HP pTAL Reterence Manual

HP Part Number: 523746-009
Published: Feb 2012
Edition: D44.00 and all subsequent D-series RVUs, all J-series, H-series, and G-series RVUs

© Copyright 2012 Hewlett-Packard Development Company, L.P.
Legal Notice
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial

Computer Software, Computer Software Documentation, and Technical Data for Commercial ltems are licensed to the U.S. Government under

vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall

not be liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S. Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone and The Open Group are trademarks of The Open

Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Matif, and Motif are trademarks of the Open Software Foundation, Inc. OSF MAKES
NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall not be liable for errors contained herein or for

incidental consequential damages in connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. The OSF documentation and the OSF software to which it relates are derived in part
from materials supplied by the following:© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.

© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990, 1991
Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992 International Business Machines Corporation. © 1988, 1989
Massachusetts Institute of Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990, 1991,

1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. © 1989,
1990, 1991 Transarc Corporation.OSF software and documentation are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. OSF acknowledges the following individuals and institutions for their role in its development: Kenneth
C.R.C. Amnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983, 1985,
1986, 1987, 1988, 1989 Regents of the University of California.

Contents

About This Document............cccoii 16
Supported Release Version Updates (RVUS)..........ccoiiiiiiiiiieiiiiiiiiee et 16
Intended AUIENCE.ooiuiiit it e e 16
New and Changed Information.............cooiiiiiiiiiiiii e 16

New and Changed Information for 523746-009..........cccouiiiiiiiiiieiiiieeeciee et 16
New and Changed Information for 523746-008...........cccuiiiiiiiiieiiiiieeeciie et 18
New and Changed Information for 523746—007..........cccciuiiimiiiiiiiiiie et 19
Document OrganiZAtioN.eeiiiiiii ettt 19
NOtAtON CONVENHONS. ...ttt e e 20
Syntax Diagram ConVENtONS.iiiiiiiie et 20
General Syntax NOTGHON.cciiiiiiiiie e e e e e eaaaee s 23
NOIGHON FOr MESSAGES. ... eeeiiiiiee ettt ettt e et e e ettt e e et e e e et eeeenereeeeennneeas 25
Notation for Management Programming Interfaces...............ooviiiiiiiiiiieiiiiie e 26
Related INfOrmMaHON.iiiiiiiiiii et 26
PUBIIShING HiISTOrY .. .coiiiiiiii et e e e e e e et ea e e 29
HP Encourages Your CommENtS.cceeeeiiiiiiiiiiiiiiiiiiiii ettt 29

T Introduction 10 PTAL.......ooiiiiiiiiieeee e 30
PTAL and TAL Compatibility........oooiiiiiiiii e e e e e e 30
EPTAL, PTAL, and TAL ComPilers.........oeeiiiiiiiiiiee ettt a e e 30
PTAL APPIICOHONS. ...ttt ettt e e e e ettt e e e e e et e e e e e e ntaaeeaeaeann 31
PTAL FEATUMES. ...ttt e et e e e e eeaaaans 32

PrOCEAUIES. ...ttt et e et e et e ettt e e e 32
SUBPIOCEAUIES. ... 32
Private Data ArEa......coiiiiiiiiiiii e 32
RECUISTON . ettt e e e e e e e e e et e e e e 33
POMGMETEIS. ... e 33
DIt Ty S, ettt 33
Data GrOUPING. ..ottt ettt ettt e e e e et ettt 33
POINMIEIS. ...ttt e e e et e e e et 34
DaAtA OPEIAIIONS. ...ttt et e e e e ettt e e e e e ettt e e e e et et e e e eaan s 34
Bit OP@rTtIONS. ...t e e e e et 34
BUIIHINT ROUNNES. ...ttt 34
COMPIlEr DIFECHVES. ...t e ettt e et e e et e e e e e et ee e e e e e enaraeeeens 34
Modular Programming..........cooueiie it 34
SYSTEBIM SEIVICES. ...ttt e ettt e e e e ettt e e e e e et e e e e e e eneaans 34
SYSIEM PrOCEAUIES. ... ittt e e e e e e e e e e e e e et a e e e e e e aaaa e s 34
PTAL GNA the CRE.....coiiiiiiie ettt e e e ettt e e e e et ee e e e e nnaneeeaeaeaans 34

2 Language Elements............uuuiiiiiiiiiiiiiiiiiiiiiii 36
(@ ToT (oo =YY= USSP SRRPP 36
KEYWOIS ...ttt e e et e e e e et e e e et e e e e e e a e e e e e e aaaaeens 37
DlIMIEIS. ..ttt e ettt e ettt e e ettt e e e naeeeeennes 38
L@ o= (o (o £ UUPPPTR 39
Base Address Symbols...........oooiiiiiiiiiii e 40
INdirecion SyMbOlS..........uiiiiiiii e e e e 41
DYoo Te [T TSRS UPPPP 41

1o LT 1 1= S PSPPSR UUPPPRRPPR 42
VAHADIES ...t 43
R YT o 1= SRR SPPPPRI 43
Typed Infeger CONSIANTS.iiiiie ettt e et e e e e ettt e e e e e ettt e e e e e e enenneeeeeas 44
SHAEEMENES. ... e 45

Contents 3

3 Data Representaion...........ooeeiiiiiie e 46

DOt TYPES. .ttt ettt e e 46
SPECHYING DA TYPES. .. evviiieeeeiiiiii ettt e et e e e et e e e e e et e e e e e e enraaeaeas 47
Data TYPE AlIGSES......iviviiieeeieiieie ettt e et e e e e e ettt e e e e et a e e e e e e rraaaeeeeaans 48
Operations by DAt TYPe........cceiiiiiiiiie et 48

AAAIESS TYPES.....eviiiiiiieee ettt e e e e e e e e e e e ettt e e e e e e e e e e e e e e e et aaarraaeaes 49
Storing Addresses in Variables.............coooiiiiiiiiii e 51
Converting Between Address Types and Numeric Data Types..........ccoevviiiiiiiieeiiiiiiiiieeeeeeiiiee. 51
Converting Between Address TYPes.........cooiuiiiiiieiiiiiiiiie et 52
Using Indexes to Access Array Elements..........cooiiiiiiiiiiiiiiiiiice e 54
Incrementing and Decrementing Addresses (Stepping Pointers).............ccoovviiiiiiiiieiniiiieieiiennn 54

CONSIANTS ettt e e e 57
(@ TeTroTet TN (T3l TR SRR PRPRTS PP 57
STRING INUMEIIC. c.ccceiiiiiiii et 58
INT INUMEIIC. .. e e e e e e e e e ettt e e 58
INT(32) NUMEIIC. ..uniiiiiiie e e e e 59
FIXED INUMEIIC. .ottt e e e e et et e e e eeeeaaeaes 61
REAL and REAL(64) NUMETIC.vviiiiiiieeeee e ettt e e 62
CONSIANT LISTS. .ttt ettt 63
Constant List Alignment Specification..............coiiiiiiiiiiiii e 64

4 Data AlIgNment........oooiiiiii 66
Misalignment Tracing FOCility........oooiiiiiiiiii e 66
Misalignment Handling.........cooouiiiiiiiii e 67

I o {1 =T Y [S PP 69

Data TYPes Of EXPrESSiONS.civviieeiiiiee ettt ettt e et e e e et e e et e e e et eeeesnaaeeeennsaeeeens 70

OPErator PreCeAENCE.t e as 70

ArTRMEHC EXPrESSIONS.eiiiiiiiiiiie e ettt e et e e e e e ettt e e e e e et e e e e e e e enaaeeeeas 72

Signed Arithmetic OPEralOrs.oiuiiiiiiiiie ettt ettt ettt et e e e e eeaeeeeens 73
Scaling of FIXED Operands..........cccuuiieiiiiiieeiiiiee ettt e e neae e e 74
Using FIXED(*) Variables............oooiiiii e 74

Unsigned Arithmetic Operators.............eiiiieeiiiee e ettt e e e et e e e e e e eteeaeaeaeenes 75
Bitwise Logical OPerators.............iiiiiiiiiiiiiee ettt e e e e 76
Using Bitwise Logical Operators and INT(32) Operands.............ccccuviiiieiiiiiiiiiieeeieiiiieee e, 76

COMPANING AQAIESSES.eeuiiite ettt ettt e e et e ettt e e ettt e e ettt e e et eeeeneaeeas 77
Extended AdAresses.uiiiiiiiieiiiiie et 77
Nonextended Addresses.uiiiii it a e 78

CONSIANE EXPIESSIONS. ...ttt ettt e e e e e e e e e e e e e eeeeeeaanes 81

CoNdIHONAI EXPIESSIONS.vviiieeeeeiiiiii et e ettt e et e e e et e e e e e ettt e e e e e et eeeeesaennnsaeeeeas 81
NOT, OR, aNd AND OPEIOIOrS.ccciiiriiiieeeeeiiiiiieee e e ettt e e e e e eiiaaeeeeeesetrereaeeeesaraaeeeaeaanns 82
RelGHONAl OPEIQIOS. ... vviiiiiieiiiiii et e e et e e e e e etaaaeeeeeeaes 83

SPECIAl EXPrESSIONS. ...ttt ettt ettt e e e ettt e e e e ettt e e e e e et e e e e e e aeeeeaeaa 85
ASSTIGNMIMENT. ..ottt ettt s 85
CASE ettt e e e bt e e et e e et aeeeaanaeas 86
SRS RSPUPPRRPRN 87
GroUP COMPAIISON.....eiiiiiie ettt e et e e e ettt e e e ettt e e e e eeeaai e e eeeeees 88

Bit OPEIAIIONS. ...ttt e e 92
Bit EXIOCHONS. ...ttt 93
Bit Shifts. ... 94

6 LITERALs and DEFINES........ouuuieeeeiieeee e 97

Declaring LHEralS.couueiiiieee e e e a e e 97

Declaring DEFINES.........uuiiiiiiiiiiiiie ettt e ettt e e e e ettt e e e e e et teeeeeeeenntsaaeeaaeaan 98

CalliNG DEFINES. ...ttt ettt ettt e ettt e et e e st e e et e e 100

How the Compiler Processes DEFINES...............ccooiiiiiiiiiiiiiiiiiiie e 100

4

Contents

Passing Actual Parameters 1o DEFINES..............coooiiiiiiiiiiiiiiiiiice e 100

7 Simple Variables..............oooiiiii 103
Declaring Simple Variables.ccc..iiiiiiiiiie e 103
Specifying Simple Variable Address Types.........cccuuiieiiiiiiiiiiiiiieeiie e 105
Initializing Simple Variables With Numbers...........cccvviiiiiiii e 105
Initializing Simple Variables With Character Strings..........ccuviiiiiiiiiiiiiiiceiie e 105
EXAMPIES. ... e e e e e e e e a e e e e e naraaaaeaaas 105

B N (01 UPPUUSPPRSPPIN 108
DCIAING AITAYS. ...ttt ettt ettt e et e et e e ettt e e ettt e e e ettt e e et eeeenaaeae s 108

Declaring Read-Only Arrays..........ooeii it e e ee e 111
Using Constant Lists in Array Declarations................oooiiiiiiiiiiiiiiiiee e 113

D SHTUCHUIES . e 114

SHUCHUIE LOYOU. ...ttt e et eeeeeaaas 115
Overview of Structure AlIGNMENt..........oiiiiiiiiiiiii e 116
Structures Aligned at Odd-Byte Boundaries.uieiiuiiiiiiiiiie et 117

Overview of Field AlIGNment............ooiiiiiiiiiiie e 117
SHAREDZ. ..ottt ettt e e et e e e aaaaanns 117
SHAREDS ...ttt 118
PLATFORMttt ettt ettt et e 118
AUTO . e et e ettt e et eeeeaaaa 118
Differences Between PLATFORM and AUTO.........ccoiiiiiiiiiiiieeiiite et 119

Field and Base AlIGNMENt........ooiiiiiiiiiee e 119
Base AlIGNMENT....co et e e aea e 119
Structure Alignment EXAmPIes...........oiiiiiiiiiiiiii e 120

Array AlIGNmeEnt in SHUCIUIES.iiiiiiiiiiie ettt e e e et e e e e e e eenaeeeas 122

SHUCHUIE AlIGNMENT. ...ttt et e et e et e e e nbee e e 123

Substructure AlIGNMENT.........oiiiiiiii e 124

Alignment Considerations for SUbSITUCIUTES..........cccuuiiiiiiiiiiiiie e 126

FIELDALIGN ClaUSE.vvviiiiiiiiieee et e e e ettt e e e e e e e e aeeeeaeeeaans 127

FIELDALIGN Compiler DIireCtiVe.viiieeiiiiiiiiee e et e et e ettt e e e et e e e e e eneaaaeeaeeeas 127

SHAREDZ PArGMETET. ... e 128

SHAREDS PArGMETET. ...t eeee 129
AlIGNment of Fields.ooiiiiiiieii e 131
Optimizing STUCtUre LAyouts.ooiiiiiiiiiiii e 131
SHUCHUIE LENGHN....eiiiiiii et e e e e 132
Alignment of UNSIGNED(17-31) Fields..........cccvviiiiiiiiiiiiiiieeciee e 133

Reference Alignment With Structure Pointers...........cccuvviiiiiiiiiiiiiiic e 134
REFALIGNED ClAUSE.vviieeiiiiiiie e ettt ettt e et e e e e e et e e e e e e e nnbsraeaeeeas 134
Default Reference AlIGNment.........ocuiiiiiiiiiiiiiie e 135
REFALIGNED(2). v oeveoeoeeoe oo 135
REFALIGINED() v v 136
Code Generation for Structure References.............ccceiiiiiiiiiiiiiiiiiicc e 137

STRUCTALIGN (MAXALIGN) AHFBUIE. ...ttt 137

VOLATILE AHTIDUE. ... 138

Declaring Definiion SIUCHUIES........ooviiiiiiiiie ettt e e s 138

Declaring Template SHUCHUES.eiiiiiii et 139

Declaring Referral StrUCHUTES.coiuiiiiiiiiie et 141

Declaring Simple Variables in Structures.............coooiiiiiiiiiiiii e 142

Declaring Arrays in SHUCHUIES.uiiiiiiiiiiiiie et e et e e e e e et e e e e e e e eaabaeeaeeeas 143

Declaring SUBSITUCIURES.coiuiiii ittt e 144
Definition SUBSITUCIUIES.ciiiiiieiiiii et e et e s 144
Referral SUBSITUCIUTES.........oiiiiiiie i 146

Declaring FIller......ooo e e e e e e 147

Contents 5

Declaring Simple Pointers in SHUCHUIES.iiiiiiiiiiiiiiiee et 148

Using SImple POINIErS.ciiiiiiiiiiiee et e 149
Assigning Addresses 1o Pointers in SIrUCHUIES........c.uviieiiiiiii i 150
Declaring Structure Pointers in SHUCHUIES..........oiiiiiiiiiiiiee e 151
Declaring Redefinitions..........ccouuiiiiiiiii et 153
Simple Variable. ... 153
N 4 PRSPPI 154
Definition SUBSIUCIUIE.......ooiiiiiiiii e 155
Referral SUBSITUCIURE. uiiiiiiiiee e 157
SIMPlE POINIET. ...ttt e e e e e e et e e e e e e e e e e e e e 158
SHUCIUIE POINTEI. ..ottt 159
TO POINEEIS. .. 161
Overview of Pointer Declaration..............oooiiiiiiiiiee e 161
Declaring VOLATILE POINTETS.eceiiiieeiiiiie e ettt ettt et e e e e e e enaaeee s 163
SIMIPIE. et e et 163
SHTUCIUIE et 164
AQAIESS TYPES. ..ottt e e et e et e e e et e e e e e et e e e e e e nnaaeeas 164
BADDR aNd WADDR ...ttt e 167
SGBADDR, SGWADDR, SGXBADDR, and SGXWADDR (System Globals)cccooovnnnnen... 167
PROCADDR, PROC32ADDR, and PROC64ADDR (Procedures, Procedure Pointers, and Procedure
BNy POINES) o 168
Subprocedures, Subprocedure Entry Points, Labels, and Read-Only Arrays (CBADDR and CWADDR
AArESS TYPES). ..t ee ettt ettt e ettt e e et e e e e e et e e e e e e et eeaeeeannees 169
EXTADDR, EXT32ADDR, and EXT64ADDR (Extended Addresses).............uvvvvveviiiiiiiiiiiiiiiaanen, 169
Declaring Simple Pointers..........oouviiiiiiiiiiiie e 170
Initializing SIMPle POINETS.c.uiiiiiiiiie et 172
Declaring SHUCIUIE POINTEIS.viiiiiiie ettt e e e 173
INitializing SIUCIUIE POINIEIS. ...ttt e e eeeee e 174
Declaring System Global Pointers............coouiiiiiiiiiii e 176
11 Equivalenced Variables..............oooiiiiiiiiiiiii 177
Declaring Equivalenced Variables..............c..ooiiiiiiiiiiiii e 178
MeEMOrY AllOCAHON.ciiiiiiiiie ettt e e e et e e e e e et e e e e e e araaeeeeeas 179
Declaring Nonstructure Equivalenced Variables...............oooiiiiiiiiiiii e 180
Memory Usage for Nonstructured Equivalenced Variables...............ccooociiiiiiiiiii, 181
EQUIVAIENCEA AITOYS. ... ettt e e e e e e e eeea e 181
INAIFECE ATTQYS. ...eeeeeiieeiie ettt e e ettt e e e e et e e e e e et e e e e e e enntabeeeeeeeennrseaeaaeaas 182
Equivalenced Simple Variables.............ccc.ooiiiiiiiiiiii e 182
Equivalenced Simple POINTErs............cooiiiiiiiiieiiiiie e 183
Equivalencing Procedure Addresses (PROCADDR, PROC32ADDR, and PROC64ADDR) and Pointer
Variables (PROCPTR, PROC32PTR, and PROCOHAPTR).......ccoeieiiiiiiiiiiiiiiieeeeeee e 187
Declaring Equivalenced Definition StrUCIUIEs.covviiiiiiiiiieeiiiie e 188
SHUCHUIE VaMQNES. ..ottt ettt 191
Memory Usage for Structured Equivalenced Variables.................oooooviiiiiiiiiiie 192
FIELDALIGN ClOUSE. ... vvitiieeeeiiiiie ettt e et e e e e et a e e e e e e abaraeeeeeas 193
System Global Equivalenced Variable Declarations..............ccccvviiiiiiiiiiiiiiiiiiiciiiiee e 193
Equivalenced Simple Variable..............c..ouviiiiiiiiii 193
Equivalenced Definition SIrUCHUE.oiiiiiiiiiiiic e 194
Equivalenced Referral Structure............coouviiiiiiiiiiiiiic e 195
Equivalenced Simple Pointer.............cooiiiiiiiiiiiiiiie e 196
Equivalenced Structure PoINter............cooiviiiiiieiiiiiie et 197
12 SHOTEMENTS. ... 199
Using Semicolons in SIatements..........ooii it 199
COmMPOUNT SHAIEMENTS. ...ttt e e ettt e e e e e ettt e e e e e et eeeeeeeneneeeeas 200

o) Contents

A SR T e 200

ASSIGNMENT. ..ottt ettt eeeeeeee 201
Poinfer ASSIGNMENT.......oiiiiiiiiiiiiiiii e e e e et et 203
Assigning Numbers to FIXED Variables...............oooiiiiii e 203
AssigNing Character SHINGS.oeee ittt e et e e e e e e e e 203
EXAMPIES. ...t e e e et aa e e e 203

Bit-Deposit ASSIGNMENT......uuiiiiiiiiiti et 204

CALL ettt e ettt e et e e neaeas 205

CASE et et e et e et e e et e e na e e e ennes 207
YoV O Y PSSR 207
Labeled CASE......co et e e e e e e raea e 207
Unlabeled CASE...... .o e e 209

DIO-UNTIL. ¢ttt et e e et e e ettt e e ettt e e ettt e e et e e e et e e e e enaaeeeans 210

DR P et 212
Dropping Labels........cooiiiiii e 212
Dropping Temporary Variables.............c..eiiiiiii e 212

R ettt e et e e e ettt e e e tab e e e et b e e e e bt e e e antbeeeenntreeeenns 212
INESIEA. .ttt et e et ean 213
R foTiTs [T7c F PSPPSR SUPSUUUUPRURPRS 214
OPHMIZE. ..oiiiiieiiee et e 214

(C @ 1 © 2 PSPPSR SPPRR 215
oY <lo | PSSRSO PRSP 215
INONIOCAL. ..ttt e e et e e e e e e e e e e 215
GOTO and Target Statements With Different Trapping States.............cocvvieviiiiiieiiiiiieeiiieeeenne, 216

L ettt et e e a bt e e ettt e e ettt e e et et e e et e e e enees 217
TESHNG AQArESS TYPES. . .eeeiiiiieeeitiee ettt ettt e ettt e ettt e e ettt e e e ettt e e e enteeeeeeneeeeens 218
Testing Hardware INdicators.iiiiiiiiiiiiicee et 218

VIOV et e e et 218

Destination Shorter ThAn SOUFCE........iiiiiiiiiiiiie et e e 222

SFILL8, SFILL16, and SFILL32 SOt@MENS.ceeeeeeeeeee e 222

RETURN . ettt ettt et e ettt e e ettt e e et e e e et e e e entt e e e entteeeenees 223
FUNCHONSttt 224
Procedures and SUbProcedures.cccuuvviiiiiiiiiiiii e 225
CONAIHON COUES. ...ttt ettt e e e ettt e e e e et e e e e e enneaeeeas 225

SCAN AN RSCAN. ...ttt e ettt e e e ettt e e e e e e e nsbeeeeennbaeeeenneas 228
Determining What Stopped @ SCaN.........vviiiiiiiiii e 230
EXIENAEd POINTEIS.eeiiiiiiieiiie et e 230
Crossing Variable Boundaries...............oiiiiiiiiiiiiii e 230
PoREIGHIVE ATTQYS. ...t e e 231

U] = TSP PPPRRPP 232

[TA Y 1 1 PSP UPPPTR 232

13 Hardware Indicators.uuuiiiieieeiiiiiieee e 234

Managing OVertlow TraPS........cooiuuiiiiie ettt e ettt e e e et e e e e e eaaaaeeeeeeas 234
[NO]JOVERFLOW_TRAPS Procedure Attribute................oooviiiiiiiiiiiiieeeeeeeeeeee 234
[EN | DISJABLE_OVERFLOW_TRAPS Block Aftribute..........ccuvviiiiiiiiiiiiiiiieiiiiiee e 235

Hardware Indicators After ASSIGNMENTS.coiuiiieiiiiiie it e et e et e e et e et ee e e e e aaaee s 236
SOVERFLOWt e e e e e e e e e e e et 236
B A RRY et e et e e e e 236
CONAIION COUES......eteeiiee ettt e ettt e et e e ee e 237

Hardware Indicators in Conditional EXpressions...............ccoviuvviiieeeiiiiiiiieeeeeeiiiiiee e eeeiiieee e 239

Nesting Condition Code TESIS.......coiuuiiieiiiiie et e ettt e e e et e e et e e e e e e sennaeeens 242

Using Hardware Indicators Across Procedures...............ooeiiiiiiiiiiiiiiiiiiii e 244
Testing a Hardware Indicator Set in the Calling Procedure..............ocooiiiiiiiiiiiiie 244
Returning a Condition Code to the Calling Procedure...............ccooviiiiiiiiiiiiiiiiiieeeeee 244

Contents 7

Returning the Value of $OVERFLOW or $CARRY to the Calling Procedure..........c.cocoviviennnnen. 245

14 Procedures, Subprocedures, and Procedure Pointers..................ovvveeennn... 246
Procedure Declarations............c..iiiiiiiii et 246
Procedure ARMDUIES.iiiii e 248

Parameters and VARIABLE and EXTENSIBLE Procedures...........cccoouviiviiiiiiiiiiiiiiiiieeeeeeeeeeee 250
VARIABLE, EXTENSIBLE and RETURNSCC Procedures as Actual Parameters..............cccceeeeein. 251
Formal Parameter Specification.............cooiiiiiiiiiiiiiiie e 251
Using STRUCT as a Formal Parameter...........cccuiiiiiiiiiiiiiiieeeice e 255
Passing an Extended Address Parameter to a Non-EXTENDED Reference Parameter.................. 255
Using the PROC Formal Parameter.............ooiiiiiiiiiiiie et 256
Referencing ParamEters.........c.uuiiiiiiiiiiiiiiie e 256
ProcedUure Body.........coiuiiiiiie e e e e 256
Subprocedure Declarations................iiiiiiiiiiiiiie e 257
SUBPrOCedUre BodY......cuiiiiiiiieiiiiiee e e 259
Entry-Point DeclaratONS.coiiiiiiiiii ettt 260
Procedure Entry-Point Identifiers............cccvviiiiiiiiiiiiii e 260
Subprocedure Entry-Point Identifiers................ooiiiiiiiiiiiiiiiii e 262
ProcedUrE POINTEIS.ceiiiiiieiie e ettt e 263
Declaring Procedure Pointer Variables..............coooviiiiiiiiiiiiiiiceece e 266
Declaring Procedure Pointers in SHUCIUIES.cc.uuiieiiiiiiieiiiiie e 267
Declaring PROCPTRs as Formal Parameters............cc.uoieiiiiiieiiiiiieiiiie e 268
Assignments 10 Procedure POINTEIS.ciiiiiiiiiiie e 269
Dynamically Selected Procedure Calls...........coooiiiiiiiiiiiieee e 271
Labels in ProcedUres.oiiiiiiiiiiii e 273

15 BUilt-ln ROUHNES.....coiiiiiiiiiiiieee e 274
Privileged Mode.ooiiiiiiiiei e 274
POTGIMETETS. ...ttt 275

Addresses as Parameters.oeiiiiiiiiiie e 275
EXPressions as Parameters.coiiiiiuiiiiii i 275
HArdware INIiCOtOrs.uiiiiiiie et 276
ALOMIC OPEIAHONS ..ttt ettt ettt e e ettt e e e e e eaata e e e 276
SATOMIC_ADD......ceeeiiiiee ettt ettt e et e e et e e et e e e et ee e e 276
SATOMIC_ANDooiiiiieiiiiiie et e e e e et e e e e e et ae e e e e e eeanes 277
SATOMIC DEP.......oeiiiiiiiee et e e e e e e e e et e e e e e e e e e e e eeeeeeeeeananees 278
SATOMIC _GET ...t e e e e e e e et e e e e e e e e e e 279
SATOMIC_OR.....ieeeee ettt et e ettt e et e e eneeeeas 280
SATOMIC _PUT ..ottt ettt e et e ettt e e et e ettt e e et eeeneeees 280
NONGIOMIC OPEITGHONSeuiieee ettt ettt e ettt e e e e e eaba e e eeeeeeens 281
PTAL Privileged ROUNNES.coiiiiiiiiiiiie et 281
Type-Conversion ROUNINES.uuiii i e et e e e e e et e e eeeeeeees 282
Address-Conversion ROUHNES..............iiiiiiiieiiiiieeccciiee e 283
Character-Test ROUNNES.coiuiiiiiiiiite ettt e e 284
Minimum and Maximum ROUNNES.cooruiiiiiieeiiiiiie et 285
AThMEHC ROUNES. ..ttt et e et e et e e 285
Carry and Overflow ROUHNES............oiiiiiiiiiiiiiii e 285
FIXED-EXPression ROUHNES.ceeeiiiiiiiie e e e e e 285
Variable-Characteristic ROUHNES.uvviiiiiiiiiiiiiiiieeeeeeecec e 285
Procedure-Parameter ROUHNES.uiiiiiiiiiiiiiiiee e 286
Miscellaneous ROUNINES.coiuiiiiiiiiiie it 286
B A B S et e et e et e et e et e e 291
BALPHA ettt e e et e et e 291
SASCHTOFIXED.......cciiiieeeee et ettt e e e e e e e e e e e e e e e e e e eseesassssseeeeas 292
SAXADR. ...ttt e e e e e e e e e e e e e e e e e e aaaes 293
$BADDR_TO_EXTADDR.itttteiiitte ettt ettt et e e e 294

8

Contents

SBADDR_TO_WADDR.......coiitiiiitie ittt e 294

BBITLENGTH. ...ttt ettt et 295
B BITORFSET ..ttt ettt ettt ettt 296
B ARRY L et 297
SCHECKSUM ...ttt et 297
BCOMP .. 298
SCOUNTDUPS.....ct ettt ettt et ettt e s en 299
B DB L ettt e 300
BDBLL. ettt 301
BDBLR. .ttt et e et e e 301
B DR IX ettt et e et e e 302
8] = U USPP PR RUPS 302
B E TR et 303
FEXCHANGE. ...ttt ettt e et e et e e et e e e e e 303
SEXECUTEIOttt ettt ettt ettt e ettt e ettt e e ettt e e ettt e e e ntaeeeenneees 304
SEXTADDR _TO_BADDR. ...ttt ettt et e e 305
SEXTADDR_TO_WADDR. ...ttt ettt et e e 306
$EXTOAADDR_TO_EXTADDR.....cciuitiiieiiiit ettt ettt e s 306
$EXTOAADDR_TO_EXT32ADDR.ciiiiiiiieeeiiie ettt e s 307
$EXTEAADDR_TO_EXTI2ADDR_OV ..ottt 307
$SEXTADDR_TO_EXTOAADDRooeiiiiiieiiiit ettt ettt e e e e entae e 308
$FILL8, SFILL1S, and SFILL32oiiiiiiiiiiiii e 308
8] PSPPSR UP PP UPUPPRRPPPR 309
BFIXD ..ttt et e s 309
SFIXEDO_TO_EXTOAADDR. ...ttt 310
SFIXEDTOASCIL .ttt ettt e 310
SFIXEDTOASCHRESIDUE. ...ttt ettt 311
B DXL e 312
BFIXL. et e et e 312
B DX R ettt e et e e e e 313
B LT ettt 314
B LT R et 314
BFREEZE. ... oottt 315
H AL e 315
BHIGH e 315
B DK e ettt et e e e 316
BN T et 317
BINT_OV ettt ettt ettt 318
SINTERROGATEHIO. ...ttt ettt 318
SINTERROGATEIO.......c.iiieiitte et 320
B IN T R et e e 321
BIS_S2BIT_ADDR ...ttt ettt et e s 321
BLEN ettt 322
B L DK ettt 323
BLIMAX ettt 323
BLMIN et 324
SLOCATESPTHDR. ...ttt ettt ettt et et e ettt e e et ee e 324
FLOCKPAGE ...ttt et et ettt 325
BIMAX e 326
BIMIN ettt 327
SMOVEANDCXSUMBYTES. ...ttt ettt 327
SMOVENONDUP......cooiiiiiie ettt e s 328
SINUMERICttt et e e e et e e e e e e 329
FOCCURS. ...ttt ettt et e et e e et et e s 330
8O o Y PSSRSO PR PRSP 332

Contents 9

FOPTIONAL. ...ttt ettt e 333

SOVERFLOWottt ettt e e e et e e e e ettt a e e e e e e entasaeeeeeeeenses 335
BPARAM ... 336
B POINT ettt ettt et e et et e et en 336
SPROCADDR. ...ttt e e e e e e e e e e e e e et aaaaa s 337
SPROCIB2ADDR. ...ttt ettt 337
FPROCOAADDR. ...ttt ettt ettt e et e et e 338
SREADBASELIMIT. ...ttt e e e et e e e e e e eaabaeeeeeeeensens 338
SREADCLOCK ...ttt ettt ettt e ettt e et e e ettt e e ettt e e e et eeeennaeeeeenneeas 339
RE A DS PT ..t e e e e e e e e e e e e et aaaaaaaaaaaaens 339
SREADTIME. ... ettt e e e e e e e e e e e e e e e e ettt aeaaaeaeas 340
BSCALE. ...ttt 340
$SGBADDR_TO_EXTADDR.eeeiiiiie ettt et e e e e 341
$SGBADDR_TO_SGWADDR........cciiiiiiiiiiee ettt e et e e et e e e e e e taraae e e e e e, 342
SSGWADDR_TO_EXTADDR.cciiiiiiiiiiie e ettt e e e e e e e e e e 342
SSGWADDR_TO_SGBADDR.......cuuuiiiiiiiiiiiiet et e e e e e e e e e e e e e e e e eeaeasasees 343
BSPECIAL. ...t aaa e 343
SSTACK _ALLOCATE. ...ttt et et 344
BTRIGGER. ...ttt et 345
BT PE .ot e et e e e e e e bt a e e e e ettt aaee e e e aaaraeas 345
BUDBL. ..ottt e e et e e e e et e e e e e et raaae e 346
SUDIVREMTO ...ttt e e e e e e e e e e e e e e e s e aaaaaasees 347
SUDIVREMSBZ....eeeeeeeeeeeeeee ettt ettt e e e e e e e e e e e e e e e e e e aeans 348
BURIX e et 349
SUNLOCKPAGE. ...ttt ettt e 349
SWADDR_TO _BADDR.......cceiitiiiieeeeeeitee e e e ettt e e e et e e e e e et a e e e e e e et aeeeeeeesntabaeeeeeens 350
SWADDR_TO_EXTADDR.........ouiitiiiieeeeeiiee ettt e et e e e e e e ibaaaeeeeaas 350
BMVRITEPTE ...ttt ettt e e e e e e e e e e e e e e e e e e e nestaassssseeees 351
BXADR . ..ottt e e e e e e e e e e e e ettt 352
BXADRSZ. ...t et 352
BXADROA ... et 353
16 Compiling and Linking pTAL Programs.................uevvvevvvviiieiiiiiiiiiieeeeeeenene, 355
Compiling SOUICE FIlES.....cueiiieiiiiie e 355
INPUE FILES. ...t e e e e e e e e e e e e e 356
OUIPUE FIlES. ..ttt e e e ettt e e e et e e e e 356
RUNNING the CompPiler..........oooiiiiiiie e 357
Completion Codes Returned by the Compiler............ccooviiiiiiiiiiiiiiii e 358
LiNking OBJECt FIlES.....eeeiuiiie ettt e 358
Creating a Dynamic Linked Library (DLL)..........oooiiiiiiiiiiiie e 362
Compiling With Global Data Blocks.ccoieiiiiiieiiie e 362
Declaring Global Data.........oouieiiiiieeee e 362
Allocating Global Data Blocks..........c.uviiiiiiiiiiiiiceeeee e 365
AAress ASSIGNMENES.cciiuiiiiiieeeiiiiiii e e et e e e e ettt e e e e e s e e e e e e e s tabaeeeeeeeentareeeeeeeannees 365
Sharing Global Data Blocks...........cc.uiiiiiiiiiiiiiiii e 365
Compiling With Saved Global Data...........ccuiiiiiiiiieiiiii e 366
Using the Code Profiling UHIHEs.viieiiiiieiiiice e 366
17 Compiler DIir@CHVES.uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiaaeaeaeveaaaaeaeeeseseeseeeseeeeeeeees 367
Specifying Compiler DIrCHVES.ccuuiiiiiiiieeiiie ettt e iaae e 367
Compilation CommMANG...........coiiiiiiiiiie et 367
DIreCtiVe LINe. ...ttt 367
File Names as Compiler Directive ArgUMENES...........ccouuiiiiiiiiieiiiiie e et et e e e 368
DIrECHVE SHACKS. ...t e ettt e ettt e e e e et e e e e e e e e e e e ann 369
Pushing Direchive SEHINGS.couueiiiieee ettt ettt e e e et e e e e ieeeaeaeeeas 369
Popping Directive SeHINGS.uiiiiiiiiii e 369

10 Contents

EXOMIPIE. ettt e e e e e e e e e e e e 369

TOGGIES ettt e s 370
NOME TOGGIES.....eeeieeiiiie et et e et e e et e et e s 370
NUMEFIC TOGGIES. ..ttt e et e e e e e e e e e e neneeeae e 370
EXAMPIES. ..ot e e et a e e e 371

Saving and Using Global Data Declarations.................oiiiiiiiiiiiiiiiiiiee e 372
Saving Global Data Declaratons.............cc.uviiiiiiiiiiiiiiie e 373
Retrieving Global Data Declarations.cocuuiieiiiiiieiiiiie e 374
EXAMPIES. ...t 374
Migrating from TNS/R 10 TNS/E...ceoiiiiiiiiiiie ettt 375

Summary of Compiler DIFECHVES.ccuiiiiiiiiii et 377

ASSERTION. ..ttt ettt ettt e ettt e e ettt e ettt e et e e 381

BASENAMEttt ettt ettt e et e e e 381

BEGINCOMPILATION. ...ttt et e ettt e e e e e et e eeeeeees 382

BLOCKGLOBALS. ...ttt ettt ettt e ettt e e et e e e ettt e e e et e e e entreeeeenees 382

CALL_SHARED. ... et e e e et e e e et e e e e ea e aaaaaa 383

CHECKSHIFTCOUNIT ...ttt e e e e et e e e e e e e e e e e e e eeata e eeeeeesnnnaeeeeeeeees 384

CODECON ...ttt ettt ettt et e e et e e ettt e et e e s 385

COLUMNIS ettt ettt ettt e e ettt e e ettt e e ettt e e e eneteeeentaeee s 385

DEFEXPAND ...ttt e e ettt e ettt e e an s 386

DEFINETOG. ... ittt ettt et e ettt e e ettt e e et e e e et e e e sneteeeeeneaeeeeenees 388

DO LTINS _SYNTAX ettt ettt ettt ettt e e ettt e e e ettt e e ettt e e ettt e e e entaeeeeenabeaeesseeeeansaeeeeanes 389

o AN PSP UOPRTR 390

ERRORFILE. ...ttt et e et e ettt e e ettt e ettt e e e enteeeeenbeeeeans 391

ERRORS ...ttt ettt ettt et ettt e et e e naeeas 393

EXPORT_GLOBALS ...ttt ettt ettt e ettt e ettt e et e e e enteeeeenaaee s 393

B =0 I SO PPPPPT USRIt 394

FIELDALIGIN. ...ttt e e e et e e e e e ettt e e e e e eeaae e e e e eeetsanneeeeeeees 395

Y PSPPSR 396

GLOBALIZED ...ttt ettt e 396

GIMAP e et e et e s 397

(€ RSP R U UUPRUPPPP 397

[eTTe I |) TP U PP PUUUPUPRUPPRN 398

I S N S PP PSSP 400

INVALID_FOR _PTAL. ..ttt e et e e e e e e e e e e e et e e e e e eaeaanneees 401

LI ES et e et e et e et e e ettt e e e naaeeean 401

K] USSP PSR UUPPRRSPPPRN 401

o PP PRSPPI 402

OPTIMIZE. ... ettt e e e ettt e e e e e ettt e e e e eeeata e eeeeeeees 404

OPTIMIZEFILE. ...ttt e e e ettt e e e e ettt e e e e e ettt eeeeeeeaennnes 404

OVERFLOW _TRAPS .ottt et e e e e et e e e e e e et e e e e e eeasaeaeeeeeees 406

PAGE ...ttt e e 407

PRINTSY M. ettt ettt e ettt e e ettt e ettt e e e ent et e e enteeeeenees 408

PROIFDIR. ..ttt e et e e e et e e e e et e e e e e eeaaaans 408

PROFGENttt et ettt e et e e e e at et e e e sttt e e e st e e e nt e e e enbeeeeenees 409

PROIFUSE ...ttt et e et e e e et aeeeeaaanns 409

REFALIGINED ...ttt e e e e e e e e e e e et e e e e e e eaaaneeeeeeesennns 410

RESETTOG ... ettt ettt et ettt e ettt e e ettt e e ent et e e st e e e e naaeee s 411

ROUNDttt et e ettt ettt e e ettt e e ettt e e e st e e e entbeeeeeneeeas 412

SAVEGLOBALS. ...ttt ettt et e ettt e e ettt e e et e e ettt e e et e e naaee e 413

SECTION . ettt ettt et e ettt e e et e e e at e e et e e e e st e e e st e e e e et e e e e ennaeee e e 414

SETTOG . . ettt e e e ettt e e ettt e ettt e e et et e aaeaae 415

SOURCE. ...ttt ettt e e e ettt e e e e e e et e e e e e e e et e e e e e e eaa e e e eaanaanns 416
SECHON NAMES.....ooiiiiiiiiii ettt 417
INESHNG LEVEIS.eiiiiiiiiiie et e ettt e e e e e e e e e e e rareeeeeeas 418

Contents 11

EHfect Of Other DIireCHVES. ... et 418

Including System Procedure Declarations..............ooiuiiieiiiiiiiiiiie e 419
EXAMPIES. ...t 419
] USSP PRSPPI 420
SUP P RE S S . ettt e e e ettt e e e e ettt e e e e e aaa e aeaaaaaas 420
SYMBIOLS. .ttt et et ettt e s 421
SY N T A X ettt et e e et e et e e 422
ARG ET e e 423
USEGLOBALS ...ttt et ettt e et e e ettt e e e e nt bt e e e sttt e e e nebeeeennneeeeennaeeeens 423
MV ARN ettt et e et e ettt e e ettt e e e ettt e e e e eaannnnas 424
18 PTAL Cross ComPiler.........uuuuuuuiiuiiiieiiiiiiiiiiiiiiiraseeseeseeseseeesseeererereeeeeeeees 426
NONSIOP PTAL (ETK)....ee ettt et e et e ettt e et e e e eneaee e 426
PTAL or EpTAL (PC Command LiNE)........ccoiuuiiiiieeeeiiiiiitee ettt e e aaaaeee e 427
Compilation and LINKiNg........eieiiiiiie e 429
DEUGGING ettt 429
TOOls ANA UHTHES. ...ttt e et e e e e eee e e e e e 430
NONSIOP AF UHTHY .ottt e e e et e e e e e eeaeeeaee s 430
TACL DEFINE ToOl (ETK)...cuetiteeiiiite et 431
PCto-NonStop-Host Transfer Tools.............uiiiiiiiiiiiiiiiiici e 431
DOCUMENTAHON. ...t e e e e e e e ettt et e 431
A SYNEAX SUMMOAIY . cooiiiieii e e e e e e e e e aan e 432
DAEA TYPES. .ttt ettt ettt e e e ettt e e e e e eat e eaeaee 432
(@eT a1 o T USRI USPPPN 432
(@ TeTroTel TN T3l TP PP PRR RPN 432
STRING INUMEIIC. c.ccceiiiiiiiiti et e e e e e e ettt e 432
INT INUMEIIC. ..o e e e e et ettt e 433
INT(32) NUMEKIC. ..eniiiiie e e et 433
FIXED INUMEIIC. oot e e e et ettt 433
REAL and REAL(64) NUMETIC.uuiiiiieeee e e et 433
CoNStANt List....coiiiiiiiii e 434

B X PIESSIONS. ..ottt e e e 434
ATRMETIC. et 434
(@FeT Yo 1 oY Yo | PSSP PR UPPRR 435
ASSTIGNIMENT. ... e e e et e e ettt 435
A S E e ettt e e e ettt e e e e aba e e e eaaaaanns 435

L ettt e et e et e et e e ettt e et e e neeeas 435
GrouUP COMPAIISON. ...eiitiit ettt ettt e et e e e et ettt e e e e e e eaaa e e e 435
Bit EXITOCHON. ...t ettt 436
Bit SRt 436
DEClArOHONS . et e et e e e as 436
LT ER A L. -ttt ettt et e et e e e et a e et aaees 436
DEFINE e et e e e e e 436
Simple Variable. ... 437

N 4 PRSPPI 437
REAA-ONIY AITQY ...ttt e et e e et e e e e 438
SHUCIUIES . e e e e et e et e 438
REAEFINIHION. ... e 442
POINMIEI 444
Equivalenced Variable............cccoiiiiiiii e 445
Procedure and SUbprocedure............oooviiiiiiiiiiii e 449
SHAEMENES. ...ttt 455
COMPOUNG. ..ottt e e e e e e e e e e e e e e e e e e e taaabaaseseaeeeaaeeeens 456

E NN = USSP SPPPPRRN 456
AASSIGNMENE. ..ttt ettt ettt 456

12 Contents

A L. e 457
Labeled CASE e 457
UNIGbeled CASE.o e e e 457
DO -UNITIL. et e 458
D RO . 458
B R e 458
GOTO . e e e e e e e, 458
LE e e 458
ROV e e 459
RE TU RN . et e e e, 459
SCAN aNA RSCAN e e 459
U S E e 459
NV H L e 460
OVEIIOW THOPS. ...ttt e e e e e e et e e e e et b e e e e e e e eaareeeas 460
OVERFLOW _TRAPS DireChVe. .. cen i 460
[EN | DIS]JABLE_OVERFLOW_TRAPS Block Attribute............cccooviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee 460
BUI-IN ROUNNES. ..ot e 460
A O I 460
N ONGIOMIC. .o 462
COMPIIET DIFECHIVES.eii e ettt et e e e e et e e e e e et b e e e e e e e eanreeeas 494
DIrECHVE LN e oo e e e e 495
A S S E R T I ON . Lo e e, 495
BASEN AME ... 495
BEGINCOMPILATION. e 496
BLOCKGLOBALS. oot 496
CALL SHARED . ..o e, 496
CHECK SHIFTCOUNIT . e e e, 497
CODEC OV ... e e e e e e, 497
COLUMNSS .. e e 498
DEFEXPAND. ...t 498
DEFINETOG. . .o, 499
DO TN S QY N T A X ettt e e e e e 500
BN DI . . e 500
BRRORFILE e e e e e 500
B R R OIRS .. 500
EXPORT _GLOBALS. ...t 501
BT O 501
FIELDALIGIN . .. e e 502
F A P e 502
GLOBALIZEDo e e e e e 502
GIMAP e, 503
P O e e 503
IF, IFNOT, aNd ENDIF. ... e e 504
IN N B R LI ST . et 505
INVALID _FOR _PTAL. ..o e e 505
LN B S . oo 506
LS e 506
AP e e e 506
OPTIMIZE ..o e e e 507
OPTIMIZEFILE. .. .o e e e, 507
OVERFLOW TR A PPS ..o 508
P A GE ... o, 508
PRIN T SY M. e 509
PROIFDIR. ..o e 509

Contents 13

PROFUSE . ..ottt et et e ettt e e et e e e et e e e eaa e e e eaa e e aaaeeaaaanaaaes 510
REFALIGNED.oeniiiie et e e e e e e e et e e e et e e e ab e e e asaeeeaaaneaees 510
RESETTOG . .. ittt et e e e e e et e e e e b e e e e st e e e et e e e aaan e e eaannans 511
ROUND ..ottt e et e et e e e e e et e e et e e e e b e e e eaaneeeaaaeaaes 512
SAVEGLOBALS ... et e e et e e e e e 512

R = O [PSP 513

] = 1 (O € PP TP 513
SOURCE . ..ottt e ettt e et e e e et e e e et e e e eaat e e eaaaaaaas 514

] S U P P UPUUPRUPPINt 514
SU P P RESS ..ot aaa s 515
SYMBOLS ettt e e 515

S N LA X e ettt 516
AR G ET ..ottt e e e e e aa e eaaas 516
USEGLOBALSttt et e e e e e e et e e e e e e e eb e e e eaa e eeaannans 516
BT S N RPN 517

B Disk File Names and HP TACL Commands...............cveeeeeeeeeeeiiiiiiiiiiiinnn, 518
Disk File INGMES.ceiiiiiiiiie et e e e et e e e e e et e e e e e e ennanaeeaeeeas 518
Parts of @ Disk File NGME.......ccvviiiiiiiiii e 518
Partial File NGMES.........viiiiiiiiiiie e e e e raee e 519
Logical File NGMES.cuveiieiiiiii et 520
Infern@l File NGMES.........ooiiiiiiiiiiiie e e e e e e e e 520
HP TACL COMMONGS....utiiiiiiiiiiiiiieee et e e e e e e e e e e e ettt e e eeaaeaeeeeeeaeeeaans 520
] = | PP PPPUUPPPRN 521
PARAM SWAPVOL.....coeiiie et e e et e e e e e e e eeeae 522
ASSIGIN ettt 522

C Differences Between the pTAL and EpTAL Compilers...............coovvvviieeeeee.... 525
GBNEIAN .ttt e e e e e e e e e e e e e e et atr b aaa e 525
Data Types and AlIGNMENT........oiiiiiiii ettt e e e e e e e eaaeeeae e 525
ROUTINES ettt ettt e e 525
COMPIIET DIFECHIVES. ... viieiiiiiiiie ettt ettt e e e ettt e e e e e et e e e e e e e ntsaeeeeeeeennnseeeas 527
D RETURN, RETURNSCC, and C/C++ on TNS/E....coooviiiiiiiiiiiiiiiiieie 528
E 64-bit Addressing Functionality...............cccccco 531
AAIESS TYPES.....eeiiiiiiiiie ettt e e e e e e e e e e e e ettt e e e e e e e e e e e e e e e e e e nnnanarees 531
EXTS2ADDR. ...ttt ea e 531
EXTOAADDR. ... et e et et e e e e b aae 531
PROGCSBZ2ADDR. ..t e e e e e e e e e e eeeaa e e eaaas 531
PROGCGOAADDR......eeeeiie et e e et e e et e e et e e e et e e e ea e e e eaaeeeaeaens 531
Procedure POINIEr TYPES.uiiiiiiiiiiiii ettt et e e e et e e e e e e ataaeee e 531
PROIC G ZPTR ettt ettt e e e e e e e e e e e e e e e e e et e et eaaanaas 531
PROCOAPTR. ..ttt e e e e e e et e e e e e e e e e eaan s 531
INdirecion SYMbOlS.eiiiiiiii e 532
BT 3 e e 532
BT B4 .. e 532
BUIEIN ROUTINES.eeiiieiiiie e et e e et e e e e e e e e e e e eaasaaeeeaeas 532
SEXTEAADDR_TO_EXTADDR. ...ttt 532
SEXTOAADDR_TO_EXT32ADDR. ...ttt 532
$EXTO64ADDR_TO_EXT32ADDR_OV...ooiiiiiiiieeeeeeeeeeeeeeeeeeee e 532
SEXTADDR_TO_EXTEAADDR.ttt 532
SFIXEDO_TO_EXTOAADDR........euiiiiiiiiieieeeeeee e, 532

R 2 U SOUPPRRRR 532
SIS _B2BIT_ADDR.....eeeeeeeeeeeee e e 532
FPROCADDR. ... e 533

14 Contents

BXADROA ...ttt
Implicitly Defined Compilation Toggle __EXT64
Directives

...

Contents

15

About This Document

The Portable Transaction Application Language for HP NonStop systems (pTAL) is a high-level,
block-structured language used to write systems software and transaction-oriented applications.

This manual gives guidelines for using the pTAL language and the EpTAL and pTAL compilers,
including:

e How fo create, structure, compile, and run a pTAL program
e The process environment, addressing modes, and storage allocation
e How to declare and access procedures and variables

You can compile pTAL source programs with either the pTAL compiler or the EpTAL compiler (for
their differences, see Figure 16 (page 361)).

In this manual:

Word Meaning (unless otherwise specified)
compiler The pTAL and EpTAL compilers
linker The nld, 1d, and eld linkers

Supported Release Version Updates (RVUs)

This manual supports D44.00 and all subsequent D-series RVUs, all J-series, H-series, and G-series
RVUs, unless otherwise indicated by its replacement publication.

