whether the
running process is an NSJSP process. The default value is true. If the value is set
to False, NSJSP exhibits only Apache Tomcat behavior. Although NSJSP is
based on Apache Tomcat, the default behavior of some of the features in NSJSP is
different from that of Apache Tomcat as shown below.

Default session manager
NSJSP com.tandem.servlet.catalina.NSJSPStandardManager

Apache org.apache.catalina.session.StandardManager
Tomcat

Default context configuration class
NSJSP com.tandem.servlet.catalina.startup.NSJSPContextConfig

Apache org.apache.catalina.startup.ContextConfig
Tomcat

HTTP protocol processor
NSJSP com.tandem.servlet.coyote.httpll_ NSJSPHttpllProcessor

Apache org.apche.coyote.httpll._HttpllProcessor
Tomcat

Attribute: port and shutdown
NSJSP Not applicable

Apache Used in Apache Tomcat
Tomcat

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-23

Configuring NSJSP The Installation-Specific servlet.config File

It is recommended that the com. tandem.servlet.nsjsp variable is set to
true. Setting the variable to false might require additional changes to the
configuration files, such as server.xml, because the default Tomcat behavior
might require different configuration parameters than NSJSP.

Note. To get pure Tomcat behavior, you can install Apache Tomcat on a NonStop
server.

DiscardFileMapHistory

Preserves or discards the history of all changes to the Filemaps. The default value
is false.

Filemap changes are made by the NSJSP Manager application when deploying
and undeploying web applications. If the DiscardFileMapHistory parameter is
set to true, and if an existing Filemap definition for a URI needs to be
overwritten, the existing Filemap definition is first deleted and then a new definition
is inserted. If the DiscardFileMapHistory parameter is set to false, the old
definition is retained as a comment and the new definition is added.

Example 3-31 shows an example of a new Filemap definition being added when
DiscardFileMapHistory is true.

Note. HP recommends that you retain the default value of false to preserve the
Filemap history.

Example 3-31. New Filemap Information

#
2010-04-08 14:47:10.765 - Added Filemap */bank”.
Filemap /bank /usr/tandem/webserver/bin/dev.ssc

Example 3-32 shows an example of retaining the previous Filemap definition when
DiscardFileMapHistory is false.

Example 3-32. Filemap History Available as a Comment

#
2010-04-08 14:47:10.765 - Added Filemap "/bank-”.
Filemap /bank /usr/tandem/webserver/bin/dev.ssc

#
2010-04-09 15:23:11.123 - Added Filemap "/bank”.
Filemap /bank /Zusr/tandem/webserver/bin/prod.ssc

EnableJMXProxyServilet

In NSJSP 6.0 and later versions, the JMX Proxy Servlet is either enabled or
disabled in the deployment descriptor (web . xml) of the old manager application.
This argument was used in NSJSP 5.0 to enable or disable the JMX Proxy Servlet.
This argument must not be used in NSJSP 6.1. In NSJSP 6.1, the JIMX Proxy

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-24

Configuring NSJSP The Installation-Specific servlet.config File

Servlet is enabled by default. The IMXProxy is defined in the old manager
application’s deployment descriptor (web .xml). Example 3-33 shows the
configuration for JIMX Proxy Servlet in the web . xml file.

Example 3-33. Configuration for JIMXProxyServlet in the web.xml file

<servlet>
<servlet-name>JIMXProxy</servlet-name>
<servlet-
class>org.apache.catalina.manager .JMXProxyServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>JIMXProxy</servlet-name>
<url-pattern>/jmxproxy/*</url-pattern>
</servlet-mapping>

The NSJSP Manager GUI provides features to query, compare, and modify MBean
attributes across the NSJSP server class processes. Although the JMX Proxy Servlet is
available in NSJSP 6.1, HP recommends that you use the NSJSP Manager GUI for
MBean operations.

While the IMX Proxy Servlet provides features to modify MBean attributes across NSJSP
server class processes in a single PATHMON, the NSJSP Manager GUI provides similar
functionality across NSJSP server class processes running across multiple PATHMONS.

The JMX Proxy Servlet can be used in scripts to manage NSJSP Mbeans. However, the
NSJSP Manager GUI cannot be used in scripts. Therefore, if you are using scripts to
manage NSJSP MBeans, you can continue to use the JMX Proxy servlet in NSJSP6.1 to
execute those scripts.

SaveSessionOnCreation
Enables or disables saving sessions into a persistent store during creation time.

The default value is false. This is to prevent saving a session before it is modified
by the user application. This also reduces the number of database operations for
each client request.

If both the SaveSessionOnCreation and the SessionBasedLoadBalancing
options are set to false, and if a persistent manager is configured with a
persistent store, then all sessions are written to the store at the end of each
request processing cycle. As a result, all changes made to the session by the user
application are persisted to the store.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-25

Configuring NSJSP The Installation-Specific servlet.config File

Example 3-34 shows the default value of the SaveSessionOnCreation variable.

Example 3-34. The Default Value of the SaveSessionOnCreation Variable

-DSaveSessionOnCreation=false

com.tandem.servlet.CONTEXT PREFIXES

This is the URI name that is specified during installation when you run the setup
script. The value must begin with / followed by the URI name, which is made up
of alphanumeric characters. This value does not support multiple / characters. For
more information about the URI name, see Chapter 2, Installing NSJSP.

Although, by default, all applications have a context name which follows the value
of the com. tandem.servlet.CONTEXT_ PREFIXES parameter, it is possible to
configure different ways to access an application.

For example, if the value of this parameter is /dev and the application foo.war is
deployed, by default, the context path for this application will be /dev/foo.
Therefore, the application can be accessed using the URL
http://<ipaddress:port>/dev/foo.

The default behavior of the NSJSP servlet container can be overridden in two
ways:

® Deploy applications using the NSJSP Manager and check the Automatically
Add Filemap option. For more information on NSJSP Manager, see Chapter 4,
Managing NSJSP.

® Deploy applications using the Client Deployer and set appendContext to
false. For more information on Client Deployer, see Chapter 4, Managing
NSJSP.

The NSJSP Manager and the Client deployer each provide an option to deploy an
application without requiring the value of this parameter. Using the example quoted
above, it is possible to deploy the foo.war application such that it can be
accessed using the URL http://<ipaddress:port>/foo. In this case, the
context path of the application will be /foo and not /dev/foo.

maxWairtTimeSecs

Any message greater than 30000 bytes is referred to as a big message. The value
of maxWaitTimeSecs is relevant when the size of the message transfer between
NSJSP and HTTPD is big and requires exchanging multiple messages between
HTTPD and NSJSP. The value of maxWaitTimeSecs is a number indicating the
number of seconds that the NSJSP Connector should wait before aborting a
message exchange between HTTPD and NSJSP. For more information on
message exchange between HTTPD and NSJSP, see the NonStop Servlets for
JavaServer Pages (NSJSP) Configuration White Paper.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-26

Configuring NSJSP The Installation-Specific servlet.config File

Note. HP recommends that you set this value to a value greater than or equal to the
ScriptTimeout value specified in the iTP Secure WebServer configuration.

Note. If a negative value is set, and if there are multiple message exchanges between
NSJSP and HTTPD, the NSJSP Connector aborts the message exchange if HTTPD
does not respond to the message exchange immediately. Therefore, the value must
not be negative since it disables big message transfers by exchanging multiple
messages between NSJSP and HTTPD. For more information about
ScriptTimeout see the iTP Secure WebServer Administrator's Guide.

Figure 3-2 illustrates the maximum wait time for a message with a total size of 1
MB.

Figure 3-2. Maximum Wait Time for a Message with Size = 1MB

HTTPI | Messagel . NSJSP

\
Size 30000 Bytes

\ 300 seconds
Message 2

— N\

Size 30000 Bytes

s 300 seconds

Message 3
HAbOFt

Size 30000 Bytes

Total Message Size =1 MB

Figure 3-2 shows three big messages being transferred between HTTPD and
NSJSP. These messages are message 1, message 2, and message 3. Message 2
is transferred within the 300 second wait period after sending message 1 and
hence transferred successfully. Whereas, message 3 exceeding the 300 second
wait period aborts.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-27

Configuring NSJSP The Installation-Specific servlet.config File

The following are the configuration parameters defined by TS/MP for server classes.
For more information on these parameters, see the NonStop TS/MP System
Management Manual. The following descriptions are applicable to NSJSP only.

NUMSTATIC and MAXSERVERS

In the default configuration, both these parameters have the same value. This
means there are no dynamic servers are configured for NSJSP. HP recommends
that you do not configure dynamic servers. This is because, the long startup time
for NSJSP processes might lead to requests getting queued, which might also
result in application timeouts. For more information on NUMSTATIC &
MAXSERVERS parameters, see the NonStop Servlets for JavaServer Pages
(NSJSP) Configuration White Paper.

Stdout and Stderr

Specifies the standard out and standard error files respectively. The JNI library of
NSJSP writes messages to these files. Although most of the messages are written
during startup, errors encountered on operations on with $RECEIVE are written to
the standard error file during run time. Based on the message type, log entries
created by NSJ are also written to either the Stdout file or the Stderr file.

MAXLINKS and LINKDEPTH

The MAXLINKS and LINKDEPTH parameters are each set to 50 by default. These
values may require tuning, depending upon the NSJSP request load and the
number of CPUs in the HP NonStop system. For improved load balancing and
better response times, smaller values for both parameters may provide better
results.For information on MAXLINKS and LINKDEPTH parameters, see the
NonStop Servlets for JavaServer Pages (NSJSP) Configuration White Paper.

Miscellaneous

The Region Directive

The Region directive is used to prevent access to the Servlets and JSPs through the
Invoker Servlet. The Invoker Servlet allows applications to dynamically
register new servlets and to invoke a servlet using the fully qualified servlet class
name. Allowing such servlet invocations might lead to security problems. For more
information on the Invoker Servlet, see http://tomcat.apache.org/tomcat-6.0-
doc/funcspecs/fs-invoker.html.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-28

Configuring NSJSP The Installation-Specific servlet.config File

Example 3-35 shows the default configuration of the Region directive.

Example 3-35. The Default Configuration of the Region Directive

#
Add region commands to deny access to internal Catalina Servlets.
#

Region */servlet/org.apache.catalina.servlets.* {
DenyHost *

¥

Region */servlet/jsp/* {
DenyHost *

}

The Filemap Directive

The Filemap directive at the end of the servlet.config file indicates to the iTP
Secure WebServer that all requests whose URI matches the filemap definition must be
directed to instances of the specified server class. The value of the
$server_objectcode variable is the fully qualified object file name, which includes
the server class name.

Example 3-36 shows the default configuration of the Filemap directive for an NSJSP
installation with a URI name of sca3url.

Example 3-36. The Default Configuration of the Filemap Directive

#

The filemap directive should always map to wherever you have installed
the NonStop(tm) Servlets For JavaServer Pages(tm) server object code.
#

Filemap /sca3url $server_objectcode

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-29

Configuring NSJSP

The nsjspadmin.config File

The nsjspadmin.config File

Table 3-6 provides an overview of the nsjspadmin.config file.

Table 3-6. Overview of the nsjspadmin.config File

Location
Description

Recommendation

<NSJSP_HOME>/conf

Contains the configuration attributes for the Admin Server Class. The
name of this server class is created by adding —-adm to the servlet
server class name, which is specified during the installation process.
For example, if you entered the server class name during installation
as production, the name of this server class will be
production-adm. The nsjspadmin.config file, if present, is
included in the installation-specific servlet.config file using the
source directive. Only environment variables defined in the
installation-specific servlet.config file are also valid in the
nsjspadmin.config file.

You need not change the parameters in this file. This is because, the
Admin Server Class will only be used to access the Admin application
only.

Example 3-37 shows the sample nsjspadmin.config file.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-30

Configuring NSJSP The nsjspadmin.config File

Example 3-37. The nsyspadmin.config File

#

VERSION=6.1.0

#

#

The nsjspadmin_objectcode represents a SYMBOLIC LINK to your installed
copy of the JVM (default /usr/tandem/java/bin/java)

set nsjspadmin_objectcode $root/bin/instA.ssc

Server $nsjspadmin_objectcode {
CWD $env(NSJISP_HOME)
Env CLASSPATH=$JVCP :$USRCP
Env JAVA_HOME=$env(JAVA_HOME)
Env JREHOME=$env(JAVA HOME)/jre
Env _RLD_LIB_PATH=$NSJSP_DLL_PATH
Env TANDEM_HTTPD_SC_NAME=HTTPD
Env TANDEM_SERVLET SC_NAME=scA
Env TANDEM_SERVLET_ SC_PATH=$server_objectcode
Env TANDEM_FILEMAPS_CONFIG=
$env(NSJISP_HOME)/webserver/conf/filemaps.config
MapDefine =TCPIP~APROCESS"NAME $transport
Maxservers 1
Numstatic 1
Maxlinks 25
#
Check that the Linkdepth and TANDEM_RECEIVE_DEPTH parameter values
match.
#
The value of TANDEM_RECEIVE_DEPTH should be equal to or less than
the maxThreads attribute in the connector element configured in
$NSIPS_HOME/conf/server.xml.

#
Linkdepth 25
Env TANDEM_RECEIVE_DEPTH=25
#
File locations to direct standard input, output and error.
#
Stdin /dev/null
Stdout $env(NSJISP_HOME)/logs/nsjspadmin.out
Stderr $env(NSJSP_HOME)/logs/nsjspadmin.err
#
This is the actual Arglist used to start up the NSJSPAdmin Container.
#

Arglist -Xmx64m -Xss128k -Xnoclassgc \
-Djava.util._logging.manager=org.apache. juli.ClassLoaderLogManager \
-Djava.util.logging.config.file=$env(NSISP_HOME)/conf/logging.properties \

Djavax.-management.builder.initial=com.tandem.servlet.jmx_NSJISPMBeanServerB
uilder \
$NSISP_SECMGR \
$NSISP_SECMGR_POLICY \
$NSISP_JAAS_CONFIG \
-Dcom.tandem.servlet.CONTEXT PREFIXES=/scA \
-Dcom.tandem.servlet.nsjspadmin=true \
-Dcatalina.home=$env(NSJSP_HOME) \
-Dcatalina.base=$env(NSJSP_HOME) \
-Djava.io.tmpdir=$env(NSISP_HOME)/temp \
org.apache.catalina.startup.Bootstrap start

}
Filemap /scA/Zadmin $nsjspadmin_objectcode
Filemap /scA/manager $nsjspadmin_objectcode

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-31

Configuring NSJSP The nsjspadmin.config File

Example 3-38 shows the installation-specific servlet.config file checking for the
presence of the nsjspadmin.config file and sourcing the filemaps.config file, if
available.

Example 3-38. Checking for the presence of the nsjyspadmin.config file and
sourcing the nsjspadmin.configfile in the servlet.config file

HHH
#

Do an existence check on the nsjspadmin configuration

TFile (nsjspadmin.config). If it exists, source it in.

#

if { [file exists $env(NSISP_HOME)/conf/nsjspadmin.config]} {
source $env(NSJSP_HOME)/conf/nsjspadmin.config
}

The following configuration parameters are specific to nsyspadmin.config file.

TANDEM_HTTPD_SC_NAME

This is a Server Class environment variable that indicates the server class name of
the HTTPD component in the iTP Secure WebServer environment where this
Servlet Server Class is configured. The Server Class for the HTTPD component is
configured (in the default configuration) in the httpd.config file. The default
value is HTTPD.

TANDEM_SERVLET_SC_NAME

This is the name of the Servlet Server Class that must be monitored by this Admin
Server Class. For more information on monitoring NSJSP using the Admin Server
Class, see Chapter 4, Managing NSJSP.

TANDEM_SERVLET_SC_PATH

This is the full path to the object file used in the Servlet Server Class. For more
information about the object file, see server_objectcode on page 3-11. This value is
set during installation and should not be modified manually.

NUMSTATIC and MAXSERVERS

These are parameters whose value must always equal the number of PATHMONS
configured in the iTP Secure WebServer httpd.config configuration file so that
there is only one instance of this server class in a PATHMON. The value is set
during installation and must not be modified manually.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-32

Configuring NSJSP The filemaps.config File

Filemaps

The Filemap directives at the end of the nsjspadmin.config file indicate that all
requests to both the admin and the old manager are also directed to the admin
server class.

Note. The manager application mentioned here is different from the new NSJSP
Manager. For more information on the manager applications, see Chapter 4,
Managing NSJSP.

The filemaps.config File

The Filemap directive is defined by iTP Secure WebServer and is described in detail
in the iITP Secure WebServer System Administrator's guide. This section describes
information about the i1 lemaps.config file that is specific to NSJSP.

Table 3-7 provides an overview of the Filemaps.config file.

Table 3-7. Overview of the filemaps.config File

Location <NSJSP_HOME>/conF
Description This file is sourced in by the servlet.config file using the source
directive.

Example 3-39 shows the default ¥ilemaps.config file.

Example 3-39. The filemaps.config File

#This file should contain all the NSJSP specfic filemaps

#The Ffile will be read by the NSJSP SERVLET and NSJSPADMIN instances
#By default filemaps for manager and admin applications are
#mentioned in ITPWS/conf/nsjspadmin.config.

#Any changes to the default filemap definitions should be made

#in this file. ITf changes are made then the default definitions

#in nsjspadmin.config should be removed.

Example 3-40 shows the installation-specific servlet.config file checking for the
presence of the Filemaps.config file and sourcing the filemaps.config file, if
available.

Example 3-40. Checking for the presence of the Filemaps.config file and
sourcing the Filemaps.configfilein the servlet.config file

HHAHHHHAHH AR R AR
#

Do an existence check on the filemaps configuration
TFile (filemaps.config). If it exists, source it in.
#

if { [file exists $env(NSISP_HOME)/conf/filemaps.config] } {
source $env(NSJISP_HOME)/conf/filemaps.config

}

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-33

Configuring NSJSP The filemaps.config File

The fi1lemaps.config file is only meant to contain Fi lemap definitions for specific
user applications. The default Fi lemap definitions for the overall NSJSP installation

are in the servlet.config and nsjspadmin.config files.

Example 3-41 illustrates the usage of the filemaps.config file for specific user
application Fi1 lemap definitions.

Example 3-41. Specific User Application Filemap Definitions

Consider an installation with a URI name of /dev running an application foo.war. By
default, the application can be accessed over the URL
http://<ipaddress:port>/dev/foo and the full application context path will be
/dev/fToo. There might be situations where the application context and thus the URL
used to access the application along with the application cannot include the URI name
prefix. In that case, the URL to access the application would be
http://<ipaddress:port>/foo and the full application context path is /foo. The
Tilemaps.config file is used to achieve this objective and it can be achieved in one
the following ways:

® By deploying the application through the NSJSP manager and indicating that the
context name should not have the default URI name prefix. In this case, the NSJSP
manager deploys the application without the default URI name prefix (in this case
/dev) and then makes an entry in the filemaps.config file for the
application context name /foo. The entry in the fi lemaps.config for the
application context name /foo, ensures that the configuration is retained
across server class restarts.

® By manually making a Fi lemap entry in the filemaps.config file. If the
application is deployed manually by copying the war file to the webapps directory,
then a Fi lemap entry must be made in the filemaps.conTig file, manually. In
this example, the entry in the filemaps.conTfig file should be Filemap /foo
$server_objectcode. The $server_objectcode variable can also be
replaced by the full path to the ssc file for this serverclass. For more information on
server_objectcode, see server _objectcode on page 3-11.

The TANDEM_FILEMAPS_CONFIG environment variable must specify the fully qualified
location of Filemaps.confFig file. The NSJSP servlet container reads the file identified
by this environment variable during startup and decides the correct context path for the
applications. For example, if there is an entry Filemap /foo $server_objectcode
in the Filemaps.config and an application foo.war is being deployed, the NSJSP
servlet container will not prefix the URI name (/dev) to the context name (/foo0) of the
application.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-34

Configuring NSJSP The jdbc.config File

The jdbc.config File

Table 3-8 provides an overview of the jdbc.config file.

Table 3-8. The jdbc.config File

Location <NSJSP_HOME>/conf

Description The file is source in, if present, by the servlet.config file
and is used to configure certain variables to include the
JDBC/MX and/or JDBC/MP configuration. One variable that is
modified in the ydbc.config file is USRCP. For more
information on USRCP, see The Installation-Specific servlet.config
File on page 3-7). The jdbc.conTig file creates and sets the
new variables ydbcMx_L1B_PATH and jdbcMp_LIB_PATH.
These two variables are used in the installation-specific
servlet.config file.

Example 3-42 shows the default jdbc.configfile.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-35

Configuring NSJSP The jdbc.config File

Example 3-42. The jdbc.config File

#

VERSION=6.1.0

#

HHH R AR R AR R R R AR

This file contains the JDBC/MP and JDBC/MX configuration.

ITf the CLASSPATH contains sqlmp.jar and/or jdbcMx.jar, then first
add those to the User ClassPath TCL variable USRCP.

- HHHH FHHITH

f { [info exists env(CLASSPATH)] } {

foreach 1 [split $env(CLASSPATH) ":"] {
if {[string Tfirst “sqlmp.jar"” $i] > 0} {append USRCP ":" $i}
if {[string first "jdbcMx.jar" $i] > 0} {append USRCP ":" $i}

Append the sqlmp.jar file (if it exists) from the JDBC/MP location
specified when the ™"setup™ script was run.

NOTE: If your CLASSPATH contains sqlmp.jar, then that version will be
used and will automatically override the add/append done below.

HHHFEHFHHH W

set jdbcMp_JdarFile /Zusr/tandem/jdbcMp/current/lib/sqglmp.jar

if { [file exists $jdbcMp_JdarFile] } {
append USRCP ":$jdbcMp_JarFile"

Append the jdbcMx.jar file (if it exists) from the JDBC/MX location
specified when the '"setup'" script was run.

NOTE: If your CLASSPATH contains jdbcMx.jar, then that version will
be used and will automatically override the add/append done below.

HHEHHFHHH

set jdbcMx_JarFile /usr/tandem/jdbcMx/current/lib/jdbcMx.jar

if { [file exists $jdbcMx_JarFile] } {
append USRCP ":$jdbcMx_JarFile"

-

HEHHHH AR R R R R R R R R

3+

Define the jdbc/Mx library location
#
set jdbcMx_LIB_PATH /usr/tandem/jdbcMx/current/lib

#

Define the jdbc/Mp library location

#

set jdbcMp_LIB PATH /usr/tandem/jdbcMp/current/lib

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-36

Configuring NSJSP Configuration Files for the Servlet Container

Configuration Files for the Servlet Container

This section describes the following configuration files:

® The server.xml File

® The context.xml File

® The web.xml File

The server.xml File

This section discusses only the elements that are used in the default server.xml file.
Although the behavior of some of these components is the same as in Apache Tomcat, some
components behave differently in NSJSP.

Table 3-9 provides an overview of the server.xml file.

Table 3-9. Overview of the server.xml File

Location <NSJSP_HOME>/conf/server._.xml
Description Used to configure the entire NSJSP servlet container.

Recommendation Read the complete section and make modifications based on your
requirements.

Figure 3-3 shows the element hierarchy and relationships in the server .xml file.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-37

Configuring NSJSP

The server.xml

File

Figure 3-3. The Element Hierarchy and Relationships in the server .xml file

Server

1

{o

1

|

Realm

Host

ny

Valve

Service GIobaINamingResource] 1—.[Jasper Listener
1 1
n) Server Lifecycle
0 Connector [T] o | Listener
1
Listener [Global Resources
| Lifecycle Listener
1 Engine

"y

"y

[Store Config Lifecycle |
L Listener)

7

NSJSP Lifecycle
L Listener

In Figure 3-3, n represents one or more elements and 1 represents one element. This
figure illustrates the relationships between only the elements used in the default

configuration.

Note. Figure 3-3 is only a depiction of the relationships between the elements and you
might not be able to add more elements. For example, although the relationship between
the Server element and the Service elementis 1. .n, the default configuration has only

one Service element nested in the Server element.

Example 3-43 shows the default server . xml file.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-38

Configuring NSJSP The server.xml File

Example 3-43. The server.xml File (page 1 of 2)

<I--
Ensure that the port is always set to -1 It only then possible to shutdown
the server using the freeze;stop command of pathway

-——>
<Server port="-1">
<l--
Initialize Jasper prior to webapps are loaded. Documentation at
/docs/jasper-howto.html
-——>
<Listener className="org.apache.catalina.core.JasperListener' />
<l--
JMX Support for the Tomcat server. Documentation at
/docs/non-existent._html
-—>
<Listener
className=""org.apache.catalina.mbeans.ServerLifecyclelListener" />
<Listener
className=""org.apache.catalina.mbeans.GlobalResourcesLifecyclelLis
tener" />
<I--Listener to iInstantiate StoreConfig MBeans-->
<Listener

className=""org.apache.catalina.storeconfig.StoreConfigLifecycleLi
stener™ />
<I--Listener to instantiate NSJSP specific MBeans-->
<Listener className="com.tandem.servlet_NSJSPLifecycleListener" />

<GlobalNamingResources>
<Resource name="UserDatabase’™ auth="Container"
type=""org.apache.catalina.UserDatabase" description="User
database that can be updated and saved"
factory=""org.apache.catalina.users.MemoryUserDatabaseFactory"
pathname="conf/nsjsp-users.xml" />
</GlobalNamingResources>
<Service name=""NSJSP"'>
<l--
The Listener inside connector component is required to enable
the JMX generic connector server for NSJSP. If not present
the JMX Connection server will be disabled.
-—>
<Connector protocol="HTTP/1.1" connectionTimeout="0"
acceptCount="25" maxThreads="75">

<Listener
className=""com.tandem.servlet.JMXConnectionListener"'/>
</Connector>
<Engine name="NSJSP" defaultHost="localhost" >
<Realm

className=""org.apache.catalina.realm.UserDatabaseRealm"
resourceName=""UserDatabase" digest='"MD5" />

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-39

Configuring NSJSP The server.xml File

Example 3-43. The server .xml File (page 2 of 2)

<l--
The following is the definition of a request dumper
valve. If enabled this valve will dump the incoming
requests and the outgoing response in the logger of its
container (in this case its the Engine) The
recordLength attribute specifies the maximum number of
bytes to write per log record. A record each is created
for the iIncoming request and outgoing response If the
dumperOn attribute is omitted the valve is disabled.
For the valve to be enabled the dumperOn attribute
should be set to true

<Valve
className=""com.hp.tandem.nsjsp.valves.NSJSPRequestDum
perValve' dumperOn="true" recordLength="1000"/>
-—>

<Host name="localhost" appBase="'webapps" unpackWARs=""true"
autoDeploy=""true" xmlValidation="false"
xmINamespaceAware=""false" configClass=
"com.tandem.servlet.catalina.startup.NSJSPContextConfig">

<l--
The RequestTrackerValve should be configured to track the
requests to applications deployed in this host. The valve
generates statistics related to the requests for all the
web applications under the host. This tracker is a must
to display application statistics in the new Domain

Manager application
-—>

<Valve
className=""com.hp.tandem.nsjsp.valves.RequestTrackerValve" />
</Host>
</Engine>
</Service>
</Server>

This section discusses the following topics:

® Server Element

® Listener Elements

® GlobalNamingResources Element

® Service Element

Server Element

The Server element represents the entire catalina servlet container. Therefore, it must
be the single outermost element in the server .xml configuration file.

Table 3-10 shows the attribute list for the Server element.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-40

Configuring NSJSP

The server.xml File

Table 3-10. Attribute List for the Server element

Attribute
className

port

shutdown

Description

Java class name for the implementation to use.
This class must implement the
org.apache.catalina.Server interface. If
no class name is specified, the standard
implementation will be used.

HP recommends that you do not change the
value of this attribute.

Specifies the port number on which the server
receives the shutdown command.

NSJSP does not receive the shutdown
commands on a TCP port. Shutdown depends
on the number of openers for each NSJSP
process. An NSJSP process shuts down when
all the openers, such as the link manager close
their connections to the process.

HP recommends that you do not modify the
default value.

NSJSP does not receive shutdown messages.
This attribute is not applicable to NSJSP.

Default value

org.apache.catalin
a.core.StandardSer
ver

Child Elements Nested in the Server Element

The following child elements are nested in the Server element:

® Listener Elements

® GlobalNamingResources Element

® Service Element

Listener Elements

The Server, Service, Engine, and Host elements generate lifecycle events,
such as start and stop. Listeners are elements that perform actions based on
the lifecycle events of their parent element. For example, the Listeners configured
as child elements of the Server element perform actions based on the lifecycle
events of the Server element.

Table 3-11 shows the descriptions of Listeners that are configured as child
elements of the Server element.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-41

Configuring NSJSP

The server.xml File

Table 3-11. Descriptions of Listeners configured as child elements of the Server

element

Listener
Jasper Listener

Server Lifecycle
Listener

Global Resources
Lifecycle Listener

Store Config
Lifecycle Listener

NSJSP Lifecycle
Listener

Description

The Jasper Listener initializes the Jasper2 JSP engine before
loading any web applications. The Jasper2 JSP engine is an
implementation of the Java Server Pages 2.1 specification. The
class name of the listener is
org.apache.catalina.core.JasperListener.

The Server Lifecycle Listener initializes the MBeanServer. The
MBeanServer registers MBeans. Without this Listener, MBeans
provided as part of Apache Tomcat will not be available. The
class name of the Listener is
org.apache.catalina.mbeans.ServerLifecyclelListe
ner.

The Global Resources Lifecycle Listener initializes the Global
Java Naming and Directory Interface (JNDI) resources defined in
the server .xml file and in the GlobalNamingResources
element. Without this Listener, none of the Global Resources
can be defined. The class name of the Listener is
org.apache.catalina.mbeans.GlobalResourcesLifec
yclelListener.

This Listener is used to instantiate MBeans that are used by the
admin application to persist the configuration changes made by
the admin application to the respective configuration files (for
example, the server .xml file and application-specific
context.xml files). The class name of the Listener is
org.apache.catalina.storeconfig.StoreConfigLife
cyclelListener

This Listener is used to instantiate the NSJSP-specific MBeans.
These MBeans are mainly used by the admin application. The
class name of this Listener is
com.tandem.servlet_NSJSPLifeCycleListener.

GlobalNamingResources Element

The GlobalNamingResources element defines the global JNDI resources for
the Server. The resources defined here are listed in the server's global JNDI
resource context. The server's global JNDI resource context is different from the
JNDI resources defined in each web application. The global JNDI resources are
not, by default, available to individual web applications. A global JNDI resource can
be made available to a web application by using a ResourceLink element in the
applications context definition. For more information on the
GlobalNamingResources element, see http://tomcat.apache.org/tomcat-6.0-
doc/config/globalresources.html.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-42

Configuring NSJSP The server.xml File

The GlobalNamingResources element in the default server .xml file defines
a resource of type org.apache.catal ina.UserDatabase. This resource is
used by the UserDatabaseRealm that is nested in the Engine element.

Example 3-44 shows the default value for the GlobalNamingResources
element.

Example 3-44. The Default Value for the GlobalNamingResources Element

<GlobalNamingResources>
<Resource name="UserDatabase’™ auth="Container"
type=""org.apache.catalina.UserDatabase"
description="User database that can be updated and
saved"
factory="org.apache.catalina.users.MemoryUserDatabaseFac
tory''pathname="conf/nsjsp-users.xml" />

</GlobalNamingResources>

Service Element

A Service element represents the combination of one or more Connector
components that share a single Engine element for processing incoming
requests. One or more Service elements may be nested inside a Server
element.

Note. Although it is possible to add more than one Service element, HP
recommends only one Service element. This is because of the following reasons.

® Each Service element requires a Connector element and NSJSP provides only
one Connector implementation that processes messages from the $RECE1VE file.
Therefore, there cannot be two Connector definitions using the same connector
implementation thus restricting the number of service definitions to only one.

® The NSJSP Manager can manage applications in only one service.

Example 3-45 shows the default values for the Service element.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-43

Configuring NSJSP The server.xml

File

Example 3-45. The Default Values for the Service Element

<Service name="NSJSP"'>

<l--

The Listener inside connector component is required to enable the JMX
generic connector server for NSJSP. If not present the JMX Connection

server will be disabled.
—-—>

<Connector protocol="HTTP/1.1" maxThreads=""75">

<Listener
className=""com.tandem.servlet.JMXConnectionListener" />

</Connector>
<Engine name="NSJSP" defaultHost=""localhost" >

<Realm
className=""org.apache.catalina.realm._UserDatabaseRealm"
resourceName=""UserDatabase" digest="MD5" />

<Valve className=
""com.hp.tandem_nsjsp.valves_NSJSPRequestDumperValve"
dumperOn=""true" recordLength="1000"/>

<Host name="localhost" appBase="'webapps' unpackWARs=""true"
autoDeploy=""true" xmlValidation=""false"
xmINamespaceAware=""false" configClass=
"com.tandem.servlet.catalina.startup.NSJSPContextConfig'>

<Valve className=
com.hp.tandem.nsjsp.valves.RequestTrackerValve'/>
</Host>

</Engine>

</Service>

Table 3-12 shows the attribute list for the Service element.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-44

Configuring NSJSP The server.xml File

Table 3-12. Attribute List of the Service Element

Default
Attribute Description value
className The Java class name of the implementation to use. This org.-apache
class must Implement the .catalina.
org.apache.catalina.Service interface. If no class core.Stand
name is specified, the standard implementation will be ardService
used.

HP recommends that this attribute not be modified.

name The display name of this Service, which will be included in NSJSP
log messages, if the default implementation with standard
catalina components is used.

The name of each Service that is defined under a
Server element must be unique.

Child Elements Nested in the Service Element
Following are the child elements nested in the Service Element:

® Connector Element

® Engine Element

Connector Element

The Connector element connects the HTTPD component of the iTP Secure
WebServer with the NSJSP Manager. The connector receives all NSJSP request
messages on the $RECE I VE file. Each process can have only one $RECEIVE file
and since the NSJSP connector receives messages through this file, there can be
only one Connector element that reads messages from $RECEIVE. The
connector handles messages based on the type of the message. If the message is
from an HTTPD component, an HTTPD message is handed over to a component
that handles the message from HTTPD. In NSJSP, the message is handed over to
the NSJSPHttpllProcessor component to process the message. If it is a IMX
message, the message is handed over to the component that handles JMX
messages, which is NSISPMessageConnectionHandler.

To understand the attributes that affect the connector behavior, it is important to
understand the major differences between the NSJSP connector and the default
connector supplied with Apache Tomcat.

The Apache Tomcat connector receives inputs through a TCP/IP port in the form of
a stream of characters. The connector is responsible for all the HTTP1.1 protocol
validation and translation. In this way, the connector functions as a simple web
server.

The NSJSP Connector element communicates with the HTTPD component of
the iTP Secure WebServer and receives all the input request data through the

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-45

Configuring NSJSP The server.xml File

$RECEIVE file. The HTTPD component acts as the front-end web server and
handles all the protocol validation and translation. After the protocol is validated,
HTTPD extracts the necessary information and converts the information to a set of
name value pairs. The name value pairs are then sent in messages to the NSJSP
connector. The NSJSP connector assembles the request data from the messages
with the name value pairs and continues with processing the request. Thus, the
NSJSP Connector does not function as a web server. It receives messages from
HTTPD, assembles each request and then hands over the request to the catalina
container for further processing.

Example 3-46 shows the default values for the Connector element.

Example 3-46. The Default Values for the Connector Element

<Service name="NSJSP">

<l--

The Listener inside connector component is required to enable the JMX
generic connector server for NSJSP. If not present the JMX Connection

server will be disabled.
-—>

<Connector protocol="HTTP/1.1" maxThreads="75">

<Listener
className=""com.tandem.servlet.JMXConnectionListener" />

</Connector>
<Engine name="NSJSP" defaultHost="localhost" >

<Realm

className=""org.apache.catalina.realm.UserDatabaseRealm"
resourceName=""UserDatabase" digest='"MD5" />

<Valve className=

""com.hp.tandem.nsjsp.valves.NSJSPRequestDumperValve"
dumperOn=""true" recordLength="1000"/>

<Host name="localhost" appBase="'webapps' unpackWARs=""true"
autoDeploy=""true”™ xmlValidation=""false"
xmINamespaceAware=""false" configClass=
"com.tandem.servlet.catalina.startup.NSJSPContextConfig'>

<Valve className=

""com.hp.tandem.nsjsp.valves.RequestTrackerValve"/>
</Host>

</Engine>

</Service>

Table 3-13 shows the attributes for the Connector element in NSJSP.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-46

Configuring NSJSP

The server.xml File

Table 3-13. Attribute List for the Connector Element in NSJSP (page 1 of 2)

Attribute
allowTrace

emptySessionPath

enablelLookups

maxParameterCount

protocol
redirectPort

URIEncoding

useBodyEncodingFo
rURI

XpoweredBy

executor

Description

A Boolean value that can be used to enable or
disable the TRACE HTTP method. If this
attribute is not specified, it is set to false.

If set to true, all paths for session cookies will
be set to /. If this attribute is not specified, it is
set to false.

It is important to understand cookie paths before
setting this attribute to true.

Setting this value to true will not enable DNS
lookups but rather fetch the remote host
information provided by the HTTPD component.
If this attribute is not specified, it is set to true.

The maximum number of parameters (GET plus
POST) which will be automatically parsed by the
container. A value of less than 0 means no limit.
If not specified, a default of 10000 is used.

Specifies the version of the protocol to be used.

If a request is received for which a matching
<security-constraint> requires SSL
transport, catalina will automatically redirect the
request to the port number specified here. If this
attribute is not specified, it is set to 443.

Specifies the character encoding used to
decode the URI bytes. If this attribute is not
specified, 1S0-8859-1 will be used.

This attributes indicates if the encoding
specified in the contentType of the message
is to be used for decoding the URI.

The default value is false and it is suggested
that the default value be retained. Hence, using
the URIEncoding attribute for decoding the
URI.

Set this attribute to true to cause Tomcat to
advertise support for the Servlet specification
using the header recommended in the
specification. If this attribute is not specified, the
default value is false.

The name of a defined Executor element. If
this attribute is provided, and the named
executor exists, the connector will use the
executor, and all the other thread attributes will
be ignored.

Default Value

10000

HTTP/1.1.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-47

Configuring NSJSP

The server.xml

File

Table 3-13. Attribute List for the Connector Element in NSJSP (page 2 of 2)

Attribute

maxHttpHeaderSize

maxThreads

server

threadPriority

Description Default Value

The maximum size of the request and response
HTTP header, specified in bytes. If this attribute
is not specified, it is set to 8192 (8 KB).

The maximum number of request processing 75
threads to be created by this Connector. It also
determines the maximum number of

simultaneous requests that can be handled. If

this attribute is not specified, it is set to 200. If

an executor is associated with this connector,

this attribute is ignored as the connector will

execute tasks using the executor rather than an
internal thread pool.

Overrides the Server header for the http
response. If set, the value for this attribute
overrides the Tomcat default and any Server
header set by a web application. If not set, any
value specified by the application is used. If the
application does not specify a value, Apache-
Coyote/1.1 is used.

The priority of the request processing threads
within the JVM. If not set, the thread priority will
be NORMAL. For more information about this
priority, see the JavaDoc for the
jJjava.lang.Thread class.

The following attributes are used in Apache Tomcat, but not applicable on NSJSP:

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

acceptCount

maxPostSize

maxSavePostSize

proxyName
proxyPort
SSLEnabled
Scheme

secure

uselPVHosts

address

bufferSize

compressableMimeType

3-48

Configuring NSJSP

compression
connectionLinger
connectionTimeout
keepAliveTimeout
disableUploadTimeout
maxKeepAliveRequests
noCompressionUserAgents
port
restrictedUserAgents
socketBuffer
tcpNoDelay
algorithm
clientAuth
keystoreFile
keystorePass
keystoreType
keystoreProvider
sslProtocol
ciphers

keyAlias
truststoreFile
truststorePass
truststoreType
truststoreProvider
sessionCacheSize
sessionTimeout

criFile

allowUnsafelLegacyRenegotiation

The server.xml

File

For more information on these attributes, see http://tomcat.apache.org/tomcat-6.0-
doc/config/http.html.

Child Element Nested in the Connector Element

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-49

Configuring NSJSP The server.xml File

JMX Connection Listener

The com.tandem.servlet.JMXConnectionListener (JMX Connection
Listener) has to be configured to accept JMX requests (over NonStop IPC) from
the NSJSP manager application. The NSJSP manager communicates with server
class instances using JMX and without this listener the NSIJSP JMX components
that accept JMX requests are not configured.

Example 3-47 shows the default value for the JMX Connection Listener.

Example 3-47. The Default Values of JMX Connection Listener

<I--
The Listener inside connector component is required to enable the JMX
generic connector server for NSJSP. If not present the JMX Connection

server will be disabled.
-—>

<Connector protocol="HTTP/1.1" maxThreads="75">

<Listener
className=""com.tandem.servlet.JMXConnectionListener" />

</Connector>

Engine Element

The Engine element represents the entire request processing machinery
associated with a particular Service element. It receives and processes all
requests from one or more Connectors, and returns completed responses to a
Connector for transmitting back to the client.

Only one Engine element must be nested inside a Service element. It must be
defined after all of the corresponding Connector elements are defined for the
Service.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-50

Configuring NSJSP The server.xml

Example 3-48 shows the default values for the Engine element.

File

Example 3-48. The Default Values for the Engine Element

<Service name=""NSJSP'>

<I--

The Listener inside connector component is required to enable the JMX
generic connector server for NSJSP. If not present the JMX Connection

server will be disabled.
-—>

<Connector protocol="HTTP/1.1" maxThreads="75">

<Listener
className=""com.tandem.servlet.JMXConnectionListener" />

</Connector>
<Engine name=""NSJSP" defaultHost="localhost" >

<Realm
className=""org.apache.catalina.realm._UserDatabaseRealm"
resourceName=""UserDatabase" digest='"MD5" />

<Valve className=
""com.hp.tandem.nsjsp.valves_NSJSPRequestDumperValve"
dumperOn=""true" recordLength="1000"/>

<Host name="localhost" appBase="'webapps" unpackWARs=""true"
autoDeploy=""true" xmlVvValidation="false"
xmINamespaceAware=""false" configClass=
""com.tandem.servlet.catalina.startup.NSJSPContextConfig">

<Valve className=

"com.hp.tandem.nsjsp.valves.RequestTrackerValve'/>
</Host>

</Engine>

</Service>

Table 3-14 shows the attribute list for the Engine Element.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-51

Configuring NSJSP

The server.xml File

Table 3-14. Attribute List for the Engine Element

Attribute

backgroundPro
cessorDelay

className

defaultHost

JvmRoute
name

Default
Description value

Represents the delay in seconds between the
invocation of the backgroundProcess method on this
engine and on its child containers, including all the hosts
and contexts. Child containers methods will not be
invoked if their delay value is not negative. This means
that the child containers are using their own processing
thread. Setting this to a positive value will cause a
thread to spawn. After waiting the specified amount of
time, the thread will invoke the backgroundProcess
method on this engine and all its child containers. If not
specified, the default value for this attribute is 10, which
represents a 10 second delay. For more information on
the backgroundProcess, see backgroundProcess on
page 3-52.

Represents the Java class name of the implementation
to use. This class must implement the
org.apache.catalina.Engine interface. If this
attribute is not specified, the standard value
org.apache.catalina.Core.StandardEngine
will be used.

HP recommends that you use the default value.

The default host name, which identifies the Host that will Tocalhost
process requests directed to host names on this server,
but which are not defined in this configuration file.

This name must match the name attributes of one of the
Host elements nested immediately inside the Engine
element.

Not applicable to NSJSP.

The logical name of this Engine, used in log and error NSJSP
messages.

Considerations for Configuring the Engine element

backgroundProcess

The Engine, Host, and Context elements implement the
org.apache.catalina.Container interface. One of the methods of the
interface is backgroundProcess. Each of the containers implements the
backgroundProcess method, which may implement some container functionality
and some housekeeping functions. For example, when the Host element
backgroundProcess is invoked, it checks if the auto deployer must deploy,
undeploy, or redeploy any application.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-52

Configuring NSJSP The server.xml File

The Context container backgroundProcess is invoked to perform session
expiration and class monitoring.

The backgroundProcess method for a container is invoked in a separate thread
called the background processing thread. It is possible to have a separate thread
for each of the containers. A backgroundProcessor thread is spawned if the
container's backgroundProcessorDelay attribute has a positive value. Each
container invokes the backgroundProcess method of its child container if the
child container is not configured to spawn its own backgroundProcessor thread.

NSJSP inherits this feature from Apache Tomcat.
Child Elements Nested in the Engine Element

Following are the child elements that are nested in the Engine element:

® Realm
® Host
Realm

The Realm element is used for authenticating all the applications hosted on all the
hosts under the Engine element. For more information about Realms, see Realms
on page 7-7.

Example 3-49 shows the default values for the Realm element.

Example 3-49. The Default Values for Realm Element

<Engine name="NSJSP'" defaultHost="localhost" >

<Realm
className=""org.apache.catalina.realm.UserDatabaseRealm"
resourceName=""UserDatabase" digest='""MD5" />

<Valve className=
*com.hp.tandem.nsjsp.valves.NSJSPRequestDumperValve"
dumperOn=""true" recordLength="1000"/>

<Host name="localhost" appBase="'webapps' unpackWARs=""true"
autoDeploy=""true”™ xmlValidation=""false"
xmINamespaceAware=""false" configClass=
""com.tandem.servlet.catalina.startup.NSJSPContextConfig">

<Valve className=
"'com.hp.tandem.nsjsp.valves.RequestTrackerValve"/>
</Host>

</Engine>

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-53

Configuring NSJSP The server.xml File

Host

The Host element represents a virtual host. One or more Host elements are
nested inside an Engine element. One of the Host elements under an Engine
must have a name matching the defaul tHost attribute of that Engine. In the
default server . xml file the value of the defaultHost attribute of the Engine
element is localhost and there is only one Host configured with the name
localhost. For more information on virtual hosts, see Virtual Hosts on page 3-73.

Example 3-50 shows the default values for the Host element.

Example 3-50. The Default Values for the Host Element

<Engine name="NSJSP" defaultHost=""localhost" >

<Realm
className=""org.apache.catalina.realm._UserDatabaseRealm"
resourceName=""UserDatabase" digest="MD5" />

<vValve className=
""com.hp.tandem_nsjsp.valves_NSJSPRequestDumperValve"
dumperOn=""true" recordLength="1000"/>

<Host name="localhost" appBase="'webapps"' unpackWARs=""true"
autoDeploy=""true" xmlValidation="false"
xmINamespaceAware="false" configClass=
"com.tandem.servlet.catalina.startup.NSJSPContextConfig'>

<Valve className=
*com.hp.tandem.nsjsp.valves.RequestTrackerValve'/>
</Host>

</Engine>

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-54

Configuring NSJSP

The server.xml File

Table 3-15 shows the attribute list for the Host element.

Table 3-15. Attribute List for the Host Element (page 1 of 2)

Attribute
appBase

autoDeploy

backgroundPro
cessorDelay

className

deployOnStart
up

Description Default Value

The Application Base directory for this virtual host. webapps
This is the pathname of a directory that might

contain web applications to be deployed on this

virtual host. You may specify an absolute pathname

for this directory, or a pathname that is relative to the
<NSJSP_HOME> directory.

This flag value indicates if new web applications, true
dropped in to the appBase directory while NSJSP is
running, should be automatically deployed.

For more information, see autoDeploy on page 3-57.

This value represents the delay in seconds between
the invocation of the backgroundProcess method
on this Host and on its child containers, including all
contexts. Child containers will not be invoked if their
delay value is not negative (which would mean they
are using their own processing thread). Setting this
to a positive value will cause a thread to be
spawned. After waiting the specified amount of time,
the thread will invoke the backgroundProcess
method on this host and all its child containers. A
host will use background processing to perform live
web application deployment related tasks. If not
specified, the default value for this attribute is -1,
which means the host will rely on the background
processing thread of its parent Engine.

The Java class name of the implementation to use.
This class must implement the
org.apache.catalina.Host interface. If this
attribute is not specified, the standard host
implementation
org.apache.catalina.core.StandardHost
will be used.

HP recommends that you not modify this value.

This attribute indicates if web applications from this
host should be automatically deployed when the
NSJSP server class is started. Even if this attribute
is set to False and autoDeploy is set to true,
the applications will still be deployed when the
background process for the host runs.

If both autoDeploy and deployOnStartup are
set to false, the applications must be deployed
through the NSJSP Manager.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-55

Configuring NSJSP

The server.xml File

Table 3-15. Attribute List for the Host Element (page 2 of 2)

Attribute
name

deployXML

errorReportVa
lveClass

unpackWARs

workDir

configClass

Description Default Value

The network name for this virtual host. Regardless localhost
of the case used to specify the hostname, NSJSP
will convert it to lower case internally.

One of the Hosts nested within an Engine must have
a name that matches the defaul tHost setting for
that Engine.

For a description of this attribute, see deployXML on
page 3-58.

The Java class name of the error reporting valve,
which will be used by this Host. This valve provides
error reports. Setting this property enables you to
customize the format of the error pages, which will
be generated by NSJSP. If not specified, the default
value for this class will be
org.apache.catalina.valves_ErrorReport
Valve.

This class must implement the
org.-apache.catalina.Valve interface.

Set this attribute to true if you want web true
applications that are placed in the appBase

directory as web application archive (WAR) files to

be unpacked into a corresponding disk directory

structure. Set this attribute to false, to run such

web applications directly from the WAR file.

For more information, see unpackWARs on
page 3-57.

The pathname to a scratch directory to be used by
applications for this Host. Each application will have
its own subdirectory with temporary read-write use.
Configuring a context workDi r will override the use
of the Host workD1i r configuration. This directory
can be made visible to servlets in a web application
by configuring a servlet context attribute (of type
Java.io.File) named
Javax.servlet.context.tempdir as described
in the Servlet Specification. If not specified, a
suitable directory below $CATALINA_BASE/work
will be provided.

For NSJSP the value of this attribute must be com.tandem

com.tandem.servlet.catalina.startup.NS .servlet.c

JSPContextConfig atalina.st
artup.NSJS
PContextCo
nfig

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-56

Configuring NSJSP The server.xml File

Considerations for Configuring the Attributes of the Host Element

It is important to understand the effect of the autoDeploy, unpackWARs and
deployXML attributes with regard to the security of the NSJSP servlet container
and application resources.

autoDeploy

Setting autoDeploy to true could result in the redeployment of an entire
application, if any changes are made to watched application resources. For more
information on watched application resources, see WatchedResource on

page 3-65. Setting autodeploy to false will prevent any changes made to the
deployed application from affecting the running application. The basic premise is
that, unless a change is propagated through an authorized entry point, such as the
NSJSP Manager application, no changes should be made to an already running
application. The autoDeploy attribute does not have any effect on the Manager
application. This means that irrespective of the value of the autoDeploy attribute
the Manager application can deploy/undeploy applications.

The following scenarios illustrate the effect of the autoDeploy attribute:

© Scenario 1: An application is deployed using a WAR file and the WAR file is
exploded to a directory (because the unpackWARSs attribute is true). In this
case, if the autoDeploy is true and if the WAR file is accidentally removed the
entire context gets undeployed. If the autoDeploy is set to false, the
context still exists and the application is still available.

Note. Although the application is still available, if there are any requests needing
any of the just deleted resources, those requests will fail.

© Scenario 2: An application is deployed as a directory and the web .xml (or any
WatchedResource) is accidentally modified. If autoDeploy is set to true,
the entire application will need to be redeployed with the modified web . xml. If
the modified web . xml has a configuration error (syntax error), the entire
application context will be unavailable. If autoDeploy is set to false, the
modified web . xml file will not harm the running application.

© Scenario 3: An application contains several JSPs and one of the JSPs is
accidentally modified. In this case, irrespective of the value of the
autoDeploy attribute, the modified JSP is effective immediately. In this
scenario, the JSP becomes not marked as a WatchedResource. If it is
marked as a WatchedResource then the entire context is reloaded.

unpackWARs

Setting unpackWARs to true will explode WAR files in the Host's appBase
directory (usually the webapps directory). This will expose application contents
such as JSPs, and properties files. Although you can prevent modifications to
these files from affecting the running application by setting autoDeploy to false,
changes will affect the application upon restart. This represents a potential threat.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-57

Configuring NSJSP The server.xml File

There is a potential drawback to setting unpackWARs to false. A web
application's static content will be read from the WAR file directly, instead of from
the otherwise exploded directory. It is recommended that all static content be
served by the iTP Secure WebServer and not by NSJSP.

deployXML

Set this attribute to false, if you want to disable parsing the context.xml file
embedded inside the application (located at /META-INF/context._xml).
Security-conscious environments should set this to false to prevent applications
from interacting with the container's configuration. The administrator will then be
responsible for providing an external context configuration file in
NSJSP_HOME/conf/[enginename]/[hostname]/.

Setting this attribute to true will allow the NSJSP container to deploy the
application using the context.xml file in the application’s META-INF directory.
This means that the application can define its own context. There are certain
parameters in the context definition that could allow a rogue application to gain
access to the NSJSP servlet container's internal resources and also to other
applications running alongside the rogue application. The following attributes can
be exploited by a rogue application:

crossContext

If this value is set to true, calls to
Javax.servlet.ServletContext.getContext(<context uri>) will return
the ServletContext of the application with the context name <context uri>. This
means that the caller will have access to contexts for other applications
running on the same Host. Although the default value is false, the application
can still set this attribute to true and gain access to other applications'
contexts.

privileged

If this value is set to true, the application is treated as a privileged
application and will have access to all the internal classes of NSJSP along with
certain container applications, such as the Manager application classes.

Child Element Nested in the Host Element
The request tracker Valve is configured as a child element in the Host element.
Valve Element

A Valve element represents a component that will be inserted into the request
processing pipeline for a container. A Valve element can be configured as a child
element of an Engine, Host or a Context. The following valves are configured in
the default server._.xml file:

Request Tracker Valve

The class name of this valve is
com.hp.tandem.nsjsp.valves.RequestTrackerValve. This valve

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-58

Configuring NSJSP The context.xml File

must be configured for every configured Host element. The valve tracks all the
requests flowing to the applications in that Host. This information is used for
displaying application statistics in the new NSJSP Manager application. There
is no overhead incurred in configuring this valve.

Example 3-51 shows the default values for the RequestTrackerVvalve.

Example 3-51. The Default Values for the RequestTrackerValve

<Host name="localhost" appBase="'webapps' unpackWARs=""true"
autoDeploy=""true”™ xmlValidation="false'™ xmlINamespaceAware="false"
configClass=""com.tandem.servlet.catalina.startup.NSJSPContextConfig">

<Valve className="com.hp.tandem.nsjsp.valves_RequestTrackerValve"/>

</Host>

Request Dumper Valve

The class name of this valve is
com.hp.tandem.nsjsp.valves.NSJSPRequestDumperValve. This
valve dumps (that is, records) all the incoming requests and the outgoing
responses to the parent log file. For example, if this valve is configured under
an Engine and is turned on by setting the dumperOn attribute to true, the
valve dumps all the requests and responses for all the applications in all the
Hosts configured for the Engine. This valve too, like any other valve, can be
configured in an Engine, Host or a Context. The recordLength attribute
indicates the maximum size of the record printed to the log file. A record is
printed for the request and another for the response.

The default server .xml file does not have this valve configured. If this valve
is configured, the dumperOn and the recordLength attributes can be
changed while the server is running using the MBeans feature of the NSJSP
Manager application.

The context.xml File

Before discussing the content of the context.xml file, it is important to understand a
context. A context in NSJSP means a web application. To configure a context within
NSJSP, a Context Descriptor is required. A Context Descriptor is simply an XML file
that contains NSJSP related configuration information for a context. It could include, for
example, naming resources or the session manager configuration. Application specific
context descriptors can be located in
<NSJSP_HOME>/conf/[enginename]/[hostname]/<appname>_xml or
<NSJSP_HOME>/webapps/<appname>/META-INF/context.xml.

This section will be restricted to the default context.xml file located in the
<NSJSP_HOME>/confT directory. The context definition in this file will be loaded by all
web applications in the entire NSJSP Servlet Container. The elements defined by this
context.xml file can be overridden by an application-specific context.xml file. For
example, the NSJSP_HOME/conf/context.xml file defines a Manager element. If

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-59

Configuring NSJSP The context.xml File

the application-specific context.xml file does not define its own manager element
then the one defined in the <NSJSP_HOME>/conf/context.xml file will be used.

Table 3-16 provides an overview of the default context.xml file.

Table 3-16. The default context.xml File

Location <NSJSP_HOME>/conf/context.xml

Description The default context.xml file is the context definition loaded by all
web applications.

Example 3-52 shows the default context.xml file.

Example 3-52. The default context.xml File

<l_—

" The contents of this file will be loaded for each web application
-—>

<Context>
<!-- Default set of monitored resources -->
<WatchedResource>WEB-INF/web .xml</WatchedResource>

<r--
NSJSP specific Web application loader.

All contexts iIn NSJSP must be loaded using this application loader.
-—>

<Loader
className=""com.tandem.servlet.catalina. loader _NSJSPWebappLoader* />

<l--

NSJSP specific Standard Manager.

The Manager does no session persistence.
-—>
<Manager pathname=""""
className=""com.tandem.servlet.catalina.session.NSJSPStandardManager'/>

<l--
<Manager
className=""com.tandem.servlet.catalina.session_NSJSPPersistentManager'>
<Store
className=""com.tandem.servlet.catalina.session.NonStopSQLJDBCStore"
driverName="com.tandem.sqglmx.SQLMXDriver"
connectionURL="jdbc:sqlmx:"
sessionTable="<catalog>.<schema>.<tablename>"
sessionldCol="session_id"
sessionProcessNameCol=""process_nhame"
sessionRecNumberCol=""rec_number"
sessionAppCol=""app_name"
sessionDataCol=""session_data' sessionValidCol="valid"”
sessionMaxlInactiveCol="maxinactiveinterval"
sessionLastAccessedCol=""lastaccessed"/>
</Manager>
-—>

</Context>

Table 3-17 shows the attribute list for the Context element.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-60

Configuring NSJSP

The context.xml File

Table 3-17. Attribute List for the Context Element (page 1 of 5)

Attribute

backgroundProcessor
Delay

className

cookies

crossContext

docBase

Description

Represents the delay in seconds between the invocation of
the backgroundProcess method on this context and its
child containers, including all wrappers. Setting this to a
positive value causes a thread to spawn. After waiting the
specified amount of time, the thread invokes the
backgroundProcess method on this context. A context uses
background processing to perform session expiration and
class monitoring for reloading. If this attribute is not specified,
the default value for this attribute is -1, which means the
context will rely on the background processing thread of its
parent host.

Represents the Java class name of the implementation to use.
This class must implement the
org.apache.catalina.context interface. If this attribute
is not specified, the standard value
org.apache.catalina.core.StandardContext will be
used.

Enables or disables cookies for session identifier
communication.

Set to true if you want cookies to be used for session
identifier communication if supported by the client (this is the
default). Set to false if you want to disable the use of
cookies for session identifier communication, and rely only on
URL rewriting by the application. If this attribute is not
specified, the default value is true.

Set to true if you want this application to be able to call
ServletContext.getContext() to successfully obtain a
request dispatcher for other web applications running on this
virtual host. Set to false (the default) in security conscious
environments, which makes getContext() always return
null. If this attribute is not specified, the default value is
false.

For more information on the implications of using
crossContext, see deployXML on page 3-58.

The Document Base (also known as the Context Root)
directory for this web application, or the pathname to the web
application archive file (if this web application is being
executed directly from the WAR file). You may specify an
absolute pathname for this directory or the WAR file, or a
pathname that is relative to the appBase directory of the
owning Host.

The value of this field must not be set when the Context is
configured using a META-INF/context.xml file as it is
inferred by the automatic deployment process.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-61

Configuring NSJSP

The context.xml File

Table 3-17. Attribute List for the Context Element (page 2 of 5)

Attribute

override

privileged

path

reloadable

wrapperClass

Description

Overrides the setting of either the global or Host default
contexts.

Set to true to have explicit settings in this Context element
override any corresponding settings in either the global or
Host default contexts. By default, settings from a default
context are used.

If a symbolic link is used for the docBase, changes to the
symbolic link are effective only after an NSJSP restart or by
undeploying and redeploying the context. A context reload is
not sufficient.

Changes the context's parent class loader to be the Server
Class loader rather than the Shared class loader.

Set to true to allow this context to use container servlets,
such as the manager servlet. If this attribute is not specified,
the default value is false.

Note. In a default installation, the Common class loader is
used for both the Server Class loader and the Shared class
loaders.

The value of this field must not be set except when statically
defining a Context in server.xml, as it will be inferred from
the filenames used for either the . xml context file or the
docBase.

Note. HP recommends that contexts should not be specified
in the server _xml file as this file is meant for container
configuration and application specific contexts should be
specified in the META- INF/context.xml file of the
application.

Set to true if you want Catalina to monitor classes in /WEB-
INF/classes/ and /WEB-INF/1ib for changes, and
automatically reload the web application if a change is
detected. This feature is very useful during application
development, but it requires significant runtime overhead and
is not recommended for use with applications that have been
deployed in production. Hence, the default setting for this
attribute is False. As an alternative, however, to trigger
reloads of deployed applications on demand, you can use the
Manager web application.

Represents the Java class name of the
org.-apache.catalina.Wrapper implementation class
that will be used for servlets managed by this Context. If this
attribute is not specified, a standard default value will be used.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-62

Configuring NSJSP

The context.xml File

Table 3-17. Attribute List for the Context Element (page 3 of 5)

Attribute
useHttpOnly

allowLinking

antiJARLocking

antiResourcelLocking

cacheMaxSize

Description

Indicates if the HttpOnly flag is included in the HTTP response
header.

If the HttpOnly flag is included in the HTTP response header,
a cookie cannot be accessed through a client side script when
the browser supports this flag. As a result, even if a cross-site
scripting (XSS) flaw exists, and a user accidentally accesses a
link that exploits this flaw, a browser, such as Internet Explorer
does not reveal the cookie to a third party. If a browser does
not support HttpOnly and a website attempts to set an
HttpOnly cookie, the HttpOnly flag is ignored by the browser,
thus creating a traditional script accessible cookie. As a result,
the session cookie becomes vulnerable to theft or modification
by malicious script. If this attribute is not specified, the default
value is false.

If the value of this flag is true, symlinks will be allowed inside
the web application, pointing to resources outside the web
application base path. If this attribute is not specified, the
default value is false.

It is suggested that the value of this attribute be set to false.
Setting this to Fal se instructs the NSJSP servlet container to
check if the resource belongs to the application base. If this is
set to true, an application can reference resources outside its
base directory which could prove to be a security risk in some
cases. A good practice is to limit the application references to
only those resources that are under its base directory.