Intended Audience

This manual is intended for system programmers and application programmers familiar with
NonStop systems.

New and Changed Information

Changes to this manual are itemized for each RVU.

New and Changed Information for 523746-009

e Added a new Appendix E, 64-bit Addressing Functionality (page 531).
e Added the following new Address Types:

o EXT32ADDR

o EXT64ADDR

o PROC32ADDR

o PROC64ADDR
e Added the following new Procedure Pointers:

o PROC32PTR

o PROC64PTR
e Added a new 64-bit directive, _ EXT64 (page 394) in the chapter “Comepiler Directives”.
e Added the following 64-bit built-in routines:

o $EXT64ADDR_TO_EXTADDR (page 306)

o $EXT64ADDR_TO_EXT32ADDR (page 307)

o $EXT64ADDR_TO_EXT32ADDR_OV (page 307)

o

o

$EXTADDR_TO_EXT64ADDR (page 308)
$FIXEDO_TO_EXT64ADDR (page 310)
$IS_32BIT_ADDR (page 321)
$PROC32ADDR (page 337)
$PROC6H64ADDR (page 338)

$UFIX (page 349)

$XADR32 (page 352)

$XADR64 (page 353)

Updated the following directives:

o

o

o

o

o

DEFINETOG (page 388)
ENDIF (page 390)

IF and IFNOT (page 398)
RESETTOG (page 411)
SETTOG (page 415)

Updated the following built-in routines:

o

o

o

$INT (page 317)
$PROCADDR (page 337)
$XADR (page 352)

Updated the following sections with 64-bit addressing functionality:

o

o

o

pTAL and TAL Compatibility (page 30)

Typed Integer Constants (page 44)

Converting Between Address Types and Numeric Data Types (page 51)
Using Arithmetic Operations to Adjust Addresses (page 55)

Comparing Addresses to Addresses (page 56)

Extended Addresses (page 77)

Initializing Simple Variables With Character Strings (page 105)
Assigning Addresses to Pointers in Structures (page 150)

Overview of Pointer Declaration (page 161)

PROCADDR, PROC32ADDR, and PROC64ADDR (Procedures, Procedure Pointers, and
Procedure Entry Points) (page 168)

EXTADDR, EXT32ADDR, and EXT64ADDR (Extended Addresses) (page 169)
Declaring Simple Pointers (page 170)
EXTADDR, EXT32ADDR, and EXT64ADDR Declarations (page 170)

Equivalencing Procedure Addresses (PROCADDR, PROC32ADDR, and PROC64ADDR)
and Pointer Variables (PROCPTR, PROC32PTR, and PROC64PTR) (page 187)

Extended Pointers (page 230)

Passing an Extended Address Parameter to a Non-EXTENDED Reference Parameter
(page 255)

Procedure Pointers (page 263)
Declaring Procedure Pointer Variables (page 266)

New and Changed Information 17

o Declaring Procedure Pointers in Structures (page 267)

o Assignments to Procedure Pointers (page 269)

o Syntax Summary (page 432)

o Differences Between the pTAL and EpTAL Compilers (page 525)
e Updated the following tables with 64-bit addressing functionality:

o Data Types (page 33)

o Reserved Keywords (page 37)

o Base Address Symbols (page 40)

o Indirection Symbols (page 41)

o Data Types and Their Address Types (page 49)

o Valid Address Conversions (page 53)

o Expressions (page 69)

o Valid Address Expressions (page 79)

o Signed Relational Operators (page 83)

o Addresses in Simple Pointers (page 149)

o Address Types (page 165)

o Object Data Types and Their Addresses (page 166)

> Valid Equivalenced Variable Declarations (page 178)

o Data Types for Equivalenced Variables (page 185)

o Formal Parameter Specification (page 254)

o Type-Conversion Routines (page 282)

o Built-In Address-Conversion Routines (page 283)

o Built-In Routines for Nonatomic Operations (page 286)

o Compiler Directives by Category (page 377)

o Compiler Directives by Name (page 379)

o Data Types and Alignment (page 525)

New and Changed Information for 523746-008

e Added a caution under Debugging (page 429) on the manner in which the CODECOV
(page 385) command line option interacts when you are debugging an instrumented application.
Under CODECOQV, placed a reference to this caution in the Debugging section.

e Changed $INT (page 317) to indicate that overflow can occur for INT(64).
e Added new Document Organization (page 19) section to the manual.

e Added Jseries to Supported Release Version Updates (RVUs) (page 16).

New and Changed Information for 523746-007

e In Chapter 16: Compiling and Linking pTAL Programs (page 355), updated the overview of
the Code Profiling Utilities to include the profile-guided optimization capability.

e In Chapter 17: Compiler Directives (page 367), added descrptions and syntax of the following
directive:

o BASENAME directive (Guardian) and -basename directive (Windows)
o PROFDIR directive (Guardian) and -profdir directive (Windows)

o PROFGEN directive (Guardian) and -profdir directive (Windows)

o PROFUSE directive (Guardian) and -profuse directive (Windows)

e In Appendix A: Syntax Summary (page 432), added syntax descriptions of the preceding
directives.

Document Organization

This document is organized as follows:

Table 1 Summary of Contents

Chapter

This chapter . . .

Chapter 1: Introduction to pTAL

Chapter 2: Language Elements

Chapter 3: Data Representation
Chapter 4: Data Alignment

Chapter 5: Expressions

Chapter 6: LITERALs and DEFINEs

Chapter 7: Simple Variables

Chapter 8: Arrays

Chapter 9: Structures

Chapter 10: Pointers

Describes the differences between pTAL and TAL, and the
applications, features, system services and procedures of
pTAL.

Describes pTAL language elements, such as character set,
keywords, delimiters, operators, symbols, declarations,
constants, and statements.

Describes pTAL variables and constants, including data
types and address types.

Describes how data items are aligned; covers the
misalignment tracing facility and misalignment handling.

Describes expressions. An expression is a sequence of
operands and operators that produces a single value.
Operands in an expression include variables, constants,
and routine identifiers. Operators in an expression perform
arithmetic or conditional operations on the operands. pTAL
supports arithmetic, address, constant, and conditional
expressions.

Describes how to declare LITERALs and DEFINEs and refer
to them throughout the program. A LITERAL declaration
associates identifiers with constant values. A DEFINE
declaration associates identifiers and parameters with text.

Describes the syntax for declaring simple variables. A
simple variable is a single-element data item of a specified
data type that is not an array, a structure, or a pointer.

Describes the syntax for declaring arrays. An array is a
one-dimensional set of elements of the same data type.

Describes structures. A structure is a collectively stored set
of data items that you can access individually or as a

group.

Describes the syntax for declaring and initializing pointers
you manage yourself.

Document Organization 19

Table 1 Summary of Contents (continued)

Chapter

This chapter . . .

Chapter 11: Equivalenced Variables

Chapter 12: Statements

Chapter 13: Hardware Indicators

Chapter 14: Procedures, Subprocedures, and Procedure
Pointers

Chapter 15: Built-In Routines

Chapter 16: Compiling and Linking pTAL Programs

Chapter 17: Compiler Directives

Chapter 18: pTAL Cross Compiler

Appendix A: Syntax Summary

Appendix B: Disk File Names and HP TACL Commands

Appendix C: Differences Between the pTAL and EpTAL
Compilers

Appendix D: RETURN, RETURNSCC, and C/C++ on
TNS/E

Describes equivalenced variables. Equivalencing lets you
declare more than one identifier and description for a
location in a storage area.

Describes statements. Statements — also known as
executable statements — perform operations in a program.
They can modify the program’s data or control the
program’s flow.

Describes hardware indicators. Includes managing overflow
traps, hardware indicators after assignments, hardware
indicators in conditional expressions, nesting condition
code tests, and using hardware indicators across
procedures.

Describes procedures, which are program units that contain
the executable portions of a pTAL program and that are
callable from anywhere in the program.

Describes built-in routine calls whose results do not depend
on the values of variables and can be used wherever
constant values are allowed.

Describes how to compile and link pTAL programs. Input
to the compiler is a source file containing pTAL source text
(such as data declarations, statements, compiler directives,
and comments). Output from the compiler is a linkfile
consisting of relocatable code and data blocks. To produce
an executable pTAL program, you link one or more linkfiles
into a single loadfile.

Describes how to specify compiler directives. You can
specify compiler directives either in the compilation
command or in a directive line in the source code, unless
otherwise specified. The compiler interprets and processes
each directive at the point of occurrence.

Describes the optional pTAL cross compiler that runs on
PC platforms.

Provides a summary of syntax for data types, constants,
expressions, declarations, statements, overflow traps,
built-in routines, and compiler directives.

For Guardian platforms only, describes disk file names and
HP TACL commands.

Describes the differences between the pTAL and EpTAL
compilers.

Describes RETURN, RETURNSCC, and C/C++ on TNS/E.
Read this appendix if you write or call pTAL procedures
that return both a traditional function value by means of

the RETURN statement and an unrelated condition code
value by means of the RETURNSCC attribute.

Notation Conventions

Syntax Diagram Conventions

20

This manual presents syntax in railroad diagrams. Here is a generic railroad diagram:

L J

_p@EYWOR[DT: item 1 ilem3
itern2 h

To use a railroad diagram, follow the direction of the arrows and specity syntactic items as indicated
by the diagram pieces:

=<jtem5=>

WETS08. wsd

Diagram Piece Meaning

KEYWORD Type KEYWORD as shown. You can type letters in
uppercase or lowercase.
WVETH 2 vad

- Replace i t emwith a value that fits its description, which

follows the syntax diagram.
WET41 L wsd

Type content (punctuation mark, symbol, or letter) as shown.
You can type a letter in uppercase or lowercase.
WETA14 ved

Some examples of the meanings of simple diagrams are:

Diagram Piece Meaning

itemn 1 T Chooseitentd oriten?.
item2

WETAOT wad

» Choose i t em, i t en®, or neither.
}: iterm :{V
itemn2

WETS0E v

Specify i t emone or more times, separating occurrences

‘ with commas.

WET409 vad

tte Specify i t emat most n times.
— o

WETTAZ wad

NOTE: To refer to a particular railroad diagram or figure when giving feedback to HP, use the
number at the bottom right corner of that railroad diagram or figure (for example, VST742.vsd).

Spacing rules are:

o If the arrow between two diagram pieces is labelled “ns,” put no spaces between the syntactic
items that they represent. For example:

Notation Conventions 21

22

o NS gl volume

WETA20.ved

means that you type:
$NEWVOL

not

$ NEWVOL

An “ns” on the top line of a choice structure applies to the lower lines in the choice structure
as well. For example:

nE ns
*@T:(RETURN'SORT’ERRORS ___) /(,-—Q——
(___RETURN_SORT_ERRORS____)

WET1EE ved

means that you type one of the following:

" RETURNASORTAERRORS™
"RETURN_SORT_ERRORS_™

If two diagram pieces are not separated by a separator character (such as a comma, semicolon,
or parenthesis), separate the syntactic items that they represent by at least one space or a
new line. For example:

—><MULTIPLY)—>| integer! |—pf integer2 |—-

WETS10.vsd

means that you type:
MU<IPLY 3 4

not

MU<IPLY34

If two diagram pieces are separated by a separator character, separating the syntactic items
that they represent by spaces is optional. For example:

—;{MULTIPLY_)—.-I integert .

WETE11 wsd

means that you type:
MU<IPLY 3,4

or

MU<IPLY 3, 4

It a diagram piece is immediately followed by a period, putting spaces between the syntactic
item and the period is optional. For example:

ROGF{AMH program-narme I—p@—;

WET AT v

means that you can type:
END PROGRAM SORT.

or

END PROGRAM SORT .

e Diagram elements need not be on the same line. For example:

—>< BLOCK Hblock-name |—>(BEGIN >—>

WET 15 i

BLOCK DATA BEGIN

is equivalent to:

BLOCK DATA
BEGIN

e Explicit spacing rules given for individual railroad diagrams override the aforementioned
rules.

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown.
ltems not enclosed in brackets are required. For example:

MAXATTACH

Italic Letters

ltalic letters, regardless of font, indicate variable items that you supply. ltems not enclosed in
brackets are required. For example:

file-nane
Computer Type
Computer type letters indicate:

e C and Open System Services (OSS) keywords, commands, and reserved words. Type
these items exactly as shown. ltems not enclosed in brackets are required. For example:

Use the cextdecs.h header file.

e Text displayed by the computer. For example:
Last Logon: 14 May 2006, 08:02:23

e Alisting of computer code. For example
if (listen(sock, 1) < 0)
{

perror('Listen Error');
exit(-1);
3

Bol d Text
Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE

?123
CODE RECEIVED: 123.00
The user must press the Return key after typing the input.

[] Brackets
Brackets enclose optional syntax items. For example:
TERM [\system nane.]$t erm nal - nane

INT[ERRUPTS]

Notation Conventions 23

A group of items enclosed in brackets is a list from which you can choose one item or none.
The items in the list can be arranged either vertically, with aligned brackets on each side of
the list, or horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

FC [num]
[-num]
[text]
K[X] D] address
{ } Braces

A group of items enclosed in braces is a list from which you are required to choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side of the
list, or horizontally, enclosed in a pair of braces and separated by vertical lines. For example:

LISTOPENS PROCESS { $appl - ngr - nanme }
{ $process-nane }

ALLOWSU { ON | OFF }

| Vertical Line

A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:

INSPECT { OFF | ON | SAVEABEND }

... Ellipsis
An ellipsis immediately following a pair of brackets or braces indicates that you can repeat
the enclosed sequence of syntax items any number of times. For example:

M address [, newvalue J..

- 1 {0l112]3]415161718]9}..
An ellipsis immediately following a single syntax item indicates that you can repeat that syntax
item any number of times. For example:
"s-char.."
Punctuation

Parentheses, commas, semicolons, and other symbols not previously described must be typed
as shown. For example:

error = NEXTFILENAME (file-nane) ;

LISTOPENS SU $process- nane.-#su- nane
Quotation marks around a symbol such as a bracket or brace indicate the symbol is a required
character that you must type as shown. For example:
"['" repetition-constant-list "]"
ltem Spacing

Spaces shown between items are required unless one of the items is a punctuation symbol such
as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;
If there is no space between two items, spaces are not permitted. In this example, no spaces
are permitted between the period and any other items:
$pr ocess- nane _#su- nane
Line Spacing
If the syntax of a command is too long to fit on a single line, each continuation line is indented

three spaces and is separated from the preceding line by a blank line. This spacing distinguishes
items in a continuation line from items in a vertical list of selections. For example:

ALTER [/7 OUT file-spec /7] LINE

[, attribute-spec].
liand lo
In procedure calls, the li notation follows an input parameter (one that passes data to the called
procedure); the lo notation follows an output parameter (one that returns data to the calling
program). For example:
CALL CHECKRESIZESEGMENT (segnent-id Ti
, error) 1o
li,o
In procedure calls, the li,o notation follows an input/output parameter (one that both passes
data to the called procedure and returns data to the calling program). For example:
error = COMPRESSEDIT (filenum) ; 1i,o
lizi
In procedure calls, the li:i notation follows an input string parameter that has a corresponding
parameter specifying the length of the string in bytes. For example:

error = FILENAME_COMPARE_ (filenanmel:length Ti:
, filename2:length) ; Ti:

lo:i
In procedure calls, the lo:i notation follows an output buffer parameter that has a corresponding
input parameter specifying the maximum length of the output buffer in bytes. For example:

error = FILE_GETINFO_ (filenum Ti
[filename:maxlen 1) ; To:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed messages in this
manual.
Bol d Text
Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE
?123
CODE RECEIVED: 123.00
The user must press the Return key after typing the input.
Nonitalic Text

Nonitalic letters, numbers, and punctuation indicate text that is displayed or returned exactly
as shown. For example:

Backup Up.

Italic Text
ltalic text indicates variable items whose values are displayed or returned. For example:
p-register

process- nane
[] Brackets

Brackets enclose items that are sometimes, but not always, displayed. For example:

Event number = nunber [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be displayed, of

which one or none might actually be displayed. The items in the list can be arranged either

vertically, with aligned brackets on each side of the list, or horizontally, enclosed in a pair of
brackets and separated by vertical lines. For example:

Notation Conventions 25

proc-nane trapped [in SQL | in SQL Ffile system]

{} Braces

A group of items enclosed in braces is a list of all possible items that can be displayed, of
which one is actually displayed. The items in the list can be arranged either vertically, with
aligned braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

obj -type obj-nanme state changed to state, caused by
{ Object | Operator | Service }

process-nane State changed from ol d-obj state to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line

A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:

Transfer status: { OK | Failed }

% Percent Sign

A percent sign precedes a number that is not in decimal notation. The % notation precedes an
octal number. The %B notation precedes a binary number. The %H notation precedes a
hexadecimal number. For example:

%005400
%B101111
%H2F

P=%p- r egi ster E=%e-register

Notation for Management Programming Interfaces

This list summarizes the notation conventions used in the boxed descriptions of programmatic
commands, event messages, and error lists in this manual.

UPPERCASE LETTERS

Uppercase letters indicate names from definition files. Type these names exactly as shown. For
example:

ZCOM-TKN-SUBJ-SERV

lowercase letters

Words in lowercase letters are words that are part of the notation, including Data Definition
Language (DDL) keywords. For example:

token-type

The !r notation following a token or field name indicates that the token or field is required. For
example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. Ir

The !o notation following a token or field name indicates that the token or field is optional. For
example:

ZSP1-TKN-MANAGER token-type ZSPI-TYP-FNAME32. 1o

Related Information

26

Table 2 (page 27)
Table 3 (page 27)

Table 4 (page 27)
Table 5 (page 28)
Table 2 Related Manuals

Manual

Description

pTAL Conversion Guide

pTAL Guidelines for TAL Programmers

TAL Programmer’s Guide

TAL Reference Manual

TAL Reference Summary

Provides information needed to convert TAL programs
to pTAL programs.

Gives guidelines for writing TAL code that you can
migrate later to pTAL code with as few changes as
possible.

Helps you get started in creating, structuring, compiling,
running and debugging programs. Explains how to
declare and access procedures and variables and how
the TAL compiler allocates storage for variables.

Describes the syntax for declaring variables and
procedures and for specifying expressions, statements,
built-in routines, and compiler directives. Lists error and
warning messages.

Summarizes the TAL syntax diagrams.

Table 3 System Manuals

Manual

Description

D-Series System Migration Planning Guide
Introduction to D-Series Systems
Introduction to Tandem NonStop Systems

TACL Reference Manual

Gives guidelines for migrating from a C-series system
to a D-series system

Provides an overview of D-series enhancements to the
Guardian operating system

Provides an overview of the system hardware and
software

Describes the syntax of HP TACL

Table 4 Programming Manuals

Manual

Description

C/C++ Programmer’s Guide

COBOL Manual for TNS and TNS/R Programs

COBOL Manual for TNS/E Programs

CRE Programmer’s Guide

Guardian Application Conversion Guide

Guardian Procedure Calls Reference Manual

Guardian Procedure Errors and Messages Manual

Contains information that you need about HP C and
C++ for NonStop systems if you plan to call HP C and
C++ routines from pTAL programs

Contains information that you need about HP COBOL
for TNS and TNS/R programs if you plan fo call
HP COBOL routines from pTAL programs

Contains information that you need about HP COBOL
for TNS/E programs if you plan to call HP COBOL

routines from pTAL programs

Explains how to use the Common Runtime Environment
(CRE) for running mixed-language programs

Gives guidelines for converting C-series TNS programs
to D-series TNS programs, and for converting TNS
programs to TNS/R programs

Describes the syntax and programming considerations
for using system procedures

Describes error codes, error lists, system messages, and
trap numbers for system procedures

Related Information 27

28

Table 4 Programming Manuals (continued)

Manual

Description

Guardian Programmer’s Guide
H-Series Application Migration Guide

TAL Programmer’s Guide

TAL Programmer’s Guide Data Alignment Addendum

Explains how fo use the programmatic interface of the
operating system

Explains how to migrate programs from TNS/R to
TNS/E

Contains information that you need about the
HP Transaction Application Language (TAL) if you plan
to call TAL routines from TNS HP COBOL programs

Documents the data alignment requirements of TAL

Table 5 Program Development Manuals

Manual

Description

Accelerator Manual
Accelerator Manual Data Alignment Addendum
Binder Manual

Code Profiling Utilities Manual

CROSSREF Manual

Debug Manual

DLL Programmer’s Guide for TNS/E Systems
DLL Programmer’s Guide for TNS/R Systems
Edit User’s Guide and Reference Manual
eld Manual

EMS Manual

enoft Manual
Inspect Manual
Id Manual

Native Inspect Manual

nld Manual

Explains how fo accelerate TNS object files for a TNS/R
system

Documents the data alignment requirements of the
Accelerator

Explains how to bind TNS compilation units (or modules)
using Binder

Explains how to use the Code Coverage Utilities to
perform profile-guided optimization and fo generate
code coverage reports.

Explains how to collect cross-reference information using
the stand-alone Crossref product

Explains how to debug programs using the Debug
machine-level interactive debugger

Explains position-independent code (PIC) and
dynamiclink libraries (DLLs) on TNS/E systems

Explains position-independent code (PIC) and
dynamiclink libraries (DLLs) on TNS/R systems

Explains how to create and edit a text file using the Edit
line and virtual-screen text editor

Explains how to use the eld utility to link and change
the attributes of TNS/E object files

Describes the Event Management Service (EMS). The
misalignment tracing facility generates EMS events (see
Misalignment Tracing Facility (page 66))

Explains how to use the enoft utility to display TNS/E
object files

Explains how to debug programs using the Inspect
source-level and machine-level interactive debugger

Explains how to use the Id utility to link and change
the attributes of TNS/R PIC object files

Explains how to debug programs using the Native
Inspect source-level and machine-level interactive

debugger

Explains how to use the nld utility to link and change
the attributes of TNS/R non-PIC object files and how the
ar utility works

Table 5 Program Development Manuals (continued)

Manuadl Description

noft Manual Explains how to use the noft utility to display TNS/R
object files (PIC and non-PIC)

Object Code Accelerator Manual Explains how to accelerate TNS and TNS/R object files
for a TNS/E system.

PS Text Edit Reference Manual Explains how to create and edit a text file using the PS
Text Edit full-screen text editor

SCF Reference Manual for the Kernel Subsystem Describes the Subsystem Control Facility (SCF), whose
user interface you can use to control tracing (see
Misalignment Tracing Facility (page 66))

Visual Inspect Online Help Explains how to debug programs using the Visual Inspect
source-level and machine-level interactive debugger

Code Coverage Tool Reference Manual

Publishing History

Part Number Product Version Publication Date
523746-005 pTAL D44, EpTAL HO1 July 2005
523746-006 pTAL D44, EpTAL HO1 November 2006
523746-007 pTAL D44, EpTAL HO1 February 2007
523746-008 pTAL D44, EpTAL HO1 May 2009
523746-009 pTAL D44, EpTAL HO1 February 2012

HP Encourages Your Comments

HP encourages your comments concerning this document. We are committed to providing
documentation that meets your needs. Send any errors found, suggestions for improvement, or
compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion for
improvement you have concerning this document.

Publishing History 29

mailto:docsfeedback@hp.com

1 Introduction to pTAL

pTAL is based on the HP Transaction Application Language (TAL). You can compile pTAL source
code with either the pTAL or EpTAL compiler.

Topics:

e plTAL and TAL Compatibility (page 30)

e EpTAL pTAL and TAL Compilers (page 30)
e plAL Applications (page 31)

e plAL Features (page 32)

e System Services (page 34)

e System Procedures (page 34)

e plAL and the CRE (page 34)

pTAL and TAL Compatibility

The pTAL language is a superset of the TAL language except that TAL supports constructs that |
depend on characteristics of the underlying TNS architecture, while pTAL (with a few exceptions)
does not depend on the underlying TNS/R architecture or TNS/E architecture. For example, pTAL
code cannot:

e Access a caller’s stack marker

e Use CODE statements to execute instructions

e Build parameter masks for calls to VARIABLE and EXTENSIBLE procedures |
e Embed SQL statements |

Also, TAL code cannot use 64-bit addressing functionality added to TNS/E pTAL starting with SPR
TO561HO1*AAP . For more information, see “64-bit Addressing Functionality” (page 531).

Because pTAL uses few machine-dependent constructs, it works efficiently with the system hardware
to provide optimal object program performance and is more portable than TAL.

Most pTAL and TAL declarations and executable statements have the same syntax and semantics.
Minor semantic differences might affect your programs; for these differences, you must change
your source code.

To accommodate migration from TAL to pTAL, pTAL retains some of TAL's operability.
For information about pTAL and TAL differences, see:

e pTAL Conversion Guide
e plIAL Guidelines for TAL Programmers

EpTAL, pTAL, and TAL Compilers

NOTE: This topic includes only enough information about the TAL compiler to compare it to the
EpTAL and pTAL compilers. For complete information about the TAL compiler, see:

e TAL Reference Manual
e TAL Programmer’s Guide
e TAL Programmer’s Guide Data Alignment Addendum

You can compile pTAL source programs using either the pTAL compiler or the EpTAL compiler.

30 Introduction to pTAL

Table 6 EpTAL, pTAL, and TAL Compiler Characteristics

Compiler Object Code Generated

EpTAL TNS/E object code—PIC (position-independent code)
pTAL TNS/R object code—Non-PIC (default) or PIC

TAL TNS object code—Non-PIC

Difference between pTAL and EpTAL compilers:

pTAL Compiler EpTAL Compiler

On Guardian platforms, object files have the file code 700 On Guardian platforms, object files have the file code 800

pTAL code cannot use 64-bit addressing functionality added EpTAL code can use 64-bit addressing functionality added
to TNS/E pTAL starting with SPR TO561HO01”AAP. For to TNS/E pTAL starting with SPR TO561HO1"AAP. For
more information, see Appendix E, “64-bit Addressing more information, see Appendix E, “64-bit Addressing
Functionality” (page 531). Functionality” (page 531).

The compilers in Table 6 execute under control of the HP NonStop operating systems in Table 7.

Table 7 HP NonStop Operating Systems

Architecture RVU
TNS/E G06.20 and later
H06.01 and later
TNS/R D40 and later
TNS C-series
D-series

This manual indicates when pTAL behaves differently on TNS/E and TNS/R architectures. When

no architecture is specifically mentioned, the syntax works the same way on TNS/E and TNS/R
architectures.

For more information:

Topic Source

ltanium® chips used in TNS/E systems Intel ltanium Architecture Software Developer’s Manual

RISC chips used in TNS/R systems MIPS RISC Architecture by Gerry Kane and Joe Heinrich

TNS/R or TNS/E architecture System description manual for your system

Compiling pTAL source programs Chapter 16 (page 355)

pTAL Applications

The pTAL language is appropriate for writing applications where optimal performance has high
priority, for example:

e Systems software
o Operating system components
o Compilers and interpreters

o Command interpreters

pTAL Applications 31

o Special subsystems

o Special routines that support data communication activities

Transaction-oriented applications

o Server processes used with HP data management software

o Conversion routines that allow data transfer between HP software and other applications
o Procedures that are callable from programs written in other languages

> Applications that require optimal performance

You cannot embed SQL/MP or SQL/MX statements in pTAL source code.

pTAL Features

Procedures

Procedures (page 32)
Subprocedures (page 32)
Private Data Area (page 32)
Recursion (page 33)
Parameters (page 33)

Data Types (page 33)

Data Grouping (page 33)
Pointers (page 34)

Data Operations (page 34)
Bit Operations (page 34)
Built-in Routines (page 34)
Compiler Directives (page 34)
Modular Programming (page 34)

Each pTAL program contains one or more procedures. A procedure is a discrete sequence of
declarations and statements that performs a specific task. A procedure is callable from anywhere
in the program.

Each procedure executes in its own environment and can contain local variables that are not
affected by the actions of other procedures. When a procedure calls another procedure, the
operating system saves the caller’s environment and restores that environment when the called
procedure returns control to the caller.

Subprocedures

A procedure can contain subprocedures, callable only from within the same procedure. A
subprocedure can have sublocal variables that are not affected by the actions of other
subprocedures. When a subprocedure calls another subprocedure, the caller’s environment remains
in place. The operating system saves the location in the caller to which control is to return when
the called subprocedure terminates.

Private Data Area

Each activation of a procedure or subprocedure has its own data area. Upon termination, each
activation relinquishes its private data areq, thereby minimizing the amount of memory that the
program uses.

32 Introduction to pTAL

Recursion

Because each activation of a procedure or subprocedure has its own data areq, a procedure or
subprocedure can call itself or can call another procedure that in turn calls the original procedure.

Parameters

A procedure or subprocedure can have optional or required parameters. The same procedure or
subprocedure can process different sets of variables sent by different calls to it.

Data Types

A pTAL program can declare and refer to the following types of data:
Data Type Description

STRING 8-bit integer byte

INT, INT(16) 16-bit integer word
INT(32) 32-bit integer doubleword

FIXED, FIXED(O), INT(64)

FIXED(19 to -1)
FIXED(to 19)
REAL, REAL(32)
REAL(64)
UNSIGNED(n)
BADDR
WADDR
CBADDR
CWADDR
SGBADDR
SGWADDR
SGXBADDR
SGXWADDR
EXTADDR
EXT32ADDR’
EXT64ADDR’
PROCADDR
PROC32ADDR’
PROC64ADDR”

64-bit integer quadrupleword
Fixed-point quadrupleword
Fixed-point quadrupleword

32bit floating-point doubleword
64-bit floating-point quadrupleword
n-bit field, where 1 <= n <= 31
32-bit byte address

32-bit 2-byte address

32-bit byte code word address
32-bit 2-byte code word address
16-bit SG-relative byte address
16-bit SG-relative 2-byte address
32-bit SG-relative 2-byte address
32-bit SG-relative 2-byte address
32-bit byte address

Explicitly named 32-bit byte address
64-bit byte address

32-bit code byte address

Explicitly named 32-bit code byte address
64-bit code byte address

" These data types are 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HO1AAP.
For more information, see Appendix E, “6é4-bit Addressing Functionality” (page 531).

Data Grouping

A pTAL program can declare and use groups of related variables, such as arrays and structures

(records).

pTAL Features 33

Pointers

A pTAL program can declare pointers (variables that can contain addresses) and use them to
access locations throughout memory. You can store addresses in pointers when you declare them
or later in your program.

Data Operations

A pTAL program can copy a contiguous group of words or bytes and compare one group with
another. It can scan a series of bytes for the first byte that matches (or fails to match) a given
character.

Bit Operations
A pTAL program can perform bit deposits, bit extractions, and bit shifts.

Built-in Routines

A pTAL program can use built-in routines to convert data types and addresses, test for an ASCII
character, or determine the length, offset, type, or number of occurrences of a variable.

Compiler Directives

You can use directives to control a compilation. You can, for example, check the syntax in your
source code or control the content of compiler listings.

Modular Programming

You can divide a large pTAL program into modules, compile them separately, and then link the
resulting object files into a new object file.

System Services

Your program can ignore many things such as the presence of other running programs and whether
your program fits info memory. For example, programs are loaded into memory for you and absent
pages are brought from disk into memory as needed.

System Procedures

The file system treats all devices as files, including disk files, disk packs, terminals, printers, and
programs running on the system. File-system procedures provide a file-access method that lets you
ignore the peculiarities of devices. Your program can refer to a file by the file’s symbolic name
without knowing the physical address or configuration status of the file.

Your program can call system procedures that activate and terminate programs running on any
processor on the system, and can also call system procedures that monitor the operation of a
running program or processor. If the monitored program stops or a processor fails, your program
can determine this fact.

For more information about system procedures see:
e Guardian Procedure Calls Reference Manual

e Guardian Programmer’s Guide

pTAL and the CRE

pTAL does not have a run-time environment defined by a run-time library such as HP C and
HP COBOL. The CRE provides a common foundation for language-specified run-time libraries that
enables mixed-language programming.

A program with a pTAL main routine cannot run in the CRE because pTAL does not perform the
necessary initialization of the run-time environment. pTAL routines can run in the CRE if they are

34 Introduction to pTAL

called from a program with an HP C main routine. There are additional restrictions on what
operations can be performed in the pTAL routines. For complete details on writing pTAL routines
that run in the CRE, see the CRE Programmer’s Guide.

pTAL and the CRE 35

2 Language Elements

36

The elements that make up the pTAL language include:

e Character Set (page 36)

e Keywords (page 37)

e Delimiters (page 38)

e Operators (page 39)
e Base Address Symbols (page 40)
e Indirection Symbols (page 41)

e Declarations (page 41)

e Typed Integer Constants (page 44)

e Statements (page 45)

Character Set

pTAL supports the complete ASCII character set, which includes:

e Uppercase and lowercase alphabetic characters (A through Z.)

e Numeric characters (0 through 9)

e Special characters

Table 8 Special Characters

Character Description Character Description

! Exclamation point " Quotation mark

$ Dollar sign % Percent sign

& Ampersand ' Apostrophe

(Opening parenthesis) Closing parenthesis

* Asterisk + Plus

, Comma Hyphen (minus)
Period (decimal point) / Right slash
Colon ; Semicolon

< Less than = Equals

> Greater than ? Question mark

@ Commercial at sign [Opening bracket

\ Back slash] Closing bracket

~ Circumflex _ Underscore
Grave accent { Opening brace

Vertical line

Tilde

Closing brace

Language Elements

Keywords

Keywords have predefined meanings to the compiler when used as shown in the syntax diagrams
in this manual.

Keyword Type Description

Reserved Reserved by the compiler. Do not use reserved keywords (shown in Table 9 (page 37))
for your identifiers.

Nonreserved You can use nonreserved keywords anywhere identifiers are allowed except as noted
in the Restrictions column of Table 10 (page 37).

Table 9 Reserved Keywords

AND ELSE INTERRUPT PROC32ADDR” SGXBADDR
ASSERT END LABEL PROC64ADDR’ SGXWADDR
BADDR ENTRY LAND PROCPTR UNTIL
BEGIN EXTERNAL LITERAL PROC32PTR" USE

BY EXTADDR LOR PROC64PTR’ VARIABLE
CALL EXT32ADDR” MAIN REAL VOLATILE
CALLABLE EXT64ADDR’ NOT REFALIGNED WADDR
CASE FIELDALIGN OF RESIDENT WHILE
CBADDR FIXED OR RETURN

CWADDR FOR OTHERWISE RSCAN

DEFINE FORWARD PRIV SCAN

DO IF PROCADDR SGBADDR

DOWNTO INT PROC SGWADDR

" These reserved keywords are available in the 64-bit addressing functionality added to the EpTAL compiler starting
with SPR TO561HO1”AAP. For more information, see Appendix E, “64-bit Addressing Functionality” (page 531).

Table 10 Nonreserved Keywords

Keyword Restrictions

AT Allowed in BLOCK declarations

AUTO None

BELOW Allowed in BLOCK declarations

BIT_FILLER Not to be used as an identifier within a structure
BLOCK Not to be used as an identifier in a source file that contains the NAME declaration
BYTES Not to be used as an identifier of a LITERAL or DEFINE
C None

ELEMENTS Not to be used as an identifier of a LITERAL or DEFINE
EXT None

EXTENSIBLE None

FILLER Not to be used as an identifier within a structure
LANGUAGE None

Keywords 37

Table 10 Nonreserved Keywords (continued)

Keyword Restrictions
NAME None
NODEFAULT None
PRIVATE Not to be used as an identifier in a source file that contains the NAME declaration
RETURNSCC None
SHARED?2 None
SHAREDS8 None
UNSPECIFIED None
WORDS Not to be used as an identifier of a LITERAL or DEFINE
Delimiters

Delimiters are symbols that begin, end, or separate fields of information. Delimiters tell the compiler
how to handle the fields of information.

Table 11 Delimiters

Symbol Character Representation Uses

! Exclamation mark Begins and optionally ends a comment
Two consecutive hyphens Begins a comment

, Comma Separates fields of information, such as in

declarations, statements, directives, and constant lists

’ Semicolon e Terminates data declarations
e Separates statements

e Separates declaration options

Period Separates identifier levels in a qualified structure item
identifier
<n :n > Angle brackets Delimits a bit field in a bit operation
Colon e Denotes a statement label

e Denotes a procedure entry point
o Denotes an ASSERT statement assert level

e Denotes a parameter pair

() Parentheses o Delimit subexpressions within an expression

o Delimit the parameter list of a DEFINE, procedure,
subprocedure, or CALL statement

e Delimit the referral in a structure pointer
declaration

o Delimit the implied decimal point position in a
FIXED variable

[n:n] Square brackets Delimit the bounds specification in the declaration
of an array, structure, or substructure

38 Language Elements

Table 11 Delimiters (continued)

Symbol Character Representation Uses
> Hyphen plus right angle bracket o Begins one or more labels in a labeled CASE
statement
o Begins a next - addr clause in a SCAN or
RSCAN statement
o Beginsanext-addr clause in a move statement
o Begins a next - addr clause in a group
comparison expression
"string" Quotation marks Delimit a character string
" Consecutive quotation marks ~ The first quotation mark indicates that the second
quotation mark is not a delimiter in a character string
= Equal sign o Used in LITERAL declarations
EQL) . . .
o Used in equivalence variable declarations
o Used in redefinition declarations
= body # Equal sign and hash mark Delimit the body in a DEFINE declaration
i Single quotation marks Delimit a comma that is not a delimiter in a DEFINE
parameter
$ Dollar sign Denotes a built-in routine (such as $ABS) or a built-in
routine (such as $ASCIITOFIXED)
? Question mark

Begins a directive line

Operators

Operators specify operations, such as arithmetic or assignments, that you want to perform on data

items.

Table 12 Operators

Context Operator Description
Assignment = Data declaration initialization; assignment statement,
FOR statement, and assignment expression
Move statement = Left-to-right move
= Right-to-left move
& Concatenated move

Labeled CASE statement

Remove indirection

Repetition
Template structure
FIXED(*) parameter type

Bit-field access

Bit shift

. .(two periods)

@

* (asterisk)

Describes a range of case alteratives

Accesses the address contained in a pointer or the
address of a nonpointer item

Repetition factor in a constant list
Template structure declaration
Value parameter to be treated as FIXED

Accesses a bit-deposit or bit-extraction field (<n > or
<n :n >)

Signed left shift
Signed right shift
Unsigned left shift

Operators 39

Table 12 Operators (continued)

Context Operator Description
> Unsigned right shift
Arithmetic expression + Signed addition
Signed subtraction
* Signed multiplication
/ Signed division
'+ Unsigned addition

Relational expression

Unsigned subtraction

! Unsigned multiplication

VA Unsigned division

\! Unsigned modulo division

LOR Logical OR bit-wise operation
LAND Logical AND bit-wise operation
XOR Exclusive OR bit-wise operation
< Signed less than

= Signed equal to

> Signed greater than

<= Signed less than or equal o
>= Signed greater than or equal fo
<> Signed not equal fo

<! Unsigned less than

= Unsigned equal to

> Unsigned greater than

<= Unsigned less than or equal to
'>=' Unsigned greater than or equal to
<> Unsigned not equal to

AND Logical conjunction

OR Logical disjunction

NOT Logical negation

Base Address Symbols

Base address symbols let you declare pointers to specific data segments.
Table 13 Base Address Symbols

Symbol Description

'P' P-register addressing (read-only array declaration)

'SG' Define base address equivalencies, system global space (privileged procedures only)
'SGX' References data in the system data segment.

40 language Elements

Table 13 Base Address Symbols (continued)

Symbol Description

'G' References data relative to the beginning of the Global data area (not supported by
oTAL).

g8 References data relative to the beginning of the Procedure (not supported by pTAL). |

|S|

References data relative to the beginning of the Subprocedure (not supported by
pTAL).

Indirection Symbols

Indirection symbols determine the address types of variables. Use indirection symbols when declaring
formal parameters to cause them to be passed by reference (rather than by value).

Table 14 Indirection Symbols

Symbol Declares ...

- (period) e An array or structure as having standard direct addressing
e A simple pointer or structure pointer

EXT e An array or structure as having extended 32-bit addressing |
o An extended (32-bit) simple pointer or structure pointer

EXT32 e An array or structure as having extended 32-bit addressing |
o An extended (32-bit) simple pointer or structure pointer |

EXT64 e An array or structure as having extended 64-bit addressing
o An extended (64-bit) simple pointer or structure pointer

.SG A standard (16-bit) system global pointer

.SGX An extended (32-bit) system global pointer. |

" These indirection symbols are available in the 64-bit addressing functionality added to the EpTAL compiler starting
with SPR TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality” (page 531).

Declarations

Declarations allocate storage and associate identifiers with declarable objects in a program; that

IS:

e Variables

e LITERALs and DEFINEs (see Chapter 6 (page 97))
e Procedures (see Chapter 14 (page 246))

e Labels (see Labels in Procedures (page 273))

e Entry points (see Entry-Point Declarations (page 260))

Topics:

e Identifiers (page 42)
e Variables (page 43)
e Scope (page 43)

Indirection Symbols 41

|dentifiers

Identifiers must conform to these rules:

Identifiers can have up to 132 characters. You can limit the identifier to 31 characters by
setting the DO_TNS_SYNTAX (page 389).

Identifiers begin with an alphabetic character, an underscore (_), or a circumflex (*).
Identifiers contain alphabetic characters, numeric characters, underscores, or circumflexes.

Identifiers contain lowercase and uppercase alphabetic characters. The compiler treats all
characters as uppercase.

Identifiers cannot be reserved keywords (see Table 9 (page 37)).

Identifiers can be nonreserved keywords, except as noted in Table 10 (page 37).

In addition to the preceding rules, HP recommends that you:

Use underscores rather than circumflexes to separate words in identifiers (for example, use
Name_Using_Circumflexes rather than Name”~Using”~Circumflexes). This guideline
reflects international character-set standards, which allow the character printed for the circumflex
to vary by country.

Do not end identifiers with an underscore. The trailing underscore is reserved for identifiers
supplied by the operating system (such as Name_Usiing_Trailing_Underscore_).

Example 1 Correct Identifiers

a2
HP

_2345678012_31 characters
name_with_exactly 31 characters

Example 2 Incorrect Identifiers

Identifier Problem

2abc Begins with a number
ab%99 Contains % symbol
VARIABLE Reserved word

Each identifier belongs to an identifier class. The compiler determines the identifier class based
on how you declare the identifier.

Table 15 Identifier Classes

Class Description

Block Global data block

Code Read only (P-relative) array

Variable Simple variable, array, nonstructure pointer, structure pointer, structure, or structure
data item

DEFINE* Named text

Function Procedure or subprocedure that returns a value

Label Statement label

LITERAL Named constant

PROC Procedure or subprocedure that does not return a value

42 language Elements

Table 15 Identifier Classes (continued)

Class Description

Template Template structure

* Available only on Guardian platforms.

Variables

Scope

A variable is a symbolic representation of data. It can be a single-element variable or a
multiple-element variable. You use variables to store data that can change during program execution.

Before you can access data stored in a variable you must either:
e Initialize the variable with a value when you declare the variable
e Assign a value to the variable after you declare the variable

Table 16 Variable Types

Variable Type Description

Simple variable A variable that contains one element of a specified data type

Array A variable that contains multiple elements of the same data type

Structure A variable that can contain variables of different data types

Substructure A structure nested within a structure or substructure

Structure item A simple variable, array, simple pointer, substructure, or structure pointer declared

in a structure or substructure; also known as a structure field

Nonstructure pointer A variable that contains a memory address, usually of a simple variable or an array
element, which you can access with this nonstructure pointer

Structure pointer A variable that contains the memory address of a structure, which you can access
with this structure pointer

Every declared item in a pTAL program has a scope that determines where in the program it is
visible (after the point of declaration).

Scope Declared in a ... Visible ...
Global Program Everywhere in the program
Local Procedure Only in the procedure that declares it (including the

subprocedures of that procedure)

Sublocal Subprocedure Only in the subprocedure that declares it

Formal parameters of procedures and subprocedures have local and sublocal scope, respectively.

Example 3 Scope of Declared ltems

int i; 1 1 has global scope and is visible everywhere
from this point forward.

proc p; 1 p has global scope. If p had formal
1 parameters, they would have local scope.
begin
int J := i; ! jJ has local scope and is visible everywhere in

procedure p from this point forward.
s has local scope. |If s had formal parameters,
they would have sublocal scope.

subproc s;

begin

Declarations 43

nt K := 1 + J; ! k has sublocal scope and is visible only
! in subprocedure s.

end;
1 k is not visible here. It is created and destroyed every

1 time subprocedure s is called.
nd;

J is not visible here. It is created and destroyed every time
procedure p is called.
i Is accessible here and exists as long as the program is
running.

T)

Variables that have different scopes can have the same name, but they are different variables.

Example 4 Global and Local Variable With the Same Name

int(32) i; I This 1 is global
proc p;
begin
int i; I This 1 is local to procedure p, different

from global variable 1, and makes access to
global variable 1 impossible (hides" it).
i =1 + 1D; ! ERROR: local variable i is INT(16)

For local and sublocal variables, the compiler generates code to evaluate and store an initialization
expression. For example, for the expression

intk :=1 * j;
if i, j, and k are local or sublocal variables, the compiler generates code to multiply i by j and
store the product in k.

For global variables, the compiler does not generate such initialization code. Initial values assigned
to global variables are determined by the linker.

Typed Integer Constants

A constant is a value you can store in a variable, declare as a LITERAL, or use as part of an
expression. Constants can be numbers or character strings. The following are examples of constants:

Constant Type Example
Character string "abc"
Numeric 654

You can specifty numeric constants in binary, octal, decimal, or hexadecimal base, depending on
the data type of the constant. The default number base in pTAL is decimal. The following are
example constants in each number base:

Number Base Example

INT(16) Decimal -654

INT(32) Decimal +654D or +654 D (% not allowed)

FIXED Decimal 654F or 654 F (% not allowed)

INT(16) Binary %B101111

INT(32) Binary %B101111D or %B101111%D or %B101111% D
FIXED Binary %B101111F or %B101111%F or %B101111% F

44 language Elements

Number Base Example

INT(16) Octal %57

INT(32) Octal %57D or %57%D or %57 D

FIXED Octal %57D or %57%F or %57 F

INT(16) Hexadecimal %H2F

INT(32) Hexadecimal %H2F%D or %H2F D (space or % required)

FIXED Hexidecimal %H2F%F or %H2F F (space or % required)
Statements

A statement specifies operations to be performed on declared objects. Statements are discussed
in Chapter 12 (page 199), and summarized in Table 55 (page 199).

Statements 45

3 Data Representation

A program operates on data—variables and constants—which it stores in the storage units that
Table 17 (page 46) describes.

Table 17 Storage Units

Storage Unit Number of Bits Description
Byte 8 Smallest addressable unit of memory.
Word 16 2 bytes, with byte O (most significant) on the left and byte 1 (least significant)
on the right
Doubleword 32 4 bytes
Quadrupleword 64 8 bytes
n-bit field 116 Contiguous bit fields within 2 bytes
17-31 Contiguous bit fields within 4 bytes
Topics:

e Data Types (page 46)
e Address Types (page 49)
e Constants (page 57)

Data Types
When you declare a variable, you specify its data type, which determines:
e lts storage unit
e The values that you can assign to it
e The operations that you can perform on it
e lts address type
Table 18 Data Types

Data Type Storage Unit' Values the Data Type Can Represent

STRING Byte o ASCIl character
o Unsigned 8-bit integer in the range O through 255

“:ﬂ 1612 Word e String of one or two ASCII characters
(16) o Unsigned 6-bit integer in the range O through 65,535
o Signed 6-bit integer in the range -32,768 through 32,767

INT(32) Doubleword 32-bit integer in the range -2,147,483,648 through +2,147,483,647

REAL Doubleword 32-bit floating-point number in the range +8.6361685550944444E-78

REAL(32)® through +£1.15792089237316192E, precise to approximately 6.5
significant decimal digits.

FIXED Quadrupleword 64-bit fixed-point number. For FIXED, FIXED(0), FIXED (*), and INT(64)

FIXED(O) the range is -9,223,372,036,854,775,808 through

INT(64)* +9,223,372,036,854,775,807.

FIXED(19 to -1)
FIXED(1 to 19)

46 Data Representation

Table 18 Data Types (continued)

Data Type Storage Unit' Values the Data Type Can Represent

REAL(64) Quadrupleword 64-bit floating-point number in the same range as data type REAL but
precise to approximately 16.5 significant decimal digits.

UNSIGNED n-bit field UNSIGNED(1-15) and UNSIGNED(17-31): Unsigned integer in the range
0 through (2n - 1)
UNSIGNED(16):

o Unsigned integer in the range O through 65,535

o Signed integer in the range -32,768 through 32,767
UNSIGNED simple variable: The bit field can be 1 1o 31 bits.
UNSIGNED array: The element bit field can be 1, 2, 4, or 8 bits.

Table 17 (page 46) describes storage units.

INT and INT(16) are the same type.

REAL and REAL(32) are the same type.

FIXED, FIXED(0), and INT(64) are the same type.

AOOWON =

Topics:

e Specifying Data Types (page 47)

e Data Type Aliases (page 48)

e Operations by Data Type (page 48)

Specifying Data Types

The syntax for specifying the data type in a variable declaration is:

STRING

Y

WET214 vsd

wi dt h

is a constant expression that specifies the width, in bits, of the variable. The value of wi dt h
must be appropriate for the data type (see Example 5 (page 48)):

Data Type Value of width

INT (16)* 16

INT (32) 32

INT (64)* 64

REAL(32)* 32

REAL(64) 64

UNSIGNED(n) In the range 1 through 31

* Data type alias (see Data Type Aliases (page 48))

Data Types 47

f poi nt
is the implied fixed-point (decimal-point) setting. f poi nt is an integer in the range -19 through
19. The default f poi nt is O (no decimal places).
A positive f poi nt specifies the number of places to the right of the decimal point:
FIXED(3) x := 0.642F; ! Stored as 642

A negative f poi nt specifies a number of places to the left of the decimal point. When the
value is stored, it is truncated leftward from the decimal point by the specified number of digits.
When the value is accessed, zeros replace the truncated digits:

FIXED(-3) y := 642945F; ! Stored as 642; accessed as 642000

*(asterisk)

prevents scaling of the initialization values (for an explanation of scaling, see Scaling of FIXED
Operands (page 74)).

Example 5 Constant Expressions in Data Type Specifications

LITERAL a = 2,

b = 35;
INT(a + 30) aaa;
INT(b - 5) bbb;

OK: INT(32) is valid

ERROR: expression must evaluate to valid
bit length (16, 32, or 64 for an INT)
ERROR: expression must evaluate to valid
bit length (32 or 64 for REAL)

OK: REAL(64) is valid

OK: UNSIGNED fields can be any number of
bits from 1 to 31.

REAL (b - 19) ccc;

REAL (b + 29) ddd;
UNSIGNED (&) eee;

Data Type Aliases

The compiler accepts these data type aliases:

Data Type Aliases

INT INT(16)

REAL REAL(32)

FIXED FIXED(O)INT(64)

The remainder of this manual avoids using data type aliases.