The default value is False and it is suggested to always keep
this value set to false. This will be used in those platforms
where access to an application resource like a JAR file ends in
file locks. An example would be if

URLClassLoader .getResource() accessed a JAR file,
that could lead to the jar file getting locked. Such a situation
does not occur on NonStop so the value should be set to
false.

The default value is set to false and it is suggested that it be
kept set to False. If setto true, the NSJSP servlet
container copies each application into a separate directory in
the temp folder. This is meant for those platforms that lock file
resources when accessing them. Setting this to true will
result in significant startup times.

Maximum size of the static resource cache in kilobytes. If not
specified, the default value is 10240 (10 megabytes).

Note. It is suggested that web application static resources be
served by the iTP Secure WebServer.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-63

Configuring NSJSP

The context.xml File

Table 3-17. Attribute List for the Context Element (page 4 of 5)

Attribute
cacheObjectMaxSize

cacheTTL

cachingAl lowed

caseSensitive

clearReferencesStop
Threads

processTlds

swallowOutput

tldNamespaceAware

tldvalidation

unloadDelay

Description

Maximum size of a static resource that will be placed in the
cache. If not specified, the default value is 512 (512 kilobytes).
If this value is greater than cacheMaxSize/20 it will be reduced
to cacheMaxSize/20.

Note. Itis suggested that web application static resources be
serviced by the iTP Secure WebServer.

Amount of time in milliseconds between revalidation of cache
entries. If not specified, the default value is 5000 (5 seconds).

Note. Itis suggested that web application static resources be
serviced by the iTP Secure WebServer.

If the value of this flag is true, the cache for static resources
will be used. If not specified, the default value of the flag is
true.

Note. Itis suggested that web application static resources be
serviced by the iTP Secure WebServer.

Deprecated

If true, NSJSP attempts to terminate threads that have been
started by a web application. Stopping threads is performed
through the deprecated Thread.stop() method and is likely
to result in instability. Enabling this should be viewed as an
option of last resort in a development environment and is not
recommended in a production environment. If this attribute is
not specified, the default value is false.

Checks whether the context should process tag library
descriptors (TLDs) on startup. The defaultis true. The false
setting is intended for special cases that know in advance
TLDs are not part of the web application.

If the value of this flag is true, the bytes that are output to
System.out and System_err by the web application are
redirected to the web application logger. If this attribute is not
specified, the default value is false.

If the value of this flag is true, the TLD files XML validation
will be namespace-aware. If you turn this flag on, you should
probably also turn tldValidation on. The default value for this
flag is False, and setting it to true will have a negative
impact on performance.

If the value of this flag is true, the TLD files will be XML
validated on context startup. The default value for this flag is
false, and setting it to true will incur a performance penalty.

The time in ms that the container waits for servlets to unload.
If this attribute is not specified, the default value is 2000 ms.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-64

Configuring NSJSP The context.xml File

Table 3-17. Attribute List for the Context Element (page 5 of 5)

Attribute Description

unpackWAR If true, NSJSP unpacks all compressed web applications
before running them. If this attribute is not specified, the
default value is true.

useNaming Set to true (the default) to have Catalina enable a JNDI
InitialContext for this web application that is compatible
with Java2 Enterprise Edition (J2EE) platform conventions. If
this attribute is not specified, the default value is true.

workDir Represents the pathname to a scratch directory. This
information is provided by this Context for temporary
read-write use by servlets within the associated web
application. This directory will be made visible to servlets in
the web application by a servlet context attribute (of type
jJava.io.File) named
Javax.servlet.context.tempdir as described in the
Servlet Specification. If this attribute is not specified, a suitable
directory underneath $CATAL INA_BASE/work is provided.

The following elements are defined in the <NSJSP_HOME>/conf/context.xml file:
WatchedResource

The WatchedResource identifies an application resource that has to be watched
by the auto deployer. For more information on the auto deployer, see autoDeploy
on page 3-57. There can be multiple WatchedResource entries defined in a
context.xml file. Some resources, such as an application WAR file (if present),
the application directory, and the context definition file are by default added as
watched resources.

Manager

The Manager element configures the session manager. By default, the
NSJSPStandardManager is configured. The NSJSPStandardManager is an in-
memory session manager. The pathname attribute is ignored by the manager. For
more information about the NSJSPStandardManager, see Session Management
on page 3-75.

Note. The context.xml file also contains a persistent manager configuration which is
commented out.

Loader

The Loader element represents the web application class loader that will be used
to load Java classes and resources for a web application. NSJSP provides its own
loader class

com.tandem.servlet.catalina. loader _NSJSPWebappLoader. The loader
class name should not be changed.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-65

Configuring NSJSP The web.xml File

The web.xml File

The web . xml file in the <NSJSP_HOME>/conf directory defines the default values for
all web applications loaded into each instance of the NSJSP Servlet Server Class. As
each application is deployed, this web . xml file is processed, followed by the /WEB-
INF/web . xml deployment descriptors from individual. This file contains built in servlet
definitions and servlet mappings, filters and filter mappings, session parameters, and
MIME mappings.

This section discusses the following topics:

® Built-in Servlet Definitions

® Static Content Filter

® Session Timeout

® MIME Type Mappings

Built-in Servlet Definitions

The following built-in servlet definitions are used in the web . xml file:

® Default Servlet

Invoker Servlet

JSP Page Compiler and Execution Servlet

SSI Servlet

CGl Processing Servlet

Default Servlet

As the name implies, it is generally configured as the default servlet for a web
application, by being mapped to the URL pattern /. For more information, see
http://tomcat.apache.org/tomcat-6.0-doc/funcspecs/fs-default.html.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-66

Configuring NSJSP The web .xml

Example 3-53 shows the configuration of the default Servlet.

File

Example 3-53. Configuration of the Default Servlet

<servlet>
<servlet-name>default</servlet-name>
<servlet-
class>org.apache.catalina.servlets.DefaultServlet</servlet-class>
<init-param>
<param-name>debug</param-name>
<param-value>0</param-value>
</init-param>

<init-param>
<param-name>listings</param-name>
<param-value>false</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<I-- The mapping for the default servlet -->
<servlet-mapping>
<servlet-name>default</servilet-name>
<url-pattern>/</url-pattern>
</servlet-mapping>

Invoker Servlet

The 1nvoker servlet allows a web application to dynamically register new servlet

definitions, without having created a new <servlet> element in the /WEB-

INF/web . xml deployment descriptor, and execute requests utilizing the new servlet

definitions. From the perspective of the newly registered servlets, all servlet lifecycle

requirements of the Servlet Specification (such as calling init() and destroy() at

the correct times) are honoured. For more information, see
http://tomcat.apache.org/tomcat-6.0-doc/funcspecs/fs-invoker.html. The Invoker

Servlet and the servlet-mapping for the Invoker Servlet are commented out. For

more information on the Invoker Servlet, see The Region Directive on page 3-28.

Note. HP recommends that the Invoker Servlet not be used, because it could lead to
security issues. For example, enabling the invoker servlet allows a URL to directly invoke
the servlet using its class path, thereby bypassing all the security constraints defined in the
web application deployment descriptor.

Example 3-54 shows the configuration of the invoker servlet.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-67

Configuring NSJSP The web.xml File

Example 3-54. Configuration of the Invoker Servlet

<I--
<servlet>
<servlet-name>invoker</servlet-name>
<servlet-
class>org.apache.catalina.servlets. InvokerServlet</servlet-class>
<init-param>
<param-name>debug</param-name>
<param-value>0</param-value>
</init-param>

<load-on-startup>2</load-on-startup>

</servlet>
-—>

"<1-— The mapping for the invoker servlet -->

<r--
<servlet-mapping>
<servlet-name>invoker</servlet-name>
<url-pattern>/servlet/*</url-pattern>
</servlet-mapping>
-—>

JSP Page Compiler and Execution Servlet

The JSP Page Compiler and Execution Servlet is the mechanism used by NSJSP
(inherited from Tomcat) to process JSP pages. Traditionally, this servlet is mapped to
the URL pattern *. Jsp. You can use the default configuration for most applications.
For more information on the JSP Page Compiler and Execution Servlet, see
http://tomcat.apache.org/tomcat-6.0-doc/jasper-howto.html.

Example 3-55 shows the configuration of the JSP page compiler and execution
Servlet.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-68

Configuring NSJSP The web.xml File

Example 3-55. Configuration of the JSP Page Compiler and Execution Servlet

<servlet>

<servlet-name>jsp</servilet-name>
<servlet-class>org.apache. jasper.servlet.JspServilet</servilet-
class>

<init-param>
<param-name>fork</param-name>
<param-value>false</param-value>

</init-param>

<init-param>
<param-name>xpoweredBy</param-name>
<param-value>false</param-value>

</init-param>

<load-on-startup>3</load-on-startup>

</servlet>

<I-- The mapping for the JSP servlet -->
<servlet-mapping>

<servlet-name>jsp</servilet-name>

<url-pattern>*_jsp</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>jsp</serviet-name>
<url-pattern>*_jspx</url-pattern>
</servlet-mapping>

SSI Servlet

The Server Side Includes (SSI) processing servlet processes SSI directives in HTML
pages consistent with similar capabilities in web servers like Apache. Traditionally, this
servlet is mapped to the URL pattern *.shtml. The SSI Servlet and the servlet-mapping
for the SSI Servlet are commented out in the <NSJSP_HOME>/conf/web . xml file.

For more information, see http://tomcat.apache.org/tomcat-6.0-doc/ssi-howto.html.

Note. If you have configured the iTP Secure WebServer to serve the static content of your
web applications, HP recommends that you use the SSI feature offered by the iTP Secure

WebServer. For more information, see the iTP Secure WebServer System Administrator's

Guide.

Example 3-56 shows the configuration of the SSI Servlet.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-69

Configuring NSJSP The web.xml File

Example 3-56. Configuration of the SSI Servlet

<I--
<servlet>
<servlet-name>ssi</servlet-name>
<servlet-class>
org.apache.catalina.ssi.SSIServlet
</servlet-class>
<init-param>
<param-name>buffered</param-name>
<param-value>1</param-value>
</init-param>
<init-param>
<param-name>debug</param-name>
<param-value>0</param-value>
</init-param>
<init-param>
<param-name>expires</param-name>
<param-value>666</param-value>
</init-param>
<init-param>
<param-name>isVirtualWebappRelative</param-name>
<param-value>0</param-value>
</init-param>
<load-on-startup>4</load-on-startup>
</servlet>
-—>
<I--

<servlet-mapping>
<servlet-name>ssi</servlet-name>
<url-pattern>*_shtml</url-pattern>
</servlet-mapping>
-—>

CGI Processing Servlet

The Common Gateway Interface (CGIl) processing servlet, enables execution of and
interaction with external applications that conform to the CGlI specification. Typically,
this servlet is mapped to the URL pattern /cgi-bin/*, which means that any CGI
applications that are executed must be present within the webapps directory structure.
The CGI Servlet and the servlet-mapping for the CGI Servlet are commented out in the
<NSJSP_HOME>/conf/web.xml file. For more information, refer to
http://tomcat.apache.org/tomcat-6.0-doc/cgi-howto.html.

Note. The iTP Secure Webserver can be used to service CGI requests. For more
information on servicing CGI requests, see the Using Common Gateway Interface (CGl)
Programs section in the iTP Secure WebServer System Administrator's Guide.

Example 3-57 shows the configuration of the CGI processing Servlet.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-70

Configuring NSJSP The web.xml File

Example 3-57. Configuration of the CGI processing Servlet

<I--
<servlet>
<servlet-name>cgi</servlet-name>
<servlet-class>org.apache.catalina.servlets.CGlIServlet
</servlet-class>
<init-param>
<param-name>debug</param-name>
<param-value>0</param-value>
</init-param>
<init-param>
<param-name>cgiPathPrefix</param-name>
<param-value>WEB- INF/cgi</param-value>
</init-param>
<load-on-startup>5</load-on-startup>
</servilet>
-—>

<l--
<servlet-mapping>
<servlet-name>cgi</servlet-name>
<url-pattern>/cgi-bin/*</url-pattern>
</servlet-mapping>
-—>

Static Content Filter

This filter should be enabled when user applications are configured with a Persistent
Manager and the SessionBasedLoadBalancing parameter in the
servlet.configfile is set to false, and the application needs to return static
content. The use of the filter in that case, will eliminate some unnecessary session-
related database operations.

In the default configuration, the static content filter configuration is provided in the
<NSJSP_HOME>/conft/web .xml deployment descriptor, but it is commented out. As
an alternative, the filter can also be defined in application specific deployment
descriptors.

All static content, such as image files, static html pages and so on need to be mapped
to this filter using the i1 lter-mapping element in the web.xml file.

The use of the mapping the filter-mapping element by the Persistent Manager is
explained below:

When NSJSP is configured for disk-based sessions, the session object is swapped out
of memory after each request is processed. However, the session object is persisted to
the session store in a database table. When only static resources are returned to the
remote client by NSJSP, persisting the entire session object is unnecessary as the
session object does not change during static resource processing. The static content
filter is used to indicate to the Persistent Manager that the request being serviced is for
static content. When the static content filter is enabled, the persistent manager does

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-71

Configuring NSJSP The web.xml File

not perform the database operations on the session object thus eliminating
unnecessary database operation.

HP recommends that all the static content of an application be served directly by the
iTP Secure WebServer.

Example 3-58 shows the configuration of the static content filter.

Example 3-58. Configuration of the Static Content Filter

<l--
<fFilter>
<filter-name>StaticContentFilter</filter-name>
<filter-
class>com.hp.tandem.nsjsp.filters._StaticContentFilter</filter-class>
</filter>

<filter-mapping>
<filter-name>StaticContentFilter</filter-name>
<url-pattern>*_gif</url-pattern>
</Ffilter-mapping>

<filter-mapping>
<filter-name>StaticContentFilter</filter-name>
<url-pattern>*_jpeg</url-pattern>
</Filter-mapping>
-—>

Session Timeout

You can set the default session timeout (in minutes) for all newly created sessions by
modifying the value in the session-config element.

Example 3-59 shows the configuration of the session timeout parameter.

Example 3-59. Configuration of the Session Timeout Parameter

<session-config>
<sgSS|on—t!meout>30</sess|on—t|meout>
</session-config>

MIME Type Mappings
The <mime-mapping> element associates a file extension with a MIME type.

You can add an additional file extension if it is not already listed as a <mime-
mapp ing> element.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-72

Configuring NSJSP Virtual Hosts

Virtual Hosts

Assume that a NonStop server has two network names, hp.com, and

internal _hp.com and that NSJSP is required to run applications which use both of
these network names. The applications for both these network names could be
configured to run with the default configuration of NSJSP, which has only one Host
element. However, such a configuration is not flexible enough to separate the two sets
of applications. The use of Virtual Hosts provides the flexibility to define two different
Host elements, each one limited to servicing requests for only one of the networks.

Figure 3-4 illustrates a sample iTP Secure WebServer environment in which a user
accesses different URLSs, for example hp.com and internal .hp.com.

Figure 3-4. Virtual Hosting in a Sample iTP Secure WebServer Environment

[iTP Secure WebServer Environment \
mSJSP Servlet Containem

Host for hp.com

HTTP (\

émjL iTP Secure

= WebServer

\[internal.hp.com } o © © —

Host for internal.hp.col

\ 4
Userapplications running on the host

The following scenario shows an example of using Virtual Hosts.

In this example, the two URLSs are serviced by the same iTP Secure WebServer
environment and the user applications for those URLs are hosted in the same NSJSP
servlet container. The hp.com URL is a public URL and contains user applications that
do not need authentication. The internal .hp.com URL is a private URL and
contains user applications that require authentication. The different types of user
applications need to be segregated so that they can be secured separately. Although
user security can be applied at the individual application level, it is preferable to secure
applications under one secured entity, which is the Host. The virtual hosting feature
enables such a security configuration, which permits the implementation of separate
security constraints for each Host without impacting other Hosts.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-73

Configuring NSJSP Configuring Virtual Hosts

Configuring Virtual Hosts

To configure virtual hosts, you must configure multiple Host elements nested as child
elements in the Engine element. The value of the name attribute of each Host is used
by the Engine element to identify where requests should be routed.

When configuring multiple Host elements, it is necessary to have a different appBase
for each Host element and to configure the RequestTrackerValve for each Host.

Note. With the NSJSP Manager, it is possible to manage all applications running on all
the Hosts from a single point of management. For more information, see the NSJSP
Manager Application on page 4-1.

In many situations, system administrators might want to associate more than one
network name, such as www . hp.com and www.compag - hp . com with the same host.
This can be accomplished using host name aliases as shown in Example 3-60.

Example 3-60. Configuring Virtual Hosts

<Engine name="NSJSP'" defaultHost=""localhost'>

<Host name="localhost" appBase="'webapps" unpackWARs=""true"
autoDeploy=""true" xmlValidation="false"
xmINamespaceAware="false"
configClass=""com.tandem.servlet.catalina.startup.NSJSPContextConfig">

<Valve className=""com.hp.tandem.nsjsp.valves._RequestTrackerValve'/>

2/Host>

<Host name="www.hp.com"™ appBase="hpapps’ unpackWARs="true"
autoDeploy="false" xmlValidation="false"
xmINamespaceAware=""false"
configClass="com.tandem.servlet.catalina.startup.NSJSPContextConfig">
<Alias>compaq.hp.com</Alias>

<Valve className="'com.hp.tandem.nsjsp.valves.RequestTrackerValve'/>

2/Host>

<Host name="internal _.hp.com" appBase="internalapps" unpackWARs="true"
autoDeploy=""true”™ xmlValidation="false"
xmINamespaceAware=""false"
configClass=""com.tandem.servlet.catalina.startup.NSJSPContextConfig">

<Valve className=""com.hp.tandem.nsjsp.valves_RequestTrackerValve'/>

2/Host>

Example 3-60 shows www .compaq-hp.comincluded as an Al 1as element, which is
nested as a child element of the Host element where www.hp.com is the network
name.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-74

Configuring NSJSP Session Management

Session Management

This section describes the different strategies for session management and the related
manager configuration details and also explains how to configure any manager
element.

This section discusses the following topics:
® Sessions in NSJSP

In-Memory Sessions (SessionBasedLoadBalancing = true)

Persistent Manager Sessions (SessionBasedlLoadBalancing = false)

Mixed-Mode Sessions

Configuring the Manager Element

Sessions in NSJSP

The NSJSP environment includes multiple NSJSP Server Class processes. In this
environment, each NSJSP Server Class process instance is capable of servicing any
Servlet or JSP request, and creating and managing session objects required for
servicing the Servlet or JSP pages. For user applications that store the application
state in a session object, the session object must be made available for processing
each request. The shopping cart of the JPetStore application is an example of such a
session object.

You can configure NSJSP to keep session objects in process memory or to store them
in a database called the persistent store. When session objects are stored in process
memory, each session object is only available to the process instance that created the
session. In addition, if for any reason the process ends or is terminated, the session
information can be lost. When the session objects are stored in a persistent store, the
session objects are available to any process instance in the NSJSP environment. The
persisted session objects are available, if NSJSP processes stop and even after a
system reload.

In-Memory Sessions (SessionBasedLoadBalancing = true)

If you configure NSJSP to retain session objects in process memory, there must be a
mechanism to route all requests for a particular session to the process that has the
session object in its memory. Such a routing of HTTP requests based on the session
identifier in NSJSP is called session based load balancing. In this case,
SessionBasedLoadBalancing is enabled (that is, the parameter is set to true). This
feature is also referred to as Sticky Sessions. Because NSJSP receives all its requests
from the iTP Secure WebServer's HTTPD process, the routing mechanism is built into
the HTTPD process.

This is the default configuration for NSJSP. Figure 3-5 shows request routing within
NSJSP sessions when SessionBasedLoadBalancing is true.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-75

Configuring NSJSP In-Memory Sessions
(SessionBasedLoadBalancing = true)

Figure 3-5. Request Routing within NSJSP Sessions when
SessionBasedLoadBalancing is true

User 1 User 2

L

@)
D
’ |
i
4

uest éﬁ/’
1 4
N
L4

uest

Repuest 2

. Refluest1

CPUO \%9’@ CPU 1 B
3N

‘_’_’Fleultl R equestl o

5
o
3
()
(on

QS/MP Environment

_|

In Figure 3-5, each user has their own current session, within which more than one
request has been made. Note that all the requests from user 1 are routed to the
NSJSP process in CPU 0, which has the session object for user 1. All requests from

user 2 are routed to the NSJSP process in CPU 2, which has the session object for
user 2.

Configuring In-Memory Sessions

In the installation-specific servlet.config file located in <NSJSP_HOME>/conT,
set the value of the attribute SessionBasedLoadBalancing to true. Example 3-61
shows the Arglist from an installation-specific servlet.config file with
SessionBasedLoadBalancing enabled.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-76

Configuring NSJSP In-Memory Sessions
(SessionBasedLoadBalancing = true)

Example 3-61. Arglist from a servlet.config file with
SessionBasedLoadBalancing Enabled

Arglist -Xmx64m -Xss128k -Xnoclassgc \
-Djava.util.logging.manager=org.apache. juli.ClassLoaderLogManager \
-Djava.util.logging.config.file=$env(NSISP_HOME)/conf/logging.properties \
Djavax.-management.builder.initial=com.tandem.servlet.jmx_NSJSPMBeanServerB
iilder \

$NSISP_SECMGR \

$NSISP_SECMGR_POLICY \

$NSISP_JAAS_CONFIG \

-Dcom.tandem.servlet.CONTEXT PREFIXES=/scA \
-Dcatalina.home=$env(NSJSP_HOME) \

-Dcatalina.base=$env(NSJSP_HOME) \

-Djava.io.tmpdir=$env(NSJSP_HOME)/temp \

-DSessionBasedLoadBalancing=true

org.apache.catalina.startup.Bootstrap start

After enabling SessionBasedLoadBalancing, configure the
NSJSPStandardManager as the session manager. Example 3-62 shows the default
configuration of the NSJSP Standard Manager in the
<NSJSP_HOME>/conf/context.xml file.

Example 3-62. The Default Configuration of the NSJSP Specific Standard
Manager

<I--

NSJSP specific Standard Manager.

The Manager does no session persistence.
-—>
<Manager pathname=""""
className=""com.tandem.servlet.catalina.session_NSJSPStandardManager'/>

Table 3-18 lists the attributes of the NSISPStandardManager. For more information
on configuring the Manager element, see Configure the Manager Element on
page 3-82.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-77

Configuring NSJSP

In-Memory Sessions

(SessionBasedLoadBalancing = true)

Table 3-18. Attribute List for the NSIJSPStandardManager (page 1 of 2)

Attribute
className

distributable

algorithm

entropy

maxActiveSessi
ons

Description

Java class name of the implementation to use.
This class must implement the
org.apache.catalina.Manager interface.
The value must be
com.tandem.servlet.catalina.session.
NSJSPStandardManager.

When set to true, it requires the session
manager to enforce the restrictions described in
the Servlet Specification on distributable
applications. This means that all session
attributes must implement
jJava.io.Serializable. When set to false,
the session manager does not enforce these
restrictions.

NOTE: The value for this property is inherited
automatically based on the presence or absence
of the <distributable> element in the web
application deployment descriptor (/WEB-
INF/web.xml).

Represents the name of the Message Digest
algorithm used to calculate session identifiers
produced by the NSJSPStandardManager. This
value must be supported by the
Java.security._MessageDigest class. If this
attribute is not specified, the default value is MD5.

A string value that is used when seeding the
random number generator used to create session
identifiers for this Manager. If the entropy
attribute is not specified, an internal value is
calculated, but a long string value should be
specified in security-conscious environments.

The maximum number of active sessions that will
be created by this Manager, or -1 for no limit. If
this attribute is not specified, it is set to -1.

For more information, see maxActiveSessions on
page 3-79.

Default value

com. tandem.
servlet.
catalina.
session.
NSJSPStandard
Manager

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-78

Configuring NSJSP In-Memory Sessions

(SessionBasedLoadBalancing = true)

Table 3-18. Attribute List for the NSIJSPStandardManager (page 2 of 2)

Attribute Description Default value

maxlnactivelnt The maximum time interval, in seconds, between
erval client requests before a session is invalidated.

This attribute provides the initial value whenever
a new session is created, but the interval may be
dynamically altered by a servlet via the
setMaxInactivelnterval method of the
HttpSession object.

For more information, see maxlInactivelnterval on
page 3-79.

pathname The value of this attribute is ignored by the

NSJSPStandardManager .

processExpires Frequency of the session expiration, and related
Frequency manager operations. Manager operations will be

performed once for the specified amount of
backgroundProcess calls (the lower the
amount, the more often the checks will occur).
The minimum value is 1, and the default value is
6.

randomClass This class is used to generate the session id. It is

the Java class name of the Java.util _.Random
implementation class to use. If the
randomClass attribute is not specified, the
default value is
Java.security.SecureRandom.

sessionldLengt The length of session IDs created by this

h

Manager, excluding any JVM route information
used for load balancing.

Considerations for Configuring In-Memory Sessions

maxActiveSessions

An active session is one that is still present in the memory of the
NSJSPStandardManager. When creating new sessions, the
NSJSPPersistentManager looks at the number of sessions in memory. If the
number is equal to the value of maxActiveSessions when
maxActiveSessions is not equal to -1, a new session will not be created and an
exception is thrown. There could be situations where some of the sessions in
memory are eligible to be expired and removed from the memory. The removal of
expired sessions happens only when the backgroundprocess runs. Until such
time, the expired sessions are also counted as active sessions because they are
still in memory.

maxInactivelnterval

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-79

Configuring NSJSP Persistent Manager Sessions
(SessionBasedLoadBalancing = false)

This variable is used to set the maximum time interval, in seconds, between client
requests before a session is invalidated. However, it should be noted that in the
current version of NSJSP, during a context start or restart this variable is always
overridden by the value specified in the session-timeout element in the
application’s deployment descriptor (web .xml). If the application’s deployment
descriptor does not explicitly specify a session-timeout element, the value is
taken from the <NSJSP_HOME>/conf/web .xml file as shown in Example 3-63.
The default value for session-timeout, which is expressed in minutes, is 30.

Example 3-63. The Default Configuration of session-timeout in the
<NSJSP_HOME>/conf/web.xml File
<session-config>

<session-timeout>30</session-timeout>
</session-config>

It is possible to set the value of this variable at run time using the MBeans feature
of the NSJSP Manager. For more information on using the MBeans feature, see
Managing MBeans on page 4-46. The value set at run time will take effect
immediately but will not be persisted and will not be available across web
application context restarts.

Persistent Manager Sessions (SessionBasedLoadBalancing =
false)

You can also configure NSJSP such that, each NSJSP process in the NSJSP Server
Class stores its session objects in a persistent store that is accessible to every other
NSJSP process. This will enable any request from any HTTPD process to be serviced
by any NSJSP process in the server class. In this case, session objects are saved to a
persistent store (such as a database) after processing each request within a session.
In this case, session based load balancing is said to be disabled. To use persistent
sessions, you must set the value of SessionBasedLoadBalancing to false, and
you must configure a persistent manager. For more information, see Configuring a
Persistent Manager on page 3-81.

Figure 3-6 shows request routing, session object fetching and storing session objects
upon request completion, by the behavior of NSJSP when the persistent store is

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-80

Persistent Manager Sessions

Configuring NSJSP
(SessionBasedLoadBalancing = false)

configured.

Figure 3-6. Session Object Handling by NSJSP with the Persistent Store
Configuration

CPUO

\
Reltl N

ITP Webserverd

Session
Persistent Store

In Figure 3-6, user requests are not bound to any particular NSJSP process. An
NSJSP process upon receiving a request fetches the session object from the
persistent store, forms the response, saves the session object back to the store, and

returns the response.
Configuring a Persistent Manager
To configure a persistent manager, complete the following steps:

1. Set SessionBasedlLoadBalancing to false

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-81

Configuring NSJSP Persistent Manager Sessions
(SessionBasedLoadBalancing = false)

2. Configure the Manager Element

3. Create the Persistent Store

4. Configure the Persistent Store

Set SessionBasedLoadBalancing to false

Set the SessionBasedLoadBalancing parameter in the installation-specific
servlet.config file in <NSJSP_HOME>/conf directory to false.

Example 3-64 shows an Arglist from an installation-specific servlet.config file with
SessionBasedLoadBalancing set to false.

Example 3-64. An Arglist from a servlet.config file with
SessionBasedLoadBalancing set to false

Arglist -Xmx64m -Xss128k -Xnoclassgc \
-Dcom.tandem.servlet.CONTEXT _PREFIXES=/scA \
-Dcatal ina.home=$env(NSJSP_HOME) \
-Dcatalina.base=$env(NSJSP_HOME) \
-Djava.io.tmpdir=$env(NSJSP_HOME)/temp \
-DSessionBasedLoadBalancing=false
org.apache.catalina.startup.Bootstrap start

Configure the Manager Element

Configure the Manager element in the <NSJSP_HOME>/conf/context.xml file.
The default manager configuration in the <NSJSP_HOME>/conf/context.xml file is
commented out. Ensure that the className attribute is set to
com.tandem.servlet.catalina.session_NSJSPPersistentManager.

Example 3-65 shows the sample configuration of the Manager element in the
context.xml file.

Example 3-65. The Sample Configuration of the Manager Element

<Manager
className=""com.tandem.servlet.catalina.session_NSJSPPersistentManager'>

<Store

className=""com.tandem.servlet.catalina.session.NonStopSQLJDBCStore"
driverName="com.tandem.sqglmx.SQLMXDriver"
connectionURL="jdbc:sqlmx:"
sessionTable="nsjspcat.nsjspsch.SessData"
sessionldCol="session_id"
sessionProcessNameCol=""process_nhame"
sessionRecNumberCol=""rec_number"
sessionAppCol=""app_name"
sessionDataCol="session_data' sessionValidCol="valid"”
sessionMaxInactiveCol="maxinactiveinterval”
sessionLastAccessedCol=""lastaccessed"/>

</Manager>

As shown in Example 3-65, the Manager is configured with a nested store element.

Table 3-19 lists the attributes for the Manager element.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-82

Configuring NSJSP

Persistent Manager Sessions
(SessionBasedLoadBalancing = false)

Table 3-19. Attribute List for the Manager element (page 1 of 2)

Attribute
algorithm

className

entropy

maxActiveSess
ions

max ldleBackup
max ldleSwap

minldleSwap

maxlnactiveln
terval

Description

Name of the Message Digest algorithm used to
calculate session identifiers produced by this
Manager. This value must be supported by the
jJava.security.MessageDigest class. If the
algorithm attribute is not specified, the default
value is MD5.

Java class name of the implementation to use. This
class must implement the
org.apache.catalina.Manager interface. The
value should be
com.tandem.servlet.catalina.session.NSJ
SPPersistentManager.

A string value that is used when seeding the random
number generator used to create session identifiers
for this Manager. If the entropy attribute is not
specified, an internal value is calculated, but a long
string value should be specified in security conscious
environments.

Sessions are not kept in memory, so this attribute has
no significance for the Persistent Manager.

Sessions are not kept in memory, so this attribute has
no significance for the Persistent Manager.

Sessions are not kept in memory, so this attribute has
no significance for the Persistent Manager.

Sessions are not kept in memory, so this attribute has
no significance for the Persistent Manager.

The maximum time interval, in seconds, between
client requests before a session is invalidated.

This attribute provides the initial value whenever a
new session is created, but the interval may be
dynamically altered by a servlet via the
setMaxInactivelntervalmethod of the
HttpSession object.

For more information, see maxInactivelnterval on
page 3-84.

Default value

com.tandem.
servilet.cat
alina.sessi
on .NSJSPPer
sistentMana
ger

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-83

Configuring NSJSP Persistent Manager Sessions

(SessionBasedLoadBalancing = false)

Table 3-19. Attribute List for the Manager element (page 2 of 2)

Attribute Description Default value
randomClass Java class name of the java.util_.Random

implementation class to use. If randomClass
attribute is not specified, the default value is
jJava.security.SecureRandom.

saveOnRestart Sessions are not kept in memory, so this attribute has

no significance for the Persistent Manager.

sessionldLeng The length of session IDs created by this Manager,

th

excluding any JVM route information used for load
balancing. If this attribute is not specified, the default
value is 16.

Considerations for Configuring the Manager Element

maxInactivelnterval

This variable is used to set the maximum time interval, in seconds, between client
requests before a session is invalidated. However, it should be noted that in the
current version of NSJSP, during a context start or restart this variable is always
overridden by the value specified in the session-timeout element in the
application’s deployment descriptor (web .xml). If the application’s deployment
descriptor does not explicitly specify a session-timeout element, the value is
taken from the <NSJSP_HOME>/conf/web .xml file as shown in Example 3-66.
The default value for session-timeout, which is expressed in minutes, is 30.

Example 3-66. Default Configuration of session-timeout in the
<NSJSP_HOME>/conf/web.xml File

<session-config> i i
<session-timeout>30</session-timeout>
</session-config>

It is possible to set the value of this variable at run time using the MBeans feature
of the NSJSP Manager. The value set at run time will take effect immediately but
will not be persisted and will not be available across web application context
restarts.

Create the Persistent Store

To configure NSJSP for persistent sessions, create a NonStop SQL database (catalog
and table) to store the persistent session data. The following SQL scripts are used to
create a table to store persistent session data:

For SQL/MP: nsjsp_createSessionStore_mp.sql

For SQL/MX: nsjsp_createSessionStore_mx.sql

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-84

Configuring NSJSP Persistent Manager Sessions
(SessionBasedLoadBalancing = false)

To create the NonStop SQL database for storing the persistent session data, perform
the task for the database product that will be used to create and access the persistent
store table:

® For the NonStop SQL/MP database:

Make a copy of the nsjsp_createSessionStore_mp.sql file and replace all
occurrences of =TheT1222SessionCatalog with the Guardian location (of the
form $Volume . SubVol) where you want the persistent session catalog and table
to be created. This subvolume (disk) should be a TMF-audited data volume.

Use the following OSS command to create the table:

osh> gtacl -p sqlci <
nsjsp_createSessionStore_mp.sql.your_copy

Example 3-67 shows the SQL/MP script to create the persistent store.

Example 3-67. SQL/MP script to create a Persistent Store

create catalog $dataOl.nsjspcat secure "0000";

-— Create the NonStop(tm) SQL Table in the above catalog for storing the
-— NonStop(tm) Servlets for JavaServer Pages(tm) persistent session
data.

create table $dataOl.nsjspcat.sessdata (

session_id CHAR(48) NO DEFAULT NOT NULL,
process_name CHAR(8) NO DEFAULT NOT NULL,
rec_number INTEGER UNSIGNED NO DEFAULT NOT NULL,
valid SMALLINT UNSIGNED NO DEFAULT,
maxinactiveinterval [INTEGER NO DEFAULT,

lastaccessed LARGEINT NO DEFAULT,

app_name VARCHAR(150) NO DEFAULT NOT NULL,
session_data VARCHAR(3600) CHARACTER SET 15088591,

primary key (session_id, process_name, rec_number))
catalog $dataOl.nsjspcat;

® For the NonStop SQL/MX database:

Make a copy of the nsjsp_createSessionStore_mx.sql file and replace the
=TheT1222SessionCatalog string with a valid catalog name. Replace the
=TheT1222SessionSchema string with a valid schema name.

Use the following OSS command to create the mx table:

osh> mxcl < nsjsp_createSessionStore_mx.sql.your_copy
Example 3-68 shows the SQL/MX script to create the persistent store.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-85

Configuring NSJSP Persistent Manager Sessions
(SessionBasedLoadBalancing = false)

Example 3-68. SQL/MX script to create a Persistent Store

create catalog nsjspcat;

set catalog nsjspcat;

create schema nsjspsch;

set schema nsjspsch;

-— Create the NonStop(tm) SQL Table in the above catalog for storing the
-- NonStop(tm) Servlets for JavaServer Pages(tm) persistent session data.

create table SessData (

session_id CHAR(48) NO DEFAULT NOT NULL,
process_name CHAR(8) NO DEFAULT NOT NULL,
rec_number INTEGER UNSIGNED NO DEFAULT NOT NULL,
valid SMALLINT UNSIGNED NO DEFAULT,
maxinactiveinterval [INTEGER NO DEFAULT,

lastaccessed LARGEINT NO DEFAULT,

app_name VARCHAR(150) NO DEFAULT NOT NULL,
session_data VARCHAR (3600) CHARACTER SET 15088591,

primary key (session_id, process _name, rec_number));

Configure the Persistent Store

When configuring a Manager element for session persistence, a Store element must
be configured as a child element of the Manager element.

Example 3-69 shows the sample configuration of the Store element.

Example 3-69. Sample Configuration of the Store Element

<Manager
className=""com.tandem.servlet.catalina.session.NSJSPPersistentManager' >

<Store

className=""com.tandem.servlet._catalina.session_NonStopSQLJDBCStore"
driverName="com.tandem.sqlmx.SQLMXDriver"
connectionURL="jdbc:sqlmx:""
sessionTable="nsjspcat.nsjspsch.SessData"
sessionldCol="session_id"
sessionProcessNameCol=""process_nhame"
sessionRecNumberCol=""rec_number"
sessionAppCol="app_name"
sessionDataCol="session_data' sessionValidCol="valid"”
sessionMaxlnactiveCol="maxinactiveinterval"
sessionLastAccessedCol="lastaccessed"/>

</Manager>

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-86

Configuring NSJSP Persistent Manager Sessions
(SessionBasedLoadBalancing = false)

Table 3-20 lists the attributes for the Store element.

Table 3-20. Attribute List for the Store Element (page 1 of 2)

Attribute Description Default value

checklinterval Not applicable to NSJSP.

className Java class name of the implementation to com.tandem.serv
use. This class must implement the let._catalina.se
org.apache.catalina.Store interface. ssion.NonStopSQ
This must be LJDBCStore

com.tandem.servlet.catalina.sessi
on.NonStopSQLJDBCStore.

driverName Java class name of the JDBC driver to be com_tandem._sqlm
used. X.SQLMXDriver
connectionURL The connection URL that will be handed to Jdbc:sqglmx:

the configured JDBC driver to establish a
connection to the database containing the
session table.

sessionTable Name of the database table to be used for
storing swapped out sessions.

Note. You must replace this value with the
appropriate catalog, schema, and
tablename.

sessionldCol Name of the database column, contained in session_id
the specified session table, that contains the
session identifier of the swapped out

session.
sessionProcessN Name of the database column that contains process_name
ameCol the process name that created this session.
sessionRecNumbe The index nhumber of each record when a rec_number
rCol session must be split into multiple rows in

the table.
sessionAppCol Name of the database column, contained in app_nhame

the specified session table, that contains the
Engine, Host, and Web application context
name in the format
/<Engine_name>/<Host_name>/<Conte
Xt _name>.

sessionDataCol Name of the database column, contained in session_data
the specified session table, that contains the
serialized form of all session attributes for a
swapped out session.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-87

Configuring NSJSP Mixed-Mode Sessions

Table 3-20. Attribute List for the Store Element (page 2 of 2)

Attribute Description Default value

sessionValidCol Name of the database column, contained in valid
the specified session table, that contains a
flag indicating whether this swapped out
session is still valid or not.

sessionMaxlnact Name of the database column, contained in maxinactiveinte
iveCol the specified session table, that contains the rval

max Inactivelnterval property of this

session.

sessionLastAcce Name of the database column, contained in lastaccessed
ssedCol the specified session table, that contains the
lastAccessedTime property of this
session.

Mixed-Mode Sessions

In NSJSP 6.1, you can also a configure a mixed-mode session. In a mixed-mode
session, a session can be configured so that it is kept in memory and also saved to a
persistent store at regular intervals.

When configured this way, the sessions exhibit the sticky sessions behavior (similar to
the behavior when SessionBasedLoadBalancing is enabled for in memory
sessions). This means that all requests for a particular session are routed to the same
Servlet Server Class process. The sessions are also persisted to the store at regular
intervals. The interval is calculated based on the backgroundProcessorDelay of
the manager's parent element (in this case it is the context). If this attribute is not
specified for the context, the Host attribute (the parent element of the context) is used.
If the Host does not specify this attribute, then the Engine background processor delay
is used.

In the default configuration, the backgroundProcessorDelay of the Engine is 60
seconds and the Host and the contexts do not explicitly configure the
backgroundProcessorDelay attribute. The in memory sessions are checked if they
are eligible for persistence every (60 X 6)=360 seconds. The number 6 is the value of
the processExpiresFrequency attribute of the persistence manager.

The following are the checks performed to decide if a session must be persisted to the
store or not:

1. |If the time since the last access is greater than the value indicated by
maxldleSwap, the session is persisted to the store and is removed from memory.
For more information on maxldleSwap, see Table 3-21.

2. If the number of in-memory sessions is greater than the number indicated by
maxActiveSessions, then the sessions that are idle for longer than the time
indicated by minldleSwap are persisted to the store. In this case, after the

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-88

Configuring NSJSP Mixed-Mode Sessions

session is persisted, it is removed from process memory. Sessions are persisted till
the number of active sessions is less than maxActiveSessions. For more
information on maxActiveSessions and minldleSwap, see Table 3-21.

3. All the remaining in-memory sessions are checked to see if the time since they
were last accessed is greater than max1dleBackup. If so, the session is written to
the persistent store, but is not removed from process memory. For more
information on maxldleBackup, see Table 3-21.

Configuring Mixed-Mode Sessions

To configure a mixed-mode session, complete the following steps:

1. Set SessionBasedLoadBalancing to true

Configure the Manager Element

2
3. Create the Persistent Store
4

Configure the Persistent Store

Set SessionBasedLoadBalancing to true

Set SessionBasedLoadBalancing to true in the installation-specific
servlet.confTig file in the <NSJSP_HOME>/conT directory.

Example 3-70 shows the Arglist of an installation-specific servlet.config file with
SessionBasedLoadBalancing set to true.

Example 3-70. An Arglist from a servlet.config file with
SessionBasedLoadBalancing Set to true

Arglist -Xmx64m -Xss128k -Xnoclassgc \
-Dcom.tandem.servlet.CONTEXT _PREFIXES=/scA \
-Dcatal ina.home=$env(NSJSP_HOME) \
-Dcatalina.base=$env(NSJSP_HOME) \
-Djava.io.tmpdir=$env(NSJSP_HOME)/temp \
-DSessionBasedLoadBalancing=true
org.apache.catalina.startup.Bootstrap start

Configure the Manager Element

Configure the Manager element in the <NSJSP_HOME>/conf/context.xml file.
Ensure that the className attribute is set to
com.tandem.servlet.catalina.session.NSJSPPersistentManager.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-89

Configuring NSJSP Mixed-Mode Sessions

Example 3-71 shows the sample configuration of the Manager Element.

Example 3-71. The Sample Configuration of the Manager Element

<Manager
className=""com.tandem.servlet.catalina.session_NSJSPPersistentManager'>

<Store

className=""com.tandem.servlet.catalina.session.NonStopSQLJDBCStore"
driverName="com.tandem.sqglmx.SQLMXDriver"
connectionURL="jdbc:sqlmx:""
sessionTable="nsjspcat.nsjspsch.SessData"
sessionldCol="session_id"
sessionProcessNameCol="process_name"
sessionRecNumberCol=""rec_number"
sessionAppCol="app_name"
sessionDataCol=""session_data" sessionValidCol="valid"
sessionMaxInactiveCol="maxinactiveinterval”
sessionLastAccessedCol=""lastaccessed"/>

</Manager>

As shown in Example 3-71, the Manager is configured with a nested store element.

Table 3-21 lists the attributes of the Manager element that have a different meaning
when compared to a configuration where all sessions are saved to a persistent store.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-90

Configuring NSJSP

Mixed-Mode Sessions

Table 3-21. Attribute List of the Manager Element.

Attribute

maxActiveSess
ions

maxldleBackup

maxldleSwap

minldleSwap

maxlnactiveln
terval

Description

Maximum number sessions that can be kept in-memory. If this
attribute is not specified, it is set to -1.

The time interval (in seconds) since the last access to a session
before it is eligible for being persisted to the session store, or -1 to
disable this feature. By default, this feature is disabled.

The time interval (in seconds) since the last access to a session
before it should be persisted to the session store, and removed from
the server's memory and written to the database, or -1 to disable this
feature. If this feature is enabled, the time interval specified must be
equal to or longer than the value specified for max1dleBackup. By
default, this feature is disabled.

The time interval (in seconds) since the last access to a session
before it will be eligible to be persisted to the session store, and then
removed from the server's memory and written to the database, or -1
for this swapping to be available at any time. If specified, this value
must be less than that specified by max1dleSwap.

The maximum time interval, in seconds, between client requests
before a session is invalidated.

This attribute provides the initial value whenever a new session is
created, but the interval may be dynamically altered by a servlet via
the setMaxInactivelntervalmethod of the HttpSession
object.

For more information, see maxlnactivelnterval on page 3-91.

Considerations for Configuring Mixed-Mode Sessions

maxInactivelnterval

This variable is used to set the maximum time interval, in seconds, between client
requests before a session is invalidated. However, it should be noted that in the
current version of NSJSP, during a context start or restart this variable is always
overridden by the value specified in the session-timeout element in the
application’s deployment descriptor (web .xml). If the application’s deployment
descriptor does not explicitly specify a session-timeout element, the value is
taken from the <NSJSP_HOME>/conf/web .xml file as shown in Example 3-72.
The default value for session-timeout, which is expressed in minutes, is 30.

Example 3-72. Default Configuration of session-timeout in the
<NSJSP_HOME>/conf/web .xml File

<session-config>
<session-timeout>30</session-timeout>
</session-config>

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-91

Configuring NSJSP Determining the Storage Capacity of the Persistent
Store

It is possible to set the value of this variable at run time using the modify MBeans
feature of the NSJSP Manager. The value set at run time will take effect
immediately but will not be persisted and will not be available across web
application context restarts.

Determining the Storage Capacity of the Persistent Store

It is important to determine how many sessions may need to be stored in the persistent
store and then size the persistent store accordingly. Because the size of a session
varies from one application to the other, there cannot be a simple formula for sizing the
persistent store. The following example explains the factors that need to be considered
while sizing a session store.

If at maximum capacity the application produces 20,000 sessions per day and if the
session cleanup script is run daily to clean up sessions older than 5 days, the session
store should have capacity to hold a minimum of 5 X 20,000 (=100,000) session
objects. This example assumes that the session expiry duration (session-timeout)
is less than 5 days. For more information on cleaning session table, see the Cleaning
the NonStop SQL Session Data on page 3-94.°@

For any given application, perform the following steps to decide the size of the session
store.

1. Run your application to create 10% of the maximum number of session objects
that are to be stored in the session store. In the above example it is 10% of
100,000 (=10,000).

2. After the sessions are created, locate the physical file of the session table and
determine its size. For more information, Determining the size of the session table
on page 3-92. Ensure that the size of the table is at least 10 times greater than this
size.

The SQL command that can be used to count the number of sessions in the table
is:
select count (distinct session_id) from sessdata;

Determining the size of the session table
To determine the size of the session table, complete the following steps:

1. Obtain the disk file name for the sessions table. For SQL/MX, use the showddl
command. Enter showdd|l followed by the
<catalog>.<schema>.<tablename> of the session table at the SQL/MX
command interface (mxci) prompt to determine the disk file name. Example 3-73

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-92

Configuring NSJSP Determining the Storage Capacity of the Persistent

Store
shows the sample output of a showddl command.
Example 3-73. The Sample Output of a showddl Command
>>showddl nsjspcat.nsjspsch.sessdata;
CREATE TABLE NSJSPCAT.NSJSPSCH.SESSDATA
SESSION_ID CHAR(48) CHARACTER SET 1S088591
COLLATE
DEFAULT NO DEFAULT -- NOT NULL NOT DROPPABLE
, PROCESS_NAME CHAR(8) CHARACTER SET 1S088591
COLLATE
DEFAULT NO DEFAULT -- NOT NULL NOT DROPPABLE
, REC_NUMBER INT UNSIGNED NO DEFAULT
-— NOT NULL NOT DROPPABLE
, VALID SMALLINT UNSIGNED NO DEFAULT
, MAXINACTIVEINTERVAL INT NO DEFAULT
, LASTACCESSED LARGEINT NO DEFAULT
, APP_NAME VARCHAR(150) CHARACTER SET
15088591
COLLATE DEFAULT NO DEFAULT -- NOT NULL NOT DROPPABLE
, SESSION_DATA VARCHAR(3600) CHARACTER SET
15088591

COLLATE DEFAULT DEFAULT NULL
, CONSTRAINT NSJSPCAT.NSJSPSCH.SESSDATA 279712597 5623 PRIMARY KEY
(SESSION_ID ASC, PROCESS_NAME ASC, REC_NUMBER ASC) NOT
DROPPABLE
, CONSTRAINT NSJSPCAT.NSJSPSCH.SESSDATA 385269497 5623 CHECK
(NSJSPCAT .NSJISPSCH . SESSDATA.SESSION_ID IS NOT NULL AND
NSJSPCAT .NSJSPSCH. SESSDATA.PROCESS_NAME 1S NOT NULL AND
NSJSPCAT .NSJSPSCH. SESSDATA.REC_NUMBER 1S NOT NULL AND
NSJSPCAT .NSJSPSCH. SESSDATA.APP_NAME 1S NOT NULL) NOT DROPPABLE

)

LOCATION \POS02.$DATA0O.ZSDGSWWM . IM2SKHOO

NAME POS02_DATAOO_ZSDG8WWM_JM2SKHOO

STORE BY (SESSION_ID ASC, PROCESS_NAME ASC, REC_NUMBER ASC)

2. Usethe fup info <filename>,detail command at a TACL prompt to display
the current size of the file. Example 3-74 shows the sample output of a fup 1Info
<filename>,detail command.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-93

Configuring NSJSP Determining the Storage Capacity of the Persistent
Store

Example 3-74. The Sample Output of a fup Info <fFilename>,detail
Command

3> fup info $DATAO0O.ZSDGBWWM.X8BXVNOO ,detail

$DATAOO . ZSDGSWWM . X8BXVNOO 26 Apr 2010, 10:44

SQL ANSI TABLE
ANSI NAME NSJSPCAT.NSJSPSCH.SESSDATA
RESOURCE FORK \P0S02.$DATA00.ZSDG8WWM . X8BXVNO1
SYSTEM METADATA \P0SO02.$0SS03.ZSDO
VERSION 1200
TYPE K
FORMAT 2
CODE 550
EXT (16 PAGES, 64 PAGES, MAXEXTENTS 160)
PACKED REC 3852
BLOCK 4096
KEY (COLUMN 0, ASC ,

COLUMN 1, ASC ,

COLUMN 2, ASC
PART (0, \POS02.$DATA0O.ZSDGSWWM.X8BXVNOO)
PART (1, \POS02.$DATAO1L.ZSDGSWWM.PWHXVNOO)
PART (2, \POS02.$FC31.ZSDG8WWM.PWIXVNOO)
PART (3, \POS02.$FC34.ZSDG8WWM.QS9XVNOO)
AUDIT
BUFFERED
AUDITCOMPRESS
OWNER 101,2
SECURITY (RWEP): *SQL
DATA MODIF: 5 Apr 2010, 15:12
CREATION DATE: 29 Mar 2010, 12:16
REDEFINITION DATE: 29 Mar 2010, 12:16
LAST OPEN: 5 Apr 2010, 15:11
EOF: 2224128 (10.7% USED)
EXTENTS ALLOCATED: 71
INDEX LEVELS: 2
PARTITION ARRAY FORMAT2ENABLED

Cleaning the NonStop SQL Session Data

Sessions saved by the NonStopSQLJDBCStore to a NonStop SQL database may
never get deleted and will remain as orphan sessions when:

® The sessions are saved during an NSJSP container restart and are never
accessed after the restart, or

® The sessions are backed up, or swapped out to the NonStop SQL database and
are never accessed again after an NSJSP container fails and is restarted.

As a result, over a period of time, the session database may become very large.
Therefore, It is important to clean the session store periodically to prevent the table
from filling up, which can lead to session creation errors.

The <NSJSP_HOME>/conf/nsjsp_cleanSessionData script enables you to delete
the sessions that have expired prior to a specified number of days (the nDays
parameter) - see Example 3-75 for details. This script should be run periodically to
clean the session. You may run this script manually as shown in Example 3-76, or
preferably it should be automated through a job scheduler such as cron or NetBatch.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-94

Configuring NSJSP Determining the Storage Capacity of the Persistent
Store

Example 3-75 shows the SQL session data cleanup script.

Example 3-75. SQL Session Data Cleanup Script

Usage: nsjsp_cleanSessionData nDays

where nDays: Number of days for which session data is to be
preserved/saved. Sessions that have expired more than "nDays*”
ago will be deleted. A value of zero (0) will delete all the
expired sessions.

Example 3-76 shows an invocation of the nsjsp_cleanSessionData script.

Example 3-76. Using the nsjsp_cleanSessionData Script

osh> /usr/tandem/webserver/servlet_jsp/conf: nsjsp_cleanSessionData 0O
NonStop(tm) Servlets for JavaServer Pages(tm)
Persistent Sessions Cleanup Script
T1222 v6.0

Cleans up the persistent session data stored in a NonStop(tm) SQL
database for NonStop(tm) Servlets for JavaServer Pages(tm).

Persistent Session Store type is SQL/MX [y(default) or n]:
Please enter the Persistent Session Catalog [T1222CAT.T1222SCH] :
nsjspcat.nsjspsch

Persistent Sessions Catalog = nsjspcat.nsjspsch
Persistent Sessions Table = nsjspcat.nsjspsch.SessData

Hewlett-Packard NonStop(TM) SQL/MX Conversational Interface 2.2
(c) Copyright 2006 Hewlett-Packard Development Company, LP.
>>DELETE FROM nsjspcat.nsjspsch.SessData

+>WHERE (Juliantimestamp(current) -

+> Juliantimestamp(timestamp "1970-01-01:00:00:00.00%) -
+> (1000 * lastaccessed)) >
+> (1000 * 1000 * (maxinactiveinterval + (0 * 24 * 60 * 60)));

-—-= 0 row(s) deleted.

Partitioning the Session Table

In applications where there is a lot of session activity and many sessions are created,
the time consumed for session related database activity can be considerably reduced
by partitioning the session table. Because the value of the session ID is a randomly
generated string, a hash partition will be efficient in distributing data across multiple
partitions. Example 3-77 shows how to create a session table with four partitions that
are spread across four different disks. For better performance, it is recommended that
you configure the partitions on disks with their disk processes in different processors.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-95

Configuring NSJSP Configuring the Manager Element

Example 3-77. Creating A Session Data Table with Four Partitions Across Four
Different Disks

create table sessdata (

session_id CHAR(48) NO DEFAULT NOT NULL,
process_name CHAR(8) NO DEFAULT NOT NULL,
rec_number INTEGER UNSIGNED NO DEFAULT NOT NULL,
valid SMALLINT UNSIGNED NO DEFAULT,
maxinactiveinterval [INTEGER NO DEFAULT,

lastaccessed LARGEINT NO DEFAULT,

app_name VARCHAR(150) NO DEFAULT NOT NULL,
session_data VARCHAR(3600) CHARACTER SET 15088591,

primary key (session_id, process _name, rec_number))
location $DATAO3
hash partition by (session_id)(

add location $DATAOQO,

add location $DATAO1,

add location $DATAO02

)

Configuring the Manager Element

The Manager element represents the session manager that will be used to create and
maintain HTTP session objects as requested by a web application.

A Manager element is always configured as a child of the Context element. Each
application can configure its own Manager in the context definition in the META-
INF/context.xml file of the application. Example 3-78 shows a sample context
configured with a persistent manager.

Note. Before using a persistent manager, the session table must be created. For
information on how to create the session table, see Create the Persistent Store on
page 3-84.

For all applications that do not define a Manager explicitly, the Manager configured in
the <NSJSP_HOME>/conf/context.xml file will be used as the default manager. By
default, the NSIJSPStandardManager is used. This is an in-memory session
manager. Example 3-79 shows the default Manager configuration in the
<NSJSP_HOME>/conf/context.xml file.

Example 3-78 shows a sample context configured with a persistent manager.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-96

Configuring NSJSP Configuring the Manager Element

Example 3-78. Sample Context Configured with a Persistent Manager

<Context docbase="examples' reloadable=""false">
<Manager
className=""com.tandem.servlet.catalina.session.NSJSPPersistentManager'>

<Store
className=""com.tandem.servlet.session.NonStopSQLJDBCStore"
driverName="com.tandem.sqlmx.SQLMXDriver"
connectionURL=""jdbc:sqlmx:"
sessionTable="nsjspcat.nsjspsch.SessData"
sessionldCol="session_id"
sessionProcessNameCol="process_name"
sessionRecNumberCol="rec_number"
sessionAppCol=""app_name"
sessionDataCol=""session_data" sessionValidCol="valid"
sessionMaxlnactiveCol="maxinactiveinterval"
sessionLastAccessedCol=""lastaccessed" />
</Manager>
</Context>

Example 3-79 shows the default Manager configuration in the
<NSJSP_HOME>/conf/context.xml file.

Note. A sample Persistent Manager configuration is provided. However, it is commented
out.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
3-97

Configuring NSJSP Configuring the Manager Element

Example 3-79. Default Configuration of the Manager Element

<I--

-—>

<Con

<I--

clas

clas

-—>

</Co

The contents of this file will be loaded for each web application

text>
<l-- Default set of monitored resources -->
<WatchedResource>WEB-INF/web .xml</WatchedResource>

<l--

NSJSP specific Web application loader.

All contexts In NSJSP must be loaded using this application loader.
—-——>

<Loader
className=""com.tandem.servlet.catalina.loader _NSJSPWebappLoader'/>
<l--
NSJSP specific Standard Manager.
The Manager does no session persistence.
-—>
<l--
Following is the Default Manager element configuration
-——>

<Manager pathname=
className=""com.tandem.servlet._catalina.session_NSJSPStandardManager'/>

<l--
Following is a sample Manager element configuration
-—>
<Manager
sName=""com.tandem.servlet.catalina.session.NSJSPPersistentManager'>

<Store

sName=""com.tandem.servlet.catalina.session.NonStopSQLJDBCStore"
driverName="com.tandem.sqlmx.SQLMXDriver"
connectionURL=""jdbc:sqlmx:""
sessionTable="<catalog>.<schema>.<tablename>"
sessionldCol="session_id"
sessionProcessNameCol="process_name"
sessionRecNumberCol="rec_number"
sessionAppCol=""app_name"
sessionDataCol=""session_data" sessionValidCol="valid"
sessionMaxlnactiveCol="maxinactiveinterval"
sessionLastAccessedCol=""lastaccessed"/>

</Manager>

ntext>

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

3-98

~4— Managing NSJSP

This chapter describes the tools that are used to manage NSJSP installations and the
web applications deployed in those NSJSP installations. This chapter covers the
following topics:

® NSJSP Manager Application

® Admin Web Application

Manager Web Application

Operations Using the Command-line Interface

Manual Deployment and Undeployment of Web Applications

Comparison of the Management Applications

Single Point of Management Using the NSJSP Manager

The Architecture of the NSJSP Manager

NSJSP Manager Application

Starting with the NSJSP 6.1 release, a new management web application, the NSJSP
Manager, is provided. This section describes the following topics related to the NSJSP
Manager application:

® Overview

® NSJSP Manager Features
® NSJSP Security
°

NSJSP Manager Operations

Overview

The NSJSP Manager is a web-based, Graphical User Interface (GUI) tool that you can
use to manage an NSJSP 6.1 installation within an iTP Secure WebServer
environment.

The NSJSP Manager must be installed, before it can be used. The NSJSP setup
script can be used to create an NSJSP Manager installation. Also, when creating an
NSJSP installation, the setup script verifies if the NSJSP Manager has already been
installed, and if not, the user is given the option to install the NSJSP Manager at that
time. For more information on installing the NSJSP Manager application and NSJSP
6.1, see Chapter 2, Installing NSJSP.

The NSJSP Manager can manage server classes in a single iTP Secure WebServer
PATHMON or in a Pathway domain with two PATHMONS when using an iTP Secure
WebServer configured for online-upgrade.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-1

Managing NSJSP NSJSP Manager Features

The NSJSP Manager also enables you to deploy and manage web applications
running in the default localhost or in any additional virtual Hosts specified within the
server.xml file in an NSJSP 6.1 installation directory.

NSJSP Manager Features
The NSJSP Manager application enables you to do the following:
® Manage NSJSP 6.1 Server Classes
© Start, freeze, thaw, and stop NSJSP 6.1 Server Classes
© Display NSJSP 6.1 Server Class information:
© System execution environment information
© Configuration parameters
© Server class process information

© NSJSP connector statistics

© Server class statistics

Note. Each NSJSP 6.1 installation has two server classes and with the NSJSP Manager,
you can select and manage any server class, from any of the NSJSP 6.1 installations
under the same iTP Secure WebServer installation.

® Manage web applications
© List all deployed web applications
© View details of web applications
© Requests
© Session information
© HTTP method statistics
© Context and deployment descriptors
© Servlet mappings
© Filters
© Initialization parameters
© Perform tasks, such as, start, stop, reload, and undeploy web applications.
© Deploy web applications
® Access NSJSP and Apache Tomcat MBeans:
© List the MBean tree structure

© Select and view MBean attributes

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-2

Managing NSJSP NSJSP Security

© Compare MBean attributes across processes
°© Modify MBean attributes

For more information on how to use the NSJSP Manager application, see the NSJSP
Manager Operations on page 4-3.

NSJSP Security

To log in to the NSJSP Manager application, you require a user name and password.
By default, a user called admin is used to log in to the NSJSP Manager application.
The password assigned during the NSJSP Manager installation is the password for the
admin user.

You can add new users by editing the <NSJSP manager installation
directory>/conf/ nsjsp-users.xml file. All users must be assigned a role:
manager or admin. The manager role enables you to manage or monitor the web
applications installed in NSJSP. The admin role enables you to perform the operations
using the Admin Web application. Both manager and the admin roles authorize you to
use the NSJSP Manager application.

Note. The admin user has both admin and the manager roles assigned.

For more information on using the Admin Web application, see the Admin Web
Application on page 4-56.

For more information on NSJSP security, see Securing Web Applications on page 7-1.

NSJSP Manager Operations

This section describes how to use the NSJSP Manager application to perform
management tasks. This section covers the following topics:

Logging in to the NSJSP Manager Application

Selecting the Server Class and Host

NSJSP Manager Functions

Viewing Information about Web Applications

Managing Web Applications

Viewing Server Class Information

Performing Server Class Operations

Viewing MBeans

Managing MBeans

Deploying Web Applications

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-3

Managing NSJSP NSJSP Manager Operations

Logging in to the NSJSP Manager Application

To manage the NSJSP Server Classes that are created using the setup script, log in
to the NSJSP Manager application.

To log in to the NSJSP Manager application, complete the following steps:
1. Enter the following URL:

http://1P address:Port number/manager/
For example:

http://15.148.2.1:1088/manager/
where,

15.148.2.1 specifies the IP address of the system on which the NSJSP
Manager application is deployed.

1088 specifies the Port number of the iITP Secure WebServer.
The login page of the NSJSP Manager application appears.
Figure 4-1 shows the NSJSP Manager application login page.

Figure 4-1. NSJSP Manager Application Login Page

NSJSP Manager

User Name |

Pazsword

Sign in

@ Copyright 20410 Hewlett-Padkard Development Company, L.P.

2. Enter the user name and password.

Note. The default user name is admin. Use the password that you provided while running
the setup script.

3. Click Sign In.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-4

Managing NSJSP NSJSP Manager Operations

The NSJSP Manager Scope page appears.

By default, the Scope tab is enabled. To enable all the NSJISP Manager functions for a
specific server class, you must select and set the server class and the Host.

Note. The NSJSP Manager application can only manage server classes that belong to NSJSP
6.1 installations.

Selecting the Server Class and Host

You must select the server class from the list of configured server classes. After
selecting and setting the server class, the virtual Hosts that are configured for the
server class in the server .xml file are listed. The default Host is localhost and
that will be the only option unless the server . xml file is modified to include additional
Hosts. Selecting a Host enables the NSJSP Manager application to manage all the
web applications that are deployed on that Host.

Note.

® |f a server class is not started, the list of Hosts cannot be fetched. To start the server class,
you need to select a server class from the Scope tab and then start the server class using
the Server Class tab. After the server class is successfully started, the list of Hosts is
populated.

® The NSJSP Manager cannot manage server classes from NSJSP 6.0 (or an earlier
version) installation. Selecting a server class from an earlier version will result in an error
being displayed on the page because earlier versions of NSJSP are not able to
communicate with the NSJSP Manager application.

To select and set the server class and Host, complete the following steps:

1. From the Server Class list, select the server class name that you want to manage
and click Set.

The Server Class tab is enabled and the Host (in sever.xml) list is displayed.
The following message is displayed:

Server class set to “server class name”. Select a host, under
this server class, to manage.

Note. If you select the server class name that has already been set, the system displays
the following message:

Server Class is already set to <server class nane>.

2. From the Host (in sever.xml) list, select the Host name and click Set.
The following message is then displayed:

Host (in server.xml) set to "host name', with server class
"server class name™.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-5

Managing NSJSP NSJSP Manager Operations

For example,

Host (in server.xml) set to "localhost™, with server class
"SERVLETS".

where,
localhost specifies the host name.
SERVLETS specifies the server class name.

The Applications, MBeans, and Deployment tabs are now enabled.

Note. When you select the server class, only the Server Class tab that manages the server
class is enabled. All other tabs, such as, Applications and Deployment are disabled.

The following scenario explains why only the Server Class tab is enabled immediately after
selecting the server class.

The NSJSP operations might have shut down the server class from the command-line
interface (CLI). To start this server class using the NSJSP Manager application, you must log
on to the NSJSP Manager application and must select the server class under the Scope tab. A
Host is not displayed for the selected server class since it was previously shutdown, and
processes are not running on it. In such cases, the Server Class tab is enabled without
selecting a Host, to permit starting any server class that was previously shutdown.

NSJSP Manager Functions

The main functions of the NSJSP Manager are organized as tabs in the user interface,
which facilitates switching between the functions.

Each tab (set of functions) has multiple submenu items that are listed in a table within
the tab.

All the tabs are enabled after logging in to the NSJSP Manager and selecting and
setting the server class and the Host.

The following are the main functions of the NSJSP Manager:

® Scope — Used to set the scope for management, which requires selecting and
setting the server class and the Host to be managed.

For information on selecting and setting a server class and Host, see Selecting the
Server Class and Host on page 4-5.

® Applications — Enables the management of the deployed web applications.
Provides screens for displaying configuration, status and statistics information for
web applications deployed on the selected Host. It also provides operations for
each application, such as, start, stop, reload, or undeploy.

For information on how to view the application details, see Viewing Information
about Web Applications on page 4-8.

For information on how to perform operations on the web applications, see
Managing Web Applications on page 4-26.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-6

Managing NSJSP NSJSP Manager Operations

® Server Class — Enables display of the server class process information including
status, connector and server class statistics, and configuration parameters. Also,
provides TS/MP operations (for example, starting, freezing, thawing, and stopping
a server class) for the server class in the selected scope.

For information on how to view the server class details, see Viewing Server Class
Information on page 4-30.

For information on how to perform tasks on the server class, see Performing
Server Class Operations on page 4-39.

® MBeans — Enables viewing all the NSJSP and Tomcat MBeans in NSJSP
processes, comparing MBean attributes across processes, and modifying selected
MBean attribute values in all or selected processes.

For information on how to view MBeans attributes, see Viewing MBeans on
page 4-44.

For information on how to perform tasks, such as, comparing and modifying
MBean attribute values, see Managing MBeans on page 4-46.

® Deployment — Enables the deployment of web applications.

For information on how to deploy web applications, see Deploying Web
Applications on page 4-52.
The following are generic operations that you can perform using the NSJSP Manager:

® Refresh Stats — Obtains the latest status and statistical data from each NSJSP
process.

Note. The NSJSP Manager application caches the information displayed on a screen. As
a result, the data required for a particular screen is already present in the NSJSP
Manager’s cache. The NSJSP Manager application does not obtain the data from the
individual NSJSP processes. The cache prevents unnecessary communication between
the NSJSP Manager and the NSJSP processes. You can use the Refresh Stats option to
force the NSJSP Manager application to obtain data from the individual NSJSP processes
and thus refresh its cache.

® Reset Stats — Resets the statistics. After the reset operation is invoked, the
NSJSP Manager application clears its internal cache and requests each NSJSP
process to reset its statistics.

Note. Some statistical data is not reset. For example, the data in the Server Class
Statistics page does not get reset since the data is obtained from PATHMON processes
and is not provided by NSJSP processes.

The NSJSP Manager application displays the date and time when the last reset
was performed. For example:

Last Reset: 03/19/10 12:49 PM (6 23:07:20)
where,

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-7

Managing NSJSP NSJSP Manager Operations

03/19/10 12:49 PM represents the time when the reset operation was
performed.

6 23:07:20 represents the time elapsed since the last reset (6 = # of days, 23 =
hours, 07=mins, 20 seconds).

® Help - Includes brief information about the displayed page.

Note. The Refresh Stats, Reset Stats, and Help are displayed on each screen.

Note. You can sort the order of contents displayed in many tables by clicking the column
heading for the column that will be sorted. The headings of columns that can be sorted are
underlined.

Figure 4-2 shows the NSJSP Manager application functions.

Figure 4-2. NSJSP Manager Application Functions
Tabs

Scope | pplication: | Server (ass [[E TG Iel ‘= Resot Stats ™ Refresh Stats

8 Stop Application ' Reload AppBcation o Undeploy Application =

| ®E fscaburlexamples

This application iz running % Summary
Proces
Application information
-l e T
Application Mame: (scaturl! examplas Doc. base: examples Description: Sendat and J5F Examplas
taticte
Serdet Count: 11 Session Timeout: 30 min

Runtime Information

finms) | lin s} Deplayment Descriptor

Submenu ltems

Viewing Information about Web Applications
The NSJSP Manager application enables viewing of the following:

® List of applications that are deployed in the Host under consideration, their status
and description, the number of requests received, and the number of active
sessions per application.

® Detailed information about each application, such as, number of servlets
configured for an application, number of requests processed by an application, and
processing time.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-8

Managing NSJSP NSJSP Manager Operations

® Details of the applications for each NSJSP process, such as, name of the NSJSP
process on which the application is running and rate at which requests are
received by the application.

® Session details, such as its ID, the duration for which the session is idle.

® URI statistics, such as, the URI of an application and the time taken to process the
URI.

® HTTP Method statistics, such as, a name of the HTTP method used to access an
application and the number of requests processed for the HTTP method.

Context configuration (context.xml) for an application, if present.
Deployment descriptor (web . xml) details of an application.

URL pattern, servlet name, and servlet class.

List of filters that are configured for an application. The list includes the filters that
are configured in the common deployment descriptor in the <NSJSP 6.1
Installation Directory>/web.xml file.

To view details of the applications deployed in the selected Host, click the
Applications tab.

The Applications page appears. This page lists the applications that are deployed on
the selected Host.

Figure 4-3 shows a sample Applications page.

Figure 4-3. Applications Page

Applications | Server Clase % Reset Stat: % Refresh Stats
¢ Halp
Webapp Context Name| Deployment Status | Description Request Count | Session Count i
[sscaun 4ot 4 Welcome to N5 JSP 0 0 |
fecaburlfadmin 4 of 4 Tomcat Administration Application 0 (]
{scaburl/bankapp 4 of4 WN5JEP BankDemo Sample Wab Application 0
fscaburl/docs 4 of4 omcat Documentation i (1
fecpburfaxamples 4 of4 Serviet and J5P Examples 0 0
fscaturl/host-manager 4 of 4 0 0
fscaburl/manager 4 of 4 Tomcat Manager Application C 0

You can perform the following operations using the Applications page:
® Click the webapp context name of an application to view the application summary.

® Click the application deployment status to view the application statistics by server
class process.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-9

Managing NSJSP NSJSP Manager Operations

® Click the request count value of an application to view the distribution of requests
based on the URI.

® Click the session count value of an application to view all the in-memory sessions
for the application across the processes in the selected server class.

® Click Reset Stats to reset the values of the Request Count column in the table.

Table 4-1 lists the attributes displayed in the Applications page.

Table 4-1. Attributes in the Applications Page

Attribute Description

Webapp Context The context name of the application.

Name

Deployment Status Indicates whether the application is deployed on all the processes

within the server class. The values displayed in this field indicate
the number of processes on which the application is STARTED,
and the total number of processes in the server class. For
example, if the value is 6 of 8, the application is STARTED on six
processes. The total number of processes is eight.

A context can be in four states: STARTED, FAILED, STOPPED,
and INITIALIZED. The INITIALIZED state indicates that the
context is still starting.

Description Briefly describes the application as mentioned in the web . xml
application descriptor.

Request Count The total number of user requests serviced by the application
across all the processes of the server class.

Session Count The total number of sessions of the application across all the
processes that are currently in memory.

Viewing Application Summary

The NSJSP Manager application enables you to view detailed information about each
application, such as, application name and runtime information. The runtime
information is crucial because it provides the number of current requests that are
accepted by an application, their processing time, and the frequency of the application
being used.

To view the summary of an application, complete the following steps:
1. Click the Applications tab.

The Applications page appears.
2. Click the name of an application.

The Application Summary page for the selected application appears. The statistics
displayed on this page are a summation of statistics gathered from all the processes in
the NSJSP Server Class.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-10

Managing NSJSP NSJSP Manager Operations

Figure 4-4 shows a sample Application Summary page for the application,
/scaburl/examples.

Figure 4-4. Application Summary Page
Reset Stats % Refresh Stats

Crog I-||_. ticr R Balopad L \pplication @ Urydeplony .'.|-; licakion

& Help

This application is running

Apphcation Information

Application Mame: fscaburl/examples Doc. base: examples Lescription: Serviet and 5P Examples

Serviet Count: 11 Session Timeout: 30 min
Runtime Information

Request Arrival Rate | Averape Service Time Min. Time | Max. Time
(in last min.) | {in ms) (in ms) {in ms)
2 29 i2 370 K] FE10

In Memory
Sessions

Requests

You can perform the following operations on the Application Summary page:

® Stop an application on all the processes in the selected server class using the
Stop Application option. For more information on stopping the application, see
Stopping a Web Application on page 4-26.

® Start an already stopped application using the Start Application option. For more
information on starting the application, see Starting a Web Application on
page 4-27.

® Reload an application. The Reload Application option reloads the entire context.
This can be used to reload all the application resources while the application is still
available for the users. For more information on reloading the application, see
Reloading a Web Application on page 4-28.

Note. During a reload operation, all the in-memory sessions will be lost if there is no
persistence manager (with a persistence store) configured. If a persistence manager is
configured, the in-memory sessions are saved in the persistence store. These sessions
are available even after the application is reloaded. The Reload Application option is
displayed only if the application is currently running.

® Undeploy an application using the Undeploy Application option. This option
removes the context and deletes all the application-related resources from the file
system. For more information on undeploying the application, see Undeploying a
Web Application on page 4-29.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-11

Managing NSJSP

NSJSP Manager Operations

® Click the value corresponding to the Servlet Count: field to view the list of servlet
mappings configured for an application.

Note. A servlet can have multiple servlet mappings configured for it.

® Click a value from the In Memory Sessions column of the table to view all the
sessions currently in memory for an application.

® Click Reset Stats to reset the value of the Requests, Request Arrival Rate,
Average Service Time, Min. Time, and Max. Time columns in the table.

Table 4-2 lists the operations displayed in the Applications Summary page.

Table 4-2. Operations in the Application Summary Page

Operation

Stop Application or
Start Application

Reload Application

Undeploy
Application

Description

The Stop Application option stops the application on all the
processes in this server class. You cannot access the application
after stopping it. An attempt to access this application results in an
HTTP error 404.

The Stop Application option is displayed only if the application is
currently running.

The Start Application option starts an already stopped
application. After a successful start, you can access the
application. The Start Application option is displayed only if the
application is currently stopped.

Stops and starts an application. If the changes made to the
application need to be effective immediately, click the Reload
Application option. This reloads the entire context. You can use this
option to reload all the application resources while the

application is still available. However, during a reload operation, all
the in-memory sessions will be lost if there is no persistence
manager (with a persistence store) configured. If a persistence man-
ager is configured, the in-memory sessions are saved in the persis-
tence store and will be available after the application is reloaded.
The Reload Application option is displayed only if the application is
currently running.

Removes the context and deletes all the application-related
resources from the file system. This operation is irreversible.

Table 4-3 lists the attributes displayed in the Application Summary page.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-12

Managing NSJSP

NSJSP Manager Operations

Table 4-3. Attributes in the Application Summary Page

Attribute

Description

Application Information

Application Name:
Servlet Count:
Doc. base:

Session Timeout:

Description:

Runtime Information
In Memory Sessions
Requests

Request Arrival Rate
(in last min.)

Average Service
Time (in ms)

Min time (in ms)
Max time (in ms)

The context name of the application.
Number of servlets configured for the application.

The root directory that contains all the application resources. It is
relative to the application base (appBase) of the Host in which this
application is deployed.

Maximum idle time allowed for a session. A session object will time
out if it is not accessed for the specified duration. The unit of the
Session Timeout value is minutes. If the value is -1, the session
objects do not timeout.

The application description as mentioned in the web . xml
application descriptor.

Number of session objects that are currently in memory.
Number of requests that are processed by application servlets.

The number of user requests received in the last minute by the
application.

Average time, in milliseconds, taken to process the user requests
for the application.

Minimum time taken to process a user request.
Maximum time taken to process a user request.

Table 4-4 lists the submenu items under the Applications tab.

Table 4-4. Submenu Items Under the Applications Tab (page 1 of 2)

Submenu ltem
Summary

Process View

In-Memory Sessions

Description

Summary of applications, such as, the description of the
application and runtime information of the application. For more
information, see Viewing Information about Web Applications on
page 4-8.

Details of the application for each NSJSP process within the
selected server class. For more information, see Viewing Details of
the Application for each NSJSP Process on page 4-14.

Number of session objects that are currently in memory. For more
information, see Viewing Sessions for an Application on page 4-16.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-13

Managing NSJSP NSJSP Manager Operations

Table 4-4. Submenu Items Under the Applications Tab (page 2 of 2)

Submenu Item Description

URI Statistics Uniform Resource ldentifier (URI) access statistics for the
application, such as, the list of application URIs accessed by users
and the number of user requests received by the application. For
more information, see Viewing the URI Statistics for an Application

on page 4-18.
HTTP Method Details of the Hypertext Transfer Protocol (HTTP) methods
Statistics queried for the application. The HTTP Method Statistics page

displays application statistics based on the HTTP method that is
used to access the application resources. For more information, see
Viewing HTTP Method Statistics on page 4-20.

Context Descriptor Context descriptor details for the application. The Context
Descriptor file denotes the configuration file for the application. For
more information, see Viewing Context Descriptor Details on

page 4-21.
Deployment Deployment descriptor details for the application. The Deployment
Descriptor Descriptor file is used to obtain information, such as, servlet

mappings and authentication details, which are used to deploy the
web applications. For more information, see Viewing Deployment
Descriptor Details on page 4-22.

Servlet Mappings Details of servlet mappings for the application. For more informa-
tion, see Viewing Servlet Mappings on page 4-23.

Filters Details of the filters for the application. Filters are Java
components that allow transformations of payload and header
information from the request into a resource and the response from
a resource. A filter can use the information available in the user
requests and the responses received from an application to per-
form tasks, such as, logging and auditing. For more
information, see Viewing Filter Details on page 4-24.

Initialization Initialization parameters that are used to initialize the application.
Parameters For more information, see Viewing Initialization Parameters on
page 4-25.

Viewing Details of the Application for each NSJSP Process

The application statistics for each NSJSP process includes detailed information, such
as, the NSJSP process name and the number of requests processed by the application
servlets.

To view the details of the applications for each NSJSP process, complete the following
steps:

1. Complete the steps described in Viewing Application Summary on page 4-10.

2. Click Process View.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-14

Managing NSJSP NSJSP Manager Operations

The details of the application for each NSJSP process are displayed on the Process
View page.

You can perform the following operations on the Process View page:

® Click the value corresponding to the Servlet Count: field to view the list of servlet
mappings configured for an application.

Note. A servlet can have multiple servlet mappings configured for it.

® Click the process name to display the Process Summary page, which displays the
details, such as, process name, CPU and PIN of the process, Java Virtual Machine
(JVM) heap statistics, and connector information.

® Click a value from the In Memory Sessions column of the table to view all the
sessions currently in memory for an application.

® Click the requests value in the table to view the distribution of requests based on
the URI.

® Click Reset Stats to reset the value of the Requests, Request Arrival Rate,
Average Service Time, Min. Time, and Max. Time columns in the table.

Figure 4-5 shows a sample output for the application, /sca6url/examples.

Figure 4-5. Application Summary Page After Clicking Process View

Applications Ceploymeant ? Reset Stats '® Refresh Stats

This apphication is running

Application Infarmation

lication Mame: fscaburl/examples Doc. base: examples Dascription: Serylet and J5P Examples
P F F p F

Serviet Count: 11 Session Timeout: 30 mie

Runtime Information

Request Arrival | Average Service
Process | CPU,PIN Requests | Rate Time
(in last min.) (in ms)

_F_a th men

Hame

3 il SX5AQ
SYSBE SKOAR 2 640
LZ5RE SHOENY | 0,1120

SL5BE SEAEW 1,3%4 |

R - =
T
F3
b
Cu|
-
a

1
L

The Process View page displays statistics that indicate how the requests are
distributed across processes and how the server class processes are processing the
requests for the application.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-15

Managing NSJSP

NSJSP Manager Operations

Table 4-5 lists the attributes displayed in the Process View page.

Table 4-5. Attributes in the Process View Page

Attribute

Application Information

Application Name:
Servlet Count:
Doc. base:

Session Timeout:

Description:

Runtime Information
Pathmon Name
Process

CPU, PIN

In Memory Sessions

Requests

Request Arrival Rate (in

last min.)

Average Service Time
(in ms)

Min. time (in ms)
Max. time (in ms)

Description

The context name of the application.
Number of servlets configured in the application.

The root directory that contains all the application resources. Itis
relative to the application base (appBase) of the Host in which
this application is deployed.

Maximum idle time allowed for a session. A session object will
time out if it is not accessed for the specified duration. The unit
of the Session Timeout value is minutes. If the value is -1, the
session objects do not timeout.

Application description as mentioned in the web . xml
application descriptor.

Name of the PATHMON that started the process.
Name of the NSJSP process on which the application is running.

Logical processor number and the Process ldentification Num-
ber (PIN) for this process.

Number of session objects across processes that are
currently in memory.

Number of requests that are serviced by application servlets.

Number of user requests received in the last minute by the
application.

Average time, in milliseconds, taken to service the user requests
for the application.

Minimum time taken to service a user request.
Maximum time taken to service a user request.

Viewing Sessions for an Application

When you open an application, a session is created. All requests for the application
belong to that session. The NSJSP Manager application displays the number of
sessions that are currently active for an application.

To view the sessions for an application, complete the following steps:

1. Complete the steps described in Viewing Application Summary on page 4-10.

2. Click In-Memory Sessions.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-16

Managing NSJSP NSJSP Manager Operations

The In-Memory Sessions page for the selected application appears. Figure 4-6 shows
a sample In-Memory Sessions page for the application, /sca6url/examples.

Figure 4-6. In-Memory Sessions Page

Applications Deployment 7 Reset Stats *% Refresh Stats

Toggle L@ Expire | g Persist [Eg Clesr zearch B0 Apply search o Noig

Sesion seaich criteria

Seszion id (RE)
Idle time from (sec) to

dge from (zec) to

In Memory Sessions

Session Timeout: 30 min,

3 items found, displawing all items. 1

Session 1D ldle Time | Ape

O] SZT1XSTFOOBAEBE A3900255256528C91 ACTD03 | 00:00:16 | 00:00:16 | Thu Apr 15 19:51:58 15T 2010
| SETIYSCEFIMB11FFIIT94IERF2906CE67TR080 00:07:35 | 00:13:53 | Thu Apr 15 19:44:39 ST 2010
1 SIVTYSBOSEFTBOOF A4 147403CTB1838872F01 | D0:01:21 | 00:01:21 | Thu Apr 15 19:50:53 15T 2010

You can perform the following operations using the In-Memory Sessions page:

® Select or clear the check box corresponding to a session by clicking Toggle. The
Toggle option is useful if all the sessions displayed on the In-Memory Session
page need to be selected or removed.

® Expire the sessions from the available list. The Expire option must be used
carefully because it is an irreversible operation. Sessions once expired cannot be
restored by any other operation.

® |f a persistent session manager is configured, you can persist the sessions, which
are currently in memory, to the store using the Persist option.

® Search the sessions based on the following criteria:

© Session ID: It accepts a regular expression (RE) for matching sessions. It is
useful for searching sessions originating from a process. A search criterion,
such as \$Y31R.* searches the list of all sessions in the process $Y31R.

© Idle Time (sec): It filters out sessions that are idle. A session's idle time is the
length of time during which a session has not been accessed.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-17

Managing NSJSP

NSJSP Manager Operations

© Age (sec): It is similar to the Idle Time except that this option filters the
sessions based on the age. The age of a session indicates how long ago the
session was created.

You can also use the Apply search option to search the sessions. This option
appears only when you search for a session. Use the Clear search option to clear
the search screen and return to the session list screen.

The In-Memory Sessions page displays a list of application sessions that are currently

in any process memory.

Table 4-6 lists the operations displayed in the In-Memory Sessions page.

Table 4-6. Operations in the In-Memory Sessions Page

Operation
Toggle
Expire
Persist

Session search

Description
Checks or unchecks each session.
Expires the sessions that are selected.

If a persistent session manager is configured, this option allows
sessions that are currently in memory to be persisted to the store.
Even after a session is persisted to a store, the session may
continue to reside in memory.

Enables you to search for sessions using various criteria.

Table 4-7 lists the attributes displayed in the In-Memory Sessions page.

Table 4-7. Attributes in the In-Memory Sessions Page

Attribute
In Memory Sessions
Session Timeout:

Session ID
Idle Time
Age

Expiry Time

Description

Maximum idle time allowed for a session. The unit of the
Session Timeout value is minutes. If the value is -1, the session
objects do not timeout.

Identification name of the session.

Duration for which the session is idle. The value is expressed in
the hh:mm:ss format.

Duration from the time the session is created. The value is
expressed in the hh:-mm:ss format.

Time at which the session is scheduled to expire.

Viewing the URI Statistics for an Application

The Uniform Resource Identifier (URI) Statistics page displays statistics related to the
access of application resources (listed by URI). Although the list of URIs can be very
long, it will provide a good indication of the URI usage pattern for the application.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-18

Managing NSJSP NSJSP Manager Operations

To view the URI statistics for the application, complete the following steps:
1. Complete the steps described in Viewing Application Summary on page 4-10.
2. Click URI Statistics.

The URI Statistics page appears. It displays access statistics of the application
resources.

Note. The reset operation on the URI Statistics page resets the value of all the columns in the
table.

Figure 4-7 shows a sample URI Statistics page.

Figure 4-7. URI Statistics Page

Applications | Server Class Deploymant % Reset Stats ™ Refresh Stats

& Halp

LRI Statistics

Application Request o e

r R ---=-----| Arrival Rate

Resource URls So oo

/scaburtf examples 4 t 15 45
fecaburl/examplas {sp | 2 2
fscaburlf examples/jspfimagesi/code. gif | 1]
Sscaburlfexamplas/zpfimages/ execute. gif | | i |
fscaburlfexamplesyjspsimages/return. gif] | 1 |
fscapurtfexamples/jspfispe fel/basic-arithmetic, jsp | 510 810 AR 10
eeaburlS exar '!':"'"'j"-l"lj'l'-ﬁ"‘-' pletag/repaat,|sp | i 4444 4444 4444
¢ scaburt/ e=amplas/serviets/ 12 1

Table 4-8 lists the attributes displayed in the URI Statistics page.

Table 4-8. Attributes in the URI Statistics Page (page 1 of 2)

Attribute Description

Application Resource Uniform Resource Identifiers (URIs) of the application resources.
URIs

Request Count Number of requests processed for the application resource that is

indicated by the URI.
Request Arrival Rate Number of requests processed for the resource in the last minute.
(in last min.)

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-19

Managing NSJSP NSJSP Manager Operations

Table 4-8. Attributes in the URI Statistics Page (page 2 of 2)

Attribute Description

Average Service Time Average time taken (in milliseconds) to process user requests for
(in ms) a URI.

Min. Time Minimum time taken (in milliseconds) to process a user request for
(in ms) a URIL.

Max. Time Maximum time taken (in milliseconds) to process a user request
(in ms) for a URI.

Viewing HTTP Method Statistics

Any HTTP request received from NSJSP must be for one of the HTTP methods, such
as, GET and POST. The page displays application statistics based on the HTTP
method that is used to access the application resources.

To view the HTTP method statistics, complete the following steps:

1. Complete the steps described in Viewing Application Summary on page 4-10.
2. Click HTTP Method Statistics.
The HTTP Method Statistics page for the selected application appears.

Note. The reset operation on the HTTP Method Statistics page resets the value of all the
columns in the table.

Figure 4-8 shows a sample HTTP Method Statistics page for the application,
/scaéburl/examples.

Figure 4-8. HTTP Method Statistics Page

Applications ¥ Reset Stats % Refresh Stats

HTTF Method Statistics

Request Arrival Rate Average Service Time Min. Time | Max. |
{in last min.) (in ms) (in ms) (in ms)

Table 4-9 lists the attributes displayed in the HTTP Method Statistics page.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-20

Managing NSJSP

NSJSP Manager Operations

Table 4-9. Attributes in the HTTP Method Statistics Page

Attribute
HTTP Method
Request Count

Request
Arrival Rate
(in last min.)

Average Service
Time

(in ms)

Min. Time

(in ms)

Max. Time
(in ms)

Description
Name of the HTTP method.
Number of requests processed for the HTTP method.

Number of requests processed for the HTTP method in the last
minute.

Average time taken to process user requests for the HTTP method of
the application.

Minimum time taken to process a user request for the HTTP method
of the application.

Maximum time taken to process a user request for the HTTP method
of the application.

Viewing Context Descriptor Details

The context descriptor is displayed only if the application explicitly defines its context
using a context definition file, such as, context.xml.

To view the configuration in the context descriptor of an application, complete the

following steps:

1. Complete the steps described in Viewing Application Summary on page 4-10.

2. Click Context Descriptor.

The Context Descriptor page for the selected application appears. Figure 4-9 shows a
sample Context Descriptor page for the application, /sca6url/examples.

Figure 4-9. Context Descriptor Page

Applications

testApp. xmil

¥ Reset Stats % Refresh Stats

& SOWnIOad o Hell

{in /home/nsjsp6/jspbdev/sajad/wsb/nsjsp/03219_scab/conf/NS JSP/localhost)

1
-
4
4
5
=]
T

<?xml version="l.0" encoding="UIF-8"7>
<Context
<Logger elassName="orq.apache.catalina.logger.FilelLogger”

path="/probe" privileged="trus">

prafix="probs."
suffix=".out"
timestamp="tru="/>

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-21

Managing NSJSP NSJSP Manager Operations

You can use the download option to download the context definition file.

Viewing Deployment Descriptor Details

The Deployment Descriptor page displays the deployment descriptor for the selected
application. The deployment descriptor is always in the web . xml file in the WEB- INF
directory of the application.

Note. There cannot be any application without a deployment descriptor.

To view the deployment descriptor details for the applications, complete the following
steps:

1. Complete the steps described in Viewing Application Summary on page 4-10.

2. Click Deployment Descriptor.

The Deployment Descriptor page for the selected application appears. Figure 4-10
shows a sample Deployment Descriptor page for the application,
/scaéburl/examples.

Figure 4-10. Deployment Descriptor Page

m Deployment: # Reset Stats % Refrezh Stats

Applications

wab. xml (in ‘home/nsjspé/ispbdevisajadivwse/nejsp/031%_scas/webapps/examples WEB-INF)

1l «7xml version="1.0" encoding="I50-8859-1"">
2 L.
i 3 "
4
i 5
& .
7
8
. a
10
! 11
12
13
' 14 v
15
16
' 17 v
i 18 »
189 <web-app smlne=*http://java_sun.com/¥ml/n=/javasat
. i xmlns :xsi="http:/ wee.wi . org/2001/XMLSchema-1nstance”
i 21 xsi:schemaLocation="http://java.sun.com/xml ns/ javase httpi/llava.sun.cp i
22 version="2_.5">
23 !
24 <descriptions .
25 Servlet and J5P Examples.
26 </dezeriptions
‘ 27 <display-name>3ervlet and JSP Examples</display-name> ’

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-22

Managing NSJSP NSJSP Manager Operations

You can use the download option to download the deployment descriptor file.

Viewing Servlet Mappings

The deployment descriptor contains elements that define which servlet must process a
request URL. The mapping between the URL and the servlet (configured to process
the requests matching that URL) is called servlet mapping.

To view servlet mapping details for the applications, complete the following steps:

1. Complete the steps described in Viewing Application Summary on page 4-10.

2. Click Servlet Mappings.

The Servlet Mappings page for the selected application appears. It includes the
definitions in the common deployment descriptor of the NSJSP installation, which is
available at <NSJSP 6.1 Installation Directory>/conf/web.xml.

Figure 4-11 shows a sample Servlet Mappings page for the application,
/sca6burl/examples.

Figure 4-11. Servlet Mappings Page

Applications Maeans | Deployment % Reset Stats % Refresh Stats

¢ Half
HI Ratiuimy
g wche Jaspar.serviet, Jspherviat
jsp i=p orz.apache fasper.servlet, Jspherviet
Jafault org. apache cataling. serviets. DefaultSerylet
fCompressionTest ComprassionFilterTestSarvdet compressionFiters ComprassionFilterTestSarvlat
jspdchatichat ChatServlat chat.Chatierviet
f1apdispdim onfig org.apache. jasper servlet, JspServiat 1 |
arvlatsy/ serviet/LookisExampla LookisE-ampla LookigExample
{servlets/ serviet/HelloWorldExampla HelloW orldExample HalloWaorldExampie
fservlets/ serviet/RequestHeadertxample | BequestHeaderExampla RaquestHeaderExample
arvlats/ serviat/RequestinfobEsampla/’ RaquestinfoE-ample FaquestinfoEsampl:
| fearvlats/ sepviat/HaquastParamE AMp lig Pa .|l.-=.'.§'"':\-l smEample |--_--4|_ astP aramEample
[lets/ serviat! SessionExample SessionExampls SessionExampla

Table 4-10 lists the attributes displayed in the Servlet Mappings page.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-23

Managing NSJSP NSJSP Manager Operations

Table 4-10. Attributes in the Servlet Mappings Page

Attribute Description

URL Pattern Pattern of the Uniform Resource Locators (URLS), which will be
serviced by the servlet.

Servlet Name Logical name associated with the servlet.

Servlet Class Fully qualified class name of the servlet.

Startup Order The order in which the servlet initializes. Number 1 indicates that the
servlet initializes first. No value indicates that a startup order is not
specified.

Viewing Filter Details

Filters are Java components that allow the dynamic transformations of payload and
header information from requests into resources and from the responses returned by
resources. For example, a filter can use the information available in the user requests
sent to the application and the responses received from the application to perform
tasks, such as, logging and auditing.

Note. Filters are defined in the deployment descriptor (web .xml) of an application. You can
also define the filters in the common deployment descriptor located in the <NSJSP 6.1
Installation Directory>/conf directory.

To view details of the filters for the applications, complete the following steps:
1. Complete the steps described in Viewing Application Summary on page 4-10.
2. Click Filters.

The Filters page for the selected application appears. Figure 4-12 shows a sample
Filters page for the application, /sca6url/examples.

Figure 4-12. Filters Page
| Scape | Applications 7 Reset Stats @ Refresh Stats

& Help

Filters

Filter Name Filter Class

Compression Filte compressionFilters. CompressionFilter

Path Mapped Filter filters.ExampleFilter

Request Dumper Filter filters.RequestDumperFilte:

Serviat Mappad Filter filters.ExamplaFiiter

set Character Encoding filters.SetlharacterEncodingFilter

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-24

Managing NSJSP NSJSP Manager Operations

Table 4-11 lists the attributes displayed in the Filters page.

Table 4-11. Attributes in the Filters Page

Attribute Description

Filter Name Logical name of the filter.

Filter Class Fully qualified class name of the filter.

Description Filter description as defined in the Deployment Descriptor.

Viewing Initialization Parameters

The Java servlet specification enables you to define the initialization parameters for
each application. You can configure the initialization parameters using the
context-param configuration element in the web .xml or the Parameter element
nested under the Context element in the context.xml file.

To view the parameters of the applications, complete the following steps:

1. Complete the steps described in Viewing Application Summary on page 4-10.

2. Click Initialization Parameters.

The Initialization Parameters page for the selected application appears. Figure 4-13
shows a sample Initialization Parameters page for an application.

Figure 4-13. Initialization Parameters Page

% Reset Stats * Refresh Stats
= —||-|;_-
= | attribute. value.role manager wieh,xml
-ohtextConfigtocation WER-INF/probe-servlet =ml web.xml
Table 4-12 lists the context initialization parameters.
Table 4-12. Context Initialization Parameters
Parameters Description
Param Name Name of the initialization parameter.
Param Value Value set for the parameter.
Source Location where the parameter is defined. The web.xml file is

one of the locations where you can configure the parameters.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-25

Managing NSJSP NSJSP Manager Operations

Managing Web Applications

Upon successful deployment of a web application, all the instances of that application
on a Host are in the running state, by default. Following is the list of operations that you
can perform on a web application:

® Stopping a Web Application

Starting a Web Application

°
® Reloading a Web Application
°

Undeploying a Web Application

Stopping a Web Application

To restrict users from accessing an application, you can stop the application using the
Stop Application option in the NSJSP Manager application interface.

To stop the web application, complete the following steps:

1. Complete the steps described in Viewing Application Summary on page 4-10.

2. Click the application name that you want to stop.
3. Click Stop Application.
The application is stopped.

Figure 4-14 shows the messages that are displayed after an application is stopped.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-26

Managing NSJSP NSJSP Manager Operations

Figure 4-14. Application Summary Page Showing the Down Status

m Applications Deployment ¥ Reset Stats % Refresh Stats

k) Start fpplication W Lindeploy Application o Help

Application stopped successfully

This application is down

Apphcation Infermation

Application Name: /scaturlfdocs Doc. base: docs Cescription: Tomeat Documentation

Servlet Count; 0 Session Timeout: 30 min

Runtime Information

This application 15 not running, runtime information 15 unavailable

If you click the Application tab again, the status of the application is displayed as
None.

After the application is stopped, it is no longer accessible to the users.

Starting a Web Application

The Start Application option of the NSJSP Manager application interface enables you
to start the previously stopped application.

To start the web application, complete the following steps:

1. Complete the steps described in Viewing Application Summary on page 4-10.

2. Click the application name that you want to start.
3. Click Start Application.
The application is started.

Figure 4-15 shows the messages that are displayed after an application is started.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-27

Managing NSJSP NSJSP Manager Operations

Figure 4-15. Application Summary Page Showing the Running Status

Applications Deploymant 7 Reset Stats) Refresh Stats

=) S5top Application “® Reload Application @ Undeploy Application & Help

Application started successfully

This application is Funning

Application Information

Lpplication Mame: /scaburl/esamples Doc. base: examples Description: Serviet and J5P Examplas
Serviet Count: 11 Session Timeout: 30 min

Runtime Infermation

In Memaor Request Arrival Rate=Aver Service Time|Min. Ti
?'Requestﬁ eq | age

Sessions {in last min.)

If you click the Applications tab again, the status of the application is displayed as
Al'l NSJSPs.

You can now access the application.

Reloading a Web Application

The Reload Application option of the NSJSP Manager application interface reloads
the entire context. It is used to reload all the application resources while the application
is available to the users.

Note.

® During a reload operation, all the in-memory sessions will be lost if there is no persistence
manager (with a persistence store) configured. If a persistence manager is configured, the
in-memory sessions are saved in the persistence store. Thus, the in-memory sessions are
available even after reloading the application.

® The Reload Application option is displayed only if the application is in the running state.

To reload the web application, complete the following steps:

1. Complete the steps described in Viewing Application Summary on page 4-10.

2. Click the application name that you want to reload.

3. Click Reload Application.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-28

Managing NSJSP NSJSP Manager Operations

The application restarts.

Figure 4-16 shows the messages that are displayed after an application is reloaded.

Figure 4-16. Application Summary Page Showing the Reloaded Status

Applications Deployment. % Reset Stats % Refresh Stats

£ Stop Application “# Reload Application W Undeploy Application & Helf

Application reloaded successfully.

This application is running

Apphlication Information

Application Name: fscaburl/examples Doc. base: examples Description: Servlet and J5F Examplas

Servlet Count; 11 Session Timeout: 30 min

Runtime Information

Memory Raguets Request Arrival Rate | Average Service Time| Min. Time |Max. Time

Sessions {in last min.) (in ms) (in ms)
0 0 0 0 0 i}

Undeploying a Web Application

The Undeploy Application option of the NSJSP Manager application interface
removes the context and deletes all the application-related resources from the file
system.

To undeploy the web application, complete the following steps:

1. Complete the steps described in Viewing Application Summary on page 4-10.

2. Click the application name that you want to undeploy.
3. Click Undeploy Application.
The dialog box appears with the following message:

Thi s operation cannot be reversed. Do you really want to
REMOVE / <appl i cati on nanme>?

4. Click OK to remove the application from the applications list.

5. The application name is removed from the Host under consideration that you
selected in the Scope tab.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-29

Managing NSJSP NSJSP Manager Operations

Viewing Server Class Information

To view the details of an NSJSP Server Class, select the Server Class tab in the
NSJSP Manager application. You can view the following information under the Server
Class tab:

NSJSP information

Server class processes
NSJSP connector statistics
Configuration parameters
Server class statistics

Sever class operations

To view information about a server class, click the Server Class tab.

The NSJSP Information page appears. Figure 4-17 shows a sample NSJSP
Information page.

Figure 4-17. NSJSP Information Page

7 Reset Stats # Refresh Stats

=) |-._—-Ir_,.

N&JISP Information

M5

Version: NonStop(tm) Serviets For JavaServer Pagesitm) vb.1
SJ5P Hame: Shome/nsjspb

Lact Start Time: Wed Apr 14 17:06:33 15T 2010

relon PROCedurs: T1222H60 2TAPRI010_AAM_Ve10 0

Java Information

Version: 1.6.0-b103

Ve

ndor: Hewlett-Packard Company

Version PROCedure: T2766H60_30JANZ009_jdke0 23.Jani00%

05 Information

§

.|

me: NOMSTOP_KERMEL

Version: HO6.18

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-30

Managing NSJSP

The NSJSP Information page displays static information about the environment in
which NSJSP is running.

Table 4-13 lists attributes displayed in the NSJSP Information page.

Table 4-13. Attributes in the NSJSP Information Page

Attribute

NSJSP Information
Version:

NSJSP Home:

Last Start Time:
Version PROCedure
Java Information
Version:

Vendor:

Version PROCedure:

OS Information
Name:
Version:

Description

NSJSP version installed on the system.

Open System Services (OSS) path where the NSJSP installation is
created.

Date and time at which the server class last started.
Version Procedure (VPROC) of NSJSP that is installed.

NSJ version that the NSJSP installation uses.
Name of the JVM vendor.
Version Procedure (VPROC) of the Java used by the server class.

Name of the operating system on which NSJSP is running.
Version of the operating system on which NSJSP is running.

Table 4-14 lists the submenu items under the Server Class tab.

Table 4-14. Submenu Items Under the Server Class (page 1 of 2)

Submenu Item
NSJSP Information

Server Class
Processes

NSJSP Connector
Stats

Description

Information about the NSJSP version, the version of the Java Virtual
Machines (JVMs), and the HP NonStop operating system.

Information about NSJSP processes, such as, the name of the
NSJSP processes in the server class and the number of user
requests received by the NSJSP processes. For more information on
how to view these details, see Viewing Details of NSJSP Processes
on page 4-32.

Information about the NSJSP connectors for each process, such as,
the number of threads used to serve user requests and the number
of process threads allocated to serve user requests. For more
information, see Viewing Details of the NSJSP Connector Statistics
on page 4-33.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-31

Managing NSJSP

Table 4-14. Submenu Items Under the Server Class (page 2 of 2)

Submenu Item Description
Configuration TS/MP parameters that are used to deploy NSJSP processes. For
Parameters more information, see Viewing Configuration Parameters on

page 4-34.
Server Class Aggregate Linkmon Statistics for the NSJSP Server Class. You can
Statistics use the values displayed in this page for performance analysis and

troubleshooting. For more information, see Viewing Server Class
Statistics on page 4-36.

Server Class Options to stop, start, freeze, and thaw the server class. For more
Operations information, see Performing Server Class Operations on page 4-39.

Viewing Details of NSJSP Processes

The list of NSJSP processes that are running is displayed in the Server Class
Processes page. The NSJSP processes provide details, such as, the processor on
which the application is running, information about the $RECEI VE queue, and high-
level Java heap statistics. The output also indicates that if the processor is overloaded
and if load balancing is required for the processor.

To view the details of the NSJSP processes, complete the following steps:
1. Click the Server Class tab.
2. Click Server Class Processes.

The Server Class Processes page appears, which displays the list of NSJSP Server
Class processes that are currently running.

Figure 4-18 shows a sample Server Class Processes page. This page displays some
process-level statistics that can help tune the server class configuration parameters
and the memory-related parameters in the JVM.

Figure 4-18. Server Class Processes Page

Scope § Applications Deployment 7 Reset Stats @ Refresh Stats

Server Class Processes

Total Allocated
Memory

(in Bytes)

Pathmon

20780, 135
[32%)
20,023,656
30%)

Table 4-15 lists the attributes displayed in the Server Class Processes page.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-32

Managing NSJSP

Table 4-15. Attributes in the Server Class Processes Page

Attribute
Pathmon Name

Process Name
CPU, PIN
Request Not Read

Request Not Replied
Request Open Depth

Max Memory
(in Bytes)

Total Allocated
Memory (in Bytes)

Used Memory
(in Bytes)

Description

Identifies in which PATHMON a particular NSJSP process is
running.

Name of the NSJSP process.
CPU and PIN of the process.

Number of requests that are yet to be read. These requests are
currently in the $RECEI VE queue.

Number of requests that are currently being processed.

It is also called the receive depth. It is the maximum the number of
messages that can be read before replying to any read

messages. In the NSJSP context, this number indicates the
maximum number of requests that can be processed by a server
class process in parallel. This is a static counter and the number is
derived from the TANDEM RECEI VE_DEPTH configuration
parameter of the NSJSP Server Class.

Maximum memory allowed for the JVM heap. The value is deter-
mined by the - Xmx command-line parameter for the JVM.

The amount of heap that the JVM has allocated out of the maxi-
mum allowed heap.

This component also displays the percentage of Total Allocated
Memory with respect to Max Memory.

The amount of heap in use out of the total heap currently allocated
by the JVM.

Viewing Details of the NSJSP Connector Statistics

The connector statistics provides a good indication of the incoming request workload
for individual NSJSP processes. Since all requests to all the deployed applications in a
server class process have to pass through the connector, the connector counters

provide a good indication of how many requests have been processed across all the

applications deployed.

For more information on connectors, see Chapter 1, Introduction to NSJSP.

To view the details of the NSJSP connector statistics, complete the following steps:

1. Click the Server Class tab.
2. Click NSJSP Connector Stats.

The NSJSP Connector Stats page appears. Figure 4-19 shows a sample NSJSP

Connector Stats page.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-33

Managing NSJSP

Figure 4-19. NSJSP Connector Stats Page

| Scope | Applications MBeans | Deployment 7 Reset Stats % Refresh Stats

M5 JSP Connector Stats

SHaEw 1 74 73 21 (350 0 7556 |

This page displays the activities of the NSJSP connector component. The connector
activities indicate the incoming request workload for individual NSJSP processes.

Table 4-16 lists the attributes in the NSJSP Connector Stats page.

Table 4-16. Attributes in the NSJSP Connector Statistics page

Attribute Description
Process Name Name of the NSJSP process.
Thread Used Number of request processing threads created by the connector

that are currently active. These threads are either waiting to
process an incoming request or are already processing a request.

Thread Free Number of threads that the connector can create, if required. This
number does not include any threads that are already created.

Thread Total Maximum number of request processing threads that the
connector can create.

Request Count Total number of requests processed by the connector.

Request Arrival Rate Number of requests received by the NSJSP process in the last

(in last min.) one minute.

Average Service Time Average time taken to process incoming requests. This value is

(in ms) expressed in milliseconds.

Min. Time Minimum time taken to process incoming requests. This value is

(in ms) expressed in milliseconds.

Max. Time Maximum time taken to process incoming requests. This value is

(in ms) expressed in milliseconds.

Viewing Configuration Parameters

The server class configuration parameters are used during initialization. The
parameters that are displayed using the NSJSP Manager Application are defined in the
servl et. confi g file. However, some of the parameters are displayed with their
default values and are not required to be explicitly set. For example, the
AUTORESTART parameter is shown with the default value of 3 and is not mentioned in

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-34

Managing NSJSP

the servl et. confi g file. For more information on the server class configuration
parameters and their values, see the TS/IMP System Management Manual.

To view the parameters that are used to deploy NSJSP processes, complete the
following steps:

1. Click the Server Class tab.
2. Click Configuration Parameters.

The Configuration Parameters page appears. Figure 4-20 shows a sample
Configuration Parameters page.

Figure 4-20. Configuration Parameters Page

| Ceploymenc % Reset Stats 2 Refresh Stats

Server Class Configuration Parameters

At Bestert 3

Create Daley: O

D=mug OFF

Delzte Delay: 3800200000

nk Dbl 50

Wimermum Links:. 50

Vim=inum Servers; 2

Mumstatic: 2

Priarity: 170

sl Tirmeoh: Mot CorFaaur ed

TP 0N

Sysbam Mumber: W7

Group Hurrzer: 255

lses Number: 258

sEnurity: 0

Hign FIM; QR

Frocess Type: 055

STOOUT: fmomedns]sped{spbdew/sajad web/ns] 5o/ /0529 scabflogsdscab.out
SO Fdevfnull

STDERRE: fhomefnsjsphlisphdey Isajacliwshiinsjsp/032Y_scats ingsMscabogrer
Cumant Warking Drrectory. fhomesnsjsphlfspodey s sajad fust i ns sp 012 scah
Frogram 055 fhomednsjspsjspodevieajad st vindsced s5c

Argisn [-rmetdin, -dmsgdm, -¥ss 28k, hoclazsge, -0jave.compller=ncne, -0 ava. util. logging rranager=org apache Jul. ClassLoaderl oghiarager, -
DOjawa. util.logging config file=rhomadne] sphd jspedes/sajad st nag | spros29_seat/confiloaging. oroperties, -
Djawaxmaragement. huilder, initial=com tandem sarvliet. e NS SPMBranServerduilder, -Dnsjsp. security, manegar=rong,
Djawe, securicy, policy==Shomes ns)sphslj sphdey feajad sl ns spC 129 _scal/corfiTP_cataling, palizcy, -Dnsjsp.jeas login.config=naons, -
Dzom. tandem. serdlet. CONTEXT_PREFIXES=/ seatur, -Ocetaling, home=/bomelnsjspbljspadey sejad web nsjsp /0329 _soed, -
Deataling. base=/homesnsjzpbl{spadeus saladdweb Sns{sp 0329 scad, -Ojava.lo. tmpdir=Shomes nsjspas] spedes S sajad fase/nef sp 0320 scabdtemp,
org. apache.catalina.startun Boolstrap, start)

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-35

Managing NSJSP

Figure 4-20. Configuration Parameters Page

Environment Yariables

BOME_CATALOE: Lanibeze Lbankeclnareocls
‘hinm A s spf aphdas A <nsad Sestfnsisp0073enab /b thinntatoa Janshnmadnsjsph fsphday /s ot ad ot es sp0179 seahdbing
e dnemnnar: thamsins | i 223 sennthdo Xianeaz-
CLASSPATI X v ior i
ull farithoms st splidas fsaies R
Ieaper.f ar Ahoma fhalspt] spidas fsnad At neis L ecahtben fns] spmbemrsarvar ars s Aoss tandamd dicdd=foursnt b dE
JANL ROwE fhomefns|cped jspbdes Looled awab 00 i
SEHORTT fhinma frs spit spiidee A nclsd aweh 0 @l e
SRR FILERS S LR L shorre/ng| sped jipdes s sat ol e na jep 0N scab s Lont Hiemaps . contia
TAMDER) PATEMWCH: KAFE: SZ5EE
SMCER_RECEINE_LEPTH
AL LB PATH fhomradnsj sptdjsphdey fsar o fwet i jep 0329 seab s b tusrd Lancerm S dbotaFeur ren L sy tandemyd § dbeMp fourren b

Table 4-17 lists the GUI server class configuration parameters.

Table 4-17. Server Class Configuration Parameters

Attribute Description

Server Class Lists the configuration parameters.
Configuration

Parameters

Environment Variables
Name Name of the environment variable set for the NSJSP process.
Value Value of the environment variable set for the NSJSP process.

Viewing Server Class Statistics

The TS/MP subsystem provides the link manager statistics for the server class under
consideration. If the server class is configured for online-upgrade (that is, configured in
two different PATHMONS) in a Pathway domain configuration comprising two
PATHMONS, the statistics are displayed for each PATHMON. The statistics includes
the Server class link wait queue (Queue Info) and Input and Output operations (1/O
Info).

To view the aggregate Linkmon statistics for the NSJSP Server Class, complete the
following steps:

1. Click the Server Class tab.
2. Click Server Class Statistics.

The Server Class Statistics page appears. Figure 4-21 shows a sample Server Class
Statistics page.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-36

Managing NSJSP

Figure 4-21. Server Class Statistics Page

Deployment

7 Reset Stats

% Refresh Stats

Linkmon (or ACS subsystem process) Statistics

Quaue Info

Property | $YSB6 | $75B6

Fequest Count I 1<
% Waits 0.0 L
Wasamium Waits g [
Avarage Waits 0L 0.0
% Dynamic Links 0.0 0.0
10 Info
Property SYSBé | SISB&
S5end Request Count 1| 2
Send Maximum Size il 1071
Send Average Size Mahd G904,
Send Qs i 42
Rephy Request Count 1
Fephy Max Size i 0
Rephs &4verage Size Mahd a,l
Rephy 10s i a2

& Helf

The Server Class Statistics page provides the following information:

® Server class link wait queue (Queue Info)

The link manager sends requests to the server class process through links. A
request is placed in a link queue if it is not possible to immediately send the
request to a server class process due to unavailability of a link. The request
resides in the link wait queue until a free link is available or the link manager
obtains a new link to a server class process from the PATHMON.

More number of requests residing in the link wait queue indicates a need of
increasing the number of server class processes (NUMSTATIC) or the number of
links per server class (MAXLINKS/LINKDEPTH). As a result, less number of
requests will wait in the link wait queue, thereby improving the system response

time.

® Input or output operations (I/O Info)

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-37

Managing NSJSP

It is the information about 1/0O operations to and from a server class. A send
operation is a message sent from the link manager to a server class process. A
reply operation is a message received by the link manager from a server class
process.

When an HTTPD process communicates with NSJSP, a single HTTPD message
sent to an NSJSP process results in multiple send operations from the link
manager to the process. This is because of the limitation on the maximum number
of bytes that can be sent in one send operation. Similarly, a single HTTP response
from the NSJSP Server Class process might result in multiple outgoing messages
between the process and the link manager.

Note. The communication between an HTTPD process and an NSJSP Server Class
process need not always happen through a link manager. If the session based load
balancing is turned on, HTTPD processes communicate with the NSJSP Server Class
processes directly through file system calls. In such a case, the link manager counters on
this page are not incremented.

Table 4-18 lists GUI the server class statistics.

Table 4-18. Server Class Statistics

Attribute Description

Queue Info

Request Count Total number of requests for a link that were not satisfied
immediately.

% Waits Percentage of requests indicated by the Request Count value
waited in the link wait queue before it was serviced.

Maximum Waits Maximum number of requests that were queued in the link
manager queue.

Average Waits Average number of requests that were waiting.

Dynamic Links Percentage of outstanding link requests that were serviced by

dynamic links.
10 Info
Send Request Count Total number of requests sent to servers within the server class.
Send Maximum Size Size, in bytes, of the largest amount of data transferred in a send.
Send Average Size Size, in bytes, of the average amount of data transferred in a send.
Send I0s Number of I/O operations sent to servers within the server class.
Reply Request Count Not applicable

Reply Max Size Size, in bytes, of the largest amount of data transferred in a reply
from the server class.

Reply Average Size Size, in bytes, of the average amount of data transferred in a reply
from the server class.

Reply 10s Not applicable

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-38

Managing NSJSP

Note. Clicking Reset on this page does not reset the statistics displayed on this page. For
information on how to reset these statistics, see the TS/MP System Management Manual.

Performing Server Class Operations

Under the Server Class tab, you can view the current status of the server class by
clicking the Server Class Operations option.

The Server Class tab enables you to perform the following tasks:
® Stop the NSJSP Server Class
® Start the NSJSP Server Class
® Freeze the NSJSP Server Class
°

Thaw the NSJSP Server Class

Note.

® |f an NSJSP Server Class is configured for online upgrade, the NSJSP Manager
application enables you to select a PATHMON on which you want to stop, start, freeze, or
thaw the server class.

® FEach server class operation has an equivalent PATHCOM or PDMCOM command, as
follows:

© The stop operation is equivalent to the FREEZE <server cl ass> and STOP
<server class> commands.

© The start operation is equivalent to the THAW <ser ver cl ass> and START
<server class> commands.

© The freeze operation is equivalent to the FREEZE <server cl ass>command.
© The thaw operation is equivalent to the THAW <ser ver cl ass> command.

For more information on performing the server class operations using the PATHCOM
commands, see Server Class Operations on page 4-86.

For more information on the PATHCOM commands, see the TS/MP System Management
Manual.

Stop the NSJSP Server Class

To restrict access to the NSJSP installation, stop the NSJSP Server Class. Before
stopping an NSJSP Server Class, ensure that no one is accessing that installation.

To stop the NSJSP Server Class, complete the following steps:
1. Click the Server Class tab.
The System Information page appears.

2. Click the Server Class Operations.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-39

Managing NSJSP

3. Perform one of the following steps depending on the number of PATHMONS
configured:

a. If the server class is configured on only one PATHMON, click Stop.

The following message is displayed:

The operation will nmake the server class unavail able for
the user. Do you still want to stop the server class?
Click OK.

b. If the server class is configured in a TS/MP Pathway domain, complete the
following steps:

1. Select the Pathmon Name, which has the server class to be stopped.

2. Click Stop.
The following message is displayed:
The operation will make the server cl ass unavail abl e
for the user. Do you still want to stop the server
cl ass?

3. Click OK.

The following message is displayed for Steps 3a and 3b:

Stop Initiated. The operation my take a few mnutes to
conpl et e.

The server class stops and you can no longer access any application running on the
server class.

Figure 4-22 shows the Server Class Operations page after stopping the server class
configured under the $YSB6 PATHMON.

Figure 4-22. Server Class with the $YSB6 PATHMON in the FROZEN State

Applications # Reset Stats ‘% Refresh Stats

*)Stop @ Thaw W Freeze & Help

Stop Initiated. The opearation may take a few minutes to complete

Select the pathmon on which you want to start/stop/thaw/freeze the server class

Pathmon Name Running Processes

';.-.:' I‘:'.T. 560 & FROZEM

O 5Z5Bs 2 RUNNING

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-40

Managing NSJSP

A WARNING. Wait for a minute or two for the operation to complete before performing any other
operation on the NSJSP Manager application interface. The time required for an operation to
complete depends on the number of requests serviced by the server class at the time of the
stop operation and the number of server class processes that are running.

Start the NSJSP Server Class

Using the NSJSP Manager application, you can start an NSJSP Server Class that is in
the STOPPED or THAWED state.

To start the NSJISP Server Class, complete the following steps:
1. Click the Server Class tab.

The System Information page appears.
2. Click the Server Class Operations.

3. Perform one of the following steps depending on the number of PATHMONS
configured:

a. If the server class is configured on only one PATHMON, click Start.

b. If the server class is configured in a TS/MP Pathway domain, complete the
following steps:

1. Select the Pathmon Name, which has the server class to be started.
2. Click Start.
The following message is displayed for Steps 3a and 3b:

Start Initiated. The operation nay take a few mnutes to
conpl et e.

Figure 4-23 shows the Server Class Operations page after starting the server class
configured under the $YSB6 PATHMON.

Figure 4-23. Server Class with the $YSB6 PATHMON in the RUNNI NG State

Applications D M ResetStats & Refresh Stats

Start Initiated. The operation may take a few minutes to complete

Selact the pathmon on which you want to starl/ stop/ thaw s fraeze the server class

Pathmon Hame Running Processes
O | 5¥sBE 2 RLUNMING

O | IS RLIMNING

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-41

Managing NSJSP

The server class starts and you can access only those applications that are running on
the server class.

Freeze the NSJSP Server Class

Using the NSJSP Manager application, you can freeze an NSJSP Server Class that is
in the RUNNI NG or THAVED state. After performing a FREEZE operation, no new links
will be assigned to the link manager, and the link manager will stop using the current
links.

To freeze the NSJSP Server Class, complete the following steps:
1. Click the Server Class tab.

The System Information page appears.
2. Click the Server Class Operations.

3. Perform one of the following steps depending on the number of PATHMONS
configured:

a. If the server class is configured in one PATHMON, click Freeze.
The following message is displayed:

The operation w Il make the server class unavailable for
the user. Do you still want to freeze the server class?

Click OK.

b. If the server class is configured in a TS/MP Pathway domain, complete the
following steps:

1. Select the Pathmon Name, which has the server class to be frozen.
2. Click Freeze.
The following message is displayed:

The operation will nake the server class unavail able
for the user. Do you still want to freeze the server
cl ass?

3. Click OK.
The following message is displayed for Steps 3a and 3b:
Freeze successful .

In the Fr ozen state, no new links will be assigned to the link manager, and the link
manager will stop using the current links.

Figure 4-24 shows the Server Class Operations page after freezing the server class
configured under the $ZSB6 PATHMON.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-42

Managing NSJSP

Figure 4-24. Server Class with the $2SB6 PATHMON in the FROZEN State

Applications Deploymant 7 Reset Stat: & Refresh Stats

A=l B Thaw W Freeza g Helg

Freeze successful

Select the pathmon on which you want to start/stop/thaw/ freeze the server class

Thaw the NSJSP Server Class

Using the NSJSP Manager application, you can thaw an NSJSP Server Class that is in
the FROZEN or STOPPED state.

To thaw the NSJSP Server Class, complete the following steps:
1. Click the Server Class tab.

The System Information page appears.
2. Click the Server Class Operations.

3. Perform one of the following steps depending on the number of PATHMONS
configured:

a. |If the server class is configured in one PATHMON, click Thaw.
The following message is displayed:

Thaw successf ul

b. If the server class is configured in a TS/MP Pathway domain, complete the
following steps:

1. Select the Pathmon Name, which has the server class to be thawed.
2. Click Thaw.

The following message is displayed and the server class state changes to Runni ng as
shown in Figure 4-25:

Thaw successf ul

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-43

Managing NSJSP

Figure 4-25. Server Class with the $2SB6 PATHMON in the RUNNI NG State

Applications Depioyment

7 Reset Stats % Refresh Stats

) Stop ‘W Freeze g Help

Thaw successful

Select the pathmon on which you want to startfstop/thaw/freeze the server class

Pathmon Name Running Processes
O | SYSBS 2 PLINNING
O | 5Z5Bk 2 RUNNING

After changing the PATHMON status to THAVED, select the same PATHMON name
and click Start to restart the server class.

Viewing MBeans

The NSJSP resources, such as, server, connector, and engine are instrumented by
MBeans. For more information on MBeans, see Appendix A, MBeans in the NSJSP

Container.

You can view the list of MBeans running in each NSJSP process within an NSJSP
Server Class.

To view MBeans, complete the following tasks:
1. Click the MBeans tab.

The NSJSP MBeans page appears. The NSJSP Process list is displayed from
which you must select the NSJSP process hame.

2. Select an NSJSP process from the NSJSP Process list and click Load.

The NSJSP process name is displayed in the MBeans frame.

3. To view the MBeans in the selected NSJSP process, expand the MBean tree in the

MBeans frame.

A leaf node in the MBean tree denotes an MBean.

4. To view MBean attribute names and their values, click the leaf node for an MBean.

The MBean attributes and their corresponding values, object name, and a description
of the MBean are displayed in the right pane.

Figure 4-26 shows a sample NSJSP MBeans page.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-44

Managing NSJSP

Figure 4-26. NSJSP MBeans Page

“Applcationsg Grrver Class = Posek Statz % Refrosh Stats
& Help
Nsisp pracess (oo [EEE
tAE2ans
- % AT Obcect Mema: MAJa ypemDepioyer, host=|ocalhost
Catalina R gk
[
J.-.'llrnplementahon Compsrs acfogs Procesies Lisplay Abtribute Descriolion
= H5J5F
@ Cache Hame Vakae
[1] CI:] nnector cnnfiafasehams fhnmaf nejspitds sphides Smajadsi fnsjsp MAIFI_scabd/conff A5 Mnealhase
B Controller contallase Srd gpache cataling startup Contee Loty
2 Deployer conteliag ora-apacha.cataling core, Standz: diostext
localhost contextTodetrafiomd tru
A
ST kg
Engine A o R e
roaelal TS com.tandsr. sarvist catal e, stactup M IEPEsstanfa
2 GlobalRequestProcessor| |~ - . = :
e Ter o e
@ Host R AN S PR RS S falss
. JE-p.I"-"IQI‘ﬂ tor srilaiidator fale=
@ Loader

You can perform the following operations using the NSJSP MBeans page:

® List the MBeans tree by selecting an NSJSP process from the list and clicking
Load.