Operations by Data Type

48

The data type of a variable determines the operations you can perform on the variable.

Table 19 Operations by Data Type

INT(32) or

INT or UNSIGNED UNSIGNED
Operation STRING (1-16) (17-31) FIXED REAL or REAL(64)
Unsigned Yes Yes Yes No No
arithmetic
Signed arithmetic Yes Yes Yes Yes Yes
Logical Yes Yes Yes No No
operations
Relational Yes Yes Yes Yes Yes
operations

Data Representation

Table 19 Operations by Data Type (continued)

INT(32) or
INT or UNSIGNED UNSIGNED
Operation STRING (1-16) (17-31) FIXED REAL or REAL(64)
Bit shifts Yes Yes Yes No No
Byte scans Yes Yes Yes Yes Yes

The data type of a variable also determines which built-in routines you can use with the variable
(see Chapter 15 (page 274)).

Address Types

Every identifier that you declare has both a data type and an address type. The data type describes
the data item itself. The address type describes the address of the data item. If you declare a pointer

to the data item, the value that you assign to the pointer must be of that address type.

You cannot explicitly declare the address type of a pointer. When you declare a pointer, the

compiler determines its address type.

Table 20 Data Types and Their Address Types

Pointer Declaration Data Type Address Type Storage Unit'
STRING -S; STRING BADDR Byte
INT i3 INT WADDR Word
INT(32) J: INT(32) WADDR Word
REAL .r; REAL WADDR Word
REAL(64) -S; REAL(64) WADDR Word
FIXED -F; FIXED WADDR Word
STRUCT .t; none WADDR Word
SUBSTRUCT -V; none BADDR Byte
addr - t ype? .a; address_t ype® WADDR Word
STRING -EXT s; STRING EXTADDR Byte
INT EXT i; INT EXTADDR Byte
INT(32) CEXT j: INT(32) EXTADDR Byte
REAL -EXT r; REAL EXTADDR Byte
REAL(64) -EXT s; REAL(64) EXTADDR Byte
FIXED -EXT F; FIXED EXTADDR Byte
STRUCT EXT t none EXTADDR Byte
SUBSTRUCT _EXT v; none EXTADDR Byte
addr - t ype? .EXT a; address_t ype® EXTADDR Byte
STRING .EXT32 s; STRING EXT32ADDR* Byte
INT (EXT32 i; INT EXT32ADDR* Byte
INT(32) (EXT32 k; INT(32) EXT32ADDR? Byte
REAL .EXT32 r; REAL EXT32ADDR* Byte
FIXED -EXT32 F; FIXED EXT32ADDR* Byte

Address Types

49

Table 20 Data Types and Their Address Types (continued)

Pointer Declaration Data Type Address Type Storage Unit'
STRUCT (EXT32 t; none EXT32ADDR* Byte
SUBSTRUCT _.EXT32 v; none EXT32ADDR* Byte
addr-type .EXT32 a; address_type EXT32ADDR* Byte
STRING .EXT64 s; STRING EXT64ADDR* Byte

INT -EXT64 i; INT EXT64ADDR* Byte
INT(32) .EXT64 K; INT(32) EXT44ADDR* Byte

REAL -EXT64 r; REAL EXT64ADDR* Byte
FIXED -EXT64 T; FIXED EXT64ADDR* Byte
STRUCT .EXT64 t; None EXT64ADDR* Byte
SUBSTRUCT .EXT64 v; none EXT64ADDR* Byte
addr-type -EXT64 a; address_type EXT64ADDR* Byte
STRING .SG s; STRING SGBADDR Byte

INT .SG i; INT SGWADDR Word
INT(32) .SG j; INT(32) SGWADDR Word
REAL -SG r; REAL SGWADDR Word
REAL (64) .SG s; REAL(64) SGWADDR Word
FIXED .SG f; FIXED SGWADDR Word
addr-type2 .SG a; addr ess_type3 SGWADDR Word
STRING .SGX s; STRING SGXBADDR Byte

INT -SGX i; INT SGXWADDR Word
INT(32) -SGX j; INT(32) SGXWADDR Word
REAL -SGX r; REAL SGXWADDR Word
REAL(64) .SGX s; REAL(64) SGXWADDR Word
FIXED .SGX F; FIXED SGXWADDR Word

addr - t ype? .SGX a; addr ess_t ype® SGXWADDR Word
PROC p; PROC PROCADDR Doubleword
PROCPTR p(); END PROCPTR PROCPTR PROCADR Doubleword
PROC32PTR p(); END PROCPTR PROC32PTR PROC32PTR* Doubleword
PROC64PTR p(); END PROCPTR PROC64PTR PROC64PTR? Quadword
procedure e; ENTRY PROC PROCADDR Doubleword
STRING v ="p":="ab"; STRING CBADDR Byte

INT v ="p=:=" INT CWADDR Word
SUBPROC SUBPROC CWADDR Word
Subprocedure ENTRY e; CWADDR Word
LABEL 1; LABEL CWADDR Word

50 Data Representation

! Table 17 (page 46) describes storage units.
2 addr - t ype is any of the fen address types.
% address_t ype is the same address type as specified in the declaration.
* 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HO1*AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531). |

You can compare addresses using the relational operators described in Table 12 (page 39).
Topics:

e Storing Addresses in Variables (page 51)

e Converting Between Address Types and Numeric Data Types (page 51)
e Converting Between Address Types (page 52)

e Using Indexes to Access Array Elements (page 54)

e Incrementing and Decrementing Addresses (Stepping Pointers) (page 54)
e Computing the Number of Bytes Between Addresses (page 55)

e Comparing Addresses to Addresses (page 56)

e Comparing Addresses to Constants (page 56)

e Comparing Procedure Addresses and Procedure Pointers (page 56)

e Testing a Pointer for a Nonzero Value (page 56)

Storing Addresses in Variables
You can store an address into a variable when either of the following is true:
e The address is the same data type as the variable into which you are storing the address.

e The address is convertible to the data type of the variable into which you are storing the
address.

Converting Between Address Types and Numeric Data Types

You can move any 16-bit integer value—a constant or variable—into any system global address
type (SGBADDR, SGWADDR, SGXBADDR, or SGXWADDR). Conversely, you can move the value
of any system global data type into a 16-bit integer variable.

You can move an EXTADDR into an INT(32), or an INT(32) into an EXTADDR.
You can also move an EXTA32DDR into an INT(32), or an INT(32) into an EXT32ADDR. |
Exceptions: You cannot convert the following address types to numeric data types:

e CBADDR
e CWADDR
e PROCADDR

« PROC32ADDR |
« PROC&4ADDR |

NOTE: The address types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
available in the 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Address Types 51

Converting Between Address Types

52

You can convert an address from one address type to another using either:

e Built-in address-conversion functions (see Table 61 (page 283))

o Shift operations and low-level built-in routines

These conversions are supported for compatibility with TAL. HP recommends that you use the
equivalent pTAL routine when you write pTAL code.

Expression Operand Type Equivalent Routine Call

e '<<'1 WADDR $WADDR_TO_BADDR(e)

e '<<'1 SGWADDR $SGWADDR_TO_SGBADDR(e)
e '<<'1 SGXWADDR $SGWADDR_TO_SGBADDR(e)
e '>>'1 BADDR $BADDR_TO_WADDR(e)

e '>>'1 SGBADDR $SGBADDR_TO_SGWADDR(e)
e '>>'1 SGXBADDR $SGBADDR_TO_SGWADDR(e)
$UDBL(e) BADDR $BADDR_TO_EXTADDR(e)
$DBLL(O,e) BADDR $BADDR_TO_EXTADDR(e)
$UDBL(e) '<<' 1 WADDR $WADDR_TO_EXTADDR(e)
$DBLL(O,e) '<<' T WADDR $WADDR_TO_EXTADDR(e)

The compiler generates code for implicit conversions for the following operations:

e Block moves and compares

The compiler automatically converts an address type if required for the source or destination
pointer in a block move or block compare instruction.

e Call-by-reference actual parameters

The compiler automatically converts the address type of an actual parameter to the address
type of a formal parameter if the conversion could not cause data loss. For example:

o

o

o

BADDR can be converted to EXTADDR

WADDR can be converted to EXTADDR

EXTADDR cannot be converted to WADDR

EXTADDR and EXT32ADDR can be converted to EXT64ADDR
PROCADDR and PROC32ADDR can be converted to PROC64ADDR

PROCPTR and PROC32PTR can be converted to PROC64PTR (if same parameter profile.
For more information, see “Procedure Pointers” (page 263).)

Data Representation

Table 21 Valid Address Conversions

FROM
TO B W C C S S S S |E E |P P |E P | INT |INT |F
A A B w G G G G [X X |R R X R |
D D A |A [B X |w |x [T |Tlo |o|T |o 32) | X
D D D D A B A W A 32 |C C |64 C E
R R D D D A D A |D A A 32 |A 64 D
R R D D D D [D D |D A |D A 0
R D R D [R D |D D |D D
R R R |R D |R D
* R |* R
BADDR = r7 r r C rl
WADDR r9 = r r c r2
CBADDR = |9
CWADDR 9 |=
SGBADDR = = |[R7 |r7 c y3
SGXBADDR = = [R7 |17 c y3
SGWADDR r8 8 (= |= c y4
SGXWADDR r8 8 (= |= c y4
EXTADDR |r r cll |cTl |r r r ro|= y c y
EXT32ADDR | r roo el el |r S O A VR c y
PROCADDR =10 |y10 clo
FROC2ADR 10 |=0 cl0
EXT64ADDR | r r r r r roly y = y12
FROCHAADIR r10 | r10 =10
INT y5 |y5 |y6 |yb = c c
INT(32) y y c = c
FIXED(O) cl13 C C =

Key to Symbols:

113 See note (below)

c Requires explicit conversion

Blank Always unsupported

= Same type, no conversion needed

r Implicit conversion for reference parameters; requires explicit conversion for other contexts

y Implicit conversion for assignments, actual parameters (either by value or by reference) and function return statements

| Implicit conversion for assignments, actual parameters (passed either by value or by reference), and RETURN statements

" These address types are available in the 64-bit addressing functionality added to the EpTAL compiler starting with
SPR TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality” (page 531).

Address Types 53

NOTE:

1.

N

NoOUAW

10.

n.

12.

13.

In assignment statements, only INT constants are allowed. They are interpreted as a ‘G'-relative
byte address.

In assignment statements, only INT constants are allowed. They are interpreted as a ‘G'-relative
word address.

Input INT interpreted as ‘SG'-relative byte address. |
Input INT interpreted as ‘SG’-relative word address. |
|
|

Output INT holds ‘SG'-relative byte address.
Output INT holds ‘SG'-relative word address.

Compiler assumes obiject is in lower half of the stack or in the lower half of the ‘SG’ segment
(TNS only); there is no dynamic check for msb=0.

The result is undefined if Isb=1; the round-down effect of TNS is not guaranteed. pTAL issues
a warning if the BADDR or SGBADDR address is known to be an odd-byte offset from some
word-addressed base. No warning is issued if pTAL cannot determine whether the offset is
odd or even.

Conversions between CWADDR and CBADDR are unsupported and illegal, because these
conversions are probably unneeded, and because it is difficult to ensure that a word-addressed
‘P"-relative structure is in the byte-addressable lower half of a TNS code segment.

PROCPTR, PROC32PTR, and PROC64PTR variables and addresses of procedures are implicitly
of type PROCADDR, PROC32ADDR, and PROC64ADDR, respectively, but are subject to
matching of parameter profiles and procedure attributes. See “Assignments to Procedure
Pointers” (page 269). Implicit conversions from PROC32ADDR to PROCADDR, PROC32ADDR
to PROC64ADDR, and PROCADDR to PROC64ADDR are also allowed (again subject to the
parameter and attribute matching rules, described in the section noted directly above).

$XADR of a CWADDR and CBADDR yields an EXTADDR. |

In assignment statements, only FIXED(O) constants are allowed. They are interpreted as a byte
address.

$FIX of an EXT64ADDR yields a FIXED(O). |

Using Indexes to Access Array Elements

Indexing produces the correct result for all data types including structures. Use indexing wherever
possible to adjust pointers.

Example 6 Using Indexing to Access an Array Element

int .p;

@p :

@p

@pl2] 1 This statement is equivalent to
@p "+" 4; ! this statement

Incrementing and Decrementing Addresses (Stepping Pointers)

You can increment or decrement the value of a pointer (step a pointer) by:

Using Arithmetic Operations to Adjust Addresses (page 55)
Computing the Number of Bytes Between Addresses (page 55)
Comparing Addresses to Addresses (page 56)

Comparing Addresses to Constants (page 56)

Comparing Procedure Addresses and Procedure Pointers (page 56)

Testing a Pointer for a Nonzero Value (page 56)

54 Data Representation

Using Arithmetic Operations to Adjust Addresses

You can add an integer value to any address type except PROCADDR, PROC32ADDR, and
PROC64ADDR. The address can be on either side of the operator.

Example 7 Adding Integer Values to Addresses

INT .p

@p := @p "+" 4; ! Increment WADDR pointer by four 16-bit words
@ =4 "+" @p; ! Increment WADDR pointer by four 16-bit words
@p == @pl2];

You can subtract an integer value from any address type except PROCADDR, PROC32ADDR, and
PROC64ADDR. The address must be on the left side of the subtraction operator and the integer
must be on the right.

Example 8 Subtracting Integer Values From Addresses

INT .p;
@p = @p "-" 4; ! Decrement WADDR pointer by four 16-bit words
@p =4 "-" @p; ! ERROR: The address must be on the right,

1 the integer on the left

You must use signed operators for operations on EXTADDRs and unsigned operators for all other
address types.

Example 9 Signed and Unsigned Operators in Address Arithmetic

INT _p;

INT .EXT e;

INT .EXT32 e32;
INT .EXT64 e64;

@p = 0@p "-" 4; 1 Unsigned arithmetic on WADDRs
@p =4 "+° @p; ! Unsigned arithmetic on WADDRs
@e = @e + 4D; 1 Signed arithmetic on EXTADDRs
@e32 := @e32 + 4D; ! Signed arithmetic on EXT32ADDRs
@e64 :-= @e64 + 8F; ! Signed arithmetic on EXT32ADDRs

If you increment or decrement a pointer, the number that you add to, or subtract from, a byte
address (such as BADDR) is the number of bytes to move the pointer. Similarly, the number that
you add to a word address (such as WADDR) is the number of 16-bit words to move the pointer,
not the number of 32-bit words.

If you step a byte address (such as BADDR), the number you specify is added to, or subtracted
from, the address in the pointer.

If you step a word address (such as WADDR), the address is incremented decremented by twice
the number you specify, because addresses on TNS/R and TNS/E architecture are represented
as byte addresses.

Computing the Number of Bytes Between Addresses

You can subtract two addresses except PROCADDR, PROC32ADDR, and PROC64ADDR addresses. |
The address types of both operands must be the same except that SGBADDR and SGXBADDR are
interchangeable, and SGWADDR and SGXWADDR are interchangeable.

NOTE: The address types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
available in the 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Address Types 55

Comparing Addresses to Addresses

You can compare addresses only if both addresses are the same address type, except that:
e SGBADDR and SGXBADDR are interchangeable with one another
e SGWADDR and SGXWADDR are interchangeable with one another

You must use signed relational operators (<, =, >,<=, <>, >=) to compare EXTADDR, EXT32ADDR,
and EXT64ADDR addresses. For all other address types, you must use unsigned relational operators

(I Hoa_roa 1t

<, =S <=, <!, '>=), or signed equal (‘=') or signed not equal operators (‘<>).

The result of comparing two addresses is an INT value that indicates whether the relationship is
true (nonzero) or false (zero).

You can test the condition code after an IF statement that compares two addresses only if certain
conditions are met. These conditions are described in Chapter 13 (page 234).

Comparing Addresses to Constants

You can compare a BADDR, WADDR, SGBADDR, SGWADDR, SGXBADDR, or SGXWADDR
address to a 16-bit constant value. The requirements for Comparing Addresses to Addresses
(page 56) also apply to comparing addresses to constants.

Comparing Procedure Addresses and Procedure Pointers

You can compare PROCADDR, PROC32ADDR, and PROC64ADDR addresses with PROCPTR,
PROC32PTR, and PROC64PTR addresses for equality and inequality. The result of comparing the
addresses of two different procedures is always “not equal,” but the result of comparing the two
addresses of the same procedure is not always “equal.”

NOTE: The address types and procedure pointers, PROC32ADDR, PROC64ADDR, PROC32PTR,
and PROC64PTR are available in the 64-bit addressing functionality added to the EpTAL compiler
starting with SPR TO561HO1”*AAP. For more information, see Appendix E, “64-bit Addressing
Functionality” (page 531).

Testing a Pointer for a Nonzero Value

56

You can test a pointer for a nonzero value without specifying the constant zero. For example, if i
is declared:

int .i;

Then these two statements are equivalent:

IF @f THEN ...

IF (@1 <> 0) ...

You can test an EXTADDR or EXT32ADDR pointer for a nonzero value without specifying the
constant zero. For example, if j is declared:

int_EXT j;

INT .EXT32 k;

Then these four statements are equivalent:

IF @ THEN ...
IF @k THEN ...
IF @ <> OD THEN ...
IF @k <> OD THEN ...

You can test an EXT64ADDR pointer for a nonzero value without specifying the constant zero. For
example, if m is declared, then these two statements are equivalent:

IF @m THEN ...
IF @m <> OF THEN ...

Data Representation

Constants

e Character String (page 57)

e STRING Numeric (page 58)

e INT Numeric (page 58)

e INT(32) Numeric (page 59)

e FIXED Numeric (page 61)

e REAL and REAL(64) Numeric (page 62)

e Constant Lists (page 63)

e Constant List Alignment Specification (page 64)

Character String

A character string constant consists of one or more ASCII characters stored in a contiguous group
of bytes.

O— 0

WETDO e

string

is a sequence of one or more ASCII characters enclosed in quotation mark delimiters. If a
quotation mark is a character within the sequence of ASCII characters, use two quotation marks
(in addition to the quotation mark delimiters). The compiler does not upshift lowercase characters.

Each character in a character string requires one byte of contiguous storage. The maximum length
of a character string you can specify differs for initializations and for assignments.

Initializations

You can initialize simple variables or arrays of any data type with character strings.

When you initialize a simple variable, the character string can have the same number of bytes as
the simple variable or fewer. This example declares an INT variable and initializes it with a
character string:

INT chars := "AB";

When you initialize an array, the character string can have up to 127 characters and must fit on
one line. If a character string is too long for one line, use a constant list (described Constant Lists
(page 63)) to break the character string into smaller character strings.

Assignments

You can assign character strings to STRING, INT, and INT(32) variables, but not to FIXED, REAL,
or REAL(64) variables.

In assignment statements, a character string can contain at most four characters, depending on
the data type of the variable:

Number of Bytes in String Data Types to Which String Can Be Assigned
1 STRING, INT

2 STRING, INT

3 INT(32)

4 INT(32)

Constants 57

Example 10 Assigning Character Strings to Variables

STRING s;

INT i;

s = "a'"; 1 OK

s = "ab"; I OK: same as s = "
s = "abc™; ! ERROR: too big

i = "a"; I OK

i = "ab"; 1 OK

I := "abc'; ! ERROR: too big

STRING Numeric

Representation Unsigned 8-bit integer
Range 0 through 255
p| integer |—»-
WETOZ vad
base

indicates a number base as follows:

Octal
Binary

Hexadecimal

%
%b
%h

It you omit the base, the default base is decimal.

i nt eger

is one or more of the following digits:

Decimal
Octal
Binary

Hexadecimal

0 through 9

0 through 7

Oorl

0 through 9, A through F (not case-sensitive)

Examples of STRING numeric constants:

INT Numeric

Decimal 255

Octal %12

Binary %B101

Hexadecimal %h2A

Representation Signed or unsigned 16-bit integer
Range (unsigned) 0 through 65,535

Range (signed) -32,768 through 32,767

Data Representation

base

WETOZT wad

base
indicates a number base as follows:

Octdl %
Binary %b
Hexadecimal %h

The default base is decimal.
i nt eger
is one or more of the following digits:

Decimal 0 through 9

Octal 0 through 7

Binary Oorl

Hexadecimal 0 through 9, A through F (not case-sensitive)

Examples of INT numeric constants:

Decimal 3
-32045
Octal %177
-%5
Binary %B01010
%b1001111000010001
Hexadecimal %H1A
%h2f

The system stores signed integers in two's complement notation. It obtains the negative of a number
by inverting each bit position in the number, and then adding 1.

2 is stored as 0000000000000010
-2 is stored as MIMIInno

INT(32) Numeric

Representation Signed or unsigned 32-bit integer

Range -2,147,483,648 through 4,294,967,295

Constants 59

ns
p integer o
DY

VETO2E wsd
base
indicates a number base as follows:
Octal %
Binary %b
Hexadecimal %h
The default base is decimal.
i nt eger
is one or more of the following digits:
Decimal 0 through 9
Octal 0 through 7
Binary Oorl
Hexadecimal 0 through 9, A through F (not case-sensitive)
D, %D
are suffixes that specify INT(32) constants:
Decimal D
Octal D
Binary D
Hexadecimal %D
Examples of INT(32) numeric constants:
Decimal oD
+14769D
-327895066d
Octal %1707254361d
-%24700000221D
Binary %B000100101100010001010001001d
Hexadecimal %h096228d%d
-%H99FF29%D

For readability, always specify the % in the %D hexadecimal suffix to prevent the suffix from being
confused with the integer part of the constant. The following format, where a space replaces the
% in the %D suffix, is allowed but not recommended:

-%H99FF29 D
The system stores signed integers in two’s complement notation (see INT Numeric (page 58)).

60 Data Representation

FIXED Numeric

Representation Signed 64-bit fixed-point number

Range -9,223,372,036,854,775,808 through
+9,223,372,036,854,775,807

P integer

‘!hI' base
)

O—sfmm}) o7/

base
indicates a number base as follows:

Octal %
Binary %B
Hexadecimal %H

The default base is decimal.
i nt eger
is one or more of the following digits:

Decimal 0 through 9

Octal 0 through 7

Binary Oorl

Hexadecimal 0 through 9, A through F
fraction

is one or more decimal digits. f racti on is legal only for decimal base.
F, %F

are suffixes that specify FIXED constants:

Decimal F
Octal F
Binary F
Hexadecimal %F

Examples of FIXED numeric constants:

Decimal 1200.09F
0.1234567F
239840984939873494F
-10.09F

Octdl %765235512F

Constants

61

Binury %B1010111010101101010110F
Hexadecimal %H298756%F

For readability, always specify the % in the %F hexadecimal suffix to prevent the suffix from being
confused with the integer part of the constant. The following format, where a space replaces the
% in the %F suffix, is allowed but not recommended:

-%HO9FF29 F
The system stores a FIXED number in binary notation. When the system stores a FIXED number, it

scales the constant as dictated by the declaration or expression. Scaling means the system multiplies
or divides the constant by powers of 10 to move the decimal.

For information about scaling of FIXED values in expressions, see Chapter 5 (page 69). For
information about scaling of FIXED values in declarations, see Chapter 7 (page 103).

REAL and REAL(64) Numeric

62

Representation Signed 32-bit REAL or 64-bit REAL(64) floating-point number

Range +8.6361685550944446 * 10-78 through
+115792089237316189 * 10+77

Precision REAL—to approximately 6.5 significant decimal digits
REAL(64)—to approximately 16.5 significant decimal digits

&85 AvCT A

WETODE vad

i nt eger

is one or more decimal digits that compose the integer part.
fraction

is one or more decimal digits that compose the fractional part.

specifies the floating-point constant REAL.

specifies the floating-point constant REAL(64).
exponent
is one or two decimal digits that compose the exponential part.

Examples of REAL and REAL(64) numeric constants, showing the integer part, the fractional part,
the E or L suffix, and the exponent part:

Decimal Value REAL REAL(64)

0 0.0EO 0.0L0

2 2.0e0 2.0L0
0.2E1 0.2L1

Data Representation

Decimal Value REAL REAL(64)

20.0E1 20.0L1
-17.2 -17.2E0 -17.210
-1720.0E-2 -1720.0L2

The system stores the number in binary scientific notation in the form:

X * 2y

X is a value of at least 1 but less than 2. Because the integer part of x is always 1, only the fractional
part of X is stored.

The exponent can be in the range 256 through 255 (%377). The system adds 256 (%400) to the
exponent before storing it as y. Thus, the value stored as y is in the range O through 511 (%777),
and the exponent is y minus 256.

If the value of the number to be represented is zero, the sign is O, the fraction is 0, and the exponent
is O.

The system stores the parts of a floating-point constant as follows:

Data Type Sign Bit Fraction Exponent
REAL <0> <1:22> <23:31>
REAL(64) <0> <1:54> <55:63>

Examples of storage formats:

1. For the following REAL constant, the sign bit is O, the fraction bits are O, and the exponent
bits contain %400 + 2, or %402:

4 = 1.0 * 22 stored as %000000 %000402

2. For the following REAL constant, the sign bit is 1, the fraction bits contain %.2 (decimal .25
is 2/8), and the exponent bits contain %400 + 3, or %403:

-10 = -(1.25 * 23) stored as %120000 %000403

3. For the following REAL(64) constant, the sign bit is O, the fraction bits contain the octal
representation of .33333..., and the exponent bits contain %400 - 2, or %376:

1/3 = .33333..* 2-2 stored as %025252 %125252 %125252 %125376

Constant Lists
A constant list is a list of one or more constants. You can use constant lists in:
e initializations of array declarations that are not contained in structures
e group comparison expressions
e move statements

You cannot use constant lists in assignment statements

repetition-constant-list L

OT: repetition-constant-list 7®J
FIELDALIGN-clause }—/ constant-list-seq

WITE21. W

Constants 63

repetition-constant-1li st

o [constant-list-seq o
repatition-factor o

WETO0E ved

repetition-factor
is an INT constant that specifies the number of times const ant -1 i st - seq occurs.

constant-1list-seq
is a list of one or more constants, each stored on an element boundary:

constant | »
repetition-constant-list I—/]
()
WS

-

WETO29 vad

const ant
is a character string, a number, or a LITERAL specified as a single operand. The range and

syntax for specifying constants depends on the data type, as described for each data type
on preceding pages.

FI ELDALI GN- cl ause

FIELDALIGN o SHARED2 o
SHAREDB

WETDES vl

specifies how you want the compiler to align the base of the structure and fields in the structure.
The offsets of fields in a structure are aligned relative to the base of the structure. For more
information about constant list alignment, see Constant List Alignment Specification (page 64).

SHARED2

specifies that the base of the structure and each field in the structure must begin at an even
byte address except STRING fields, which can begin at any byte address, and UNSIGNED
fields.

SHAREDS8

specifies that the offset of each field in the structure from the base of the structure must be
begin at an address that is an integral multiple of the width of the field.

Constant List Alignment Specification

A constant list alignment specification controls the alignment of elements of constant lists whose
element type is not STRING. Such a constant list can have an alignment of SHARED2 or SHAREDS.
Nested constant lists cannot have an alignment specification; they inherit the alignment of the
containing constant list. SHARED2 causes alignment identical to TAL. SHARED8 additionally requires
that 4-byte and 8-byte scalars are aligned to their size. You must insert filler constants of ensure
proper alignment of 4-byte and 8-byte aligned items. A SHARED8 constant list containing an item
that is misaligned is an error.

An optional alignment specification gives the alignment of a constant list. It occurs immediately
before the opening bracket of the constant list. There is no default constant list alignment. The
alignment specification is required if SHARED2 and SHARED8 would give different results.

64 Data Representation

Al ":=" [1,2,3,4]; No alignment specification
required

Alignment specification required
to specify 2-byte alignment for

2D

Al ":=" FIELDALIGN(SHARED2) [1,2D,4];

Examples of constant lists:
1. In each of the following pairs, the list on the left is equivalent to the list on the right:

["A", "BCD" , "...", "z"] ["ABCD...Z"]

10 * [0]; [0,0,0,0,0,0,0,0,0,0]
[3*[2~*[1], 2> [0]11] [1,1,0,0,1,1,0,0,1,1,0,0]
10 * ["] []

2. The following is an example of the FIELDALIGN clause:
STRING i [0:3] := FIELDALIGN(SHARED2) [0,1,2,3];
3. The following example shows how you can break a constant string that is too long for one

line into smaller constant strings specified as a constant list. The system stores one character
to a byte:

STRING a[0:99] := ["These three constant strings will "
"appear as if they were one constant ',
"string continued on multiple lines."];

4. The following example initializes a STRING array with a repetition constant list:
STRING b[0:79] := 80 * ["];

5. The following example initializes an INT(32) array with a mixed constant list containing values
of the same data type. The diagram shows how the compiler allocates storage for the variable
and the constant list that initializes the variable:

THT (32) c[0:4]; e e
["abcd™, 1D, 30, "X¥Z", a b
V20D of0] — —
'Mixed constant list e d
] — 10 |
cf2] — 3D —_—
ﬂxll -HYII
ol — —
H'ZII 0
cld] — 20D —

WETIH ved

Constants 65

4 Data Alignment

In native mode, a data item is aligned if its address is a multiple of its size. For example, a 4-byte
data item is aligned if its address is a multiple of four. An address that is not aligned is called
misaligned. In native mode, a compiler requires data to be aligned unless otherwise indicated.
Unexpected misalignment causes the program to run slowly, but usually with the expected results.

The only time a nonprivileged program running in TNS/R native mode could have data alignment
problems is when calling the atomic routines whose names begin with “$ATOMIC_". Those routines
operate correctly only when given aligned operand addresses. This section explains some ways
to diagnose bad calls at run time.

TNS-compiled programs must follow more stringent alignment rules, which apply to all data. Those
rules are explained in:

Product T Number Document

Accelerator 19276 Accelerator Manual Data Alignment Addendum
TNS C T9255 C/C++ Programmer’s Guide

TNS C++ T9541 C/C++ Programmer’s Guide

TNS c89 78629 C/C++ Programmer’s Guide

TNS COBOL 19257 COBOL Manual for TNS and TNS/R Programs

TAL 19250 TAL Programmer’s Guide Data Alignment Addendum
Topics:

e Misalignment Tracing Facility (page 66)
e Misalignment Handling (page 67)

Misalignment Tracing Facility

66

The misalignment tracing facility is enabled or disabled on a system-wide basis (that is, for all
processors in the node). By default, it is enabled (set to ON). It can be disabled (set to OFF) only
by the persons who configure the system, by means of the Subsystem Control Facility (SCF) attribute
MISALIGNLOG. Instructions are in the SCF Reference Manual for the Kernel Subsystem.

NOTE: HP recommends that the MISALIGNLOG attribute be left ON (its default setting) so that
a process that is subject to rounding of misaligned addresses generates log entries, facilitating

diagnosis and repair of the code. Only if the volume of misalignment events degrades performance
should this attribute be turned OFF.

When a misaligned address causes an exception that RVUs prior to G06.17 would have rounded
down, the tracing facility traces the exception.

NOTE: The tracing facility does not count and trace every misaligned address, only those that
cause round-down exceptions. Other accesses that use misaligned addresses without rounding
them down do not cause exceptions and are not counted or traced. Also, only a periodic sample
of the counted exceptions are traced by means of their own EMS event messages.

While a process runs, the tracing facility:

e Counts the number of misaligned-address exceptions that the process causes (the exception
count)

e Records the program address and code-file name of the instruction that causes the first
misaligned-address exception

Data Alignment

Because a process can run for a long time, the tracing facility samples the process (that is, checks
its exception data) periodically (approximately once an hour). If the process recorded an exception
since the previous sample, the tracing facility records an entry in the EMS log. If the process ends
and an exception has occurred since the last sample, the operating system produces a final Event
Management Service (EMS) event.

The EMS event includes:

o The process’s exception count

e Details about one misaligned-address exception, including the program address, data address,
and relevant code-file names

Sampling is short and infrequent enough to avoid flooding the EMS log, even for a continuous
process with many misaligned-address exceptions. One sample logs a maximum of 100 events,
and at most one event is logged for any process.

It misaligned-address exceptions occur in different periods of a process, the operating system
produces multiple EMS events for the same process, and these EMS events might have different
program addresses.

For more information about EMS events or the EMS log, see the EMS Manual.

Misalignment Handling

Misalignment handling is defermined by the following SCF attributes, which are set system-wide
(that is, for all processors in the node) by the persons who configure the system:

e MISALIGNLOG

e TNSMISALIGN (applies only to programs running in TNS mode or TNS accelerated mode,
and therefore, does not apply to pTAL programs)

e NATIVEATOMICMISALIGN
MISALIGNLOG enables or disables the tracing facility (see Misalignment Tracing Facility (page 66)).

NATIVEATOMICMISALIGN applies to atomic routines in programs running in TNS/R native mode;
that is, the pTAL and TAL routines whose names begin with “$ATOMIC_"

For normal, nonatomic access in TNS/R native mode, the system uses the operand’s full address
(never rounded down) to complete the operation.

For normal, nonatomic access in TNS/R native mode, the system uses the operand’s full address
(never rounded down) to complete the operation.

Table 22 (page 67) lists and describes the possible settings for NATIVEATOMICMISALIGN. Each
setting represents a different misalignment handling method. For more information about
NATIVEATOMICMISALIGN, see the SCF Reference Manual for the Kernel Subsystem.

Table 22 TNS/R Native Atomic Misalignment Handling Methods

Method Description

ROUND (default) After rounding down a misaligned address, the system proceeds to access the address
atomically, as in G06.16 and earlier RVUs.

FAIL Instead of rounding down a misaligned address, the system considers the call to have
failed.This failure generates a SIGILL signal (signal #4). By default, this signal causes process
termination, but the program can specity other behavior (for example, entering the debugger
or calling a specified signal-handler procedure). The signal cannot be ignored. For information
about signal handling, see the explanation of the sigaction() function in the Open System
Services System Calls Reference Manual.

The method that you choose does not apply to every misaligned address, only to those that would
have been rounded down in earlier RVUs.

Misalignment Handling 67

NOTE: ROUND misalignment handling is intended as a temporary solution, not as a substitute
for changing your atomic calls to ensure that they have only aligned addresses. ROUND
misalignment handling cannot be migrated to past and future NonStop OS platforms.

68 Data Alignment

5 Expressions

An expression is a sequence of operands and operators that, when evaluated, produces a single
value. Operands in an expression include variables, constants, and routine identifiers. Operators
in an expression perform arithmetic or conditional operations on the operands. pTAL supports the
following types of expressions:

Expression Description Examples

Arithmetic expression An expression, consisting of operands 398 + num / 8410 LOR 12

and arithmetic operators, that
produces a single numeric value.

Address expression An expression containing relational IF @ + O > @q THEN ...

and or add and subtract arithmetic

operators. You can use arithmetic IF @p <> O THEN ...;
expressions to compute addresses, _ .
compare addresses, or compare them IF @ - @q > 5 THEN ...;
to a constant.

Constant expression An arithmetic expression that contains 398 + 46 / 84

only constants, LITERALs, and DEFINEs
as operands.

Conditional expression An expression establishing the a<caORb

relationship between values and
resulting in a true or false value. A
conditional expression consists of
relational conditions and conditional
operators.

Expressions can appear in:

LITERAL declarations

Variable initialization and assignments
Array and structure bounds

Indexes to variables

Conditional statements

Parameters to procedures or subprocedures

An expression can be:

A single operand, such as the number 5
A unary plus or minus (+ or -) operator applied to a single operand, such as -5
A binary operator applied to two operands, such as 5 * 8

A complex sequence such as:
(((alpha + beta) / chi) * (delta - 145.9)) / zeta

Topics:

Data Types of Expressions (page 70)
Operator Precedence (page 70)
Arithmetic Expressions (page 72)

Signed Arithmetic Operators (page 73)
Unsigned Arithmetic Operators (page 75)

69

e Comparing Addresses (page 77)

e Constant Expressions (page 81)

e Conditional Expressions (page 81)

e Special Expressions (page 85)

e Bit Operations (page 92)

Data Types of Expressions

The result of an expression can be any data type or address type except STRING or UNSIGNED.
The compiler determines the data type of the result from the data type of the operands in the
expression. All operands in an expression must have the same data type, with the following

exceptions:

e An INT expression can include STRING, INT, and UNSIGNED(1-16) operands. The system
treats STRING and UNSIGNED(1-16) operands as if they were 16-bit values. That is, the

system:

Puts a STRING operand in the right byte of a 16-bit word and sets the left byte to O, with
no sign extension.

Puts an UNSIGNED(1-16) operand in the right bits of a 16-bit word and sets the unused
left bits to O, with no sign extension. For example, for an UNSIGNED(2) operand, the
system fills the 14 leftmost bits of the word with zeros.

o

e An INT(32) expression can include INT(32) and UNSIGNED(17-31) operands. The system
treats UNSIGNED(17-31) operands as if they were 32-bit values. The system places an
UNSIGNED(17-31) operand in the right bits of a doubleword and sets the unused left bits to
0, with no sign extension. For example, for an UNSIGNED(29) operand, the system fills the

three leftmost bits of the doubleword with zeros.

In all other cases, if the data types do not match, use the type transfer functions described in

Chapter 15 (page 274).

Operator Precedence

Operators in expressions can be arithmetic (signed, unsigned, or logical) or conditional (relational,
signed or unsigned). Within an expression, the compiler evaluates the operators in the order of
precedence. Within each level of precedence, the compiler evaluates the operators from left to

right.
Table 23 Precedence of Operators
Operator Operation Precedence
<< Signed left bit shift 0 (highest)
>> Signed right bit shift
'<<! Unsigned left bit shift
'>>! Unsigned right bit shift
[n] Indexing 1
@ Address of identifier
+ Unary plus
Unary minus
<..> Bit extraction 2
* Signed multiplication 3

70 Expressions

Table 23 Precedence of Operators (continued)

Operator Operation Precedence

/ Signed division

! Unsigned multiplication

/! Unsigned division

\! Unsigned remainder

+ Signed addition 4
Signed subtraction

"+ Unsigned addition

L Unsigned subtraction

LOR Bitwise logical OR

LAND Bitwise logical AND

XOR Bitwise exclusive OR

< Signed less than 5

= Signed equal to

> Signed greater than

<= Signed less than or equal to

>= Signed greater than or equal to

<> Signed not equal to

<! Unsigned less than

'=' Unsigned equal to

"> Unsigned greater than

<= Unsigned less than or equal to

'>=' Unsigned greater than or equal to

<> Unsigned not equal to

NOT Negation 6

AND Conjunction 7

OR Disjunction 8

= Assignment 9 (lowest)

<> = Bit deposit

You can use parentheses to override the precedence of operators. You can nest the parenthesized
operations. The compiler evaluates nested parenthesized operations outward starting with the

innermost level.

Figure 1 Parentheses’ Effect on Operator Precedence

o * {a + b) o * | {a + b} / d) (a OR b) AND o
Result ‘—v—tl_‘ Result
Result
VETDOE ved

Operator Precedence 71

Arithmetic Expressions

An arithmetic expression is a sequence of operands and arithmetic operators that computes a
single numeric value of a specific data type.

operand I -
}-’l arithmefic-operator |—h-| operand

WETO1D vsd

+, -
are unary plus and minus operators. The default is unary plus.
oper and
is one of the elements in Table 24 (page 72).
arithneti c-operator

is one of the following:

Signed arithmetic operator +5 %/
Unsigned arithmetic operator LN
Logical operator LOR, LAND, XOR

Table 24 Operands in Arithmetic Expressions

Element Description Example

Variable The identifier of a simple variable, var[10]
array element, pointer, structure data
item, or equivalenced variable, with
or without @ or an index

Constant A character string or numeric constant 103375
LITERAL The identifier of a named constant file_size
Function invocation The invocation of a procedure that SLEN (X)

returns a value

expression Any expression X =y

(expression) Any expression, enclosed in x :=y)
parentheses

Code space item The identifier of a procedure, @label_a

subprocedure, or label prefixed with
@ or a read-only array optionally
prefixed with @, with or without an

index
Table 25 Arithmetic Expressions
Syntax Example
oper and var-1
- operand -var-1
+ operand arithmetic-operator operand +var-1 * 2
operand arithnetic-operator operand var-1 / var-2
operand arithnetic-operator operand var-1 / (-var-2)

72 Expressions

Table 25 Arithmetic Expressions (continued)

Syntax Example
expressi on operand expression 2*3 +var / 2
expressi on operand expression 2 *var * 4

A condition code cannot appear inside an arithmetic expression; for example, the following is not
valid in pTAL:
a :=<; Illegal
Signed Arithmetic Operators
Table 26 Signed Arithmetic Operators

Operator Operation Operand Type* Example
+ Unary plus Any data type +5
Unary minus Any data type -5
+ Binary signed addition Any data type alpha + beta
Binary signed subtraction Any data type alpha - beta
* Binary signed multiplication Any data type alpha * beta
/ Binary signed division Any data type alpha / beta

* The data type of the operands must match, except as noted in Data Types of Expressions (page 70).

In Table 27 (page 73), the order of the data types is interchangeable.
Table 27 Signed Arithmetic Operand and Result Types

Operand Type Operand Type Result Type Example

STRING STRING INT bytel + byte2

INT INT INT wordl - word2
INT(32) INT(32) INT(32) dbll * dbl2

REAL REAL REAL reall + real2
REAL(64) REAL(64) REAL(64) quadl + quad2
FIXED FIXED FIXED fixedl * fixed2
INT STRING INT wordl / bytel

INT UNSIGNED(1-16) INT word + unsignl2
INT(32) UNSIGNED(17-31) INT(32) double + unsign20
UNSIGNED(1-16) UNSIGNED(1-16) INT unsigné + unsign9
UNSIGNED(17-31) UNSIGNED(17-31) INT(32) unsign26 + unsign3l

The compiler treats a STRING or UNSIGNED(1-16) operand as an INT operand. If bit <O> contains
0, the operand is positive; if bit <O> contains 1, the operand is negative. For more information,
see Data Types of Expressions (page 70).

The compiler treats an UNSIGNED(17-31) operand as a positive INT(32) operand.
Signed arithmetic operators affect the hardware indicators as described in Chapter 13 (page 234).

Signed Arithmetic Operators 73

Topics:
e Scaling of FIXED Operands (page 74)
e Using FIXED(*) Variables (page 74)

Scaling of FIXED Operands

When you declare a FIXED variable, you can specify an implied fixed-point (f poi nt) setting (see
Specifying Data Types (page 47)).

When FIXED operands in an arithmetic expression have different fixed-points, the system “scales”
them, depending on the operation:

Operation Scaling

Addition or subtraction The system adjusts the smaller fixed-point to match the larger fixed-point. The result
inherits the larger fixed-point. For example, the system adjusts the smaller fixed-point
in 3.005F + 6.01F to 6.010F, and the result is 9.015F.

Multiplication The fixed-point of the result is the sum of the fixed-points of the two operands. For
example, 3.091F * 2.56F results in the FIXED(5) value 7.91296F.

Division The fixed-point of the result is the fixed-point of the dividend minus the fixed-point
of the divisor (some precision is lost). For example, 4.05F / 2.10F results in the
FIXED value 1.

To retain precision when you divide operands that have nonzero fixed-points, use the routine
$SCALE (page 487).

Using FIXED(*) Variables

pTAL does not scale data items that it stores into FIXED(*) items.

The following procedure has one local variable whose data type is FIXED(*):

PROC p;

BEGIN
FIXED(*) T;
f = 1234F;

END;

The data type of a FIXED(*) variable is the same as a FIXED variable when it is used in an
expression:

FIXED(*) f1 := 123F;

FIXED(2) 2;

2 = F1; 1 2 is assigned 123.00

pTAL does not scale data when it is stored into a FIXED(*) variable:

FIXED(2) f1 := 1.23F;
FIXED(*) f2;

FIXED 3;
2 = f1; 1 f2 is assigned 123
3 = f1; 1 f3 is assigned 1

The following example further illustrates this:

FIXED(*) F1;
FIXED(3) f2 := 1.234F;

fl := f2; 1 f1 = 1234

2 = f1; 1 f2 = 1234.000

fl1 = f2; 1 f1 = 1234000

2 = f1; 1 £2 = 1234000.000

fl := f2; 1 f1 = 1234000000

2 := f1; 1 £2 = 1234000000.000

74 Expressions

Unsigned Arithmetic Operators

Typically, you use binary unsigned arithmetic on operands with values in the range O through
65,535. For example, you can use unsigned arithmetic with pointers that contain standard
addresses.

Table 28 Unsigned Arithmetic Operators

Operator Operation Operand Type Example

"+ Unsigned addition STRING, INT, or alpha "+" beta
UNSIGNED(1-16)

L Unsigned subtraction STRING, INT, or alpha "-" beta
UNSIGNED(1-16)

! Unsigned multiplication STRING, INT, or alpha "*" beta
UNSIGNED(1-16)

A Unsigned division INT(32) or UNSIGNED (17-31) alpha "/" beta
dividend and STRING, INT, or
UNSIGNED(1-16) divisor

\! Unsigned remainder* INT(32) or UNSIGNED (17-31) alpha "\" beta

dividend and STRING, INT, or
UNSIGNED(1-16) divisor

* |f the quotient exceeds 16 bits, an overflow condition occurs and the results will have unpredictable values. For
example, the operation 200000D '\' 2 causes an overflow because the quotient exceeds 16 bits.

In Table 29 (page 75), the order of the operand types in each combination is interchangeable
except in the last case.

Table 29 Unsigned Arithmetic Operand and Result Types

Operator Operand Type Operand Type Result Type Example

Tt STRING STRING INT bytel "-" byte2
INT INT INT wordl *+" word2
INT STRING INT bytel "-" wordl
INT UNSIGNED (116) INT wordl "+° uns8
STRING UNSIGNED (1-16) INT bytel "-" unsb
UNSIGNED(1-16) UNSIGNED(1-16) INT unsl "+ uns7

ok STRING STRING INT(32) bytel "*" byte2
INT INT INT(32) wrdl "** wrd2
STRING INT INT(32) bytel "*" wrdl
INT UNSIGNED (1-16) INT(32) wrdl "** uns9
STRING UNSIGNED (1-16) INT(32) unsl **" uns7
UNSIGNED(1-16) UNSIGNED(1-16) INT(32) unsl **" uns7

AR UNSIGNED(17-31) or STRING, INT, or INT dowd "* wordl
INT(32) dividend UNSIGNED(1-16)

divisor
Topics:

e Bitwise Logical Operators (page 76)

e Using Bitwise Logical Operators and INT(32) Operands (page 76)

Unsigned Arithmetic Operators

75

Bitwise Logical Operators
Use bitwise logical operators (LOR, LAND, and XOR) to perform bit-by-bit operations on STRING,

INT,

UNSIGNED(1-16) operands. Use INT(32) operands to return INT(32) results. 16-bit operands

produce a 16-bit result. 32-bit operands produce a 32-bit result. Bitwise logical operators are not

defined for 64-bit operands.
Table 30 Bitwise Logical Operators

Operator Operation Operand Type Bit Operations Example
LOR Bitwise logical ~ STRING, INT, or 1L0R1=1 10 LOR 12 = 14
OR UNSIGNED(116) 1 10RO =1 10 1010
OLORO =0 12 1100
14 1110
LAND Bitwise logical ~ STRING, INT, or 1LAND 1 =1 10 LAND 12 = 8
ADD UNSIGNED(1-16) 1 LAND 0 = O 10 1010
O LAND 0 = O 12 1100
'8 1000
XOR Bitwise exclusive STRING, INT, or 1XOR1=0 10 XOR 12 = 6
OR UNSIGNED(1-16) 1 X0RO0 =1 10 1010
0 XOR 0 =0 12 1100
6 0110

The Bit Operations column in Table 30 (page 76) shows the bit-by-bit operations that occur on
16-bit values. Each 1-bit operand pair results in a 1-bit result. The bit operands are commutative.

Using Bitwise Logical Operators and INT(32) Operands

76

You

can use INT(32) operands with:
Logical operators (LOR, LAND, and XOR)

The following example swaps the values stored in i and j:

INT(32) i:
INT(32) j:

i =i XOR j;
i i XOR J;
i i XOR J;

Unsigned relational operators ('<', '<=', '=', '<>', '>=', and '>').
The INT(32) operands are treated as nonnegative values in the range O to 232-1.

Unsigned addition and subtraction operators ('+' and ')

The INT(32) operands are treated as nonnegative values in the range 0 to 232-1.
Unsigned and signed addition and subtraction are the same except that $OVERFLOW
(page 335) returns false after an unsigned operation.

Unsigned multiplication operator ('*')

The INT(32) operands are treated as nonnegative values in the range 0 to 232-1. The unsigned
product of two INT(32) values is an FIXED value. $SOVERFLOW (page 335) returns false after
an unsigned multiplication operator.

Unsigned division and remainder operators ('/' and '\')

You can use an FIXED dividend and INT(32) divisor with the unsigned-division and remainder
operators. The FIXED dividend is treated as a nonnegative value in the range O to 264-1. The
INT(32) divisor is treated as a nonnegative value in the range O to 232-1.

Expressions

The quotient or remainder of an FIXED dividend and an INT(32) divisor is an INT(32) quotient
in the range 0 to 232-1.

$OVERFLOW (page 335) returns false after an unsigned division or remainder operator unless
either of the following is true:

o The divisor is O

o The quotient is greater than 216-1 for an INT quotient, 232-1 for an INT(32)

Comparing Addresses

pTAL rules for comparing address types are more restrictive than the rules for comparing nonaddress

types.

Table 31 Valid Address-Type Comparisons

Extended Addresses

Non-Extended Addresses

Operators

Abbreviated forms

Unsigned relational operators:
none

Signed relational operators:
<, =, >, <=, <>, >=

Testing address type as true or false:

IF @p THEN
IF NOT @p THEN...

Unsigned relational operators:

1 1 1 1 1
<=L S <=, !, =

Signed relational operators:
=, <>

Testing address type as true or false:
IF @p THEN
IF NOT @p THEN...

Topics:

Extended Addresses (page 77)
Nonextended Addresses (page 78)

Extended Addresses

The following rules apply when you compare extended addresses (EXTADDRs, EXT32ADDRs, and
EXT64ADDRs):

Use signed relational operators to compare extended addresses. Unsigned operators are not
valid.

If you compare an EXTADDR or EXT32ADDR address to a constant, the constant must be a |
32-bit integer.

If you compare an EXT64ADDR address to a constant, the constant must be of type FIXED. |

It you compare two different sized extended addresses, the smaller address is implicitly cast
to the larger address and then compared.

NOTE: The address types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
available in the 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Comparing Addresses 77

Example 11 Extended Addresses

EXTADDR e;
EXT32ADDR e32;
EXT64ADDR e64;
INT .EXT i;
INT _EXT32 j;
INT .EXT64 k;

IF e < @i THEN ...
IF e < @ THEN ...
IF e < @K THEN ...

OK: e and
OK, e and
OK, e and

@i are both EXTADDR
@j are both extended addresses
@k are both extended addresses

IF @i >= OD THEN ... I OK: @i is EXTADDR, OD is 32 bits
IF @ >= OD THEN ... 1 OK: @ is EXT32ADDR, OD is 32 bits
IF @k >= OF THEN ... 1 OK: @K is EXT64ADDR, OF is 64 bits
IF e = OD THEN ... 1 OK
IF e <> OD THEN ... I OK
IF e THEN ... I OK
IF NOT e THEN ... I OK
IF e32 = OD THEN ... I OK
IF e32 <> OD THEN ... I OK
IF e32 THEN ... 1 OK
IF NOT e32 THEN ... I OK
IF e64 = OF THEN ... I OK
IF e64 <> OF THEN ... ! OK
IF e64 THEN ... I OK
IF NOT e64 THEN ... 1 OK
IF e > 1 THEN ... 1 ERROR: e is EXTADDR, i is INT
IF e32 > i THEN ... I ERROR: e32 is EXT32ADDR, i is INT
IF e64 > 1 THEN ... I ERROR: e64 is EXT64ADDR, i is INT
IF e "<" @1 THEN ... 1 ERROR: Unsigned operators are

! not valid with EXTADDRs
IF €32 "<>" OD THEN ...! ERROR: Unsigned operators are

! not valid with EXT32ADDRs
IF e64 ">" OF THEN ... ! ERROR: Unsigned operators are

! not valid with EXT64ADDRs
NOTE: The address types, EXT32ADDR and EXT64ADDR are é4-bit addressing functionality

added to the EpTAL compiler starting with SPR TO561HO1”AAP. For more information, see
Appendix E, “64-bit Addressing Functionality” (page 531).

Nonextended Addresses

The following rules apply when you compare nonextended addresses:

78

Use unsigned relational operators ('<', '=', '>', '<=', '<>', '>="), a signed equality operator
(=), or a signed inequality operator (<>) to compare nonextended addresses. The signed and
unsigned equality operators produce the same results. Similarly, the signed and unsigned
inequality operators produce the same results.

Do not compare nonextended addresses using signed operators that test for greater than or
less than (<, <=, >, >=).
Valid comparisons:

INT .p, .q;

IF @p = O THEN ...
IF @p <> O THEN ...
IF @p = @q THEN ...

Both operands must have the same address type:

STRING .s;
BADDR .b;

Expressions

IF @s
IF @s

b THEN ... I OK: @s is BADDR, b is BADDR
@b THEN ... I ERROR: @s is BADDR, @b is WADDR

e If one operand of a relational operator is a nonextended address and the other is a constant,

the constant must be 16 bits in length:

INT _p;
IF @ = 100 THEN ... I OK
IF @p = 100D THEN ... ! ERR

Table 32 Valid Address Expressions

Template Result Type

Examples

atype [Kk]; atype *

atype "+" INT atype *

INT "+" atype atype *

EXTADDR '+' INT(32) EXTADDR

INT(32) '+' EXTADDR EXTADDR

EXT32ADDR = INT(32) EXT32ADDR**

INT(32) + EXT32ADDR EXT32ADDR**

EXT64ADDR + FIXED EXT64ADDR* *

FIXED + EXT64ADDR EXT64ADDR* *

atype ' atype INT

INT
@p

INT

@p :
@p :

INT
@p

INT

@p :
Op -

INT
@p

INT
@p

ép :

INT
@p

INT

@p :
@p :

INT
@p

INT

-EXT p;
1= @p[2];

P
@p "+ 2;
@p - 4;

-P;
=2 "+7 Qp;

-EXT p;
@p + 4D;
@p — 4D;

-EXT p;
= 4D "+ @p;

-EXT32 p;
1= @p + 4D;
= @p — 4D

-EXT32 p;
= 4D + @p;

-EXT64 p;
= @p + 8F;
= @p — 8F;
.EXT64 p;
1= 8F + @p;

b, .bp, i;

i = @bp "-" @b;

EXTADDR - EXTADDR

INT(32)**

The result of subtracting two byte-oriented (BADDR,
CBADDR, SGBADDR, SGXBADDR) addresses is the

number of bytes between them.

The result of subtracting two word-oriented (WADDR,
CWADDR, SGWADDR, SGXWADDR) addresses is

the number of 16-bit words between them.

INT _EXT b, bp, i32;
i32 := @bp - @b;
EXT32ADDR - EXT32ADDR
INT.EXT32 b, bp;
INT(32) i32;

i32 := @bp - @b;

INT(32)

EXTADDR - EXT32ADDR INT(32) INT.EXT b;
INT.EXT32 bp;

INT(32) i32;

i32 := @bp - @b;

EXT32ADDR - EXTADDR INT(32)
b;
INT.EXT bp;

INT.EXT32

Comparing Addresses 79

80

Table 32 Valid Address Expressions (continued)

Template Result Type

Examples

atype rel ational atype INT

Ext ended address type INT
rel ati onal extended address

type

atype rel ational INT
CONSTANT

Extended address r el at i onal INT
CONSTANT

Expressions

INT(32) i32;
i32 = @bp - @b;

EXT64ADDR - EXT64ADDR FIXED(O) INT
-EXT64 b bp;

FIXED i64;

i64 = @pb - b;

BADDR b1, b2;

INT i;

IF bl "<* b2 THEN ...;

i = bl "<* b2;

rel ati onal must be an unsigned relational
operation ('<', '=', '>!, '<=', '<>', '>=') or signed
equal or not equal (=, <>).

EXTADDR eal, eaZ2;
EXT32ADDR e32al, e32a2;
EXT64ADDR e64al, e64a2;
INT i;
IF eal < ea2 THEN ...;
i = bl < b2;
IF e32al < ea32a2 THEN ...;
i = e32al < ea32a2;
IF eab4al < eab4a2 THEN ...;
i = ebdal < eabda2;
IF eal < e32al THEN ...;
IF eal < e32al THEN ...;

IF eal < e64al THEN ...;
IF e64al < eal THEN ...;
IF e64al < e32al THEN ...;
IF e32al < e64al THEN ...;

If the sizes of the extended addresses differ, the
smaller address is implicitly sign-extended to the size
of the larger address before the comparison is
performed.

BADDR b1;

INT i;

IF bl ">" 100 THEN ...;

i := bl "<>" nil;

rel ati onal must be an unsigned relational
operation ('<', '=', '>!, '<=', '<>', '>=") or signed
equal or not equal (=, <>).

EXTADDR ea;
EXT32ADDR e32a;
EXT64ADDR e64a;
INT i;
IF ea < OD THEN ...;
IF e32a >= 0D THEN ...
IF e64a <> OF THEN ...
:= bl < 65535D;
i := e32a > 100D;
:= e6d4a = 10F;
rel ational must be a signed relational operation
(<, =, >, <=, <>, >=).

CONSTANT relational extended address INT.

EXTADDR ea;
EXT32ADDR e32a;
EXT64ADDR e64a;

INT 1;

IF OD > ea THEN ...

Table 32 Valid Address Expressions (continued)

Template Result Type Examples

IF 20d < e32a THEN ...
IF OD <> e64a THEN ...

* at ype represents any address type except PROCADDR or EXTADDR.

** 64-bit addressing functionality added to the EpTAL compiler starting with SPR TO561HO1*AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

Constant Expressions

A constant expression is an arithmetic expression that contains only constants, LITERALs, or DEFINEs
as operands.

You can use a constant expression anywhere a single constant is allowed.

Example 12 Constant Expressions

255
8 *5 + 45/ 2

For more information, see Chapter 6 (page 97).

Conditional Expressions

A conditional expression is a sequence of conditions and relational operators that establishes the
relationship between values. You can use conditional expressions to direct program flow.

condition

WETHOE. s

NOT
is an operator that produces a true state if condi ti on has the value false:

Value of a Value of NOT a
True False
False True
condi tion
is an expression whose value is either true or false.
AND

is an operator that produces a true state if both its operands have the value true:

Value of a Value of b Value of a AND b
True True True

True False False

False True False

False False False

Constant Expressions 81

82

OR

is an operator that produces a true state if at least one of its operands has the value true:

Value of a Value of b Value of a AND b
True True True
True False True
False True True
False False False

Table 33 Conditional Expressions

Syntax Example

condi tion a

NOT condi tion NOT a

condition OR condition aoOR b

condition AND condition a AND b

condition AND NOT condition

a AND NOT b OR c

Table 34 Conditions in Conditional Expressions

Element

Description

Example

Relational expression

Group comparison
expression

(conditional expression)

Arithmetic expression

Relational operator

Two conditions connected by a relational operator.
The result type is INT; a -1 if true or a O if false. The
example is true if A equals B.

Unsigned comparison of a group of contiguous
elements with another. The result type is INT; a -1 if
true or a O if false. The example compares 20 words
of two INT arrays.

A conditional expression enclosed in parentheses.
The result type is INT; a -1 if true or a O if false. The
example is true if both B and C are false. The system
evaluates the parenthesized condition first, then
applies the NOT operator.

An arithmetic, assignment, CASE, or IF expression
that has an INT or INT(32) result*. The expression
is treated as true if its value is not O and false if its

value is 0. The example is true if the value of X is not
0.

A signed or unsigned relational operator that tests a
condition code. Condition code settings are CCL
(negative), CCE (0), or CCG (positive). The example
is true if the condition code setting is CCL.

IT a =Db THEN ...

IF a = b FOR 20 WORDS THEN

IF NOT (b OR c) THEN ...

IF x THEN ...

IF < THEN ...

* If an arithmetic expression has a result other than INT, use a signed relational expression.

Topics:

e NOIT, OR, and AND Operators (page 82)
e Relational Operators (page 83)

NOT, OR, and AND Operators
You use the operators NOT, OR, and AND to set the state of a single value or the relationship

between two values.

Expressions

Table 35 Results of NOT, OR, and AND Operators

Operator Operation Operand Type Result Example
NOT Negation; fests STRING, INT, or True/False NOT a
condition for false UNSIGNED(1-16)
state
OR Disjunction; produces STRING, INT, or True/False aOR b

true state if either UNSIGNED(1-16)
adjacent condition is

true
AND Conjunction; produces STRING, INT, or True/False a AND b
true state if both UNSIGNED(1-16)
adjacent conditions
are true

Topics:
e Evaluating NOT, OR, and AND Operations (page 83)
e NOIT, OR, and AND Operators and Condition Codes (page 83)

Evaluating NOT, OR, and AND Operations

NOT, OR, and AND operations are evaluated by means of “short-circuit expression evaluation;”
that is:

e Conditions connected by the OR operator are evaluated from left to right only until a true
condition occurs.

o Conditions connected by the AND operator are evaluated from left to right until a false condition
occurs. The next condition is evaluated only if the preceding condition is true.

In Example 13 (page 83), function F will not be called because a <> 0 is false.

Example 13 Short-Circuit Expression Evaluation

a = 0;
IF a <> 0 AND f(x) THEN ...

NOT, OR, and AND Operators and Condition Codes

If the root operator in the conditional expression of an IF statement is a relational operator (<, =,

>, <=, <>, >=, '<', =, S, <=!, <!, '>=1), pTAL sets the condition code according to the result
of the comparison.

Relational operators that test the condition code (for example, IF < THEN...) do not set the condition
code.

NOT, OR, and AND operators set the condition code indicator as described in Chapter 13
(page 234).

Relational Operators
e Signed Relational Operators (page 83)
e Unsigned Relational Operators (page 84)

Signed Relational Operators

Signed relational operators perform signed comparison of two operands and return a true or false
state.

Conditional Expressions 83

Table 36 Signed Relational Operators

Operator Meaning Operand Type* Result

< Signed less than Any data type True/False
= Signed equal to Any data type True/False
> Signed greater than Any data type True/False
<= Signed less than or equal o Any data type True/False
>= Signed greater than or equal Any data type True/False

to
<> Signed not equal to Any data type True/False

* The data type of the operands must match except as noted in Data Types of Expressions (page 70). Only the operators
= and <> can be used when comparing operands of procedure pointer types (PROCPTR, PROC32PTR, and PROC64PTR).
For more information, see “Procedure Pointers” (page 263) and “Syntax Summary” (page 432). Comparison of procedure
pointer types are only allowed if the signatures of the types (return and parameter types) match.

Unsigned Relational Operators

84

Unsigned relational operators perform unsigned comparison of two operands and return a true or
false state.

Table 37 Unsigned Relational Operators

Operator Operation Operand Type* Result

< Unsigned less than STRING, INT, INT(32), UNSIGNED (116) True/False
= Unsigned equal to STRING, INT, UNSIGNED (1-16) True/False
> Unsigned greater than STRING, INT, INT(32), UNSIGNED (1-16) True/False
<= Unsigned less than or equal to STRING, INT, INT(32), UNSIGNED (1-16) True/False
>=! Unsigned greater than or equal ~ STRING, INT, INT(32), UNSIGNED (1-16) True/False

to
<> Unsigned not equal to STRING, INT, INT(32), UNSIGNED (1-16) True/False

*Unsigned relational operators cannot be used with operands of the extended address (EXTADDR, EXT32ADDR, and
EXT64ADDR) and the procedure pointer (PROCPTR, PROC32PTR, and PROC64PTR) types.

NOTE: The extended address (EXTADDR, EXT32ADDR, and EXT64ADDR) and the procedure
pointer (PROCPTR, PROC32PTR, and PROC64PTR) types are 64-bit addressing functionality added
to the EpTAL compiler starting with SPR TO561HO1”AAP. For more information, see Appendix E,
“64-bit Addressing Functionality” (page 531).

A condition code reflects the value of the most recently evaluated root operator.

Used with no operands, signed and unsigned operators are equivalent. The result returned by such
a relational operator is:

Relational Operator Result Returned
<or'< True if CCL

> or '>' True if CCG
=or'=' True if CCE

<> or '<>' True if not CCE

Expressions

Relational Operator Result Returned

<=or '<=' True if CCL or CCE
>=or '>=' True if CCE or CCG

Examples of unsigned operators are as follows:

IF VAR ">" 10 THEN
ELéé-IF < THEN -- Unsigned less than

IF VAR "<* 5 THEN

ELéé-IF ">" THEN -- Unsigned greater than
Special Expressions
Special expressions allow you to perform specialized arithmetic or conditional operations.

Table 38 Special Expressions

Special Expression Expression Type Description

Assignment Arithmetic Assigns the value of an expression fo a variable

CASE Arithmetic Selects one of several expressions

IF Arithmetic Selects one of two expressions

Group Comparison Conditional Performs unsigned comparison of two sets of data
Assignment

The assignment expression assigns the value of an expression to a variable.

vanable e ExXpression

WETI2 ved

vari abl e

is the identifier of a variable in which to store the result of expr essi on (vari abl e can
have an optional bit-deposit field).

expr essi on

is an expression of the same data type as vari abl e. The result of expr essi on becomes
the result of the assignment expression. expr essi on is either:

e An arithmetic expression

e A conditional expression (excluding a relational operator with no operands), the result of
which has data type INT.

Examples of assignment expressions:

1. This example decrements a. As long as a- 1 is not O, the condition is true and the THEN clause
is executed:

IF (a :=a - 1) THEN ... ;

2. This example shows the assignment form used as an index. It decrements a and accesses the
next array element:

Special Expressions 85

CASE

IF array[a := a - 1] <> 0 THEN ... ;

3. This example mixes the assignment form with a relational form. It assigns the value of b to a,
then checks for equality with O:

IF (a :=b) =0 THEN ... ;

The CASE expression selects one of several expressions.

p| CASE selector OF BEGIN expression-1
(case)—»| —(oF —(‘Ili!%=lll.

Ep(OTHERWISE)—.-Iexpressian&l—b@j

WETO3 vad

sel ect or
is an arithmetic expression [INT or INT(32)] that selects the expression to evaluate.
expression-1

is an expression of any data type. If you specify more than one expr essi on- 1, their data
types must be compatible.

expressi on-2
is an expression whose data type is compatible with the data type of expr essi on- 1. It is

evaluated if sel ect or does not select an expr essi on- 1. If you omit the OTHERWISE
clause and an out-of-range case occurs, results are unpredictable.

All expressions in the CASE statement must have compatible data types:
e Every data type is compatible with itself.

e String and unsigned (1-16) data types are compatible with INT

e Unsigned (17-32) data types are compatible with INT(32)

e All fixed-point data types are compatible with each other; however, it expr essi on-1 and
expr essi on- 2 are differently scaled fixed-point expressions, the data type of the IF
expression is the data type of the fixed-point expression whose scale factor is largest. The
smaller operand is implicitly scaled to match the type of the IF expression. For example, these
return statements are equivalent:

INT i; INT i;

FIXED(2) f2; FIXED(2) f2;

FIXED(3) f3; FIXED(3) f3;

FIXED(3) PROC p; FIXED(3) PROC p;

BEGIN BEGIN

RETURN IF i THEN f2 RETURN IF i THEN $SCALE(¥2,1);

ELSE £3; ELSE £3;

END END

The compiler numbers the instances of expr essi on- 1 consecutively, starting with 0. If sel ect or
matches the compiler-assigned number of an expr essi on- 1, that expr essi on- 1 is evaluated
and becomes the result of the CASE expression. If sel ect or does not match a compiler-assigned
number, expr essi on- 2 is evaluated.

You can nest CASE expressions. CASE expressions resemble unlabeled CASE statements except
that CASE expressions select expressions rather than statements.

Example 14 (page 87) selects an expression based on the value of a and assigns it fo x:

86 Expressions

Example 14 CASE Expression

INT x, a, b, c, d;
ICode to initialize variables
X = CASE a OF

BEGIN
b; 1 IT a i1s 0, assign value of b to X.
C; 1 ITf a is 1, assign value of c to X.
d; 1 If a iIs 2, assign value of d to X.
OTHERWISE -1; ! If a is any other value,

END; 1 assign -1 to Xx.

The IF expression selects one of two expressions, usually for assignment to a variable.

_'®_p| condition I—;(_THEN)—plexpressiond HELSEHe:pressionQ'_p

WETO4 v

condi tion
is either
e A conditional expression

e An INT arithmetic expression. If the result of the arithmetic expression is not O, the
condi ti on is true. If the result is O, condi ti on is false.

expression-1, expression-2
are expressions of any data type, but their data types must be compatible:
e Every data type is compatible with itself.
e String and unsigned (1-16) data types are compatible with INT
e Unsigned (17-32) data types are compatible with INT(32)

e All fixed-point data types are compatible with each other; however, if expr essi on- 1
and expr essi on- 2 are differently scaled fixed-point expressions, the data type of the
CASE expression is the data type of the fixed-point expression whose scale factor is largest.
For example, these return statements are equivalent:

INT 1; INT 1;
FIXED(-2) f2; FIXED(-2) f2;
FIXED(-3) f3; FIXED(-3) f3;
FIXED(-4) F4; FIXED(-4) F4;
FIXED(-2) proc p; FIXED(-2) PROC p;
BEGIN BEGIN
RETURN CASE i OF RETURN CASE i OF
BEGIN BEGIN
T3; $SCALE(F3,1);
2; 2;
OTHERWISE f4 OTHERWISE $SCALE(F4,2)
END END
END END

If condi tion is true, the result of the expr essi on- 1 becomes the result of the overall IF
expression.

If condi ti on is false, the result of expr essi on- 2 becomes the result of the overall IF expression.

Special Expressions 87

You can nest IF expressions within an IF expression or within other expressions. The IF expression
resembles the IF (page 217) except that the IF expression:

e Requires the ELSE clause
e Confains expressions, not statements
Examples of IF expressions:

1. This example assigns an arithmetic expression to var based on the condition length > 0:
var := IF length > 0 THEN 10 ELSE 20;

2. This example nests an IF expression (in parentheses) within another expression:
var * index + (IF index > limit THEN var * 2 ELSE var * 3)

3. This example nests an IF expression within another IF expression:
var = IF length < O THEN -1

ELSE IF length = O THEN O
ELSE 1;
Group Comparison

The group comparison expression compares a variable with a variable or constant. With PVU
T9248AAD, you can compare any variable up to the current maximum allowed size for any object
of 127.5 megabytes.

—>| var-1 |»—>| relational-operator I—)
var-2 |—>(FOR>—>{ count Il

constant

constant —p@

constant-list

count-unit

(& r—s[romwas

WETD1 5. wed

var-1

is the identifier of a variable, with or without an index, that you want to compare to var - 2,
const ant, orconstant-1list.var-1 can be asimple variable, array, simple pointer,
structure, structure data item, or structure pointer, but not a read-only array.

rel ati onal - oper at or
is one of the following operators:

Signed relational operator <, =, >, <=, >=, <>

Unsigned relational operator <! S, e, s !

’ ’ ’ ’ ’

All comparisons are unsigned whether you use a signed or unsigned operator.
var -2
is the identifier of a variable, with or without an index, to which var - 1 is compared. var - 2

can be a simple variable, array, read-only array, simple pointer, structure, structure item, or
structure pointer.

88 Expressions

count

is a unsigned INT arithmetic expression that defines the number of units in var - 2 to compare.

When count - uni t is not present, the units compared are:

var-2 Data Type Units Compared

Simple variable, array, simple STRING

pointer (including those declared in INT

structures) INT(32) or REAL Doublewords
FIXED or REAL(64) Quadruplewords

Structure Not applicable

Substructure Not applicable

Structure pointer

STRING
INT

count -unit

is BYTES, WORDS, or ELEMENTS. count - uni t changes the meaning of count to the

following:
BYTES

WORDS
ELEMENTS

Compares count bytes; however, if var - 1 and var - 2 both have word addresses,
BYTES implicitly generates a word comparison for (count +1)/2 words.

Compares count words.

Compares count elements. The elements compared depend on the nature of var - 2

and its data type as follows:
var-2

Simple variable, array,
simple pointer (including
those declared in structures)

Structure

(For structure pointers,
STRING and INT have
meaning only in group
comparison expressions
and move statements.)

Substructure

Simple variable, array,
simple pointer (including
those declared in structures)

INT(32) or REAL
FIXED or REAL(64)

Not applicable

Not applicable

INT(32) or REAL
FIXED or REAL(64)

Units Compared

Bytes

Words
Doublewords
Quadruplewords

Structure occurrences

Substructure occurrences

Bytes

Words
Doublewords
Quadruplewords

If count - uni t is specified and is not BYTES, WORDS, or ELEMENTS, the compiler issues
an error. If you specify BYTES, WORDS, or ELEMENTS, the term cannot also appear as an
identifier in a LITERAL or DEFINE declaration in the global declarations or in any procedure

or subprocedure in which the group comparison expression appears.

const ant

is a number, a character string, or a LITERAL to which var - 1 is compared.

If you enclose a simple numeric constant in brackets ([]) and if the destination has a byte
address or is a STRING structure pointer, the system compares a single byte regardless of the
size of const ant . If you do not enclose const ant in brackets or if the destination has a
word address or is an INT structure pointer, the system compares a word, doubleword, or

quadrupleword as appropriate for the size of const ant .

Special Expressions 89

constant-1i st

is a list of one or more constants, which are concatenated and compared to var - 1. Specify
constant-1ist in the form shown in Chapter 3 (page 46).

next - addr

is a variable to contain the address of the first byte or word in var - 1 that does not match the
corresponding byte or word in var - 2. The compiler returns a 16-bit or 32-bit address as
described in the following subsection.

pTAL programs access all data using byte addresses. pTAL uses the low-order bit of addresses;
therefore, when you use an odd-byte address to access a 16-bit word that you have declared with
.EXT, you access the data beginning at the odd-byte address.

You can use group comparisons for:
e Changing the Data Type of the Data (page 90)
e Testing Group Comparisons (page 91)

Changing the Data Type of the Data

90

You can compare two strings using a group comparison expression, and save the address where
the comparison stopped in a variable or pointer.

Figure 2 (page 90) and Figure 3 (page 91) show that changing the data type of a variable from
INT to STRING can affect whether the address stored in the result pointer, p, is an even-byte or
odd-byte address.

In Figure 2 (page 90), the IF statement compares X to y on a word-by-word basis. Because the 16
bits in X are not equal to the 16 bits in y, the conditional expression is false, and p points to the
beginning of string x.

Figure 2 Ending Address After Comparing INT Strings

PROC p;
BEGIN
INT x[0:1] := ["AB","CD"]
INT vy = UAXT;
INT .p;
INT q;
IF x =y FOR 1 WORDS -> @p THEN ... ;
q = p; ! Assign "AB" to ¢
END;

i

User Data Segment A | B Cc D A ‘ X

WET131.wed

Figure 3 (page 91) is the same as Figure 2 (page 90) except that in Figure 3 (page 91), y is a
2-byte STRING array. The IF statement, therefore, compares X to y on a byte-by-byte basis. Because
the first (upper) bytes of x and y are equal, the comparison continues to the second byte.

Because the second byte of x is “B”, but the second byte of y is “C”, the conditional expression
is false. In Figure 3 (page 91), therefore, the IF statement stores in p the address of the second
(lower) byte of x.

Expressions

Figure 3 Ending Address After Comparing Strings of Data Type STRING and INT

PROC p;
BEGIN
INT x[0:1] := ["AB","CD"];
STRING y[0:1] := ["A" ner 1;
STRING p;
INT q;
IF x =y FOR 1 WORDS -> @p THEN ... ;
g := p; ! Assign "BC" to q

END;
P
v
User Data Segment A | B c D A ‘ Cc

e

WET13E wed

Testing Group Comparisons

It you use a group comparison in an IF statement, you can test the condition code affer the group
comparison is evaluated by setting by using the following relational operators (with no operands)
in a conditional expression:

Operator Meaning

< CClifvar-1 '<'var-2
= CCEifvar-1 =var-2
> CCGifvar-1 '>'var-2

See Example 15 (page 92).

The compiler does a standard comparison and returns a 16-bit next - addr if:
e Bothvar-1 andvar-2 have standard byte addresses

e Bothvar-1 andvar-2 have standard word addresses

The compiler does an extended comparison (which is slightly less efficient) and returns a 32-bit
next - addr if:

e Eithervar-1 orvar-2 has a standard byte address and the other has a standard word
address

e FEithervar-1 orvar-2 has an extended address

Variables (including structure data items) are byte addressed or word addressed as follows:

Byte addressed STRING simple variables
STRING arrays
Variables to which STRING simple pointers point
Variables to which STRING structure pointers point
Substructures

Word addressed INT, INT(32), FIXED, REAL, or REAL(64) simple variables
INT, INT(32), FIXED, REAL, or REAL(64) arrays
Variables to which INT, INT(32), FIXED, REAL, or REAL(64) simple pointers point
Variables to which INT structure pointers point
Structures

Special Expressions 91

After an element comparison, next - addr might point into the middle of an element, rather than
to the beginning of the element, because next - addr always refers to the first byte or 16-bit word
(as appropriate) that differs.

Example 15 (page 92) compares two arrays and then tests the condition code setting to see if the
value of the element in d_array that stopped the comparison is less than the value of the
corresponding element in s_array.

Example 15 Array Comparison

INT d_array[0:9];

INT s _array[0:9];

1 Code to assign values to arrays

IF d_array = s_array FOR 10 ELEMENTS -> @pointer THEN

BEGIN 1 They matched
1 Do something
END
ELSE
IF < THEN ... ; 1 Pointer points to element of d_array
I Do something else that is less than the corresponding

1 element of s array

When you compare array elements (as in Example 15 (page 92)), the ELEMENTS keyword is
optional but provides clearer source code.

To compare structure or substructure occurrences, you must specify the ELEMENTS keyword in the
group comparison expression, as in Example 16 (page 92).

Example 16 Structure Comparison

STRUCT struct_one [0:9];
BEGIN
INT a[0:2];
INT b[0:7];
STRING c;
END;
STRUCT struct_two (struct_one) [0:9];
1 Code here to assign values to structures
IF struct_one = struct_two FOR 10 ELEMENTS THEN ...

Example 17 (page 92) contrasts a comparison to a bracketed (single-byte) constant with a
comparison to an unbracketed (element) constant.

Example 17 Constant Comparison

STRING var[0:1];

IF var
IF var

[0O] THEN ... ; ! Compare var[0] to one byte
O THEN ... ; 1 Compare var[0:1] to two bytes or
1 one 16-bit word

Bit Operations

You can access individual bits or groups of bits in a STRING or INT variable.

92 Expressions

Table 39 Bit Operations

Bit Operation Description

Extraction Accesses a bit-extraction field in an INT expression without altering the expression
Deposit Assigns a bit value to a bit-deposit field in a variable

Shift Shifts a bit-shift field in an INT or INT(32) expression to the left or to the right by a

specified number of bits

Topics:
e Bit Extractions (page 93)
e Bit Shifts (page 94)

Bit Extractions

left-bit :®—>

O—sfist

WETOE vsd

i nt - expression
is an INT(32) expression.
left-bit
is an INT constant in the range O through 15 that specifies the bit number of either:
e The leftmost bit of the bit-extraction field
e The only bit (if ri ght - bit isthe same value as | eft-bit oris omitted)

It i nt - expression is a STRING value, | ef t - bi t must be in the range 8 through 15. (In
a string value, bit 8 is the leftmost bit and bit 15 is the rightmost bit.)

right-bit
is an INT constant that specifies the rightmost bit of the bit field. If i nt - expr essi on is a
STRING value, ri ght - bi t must be in the range 8 through 15. ri ght - bit must be equal

to or greater than | ef t - bi t . To access a single bit, omit ri ght - bi t or specify the same
value as | ef t - bi t .

You can perform bit extractions and deposits on 16-bit and 32-bit items. pTAL reports an error,
however, if you attempt to reference bits outside of the bits declared in the variable’s declaration.

Bit Operations 93

Example 18 Bit Extraction

INT i;

UNSIGNED(4) j;

STRING k;

INT(32) 1;

i = jJ.<7:11>; ! ERROR: You can reference only bits 12
1 through 15 of j

i = k.<0:7>; I ERROR: You can reference only bits 8
1 through 15 of k

i = 1.<8:31>; ! OK: You can reference any of bits 0
1

through 31 of 1

Example 19 Bit Extraction From an Array

STRING right_byte;
INT array[0:7];
right byte := array[5]-.<8:15>;

Example 20 (page 94) assigns bits 4 through 7 of the sum of two numbers to RESU<. The
parentheses cause the numbers to be added before the bits are extracted.

Example 20 Modifying Bits Before Extracting Them

INT result;

INT numl :-= 51;
INT num2 := 28;
result := (numl + num2).<4:7>;

Example 21 (page 94) checks bit 15 for a nonzero value.

Example 21 Checking a Bit for a Nonzero Value

STRING var;
IF var.<15> THEN ...

Bit Shifts

94

A bit shift operation shifts a bit field a specified number of positions to the left or to the right within
a variable without altering the variable. RISC and ltanium architectures do not include a signed
left-shift operation, so pTAL compiles a signed left shift (for example, i << 8) as an unsigned left
shift (i '<<' 8).

T: inl-expression j-bl shift-operator I—..l positions I_y
dbl-expression

WETINT wed

i nt - expression
is an INT arithmetic expression. i nt - expr essi on can contain STRING, INT, or
UNSIGNED(1-16) operands. The bit shift occurs within a word.

dbl - expressi on
is an INT(32) arithmetic expression. dbl - expr essi on can contain INT(32) or
UNSIGNED(17-31) operands. The bit shift occurs within a doubleword.

shi ft-operator
is one of the operators described in Table 23 (page 70).

Expressions

positions
is an INT expression that specifies the number of bit positions to shift the bit field. A value
greater than 31 gives undefined results.

The shift count must be less than the number of bits in the shifted value; therefore, you can shift an
INT value up to 15 bits left or right, and an INT(32) value up to 31 bits left or right.

The compiler reports an error if the shift count is a constant and its value is greater than the number
of bits in the value to shift.

If the shift amount is a dynamic expression and is greater than the maximum allowed (one bit less
than the number of bits being shifted), the result depends on the CHECKSHIFTCOUNT compiler
directive, as follows:

e If CHECKSHIFTCOUNT is enabled and a dynamic shift count is equal to or greater than the
number of bits in the value being shifted, the system aborts your program with an instruction
trap.

e If CHECKSHIFTCOUNT is disabled (you specity NOCHECKSHIFTCOUNT), and a dynamic
shift count is equal to or greater than the number of bits in the value being shifted, program
operation is undefined.

The compiler implements arithmetic left shifts as unsigned left shifts (and warns you when it does
this).

Most programs do not need to perform signed left shifts. If your program does require an arithmetic
left shift, use the functions in Example 22 (page 95) to perform signed left-shift operations.

Example 22 Arithmetic Left Shift

INT PROC ashiftl6(a, count);
INT a, count;
BEGIN
STRUCT s = a;
BEGIN
UNSIGNED(1) sign_bit;
UNSIGNED(15) rest;
END;
s.rest = s.rest "<<" count;
RETURN a;
END;
INT(32) PROC ashift32(a, count);
INT(32) a;
INT count;
BEGIN
STRUCT s = a;
BEGIN
UNSIGNED(1) sign_bit;
UNSIGNED(31) rest;
END;
s.rest = s.rest "<<" count;
RETURN a;
END;

Table 40 Bit-Shift Operators

Operator Routine Result

'<<! Unsigned left shift through bit O Zeros fill vacated bits from the right

'>>' Unsigned right shift Zeros fill vacated bits from the left.

>> Signed right shift Sign bit (bit 0) unchanged; sign bit fills vacated

bits from the left

Bit Operations 95

96

Bit-shift operations include:

Operation User Action

Multiplication by powers of 2 For each power of 2, shift the field one bit to the left. (Some data
might be lost.)

Unsigned division by powers of 2 For each power of 2, shift the field one bit fo the right (Some data
might be lost.)

Word-to-byte address conversion Shift the word address one bit to the left by using an unsigned

shift operator.

Bit shift examples:

1.

This unsigned left shift shows how zeros fill the vacated bits from the right:
0 010 111 010 101 0OOO
1 011 101 010 100 000
This unsigned right shift shows how zeros fill the vacated bits from the left:

1111 111 010 101 000
0 011 111 110 101 010

Initial value
-<<- 2

Initial value
st o

This signed right shift shows how the sign bit fills the vacated bits from the left:

Initial value = 1 111 010 101 000 000
>> 3 = 1 111 111 010 101 000

These examples show multiplication and division by powers of two:

a :=b<<1; I Multiply by 2
a = b << 2; I Multiply by 4
a := b >> 3; I Divide by 8
a :=b >>4; I Divide by 16

This unsigned bit shift converts the word address of an INT array fo a byte address, which
allows byte access to the INT array:
INT a[0:5]; I INT array>
STRING .p := @a[0] "<<* 1; ! Initialize STRING simple
1 pointer with byte address
p[3] := 0O; !

Access fourth byte of A
This example shifts the right-byte value into the left byte of the same word and sets the right
byte to a zero:

INT b; I INT variable
b :=b "<<* 8; ! Shift right-byte value into left byte

Expressions

6 LITERALs and DEFINEs

A LITERAL declaration associates identifiers with constant values. A DEFINE declaration associates
identifiers (and parameters it any) with text.

You can declare LITERALs and DEFINEs once in a program, and then refer to them by identifier
many times throughout the program. They allow you to efficiently make significant changes in the
source code. You only need to change the declaration, not every reference to it in the program.

Topics:

Declaring Literals (page 97)

Declaring DEFINEs (page 98)

Calling DEFINEs (page 100)

How the Compiler Processes DEFINEs (page 100)

Passing Actual Parameters to DEFINEs (page 100)

Declaring Literals

A LITERAL declaration specifies one or more identifiers and associates each with a constant value.
Each identifier in a LITERAL declaration is known as a LITERAL.

—p(_LITERAL identifier | >
N
NS

WETOE vsd

identifier
is the LITERAL identifier. Literal identifiers make the source code more readable. For example,

identifiers such as BUFFER_LENGTH and TABLE_SIZE are more meaningful than their respective
constant values of 80 and 128.

const ant

is one of the following:

e A character string of 1 to 4 characters.

e Any of the following numeric constant expressions whose value is not the address of a
global variable (global variables are relocatable during linking):

o

o

o

o

o

o

FIXED(n)

INT

INT(32)

REAL
REAL(64)
UNSIGNED(n)

If you omit any constants, the compiler supplies the omitted numeric constants. The compiler uses
unsigned arithmetic o compute the constants it supplies:

If you omit the first constant in the declaration, the compiler supplies a zero.

If you omit a constant that follows an INT constant, the compiler supplies an INT constant that
is one greater than the preceding constant. If you omit a constant that follows a constant of
any data type except INT, an error message results.

Declaring literals 97

You access a LITERAL constant by using its identifier in declarations and statements.

The compiler does not allocate storage for LITERAL constants. It substitutes the constant at each
occurrence of the identifier.

Example 23 Literal Declarations

All constants specified:

LITERAL true = -1,
false =0,
buffer_length = 80,
table_size = 128,
table_base = %1000,
entry_size =4,
timeout = %100000D,
CR = %15,

LF = %12;

All constants supplied by compiler:

LITERAL a, ! Compiler assigns O
b, ! Compiler assigns 1
c; ! Compiler assigns 2

Two constants specified, six supplied by compiler:
LITERAL d, I Compiler assigns O

e, I Compiler assigns 1

T, I Compiler assigns 2

g =0,

h, 1 Compiler assigns 1

i = 17,

i, 1 Compiler assigns 18

k; I Compiler assigns 19
LITERAL identifier in array declaration:
LITERAL length = 50; 1 Length of array
INT buffer[O:length - 1]; ! Array declaration

LITERAL identifiers in subsequent LITERAL declarations:

LITERAL number_of file_extents = 16;

LITERAL file_extent_size in_pages = 32;

LITERAL File_size_in_bytes = (number_of_file_extents "*-
file_extent _size in_pages) * 2048D ! bytes per page !;

Declaring DEFINEs

A DEFINE declaration associates an identifier (and optional parameters) with text.
O

WETO B

itemlist
T: C ®
WETADS vad
identifier

is the identifier of the DEFINE.

98 LITERALs and DEFINEs

param|i st

o . I param-name . o

WETI0 vard

par am nane is is the identifier of a formal parameter. You can specify up to 31 formal
parameters. An actual parameter can be up to 500 bytes. A formal parameter cannot be a
pTAL reserved word.

defi ne- body

specifies all characters between the = and # delimiters. def i ne- body can span multiple
source lines. Enclose character strings in quotation marks ("). To use # as part of the

defi ne- body rather than as a delimiter, enclose the # in quotation marks or embed the #
in a character string.

DEFINE declaration requirements:

e If a DEFINE and a formal parameter have the same identifier, the formal parameter has priority
during expansion.

e A DEFINE must not reference itself.

e A DEFINE declaration must not appear within a DEFINE body; that is, do not nest a DEFINE
within a DEFINE.

e To ensure proper grouping and order of evaluation of expressions in the DEFINE body, use
parentheses around each DEFINE parameter used in an expression.

e Within the DEFINE body, place any compound statements within a BEGIN-END block.

e Directives appearing within a DEFINE body are evaluated immediately; they are not part of
the DEFINE itself.

e Expanded DEFINEs must produce correct pTAL constructs. To list the expanded DEFINEs in
the compiler listing, specify the DEFEXPAND directive before the DEFINE declarations.

Example 24 DEFINE Declarations

Parentheses direct the DEFINE body evaluation:
DEFINE value = ((45 + 22) * 8 / 2) #:
Incrementing and decrementing utilities included:

DEFINE increment (X) X 1= X + 1 #;
DEFINE decrement (y) y 1=y - 1#;

Loads numbers into specified bit positions:
DEFINE word_val (a, b) = ((@) "<<" 12) LOR (b) #;

When a STRUCT item and a DEFINE have the same name, the compiler issues a warning when
the STRUCT item is referenced. In Example 25 (page 99), DEFINE myname accesses the structure
iteml named in the DEFINE body. The compiler issues a warning because 2 is assigned to
mystruct.yrname, not fo mystruct.myname.

Example 25 STRUCT and DEFINE Macro ltems With the Same Name

PROC myproc MAIN;
BEGIN
DEFINE myname = iteml#,
yrname = item2#;
STRUCT mystruct;
BEGIN

Declaring DEFINEs 99

INT iteml;

INT item2;
INT yrname; Structure item has same
END; identifier as a DEFINE

mystruct.myname :
mystruct.yrname :

OK: 1 is assigned to mystruct.iteml
Compiler issues warning;
2 is assigned to mystruct.yrname,
not to mystruct.item2

I
N

I More code
END;

Calling DEFINEs

You call a DEFINE by using its identifier in a statement. The invocation can span multiple lines.

It you call a DEFINE within an expression, make sure the expression evaluates as you intend. For
instance, if you want the DEFINE body to be evaluated before it becomes part of the expression,
enclose the DEFINE body in parentheses.

Example 26 Parenthesized and Nonparenthesized DEFINE Bodies

DEFINE expr = (5 + 2) #;

J = expr * 4; 1 Expands to: (6 + 2) * 4;
1 assigns 28 to j

DEFINE expr = 5 + 2 #;

J = expr * 4; 1 Expands to: 5 + 2 * 4;
1 assigns 13 to j

DEFINE identifiers are not called when specified:
e Within a comment

e Within a character string constant

e On the left side of a declaration

For example, the following declaration can call a DEFINE named y but not a DEFINE named
X:
INT X = vy;

How the Compiler Processes DEFINEs

The compiler does not allocate storage for DEFINE declarations. When the compiler encounters a
statement using a DEFINE identifier, the compiler expands the DEFINE declaration as follows:

e It replaces the DEFINE identifier with the DEFINE body, replaces formal parameters with actual
parameters, and compiles the resulting declaration.

e It expands quoted character strings intact.

e It expands actual parameters after instantiation. Depending on the order of evaluation, the
expansion can change the scope of a DEFINE declaration.

e Emits machine instructions at the appropriate processing interval.

If the DEFEXPAND directive is active, the compiler lists each expanded DEFINE declaration in the
compiler listing following the invocation of the DEFINE. The expanded listing includes:

e The DEFINE body, excluding comments

e Parameters to the DEFINE declaration

Passing Actual Parameters to DEFINEs

If the DEFINE declaration has formal parameters, supply the actual parameters when you use the
DEFINE identifier in a statement.

100 LITERALs and DEFINEs

The number of actual parameters can be less than the number of formal parameters. If actual
parameters are missing, the corresponding formal parameters expand to empty text. For each
missing actual parameter, you can use a placeholder comma, as in Example 27 (page 101).

Example 27 Fewer Actual Parameters Than Formal Parameters

INT PROC d (a, b, c) EXTENSIBLE; EXTERNAL;
DEFINE something (a, b, ¢) =d (a, b, ¢c) #;
nothing := something (, , ¢); ! Placeholder commas

If a DEFINE has formal parameters and you pass no actual parameters to the DEFINE, you must
specify an empty actual parameter list. You can include commas between the list delimiters, but
need not, as in Example 28 (page 101).

Example 28 No Actual Parameters

DEFINE something (a, b, ¢c) = anything and everything #;
nothing := something (); ! Empty parameter list

If the number of actual parameters exceeds the number of formal parameters, as in Example 29
(page 101), the compiler issues an error.

Example 29 More Actual Parameters Than Formal Parameters

DEFINE something (a, b, ¢) = anything and everything #;
nothing := something (a, b, c, d); ! Too many parameters

It an actual parameter in a DEFINE invocation requires commas, enclose each comma in apostrophes
(). An example is an actual parameter that is a parameter list, as in Example 30 (page 101).

Example 30 Commas in an Actual Parameter

DEFINE varproc (procl, param) = CALL procl (param) #;

varproc (myproc, i "," j "," k); ! Expands to:

An actual parameter in a DEFINE invocation can include parentheses, as in Example 31 (page 101).

Example 31 Parentheses in an Actual Parameter

DEFINE varproc (procl, param) = CALL procl (param) #;
varproc (myproc, (i + j) * k); ! Expands to:
1 CALL myproc ((i+j)*Kk);

Example 32 (page 102) shows a DEFINE declaration that has one formal parameter and an
assignment statement that uses the DEFINE identifier, passing a parameter of 3.

Passing Actual Parameters to DEFINEs 101

Example 32 Assignment Statement Using DEFINE Macro Identifier

DEFINE cube (X) = (X * X * X) #;
INT result;
result = cube (3) ">>" 1;
I Expands to: (3 * 3 * 3) ">>" 1 = 27 ">>" 1 = 13

Example 33 Incrementing and Decrementing Utilities

DEFINE increment (X) = X = X + 1 #;

DEFINE decrement (y) =y =y - 1 #;

INT index == O;

increment(index); ! Expands to: index := index + 1;

Example 34 Filling an Array With Zeros

DEFINE zero_array (array, length) =

BEGIN

array[0] := O;

array[1l] ":=" array FOR length - 1;
END #;

LITERAL len = 50;
INT buffer[O:len - 1];
zero_array (buffer, len); I Fill buffer with zeros

Example 35 (page 102) displays a message, checks the condition code, and assigns an error if
one occurs.

Example 35 Checking a Condition Code

INT error;
INT file;
INT _buffer[0:50];
INT count_written;

INT i;
DEFINE emit (Filenum, text, bytes, count, err) =
BEGIN
CALL WRITE (Filenum, text, bytes, count);
IF < THEN
BEGIN
CALL FILEINFO (Ffilenum, err);
! Process errors if any
END;
END #;

1 Lots of code
IF i = 1 THEN
emit (File, buffer, 80, count written, error);

102 LITERALs and DEFINEs

7 Simple Variables

A simple variable is a single-element data item of a specified data type that is not an array, a
structure, or a pointer. After you declare a simple variable, you can use its identifier in statements
to access or change the data contained in the variable. You must declare variables before you
use them.

This section defines the syntax for declaring simple variables. The declaration determines:
e The kind of values the simple variable can represent

e The amount of storage the compiler allocates for the variable

e The operations you can perform on the variable

e The byte or word addressing mode of the variable

e The direct or indirect addressing mode of the variable

e How the compiler allocates storage for simple variables

e How you access the variables

Topics:

e Declaring Simple Variables (page 103)

e Specifying Simple Variable Address Types (page 105)

e Initializing Simple Variables With Numbers (page 105)

e Initializing Simple Variables With Character Strings (page 105)
e Examples (page 105)

Declaring Simple Variables

The simple variable declaration associates an identifier with a single-element data item and
optionally initializes it.

» ype
VOLATILE

identifier .“:@—b
®)

o

WETEZE vad

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each

reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is

optimized.
type
is one of the following data types:
e BADDR
o CBADDR
o CWADDR

Declaring Simple Variables 103

e EXTADDR
o EXT32ADDR
o EXT64ADDR

e INT

e INT(32)

e FIXED

e FIXED (f poi nt)
e PROCADDR

e PROC32ADDR
e PROC64ADDR

e REAL

e REAL

e REAL(64)

e SGBADDR

e SGWADDR

e SGXBADDR

e SGXWADDR

e STRING

e UNSIGNED (wi dt h)
e WADDR

NOTE: The data types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC44ADDR are
64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HO1*AAP.
For more information, see Appendix E, “64-bit Addressing Functionality” (page 531).

f poi nt
For the FIXED data type, f poi nt is the implied fixed-point setting. f poi nt is an integer
in the range -19 through 19. If you omit f poi nt , the default fpoint is O (no decimal places).

A positive f poi nt specifies the number of decimals to the right of the decimal point. A
negative f poi nt specifies a number of integers to the left of the decimal point.

f poi nt can also be an asterisk (*).
wi dt h
For INT, REAL, and UNSIGNED data types, the value in parentheses is a constant expression

specifying the width, in bits of the variable. The constant expression can include LITERALs
and DEFINEs. The result of the constant expression must be one of the following values:

Data Type Prefix width in bits

INT 16, 32, or 64

REAL 32 0r 64

UNSIGNED a value in the range 1 through 31

(simple variable, parameter, or function result)

UNSIGNED (array) 1,2, 4, 0r8

104 Simple Variables

identifier

is the identifier of the simple variable, specified in the form described in Section 2, Language
Elements.

initialization

is an expression that represents the value to store in i dent i fi er . The default number base
is decimal. The kind of expression you can specify depends on the scope of the simple variable:

e For a global simple variable, use a constant expression.
e For a local or sublocal simple variable, use any arithmetic expression including variables.

You can initialize simple variables of any data type except UNSIGNED. For more information
about initializing a simple variable, see the following subsections.

Specifying Simple Variable Address Types
The address type of a simple variable is the same as the address type of a pointer to data of the
same object data type as the simple variable, as in the following examples:

INT .j; ! A pointer: address type is WADDR
INT i; 1 A simple variable: address type is WADDR

Initializing Simple Variables With Numbers

When you initialize with a number, it must match the data type specified for the simple variable.
The data type determines what kind of values the simple variable can store:

STRING, INT, and INT(32) simple variables can contain integer constants in binary, decimal,
hexadecimal, or octal base.

REAL and REAL(64) simple variables can contain signed floating-point numbers.

FIXED simple variables can contain signed 64-bit fixed-point numbers in binary, decimal,
hexadecimal, or octal base. For decimal numbers, you can also specify a fractional part,
preceded by a decimal point. If a FIXED number has a different decimal setting than the
specified f poi nt , the system scales the number to match the f poi nt . If the number is scaled
down, some precision is lost.

Chapter 3 (page 46) describes the syntax for specifying numeric constants in each number base
by data type.

Initializing Simple Variables With Character Strings

STRING, INT, and UNSIGNED simple variables can be initialized with character strings. The
character string can contain the same number of bytes as the simple variable or fewer. Unspecified
bytes are zero bytes. Each character in a character string requires one byte of storage.

Examples

Example 36 (page 106)
Example 37 (page 106)

(

(

Example 38 (page 107)

Example 39 (page 107)
(

Example 40 (page 107)
Example 41 (page 107)

Specifying Simple Variable Address Types 105

Example 36 Declaring Simple Variables Without Initializing Them

STRING b;

INT(32) dblwd1l;
REAL(64) long;
UNSIGNED(5) flavor;
BADDR ba;

WADDR wa;

EXTADDR ea;

Example 37 Declaring and Initializing Simple Variables

STRING y = "A"; 1 Character string
STRING z := 255; 1 Byte value
INT a == "AB"; ! Character string

INT b :=5 * 2;

INT ¢ := %B110;

INT(32) dblwd2 := %B1011101D;
INT(32) dblwd3 := $DBL(%177775); Built-in routine
REAL fltl := 365335.6E-3; Doubleword value
REAL(64) flt2 := 2718.2818284590452L-3; ! Quadrupleword value
WADDR w;

INT t;

STRING s;

INT ro_wd = "p
STRING ro_ b = "p
BADDR ba
WADDR wa
CWADDR cwa
CBADDR cbha
SGWADDR sgwa
SGBADDR sgnq
EXTADDR ea
EXT32ADDR e32a := 10D;
EXT64ADDR e64a := 10F;

Expression
Word value
Doubleword value

106 Simple Variables

Example 38 Effect of fpoint on FIXED Simple Variables

FIXED(-3) F := 642987F; ! Stored as 642; accessed as 642000
FIXED(3) g := 0.642F; 1 Stored as 642, accessed as 0.642
FIXED(2) h := 1.234F; 1 Stored as 123; accessed as 1.23

Example 39 Initializing Simple Variables With Constants and Variables

INT global := 34; ! Only constants allowed
1 in global initialization
PROC mymain MAIN;

BEGIN
INT local := global + 10; TAny expression allowed
INT local2 := global * local; ! in local or sublocal
FIXED local3 := $FIX(local2); ! initialization
ILots of code

END; 1 End of mymain procedure

Example 40 Declaring Simple VOLATILE Variables

VOLATILE INT i;
VOLATILE UNSIGNED(3) mask;
VOLATILE STRING gs;

Example 41 Procedure Addresses and Procedure Pointers

PROCADDR pa;
PROC32ADDR p32a;
PROC64ADDR p64a;
PROCPTR p (J); INT j; END PROCPTR;
PROC32PTR p32 (k); INT k; END PROCPTR;
INT PROC64PTR p64 (1, m); INT(32) I; INT(64) m; END PROCPTR;
STRUCT abc;
BEGIN
PROCPTR z (i); INT i; END PROCPTR;
END;

NOTE: The address and pointer types, EXT32ADDR, EXT64ADDR, PROC32ADDR, PROC64ADDR,
PROC32PTR, and PROC64PTR are available in the 64-bit addressing functionality added to the
EpTAL compiler starting with SPR TO561HO1*AAP. For more information, see Appendix E, “64-bit
Addressing Functionality” (page 531).