® List the attributes of an MBean by clicking a leaf node from the MBean tree.

® Compare the attributes of the MBean across NSJSP processes by clicking the
Compare across Processes link. After clicking the link, the Compare - NSJSP
MBeans page appears. For more information on comparing MBeans, see
Comparing MBean Attribute Values on page 4-46.

® View the attribute names and values by clicking a leaf node from the MBean tree.
You can also view the attribute names and their descriptions by clicking the
Display Attribute Description link. This link toggles with the Display Attribute
Values link based on the MBean that is displayed currently.

Table 4-19 lists the parameters on the NSJSP MBeans page.

Table 4-19. Parameters for Viewing MBeans and their Attributes (page 1 of 2)

Parameter Description

NSJSP Process Lists all the NSJSP processes in the selected NSJSP Server
Class. MBeans run in the NSJSP processes.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-45

Managing NSJSP

Table 4-19. Parameters for Viewing MBeans and their Attributes (page 2 of 2)

Parameter Description

MBeans

Left window A navigation tree that lists all the MBeans running in the selected
NSJSP process.

Right window Following are the fields displayed for a selected MBean:

® Object Name - Object name of the MBean.
® Description - Description of the MBean.

® Compare Across Processes - A link to compare the attributes
of the displayed MBean across processes.

® Display Attribute Description - A link to display attribute names
and their descriptions. This option is enabled only when the
attribute values are displayed.

® Display Attribute Values - A link to display attribute names and
their values. This option is enabled only when the attribute
descriptions are displayed.

Name - An MBean attribute name.

Value - An MBean attribute value. Values of MBean attributes
provide information about the associated managed resource
and may help in performance analysis and

troubleshooting.

Managing MBeans

The MBeans tree displays the NSJSP MBeans and MBeans registered by the
applications. You can compare MBean attribute values across NSJSP processes and
you can modify some MBean attribute values. You can modify some of the attributes of
the NSJSP, Catalina, and Users MBeans. You can also modify MBeans that are
registered by the applications using the same procedure.

Comparing MBean Attribute Values

MBeans provide a mechanism to view the current state of the resource managed by
the MBean. The resource state might include static information and dynamic
information. To compare the static or dynamic information across NSJSP processes,
use the compare MBean operation.

To compare the values of an MBean attribute, complete the following steps:
1. Click the MBeans tab.

The NSJSP MBeans page appears.
2. Click Compare MBeans.

The Compare - NSJSP MBeans page appears.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-46

Managing NSJSP

3. Inthe MBean Object Name: field, type the object name of the MBean whose
attribute values you want to compare.

For example, if you enter the following string in the MBean Object Name: field and
click Compare All Attributes:

NSJSP: j 2eeType=Ser vl et , *

All MBeans of type Ser vl et that are configured in the NSJSP domain are
displayed, as shown in Figure 4-27.

Figure 4-27. List of MBeans

Applications | Server Class 7 Reset Stats # Refresh Stats

& Help

Compare MBeans across NSJSP Processes

MBean Object Name: NSJSP:jZeeType=Serviet,” Compare All Attributes

The passed MBean Object Name matches with multiple MBeans listed below,
Select the MBean that you want to compare.,

MBean Hame

NS J5P: ZEE Application=none, JZEEServer=none,\Webiodule=//localhost/ scaburl, j2ZeeType=5ervlet, name

NSJ5P: REEApplication=none, JZEEServer=none,WebModule=//localhost/ scabur, j2eeType=Sarvlat, names

M5 J5P: ZEEApplication=none, ZEEServer=none WebModule=/ Mocalhost/scaburlfadmin, jZeeType=5Sarvlet
NSJ5P: PEEApplication=none, JZEESarvar=none,'Webiodule=/ flocalhost/scaburl/admin, j2ZeeType=Serviet
NS J5P: REEApplication=none, JZEEServer=none, WebModule=//localhost/ scaburl/admin, j2eeType=Servlat
M5J5P: ZEEApplication=none, ZEEServer=none.\WebModule=/localhostfscaburlfadmin, j2eeType=5Serviet
NS J5P: 2EEApplication=none, JZEEServer=none,Webiodule=/flocalhost/scaburl/admin, j2eeType=5arvlet
N5 J5P: PEELApplication=none, JZEEServer=none, WebModule=//localhost/scaburl/admin, j2ZeeType="Sarvlet
N5J5P: ZEEApplication=none, J2ZEEServer=none, WebModule=//localhost/scaburl/admin, j2eeType=5erviet
NS J5P: 2EEApplication=none, JZEEServer=none,WebModule=//localhost/ scabur/admin, j2eaType=Sarviet

h5J5P: ZEEApplization=rnone, JZEEServer=none. \WebfModule=/ocalhost/ scaturlfadmin, j[ZeeType=terviet

NSJ5P: JZEEApplication=none, JZEEServer=rione, WebModule=//localhost/scaburlfadmin, j2eeTypa=5ervlat

4. Click the MBean name that you want to compare.

After selecting an MBean, a list of all the attributes for that MBean across all the
NSJSP processes is displayed, as shown in Figure 4-28.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-47

Managing NSJSP

Figure 4-28. Compare - NSJSP MBeans Page
Applications 7 Reset Stats @ Refresh Stats

& Help

Compare MBeans across M3JSP Processes

MBaan Object Marme: NSJSP: ZEEApplication=none, 2EEServer=r Campare All Attrbutes

minTime a
eventProader

MBean Attribute Names: | objecthame m

statisticsProvider
| processingTime b

Comparison Results:

Modify MEBean

Pathmaon

Hiima Precess | minTime eventProvider | objectName statistiesProvider | processingTime
SY5Ba SZ0B4 2233720368047 70807 | false M53J2H: jleel ype false 0
ST5B6 SIOBS. | 92233720368H 775807 | false W5J5P:j2eaType false i}
SZ5BE SC0AW | 9Z233T2036854775807 | false MS 5P j2eeType false]
SL5B6 SI0AK | 922I3TZ0I6ES4S7OB07 | false M5J5P:j2eaType false 0

If you only want to compare a few attributes across all the NSJSP processes, select
the attribute names from the MBean Attribute Names: field and click Compare.
Figure 4-29 shows the comparison result for the nodel er Type attribute across all the
NSJSP processes.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-48

Managing NSJSP

Figure 4-29. Comparison Result for the nodel er Type Attribute

Applications Deployment % Reset Stats % Refresh Stats

= Help

Compare MBeans across NSJSP Processes

MBean Object Name: NSJSP:J2EEApplication=none, J2EEServersr Compare All Attributes
engineMamea ~
maxTime
MEBEean Attribute Mames: errorCount Compare
modalarTypa [
HNoadTime ¥

Comparison Results:

Modify MBean

Pathmen Hame | Process | medelerType

SYSBE %Z0B4 | org.apache.catalina.core.StandardWrapper
SYSBS SZ0BS | orz.apache.cataling.core.StandardWrapper
SZSBG SI0AW | org.apache.catalina.core.StandardWrapper
SZ5BE SZ0AX | org.apache.catalina.core.StandardWrapper

Note. If you navigate the Compare - NSJSP MBeans page by clicking the MBeans List option
and then clicking the Compare across Processes link, the object name and the attribute
values for that MBean, across the NSJSP processes, are displayed on the page.

You can perform the following operations from the Compare - NSJSP MBeans page:

® Compare all the attribute values of a selected MBean across processes by
specifying the object name of an MBean in the MBean Object Name: field and
clicking Compare All Attributes.

® List the MBeans. MBean object names can be entered with wild card characters to
search for all MBeans that match a domain and set of key-properties. The key-
properties are the property-value pairs, which are represented as nane=val ue in
an object name. For more information on object names and key-properties, see
Appendix A, MBeans in the NSJSP Container.

The following are some examples:

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-49

Managing NSJSP

© To list all MBeans under the domain NSJ SP, enter the following string in the
MBean Object Name: field and click Compare All Attributes:

NSJSP: *

© To list all the session managers configured in the application running in the
host =l ocal host , enter the following string in the MBean Object Name: field
and click Compare All Attributes:

NSJSP: t ype=Manager, host =l ocal host , *"

® Modify an MBean. The Modify MBean option is displayed only when the attributes
of an MBean are displayed for all the processes.

Table 4-20 lists the parameters in the Compare - NSJSP MBeans page.

Table 4-20. Parameters in the Comparing MBeans Across NSJSP

Processes Page

Parameter
MBean Object Name:

Compare All
Attributes

MBean Attribute
Names:

Compare

Comparison
Results:

Modify MBean

Description

The name of the MBean whose attributes you want to compare
across NSJSP processes.

A link to compare all attributes of the MBean across NSJSP pro-
cesses.

A list of all the MBean attributes from which individual attributes can
be selected for comparison.

A link to compare the selected attributes of the MBean across
NSJSP
processes.

Table that includes a comparison of MBean attribute values across
NSJSP processes.

A link to the Modify MBean page, which allows you to modify the
values of some MBean attributes of the selected MBean.

Modifying MBean Attribute Values

To tune NSJSP as per your requirement, modify the MBean attribute values. The
modify operation changes the corresponding value on the NSJSP processes that are in
the running state. After modification, the NSJSP process behaves as per the modified
value of the MBean attribute.

To modify a value of the MBean attribute, complete the following steps:

1. Click the MBeans tab.

The NSJSP MBeans page appears.
2. Click Modify MBean.

The Modify MBean page appears.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-50

Managing NSJSP

8.

In the MBean Object Name: field, type the object name of the MBean whose
attribute values you want to modify.

Click Load Attribute list.

The following fields are displayed on the Modify MBean page that must be set to
modify an MBean attribute:

® NSJSP Process Name:
® Attribute Name:
® New Attribute Value:

The Set New Attribute Value button and the actual attribute values across NSJSP
processes are also displayed on the Modify MBean page.

Select the NSJSP process name from the NSJSP Process Name: list. You can
select one or multiple NSJSP processes. Only MBeans in the selected processes
will have their attribute modified.

Select the attribute name that you want to modify from the Attribute Name: list.

In the New Attribute Value: field, enter the new attribute value.

Note. The attribute value you specify in the New Attribute Value: field depends on the
attribute that you are modifying. For example, if the attribute cacheMaxSi ze needs to be
modified, enter an integer value.

Click Set New Attribute Value.

The new value is assigned to the selected MBean attribute of the selected NSJSP
processes. Figure 4-30 shows a sample Modify MBean page.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-51

Managing NSJSP

Figure 4-30. Modify MBean Page

3 Resot Stats_® Refiesh Stats

Modify MBean

MBean Object hama: HIZJSP:typa=Engine Load Attribute lay
SN

HESJ5F Process Mame
3085

Attribute Name: pmRoute v

Hew Attribute Valse: l:estHuutEl Sat New Attribute Value

Attribute values across NSJSP processes

managedResource | baseDir valveObjectiames | realm name |defaultHost | modelerType
SYSE STOE4 Unavaitable fhomelnsjspl [L]ava managemar Unavailable | NSJSP | localhost org.apache ::i
Ssbd SEOBS Unavaiiable thomarfnsjspl [Ljaves menagemer Unaxailable NSJSP locelhost arg: apache vl

LSRG TrA Urnavaitahle hiom o [L]aves. managemer Linavallsble N5JSP localhost . apache,ca|
2 ! |

TOAK Unayaiable fhomaingjsp [L|avax managemar Unavailable | N5JSP | locathost rg. apache.c al

Table 4-21 lists the parameters displayed in the Modify MBean page.

Table 4-21. Parameters in the Modify MBean Page

Parameter Description
MBean Object Name: Name of the MBean with the attribute that you want to modify.

NSJSP Process A list of NSJSP processes to which you may apply the new

Name: attribute value. You can select one or more NSJSP processes to
have the selected attribute modified.

Attribute Name: A list of MBean attributes. You select the MBean attribute that you
want to modify.

New Attribute Value: New attribute value that you want to assign.

Attribute values Table that lists the attribute values across NSJSP processes.

across NSJSP pro-

cesses.

Deploying Web Applications

The application resources required for deploying an application can be present either
on the workstation (where the browser is running) or on the NonStop server (where the
NSJSP processes are running). Based on the location of the application resources,
there are two types of web application deployments:

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-52

Managing NSJSP

® Deployment from a server

® Deployment from a desktop

Note. NSJSP does not support context names, such as, / ny/ cont ext , that include multiple
‘I' characters.

Deploying Web Applications from the Server

If an application resource already exists on the server in which NSJSP is running, use
the server deployment option.

To deploy an application from the server, complete the following steps:
1. Click the Deployment tab.
The Application Deployment page appears.
2. Under Web Application Deployment from Server, complete the following steps:
a. Inthe Context name filed, type the name of the context.
This is a required field.

b. Inthe Context Configuration File Location field, you may enter the location
of a context configuration file.

Note. The Context Configuration File Location field is required only if you want to
deploy the application using a context configuration file. Otherwise, it can be skipped.

c. Inthe War or Directory Location field, type the location of the . war file or the
application directory path.

d. Select one of the following check boxes based on your requirements:
® Automatically Add Filemap
® Automatically Prefix Context Path
See Table 4-22 for detailed explanation of the above listed options.
By default, the Automatically Prefix Context Path check box is selected.
3. Click Deploy.
The web application is deployed in the selected server class and Host.

Figure 4-31 shows the Web Application Deployment from Server window.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-53

Managing NSJSP

Figure 4-31. Web Application Deployment from Server

#i) Refresh Stats

&' Help

Web Application Deployment from Server

Context name (ex. {dummy|
Context Configuration File Location {ex. /myContexts/Hello.xml)
War File or Webapp Directory Location (ex. /myWebapps/myapp.war, /myWebapps/myappdir/)

[[] Automatically Add Filemap
Automatically Prefix Context name with URI name

Deploy

Table 4-22 lists the attributes displayed under Web Application Deployment from
Server on the Application Deployment page.

Table 4-22. Attributes on the Web Application Deployment from Server
Page (page 1 of 2)

Attribute Description

Context name The context name to use for the application.

Context Configuration Absolute path of the application context file.

File Location

War or Webapp The application directory or the directory path and name of the
Directory Location .war file that you want to deploy.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-54

Managing NSJSP

Table 4-22. Attributes on the Web Application Deployment from Server

Page (page 2 of 2)
Attribute

Automatically Add
Filemap

Automatically Prefix
Context name with URI
name

Deploy

Description

Check box to enable the creation of a Filemap file entry for the
application. The entries in the fi | enaps. confi g file are used
by the Servlet Server Class during startup to determine the path
to the application. Applications require a Filemap file entry.

For more information on the context prefix for an application,
see Chapter 3, Configuring NSJSP.

Check box to enable the application to be deployed along with
the prefixed context name. Using this option you can prefix the
context name with the URI name that was assigned to the
NSJSP installation when the set up script was run. A filemap
will already exist for the URI name. The <URI nane> is
specified during NSJSP installation, when the set up script is
run. For example, if you set the context name to/fi rst and
select the Automatically Prefix Context name with URI
name check box, the application will be deployed with the
context name, / <URI name>/fi rst. If you do not select the
Automatically Prefix Context name with URI name check
box, the application will be deployed with the context name

[first and a filemap entry will be created for the application
[first.

Button used to deploy the application.

Deploying Web Applications from the Desktop
If an application is on the desktop and you need to deploy it, use the desktop

deployment option.

Note. The application that you want to deploy must be packaged as a valid . war file.

To deploy an application from the desktop, complete the following steps:

1. Click the Deployment tab.

The Application Deployment page appears.

2. Under Web Application Deployment from Desktop, complete the following

steps:

a. Inthe Select a .war file to upload field, click Browse to locate the .war file.

b. Type the context name of the application in the Context name field.

Note. The context name must be prefixed by /.

3. Click Deploy.

The web application is deployed in the selected server class and Host.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-55

Managing NSJSP Admin Web Application

Figure 4-32 shows the Web Application Deployment from Desktop window.

Figure 4-32. Web Application Deployment from Desktop

Web Application Deployment fram Desktop

Select a .war file to upload

Context name [ex. Sdummy]

Table 4-23 lists the attributes displayed under Web Application Deployment from
Desktop on the Application Deployment page.

Table 4-23. Attributes on the Web Application Deployment from Desktop Page

Attribute Description
Select a .war file to The Browse... button by this field must be used to select the
upload -war file that you want to deploy. The Browse... button allows

you to view the desktop and to navigate the workstation file
system to select the file to upload.

Context name The context name to use for the application.
Deploy Button used to deploy the application.

Admin Web Application

The Admin Web application is a web-based application that is associated with an
NSJSP installation. It enables you to examine and modify parts of some configuration
files, such as, server. xnl , cont ext. xm , and nsj sp-users. xm .

When you modify the configuration information using the Admin Web application, the
changes made in the configuration files are persisted. This means that the changes will
exist even after the NSJSP Server Class is restarted. However, when changes are
made with the Admin Web application, the changes will be applied to the NSJSP
processes only after the changes have been saved and then committed from the
Admin Web application.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-56

Managing NSJSP Overview and Architecture

Note.

® HP recommends that you perform the Commit Changes operation only after making all
changes to the configuration.

® The Admin Web application can manage an NSJSP Server Class in only one PATHMON
when NSJSP 6.1 is installed in an iTP Secure WebServer environment that is configured
for online-upgrade.

This section describes the following topics:

® Overview and Architecture

Admin Web Application Features

°
® |Login and Security Considerations
°

Managing Admin Web Application Operations

Overview and Architecture

An NSJSP 6.1 configuration can be changed by editing configuration files and then
stopping and restarting the iTP Secure WebServer environment. However, it is also
desirable to make changes dynamically without stopping the NSJSP processes. Such
changes would also need to be made to the configuration files, if they need to be
persisted. The Admin Web application provides this capability for a single PATHMON.
It can update a configuration file with changes and distribute those changes to every
running process in the NSJSP Server Class under a PATHMON. The Admin Web
application runs in a separate NSJSP Admin Server Class from the NSJSP Servlet
Server Class. The name of the Admin Server Class is derived from the NSJSP Server
Class name. The Admin Server Class nhame is <NSJSP server class name>-adm.

Admin Web application requests are routed to the Admin Server Class (through a
Tilemap created for the iTP Secure WebServer). The administrator browses objects
and performs updates through the Admin Web application pages. When you select
Save to complete an update, the save operation does not implement the changes in
the NSJSP Server Class immediately. You must next click the Commit Changes
button for the changes to actually be processed. The Admin Web application then
updates the relevant configuration file and broadcasts all the saved changes to all
running processes of the NSJSP Server Class under the same PATHMON.

Note. If the Admin Server Class fails to start or is stopped for some reason, the NSJSP Server
Class continues to run. All web applications, except the Admin Web application and the
Manager Web application, are still accessible.

Figure 4-33 shows operator Admin operations received by the iTP Secure WebServer
directed to the Admin Server Class. When you click Commit Changes, the Admin
Server Class first updates the configuration file (for example, server .xml) and then
broadcasts all the saved changes in a chunk to every running process of the NSJSP

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-57

Managing NSJSP

Server Class, as shown in Figure 4-34. As a result, any NSJSP processes

Overview and Architecture

subsequently created have the same configuration as the currently running processes.

Figure 4-33. Admin Operations followed by SAVE

Object browses,
update, and “SAVE”

httpd < » <NSJSP
< > selrver
class

: >name>—adm

Figure 4-34. Operator Commit Changes Command

Select “Commit
Change” button

>
SERVLETS-ADM

Server Class

SERVLETS
Server Class

httpd broadcast

Read by new
dynamic servers

Configuration
files

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-58

Managing NSJSP Admin Web Application Features

Admin Web Application Features

The Admin Web application includes a User Interface (UI) to perform the operations
related to the NSJSP servlet container components, such as, Service and Host. The
Admin Web application enables you to do the following:

Modify the configuration files.

Create new NSJSP servlet container components.

Create users, groups, and roles for the users.

°
°
® Delete existing NSJSP servlet container components.
°
® Delete existing users, groups, and roles.

°

Perform the Commit Changes operation for saved changes to propagate those
changes to all the associated NSJSP Server Class processes in the PATHMON
and update the configuration files.

Login and Security Considerations

The Admin Web application uses the FORM method for its login authentication and
requires the admin role for access control, by default. The admin role is for users who
need to perform Admin Web application operations.

For a more secure environment, you could configure the Admin Web application in a
private virtual Host. In addition, if you need remote access to the Admin Web
application, you should consider configuring the Admin Web application to use the
Secure Sockets Layer (SSL).

To access the NSJSP Admin Web application, you must enter a URL in the following
format:

http:// IP address: Port number/ <URI for NSJSP 6.1
Installation>/ adm n

Note. The URL for the NSJSP Admin Web application can be retrieved from the <NSJSP 6.1
Installation Directory>/install.log file.

Figure 4-35 shows the login page of the NSJSP Admin Web application.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-59

Managing NSJSP Login and Security Considerations

Figure 4-35. Admin Login page

"ADMINISTRATION |
T 0 0 L

User Nare [
—

(Logn [Feser |

Note. To log in to the Admin Web application, enter the user name as admin and use the
same password that you provided when the setup script was run.

An error message is displayed if you are not authorized to access the Admin Web
application or if the authentication process fails.

After completing the authentication and authorization processes, the Admin Web
Application home page is displayed as shown in Figure 4-36.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-60

Managing NSJSP Login and Security Considerations

Figure 4-36. Admin Web Application Home Page

TomcAT WEeR SERVER

ApminisTRATION TooL

A Tameat Server
& Serice (NSISP)
Flj:f@iﬂull:l!i
E Data Sources
B Ml Sessives
£ Emvironment Entries
& User Datatases
@ D eer Definition
b lJzers
i Gmups
¥ Roles

The Admin Web application home page is divided into two panes: the left pane and the
right pane. The left pane includes elements to manage the servlet container
components and to perform tasks, such as, adding users and groups. These elements
are displayed in a tree structure.

The left pane displays the following primary elements:
® Tomcat Server

® Resources

® User Definition

The primary elements can contain child elements. If a primary element has child
elements, a key is displayed to the extreme left of the element name entry. The
position of the key can be toggled by clicking on it. When the key points right,
sub-elements are not displayed. When the key points down, sub-elements are
displayed. The right pane displays the details of the element that is selected in the left
pane. An element in the left pane is selected when you click the name of the element.
The element has been selected, when the element name is displayed in bold text.

The Admin Web application also includes the following operations:

® Save Changes — The changes made before performing the Commit Changes
operation are stored in the Admin Web application and not propagated to the
NSJSP Server Class processes till you click Commit Changes.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-61

Managing NSJSP Managing Admin Web Application Operations

Commit Changes — This operation commits all the previously saved changes,
notifies the running NSJSP processes of the changes and updates the
configuration files.

Log Out — Ends the current user session and requires a new login to access the
Admin Web application.

Managing Admin Web Application Operations

This section lists all the actions that you can perform using the Admin Web application.
It discusses the following topics:

Administering the Server

Administering a Service

Administering a Connector

Administering a Host

Administering a Context

Administering a Realm

Administering a Valve

Administering Resources

Administering User Definitions

Access Security Considerations

Persisting Changes to the server.xml File and Context Files

Administering the Server

Server represents the NSJSP container. After logging in to the Admin Web application,
click the text Tomcat Server in the left pane. The Server Actions list and two
properties of the Server element are displayed in the right pane, as shown in

Figure 4-37.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-62

Managing NSJSP

Administering the Server

Figure 4-37. The Tomcat Server Element

Tareerntr Wee CSepuvep

ApminiSTRATION TooL

&5 Tomcat Server
@ CResouces
8 Data Souress
B il Sassions
¥ Ervirgnment Ertries
B ser Databases
& C)ser Definition
B sars

£ Groups
Roles

Server Properties
Fort Mumber, -1
Shistdown SHUTLOW

Tomcat Server Server Actions B clr Ta i .

You can select one of the following actions from the Server Actions list:

® Create New Service

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006

4-63

Managing NSJSP Administering a Service

® Delete Existing Services

/A Caution.

Although you can add more than one Service element, HP recommends that you retain only
one Service element due to the following reasons:

® Each Service element requires a Connector element and NSJSP provides only one
Connector implementation, which processes messages from the $RECEIVE file. Two
Connector definitions cannot use the same connector implementation. Therefore, the
number of Service definitions is restricted to one.

® The NSJSP Manager can manage applications in only one service (that is the default
NSJSP service).

The NSJSP Manager and the Admin Web application will stop working if you delete the default
service.

For more information on the Server element, see the Server Element on page 3-40.

Administering a Service

A service represents the combination of one or more Connectors that share a single
Engine to process incoming requests.

To administer a Service, you must click the Service name under Tomcat Server
displayed in the left pane of the tree structure. The default Service entry is Service
(NSJSP). The name of each Service is displayed in parentheses.

Figure 4-38 displays the Service Actions list, and a few properties of the NSISP
Service and Engine elements.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-64

Managing NSJSP

Administering a Service

Figure 4-38. The Service Element

Torerar Wer Scoren

ADMINISTRATION TOOL

Tomeat Server
¥ Senice HSISP)

CResources

i Diata Sources

B Mail Sossions

2F Ervironment Entrias

B User Databases
@ CJser Defintion

& Users

i rups

¥ Roles

Service [NSJSP) Sarvice Actions [f e ra lr
Se| Rese

Service Properties
Name NSIsP
Engine Properties
Mame HSIsP
Defaut Hostname: lacalhost ¥

Soe| foe |

You can select one of the following actions from the Service Actions list:

® Create New Connector

Create New Host

Delete Existing Hosts

Create New Valve

Delete Existing Connectors

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006

4-65

Managing NSJSP Administering a Connector

® Delete Existing Valves

/A Caution.

® HP recommends that you always have only one Connector element. Therefore, do not use
the following actions:

© Create New Connector

© Delete Existing Connectors

For more information, see the Caution on page 4-64.

® Do not use the NSJSP Manager to manage Hosts, that are added using the Admin Web
application, unless the Host is configured with a Request Tracker Valve in the
server._xml file.

® The Delete Existing Hosts action does not work in the NSJSP 6.1 release. However, you
can manually remove a <Host> element from the server.xml file.

For more information on the Service element, see the Service Element on page 3-43.

For more information on the Engine element, see the Engine Element on page 3-50.

For more information on the Host element, see the Host on page 3-54.

Administering a Connector

A connector represents a communications end point on which requests are received
from a client. NSJSP uses a NonStop-specific connector which works with the iTP
Secure WebServer to process requests.

To administer a Connector, click the Connector under the appropriate Service name
displayed in the left pane.

If the connector is not displayed, click the key that is located to the left of the Service
icon. The key will then point down and the tree structure will be expanded to display
the following sub-elements:

® Connector (0)
® Host (localhost)
® Realm for Service (NSJSP)

Figure 4-39 displays the Connector Actions list and the properties of the Connector
element in the right pane.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-66

Managing NSJSP

Administering a Host

Figure 4-39. The Connector Element

TrarrraT Wreoe Srpvep
ApMINISTRATION ToOL :
% A Tomcat Serves Connector [0) Connector Actions [feslasle Actiens— [
¢ W sorice HEEER)
@ Conneetss g - 1]
il
B Hou flozalhoss)
B Resim for Samice (NS157) | Genorst [|
F DRescuces T
L HITF
B Dits Sources ”
0 ppail Sunasens Schame hp
¥ Emirsnmen! Erariss Enabla DS Lookups False =
B Lisar Datsbanes IR Encoding
& Eiger Defrgion
Lisses Use Body Encoding
) For LIRI Query Falaa =
TOURE Farameters
W Roles
Alow TRACE Method Falua =
IF Addrass
Sl False ~
Accapt Count 5
Compression ol
Connaction Linger _1
(rmillissconds)
Connaction Timeout o
{millisaconds)
Conmection Lipload
Tirnadout S00000
(rnilligeconds)
Drefanit Buffer Size: 048
Dhgaa bl Lplaad
Tirmaou Troe E8
Ml BapAlned 1
Riagquasts w
Max Spare Threads mull
Max Threads: Fi
Win Spare Thieads il
Frocessor Thread 5
Frionty
TCP Mo Delay True =
¥, Povered By False =
Fort Mumber o
Suwe| Ruse |

For more information on the Connector element, see the Connector Element on
page 3-45.

Note. The Connector Actions list includes the Delete This Connector action. If you perform
this action, the NSJSP Server Class and the Admin Web application will become non
functional.

Administering a Host

The Host represents a virtual Host. One or more Hosts are nested inside an Engine. To
administer a Host, select Host under the appropriate Service displayed in the left
pane.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-67

Managing NSJSP

Administering a Host

Figure 4-40 displays the Host Actions list and the properties of the Host element in

the right pane.

Figure 4-40. The Host Element

Tomeat Wer SEpvED

ADMINISTRATION TOOL

| Comrit Changes |

§ &5 Tomcal Server
o B Serica (NSISF)
B Comnector (0]
=8 Host (localhost)
B Realm lor Sereice (MSJER)
7 CResnumes
& Diala Sources
1 wiail Sessions
I Epproament Enliies
B User Databases
o ELiser Cehribon
zers
i Grovos
Foles

Host Actlons [A« Acvare |3

Host (localhost)

Eava Rezet
Host Properties
Er T
| Name: locallost
I_i.ﬁ_ﬁ.licaﬁun Base; _wei:n-ﬂﬁ:r;_
| Auto Deploy: [True
' Deploy On Startup: [Tue &
| Deploy XML: [True =
| Unpack WARs; [Te
| XML Mamespace Aware: [Falsa =
| XML Validation: [Falee
Aliases
CiasName]
Sawe| Ress |

The following actions are available under the Host Actions list:

Create New Aliases
Delete Aliases

Create New Context

Create New Valve

Delete This host

Delete Existing Contexts

Delete Existing Valves

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006

4-68

Managing NSJSP Administering a Context

Note.
® An alias is the alias of a Host. A Host can have multiple aliases.

® NSJSP 6.1 does not support the Create New Context and Delete Existing Contexts
actions. Use the NSJSP Manager or the Manager Web application to create or delete a
new context.

For more information on the Host element, see the Host on page 3-54.

Administering a Context

A context represents a web application. To administer a context, you must click the
appropriate Context under the Service and the Host displayed in the left pane.

If there is no context displayed under the Host in the left pane, click the key that is
located to the left of the Host name. The key will then point down and the tree structure
will be expanded to display all Context and Valve sub-elements.

Figure 4-41 displays the Context Actions list and the properties of the Context
element in the right pane.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-69

Managing NSJSP

Administering a Context

Figure 4-41. The Context Element

TorprcaTr Wee SEpyvVER

ApmINISTRATION ToOL

§ & Tomcal Serer
¢ ¥ Senice NSUSP)
G- Cornector o
@ B Host ocalhost)
& @ Coment serdet_jsp)
e Content (fsener_jspradmin
&M@ conten [fzandet_japhankapp)
@ Conten (fzendst_jspfdocs)
t." Conbext
erdel pEpfexamples)
o ¥ Context (fzandet_japhost-
manager)
& Context (fsendet_jspimanagad
BY Realm for Serice (NEISF)
® CRecources
=] Diata Sowrces
a2 Ml Sessions
£F Erevanrnent Enires
B scer Databases
§ Cser Definifion
 Users
t Groups
Roles

Context (Iserviet_isp) Context Actions T
Context Properties
Cookies Trug |
Cross Contet False [
Crocument Bass: ROOT
Crvamide Falge
Frivileged False »
Path feervlet_pp
Reloadable Falss ¥
Swallow Output False »
Lise Maming True v
Prevant Jar Locking False =
Prewant Locking r
B esources False »
Loader Properties
Reloadable False ¥
Session Manager Properties
SessioniDibalzer | [Som e e e e
tladimum Active F|
Sessians
Save H‘ﬂstl

You can perform one of the following actions using the Context Actions list:

Create New Valve

Delete User Realms

Delete Existing Valves

Delete This Context

Create New User Realm

For more information on the Context element, see Table 3-17, Attribute List for the

Context Element.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006

4-70

Managing NSJSP Administering a Realm

The context is also associated with the NSJSP-specific loader and a Session Manager.
Therefore, some attributes of the loader and the Session Manager are displayed along
with the attributes of the Context element, as shown in Figure 4-41.

Note. The Session ID Initializer attribute of the Session Manager will change the
entropy of the context and not the Manager class.

Administering a Realm

A Realm represents a database of the information about authorized users, their
passwords, and their assigned access roles. NSJSP supports the following types of
Realms:

JDBCRealm
MemoryRealm
UserDatabaseRealm
DataSourceRealm
JNDIRealm
JAASRealm

Figure 4-42 displays the properties of the MemoryRealm.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-71

Managing NSJSP Administering a Valve

Figure 4-42. The Properties of MemoryRealm

Tarwreer Wer SepyED

ADMINISTRATION ToOL [Conmi Changes |

5 Tomeal Server Realm (MemoryRealm) Label Actions Rs— |
¥ Senice PISISP)
W Coreector) . uﬂ
0‘3 Hust ecalhis!)

% Realm for Service HSJSP)

e Resources
Type MemoryBiealm

W ser Defintion >

Path Manms: condinsjspusers. xml

(s [l

The attribute list varies for each type of Realm. For more information on Realms and
their attributes, see http://tomcat.apache.org/tomcat-6.0-doc/config/realm.html.

Administering a Valve

A Valve has distinct processing capabilities, such as, providing access, logging and
request filtering.

NSJSP supports the following types of valves:
® AccesslLogValve

® RemoteAddrValve

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-72

Managing NSJSP Administering a Valve

® RemoteHostValve
® RequestDumperValve
® SingleSignOn

For information on valves, see the Valve Element on page 3-58.

You can create a new valve by clicking one of the following elements in the left pane
and selecting Create New Valve from the actions list:

® Service — A valve created at the Service level will be applicable to all the
applications in the Engine.

® Host — A valve created at the Host level will be applicable to all the applications
under that Host.

® Context — A valve created at the Context level will be applicable only to that
Context.

Figure 4-43 displays the properties of the AccessLogVal ve.

Figure 4-43. The Properties of AccessLogVal ve

Tamcat Werp SERVER

[Connit Chenges |
ADMINISTRATION ToOL
% & Tomeat Server Create New Vaive Valve Actions B ol T |
o = Service (NSJSP)
@ Conrector ()
Saue Reszat
=) (localhost) _] 4
B Deglrn o Serdca (NSISP)
bl Access Logger Properties
@ Dota Sources (Property | Vawe
[Mz Sessinns Tvbe:
2! | Arceszlogyalve v
#F Erperonment Eriries 'ﬂﬂ o =—
B User Datznases | Directory: fiogs |
% CUzer Definitior: ') [
% Users Pattern: | -
#} Groups PlEﬁK‘. |:|r.m;!s.n Ing |
Hi Roes ————
Resolve Hosts: |False |
Rotatable: [Tre]
Suffix: |]
SaE Raszat

For information on the valves, the different types of Valves and the attributes
associated with each Valve, see
http://tomcat.apache.org/tomcat-6.0-doc/config/valve.html.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-73

Managing NSJSP Administering Resources

Administering Resources

Resources can be defined either globally or per web application under the Context
element. The globally defined resources can be accessed using web applications by
specifying links to the global resource in the web application itself.

The following are the types of resources:

® Data Sources (of type j avax. sql . Dat aSour ce)

® Mail Sessions (of type j avax. mai | . Sessi on)

® Environment Entries (of various Java language types such as
java.l ang. | nteger andj ava. |l ang. Stri ng)

® User Databases

® Resource Links

For information on how to define the resources globally, see
http://tomcat.apache.org/tomcat-6.0-doc/config/globalresources.html.

For information on how to define resources per web application, see
http://tomcat.apache.org/tomcat-6.0-doc/indi-resources-howto.html.

For information on how to create resource links, see
http://tomcat.apache.org/tomcat-6.0-doc/config/context.html#Resource%20Links.

Data Sources

Data sources are resources that are used to perform database operations.

To create a data source, you must click Data Sources under Resources displayed in
the left pane.

Figure 4-44 displays the Data Source Actions list and the properties of the Data
Sources in the right pane.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-74

http://tomcat.apache.org/tomcat-6.0-doc/config/globalresources.html
http://tomcat.apache.org/tomcat-6.0-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/config/context.html#Resource%20Links

Managing NSJSP

Figure 4-44. The Data Sources Element

Torear Wern SERPVED

ApminisTrRATION ToOL

¢ # Tomeat Server Create New Data Source Data Source Actions Eeaetl e 1-']
¢ W Senice i31SR)
& Connector i E Reset |
B ot focaost) -
B Reaim for Servce NSJSP) Data Sources
i (Propety | vae |
| Data Seurces : Value -
3 psil Sezsians JNDA Mame: MyDataSource
2% Enonment Entries " .
: Jeine :oglmi:
ﬁc Uit Dalsbazes Daba Source UL | !
&ser Defntion JOBC Driver Class; ‘com tandem sgim SOUMDriver
Lser Mams
Fagsword _
Max. Active n
Conngchions

Mex. Idle Connections: | 2

Max. Wait for
Connection

Validation Query

Son| |Rese |

You can perform one of the following actions using the Data Source Actions list:
® (Create New Data Source
® Delete Data Sources

For more information on data sources, see
http://java.sun.com/javase/6/docs/technotes/quides/jdbc/getstart/datasource.html.

Mail Sessions

A Mail Session represents a Resource (under the child element of the Server called
A obal Nam ngResour ces) inthe server. xm file.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-75

Managing NSJSP

The following sample code shows how the Mail Session is added as Resource in the
server.xm file:

<Resour ce

name="MyMai | Sessi on"
type="j avax. mai | . Sessi on"
mai | . st p. host =" MyMai | Host "
/>

Figure 4-45 displays the properties after selecting the Create New Mail Session
action from the Mail Session Actions list.

Figure 4-45. The Properties Displayed After Selecting the Create New Mail
Session Action

Tomcat Wer SERVER

ADMINISTRATION TOOL

Camrnit Changes

& % Tmear Server Create New Mail Session Mail Session Actions IR e |
o % canice (MEISF)
& Connector (M Ea Hueal
a8 Host {loczinst) J ﬂ
B F=alm for Sendce [NEISP)
¢ T esources
Bl Data Sources
EI Mail Sessions

Mail Sessions

P Erparorenent Enlres |
Bk Uiser Datebases mﬂi'.SiTﬂp.hﬂﬂti
& s Defrtion !
£ Lszers
4 Groups ﬁ %

The following are the actions available under the Mail Session Actions list:
® Create New Mail Session

® Delete Mail Session

Environment Entries

The A obal Nam ngResour ces is an environment entry resource. For more
information on G obal Nam ngResour ces, see the GlobalNamingResources Element
on page 3-42.

The following sample code shows how the environment variable is set in the
server.xm file (under G obal Nam ngResour ces):

<Envi r onnment
description=""
name="MyEnvVar "
type="j ava. | ang. Bool ean"

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-76

Managing NSJSP

val ue="true"
/>

Figure 4-46 displays the properties after selecting the Create New Env Entry action
from the Environment Entry Actions list.

Figure 4-46. The Properties Displayed After Selecting the Create New Env Entry
Action

Tomear Wep SERVER

Corenil Charges

ADMINISTRATION TOOL

§ & Tomeat Senver Create New Env Entry Environment Entry Actions Bl i |

B Serice (MSISP]

A Connector ()
o Sana| Fezat
&3 Hoz: (lac sthost) T A
B Fzalm for Service (MEJER)
¢ EResaurces Environment Entry Properties

& Data Sources

Bl i Sessions -
Mamea: |
4% Environment Entries = = —
B |ser Databzzes Type: | java snn Boolase w0
& [l=er Defiinsis o | . i
B Users Value: [
5 Grovas : . . : :
F Roles Override Application Level W
Entries:
Cescription:

oo

The following are the actions available under the Environment Entry Actions list:
® Create New Env Entry

® Delete Environment Entries

User Databases

A user database is a database that contains user information, such as user names,
passwords, groups, and roles.

The default ser ver. xm file defines the or g. apache. cat al i na. User Dat abase
resource, which is used by the UserDatabaseRealm nested in the Engine element. For
more information on the UserDatabaseRealm, see the UserDatabaseRealm on

page 7-19.

The following sample code shows how a user database is added to the ser ver. xm
file:

<Resource
descri ption=""
name="MyDB"

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-77

Managing NSJSP

t ype="org. apache. cat al i na. User Dat abase"

fact ory="org. apache. catal i na. users. Menor yUser Dat abaseFact ory"
pat hname="conf/nsj sp-usersl. xm"

/>

Figure 4-47 displays the properties of the default User Database.

Figure 4-47. The Properties of the Default User Database

Torecar Wer Sepvurep

ADMINISTRATION ToOL

Cammit Changes

% % Tomcat Sereer

Edit User Database User Database Actions BRirra i
% B senice (N2ISM)
A Connectzr (0] W B

= ucalhosl)
@k Realm for Sendce (MEIEF
= Resourcess 0[RS S SSLREEEES
& Daln Sources ! Value —|
= nail Sezzions Mame: LserDatabaze
2% Erironment Enties " —— — =
B User Databases Lacation: [eanFgjspsRre XMl

& T hzer DEninn Factory: org. apache cataling ngers MemoryTTze TiatabazeF actory

Tacr dotoboss chac can be

'M'Gruup::' Crescription: updazed omd omesd

S Heset |

You can perform one of the following actions using the User Database Actions list:
® Create New User Database

® Delete User Databases

Resource Links

A resource link is a link to a global resource in the global Java Naming and Directory
Interface (JNDI) context.

Figure 4-48 displays the properties after selecting the Create New Resource Link
action from the Resource Link Actions list.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-78

Managing NSJSP Administering User Definitions

Figure 4-48. The Properties Displayed After Selecting the Create New Resource
Link Action

Tomcrr Wen SERVER

ApmiNiSTRATION Tool e

-~

¢ & Tomcat Server
¢ ¥ senvice (NSUSP)

Create New Resource Link Resource Link Actions e ile i el |
& Connector (0)

Sawe | FResot
B Host (locahost) Swe| Resat |

o @ Contes (fete_tm)
o ® Contert (fdr_tm) Resource Links

&8 Context (iscaburl) Poperty _____\ Vale

L B Content [fscaburladmin]

Mame:
¢ ClResources
8 Data Sources Global:
B Mail Sessions Type:
ype:
@ Resource Links ~
2 Erparonment Entnes
o8 Contest [scafuribankapg) Swm| Raset

You can perform one of the following actions using the Resource Link Actions list:
® Create New Resource Link
® Delete Resource Link

For more information on resource link, see
http://tomcat.apache.org/tomcat-6.0-doc/config/globalresources.html.

Administering User Definitions

Administering user definitions enables you to manage the users in the User Dat abase
resource, which is defined in the server . xm file. In the default configuration, the
user database is a memory database with data loaded from the nsj sp- users. xm
file. Changes that are made to the default user database by the Admin Web application
and saved, will be persisted to the nsj sp- users. xm file. All the NSJSP Server
Class processes under the curent PATHMON will be notified of the changes, when the
Commi t Changes operation is performed.

Note. This sub-section only applies to the default User Dat abase resource, which is a
memory database implementation used in the UserDataBase realm defined for the NSJSP
service and NSJSP engine. Administration of user definitions for other realms or
implementations is not provided by the Admin Web application. For more information on the
User Dat abase, see the GlobalNamingResources Element on page 3-42.

The user definition element includes the following sub-elements:
® Users

® Groups

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-79

http://tomcat.apache.org/tomcat-6.0-doc/config/globalresources.html

Managing NSJSP Administering User Definitions

® Roles

Users

A user is an entity that can be used to log in to user applications. A user can be
assigned multiple roles.

Figure 4-49 displays the properties of a selected user.

Figure 4-49. User Properties for the Admin User

TomcAT WEr SERVER

AbmiNISTRATION TooL AR A

® M Tomeat Server Edit Existing User Properties User Actions EE e |
& ¥ Serdce (NSISP)

Canmector (0 anaJ Razat J
&3 post [Incalhos) e
A I
B R
2 Duata Sources aclmm
Hail Sessions Password: |l-l-|-lllll|ll-l-l-lllul|l-l-l-l-l
& Environment Entries - :
X Uszer Datahazes Full Mams: |
@ Cllzer C=finition
£ Users z S T ey
4 Broges || GroupName Description
i Foles — e s e = e
- Role Mame: Description
L admin |

CF manage

SoF| e

You can perform one of the following actions using the User Actions list:
® Create New User

® Delete Existing Users

® List Existing Users

When the Users element is selected in the left pane, the Users List is displayed in the
right pane. To display the properties of an individual user, click the user name in the
Users List. The selected user's properties will be displayed, as shown in Figure 4-49.

After creating a new user, the password entered for that user is saved as normal text in
the configuration file called nsj sp- user s. xm (in the default setup), which is not
encrypted. The elements and actions under the User Definition only apply to the user
database. Any Realm configuration can use the user database. In the default
configuration, the user database is used by a Realm defined in the Engine element.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-80

Managing NSJSP Administering User Definitions

The Realm is configured to expect encrypted passwords. Therefore, while creating a
new user, you must encrypt the password as per the Realm definition.

The Admin Web application itself does not encrypt the password.

Note. For a new user, password must be encrypted using the CLI. For information on setting a
user password in the nsj sp- users. xni file, see Chapter 7, Migrating to NSJSP 6.1.

Groups List
A group is a set of one or more roles that has been assigned a name.

Figure 4-50 displays the properties for a group.

Figure 4-50. New Group Properties

TomceaT Wer SERVER

ApminisTrATION ToOL

@ A Tomcat Server Create New Group Properties Group Actions o |

o B anice iNEISFY
@ Connector (00
&2 Host [ocalbost) b
Bk Realm for Serdce (SIS
f CRezoumEs ; !
B Dsta Scurces Group Mamae: |
Mail Sessionz
& Eepiranment Erimrias:
5% Uszer Databazes

Gommit Charges |

Dascription: |

F Lzers : |
L1 adin

i @raups ST AR

4 Rales LI gy

(Eww| Fa

You can perform the following actions using the Group Actions list:
® Create New Group

® Delete Existing Groups

® List Existing Groups

When the Groups element is selected in the left pane, the Groups List is displayed in
the right pane. To display the properties of an individual group, click the group name in
the Groups List. The selected group's properties will be displayed, as shown in

Figure 4-50.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-81

Managing NSJSP Administering User Definitions

Roles List

Roles are used to control access to applications and resources. They may be directly
assigned to users or roles can be assigned to groups, which in turn can be assigned to
users.

Figure 4-51 displays a Roles List.

Figure 4-51. Roles List

Torrear Wen Sepven

ADMINISTRATION ToOOL

@ ® Tomcat Server Roles List COIEW YT T - Available Actions— v
% ¥ Senice (NSJ5P)
@ Connector (D)

o8 Host (localhost)
% Realm for Service (NSJSP) Rnlnﬂlrna
& CIResources -
& Data Sources manager
Mail Sessions
2% Eryiranment Entries
& Uszer Databases
& U zer Definition
® Uszers
% Groups
i Roles

You can perform the following actions using the Role Actions list:
® Create New Role

® Delete Existing Roles

® List Existing Roles

When the Roles element is selected in the left pane, the Roles List is displayed in the
right pane. To display the properties of an individual role, click the role name in the
Roles List. The selected role's properties will be displayed.

Note. The Admin Web application currently supports only one role for a user. Therefore, if you
select more roles, the user will be assigned only one role at a time. To assign more than one
role for a user, you must edit the nsj sp- user s. xni file manually.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
4-82

Managing NSJSP Access Security Considerations

Access Security Considerations

The NSJSP installation set up script prompts the user (with name admin) for a
password. The admin user ID and password can be used to log on to the Admin Web
application.

For information on how to change the admin user ID and password, see Users on
page 4-80 and Chapter 7, Migrating to NSJSP 6.1.

Persisting Changes to the server. xnl File and Context Files

When the Commi t Changes operation is invoked, the Admin Server Class saves the
existing server. xm file and any modified context definition files. It replaces these
files with new files containing the changed configuration. The current version of the
server. xm file is preserved and renamed using the following naming convention:

server.xm .yyyy-mm dd. hh-mm ss

where:

yyyy- mm dd is the year-month-date.

hh- mm ss is the hour-minutes-seconds (in 24-hour format).

yyyy- mm dd. hh- mm ss is the timestamp when the Comri t Change operation is
performed.

For example, server . xm . 2004- 06- 21. 14- 43- 39 is created to preserve the
configuration file before the Comri t Change operation is performed at 2:43:39 PM on
June 21st, 2004.

The preserved server . xm file is located in the <NSJSP 6.1 Install ation
Di rect or y>/ conf / directory.

The preserved context configuration file (with the naming convention <cont ext -
name>. xm . yyyy- mm dd. hh- mm ss) is located in the <NSJSP 6. 1
Installation

Di rectory>/ conf/[engi nenane] /[host nane] / [webappnane] . xm file.

For example, the <NSJSP 6.1 Installation

Di rectory>/ conf/ NSJSP/ | ocal host / bankapp. xm . 2010- 04- 22. 11- 03- 41
file is located in the <NSJSP 6.1 Installation

Di rectory>/ conf/ NSJSP/ | ocal host directory.

This subsection includes the following topics:

® Contents of the server.xml File

® Roll Back a Commit Change Operation

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-83

Managing NSJSP Persisting Changes to the server. xm File and
Context Files

Contents of the server. xm File

When the Admin Server Class serializes its configuration back to the ser ver . xm file,
the following changes occur in addition to the configuration changes:

® All comments are removed.

® All contexts are serialized except those that were deployed using the
cont ext . xni file or those providing the cont ext . xm file inside the . war or the
docBase directory.

® All attributes are listed including those that were omitted (using default values).

Note. The attributes that are not applicable to NSJSP may not be serialized.

Note. HP recommends that you make changes to the ser ver. xm file using a text editor.

Roll Back a Comm t Change Operation

You can manually roll back the Cormi t Change operation, because the server . xm
files are preserved.

Note.
® To roll back the Commi t Changes operation, you must restart the NSJSP Server Class.

® The server.xm andthe cont ext.xm files can be backed up but the
nsj sp- user. xm file cannot be backed up.

Complete the following steps to roll back the Commi t Change operation:
1. Stop the NSJSP Server Class.

Note. You can stop the NSJSP Server Class using the NSJSP Manager application or
using the CLI.

2. Rename the current server . xnl file to the server. xm . tenp file.

3. Rename the preserved server. xm . yyyy- nm dd. hh- nm ss file to the
server.xm file.

4. If you have modified any setting for a particular context, which includes <cont ext
nane>. xm file, complete the following steps to revert those context changes:

a. Rename the <cont ext nane>. xmi file of that context (under the <NSJSP
6.1 Installation Directory>/conf/NSJSP/I| ocal host folder) to the
<cont ext nane>. xnl .t np file.

© Rename the <cont ext - nanme>. xn . yyyy- mm dd. hh- mm ss file to the
<cont ext - nanme>. xn file.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-84

Managing NSJSP Manager Web Application

5. Start the server class that is in the STOPPED state.

Note. After each commit operation, the web applications that define an explicit context will be
restarted because the context file is updated. This happens irrespective of whether the
application’s context was modified or not.

Manager Web Application

The Manager Web application was included in releases prior to NSJSP 6.1 to manage
web applications hosted by NSJSP. The NSJSP Manager application introduced in
NSJSP 6.1 supersedes the Manager Web application. Using the NSJSP Manager
application, you can perform all the functions that the Manager Web application
provides.

You can access the Manager Web application using this URL:

htt p: // <host-name>: <port-number>/ <NSJSP 6.1 URI
name>/ manager / ht m

For more information on the Manager Web application, see the NonStop Servlets for
JavaServer Pages (NSJSP) 6.0 System Administrator’s Guide.

Note. The Manager Web application is referred to as the old Manager application to
differentiate it from the NSJSP Manager application that is introduced in the NSJSP 6.1
release.

Operations Using the Command-line Interface

This section discusses the following topics:

® TP Secure WebServer Operations

® Server Class Operations

ITP Secure WebServer Operations

NSJSP is installed as part of an iTP Secure WebServer installation. Each NSJSP
Server Class is defined to TS/MP during startup. The following configuration files are
located inthe <NSJSP 6.1 Installation Directory>/conf directory during the
NSJSP installation:

® servlet.config (installation-specific and generic)
® jdbc.config

® filemaps.config

® nsjspadm n.config

When an NSJSP configuration file is modified, the HTTPD command-line utility must
redefine the iTP Secure WebServer's TS/MP configuration. To redefine the TS/MP

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-85

Managing NSJSP Server Class Operations

configuration, you must cold start the iTP Secure WebServer. The iTP Secure
WebServer must be cold started to create and add the NSJSP Server Class definitions
to the iTP Secure WebServer TS/MP configuration.

Note. The HTTPD object inthe <iTP Installation Directory>/ bi n directory can be
used both as a command-line utility and as the object file for the HTTPD Server Class.

To perform a cold start, you must stop and then start the iTP Secure WebServer using
the scripts provided in the <iTP Installation Directory>/conf directory.
Restarting the iTP Secure WebServer is equivalent to stopping the iTP Secure
WebServer and then doing a cold start.

To cold start the iTP Secure WebServer, see Verifying the NSJSP Installation on

page 2-18.

If you modify NSJSP container files, such as server. xm and
| oggi ng. properti es, for the changes to take effect, restarting the NSJSP Server
Class is sufficient. You need not cold start the iTP Secure WebServer.

The NSJSP Server Classes that are defined by the iTP Secure WebServer include
configuration parameters, such as MAXSERVERS and NUMSTATI C, that are copied
directly from the ser vl et . conf i g file. If you modify the parameter values, you must
update the ser vl et . confi g file, and must stop and then start the iTP Secure
WebServer.

If the iITP Secure WebServer is configured for online-upgrade (that is, two PATHMONS
are defined in a Pathway domain), two TS/MP configurations will be defined by the iTP
Secure WebServer—one for each PATHMON. Each NSJSP Server Class will be
defined for two PATHMONS. Because there is only one ser vl et . confi g file in the
<NSJSP 6.1 Installation Directory>/conf directory, the iTP Secure
WebServer will divide the value of the configuration parameters into two halves. Each
half value will be assigned to two definitions for each NSJSP Server Class.

For example, if the SERVLETS Server Class has parameters MAXSERVERS=4 and NU
MSTATI C=4 specified in the ser vl et . confi g file, the iTP Secure WebServer will
create a SERVLETS Server Class for each PATHMON with the parameters
MAXSERVERS=2 and NUMSTATI C=2.

If a server class has a parameter NUMSTATI C=1, the server class for one PATHMON
will have the parameter NUMSTATI C=1 and the server class for the other PATHMON
will have the parameter NUMSTATI C=0.

Server Class Operations

You can perform the following TS/MP Server Class operations using the command-line
interface:

® Stopping NSJSP
® Starting NSJSP

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-86

Managing NSJSP Server Class Operations

Stopping NSJSP

Following are the two ways to stop the NSJSP Server Class:

® Graceful Shutdown

® Forced Shutdown

Graceful Shutdown
To stop the NSJSP Server Class gracefully, complete the following steps:

1. Obtain the PATHMON name from the ht t pd. confi g file located in the <i TP
Installation Directory>/conf directory.

2. Start the PATHCOM program:

From an OSS prompt, PATHCOM can be started using the gtacl command as
follows:

oss: gtacl -p pathnon \ $<PATHMON nane>

This will start the PATHCOM program and open the specified PATHMON process.
The "\" is required to ensure that the $ sign remains part of the process name.

3. From a TACL prompt, PATHCOM can be started as follows:

TACL> PATHCOM $<PATHMON nane>

If the correct PATHMON is not opened or another PATHMON needs to be opened,
issue the PATHCOM command as follows:

= OPEN $<PATHMON nane>

After executing the OPEN command, enter the following commands:

FREEZE SERVER <server class nane>
STOP SERVER <server class nanme>
STATUS SERVER <server class nane>
= EXIT

In the following example, the PATHMON name is $zweb and the NSJSP Server
Class name is SCP1.

TACL> PATHCOM $zweb
FREEZE SERVER SCP1
STOP SERVER SCP1

STATUS SERVER SCP1

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-87

Managing NSJSP Server Class Operations

The STATUS SERVER command displays the following output for the SCP1 Server

Class:
SERVER #RUNNI NG ERROR | NFO
SCP1 0 FROZEN

The processes of the SCP1 Server Class are stopped as indicated by the 0 in the
#RUNNING column and the status of the SCP1 Server Class changes to FROZEN.

Note.

® Stop the NSJSP Server Class gracefully, to allow the server class processes to complete
outstanding requests and to perform shutdown operations, before exiting.

® You can use either PATHCOM or PDMCOM to execute server class operations, such as
stop, start, thaw, and freeze.

Example of Stopping NSJSP Server Class Configured Under Two PATHMONS of
iTP Secure WebServer

In this example, the iTP Secure WebServer is configured with twvo PATHMONs—
$zweb and $yweb. The processes of the NSISP Server Class run under these
PATHMONS.

Enter the STATUS SERVER command to view the status of the SCP1 Server Class
under the $zweb and $yweb PATHMONSs:

TACL>> PDMCOM

PDM 1>> OPEN $zweb, $yweb
PDM 2>> STATUS SERVER SCP1
The following output is displayed:
PATHVON : \ POS02. $ZV\EEB

SERVER #RUNNI NG ERROR | NFO
SCP1 2

PATHVON : \ POS02. $YWEB

SERVER #RUNNI NG ERROR | NFO
SCP1 2

To stop the SCP1 Server Class running under the $zweb PATHMON, enter the
following commands:

PDM 3>> OPEN $zweb
FREEZE SERVER SCP1
STOP SERVER SCP1

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-88

Managing NSJSP Server Class Operations

After you enter the STOP SERVER command, the SCP1 Server Class’s processes
running under the $zweb PATHMON are stopped. To view the status of the SCP1
Server Class, enter the following commands:

PDM 1>> OPEN $zweb, $yweb
PDM 2>> STATUS SERVER SCP1
The following output is displayed:
PATHVON : \ POS02. $ZV\EEB

SERVER #RUNNI NG ERROR | NFO
SCP1 0

PATHVON : \ POS02. $YWEB

SERVER #RUNNI NG ERROR | NFO
SCP1 2

There are now only two SCP1 processes running under the $yweb PATHMON and
none under the $zweb PATHMON.

Note.

® For information on the PDMCOM commands, see the TS/MP Release Supplement
Manual.

® For information on the PATHCOM commands, see the TS/MP System Management
Manual.

Forced Shutdown

To stop the NSJSP Server Class immediately, run the iTP Secure WebServer st op
script:

0SS cd <i TP Installation Directory>/conf
0CsSs: . /stop

Running the st op script does not allow NSJSP processes to perform shutdown
operations before shutting down. One such shutdown operation is to persist all the in-
memory sessions to a persistent store, if configured.

Starting NSJSP

After configuring NSJSP and starting the iTP Secure WebServer, the NSJSP Server
Classes will also be started. If the NSJSP Server Class TS/MP configuration has not
been changed, but an NSJSP Server Class has been stopped, the NSJSP Server
Class can be started without restarting the iTP Secure WebServer.

To start an NSJSP Server Class, run the st art script fromthe <i TP I nstal | ati on
Di rect ory>/ conf directory in the iTP Secure WebServer environment:

OSS: cd <i TP Installation Directory>/conf
OSS: . /start

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-89

Managing NSJSP Manual Deployment and Undeployment of Web

Applications

To start an NSJSP Server Class, complete the following steps:

1.

Obtain the PATHMON name from the ht t pd. confi g file located in the <i TP
Installation Directory>/conf directory.

At the TACL prompt, run the following commands:

TACL> PATHCOM $<PATHVON name>
= START SERVER <server cl ass nane>

Note. The THAW SERVER command only needs to be entered when a status show that
the server class was frozen. If the THAW SERVER command is entered and the server
class was not frozen, an error message is displayed with the following text:

ERROR - *1060* SERVER <server cl ass nanme>, NOT FROZEN

After running the START SERVER command, the system displays the following
message indicating that the server is started:

$YY66S. SERVER server_name, STARTED

Note.

® By default, an NSJSP Server Class includes four processes. The Admin Server Class
includes only two processes.

® You can use either PATHCOM or PDMCOM to execute server class operations such as
stop, start, thaw and freeze.

® Checkthe <NSJSP 6.1 Installation nane>. <dat e>. | og file to ensure that the
NSJSP server has restarted.

® You can use either PATHCOM or PDMCOM to execute server class operations such as

stop, start, thaw and freeze.

Manual Deployment and Undeployment of Web
Applications

You can control the deployment of applications by using attributes in the server .xml
file. This section discusses the following topics:

Deploying Applications at Startup

Deploying Applications on a Running NSJSP Server

Deploying Applications at Startup

In the server.xml file, the location of web applications is specified by the appBase
attribute of the Host.

Note. The default host is localhost and the default appBase is
<NSJSP_HOME>/webapps.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-90

Managing NSJSP Deploying Applications on a Running NSJSP Server

To deploy a web application at startup, you must set the value of the Host's
deployOnStartup attribute to true. If the deployOnStartup attribute is set to
false, applications will not deploy at startup.

Even though applications are not deployed during startup (if deployOnStartup is set
to False), the applications will get deployed when the auto deployer of the Host runs.
You can control the auto deployer by using the autoDeploy attribute. For more
information on the autoDeploy attribute, see Chapter 3, Configuring NSJSP.

Note. If the deployOnStartup and the autoDeploy attributes are set to false, you must
deploy the applications using the NSJSP Manager.

The following is the deployment sequence:

1. All contexts in <NSJSP_HOME>/conf/enginename/hostname are deployed
first. It is assumed that any XML file in the
<NSJSP_HOME>/conf/<engine_name>/<host_name> directory contains a
context element (and its associated subelements) for a single web application. The
value of the docBase attribute of the context element will be the absolute path to a
web application directory, or the absolute path of a .war file.

Note. The location of the docBase attribute defined in the XML context file must be out-
side the appBase directory to ensure that automatic deployment operates properly.

2. All _war files are then deployed. A .war file in the appBase directory that does
not have a corresponding directory of the same name (without the .war extension)
will be automatically expanded, unless the unpackWARs property is set to false.
If you redeploy an updated .war file, you must delete the expanded directory
before restarting NSJSP to ensure that the updated war file expands again.

Note. If the auto deployer is enabled, the updated war file will automatically expand after
the last expanded directory is removed.

3. Itis assumed that any subdirectory within the application base directory contains a
web application and is deployed last.

Deploying Applications on a Running NSJSP Server

In addition to the deployment at startup, you can deploy web applications while NSJSP
is running. If the value of the Host’'s autoDeploy attribute is set to true, the Host will
attempt to deploy and update web applications dynamically, as required. The auto
deployer first performs the procedure as described in Deploying Applications at Startup
on page 4-90 and subsequently monitors web applications for the following changes:

® Updates to the WEB- INF/web . xml file — An update to the WEB- INF/web . xml file
causes a reload of the web application.

® Deletion of .war files — Deleting a .war file causes the application to undeploy,
and any associated expanded directory, context file, and work directory are
removed. Subsequently, current user sessions will not be persisted.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-91

Managing NSJSP Comparison of the Management Applications

Deletion of a directory — Deleting a directory causes the application to undeploy,
and any associated context file and work directory are removed. Current user
sessions will not be persisted. Any associated .war file will not be deleted, and the
application will be redeployed from the .war file when the auto deployer checks for
changes.

Deletion of a context file — Deleting a context file causes the application to
undeploy, and any associated work directory is removed. Current user sessions
will not be persisted. Any associated -war file and directory will not be deleted,
and the application will be redeployed from the .war file (or from the directory if no
-war file is present) when the auto deployer checks for changes.

-war file update — Updating a .war file causes the application to undeploy, and
any associated expanded directory, context file, and work directory are removed.
Current user sessions will not be persisted.

Directory update — Updating a directory causes the application to undeploy, and
any associated context file and work directory are removed. Current user sessions
will not be persisted. The application will be redeployed when the auto deployer
checks for changes.

Context file update — Updating a context file causes the application to undeploy,
and any associated work directory is removed. Current user sessions will not be
persisted. The application will be redeployed when the auto deployer checks for
changes.

Comparison of the Management Applications

This section compares the NSJSP Manager, the old Manager, and the Admin Web
applications. This section discusses the following topics:

Comparison of Architectures

Comparison of Features

Comparison of Management Application Access Roles

Comparison of Architectures

This section compares the architectures of the management applications, as follows:

Old Manager Application

Admin Web Application

NSJSP Manager Application

Differences in Architectures

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-92

Managing NSJSP Comparison of Architectures

Old Manager Application

The old Manager application supports management of web applications on a Host. You
can perform tasks, such as, deploy, start, and stop web applications on the Host where
the old Manager application is running. If there are two or more Hosts within an NSJSP
servlet container, an instance of the old Manager application is required on each Host.

Figure 4-52 illustrates the architecture of the old Manager application.

Figure 4-52. Architecture of the Old Manager Application

HTTP Requests |

WebServer

O
Secure HTTPD
—

Szweb
Environment

NSJSPADMIN

Manager Manager
m

localhost / www.foo.co
N >

id
f v \-< N

www.foo.com

localhost o
O -

-
& NSJSP Servlet Container jj J

User applications running
onthe Hosts

In Figure 4-52, the NSJSP servlet container includes two Hosts: | ocal host and

wwwv. f 00. com To manage web applications on each Host, the old Manager
application is installed on both Hosts. The old Manager application on | ocal host can
manage web applications on | ocal host and the old Manager application on

www. f 00. comcan manage web applications on ww. f 00. com as indicated by the
green arrows. The old Manager application on | ocal host cannot manage web

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-93

Managing NSJSP Comparison of Architectures

applications on ww. f 00. com and the old Manager application on ww. f 00. com
cannot manage web applications on | ocal host, as indicated by the red arrows.

Note. The Manager Web application that was included in releases prior to NSJSP 6.1 is
referred to as the old Manager application to differentiate it from the NSJSP Manager
application that is introduced in the NSJSP 6.1 release.

Admin Web Application

The Admin Web application supports management of the NSJSP servlet container and
some of its objects. You can perform tasks, such as, create and delete services,
connectors, and Hosts on the NSJSP servlet container where the Admin Web
application is installed. The Admin Web application can manage process instances of
an NSJSP servlet container in only one NSJSP installation and in only one PATHMON
environment.

Note. When you install NSJSP, the Admin Web application is installed by default.

Figure 4-53 illustrates the architecture of the Admin Web application.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-94

Managing NSJSP Comparison of Architectures

Figure 4-53. Architecture of the Admin Web Application

HTTP Requests

iTP ¢ \
Secure HTTPD
WebServer

Szweb
Environment

NSJSPADMIN NSISPADMIN

NSJSP INSJSI|3I .
Installation nstallation
N

[NSJSP A NSJSP B

NS AN)

In Figure 4-53, the $zweb environment contains two NSJSP installations. You can
manage NSJSP A and NSJSP B servlet containers and their objects using the Admin
Web application in their respective NSJSP installations, as indicated by the green
arrows. However, you cannot manage either NSJSP A or NSJSP B servlet containers
and their objects using the Admin Web application in a different NSJSP installation, as
indicated by the red arrows.

For more information on the architecture of the Admin Web application, see the Admin
Web Application on page 4-56.

NSJSP Manager Application

The NSJSP Manager application enables management of NSJSP 6.1 installations and
the web applications deployed within them. The NSJSP Manager supports the
following:

® Management of web applications running on multiple Hosts within a server class.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-95

Managing NSJSP

Comparison of Architectures

® Management of multiple NSJSP 6.1 installations within an iTP Secure WebServer

environment.

® Management of NSJSP installations that are configured in a Pathway domain. The
use of a Pathway domain implies that the iTP Secure WebServer was installed in
an online-upgrade configuration, which has two PATHMONSs.

Figure 4-54 illustrates the architecture of the NSJSP Manager application.

Figure 4-54. Architecture of the NSJSP Manager Application

HTTP Requests l

e

/ / \DOMAIV \\ \

/

localhost
www.foo.com

iTP
Selcure HTTPD HTTPD
WebServer
! L |
M
aneer NSIJSP Manager ?
\ y A
| |
O O nsisps0 O W
- I I
O NSIsPe.l o H*
Szweb - | | $.yweb
Environment Q O NSJSP 6.1 Q? U] Environment
\ S \
\ \

www.doo.com

In Figure 4-54, the $zweb and $yweb PATHMON environments include an instance of
the NSJSP Manager application and three NSJSP installations: one NSJSP 5.0
installation and two NSJSP 6.1 installations. Using the NSJSP Manager, you can
manage the two NSJSP 6.1 installations and the web applications running on their
respective Hosts, as indicated by the green arrows in Figure 4-54. However, you can
manage only one NSJSP Server Class at a time. You cannot manage the NSJSP 5.0
installation with the NSJSP Manager, as indicated by the red arrows.

For more information on the architecture of the NSJSP Manager application, see the

NSJSP Manager Application on page 4-1.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

4-96

Managing NSJSP Comparison of Architectures

Differences in Architectures
The differences in the architectures of the three applications are as follows:

® Using the old Manager application, you can manage web applications running on
only one Host.

® Using the Admin Web application, you can manage the servlet container and its
objects within the same installation as the Admin Web application, but only within
one PATHMON.

® Using the NSJSP Manager application, you can manage multiple NSJSP 6.1
installations. You can also manage all the web applications running on all the Hosts
within a server class, and you can manage NSJSP 6.1 installations installed in a
Pathway domain.

For a complete list of the features that these applications support, see the Comparison
of Features on page 4-98.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-97

Managing NSJSP Comparison of Features

Comparison of Features

Table 4-24 compares the features of the NSJSP Manager, the Old Manager, and the
Admin Web applications.

Table 4-24. Comparison of Features of NSJSP Manager, Old Manager, and Admin
Web Applications (page 1 of 2)

NSJISP old
Manager Manager Admin Web
Category Feature Application Application Application

Application Displays the Yes Yes No
Management current applications running on

the selected

server class and Host.

Enables you to deploy, Yes Yes No
undeploy, start, or stop
applications.

Displays URL statistics such Yes No No
as, links from the application

that are accessed by users,

and the number of user

requests received by the appli-

cations.

Displays information about the Yes No No
HTTP methods, such as, the

HTTP methods used to access

the application and the request

count for each type of HTTP

method.

Allows web application Yes Yes No
management using ANT
scripts.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-98

Managing NSJSP Comparison of Features

Table 4-24. Comparison of Features of NSJSP Manager, Old Manager, and Admin
Web Applications (page 2 of 2)

NSJSP Old
Manager Manager Admin Web
Category Feature Application Application Application
Server Class Displays NSJSP processes Yes No No
Information and their status, such as, the
processor on which the
application is running and the
amount of memory used.
Displays the configuration Yes No No

parameters for the selected
server class.

Displays the NSJSP Yes No No
Server Class statistics. The

statistics include the

information related to the

server class link wait queue

(Queue Info) and Input and

Output operations (1O Info).

Displays the connector Yes Yes No
statistics for every NSJSP

process. The connector

statistics include information,

such as, the number of

threads that are in use, the

number of threads that are

free, and the total number of

process threads allocated to

serve requests.

Enables control of server class Yes No No
operations by starting or stop-
ping an NSJSP Server Class.

MBean Displays the MBeans for every Yes No No
Operations NSJSP

process.

Enables you to compare the Yes No No

values of a particular MBean
attribute across all NSJSP

processes.
Enables you to modify MBean Yes No Yes
values.

Adds new configuration No No Yes
parameters.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-99

Managing NSJSP Comparison of Management Application Access
Roles

Comparison of Management Application Access Roles

Table 4-25 compares the roles that must be assigned to users to authorize them to
access the management applications.

Table 4-25. Comparing Roles

Role Required to Access the Management

Management Application Application

Admin Web Application admin — role for users who need to configure NSJSP.

Old Manager Web Application manager — role for users who need to manage and
monitor the web applications installed in NSJSP.

NSJSP Manager Web admin and manager — both roles are authorized to use

Application the NSJSP Manager.

Single Point of Management Using the NSJSP
Manager

In releases prior to NSJSP 6.1, an iTP Secure WebServer environment included only
one NSJSP installation. An NSJSP installation includes two server classes. An NSJSP
Server Class can be configured to include multiple Hosts. Web applications are
deployed in and run within these Hosts. To manage the web applications running in a
Host, NSJSP included an application, called the Manager Web application. However,
an instance of the Manager Web application could only manage applications running
on a single Host. To manage web applications running on multiple Hosts, an instance
of the Manager Web application was required for each Host.

Figure 4-52 illustrates the architecture of the old Manager application.

Starting with the NSJSP 6.1 release, the NSJSP Manager application is introduced to
support single point of management in the following scenarios:

® Multiple Hosts within a Server Class

® Multiple NSJSP Installations within an iTP Secure WebServer Environment

® NSJSP Installations in an iTP Secure WebServer Configured for Online-Upgrade

Multiple Hosts within a Server Class

The NSJSP Manager application enables the management of web applications running
in multiple Hosts within a server class.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-100

Managing NSJSP Single Point of Management Using the NSJSP
Manager

Figure 4-55. NSJSP Manager Supporting Multiple Hosts

HTTP Requests ‘

WebServer

iTP l \
Secure HTTPD !l

‘1’ Szweb

Environment

Manager

C NSJSP Manager :>

7)) /

/

User applications running
on the Hosts

In Figure 4-55, using a single instance of the NSJSP Manager, you can manage all the
web applications running on the three Hosts: localhost, www. foo.com, and
www . doo .com, as indicated by the green arrows.

Multiple NSJSP Installations within an iTP Secure
WebServer Environment

Starting with the NSJSP 6.1 release, each iTP Secure WebServer environment can
include multiple NSJSP installations. One iTP Secure WebServer environment can
include multiple NSJSP 6.1 installations and one instance of an NSJSP 5.0 or NSJSP
6.0 installation. A single instance of the NSJSP Manager application enables the
management of all NSJSP 6.1 installations within an iTP Secure WebServer
environment. However, the NSJSP Manager is not designed to manage either NSJSP
5.0 or NSJSP 6.0 installations.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-101

Managing NSJSP Single Point of Management Using the NSJSP
Manager

Figure 4-56. Multiple NSJSP Installations

HTTP Requests "

/ iTP Secure

HTTPD SZweb\
WebServer Environment
Manager
NSJSP Manager >
\4 A4 v
NSJSP 6.1 NSJSP 6.1 NSJSP
5.0/NSJSP 6.0

K \ X
S \ \

In Figure 4-56, a single instance of the NSJSP Manager application enables the
management of all NSJSP 6.1 installations within an iTP Secure WebServer
environment, as indicated by the green arrows. However, the NSJSP Manager is not
capable of managing an NSJSP 5.0 or NSJSP 6.0 installation, as indicated by the red
arrow.

Note. The NSJSP Manager only manages NSJSP 6.1 installations. The NSJSP Manager
does not manage NSJSP 5.0 or NSJSP 6.0 installations.

NSJSP Installations in an iTP Secure WebServer Configured
for Online-Upgrade

The NSJSP Manager also enables the management of NSJSP installations that are
configured in a TS/MP Pathway domain. An iTP Secure WebServer can include up to
two PATHMON environments. When an NSJSP installation is installed in an iTP
Secure WebServer that includes two PATHMON environments, the NSJSP installation
will accessed by both PATHMON environments. This configuration is called a Pathway

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-102

Managing NSJSP Single Point of Management Using the NSJSP
Manager

domain configuration. You can configure an NSJSP installation in a Pathway domain
for online upgrades of web applications and servlet containers.

For more information on Pathway domain configuration, see the TS/MP Release
Supplement Manual.

For more information on configuring for online-upgrade, see the iTP Secure
WebServer System Administrator’s Guide.

Figure 4-57 illustrates NSJSP installations configured in a Pathway domain.

Figure 4-57. NSJSP in a Pathway Domain

HTTP Requests l
pd ~
/ \DOMAIV \ \

wrr | HTTPD HTTPD
WebServer
1 L
Manager
C NSJSP Manager)
\\ 1/

\
3 /

l NSJSP A lll

NSISP B Syweb
Environment

Szweb
Environment | |

\ — NSJSPC — /

In Figure 4-57, a single instance of the NSJSP Manager enables the management of
all NSJSP installations configured in the Pathway domain, as indicated by the green
arrows.

Note. Although you can manage multiple NSJSP installations using the NSJSP Manager
application, at any given time, you can manage only one NSJSP Server Class. You cannot
manage multiple NSJSP Server Classes simultaneously. The NSJSP Manager application
enables you to select the NSJSP Server Class that you want to manage.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-103

Managing NSJSP The Architecture of the NSJSP Manager

You can install the NSJSP Manager by selecting Create an NSJSP Manager
instal lation when running the NSJSP set up script. Each iTP Secure WebServer
environment can include one instance of the NSJSP Manager.

The Architecture of the NSJSP Manager

Upon successful installation of the NSJSP Manager, the NSJSP Manager runs in its
own server class in the iTP Secure WebServer environment. You can use the NSJSP
Manager application to manage all the NSJSP 6.1 installations within an iTP Secure
WebServer installation. You can perform tasks, such as, deploying web applications
and managing NSJSP installations.

Figure 4-58 illustrates an NSJSP Manager application in an iTP Secure WebServer
environment.

Figure 4-58. NSJSP Manager

HTTP Requests l

/ DOMAI ~
. NN Y
wrr | HTTPD HTTPDD
WebServer

l L1 i

Manager g NSJSP Manager
\

]]
O O nsisps5.0 O U]’/
= | —
O NSISP6.1 ()
En

| -

Szweb h | | Syweb
Environment : O NSJSP 6.1 ? vironment
\ 4 \
\ \
localhost www.doo.com

www.foo.com

In Figure 4-58, the $zweb and $yweb PATHMON environments include an instance of
the NSJSP Manager application and three NSJSP installations: one NSJSP 5.0
installation and two NSJSP 6.1 installations. Using the NSJSP Manager, you can

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-104

Managing NSJSP The Architecture of the NSJSP Manager

manage the two NSJSP 6.1 installations and the web applications running in their
respective Hosts, as indicated by the green arrows. However, you can manage only
one NSJSP Server Class at a time. You cannot manage the NSJSP 5.0 installation
with the NSJSP Manager, as indicated by the red arrows.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-105

Managing NSJSP The Architecture of the NSJSP Manager

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
4-106

5 Logging in NSJSP

This chapter addresses the following topics:

Logging Architecture

Apache Tomcat Enhancements to the Logging Architecture

NSJSP Enhancements to the Logging Architecture

Logging Configuration
Log Files Related to NSJSP

Programming Considerations for Logging

Commons Logging

Logging Architecture

The logging architecture of NSJSP is based on the Java Platform, Standard Edition
logging architecture. NSJSP provides a programmatic interface to the logging
framework using Commons Logging.

For information on Commons Logging, see Commons Logging on page 5-30.

Additionally, NSJSP introduces its own enhancements related to logging.

The logging architecture includes the java.util. logging package that you can
configure. The following Java logging architecture components are defined by the Java
logging package, and enable logging related to the NSJSP Servlet Container objects
and the web applications:

® Loggers
® Handlers

® [ormatters

® |og Manager

Loggers

Loggers are named entities, which receive log messages. The name of a logger is
usually the name of the Java package. The Java package includes classes whose log
messages are handled by this logger. For example, a logger, called java.awt
handles log messages originating from classes that belong to the Java.awt package.

The namespace of the loggers is hierarchical. The hierarchy begins with the root
logger, which is denoted by an empty string, *“’>. The root logger is the parent logger
and the other loggers are child loggers. Each child logger, in turn, can be a parent for
other child loggers. For example, com. foo is the parent logger of com.foo0.bar.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-1

Logging in NSJSP Handlers

Additionally, com.foo.barl and com.foo.bar2 are also child loggers of com.foo,
and are peer loggers of com.foo.bar.

Each log message is associated with a log level, which denotes the severity of the log.
Similar to the log messages, a logger is associated with a log level. If no log level is
associated with a logger, the logger inherits the log level from its nearest parent that is
associated with a log level.

Each logger can be configured with a set of handlers. Based on the level of the log
message that a logger receives and its own log level, the logger either forwards the
message to the associated set of handlers for further processing, or it discards the log
message. The logger can also send messages to its parent logger. The parent logger
writes log records to its handlers and to all its parent loggers in the tree. By default, this
option is disabled. However, you can enable the option by using the
useParentHandler configuration property of the logger.

Handlers

A handler receives the log message forwarded by the logger. Based on the log level of
the log message and its own log level, the handler either discards the log message or it
publishes the log message to a variety of destinations. NSJSP provides handlers that
can publish messages to destinations, such as, Event Management Service (EMS),
STDOUT, and STDERR.

The Java logging package defines a set of handlers.

Table 5-1 lists the handlers defined in the Java logging package.

Table 5-1. Handlers in the Java Logging Package

Handler Description

ConsoleHandler Publishes log messages to system.err.
FileHandler Publishes log messages to a file.
MemoryHandler Publishes logs to a circular buffer in memory.
StreamHandler Publishes logs to a stream.
SocketHandler Publishes logs to a TCP/IP socket.

You can configure each handler using the configuration properties that are specific to
the handler.

Formatters

A formatter defines the format of log messages. Every handler is associated with a
formatter. The Java logging package defines two formatters: SimpleFormatter and
XMLFormatter.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-2

Logging in NSJSP Log Manager

Log Manager

The Log Manager tracks the global logging information.

The Log Manager manages the following:

The hierarchical namespace of logger objects. All named loggers are stored in this
namespace.

The logging control properties, which are simple key-value pairs that can be used
by handlers and other logging objects.

The following is the sequence of events that occur when an application attempts to
write a log message:

1.
2.

4.

The application code sends the log message and its log level to a logger.

If the log level of the log message is lower than the log level of the logger, the log
message is discarded. If the log level of the log message is greater than or equal
to the log level of the logger, the logger forwards the log message to its associated
handler.

If the log level of the log message is lower than the log level of the handler, the log
message is discarded. If the log level of the log message is greater than or equal
to the log level of the handler, the log message is formatted by a Formatter object
associated with the handler.

The handler publishes the formatted log message.

Figure 5-1 illustrates the logging work flow.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

5-3

Logging in NSJSP

Apache Tomcat Enhancements to the Logging
Architecture

Figure 5-1. Logging Work Flow

l Log message from
the application

Islog level of the
message greater than or
equal to
logger log level?

Logger No

Yes l

Islog level of the

message greater than or
equalto

andler log level?

Handler

Yesl

Formatter formats the
message

l

Handler publishes
the message

No action is taken

Apache Tomcat Enhancements to the Logging

Architecture

The following are the Apache Tomcat enhancements to the logging architecture:

® Configuring logging for each class loader: The default java.util.logging
implementation available in the Java Development Kit (JDK) supports logging
configurations to be defined per Java Virtual Machine (JVM). As a result, the

following options are not allowed:

® Independent logging configurations for user web applications hosted on the

servlet container.

® Servlet container logging configuration that is independent of logging

configuration for web applications.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

5-4

Logging in NSJSP NSJSP Enhancements to the Logging Architecture

To overcome these inabilities, Tomcat replaces the Java.util.logging
implementation with a container-friendly implementation, called JULI.

JULLI allows a logging configuration file for each class loader. Because each web
application hosted on the servlet container has its own class loader, allowing a
configuration file per class loader leads to each web application having its own
logging configuration file. JULI offers this feature by providing the
ClassLoaderLogManager, which conforms to the java.util.logging Log
Manager specifications. The ClassLoaderLogManager extends the Log
Manager of Java.util.logging.

Along with the ClassLoaderLogManager, JULI also provides certain
enhancements to the configuration parameters in the logging.properties file.

® Configuring multiple handlers with a single handler class: Tomcat enables you to
configure multiple handlers using the same handler implementation class. For the
same handler implementation class, the settings of one handler can be different
from that of another handler.

For more information on configuring multiple handlers and loggers, see Configuring
Handlers on page 5-10.

NSJSP Enhancements to the Logging
Architecture

This section describes the NSJSP enhancements to the logging architecture.
NSJSP provides the following NonStop-specific classes along with JULLI:

® NSJSP Formatter

® NSJSP Log Handler

NSJSP Formatter

The NSJSP Formatter class is a NonStop-specific class that is used to define the
format in which messages must be published. The NSJSP Formatter class
(com.tandem.servilet.logging.NSJSPFormatter) is an extension of the
jJava.util._logging.Formatter class. It is commonly denoted as
NSJISPFormatter.

For information on configuring the NSJSP Formatter, see Configuring the NSJSP
Formatter Class on page 5-14.

NSJSP Log Handler

The NSJSP Log Handler class offers configuration properties for the log messages and
enables you to configure the message format. The NSJSP Log Handler class
(com.tandem.servilet. logging.NSJSPLogHandler) is commonly denoted as

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-5

Logging in NSJSP Log Rollover

NSJSPLogHandler. This class is an extension of the
java.util._logging.Handler class.

In addition, the NSJSP Log Handler class offers a logging feature, called Log Rollover.

For information on configuring the NSJSP Log Handler, see Configuring Handlers on
page 5-10.

Log Rollover

The log rollover feature enables you to archive log files based on predefined criteria.
The log rollover feature is introduced in the T1222"AAL SPR of the NSJSP 6.0
release.

Servlet containers and applications generate huge volumes of logs in a short period of
time, leading to a difficulty in managing logs. Therefore, you can archive old log files.
This is called log rollover. Log files roll over automatically based on the defined criteria,
such as, the volume of log files or at regular intervals. As a result, managing the
NSJSP log files is simplified. The following are the benefits of the log rollover feature:

® Manages and archives the log files depending on the volume and time interval.
® Supports user-defined directory into which log files must roll over.
This section describes the following:

® Attributes Introduced to Configure Log Rollover

® Log Rollover Working

©° Log Rollover Based on File Size

© Log Rollover Based on Timestamp

© The archiveDirectory Attribute

Attributes Introduced to Configure Log Rollover

NSJSP includes new attributes that enable you to configure log rollover. This section
describes the new attributes.

The logging.properties file includes the following new attributes to support the
log rollover feature:

® maxFileSize
Log rollover based on the maxFileSize attribute is called size-based rollover.
The attribute specifies the threshold size of the file for rollover. The size of the file
is measured in megabytes (MB). When the log file size exceeds the specified
value, it rolls over.

For information on configuring the maxFi leSize attribute, see Configuring for Log
Rollover Based on File Size on page 5-16.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-6

Logging in NSJSP Log Rollover

datePattern

Log rollover based on the datePattern attribute is called timestamp-based
rollover. The datePattern attribute enables you to configure the timestamp-
based rollover. You can set the log files to roll over at regular recurring intervals,
such as, after an hour, after a day, and after a week.

Note. The end of an hour is marked by the change in hour of the clock and not at the
completion of 60 minutes. For example, at 17:40 hours on August 28th, 2008, if you
configure the rollover of a log file to occur at the end of each hour, the first rollover occurs
at 18:00 hours when the hour of the clock changes and not at 18:40 hours. The
subsequent rollovers occur at 19:00 hours, 20:00 hours and so on.

The end of a day is marked by the change in date, which occurs at midnight, and not at the
end of 24 hours from the time the log file is created. For example, at 17:00 hours on
August 28th, 2008, if you configure the rollover of a log file to occur every day, the rollover
occurs at midnight, when the date changes to August 29th, 2008 and not at 17:00 hours on
August 29th, 2008.

For information on how to configure the datePattern attribute, see Configuring
for Log Rollover Based on Timestamp on page 5-17.

archiveDirectory

The archiveDirectory attribute enables you to specify the location to which the
rolled over log files must be moved. Log files present in the specified location move
to the configured archiveDirectory when the threshold is exceeded.

Note. If the archiveDirectory attribute value is not specified, the rolled over log file
remains in the current directory. The current directory is the value of the destination

property.

Note.

The timestamp-based rollover is enabled by default. However, you can enable the size-
basec rollover.

Although you can archive the log files based on the maxFileSize and datePattern
attributes, only one of the two rollover attributes is supported at a time. If you set both
attributes in the logging.properties file, the size-based rollover attribute overrides the
timestamp-based rollover attribute. However, if the value of the maxFileSize attribute is
invalid, and the value of the datePattern attribute is valid, log files roll over on the basis
of the datePattern attribute value.

After configuring for log rollover, you must restart NSJSP for the changes to take effect.

For information on how to configure the archiveDirectory attribute, see
Configuring the archiveDirectory Attribute on page 5-19.

Log Rollover Working

This section describes the following topics:

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

5-7

Logging in NSJSP Log Rollover

® Log Rollover Based on File Size

® | og Rollover Based on Timestamp

® The archiveDirectory Attribute

Log Rollover Based on File Size

The maxFileSize attribute governs the size-based rollover of log files. You can
configure a threshold file size for log rollover. This value must be greater than zero. If
the file size exceeds the specified threshold, the log file rolls over. The base threshold,
which is the lower limit to archive the log files, is 10 MB. If you set the maxFileSize
attribute to a value less than 10 MB, the log file rolls over only when the size exceeds
10 MB. For example, if you set the value to 8 in the logging.properties file, the
roll over occurs when the file size exceeds 10 MB, which is the minimum size of the log
file to trigger a roll over. However, if you set the maxFileSize attribute to a value
greater than 10, the log file rolls over only when its size exceeds the set value. If the
value of the maxFi leSize attribute is equal to or less than zero, it is considered an
invalid value, and the size-based rollover feature is disabled. When the value of the
maxFileSize attribute is invalid, an error message is logged to STDERR.

Note. The unit, MB is taken by default. You must specify only the file size.

Upon rollover, the log file name is appended with the date and time of rollover.

For example, if the user-defined name of the log file is abc. log, and it rolls over at
02.00.30 hours on August 30th, 2008, the rolled over log file is renamed to
abc.10g.2008.08.30.02.00.30, where 2008.08.30.02.00.30 is the
timestamp. After abc. 1og.2008.08.30.02.00.30 rolls over, a new log file is
created. This log file becomes the current working log file, and is assigned the user-
defined log file name, abc. 1og. Similarly, when this current working log file rolls over,
the date and time are appended to the file name, and a new working log file is created,
called abc. 1og. Therefore, the name of the current working file is always the user-
defined file name.

Log Rollover Based on Timestamp

The datePattern attribute in the logging.properties file governs the
timestamp-based rollover of log files. You can configure the log file to roll over at
predefined time intervals using the datePattern attribute value. The datePattern
attribute value must adhere to the format specified in the Java class documentation at:
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html.

In timestamp-based rollover, when a log file is created, the log file name is appended
with the current date, which is according to the format specified in the
Java.text.SimpleDateFormat Java class documentation.

For example, if a log file, called nsjsp.- 10g, is created on August 30th, 2008, the
complete log file name will be nsjsp.1og.2008.08.30. The second part of the file
name, 2008.08 .30, which corresponds to August 30th, 2008 is automatically
appended to nsjsp.- log.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-8

http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Logging in NSJSP Logging Configuration

Using the datePattern attribute in the logging.properties file, if you configure
the log file to roll over on a daily basis, nsysp. 1og.2008.08.30 rolls over to the
specified directory when the date changes to August 31st 2008. Subsequently, a new
log file is created, called nsjsp-1og-2008.08.31, and the logs are written in this
file.

Similarly, if you configure the roll over to occur on an hourly basis, the log file name
includes the date and time at which the log file is created along with the specified
name. At the end of an hour, the log file rolls over to the specified directory and a new
log file is created with the new time. For example, if the log file is created at 02.00.30
hours on August 30th, 2008, the name of the log file will be
nsjsp-1og-2008.08.30.02.00.30.

Note. If the archiveDirectory attribute value is set, the log file moves to the set location.
Otherwise, the log file remains in the current directory, which is the value of the destination
attribute.

The archiveDirectory Attribute

The archiveDirectory attribute value specifies the location where the log files will
be moved upon roll over. The value of the archiveDirectory attribute can be either
an absolute path or a relative path of the log file. If the archiveDirectory attribute
value is a relative path, the log files are placed in a directory relative to the

${catal ina.base} directory. Also, you can configure an absolute path.
Consequently, log files are placed in the specified absolute path.

If the archiveDirectory attribute value points to an invalid directory location or if
the archiveDirectory attribute is not configured, the log files roll over in the current
location that is denoted by the destination attribute value.

For information on configuring for log rollover, see Configuring for Log Rollover on
page 5-15.

Logging Configuration

This section describes how to configure the following:

Configuring Handlers

Configuring Loggers

Configuring the NSJSP Formatter Class

Configuring for Log Rollover

Configuring the logging.properties File

Configuring Logging for the NSJSP Container and Web Applications

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-9

Logging in NSJSP

Configuring Handlers

Configuring Handlers

You can configure each handler using the configuration properties that are specific to

the handler.

NSJSP supports the following implementation classes:

e FileHandler

® NSJSPLogHandler

FileHandler

Table 5-2 lists the Fi leHandler configuration properties.

Table 5-2. Configuration Properties of FileHandler

Configuration
Property

level

Filter
Formatter

Encoding

Description Default Value

Specifies the log level. You can INFO
assign one of the following log
levels:

SEVERE
WARNING
INFO
CONFIG
FINE
FINER
FINEST
OFF

ALL

Note: Assigning OFF causes all
logging to be turned off. Assigning
ALL causes all logging to be turned
on.

Specifies the filter class to be used. None

Specifies the formatter class to be SimpleFormatter
used.

Specifies the character set Default platform encoding
encoding to be used.

The following properties are available in addition to the properties listed in Table 5-2:

® directory

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

5-10

Logging in NSJSP

® prefix

Following is an example of the FileHandler:

#4admin.org.apache. juli.FileHandler.level

Configuring Handlers

= INFO

#4admin.org.apache.juli_FileHandler.directory =
${catalina.base}/logs

#4admin.org.apache._juli_FileHandler.prefix = admin.

NSJSPLogHandler

Table 5-3 lists the configuration properties that can be specified for the
NSJSPLogHandler.

Table 5-3. Configuration Properties of NSJSPLogHandler (page 1 of 2)

Configuration
Property

destination

format

maxFileSize

Description

Specifies the logging location. You
can assign one of the following
options:

® 0SS file
® STDERR

® STDOUT

® EMS

The Open System Services (OSS)
file name is derived from the server
class name. For example, if the
server class name is abc, the OSS
file name will be
abc.<date>.l0og. The extension,
- log is appended by the server.

Enables you to configure the
message format.

Specifies the file size (in MB) at
which the file must roll over. The
property is applicable only if the
value assigned to the destination
property is an OSS filename. You
can assign any value above 10 MB.

Default Value
0SS file

The following is the default
format: {DATE,date,EEE,
MMM dd, HH:mm:ss};
{PROCESSNAME}; {LEVEL};

{SOURCE}; {MESSAGE}
Disabled by default.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

5-11

Logging in NSJSP

Configuring Handlers

Table 5-3. Configuration Properties of NSJSPLogHandler (page 2 of 2)

Configuration
Property Description

datePattern Specifies the time interval at which
the log file must roll over.

For the complete list of options to
enable rollover, see Configuring for
Log Rollover Based on Timestamp

Default Value
" _Tyyyy-MM-dd

on page 5-17.
archiveDirect Specifies the directory location ${catalina.base}/logs/ar
ory where the rolled over log files chive

reside. You can assign any
directory location. If no value is
specified, files rollover in the same
directory where the logs are

created.
level Specifies the log level. You can
assign one of the following log
levels:
® SEVERE
® WARNING
® INFO
® CONFIG
® FINE
® FINER
® FINEST
® OFF
® ALL

Note: Assigning OFF causes all
logging to be turned off. Assigning
ALL causes all logging to be turned
on.

The following is an example of the NSJSPLogHandler:

Insjsp.com.tandem.servilet.logging.NSJSPLogHandler._.destination

${catalina.base}/logs/abc

Insjsp.com.tandem.servilet.logging.NSJSPLogHandler.level =

INFO

Insjsp.com.tandem.servilet.logging.NSJSPLogHandler._.datePattern

" Tyyyy-MM-dd

Insjsp.com.tandem.servilet.logging.NSJSPLogHandler.archiveDirecto

ry = ${catalina.base}/logs/archive

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

5-12

Logging in NSJSP Configuring Loggers

In the given example, ${catal ina.base}/logs/abc is the destination of the log
messages

where,

abc is the name of the server class. The name of the log file will be
abc.<date>.log.

Multiple Handler Definitions Using the same Handler Class

JULI allows multiple handler definitions using the same handler class. You must
configure multiple handlers as follows:

® The handler name must begin with a number and a prefix string.
® The prefix string must end with " _"".

Following are examples of handlers using the org.apache. juli.FileHandler
implementation class:

® Ilcatalina.org.apache.juli.FileHandler

where,

lcatalina. - Denotes the prefix string including a number and ending with a ".".
® 2localhost.org.apache.juli._FileHandler

where,

2localhost. - Denotes the prefix string including a number and ending with a ".".

Configuring Loggers

To configure a logger, you can associate the logger with a handler. As a result, the
settings defined for the handler will apply. If no handler is associated with a logger,
settings of the parent logger will apply. In addition, you can also assign a log level to
the logger.

The following is an example of a parent logger configuration:

sample.bank. level=INFO
sample.bank.handlers=<handlerl, handler2, handler 3>

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-13

Logging in NSJSP Configuring the NSJSP Formatter Class

where,

sample.bank - is the logger.

level -isthe log level property.

INFO - is the log level value.

<handlerl, handler2, handler 3> - are the associated handlers.

The following is an example of a child logger configuration whose parent logger is
sample.bank:

sample.bank.servlet.level = INFO
sample.bank.servlet.useParentHandlers=true

sample_bank.servlet_handlers =
1bankapp.com.tandem.servlet.logging.NSJSPLogHandler

where,
sample_bank.servlet -is the logger.

useParentHandlers - if the value of this property is true, log messages will be sent
to the parent logger, sample.bank.

level -isthe log level property.
INFO - is the log level value.

1bankapp.com.tandem.servilet.logging.NSJSPLogHandler - is the
associated handler.

Note. The associated handler can include its own log level. However, the log level assigned to
the logger will apply. In the given example, the log level, INFO overrides the log level assigned
to 1bankapp.com.tandem.servilet.logging.NSJSPLogHandler.

Configuring the NSJSP Formatter Class

The NSJSP Formatter class uses the following default message format to write logs:

{DATE,date,EEE, MMM dd, HH:mm:ss}; {PROCESSNAME};
{LEVEL};{SOURCE}; {MESSAGE}

where, {DATE ,date ,EEE, MMM dd, HH:mm:ss}, {PROCESSNAME}, {LEVEL},
{SOURCE}, and {MESSAGE} are literals.

Table 5-4 lists the predefined literals that enable you to configure the log message
format.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-14

Logging in NSJSP Configuring for Log Rollover

Table 5-4. Literals in the Format Attribute

Literal Data Type Description

MESSAGE String The text message to be published.

LEVEL String The message severity as indicated by the application.

PROCESSNAME String The name of the JVM process.

PIN Short The PIN of the JVM process.

CPU Short The CPU in which the JVM process is running.

SOURCE String The class and method from where the message
originates.

DATE String The date and time at which the message is created.

The following is a sample log message in the default message format:

Mon, Oct 22,
15:35:17;%$2472 ; SEVERE ; StandardContextSF#storeWithBackup; Cannot
move original context output file.

where,

Mon, Oct 22, 15:35:17 -is the date.

$2472 - is the process name.

SEVERE - is the message severity.

StandardContextSF#storeWithBackup - is where the message originates.
Cannot move original context output file -isthe log message.

When NSJSP Formatter is used with any other handler, it uses the default format. By
default, NSJSPLogHandler uses the
com.tandem.servlet.logging.NSJSPFormatter class.

The following syntax describes how you can configure NSJSP Formatter with other
handlers, such as, ConsoleHandler:

jJava.util._logging.ConsoleHandler.formatter
=com.tandem.servilet.logging.NSJSPFormatter

Upon successful configuration, the ConsoleHandler will use the NSJSPFormatter
to format messages.
Configuring for Log Rollover

This section describes the procedures to configure for log rollover.

® Configuring for Log Rollover Based on File Size

® Configuring for Log Rollover Based on Timestamp

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-15

Logging in NSJSP Configuring for Log Rollover

® Configuring the archiveDirectory Attribute

Configuring for Log Rollover Based on File Size

This section includes the syntax and examples that describe how to configure for
rollover based on file size.

The following is the syntax to configure maxFi leSize-based rollover:

com.tandem.servlet.logging.NSJSPLogHandler _maxFileSize =

size

file

where, Fille size is the threshold size of the log file that triggers the rollover.

The following are examples to configure maxFi leSize-based rollover:

® com.tandem.servlet.logging.NSJSPLogHandler._maxFileSize = 6

In the given example, although the set value is 6, the log file rolls over when the file
size exceeds 10 MB, which is the base threshold that triggers the rollover.

® com.tandem.servlet.logging.NSJSPLogHandler.maxFileSize = 20

In the given example, the log file rolls over when the file size exceeds 20 MB.

Table 5-5 describes the behavior of log files in maxFi leSize-based rollover.

Table 5-5. Behavior of Log Files in maxfilesize-based Rollover

Log File Complete Path archiveDi New Location After
Destination of Log File rectory Rollover Comments
abc.log <NSJSP_HOME>/ Not <NSJSP_HOME>/ab When the
(Default abc.log specified c.log.<timestam threshold is
location) p> exceeded, the log
file rolls over, and
the timestamp is
/sample/a /sample/abc.l Not /sample/abc.log gppended to the
bc.log og specified .<timestamp> file name. The file
(User- continues to
defined remain in the
location) same location.
abc.log <NSJSP_HOME>/ /archive/ /archive/logs/ The log file rolls
(Default abc.log logs/ abc.log.<timest overtothe
location) amp> archiveDirect
ory when the
/sample/a /sample/abc.l /archive/ /archive/logs/ threshold is
bc.log og logs/ abc.log.<timest gxceeded, and
(User- amp> the timestamp is
defined appended to the
location) file name.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

5-16

Logging in NSJSP

Configuring for Log Rollover

Configuring for Log Rollover Based on Timestamp

This section includes the syntax and examples that describe how to configure for
rollover based on timestamp.

The following is the syntax to configure the datePattern-based rollover:

com.tandem.servlet.logging.NSJSPLogHandler .datePattern =
" ."datePattern value

where, datePattern value is the time interval at which the rollover occurs and "'

improves the readability of the file name.

The datePattern attribute value must follow certain guidelines for date and time
pattern strings.

Table 5-6 describes the date and time pattern strings you can use to configure for log

rollover.

Table 5-6. Timestamp Attributes

Alphabet

NN ®®O® 35X~ I®mMTeeoOss <0

Date or Time Component

Era designator

Year

Month in a year
Week in a year
Week in a month
Day in year

Day in month

Day of week in month
Day in week

am/pm marker

Hour in day (0-23)
Hour in day (1-24)
Hour in am/pm (0-11)
Hour in am/pm (1-12)
Minute in hour
Second in minute
Millisecond

Time zone

Time zone

Examples
AD

1992;92

July; Jul; 07
25

3

190

12

3

Monday; Mon
PM

0

24

0

12

30

45

900

Pacific Standard Time; PST; GMT-08:00
-0800

Using combinations of the date and time pattern strings, you can configure
timestamp-based rollover.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

Logging in NSJSP

Configuring for Log Rollover

Table 5-7 describes the different time intervals at which rollover occurs.

Table 5-7. Time Intervals for Rollover

Attribute
"yyyy”

"yyyy -MM*

"Yyyy MM W

"yyyy.MM.dd"

TYyyy -ww'

"yyyy.MM.dd.hh"
"yyyy.MM.dd.hh_.mm"

"yyyy.MM.dd.hh.a"

Description

Rollover occurs after every year from the time the log file is
created. The change in the value of yyyy triggers the rollover.

Rollover occurs after every month from the time the log file is
created. The change in the value of MM triggers the rollover.

Rollover occurs after every week in the month from the time the
log file is created. The change in the value of w triggers the
rollover.

Rollover occurs after every day from the time the log file is
created. The change in the value of dd triggers the rollover.

Rollover occurs after every week in the year from the time the
log file is created. The change in the value of ww triggers the
rollover.

Rollover occurs after every hour from the time the log file is
created. The change in the value of hh triggers the rollover.

Rollover occurs after every minute from the time the log file is
created. The change in the value of mm triggers the rollover.

Rollover occurs at midday (12:00 hours) and at midnight (00:00
hours), when AM changes to PM or vice-versa. The change in
the value of a triggers the rollover.

The following are examples to configure the datePattern-based rollover:

® com.tandem.servlet.logging.NSJSPLogHandler.datePattern =

".Tyyyy-MM.dd

In the given example, the log file rolls over every day, when the value of dd

changes.

® com.tandem.servlet.logging.NSJSPLogHandler.datePattern =

"."yyyy.MM.dd.hh

In the given example, the log file rolls over every hour, when the value of hh

changes.

In the given examples, '." improves the readability of the file name.

Table 5-8 describes the behavior of log files in datePattern-based rollover.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

5-18

Logging in NSJSP

Configuring for Log Rollover

Table 5-8. Behavior of Log Files in datepattern-based Rollover

Log File
Destination

abc.log
(Default
location)

/sample/a
bc.log
(User-
defined
location)

abc.log
(Default
location)

/sample/a
bc.log
(User-
defined
location)

Complete Path
of Log File

<NSJSP_HOME>/
abc.log.<time
stamp>

/sample/abc.1
og.<timestamp
>

<NSJSP_HOME>/
abc.log.<time
stamp>

/sample/abc.1
og.<timestamp
>

archiveDi
rectory

Not
specified

Not

specified

/archive/

logs/

/archive/
logs/

New Location After
Rollover

<NSJSP_HOME>/ab
c.log.<timestam

p>

/sample/abc. log
.<timestamp>

/archive/logs/
abc.log.<timest
amp>

/archive/logs/
abc.log.<timest
amp>

Comments

When NSJSP
starts, the
timestamp is
appended to the
log file name.
When the
threshold is
exceeded, the log
file rolls over, and
it continues to
remain in the
same location.

When NSJSP
starts, the
timestamp is
appended to the
log file name. The
log file rolls over
to the
archiveDirect
ory when the
threshold is
exceeded.

Configuring the archiveDirectory Attribute

This section includes the syntax and examples that describe how to configure the

archiveDirectory attribute.

The following is the syntax to configure the archiveDirectory:

com.tandem.servlet.logging.NSJSPLogHandler .archiveDirectory

archive directory

where, archive directory is the location to which the log files rollover.

The following is an example to configure the archiveDirectory:

com.tandem.servlet. logging.NSJSPLogHandler .archiveDirectory

tempLogs

In the given example, the log file rolls over to the tempLogs directory. The complete
path of the archiveDirectory is <NSJSP_HOME>/tempLogs.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

5-19

Logging in NSJSP Configuring the logging.properties File

Configuring the logging.properties File
This section describes the contents of the logging.properties file.

You can use the logging.properties file to configure log-related settings, such as,
which logs must be written, where the logs must be written, and when the logs must
rollover. The file contains Java.util.logging elements, such as loggers and
handlers, and various attributes to which you can assign values to control the logs.

You can specify the location of the logging.properties file by configuring the Java
system property, Java.util.logging.config.file. By default, the directory
location is <NSJSP 6.1 installation directory>/conf.

The logging.properties file contains handlers and loggers.

Handlers in the logging.properties File
The following lines indicate the handlers defined in the logging.properties file:

handlers = lnsjsp.com.tandem.servilet.logging.NSJSPLogHandler,
2console.com.tandem.servlet.logging.NSJSPLogHandler,
lcatalina.org.apache.juli_FileHandler,
2localhost.org.apache.juli._FileHandler,
3manager.org.apache.juli_FileHandler,
4admin.org.apache.juli_FileHandler, 5host-

manager .org.apache_juli_FileHandler

In the given example, the handlers attribute is assigned seven values. Each of the
seven handlers has its own settings. However, among the seven handlers, only two
handler implementation classes are used. They are
com.tandem.servlet.logging.NSJSPLogHandler and

org.apache. juli.FileHandler. These handler implementation classes are
loaded during the NSJSP startup.

The following line sets the handlers property for the root logger. The root logger is an
empty string. The complete attribute name is <root logger>_handlers. This is the
default handler. If no defined handler meets the requirements to enable logging, the
default handler is used.

-handlers = 1nsjsp.com.tandem.servlet.logging.NSJSPLogHandler

The following lines denote the configuration settings of the handler, called
Insjsp.com.tandem.servilet.logging.NSJSPLogHandler:

Insjsp.com.tandem.servilet.logging.NSJSPLogHandler._.destination =
${catalina.base}/logs/nsjsp

Insjsp.com.tandem.servilet.logging.NSJSPLogHandler.level = INFO

Insjsp.com.tandem.servilet.logging.NSJSPLogHandler._datePattern =
" Tyyyy-MM-dd

Insjsp.com.tandem.servlet.logging.NSJSPLogHandler.archiveDirecto
ry = ${catalina.base}/logs/archive

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-20

Logging in NSJSP Configuring the logging.properties File

The following list describes the settings of
Insjsp.com.tandem.servilet.logging.NSJSPLogHandler:

® Destination - ${catalina.base}/logs/nsjsp

® Log level - INFO

® Rollover interval - * . "yyyy-MM-dd

® Archive directory for the logs that rollover - ${catal ina.base}/logs/archive

The following lines denote the configuration settings of the handler, called
lcatalina.org.apache.juli._FileHandler:

lcatalina.org.apache.juli.FileHandler.level = INFO

lcatalina.org.apache.juli_FileHandler.directory =
${catalina.base}/logs

lcatalina.org.apache. juli.FileHandler.prefix = catalina

The following list describes the settings of
lcatalina.org.apache.juli_FileHandler:

® Log level - INFO
® |og directory - ${catalina.base}/logs

® Prefix properties - catalina

Note. The FileHandler implementation class does not support log rollover.

The following lines denote the configuration settings of the handler, called
2localhost.org.apache.juli.FileHandler:

21localhost.org.apache. juli.FileHandler.level = INFO

2localhost.org.apache.juli.FileHandler.directory =
${catalina.base}/logs

2localhost.org.apache. juli.FileHandler.prefix = localhost

The following list describes the settings of
2localhost.org.apache.juli.FileHandler:

® Log level - INFO
® |og directory - ${catalina.base}/logs

® Prefix properties - localhost

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-21

Logging in NSJSP Configuring the logging.properties File

The following lines denote the configuration settings of the handler, called
3manager.org.apache. juli.FileHandler:

3manager.org.apache.juli_.FileHandler.level = INFO

3manager.org.apache. juli.FileHandler.directory =
${catalina.base}/logs

3manager.org.apache.juli_FileHandler_prefix = manager

The following list describes the settings of
3manager.org.apache. juli._FileHandler:

® Loglevel - INFO
® |Log directory - ${catalina.base}/logs
® Prefix properties - manager

The following lines denote the configuration settings of the handler, called
4admin.org.apache. juli.FileHandler:

4admin.org.apache.juli.FileHandler.level = INFO

4admin.org.apache. juli.FileHandler.directory =
${catalina.base}/logs

4admin.org.apache.juli_FileHandler_prefix = admin

The following list describes the settings of
4admin.org.apache. juli.FileHandler:

® Loglevel - INFO
® |og directory - ${catalina.base}/logs
® Prefix properties - admin

The following lines denote the configuration settings of the handler, called 5host-
manager .org.apache. juli_FileHandler:

5host-manager.org.apache.juli_.FileHandler.level = INFO

5host-manager.org.apache. juli.FileHandler.directory =
${catalina.base}/logs

5host-manager.org.apache.juli_FileHandler.prefix = host-manager

The following list describes the settings of 5Shost-
manager .org.apache. juli_FileHandler:

® Loglevel - INFO
® |Log directory - ${catalina.base}/logs

® Prefix properties - host-manager

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-22

Logging in NSJSP Configuring the logging.properties File

The following lines denote the configuration settings of the handler, called
2console.com.tandem.servlet. logging.NSJSPLogHandler:

2console.com.tandem.servlet.logging.NSJSPLogHandler.level = INFO

2console.com.tandem.servlet.logging.NSJSPLogHandler.destination
= STDOUT

The following list describes the settings of
2console.com.tandem.servlet. logging.NSJSPLogHandler:

® Log level - INFO
® Destination - STDOUT

The location of STDOUT is defined in the server class definition.

Loggers in the logging.properties File
This section describes the loggers used in the logging.properties file.

The following lines denote the log level and handler properties of the logger, called
org.apache.catalina.core.ContainerBase.[NSJSP].[localhost]:

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost]. level
= INFO

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].handl
ers = 2localhost.org.apache.juli.FileHandler

The logger writes log messages about the Host component, localhost, which is
located within the engine component, NSJSP.

The following lines denote the log level and handler of the logger, called
org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vletsj/manager]:

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vletsj/manager].level = INFO

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vletsj/manager].handlers = 3manager.org.apache.juli.FileHandler

The logger writes log messages about the context component,
/servletsj/manager. The context component, which refers to the Manager Web
application, is located within the Host component, localhost. The localhost
component, in turn, is located within the engine component, NSJSP.

The following lines denote the log level and handler properties of the logger, called
org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vletsj/admin]:

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vletsj/admin].level = INFO

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vletsj/admin].handlers = 4admin.org.apache.juli.FileHandler

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-23

Logging in NSJSP Configuring Logging for the NSJSP Container and
Web Applications

The logger writes log messages about the context component, /servletsj/admin.
The context component, which refers to the Admin Web application, is located within
the Host component, localhost. The localhost component, in turn, is located
within the engine component, NSJSP.

The following lines denote the log level and handler properties of the logger, called
org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vletsj/host-manager]:

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vletsj/host-manager].level = INFO

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vletsj/host-manager].handlers = 5host-
manager .org.apache. juli_FileHandler

The logger writes log messages about the context component, /servletsj/host-
manager. The context component, which refers to the NSJSP Manager application, is
located within the Host component, localhost. The localhost component, in turn,
is located within the engine component, NSJSP.

All logs originating from the Host component and the three web applications are
handled by the JULI File Handler. Each of the four handlers that are defined by the File
Handler class (2localhost.*, 3manager.*, 4admin.*, 5host-manager.¥*)
open four different files as indicated by the prefix attribute of the handlers.

Any log originating outside the Host component and the three web applications will be
handled by the INSJSP .* NSJSPLogHandler handler, which is associated with the
root logger.

Configuring Logging for the NSJSP Container and Web
Applications

This section describes the procedures to configure logging for the NSJSP servlet
container and web applications running on the server class Host.

Each server class includes a logging.properties file, which is located in <NSJSP
6.1 installation directory>/conf. You can configure the
logging.properties file to manage logging related to the server class components
and the web applications running on the server class Host. When the
logging.properties file is configured, and NSJSP is restarted, all logs will be
written in the newly created file, called <server class>.<date>.log. This log file
will be created in <NSJSP_HOME>/10gs.

Additionally, each web application running on the server class Host can include its own
logging.properties file, which is located in <NSJSP 6.1 installation
directory>/webapps/<application name>/WEB-INF/classes. You can
configure this file to manage logging related to the specific web application.

Configuring the web application-specific logging.properties file, which is located
in<NSJSP 6.1 installation directory>/webapps/<application
name>/WEB-INF/classes is not a mandatory procedure. It is required only to

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-24

Logging in NSJSP Configuring Logging for the NSJSP Container and
Web Applications

configure logging that is specific to the application. If an application-specific
logging.properties file is not present, the settings in the generic
logging.properties file, located in <NSJSP 6.1 installation
directory>/cont apply.

The settings in the web application-specific logging.properties file override the
settings in the generic logging.properties file, which is located in <NSJSP 6.1
installation directory>/conf.

Configuring Logging for Web Applications

This section describes the procedure to configure logging for web applications.

To configure the logging.properties file specific to an application, complete the
following steps:

1. Go to the following directory location:

<NSJSP 6.1 installation directory>/webapps/<application
name>/WEB-INF/classes

2. Create the logging.properties file and assign the required values.
3. Save and close the file.
4. Restart NSJSP.

The configuration settings will become effective.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-25

Logging in NSJSP Configuring Logging for the NSJSP Container and
Web Applications

The following example illustrates logging configuration for a web application:

handlers = lbankapp.com.tandem.servlet.logging.NSJSPLogHandler
#This is the default handler
-handlers = l1lbankapp.com.tandem.servlet.logging.NSJSPLogHandler

HHHHH AR R R R R R R R R R R R R
Handler specific properties.

Describes specific configuration info for Handlers.

HHHHH AR R A R R R R R R R R R R

HHHHHHH R R R R R R R

#Destination can have values like STDOUT,STDERR and EMS. With
these three values roll over will be disabled

#With the value of datePattern set to yyyy-MM-dd the files will
roll over each day

#To enable size based roll over un-comment the following line.
This will roll over the log file once it reaches 10MB

#1lnsjsp.com.tandem.servlet.logging.NSJSPLogHandler _maxFileSize =
10

#The rolled over log files are placed in the archiveDirectory
(logs/archive)

#1T archive directory i1s not mentioned the rolled over fTiles
will be present In the same directory as the log fTile

HHFH A A A A A A T

1bankapp.com.tandem.servilet. logging.NSJSPLogHandler.destination
= ${catalina.base}/logs/bankapp

1bankapp.com.tandem.servlet.logging .NSJSPLogHandler._.level = INFO
1bankapp.com.tandem.servlet. logging.NSJSPLogHandler.maxFileSize
= 10

1bankapp.com.tandem.servilet. logging.NSJSPLogHandler_.archiveDirec
tory = ${catalina.base}/logs/archive

HH R T R T TR T
Facility specific properties.

Provides extra control for each logger.

R T R TR T

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-26

Logging in NSJSP Log Files Related to NSJSP

sample.bank.servlet.level = INFO

sample.bank.servlet.handler =
1bankapp.com.tandem.servilet.logging.NSJSPLogHandler

sample.bank.util._level = SEVERE

sample._bank.util _handler =
1bankapp.com.tandem.servilet.logging.NSJSPLogHandler

Log Files Related to NSJSP

This section describes the log files related to NSJSP.

The default configuration of NSJSP creates five log files in the <NSJSP_HOME>/10gs
directory per NSJSP installation. Following are the log files:

® Two files with the extension, out. These out files are the STDOUT files defined in
the two server classes that are configured for each installation.

® Two files with the extension, err. These err files are the STDERR files defined in
the server classes that are configured for each installation.

® Alog file with the extension, 1og. This log file is created by the NSJSP logging
framework, JULLI.

The out and err Log Files

All log messages from the Java Virtual Machine (JVM) are directed to either the out
file or the err file. For example, if an error in the arguments is passed to the JVM
through the Arglist configuration parameter, the JVM writes the message to the
STDERR file. In NSJSP, the STDERR file is configured as the err file. When the server
is starting up, the Java Native Interface (JNI) code of NSJSP writes messages to the
out file. Startup messages are written to the out file, because these messages are
generated before the JULI framework is initialized.

The complete names of the out and err log files are derived from the names of the
server classes to which they belong. The out file of the Servlet Server Class is
<Servlet Server Class name>.out. The err file of the Servlet Server Class is
<Servlet Server Class name>.err.

Similarly, the out file of the Admin Server Class is <Admin Server Class
name>_out. The err file of the Admin Server Class is <Admin Server Class
name>.err.

The out and err log files of the Servlet Server Class are defined in the
servlet.configfile. The out and err log files of the Admin Server Class are
defined in the nsyspadmin.config file.

You cannot configure the settings of the out and err files. In addition, the out and
err files do not support log rollover.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-27

Logging in NSJSP Log File Created by JULI

Log File Created by JULI

When the NSJSP server is running and the JULI framework is initialized, all log
messages are written in the log file created by the JULI logging framework.

Note. Under certain conditions, log messages are also written to the err file. For
example, when the internal buffers of the NSJSP JNI library are full, log messages are
written in the log file created by the JULI logging framework and in the err file.

The log file created by JULI is the default destination of logs. However, you can change
the default destination of logs.

For information on log file configuration, see Configuring the logging.properties File on
page 5-20.

The name of the log file is derived from the Servlet Server Class name. For example, if
the name of the Servlet Server Class is ABC, the name of the log file is
ABC.<date>.log

where,
ABC - is the name of the Servlet Server Class.

<date> - is the date when NSJSP starts. The date is in yyyy-mm-dd format, and is
automatically added.

This log file supports log rollover. By default, date-based rollover is enabled. However,
unlike the out and err files, you can modify the settings of this log file.

Programming Considerations for Logging

To use JULI logging framework, you must be aware of the following classes:

® |ogFactory
® Log

LogFactory

The LogFactory class is used to identify an underlying logging implementation. It
provides an entry point for the applications to obtain the appropriate implementation of
the Log interface. The LogFactory implementation in JULI is similar to the
LogFactory implementation in Commons Logging, except that the LogFactory has
a hard-coded implementation for java.util.logging.

For information on the LogFactory implementation in Commons Logging, see
http://commons.apache.org/logging/.

The following is an example of the getLog method of the LogFactory class
(org.apache.juli.logging.Log) to obtain the most suitable implementation of

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-28

Logging in NSJSP Log

the Log interface (org.apache.juli.logging.Log) for the
NSJSPInputBuffer.class:

protected static org.apache.juli.logging.Log log =
org.apache.juli.logging.LogFactory.getLog(NSJSPInternal InputBuff
er.class);

Log

In JULLI, the implementation of the Log interface is for the underlying logging
implementation of java.util.logging. JULI implements the Log interface of
Commons logging for the java.util.logging logging framework.

The following is an example of the Log interface implementation for the
MyTestClass.class from the logging configuration file, logging.properties:

Log logger = LogFactory.getLog(MyTestClass.class)

The Log interface of Commons Logging defines methods such as error, fatal,
trace, and so on. The underlying logging implementation, java.util.logging,
defines its own logging levels.

Table 5-9 shows the mapping between Commons Logging methods and
jJava.util_logging levels.

Table 5-9. Mapping of Logging Methods

java.util.logging.level Commons Logging Log Method
SEVERE error, fatal

WARNING warn

INFO info

FINE debug

FINER trace

Note. The priority of log level defined in Table 5-9 is in the descending order. The log level
SEVERE has the highest priority and log level FINER has the lowest priority.

The java.util.logging levels are defined in the logging.-properties configuration file.
The Commons Logging methods are used in the user application.

In the following sample of code, the Import statements are used to import the
LogFactory and the Log classes of the Commons Logging. The LogFactory class
creates the logger, which in turn used to log messages based on the log levels such as
info, warning, and so on.

ir}u;)(-)rt org.apache.juli.logging.LogFactory;
import org.apache.juli.logging.Log;

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-29

Logging in NSJSP Commons Logging

bﬁﬁiic class SampleLoggingClass

{

private static Log _logger =
LogFactory.getLog(SampleLoggingClass.class);

bﬁﬁiic void sampleMethod()

i1 T(_logger. isDebugEnabled())

// Compose the message
_logger .debug(message) ;

logger.error(error message);

}
Commons Logging

The applications use different logging implementations, such as, log4j and
Java.util._logging. The logging implementations do not follow any particular
standard. The applications written using one logging implementation must be modified
to switch to any other logging implementation. To overcome this drawback, the actual
logging implementation must be abstracted from the application using the logging
implementation. Commons Logging is the abstraction between the application and the
actual logging implementation.

The Commons Logging package is an ultra-thin bridge between different logging
implementations. An application that is programmed to use the commons-logging
application programming interface (API) can be used with any logging implementation
at runtime.

Commons Logging is one of the components of an Apache Commons project that
provides a layer of abstraction over many popular logging implementations. Using
Commons Logging, you can program to an interface rather than to an implementation.

The main components of Commons Logging are as follows:

® Log interface — It provides an interface that is intended to be an independent
abstraction of the underlying logging implementation.

® LogFactory — It detects the underlying logging implementation and creates the
log instances for the logging implementation detected.

For more information about Commons Logging, see
http://commons.apache.org/logging/.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
5-30

http://commons.apache.org/logging/

RN Debugging NSJSP

This chapter discusses the various ways of debugging applications deployed in
NSJSP. Debugging using Java Debugger tool and Eclipse platform have been
described elaborately in this chapter.

This chapter discusses the following topics:

® Debugging using Java Debugger tool

® Debugging using Eclipse platform

Debugging using Java Debugger tool

Use the Jdb command to start the Java Debugger tool and communicate with the web
application to be debugged. You need to add j db debugging parameters in the
servlet.config file in <NSJSP_HOME>/conf directory. This can be performed in
the following two ways:

1. Connecting to a specified port number

This is achieved by adding arguments in the Arglist of the servlet.config
file in <NSJSP_HOME>/conf directory as shown:

® -Xdebug -Xnoagent -Djava.compiler=none
-Xrunjdwp:server=y,transport=dt_socket,suspend=n,
address=<debug-port>

® Set Numstatic value to 1

Attach the Java Virtual Machine to the Java Debugger (jdb) using the following
command:

jdb -attach <debug-port>
2. Using process attaching connector

This is achieved by adding arguments in the Arglist of the servlet.config
file in <NSJSP_HOME>/conf directory as shown:

® -Xdebug -Xnoagent -Djava.compiler=none
-Xrunjdwp:server=y, transport=dt_socket,suspend=n

® This connector is uniquely identified as com sun. j di . ProcessAtt ach.
Any NSJSP process can be connected using this jdb's ProcessAt t ach
as given below:

Jjdb -connect com.sun.jdi.ProcessAttach:pid=<oss pid>

For example:

Jjdb -connect com.sun.jdi.ProcessAttach:pid=218431829
where,

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator's Guide—596210-006
6-1

Debugging NSJSP Debugging using Eclipse platform

218431829 is the process ID (PID) of the NSJSP process to be debugged.