Examples 107

8 Arrays

An array is a one-dimensional set of elements of the same data type. Each array is stored as a
collective group of elements. You use arrays to store constants, especially character strings. After
you declare an array, you can use its identifier to access the array elements individually or as a

group.

You can declare:

e Arrays

e Read-only arrays
e Address arrays

The declaration includes initializing the array as well as allocating storage for the array. In addition
the declaration determines:

o The kind of values the array can represent

e The operations you can perform on the array

e The byte or word addressing mode of the array
This section defines the syntax for declaring:

e Arrays

e Read-only arrays

e Address arrays

Chapter 9 (page 114) describes the syntax for declaring arrays within structures and how to declare
structures that simulate arrays of arrays, or arrays of structures (including multidimensional arrays).

Topics:

e Declaring Arrays (page 108)

e Declaring Read-Only Arrays (page 111)

e Using Constant Lists in Array Declarations (page 113)

Declaring Arrays

An array declaration associates an identifier with a set of elements of the same data type. The
data type of an array can be one of the pTAL address types.

—>| type +—>| identifier I_)
C .

range | ':@—b
T So—E

Indirection

" a
T

WETO21 wed

type
is one of the following:
e BADDR
o CBADDR

108 Arrays

o CWADDR

e EXTADDR

e EXT32ADDR |
o EXT64ADDR |
e FIXED (f poi nt)

e INT
e INT(32)

e FIXED

e PROCADDR

« PROC32ADDR |
« PROC64ADDR |

e REAL
e REAL

e REAL(64)

e SGBADDR

e SGWADDR

e SGXBADDR

e SGXWADDR

« STRING

e UNSIGNED (wi dt h)
e WADDR

NOTE: The data types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
available in the 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

The data type determines:
e The kind of values that are appropriate for the array
e The storage unit the compiler allocates for each array element as follows:
wi dt h
is a constant expression specifying the width, in bits, of the variable.
f poi nt
is the implied fixed point of the FIXED variable.
identifier
is the array name.
I ndirection |
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |
range

® Ot (D)

WaTEE vad

Declaring Arrays 109

| ower - bound
is an INT or INT(32) constant expression (in the range -32,768 through 32,767) that
specifies the index (relative to the zeroth element) of the first array element you want
allocated.

upper - bound

is an INT or INT(32) constant expression (in the range -32,768 through 32,767) that
specifies the index (relative to the zeroth element) of the last array element you want
allocated.

For arrays declared outside of structures, upper - bound must be equal to or larger than
| ower - bound.

Here are some examples of bounds:

STRING a_array [0:2];
INT b_array [0:19];
UNSIGNED(1) flags [0:15];

initialization
is a constant or a constant list of values to assign to the array elements, beginning with the
lower-bound element. (Constant lists are described in Chapter 3 (page 46).) If you specify
fewer initialization values than the number of elements, the values of uninitialized elements are
undefined. You cannot initialize extended indirect local arrays or UNSIGNED arrays.

Specity initialization values that are appropriate for the data type of the array. For example,
if the decimal setting of an initialization value differs from the f poi nt of a FIXED array, the
system scales the initialization value to match the f poi nt . If the initialization value is scaled
down, some precision is lost.

Examples:

e Example 42 (page 110)
e Example 43 (page 110)
e Example 44 (page 110)
e Example 45 (page 111)

(

(

e Example 46 (page 111)

e Example 47 (page 111)
(

e Example 48 (page 112)

Example 42 Declaring Arrays With Various Bounds

FIXED .array_a[0:3]; 1 Four-element array
INT .array_b[0:49]; ! Fifty-element array
UNSIGNED(1) flags[0:15]; 1 Array of 16 one-bit elements

Example 43 Declaring Arrays and Initializing Them With Constants

INT a_array[0:3] := -1; 1 Store -1 in element [0];
1 values in elements [1:3] are undefined
INT b_array[0:1] := "abcd"; ! Store one character per byte

Example 44 Declaring Arrays and Initializing Them With Constant Lists

INT c_array[0:5] := [1,2,3,4,5,6]; ! Constant list
STRING buffer[0:102] := ["A constant list can consist ",
"of several character string constants, ",
"one to a line, separated by commas."];
INT(32) mixed[0:3] := ["abcd™, 1D, %B0101011D, %20D]; ! Mixed constant list
LITERAL len = 80; 1 Length of array

110 Arrays

STRING buffer[O:len - 1] := len * [" "]; 1 Repetition factor

FIXED f[0:35] := 3*[2*[1F,2F], 4*[3F,4F]1]; ! Repetition factors
LITERAL cr = %15,

If = %12;
STRING err_msg[0:9] := [cr, If, "ERROR"™, cr, If, 0]; ! Constant list

Example 45 Initializing Arrays

INT(32) a[0:1] := [5D, 7D]; I Initialize global array

PROC my_procedure;

BEGIN
STRING b[0:1] := ["A","B"]; ! Initialize local standard array
FIXED EXT c[0:3]; 1 Cannot initialize local

1 extended indirect array
SUBPROC my_subproc;
BEGIN
INT d[0:2] := ["Hello!""]; ! Initialize sublocal array
1 Lots of code
END;
END;

Example 46 Array With Positive fpoint

FIXED(2) x[0:1] := [0.64F, 2.348F];
I Stored as 64 and 234; accessed as 0.64 and 2.34

Example 47 Array With Negative fpoint

FIXED(-3) y[0:1] := [642913F, 1234F];
I Stored as 642 and 1; accessed as 642000 and 1000

Declaring Read-Only Arrays

A read-only array declaration allocates storage for a nonmodifiable array in a user code segment.
Read-only arrays are sometimes referred to as p-relative arrays, because they are addressed using
the program counter (the p register).

Oj

D[}~
(D
L |

identifier

WITOZ2. W

type
is any data type described in Declaring Arrays (page 108) except UNSIGNED. The data type
of a read-only array cannot be an address type.

identifier
is the identifier of the read-only array.
range

® Ot (D)

WaTEE vad

Declaring Arrays 111

| ower - bound
is an INT or INT(32) constant expression (in the range -32,768 through 32,767) that

specifies the index (relative to the zeroth element) of the first array element you want
allocated. The default value is O.

upper - bound
is an INT or INT(32) constant expression (in the range -32,768 through 32,767) that
specifies the index (relative to the zeroth element) of the last array element you want
allocated. The default value is the number of elements initialized minus one.

P
specifies a read-only array.

initialization
is a constant list fo assign to the array elements. You must initialize read-only arrays when you
declare them. (Constant lists are described in Chapter 3 (page 46).)

Specify initialization values that are appropriate for the data type of the array. For example,
if the decimal setting of an initialization value differs from the f poi nt of a FIXED array, the
system scales the initialization value to match the f poi nt . If the initialization value is scaled
down, some precision is lost.

The compiler reports a warning if a read-only array declaration specifies an indirection symbol
(see Table 14 (page 41)).

Example 48 Read-Only Array Declaration With Indirection Symbol

PROC p;
BEGIN
INT i = "P" = [2,3,4]; ! OK
INT .J = "P" = [5,6,7]; ! Compiler reports a warning
STRING k = "P" := ["abc™]; ! OK
STRING .1 = "P® = ["ccc'™]; ! Compiler reports a warning
END;

You must initialize read-only arrays.
UNSIGNED read-only arrays are not allowed, because they cannot be initialized.

If you declare a read-only array in a RESIDENT procedure, the array is also resident in main
memory.

The linker links each global read-only array into any code segment containing a procedure that
references the array.

You can access read-only arrays as you access any other array, except that:

e You cannot modify a read-only array; that is, you cannot specify a read-only array on the left
side of an assignment or move operator.

e You cannot specify a read-only array on the left side of a group comparison expression.

e Ina SCAN or RSCAN statement, you cannot use next - addr to read the last character of
a string. You can use next - addr to compute the length of the string.

N2 Arrays

Example 49 Declaring and Initializing a Read-Only Array

STRING prompt
INT error

p-
p-

["'Enter Character: ", 0];
[""INCORRECT INPUT"];

Using Constant Lists in Array Declarations
pTAL requirements for array declarations are:

e If an array declaration includes an initialization string, the size of a constant list must be less
than or equal to the size of the array. If the constant list is larger than the array, an error
occurs.

o If the alignment of the elements of the initialization string under SHARED? rules and SHARED8
rules is different, you must specify a FIELDALIGN clause in the initialization string.

The number of bits in a constant list that you assign to a read-write array must be the same as the
number of bits in the array. The number of bits in a constant list that you assign to a read-only
array must be the less than or equal to the number of bits in the array.

Topics:
e Read-Only Arrays (page 113)
e Nonstring Arrays (page 113)

Read-Only Arrays

The number of bits in the initialization string must equal the number of bits in the read-only array.

If the read-only-array declaration does not specify array bounds, the number of bits in the
initialization string must be an integral multiple of the number of bits in the array’s base type.

Example 50 Declaring Read-Only Arrays With Constant Lists

must be an integral
multiple of array"s base
type size

INT p = "P" := "abcd"; 1 OK

INT q[0:3] = "P" := "abcdabcd™; ! OK

STRING r = "P" := "abcd"'; 1 OK

STRING s[0:3] = "P" := "abcd"; 1 OK

STRING t = "P" = [1,2,3]; 1 OK

STRING u[0:3] = "P" := [1,2,3]; ! ERROR: Initialization size
1 (24 bits) must equal the
1 array"s size (32 bits)

STRING v = "P" :=[1,2,3,4]; 1 OK

STRING w[0:3] = "P" := [1,2,3,4]: 1 OK

INT X = "P" := "abc"; ! ERROR: Initialization size
]
1
1

Nonstring Arrays

You can specity an initialization string when you declare an array:
INT .a[0:3] := [0,1,2,3];
The length of the initialization string must be less than or equal to the length of the array.

Example 51 Declaring Nonstring Arrays With Constant Lists

INT .a[0:3] := [0,1,2]; 1 OK: Init string is shorter than array

INT .a[0:3] := [0,1,2,3]; 1 OK: Init string is right length

INT .a[0:3] := [0,1,2,3,4]; ! ERROR: Init string is too long

INT .a[0:3] := [%H1234567812345678%F]; !OK: Init string is right length

Declaring Arrays 113

Q Structures

A structure is a collectively stored set of data items that you can access individually or as a group.
Structures contain structure items (fields) such as simple variables, arrays, simple pointers, structure
pointers, and nested structures (called substructures). The structure items can be of different data
types.

Structures usually contain related data items such as the fields of a file record. For example, in an
inventory control application, a structure might contain an item number, the unit price, and the
quantity on hand.

A structure declaration associates an identifier with one of the kinds of structures listed in Table 41
(page 114).

Table 41 Kinds of Structures

Structure Description

Definition Describes a structure layout and allocates storage for it

Template Describes a structure layout but allocates no storage for it

Referral Allocates storage for a structure whose layout is the same as the layout of a previously

declared structure

The TNS/E instructions setjmp() and longjmp() require data to be aligned on 16-byte

boundaries. To ensure that this data is aligned on 16-byte boundaries, you must declare it in a
template structure using STRUCTALIGN (MAXALIGN).

Topics:

e Structure Layout (page 115)

e Overview of Field Alignment (page 117)

e Field and Base Alignment (page 119)

e Array Alignment in Structures (page 122)

e Structure Alignment (page 123)

e Substructure Alignment (page 124)

e Alignment Considerations for Substructures (page 126)
e FIELDALIGN Clause (page 127)

o FIELDALIGN Compiler Directive (page 127)

e SHARED2 Parameter (page 128)

e SHAREDS8 Parameter (page 129)

e Reference Alignment With Structure Pointers (page 134)
e STRUCTALIGN (MAXALIGN) Attribute (page 137)

o VOLATILE Attribute (page 138)

e Declaring Definition Structures (page 138)

e Declaring Template Structures (page 139)

e Declaring Referral Structures (page 141)

e Declaring Simple Variables in Structures (page 142)
e Declaring Arrays in Structures (page 143)

e Declaring Substructures (page 144)

14 Structures

e Declaring Filler (page 147)

e Declaring Simple Pointers in Structures (page 148)

e Declaring Structure Pointers in Structures (page 151)

e Declaring Redefinitions (page 153)

e Simple Variable (page 153)

e Array (page 154)

e Definition Substructure (page 155)

e Referral Substructure (page 157)

e Simple Pointer (page 158)

e Structure Pointer (page 159)

Equivalenced structures are discussed in Chapter 11 (page 177).

Structure Layout

The structure layout (or body) is a BEGIN-END block that contains declarations of structure items.

Table 42 Structure ltems

Structure ltem

Description

Simple variable
Array
Substructure
Filler byte

Filler bit

Simple pointer
Structure pointer

Redefinition

A single-element variable

A variable that contains multiple elements of the same data type
A structure nested within a structure (to a maximum of 64 levels)
A place-holding byte

A place-holding bit

A variable that contains a memory address, usually of a simple variable or array,
which you can access with this simple pointer

A variable that contains the memory address of a structure, which you can access
with this structure pointer

A new identifier and sometimes a new description for a substructure, simple variable,
array, or pointer declared in the same structure

You can nest substructures within structures (that is, you can declare a substructure within a
substructure within a substructure, and so on) as deeply as the pTAL stack allows (approximately
60 levels). The structure and each substructure has a BEGIN-END level depending on the level of

nesting.

The syntax for declaring each structure item is described after the syntax for declaring structures.
The following rules apply to all structure items:

e You can declare the same identifier in different structures and substructures, but you cannot
repeat an identifier at the same BEGIN-END level.

e You cannot initialize a structure item when you declare it. After you have declared it, however,
you can assign a value fo it by using an assignment statement or move statement.

Structure Layout 115

e You can control how the compiler aligns a structure in memory and the fields of a structure
within a structure by using the FIELDALIGN clause or FIELDALIGN compiler directive.

Definition structure and template structure declarations can optionally include a FIELDALIGN
clause. You cannot specify a FIELDALIGN clause on a referral structure declaration.

e If you declare a structure pointer and assign the address of a structure to it or use a reference
parameter to address structure data you can specify a REFALIGNED clause to ensure that the
structure is well-aligned.

Topics:
e Overview of Structure Alignment (page 116)
e Structures Aligned at Odd-Byte Boundaries (page 117)

Overview of Structure Alignment

The memory alignment of the fields of a structure is important to pTAL. A field that is aligned for
fastest access is said to be well-aligned. A field that is not aligned for fastest access is said to be
misaligned.

A structure is well-aligned if the address of the base of the structure in memory is a multiple of its
base alignment; otherwise, the structure is misaligned. If a structure is misaligned, some or all of
its fields will also be misaligned.

The layout of structures and the alignment options you specify affect the object code generated by
pTAL. If you specify that the fields of a structure are not well-aligned (by specifying the FIELDALIGN
clause with the SHARED2 parameter) pTAL generates conservative code for each reference.
Conservative code might require more instructions to reference structure fields than references to
well aligned fields.

Each structure declaration specifies whether pTAL generates fast code or conservative code when
your program references a field of the structure.

Fast code takes full advantage of the RISC and ltanium architectures and produces the best
performance, provided that the field being referenced is well-aligned. If the field is misaligned, an
exception occurs. Access to the misaligned field is handled by a millicode exception handler that
completes the access but at a significant performance cost.

Conservative code is somewhat slower than fast code but does not cause exceptions when it
accesses misaligned data.

pTAL ensures that definition structures and referral structures are well-aligned; however, if you
declare a structure pointer and assign the address of a structure to it or use a reference parameter
to address structure data, the compiler cannot ensure that the structure is well-aligned; therefore,
when you declare a structure pointer, you can specify what assumptions you want pTAL to make

when it generates code to access your data. You can specify a REFALIGNED clause (see
REFALIGNED Clause (page 134)).

The overall guidelines for alignment for a native process are:

e Accessing data in memory takes the least amount of time if the data is well-aligned and either
the compiler has allocated the data or you reference the data with a pointer that specifies
REFALIGNED(8). A data item is well-aligned if its byte address is an integral multiple of its
length. For example, an INT is well-aligned if it begins at an even-byte address, an INT(32)
at an address that is a multiple of four, and so forth.

e Accessing data is somewhat slower if the data is not well-aligned and you reference the data
using a pointer that specifies REFALIGNED(2).

e Accessing data is significantly slower if the data is not well-aligned, but pTAL generates code
that functions as if the data is well-aligned. In this case, your program traps to the millicode
exception handler, which completes the data access and returns to your program.

16 Structures

To comply with these guidelines, some structures require that you explicitly add filler to ensure that:
e Each field begins at an address that is a multiple of its length.

e The total length of a structure is a multiple of the widest field in the structure.

Structures Aligned at Odd-Byte Boundaries

If you attempt to access data at an odd-byte address, the results are undefined, whether the data
is a simple variable or a field of a structure. Your program might or might not trap.

Overview of Field Alignment

This subsection gives you an overview of the FIELDALIGN clause and the FIELDALIGN compiler
directive, and the field alignment parameters SHARED2, SHAREDS8, PLATFORM, and AUTO.

The FIELDALIGN clause specifies the alignment of a structure and of all substructures that do not
specify a FIELDALIGN clause. For details, see FIELDALIGN Clause (page 127).

The FIELDALIGN compiler directive specifies the default alignment for all structures. It includes the
SHARED2, SHAREDS, PLATFORM, and AUTO parameters as well as a NODEFAULT parameter.
For more information, see Chapter 17 (page 367).

When you declare a definition or template structure, you specify (either explicitly using a FIELDALIGN
clause or implicitly according to the current setting of the FIELDALIGN compiler directive) how you
want the compiler to allocate memory for the structure. The field alignment for each such structure
is specified by one of the following parameters to a FIELDALIGN clause or directive:

You use SHARED2 and SHAREDS field alignment for structure data used by processes running in
either pTAL or TAL. You can share data by interprocess communication or by accessing it on a
shared storage medium such as disk or tape.

Your program might use library routines that require that structure data be in a SHARED?2 or
SHAREDS format. If you use library routines that include structures that specify SHARED2 or
SHAREDS, you might need to declare your structures with the same field alignment as the structures
in the library.

It more than one program uses the same source file, you might want to include a FIELDALIGN
clause on every structure declaration in the source file. This ensures that the field alignment of every
structure is consistent across all programs that compile the source file.

It you do not specify a FIELDALIGN clause, each structure will use the current setting of the
FIELDALIGN compiler directive, which might be different for different compilations.

Topics:

e SHARED2 (page 117)

e SHAREDS (page 118)

e PLATFORM (page 118)

e AUTO (page 118)

e Differences Between PLATFORM and AUTO (page 119)

SHARED?2

FIELDALIGN(SHARED?) directs the compiler to allocate the structure’s fields. Specify
FIELDALIGN(SHARED?2) when:

e Your process is limited by the available stack space in TAL programs.

e You want the structure to hold data (for example, interprocess messages, memory, or files)
that is shared by processes or applications running on a combination of TAl-compiled processes
and RISC and ltanium architectures.

For more information, see FIELDALIGN Clause (page 127) and SHARED2 Parameter (page 128).

Overview of Field Alignment 117

SHAREDS

FIELDALIGN(SHAREDS8) directs the compiler to allocate the structure’s fields for optimal performance
in pTAL. Specify FIELDALIGN(SHARED8) when:

e You want optimal performance in pTAL.
e The fields you reference in the structure are well-aligned.
e All processes that share the data can use SHAREDS alignment.

e You want the structure to hold data (for example, interprocess messages, memory, or files)
that is shared by processes or applications that are composed of both pTAL and TAL code.

In TAL, access to SHARED8 components is as efficient as access to SHARED2 components,
but SHARED8 components usually require more space than SHARED2 components.

For more information, see FIELDALIGN Clause (page 127) and SHARED8 Parameter (page 129).

PLATFORM

AUTO

FIELDALIGN(PLATFORM) directs the compiler to allocate the structure’s fields according to a layout
that is consistent across different programming languages running on a given architecture.
(PLATFORM field alignment is not consistent across different architectures.) The data might be
shared among modules written in different programming languages, in one of these ways:

e Running within a single process

e Running in separate processes, all of which are either pTAL, TAL, or C/C++, but not a
combination of these

pTAL allocates the fields of a PLATFORM structure according to the rules used by the native mode
HP C compiler for PLATFORM layouts; that is:

e Each field begins at an address that is an integral multiple of the length of the field. That is,
pTAL allocates 1-byte, 2-byte, 4-byte, and 8-byte fields at addresses that are integral multiples
of one, two, four, and eight, respectively.

e UNSIGNED fields are not necessarily aligned to byte boundaries. They can share 1-byte,
2-byte, and 4-byte containers with other items. An UNSIGNED field, however, cannot span
an address that is an integral multiple of four. If an UNSIGNED item would span a 4-byte
address boundary, the compiler allocates the UNSIGNED field beginning at the next 4-byte
boundary.

e The alignment of a structure or substructure is the alignment of its widest field, unless the
structure or substructure contains an UNSIGNED field, in which case, the alignment of the
structure or substructure is at least four.

e The compiler adds bytes, as needed, to the end of a PLATFORM structure or substructure such
that the length of the structure or substructure is an integral multiple of its widest field.

FIELDALIGN(AUTO) directs the compiler to align structure fields for optimal access on the architecture
on which the object file will be run. Specify AUTO only for structures whose data exists solely
within a process. Use PLATFORM to share data across processes.

Use AUTO field alignment for a structure that you use only locally—that is, only within a process—not
between processes that run on different architectures. (AUTO field alignment is not consistent across
different architectures and compilers.)

A structure’s layout can be different in pTAL, TAL, and C/C++ if the structure describes data that
is used only within a process and only for the duration of the process. In this case, you can specify
AUTO as the FIELDALIGN parameter.

Specify FIELDALIGN(AUTO) for structures that are not used to exchange data between processes.

18 Structures

Do not assume that fields of an AUTO structure are contiguous in memory. The compilers insert
filler where required for optimal alignment.

Pointer fields and nonpointer fields in structures declared with AUTO field alignment can be any
address type or data type, respectively.

TAL, pTAL, and C lay out AUTO structures differently.

Differences Between PLATFORM and AUTO

PLATFORM structures and substructures can contain UNSIGNED and STRING items within a 2-byte
word. In AUTO structures and substructures, STRING items and UNSIGNED items are not allocated
within a 2-byte word.

PLATFORM structures and substructures can contain an odd number of bytes. AUTO (and SHAREDS)
structures must contain an even number of bytes. pTAL adds an extra byte at the end of AUTO
structures if, without the byte, the structure would contain an odd number of bytes.

The length of PLATFORM structures or substructures that contains an UNSIGNED item must be an
integral multiple of four bytes. pTAL adds extra bytes, as needed, to the end of such structures and
substructures.

Field and Base Alignment

The field alignment of a structure specifies the offsets at which fields of the structure must begin
relative fo the base of the structure. A scalar field is well-aligned when its byte offset is an integral
multiple of its width. A substructure is well-aligned when the offset of its base, relative fo its
encompassing structure, is an integral multiple of its widest field.

Use the FIELDALIGN clause to specify how you want pTAL to align the fields in the structure. For
more information, see FIELDALIGN Clause (page 127).

Topics:
e Base Alignment (page 119)
e Structure Alignment Examples (page 120)

Base Alignment

The base alignment of a structure is the alignment of the widest field in the structure. The base
alignment determines where the structure can be located in memory and be well-aligned. A structure
is well-aligned when the memory address at which it is located is an integral multiple of its base
alignment.

Table 43 Base Alignment and Field Alignment Relationships

Width of Widest Field in Structure FIELDALIGN(SHARED?2) FIELDALIGN(SHAREDS)
1 1 or2* 1 or2*

2 2 2

4 2 4

8 2 8

*Definition (inline) substructures have a base alignment of one. All other structures—definition structures, referral
structures, and referral substructures—have a base alignment of two.

A structure is well-aligned if the address of the base of the structure in memory is a multiple of its
base alignment; otherwise, the structure is misaligned. If a structure is misaligned, some or all of
its fields will also be misaligned.

Field and Base Alignment 119

Structure Alignment Examples

The following examples illustrate how your structure data layout is affected by structure alignment.
Only SHAREDS structures are shown because SHARED?2 structures are not well-aligned. pTAL
always generates conservative code for references to fields of a SHARED?2 structure that are more
than 16 bits long.

Figure 4 (page 120) shows a structure, s1, that specifies FIELDALIGN(SHARED8). Because the
widest field in the structure, T, is a FIXED field, the base alignment of s1 is 8. To be well-aligned,
s1 must be allocated at a memory address that is an integral multiple of eight. Filler is added as
follows:

e Before 132 so that 132 begins at an offset that is a multiple of four relative to the beginning
of the structure.

o Before F so that T begins at an offset that is a multiple of eight relative to the beginning of
the structure.

e Atthe end of the structure so that the total length of the structure is an integral multiple of the
widest field in the structure.

Figure 4 Alignment of SHARED8 Structure With Base Alignment of 8
STRUCT s FIELDALIGN(SHARED8); ! Base alignment of sl is 8

BEGIN
INT i; 1 Begins at offset O
FILLER 2; 1 2 bytes of filler required
INT(32) 132; ! Begins at offset 4
STRING s1; 1 Begins at offset 8
STRING s2; 1 Begins at offset 9
FILLER 6; 1 6 bytes of filler required
FIXED F; 1 Begins at offset 16
INT k; 1 Begins at offset 24
FILLER 6; I Must pad to multiple of widest field, T
END; 1 Total length of sl1: 32 bytes

i | filler i32 51]52 filler f k | filler
0 z'T.q' 5 T Ig ' o' Nz'jhal He! NMa' Tz20! T221 1247 1267 1281 4 130!

Filler required to align next field,
132, on a 4-byte boundary.

Filler required to align next field,
f, on an B-byte boundary.

Filler required to make length of
the structure an integral multiple
of its widest field, 1,

WETOOT wed

Figure 5 (page 121) shows which fields of s1 are misaligned if the base of the structure in memory
is not at an integral multiple of its base alignment. Only structures whose base is at an even-byte
address are shown. Accessing structures whose base is at an odd-byte offset produces undefined
results. For more information, see Overview of Structure Alignment (page 116).

120 Structures

Figure 5 Well-Aligned and Misaligned SHARED8 Structures With Base Alignment of 8

F
| i |filer] i32 [s1]s2] filler f | k| filler ‘\S
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 '
Misaligned fields: none

S
[T & [rner [i32 [s1fs2| filler f | k| iller gs
o 2 4 8 8 W 12 14 18 20 22 24 26 28 307
Misaligned fields: 32, f

S
[] [[P Jrer [82 [si]s2] filler | f | ® ﬂﬂeﬁé
o 2z 4 & 8 10 1z 14 18 20 22 24 26 28 30
Misaligned fields: f

)
[T TT T T i [re] 82 Jst]s2] fller | f [k &S
o 2 4 6 8 10 12 14 18 20 22 24 26 28 30 /1
Misaligned fields: 132, f

J
[TTTTT T T i frne] @2 stsz] filler f gs
o 2z 4 6 8 10 12 14 18 20 22 24 26 28 30 7

Misaligned figlds: nona

WETDOE vad

Figure 6 (page 121) shows a structure that is declared FIELDALIGN(SHAREDS). The widest fields
in s2, 132a and 132b, are each four bytes; therefore, although the field alignment of s2 is
SHAREDS, the base alignment of s2 is four, not eight. s2 is well-aligned in memory if the base of
the structure begins at any address that is a multiple of four.

Figure 6 Alignment of a SHARED8 Structure With Base Alignment of 4

STRUCT s2 FIELDALIGN(SHAREDS) ;

1 Base alignment is 4

Must pad to multiple of base alignment

BEGIN
STRING sl 1 Begins at offset 0O
FILLER 3; 1 3 bytes of filler required
INT(32) 132a; ! Begins at offest 4
STRING s2 1 Begins at offset 8
STRING s3 1 Begins at offset 9
FILLER 2; 1 2 bytes of filler required
INT(32) 132b; ! Begins at offest 12
INT k; 1 Begins at offest 16
FILLER 2; !
END; 1 Total length of s2: 20 bytes
[s1] filler i32a [s2[s3] filer | i320 k] filer
a T Tg T lg T otz TaT hel NeT}len

0 'le'

Filler required to align next field,
i32a, on a 4-byte boundary.

Filler required to align next field,
132b, on a 4-byle boundary.

Filler required to make length of
the structure an integral multiple
of its widest field, 132a and 132b.

WETIIT vsd

Figure 7 (page 122) shows which fields are misaligned if s2 is allocated at an address other than

a 4-byte address.

Field and Base Alignment 121

Figure 7 Well-Aligned and Misaligned SHAREDS Structures With Base Alignment of 4

[s1] filer | is2a s2s3[fier [20 |k [fiec] [T T T T T TTTTT]
0 2 4 6] 0 12 14 16 18 20 22 24 26 28 30

Misaligned fields: none

[] Isa] fiter 322 |s2[s3[fer [i@ | k [Aer| [[][T[]]]|
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Misaligned fields: i32a, i32b

[T 1 [[si] finer ia2a [s2fsaffier [1820 [k [mer | T T[T T T]]
0 2 4 6 8 10 12 14 16 18 20 22 24 26 23 30

Misaligned fields: none

WET11dwsd

Array Alignment in Structures

When you declare an array in a structure, the alignment of the beginning of the array is the
alignment of the base type of the array. Thus, for example, the field alignment of an array of INTs
is the same as the field alignment of a single INT, which is 2. Declaring an array in a structure is
the same as explicitly declaring individual fields, each with the same data type as the array’s base
type.

In Example 52 (page 122), the layouts and base alignments of s1 and s2 are identical:

Example 52 Arrays Within Structures

STRUCT s1 FIELDALIGN(SHAREDS);
BEGIN
INT i;
INT a[0:2];
STRUCT s1[0:1];
BEGIN
INT(32)w;
INT y;
INT X;
END;
END;

STRUCT s2 FIELDALIGN(SHAREDS) ;
BEGIN
INT i;
INT a;
INT b;
INT c;
STRUCT sla;
BEGIN
INT(32)w;
INT vy;
INT X;
END;
STRUCT slb;
BEGIN
INT(32)w;
INT vy;
INT X;
END;
END;

122 Structures

An array of structures or substructures is the same as an array of a pTAL data type. The width of
the widest field of an element of such an array, combined with the FIELDALIGN parameter you
specify, determines the required alignment of the structure or substructure and of its fields.

Example 53 SHARED2: 2-Byte Alignment

STRUCT s1[0:9] FIELDALIGN(SHARED2); ! sl1 is SHARED2
BEGIN 1 Alignment is 2
INT i;
FILLER 2;
INT(32) j;
END;

Example 54 SHAREDS: 4-Byte Alignment

STRUCT s2[0:9] FIELDALIGN(SHARED8); ! s2 is SHAREDS
BEGIN 1 Alignment is 4
INT i;
FILLER 2;
INT(32) j;
END;

Example 55 8-Byte Alignment and 4-Byte Alignment

STRUCT s3[0:9] FIELDALIGN(SHARED8); ! s3 is SHARED8

BEGIN 1 Alignment is 8

STRUCT s4[0:4]; 1 s4 is SHAREDS
!

BEGIN Alignment is 4
INT i;
FILLER 2;
INT(32) j;
END;
REAL(64) k;
END;

Structure Alignment

A structure’s alignment is the alignment of the widest field declared in the structure and is always
less than or equal to the alignment specified in a FIELDALIGN clause or FIELDALIGN compiler
directive. For alignment values of structure fields, see Table 43 (page 119). The alignment of a field
that is a substructure is the alignment of the widest field contained in the substructure.

If the alignment of the widest field in a SHAREDS structure is 2, the structure must begin at a 2-byte
address, and the structure’s base alignment is 2. If the alignment of the widest field in the structure
is four bytes, for example an INT(32), the structure must begin at a 4-byte address. If the alignment
of the widest field in the structure is eight bytes, for example an FIXED field, the structure must begin
at an 8-byte address.

Example 56 SHAREDS Structures With Different Base Alignments

STRUCT s1 FIELDALIGN(SHARED8); I Base alignment of structure is
BEGIN 1 2 because of INT c

STRING a;

STRING b;

INT C; 1 ¢ is field with widest
END; 1 alignment: 2
STRUCT s2 FIELDALIGN(SHARED8); I Base alignment of structure is
BEGIN 1 4 because of INT(32) c

STRING a;

STRING b;

FILLER 2;

Structure Alignment 123

INT(32) c; 1 c is field with widest
END; 1 alignment: 4
STRUCT s3 FIELDALIGN(SHARED8); ! Base alignment of structure is
BEGIN I 8 because of FIXED c
STRING a;
STRING b;
FILLER 6;
FIXED c; 1 c is field with widest
END; 1 alignment: 8

Substructure Alignment

The rules for field alignment of substructures are the same as the rules for structures. You can specify
the field alignment of a substructure explicitly using a FIELDALIGN clause or implicitly by allowing
the field alignment of the substructure to default to the field alignment of the containing structure
or substructure. In either case, the alignment of fields must conform to the rules described previously,
under “Using Field Alignment.” For SHAREDS structures, you must ensure that every field begins
at an appropriate address and that the end of the structure includes filler, if necessary, so that the
total length of the substructure is an integral multiple of its widest field.

The following rules apply to substructures:

o A definition substructure that does not specify a FIELDALIGN clause inherits the field alignment
of its containing structure or substructure.

e The base alignment of a substructure is the alignment of the widest field of the substructure.

e Begin the base of a substructure at an offset that is an integral multiple of the substructure’s
alignment, relative to the start of its containing structure or substructure. If the substructure is
a definition substructure and both the structure and substructure have SHAREDS field alignment,
the substructure must be well aligned.

Example 57 Well-Aligned Structure With Well-Aligned Substructure

STRUCT s FIELDALIGN(SHAREDS);

BEGIN
INT i;
FILLER 2; I ss is 4-byte aligned. Use FILLER 2 to
1 force ss to a 4-byte address
STRUCT ss; I Specified alignment of ss is SHAREDS,
BEGIN I inherited from s
INT(32) m;
INT n;
FILLER 2; I Alignment of substructure ss is 4
END; I FILLER 2 makes total length of ss 8
INT j;
STRING t[0:2];
FILLER 3; I Alignment of structure s is 4: declare
END; I FILLER 3 to make length of s an integral

I multiple of its widest field

For further information about substructures, see Alignment Considerations for Substructures

(page 126).

124 Structures

Example 58 SHAREDS Structures With SHARED2 Substructures

STRUCT t_s2(*) FIELDALIGN(SHARED2); ! Base alignment of t_s2
BEGIN 1 is 2
INT(32) j;
ND;
STRUCT t_s8(*) FIELDALIGN(SHARED8); ! Base alignment of t _s8
BEGIN 1 is 4
INT(32) j;
END;

Example 59 SHARED?2 Structures With SHARED8 Substructure
STRUCT s1 FIELDALIGN(SHARED2);

BEGIN

INT i;

STRUCT s2(t_s8); 1 s2 has SHARED8 alignment
END; 1 Base alignment of s2 is 2
INT .p2(t_s8) REFALIGNED(2); ! Reference alignment is 2
INT .p3(t_s8); 1 Reference alignment defaults

1 to 8
PROC p;
BEGIN

INT i;

@p2 = @sl.s2 ">>" 1;

@p3 = @sl.s2 ">>" 1;

i = p2.j;

I 2= p3.j;

END;

In Example 59 (page 125):

e Because s1 specifies SHARED? field alignment, pTAL generates conservative code that ensures
that an exception does not occur when you reference s1.s2.j.

o p2 refers to t_s8, a SHAREDS substructure. p2 specifies a reference alignment of 2, which
ensures that pTAL generates conservative code that will not cause exceptions for misaligned
memory references.

e p3does not have a REFALIGNED clause. lts reference alignment, therefore, defaults to the
field alignment of its referent, which is t_s8, which has SHAREDS field alignment. pTAL
generates fast code for each reference to p3.j.

In the formal parameter specification for a structure pointer, declare reference alignment 2 unless
you are certain that all pointers passed to the parameter reference SHAREDS structures that you
know are well-aligned. If you are not certain that all references are well-aligned, use the same
approach as that shown earlier to ensure that references to structures passed as actual parameters
do not cause a trap.

When you design routines that return addresses to their callers, return addresses that are well-aligned
whenever possible.

Substructure Alignment 125

Example 60 SHAREDS Structure With SHARED2 Substructure
STRUCT s3 FIELDALIGN(SHAREDS);

BEGIN 1 Base alignment of s3 is 4
INT i;
STRUCT s4(t_s2); ! s2 has SHARED8 alignment
END; 1 Base alignment of s2 is 4
INT .p4(t_s2); 1 Uses default alignment: 2

The compiler always generates conservative code. In Example 60 (page 126), references to s3.s4. j
do not cause traps because, although s3 is SHAREDS, the offset of s3.s4._j is not a multiple of
4. For each reference pTAL determines whether the referenced field is well-aligned. References to
fields in s4 using the pointer p4—for example, p4.j—do not cause traps because the field
alignment of s4 is SHARED2 and the compiler generates conservative code for such references.

Example 61 Combining SHARED2 and SHAREDS Structures

PROC p;
BEGIN
STRUCT s1 FIELDALIGN(SHARED8); ! OK
BEGIN
FIXED 1i;
END;
STRUCT s2 FIELDALIGN(SHARED2); I OK
BEGIN
INT(32) i; OK
STRUCT sub (s1); WARNING: SHAREDS8
END; substructure in SHARED2

structure can cause
significant loss of

performance
STRUCT s3 (sl1l) = s2;
STRUCT s4 FIELDALIGN(SHAREDS) ;
BEGIN
INT i1;
STRUCT subl (s2); 1 OK: SHARED2
STRUCT sub2 (sl1) = subl; ! WARNING: SHARED8 substructure
FILLER 2; 1 redefines SHARED2 substructure
END; I can cause significant loss of
END; I performance

Alignment Considerations for Substructures

When you declare a substructure, you must be aware of how the base alignment of the substructure
and its containing structure affect references to the fields of the structure and substructure.

Table 44 Field Alignment of Substructures

Structure Field Alignment

Substructure Field AUTO PLATFORM SHAREDS8 SHARED2
Alignment

AUTO AUTO PLATFORM Invalid Invalid
PLATFORM invalid PLATFORM invalid invalid
SHARED8 SHARED8 SHARED8 SHARED8 SHARED8
SHARED?2 SHARED?2 SHARED2 SHARED2 SHARED2
Default AUTO PLATFORM SHARED8 SHARED2

If a SHAREDS substructure is contained in a SHARED?2 structure (or in an AUTO structure), fields
in the SHARED8 substructure will be well-aligned with respect to the base of the SHAREDS

126 Structures

substructure but might not be well-aligned with respect to the base of the SHARED? structure.
Performance will be somewhat degraded when fields in the substructure are referenced.

If @ SHARED?2 substructure is contained in a SHAREDS structure (or in an AUTO structure), fields
in the SHARED?2 substructure will be well-aligned with respect to the base of the SHARED2
substructure but might not be well-aligned with respect to the base of the SHAREDS structure.
Performance will be significantly degraded when fields in the substructure are not well-aligned for
SHAREDS8 access. Each such reference will cause a trap to the millicode exception handler to
resolve the reference. Your program will behave correctly but will be significantly slower than it
would without the trap.

Example 62 AUTO Field Alignment in Structure (Error)

STRUCT s FIELDALIGN(SHAREDS);

BEGIN
STRUCT s1 FIELDALIGNCAUTO); ! ERROR: Substructure cannot be
BEGIN I FIELDALIGNCAUTO)
END;

END;

The compiler pads SHARED? structures and substructures with an extra byte if the end of the last
field in the structure or substructure ends at an odd-byte address, unless the structure has 1-byte
alignment—that is, all fields in the structure or substructure are STRINGs or UNSIGNED(1-8).

STRING fields in structures can begin at any byte offset.

FIELDALIGN Clause

You use a FIELDALIGN clause in a structure declaration to specify how you want pTAL to align the
fields in the structure. Fields can be aligned for:

Access FIELDALIGN Clause
Exclusive, optimized for best resource utilization on each architecture FIELDALIGN(AUTO)
Shared between pTAL and TAL programs FIELDALIGN(SHARED?2)

Shared by program modules written in different programming languages ~ FIELDALIGN(PLATFORM,)
and running on the same architecture

Shared between TNS, TNS/R, and TNS/E architecture with optimal FIELDALIGN(SHAREDS)
performance on TNS/R and TNS/E architecture

FIELDALIGN Compiler Directive

As with the FIELDALIGN clause, the parameters to the FIELDALIGN compiler directive include
SHARED?2, SHAREDS, PLATFORM, and AUTO. In addition, you can specify NODEFAULT as the
parameter to the FIELDALIGN compiler directive.

You can specify only one FIELDALIGN directive within a compilation, and it must precede all data,
block, and procedure declarations. Only comments, blank lines, and other directives can precede
a FIELDALIGN directive.

The default value of the FIELDALIGN directive is AUTO.

If you specity the FIELDALIGN (NODEFAULT) compiler directive, pTAL requires you to specify a
FIELDALIGN clause on every structure declaration. You might use the FIELDALIGN (NODEFAULT)

directive to ensure that you do not inadvertently omit a FIELDALIGN clause on any structure.

If you do not specify a FIELDALIGN (NODEFAULT) directive, pTAL does not require you to specify

a FIELDALIGN clause on each structure declaration.

FIELDALIGN Clause 127

SHARED?2 Parameter
Since the SHARED?2 parameter is included with both the FIELDALIGN clause and the FIELDALIGN

compiler directive, the following information relates to both usages:

128 Structures

In a SHARED? structure, all fields must begin at an even-byte address except STRING fields,
which can begin at any byte address, and UNSIGNED fields, which can begin at any bit
address except as follows:

o An UNSIGNED(1-16) field cannot cross an even-byte address boundary.
> An UNSIGNED(17-31) field can cross only one even-byte address boundary.

o An UNSIGNED field that is not preceded by an UNSIGNED field must begin at an
even-byte address.

The address type of pointers in a SHARED?2 structure must be EXTADDR, EXT32ADDR,
EXT64ADDR, PROC32ADDR, PROC64ADDR, SGBADDR, or SGWADDR; for example:

STRUCT s FIELDALIGN(SHARED2);
BEGIN
INT .EXT ea;
INT .EXT32 e32a;
INT .EXT64 e64a;

OK: EXTADDR pointer
1 OK: EXT32ADDR pointer
OK: EXT64ADDR pointer

INT .SG j; OK: SGWADDR pointer
STRING .s; ERROR: BADDR pointer is not valid
END;

NOTE: The address types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR
are available in the 64-bit addressing functionality added to the EpTAL compiler starting with
SPR TO561HO1"AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

If the data type of a field in a SHARED? structure is an address type, the type must be
EXTADDR, EXT32ADDR, EXT64ADDR, PROC32ADDR, PROC64ADDR, SGBADDR, or
SGWADDR; for example:

STRUCT s FIELDALIGN(SHARED?2);
BEGIN

EXTADDR ea; I OK

EXT32ADDR e32a; 1 OK

EXT64ADDR eb64a; I OK

PROCADDR pa; I ERROR: not allowed in SHARED2 struct.

PROC32ADDR p32a; I OK

WADDR w3 I ERROR: not allowed in a SHARED2 struct;
END;

If you include a FIELDALIGN(SHARED?2) compiler directive, include a REFALIGNED(2) compiler
directive as well. The default for the REFALIGNED compiler directive is 8. With field alignment
SHARED?2, pTAL can allocate a 32-bit or 64-bit field at any even-byte address. pTAL generates
optimal code for data references that use a pointer whose reference alignment is 8. If the

pointer is used to reference 32-bit or 64-bit data that is not well-aligned, each reference to

the data will be slow. By default, pTAL generates conservative code when you reference data
using a pointer that specifies REFALIGNED(2). The REFALIGNED(2) directive ensures that pTAL

generates conservative code for pointers that do not specify a REFALIGNED clause.

Example 63 FIELDALIGN(SHARED2) and REFALIGNED(2) Directives

?FI1ELDALIGN(SHARED2)

?REFAL IGNED(2)

INT(32).ptr; 1 Global pointer

PROC p;

BEGIN

@ptr = @str.F32; 1 str.F32 might or might not be aligned
1 at a 32-bit address. REFALIGNED
= ptr + 3D; ! directive ensures that pTAL

1 generates conservative code for

END; 1 references to ptr.

Example 64 Byte Offsets (Decimal) of Fields of a SHARED2 Structure
STRUCT s1 FIELDALIGN(SHARED2);

BEGIN
INT i; 1 1 begins at byte offset: O
INT(32) J; 1 J begins at byte offset: 2
STRING sl; ! sl begins at byte offset: 6
UNSIGNED(3) ul; I ul begins at byte offset: 8
UNSIGNED(2) u2; I u2 begins at byte offset: 8 + 3 bits
STRING s2; ! s2 begins at byte offset: 10
FIXED f; 1 ¥ begins at byte offset: 12
INT k; 1 k begins at byte offset: 20

END;

SHAREDS8 Parameter

Since the SHARED8 parameter is included with both the FIELDALIGN clause and the FIELDALIGN
compiler directive, the following information relates to both usages:

o The structure must begin at an address that is an integral multiple of the width of the widest
field in the structure. Thus:
o A lbyte field (STRING) can begin at any byte address.

o The byte offset of a 2-byte field [INT or UNSIGNED(1-16)] must be an even number,
except that contiguous UNSIGNED fields can be packed.

o The byte offset of a 4-byte field [INT(32), REAL, UNSIGNED(17-31)] must be an integral
multiple of four, except that contiguous UNSIGNED fields can be packed.

o The byte offset of an 8-byte field [FIXED or REAL(64] must be an integral multiple of eight.

o The byte offset of a substructure field must be an integral multiple of the widest field in
the substructure.

o The byte offset of an array must be an integral multiple of an element of the array—that
is, one of the previous items in this list.

e In a SHAREDS structure or substructure, you must explicitly declare filler items as needed to
ensure that fields are aligned according to the preceding rules.

Table 45 Variable Alignment

Data Type Alignment Notes

STRING 1

INT 2

UNSIGNED(1-16) 2 Multiple UNSIGNED fields can be packed in a word

or doubleword.

.SG pointers 2 .SG pointers are 16 bits in both pTAL and TAL.*

SHAREDS8 Parameter 129

Table 45 Variable Alignment (continued)

Data Type Alignment Notes

.SGX pointers 4 Allowed in structures only with AUTO field
alignment. **

Other 16-bit pointers 4 Allowed in structures only with AUTO field

alignment. * *
32-bit Pointer
64-bit Pointer* **
INT(32)

REAL
UNSIGNED(17-31)

A A M 00 »

Multiple UNSIGNED fields can be packed into a

doubleword.
FIXED 8
REAL(64) 8

* In pTAL, the alignment for all address types is 4, except SGBADDR, SGWADDR, EXTé4ADDR, and
PROC64ADDR addresses for which the alignment is 2, 2, 8, and 8 respectively. In TAL, the alignment of all
address types is 2.

** The alignment of an array is the alignment of its element type.

*** 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HOT*AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

e For compatibility with TAL, pTAL requires you to explicitly declare filler items to optimally align
a SHAREDS structure’s fields for RISC and ltanium architecture. pTAL does not add filler
automatically to SHAREDS structures and reports a syntax error if you do not declare filler
where a structure requires it. The compiler listing shows where each structure requires filler.
You must add filler:

o Before a field if the field’s offset from the beginning of the structure is not an integral

multiple of the field’s width (see Table 43 (page 119))

o If the total length of the structure or substructure would not be an integral multiple of the
structure or substructure’s widest field

o If an UNSIGNED(1-16) field would otherwise cross an even byte address
o If an UNSIGNED(17-31) field would otherwise cross a four byte address

e The address type of pointers in a SHAREDS structure must be EXTADDR, SGBADDR, or
SGWADDR.

e If the data type of a field in a SHAREDS structure is an address type, the type must be
EXTADDR, EXT32ADDR, EXT64ADDR, PROC32ADDR, PROC64ADDR, SGBADDR, or
SGWADDR, as shown in the following example:

STRUCT s FIELDALIGN(SHAREDS8);
BEGIN

EXTADDR X;
EXT32ADDR v;
EXT64ADDR z;
PROC32ADDR a;

OK: EXTADDR field

OK: EXT32ADDR field
OK: EXT64ADDR field
OK: PROC32ADDR field

FILLER 4;
PROC64ADDR b; OK PROCG64ADDR field
INT _EXT ea; OK: EXTADDR pointer

INT _EXT32 e32a:
INT .EXT64 e64a:
INT.SG T

OK: EXT32ADDR pointer
OK: EXT64ADDR pointer
OK: SGWADDR pointer

130 Structures

STRING S; 1 ERROR: BADDR pointer is not valid
END;

NOTE: The address types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
64-bit addressing functionality added to the EpTAL compiler starting with SPR TO561HOT*AAP.
For more information, see Appendix E, “64-bit Addressing Functionality” (page 531).

Topics:

e Alignment of Fields (page 131)

e Optimizing Structure Layouts (page 131)

e Structure Length (page 132)

e Alignment of UNSIGNED(17-31) Fields (page 133)

Alignment of Fields

It a field in a SHAREDS structure is not well-aligned, you must explicitly declare filler to force the
field to be well-aligned.

Example 65 Filler Forcing Alignment in a SHAREDS Structure

STRUCT s FIELDALIGN(SHAREDS);

UNSIGNED(5) 0;

BIT_FILLER 11;

UNSTGNED(17) h;

UNSIGNED(15) i;
END;

34 g uses 5 bits

Force h to a 4-byte offset

36 h uses 2 bytes plus 1 bit

38 1 uses 15 bits

Total structure length: 40 bytes

BEGIN
INT a; 1 0 a uses 2 bytes
FILLER 2; 1 2 Force b to a 4-byte offset
INT(32) b; 1 4 b uses 4 bytes
STRING c [0:2]; ! 8 c uses 3 bytes
FILLER 5; 1 11 Force d to an 8-byte offset
FIXED d; 1 16 d uses 8 bytes
INT(32) e[0:1]; 1 24 e uses 8 bytes
INT T; 1 32 f uses 2 bytes
1
1
1
1
1

The first filler item (FILLER 2) forces b to begin at a 4-byte address. The second filler item (FILLER
5) forces d to begin at an 8-byte address. The third filler item (BIT_FILLER 11) forces h to begin at
a 4-byte address.