Note:

1. You can open multiple jdb sessions and connect to any NSJSP processes in separate
Jdb sessions.

2. There is no limit for the Numstatic value for this option.

3. jdb provides all debug options like setting breakpoints, watch a field value, continue, step
in, step out and so on.

For more information on debugging, see Debugging Java Programs in
Implementation specific section of NonStop Java 6.0 Programmer's Pages Manual
and, the jdb: Java Debugger section in NonStop Java 6.0 Tools Reference Pages
Manual.

Debugging using Eclipse platform

This section describes the usage of open source Eclipse platform to debug web
applications deployed in NSJSP.

To debug web applications, complete the following steps:

1. Add the debugging parameters in the Arglist of servlet.config filein
<NSJSP_HOME>/confT directory. This can be performed in the following three
ways:

a. Debugging web application with Numstatic equal to 1 with single debug
port

If you intend to debug web application with single port, make the following
changes to the servlet.config file in <NSJSP_HOME>/conf directory:

® Add the following arguments to the Arglist of the servlet.config
file.

Arglist -Xdebug -Xnoagent -Djava.compiler=none
-Xrunjdwp:server=y,transport=dt_socket,suspend=n,
address=<debug-port>

® Set the Numstatic and Maxservers values to 1

For more information on java command-line options, which are used for
debugging see the Debugging Java Programs section in NonStop Java 6.0
Programmer's Pages Manual.

b. Debugging web application with Numstatic greater than 1 with dynamic
debug ports

If you intend to debug web application with dynamically allocated ports,
make the following changes to the servlet.config filein
<NSJSP_HOME>/confT directory.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
6-2

Debugging NSJSP

Debugging using Eclipse platform

® Add the following arguments in the Arglist of servlet.config file:

-Xdebug -Xnoagent -Djava.compiler=none
-Xrunjdwp:server=y,transport=dt_socket,suspend=n

® Set the Numstatic and Maxservers values to greater than or equal to 1

During NSJSP startup, when the port number is not specified in the
servlet.config file, the debug ports are dynamically allocated to
individual NSJSP processes. These allocated ports are captured in
<Servlet Server Class name>.out file presentin
<NSJSP_HOME>/1ogs directory.

For example:

For Numstatic equal to 4, the ports allocated is displayed in the
<Servlet Server Class name>.out file as shown:

Listening for transport dt_socket at address:4129
Listening for transport dt socket at address:4131
Listening for transport dt_socket at address:4130
Listening for transport dt socket at address:4133

These debug ports, can now be connected from Eclipse.

When Numstatic is greater than 1, the ports used for debugging are
generated dynamically and therefore cannot be customized in the
servlet.configfile.

Debugging web application with Numstatic greater than 1 with debug port
range

If you intend to debug a specific port range with Numstatic and Maxservers
value greater than 1, make the following changes to the servlet.config
file in <NSJSP_HOME>/conT directory:

® Add the following arguments in the Arglist of servlet.config
file:

Arglist -Xdebug -Xnoagent -Djava.compiler=none -
Xrunjdwp:server=y,transport=dt_socket,suspend=n,addr
ess=<min-debug-port> - <max-debug-port>

® Set the Numstatic and Maxservers value to 1

This option is supported in the NonStop Server for Java T2766H60"ACA
SPR onwards.

2. Launch Eclipse and select Debug Configuration window. Connect to the NSJSP
process using the port as mentioned in <Servlet Server Class name>.out

file.

3. The debug configurations can be created for individual NSJSP process. However,
if you intend to debug for specific NSJSP processes, say process $Y1BX, to
identify the debug port associated with the process to be used for Eclipse
connection, complete the following steps:

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

6-3

Debugging NSJSP Debugging using Eclipse platform

1. Go to Guardian shell and execute the following commands:
° scf
° assume $zztcp
© listopen mon *
This lists all the NSJSP processes and their respective debug port numbers.

For example: 2122 is the debug port for nsjsp process $Y1BX:
\HEMAN.$Y1BX 0,732 8 2 TCP 2122

4. In Eclipse, set the necessary breakpoints. For more info, see the Eclipse website
http://www.eclipse.org/ for more details.

5. Open the web application from the browser. Once the page is loaded, the web
application is suspended at the breakpoint's set. Switch to Eclipse IDE to select
Debug perspective and continue the debugging.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
6-4

http://www.eclipse.org
http://www.eclipse.org/

- Migrating to NSJSP 6.1

This chapter compares the migration-related characteristics of NSJSP 5.0, NSJSP 6.0,
and NSJSP 6.1. This chapter also provides the considerations before migrating user
applications from NSJSP 5.0 or NSJSP 6.0 to NSJSP 6.1. You can migrate your
applications after you have installed and configured NSJSP 6.1.

This chapter addresses the following topics:
Comparison of NSJSP 5.0, NSJSP 6.0, and NSJSP 6.1
Considerations for Migrating Web Applications from NSJSP 5.0 to NSJSP 6.1

Considerations for Migrating Web Applications from NSJSP 6.0 to NSJSP 6.1

Migrating the Session Store

Migrating to NSJSP Manager Application in NSJSP 6.1

Support for Multiple NSJSP Installations in a Single iTP Secure WebServer
Environment

Comparison of NSJSP 5.0, NSJSP 6.0, and
NSJSP 6.1

Before migrating your web applications to NSJSP 6.1, you must understand the
similarities and differences between the NSJSP 5.0, NSJSP 6.0, and NSJSP 6.1
versions, and then make necessary modifications to either the installation or the
application or both. This section compares the following aspects of the different NSJSP
releases: installation, configuration, management, logging, and some miscellaneous
characteristics. The comparison discussed in the subsequent sections are with respect
to the default installation of NSJSP.

Comparing Installation Properties in NSJSP 5.0, NSJSP 6.0, and
NSJSP 6.1

Table 7-1 compares the installation properties of NSJSP 5.0, NSJSP 6.0, and NSJSP
6.1.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’s Guide—596210-006
7-1

Migrating to NSJSP 6.1

Comparing Installation Properties in NSJSP 5.0,

NSJSP 6.0, and NSJSP 6.1

Table 7-1. Comparison of Installation Properties of NSJSP Versions (page 1 of 3)

Factors

NSJSP installa-
tion directory

URI to access the
NSJSP installation

Server classes
created during
installation

NSJSP 5.0

By default, NSJSP is
installed in the
<iTPWS_INSTALL_H
OME>/servilet_jsp
directory.

You cannot change
the location of the
installation directory.

servlet jsp
(default URI name)

® servlet
(Servlet Server
class)

® nsjspadmin
(Admin Server
class)

NSJSP 6.0

By default, NSJSP is
installed in the
<iTPWS_INSTALL_H
OME>/servilet_jsp
directory.

You cannot change
the location of the
installation directory.

servilet jsp

(default URI name),
users have the ability
to manually modify the
URI.

You can manually
modify the URI using
the
CONTEXT_PREFIXES
command-line option.
For more information
on this command-line
option, see Chapter 3,
Configuring NSJSP.

Same as in NSJSP 5.0

NSJSP 6.1

You can install NSJSP in a
directory location of your
choice.

A default URI name is not
available. You can specify
the URI name during instal-
lation.

However, a unique URI
name must be assigned to
each installation.

You can specify the name
of the Servlet Server Class
during installation. The
name of the Admin Server
Class is automatically
derived from the Servlet
Server Class name as
follows:

® <server
class_name>
(Servlet Server Class)

® <server
class_name>-adm
(Admin Server class)

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

7-2

Migrating to NSJSP 6.1

Comparing Installation Properties in NSJSP 5.0,

NSJSP 6.0, and NSJSP 6.1

Table 7-1. Comparison of Installation Properties of NSJSP Versions (page 2 of 3)

Factors

Ability to contain
multiple NSJSP
installations in an
iTP Secure Web-
Server environ-
ment

Directory structure

NSJSP 5.0
No

Allows single installa-
tion of NSJSP 5.0. If
NSJSP 5.0 is already
installed and you try
to install NSJSP
again, the script over-
writes the existing

installation.

bin/
common/
classes/
lib/
endorsed/
conft/
NSJSP/
backup/
lib/
logs/
server/

classes/

lib/
nsjsp_webapps

webapps/
work/
deployer/
shared/
temp/

NSJSP 6.0
No

Allows a single instal-
lation of NSJSP 6.0.

If NSJSP 6.0 is
already installed and
you try to install
NSJSP again, the
script overwrites the
existing installation.

bin/
conf/
lib/
logs/
webapps/
work/
deployer/
temp/

NSJSP 6.1
Yes

Allows multiple installa-
tions of NSJSP 6.1 in an
iTP Secure WebServer
environment.

NSJSP 6.1 can co-exist
with either NSJSP 5.0 or
NSJSP 6.0.

NOTE:

Each installation must be
present in a unique direc-
tory location.

Same as in NSJSP 6.0

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

7-3

Migrating to NSJSP 6.1 Comparing Configuration Properties in NSJSP 5.0,

NSJSP 6.0, and NSJSP 6.1

Table 7-1. Comparison of Installation Properties of NSJSP Versions (page 3 of 3)

Factors

Online-upgrade
feature in iTP
Secure Web-
Server

Ability to upgrade
an existing ver-
sion of NSJSP to
a new SPR ver-
sion

Option to install a
management
application

NSJSP 5.0

Not aware of the
online-upgrade fea-
ture of the iTP Secure
WebServer

No

Installs the Manager
Web application in
the NSJSPADMIN
server class.

(The Manager Web
application is denoted
as Old Manager
application in this
guide)

NSJSP 6.0
Same as in NSJSP 5.0

No

Same as in NSJSP 5.0

NSJSP 6.1

The setup script identifies
the online-upgrade feature
and configures NSJSP
accordingly.

For more information, see
Chapter 1, Introduction to
NSJSP.

Yes

Contains an option to
install the new NSJSP
Manager. The installation
script also installs the Old
Manager application.

While the NSJSP Manager
is installed only once in an
iTP Secure WebServer, the
Old Manager is installed
with each installation of
NSJSP 6.1.

NOTE: The Manager Web
application included in
NSJSP 5.0 and NSJSP 6.0
is referred to as Old Man-
ager application in this
guide.

Comparing Configuration Properties in NSJSP 5.0, NSJSP 6.0,
and NSJSP 6.1

The following tables enable you to compare the default container configuration
elements of NSJSP 5.0, NSJSP 6.0, and NSJSP 6.1:

® Table 7-2 discusses the differences in the NSJSP 5.0 and NSJSP 6.1
server .xml files.

® Table 7-3 discusses the differences in the NSJSP 6.0 and NSJSP 6.1
server .xml files.

® Table 7-4 discusses the differences in the NSJSP 5.0 and NSJSP 6.1
servlet.configfiles.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

7-4

Migrating to NSJSP 6.1

Comparing Configuration Properties in NSJSP 5.0,

NSJSP 6.0, and NSJSP 6.1

® Table 7-5 discusses the differences in the NSJSP 6.0 and NSJSP 6.1
servlet.configfiles.

The Considerations for Migrating Web Applications from NSJSP 5.0 to NSJSP 6.1

section discusses the conf/context.xml file that is included in NSJSP 6.0.

Table 7-2 lists the differences in the NSJSP 5.0 and NSJSP 6.1 server .xml files.

Table 7-2. Differences in the NSJSP 5.0 and NSJSP 6.1 server .xml Files
Default Value in NSJSP 5.0

Element/Attribute

Server
debug
port
Listeners

GlobalNamingRe
sources

0

Not Available

® com.tandem.servlet.cata
lina.mbeans.NSJSPServe
rLifecyclelListener

® org.apache.catalina.mbe

ans.GlobalResourcesLif
ecyclelListener

Default Value in NSJSP 6.1

Not Available

-1

org.apache.catalina.cor
e.JasperListener

org.-apache.catalina.mbe
ans.ServerLifecyclelLis
tener

org.apache.catalina.mbe
ans.GlobalResourcesLiT
ecyclelListener

org.apache.catalina.sto
reconfig.StoreConfigLi
fecycleListener

com.tandem.servlet.NSJS
PLifecycleListener

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

7-5

Migrating to NSJSP 6.1

Comparing Configuration Properties in NSJSP 5.0,

NSJSP 6.0, and NSJSP 6.1

Table 7-2. Differences in the NSJSP 5.0 and NSJSP 6.1 server .xml Files

Element/Attribute
Environment

Service
name
Connector

Default Value in NSJSP 5.0

name=""simpleValue™
type="java.lang. Integer"
value="30"

<Resource
name=""UserDatabase""
auth="Container"
type=""org.apache.catalina
.UserDatabase™
description="User
database that can be
updated and saved'>
</Resource>
<ResourceParams
name=""UserDatabase'>
<parameter>
<name>factory</name>
<value>org.apache.catalin
a.users.MemoryUserDatabas
eFactory</value>
</parameter>

<parameter>
<name>pathname</name>
<value>conf/tomcat-
users.xml</value>
</parameter>
</ResourceParams>

name=""NSJSP-i1TPWebServer"

className=""com.tandem.ser
vlet._coyote.tomcat5.NSJISP
CoyoteConnector™’
minProcessors="5"
maxProcessors="75"
acceptCount=""25"
maxThreads=""75"
minSpareThreads="5"
maxSpareThreads=""25"
enablelLookups=""false"
redirectPort="443"
debug=""0"
connectionTimeout="0"
disableUploadTimeout=""tru
e

Default Value in NSJSP 6.1

<Resource
name=""UserDatabase"
auth=""Container"
type="org.apache.catalina
.UserDatabase™
description="User
database that can be
updated and saved"
factory=""org.apache.catal
ina.users.MemoryUserDatab
aseFactory"
pathname=""conf/nsjsp-
users._xml"
readonly=""false">

name=""NSJSP”’

protocol="HTTP/1_.1"
maxThreads="75"

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

7-6

Migrating to NSJSP 6.1

Comparing Configuration Properties in NSJSP 5.0,

NSJSP 6.0, and NSJSP 6.1

Table 7-2. Differences in the NSJSP 5.0 and NSJSP 6.1 server .xml Files

Element/Attribute

Engine

Realm

Host

Valve Element
within the Host

Default Value in NSJSP 5.0

name=""NSJSP""
defaultHost=""localhost"
debug=""0""

className=""org.apache.cat
alina.realm.UserDatabaseR
ealm”

debug=""0""
resourceName=""UserDatabas
e

name=""localhost"
debug=""0""
appBase="'webapps"
unpackWARs=""true""
autoDeploy=""false"
xmlValidation="false"
xmINamespaceAware=""false"

Not available. Only a sample
valve configuration is included.

Default Value in NSJSP 6.1

com.tandem.servlet.JMXCon
nectionListener

name=""NSJSP"
backgroundProcessorDelay=
ll60ll
defaultHost="localhost”

className="org.apache.cat
alina.realm.UserDatabaseR
ealm”
resourceName=""UserDatabas
e

digest=""MD5"

Note: In NSJSP 5.0, passwords
were in clear text. In NSJSP 6.1,
passwords are encrypted using
the MD5 digest algorithm.

name=""localhost"
appBase=""webapps"
unpackWARs=""true""
autoDeploy=""true"
xmlValidation="false"
xmINamespaceAware=""false"
configClass=""com.tandem.s
ervlet._catalina.startup-N
SJSPContextConftig”

For information on autoDeploy
and configClass, see The
server.xml File on page 3-37.

Valve
className=""com.hp.tandem.
nsjsp-valves_RequestTrack
ervValve"

For information on the Valve
element, see Valve Element on
page 3-58.

The reasons why the values of some attributes in NSJSP 6.1 are different from those
in NSJSP 5.0, as described in Table 7-2, are as follows:

debug — Because NSJSP 6.1 uses a different logging mechanism, the debug flag,
which was related to logging severity in NSJSP 5.0 is not valid in NSJSP 6.1.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

7-7

Migrating to NSJSP 6.1 Comparing Configuration Properties in NSJSP 5.0,
NSJSP 6.0, and NSJSP 6.1

For more information on logging severity in NSJSP 6.1, see Chapter 5, Logging in
NSJSP.

port — Although the behavior of the server component with respect to the port
attributes has not changed between NSJSP 5.0 and NSJSP 6.1, NSJSP 6.1 requires
the port attribute to be explicitly set to -1.

Listeners — The NSJSPServerLifeCycleListener is replaced by the
ServerLifeCycleListener. The functionality of the two listeners is the same. For
more information on the new listeners in NSJSP 6.1, see Child Elements Nested in the
Server Element on page 3-41.

Environment Resource Name — The parameters mentioned as ResourceParams
in NSJSP 5.0 are mentioned as attributes of the Resource definition in NSJSP 6.1.

Connector — The changes in NSJSP 6.1 are as follows:

® The minProcessors and maxProcessors properties are not included in NSJSP
6.1. These properties refer to the protocol processors and the minimum and the
maximum number of processors that the connector needs to create. In NSJSP 6.1,
the protocol processors are created only if required. After the protocol processors
are created, the processors are cached internally and reused.

® The acceptCount property has no relevance in NSJSP 6.1 as the messages are
obtained through the $RECEIVE file. Messages are queued in the $RECE 1 VE file
and no internal queue for messages is maintained.

® The minSpareThreads and maxSpareThreads attributes are not relevant in
NSJSP 6.1. Starting with the NSJSP 6.0 release, you can configure the connector
to use an Executor element for threads. You can use the minSpareThreads and
maxSpareThreads attributes in the Executor element. However, the default
configuration does not use the Executor element.
For more information about the Executor, see http://tomcat.apache.org/tomcat-6.0-
doc/config/executor.html.

® In NSJSP 6.1, the default value of enablelLookups is false, which is the same
as in the NSJSP 5.0 configuration. Therefore, this property is not mentioned
explicitly in the connector configuration

® The connectionTimeout is not relevantin NSJSP 6.1 as it uses a custom
ServerSocket class, which is extended from the java.net.ServerSocket, to
create socket objects for messages received on $RECE1VE.

Table 7-3 lists the differences in the NSJSP 6.0 and NSJSP 6.1 server . xml files.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-8

Migrating to NSJSP 6.1

Comparing Configuration Properties in NSJSP 5.0,

NSJSP 6.0, and NSJSP 6.1

Table 7-3. Differences in the NSJSP 6.0 and NSJSP 6.1 server .xml

Files (page 1 of 2)

Element/Attribute

The
GlobalNamingRes
ources Element

Default Value in NSJSP 6.0

<Resource
name=""UserDatabase""
auth="Container"
type="org.apache.catalina
.UserDatabase"
description="User
database that can be
updated and saved"
factory=""org.apache.catal
ina.users._MemoryUserDatab
aseFactory"
pathname=""conf/nsjsp-
users.xml™ />

Default Value in NSJSP 6.1

<Resource
name=""UserDatabase""
auth=""Container"
type=""org.apache._catalin
a.UserDatabase"
description="User
database that can be
updated and saved™
factory=""org.apache.cata
lina.users._MemoryUserDat
abaseFactory"
pathname=""conf/nsjsp-
users.xml™
readonly="false" />

Note: In NSJSP 6.1, the memory
user data base is read-only. If it
is read-only, you cannot use the
Admin Web application to add or
modify users in the memory
database. To enable the Admin
Web application to add and
modify the users, the read-only
attribute is set to false.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

7-9

Migrating to NSJSP 6.1

Comparing Configuration Properties in NSJSP 5.0,

NSJSP 6.0, and NSJSP 6.1

Table 7-3. Differences in the NSJSP 6.0 and NSJSP 6.1 server .xml

Files (page 2 of 2)

Element/Attribute
Connector

Listener within
the Connector

Engine

Host

Default Value in NSJSP 6.0

protocol="HTTP/1.1"
connectionTimeout="0"
acceptCount="25"
maxThreads=""75"

Note: The acceptCount property
has no relevance in NSJSP 6.1 as
the messages are obtained
through the $RECEIVE file.
Messages are queued in the
$RECE I VE file and no internal
gqueue for messages is maintained.
The connectionTimeout is not
relevant in NSJSP 6.1 as it uses a
custom ServerSocket class,
which is extended from the
Java.net.ServerSocket, to
create socket objects for
messages received on $RECEIVE.

Not available

name=""NSJSP""
defaultHost=""localhost"

name="localhost™
appBase=""webapps"
unpackWARs=""false"
autoDeploy="false"
xmlValidation=""false"
xmINamespaceAware=""false"
configClass=""com.tandem.s
ervlet.catalina.startup.N
SJSPContextConfig"

Default Value in NSJSP 6.1

protocol="HTTP/1.1"
maxThreads=""75"

com.tandem.servlet.JMXCo
nnectionListener

name=""NSJSP""
backgroundProcessorDelay
=ll60Il
defaultHost="localhost

Host name="localhost"
appBase=""webapps"
unpackWARs=""true""
autoDeploy=""true"
xmIValidation="false"
xmINamespaceAware=""false

configClass=""com.tandem.
servilet.catalina.startup
-NSJSPContextConfig

For information on autoDeploy
and unpackWARs, see The
server.xml File on page 3-37.

Valve
className=""com.hp.tandem
-nsjsp.valves.RequestTra
ckervalve™

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

7-10

Migrating to NSJSP 6.1 Comparing Configuration Properties in NSJSP 5.0,
NSJSP 6.0, and NSJSP 6.1

Note. Valve className is a new attribute introduced in NSJSP 6.1.

Table 7-4 lists the differences in the NSJSP 5.0 and NSJSP 6.1 servlet.config
files.

Table 7-4. Differences in the NSJSP 5.0 and NSJSP 6.1 servlet.config
Files (page 1 of 2)

NSJSP 5.0 NSJSP 6.1 Effect
Maxservers 5 4
Numstatic 2 4
Maxlinks 250 50 For more information on

the properties, see The
Installation-Specific
servlet.config File on

page 3-7.
Linkdepth 25 50
TANDEM_RECEIVE 25 50
_DEPTH

Command-Line Arguments

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-11

Migrating to NSJSP 6.1 Comparing Configuration Properties in NSJSP 5.0,
NSJSP 6.0, and NSJSP 6.1

Table 7-4. Differences in the NSJSP 5.0 and NSJSP 6.1 servlet.config
Files (page 2 of 2)

NSJSP 5.0 NSJSP 6.1 Effect

- Not
Xbootclasspath applicable in
/a:$env(JAVA_H NSJ 1.5 and
OME)/lib/tools NSJ 6.0

-jar
Not available -

Dcom.tandem.s

ervlet.CONTEX

T _PREFIXES=/u

riB

For more

info, see

Chapter 3,

Configuring

NSJSP.
Filemap Filemap ® Filemap
/serviet /urlB /servilet was
$server_object $server_objec included in NSJSP 5.0
code tcode for backward
Filemap compatibility with
/serviet_jsp earligr versio_ns.
$server_object Versions earlier than
code - NSJSP 5.0 used the

/serviet URI to
map requests to an
NSJSP Server Class.
However, it is not
relevant in NSJSP 6.1.

® InNSJSP 5.0, the URI
was always
servlet_jsp. In
NSJSP 6.1, you can
specify the URI during
installation.

Note. The generic servlet.config file is introduced in the NSJSP 6.1 release. For more
information on the servlet.config file, see Chapter 3, Configuring NSJSP.

Table 7-5 lists the differences in the NSJSP 6.0 and NSJSP 6.1 servlet.config
files.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-12

Migrating to NSJSP 6.1

Comparing Configuration Properties in NSJSP 5.0,

NSJSP 6.0, and NSJSP 6.1

Table 7-5. Differences in the NSJSP 6.0 and NSJSP 6.1 servlet.config Files

Maxservers
Maxlinks
Linkdepth

TANDEM_RECEIVE_
DEPTH

NSJSP 6.0
12

250

25

25

Command-Line Arguments

-Xmx64m
-Xss128k
-Xnoclassgc

jJava.compiler
=none \

Filemap
/serviet_jsp
$server_objec
tcode

NSJSP 6.1
4

50

50

50

—-Xmx64m
-Xss128k
-Xnoclassgc
-Xms64m

For more
information on -
Xms64m, see The
Installation-
Specific
servlet.config File
on page 3-7.

Not applicable.
For more
information on
why the attribute
is removed, see
The Installation-
Specific
servlet.config File
on page 3-7.

Filemap

/urlB
$server_objec
tcode

Effect

For more information on
the properties, see The
Installation-Specific
servlet.config File on
page 3-7.

In NSJSP 6.0, the URI was
always servlet_jsp. In
NSJSP 6.1, you can
specify the URI during
installation.

Difference in the NSJSP 6.0 and NSJSP 6.1 web.xml files

The web . xml file in NSJSP 6.0 and NSJSP 6.1 are similar. However, the NSJSP 6.1
web _xml file contains a new filter, called StaticContentFi lter.

Note. NSJSP 5.0 does not include the web . xml file.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-13

Migrating to NSJSP 6.1

Comparing Management Properties in NSJSP 5.0,

NSJSP 6.0, and NSJSP 6.1

Difference in the NSJSP 6.0 and NSJSP 6.1

conf/context.xml files

The conf/context.xml file in NSJSP 6.0 and NSJSP 6.1 are similar. However, the
NSJSP 6.1 conf/context.xml file includes a sample configuration of the persistent

session manager.

Note. NSJSP 5.0 does not include the conf/context.xml file. However, in NSJSP 5.0,
contexts were handled differently. For more information on contexts, Context Definition on

page 7-20.

Note. If you have customized any container configuration file in NSJSP 5.0 or NSJSP 6.0, you
might want to change the corresponding container configuration file in NSJSP 6.1.

Comparing Management Properties in NSJSP 5.0, NSJSP 6.0,

and NSJSP 6.1

Table 7-6 compares the management properties in NSJSP 5.0, NSJSP 6.0, and

NSJSP 6.1.

Table 7-6. Differences and Similarities in Management Properties of NSJSP Ver-

sions

Factors

Server classes
related to
management in
NSJSP

Management
application

Support for deploying
web applications from

a remote desktop
using the command-
line interface (CLI)

NSJSP 5.0
NSJISPADMIN

Admin Web and
Manager Web

Yes

Ant scripts are
used to deploy
web applications

NSJSP 6.0

Same as NSJSP
5.0.

Same as NSJSP
5.0

Same as NSJSP
5.0

NSJSP 6.1
NSJISPADMIN and MANAGER

Each installation of NSJSP
contains the NSJSPADMIN
server class and only one
MANAGER server class in an
iTP Secure WebServer
environment.

Admin Web, Manager Web,
and NSJSP Manager

The Admin Web and Manager
Web applications are carried
forward from the previous
NSJSP versions.

Same as NSJSP 6.0

HP recommends that you use the NSJSP manager application that provides many new
features. For a comparison of the different manager applications provided by NSJSP

6.1, see Chapter 4, Managing NSJSP

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

7-14

Migrating to NSJSP 6.1

Comparing Logging Infrastructure in NSJSP 5.0,

NSJSP 6.0, and NSJSP 6.1

Comparing Logging Infrastructure in NSJSP 5.0, NSJSP 6.0, and

NSJSP 6.1

Table 7-7 compares the logging properties in NSJSP 5.0, NSJSP 6.0, and NSJSP 6.1.

Table 7-7. Differences and Similarities in NSJSP Versions

Factors

How is Logging
achieved?

Default directory
location of log files

Location where
logging can be
configured for the
servlet container
components

Location where
logging can be
configured for
user applications

Classes required
for Programming

NSJSP 5.0

Uses <Logger >
elements to configure
application-specific
logging.

<iTP
WebServer HOME>/I
ogs

iTP_server.xml file
in the
<NSJSP_HOME>/conf
directory

META-
INF/context.xml

® org.apache.commo
ns.logging.Log
Factory

® org.apache.commo
ns.logging.Log

NSJSP 6.0

Uses the JULI logging
framework with log
rollover feature.

Starting from NSJSP
6.0, the <Logger>
elements are not
supported.

<NSJSP_HOME>/1o0gs

logging.properties
in the
<NSJSP_HOME>/conf
directory

Application-specific
logging.properties

® org.apache.juli.
logging.LogFac
tory

® org.apache._juli.
logging.Log

NSJSP 6.1
Same as in NSJSP 6.0

Same as in NSJSP 6.0

Same as in NSJSP 6.0

Same as in NSJSP 6.0

Same as in NSJSP 6.0

Logging Configuration of Servlet Container Components

In addition to the comparison related to logging in Table 7-7, this section discusses the
details of the logging configuration of servlet container components in NSJSP 5.0,
NSJSP 6.0, and NSJSP 6.1.

Logging Configuration in NSJSP 5.0

In NSJSP 5.0, logging is configured in the 1TP_server.xml file. The
1TP_server.xml file includes default configurations for the Engine and the localhost.
The default configuration of the Engine component is as follows:

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

7-15

Migrating to NSJSP 6.1 Logging Configuration of Servlet Container
Components

<Logger
className=""com.tandem.servlet.catalina.logger.NSJSPFileLogger"
prefix=""NSJSP_Catalina." suffix="_log" timestamp=""true'/>

This configuration creates a log file called NSJSP_catal ina.<date>.log in the
<NSJSP_HOME>/logs folder.

Note. In the default configuration of NSJSP 5.0, this file is not created as the Logger definition
of the Engine is overridden by the Logger configuration in localhost, which is one of the child
elements of Engine.

The default configuration of the localhost is as follows:

<Logger
className=""com.tandem.servlet.catalina.logger_.NSJSPFileLogger"
directory="logs" prefix="localhost.” suffix="_log"

timestamp=""true'/>

According to the Logger configuration, the localhost.<date>. log file is created in
the <NSJSP_HOME>/ logs folder. Log messages related to the Engine and all its child
elements are logged to the localhost.<date>. log file.

In the default configuration of NSJSP 5.0, log messages generated by components
other than Engine and its child components are written in the STDOUT file, which is the
servlet.logfile, inthe <iTP WebServer Home>/logs folder.

Note. The Servlet Server Class includes the STDOUT file, which is defined as the

servlet. log and the STDERR file, which is defined as servlet_error.log. Both these
files are available in the <iTP WebServer Home>/logs folder. The NSJSPADMIN Server
Class includes both STDOUT and STDERR, which are defined as nsjspadmin.log file in the
<iTP WebServer Home>/logs folder.

Note. The Admin Web application, Manager Web application, and the Host-Manager do not
include a default logging configuration.

Logging Configuration in NSJSP 6.0

In NSJSP 6.0, all the NSJSP servlet container-specific logs are published in the
STDOUT file, which is servlet. log by default, and all the logs related to Admin,
Manager and Host-Manager are published in their respective log files.

Logging is configured in the logging.properties file. There is no explicit
configuration for the Engine and the Host elements in the logging.properties file.
As a result, logging is handled by the root logger. The root logger defines an
NSJSPLogHandler that logs all messages to the STDOUT file. The STDOUT file is
configured as the servlet.out file in the <NSJSP_HOME>/ logs directory. The
following is the root logger configuration:

-handlers = com.tandem.servlet.logging.NSJSPLogHandler

NSJSP 6.0 includes the following default configuration for the Admin Web application:

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-16

Migrating to NSJSP 6.1 Logging Configuration of Servlet Container
Components

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vlet_jsp/admin].level = INFO

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vlet_jsp/admin].handlers = 4admin.org.apache.juli.FileHandler

According to the 4admin.org.apache. juli_.FileHandler configuration, all the
Admin-related logs are published in the admin.<date>. log file in the
<NSJSP_Home>/logs folder.

NSJSP 6.0 includes the following default configuration for the Manager:

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vlet_jsp/manager].level = INFO

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vlet_jsp/manager].-handlers =
3manager.org.apache. juli.FileHandler

According to the 3manager .org.apache. juli.FileHandler configuration, all the
manager-related logs are published in the manager .<date>. log file in the
<NSJSP_Home>/logs folder.

NSJSP 6.0 includes the following default configuration for the Host-Manager:

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vlet_jsp/host-manager].level = INFO

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].[/ser
vlet jsp/host-manager].handlers = 5host-
manager .org.apache_juli_FileHandler

According to the 5host-manager.org.apache. juli.FileHandler configuration,
all the Host-Manager logs are published in the host-manager .<date>. log file in
the <NSJSP_Home>/l1ogs folder.

Logging Configuration in NSJSP 6.1

In NSJSP 6.1, all logs related to the NSJSP servlet container are published in the
<server class name>._<date>.log file. The logs related to the Admin, Manager,
and the Host-Manager are also published in the same file.

Logging is configured in the logging.properties file.

The default configuration of the localhost is as follows:

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].level
= INFO

org.apache.catalina.core.ContainerBase.[NSJSP].[localhost].handl
ers = 1nsjsp.com.tandem.servlet.logging.NSJSPLogHandler

All logs related to the localhost are created in <NSJSP_HOME>/10gs/<NSJSP
Server Class name>._<date>.log. For example, logs related to the localhost
are created in <NSJSP_HOME>/10gs/SC1.2010-05-03.10g.-

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-17

Migrating to NSJSP 6.1 Comparing Miscellaneous Properties

There is no explicit logging definition for the Engine component. Because the root
logger is associated with
Insjsp.com.tandem.servilet.logging.NSJSPLogHandler, the root logger
publishes all messages to the same log file as the localhost. The following is the root
logger configuration:

-handlers = 1nsjsp.com.tandem.servlet.logging.NSJSPLogHandler

For example, the logs are created in <NSJSP_HOME>/10gs/SC1.2010-05-
03.1og.

The logging configuration for the Admin, Manager, and the Host-Manager use the
same handler as the logger for localhost and root logger. As a result, all log messages
related to these web applications are published in the same file as the container logs,
thatis, <server class name>.date.log.

For more information on log files and default handler, see Chapter 5, Logging in
NSJSP.
Comparing Miscellaneous Properties

Table 7-8 compares the miscellaneous properties of NSJSP 5.0, NSJSP 6.0, and
NSJSP 6.1.

Table 7-8. Miscellaneous Properties of NSJSP Versions

Factors NSJSP 5.0 NSJSP 6.0 NSJSP 6.1

Supported Java Servlets 2.4 Java Servlets 2.5 Java Servlets 2.5

specifications JavaServer Pages (JSP) JavaServer Pages JavaServer Pages (JSP) 2.1
2.0 (JspP) 2.1

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-18

Migrating to NSJSP 6.1 Considerations for Migrating Web Applications from
NSJSP 5.0 to NSJSP 6.1

Considerations for Migrating Web Applications
from NSJSP 5.0 to NSJSP 6.1

Table 7-9 lists the prerequisites of NSJSP 5.0 and NSJSP 6.1.

Table 7-9. Prerequisites of NSJSP 5.0 and NSJSP 6.1

Operating System/Product NSJSP 5.0 NSJSP 6.1

NonStop operating system H06.03 or later J06.04 or later J-series, or
HO06.15 or later H-series

iTP Secure WebServer 6.0 SPR ACA or later iTP Secure Webserver 7.0
(T8996H02 or T8997HO02) or
later

NonStop Server for Java 4.2 or later NSJ 5.1 (SPR ABS or later

(NSJ) of T2766H51) or NSJ 6.0
(SPR ABP or later of
T2766H60)

JDBC/MX Not applicable T2 or T4 driver

The NSJSP 6.1 web applications are available in the <iTP WebServer
Home>/<server class>/webapps directory. The NSJSP 5.0 or NSJSP 6.0 web
applications are located in the <iTP Installation
Directory>/servlet_jsp/webapps directory.

The following are the considerations while migrating web applications from NSJSP 5.0
to NSJSP 6.1:

® Default Context

Context Definition

Session Manager Configuration

Shared Application Resources

Container-Specific Resources

Application Modifications

Compiling the Application

Session Store

Deploying Web Applications in NSJSP 6.1

Default Context

Default context is the context definition of applications that do not define the context
explicitly. You can define the context of applications in the META-INF/context.xml
file of the application.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-19

Migrating to NSJSP 6.1 Considerations for Migrating Web Applications from
NSJSP 5.0 to NSJSP 6.1

In NSJSP 5.0, the default context definition for applications in a host is defined using
the DefaultContext child element of either the Engine or the Host, in the
1TP_server.xml file.

In NSJSP 6.1, the default context for applications hosted in the entire NSJSP servlet
container is defined in the conf/context.xml file.

Note. The default configuration does not define any DefaultContext.

Context Definition

The context definition of NSJSP 5.0 and NSJSP 6.1 are similar. Most attributes
included in NSJSP 5.0 are valid in NSJSP 6.1. Table 7-10 lists the attributes that were
included in NSJSP 5.0, but are not applicable in NSJSP 6.1.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-20

Migrating to NSJSP 6.1

Considerations for Migrating Web Applications from
NSJSP 5.0 to NSJSP 6.1

Table 7-10. Context Definition Attributes in NSJSP 5.0 and NSJSP 6.1

Attribute

managerChecksFr
equency

ResourceParams

NSJSP 5.0

Frequency of session expiry and
related manager operations.

Used to define the configuration
parameters for the resource
specified in the <Resource>
definition. For example,
<Resource

name=""jdbc/EmployeeDB"
auth=""Container"

type=""javax.sql .DataSourc
eIl

description="Employees
Database for HR
Applications'/>

<ResourceParams
name=""jdbc/EmployeeDB"">

<parameter>

<name>driverClassName</na
me>

<value>org.hsql . jdbcDrive
r</value>

</parameter>
<parameter>
<name>driverName</name>

<value>jdbc:HypersonicSQL
:database</value>

</parameter>

NSJSP 6.1
Not Applicable

This is replaced by the
processExpiresFrequenc
y attribute of the Manager
element.

Not Applicable

Resource parameters are
configured as attributes of the
resource in the <Resource>
definition. For example,

<Resource

name=""jdbc/EmployeeDB"
auth="Container"

type=""javax.sql .DataSo
urce"

description="Employees
Database for HR
Applications”

driverClassName="
org.hsqgl . jdbcDriver”

driverName="
jJjdbc:HypersonicSQL:dat
abase”/>

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

7-21

Migrating to NSJSP 6.1 Considerations for Migrating Web Applications from
NSJSP 5.0 to NSJSP 6.1

Session Manager Configuration

In NSJSP 5.0, you can configure the session manager either in the Default Context or
in the application-specific context definition, in the META-INF/context.xml file. In
NSJSP 6.1, you can configure the Manager either in the conf/context.xml, which
is the equivalent of Default Context, or in the application-specific context in the META-
INF/context.xml file of the application.

Table 7-11 compares the attributes of Manager that are either not relevant or have a
different meaning in NSJSP 6.1.

Table 7-11. Session Manager Configuration

Attribute NSJSP 5.0 NSJSP 6.1
checklInterval Valid for both in-memory Valid only in the persistent manager. In
manager and the the standard manager, the sessions
persistent manager. expire during the background process
checks.

Shared Application Resources

In NSJSP 5.0, the <NSJSP_HOME>/shared folder can contain application resources,
such as, class files and jar files that are shared by all web applications. By default,
NSJSP 6.1 does not have a shared folder in the default installation. However, you can
create a folder and place all resources common to all web applications in that folder. If
you create the shared folder, the conf/catal ina.properties file must be modified
to indicate the location of the shared folder.

The following is an example of an entry in the properties file:

shared. loader=${catal ina.home}/shared,${catal ina.home}/shared/*.
jar
HP recommends that all application-specific resources be bundled with the application

and not be placed in the shared folder. This is to ensure that the application resources
are independent of the container.

Container-Specific Resources

In NSJSP 5.0, all the servlet container-specific jar files were included in the server
folder. The jar files common to web applications and the container were included in
the common/1ib folder. NSJSP 6.1 includes only the <NSJSP_HOME>/1i1b folder. The
<NSJSP_HOME>/ 1 ib folder includes the common and the container-specific libraries.

In NSJSP 5.0, the Admin Web and the Manager Web applications were included in the
server/webapps folder. In NSJSP 6.1, the Admin Web and the Manager Web
applications are included in the webapps folder of the installation.

Although there is a difference in the directory location of the files and folders between
NSJSP 5.0 and NSJSP 6.1, no changes are required for these web applications during

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-22

Migrating to NSJSP 6.1 Considerations for Migrating Web Applications from
NSJSP 5.0 to NSJSP 6.1

migration. Also, the Admin Web and Manager Web applications provide the same
functionality in NSJSP 5.0 and in NSJSP 6.1. As a result, there is no need to migrate
these applications from NSJSP 5.0 to NSJSP 6.1.

Application Modifications

This section discusses the modifications related to applications that you must consider
while migrating from NSJSP 5.0 to NSJSP 6.1.

The Logger element
The following are the differences between NSJSP 5.0 and NSJSP 6.1:

® Logging in NSJSP 5.0 was configured using the Logger element. If the application
that you want to migrate to NSJSP 6.1 has a context explicitly defined in the
META-INF/context.xml file, and if the context definition includes a Logger
element, you must remove the Logger element because NSJSP 6.1 does not
support the Logger element. Logging in NSJSP 6.1 is handled by the JULI
framework. If the application that you want to migrate to NSJSP 6.1 contains a
Logger element, you must explicitly define logging for the application.

® [In NSJSP 6.1, you can define application-specific logging using the
logging.properties file. Equivalent attributes of the directory and the prefix
attributes of the Logger element are available in the Handler configuration in JULI.
The suffix attribute of the Logger has no equivalent in JULI.

® The Logger element offers the timestamp attribute option to specify the date and
time at which the log message is written. In JULI, the default behavior is to log all
messages with a timestamp.

® The format in which the messages are logged can be configured using the format
attribute of the Handler. For more information on the Handler component and how
to configure Handlers, see Chapter 5, Logging in NSJSP.

The Logging API

If the application uses the log method of the Javax.servlet.ServletContext
interface to log application messages, you need not make any changes to the
application with respect to the Logging API.

If the application uses a custom logging implementation, such as Log4J, you need not
make any changes to the application.

NSJSP 5.0 is bundled with the Apache Commons Logging (commons-logging-
api.jar is located in the <NSJSP_HOME>/b1in folder). All the internal classes of
NSJSP use the LogFactory and Log classes of Commons Logging. In NSJSP 6.1,
they are replaced by the LogFactory and the Log classes in the JULI framework.
Although similar to the NSJSP 5.0 classes, the NSJSP 6.1 LogFactory and Log
classes are bundled in a different Java package. If the application uses these classes,
you must change the package definition from org.apache.commons. logging to
org.apache.juli.logging.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-23

Migrating to NSJSP 6.1 Considerations for Migrating Web Applications from
NSJSP 5.0 to NSJSP 6.1

Compiling the Application

NSJSP 5.0 implements the Java Servlets 2.4 specifications whereas NSJSP 6.1
implements the Java Servlet 2.5 specifications. You must compile the application with
the NSJSP 6.1 library jar files to ensure that the Java Servlet APl used in the
application is supported in NSJSP 6.1. The library files are located in the I'ib folder of
the installation.

Session Store

If the application uses HTTP sessions and the application or the NSJSP servlet
container is configured for persistent sessions, you must migrate the session store
along with the application.

For information on migrating the session store, see Migrating the Session Store on
page 7-27.

Note. In NSJSP 5.0, the persistent manager in the application’s context.xml file enables
you to configure the application for persistent sessions.

For more information on persistent sessions, see Chapter 3, Configuring NSJSP.

Deploying Web Applications in NSJSP 6.1

After making the changes to the application, you must deploy the application in NSJSP
6.1. Although you can manually deploy an application in NSJSP 6.1 by copying the
application resources, such as the .war file, to an appropriate location, such as the
webapps folder in NSJSP 6.1, HP recommends that you deploy the application in
NSJSP 6.1 using the NSJSP Manager.

For information on deploying web applications using the NSJSP Manager, see Chapter
4, Managing NSJSP.

You can use the following methods to migrate applications from NSJSP 5.0 to NSJSP
6.1:

Application Deployed Using a context.xml File

If an application is deployed using its context definition file, HP recommends that you
deploy the application using the NSJSP Manager. An application is deployed using the
context.xml, as follows:

Unlike in NSJSP 5.0, the path attribute of the context element in the context definition
is ignored in NSJSP 6.1. The path is derived from the name of the context definition
file. For example, if the name of the context definition file is foo .xml, the path of the
context is /foo.

The NSJSP Manager provides an option to deploy an application using its context
definition file. In this case, you can mention the context path and the manager derives
the name of the context definition file from the path specified. For example, if the value
of path is /foo and the full path to context definition file is

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-24

Migrating to NSJSP 6.1 Considerations for Migrating Web Applications from
NSJSP 5.0 to NSJSP 6.1

/usr/webmstr/webapps/myapp - xml, the NSISP Manager copies the myapp - xml
file to the appropriate location in NSJSP 6.1 with the name foo.xml and then deploys
the application based on the contents of foo.xml. The directory where the context
definition file is copied will always be <NSJSP_HOME>/conf/<engine
name>/<host name>. In this example, foo.xml is copied to the above location.

Note. In NSJSP 5.0, the path defined in the context definition file is not used. Also, the path is
not derived from the name of the file.

Application Deployed Using a -war File

Deploying a .war file can be achieved without using the NSJSP Manager. Copy the
-war file to the folder defined by the appBase of the Host element in which the
application must be deployed. In the default configuration, appBase of the only Host
element is the webapps folder in the <NSJSP_HOME> directory.

A _war file can also be deployed using the NSJSP Manager. You can also provide the
context path.

NSJSP 6.1 handles the context definition (META-INF/context.xml) differently than
NSJSP 5.0. NSJSP 6.1, extracts the context.xml file from the .war file and copies
the context.xml to the <NSJSP_HOME>/conf/<engine_name>/<host_name>
directory with the name <context_name>.xml. For example, if foo.war is deployed
and contains a META- INF/context.xml file, NSJSP 6.1 copies the context.xml
file to foo.xml to the above directory. With subsequent restarts of NSJSP, this
application will be deployed from the context definition file rather from the .war file.
You can also modify the context during run time using the Admin application.

Application Deployed Using a Directory

Copy the entire application directory to the folder specified in appBase of the Host
element. In the default configuration, appBase of the only Host element is the
webapps folder in the <NSJSP_HOME> directory.

An application directory can also be deployed using the NSJSP Manager. The NSJSP
Manager offers the additional flexibility of providing the context path.

NSJSP 6.1 handles the context definition (META-INF/context.xml) differently than
NSJSP 5.0. NSJSP 6.1 copies the META-INF/context.xml file of the application
and copies the context.xml in the
<NSJSP_HOME>/conf/<engine_name>/<host_name> directory with the name
<context_name>_xml. For example, if foo.war is deployed and contains a META-
INF/context.xml file, NSJSP 6.1 copies the context.xml file to foo.xml in the
specified directory. With subsequent restarts of NSJSP, this application will be
deployed from the context definition file rather from the application directory. You can
also modify the context during run time using the Admin application.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-25

Migrating to NSJSP 6.1 Considerations for Migrating Web Applications from
NSJSP 6.0 to NSJSP 6.1

Considerations for Migrating Web Applications
from NSJSP 6.0 to NSJSP 6.1

Table 7-12 lists the prerequisites of NSJSP 6.0 and NSJSP 6.1.

Table 7-12. Prerequisites of NSJSP 6.0 and NSJSP 6.1

Operating System/Product NSJSP 6.0 NSJSP 6.1

NonStop operating system HO06.04 or later J06.04 or later J-series, or
HO06.15 or later H-series

iTP Secure WebServer 6.0 SPR ACA or later iTP Secure Webserver 7.0
(T8996H02 or T8997HO02) or
later

NonStop Server for Java 5.0 or later NSJ 5.1 (SPR ABS or later

(NSJ) of T2766H51) or NSJ 6.0
(SPR ABP or later of
T2766H60)

JDBC/MX T2 driver for SQL/MX or T2 or T4 driver

SQL/MP

You need not make any changes to the web applications to migrate to NSJSP 6.1.
However, in the container, there are some changes in the application deployment
behavior with respect to the context definitions.

If an application defines its own context definition in META-INF/context.xml of the
application, NSJSP 6.1 copies the context.xml to
<NSJSP_HOME>/conf/<engine_name>/<host_name> with the name <context
name>.xml. For example, if foo.war is deployed and if the .war files contain META-
INF/context.xml, this file is extracted from the .war and is then copied as
foo.xml. During subsequent restarts, the context for this application is read from
foo.xml rather than from the META-INF/context.xml of the war file. This
behavior allows the context to be dynamically modified and persisted using the Admin
Web application.

Although applications can be deployed by copying the application resources, such as,
-war file or the application directory, to the webapps folder of the NSJSP 6.1
installation, HP recommends that you deploy the applications using the NSJSP
Manager as it enables you to specify the context name of the application that you are
deploying.

For information on the default files where logs are written, see Logging Configuration of
Servlet Container Components on page 7-15.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-26

Migrating to NSJSP 6.1 Migrating the Session Store

Migrating the Session Store

The session store configured in NSJSP 5.0 does not work in NSJSP 6.1, because
there are differences in the field sizes in the table definition of the JDBC store.
However, behavior of the session store in NSJSP 6.0 and NSJSP 6.1 is the same.

To migrate sessions from NSJSP 5.0 or NSJSP 6.0 to NSJSP 6.1, complete the
following steps:

1. Run one of the following commands to create the NSJSP 6.1 session store:

© NSJSP_HOME/conf/nsjsp_createSessionStore_mp.sql to create the
persistent session store for SQL/MP.

© NSJSP_HOME/conf/nsjsp_createSessionStore_mx.sql to create the
persistent session store for SQL/MX.

2. Runthe NSJSP_HOME/conf/nsjsp_migrateSessionStore script to migrate
data from NSJSP 5.0 or NSJSP 6.0 to NSJSP 6.1.

The nsjsp_migrateSessionStore script migrates the data from SQL/MP to
SQL/MX or SQL/MP to SQL/MP.

Note. Although NSJSP 6.1 implements the servlet 2.5 and JSP 2.1 specifications, it supports
the servlet 2.4 specification.

In NSJSP 6.1, the Manager and Admin Web applications have the contexts
/<deployment_name>/manager and /<deployment_name>/admin respectively,
unlike /manager and Zadmin in NSJSP 5.0.

Migrating to NSJSP Manager Application in
NSJSP 6.1

Starting with the NSJSP 6.1 release, a new application called the NSJSP Manager is
introduced. HP recommends that you use this application to manage web applications,
server classes, and MBeans. For more information on this application, see Chapter 4,
Managing NSJSP.

Support for Multiple NSJSP Installations in a
Single ITP Secure WebServer Environment

The NSJSP installation script is enhanced to support multiple NSJSP installations in a
single iTP Secure WebServer environment. The following enhancements were made to
the installation script to support multiple NSJSP installations:

® Directory locations of NSJSP installations

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-27

Migrating to NSJSP 6.1 Support for Multiple NSJSP Installations in a Single
iTP Secure WebServer Environment

In releases prior to NSJSP 6.1, NSJSP is installed in the default path (<iTP
Installation Directory>/servlet_jsp). This default NSJSP location is
derived from the location of the iTP Secure WebServer, and it cannot be modified.
A directory location can include only one NSJSP installation. As a result, you can
have only one NSJSP installation in an iTP Secure WebServer environment.
Starting with the NSJSP 6.1 release, you can install NSJSP 6.1 in a directory
location of your choice. Besides, you can have multiple NSJSP 6.1 installations in
the same iTP Secure WebServer environment. However, each installation must be
present in a unique directory location and be assigned a unique name.

® Directory location of configuration files related to the iTP Secure WebServer

In releases prior to NSJSP 6.1, during the NSJSP installation, the following iTP
Secure WebServer related configuration files were created in <i TP
Installation Directory>/conft:

© jdbc.config

© nsjspadmin.config
© servlet.config

° filemaps.config

Starting with the NSJSP 6.1 release, each NSJSP 6.1 installation includes its own
set of configuration files. The configuration files are no longer present in the iTP
Secure WebServer location except for the generic servlet.config file. Instead,
the files are present in the same location as the respective NSJSP installation. The
location of these NSJSP 6.1 installation-specific configuration files is

<NSJSP 6.1 Installation Directory>/conft.

The following sample command displays the iTP Secure WebServer-related
configuration files:

<NSJSP 6.1 Installation Directory>/conf: Is

filemaps.config jdbc.config nsjspadmin.config
servlet.config

When NSJSP 6.0 is installed in the iTP Secure WebServer environment, the
NSJSP 6.0 configuration files, including servlet.config, are located in the
<iTP Installation Directory>/conf directory. During the installation of
NSJSP 6.1 in this environment, a generic servlet.config file is created in the
location of <i TP Installation Directory>/conf directory. This file is
generic to all the NSJSP installations in the environment, and is different from the
instance-specific servlet.config files located in the NSJSP instances. The
generic servlet.config file links the iITP Secure WebServer with all the
instance-specific servlet.config files. Additionally, it includes the locations of
the associated NSJSP installations. The existing servlet.config that includes
the configuration details of NSJSP 6.0 is modified and renamed.

Example

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-28

Migrating to NSJSP 6.1 Support for Multiple NSJSP Installations in a Single
iTP Secure WebServer Environment

This example shows how the new generic servlet.config file is created and
how the existing servlet.config that includes NSJSP 6.0 specific information is
renamed:

Figure 7-1 shows the contents of the sample <iTP Installation
Directory>/conft directory contents after installing NSJSP 6.0.

Figure 7-1. Sample conf Directory Created After NSJSP 6.0 Installation

<1 TPWS_INSTALL_HOME=/conf: 1s

filemaps.config rollstarth. sample
httpd. config sampleservers.config
httpd. config. sample sagpleservers. config. sample
jdbe. conf g CEerviet. config>
mime-types. config Sta
mime-types.config.sample start.sample
nsjspadmin. config stop

restart stop. sample

restart. sample trace

restarth trace.sample
restarth. sample trcon

rollover trcon.sample
rollover.sample vcache

rollstarth vcache. sample

The servlet.config file includes the configuration information for NSJSP 6.0.

Figure 7-2 shows the contents of the sample <iTP Installation
Directory>/conft directory after installing NSJSP 6.1.

Figure 7-2. Sample conf Directory Contents After NSJSP 6.1 Installation

<1 TPWS_INSTALL_HOME=/conf: 1s

filemaps.config sampleservers.config

httpd. config sampleservers. config. sample
httpd. config.sample servlet-6.0.13.config

jdbc. config servlet.config

mime-types. config servlet.config.2009-11-05:12.02.42
mime-types.config. sample TEEE

nsjspadmin. config start.sample
restart stop
restart.sample stop.sample
restarth trace
restarth. sample trace.sample
rollover trcon
rollover.sample trcon. sample
rollstarth vcache
rollstarth. sample vcache. sample

A new servlet.config file is created that is generic to NSJSP 6.0 and NSJSP
6.1. The existing NSJSP 6.0 servlet.config file containing the NSJSP 6.0

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-29

Migrating to NSJSP 6.1 Support for Multiple NSJSP Installations in a Single

iTP Secure WebServer Environment

configuration details is modified and renamed to servlet-6.0.13.config.
Additionally, the existing NSJSP 6.0 servlet.config file is backed up in a file,
called servlet.config.2009-11-05:12.02.42.

The sequence of events is as follows:

1.

The NSJSP 6.0 servlet.config file is modified and renamed to
servlet-6.0.13.config, and it continues to exist in the same location.

A new file, called servlet.config, is created in the location of <i TP
Installation Directory>/conf directory. The newly created
servlet.config file is generic to NSJSP 6.0 and NSJSP 6.1.

The NSJSP 6.1 instance-specific servlet.configfile is created in the
<NSJSP 6.1 Installation Directory>/conft directory.

The generic servlet.config available in the <iTP Installation
Directory>/conft directory is linked to the NSJSP 6.0 and NSJSP 6.1
servilet.config files.

The complete locations of the NSJSP 6.0 and NSJSP 6.1 deployments are
listed in the generic servlet.config file.

After successful installation, NSJSP 6.0 and NSJSP 6.1 operate with the iTP
Secure WebServer. However, the new NSJSP Manager Web application
cannot manage the NSJSP 6.0 installation but they can co-exist in the iTP
Secure WebServer environment.

Figure 7-3 shows the installation locations of NSJSP 6.0 and NSJSP 6.1, and how the
servlet.confTig files are linked.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

7-30

Migrating to NSJSP 6.1 Support for Multiple NSJSP Installations in a Single
iTP Secure WebServer Environment

Figure 7-3. NSJSP 6.0 and NSJSP 6.1 Installation Locations

httpd.config

NSJSP 6.0
NSJSP 6.0 servlet.config Default NSJSP 6.0
Installation Installation location

Generic
servlet.config

TS/MP

httpd.config

~
-]

NSJSP 6.0 Renamed NSJSP 6._0

Webserver servlet.config

NSJSP6.1
servlet.config

TS/MP
NSJSP 6.0

Installation location A1
\\
—J<—[C1

NSJSP 6.0
\Webserver

NSJSP 6.1 —
Installation location NSJSP 6.1
(User specified) (/

Environment B NSJSP 6.1 coexisting with NSJSP 6.0

Environment A

In Figure 7-3, Environment A represents an iTP Secure WebServer environment that
includes an NSJSP 6.0 installation. Both NSJSP 6.0 and the iTP Secure WebServer
exist in the same location. The NSJSP 6.0 servlet.configfile is present in the iTP
Secure WebServer, and is linked to the httpd.config file.

When you install NSJSP 6.1, Environment A transforms to Environment B. While
installing NSJSP 6.1, you must specify a new path. Consequently, NSJSP 6.1 is
installed in the specified path, and it includes the NSJSP 6.1 servlet.configfile.
Additionally, the existing NSJSP 6.0 servlet.configfile in the iTP Secure
WebServer is renamed, and a new generic servlet.configfile is created. The
generic servlet.configfile is linked to the renamed NSJSP 6.0 servlet.config
file, the NSJSP 6.1 servlet.config file, and the httpd.configfile.

Note. Multiple NSJSP installations are supported only if NSJSP 6.1 is installed after installing
NSJSP 6.0. If you attempt to install NSJSP 6.0 in an iTP Secure WebServer environment that
already includes NSJSP 6.1, NSJSP 6.0 overwrites NSJSP 6.1.

An NSJSP 6.1 installation does not support NSJSP 5.0 installation and supports only NSJSP
6.0 installation. Therefore, you must refrain from installing NSJSP 6.1 with NSJSP 5.0.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-31

Migrating to NSJSP 6.1 Support for Multiple NSJSP Installations in a Single
iTP Secure WebServer Environment

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
7-32

—8— Security Considerations

This chapter discusses security considerations to secure data transfer from a web
browser to the web server. The process includes validating a user, verifying whether a
user has access to a particular web resource, and preventing malicious code from
disrupting the NSJSP servlet container.

This chapter includes the following topics:

Securing Web Applications

Establishing a Secure Link

Authenticating a User

Authorizing a User

Validating the Sender

Java Security Manager

Manager Web Application and NSJSP Manager Security

Securing Web Applications

When data flows between a web browser and a web server, and the link established
between the web browser and the web server is not secure, the link is susceptible to
attacks that can lead to data theft. Configuring a secure link between the web browser
and the web server ensures that the data flow is encrypted and provides authentication
mechanisms using certificates. For more information about the secure link that can be
established between a web browser and a web server, see Establishing a Secure Link
on page 8-2.

When the link between the web browser and the web server is secured, the next level
of security is to authenticate users who access the web applications. For more
information about various methods that NSJSP uses to authenticate a user, see
Authenticating a User on page 8-3.

When the user is authenticated, a web application performs various checks to ensure
that the user is authorized to access the requested web resource. For more information
about authorization, see Authorizing a User on page 8-29.

NSJSP provides certain security features to prevent malicious or erroneous code (such
as invoking system.exit()in a JSP) from affecting the NSJSP container. For more
information about how the security manager can prevent such malicious code from
being executed using the Java Security manager, see Java Security Manager on

page 8-35.

In addition to these various methods of securing web applications, this chapter also
discusses other security features that can filter (allow or prevent) requests originating
from a specific host or with a specified URL pattern. For more information on these
security features, see Validating the Sender on page 8-33.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’s Guide—596210-006
8-1

Security Considerations Establishing a Secure Link

This chapter also discusses how security can be implemented in Web applications
(Admin Web, Manager Web, and NSJSP Manager Web applications) that are used for
administration and monitoring purposes. For more information on securing these Web
applications, see Manager Web Application and NSJSP Manager Security on

page 8-41.

Figure 8-1 illustrates the security considerations discussed in this section.

Figure 8-1. Flow of User Request

/ iTP Secure WebServer Environment \
mSJSP Servlet Containem

Host for hp.com

HTTP (\

Requests 2' hp.com !

iTP Secure
WebServer

\[internal.hp.com } ® © © —

Host for internal.hp.co

v

/
=
‘ /)Q /\

Userapplications running on the host

Establishing a Secure Link

A secure link is required between the web browser and the web server to ensure that a
secure channel is created for information exchange and to ensure protection against
eavesdropping.

Secure Sockets Layer (SSL) is a protocol that is used to establish a secure and
encrypted link between two nodes in a network so that data passed between the nodes
is secure. In HP NonStop servers, the SSL standard is implemented by the iTP Secure
WebServer. For information on how to configure iTP Secure WebServer for secure
transport using SSL, see the iTP Secure Webserver System Administrator’s Guide.

You need not perform any additional configuration tasks in NSJSP to enable NSJSP to
handle secure requests. The iTP Secure WebServer acts as the front-end WebServer
for NSJSP. NSJSP does not handle the SSL protocol but obtains sufficient information
from the iITP Secure WebServer about the request delivered over the SSL protocol.
The request can contain certificates (public key certificates) that NSJSP can use to
authenticate. For example, based on the web application configuration, NSJSP can
authenticate the user using the X.509 certificate that is delivered over the secure link.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-2

Security Considerations Authenticating a User

Authenticating a User

The process of authentication involves obtaining user credentials and validating them
against a database of user credentials. In NSJSP, this database is called a Realm. A
web application need not always authenticate a user using a password. The user can
also be authenticated using a certificate presented by the user. Because iTP Secure
WebServer supports X.509 certificates, a user can also be authenticated in NSJSP
using the X.509 certificates. A web application is configured to specify the method of
obtaining the user credentials. When user credentials are obtained, the user is
authenticated against the credentials stored in the Realm.

This section discusses the various configuration alternatives for obtaining user
credentials. The process to validate the user credentials is discussed in Realms on
page 8-7.