Optimizing Structure Layouts

You do not need to declare filler items in a SHARED2 structure to align its fields. If filler is
needed—for example to align bit fields, string fields, or fields that follow bit fields and string
fields—the compiler inserts the needed filler.

SHAREDS8 Parameter 131

Example 66 Structure With SHARED2 Field Alignment
STRUCT s1 FIELDALIGN(SHARED2);

BEGIN
INT i; ! 1 begins at offset: O
INT(32) j; ' j begins at offset: 2
STRING s1; ! sl begins at offset: 6
STRING s2; ! sl begins at offset: 7
FIXED f; ! ¥ begins at offset: 8
INT k; ! k begins at offset: 16

END; 1 Total length of sl1: 18 bytes

Structures that specify SHAREDS field alignment, however, require you to explicitly declare filler
items to force fields to be well-aligned, as previously described. You might be able to reduce the
size of a structure if you can arrange its fields to minimize the number of filler items required.

In Example 67 (page 132), the structure s2 has the same fields as s1 in Example 66 (page 132),
but s2 has SHAREDS field alignment and includes filler items where required. Offsets are shown
in bytes. s2 is 32 bytes.

Example 67 Structure With SHAREDS Field Alignment
STRUCT s2 FIELDALIGN(SHAREDS) ;

BEGIN
INT i; ! i begins at offset O
FILLER 2; ! 2 bytes of filler
INT(32) j; ! j begins at offset 4
STRING s1; ! sl1 begins at offset 8
STRING s2; ! s2 begins at offset 9
FILLER 6; ! 6 bytes of filler
FIXED F; ! f begins at offset 16
INT k; ! k begins at offset 24
FILLER 6; ! Pad to a multiple of the widest field (f)
END; I Total length of s2: 2 bytes

s2 has SHAREDS field alignment, and uses 14 more bytes than s1. If the order of the fields within
the structure is not important; however, you can rearrange the fields so that the structure contains
fewer bytes, as shown in Example 68 (page 132).

Example 68 Optimized Structure With SHAREDS Field Alignment
STRUCT s3 FIELDALIGN(SHAREDS) ;

BEGIN

INT i; ! 1 begins at offset O

STRING s1; ! sl1 begins at offset 2

STRING s2; ! s2 begins at offset 3

INT(32) j; ' j begins at offset 4

FIXED f; ! ¥ begins at offset 8

INT k; ! k begins at offset 16

FILLER 6; ! Pad to a multiple of the widest field (f)
END; 1 Total length of s3: 24 bytes

By rearranging the order of the fields, s3 requires 24 bytes, rather than the 32 bytes required by
s2, even though the information in s3 and s2 is the same. s3 uses only six more bytes than s1.

Structure Length

The total number of bytes in a SHAREDS structure must be an integral multiple of the widest field
in the structure. If needed, you must explicitly declare filler at the end of a SHAREDS structure to
ensure this condition.

132 Structures

Example 69 Structures That Need Filler

STRUCT s1 FIELDALIGN(SHAREDS);

BEGIN
FIXED i; ! Structure®s widest field is 8 bytes
INT(32) j; ! j is 4 bytes FILLER 4
FILLER 4; ! Pad with 4 bytes

END;

STRUCT s2 FIELDALIGN(SHAREDS) ;

BEGIN
INT(32) i; ! Structure®s widest field is 4 bytes
INT Jj; ' jJ is 2 bytes
FILLER 2; ! Pad with 2 bytes

END;

UNSIGNED(1-16) fields cannot cross an even-byte address.

Example 70 Structure Field Crossing an Even-Byte Address (Error)

STRUCT s FIELDALIGN(SHAREDS8);
BEGIN

UNSIGNED(10) uil;

UNSIGNED(16) u2; ! Invalid field -- crosses even-byte address
END;

In Example 71 (page 133), ul starts at the beginning of the structure. u2, therefore, would begin
at a 10-bit offset from the beginning of s. Because u2 is 16 bits, the last ten bits of u2 would be

allocated in a second word, which would cause u2 to cross an even-byte address; therefore, you

must explicitly declare filler to force u2 to begin at the next even-byte offset from the beginning of
s.

Example 71 Structure That Needs Filler

STRUCT s FIELDALIGN(SHAREDS8);

BEGIN
UNSIGNED(10) ul;
BIT_FILLER 6; 1 Forces u2 to begin at next even-byte address
UNSIGNED(16) u2;

END;

Alignment of UNSIGNED(17-31) Fields

In a SHAREDS structure, UNSIGNED(17-31) fields cannot cross a 4-byte address. Because an
UNSIGNED(17-31) field is longer than 16 bits, its base alignment is 4 bytes.

In Example 72 (page 133), i starts at the beginning of the structure. u, therefore, begins at an
even-byte offset from the beginning of s. Because u is 28 bits, the last 12 bits of u would be
allocated in the next word, which would cause u to cross a 4-byte address.

Example 72 SHARED8 Structure With Misaligned UNSIGNED Fields

STRUCT s FIELDALIGN(SHAREDS);
BEGIN

INT i;

UNSIGNED(28) u; ! Invalid field
END;

You must explicitly declare filler to force u to begin at the next 4-byte offset from the beginning of
S.

SHAREDS8 Parameter 133

Example 73 SHAREDS Structure With Correctly Aligned UNSIGNED Fields

STRUCT s FIELDALIGN(SHAREDS);

BEGIN
INT i;
FILLER 2; 1 Forces u to begin at a 4-byte address
UNSIGNED(28) u;
BIT_FILLER 4; 1 Makes length of s an integral multiple of
END; 1 4 bytes

Reference Alignment With Structure Pointers

When you declare a structure pointer, you can specify a REFALIGNED clause as part of the
declaration. (For the syntax of a structure pointer, see Chapter 11 (page 177).) You can use a
REFALIGNED clause to override the base alignment of an instance of a structure, even though the
field alignment for the structure does not change. For example, if you specify a REFALIGNED(2)
clause on a structure pointer, pTAL generates conservative code each time you use the pointer to
reference fields of the structure.

A REFALIGNED clause specifies the base alignment of the structures that the structure pointer will
reference. The distinction between FIELDALIGN and REFALIGNED is required because structures
referenced by a structure pointer can be located anywhere in memory, and might not be
well-aligned. A structure might not be well-aligned if it is located in a dynamic memory area such
as a heap, or was read from a file as part of a larger record.

The alignment of a structure pointer is the alignment specified in a REFALIGNED clause if present,
or if not present, by the field alignment of the structure it references.

The REFALIGNED compiler directive does not affect the reference alignment of structure pointers.
It is used only for pointers to nonstructure data.

You can specity the REFALIGNED clause on any pointer field. In Example 74 (page 134), field d

is a 32-bit pointer in pTAL and is valid only if the field alignment of structure s is AUTO or
PLATFORM.

Example 74 REFALIGNED Clause With Structure Pointers

STRUCT s;
BEGIN
INT .d REFALIGNED(2); 1 Standard pointer with REFALIGNED
1 clause
INT. EXT e REFALIGNED(8); ! An extended pointer
END;

The same syntax and semantics of fields and pointer fields declared with a REFALIGNED clause
is the same as that of variables and pointers declared with a REFALIGNED clause, respectively.

Topics:

e REFALIGNED Clause (page 134)

o Default Reference Alignment (page 135)
e REFALIGNED(2) (page 135)

e REFALIGNED(8) (page 136)

e Code Generation for Structure References (page 137)

REFALIGNED Clause

In a SHARED2 or SHAREDS structure, you can include only pointers whose address type is
SGBADDR, SGWADDR, EXTADDR, EXT32ADDR, EXT64ADDR, PROC32ADDR, or PROC64ADDR.
Pointers whose address type is any other type are 16 bits in TAL, but 32 bits in pTAL.

134 Structures

Similarly, if the data type of a nonpointer field in a SHARED2 and SHAREDS structure is an address
type, its type must be SGBADDR, SGWADDR, EXTADDR, EXT32ADDR, EXT6é4ADDR, PROC32ADDR,
or PROC64ADDR.

NOTE: The address types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
available in the 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Example 75 REFALIGNED Clause

STRUCT s FIELDALIGN(SHARED2);
BEGIN
INT i; ! OK: 1 is a simple variable
INT .j; ! ERROR: j"s address type is WADDR
BADDR b; ! ERROR: b"s data type is BADDR
END;

Default Reference Alignment

If you do not specify a REFALIGNED clause in a structure pointer declaration, the reference alignment
for the pointer is the alignment of the structure that the pointer references in its declaration. In
Example 76 (page 135), none of the pointers p1, p2, or p3 specifies an alignment. Their alignment,
therefore, is the field alignment of the structures s1, s2, and s3 that they reference.

Example 76 Default Reference Alignment

STRUCT s1 FIELDALIGN(SHARED2);
BEGIN
INT i;
INT(32) j;
END;
STRUCT s2 FIELDALIGN(SHAREDS);
BEGIN
INT i;
FILLER 2;
INT(32) j;
END;
STRUCT s3 FIELDALIGNCAUTO);
BEGIN
INT i;
INT(32) j;
END;
INT .pl(sl); ! Reference alignment is 2
INT .p2(s2); ! Reference alignment is 8
INT .p3(s3); ! Reference alignment is 8

REFALIGNED(2)

When a structure pointer specifies REFALIGNED(2), the base of the structure might or might not
be well-aligned for RISC and ltanium access. When you reference the pointer in an expression,

pTAL generates conservative code that might not be as optimal as the code it generates when you
specify REFALIGNED(8).

When you use a structure pointer in an executable statement, the field to which the pointer refers
might not be well-aligned. For example, if you are accessing a structure whose address was passed
as a parameter to a procedure, you might not know whether the field is well-aligned. Although the
fields of the structure are well-aligned from the base of the structure, the base of the structure might
not be well-aligned in memory.

Similarly, if you reference a field in a structure that is stored at an arbitrary address on a heap,
you might not know in advance whether the fields in the structure are well aligned.

Reference Alignment With Structure Pointers 135

To ensure good performance, use REFALIGNED(2) to access the field, even if it happens to be
well-aligned. Always use REFALIGNED(2) unless you are certain that nearly all fields referenced
by the pointer are well-aligned.

Example 77 REFALIGNED(2)

WADDR a_str;
STRUCT s_templ(*) FIELDALIGN(SHAREDS8);
BEGIN
INT i;
FILLER 2;
INT(32) j;
END;
STRUCT s(s_templ);
PROC p(struct_addr, pl);
WADDR struct_addr;

INT -pl(s_templ); I Use template for structure definition
BEGIN
INT .p2(s); I Reference compiler-allocated structure with

I SHARED8 alignment
INT _p3(s_templ) REFALIGNED(2) = p2; ! Equivalence p3 to p2
INT _p4(s_templ) REFALIGNED(2) := struct_addr;
I Use template but use address passed as parameter
INT _p5(s_templ) REFALIGNED(2) := a_str;
1 Use template but address stored in globals

@p2 := @s; ! Ensure p2 is well-aligned

a = pl.i; I Might incur significant overhead if pl.i is not
I well-aligned. See REFALIGNED(8) (page 136)

a = p2.i; I Optimal code: p2 references s which is known to
! be well-aligned

a = p3.i; 1 Suboptimal access

a = p4.i; I Suboptimal access

a = p5.1; I Suboptimal access

END

The field alignment of s_templ is SHAREDS. Pointers p1, p3, p4, and p5 use s_templ fo define
the layout of the structures they reference. p2 uses the global definition structure s to define its
layout.

The field alignment of s and s_templ is SHARED8. Because the declaration of p1 does not specify
a REFALIGNED clause, the statement a == pl.i might cause performance degradation. See
REFALIGNED(8) (page 136). The pointers p3, p4, and p5 specify REFALIGNED(2). Compared to
p1, references to p3, p4, and p5 will have somewhat degraded performance when the fields they
reference are well-aligned. When the fields they reference are not well-aligned, references to p1
will have significantly degraded performance compared p3, p4, or p5.

REFALIGNED(8)

When the reference alignment specified for a structure pointer is 8, the code generated by pTAL
for each reference to the pointer assumes that the base of the structure and the fields in the structure
are well-aligned in memory. If the field alignment of a structure is SHARED8 —or is declared AUTO
and the program is compiled by pTAL to run on RISC and ltanium architecture—and the base of
the structure is well-aligned, references to the pointer will execute with optimal performance in both
pTAL and TAL.

If a structure pointer specifies REFALIGNED(8) or inherits its reference alignment from a SHAREDS8
structure, but the base of the structure is not well-aligned, your program might run significantly
slower than you anticipate. You will observe significantly degraded performance if your
REFALIGNED(8) pointer references a structure field that is not, in fact, well-aligned. Each such
reference in your program will cause a trap to the millicode exception handler, which accesses
the field your program is referencing and then returns to your program. Your program’s behavior
is not affected by having to access the field from the exception handler except that its performance
for each such trap is significantly degraded.

pTAL generates conservative code for references to a pointer that specifies REFALIGNED(8) if it
detects that a trap would occur if it generated optimal code.

136 Structures

Example 78 REFALIGNED(8)
STRUCT t1 (*) FIELDALIGN(SHARED2);

BEGIN
INT(32) i;
END;
STRUCT t2 (*) FIELDALIGN(SHAREDS);
BEGIN
STRUCT s (tl1);
INT(32) i;
END;

INT .EXT pl (t1l) REFALIGNED (8) -
INT .EXT p2 (t2) REFALIGNED (2) :
INT .EXT p3 (t2) :
INT(32) i32;

extended-address;
extended-address;
extended-address;

132 := pl.i;
132 = p2.i;
i32 := p3.s.1;

For the assignment 132 := pl.1i, plTAL generates fast code to access the field described by t1
because the declaration of pointer p1 specifies REFALIGNED(8). If the field is not well-aligned,
your program will run significantly slower because each reference to elements of p1 will trap to
the millicode exception handler to resolve each memory access.

For the assignment 132 := p2.1i, pTAL generates conservative code to access the field described
by t2 because the field might not be well-aligned. The compiler might generate exira instructions
to access the field.

For the assignment 132 := p3.s.1, pTAL generates fast code to access the field because the
declaration of p3 does not include a REFALIGNED clause. The reference alignment therefore
defaults to the field alignment of €2, which is SHARED8. Even though the layout of is based on
t2 (which, in turn, incorporates t1, which is SHARED?2), the reference alignment of p3 is 8 because
12 is SHAREDS. The access uses optimal code because, even though substructure s has SHARED2
alignment, its containing structure has SHARED8 alignment, and pTAL can determine that the offset
of p3.s.i is well-aligned.

Code Generation for Structure References

When pTAL generates code for references to the fields of structures and substructures, it generates
two kinds of code. These are referred to as:

e Fast code

e Conservative code

pTAL generates fast code if you reference fields in a structure compiled with FIELDALIGN(SHAREDS).
It generates conservative code if you reference fields in a structure compiled with
FIELDALIGN(SHARED?2).

STRUCTALIGN (MAXALIGN) Attribute

NOTE: Use this clause only with the EpTAL compiler. The pTAL compiler reports a syntax error.

The STRUCTALIGN (MAXALIGN) attribute applies only to template structures. If a template structure
has this attribute:

e Each definition structure that uses the template structure is aligned on a 16-byte boundary.

o If this template is used within a SHARED8 or PLATFORM structure, the enclosing structures are
also aligned on 16-byte boundaries.

o If this template is used within a SHAREDS structure, the EpTAL compiler warns you that this
structure is not compatible with the same SHAREDS structure on the TNS/R architecture.

STRUCTALIGN (MAXALIGN) Attribute 137

Do not use STRUCT(MAXALIGN) within a SHARED?2 structure.
VOLATILE Attribute

The VOLATILE attribute specifies that the value of this variable must be maintained in memory, not
in a register. Each reference to a VOLATILE data item causes the data item to be read or written
to memory even when code is optimized. Based on the order of reads and writes in the source
code, VOLATILE also causes that precise order of memory references to be preserved, again, when
code is optimized.

You can specity the VOLATILE attribute on any field except a substructure.

The syntax and semantics of VOLATILE fields and VOLATILE pointer fields is the same as those of
VOLATILE variables and pointers, respectively.

Example 79 VOLATILE Attribute

STRUCT s;
BEGIN

VOLATILE INT a;

VOLATILE INT .EXT b;

VOLATILE INT .c REFALIGNED(2);
END;

A simple VOLATILE field

A VOLATILE extended pointer
A VOLATILE standard pointer
with a REFALIGNED clause

Declaring Detinition Structures

STRUCT » identifier

» structure-layout

WETEZS vsd

figld-alignment

., I'ndirection |
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |
identifier
is the identifier of the new referral structure.
range

® Ot —+(D)

WETEE3 vad

| ower - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth structure occurrence) of the first structure occurrence you want
to allocate. Each occurrence is one copy of the structure.

upper - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth structure occurrence) of the last structure occurrence you want
to allocate. For a single-occurrence structure, omit both bounds or specify the same value

for both bounds.

138 Structures

field-alignnment

FIELDALIGN

SHAREDE

SHAREDB -
LATFORM '

VETEAZ ved

FIELDALIGN

specifies how you want the compiler to align the base of the structure and fields in the
structure. The offsets of fields in a structure are aligned relative to the base of the structure.

If a definition substructure does not specify a FIELDALIGN clause, the contained substructure’s
field alignment is the field alignment of its encompassing structure or substructure.

If you do not specify a FIELDALIGN clause on a structure declaration, pTAL uses the current
value of the FIELDALIGN compiler directive. The default value of the FIELDALIGN directive
is AUTO

If you specify a FIELDALIGN (NODEFAULT) compiler directive, you must specify a
FIELDALIGN clause on every definition structure and template structure.

SHARED2

specifies that the base of the structure and each field in the structure must begin at an
even-byte address except STRING fields.

SHAREDS8

specifies that the offset of each field in the structure from the base of the structure must be
begin at an address that is an integral multiple of the width of the field.

AUTO

specifies that the structure and the fields of the structure be aligned according to the optimal
alignment for the architecture on which the program will run (this is not the same behavior
as the AUTO attribute has in the native mode HP C compiler).

PLATFORM

specifies that the structure and the fields of the structure must begin at addresses that are
consistent across all languages on the same architecture.

structure-| ayout

is the identifier of a previously declared structure or structure pointer that provides the structure
layout for this structure.

Declaring Template Structures

A template structure declaration describes a structure layout but allocates no space for it. You use
the template layout in subsequent structure, substructure, or structure pointer declarations.

—b(STRUCT >—p| identifier M
STHUCTJ‘-\LIGN MF\}U\LIGN @—/ J

ﬂeld—allgnmenl

WETHZS wad

Declaring Template Structures 139

identifier

is the identifier of the template structure.
™

is the symbol for a template structure.
STRUCTALIGN (MAXALIGN)

causes each definition structure that uses this template to be aligned on a 16-byte boundary
(for more information, see STRUCTALIGN (MAXALIGN) Attribute (page 137)).

field-alignnent

FIELDALIGN

SHAF‘!EDB -
LATFDHM '

WETEA wed

FIELDALIGN
specifies how you want the compiler to align the base of the structure and fields in the
structure. The offsets of fields in a structure are aligned relative to the base of the structure.

It a definition substructure does not specify a FIELDALIGN clause, the contained substructure’s
field alignment is the field alignment of its encompassing structure or substructure.

If you do not specify a FIELDALIGN clause on a structure declaration, pTAL uses the current
value of the FIELDALIGN compiler directive. The default value of the FIELDALIGN directive
is AUTO.

If you specify a FIELDALIGN (NODEFAULT) compiler directive, you must specify a
FIELDALIGN clause on every definition structure and template structure.
SHARED2

specifies that the base of the structure and each field in the structure, except STRING fields,
must begin at an even-byte address.

SHAREDS8
specifies that the offset of each field in the structure from the base of the structure must
begin at an address that is an integral multiple of the width of the field.

AUTO
specifies that the structure and the fields of the structure be aligned according to the optimal

alignment for the architecture on which the program will run (this is not the same behavior
as the AUTO attribute has in the native mode HP C compiler).

PLATFORM

specifies that the structure and the fields of the structure must begin at addresses that are
consistent across all languages on the same architecture.

A template structure has meaning only when you refer to it in the subsequent declaration of a
referral structure, referral substructure, or structure pointer. The subsequent declaration allocates
space for a structure whose layout is the same as the template layout.

The declaration in Example 80 (page 14 1) associates an identifier with a template structure layout
but allocates no space for it.

140 Structures

Example 80 Template Structure Declaration

STRUCT inventory (*); ! Template structure
BEGIN 1 Structure layout
INT item;

FIXED(2) price;
INT quantity;
END;

In Example 81 (page 141):
e aand b are template structures. The compiler does not allocate space for them.

e al and bl are definition structures, defined using the layouts of template structures a and b,
respectively. The compiler allocates space for al and b1.

o STRUCTALIGN(MAXALIGN) in template structure a affects the alignment of definition structures
al and bl and causes a warning (see the comments in the code).

Example 81 Template Structure With STRUCTALIGN(MAXALIGN)
STRUCT A (*) STRUCTALIGN (MAXALIGN) FIELDALIGN (SHAREDS);

BEGIN
INT l; ! Located at byte-offset 0 as defined by SHARED8
FILLER 2;
INT(32) J; ! Located at byte-offset 3 as defined by SHAREDS
END;
STRUCT A1 (A); ! Base of Al is guaranteed to be aligned on a

1 16-byte boundary
STRUCT B (*) FIELDALIGN (SHAREDS);

BEGIN
INT K;
FILLER 14;

STRUCT A2 (A); Base of A2 is guaranteed to be aligned on
16-byte boundary. Compiler issues warning
here because A is declared with STRUCTALIGN

(MAXALIGN) and B is a SHARED8 structure.

END;

STRUCT B1 (B); Base of Bl is guaranteed to be aligned on
16-byte boundary because the largest
alignment of the components of Bl (A2) is
16 bytes.

Declaring Referral Structures

A referral structure declaration allocates storage for a structure whose layout is the same as the
layout of a previously declared structure or structure pointer.

STRUCT o] identifier o

.
WY

WETD25 vl

Declaring Referral Structures 141

I ndi rection |
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |
identifier
is the identifier of the new referral structure.
referral

is the identifier of a previously declared structure or structure pointer that provides the structure
layout for this structure.

range

® Ot —+(D)

WETEE3 vad

| ower - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth structure occurrence) of the first structure occurrence you want
to allocate. Each occurrence is one copy of the structure.

upper - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth structure occurrence) of the last structure occurrence you want
to allocate. For a single-occurrence structure, omit both bounds or specify the same value

for both bounds.
The compiler allocates storage for the referral structure based on the following characteristics:
e The addressing mode and number of occurrences specified in the new declaration
e The layout of the previous declaration
Structures declared in subprocedures must be directly addressed.
Structures always start on a word boundary.

Example 82 (page 142) declares a template structure and a referral structure that references the
template structure. The referral structure imposes its addressing mode and number of occurrences
on the layout of the template structure.

Example 82 Referral Structure That References a Template Structure

STRUCT record (*); 1 Declare template structure
BEGIN
STRING name[0:19];
STRING addr[0:29];
INT acct;
END;
STRUCT .customer (record) [1:50]; ! Declare referral structure

Declaring Simple Variables in Structures

The simple variable declaration associates a name with a single-element data item. When you
declare a simple variable inside a structure, the form is:

=I type identifier
VOLATILE .

WATTDE wad

142 Structures

VOLATILE
specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type
is any data type described in Chapter 3 (page 46).

identifier
is the identifier of the simple variable.

You cannot initialize a simple variable when you declare it inside a structure. You can subsequently
assign a value to the simple variable by using an assignment statement.

Example 83 Simple Variables Within a Structure

STRUCT .inventory[0:49]; ! Declare definition structure

BEGIN
INT item; 1 Declare three simple variables
FIXED(2) price; 1 within structure layout
INT quantity;

END;

Declaring Arrays in Structures

An array declaration associates an identifier with a collectively stored set of elements of the same
data type. When you declare an array inside a structure, the form is:

identifier }—pl range
(

WETZD vedd

type

is any data type described in Chapter 3 (page 46).
identifier

is the identifier of the array.
range

® Ot (D)

WaTEE vad

| ower - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth array element) of the first array element you want allocated.
Both lower and upper bounds are required.

upper - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth array element) of the last array element you want allocated.
Both lower and upper bounds are required.

Declaring Arrays in Structures 143

When you declare arrays inside a structure, the following guidelines apply:

You cannot initialize arrays declared in structures. You can assign values to such arrays only
by using assignment statements.

You cannot declare indirect arrays or read-only arrays in structures.
You can specify array bounds of [n : n-1] in structures (for example, [6:5]).

Such an array is called a zero-length array. It is often used to initialize a structure, as in
Example 85 (page 144). This method of initialization allows you to name something with the
same address as the next “thing” in the list without allocating data for it, similar to a union or
equivalence.

Example 84 Arrays Within a Structure

STRUCT record; 1 Declare definition structure

BEGIN
STRING name[0:19]; ! Declare arrays within the structure
STRING addr[0:29]; ! layout
INT acct;

END;

Example 85 Using a Zero-Length Array to Initialize a Structure

STRUCT s;
BEGIN
STRING a[0:-1]; I @a[0] is the same as @b
INT b;
STRUCT t;
BEGIN

END:
END:

s.a[0] :
s.a[1l] :

0;
s.a[0] for $LEN(s); ! Very efficient

Declaring Substructures

A substructure is a structure embedded within another structure or substructure. You can declare
substructures that have the following characteristics:

Substructures must be directly addressed.
Substructures have byte addresses, not word addresses.
Substructures can be nested to a maximum of 64 levels.

Substructures can have bounds of [n : n-1] (for example, [6:5]).

Topics:

Definition Substructures (page 144)
Referral Substructures (page 146)

Definition Substructures

A definition substructure describes a layout and allocates storage for it.

144 Structures

—><3TRUCT)—>| identifier)_)

figld-alignment w

WETEIE vsd

identifier
is the identifier of the definition substructure.
field-alignment

FIELDALIGN

SHAREDE

SHAREDB -
LATFORM '

VETEAZ ved

FIELDALIGN

specifies how you want the compiler to align the base of the structure and fields in the
structure. The offsets of fields in a structure are aligned relative to the base of the structure.

It a definition substructure does not specify a FIELDALIGN clause, the contained substructure’s
field alignment is the field alignment of its encompassing structure or substructure.

It you do not specify a FIELDALIGN clause on a structure declaration, pTAL uses the current
value of the FIELDALIGN compiler directive. The default value of the FIELDALIGN directive
is AUTO.

If you specify a FIELDALIGN (NODEFAULT) compiler directive, you must specify a
FIELDALIGN clause on every definition structure and template structure.

SHARED2
specifies that the base of the structure and each field in the structure must begin at an

even-byte address except STRING fields.
SHAREDS8

specifies that the offset of each field in the structure from the base of the structure must be
begin at an address that is an integral multiple of the width of the field.

AUTO

specifies that the structure and the fields of the structure be aligned according to the optimal
alignment for the architecture on which the program will run (this is not the same behavior
as the AUTO attribute has in the native mode HP C compiler).

PLATFORM

specifies that the structure and the fields of the structure must begin at addresses that are
consistent across all languages on the same architecture.

range
(O—sfremmomt—(O)—sfrmoma—(1)

WaTEE vad

| ower - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth substructure occurrence) of the first substructure occurrence you
want allocated. Each occurrence is one copy of the substructure.

Declaring Substructures 145

upper - bound
is an INT constant expression (in the range -32,768 through 32,767) that specifies the

index (relative to the zeroth substructure occurrence) of the last substructure occurrence you
want allocated. For a single-occurrence substructure, omit both bounds or specify the same
value for both bounds.

structure-|ayout

is the same BEGIN-END block as for structures. It can contain declarations for simple variables,
arrays, substructures, filler bits, filler bytes, redefinitions, simple pointers, and structure pointers.
The size of one substructure occurrence is the size of the layout, either in odd or even bytes.
The total layout for one occurrence of the encompassing structure must not exceed 32,767
bytes.

Example 86 Declaring Definition Substructures

STRUCT .warehouse[0:1]; I Two warehouses

BEGIN
STRUCT inventory [0:49]; ! Definition substructure
BEGIN 1 50 items in each warehouse

INT item_number;
FIXED(2) price;
INT on_hand;
END;
END;

Referral Substructures

A referral substructure allocates storage for a substructure whose layout is the same as the layout
of a previously declared structure or structure pointer.

—>< STRUCT)_>| identifier o o
T

WETIOL wad

identifier
is the identifier of the referral substructure.
referral

is the identifier of a structure that provides the structure layout. You can specify any previously
declared structure (except the encompassing structure) or structure pointer. If the previous
structure has an odd-byte size, the compiler rounds the size of the new substructure up so that
it has an even-byte size.

range
© O 0,
WETEYE vad

| ower - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth occurrence) of the first substructure occurrence you want
allocated. Each occurrence is one copy of the substructure.

146 Structures

upper - bound
is an INT constant expression (in the range -32,768 through 32,767) that specifies the

index (relative to the zeroth occurrence) of the last substructure occurrence you want
allocated. For a single-occurrence substructure, omit both bounds or specify the same value

for both bounds.

Example 87 Declaring a Referral Substructure

STRUCT temp(*); 1 Template structure --
BEGIN 1 no space allocated
STRING a[0:2];
INT b;
STRING c;
END;
STRUCT .ind_struct; 1 Definition structure --
BEGIN 1 space allocated

INT header[0:1];
STRING abyte;
STRUCT abc (temp) [0:1]; ! Declare referral substructure
END; 1 Size of ind_struct.abc[0] is
1 8 bytes

Declaring Filler

A filler declaration allocates a byte or bit place holder in a structure.

FILLER constant-expression l—p@—.
BIT_FILLER

WETOZE vad

FILLER

allocates the specified number of byte place holders.
BIT_FILLER

allocates the specified number of bit place holders.

const ant - expr essi on
is a positive integer constant value that specifies a number of filler units in one of the following

ranges:
FILLER 0 through 32,767 bytes
BIT_FILLER 0 through 255 bits

You can declare filler bits and filler bytes, but you cannot access such filler locations.

If the structure layout must match a structure layout defined in another program, your structure
declaration need only include data items used by your program and can use filler bits or bytes for
the unused space.

The compiler allocates space for each byte or bit you specity in a filler declaration. If the alignment
of the next data item requires additional pad bytes or bits, the compiler allocates those also.

Declaring Filler 147

Example 88 Filler Byte Declarations

LITERAL last = 11; I Last occurrence
STRUCT .x[1:last];
BEGIN
STRING byte[0:2];
FILLER 1; 1 Document word-alignment pad byte
INT wordl;
INT word2;
INT(32) integer32;
FILLER 30; 1 Place holder for unused space
END;

See also the filler byte example in Definition Substructure (page 155).

Example 89 Filler Bit Declaration

STRUCT .flags;
BEGIN
UNSIGNED(1) flagl;
UNSIGNED(1) flag2;
UNSIGNED(2) state; ! State =0, 1, 2, or 3
BIT_FILLER 12; 1 Place holder for unused space
END;

Declaring Simple Pointers in Structures

A simple pointer is a variable that contains the memory address of a simple variable or an array.
When you declare a simple pointer inside a structure, the form is:

= lype
WVOLATILE
identifier
_

REFALIGNED

WETE2T. wed

VOLATILE
specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type
is any data type except UNSIGNED. The data type determines how much data the simple
pointer can access at a time—a byte, word, doubleword, or quadrupleword.

148 Structures

ndi rection |
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |

NOTE: Indirection symbols, .EXT32 and .EXT64 are available in the 64-bit addressing
functionality added to the EpTAL compiler starting with SPR TO561HO1"AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

identifier
is the identifier of the simple pointer.
REFALIGNED

specifies the base alignment of the structures that the structure pointer will reference.

references a structure that might not be well-aligned.

indicates that the base of the structure and the fields in the structure are well aligned in memory

Example 90 Simple Pointers Within a Structure

STRUCT my_struct;

BEGIN
FIXED . std_pointer;
STRING .EXT ext_pointer;
STRING .EXT32 ext32 pointer
INT -EXT64 ext64_pointer

END;

Standard simple pointer

Extended 32-bit simple pointer
Extended 32-bit simple pointer
Extended 64-bit simple pointer

Topics:
e Using Simple Pointers (page 149)
e Assigning Addresses to Pointers in Structures (page 150)

Using Simple Pointers
The data type determines the size of data a simple pointer can access at a time.

Table 46 Data Accessed by Simple Pointers

Data Type Accessed Data
STRING Byte

INT Word

INT(32) Doubleword
REAL Doubleword
REAL(64) Quadrupleword
FIXED Quadrupleword

The addressing mode and data type determine the kind of address the simple pointer can contain.

Table 47 Addresses in Simple Pointers

Addressing Mode Data Type Kind of Address

Standard STRING 16-bit byte address

Standard Any except STRING 16-bit word address

Extended STRING 32-bit or 64-bit” byte address, normally in the automatic

extended data segment

Declaring Simple Pointers in Structures 149

Table 47 Addresses in Simple Pointers (continued)

Addressing Mode Data Type Kind of Address

Extended Any except STRING 32-bit or 64-bit” even-byte address, normally in the
automatic extended data segment (if you specify an odd-byte
address, results are undefined)

" 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HO1* AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531). |

Assigning Addresses to Pointers in Structures

You can assign to pointers the kinds of addresses listed in Table 44 (page 126) and Table 45
(page 129). To assign an address to a pointer within a structure, specify the fully qualified pointer
identifier in an assignment statement. Prefix the structure identifier with @. For example, the
assignment statement to assign an address to ptr_x declared in substruct_a in struct_b
is:

@struct_b.substruct a.ptr_x := arith_expression;
In the preceding example, @ applies to ptr_x, the most qualified item. On the left side of the

assignment operator, @ changes the address contained in the pointer, not the value of the item to
which the pointer points.

You can also prefix @ to a variable on the right side of the assignment operator. If the variable is
a pointer, @ returns the address contained in the pointer. If the variable is not a pointer, @ returns
the address of the variable itself.

Example 91 Assigning Addresses to Pointers in Structures

INT .array[0:99];
STRUCT .st;

BEGIN

INT .std_ptr;

INT _EXT ext_ptr;

INT _EXT32 ext32_ptr;
INT _EXT64 ext64 ptr;

END;

PROC e MAIN;

BEGIN
@st.std_ptr := @array[0];
@st.ext_ptr = $XADR(array[0]);
@st.ext_ptr = $XADR32(array[0]);
@st.ext32_ptr := @array[0];
@st.ext32_ptr := $XADR(array[0]);
@st.ext32_ptr := $XADR32(array[0]);
@st.ext64 _ptr := @array|[0];
@st.ext64 _ptr := $XADR(array[0]):
@st.ext64 _ptr := $XADR32(array[0]);
@st.ext64 ptr := $XADR64(array[0]);

END;

Example 92 (page 151) assigns the address of a structure to structure pointers declared in another
structure.

150 Structures

Example 92 Assigning Addresses to Pointers in Structures

STRUCT .sl1;
BEGIN
INT varl;
INT var2;
END;
STRUCT .s2;
BEGIN

INT .std ptr (sl);

INT .EXT ext_ptr (sl);

INT _EXT32 ext32_ptr (sl);
INT _EXT64 ext64 ptr (sl);

END;

PROC g MAIN;

BEGIN
@s2.std_ptr = @sl1;
@s2.ext_ptr := $XADR(s1l);
@s2.ext32_ptr := $WADDR_TO_EXTADDR(@s1);
@s2.ext32_ptr := $XADR(sl);
@s2.ext32_ptr = $XADR32(sl);
@s2.ext64 ptr := $WADDR_TO EXTADDR(@s1);
@s2.ext64 _ptr := $XADR32(sl);
@s2.ext64_ptr := $XADR64(sl);

END;

Declaring Structure Pointers in Structures

A structure pointer is a variable that contains the address of a structure. When you declare a
structure pointer inside a structure, the form is:

¢

=

r’

STRING

Ch——

identifier

referral

REFALIGNED

\
WETE2E wad

VOLATILE
specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

STRING

is the STRING attribute.

Declaring Structure Pointers in Structures 151

INT
is the INT attribute

I ndirection |
., -EXT, .EXT32, .EXT64, .SG, and . SGX are indirection symbols (see Table 14 (page 41)). |

NOTE: Indirection symbols, .EXT32 and .EXT64 are available in the 64-bit addressing
functionality added to the EpTAL compiler starting with SPR TO561HO1”AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

identifier
is the identifier of the structure pointer.
referral

is the identifier of a structure that provides the structure layout. You can specify any previously
declared structure (including the encompassing structure) or structure pointer.

REFALIGNED
specifies the base alignment of the structures that the structure pointer will reference.

references a structure that might not be well-aligned.

8
indicates that the base of the structure and the fields in the structure are well aligned in memory

The addressing mode and STRING or INT attribute determine the kind of addresses a structure
pointer can contain, as described in Table 48 (page 152).

Table 48 Addresses in Structure Pointers

Addressing Mode STRING or INT Attribute Kind of Address

Standard STRING' 16-bit byte address of a substructure, STRING simple
variable, or STRING array declared in a structure

Standard INT? 16-bit word address of any structure data item

Extended STRING' 32-bit or 64-bit> byte address of any structure item

located in any segment, normally the automatic
extended data segment

Extended INT? 32:bit or 64-bit> byte address of any structure item
located in any segment, normally the automatic
extended data segment

' If the pointer is the sour ce in a move statement or group comparison expression that omits a count - uni t, the

count-unit isBYTES.

2 If the pointer is the sour ce in a move statement or group comparison expression that omits a count - uni t , the
count - uni t is WORDS.

3 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HO1*AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

152 Structures

Example 93 Declaring a Structure Pointer Within a Structure

STRUCT struct_a;

BEGIN
INT a;
INT b;
END;
STRUCT struct _b;
BEGIN
INT _EXT struct_pointer (struct_a);
STRING a;
END;

Declaring Redefinitions

A redefinition declares a new identifier and sometimes a new description for a previous item in
the same structure.

The following rules apply to all redefinitions in structures:
e The new item must be of the same length or shorter than the previous item.
e The new item and the previous item must be at the same BEGIN-END level of a structure.

Additional rules are given in subsections that describe each kind of redefinition in the following
topics:

e Simple Variable (page 153)

e Array (page 154)

e Definition Substructure (page 155)
e Referral Substructure (page 157)

e Simple Pointer (page 158)

e Structure Pointer (page 159)

For information about redefinitions outside structures, see Chapter 11 (page 177).

Simple Variable

A simple variable redefinition associates a new simple variable with a previous item at the same
BEGIN-END level of a structure.

nl
{ type |—p| identifier
VOLATILE

previous-identifier

WETTOE. ved

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type
is any data type except UNSIGNED.

identifier
is the identifier of the new simple variable.

Declaring Redefinitions 153

Array

previ ous-identifier
is the identifier of a simple variable, array, substructure, or pointer previously declared in the
same structure. You cannot specify an index with this identifier.

In a redefinition, the new item and the previous (nonpointer) item both must have a byte address
or both must have a word address. If the previous item is a pointer, the data it points to must be
word addressed or byte addressed to match the new item.

Example 94 (page 154) redefines the left byte of int_var as string_var.

Example 94 Simple Variable Redefinition

STRUCT .mystruct;
BEGIN

INT int_var;

STRING string_var = int_var; ! Redefinition
END;

An array redefinition associates a new array with a previous item at the same BEGIN-END level
of a structure.

identifier

| = previous-identifier .

WET . wsd

type

is any data type except UNSIGNED.
identifier

is the identifier of the new array.
range

® Ot —+(D)

WETEE3 vad

| ower - bound
is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth element) of the first array element you want allocated.
upper - bound
is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth element) of the last array element you want allocated.
previous-identifier
is the identifier of a simple variable, array, substructure, or pointer previously declared in the
same structure. You cannot specify an index with this identifier.

In a redefinition, the new item and the previous (nonpointer) item both must have a byte address
or both must have a word address. If the previous item is a pointer, the data it points to must be
word addressed or byte addressed to match the new item.

154 Structures

Example 95 Array Redefinition

STRUCT .s;
BEGIN

INT a[0:3];

INT(32) b[0:1] = a; ! Redefine INT array as INT(32) array
END;

Definition Substructure

A definition substructure redefinition associates a new definition substructure with a previous item
at the same BEGIN-END level of a structure.

—><3TRUCT)—.-| identifier |
\"EIJ field-alignment J

° previous-identifier ‘ structure-layoul .

WETTO? vsd

identifier
is the identifier of the new substructure.
range

® Ot —+(D)

WETEE3 vad

| ower - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth substructure occurrence) of the first substructure occurrence you
want allocated. Each occurrence is one copy of the substructure.

upper - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth substructure occurrence) of the last substructure occurrence you
want allocated.

To declare a single-occurrence substructure, omit both bounds or specify the same value

for both bounds.
field-alignnent

FIELDALIGN

SHAREDB -
LATFORM '

WETEE2 wed

FI1ELDALIGN

specifies how you want the compiler to align the base of the structure and fields in the
structure. The offsets of fields in a structure are aligned relative to the base of the structure.

It a definition substructure does not specify a FIELDALIGN clause, the contained substructure’s
field alignment is the field alignment of its encompassing structure or substructure.

It you do not specify a FIELDALIGN clause on a structure declaration, pTAL uses the current
value of the FIELDALIGN compiler directive. The default value of the FIELDALIGN directive
is AUTO.

Declaring Redefinitions 155

If you specify a FIELDALIGN (NODEFAULT) compiler directive, you must specify a
FIELDALIGN clause on every definition structure and template structure.

SHARED2
specifies that the base of the structure and each field in the structure must begin at an even
byte address except STRING fields.

SHAREDS8
specifies that the offset of each field in the structure from the base of the structure must be
begin at an address that is an integral multiple of the width of the field.

AUTO
specifies that the structure and the fields of the structure be aligned according to the optimal
alignment for the architecture on which the program will run (this is not the same behavior
as the AUTO attribute has in the native mode HP C compiler).

PLATFORM
specifies that the structure and the fields of the structure must begin at addresses that are
consistent across all languages on the same architecture.

previ ous-identifier
is the identifier of a simple variable, array, substructure, or pointer previously declared in the
same structure. No index is allowed with this identifier.

structure-| ayout
is the same BEGIN-END block as for structures. It can contain declarations for simple variables,
arrays, substructures, filler bits, filler bytes, redefinitions, simple pointers, and structure pointers.
The size of one substructure occurrence is the size of the layout, either in odd or even bytes.
The total layout for one occurrence of the encompassing structure must not exceed 32,767
bytes.
If the previous item is a substructure and you omit the bounds or if either bound is O, the new
substructure and the previous substructure occupy the same space and have the same offset from
the beginning of the structure.

156 Structures

Example 96 Definition Substructure Redefinition

STRUCT a;
BEGIN
STRING X;
STRUCT b; 1 b starts on odd byte
BEGIN
STRING vy;
END;
STRUCT ¢ = b; ! Redefine b as c, also on odd byte
BEGIN
STRING z;
END;
END;

Example 97 Definition Substructure Redefinition

STRUCT mystruct;
BEGIN
STRUCT mysubl;
BEGIN
INT int_var;
END;
STRUCT mysub2 = mysubl; ! Redefine mysubl as mysub2
BEGIN
STRING string_var;
END;
END;

Referral Substructure

A referral substructure redefinition associates a new referral substructure with a previous item at
the same BEGIN-END level of a structure.

—.< STRUCT)—>| identifier o o
— 7 =) ()

WET208 ved

identifier
is the identifier of the new substructure.
referra

is the identifier of a structure that provides the structure layout. You can specify any previously
declared structure (except the encompassing structure) or structure pointer. If the previous
structure has an odd-byte size, the compiler rounds the size of the new substructure up so it
has an even-byte size.

range

® Ot —+(D)

WETEE3 vad

| ower - bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth substructure occurrence) of the first substructure occurrence you
want allocated. Each occurrence is one copy of the substructure.

Declaring Redefinitions 157

upper - bound
is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth substructure occurrence) of the last substructure occurrence you
want allocated.
To declare a single-occurrence substructure, omit both bounds or specify the same value

for both bounds.
previ ous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously declared in the
same structure. No index is allowed with this identifier.

If the previous item is a substructure and you omit the bounds or if either bound is O, the new
substructure and the previous substructure occupy the same space and have the same offset from
the beginning of the structure.

Example 98 Referral Substructure Redefinition

STRUCT temp(*); I Template structure
BEGIN

STRING a[0:2];

INT b;

STRING c;
END;
STRUCT .ind_struct; I Definition structure
BEGIN

INT header[0:1];

STRING abyte;

STRUCT abc (temp) [0:1];

STRUCT xyz (temp) [0:1] = abc; ! Redefine abc as xyz
END;

Simple Pointer

A simple pointer redefinition associates a new simple pointer with a previous item at the same
BEGIN-END level of a structure.

> type I
VOLATILE

identifier

Indirection

REFALIGNED

° previous-identifier .

WITTOE vad

VOLATILE
specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

158 Structures

type
is any data type except UNSIGNED. The data type determines how much data the simple
pointer can access at a time—a byte, word, doubleword, or quadrupleword.

I ndi rection |
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |
identifier
is the identifier of the new simple pointer.
REFAL1GNED
specifies the base alignment of the structures that the structure pointer will reference.

references a structure that might not be well-aligned.

indicates that the base of the structure and the fields in the structure are well aligned in memory
previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously declared in the
same structure. No index is allowed with this identifier.

Example 99 Simple Pointer Redefinition

STRUCT my_struct;
BEGIN
STRING var[0:5]; I Simple variable
STRING .EXT ext_pointer = var; ! Redefine var as simple
1 pointer, ext pointer
END;

Structure Pointer

A structure pointer redefinition associates a new structure pointer with a previous item at the same

BEGIN-END level of a structure.

{ STRING } identifier

WOLATILE INT

Indirection

OS EXZN SO

REFALIGNED

° previous-identifier .

WETTDO vsd

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE

Declaring Redefinitions 159

also causes that precise order of memory references to be preserved, again, when code is
optimized.
STRING
is the STRING attribute.
INT
is the INT attribute.
I ndi rection |
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |
identifier
is the identifier of the new structure pointer.
referra

is the identifier of a structure that provides the structure layout. You can specify any previously
declared structure (including the encompassing structure) or structure pointer.

REFAL1GNED
specifies the base alignment of the structures that the structure pointer will reference.

references a structure that might not be well-aligned.

indicates that the base of the structure and the fields in the structure are well aligned in memory
previ ous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously declared in the
same structure. No index is allowed with this identifier.

The addressing mode and STRING or INT attribute determine the kind of addresses a structure
pointer can contain, as described in Table 47 (page 149).

Example 100 Structure Pointer Redefinition

STRUCT record;
BEGIN
FIXED data;
INT std_link _addr;
INT .std_link (record) = std_link addr; 1 Redefinition
INT(32) ext_link_addr;
INT _EXT ext_link (record) = ext_link_addr; ! Redefinition
END;

160 Structures

10 Pointers

This section describes the syntax for declaring and initializing pointers you manage yourself. You
can declare the following kinds of pointers:

e Simple pointer—a variable into which you store a memory address, usually of a simple variable
or array, which you can access with this simple pointer.

e Structure pointer—a variable into which you store the memory address of a structure which
you can access with this structure pointer.

The compiler allocates 32 bits for all pointers except .SG. In expressions involving addresses,
however, the compiler treats all operands as if they were word addresses except extended addresses
the and addresses of strings. The pointer’s object data type determines the pointer’s address type
and identifies the addressing type and location of data that your pointers will reference. For
information about working with addresses, see Chapter 5 (page 69).

Some portions of this section describe how you reference data in system globals. System globals
can be accessed only by programs running as privileged procedures.

Topics:

e Overview of Pointer Declaration (page 161)
e Declaring VOLATILE Pointers (page 163)

e Address Types (page 164)

e Declaring Simple Pointers (page 170)

e |Initializing Simple Pointers (page 172)

e REAL and REAL(64) Numeric (page 62)

e Initializing Structure Pointers (page 174)

e Declaring System Global Pointers (page 176)

Overview of Pointer Declaration

This subsection gives you the general pointer syntax and explains the syntax elements.

»{ type
C

| identifiar

REFALIGNED

e initialization

VETETE. vad

Overview of Pointer Declaration 161

VOLATILE

type
s one of the following data types depending on whether the pointer is a simple pointer or a

specifies that the value of this variable must be maintained in memory, not in a register. Each

reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is

optimized.

structure pointer:

BADDR
CBADDR
CWADDR
EXTADDR
EXT32ADDR
EXT64ADDR
FIXED [(f poi nt)]
INT

INT (16)

INT (32)

INT (64)
PROCADDR
PROC32ADDR
PROC64ADDR
REAL

REAL (32)
REAL (64)
SGBADDR
SGWADDR
SGXBADDR
SGXWADDR
STRING
UNSIGNED (width)
WADDR

f poi nt

is the implied fixed point of the FIXED variable. f poi nt can also be an asterisk (*) as in:

FIXED(*) .F;

wi dt h

is a constant expression specifying the width, in bits, of the variable.

I ndirection
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |

162 Pointers

identifier
is the identifier of the pointer.
REFAL 1GNED
Specifies the alignment of the variables or structures that i denti fi er references.

specifies that the variables and structures i denti fi er references are aligned as they would
be aligned in TAL (and might not be well aligned in pTAL).

specifies that the variables and structures are well aligned for use in pTAL.

For nonstructure pointers, the default for REFALIGNED is the value you specify in the
REFALIGNED (page 410).

initialization
is an expression representing a memory address. For more information about operations on
addresses, see Chapter 5 (page 69).

Declaring VOLATILE Pointers

Declare pointers VOLATILE if they can be accessed asynchronously by other processes such as
another process in your application or an /O driver.

Topics:
e Simple (page 163)
e Structure (page 164)

Simple

When you declare a VOLATILE simple pointer, the value of the pointer and the data referenced
by the pointer are treated as VOLATILE and are maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written o memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is optimized.

Example 101 Declaring VOLATILE Simple Pointers

INT i;
INT a;
INT b[0:9];
VOLATILE INT .pl := @a;
VOLATILE INT .p2 := @b;

i = pl; 1 pTAL treats pointer pl and data pl references,
1 a, as volatile. Program reads value of pointer
1 pl each time statement executes

i = a; 1 pTAL does not treat direct reference to a as
1 volatile even though pl still points to it,
I because a is not declared volatile

p2[a]; For each reference to p2[a], program:

* Reads value of pointer p2 from memory

* Adds value of a, which can be kept in a
register because a is not volatile

* Reads from memory the value referenced by

p2[al

p2[pl]; ! Data referenced by p2[pl] is the same as p2[a]
in the preceding example, but both pl and p2

Declaring VOLATILE Pointers 163

1 are volatile. Program reads from memory pil,
1 p2, a, and element of array b referenced by pl

Structure

When you declare a VOLATILE structure pointer, the compiler generates code that maintains the
value of the pointer in memory, not in a register. Each reference to a VOLATILE data item causes
the data item to be read or written to memory even when code is optimized. Based on the order
of reads and writes in the source code, VOLATILE also causes that precise order of memory
references to be preserved, again, when code is optimized.