The following configurations can be used to obtain user credentials:

® HTTP Basic Authentication

HTTP Digest Authentication

°
® Form-Based Authentication
°

HTTPS Client Authentication

HTTP Basic Authentication

HTTP basic authentication is the authentication mechanism defined in the HTTP/1.0
specification. When a user tries to access a secured resource, NSJSP requests the
web browser to obtain the username and password. The web client obtains the
username and the password from the user and sends them back. NSJSP then
authenticates the user and if the user is authorized to access the resource, NSJSP
provides access to the secured resource. For more information on authorization, see
Authorizing a User on page 8-29.

The HTTP basic authentication is not a secure authentication protocol because user
passwords are sent in the simple base64 encoding format. A secured transport layer,
such as Secure Socket Layer (SSL), provides a more secure connection.

You can configure a web application for the HTTP basic authentication by setting the
auth-method element in the application’s web . xml (located in the
<NSJSP_HOME>/webapps/<application_directory>/WEB- INF directory for a
web application deployed in the <application_directory>) file to BASIC:

<login-config>
<auth-method>BASI1C</auth-method>
<realm-name>Realm_Name</realm-name>

</login-config>

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-3

Security Considerations HTTP Digest Authentication

where, Realm_Name is the name of the Realm. For more information on Realms, see
Realms on page 8-7.

When a user attempts to access a web application that is configured for the HTTP
basic authentication, a logon page as shown in Figure 8-2 appears and the user is
prompted to enter the username and password.

Figure 8-2. Logon Page for HTTP Basic Authentication

|"|

Connect to 11,111,111 2] ==

M

The server 11.111.11.11 at Tomcat Manager Application
requires a username and password,

Warning: This server is requesting that your username and

password be sent in an insecure manner (basic authentication
without a secure connection),

User name: £ admin -

Password: SRR ERES

ok || cancel

HTTP Digest Authentication

Similar to the HTTP basic authentication method, the HTTP digest authentication
method authenticates a user based on a username and a password. However, the
authentication is performed by sending the password in an encrypted form that is more
secure than the simple base64 encoding used by the HTTP basic authentication.

You can configure a web application for digest authentication by setting the auth-
method element in the web .xml (located in the
<NSJSP_HOME>/webapps/<application_directory>/WEB- INF directory for a
web application deployed in the <application_directory>) file to DIGEST:

<login-config>
<auth-method>DIGEST</auth-method>
<realm-name>Realm_Name</realm-name>

</login-config>

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-4

Security Considerations Form-Based Authentication

where, Realm_Name is the name of the Realm. For more information on Realms, see
Realms on page 8-7.

When a user attempts to access a web application that is configured for the HTTP
digest authentication, the logon page as shown in Figure 8-3 appears and the user is
prompted to enter the username and password.

Figure 8-3. Logon Page for HTTP Digest Authentication

|"|

Connect to 11,111,111 2] ==

M

The server 11.111.11.11 at Tomcat Manager Application
requires a username and password,

Warning: This server is requesting that your username and

password be sent in an insecure manner (basic authentication
without a secure connection),

User name: £ admin -

Password: SRR ERES

ok || cancel

Form-Based Authentication

The form-based authentication method provides a mechanism for a web application
developer to control the display of the login screen. The display of the logon page
cannot be varied using the web browser’s inbuilt authentication methods, such as
BASIC and DIGEST.

You can configure a web application for form-based authentication by setting the
auth-method in the <NSJSP_HOME>/web .xml file to FORM. The web application
deployment descriptor contains entries for a login form and an error page:

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.jsp</form-login-page>

<form-error-page>/login. jsp?authFailure=true

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-5

Security Considerations Form-Based Authentication

</form-error-page>
</form-login-config>
</login-config>

The login form must contain HTML fields for entering a username and a password, and
these fields must be named as j_username and j _password, respectively.

For the form-based authentication to function properly, you must always set the
action attribute in the login form to J_security_check. The following is a sample
form coding for an HTML logon page:

<form method="POST” action="j_security_check”>
<input type="text” name=""j_username’>
<input type="password” name=""j password’”>
</form>

The following sequence of steps occur when a user attempts to access a protected
web resource using form-based authentication:

1. The login form associated with the security constraint is sent to the web browser
and the URL path triggering the authentication is stored by the NSJSP container.

2. The user is prompted to enter the username and password in the login form.
3. The web browser sends the login form to the server.

4. The NSJSP container attempts to authenticate the user using the information from
the form:

a. If authentication fails, the container returns an error page.

If authentication succeeds, the authenticated user’s credential is checked to
verify if it has been assigned a role, which is authorized to access the web
resource.

5. If the user is authorized, the web browser is redirected to the web resource using
the stored URL path in the NSJSP container.

Similar to the HTTP basic authentication method, the form-based authentication
method also lacks security because the password is transmitted as plain text. A
secured transport layer, such as SSL, can ease some of these concerns.

Figure 8-4 shows the logon page for a form-based authentication.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-6

Security Considerations HTTPS Client Authentication

Figure 8-4. Logon Page for a Form-Based Authentication

NSJSP Manager

User Name admin

Pcaswo%

© Copyright 2010 Hewlett-Packard Development €

HTTPS Client Authentication

The end user authentication using HTTPS (HTTP over SSL) requires the client to
possess a Public Key Certificate (PKC). Both NSJSP and the iTP Secure WebServer
support X.509 version 3 certificates. A web application can be configured for HTTPS
client authentication by setting the type of authentication in the web .xml file to
CLIENT-CERT.

Realms

Although the Java Servlet specification describes a portable mechanism for
applications to declare their security requirements (in the web . xml deployment
descriptor), a portable API that defines the interface between a servlet container and
the associated user and role information is not available. Therefore, a database of
usernames and passwords is required to validate the users. A Realm is such a
database of usernames and passwords that identify valid users of a web application (or
a set of web applications) with a list of the roles associated with each valid user. Roles
are similar to groups in UNIX-like operating systems because access to specific web

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-7

Security Considerations Realms

application resources is granted to all users possessing a particular role. There can be
any number of roles associated with a username.

Note. The Java Servlet specification defines declarative elements, such as security-
constraint, auth-constraint, user-data-constraint as part of the deployment
descriptor to define an application's security requirements.

In many cases, however, it is desirable to connect a servlet container to an existing
authentication database or an existing authentication mechanism. Therefore, NSJSP
defines a Java interface (org.apache.catal ina.Realm) that can be implemented
by plug in components to establish a connection for authentication.

The following plug-in components support connections to various sources of
authentication information:

® MemoryRealm: Accesses authentication information stored in an in-memory object
collection, which is initialized from an XML document
(<NSJSP_HOME>/conf/nsjsp-users.xml).

® JDBCRealm: Accesses authentication information stored in a relational database,
accessed using a Java Database Connectivity (JDBC) driver.

® DataSourceRealm: Accesses authentication information stored in a relational
database, accessed using a Java Naming and Directory Interface (JNDI) named
JDBC DataSource.

® JNDIRealm: Accesses authentication information stored in the Lightweight
Directory Access Protocol (LDAP) accessible directory server, accessed using a
JNDI provider.

® UserDatabaseRealm: Accesses authentication information stored in a JNDI
resource, which is an XML file by default.

® JAASRealm: Accesses authentication information through the Java Authentication
and Authorization Service (JAAS) framework.

Apart from these standard plug-in components, NSJSPLockoutRealm and
CombinedRealm are other implementations, (that also implement the Realm interface)
which provide the Realm functionality by using one or more of the previously
mentioned plug-ins.

Realm elements can be configured as child elements of any of the following elements:

® The Engine element: The Engine element is defined in the
<NSJSP_HOME>/conf/server .xml file. In this case, the Realm applies to all
contexts (web applications) in all the Hosts configured under the Engine element.
Any Realm definition in the Host or Context element overrides the Realm
definition in the Engine element. In the default NSJSP configuration, a
UserDatabaseRealm is configured under the Engine element and is used to
authenticate users in the Admin and the Manager Web applications.

® The Host element: Host elements are defined in the
<NSJSP_HOME>/conf/server .xml file. This Realm definition applies to all

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-8

Security Considerations Realms

contexts (web applications) configured in the Host. Any Realm definition in the
Context overrides the Host definition.

® The Context element: Realms can be defined as child elements of a context (web
application) in the context.xml file. The context.xml file for each application
is located in the META- INF folder of the web application base directory, which will
be located in the <NSJSP_HOME>/webapps directory. The Context element can
also be defined in additional locations that are described at
http://tomcat.apache.org/tomcat-6.0-doc/config/context.html. A Realm definition in
a Context overrides any Realm definitions in either the Host or Engine element.

The following sections discuss different types of Realms:
JNDIRealm

MemoryRealm

JDBCRealm
UserDatabaseRealm

JAASRealm

DataSourceRealm

CombinedRealm

NSJSPLockOutRealm

JNDIRealm

It is important to have a basic understanding of JNDI and LDAP before attempting to
understand the concept of the INDIRealm.

The JNDIRealm is an implementation of the Realm interface that looks up users in a
LDAP directory server accessed by a JNDI provider (typically, the standard LDAP
provider, which implements the JNDI API classes). The JNDIRealm supports many
approaches for using an LDAP directory for authentication. For more information on
JNDI, see http://java.sun.com/javase/6/docs/technotes/quides/indi/index.html.

When the JNDIRealm is configured in NSJSP, the JNDIRealm connects to the
directory server, authenticates the user, and fetches the roles associated with the user
if the authentication is successful. This section discusses these actions in detalil.

This section discusses the following topics:

® Connecting to the Directory

Selecting the Directory Entry for the User

Authenticating the User in a JNDIRealm Configuration

Assigning Roles to a User

JNDIRealm Attributes

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-9

Security Considerations Realms

Connecting to the Directory

The connectionURL configuration attribute in the JNDIRealm defines the Realm’s
connection to the directory server and the JNDI provider defines the format for this
URL. Usually, an LDAP URL specifies the domain name of the directory server to
connect, and optionally the port number and distinguished name (DN) of the required
root naming context.

The alternateURL configuration attribute can be used incase of multiple providers
so that if a socket connection cannot be established to the provider on the connection
URL, the alternateURL can be used.

While making a connection, in order to search the directory and to retrieve user and
role information, the Realm authenticates itself to the directory with the username and
password specified by the connectionName and connectionPassword properties.
If these properties are not specified, the connection is anonymous.

Selecting the Directory Entry for the User

Each user that can be authenticated must be represented in the directory by an

individual entry. This entry corresponds to an element in the initial Di rContext
defined by the connectionURL attribute. The user entry must have an attribute
containing the username that is presented for authentication.

Often the distinguished name of the user's entry contains the username presented for
authentication but is otherwise the same for all users. In this case, the userPattern
attribute can be used to specify the DN with a {0} marking where the username must
be substituted.

Otherwise, the JNDIRealm must search the directory to find a unique entry containing
the username. You can configure the following attributes to search the username:

® userBase - Specifies the entry that is the base of the subtree containing users. If
not specified, the search base is the top-level context.

® userSubtree - Specifies the search scope. Set this attribute to true, if you want
to search the entire subtree rooted at the userBase entry. You can set this
attribute to false, if you want to perform a single-level search that includes only
the top level.

® userSearch - Specifies the pattern that indicates the LDAP search filter after
substituting the username.

Authenticating the User in a JNDIRealm Configuration

The user can be authenticated using the following methods depending on the
JNDIRealm configuration:

® Bind Mode

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-10

Security Considerations Realms

By default, the Realm authenticates a user by binding to the directory with the DN
of the entry for a user and the password provided by the user. If this bind
succeeds, the user is considered to be authenticated

For security reasons, a directory may store a digest of the user's password rather
than the plain text version. In this case, as part of the bind operation, the directory
automatically computes the correct digest of the plain text password before
validating it against the stored value. Therefore, in the bind mode, the Realm is not
involved in digest processing. The digest attribute is not used, and will be ignored if
the attribute is set.

® Comparison Mode

In the comparison mode, a Realm can retrieve the password stored in the directory
and compare the password explicitly with the value presented by the user. You can
configure this mode by setting the userPassword attribute to the name of a
directory attribute in the user's entry that contains the password.

The comparison mode poses some disadvantages. The connectionName and
connectionPassword attributes must be configured to allow the Realm to read
users' passwords in the directory. Due to security reasons, it is not preferable for a
Realm to read users’ passwords. Many directory implementations do not allow
even the directory manager to read these passwords. Additionally, the Realm must
handle password digests itself, including variations in the algorithms and different
methods of representing password hashes in the directory. However, the Realm
might sometimes need access to the stored password, for instance to support
HTTP Digest Access Authentication.

Assigning Roles to a User

The JNDIRealm supports the following methods to represent roles in the directory:

Note. You can use a combination of both these methods to represent a role.

® Roles as explicit directory entries

You can represent roles by specifying explicit directory entries. A role entry is
usually an LDAP group entry with one attribute containing the name of the role and
another attribute specifying the distinguished names or usernames of users in that
role.

You can use the following attributes to configure a directory search to find role
names corresponding to the authenticated user:

© roleBase - Specifies the base entry for the role search. If this attribute is not
specified, the search base is the top-level directory context.

© roleSubtree - Specifies the search scope. Set this attribute to true, if you
want to search the entire subtree rooted at the roleBase entry. The default
value (false) requests a single-level search, including only the top level.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-11

Security Considerations

Realms

© roleSearch - Specifies the LDAP search filter for selecting role entries. It
optionally includes pattern replacements for either the distinguished name
({0}) or the username ({1}) of the authenticated user, or both of them.

© roleName - Specifies the attribute in a role entry containing the name of that

role.

® Roles as an attribute of the user entry

You can specify role names as the values of an attribute in the user's directory
entry. Use userRoleName to specify the name of this attribute.

JNDIRealm Attributes

Table 8-1 lists the attributes that can be used in the INDIRealm.

Table 8-1. Attributes in the JNDIRealm (page 1 of 3)

Attribute
adCompat

alternateURL

authentication

commonRole

connectionName

connectionPassword

connectionTimeout

Description
Specifies whether the JINDIRealm must ignore exceptions.

The Microsoft Active Directory (AD) often returns referrals. When
iterating over NamingEnumerations, these iterations lead to
PartialResultExceptions. If you want JNDIRealm to ignore
those exceptions, set this attribute to true. There is no stable
way to detect if the exceptions arrived from an AD referral. The
default value for adCompat is false.

Specifies the alternate URL to use if the JINDIRealm cannot
make a socket connection to the provider at the
connectionURL.

Specifies the type of authentication. The values are none,
simple, strong or a provider-specific definition. If a value is
not specified, the provider’s default value is used.

Specifies a role name assigned to each successfully
authenticated user in addition to the roles retrieved from LDAP. If
this attribute is not specified, only the roles retrieved from LDAP
are used.

Specifies the directory username when establishing a connection
to the directory for LDAP search operations. If this attribute is not
specified, the INDIRealm makes an anonymous connection that
is sufficient unless you specify the userPassword property.

Specifies the directory password while establishing a connection
to the directory for LDAP search operations. If this attribute is not
specified, the INDIRealm makes an anonymous connection that
is sufficient unless you specify the userPassword property.

Specifies the timeout (in milliseconds) while establishing the
connection to the LDAP directory. If this attribute is not specified,
a timeout value of 5000 (5 seconds) is used.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

8-12

Security Considerations

Realms

Table 8-1. Attributes in the JNDIRealm (page 2 of 3)

Attribute
connectionURL

contextFactory

derefAliases

digest

protocol

referrals

roleBase

roleName

roleSearch

Description

Specifies the connection URL that is passed to the JNDI driver
while establishing a connection to the directory.

Specifies the fully qualified Java class nhame of the factory class
that is used to acquire the JNDI InitialContext. By default,
JNDIRealm considers that the standard JNDI LDAP provider is
utilized.

Specifies how aliases must be dereferenced during search
operations. The permitted values are always, never, finding,
and searching. If this attribute is not specified, always is
used.

Specifies the digest algorithm to be applied to the plain text
password offered by the user before comparing it with the value
retrieved from the directory. The valid values for digest are
those accepted for the algorithm name by the
Java.security.MessageDigest class. If this attribute is not
specified, the plain text password is considered to be retrieved.
The digest attribute is not required unless userPassword is
specified.

Specifies the security protocol. If this attribute is not specified,
the protocol defined by the provider is used by default.

Specifies whether to follow referrals. The permitted values are
ignore, follow, or throw. For more information on referrals,
see javax.naming.Context.REFERRAL. The Microsoft
Active Directory often returns referrals. To follow AD referrals, set
referralsto follow.

Warning: If your DNS server is not part of an AD, the LDAP
client library might try to resolve your domain name in the DNS
to find another LDAP server.

Specifies the base directory entry for searching roles. If this
attribute is not specified, the top-level element in the directory
context is used.

Specifies the name of the attribute that contains role names in
the directory entries found by a role search. Additionally, you can
use the userRoleName property to specify in the user’s entry,
the name of an attribute that contains additional role names. If
the roleName attribute is not specified, a role search does not
occur and roles are obtained only from the user's entry.

Specifies the LDAP filter expression used for performing role
searches. You can use {0} to substitute the distinguished name
of the user and {1} to substitute the username. If this attribute is
not specified, a role search does not occur and roles are taken
only from the userRoleName attribute in the user's entry.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

8-13

Security Considerations

Realms

Table 8-1. Attributes in the JNDIRealm (page 3 of 3)

Attribute
roleSubtree

userBase

userPassword

userPattern

userRoleName

userSearch

userSubtree

Description

Specifies whether multiple levels under the node specified by
roleBase must be searched. You can set this attribute to true
to search the entire subtree of the element specified by the
roleBase property, for role entries associated with the user.
The default value (Fallse) results in searches of the top level
subtree.

Specifies the base element for user searches performed using
the userSearch expression. This attribute is not used if you are
using the userPattern expression.

Specifies the name of the attribute in the user's entry containing
the user's password. If you specify a value for this attribute, the
JNDIRealm binds to the directory using the values specified by
connectionName and connectionPassword properties, and
retrieves the corresponding attribute for comparison with the
value specified by the user. If you do not specify this value, the
JNDIRealm attempts a simple bind to the directory using the DN
of the user's entry and the password presented by the user. If the
bind is successful, the user is considered to be authenticated.

Specifies the pattern for the distinguished name of the user's
directory entry. A {0} marks where the actual username must be
inserted. You can use this attribute instead of userSearch,
userSubtree and userBase when the distinguished name
contains the username and is otherwise the same for all users.

Specifies the name of an attribute in the user's directory entry
that contains zero or more values for the names of roles
assigned to this user. Additionally, you can use the roleName
attribute to specify the name of an attribute to be retrieved from
individual role entries, which were obtained by searching the
directory. If this attribute is not specified, all the roles for a user
are derived from the role search.

Specifies the LDAP filter expression to use, when searching the
user's directory entry. A {0} marks where the actual username
must be inserted. You can use this attribute (along with the
userBase and userSubtree properties) instead of
userPattern to search the directory for the user's entry.

Specifies whether multiple levels under the node specified by
userBase must be searched. You can set this attribute to true
if you want to search the entire subtree of the element specified
by the userBase property for the user's entry. The default value
(False) results in searching only the top level subtree. This
attribute is not used if you use the userPattern expression.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

8-14

Security Considerations Realms

MemoryRealm

The MemoryRealm is a simple demonstration implementation of the Realm interface
and is not intended for production use. During startup, the MemoryRealm loads
information about all users, and their corresponding roles, from an XML document (by
default, this document is loaded from <NSJSP_HOME>/conf/nsjsp-users.xml).
Changes made to the <NSJSP_HOME>/conf/nsjsp-users.xml file will be effective
only after NSJSP is restarted.

This section discusses the following topics:

® MemoryRealm File Format

® Attributes in the MemoryRealm

MemoryRealm File Format

The users file (by default, <NSJSP_HOME>/conf/nsjsp-users.xml) must be an
XML document, with a root element called <tomcat-users>. The format specified by
this file is the MemoryRealm file format. Nested inside the root element of this file is a
<user> element for each valid user, consisting of the following attributes:

® name - Specifies the username with which the valid user must log in.

® password - Specifies the password with which the valid user must log in (in plain
text format if the digest attribute is not set in the <Realm> element or digested
appropriately as described in HTTP Digest Authentication on page 8-4).

® roles - Specifies the comma-separated list of the role names associated with this
user.

Attributes in the MemoryRealm

Table 8-2 lists the attributes that can be used in the MemoryRealm.

Table 8-2. MemoryRealm Attributes

Attribute Description

digest Specifies the digest algorithm that must be used to store passwords in
non-plain text formats. The valid values for this attribute are those that
are accepted for the algorithm name by the
jJava.security.MessageDigest class. If this attribute is not
specified, passwords are stored in plain text.

pathname Specifies the absolute or relative (to <NSJSP_HOME>) pathname to the
XML file containing the user information.

JDBCRealm

The JDBCRealm is an implementation of the Realm interface that obtains user
information from a relational database accessed through a JDBC driver. The

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-15

Security Considerations Realms

JDBCRealm provides substantial configuration flexibility to adapt to existing table and
column names, if your database structure conforms to the following requirements:

® Users table: There must be a table that contains one row for every user that the
JDBCRealm must validate. The users table must contain at least the following two
columns (it might contain more if applications require them):

© Username: The username to be validated by NSJSP when the user logs in.

© Password: The password to be validated by NSJSP when the user logs in.
This value may be in plain text or digested. For more information on
digested password, see Digested Passwords on page 8-28.

® User roles table: There must also be a table that contains one row for every valid
role that is assigned to a particular user. A user can have zero, one, or more valid
roles. The user roles table must contain at least the following two columns (it may
contain more if applications require them):

© Username: The username to be validated by NSJSP (the same value as
specified in the users table).

© Role name: The role name of a valid role associated with this user.

The JDBCRealm queries the database each time it is requested to authenticate a user.
Therefore, any changes to the database are immediately reflected in the information
used to authenticate users.

When a user is authenticated, the user (including the user's associated roles)
information is cached within NSJSP for the duration of a user login session. For form-
based authentication, the cached information lasts till the session times out or is
invalidated; for basic and digest authentication, the cached information lasts till the
user closes the browser. Changes to the database information for an authenticated
user are not reflected until the next login by that user.

Attributes in the JDBCRealm
Table 8-3 lists the attributes supported by the JDBCRealm.

Table 8-3. JDBCRealm Attributes (page 1 of 2)

Attribute Description

connectionName Specifies the database username to use when establishing the
JDBC connection. This attribute is not relevant when using the
Type 2 SQL/MX (or SQL/MP) driver.

connectionPassword Specifies the database password that must be used when
establishing the JDBC connection. This attribute is not relevant
when using the Type 2 SQL/MX (or SQL/MP) driver.

connectionURL Specifies the connection URL that must be passed to the JDBC
driver when establishing a database connection.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-16

Security Considerations

Realms

Table 8-3. JDBCRealm Attributes (page 2 of 2)

Attribute
digest

digestEncoding
driverName

roleNameCol

userCredCol

userNameCol

userRoleTable

userTable

Description

Specifies the name of the MessageDigest algorithm used to
encrypt user passwords stored in the database. If this attribute is
not specified, user passwords are by default stored in plain text.
For more information on digest passwords, see Digested
Passwords on page 8-28.

Specifies the character set for encoding digests. If this attribute
is not specified, the platform default will be used.

Specifies the fully qualified Java class name of the JDBC driver
to connect to the authentication database.

Specifies the name of the column, in the user roles table,
which contains a role name assigned to the corresponding user.
This is a mandatory attribute and has no default value.

Specifies the name of the column, in the users table, which
contains the user's credentials (that is, password). If a value for
the digest attribute is specified, this component considers the
passwords to have been encoded with the specified algorithm.
Otherwise, they will be considered to be in plain text. This is a
mandatory attribute and has no default value.

Specifies the name of the column, in the users and user
roles table, that contains the user's username. This is a
mandatory attribute and has no default value.

Specifies the name of the user roles table, which must
contain columns specified by the userNameCol and the
roleNameCol attributes. This is a mandatory attribute and has
no default value.

Specifies the name of the users table, which must contain
columns named by the userNameCol and the userCredCol
attributes. This is a mandatory attribute and has no default value.

Example 8-1 shows some mxci statements to create tables in SQL/MX for use in a

JDBCRealm.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

8-17

Security Considerations

Realms

Example 8-1. Creating SQL/MX Tables for use in a JDBCRealm

create catalog mycatalog;

set catalog mycatalog;

create schema myschema;

set schema myschema;

create table users (

user_name char(15) not null,

user_pass varchar(45) not null,

primary key (user_name));

create table roles (

role_name char(20) not null,

role_desc varchar(250),

primary key (role_name));

create table userrole (

user_name char(15) not null,

role_name char(20) not null,

primary key(user_name, role_name));

insert
insert
insert
insert
insert
insert
insert
insert

insert

into
into
into
into
into
into
into
into

into

users
users
users
roles
roles

roles

values
values
values
values
values

values

("tomcat", "tomcatpassword®);

(Tuserl®, “userlpassword®);

(Cuser2®, Tuser2password®);

(Tadmin®,"The System Administrator®);
("manager”, "NSJSP Applications Manager"®);
("role2","Another role");

userrole values ("tomcat”,"admin®);

userrole values ("tomcat”,"manager®);

userrole value (“userl®,"manager”);

Example 8-2 shows a Realm definition for querying user information from an SQL/MX
database using a JDBC Type 2 driver and the database schema listed in Example 8-1.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

8-18

Security Considerations Realms

Example 8-2. Sample Realm Configuration

<Realm className="org.apache.catalina.realm.JDBCRealm"
driverName="com.tandem.sqlmx.SQLMXDriver"
connectionURL="jdbc:sqlmx:"
userTable=""mycatalog.myschema.users"
userNameCol=""user_name"

userCredCol=""user_pass"
userRoleTable="mycatalog.myschema.userrole"

roleNameCol="role_name"/>

Although the roles table in Example 8-1 is not used in the Realm configuration in
Example 8-2, the roles table could be used to contain the description of each role.

Example 8-1 uses a char(15) field for the user_name column in the users table. If
you configure a web application to use the client-certificate based authentication
method, this column size (15 characters) is not sufficient because the value stored in
the user_name column must be the Subject from the client-certificate.

Note. Subject is the name of a field in a client certificate.

If the contents of the Subject field exceeds the NonStop SQL maximum allowable
primary key limit of 256 characters, alter the user_name field to the appropriate size
and define a new primary key within the NonStop SQL limits.

UserDatabaseRealm

For testing or limited production use, when the username, password, and roles are
typically loaded from an XML document and any changes or additions need to be
persisted to the XML document, then the UserDatabaseRealm is appropriate. In such
cases, the web application should provide an implementation of the interface
org.apache.catal ina.UserDatabase. The methods of this interface also enable
creating and deleting users and roles. The UserDatabaseRealm is a Realm
implementation that complies with the org.apache.catal ina.UserDatabase
interface.

The default installation of NSJSP provides an implementation of the
org.apache.catal ina.UserDatabase resource that loads the data from
<NSJSP_HOME>/conf/nsjsp-users.xml. The implementation class is
org.apache.catalina.user._MemoryUserDatabase. The UserDatabase is
configured as a global JNDI resource and a JNDI object creating factory class
MemoryUserDatabaseFactory, (that implements the

Javax.naming.spi .ObjectFactory interface) which is used to obtain an instance
of MemoryUserDatabase.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-19

Security Considerations Realms

Example 8-3 shows the UserDatabase resource definition in the
GlobalNamingResources section. It also shows a UserDatabaseRealm definition
that uses the UserDatabase resource in the Engine element.

Example 8-3. Sample UserDataBase Definition

<GlobalNamingResources>
<Resource name="UserDatabase' auth="Container"
type=""org.apache.catal ina.UserDatabase"
description="User database that can be updated and saved"
factory=""org.apache.catalina.users._MemoryUserDatabaseFactory"
pathname="conf/nsjsp-users.xml" />

</GlobalNamingResources>

<Engine name="NSJSP" defaultHost=""localhost'>
<RealmclassName=""org.apache.catalina.realm.UserDatabaseRealm”
resourceName=""UserDatabase" digest="'MD5" />

Attributes in the UserDatabaseRealm

Table 8-4 lists the attributes that can be used in the UserDatabaseRealm.

Table 8-4. UserDatabaseRealm Attributes

Attribute Description

resourceName Specifies the name of the resource that this Realm will use to obtain
user, password, and role information.

digest Specifies the name of the MessageDigest algorithm used to encode
user passwords stored in the database. If this attribute is not specified,
by default, user passwords are stored in plain text. For more information
on digested passwords, see Digested Passwords on page 8-28.

JAASRealm

The JAASRealm is an implementation of the Realm interface that authenticates users
through the Java Authentication and Authorization Service (JAAS) framework. For

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-20

Security Considerations Realms

more information on JAAS, see
http://java.sun.com/javase/6/docs/technotes/quides/security/jaas/JAASRefGuide.html

NSJSP provides the required JAAS infrastructure to accept NonStop usernames and
to authenticate users in the Safeguard subsystem. This means NonStop usernames
and passwords can be used to authenticate users and groups in the Safeguard
subsystem that can be used as user roles to authorize access to application resources.

The JAAS framework provides the LoginModul e interface that must be implemented
by authentication service providers. NSJSP provides an implementation of the
LoginModule interface in the

com.tandem.servlet. Jaas.NonStopLoginModule class. The
NonStopLoginModule authenticates the user using the Safeguard subsystem and
fetches the groups to which the logged in user belongs. The LoginModule class must
be registered with the JAAS framework. This is done by providing the JAAS
configuration file (<NSJSP_HOME>/conf/i1TP_jaas.config) through the -
Djava.security.auth.login.config command-line argument. The following
sample 1TP_jaas.conTig file shows the configuration of the
NonStopLoginModule:

NonStopUserDB {
com.tandem.servlet. jaas_NonStopLoginModule REQUIRED debug=false;
};
where, NonStopUserDB is the name used by the JAAS framework to uniquely identify
the LoginModulle that must be used for authentication.

With the use of NonStopLoginModule as the LoginModule, users can login with
NonStop usernames in any of the following forms:

® NonStop Username: super .webmstr
® NonStop Group, User: 255,20

® NonStop User ID: 65305

® Safeguard alias name: webman

On successful authentication of a NonStop user, the NonStopLoginModule returns
the groups to which the user or alias belongs. For example, if the Safeguard alias
webman (for NonStop user SUPER.WEBMSTR) is configured as belonging to groups
SUPER, SOFTWARE and WEB, then on successful authentication, the roles returned for

webman are:

® SUPER

® SOFTWARE

® \WEB

® SUPER.WEBMSTR (the actual NonStop username)

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-21

Security Considerations

Realms

Attributes in the JAASRealm
Table 8-5 lists the attributes that can be used in the JAASRealm.

Table 8-5. JAASRealm Attributes

Attribute
appName

userClassNames

roleClassNames

useContextClasslLoader

digest

Description

Specifies the name of the application as configured in your
login configuration file.

Specifies a comma-separated list of the names of classes
that you have created for your user Principals.

Specifies a comma-separated list of the names of the
classes that you have created for your role Principals.

Instructs the JAASRealm to use the context class loader for
loading the user-specified LoginModule class and
associated Principal classes. The default value is true. To
load classes using the container's classloader, specify
false. If the NonStopLoginModule is used, this value can
be set to false since the class is available with the
container class loader.

Specifies the digest algorithm used to store passwords in
non-plain text formats. Valid values are those accepted for
the algorithm name by the
Java.security.MessageDigest class. If not specified,
passwords are stored in plain text.

Configuring Authentication Using JAASRealm

To configure authentication using JAASRealm and the NonStopLoginModule, complete

the following steps:

1. Openthe servlet.config file in <NSJSP_HOME>/conf and complete the

following steps:

a. Comment the following entry in the servlet.conTig file by inserting a # at
the beginning of the line:

set NSJSP_JAAS_CONFIG -Dnsjsp-.jaas.login.config=none.

b. Uncomment the following entry by removing # in the beginning of the entry:

set NSJSP_JAAS CONFIG -Djava.security.auth.login.config==
$env(JAAS_CONFIG_FILE

2. Configure security constraints in the web application deployment descriptor
(web .xml) to allow access to application resources for users belonging to

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

8-22

Security Considerations Realms

NonStop groups. The following sample code provides access to users belonging to
SUPER and SYSSW groups

<security-constraint>
<web-resource-collection>

<web-resource-name>My Appl®s Secure Pages
</web-resource-name>

<description>Security constraint for resources in the
secure directory</description>

<url-pattern>/secure/*</url-pattern>

<http-method>POST</http-method>

<http-method>GET</http-method>
</web-resource-collection>
<auth-constraint>

<description>only let the system user login
</description>

<role-name>SYSSW</role-name>
<role-name>SUPER</role-name>
</auth-constraint>
</security-constraint>
3. Configure the JAASRealm:

<Realm className=""org.apache.catalina.realm.JAASRealm"

appName=""NonStopUserDB"
userClassNames=""com.tandem.servilet. jaas.
NonStopUserPrincipal™

roleClassNames=""com.tandem.servlet. jaas.
NonStopRolePrincipal™

useContextClassLoader=""false" />
For information on configuring a Realm, see Realms on page 8-7.

DataSourceRealm

The DataSourceRealm is an implementation of the Realm interface that queries users
in a relational database accessed through a JNDI named JDBC DataSource.

The database schema of the table containing usernames and passwords, and the table
linking usernames with roles is the same as for the JDBCRealm. To create the required
tables, see Example 8-1 in the JDBCRealm on page 8-15.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-23

Security Considerations Realms

The DataSourceRealm queries the database each time it attempts to authenticate a
user. Therefore, changes made to the database will be immediately reflected in the
information used to authenticate users.

After a user has been authenticated, the user (and the user's associated roles)
information is cached within NSJSP for the duration of a user login session. For form-
based authentication, the cached information lasts till the session times out or is
invalidated; for basic and digest authentication, the cached information lasts till the
user closes the browser. Changes to the database information for an already
authenticated user are not reflected until the next login by the user.

Attributes in the DataSourceRealm

Table 8-6 lists the attributes that can be used in the DataSourceRealm.

Table 8-6. DataSourceRealm Attributes

Attribute Description
dataSourceName Specifies the name of the JNDI JDBC DataSource for this Realm.

digest Specifies the name of the MessageDigest algorithm used to
encode user passwords stored in the database. If not specified,
user passwords are considered to be stored in plain text.

localDataSource When the Realm is nested inside a Context element, this allows
the Realm to use a DataSource defined for the Context rather than
a global DataSource. If this attribute is not specified, the default is
false and the Realm uses a global DataSource. A global
datasource is defined in the GlobalNamingResources element
under the Server element.

roleNameCol Specifies the name of the column, in the user roles table, which
contains a role name assigned to the corresponding user.

userCredcCol Specifies the name of the column, in the users table, which
contains the user's credentials (that is, password). If a value for the
digest attribute is specified, this component considers that
passwords have been encoded with the specified algorithm.
Otherwise, they are considered to be in plain text.

userNameCol Specifies the name of the column, in the users and user roles
table that contains the user's username.

userRoleTable Specifies the name of the user roles table, which must contain
columns named by the userNameCol and roleNameCol
attributes.

userTable Specifies the name of the users table, which must contain columns

named by the userNameCol and userCredCol attributes.

By default, NSJSP uses the Apache Commons Database connection pool (DBCP)
library to create data source objects.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-24

Security Considerations Realms

Example 8-4 shows how to define a JNDI datasource to connect to SQL/MX using the
JDBC Type 2 driver. The JNDI resource can either be configured in server .xml or in
the application-specific context.xml file. For more information on configuring JNDI
resources, see http://tomcat.apache.org/tomcat-6.0-doc/jndi-resources-howto.html.

Example 8-4. Defining a Global JNDI Datasource

<GlobalNamingResources>
<Resource name=""jdbc/authority"
auth="Container"
type=""javax.sql .DataSource"
driverClassName="com.tandem.sqlmx.SQLMXDriver"
url="jdbc:sqlmx: "
maxActive="20"
maxldle=""10"
maxWait=""-1"/>

</GlobalNamingResources>

For a complete set of attributes that can be used to configure a data source, see
http://commons.apache.org/dbcp/configuration.html.

Example 8-5 shows a sample DataSourceRealm configuration that uses a global
DataSource.

Example 8-5. Sample DataSourceRealm Configuration

<Realm className="'org.apache.catalina.realm.DataSourceRealm"
dataSourceName=""jdbc/authority"
userTable="mycatalog.myschema.users"
userNameCol="user_name"
userCredCol="user_pass"
userRoleTable="mycatalog.myschema.userrole"

roleNameCol="role_name"/>

Note. Because the localDataSource attribute is not used in Example 8-5, the Realm
searches the datasource using the jdbc/authority name defined in
GlobalNamingResources.

CombinedRealm

The CombinedRealm is an implementation of the Tomcat 6 Realm interface that
authenticates users through one or more sub-Realms.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-25

Security Considerations Realms

The CombinedRealm provides the ability to combine multiple Realms of the same or
different types. The CombinedRealm can be used to authenticate against different
sources, provide fallback in case one Realm fails or for any other purpose that requires
multiple Realms.

Sub-Realms are defined by nesting Realm elements inside the Realm element that
defines the CombinedRealm. Authentication will be attempted against each Realm in
the order they are listed. Successful authentication against any Realm is sufficient to
authenticate the user.

Example 8-6 shows how to configure a UserDatabaseRealm and a DataSourceRealm
within a CombinedRealm.

Example 8-6. Configuring a UserDatabaseRealm and DataSourceRealm Within a
CombinedRealm
<Realm className=""org.apache.catalina.realm.CombinedRealm™ >
<Realm className="'org.apache.catalina.realm.UserDatabaseRealm"
resourceName="'"UserDatabase"/>
<Realm className="'org.apache.catalina.realm.DataSourceRealm"
dataSourceName=""jdbc/authority"
userTable=""users""
userNameCol=""user_name"
userCredCol="user_pass"
userRoleTable="user_roles"
roleNameCol="role_name"/>

<Realm/>

NSJSPLockOutRealm

The NSJSPLockOutRealm is used to provide the option of locking out a user if there
are many failed authentication attempts in a given period of time. This Realm is
implemented by the
com.tandem.servlet.catalina.realm_NSJSPLockOutRealm class.

To ensure correct functioning, there is a reasonable degree of synchronization built into
the Realm, across the server class instances. This means that each server class
instance is aware of the total number of failed authentication attempts for a user, even
though the authentication attempts might have occurred in different server class
instances. This Realm uses a disk file to record authorization attempts across server
class instances, and the user records on failed authentication attempts are persisted to
a disk file and are available across server class restarts.

The NSJSPLockOutRealm does not require modification to the underlying Realms or
the associated user storage mechanisms. It achieves this by recording all failed login
attempts, including those for users that are not defined. Storing failed login attempts of

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-26

Security Considerations Realms

even users that do not exist could result in a large number of user records getting
cached, especially when the authentication of invalid users is deliberate, such as in a
denial of service attack. To prevent unlimited growth of the cache, use the cacheSize
attribute to indicate the maximum number of user records that may be cached.

Sub-Realms are defined by nesting the Realm elements inside the Realm element that
defines the LockOutRealm. Authentication will be attempted against each Realm in
the order they are listed. Successful authentication against any Realm will be sufficient
to authenticate the user.

Attributes in the NSJSPLockOutRealm
Table 8-7 lists the attributes in the NSJISPLockOutRealm.

Table 8-7. NSJSPLockOutRealm Attributes

Attribute Description

cacheRemovalW If a failed user cannot be added to the cache because there is

arningTime insufficient memory to accommodate the failed user, one of the existing
entries will be removed. If the removed entry has been in the cache for
a lesser interval of time than the time configured in this attribute, then a
warning message is generated.

cacheSize Specifies the maximum number of user slots to hold failed user
authentication attempts. Over a period of time, the cache will grow to
the size specified by cacheSi1ze and may not shrink. The default size
is 1000 users.

failureCount Specifies the number of times in a row that a user has to fail
authentication to be locked out. The default value is 5.

lockOutTime Specifies the time (in seconds) that a user is locked out after too many
authentication failures. The default value is 300 (5 minutes).

Example 8-7 shows how to configure an NSJSPLockOutRealm that uses the
UserDatabaseRealm to authenticate users.

Example 8-7. Configuring an NSJSPLockOutRealm

<Realm className="com.tandem.servlet.catalina.realm_NSJSPLockOutRealm"
failureCount=""3"
lockOutTime=""3600"">
<Realm className="org.apache.catalina.realm.UserDatabaseRealm"
resourceName="UserDatabase" />

<Realm/>

In Example 8-7, users are locked out for 1 hour (3600 seconds) after 3 failed
authentication attempts.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-27

Security Considerations Digested Passwords

Digested Passwords

For each standard Realm implementation, the user's password (by default) is stored in
plain text. In most environments, this situation is not acceptable because casual
observers of the authentication data can collect enough information to log on
successfully and impersonate other users. To avoid this problem, the standard Realm
implementations support the concept of digesting user passwords. Digesting
passwords causes the stored version of passwords to be encoded in a form that is not
easily reversible but which the Realm implementation can still use for authentication.

You can enable digested passwords by specifying the digest attribute in the Realm
element. The value for this attribute must be one of the digest algorithms supported by
the Java.security.MessageDigest class (such as SHA or MD5).

When you specify this option, the contents of the password that are stored in the
Realm must be the digested version of the plain text password, as digested by the
specified algorithm. When the authenticate() method of the Realm is called, the
(plain text) password specified by the user is digested by the same algorithm, and the
result is compared with the value returned by the Realm. A match means that the user
is authorized.

To calculate the digested value of a plain text password, you can use the following
techniques:

® If you are writing an application that needs to calculate digested passwords
dynamically, call the static Digest() method of the
org.apache.catalina.realm.RealmBase class, passing the plain text
password and the digest algorithm name as arguments. This method returns the
digested password.

® A command-line utility (nsysp_digestPassword) is available to calculate the
digested password.
Enter the following at the command-line prompt:

<NSJSP_HOME>/conf/nsjsp_digestPassword {digest algorithm}
{cleartext-password}

The digested version of this plain text password is returned to the standard output.

Single Sign-On

You can use the single sign-on feature when you wish to provide users the ability to
sign on to any one of the web applications associated with your virtual host, and then
have their identity recognized by all other web applications on the same virtual host.

This feature is provided in the form of a valve called SingleSignOn. The single sign-
on facility operates according to the following rules:

® All web applications configured for this virtual host must share the same Realm.
This means you can nest the Realm element inside this Host element (or the

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-28

Security Considerations Authorizing a User

surrounding Engine element), but not inside a Context element for one of the
involved web applications.

® If users access only unprotected resources in any of the web applications on this
virtual host, they will not be challenged to authenticate themselves.

® If users access a protected resource in any web application associated with this
virtual host, users will be challenged to authenticate, using the login method
defined for the web application currently being accessed.

® After authentication, the roles associated with this user will be utilized for access
control decisions for all the associated web applications, without challenging the
user to authenticate themselves to each application individually.

® \When the user logs out of one web application (for example, by invalidating the
corresponding session, if form-based authentication is used), the user's sessions in
all web applications will be invalidated. Any subsequent attempt to access a
protected resource in any application will require the user to authenticate again.

® The single sign-on feature utilizes HTTP cookies to transmit a token that
associates each request with the saved user identity, so it can only be utilized in
client environments that support cookies.

To configure single sign-on for the applications within a host, configure the
SingleSignOn valve as a child of the Host element where the single sign-on feature
should be implemented:

<Host>

<Valve
className=""org.apache.catalina.authenticator.SingleSignOn"
/>

</Host>

Authorizing a User

While the authentication process establishes the identity of the user, the authorization
process determines if the user is allowed to access a secured resource. You can
authorize a user to access specific resources by using the security-constraint
element in an application-specific deployment descriptor, which is an XML document
named . . . /WEB-INF/web .xml.

Security constraints are a declarative method of defining the protection for web
content. A security constraint associates authorization or user data constraints, or both,
with HTTP operations on web resources. Therefore, you can configure a web
application to secure an associated set of web resources, which may include HTTP
operations and URL patterns either by authorizing a user or by checking the transport
layer connection used to access the resources or both.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-29

Security Considerations Web Resource Collection

The security constraint, which is represented by the security-constraint element
in a deployment descriptor, consists of the following elements that are used to secure a
resource:

® web-resource-collection
® auth-constraint
® user-data-constraint

While the web-resource-col lection is a required element, auth-constraint
and user-data-constraint elements are optional elements.

The following sections discuss the different elements in the security-constraint
element:

® \Web Resource Collection

® Authorization Constraint

® User Data Constraint

Web Resource Collection

HTTP operations and web resources to which a security constraint applies (that is, the
constrained requests) are identified by one or more web resource collections. A web
resource collection (identified by the web-resource-col lection element) consists
of the following elements:

® URL patterns - Specified by the url-pattern element in the web . xml file.
® HTTP methods - Specified by the http-method element in the web.xml file.
The following is a sample web-resource-col lection from a web.xml file:
<security-constraint>

<web-resource-collection>

<web-resource-name>Domain Manager User URLsS
</web-resource-name>

<url-pattern>*_htm</url-pattern>
<url-pattern>*_html</url-pattern>
<url-pattern>*._jsp</url-pattern>
<url-pattern>*_xml</url-pattern>
<url-pattern>*_help</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>
</web-resource-collection>

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-30

Security Considerations Authorization Constraint

</security-constraint>

Authorization Constraint

An authorization constraint establishes a requirement for authentication and specifies
the authorization roles permitted to perform constrained requests. A user must be a
member of at least one of the specified roles to be permitted to perform the
constrained requests. The special role name * specifies all the role names defined in
the deployment descriptor.

Note. Security roles referenced by a web application are identified by specifying the
security-role elementin the web.xml file.

An authorization constraint that does not specify any roles indicates that access to the
constrained requests is not permitted under any circumstances. An authorization
constraint contains the role-name element.

The following is a sample authorization constraint (<auth-constraint>) element
from a web . xml file:

<security-constraint>

<web-resource-collection>

</web-resource-collection>

<auth-constraint>
<description>only let the system user login</description>
<role-name>admin</role-name>
<role-name>manager</role-name>

</auth-constraint>

</security-constraint>

User Data Constraint

A user data constraint establishes a requirement that the constrained requests are
received over a protected transport layer connection. The strength of the required
protection is defined by the value of the transport guarantee. A user-data-
constraint element contains a transport-guarantee element, which specifies

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-31

Security Considerations

User Data Constraint

the strength of the transport layer protection. By default, the transport-guarantee

element is not defined in the web . xml file.

Table 8-8 lists the types of transport guarantee that can be defined in the web . xml file.

Table 8-8. Types of Transport Guarantee

Type

INTEGRAL
CONFIDENTIAL
NONE

Description

Establishes a requirement for content integrity.
Establishes a requirement for confidentiality.
Indicates that the container must accept the constrained requests

when received on any connection including an unprotected

connection.

The transport guarantee can ensure that certain resources are always requested over
a secure link. If the transport guarantee is set to either INTEGRAL or CONFIDENT IAL,
the constrained resource must be requested over a secure transport, such as HTTPS.
The iTP Secure WebServer is configured for secure transport through the
httpd.stl.config file located in the <iTP WebServer Home>/conf directory.

The following is a sample definition of the user-data-constraint element from a
web . xml file:

<secC

urity-constraint>

<web-resource-collection>

</web-resource-collection>

<auth-constraint>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

Note. For a complete listing of elements that can be used in the deployment descriptor, see
the Java Servlet Specification Version 2.5.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

8-32

Security Considerations Validating the Sender

Validating the Sender

While NSJSP uses the user’s credentials to authenticate and authorize a user, it also
provides valve elements to validate the origin of a client request before the request is
serviced. The valve element allows or denies requests originating from certain client’s
hosts based on the client’s host name or IP address.

A valve element represents a component that will be inserted into the request
processing pipeline for the associated Catalina container (Engine, Host, or
Context).

The iTP Secure WebServer also provides features to either deny or allow access to
resources. For more information, see the Region directive, and the DenyHost and
AllowHost commands for the Region directive in the iTP Secure Webserver System
Administrator’s Guide.

Note. Even though NSJSP provides the capability to allow or deny requests originating from
certain client hosts, HP recommends that you configure such criteria in the iTP Secure
WebServer rather than in NSJSP.

The following sections discuss the two valves that are available with NSJSP to restrict
access based on the client’'s host name and IP address:

® Remote Host Filter

® Remote Address Filter

Remote Host Filter

The Remote Host Filter valve compares the hostname of the host that sent the request
against one or more regular expressions, and either allows the request to continue or
refuses to process the request from that host. The syntax for the regular expressions is
specified in the java.util.regex class. For more information on this class, see
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html.

You can associate a Remote Host Filter valve with any Catalina container (Engine,
Host, or Context). The Remote Host Filter must accept any request presented to the
associated container for processing before passing on the request.

Table 8-9 lists the attributes that can be used to configure a Remote Host Filter valve.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-33

Security Considerations Remote Address Filter

Table 8-9. Remote Host Filter Attributes

Attribute Description

classname Specifies the Java class name for this valve. You must set this attribute
to org.apache.catalina.valves_RemoteHostValve.

allow Specifies a comma-separated list of regular expression patterns with
which the remote hostname is compared. If you specify this attribute,
the hostname from an incoming request must match an expression for
the request to be accepted. If you do not specify this attribute, all
requests are accepted unless the remote hostname matches a deny
pattern.

deny Specifies a comma-separated list of regular expression patterns with
which the remote hostname is compared. If you specify this attribute,
the hostname from an incoming request must not match any expression
for the request to be accepted. If you do not specify this attribute, all
requests are accepted based on the al low attribute.

Remote Address Filter

The Remote Address Filter valve compares the IP address of the host that sends a
request against one or more regular expressions, and either allows the request to
continue or refuses to process the request from the host. You can associate a Remote
Address Filter with any Catalina container (Engine, Host, or Context). The Remote
Address Filter must accept any request presented to the associated container for
processing before passing on the request.

Table 8-10 lists the attributes that can be used to configure a Remote Address Filter
valve.

Table 8-10. Remote Address Filter Attributes

Attribute Description

classname Specifies the Java class name for this valve. You must set this attribute
to org.apache.catalina.valves_RemoteAddrVvalve.

allow Specifies a comma-separated list of regular expression patterns with
which the remote client’s IP address is compared. If you specify this
attribute, the remote client’s IP address from an incoming request must
match an expression for the request to be accepted. If you do not
specify this attribute, all requests are accepted unless the remote
client’'s IP address matches the deny pattern.

deny Specifies a comma-separated list of regular expression patterns with
which the remote client’s IP address is compared. If you specify this
attribute, the remote client’s IP address from an incoming request must
not match any expression for the request to be accepted. If you do not
specify this attribute, all requests are accepted based on the al low
attribute.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-34

Security Considerations Java Security Manager

Java Security Manager

The Java security manager can be used to restrict access to system resources, such
as Java Virtual Machine (JVM) properties, methods, and sockets, thus safeguarding
application data and services, and ensuring the security and reliability of NSJSP.

This section explains some of the features of the Java security manager that are used
in NSJSP.

Note. The complete details of the Java security manager are beyond the scope of this section.

This section contains the following topics:

® Configuring the Java Security Manager

® Securing NSJSP Resources Using the permissions Directive

® Package Protection in NSJSP

® Troubleshooting the Java Security Manager

Configuring the Java Security Manager

The security policies implemented by the Java Security Manager are configured in the
iITP_catalina.policy file located in the <NSJSP_HOME>/conf directory.

The 1iTP_catalina.policy file replaces any system java.policy file. The
iITP_catalina.policy file contains a default set of security policies to be enforced
(by the JVM) when NSJSP is run with the Java.security.manager option. You can
assign additional permissions to individual web applications by adding additional
grant entries in the 1TP_catalina.policy file.

Entries in the 1TP_catalina.policy file use the standard format for java.policy
files, as shown in Example 8-8:

Example 8-8. Java Policy File Entry
// Example policy file entry

grant [signedBy <signer>,] [codeBase <code source>] {
permission <class> [<name> [, <action list>]];

The signedBy and codeBase entries are optional when granting permissions.
Comment lines begin with // and end at the end of the current line. The codeBase is
in the form of a URL, which can use the ${java.home} and the ${catal ina.home}
properties, which are expanded to the directory paths defined for them by the

JAVA HOME, CATALINA BASE, and CATALINA HOME environment variables.

The default iTP_catalina.policy file contains all the grant entries in the
standard catal ina.policy file and additional entries for the NSJSP container, as

shown in Example 8-9:

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-35

Security Considerations Configuring the Java Security Manager

Example 8-9. Policy File Entry for the NSJSP Container (page 1 of 2)

// These permissions apply to the nsjsp-logging code

grant codeBase "file:${catalina.home}/bin/nsjsp-logging.jar"” {
permission java.security.AllPermission;

}:

grant codeBase "file:${catalina.home}/bin/nsjsp_bootstrap.jar'” {
permission java.security.AllPermission;

¥

// These permissions apply to the servlet APl classes

// and those that are shared across all class loaders

// located iIn the "common' directory. Need 3 different directory

// paths as the java Security Manager can®"t handle symbolic

// links within a directory tree.

grant codeBase "file:${catalina.home}/common/classes/-"" {
permission java.security.AllPermission;

grant codeBase "'file:${catalina.home}/common/endorsed/-" {
permission java.security.AllPermission;
}:

grant codeBase "file:${catalina.home}/common/lib/-" {
permission java.security.AllPermission;

// These permissions apply to the container®s core code, plus

// any additional libraries installed in the 'server™ directory.

grant codeBase "file:${catalina.home}/server/classes/-" {
permission java.security.AllPermission;

grant codeBase "file:${catalina.home}/server/lib/-" {
permission java.security.AllPermission;

grant codeBase "'file:${catalina.home}/server/nsjsp_webapps/-" {
permission java.security.AllPermission;
}:

// ========== JDBC DRIVERS CODE PERMISSIONS ====================
grant codeBase "file:/usr/tandem/jdbcMx/current/lib/jdbcMx. jar"
{

¥

grant codeBase "file:/usr/tandem/jdbcMp/current/lib/sglmp.jar™” {
permission java.security.AllPermission;

permission java.security.AllPermission;

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-36

Security Considerations Starting NSJSP with the Java Security Manager

Example 8-9. Policy File Entry for the NSJSP Container (page 2 of 2)

// These permissions are granted to the NSJSP balancer web
// application.
grant codeBase "file:${catalina.home}/webapps/balancer/WEB-
INF/lib/catalina-balancer.jar™ {

permission java.lang.reflect.ReflectPermission
""suppressAccessChecks";

// These permissions are granted by default to all web

// applications. In addition, a web application will be given a
// read FilePermission and JndiPermission for all files and

// directories In i1ts document root.

grant {

// NSJSP Specific properties to allow read access
permission java.util_PropertyPermission
"com.tandem.servlet.*","read";

permission
jJava.util _PropertyPermission’org.apache.commons. logging.*",
"read";

j

Starting NSJSP with the Java Security Manager

After you configure the ITP_catal ina.policy file, NSJSP can start with the Java
Security Manager using the command-line arguments java.security.manager
and
Java.security.policy==%env(<NSJSP_HOME>)/conf/iTP_catalina.policy
in the servilet.config file.

Example 8-10 shows the configuration to start NSJSP with the Java Security Manager.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-37

Security Considerations Securing NSJSP Resources Using the
permissions Directive

Example 8-10. Starting NSJSP with the Java Security Manager

#
NSJSP Java2 System policy file and Java2 VM option.

#

Note: the "double™ equalto signs "==" is not a typo!! This informs
the JVM

to use this file exclusively and that all others are to be ignored.
#

set env(JVM_POLICY_FILE) $env(NSJSP_HOME)/conf/iTP_catalina.policy
set NSJSP_SECMGR_POLICY -Djava.security.policy==%env(JVM_POLICY_FILE)
#

By default, the JVM is run without a security manager.

#

set NSJSP_SECMGR -Dnsjsp.security.manager=none

#

1f you wish to run with a security Manager, uncomment the next
statement (“'set NSJSP_SECMGR ...").

#

set NSJSP_SECMGR -Djava.security.manager

#

This is the actual Arglist used to startup the NSJSP Container.
#

Arglist -Xmx64m -Xss128k -Xnoclassgc \

-Djava.util._logging.manager=org.apache. juli._.ClassLoaderLogManager \
-Djava.util.logging.config.file=$env(NSJISP_HOME)/conf/logging.properties

-Djavax.management.builder.initial=com.tandem.servlet. yjmx.NSJSPMBean
ServerBuilder \

$NSISP_SECMGR \

$NSISP_SECMGR_POLICY \

$NSISP_JAAS CONFIG \

-Dcatalina.home=$env(NSJSP_HOME) \

-Dcatalina.base=$env(NSJSP_HOME) \
-Djava.io.tmpdir=$env(NSJSP_HOME)/temp \
org.apache.catalina.startup.Bootstrap start

In Example 8-10, you can notice that the following entry (the highlighted entry in the
example) is uncommented so that NSJSP runs with the Java Security Manager:

set NSJSP_SECMGR -Djava.security.manager

This entry is always commented out in the servlet.config file and by default,
NSJSP runs without the Java Security Manager. The following default definition in the
servlet.config file informs NSJSP not to run with a Java Security Manager:

set NSJSP_SECMGR -Dnsjsp-security.manager=none

Securing NSJSP Resources Using the permissions Directive

The permission attribute in the 1TP_catalina.policy file represents access
permission to a system resource. A system resource could mean a particular method
in a class, resources such as disk files or system property values. When NSJSP is
running with Java Security Manager, the web application code must be provided
explicit permissions to execute secure code.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-38

Security Considerations Securing NSJSP Resources Using the
permissions Directive

By default, all web applications are granted read permission to all the file resources
under the web application’s base directory. This enables the application to read the
static resources. Permissions are granted to access the resources either through JNDI
or through classes in the java. 1o package.

The following sample 1TP_catal ina.policy file shows permissions to read system
properties:

grant {
// Required for JINDI lookup of named JDBC DataSource®s and
// javamail named MimePart DataSource used to send mail
permission java.util.PropertyPermission "java.home'™, "read";
permission java.util.PropertyPermission "java.naming.*", "read";
permission java.util.PropertyPermission "javax.sql.*", "read";

As the grant directive does not specify any codeBase, the grant directive applies to
every codeBase. This means that all container libraries and web applications are
granted permission to read system properties, such as java.home.

The following sample grant directive grants permissions to all the jar files present in
the ${catalina.home}/lib directory, which in NSJSP translates to
<NSJSP_HOME>/1l1ib:

grant codeBase "file:${catalina.home}/lib/-" {
permission java.security.AllPermission;
};

Providing all permissions is the same as running without the Java Security Manager for
the codeBase in consideration.

While running NSJSP under a Java Security Manager, with the default security policy,
some JSP examples throw a security exception. For example, running
examples/jsp/jsp2/simpletag/hello. jsp throws the following exception:

access: access denied (Java.lang.RuntimePermission accessDeclaredMembers)
jJava.lang.Exception: Stack trace

at java.lang.Thread.dumpStack(Thread.java:1158)

at
Java.security.AccessControlContext.checkPermission(AccessControlConte
xt.java:253)

at java.security.AccessController.checkPermission

(AccessController. java:427)

at java.lang.SecurityManager.checkPermission

(SecurityManager.java:532)
at java.lang.SecurityManager.checkMemberAccess(SecurityManager.
jJjava:1662

This exception is thrown because the user applications are not provided the
accessDeclaredMembers permission. This permission can be granted to every
codeBase by adding the following permission in a grant block:

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-39

Security Considerations Package Protection in NSJSP

permission java.lang.RuntimePermission "accessDeclaredMembers™;

You must be careful before granting the accessDeclaredMembers permission to any
codeBase.

Note. HP recommends that you understand the impact of providing certain security
permissions. You can find a list of all security permissions provided by Java at
http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html.

When NSJSP is run with the security manager with the default security policy file, all
web applications are prevented from executing code, such as System.exit().

Package Protection in NSJSP

As discussed in Securing NSJSP Resources Using the permissions Directive on

page 8-38, NSJSP provides security to prevent malicious applications from gaining
access to NSJSP internal classes. Apart from executing methods of some internal
classes, it is possible to gain entry into internal classes by defining classes in the same
package as the NSJSP internal classes. For example, all classes within the same
package have access to protected resources (for example, methods and variables) of
other classes in the package.

You can specify internal NSJSP packages that must be protected against package
definition and access. The protection can be configured in the
catalina.properties file in the <NSJSP_HOME>/conf directory using the
following package .access and package.definition properties:

® package.access: This property can be used to restrict access to classes in
certain packages. For example, if the value of this property is java. 1o,
Java.net, then access to classes in these packages is prevented unless
permissions are granted using the accessClassInPackage target name of the
jJava. lang.RuntimePermission.

By default, the value is not set. However, the following entry is available in the
catalina.properties file to grant access to specified packages and is
commented by default:

#package.access=sun. ,org.apache.catalina.,org.apache.coyote.,
org.apache.tomcat. ,org.apache. jasper.,sun.beans.

® package.definition: This property can be used to restrict class definitions to
certain packages.

By default, none of the packages are restricted and none of the class loaders call
checkPackageDefinition. However, the following entry is available in the
catalina.properties file to restrict access to specified packages and is
commented by default:

#package.definition=sun., java. ,org.apache.catalina.,org.apach
e.coyote. ,org.apache.tomcat. ,org.apache. jasper.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-40

Security Considerations Troubleshooting the Java Security Manager

Troubleshooting the Java Security Manager

The security manager can be configured to write debug logs by using the
jJava.security.debug property. This can be useful in identifying the call and
permission that caused a security exception from being thrown. All logs are written to
the STDOUT file. By default, the file referenced by the STDOUT server class attribute is
located in the <NSJSP_HOME>/10gs directory. For more information on the
Java.security.debug property options, see
http://java.sun.com/javase/6/webnotes/trouble/TSG-VM/html/envvars.html.

In addition to these options, the value al I prints a large amount of information (the
size of which can grow to several MBs). HP recommends that you use the
access, fairlure value. Following is a sample definition:

-Djava.security.debug=access, failure
Additionally, printing too many log messages may result in slower NSJSP startup time.

Example 8-11 shows how to set the Java Security Manager debug information in the
servilet.config file.