You must specify the VOLATILE attribute on each field that you want to be volatile.

Example 102 Declaring VOLATILE Structure Pointers

INT i;
STRUCT s;
BEGIN
INT m; 1 Field m is never treated as volatile
VOLATILE INT n; ! Field n is always treated as volatile
END;
VOLATILE INT .s1(s) := @s;
INT .s2(s) := @s;
i ;= sl.m; 1 Value of pointer sl is read from memory on
1 every reference, but value of field sl.m
I might be maintained in a register
i :=sl.n; I Value of pointer sl is read from memory on
1 every reference, as is value of sl.n
1 because field n specifies VOLATILE
i = s2.n; 1 Value of pointer s2 might or might not be

1 from memory, but having read the pointer,
1 the field s2.n is always read from memory

Address Types

pTAL address types control the addresses you store into pointers. A 32-bit address can reference
data anywhere in memory with optimal performance. The hardware does not require programs
to specify an addressing type or memory storage area.

The compiler determines the address type of a pointer from the pointer declaration. You cannot
explicitly declare a pointer’s address type.

Address types are used primarily to describe the addresses that you assign to a pointer, not the
data your program is processing.

Only operations that are meaningful for addresses are valid on address types.
A pointer is associated with two data types:

Data Type Description
Object data type Data type of the objects that the pointer can reference
Address data type Data type of the addresses that you can store in the pointer

164 Pointers

Table 49 Address Types

Data Type Address Type Target Data Pointer Size = Example
BADDR Byte 16-bit address to 32 STRING .s;
1-byte-aligned data
WADDR Word 16-bit address to 32 INT .i;
2-byte-aligned data
CBADDR Byte 16-bit address to 32 STRING s ="P":="A";
1-byte-aligned, read-only
data
CWADDR Word 16-bit address to 32 INT § = "P" := 123;
2-byte-aligned, read-only
data
SGBADDR Byte 16-bit address to 16 STRING .SG s;
T-byte-aligned,
'SG'-relative data
SGWADDR Word 16-bit address to 16 INT .SG i;
2-byte-aligned,
'SG'-relative data
SGXBADDR Byte 32-bit address to 32 STRING .SGX s;
1-byte-aligned,
'SG'-relative data
SGXWADDR Word 32-bit address to 32 INT .SGX i;
2-byte-aligned,
'SG'-relative data
EXTADDR Byte 32-bit address to data 32 INT .EXT X;
EXT32ADDR Byte 32bit address fo data 32 INT _EXT32 x;
EXT64ADDR’ Byte 64-bit address to data 32 INT .EXT64 X;
PROCADDR N.A. Address denoting PROC 32 PROCPTR p;
Code BEGIN END PROCPTR;
PROC32ADDR* N.A. 32-bit address denoting 32 PROC32PTR p;
PROC code BEGIN END PROCPTR;
PROC64ADDR N.A. 64-bit address denoting 64 PROC64PTR p;

PROC code

BEGIN END PROCPTR;

" These data types and indirection symbols, .EXT32 and .EXTé4 are 64-bit addressing functionality added to the EpTAL
compiler starting with SPR T0561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”

(page 531).

You cannot explicitly declare or change the address type of a pointer. pTAL determines the address
type based on the pointer declaration.

Every identifier you declare in a pTAL program has an object data type and an address type.
Table 50 (page 166) lists the address type for all pTAL constructs except simple variables. The

address type of a simple variable is the same as the address type of a pointer to data of the same
object data type as the simple variable.

Address Types

165

Example 103 Determining Address Types

INT .j; ! Pointer: address type is WADDR
INT i; 1 Simple variable: address type is WADDR

Example 104

STRING .EXT s;
EXTADDR STRING INT .EXT i;
EXTADDR INT INT(32) -EXT j:
EXTDDR INT(32)REAL .EXT r;
EXTADDR REAL REAL(64) .EXT s;
EXTADDR REAL(64)FIXED .EXT F;
EXTADDR FIXED UNSIGNED(n) -EXT u;
EXTADDR UNSIGNED STRUCT .EXT t;
EXTADDR none SUBSTRUCT .EXT v;

EXTADDR none address_typeaddr-type .EXT a;

EXTADDR 2

Table 50 Object Data Types and Their Addresses

Declaration Address Type Obiject Data Type
STRING EXTs; EXTADDR STRING

INT EXT i EXTADDR INT

INT(32) EXT EXTADDR INT(32)

REAL EXTr; EXTADDR REAL

REAL(64) EXTs; EXTADDR REAL(64)

FIXED EXTF; EXTADDR FIXED

STRUCT EXTt, EXTADDR none
SUBSTRUCT EXTv; EXTADDR none
addr-type] EXT a; EXTADDR address_type2
STRING EXT32s;° EXT32ADDR® STRING

INT EXT32 ;8 EXT32ADDR® INT

INT(32) ExT32;? EXT32ADDR® INT(32)

REAL EXT321:8 EXT32ADDR® REAL

REAL(64) EXT32s;° EXT32ADDR® REAL(64)

FIXED EXT32 £;3 EXT32ADDR® FIXED

STRUCT EXT321t;3 EXT32ADDR® none
SUBSTRUCT EXT32 v® EXT32ADDR® none

addr - t ype' EXT32 q;® EXT32ADDR® address_type2
STRING EXT64 s;° EXT64ADDR® STRING

INT EXT64 i:2 EXT64ADDR® INT

INT(32) EXT64 j;° EXT64ADDR® INT(32)

REAL EXT64 r;° EXT64ADDR® REAL

REAL(64) EXT64 53 EXT64ADDR® REAL(64)

FIXED EXT64 £;2 EXT64ADDR® FIXED

166 Pointers

Table 50 Object Data Types and Their Addresses (continued)

Declaration Address Type Object Data Type
STRUCT EXT64 12 EXT64ADDR? none
SUBSTRUCT EXT64 v, EXT64ADDR? none

addr - t ype' EXT64 o3 EXT64ADDR® address_t ype2
PROCPTR p(); BEGIN END PROCADDR PROCPTR

PROCPTR;

PROC32PTR p(); BEGIN PROC32ADDR® PROC32PTR?

END PROCPTR;

PROC64PTR p(); BEGIN PROC64ADDR? PROC64PTR?

END PROCPTR;

! addr-type is any of the twelve address types: WADDR, BADDR, SGWADDR, SGBADDR, CWADDR, CBADDR,
EXTADDR, EXT32ADDR, EXT64ADDR, PROCADDR, SGXWADDR, and SGXBADDR.

2

addr ess_t ype is the same address type as specified in the declaration.

® 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HO1*AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

Topics:

BADDR and WADDR (page 167)

SGBADDR, SGWADDR, SGXBADDR, and SGXWADDR (System Globals) (page 167)
PROCADDR, PROC32ADDR, and PROC64ADDR (Procedures, Procedure Pointers, and

Procedure Entry Points) (page 168)

Subprocedures, Subprocedure Entry Points, Labels, and Read-Only Arrays (CBADDR and

CWADDR Address Types) (page 169)

EXTADDR, EXT32ADDR, and EXT64ADDR (Extended Addresses) (page 169)

BADDR and WADDR

The address type of pointers is WADDR, except for STRING pointers, for which the address type
is BADDR.

Example 105 BADDR and WADDR

INT a; I Variable: address

INT .b; I Pointer: address

STRING .c; I Pointer: address

INT(32) d[0:9]; ! Direct array: address
]

INT

.e[0:9]; Indirect array: address

type
type
type
type
type

is
is
is
is
is

WADDR
WADDR
BADDR
WADDR
WADDR

SGBADDR, SGWADDR, SGXBADDR, and SGXWADDR (System Globals)

The address type of a pointer to system global data is one of SGBADDR, SGWADDR, SGXBADDR,
or SGXWADDR. You can declare pointers to system global data by using either .SG notation or
.SGX notation. In either case, the pointer is not in system globals, but the data is. pTAL allocates
16 bits for pointers you declare with .SG and 32 bits pointers declared with .SGX.

Address Types

167

Example 106 SGBADDR, SGWADDR, SGXBADDR, and SGXWADDR

STRING .SG s; I s is 16 bits
INT .SG 1; ' 1 is 16 bits
STRING .SGX t; I t is 32 bits
INT .SGX j; ! j is 32 bits

PROCADDR, PROC32ADDR, and PROC64ADDR (Procedures, Procedure Pointers,
and Procedure Entry Points)

The address type of procedures, procedure pointers (PROCPTRs), and procedure entry points is
PROCADDR.

Example 107 PROCADDR, PROC32ADDR, and PROC64ADDR

PROCADDR pa;
PROC32ADDR p32a;
PROC64ADDR p64a;

PROCPTR q(j); INT j; END PROCPTR; ! @q is type PROCADDR
PROC32PTR r(j); INT j; END PROCPTR; ! @r is type PROC32ADDR
PROC64PTR s(j); INT j; END PROCPTR; 1 @s is type PROC64ADDR
PROC64PTR t(j); INT(32) j; END PROCPTR; I @t is type PROCADDR
PROC p(J): 1 @p is type PROCADDR
INT j;
BEGIN
ENTRY p1; 1 @pl is type PROCADDR
pl:
pa = @q;
pa = @r;
pa := @s; I ERROR: can’t implicitly convert from larger procedure
1 address type to smaller procedure address type
pa := @p;
pa 1= @pl
p32a := @q;
p32a := @r;
p32a := @s; ! ERROR: can’t implicitly convert larger procedure
1 address type to smaller procedure address type
p32a := @p;
p32a = @pl;
p64a := @q;
p64a := @r;
p64a := @s; 1 0K
p64a = @p;
p6d4a := @pl;
pa = p32a;
p32a := pa;
p64a :-= pa;
p64a :-= p32a;
pa = p64a; ! ERROR: can’t implicitly convert from larger procedure
1 address type to smaller procedure address type
P32a := p64a;! ERROR: can’t implicitly convert from larger procedure

1 address type to smaller procedure address type

pa = $PROCADDR (p32a);

pa := $PROCADDR (p64a); ! OK
p32a := $PROCADDR (pa);

p32a := $PROCADDR (p64a); ! OK

168 Pointers

p6da :
p64a :
END;

$PROCADDR (pa);
$PROCADDR (p32a);

NOTE: PROC32ADDR, PROC64ADDR, PROC32PTR, and PROC64PTR are 64-bit addressing
functionality added to the EpTAL compiler starting with SPR T0O561HO1*AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

Subprocedures, Subprocedure Entry Points, Labels, and Read-Only Arrays (CBADDR
and CWADDR Address Types)

The address type of a pointer to code in a user code segment—that is, a read-only array—is

CWADDR if the pointer is type INT and is CBADDR if the pointer is type STRING. The address

type of subprocedures, subprocedure entry points, and all labels—in both procedures and
subprocedures—is CWADDR.

Example 108 CBADDR and CWADDR

INT sa = "P*
STRING sb = "P" :
PROC p;
BEGIN
LABEL labi;
SUBPROC subpl;
BEGIN
CWADDR cw;
CBADDR cb;
ENTRY entl;
entl:
lab2:
cw := @subpl;
cw := @labl;
cw = @lab2;
cw = @entl;
cw = (@sa;
cb := @sb;
END;
labl:
END;

[1.2,3,4];

[""ABCD"];

Address
Address
Address
Address
Address
Address

1 Address type of sa is CWADDR
1 Address type of sb is CBADDR

type
type
type
type
type
type

of @subpl
of @labl
of @lab2
of @entl
of @sa
of @sb

is
is
is
is
is
is

CWADDR
CWADDR
CWADDR
CWADDR
CWADDR
CBADDR

EXTADDR, EXT32ADDR, and EXT64ADDR (Extended Addresses)

An EXTADDR is 32 bits. You can store the address of any of your processes’ 32-bit addressable
data in an EXTADDR pointer. An EXT64ADDR is 64 bits. You can store the address of any of your

processes' data in an EXT64ADDR pointer.

Address Types

169

Example 109 EXTADDR, EXT32ADDR, and EXT64ADDR Declarations

INT (EXT i;

STRING .EXT s;

INT .EXT g = "SG" + 0;
REAL .EXT r;

INT .EXT32 i32;

STRING .EXT32 s32;

INT .EXT32 g32 = "SG" + 0;
REAL .EXT32 r32;

INT .EXT64 i64;

STRING .EXT64 s64;

INT .EXT64 ¢g64 = "SG" + 0;

REAL -EXT64 r64;

Declaring Simple Pointers

A simple pointer declaration associates an identifier with a memory location that contains the
user-initialized address of a simple variable or array.

» type
WOLATILE
identifier
l'

REFALIGNED

e initialization

VaETETE. ved

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written o memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type
is one of the following data types:

e BADDR

e CBADDR

e CWADDR

e EXTADDR

o EXT32ADDR
e EXT64ADDR

170 Pointers

e FIXED [(Fpoint)]

o INT
o INT(16)
e INT(32)
o INT(64)
e PROCADDR

e PROC32ADDR
e PROC64ADDR

e REAL

e REAL(32)

e REAL

e REAL (32)

e REAL (64)

e SGBADDR
e SGWADDR
e SGXBADDR
e SGXWADDR
e SIRING

e WADDR

f poi nt

The implied fixed point of the FIXED variable. fpoint can also be an asterisk (*) as in:

FIXED(*) .F;

| ndi rection

., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |

identifier

is the identifier of the pointer.

REFALIGNED

For simple pointers, the default for REFALIGNED is the value you specify in the REFALIGNED

(page 510).

specifies that the variables and structures that identifier references are aligned as they would

be aligned in TAL (and might not be well-aligned in pTAL).

specifies that the variables and structures are well-aligned for use in pTAL (and in TAL, that
they have more space).

For nonstructure pointers, the default for REFALIGNED is the value you specify in the

REFALIGNED (page 510).

initialization

An expression representing a memory address. For more information about operations on
addresses, see Chapter 5 (page 69).

The data type determines the size of data a simple pointer can access at a fime.

Declaring Simple Pointers

171

The addressing mode and data type of the simple pointer determines the kind of address the pointer

can contain.

For information about data types and addresses, see Table 49 (page 165) and Table 50 (page 166).

Furthermore, the kind of expression you can specify for the address depends on the level at which

you declare the pointer:

e Atthe global level, use a constant expression.

e Atthe local or sublocal level, you can use any arithmetic expression.

Initializing Simple Pointers

You can initialize global standard pointers by using constant expressions such as:

Expression

Meaning

@i dentifier

@i dentifier '<<']1

@i dentifier '>>'1

@i dentifier [index]

Built-in routine

Accesses address of variable

If @identifier is a WADDR address, ‘<<’ converts it to a BADDR address.|f
@identifier is a SGWADDR address, ‘<<’ converts it to a SGBADDR address.

If @identifier is a BADDR address, ‘>>' converts it to a WADDR address.|f
@identifier is a SGBADDR address, ‘>>' converts it to a SGWADDR address.

Accesses address of variable indicated by i ndex

Any that return a constant value, such as $OFFSET

Expressions other than those in the preceding list can perform valid type conversions, but the
compiler recognizes only those in the preceding list and might diagnose others as errors.

You can apply the @ operator to these global variables:

Variable @identifier?
Direct array Yes
Standard indirect array Yes
Extended indirect array No
Direct structure Yes
Standard indirect structure Yes
Extended indirect structure No
Simple pointer No
Structure pointer No

Simple pointers receive their initial values when you compile the source code. Local or sublocal
simple pointers receive their initial values at each activation of the encompassing procedure or

subprocedure.

172 Pointers

Example 110 Declaring But Not Initializing a Simple Pointer

INT(32) .ptr;

Example 111 Declaring and Initializing a Simple Pointer

STRING .bytes[0:3]; ! Indirect array
STRING .s_ptr := @bytes[3]; ! Simple pointer initialized with
1 address of bytes[3]

Example 112 Declaring and Initializing a STRING Simple Pointer

INT .a[0:39];
STRING .ptr := @a[0] "<<" 1;

1 INT array

1 STRING simple pointer

1 initialized with byte address
1 of a[0]

Example 113 Declaring and Initializing Simple Pointers

INT a[0:1] := [%100000, %110000];
INT .int_ptrl := a[0];

Array

Simple pointer
initialized with %100000

Simple pointer
initialized with %110000

INT .int_ptr2 := a[1];

Example 114 Declaring and Initializing a Simple Pointer, Using $XADR

INT a[0:1];
STRING .EXT s := $XADR (a[0]):

16-bit word-addressed array
Extended simple pointer
initialized with

32-bit byte address of a[0]

Example 115 Declaring and Initializing an Extended Simple Pointer

INT .EXT32 x32 [-100:100];
INT .EXT32 x32_ptr := @x[-1];

1 Array
1 Extended simple pointer initialized
1 32-bit byte address if x32[-1];

INT .EXT64 x64 [-100:100]; 1 Array

INT _EXT64 x64 ptr := @x[-1]; 1 Extended simple pointer initialized
1 64-bit byte address if x32[-1];

NOTE: The “Indirection Symbols” (page 41) .EXT32 and .EXT64 are 64-bit addressing functionality
added to the EpTAL compiler starting with SPR TO561HO1”AAP. For more information, see
Appendix E, “64-bit Addressing Functionality” (page 531).

Declaring Structure Pointers

The structure pointer declaration associates a previously declared structure with the memory location
to which the structure pointer points. You access data in the associated structure by referencing
the qualified structure pointer identifier.

Declaring Structure Pointers 173

#(STRING

WVOLATILE INT

r(»{conitr —(0)

[
o

(D[]

.

VOLATILE
specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

STRING
is the STRING attribute.

INT

is the INT attribute, as INT, INT(32), or FIXED.
., -EXT, _EXT32, .EXT64, .SG, .SGX
are indirection symbols (see Table 14 (page 41)).
identifier
is the identifier of the pointer.
referral
is the identifier of a previously-declared structure, structure template, or structure pointer.
Specify ref erral only for pointers to structures.
initialization
is an expression representing a memory address. For more information about operations on
addresses, see Chapter 5 (page 69).

Initializing Structure Pointers

The addressing mode and data type of the simple pointer determines the kind of address the pointer
can contain.

For information about data types and addresses, see Table 49 (page 165) and Table 50 (page 166).

Furthermore, the kind of expression you can specify for the address depends on the level at which
you declare the pointer:

e Use a constant expression at the global level. See also Initializing Simple Pointers (page 172).
e At the local or sublocal level, you can use any arithmetic expression.

If the expression is the address of a structure with an index, the structure pointer points to a particular
occurrence of the structure. If the expression is the address of an array, with or without an index,
you impose the structure on top of the array.

174 Pointers

Global structure pointers receive their initial values when you compile the source code. Local and
sublocal structure pointers receive their initial values each time the procedure or subprocedure is
activated.

Example 116 Declaring and Initializing a Structure Pointer, Using $OFFSET

STRUCT t (*); ! Template structure
BEGIN
INT k;
END;
STRUCT .st; 1 Definition structure
BEGIN
INT j;
STRUCT ss (t);
END;
INT .ip := @st "+" $OFFSET (st.j) ">>" 1; I Simple pointer
INT .stp (t) := @st "+" $OFFSET (st.ss) ">>" 1;
1 INT structure pointer
STRING .sstp (t) := @st "<<" 1 "+" $OFFSET (st.ss);
1 STRING structure pointer

A standard STRING structure pointer can access only these structure items:
e Substructure

e STRING simple variable

e STRING array

The last declaration in Example 116 (page 175) shows a STRING structure pointer initialized with
the converted byte address of a substructure.

Example 117 (page 175) shows another way to access a STRING item in a structure. You can
convert the word address of the structure to a byte address when you initialize the STRING structure
pointer and then access the STRING item in a statement.

Example 117 Declaring and Initializing a STRING Structure Pointer

STRUCT .astruct[0:1];
BEGIN
STRING s1;
STRING s2;
STRING s3;
END;
STRING .ptr (astruct) = ! STRING ptr initialized with converted
@astruct[1l] "<<* 1; 1 byte address of astruct[1l].
ptr.s2 = %4; 1 Access STRING structure item

Example 118 Declaring and Initializing a Local Structure Pointer

PROC my_proc MAIN;

BEGIN
STRUCT my_struct[0:2];
BEGIN
INT array[0:7];
END;

INT .struct_ptr (my_struct) := @my_struct[1];
1 Structure pointer contains address of my_struct[1]
END;

Example 119 Declaring and Initializing a Local STRING Structure Pointer

STRUCT name_def(*);
BEGIN

Initializing Structure Pointers 175

STRING Ffirst[0:3];
STRING last[0:3];

END;
STRUCT .record;
BEGIN
STRUCT name (name_def); ! Declare substructure
INT age;
END;
STRING .my_name (nhame_def) := @record.name; ! Structure pointer

1 contains address
1 of substructure
my_name ":=" [""Sue Law'™];

Example 120 Declaring and Initializing a Local STRING Structure Pointer

BEGIN
INT array[0:7];
STRUCT a_struct (*);
BEGIN
INT var;
INT bufferl[0:3];
STRING buffer2[0:4];
END;
INT .struct_ptr (a_struct) := @array; ! Structure pointer
END; 1 contains address of
1 array

Declaring System Global Pointers

NOTE: Only procedures that operate in privileged mode can access system global data.

The system global pointer declaration associates an identifier with a memory location at which
you store the address of a variable located in the system global data area.

identifier

»(—»

e preset-address

e
U"
type
is any data type except UNSIGNED; specifies the data type of the value to which the pointer
points.
-SG
is an indirection symbol (see Table 14 (page 41)).
identifier

is the identifier of the pointer.
preset - addr ess

is the address of a variable in the system global data area. The address is determined by you
or the system during system generation.

Example 121 System Global Pointer Declaration

INT .SG newname;

176 Pointers

11 Equivalenced Variables

Equivalencing lets you declare more than one identifier and description for a location in a storage
area. Equivalenced variables that represent the same location can have different data types and
byte-addressing and word-addressing attributes. For example, you can refer to an INT(32) variable
as two separate words or four separate bytes.

You can equivalence any variable in the first column of Table 51 (page 177) to any variable in the

second column.

Table 51 Equivalenced Variables

Equivalenced (New) Variable

Previous Variable

Simple variable
Simple pointer
Structure
Structure pointer

Simple variable
Simple pointer
Structure

Structure pointer
Array

Equivalenced variable

You can use an equivalenced variable in an expression anywhere an operand is valid.

Table 52 Equivalenced Variable Terminology

Term

Definition

Equivalenced variable

Previous variable

Direct equivalent declaration

Indirect equivalent declaration

Extended equivalent declaration

Standard pointer equivalent declaration

Extended pointer equivalent declaration

The identifier that appears on the left side of an equivalenced
declaration; for example:

INT previous;
INT equivalenced = previous;

The identifier that appears on the right side of the equivalenced
declaration. The previous variable can, itself, be an equivalenced
variable; for example:

INT base_previous;
INT equivalencedl = base_previous;
INT equivalenced2 = equivalencedl;

The equivalenced variable is a simple variable, direct array, direct
structure, standard pointer (including a standard structure pointer), or
extended pointer (including an extended structure pointer). Direct items
can be equivalenced only to other direct items (with two exceptions).

The equivalenced variable is a standard indirect array or standard
indirect structure. Standard indirect items can be equivalenced only to
other standard indirect items.

The equivalenced variable is an extended indirect array or extended
indirect structure. Extended indirect items can be equivalenced only to
other extended indirect items.

The equivalenced variable is a pointer to data.

The equivalenced variable is a pointer to data in an EXTADDR.

Topics:

e Declaring Equivalenced Variables (page 178)

e Memory Allocation (page 179)

e Declaring Nonstructure Equivalenced Variables (page 180)

e Equivalencing Procedure Addresses (PROCADDR, PROC32ADDR, and PROC64ADDR) and
Pointer Variables (PROCPTR, PROC32PTR, and PROC64PTR) (page 187)

177

e Declaring Equivalenced Definition Structures (page 188)

e System Global Equivalenced Variable Declarations (page 193)

Declaring Equivalenced Variables

Table 53 Valid Equivalenced Variable Declarations

Equivalenced Variable

Category

Equivalenced Variable

Variable Example

Previous Variable Category

Direct

Indirect

Extended

Standard Pointer

Extended Pointer

Simple Variable
Direct array

Direct structure

Indirect array

Indirect structure

Extended array

Extended structure

Standard pointer

Standard structure pointer

Extended pointer

Extended structure pointer

INT i;

INT i1[0:3];
STRUCT s;
BEGIN

INT §;
END;

INT .a[0:3];
STRUCT s;
BEGIN

INT i;
END;

INT .EXT a[0:3];
INT .EXT32 b[0:3];'
INT .EXT64 c[0:3];'
STRUCT .EXT s;
BEGIN

INT i;
END;
STRUCT .EXT32 t;
BEGIN

INT 1;
END;
STRUCT .EXT64 uj;
BEGIN

INT 1;
END;

INT .p;

INT _s(t);

INT _EXT e;

INT _EXT32 f;'
INT _EXT64 g;'
INT .EXT s(t):
INT _EXT32 u(t);'
INT _EXT64 v(t);'

Direct or Pointer

Indirect

EXTADDR |
EXT32ADDR' |
EXT64ADDR! |
EXTADDR

EXT32ADDR!

EXT64ADDR'

A pointer, simple variable,
indirect array, or indirect
structure

Direct or Extended with the
same address type
(EXTADDR)

EXT32ADDR! |
EXT64ADDR! |

178 Equivalenced Variables

! 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HO1*AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

You can index a variable that participates in an equivalenced declaration either as the equivalenced
variable or as the previous variable even if none of the variables in the equivalenced group specify
array bounds.

Example 122 Declaring Equivalenced Variables

INT a; 1 a is a simple variable, and cannot be indexed
INT b; 1 "Previous variable" for the next decl

INT ¢ = b; I b and ¢ can be indexed

INT d = c; I ¢ and d can be indexed

! Variables b, c, and d can be indexed because each appears in
1 an equivalenced declaration:

c[2] := b[1]; ! OK: b and c appear in equivalenced declaration
d[2] := c[1]; ! OK: c and d appear in equivalenced declaration
d[2] := a; 1 OK: d appears in equivalenced declaration

I and can be indexed.
d; I ERROR: a cannot be indexed

a[1] :

Memory Allocation

pTAL does not allocate memory for equivalenced variables. In the following example, pTAL allocates
memory only for base_previous:
INT base previous;

INT equivalencedl
INT equivalenced?2

base previous;
equivalencedl;

An equivalenced variable is an alias for memory allocated for a previously declared variable. The
equivalenced declaration can specity different attributes; for example, a different data type than
those of the previous variable. In the following example, pTAL allocates 32 bits for i. The
equivalenced declaration for j references the memory allocated for i, but specifies that the bits
be treated as a REAL number:

INT(32) i:

REAL j = i3

If an equivalenced variable is a standard or extended pointer and the previous variable is the
implicit pointer of an indirect array or indirect structure, the equivalenced variable is a read-only
pointer. You can use the value of the pointer in an expression, but you cannot store an address or
other value into the pointer because doing so would be the same as storing an address into the
implicit pointer of the array or structure. You can, however, use a pointer to read or write the data
to which the pointer points.

Example 123 Equivalenced Pointers

INT .a[0:3];
INT .p = a;
WADDR w;
PROC p1;
BEGIN
a[l1l] := a[1] + 1; ! Increment second word of a
pl[1] := p[1] + 1; ! Increment second word of p (= a)
w = @a; 1 Assign address of first word of a to w
w = @p; 1 Assign address of first word of p (= a)
1 tow
END;
PROC p2;
BEGIN
@p := w; ! ERROR: Cannot assign to an equivalenced pointer

1 when it is equivalenced to an indirect or

Memory Allocation 179

1 standard indirect variable
END;

Declaring Nonstructure Equivalenced Variables

Nonstructure equivalenced declarations include simple variables, pointers, and arrays.

e/)

G 0 O
° previous-identifier

offsat

WaTEZE.ved

VOLATILE
specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.
type
If ref erral is present, must be STRING or INT; otherwise, t ype is any data type except
UNSIGNED.
identifier
is the identifier of the equivalenced variable to be made equivalent fo pr evi ous-i denti fi er.
referra
is the identifier of a previously declared structure, structure layout, or structure pointer.
previous-identifier
the identifier of a previously-declared variable, direct array element, pointer, structure, structure
pointer, or equivalenced variable.
i ndex

is an INT constant that specifies an element offset from pr evi ous-i denti fi er to which
the equivalenced pointer or variable refers. Specify i ndex only with direct variables. i ndex
must end on a word boundary.

+, -
is the word or byte offset, relative to the base of previ ous-i denti fi er, where the
equivalenced variable is placed. For example, if a and b are declared:

INT a[0:9];
INT b = a+5

then b is placed at a[5].

180 Equivalenced Variables

of f set

is an INT constant that specifies a word offset from pr evi ous-i denti fi er, which can be
a direct or indirect variable. If pr evi ous-i denti fi er is indirect, the of f set is from the
location of the pointer, not from the location of the data pointed to.

The following are valid equivalenced declarations:

INT a;

INT b = a;
INT(32) c[0:3];
INT d[0:7] = c;

Topics:

e Memory Usage for Nonstructured Equivalenced Variables (page 181)
e Equivalenced Arrays (page 181)

e Indirect Arrays (page 182)

e Equivalenced Simple Variables (page 182)

e Equivalenced Simple Pointers (page 183)

Memory Usage for Nonstructured Equivalenced Variables

The memory referenced by an equivalenced variable including all fields of an equivalenced structure
and all elements of an equivalenced array must be contained entirely within the memory allocated
for the previous variable. You can index the previous variable, but the memory referenced after
applying the index must be contained within the memory allocated for the previous variable.

An equivalenced variable, including all elements of an equivalenced array or equivalenced structure,
must be the same size or smaller than the lowest-level previous variable, even if an intermediate
previous variable is not as the equivalenced variable you are declaring:

INT h;

FIXED i;

INT Jj = i; 1 OK: j is smaller than I
INT(32) k = j; ! OK: k is 32 bits, i is 64 bits
FIXED I =h; 1 ERROR: I > h

The number of bits in an equivalenced variable (including all elements of an array or structure)
must be less than or equal to the number of bits in the previous variable. Equivalenced variables
for which the previous variable is itself an equivalenced variable, must be contained entirely within
the memory allocated for the previous variable for which the compiler allocates memory.

Example 124 Memory Usage for Nonstructured Equivalenced Variables

FIXED i; 1 1 is 64 bits
INT(32) j[0:1] = i; ! OK: j is 64 bits and coincident with i
INT k[0:1] = i; ! OK: k is 32 bits and contained within i
INT m[0:3] = k; ' OK: Although m is 64 bits and k is

1 32 bits, pTAL requires only that

I m be contained within i, not k.
INT x[0:15];

FIXED vy = x[10]; ! ERROR: y does not fit entirely within x

Equivalenced Arrays

Use the | ower - bnd1 and upper - bnd2 parameters as shown in the nonstructure declaration
syntax.

Declaring Nonstructure Equivalenced Variables 181

Indirect Arrays

Figure 8 (page 182) shows how pTAL implements indirect arrays. The compiler allocates storage
for the four elements of the array a, but not for a pointer to a. References to a access the data
directly not indirectly through a pointer.

Figure 8 Indirect Array
pPTAL I ndirect Array
INT .A[0:3] := [10,20,30,40];

1 Object date type: INT
1 Address type: WADDR

A 1000 104
1001 204
1002 30
1003 A0

VET121.wed

Equivalenced Simple Variables

An equivalenced simple variable declaration associates a new simple variable with a previously
declared variable.

» type
WOLATILE

© o
Cp@-y previous-identifier

offset

WETDHOA v

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written o memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type

If referral is present, t ype must be STRING or INT; otherwise, t ype is any data type
except UNSIGNED.

identifier

is the identifier of the simple equivalenced variable to be made equivalent to
previ ous-identifier.

previ ous-identifier
is the identifier of a previously declared simple variable.

182 Equivalenced Variables

i ndex
is an INT constant that specifies an element offset from pr evi ous-i denti fi er, which must
be a direct variable. The data type of pr evi ous-i denti fi er dictates the element size.
The location represented by i ndex must begin on a word boundary.

-, -
is the word or byte offset, relative to the base of pr evi ous-i dent, where the equivalenced
variable is placed. For example, if a and b are declared:
INT(32) a[0:9];
INT b = at6

then b is placed in the first six bits of a.

of f set

is an INT constant that specifies an element offset from pr evi ous-i denti fi er, which must
be a direct variable. The data type of pr evi ous-i denti fi er dictates the element size.
The location represented by i ndex must begin on a word boundary.

Equivalencing a simple variable to an indirect array or structure is not recommended. If you do
so, the simple variable is made equivalent to the location of the implicit pointer, not the location
of the data pointed fo.

In Figure 9 (page 183), a STRING variable and an INT(32) variable are equivalenced to an INT
array.

Figure 9 Equivalenced Simple Variables

INT w[0:1];
STRING b = w[0];
INT(32) d = b;

wi{0] B[O B[1]

w[1] B[2] B3]

WETIOE wad

Equivalenced Simple Pointers

An equivalenced simple pointer declaration associates a new simple pointer with a previously
declared variable.

P lype
WVOLATILE

('*I identifier | o o
Q@—*

offset

WVETESD ved

Declaring Nonstructure Equivalenced Variables 183

VOLATILE
specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type
is any data type except UNSIGNED. The data type determines how much data the simple
pointer can access at a time (byte, word, doubleword, or quadrupleword).

I ndirection |
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |

NOTE: Indirection symbols, .EXT32 and .EXT64 are available in the 64-bit addressing
functionality added to the EpTAL compiler starting with SPR TO561HO1”AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

identifier
is the identifier of a simple pointer to be made equivalent to pr evi ous-i denti fier.
previous-identifier
is the identifier of a previously-declared variable, direct array element, pointer, structure,
structure pointer, or equivalenced variable.
i ndex

is an INT constant that specifies an element offset from pr evi ous-i denti fi er, which must
be a direct variable. The data type of previ ous-i denti fi er dictates the element size.
The location represented by i ndex must begin on a word boundary.

+, -
is the word or byte offset, relative to the base of pr evi ous-i dent, where the equivalenced
variable is placed. For example, if a and b are declared:
INT(32) a[0:9];
INT b = at6
then b is placed in the first six bits of a.

of f set
is an INT constant that specifies an element offset from pr evi ous-i denti fi er, which must
be a direct variable. The data type of previ ous-i denti fi er dictates the element size.
The location represented by i ndex must begin on a word boundary.

Topics:

e Using Equivalenced Simple Pointers (page 184)
e REFALIGNED Clause for Equivalenced Simple Pointers (page 187)

Using Equivalenced Simple Pointers

If the previous variable is a pointer, an indirect array, or an indirect structure, the previous pointer
and the new pointer must both contain either:

e A standard byte address
e A standard word address
e An extended address

Otherwise, the pointers will point to different locations, even if they both contain the same value.
That is, a standard STRING or extended pointer normally points to a byte address, and a standard
pointer of any other data type normally points to a word address.

184 Equivalenced Variables

You can equivalence standard pointers to indirect arrays and indirect structures, but you can only
read the value of the pointer. You cannot store an address into the pointer. You can, however,
read or write the data to which the pointer points.

You can equivalence extended pointers to extended arrays and extended structures, but you can
only read the value of the pointer. You cannot store an address into the pointer. You can, however,
read or write the data to which the pointer points.

You can equivalence a standard pointer to an indirect array or indirect structure but you cannot
equivalence an indirect array or indirect structure to a standard pointer. A pointer equivalenced
to an indirect item is a read-only pointer—you can read the address in the pointer, but you cannot
store an address into the pointer.

Example 125 Read-Only Pointer

INT .a[0:3]; Indirect array
INT .b; Standard pointer
INT .c = a; OK: Equivalence a pointer to an indirect

1
!
!
1 array (c is read-only)
INT .d[0:3] = b; ! ERROR: Cannot equivalence an indirect item

1 to a pointer

1 ERROR: Cannot modify a pointer that is

1 equivalenced to an indirect item

@c := @c + 1;

When you declare indirect and extended pointers in equivalenced declarations:

e The address type of a STRING standard pointer is BADDR. The address type of all other
standard pointers is WADDR.

e The address type of extended pointers is always EXTADDR, regardless of the data type of the
objects to which the pointer will refer.

Figure 10 (page 185) shows two examples of the data types associated with pointers. Figure 10
(page 185) shows the object data type and address type. Use Table 54 (page 185) to determine
valid equivalenced declarations.

Figure 10 The Object and Address Types of a Pointer
INT EXT a;

| — 12345 |

Object Data Type: INT
Address Type: EXTADDR

STRING b

|_..| "ABCDEFGHIJ"

Ohject Data Type: STRING
Address Type: BADDR

WET124 wad

Table 54 Data Types for Equivalenced Variables

Example Obiject Data Type Address Type
INT g; INT WADDR

INT .b; INT WADDR

INT EXT ¢; INT EXTADDR
INT .EXT32 e;' INT EXT32ADDR!
INT .EXT64 f;' INT EXT44ADDR'
BADDR g; BADDR WADDR

Declaring Nonstructure Equivalenced Variables 185

Table 54 Data Types for Equivalenced Variables (continued)

Example Obiject Data Type Address Type
BADDR .b; BADDR WADDR
BADDR .EXT ¢; BADDR EXTADDR
BADDR EXT32 d;’ BADDR EXT32ADDR'
BADDR EXTé4 .¢;' BADDR EXT64ADDR'
EXTADDR g; EXTADDR WADDR
EXTADDR .b; EXTADDR WADDR
EXTADDR .EXT c; EXTADDR EXTADDR
EXTADDR .EXT32 d;' EXTADDR EXT32ADDR'
EXTADDR .EXT64 ¢;' EXTADDR EXT64ADDR'
EXT32ADDR .EXT f; EXT32ADDR' EXTADDR
EXT32ADDR .EXT32 g;' EXT32ADDR! EXT32ADDR!
EXT32ADDR .EXT64 h;' EXT32ADDR' EXT64ADDR'
EXT64ADDR .EXT j; EXT64ADDR EXTADDR
EXT64ADDR EXT32 j;' EXT64ADDR' EXT32ADDR'
EXT64ADDR .EXT64 k;' EXT64ADDR' EXT64ADDR'
STRING q; STRING BADDR
STRING .b; STRING BADDR
STRING .EXT ¢; STRING EXTADDR
STRING .EXT32 d;' STRING EXT32ADDR'
STRING .EXT64 ¢;' STRING EXT64ADDR'

! 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HO1*AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

The code in Figure 11 (page 186) declares an INT(32) simple pointer equivalent to an INT simple
pointer. Both contain a word address.

Figure 11 Equivalenced Simple Pointer Declaration

INT .ptrl := 200;
INT(32) .ptr2 := ptril;

pirl = 200 ptr2 = 200

—= G[200] -

WET3T vad

186 Equivalenced Variables

pTAL does not verify that the lengths of the objects to which an equivalenced pointer refers are
equal. pTAL accepts the declaration in Example 126 (page 187) because the address types of both
pointers are WADDR.

Example 126 Equivalenced Obijects of Unequal Length

INT .a; 1 a is a pointer to an INT

FIXED .b = a; ! OK: a and b are pointers; pTAL does not require
1 that the data referenced by b be contained
1 inside the data referenced by a

REFALIGNED Clause for Equivalenced Simple Pointers

The REFALIGNED clause assigns a REFALIGNED attribute (2 or 8) to a simple equivalenced pointer
when you declare the pointer. Equivalenced pointers do not inherit the reference alignment of the
previous variable.

Example 127 REFALIGNED Clause for Equivalenced Simple Pointers

?REFALIGNED(8) 1 Default reference alignment is 8
INT .p REFALIGNED(2); 1 Reference alignment of p is 2
INT .q REFALIGNED(8) = p; ! Reference alignment of q is 8
INT .r REFALIGNED(2) = p; ! Reference alignment of r is 2
INT .s = p; I Reference alignment of s is 8
INT .t; 1 Reference alignment of t is 8

Equivalencing Procedure Addresses (PROCADDR, PROC32ADDR, and
PROC64ADDR) and Pointer Variables (PROCPTR, PROC32PTR, and
PROC64PTR)

You can equivalence Pointer Variables to Procedure Addresses and other Pointer Variables, and
you can equivalence Procedure Addresses to Pointer Variables and other Procedure Addresses.

NOTE: The procedure address and pointer types, PROC32ADDR, PROC64ADDR, PROC32PTR,
and PROC64PTR are 64-bit addressing functionality added to the EpTAL compiler starting with
SPR TO561HO1”AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Equivalencing Procedure Addresses (PROCADDR, PROC32ADDR, and PROC64ADDR) and Pointer Variables (PROCPTR, 187
PROC32PTR, and PROC64PTR)

Example 128 Equivalencing Procedure Addresses and Pointer Variables

PROCPTR pp;
END PROCPTR;
PROC32PTR p32p;
END PROCPTR;
PROC64PTR p64p;
END PROCPTR;

PROCADDR pae = pp;
PROC32ADDR p32ae =
PROC64ADDR p64ae =

PROCADDR pa;
PROC32ADDR p32a;
PROC64ADDR p64a;

PROCPTR ppe;

END PROCPTR = pa;
PROC32PTR p32pe;
END PROCPTR = p32a;
PROC64PTR p64pe;
END PROCPTR = p64a;

PROCPTR pp1l;
END PROCPTR = pp;

INT PROCPTR 1i;
END PROCPTR = p64p;
PROCADDR pal = p64a;

pP32p;

p64p;

pp is a 32-bit procedure pointer
p32p is a 32-bit procedure pointer

p64p is a 64-bit procedure pointer

pa is a procedure address equivalenced to a
procedure pointer

pa is a procedure address equivalenced to a
procedure pointer

p64a is a procedure address equivalenced to a
procedure pointer

ppe is a procedure pointer equivalenced to a
procedure pointer

p32pe s a procedure pointer equivalenced to a
procedure pointer

p64pe is a procedure pointer equivalenced to a
procedure pointer

pp is a procedure pointer equivalenced to a
procedure pointer

OK, however it is not recommended to
equivalence procedure pointers with different
signatures or with different sizes

OK, however it is not recommended to
equivalence procedure pointers or addresses
to procedure pointers or addresses with
different sizes

Declaring Equivalenced Definition Structures

An equivalenced definition structure declaration associates a new structure with a previously

declared variable.

! identifier

STRUCT

referral

field-alignment

pravious-idantifier

Lm .

offset

I ndirection

gy
index 7@—/ structure-layout

WETEHL2 vsd

., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |

188 Equivalenced Variables

structure
is the identifier that the declaration creates.

referral
is the identifier of a previously declared structure, structure layout, or structure pointer.

field-alignnment

FIELDALIGN

SHAREDB -
LATFORM '

WETEE2 wed

FIELDALIGN
specifies the memory alignment for the base of the structure and for fields within the structure.
For details about the FIELDALIGN clause, see Chapter 9 (page 114).

SHARED2
specifies that the base of the structure and each field in the structure must begin at an even
byte address except STRING fields.

SHAREDS8
specifies that the offset of each field in the structure from the base of the structure must be
begin at an address that is an integral multiple of the width of the field.

AUTO
specifies that the structure and the fields of the structure be aligned according to the optimal
alignment for the architecture on which the program will run (this is not the same behavior
as the AUTO attribute has in the native mode HP C compiler).

PLATFORM
specifies that the structure and the fields of the structure must begin at addresses that are
consistent across all languages on the same architecture.

previous-identifier
is the name of a previously declared simple variable, direct array element, structure, structure
layout, structure pointer, or equivalenced variable.
i ndex

is an INT constant that specifies the offset of the element in pr evi ous-i dent to which the
equivalenced pointer or variable refers. Specify index only with direct variables. index must
end on a word boundary.

+ -
is the word or byte offset, relative to the base of pr evi ous-i dent, where the equivalenced
variable is placed. For example, if a and b are declared:

INT(32) a[0:9];
INT b = a+6

then b is placed in bytes 12 and 13 of a.

of f set

is an INT constant that specifies a word offset. Specify offset only with indirect variables. The
offset is from the location of the pointer, not from the location of the data pointed fo.

structure-| ayout

is a BEGIN-END block that contains declarations. For more information about the structure
layout, see Chapter 9 (page 114).

Declaring Equivalenced Definition Structures 189

You must specify either ref erral or structure-1ayout butnot both in an equivalenced
structure declaration.

You can specify a FIELDALIGN clause only if you specify st r uct ur e- | ayout . You cannot specify
a FIELDALIGN clause for aref erral = structure.

Example 129 Declaring Equivalenced Structures

STRUCT a;
BEGIN

INT i;

INT j;
END;
STRUCT b = a;
BEGIN

INT(32) z;
END;
STRUCT c[0:3];
BEGIN

INT i;

INT j;
END;
STRUCT d[0:3] = c;
BEGIN

INT(32) z;
END;

The code in Figure 12 (page 190) declares an extended indirect definition structure equivalent to
a previously declared extended indirect structure.

Figure 12 Equivalenced Definition Structure for CISC Architecture

STRUCT .EXT xstrl;
BEGIN
STRING old_name[0:20];
STRING old_addr[0:50];
END;
STRUCT .EXT xstr2;
BEGIN
STRING new_name[0:30];
STRING new_addr[0:40];
END;

Primary area of user data segment

pir to xstrd ptr to xstr1

xsirt xsir

WET315.vsd

If the new structure is to occupy the same location as the previous variable, their addressing modes
must match. You can declare a direct or indirect structure equivalent to the following previous

variables:
New Structure Previous Variable
Direct structure Simple variable

190 Equivalenced Variables

New Structure Previous Variable

Direct structure
Direct array

Standard indirect structure Standard indirect structure
Standard indirect array
Standard structure pointer

Extended indirect structure Extended indirect structure
Extended indirect array
Extended structure pointer

If the previous variable is a structure pointer, the new structure is really a pointer.
Topics:

e Structure Variants (page 191)

e Memory Usage for Structured Equivalenced Variables (page 192)

e FIELDALIGN Clause (page 193)

Structure Variants

You use substructures to declare variant records in structures. pTAL does not detect addresses that
are redefined by equivalenced variant structures.

Example 130 Structure Variants

STRUCT s FIELDALIGNCAUTO);

BEGIN
STRUCT v1;
BEGIN
INT .p; 1 _p is 4 bytes
INT q;
END;
STRUCT v2 = v1; ! v2 is equivalenced to vl
BEGIN 1 v2 is 4 bytes
INT _EXT e;
END;
END;

When you compile Example 130 (page 191), the compiler allocates 8 bytes, the length of v1.
Although v1 and v2 are different lengths and their fields have different data types, the compiler
does not report an error or a warning. You must ensure that the variants are meaningful for your
algorithms.

The structure in Example 131 (page 192) contains the same variants as the structure in Example 130
(page 191), but the variants are in reverse order.

Declaring Equivalenced Definition Structures 191

Example 131 Structure Variants

STRUCT s FIELDALIGN(CAUTO);

BEGIN
STRUCT v1;
BEGIN
INT _.EXT e; ! e is 4 bytes
END;
STRUCT v2 FIELDALIGN(SHAREDS8) = vi1;
BEGIN
INT .p; ! p is 4 bytes
INT qg; ! Compiler reports a warning
END;
END;

In Example 131 (page 192), v1 is 4 bytes, but v2 is 8 bytes. The compiler reports a warning. Data
that your program stores into s.v2.q overwrites the data in the memory locations that follow s.

v2 is 8 bytes to maintain the alignment of variables in memory. For more information about lengths
of pTAL structures, see Chapter 9 (page 114).

Memory Usage for Structured Equivalenced Variables

The memory referenced in an equivalenced declaration must fit within the memory allocated for
the previous variable. When you determine the length of a structure, you must account for filler
that pTAL adds to the structure. In Example 132 (page 192), the equivalenced declaration is not
valid because b is 4 bytes, but a is only 3 bytes. pTAL adds an extra byte at the end of b so that
its total length is an integral multiple of its longest component, i.

Example 132 Memory Usage for Structured Equivalenced Variables (Incorrect)

STRUCT a FIELDALIGN(SHARED2); 1 Structure a is 3 bytes
BEGIN

STRING 1i;

STRING j;

STRING k;
END;
STRUCT b FIELDALIGNCAUTO) = a; I Structure b is 4 bytes
BEGIN

INT i;

STRING j; ! pTAL adds a byte after field j
END;

If you declare b and then declare a, pTAL does not report an error because a fits within the four
bytes already allocated for b, as in Example 133 (page 193).

192 Equivalenced Variables

Example 133 Memory Usage for Structured Equivalenced Variables (Correct)

STRUCT b FIELDALIGN(CAUTO);
BEGIN

INT i;

STRING j; ! pTAL adds a byte after the declaration of j
END;
STRUCT a FIELDALIGN(SHARED2) = b;
BEGIN

STRING 1i;

STRING j;

STRING Kk;
END;

FIELDALIGN Clause

The FIELDALIGN clause specifies the alignment of the fields of a structure and the alignment of the
structure itself in memory. You can use an equivalenced declaration to create two layouts for the
same areq, one optimized for TAL programs on TNS architecture and the other optimized for pTAL
programs on TNS/R or TNS/E architecture. Declare the pTAL structure first.

Example 134 FIELDALIGN Clause in Structured Equivalenced Variables

STRUCT a FIELDALIGN(SHAREDS);
BEGIN

INT i;

INT j;
END;
STRUCT b FIELDALIGN(SHARED2) = a;
BEGIN

INT i;

INT j;
END;

In Example 134 (page 193), structures a and b declare the same fields, but a specifies
FIELDALIGN(SHAREDS), the optimal alignment for pTAL, whereas b specifies

FIELDALIGN(SHARED?2), the alignment for TAL. pTAL generates fast code for references to a. i,
but conservative code for references to b. i

For more information about using the FIELDALIGN clause, see Chapter 9 (page 114).

System Global Equivalenced Variable Declarations

NOTE: Only procedures that operate in privileged mode can access system global data.

System global equivalencing associates a global, local, or sublocal identifier with a location that
is relative fo the base address. You can declare the following equivalenced variables for either
system global ('SG') or extended system global ('SGX') addresses:

e Equivalenced Simple Variable (page 193)

e Equivalenced Definition Structure (page 194)
e Equivalenced Referral Structure (page 195)

e Equivalenced Simple Pointer (page 196)

e Equivalenced Structure Pointer (page 197)

Equivalenced Simple Variable

An equivalenced simple variable declaration associates a simple variable with a location that is
relative to the 'SG' base address.