Example 8-11. Setting the Java Security Debug Information

Arglist -Xmx64m -Xss128k -Xnoclassgc \
-Djava.util.logging.manager=org.apache. juli.ClassLoaderLogManager \

-Djava.util.logging.config.file=$env(NSJISP_HOME)/conf/logging.properties

-Djavax.management.builder.initial=com.tandem.servlet. jmx.NSJSPMBeanServ
erBuilder \

-Djava.security.debug=access,failure \

$NSISP_SECMGR \

$NSISP_SECMGR_POLICY \

$NSISP_JAAS CONFIG \

-Dcatalina.home=$env(NSJSP_HOME) \

-Dcatalina.base=$env(NSJSP_HOME) \
-Djava.io.tmpdir=$env(NSJSP_HOME)/temp \
org.apache.catalina.startup.Bootstrap start

Manager Web Application and NSJSP Manager
Security

NSJSP provides several Web Applications for administering and monitoring purposes.
The Admin Web application in NSJSP enables you to administer container objects and
manage resources, such as users and roles. The following Manager Web applications
in NSJSP enable you to manage web applications in an NSJSP deployment:

® Manager Web Application
® NSJSP Manager

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-41

Security Considerations Using Realms to Implement Security

The Admin and Manager Web Applications are security-sensitive applications and
proper security constraints must be implemented so that only authorized users are
allowed access to these Web Applications.

For more information on the Admin and Manager Web Applications, see Chapter 4,
Managing NSJSP.

The following sections discuss how security can be implemented in these Web
Applications:

® Using Realms to Implement Security

® Monitoring Server Classes and Hosts

Using Realms to Implement Security

When a user attempts to access a Manager, NSJSP Manager, or Admin Web
application, the user’s credentials are verified and validated using the Realms
repository. For a detailed description on the usage of Realms for implementing security
in a web application, see Realms on page 8-7.

Monitoring Server Classes and Hosts

Starting with NSJSP 6.1, a user can manage multiple NSJSP installations in one iTP
WebServer installation. Each NSJSP installation can have multiple hosts and each
host can contain multiple applications. Each installation of NSJSP is associated with a
unique server class. All the hosts might not need access to all the server classes.
Therefore, a security constraint may be implemented so that only certain hosts are
visible for a particular server class.

The NSJSP Manager enables you to monitor hosts and server classes as defined in
the <NSJSP_MANAGER_HOME>/conf/host-access.properties file. You can use
the Scope tab in the NSJSP Manager Web Application to select a Host in a specific
server class. Hosts and the server class displayed in the NSIJSP Manager depends on
the definition in the <NSJSP_HOME>/webapps/ROOT/WEB-INF/host-
access.properties file.

Example 8-12 provides sample definition in the host-access.properties file.

Example 8-12. Sample host-access.properties File

manager=*:*

admin=*_*

Example 8-12 indicates that all users with role manager can manage all server
classes (indicated by the first * in *:*) and all the Hosts in those server classes
(indicated by the second * in *:*).

Example 8-13 shows different formats to define a role in the host-
access.propertiesfile.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-42

Security Considerations Monitoring Server Classes and Hosts

Example 8-13. Role Definitions

rolel=scl:hostl]sc2:host2]*:host3]sc4:*|sc2:host5

role2=sc3]|sc4

The first entry in Example 8-13 indicates that all users with role rolel can manage:

Server class 1 (scl) and Host 1 in that server class (scl:hostl)
Server class 2 (sc2) and Host 2 in that server class (sc2:host2)
All server classes and Host 3 in any of those server classes (*-host3)

Server class 4 (sc4) and all the Hosts in that server class (sc4:*)

Server class 2 (sc2) and Host 5 in that server class (sc2:host5)

The second entry in Example 8-13 indicates that all users with role role2 can manage
server class 3 (sc3) and all Hosts under sc3, and server class 4 (sc4) and all Hosts
under sc4.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
8-43

MBeans in the NSJSP Container

This appendix describes NSJSP MBeans, how the MBeans are represented in the
NSJSP Manager application, and lists the MBeans that are commonly used in NSJSP.

This appendix addresses the following topics:
® Prerequisites
Overview

Object Names and Attributes of MBeans

MBeans Representation in NSJSP Manager

Commonly Used MBeans in NSJSP

Prerequisites

To understand the concept of MBeans and how they are used to obtain information
about the servlet container components, you must be aware of the following:

® Java Management Extensions (JMX) technology and how it can be used to
manage Java resources, such as, a Java application, a JDBC connection, or a
servlet.

® NSJSP servlet container components, such as, Server, Service, Engine,
Connector, and Host. A knowledge of these components is required to understand
how these components are instrumented by MBeans.

For information on how JMX and MBeans facilitate the management of Java resources
deployed on a Java Virtual Machine (JVM), see
http://java.sun.com/javase/6/docs/technotes/quides/imx/index.html.

Overview

Starting with the NSJSP 6.0 release, NSJSP components (such as, Server, Connector,
Engine, Host, and Contexts) are instrumented by MBeans. Thus, the NSJSP
components can be managed using the JMX technology. You can use MBeans to
obtain information about the NSJSP components.

Note. NSJSP extensively uses dynamic MBeans. The dynamic MBeans allow NSJSP to
define the management interface at run time. NSJSP uses the mbeans-descriptors.xml
file to identify the MBean's management interface. Most of the MBeans have the management
interface defined at run time. While using the NSJSP Manager to view the MBean attribute,
some MBeans display the attributes, such as managedResource and modelerType, which
indicates that the resource is being managed by the MBean.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
A-1

MBeans in the NSJSP Container Object Names and Attributes of MBeans

The following are typical uses of MBeans in NSJSP:

You can use MBeans to obtain the state of the component it instruments. The
information obtained using MBeans can be of the following types:

© Information that is constant and does not change with time. For example, the
MBean that instruments the Host component has the appBase attribute, which
represents the directory where the web applications are placed. The MBean
attributes are explained in Object Names and Attributes of MBeans on
page A-2.

© Information that denotes the current state of the component, and can change
with time. For example, the MBean instrumenting the Servlet by name JSP,
has the processingTime attribute that represents the average time taken by
the Servlet to process JSP requests. The MBeans attributes are explained in
Object Names and Attributes of MBeans on page A-2.

You can also use MBeans to alter the state of the component that it instruments.
For example, you can modify the value of the maxInactivelnterval variable.
For more information on maxInactivelnterval, see Configuring In-Memory
Sessions on page 3-76.

Note. Similar examples are included later in this chapter.

Object Names and Attributes of MBeans

MBeans that are registered with an MBean server are grouped using hamespace,
called domain. Each MBean has a unique identifier, called the object name. The object
name consists of a domain followed by a key-properties list.

The key-properties list with the domain identifies a specific MBean within an MBean
server. The key-properties list consists of a minimum of one and might be more
property-value pairs.

Note. The MBean server stores all the MBeans in a JVM.

The following are examples of object names:

NSJSP:name=http-0, type=ThreadPool

where,

NSJSP represents the domain followed by the key-properties list.

The key-properties list includes the following property-value pairs:
name=http-0 and type=ThreadPool

NSJSP: type=Manager ,path=/sca6url/examples,host=1localhost
where,

NSJSP represents the domain.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

A-2

MBeans in the NSJSP Container Object Names and Attributes of MBeans

type=Manager, path=/sca6url/examples, and host=localhost represent
the property-value pairs.

® Catalina:type=NamingResources, resourcetype=Context,path=/sca6ur
1,host=localhost

where,
Catal 1na represents the domain.

type=NamingResources, resourcetype=Context, path=/sca6url, and
host=localhost represent the property-value pairs.

e IMImplementation:type=MBeanServerDelegate
where,
JMImplementation represents the domain.
type=MBeanServerDelegate represent the property-value pairs.

The object name might include the property-value pairs that have unusual values, such
as, none and URI. In the following example, the J2EEApplication and the
J2EEServer properties have the value none:

NSJSP:type=JspMonitor,name=jsp,WebModule=//1ocalhost/sca6url/exa
mples,J2EEApplication=none, J2EEServer=none

More information is provided on page A-7.

For more information on the object name, see
http://java.sun.com/javase/6/docs/api/javax/management/ObjectName.html.

An MBean provides the state and details of the managed components in the form of
attributes. Each attribute is denoted by a unique attribute name. You can view and
change the state of the component by modifying the value of the attributes. For
example, the attribute, called maxThreads of the MBean instrumenting the Connector
component denotes the number of threads that the Connector can spawn. By
modifying the value of the maxThreads attribute, the number of threads that the
Connector is allowed to spawn can be changed.

Note.

® The NSJSP Manager application enables you to view and modify the values of the MBean
attributes. However, it does not allow you to invoke methods on MBeans. For more
information on the NSJSP Manager application, see Chapter 4, Managing NSJSP.

® You cannot modify those MBeans whose wr itable parameter is set to false.

You can view all the MBeans in the NSJSP Server Class processes using the NSJSP
Manager application. The MBeans are organized in a tree structure based on the
MBean object names.

The following section explains how the MBeans are organized in a tree structure.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
A-3

MBeans in the NSJSP Container MBeans Representation in NSJSP Manager

MBeans Representation in NSJSP Manager

For ease of navigation, MBeans are organized in a tree structure comprising multiple
tree nodes. A tree structure begins with a root node and ends with a leaf node. The
root node of the tree denotes the process name and the first level child nodes denote
the different domains registered with the MBean server. Each domain can contain
multiple tree nodes.

Figure A-1 illustrates a tree view of an MBean.

Figure A-1. Tree View of an MBean

E.:;é"li:-.l.l:!.l_.:.'f}'f‘:t.?ﬁ nt

NSJSP PROCESS [§x305

MBEANS
5}(30 Foot node
First level child node Dum|ains
B admin.resources.listEnvEntries
/ /localhost/scplun/admin
B none
Leafnnde
& Valve
WebModule
B Catalina
B Users

[+] JMImplementatiunJ

The tree structure of MBeans is constructed using the domain of the MBean and the
property-value pairs. In Figure A-1, NSJSP, Catal ina, Users, and
JMImplementation denote the domains within the MBean server in the $X305
process. The NSJSP domain contains nodes, such as, Servlet, Valve, and
WebModule. All MBeans under the Servlet node have the property j2eeType with
the value Servlet. However, all MBeans under the Valve node have the property
type with the value Valve. Although Servlet and Valve are peer nodes within the

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
A-4

MBeans in the NSJSP Container MBeans Representation in NSJSP Manager

same domain, the properties (j2eeType for Servlet and type for Valve) of the
key-properties list are not the same.

Figure A-2 shows a tree view of the following MBean under the Servlet node:

NSJSP: j2eeType=Servlet,name=HTMLManager ,WebModule=//l1ocalhost/sc
a6url/manager,J2EEApplication=none,J2EEServer=none

where,
NSJSP is the domain.

J2eeType=Servlet, name=HTMLManager,
WebModulle=//1ocalhost/sca6url/manager, J2EEAppl 1ication=none, and
J2EEServer=none are the property-value pairs.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
A-5

MBeans in the NSJSP Container

MBeans Representation in NSJSP Manager

Figure A-2. Tree View of an MBean Under the Servlet Node

MSJSP PROCESS §_$}<3D5

-

MBEAMS
Object Mame:
= $X3U5 M5 15P: j2eeType=5ervlet, name=HTMLManager,
B NSJSP WebModule=//localhost/scaburl/manager,
B Servlet JZEEApplication=none, J2EEServer=none
et jsp Description: Wrapper that represents an individual
@ //localhost/sca6url Sl e
,"rnanager Compare across Processes Display Attribute Description
& none NAME VALUE
none classloadTime 6

enginehlamea [
errorCaunt 0

eventProvider false

loadTime 13

maxTime o

minTime B2 337203685477 5307
org.apache.catalina.core,

delerT
kol i StandardWrapper

MEJSP jZeeType=Serviet,
objectName name=HTMLManager,

WebModule=/focalhost/ scaburl/manager,
JZEEApplication=none, J2EESeryver=none

processinglime (0

requestCount 0

stateianageable false

Figure A-3 shows a tree view of the following MBean under the Valve node:

NSJSP:type=Valve,name=RequestTrackerValve,host=1ocalhost

where,

NSJSP is the domain.

type=Valve, name=RequestTrackerValve, and host=localhost are the

property-value pairs.

NonStop Servlets for JavaServer Pages

(NSJSP) 6.1 System Administrator’'s Guide—596210-006
A-6

MBeans in the NSJSP Container MBeans Representation in NSJSP Manager

Figure A-3. Tree View of an MBean Under the Valve Node

NSJSP PROCESS | X305 ' v

MBEANS
Dbject Mame: MSJSP bype=Yalve,
a $X3':'5 name=RequestTrackeriyalve,host=localhost
& N5JSP Description: Tracks the request related statistics and
Servlet figures,
B Valve Compare across Processes Display Attribute Description
B RequestTrackerValve

localhost

classMame com.hp.tandem.nsjsp. valves . RequestTri

containerMame MN515F:type=Host, host=localhost

modelerType com.hp.tandem. nsjsp.valves. RequestTri

As an exception, some MBeans might have properties with value none. For example,
the following MBean represents a servlet (J2eeType=Servlet) called jsp
(name=jsp) that is running in the context /sca6url, which is configured under the
Host, called localhost (WebModule=//1ocalhost/sca6url) and has two other
properties (J2EEApplication and J2EEServer) whose values are none:

NSJSP: j2eeType=Servilet,name=jsp,WebModule=//l1ocalhost/sca6url,
J2EEApplication=none,J2EEServer=none

When this MBean is expanded in the tree using the NSJSP Manager application, the
leaf node and the parent of the leaf node have the value none. The NSJSP container
tries to find a valid value for each of the property. If it does not find a value, the
property is displayed with value none.

Figure A-4 displays a tree view of the MBean, which is described in the example, with
the leaf node and its immediate parent node as none.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
A-7

MBeans in the NSJSP Container

MBeans Representation in NSJSP Manager

Figure A-4. Node with Value none

NSJSP PROCESS |$:305 v

MBEANS
Object Name;
= 5)(3':'5 N5J5P:j2eeType=Servlet, name=jsp,
B pMNSJSP YWebhodule=/flocalhost/scaburl,
B Servlet J2EEApplication=none, JZEEServer=nane
= 5P Cescription: Wrapper that represents an individual

B //localhost/scaéurl

Parent node and lesf
hode with value none

servlet definition

Compare across Processes Display Attribute Description

NAME VALUE
classLoadTime &
engineMame e
errorCount]

eventProvider false

loadTime T3

ma=Time 0

minTime Y22 33703680477 RR0T
org.apache.catalina.care,

delerT
(R ke StandardWrapper

M5 ISP j2eeType=5Servlet, name=isp,
objectMame WfebModule=/flocalhost scaburl,
JZEEApplication=none, J2EEServer=none

processinglime (0
requestCount 0

stateManageable false

The leaf node is a hyperlink. Clicking the leaf node displays the values of the MBean

attributes.

Figure A-5 displays the MBean attributes and their associated values.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

A-8

MBeans in the NSJSP Container MBeans Representation in NSJSP Manager

Figure A-5. Values of the MBean Attributes

Object Name:

M5 ISP 2eeType=5arviet, name=Manager, WebModule=//localhost/ scaburl/manager,
JZEEApplication=none, J2EEServer=none

Cescription: Wrapper that represents an individual servlet definition

Compare across Processes Display Attribute Description

classLoadTime 0

engineMame M5 ISP

errorCount 0

eventProvider false

loadTime 0

maxTl ime 1]

minTime B2 33703685477 RE07

modelerType org.apache.catalina.core. StandardWrapper

ML ISP j2eeType=5tervlet, name=Manager,
objectMame WebModule=//localhost/scaburl manager,

JZEEApplication=none, JZEEServer=none
processinglime 0

requestCount 0

stateManageable false

statisticsProvider false

To view the description of the attributes, click Display Attribute Description link.
Figure A-6 shows the description of the MBean attributes.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
A-9

MBeans in the NSJSP Container Commonly Used MBeans in NSJSP

Figure A-6. Description of the MBean Attributes

Compare across Processes Display Attribute Values

NHame Description

classLoadTime Class loading time

engineMame Fully qualified class name of the managed abject
errorCount Error count

eventProvider Event provider support for this managed object
loadTime Load time

maxT ime Mgsximum processing time of a request

minTime Minimum processing time of a request

modelerType Type of the modeled resource, Can be set only once
objectMame Mame of the abject

pracessinglime Total execution time of the servlet's service method
requestCount Flumber of requests processed by this wrapper
stateManageable State management support for this managed object
statisticsProvider Performance statistics support for this managed object

Commonly Used MBeans in NSJSP

This section lists the important MBeans and their attributes. You can use the following
MBeans to manage the Java resources that are deployed on a JVM:

® Thread Pool - Represents the connector thread pool.
The object name is:
NSJSP:name=http-0, type=ThreadPool

Table A-1 lists only the important attributes associated with Thread Pool. For more
information about the Thread Pool, see Chapter 3, Configuring NSJSP.

Table A-1. Attributes Associated with Thread Pool

Attributes Attribute Description Type Writable
maxThreads Introspected attribute Integer True
maxThreads.
currentThreadsBusy Introspected attribute Integer False
currentThreadsBusy
threadPriority
Introspected attribute
threadPriority
threadPriority — Integer True

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
A-10

MBeans in the NSJSP Container

Commonly Used MBeans in NSJSP

Note. The NSJSP Manager application does not display the contents in the columns Type and
Writable as shown in Table A-1. The values for the writable parameter are true or false. The
default value is true. The attributes, which can be changed, do not have the writable

parameter included.

® Host - Represents the configuration parameters of a Host called localhost.

The object name is:

NSJSP:host=localhost, type=Host

Table A-2 lists only the important attributes associated with Host. For more
information about the Host attributes, see the Host on page 3-54.

Table A-2. Attributes Associated with Host

Attributes Attribute Description

autoDeploy The auto deploy flag for this
Host name - Unique name of
this Host unpackWARs -
Unpack WARSs property.

unpackWARs —

name —

Type Writable
Boolean True
Boolean True
String False

® Request Dumper - Switches on or switches off the knob to dump incoming

requests.

The object name is:

NSJSP: type=Valve,name=NSJSPRequestDumperValve

Table A-3 lists only the important attributes associated with Request Dumper. For
more information about the Request Dumper attributes, see the Request Dumper

Valve on page 3-59.

Table A-3. Attributes Associated with Request Dumper

Attributes Attribute Description

dumperoOn Indicates the knob that
switches on or switches off the
dumper valve.

recordLength Indicates the maximum

number of bytes that is to be
dumped for each request.

Type Writable
Boolean True
Integer True

® Application Context - The MBean representing a context with name first and

deployed in the Host called localhost.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

A-11

MBeans in the NSJSP Container Commonly Used MBeans in NSJSP

The object name is:

NSJSP:J2EEApplication=none, J2EEServer=none, j2eeType=WebModule
,hame=//l1ocalhost/Tirst (application name)

Table A-4 lists only the important attributes associated Application Context. For
more information about the Application Context attributes, see Table 3-17, Attribute
List for the Context Element, on page 3-61.

Table A-4. Attributes Associated with Application Context
Attributes Attribute Description Type Writable

workDir Indicates the work directory for String True
this context.

® JSP Statistics - Provides statistics related to all the JSP pages in an application.

The following example of an MBean object name refers to the statistics for
executing JSPs in the /Servilets/examples context running in the Host called
localhost:

NSJSP: j2eeType=Servlet,name=jsp,WebModule=//1ocalhost/serviet
s/examples,J2EEApplication=none,J2EEServer=none

Table A-5 lists only the important attributes associated with the JSP Statistics.

Table A-5. Attributes Associated with JSP Statistics
Attributes Attribute Description Type Writable

minTime Indicates the minimum time to Integer False
process a JSP.

maxTime Indicates the maximum time to Integer False
process a JSP.

processingTime Indicates the processing time Integer False
that an NSJSP process takes
to process all the JSPs.

Note. This Appendix lists only those MBeans that are specific to NSJSP and might be
frequently used. To view the complete list of MBeans and the attributes associated with each
MBean under a particular domain, log on to the NSJSP Manager Application. In the Compare -
NSJSP MBeans page, type “domain:*" string in the MBean Object Name: field and click
Compare All Attributes. The list of MBeans for the specified domain will be displayed.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
A-12

Glossary

This glossary defines terms used both in this manual and in other HP manuals. Both
industry-standard terms and HP-specific terms are included.

Admin Server Class. Refers to one of the server classes configured with an installation of
NSJSP. Each installation of NSJSP results in 2 server classes. One server class will
host and process requests for user application and the other is used by the Admin
application. The server class that is used by the Admin Web application is referred to
as the Admin Server Class. With NSJSP 6.1, the name of the Servlet Server Class is
prompted for during installation and the Admin Server Class is called <svc>-adm
where svc is the name of the corresponding Servlet Server Class provided by the user
during installation.

Admin Web application. Itis a web-based application that is associated with an NSJSP
installation and enables you to examine and modify parts of some configuration files.

authentication. The process of identifying an individual, usually based on a username and
password. In security systems, authentication is distinct from authorization, which is
the process of giving individuals access to system objects based on their identity.
Authentication merely ensures that the individual is who he or she claims to be, but
says nothing about the access rights of the individual.

Apache Tomcat. A Java servlets and JSP container that is developed by the Apache
Software Foundation.

availability. The amount of time an application running on a Tandem system can be used
effectively by a user of that application.

browser. A graphical user interface (GUI) used to access sites on the World Wide Web.
Netscape, Internet Explorer, Mosaic, and Lynx are commonly used browsers.

CCITT (International Telegraph and Telephone Consultative Committee). A division of
the United Nations International Telecommunications Union that coordinates
standards-setting activities.

CGl. See Common Gateway Interface (CGI)

CERN. The European Laboratory for particle physics. The originators of the HyperText
Transport Protocol (HTTP) and HyperText Markup Language (HTML) concepts.

ClassLoaderLogManager. Container specific Log Manager, which conforms to the
java.util.logging Log Manager specifications.

client deployer. The client deployer environment enables you to run the ant script in the
remote workstation.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Glossary-1

Glossary CommerceNet

CommerceNet. A consortium that was formed in Silicon Valley to promote electronic
commerce over the Internet.

Common Gateway Interface (CGI). A standard protocol used as the interface between
web servers and the programs these servers use to process requests from web clients.

Commons Logging. A component of Apache Commons project that provides a layer of
abstraction over many popular logging implementations.

connection. The path between two protocol modules that provides reliable stream delivery
service. In the Internet, a connection extends from a Transmission Control Protocol
(TCP) module on one machine to a TCP module on another machine.

connector. Apache Tomcat component that enables Apache Tomcat to function as a web
server.

container. Apache Tomcat component that processes servlets and JSPs.

cookie. A message given to a Web browser by a Web server. The browser stores the
message in a text file. The message is then sent back to the server each time the
browser requests a page from the server. The main purpose of cookies is to identify
users and possibly prepare customized Web pages for them.

data sources. Resources that are used to perform database operations.

deployment descriptor. The web.xml file that contain resource definitions such as MIME
types, mapping of requests to servlets, access control and servlet initialization
parameters.

disk files. Standard POSIX or Guardian style disk files. The file names of POSIX disk files
comply with the POSIX specifications.

distinguished name (DN). The complete name of a directory entry, consisting of the
Relative Distinguished Name (RDN) of the entry and the RDNSs of its superior entries.

DN. See distinguished name (DN)

DNS. See Domain Name Server (DNS).

Document Type Definition (DTD). A DTD states what tags and attributes are used to
describe content in an SGML document, where each tag is allowed, and which tags
can appear within other tags. For example, in a DTD one could say that LIST tags can
contain ITEM tags, but ITEM tags cannot contain LIST tags. In some editors, when
authors are inputting information, they can place tags only where the DTD allows. This
ensures that all the documentation is formatted the same way.

Domain Name Server (DNS). A method for naming resources. The basic function of the
DNS is to provide information about network objects by answering queries.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Glossary-2

Glossary domain

domain. Namespace used to group MBeans that are registered with an MBean server.

DTD. ISee Document Type Definition (DTD).

EJB. ISee Enterprise JavaBeans (EJB)

Enterprise JavaBeans (EJB). Enterprise JavaBeans (EJB) is a Java API developed by
Sun Microsystems that defines a component architecture for multi-tier client/server
systems. EJB systems allow developers to focus on the actual business architecture of
the model, rather than worry about endless amounts of programming and coding
needed to connect all the working parts. This task is left to EJB server vendors.
Developers just design (or purchase) the needed EJB components and arrange them
on the server. Because EJB systems are written in Java, they are platform
independent. Being object oriented, they can be implemented into existing systems
with little or no recompiling and configuring.

Ethernet. A popular local area network (LAN) technology invented at the Xerox Corporation
Palo Alto Research Center. An Ethernet itself is a passive coaxial cable; the
interconnections all contain active components. Ethernet is a best-effort delivery
system that uses CSMA/CD technology. Xerox Corporation, Digital Equipment
Corporation, and Intel Corporation developed and published the standard for 10 Mbps
Ethernet.

fault tolerance. The ability of a HP NonStop system to continue processing despite the
failure of any single software or hardware component within the system.

File Transfer Protocol (FTP). The Internet standard, high-level protocol for transferring files
from one machine to another. Usually implemented as application-level programs, FTP
uses the TELNET and Transmission Control Protocol (TCP) protocols. The server side
requires a web client to supply a login identifier and password before it will honor
requests.

Filter. Provides fine-grained control over what gets logged, beyond the control provided by
log levels. The logging APIs support a general-purpose filter mechanism that allows
application code to attach arbitrary filters to control logging output.

Formatter. Provides support for formatting LogRecord objects. This package includes two
formatters, SimpleFormatter and XMLFormatter, for formatting log records in plain text
or XML respectively. As with Handlers, additional Formatters may be developed by
third parties.

FTP. See File Transfer Protocol (FTP).

gateway. A special-purpose, dedicated computer that attaches to two or more networks and
routes packets from one to the other. In particular, an Internet gateway routes Internet
Protocol (IP) datagrams among the networks to which it is connected. Gateways route
packets to other gateways until they can be delivered to the final destination directly
across one physical network. The term is loosely applied to any machine that transfers
information from one network to another, as in mail gateway.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Glossary-3

Glossary GESA

GESA. See Gigabit Ethernet ServerNet Adapter (GESA).

Gigabit Ethernet ServerNet Adapter (GESA). A A single-port ServerNet adapter that
provides 1000 megabits/second (Mbps) data transfer rates between HP NonStop™
systems and Ethernet LANs. A GESA can be directly installed in slots 51 through 54 of
an 1/0 enclosure and slots 53 and 54 of a processor enclosure.

Two versions of the GESA are available:

® 3865 GESA-C (T523572): a single-port copper version compliant with the 1000
Base-T standard (802.3ab)

® 3865 GESA-F (T523572): a single-port fiber version compliant with the 1000 Base-
SX standard (802.z)

Handler. Exports LogRecord objects to a variety of destinations including memory, output
streams, consoles, files, and sockets. A variety of Handler subclasses exist for this
purpose. Additional Handlers may be developed by third parties and delivered on top
of the core platform.

hierarchical routing. Routing based on a hierarchical addressing scheme. Most Internet
routing is based on a two-level hierarchy in which an Internet address is divided into a
network portion and a host portion. Gateways use only the network portion until the
datagram reaches a gateway that can deliver it directly. Subnetting introduces
additional levels of hierarchical routing.

high-availability. Continuous availability of service that NSJSP offers.

HyperText Markup Language (HTML). The tagging language used to format HyperText
documents on the World Wide Web. It is built on top of Standard Generalized Markup
Language (SGML).

HyperText Transport Protocol (HTTP). The communications protocol used for transmitting
data between servers and web clients (browsers) on the World Wide Web.

IEEE. See Institute of Electrical and Electronics Engineers (IEEE).

Institute of Electrical and Electronics Engineers (IEEE). An international industry group
that develops standards for many areas of electrical engineering and computers.

Internet address. The 32-bit address assigned to hosts that want to participate in the
Internet using TCP/IP. Internet addresses are the abstraction of physical hardware
addresses, just as the Internet is an abstraction of physical networks. Actually
assigned to the interconnection of a host to a physical network, an Internet address
consists of a network portion and a host portion. The partition makes routing efficient.

Internet Protocol (IP). The Internet standard protocol that defines the Internet datagram as
the unit of information passed across the Internet and that provides the basis for the
Internet connectionless, best-effort packet delivery service.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Glossary-4

Glossary Internet

Internet. Physically, a collection of packet-switching networks interconnected by gateways,
along with protocols that allow them to function logically as a single, large, virtual
network. When written in uppercase, INTERNET refers specifically to the DARPA
Internet and the TCP/IP protocols it uses.

interoperability. The ability of software and hardware on multiple machines from multiple
vendors to communicate meaningfully.

IP. See Internet Protocol (IP).

IPSetup. Itis the Windows application that enables you to transfer IP software from the
CD-ROM or other IP delivery medium (DVD) to a NonStop system.

iTP Secure WebServer. Creates Java Servlets that utilize the database and transaction
services infrastructure of the HP NonStop server.

<iTP WebServer Home>. Refers to the directory where iTP Secure WebServer is installed.

J2EE. See Java 2 Platform Enterprise Edition (J2EE)

Java 2 Platform Enterprise Edition (J2EE). J2EE is a platform-independent, Java-centric
environment from Sun for developing, building, and deploying Web-based enterprise
applications online. The J2EE platform consists of a set of services, APIs, and
protocols that provide the functionality for developing multitiered, Web-based
applications.

Java Database Connectivity (JDBC). The Java standard for access to relational database
like SQL/MX.

Java Naming and Directory Interface (JNDI). A standard extension to the Java platform,
which provides Java technology-enabled application programs with a unified interface
to multiple naming and directory services.

JavaServer Page (JSP). Server side technology that enables you to develop and maintain
dynamic web pages. It extends the functionality of web-based applications by providing
dynamic content from a web server to a client browser over the Hypertext Transfer
Protocol (HTTP).

Java Servlets. A server-side Java program that any World Wide Web browser can access.
It inherits scalability and persistence from the Pathway CGI server that manages it.
The Java class named servlets executes in server environments such as World Wide
Web servers. The Servlet API is defined in a draft standard by Sun Microsystems.

Java Thread. A part of a program that can execute independently of other parts. Operating
systems that support multithreading enable programmers to design programs whose
threaded parts can execute concurrently.

java.util.logging. The java.util.logging is a logging implementation provided as part of the
Java 2 Platform, Standard Edition (J2SE).

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Glossary-5

Glossary JDBC.

JDBC. See Java Database Connectivity (JDBC).

Java Management Extensions (JMX). Java technology that offers tools to manage and
monitor different types of resources such as an application.

JNDI. See Java Naming and Directory Interface (JNDI).

Joint Photographic Expert Group (JPEG). An image format used to transmit graphics on
the World Wide Web (WWW).

JPEG. See Joint Photographic Expert Group (JPEG).

JSP. See JavaServer Page (JSP)

JULI. The logging mechanism in NSJSP, which is inherited from Tomcat.

key database file. The file in which you maintain keys you generated using the keyadmin
command with either the -mkpair or -keydb argument. These are the keys you use to
generate certificates for software encryption. Compare WID keyfile.

Key Ex change Key (KEK). An encryption key used to encrypt other keys.

LDAP. See Lightweight Directory Access Protocol (LDAP).

Level. Defines a set of standard logging levels that can be used to control logging output.
Programs can be configured to output logging for some levels while ignoring output for
others.

Lightweight Directory Access Protocol (LDAP). An application protocol for querying and
modifying directory services running over TCP/IP wherein a directory is a set of objects
with attributes organized in a logical and hierarchical manner.

local area network (LAN). Any physical network technology that operates at high speed
(usually from tens of megabits per second to several gigabits per second) over short
distances (up to a few thousand meters).

Logger. The main entity on which applications make logging calls.

LogFactory. It detects the underlying logging implementation and creates the log instances
for the logging implementation detected.

Log interface. A Commons Logging component, which is an independent abstraction of the
underlying logging implementation.

Log Manager. Tracks the global logging information, which includes a hierarchical
namespace of the loggers.

logging.properties. A configuration file that enables you to initialize logging configuration.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Glossary-6

Glossary Log Record.

Log Record. Used to pass logging requests between the logging framework and individual
log handlers.

MBean attributes. A pattern in which an MBean provides the state and details of the
managed resource.

MBean object name. Itis a unique identifier of an MBean.
MBean server. A repository that stores all the MBeans in a JVM.

Migration. Transitioning the web applications from one NSJSP version to another NSJSP
version.

Netscape. See browser.

NonStop Kernel. The HP operating system, which consists of core and system services.
The operating system does not include any application program interfaces (APIs).

nowait mode. In Guardian file-system operations and in some APS operations, the mode in
which the called procedure initiates an input/output (I/0O) operation but does not wait for
it to complete before returning control to the caller. In order to make the called
procedure wait for the completion of the operation, the application calls a separate
procedure. Compare wait mode.

NonStop Servlets for JavaServer Pages (NSJSP). NonStop Servlets for JavaServer
Pages (NSJSP) are platform-independent server-side programs that programmatically
extend the functionality of web-based applications by providing dynamic content from a
webserver to a client browser over the HTTP protocol.

NSJSP Log Handler. The NSJSP Log Handler class offers configuration attributes for the
log messages and enables you to configure the message format.

NSJSP Manager application. Itis a web-based, Graphical User Interface (GUI) tool that
you can use to manage an NSJSP 6.1 installation within an iTP Secure WebServer
environment.

NSJSP servlet container. A servlet container is an executable program that supports
servlet execution. A servlet container provides an environment in which you can
deploy, execute, and manage web applications based on servlets or Java Server
Pages (JSPs).

<NSJSP_HOME>. Refers to the directory where NSJSP is installed.
object name. Itis the unique identifier of an MBean.

Open System Services (OSS). An open system environment available for interactive or
programmatic use with the NonStop Kernel operating system. Processes that run in
the OSS environment use the OSS application program interface (API); interactive
users of the OSS environment use the OSS shell for their command interpreter.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Glossary-7

Glossary OSS applications

OSS applications. POSIX compliant applications.

0OSS. See Open System Services (OSS).

packet. The unit of data sent across a packet-switching network. While some Internet
literature uses it to refer specifically to data sent across a physical network, other
literature views the Internet as a packet-switching network and describes IP datagrams
as packets.

PATHMON process. The central controlling process for a NonStop TS/MP application.

Pathway. The former name of NonStop TS/MP, a product providing transaction services for
persistent, scalable, transaction-processing applications.

Pathway domain. A logical domain having multiple replicated Pathway environments
grouped together.

physical layer. Layer 1 in the OSI Reference Model. This layer establishes the actual
physical connection between the network and the computer equipment. Protocols at
the Physical Layer include rules for the transmission of bits across the physical
medium and rules for connectors and wiring.

process. A running entity that is managed by the operating system, as opposed to a
program, which is a collection of code and data. When a program is taken from a file
on a disk and run in a processor, the running entity is called a process.

protocol. A formal description of the message formats and rules two or more machines
must follow to exchange messages. Protocols can describe low-level details of
machine-to-machine interfaces (for example, the order in which the bits from a byte are
sent across a wire) or high-level exchanges between application programs (for
example, the way in which two programs transfer a file across the Internet). Most
protocols include both intuitive descriptions of the expected interactions and more
formal specifications using finite state-machine models.

QIO subsystem. A product that provides buffers and control blocks for protocol processes,
including TCP/IP, TLAM, and NonStop IPX/SPX running on the same processor.

Realm. Represents a database of the information about authorized users, their passwords,
and their assigned access roles.

Request for Comments (RFC). The name of a series of notes that contain surveys,
measurements, ideas, techniques, and observations, along with proposed and
accepted Internet protocol standards. RFCs are edited but not referenced. They are
available across the Internet.

RFC. See Request for Comments (RFC).

sandbox. A protected memory space wherein a program cannot access outside resources
such as file or network services.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Glossary-8

Glossary scalability

scalability. The ability to increase the size and processing power of an online transaction
processing system by adding processors and devices to a system, systems to a
network, and so on.

Secure Sockets Layer (SSL). A protocol for private communication on the World Wide
Web and authentication of a web server by a web client.

servlet mapping. Itis the mapping between the URL and the servlet (configured to process
the requests matching that URL).

server. A process or set of processes that satisfy requests from web clients in a client-
server environment.

server class. A grouping of duplicate copies of a single server program, all of which
execute the same object program.

server process. A process that implements requests for an application and returns replies
to the requester.

server programs. In NonStop TS/MP, programs that handle the data manipulation and data
output activities for online transaction processing applications. Server programs are
designed to receive request messages from requester programs; perform the desired
operations, such as database inquiries or updates, security verifications, numerical
calculations, or data routing to other computer systems; and return reply messages to
requester programs.

servlet. A server-side Java program that any World Wide Web browser can access. It
inherits scalability and persistence from the Pathway CGlI server that manages it. The
Java class named servlets executes in server environments such as World Wide
Web servers. The Servlet API is defined in a draft standard by Sun Microsystems.

Servlet Server Class. Refers to one of the server classes configured with an installation of
NSJSP. Each installation of NSJSP results in two server classes. One server class
hosts and processes requests for user application and the other is used by the Admin
application. The server class that will host and process requests for user application is
referred to as the Servlet Server Class. With NSJSP 6.1, the name of the Servlet
Server Class is prompted for during installation.

session. A session, also called an HTTP session, provides the means to associate an
HTTP Client and an HTTP Server. This association or session, persists over multiple
connections or requests or both during a given time period. Sessions are used to
maintain the state and also user identity across multiple requests and connections. An
example of such a state is the contents of a shopping cart, which is stored in a session
object.

session object. Also called as a Java object. It is a medium to interact with client and
server.

setup script. An utility used to install NSJSP.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Glossary-9

Glossary Simple Mail Transfer Protocol (SMTP)

Simple Mail Transfer Protocol (SMTP). The Internet standard protocol for transferring
e-mail messages from one machine to another. SMTP specifies how two mail systems
interact, and specifies the format of control messages the two mail systems exchange
to transfer mail.

Single Point Management. Ability to manage multiple NSJSP server classes and user
applications using a single management application.

SSL. See Secure Sockets Layer (SSL).

STDERR. A value of the destination attribute. Logs can be written in STDERR.
STDOUT. A value of the destination attribute. Logs can be written in STDOUT.

subnet address. An extension of the Internet addressing scheme that allows a site to use a
single Internet address for multiple physical networks. Outside of the site using subnet
addressing, routing continues as usual by dividing the destination address into an
Internet portion and local portion. Gateways and hosts inside a site using subnet
addressing interpret the local portion of the address by dividing it into a physical
network portion and host portion.

subsystem. The software or hardware or both facilities that provide users with access to a
set of communications services.

TACL. See Tandem Advanced Command Language (TACL).

Tandem Advanced Command Language (TACL). The user interface to the Tandem
NonStop Kernel in the Guardian environment. The TACL product is both a command
interpreter and a command language.

Transmission Control Protocol (TCP). The Internet standard transport-level protocol that
provides the reliable, full-duplex stream service on which many application protocols
depend. TCP allows a process on one machine to send a stream of data to a process
on another. It is connection-oriented, in the sense that before transmitting data
participants must establish a connection. Software implementing TCP usually resides
on the operating system and uses the Internet Protocol (IP) to transmit information
across the Internet. It is possible to terminate (shut down) one direction of flow across
a TCP connection, leaving a one-way (simplex) connection. The Internet protocol suite
is often referred to as TCP/IP because TCP is one of the two most fundamental
protocols.

TELNET. The Internet standard protocol for remote terminal connection service. TELNET
allows a user at one site to interact with remote timesharing systems at another site
just as if the user’s terminal is connected directly to the remote machine. That is, the
user invokes a TELNET application program that connects to a remote machine,
prompts for a login ID and password, and then passes keystrokes from the user’s
terminal to the remote machine and displays output from the remote machine on the
user’s terminal.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Glossary-10

Glossary TLD

TLD. See Top-Level Domain (TLD)

Top-Level Domain (TLD). Refers to the suffix attached to Internet domain names. There
are a limited number of predefined suffixes, and each one represent a top-level
domain. Current top-level domains include:

® com — Commercial businesses; this is the most common TLD
gov — U.S. government agencies

edu — Educational institutions, such as universities

org — Organizations (mostly nonprofit)

mil — Military

net — Network organizations

Unicode. The 16-bit character encoding used by Java for the char and java.lang.String data
types.

user database. A database that contains user information, such as user names, passwords,
groups, and roles.

wait mode. In the NonStop Kernel operating system, the mode in which the called
procedure waits for the completion of an input/output (1/0O) operation before returning a
condition code to the caller. Compare nowait mode.

Web Container. a Java runtime environment that manages the lifecycle of servlets and JSP.

Web clients. Programs that execute on IBM-compatible PC, Apple Macintosh, or Unix
platforms, among others. They provide a graphic user interface (GUI) for access to
documents and programs on the Web. A web browser is the most familiar example of a
web client.

Web server. Web servers are programs that execute on a variety of server platforms. These
include IBM-compatible servers, Apple Macintosh servers, Unix servers, and a large
number of proprietary hosts. Web server functions can be divided into two parts. A file
server part performs normal file server functions such as file transfer and buffering. A
message switching facility allows messages from web clients to be forwarded to
application programs.

WID keyfile. The file in which you maintain keys you generated using the keyadmin
command with the -websafegen argument. These are the keys you use to generate
certificates for hardware encryption. Compare key database file.

World Wide Web (WWW) protocols. The WWW protocols were first defined by the CERN
project in Switzerland and were later extended by a number of groups, most notably by
the National Center for SuperComputing Applications (NCSA) at the University of
lllinois. These WWW protocols were originally developed to improve communications
over the Internet by providing the ability to access and display web-client

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Glossary-11

Glossary WWWwW

hardware-independent documents that not only contained ASCII text but that also
contained pictures, graphics, and voice and video elements. In addition to accessing
documents, the WWW protocols can also be used to provide document searching
facilities and also interaction with user-written or vendor-provided servers.

WWW. See World Wide Web (WWW) protocols.

XML. Short for Extensible Markup Language, a specification developed by the W3C. XML is
a pared-down version of SGML, designed especially for Web documents. It allows
designers to create their own customized tags, enabling the definition, transmission,
validation, and interpretation of data between applications and between organizations.

zero downtime. Continuous availability of service that NSJSP offers without any downtime.

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Glossary-12

— Index
A

accessDeclaredMembers permission 8-39
access,failure value 8-41
Admin Server Class 3-2
Admin Web Application
administering user definitions 4-79
groups 4-81
roles 4-82
users 4-80
architecture of 4-57
features of 4-59
login and security of 4-59
Admin Web Application operations
administering Host 4-67
administering Realm 4-71
administering resources 4-74
data sources 4-74
enviornment entry 4-76
mail session 4-75
resource link 4-79
user database 4-77
administering server 4-62
administering valve 4-72
Apache Axis2 1-3
Apache Tomcat 1-2, 1-13
archiveDirectory 5-7
Attributes of Server element 3-40

B

BANK_ CATALOG 3-19
base64 8-4
base64 encoding format 8-3

C

Catalina 1-13
catalina.base 3-22
catalina.home 3-22

CATALINA_HOME environment
variables 8-35

certificates 8-1
CLASSPATH 3-17
CLIENT-CERT 8-7
codeBase entry 8-35
CombinedRealm 8-8
Commons Logging 5-30
comparing management applications 4-92
components
in NSJSP servlet container A-1
com.tandem.servlet. CONTEXT_PREFIXES
3-26
com.tandem.servlet.nsjsp 3-23
Considerations 8-1
context definition 7-20
context initialization parameters 4-25
context.xml 7-14
Coyote 1-13
Creating an NSJSP installation 2-16/2-18

D

data theft 8-1
datePattern 5-7
Debugging Using Eclipse Platform 6-2
Debugging Using Java Debugger Tool 6-1
Default context 7-19
deploying applications

at startup 4-90

on a running NSJSP server 4-91

deploying web applications from
desktop 4-55

deploying web applications from
server 4-53

deployment descriptor 3-3
DiscardFileMapHistory 3-24

E

EnableJMXProxyServilet 3-24

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

Index-1

Index

F

FileHandler 5-10

Filemap 3-33

Filemap Directive 3-29

filemaps.config 3-33

formatter 5-2

form-based authentication
accessing a web resource 8-6

G

Generic servlet.config 3-6

H

handler 5-2

Hibernate 1-3
High-availability 1-11
HTTP/1.0 specification 8-3

Installation directories 2-20
Installation-Specific servlet.config 3-7
Installing NSJSP
ITP Secure WebServer environment
for 2-14
prerequisites for 2-1
Introduction 1-1
iTP Secure Webserver
configuration files required by 2-26
iTP Secure WebServer operations 4-85
iTP_catalina.policy file 8-35
I/O Info 4-38

J

JAAS _CONFIG_FILE 3-13
Java
security manager 8-35

Java Authentication and Authorization
Service (JAAS) 8-8

Java Database Connectivity (JDBC) 8-8

Java Management Extensions (JMX) A-1
Java Naming and Directory Interface
(JNDI) 8-8

Java Servlets 1-2

JavaServer Pages 1-2
javax.management.builder.initial 3-21
java.compiler 3-20

java.io.tmpdir 3-21

java.policy file 8-35

java.security.debug property 8-41
java.util.logging 5-1
java.util.logging.config.file 3-21
java.util.logging.manager 3-20
JAVA_HOME 3-18

JAVA HOME environment variable 8-35
jdbc.config 3-35
JDBC/MX T2 driver 2-2
JDBC/MX T4 driver 2-
JREHOME 3-18
JULI 5-5

JVCP 3-15
JVM_POLICY_FILE 3-12
j_password 8-6
j_security_check 8-6
j_username 8-6

L

LINKDEPTH 3-28

Load balancing 1-11

log files 5-27

Log interface 5-29

Log Manager 5-3

log rollover 5-6
archiveDirectory 5-7
datePattern 5-7
maxFileSize 5-6

LogFactory 5-28

Logger element 7-23

Loggers 5-1

logging architecture 5-1

logging.properties 5-20

NN

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

Index-2

Index

login form
action attribute 8-6
HTML fields 8-6

M

Manager Web Application 4-85
managing web application 4-26

reloading 4-28

starting 4-27

stopping 4-26

undeploying 4-29
maxFileSize 5-6
MAXLINKS 3-28
MAXSERVERS 3-28, 3-32
maxWaitTimeSecs 3-26
MBeans

domain A-2

in NSJSP container A-10

object name A-2

parameters in the NSJSP MBeans

page 4-45
Multiple NSJSP installations 2-26
MyFaces 1-3

N

NonStop SQL

database 3-84
NSJSP 1-2

ServerClass 3-3
NSJSP Formatter 5-5
NSJSP installation

directory structure of 2-20
NSJSP Log Handler 5-5
NSJSP Manager

architecture of 4-104

features of 4-2, 4-6

installtion of

2-21/2-22

removing installation directory 2-25

server class of
including multiple Hosts 4-100

supporting multiple NSJSP
installations 4-101

NSJSP Manager Application

comparing MBean attribute values 4-46
logging into 4-4
modifying MBean attribute values 4-50
selecting server class and Host 4-5
server class operations

freeze 4-42

start 4-41

stop 4-39

thaw 4-43

viewing application details for each
NSJSP process 4-14

viewing application summary 4-10
viewing configuration parameters 4-34
viewing context descriptor details 4-2

viewing deployment descriptor
details 4-22

viewing filter details 4-24

viewing HTTP method statistics 4-20
viewing initialization parameters 4-25
viewing MBeans 4-44

viewing NSJSP connector

statistics 4-33

viewing NSJSP process details 4-32
viewing server class information 4-30
viewing server class statistics 4-36
viewing servlet mappings 4-23
viewing sessions for an

application 4-16

viewing URI statistics for an
application 4-18

viewing web application statistics 4-8

=

NSJSP Manager Application Interface

attributes
in the Applications page 4-10
in the Filters page 4-25

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006

Index

in the HTTP Method Statistics
page 4-20

in the NSJSP Connector Stats
page 4-34

in the NSJSP Information

page 4-31

in the Process View page 4-16
in the Server Class Processes
page 4-32

in the Server Class Statistics
page 4-38

in the Servlet Mappings page 4-23
in the URI Statistics page 4-19

in the Web Application Deployment
from Desktop page 4-56

in the Web Application Deployment
from Server page 4-54

using the Application Summary
page 4-12
using the In-Memory Sessions
page 4-18
operations
using the Application Summary
page 4-11
using the Applications page 4-9
using the Compare - NSJSP MBean
page 4-49
using the In-Memory Sessions
page 4-17
using the Process View page 4-15
parameters
in the Compare - NSJSP MBean
page 4-50
in the Modify MBean page 4-52
in the NSJSP MBeans page 4-45
NSJSP Manager Web Application
security 8-41
NSJSP Servlet Container 3-1
nsjspadmin.config 3-30
NSJSPLockoutRealm 8-8
NSJSPLogHandler 5-11
NSJSP_CONFIG_FILE 3-19

NSJSP_DLL_PATH 3-17
NSJSP_HOME 3-12
NSJSP_JAAS_CONFIG 3-14
NSJSP_SECMGR 3-13
NSJSP_SECMGR_POLICY 3-13
NUMSTATIC 3-28, 3-32

O

online-upgrade 1-11
0SS
command 3-85

P

package.definition
property 8-40
permissions, assigning additional to web
applications 8-35
persistent session data 3-85
public key certificate 8-2
Public Key Certificate (PKC) 8-7

Q

Queue Info 4-37

R

Region Directive 3-28

Removing NSJSP installation
directory 2-25

Running the IPSetup program 2-2/2-13
Running the setup script 2-14/2-15

S

SaveSessionOnCreation 3-25

Scalability 1-11

secure channel 8-2

Secure Sockets Layer 8-2

security considerations 8-1

security exception 8-39

server class configuration parameters 4-36

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Index-4

Index

server.xml 3-37 W

server_objectcode 3-11

Servlet server class 3-1 web.xml 7-13

SERVLET BANK 3-16

Session 3-2 X

Session object 3-2 Xms 3-20
SessionBasedCookieExpiry 3-22 Xmx 3-19
SessionBasedLoadBalancing 3-22 Xss 3-20

setup script 1-4 X.509 certificate 8-2

signedBy entry 8-35

Spring 1.3 Special Characters
SSL 8-2, 8-3

StaticContentFilter 7-13 ${catalina.home} property 8-35
STDERR 5-27 ${java.home} property 8-35

Stderr 3-28 -Djava.security.manager option 8-35
STDOUT 5-27 _RLD_LIB_PATH 3-18

Stdout 3-28

T

TANDEM_FILEMAPS_CONFIG 3-18
TANDEM_HTTPD_SC_NAME 3-32
TANDEM_RECEIVE_DEPTH 3-19
TANDEM_SERVLET_SC_NAME 3-32
TANDEM_SERVLET_SC_PATH 3-32
TS/MP Pathway domain 4-102
TS/MP Server Class operations

start 4-89

stop 4-87

U

Updating NSJSP installation 2-24

User Application-Specific Filemap
Definitions 3-34

user credential 8-3

V

Verifying NSJSP Manager installation 2-23

NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’'s Guide—596210-006
Index-5

	NonStop Servlets for JavaServer Pages (NSJSP) 6.1 System Administrator’s Guide
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information

	About This Manual
	Who Should Read This Guide
	Organization of This Guide
	Related Manuals
	NonStop Servlets for JavaServer Pages (NSJSP) Manuals
	iTP manuals
	TCP/IP Manuals
	Open System Services (OSS) Manuals
	NonStop Transaction Services/MP (NonStop TS/MP) Manuals
	NonStop Java Manuals
	NonStop SQL Manuals

	Online Resources
	Notation Conventions
	Hypertext Links
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces
	Change Bar Notation

	Abbreviations
	HP Encourages Your Comments

	1 Introduction to NSJSP
	Overview
	NSJSP Product
	Apache Tomcat - A Container for Java Servlets and JSP
	The HP NonStop Servlet and JSP Container
	Installing NSJSP
	Installing NSJSP in Different Environments Using the setup Script
	An iTP Secure WebServer Environment
	An iTP Secure WebServer Environment Containing Older NSJSP Installations
	An iTP Secure WebServer Environment Configured for Online-Upgrade

	Configuring NSJSP
	iTP Secure WebServer Online-Upgrade Configuration Considerations for NSJSP

	Management in NSJSP
	Starting, Stopping, and Restarting the iTP Secure WebServer
	Modifying the NSJSP Configuration

	Securing Web Applications

	NSJSP Features
	Architecture
	Apache Tomcat Components
	NSJSP Architecture

	2 Installing NSJSP
	Prerequisites
	Installing NSJSP from the CD
	Running the IPSetup Program
	Running the setup Script

	Creating an NSJSP Installation
	Verifying the NSJSP Installation
	NSJSP Installation Directory Structure

	Creating an NSJSP Manager Installation
	Verifying the NSJSP Manager Application Installation

	Updating an NSJSP Installation
	Removing an NSJSP Configuration
	Support for Multiple NSJSP Installations in a Single iTP Secure WebServer Environment

	3 Configuring NSJSP
	Overview
	Configuration Files for the Server Classes
	The Generic servlet.config File
	The Installation-Specific servlet.config File
	Environment Variables
	server_objectcode
	NSJSP_HOME
	JVM_POLICY_FILE
	NSJSP_SECMGR_POLICY
	NSJSP_SECMGR
	JAAS_CONFIG_FILE
	NSJSP_JAAS_CONFIG
	JAVA_HOME
	JVCP
	USRCP
	SERVLET_BANK
	NSJSP_DLL_PATH

	Server Class Configuration using the Server Directive
	CLASSPATH
	JAVA_HOME
	JREHOME
	_RLD_LIB_PATH
	TANDEM_FILEMAPS_CONFIG
	BANK_CATALOG
	NSJSP_CONFIG_FILE
	TANDEM_RECEIVE_DEPTH
	Xmx
	Xms
	Xss
	Xnoclassgc
	java.compiler
	java.util.logging.manager
	java.util.logging.config.file
	javax.management.builder.initial
	java.io.tmpdir
	catalina.home and catalina.base
	SessionBasedLoadBalancing
	SessionBasedCookieExpiry
	com.tandem.servlet.nsjsp
	DiscardFileMapHistory
	EnableJMXProxyServlet
	SaveSessionOnCreation
	com.tandem.servlet.CONTEXT_PREFIXES
	maxWaitTimeSecs
	NUMSTATIC and MAXSERVERS
	Stdout and Stderr
	MAXLINKS and LINKDEPTH

	Miscellaneous
	The Region Directive
	The Filemap Directive

	The nsjspadmin.config File
	The filemaps.config File
	The jdbc.config File

	Configuration Files for the Servlet Container
	The server.xml File
	Server Element
	Child Elements Nested in the Server Element
	Listener Elements
	GlobalNamingResources Element
	Service Element

	The context.xml File
	The web.xml File
	Built-in Servlet Definitions
	Default Servlet
	Invoker Servlet
	JSP Page Compiler and Execution Servlet
	SSI Servlet
	CGI Processing Servlet
	Static Content Filter
	Session Timeout
	MIME Type Mappings

	Virtual Hosts
	Configuring Virtual Hosts

	Session Management
	Sessions in NSJSP
	In-Memory Sessions (SessionBasedLoadBalancing = true)
	Configuring In-Memory Sessions
	Considerations for Configuring In-Memory Sessions

	Persistent Manager Sessions (SessionBasedLoadBalancing = false)
	Configuring a Persistent Manager
	Set SessionBasedLoadBalancing to false
	Configure the Manager Element
	Create the Persistent Store
	Configure the Persistent Store

	Mixed-Mode Sessions
	Configuring Mixed-Mode Sessions
	Set SessionBasedLoadBalancing to true
	Configure the Manager Element

	Determining the Storage Capacity of the Persistent Store
	Determining the size of the session table
	Cleaning the NonStop SQL Session Data
	Partitioning the Session Table

	Configuring the Manager Element

	4 Managing NSJSP
	NSJSP Manager Application
	Overview
	NSJSP Manager Features
	NSJSP Security
	NSJSP Manager Operations
	Logging in to the NSJSP Manager Application
	Selecting the Server Class and Host
	NSJSP Manager Functions
	Viewing Information about Web Applications
	Viewing Application Summary
	Viewing Details of the Application for each NSJSP Process
	Viewing Sessions for an Application
	Viewing the URI Statistics for an Application
	Viewing HTTP Method Statistics
	Viewing Context Descriptor Details
	Viewing Deployment Descriptor Details
	Viewing Servlet Mappings
	Viewing Filter Details
	Viewing Initialization Parameters

	Managing Web Applications
	Stopping a Web Application
	Starting a Web Application
	Reloading a Web Application
	Undeploying a Web Application

	Viewing Server Class Information
	Viewing Details of NSJSP Processes
	Viewing Details of the NSJSP Connector Statistics
	Viewing Configuration Parameters
	Viewing Server Class Statistics

	Performing Server Class Operations
	Stop the NSJSP Server Class
	Start the NSJSP Server Class
	Freeze the NSJSP Server Class
	Thaw the NSJSP Server Class

	Viewing MBeans
	Managing MBeans
	Comparing MBean Attribute Values
	Modifying MBean Attribute Values

	Deploying Web Applications
	Deploying Web Applications from the Server
	Deploying Web Applications from the Desktop

	Admin Web Application
	Overview and Architecture
	Admin Web Application Features
	Login and Security Considerations
	Managing Admin Web Application Operations
	Administering the Server
	Administering a Service
	Administering a Connector
	Administering a Host
	Administering a Context
	Administering a Realm
	Administering a Valve
	Administering Resources
	Data Sources

	Mail Sessions
	Environment Entries
	User Databases
	Resource Links
	Administering User Definitions
	Users
	Groups List
	Roles List

	Access Security Considerations
	Persisting Changes to the server.xml File and Context Files
	Contents of the server.xml File
	Roll Back a Commit Change Operation

	Manager Web Application
	Operations Using the Command-line Interface
	iTP Secure WebServer Operations
	Server Class Operations
	Stopping NSJSP
	Graceful Shutdown
	Forced Shutdown

	Starting NSJSP

	Manual Deployment and Undeployment of Web Applications
	Deploying Applications at Startup
	Deploying Applications on a Running NSJSP Server

	Comparison of the Management Applications
	Comparison of Architectures
	Old Manager Application
	Admin Web Application
	NSJSP Manager Application
	Differences in Architectures

	Comparison of Features
	Comparison of Management Application Access Roles

	Single Point of Management Using the NSJSP Manager
	Multiple Hosts within a Server Class
	Multiple NSJSP Installations within an iTP Secure WebServer Environment
	NSJSP Installations in an iTP Secure WebServer Configured for Online-Upgrade

	The Architecture of the NSJSP Manager

	5 Logging in NSJSP
	Logging Architecture
	Loggers
	Handlers
	Formatters
	Log Manager

	Apache Tomcat Enhancements to the Logging Architecture
	NSJSP Enhancements to the Logging Architecture
	NSJSP Formatter
	NSJSP Log Handler
	Log Rollover
	Attributes Introduced to Configure Log Rollover
	Log Rollover Working
	Log Rollover Based on File Size
	Log Rollover Based on Timestamp
	The archiveDirectory Attribute

	Logging Configuration
	Configuring Handlers
	FileHandler
	NSJSPLogHandler
	Multiple Handler Definitions Using the same Handler Class

	Configuring Loggers
	Configuring the NSJSP Formatter Class
	Configuring for Log Rollover
	Configuring for Log Rollover Based on File Size
	Configuring for Log Rollover Based on Timestamp
	Configuring the archiveDirectory Attribute

	Configuring the logging.properties File
	Handlers in the logging.properties File
	Loggers in the logging.properties File

	Configuring Logging for the NSJSP Container and Web Applications
	Configuring Logging for Web Applications

	Log Files Related to NSJSP
	The out and err Log Files
	Log File Created by JULI

	Programming Considerations for Logging
	LogFactory
	Log

	Commons Logging

	6 Debugging NSJSP
	Debugging using Java Debugger tool
	Debugging using Eclipse platform

	7 Migrating to NSJSP 6.1
	Comparison of NSJSP 5.0, NSJSP 6.0, and NSJSP 6.1
	Comparing Installation Properties in NSJSP 5.0, NSJSP 6.0, and NSJSP 6.1
	Comparing Configuration Properties in NSJSP 5.0, NSJSP 6.0, and NSJSP 6.1
	Difference in the NSJSP 6.0 and NSJSP 6.1 web.xml files
	Difference in the NSJSP 6.0 and NSJSP 6.1 conf/context.xml files

	Comparing Management Properties in NSJSP 5.0, NSJSP 6.0, and NSJSP 6.1
	Comparing Logging Infrastructure in NSJSP 5.0, NSJSP 6.0, and NSJSP 6.1
	Logging Configuration of Servlet Container Components
	Logging Configuration in NSJSP 5.0
	Logging Configuration in NSJSP 6.0

	Comparing Miscellaneous Properties

	Considerations for Migrating Web Applications from NSJSP 5.0 to NSJSP 6.1
	Default Context
	Context Definition
	Session Manager Configuration
	Shared Application Resources
	Container-Specific Resources
	Application Modifications
	The Logger element
	The Logging API

	Compiling the Application
	Session Store
	Deploying Web Applications in NSJSP 6.1
	Application Deployed Using a context.xml File
	Application Deployed Using a .war File
	Application Deployed Using a Directory

	Considerations for Migrating Web Applications from NSJSP 6.0 to NSJSP 6.1
	Migrating the Session Store
	Migrating to NSJSP Manager Application in NSJSP 6.1
	Support for Multiple NSJSP Installations in a Single iTP Secure WebServer Environment

	8 Security Considerations
	Securing Web Applications
	Establishing a Secure Link
	Authenticating a User
	HTTP Basic Authentication
	HTTP Digest Authentication
	Form-Based Authentication
	HTTPS Client Authentication
	Realms
	JNDIRealm
	Connecting to the Directory
	Selecting the Directory Entry for the User
	Authenticating the User in a JNDIRealm Configuration
	Assigning Roles to a User
	JNDIRealm Attributes

	MemoryRealm
	MemoryRealm File Format
	Attributes in the MemoryRealm

	JDBCRealm
	Attributes in the JDBCRealm

	UserDatabaseRealm
	Attributes in the UserDatabaseRealm

	JAASRealm
	Attributes in the JAASRealm
	Configuring Authentication Using JAASRealm

	DataSourceRealm
	Attributes in the DataSourceRealm

	CombinedRealm
	NSJSPLockOutRealm
	Attributes in the NSJSPLockOutRealm

	Digested Passwords
	Single Sign-On

	Authorizing a User
	Web Resource Collection
	Authorization Constraint
	User Data Constraint

	Validating the Sender
	Remote Host Filter
	Remote Address Filter

	Java Security Manager
	Configuring the Java Security Manager
	Starting NSJSP with the Java Security Manager
	Securing NSJSP Resources Using the permissions Directive
	Package Protection in NSJSP
	Troubleshooting the Java Security Manager

	Manager Web Application and NSJSP Manager Security
	Using Realms to Implement Security
	Monitoring Server Classes and Hosts

	A MBeans in the NSJSP Container
	Prerequisites
	Overview
	Object Names and Attributes of MBeans
	MBeans Representation in NSJSP Manager
	Commonly Used MBeans in NSJSP

	Glossary
	Index