System Global Equivalenced Variable Declarations 193

index 7'@_/
offset

TP
NS

WVETOEE. vad

type
is any data type except UNSIGNED; specifies the data type of i denti fi er.
identifier
is the identifier of a simple variable to be made equivalent to 'SG'.
s
a symbol that denotes a 16-bit system global address.
i ndex

is an INT constant that specifies the offset of the element in pr evi ous-i dent to which the
equivalenced pointer or variable refers. Specify index only with direct variables. index must

end on a word boundary.
+, -

is the word or byte offset, relative to the base of pr evi ous-i dent, where the equivalenced
variable is placed. For example, if a and b are declared:

INT a[0:9];
INT b = at+5

then b is placed at a[5].
of f set
an equivalent INT values in the range O through 63.

Example 135 Equivalenced Simple Variable Declaration

INT item = "SG™ + 15;

Equivalenced Definition Structure

An equivalenced definition structure declaration associates a definition structure with a location
relative to a system global ('SG') or extended system global ('SGX') base address.

STRUCT >
O,
index j@_/
offset

WETT 0. ved

identifier

194 Equivalenced Variables

I ndi rection |
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |
identifier
is the identifier of a definition structure to be made equivalent to 'SG'.
e
denotes a 16-bit system global address.

i ndex

is an INT constant that specifies the offset of the element in pr evi ous-i dent to which the
equivalenced pointer or variable refers. Specify index only with direct variables. index must

end on a word boundary.
+, -

is the word or byte offset, relative to the base of pr evi ous-i dent, where the equivalenced
variable is placed. For example, if a and b are declared:

INT a[0:9];
INT b = at5

then b is placed at a[5].

of f set
an equivalent INT values in the range O through 63.

structure-I| ayout
a BEGIN-END block that contains declarations for structure items.

Example 136 Equivalenced Definition Structure Declaration

STRUCT def_struct = "SG"[10];
BEGIN

STRING out;

FIXED up;

REAL in;
END;

Equivalenced Referral Structure

The equivalenced referral structure declaration associates a referral structure with a location relative
to the base address of the system global ('SG') or the extended system global ('SGX') data area.

STRUCT » identifier

index

offset

WETTOR waad

I ndirection |
., -EXT, .EXT32, .EXT64, .SG, and . SGX are indirection symbols (see Table 14 (page 41)). |
identifier
is the identifier of a referral structure to be made equivalent to 'SG'.

System Global Equivalenced Variable Declarations 195

referra

is the identifier of a previously declared structure or structure pointer that is to provide the layout
for this structure.

denotes a 16-bit system global address.
i ndex

is an INT constant that specifies the offset of the element in pr evi ous-i dent to which the
equivalenced pointer or variable refers. Specify index only with direct variables. i ndex must

end on a word boundary.
+, -

is the word or byte offset, relative to the base of pr evi ous-i dent, where the equivalenced
variable is placed. For example, if a and b are declared:

INT a[0:9];
INT b = at5

then b is placed at a[5].
of f set
an equivalent INT values in the range O through 63.

If you specify an indirection symbol (see Table 14 (page 41)), the structure behaves like a structure
pointer. If you do not specify an indirection symbol, the structure has direct addressing.

Example 137 Equivalenced Referral Structure Declaration

STRUCT def_struct;
BEGIN
STRING a[0:99];
REAL b[0:9];
END;
STRUCT ref_struct (def_struct) = "SG"[30];

Equivalenced Simple Pointer

The equivalenced simple pointer declaration associates a simple pointer with a location relative
to the base address of the system global ('SG') or the extended system global ('SGX') data area.

type 7
offsat

WETTDS vsd

p| identifier

type
is any data type except UNSIGNED and specifies the data type of the value to which the
pointer points.

I ndi rection |
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |

196 Equivalenced Variables

identifier

is the identifier of a simple pointer fo be made equivalent to 'SG'.
e

denotes a 16-bit system global address.
i ndex

is an INT constant that specifies the offset of the element in pr evi ous-i dent to which the
equivalenced pointer or variable refers. Specify i ndex only with direct variables. index must

end on a word (16-bit) boundary.
+, -

is the word or byte offset, relative to the base of pr evi ous-i dent, where the equivalenced
variable is placed. For example, if a and b are declared:

INT a[0:9];
INT b = at+5

then b is placed at a[5].

of f set
an equivalent INT values in the range O through 63.

Example 138 Equivalenced Simple Pointer Declaration

INT .ptr = "SG" + 2;

Equivalenced Structure Pointer

The equivalenced structure pointer declaration associates a structure pointer with a location relative
to the base address of the system global (.SG) or the extended system global (SGX) data area.

‘ STRING '-

DT} —(D—)— ()

index

offset

WETT11.vad

STRING
is the STRING attribute.

INT
is the INT attribute.

I ndirection |
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |
identifier
is the identifier of a structure pointer to be made equivalent to 'SG'.

System Global Equivalenced Variable Declarations 197

referra

is the identifier of a previously declared structure or structure pointer that is to provide the layout
fori dentifier.

denotes a 16-bit system global address.
i ndex

is an INT constant that specifies the offset of the element in pr evi ous-i dent to which the
equivalenced pointer or variable refers. Specify index only with direct variables. index must

end on a word (16-bit) boundary.
+, -

is the word or byte offset, relative to the base of pr evi ous-i dent, where the equivalenced
variable is placed. For example, if a and b are declared:

INT a[0:9];
INT b = at5

then b is placed at a[5].
of f set
an equivalent INT values in the range O through 63.

on page 10-6 describes the kind of addresses a structure pointer can contain depending on the
STRING or INT attribute and addressing symbol.

Example 139 Equivalenced Structure Pointer Declaration

STRUCT .some_struct;
BEGIN
INT a;
INT b[0:5];
END;
INT _struct_ptr (some_struct) = "SG" + 30;

198 Equivalenced Variables

12 Statements

Statements—also known as executable statements—perform operations in a program. They can

modify the program’s data or control the program’s flow.

Table 55 Summary of Statements

Category Statement Operation
Program control ASSERT Conditionally calls a procedure
CALL Calls a procedure or subprocedure
CASE Selects a set of statements based on a
selector value
DO-UNTIL A post-est loop that repeatedly executes
a statement until a specified condition
becomes true
FOR Executes a pretest loop n times
GOTO Unconditionally branches to a label
within a procedure or subprocedure
IF Conditionally selects one of two
possible statements
RETURN Returns from a procedure or a
subprocedure to the caller; returns a
value from a function; returns a
condition code value
WHILE Executes a pretest loop while a
condition is true
Data transfer Assignment Stores a value in a variable
Bit-Deposit Assignment Stores a value in a bit or in a group of
sequential bits
Data scan SCAN and RSCAN Scan data for a test character,
left-to-right and right-to-left, respectively
Data allocation DROP Removes either a label (from the symbol
table) or a temporary variable that was
created by a USE statement
USE Creates a temporary variable

In addition to the statements summarized in Table 55 (page 199), this section describes:

Using Semicolons in Statements (page 199)

Compound Statements (page 200)

Using Semicolons in Statements

You use semicolons with statements as follows:

A semicolon is required between successive statements.

A semicolon is optional before an END keyword that terminates a compound statement.

A semicolon must not immediately precede an ELSE or UNTIL keyword.

A semicolon alone in place of a statement creates a null statement. The compiler generates
no code for null statements. You can use a null statement wherever you can use a statement

except immediately before an ELSE or UNTIL keyword.

Using Semicolons in Statements 199

Compound Statements

A compound statement is a BEGIN-END block that groups statements to form a single logical
statement.

BEGIN

» END

o O
O

WETHI ved

BEGIN

indicates the start of the compound statement.
st at ement

is a statement described in this section.
; (semicolon)

is a statement separator that is required between successive statements. A semicolon before
an END that terminates a compound statement is optional and represents a null statement.

END
indicates the end of the compound statement.

You can use compound statements anywhere you can use a single statement. You can nest them
to any level in statements such as IF, DO, FOR, WHILE, or CASE.

Example 140 Null Compound Statement

BEGIN
END;

Example 141 Compound Statement

BEGIN
a :=b + c;
d = %B101;
f:=d-e;
END;

ASSERT

The ASSERT statement conditionally calls the procedure specified in the active directive ASSERTION
(page 495).

—;{ASSERT)—pl asserl-level

WETDAE vad

assert-|evel
is an integer in the range O through 32,767.

It assert-1evel isgreaterthan or equal to the asserti on-1 evel specified in the active
ASSERTION directive and if condi ti on is true, the program calls the procedure specified
in the active ASSERTION directive.

condi tion
is a conditional expression (see Conditional Expressions (page 81)).

To use the ASSERT statement and the ASSERTION directive together for debugging or error-handling:

200 Statements

1. Put an ASSERTION directive in the source code, specifying an asserti on-1evel and an
error-handling procedure.

2. Put an ASSERT statement at each place where you want to execute the error-handling procedure
when an error occurs. In each ASSERT statement, specify:

e Anassert-Ilevel thatis greater than or equal to the asserti on-1 evel
e Acondition that will be true when an error occurs

During program execution, if an assert -1 evel is greater than or equal to the active
assertion-|evel andthe associated condi ti on is true, the program calls the error-handling
procedure.

Example 142 (page 201) calls PROCESS_DEBUG_ whenever a carry or overflow condition occurs.

Example 142 ASSERTION Directive and ASSERT Statement

?SOURCE $SYSTEM.SYSTEM.EXTDECS (PROCESS_DEBUG_)

?ASSERTION 5, PROCESS DEBUG ! Activates all ASSERT conditions

SCAN array WHILE ™™ ' -> @pointer;

ASSERT 10 : LOCAL_CARRY_FLAG;

ILots of code

ASSERT 10 : LOCAL_CARRY_FLAG;

IMore code

ASSERT 20 : LOCAL_OVERFLOW_FLAG; ! $OVERFLOW routine tests for
1 arithmetic overflow

In Example 142 (page 201):

e If you change the assertion-1evel from 5 to 15, you nullity the two ASSERT statements
that specify assert -1 evel 10 and the LOCAL_CARRY_FLAG condition.

e If you change the assertion-1evel from 5 to 30, you nullify all the ASSERT statements.

If all ASSERT statements that cover a particular condition have the same assert - | evel , it is
easier o nullify specific levels of ASSERT statements.

Assignment

The assignment statement assigns a value to a previously declared variable.

variable e BXpression

WETINZ.ved

vari abl e

is the identifier of a simple variable, array element, simple pointer, structure pointer, or structure
data item, with or without a bit deposit field and/or index. To update a pointer’s content, prefix
the pointer identifier with @.

expr essi on
is either:

e An arithmetic expression of the same data type as vari abl e
e A conditional expression, which always has an INT result

expressi on can be a bit extraction value or an identifier prefixed with @ (the address of a
variable). expr essi on cannot be a constant list.

In general, the data types of vari abl e and expr essi on must match. To convert the data type
of expressi on to match the data type of vari abl e, use a type-transfer routine, described in
Chapter 15 (page 274).

Assignment 201

The following rules apply to assignment statements:

202 Statements

The data type of the expression on the right side of an assignment statement must be compatible
with the data type of the destination on the left side of the assignment statement.

You cannot store a value into the implicit pointer of an indirect array or indirect structure.

You cannot store a value into the implicit pointer of an equivalenced variable that references
the data of an indirect array or indirect structure.

Do not depend on whether the left side or the right side of an assignment statement is evaluated

first.

Address types must match.

pTAL disallows all assignments of unlike data types except the following:

o

STRING and UNSIGNED(1-16) variables are syntactically and semantically equivalent
to INT variables. Thus, STRING and UNSIGNED(1-16) variables are valid anywhere an
INT variable is valid.

An UNSIGNED(1-16) variable or one-byte STRING value that is used as an INT value is
left-filled with binary zeros. Conversely, the high-order bits of an INT value are lost if the
value is stored in an UNSIGNED variable that is less than 16 bits, or to a one-byte STRING
variable, as shown in the following examples:

INT i = 3;

STRING S;

UNSIGNED(12) ul;
UNSIGNED(24) u2;

S =i+ 1; I OK: Assignment of INT to STRING

i = s + %H20; ! OK: Assignment of STRING to INT

ul = 1 + s; I OK: INT + STRING

u2 = i; I ERROR: INT and UNSIGNED(17-31) are not
1

assignment-compatible

When an INT variable is assigned to a STRING variable, the upper 8 bits of the INT
variable are not retained in any way in the STRING variable. Thus, the comparison of
il to i2 in the final statement of the following code fails because 2 still holds the full
16 bits that were assigned to it at the beginning of the code, but 11 holds only the lower
8 bits. The upper 8 bits of 11 are not transferred to s in the assignment statement s :=

il.

INT i1 := %HFFFF,

i2;

STRING s;

i2 := il; I Copy il to i2

S = 1l; I Assign 16-bit INT to 8-bit STRING

il := s; I Assign 8-bit STRING to 16-bit INT

IF i1 = 12 THEN; I i1l (%HFF) is not equal to 12 (WHFFFF)

UNSIGNED(17-31) variables are syntactically and semantically equivalent to INT(32)
variables. Thus, UNSIGNED(17-31) variables are valid anywhere INT(32) variables are
valid:

INT(32) i;

UNSIGNED(31) uj;

INT J;

I :=u; ! OK: No bits are lost in assignment

u = 1i; ! WARNING: Most significant bit of i could
I be lost

u = j; T ERROR: INT and UNSIGNED(17-31) are not
1

assignment-compatible

Topics:

e Pointer Assignment (page 203)

e Assigning Numbers to FIXED Variables (page 203)
e Assigning Character Strings (page 203)

e Examples (page 203)

Pointer Assignment

The result of applying an @ operator to a variable or pointer is an address whose data type is one
of the pTAL address types.

In an assignment statement, one of the following must be true:
e Both operands are the same address type.
e Neither operand is an address type.

You can use type-conversion built-in routines to convert some address types to other address types.
For more information:

Topic See ...

Type-conversion built-in routines Chapter 15 (page 274)
Converting addresses Chapter 5 (page 69)
Pointers Chapter 10 (page 161)

Assigning Numbers to FIXED Variables

When you assign a number to a FIXED variable, the system scales the value up or down to match

the f poi nt value. If the system scales the value down, you lose some precision depending on
the amount of scaling; for example:

FIXED(2) a;
a -= 2.348F; 1 System scales value to 2.34F

If the ROUND directive is active, the system scales the value as needed, then rounds the value
away from zero as follows:

(IF value < O THEN value - 5 ELSE value + 5) / 10
For example, if you assign 2.348F to a FIXED(2) variable, the ROUND directive scales the value
by one digit and then rounds it to 2.35F.

Assigning Character Strings

You can assign a character string to STRING, INT, or INT(32) variables.

It you assign a one-character string such as "A" to an INT simple variable, the system places the

value in the right byte of a word and 0 in the left byte. To store a character in the left byte, assign
the character and a space, as in:

np

If you assign a character string to a FIXED, REAL, or REAL(64) variable, the compiler issues a type
incompatibility error.

Examples

Example 143 Assignment Statements

INT array[0:2]; 1 Array
INT .ptr; 1 Simple pointer
REAL real_var; 1 REAL variable

Assignment 203

FIXED variable
Assign a value to array[2]
Assign address of array[1]
to ptr
Assign value of array[2]
to array[1l], to which ptr
points
Assign a REAL value to a
REAL variable
Convert a REAL value to FIXED
and assign to a FIXED variable

FIXED fixed var;
array[2] := 255;
@ptr := @array[1];

ptr = array[2];

real_var := 36.6E-3;

fixed_var := $FIX (real_var);

Assignment statements can assign character strings but not constant lists, so in Example 144
(page 204), the three assignment statements together store the same value as the one constant list
in the declaration.

Example 144 Assignment Statements Equivalent to a Constant List

INT .b[0:2] := [""ABCDEF']; ! Declare and initialize
I with constant list
b[0] :

b[1] :
b[2] :

TIRTT
L Ll
mo >
nmow

1:
ME
]

In Example 145 (page 204), the first assignment statement (which contains assignment expressions)
is equivalent to the three separate assignments that follow it.

Example 145 Assignment Statement With Assignment Expressions

INT intl;

INT Int2;

INT Int3;

INT var = 16;

intl := int2 = int3 := var; ! Assignment that contains
1 assignment expressions

var; 1 Separate assignments

var;

var;

intl :
int2 :
int3 :

Bit-Deposit Assignment

The bit deposit form of the assignment statement lets you assign a value to an individual bit or to
a group of sequential bits.

© o)

WETOAT vasd

vari abl e

is the identifier of a STRING or INT variable, but not an UNSIGNED(1-16) variable. vari abl e
can be the identifier of a simple variable, array element, or simple pointer (inside or outside
a structure).

left-bit
is an INT constant that specifies the leftmost bit of the bit deposit field.

For STRING variables, specify a bit number in the range 8 through 15. Bit 8 is the leftmost bit
in a STRING variable; bit 15 is the rightmost bit.

204 Statements

CALL

right-bit
is an INT constant specifying the rightmost bit of the bit deposit field. ri ght - bi t must be
equal to or greater than | ef t - bi t .

For STRING variables, specify a bit number in the range 8 through 15. Bit 8 is the leftmost bit
in a STRING variable; bit 15 is the rightmost bit.

expr essi on
is an INT arithmetic or conditional expression, with or without a bit field specification.

The bit deposit field is on the left side of the assignment operator (:=). The bit deposit assignment
changes only the bit deposit field. If the value on the right side has more bits than the bit deposit
field, the system ignores the excess high-order bits when making the assignment.

Specity the variable/bit-field construct with no intervening spaces as shown:

myvar .<0:5>

Do not use bit deposit fields to pack data. Instead, declare an UNSIGNED variable and specify
the appropriate number of bits in the bit field.

Examples:

1. The bit deposit assignment sets bits 3 through 7 of the word designated by x:

INT Xx;
X.<3:7> = %B11111;

2. The bit deposit assignment replaces bits <10> and <11> with zeros:

INT old = -1; I old = %b1111111111111111
old.<10:11> = 0; I old = %b1111111111001111

3. The bit deposit assignment sets bit <8>, the leftmost bit of strng, to O:

STRING strng := -1; ! strng %b11111111
strng.<8> := 0; 1 strng %b01111111

4. The value %577 is too large to fit in bits <7:12> of var. The system truncates %577 to %77
before performing the bit deposit:

INT var = %125252; ! var = %b1010101010101010
var.<7:12> = %577; ! %77 = %b0000000101111111
I var = %b1010101111111010
5. The bit deposit assignment replaces bits <7:8> of new with bits <8:9> of old:
INT new == -1; I new = %b1111111111111111
INT old = O; I old = %b0000000000000000
new.<7:8> = old.<8:9>; I new = %b1111111001111111

The CALL statement calls a procedure, subprocedure, or entry-point identifier and optionally passes
parameters to it.

In pTAL, a procedure’s formal and actual parameters either match if the data type of each formal
parameter and its corresponding actual parameter match exactly or match if the data type of the
actual parameter is converted according to the rules under Converting Between Address Types

(page 52).

» identifier l o

e T N0

param-name

param-pair

WETOIE vsd

CALL 205

identifier
is the identifier of a previously declared procedure, subprocedure, or entry-point identifier.

par am name

is a variable identifier or an expression that defines an actual parameter to pass to a formal
parameter declared in i denti fi er.

par am pai r
is an actual parameter pair o pass to a formal parameter pair declared ini denti fi er.
par am pai r has the form:

e |

WETOAE vsd

string

is an expression of the type STRING . or STRING .EXT.
engt h
is an INT expression that specifies the length, in bytes, of st ri ng.

Use the CALL statement to call procedures and subprocedures (but usually not functions).

To call functions, you usually use their identifiers in expressions. If you call a function by using a
CALL statement, the caller does not use the returned value of the function.

Actual parameters are value or reference parameters and are optional or required depending on
the formal parameter specification in the called procedure or subprocedure declaration (described
in Chapter 14 (page 246)). A value parameter passes the content of a location; a reference parameter
passes the address of a location.

Ina

CALL statement to a VARIABLE procedure or subprocedure or to an EXTENSIBLE procedure,

you can omit optional parameters in two ways:

You can omit parameters or parameter pairs unconditionally. Use an empty comma for each
omitted parameter or parameter pair up to the last specified parameter or parameter pair. If
you omit all parameters, you can specify an empty parameter list (parentheses with no commas)
or you can omit the parameter list altogether.

You can omit parameters or parameter pairs conditionally. Use the $OPTIONAL built-in routine
as described in Chapter 15 (page 274).

Atter the called procedure or subprocedure completes execution, control returns to the statement
following the CALL statement that calls the procedure or subprocedure.

206 Statements

Example 146 CALL Statement

PROC p (a, b, ©);

INT(32) a;
REAL b;
REAL(64) c;
BEGIN
END;
PROC q;
BEGIN
CALL p(1.0EO, ! ERROR: Cannot pass REAL to INT(32)
1D, I ERROR: Cannot pass INT(32) to REAL
1F); 1 ERROR: Cannot pass FIXED to REAL(64)
END;

CASE

The CASE statement executes a choice of statements based on a selector value. Normally, you use
labeled CASE statements. Labeled CASE statements are described first, followed by unlabeled
CASE statements.

If a case index does not match any alternative, an instruction trap occurs.
Topics:

e Empty CASE (page 207)

e Labeled CASE (page 207)

e Unlabeled CASE (page 209)

Empty CASE

pTAL does not allow empty CASE statements. A CASE statement include at least one alternative,
even if there are no statements specified for that alternative.

Example 147 Empty CASE Statement

CASE i OF
BEGIN 1 In this unlabeled CASE statement,

: I the semicolon creates an alternative
END;

Labeled CASE

The labeled CASE statement executes a choice of statements when the value of the selector matches
a case label associated with those statements.

—p(CASE)—p-I seleclor]—>< OF)—)(BEGIN
I|'l‘llllllr

sel ect or

is an INT or INT (32) value arithmetic expression that uniquely selects the case- al t er nati ve
for the program to execute.

WETOA wad

CASE 207

case-alternative
associates one or more case- | abel s or one or more ranges of case- | abel s with one or
more st at ement s. The st at enent sof acase-al ternati ve are executed if sel ect or
equals an associated case- | abel . Each case- al t ernati ve has the form:

case-label | Pl -=
lowar-case-labal . upper-case-label

-

AT

.I Slalemant-‘l

WVETHZ ved

case- | abel
a signed INT constant or LITERAL. Each case- | abel must be unique in the CASE statement.
| ower - case- | abel
is the smallest value in an inclusive range of signed INT constants or LITERALs.
upper - case- | abel
is the largest value in an inclusive range of signed INT constants or LITERALs.
statenent-1
is any statement described in this section.
OTHERWISE
specifies an optional sequence of statements to execute if sel ect or does not select any
case-al ternati ve. If no OTHERWISE clause is present and sel ect or does not match
a case-al ternative, aruntime error occurs. Always include an OTHERWISE clause, even
if it contains no statements.
statenent -2
is any statement described in this section.
A CASE statement must have at least one alternative.
If you omit the OTHERWISE clause and sel ect or is out of range (negative or greater than n),
the a divide-by-zero instruction trap occurs.

A CASE index matches an alternative identified by the keyword OTHERWISE if and only if the
case index does not match any other alternative and OTHERWISE is an alternative.

Example 148 Labeled CASE Statement

LITERAL apple, orange, pear, peach, prune;

INT i;
i = peach; 1 Set index value
CASE 1 OF 1 Execute CASE
BEGIN
apple -> CALL p1;
orange -> CALL p2;
prune -> CALL p3;
OTHERWISE -> CALL p4; ! Execute this alternative
END;

Example 149 Labeled CASE Statement

INT location;
LITERAL bay area, los_angeles, hawaii, elsewhere;
PROC area_proc (area_code);

INT area_code; 1 Declare selector as

208 Statements

BEGIN 1 formal parameter

CASE area_code OF 1 Selector is area_code
BEGIN
408, 415 ->
location := bay_area;
213, 818 ->
location := los_angeles;
808 ->
location := hawaii;
OTHERWISE ->
location := elsewhere;
END; 1 End CASE statement
END; 1 End area proc

Unlabeled CASE

The unlabeled CASE statement executes a choice of statements, based on an inclusive range of
implicit selector values, from O through n, with one statement for each value.

4@_4 salactor I—p(OF h

(*(BEGN } >

OTHERWISE

o END }

statement-2

WETIMD v

sel ector
is an INT or INT (32) arithmetic expression that selects the statement to execute.

statenent-1
is any statement described in this section. Include a st at enent - 1 for each value in the
implicit sel ect or range, from O through n. If a sel ect or has no action, specify a null
statement (semicolon with no statement). If you include more than one st at enent - 1 for a
value, you must use a compound statement.

OTHERWISE

indicates the statement to execute for any case outside the range of sel ect or values. If the
OTHERWISE clause consists of a null statement, control passes to the statement following the
unlabeled CASE statement.

statenment - 2
is any statement described in this section. Include a st at enent - 2 for each value in the
implicit sel ect or range, from O through n. If a sel ect or has no action, specify a null
statement (semicolon with no statement). If you include more than one st at enent - 2 for a
value, you must use a compound statement.

The compiler numbers each st at ement in the BEGIN clause consecutively, starting with O. If the
sel ect or matches the compiler-assigned number of a st at enent , that st at enent is executed.
For example, if the sel ect or is O, the first st at ement executes; if the sel ect or is 4, the
fith st at enent executes. Conversely, if the sel ect or does not match a compiler-assigned
number, the OTHERWISE st at enent , if any, executes.

The index of an unlabeled CASE statement and the selector of a labeled CASE statement can be
INT(32) expressions.

CASE 209

Example 150 Unlabeled CASE Statement

INT(32) i:
CASE i OF
BEGIN
END;
CASE i OF
BEGIN
0-> ...
1-> ...
END;

If you omit the OTHERWISE clause and sel ect or is out of range (negative or greater than n),
a divide-by-zero instruction trap occurs.

Example 151 Unlabeled CASE Statement

INT selector;

INT varO;
INT varl;
CASE selector OF
BEGIN

varO := 0; 1 Executes if selector=0

varl = 1; 1 Executes if selector=1

OTHERWISE

CALL error_handler; ! Executes if selector is not O or 1

END;

Example 152 (page 210) selectively moves one of several messages into an array.

Example 152 Unlabeled CASE Statement Assigning Text to Array

PROC msg_handler (selector);
INT selector;

BEGIN
LITERAL len = 80; 1 Length of array
STRING .a_array[O:len - 1]; ! Destination array
CASE selector OF
BEGIN 1 Move statements

10! a_array
111 a_array
121 a_array
131 a_array

"Training Program";

"End of Program";

"Input Error";

"Home Terminal Now Open™;

OTHERWISE
a_array ":=" "Bad Message Number™;
END; I End of CASE statement
END; 1 End of procedure

DO-UNTIL

The DO-UNTIL statement is a posttest loop that repeatedly executes a statement until a specified
condition becomes true.

h.f- it
—»@ > UNTIL)_>| condition |—p-
slatement

WETOAG sl

st at ement
is any statement described in this section.

210 Statements

condi tion
is either:
e A conditional expression

e AnINT, INT(32), or FIXED arithmetic expression. If the result of the arithmetic expression
is not O, condi ti on is true. If the result is O, condi ti on is false.

If condi ti on is false, the DO-UNTIL statement continues to execute. If condi ti on is true,
the statement following the DO-UNTIL statement executes.

A DO-UNTIL statement always executes at least once (unlike the WHILE (page 232)).

In Example 153 (page 211), the DO-UNTIL statement loops through array_a, testing the content
of each element until an alphabetic character occurs.

Example 153 DO-UNTIL Statement

index := -1;
DO index := index + 1 UNTIL $ALPHA (array_a[index]);

In Example 154 (page 211), the DO-UNTIL statement loops through array_a, assigning a O to
each element until all the elements contain a 0.

Example 154 DO-UNTIL Statement

LITERAL limit = 9;
INT index := O;
STRING .array_a[O:limit];y

DO
BEGIN 1 Compound statement to execute in
array_a[index] := 0; ! DO loop
index := index + 1;
END
UNTIL index > limit; 1 Condition for ending loop

The conditional expression cannot reference hardware indicators (<, <=, =, <>, >, >=, '<', '<=,
'=!, <!, S, >=!, SOVERFLOW, and $CARRY). Only IF statements can test hardware indicators.
For more information, see Chapter 13 (page 234).

To use a hardware indicator’s value to control a DO-UNTIL loop, save the hardware indicator’s
value and either fest the saved value (as in Example 155 (page 212)) or execute an explicit GOTO
statement to exit the loop (as in Example 156 (page 212)). Hardware indicators cannot appear in
the conditional expression of a DO-UNTIL statement.

DO-UNTIL 211

DROP

Example 155 DO-UNTIL Statement With Hardware Indicator

INT exit_loop;

é;<it_loop = FALSE;

DO
BEGIN
READ(. ..):
IF <> THEN exit_loop := TRUE;
END

UNTIL exit_loop;

Example 156 DO-UNTIL Statement With GOTO Statement

DO
BEGIN

READ(...);
IF <> THEN GOTO out;
END
UNTIL false;
out:

The DROP statement removes either a label (from the symbol table) or a temporary variable that
was created by the statement USE (page 232).

DROP identifier
ElEs

WETDAT. wad

identifier
is the identifier of either a label or a temporary variable.

Dropping Labels

You can drop a label only if you have already declared the label or used it to label a statement.
Before you drop a label, be sure there are no further references to the label. If a GOTO statement
refers to a dropped label, a run-time error occurs. After you drop a label, you can, however, use
the identifier to label a statement preceding the GOTO statement that refers to the label.

Dropping Temporary Variables

FOR

When you no longer need a temporary variable, drop (remove) it by using a DROP statement.
After you drop a temporary variable, do not use its identifier without using a new USE statement
to assign a value to the temporary variable.

It you do not drop all temporary variables, the compiler automatically drops them when the
procedure or subprocedure completes execution.

If you reserve an temporary variable for a FOR loop, do not drop the temporary variable within
the scope of the loop.

The FOR statement is a pretest loop that repeatedly executes a statement while incrementing or
decrementing an index automatically.

212 Statements

m e initiakvalue O Timit

DOWNTO

.
»

.),

i ndex
is a value that increments or decrements automatically.

WETD4A el

In Standard (page 214), i ndex is the identifier of an INT or INT(32) simple variable, array element,
simple pointer, or structure data item.

In Optimized (page 214), i ndex is the identifier of an index register you have reserved with the
USE (page 232).

initial-val ue

is an arithmetic expression (such as 0) that initializes i ndex. Ifi ndex isINT, i ni ti al -val ue
is INT. If i ndex is INT(32), i ni ti al -val ue is INT(32).

TO

increments i ndex each time the loop executes until i ndex is greater than or equaltol i m t,
at which point the loop stops.

DOWNTO

decrements i ndex each time the loop executes until i ndex is less than or equal to i i t,
at which point the loop stops.

[imt
is an arithmetic expression that terminates the loop. If i ndex is INT, i ni ti al - val ue is
INT. If i ndex is INT(32), i ni ti al -val ue is INT(32).

step

is an arithmetic expression by which to increment or decrement i ndex each time the loop
executes. If i ndex is INT, then st ep is INT; otherwise, i ndex is INT(32). The default is 1.

st at ement
is any statement described in this section.

The FOR statement fests i ndex at the beginning of each iteration of the loop. If i ndex exceeds
limt on the first test, the loop never executes.

Topics:
e Nested (page 213)
e Standard (page 214)

e Optimized (page 214)
Nested

You can nest FOR statements to any level.

The nested FOR statement in Example 157 (page 214) uses multiples as a two-dimensional
array. It fills the first row with multiples of 1, the next row with multiples of 2, and so on.

FOR 213

Example 157 Nested FOR Statement

INT .multiples[0:10*10-1];
INT row;
INT column;
FOR row = 0 TO 9 DO
FOR column = 0 TO 9 DO
multiples [row * 10 + column] := column * (row + 1);

Standard

For i ndex, standard FOR statements specify an INT or INT(32) variable. Standard FOR statements
execute as follows:

e When the looping terminates, i ndex is greater than I'i mi t if:
o The step valueis 1.
> You use the TO keyword (not DOWNTO).
o Thelimt value (not a GOTO statement) terminates the looping.
e limt andstep are recomputed at the start of each iteration of the statement.

The standard FOR statement in Example 158 (page 214) uses the DOWNTO clause to reverse a
string from "BAT" to "TAB".

Example 158 Standard FOR Statement

LITERAL len = 3;
LITERAL limit = len - 1;
STRING .normal_str[O:limit] := "BAT";
STRING .reversed_str[O:limit];
INT index;
FOR index := limit DOWNTO O DO
reversed_str[limit - index] := normal_str[index];

Optimized

For i ndex, an optimized FOR statement specifies a temporary variable created by the statement
USE (page 232). Optimized FOR statements execute faster than standard FOR statements because
limit is computed only once, at the start of the first iteration of the statement.

Example 159 Standard and Optimized FOR Statements

INT x;
INT vy;
INT PROC T;
BEGIN
X =X + 1;
RETURN 10;
END;
INT PROC p1; 1 pl has standard FOR statement
BEGIN
INT i;
X = 0;
FOR 1 :=1 to fQO DO ... ; I f is called 10 times
1 1=11 here
RETURN Xx; I pl returns 10
END;
INT PROC q;
BEGIN
X =y + 1;

214 Statements

RETURN 10;

END;
INT PROC p2; 1 p2 has optimized FOR statement
BEGIN

USE 1i;

y 1= 0;

FOR 1 :=1toq() DO ... ; 1 q is called 1 time

1 1=10 here

RETURN Xx; I p2 returns 1

END;

GOTO

The GOTO statement unconditionally transfers control to a labeled target statement.

—><G(:-To>_>| label-name |_>

WET4D.

| abel - name
is the label that precedes the target statement (see Labels in Procedures (page 273)).

A GOTO statement can be either local or nonlocal.

Topics:

e local (page 215)

e Nonlocal (page 215) (not recommended)

e GOTO and Target Statements With Different Trapping States (page 216)

Local
If the GOTO statement and the target statement are in the same procedure or in the same
subprocedure, the GOTO statement is local.
Example 160 Local GOTO Statement
PROC p
BEGIN
LABEL calc_a; 1 Declare local label
INT a;
INT b := 5;
calc_a : 1 Place label at local statement
a:=b*2;
1 Lots of code
GOTO calc_a; 1 Local branch to local label
END;
Nonlocal

NOTE: Nonlocal GOTO statements are inefficient and not recommended.

If the GOTO statement is in a subprocedure and the target statement is in the enclosing procedure,
the GOTO statement is nonlocal.

Example 161 Nonlocal GOTO Statement

int global_var;
proc p;
begin

GOTO 215

int i;

label L1;

int subproc s (X);
int (X);

begin
label L2:
if x = 0 then goto L1; 1 Nonlocal goto
if x > 10 goto L2; ! Local goto
return 1;
L2: return Xx;

end;

i := s (global_var);

if i <> 1 then goto L1; 1 Local goto
! Processing occurs here
L1:

end;

GOTO and Target Statements With Different Trapping States

A GOITO statement, local or nonlocal, must have the same trapping state as its target statement.

Example 162 Local GOTO and Target Statements That Have Different Trapping States

proc p nooverflow_traps;

begin
subproc s overflow_traps;
begin
goto L1; ! lllegal trapping states differ
end;
L1:
end;

It a GOTO statement and the target statement are in different BEGIN-END blocks:

e You must declare the target label in a LABEL declaration in the containing procedure.

NOTE: LABEL is an invalid data type for a formal parameter. You cannot pass a label as
an actual parameter.

e Overflow trapping must be enabled in both blocks or disabled in both blocks. The respective
overflow trapping states can be established by compiler directive, by procedure attribute, or
by BEGIN-END block attribute.

e A GOITO statement in a BEGIN-END block that does not specify a block-level trapping attribute
cannot branch to a label in a BEGIN-END block in which a block-level trapping attribute is
specified.

The compiler uses attributes on BEGIN-END blocks to determines whether a GOTO within one
BEGIN-END block can branch to a label in another BEGIN-END block.

For more information, see Chapter 13 (page 234).

Example 163 Nonlocal GOTO and Target Statements That Have Different Trapping States

PROC p OVERFLOW_TRAPS;

BEGIN

INT 1 = O;
label _a: 1 Overflow traps are enabled at label_a
i =1+ 1;
IF i < 10 THEN

GOTO label_a 1 OK: Traps enabled here and at label _a
ELSE

BEGIN:ENABLE_OVERFLOW_TRAPS

GOTO label_a; 1 OK: Branch from block with traps

216 Statements

IF 1 <> 1 THEN ! specified
BEGIN
label_b: __.
END;
END;
BEGIN:DISABLE_OVERFLOW_TRAPS
GOTO label _b; 1 ERROR: Cannot branch between blocks

END; 1 that have different trapping states
BEGIN
GOTO label _b; 1 ERROR: Cannot branch from a BEGIN-END
END; 1 block that does not specify a trapping
END; 1 attribute to a BEGIN-END block that

1 does

The IF statement conditionally selects one of two statements to execute.

—p(IF)-p[conainm I—p(THEN)
E..(@

condi tion
is either:

VBTG wad

e A conditional expression whose value has 16 bits

e AnINT, INT(32), or FIXED arithmetic expression. If the result of the arithmetic expression
is not O, condi ti on is true. If the result is O, condi ti on is false.

statenent-1

specifies the statement to execute if condi ti on is true. st at enent - 1 can be any statement
described in this section. If you omit st at ement - 1, no action occurs for the THEN clause.

statenent-2

specifies the statement to execute if condi ti on is false. st at ement - 2 can be any statement
described in this section.

If the condi ti on is true, st at ement - 1 executes. If the condi ti on is false, st at enent - 2
executes. If no ELSE clause is present, the statement following the IF statement executes.

Example 164 (page 217) compares two arrays.

Example 164 IF Statement

INT .new_array[0:9];
INT .old _array[0:9];
INT item ok;
IF new_array
item ok =1
ELSE
item ok := 0;

old_array FOR 10 WORDS THEN

You can nest IF statements to any level.

IF 217

Topics:
e Testing Address Types (page 218)
e Testing Hardware Indicators (page 218)

Testing Address Types
An IF statement can test the following as if they were Boolean values:
e Any 16-bit-compatible value:
o INT
o STRING
- UNSIGNED(116)

e All addresstyped variables except:

o CBADDR
o CWADDR
o PROCADDR

o PROC32ADDR
o PROC64ADDR

NOTE: The procedure address types, PROC32ADDR, and PROC64ADDR are available in
the 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Testing Hardware Indicators

pTAL does not have the hardware indicators—the overflow bit, the carry bit, or the condition
codes—that TAL has. Instead, the compiler emits code that supports the $OVERFLOW, $CARRY,

and condition code test operators (<, >, =, <=, >=, <>,'<', '>', '=', '<=', '>=', '<>').

For more information, see Chapter 13 (page 234).

Move

A move statement copies a block of data from one location in memory to another. You specify the
number of bytes, words, or elements to copy in the move statement. With PVYU T9248AAD, you
can move any variable up to the current maximum allowed size for any object on a TNS/R platform
of 127.5 megabytes.

A value parameter cannot be the target of a move statement.

218 Statements

[}~

m
)
F 3

source l—p(FOR)_pl count I) >

constant

.
@—b constant

-

Ll

constant-list

WETOG wad

destination

the identifier, with or without an index, of the variable to which the copy operation begins. It
can be a simple variable, array, simple pointer, structure, structure data item, or structure
pointer, but not a read-only array.

specifies a left-to-right sequential move. It starts copying data from the lefimost item in sour ce.

specifies a right-to-left sequential move. It starts copying data from the rightmost item in sour ce.
source

the identifier, with or without an index, of the variable from which the copy operation begins.
It can be a simple variable, array, read-only array, simple pointer, structure, structure data
item, or structure pointer.

count

is an unsigned INT arithmetic expression that defines the number of units in sour ce to copy.
If you omit count - uni t, the units copied (depending on the nature of the sour ce variable)

are:
Source Variable Data Type Units Copied
Simple variable, array, simple STRING Bytes
pointer (including structure item) INT Words
INT(32) or REAL Doublewords
FIXED or REAL(64) Quadruplewords
Structure Not applicable Words
Substructure Not applicable Bytes
Structure pointer STRING Bytes
INT Words
count - uni t

is the value BYTES, WORDS, or ELEMENTS. count - uni t changes the meaning of count
from that described previously to the following:

BYTES Copies count bytes. If both sour ce and dest i nati on have word addresses,
BYTES generates a word move for (count + 1) / 2 words.
WORDS Copies count words. (WORDS is 16 bits)

Move 219

ELEMENTS Copies count elements as follows (depending on the nature of the sour ce variable):

Source Variable Data Type Units Copied

Simple variable STRING Bytes

Array INT Words

Simple pointer (including INT(32) or REAL Doublewords

structure item) FIXED or REAL(64) Quadruplewords
Structure Not applicable Structure occurrences
Substructure Not applicable Substructure occurrences
Structure Pointer (STRING ~ STRING Structure occurrences

and INT have meaning INT
only in group comparison
expressions and move
statements.)

If count - uni t is not BYTES, WORDS, or ELEMENTS, the compiler issues an error. If you
specify BYTES, WORDS, or ELEMENTS for count - uni t, that term cannot also appear as a
LITERAL or DEFINE identifier in the global declarations or in any procedure or subprocedure
in which the move statement appears.

const ant
is @ numeric constant, a character string constant, or a LITERAL to copy.

If you enclose const ant in brackets ([]) and if desti nati on has a byte address or is a
STRING structure pointer, the system copies const ant as a single byte regardless of the size
of const ant . If you do not enclose const ant in brackets or if dest i nati on has a word
address or is an INT structure pointer, the system copies a word, doubleword, or quadrupleword
as appropriate for the size of const ant .

constant-1i st
is a list of constants to copy. Specity const ant - 1i st in the form shown in Chapter 3
(page 46).

next - addr

is a variable to contain the location in desti nati on that follows the last item copied. The
compiler returns a 16-bit, 32-bit, or 64-bit address as described in “Usage Considerations” |
that follows.

is the concatenation operator. It lets you move more than one sour ce or constant-1i st,
each separated by the concatenation operator.

Usage Considerations |
The following rules apply to using MOVE statements:
e A value parameter cannot be the target of a move statement.

e The compiler reports a warning if it can determine that there are more bytes in the source of
the move than in the destination of the move (see Destination Shorter Than Source (page 222)).

e Builtin routines, $FILL8, $FILL16, and $FILL32, fill an array with repetitions of the same 8-bit,
16-bit, or 32-bit data, respectively (see $FILL8, $FILL16, and $FILL32 Statements (page 222)).

o If the type of address specified as the next - addr is an extended address, it must be able to
safely store the address value. For example,

220 Statements

Example 165

INT _EXT ea;
INT _EXT64 eb64a;
INT _EXT64 n64a;
INT _EXT na;

e6d4a -
e6da “

> ea FOR 10 words -> @n64a; ! OKAY
ea FOR 10 words -> @na; I Error: can’t store an address
1 of type EXT64ADDR in a variable of type EXTADDR

Example 166 (page 221) copies spaces into the first five elements of an array and then uses
next - addr as destination to copy dashes into the next five elements.

Example 166 MOVE Statement Copying to an Array

LITERAL len 10;

LITERAL num = 5;

STRING .array[O:len - 1];
STRING .next_addr; Next address simple pointer
array[0] ":=" num * [@next_addr;

1 Do First copy and capture next-addr

next_addr ":=" num * ["-"];

1 Use next-addr as start of second copy

Length of array
Number of elements
Destination array

|
VT

Example 167 (page 221) contrasts copying a bracketed constant with copying an unbracketed
constant. A bracketed constant copies a single byte regardless of the size of the constant. An
unbracketed constant copies words, doublewords, or quadruplewords depending on the size of
the constant.

Example 167 MOVE Statement Copying Bracketed and Unbracketed Constants

STRING x[0:8];
X[0] ":=" [0]; ! Copy one byte
x[0] ":=" O; 1 Copy two bytes

Example 168 MOVE Statement Copying From One Structure to Another

LITERAL copies = 3; I Number of occurrences
STRUCT .s[O:copies - 1]; 1 Source structure
BEGIN

INT a, b, c;
END;
STRUCT .d (s) [O:copies - 1]; 1 Destination structure
PROC p;
BEGIN

d ":=" s FOR copies ELEMENTS; ! Word move of three
END; 1 structure occurrences

Example 169 MOVE Statement Copying a Substructure

LITERAL copies = 3; I Number of occurrences
STRUCT .s;
BEGIN
STRUCT s_sub[O:copies - 1]; ! Source substructure
BEGIN
INT a, b;
END;
END;
STRUCT .d (s); 1 Destination substructure

I iIs within structure d

PROC p;

Move 221

BEGIN
d.s sub ":=" s.s sub FOR copies ELEMENTS; IByte move of three
END; 1 substructure
1 occurrences

Destination Shorter Than Source

The compiler reports a warning when it can detect that there are more bytes in the source of a
move than in the destination of the move. For example, if the number of bytes to move is a constant
or constant expression whose value is larger than the number of bytes in the destination. The
compiler does not report a warning if the destination is:

e A global variable
e A reference parameter
e An array or an element of an array

If the number of bytes to move is a dynamic expression, the compiler reports a warning only if the
number of bytes in the source is greater than the number of bytes in the destination. It cannot detect
whether the number of bytes to move is too large.

Example 170 MOVE Statement With Destination Shorter Than Source

INT g;
INT(32) m;
PROC p(r);
INT .r;
BEGIN
FIXED T;
INT n[0:9];
INT i;
g ":=" ¥ FOR 8 BYTES; ! OK: g is global
n ":=" m FOR 8 BYTES; ! OK: n is an array
n[3] ":=" m FOR 8 BYTES; ! OK: n is an array element
r ":=" m FOR 8 BYTES; ! OK: r is a reference param
i ":=" m FOR 8 BYTES; ! Warning
END;

$FILL8, $FILL16, and $FILL32 Statements
pTAL provides the built-in routines $FILL8, $FILL16, and $FILL32, which fill a data area with

repetitions of the same 8-bit, 16-bit, or 32-bit value, respectively. This operation is sometimes
referred to as a “smear.”

Example 171 FILL16 Statement

$FILL16(a, a _size, 0);

For more information, see $FILL8, $FILL16 and, $FILL32 in Chapter 15 (page 274).

222 Statements

Variables (including structure data items) are byte addressed or word addressed as follows:

Byte addressed e STRING simple variables
e STRING arrays
* Variables to which STRING simple pointers point
e Variables to which STRING structure pointers point

o Substructures

Word addressed e INT, INT(32), FIXED, REAL, or REAL(64) simple variables
e INT, INT(32), FIXED, REAL, or REAL(64) arrays
e Variables to which INT, INT(32), FIXED, REAL, or REAL(64) simple pointers point
e Variables to which INT structure pointers point

e Structures

After a move, next - addr might point to the middle of an element, rather than to the beginning
of the element. If dest i nati on is word addressed and sour ce is byte addressed and you
copy an odd number of bytes, next - addr will not point to an element boundary.

RETURN

A RETURN statement causes a procedure or function to return control fo its caller. When you return
from a function, the RETURN statement also specifies a value to return to the function’s caller.

NOTE:

e In the discussion of the RETURN statement, the word “procedure” implies both procedures
and subprocedures but not functions.

e The EpTAL compiler issues a warning whenever a pTAL procedure returns both a
resul t - expressi on and acc- expressi on and has the procedure attribute RETURNSCC
(see Procedure Attributes (page 248)). The reason for this warning is in Appendix D (page 528).

—»{ RETURN }
vy

v

Co-Bxprassion l

result-expression

. CC~BXprassion

WETOS2 vad

CC- expression
is an INT expression whose numeric value specifies the condition code value to return to the

caller:

Value of cc-expression The condition code is set to ...
Less than O Less than (<)

Equal to O Equal (=)

Greater than 0O Greater than (>)

Specify cc- expr essi on in RETURN statements only in functions and procedures that specify
the attribute RETURNSCC (see Procedure Attributes (page 248)).

RETURN 223

resul t-expressi on

is an arithmetic or conditional expression that a function must return to the caller.

resul t - expressi on must be of the same return type as the data type specified in the
function header. The data type of a conditional expression is always INT. Specify

resul t - expressi on only when returning from a function.

If resul t - expression is any type except FIXED or REAL(64), a function can return both
resul t - expressi on and cc-expression.

Topics:

e Functions (page 224)

e Procedures and Subprocedures (page 225)
e Condition Codes (page 225)

Functions

Every function must include at least one RETURN statement. The compiler does not verify that every
path through a function’s code includes a RETURN statement; therefore, a function can reach the
end of its code without executing a RETURN statement. If this happens, the function returns zero.

Functions that return a condition code that is not based on the value returned by the function must
specify explicitly the condition code value to return to the function’s caller.

Example 172 RETURN Statements Nested in an IF Statement

INT PROC other (nuff, more); ! Function with return type INT

INT nuff;
INT more;
BEGIN
IF nuff < more THEN 1 |F statement
RETURN nuff * more I Return a value
ELSE
RETURN O; I Return a different value
END;

Example 173 RETURN Statement That Returns a Value and a Condition Code

INT PROC p (i);

INT i;
BEGIN

RETURN i, 1 - max_val; ! Return a value and a condition code
END;

If you call a function, rather than calling it in an expression, you can test the returned condition
code, as Example 174 (page 224) does.

Example 174 Testing a Condition Code

INT PROC pl (i);
INT i;

BEGIN
RETURN i

END;

INT PROC p2 (i);
INT i;
BEGIN
INT j :=
RETURN i, j;
END;

224 Statements

CALL p1 (i);

IF < THEN ... ; ! Test return value
CALL p2 (i);
IF < THEN ... ; ! Test condition code

Procedures and Subprocedures

In procedures and subprocedures that are not functions, a RETURN statement is optional. A
nonfunction procedure or subprocedure that returns a condition code value, however, must return
to the caller by executing a RETURN statement that includes cc- expr essi on.

In a procedure designated MAIN, a RETURN statement stops execution of the procedure and
passes control to the operating system.

Procedures that return a condition code must specify explicitly the value of the condition code to
return to the procedure’s caller. In general, a procedure or subprocedure returns control to the
caller when:

e A RETURN statement is executed.

e The called procedure or subprocedure reaches the end of its code.

Example 175 RETURN Statement in a Procedure

PROC something;
BEGIN
INT a,
b;
1 Manipulate a and b
IF a < b THEN
RETURN; I Return to caller
1 Lots more code
END;

The procedure in Example 176 (page 225) returns a condition code that indicates whether an add
operation overflows.

Example 176 RETURN Statement in a Procedure That Returns a Condition Code

PROC p (s, X, Yy) RETURNSCC;

INT .s, X, Vy;
BEGIN

INT cc_result;

INT i;

i = X +vVy;

IF $OVERFLOW THEN cc_result = 1

ELSE cc_result := 0;

S = 1;

RETURN cc_result; ! If overflow, condition code is >;
END; 1 otherwise, it is =

Condition Codes

A procedure (but not a function) returns a condition code only if the procedure declaration includes
the RETURNSCC attribute. The compiler reports an error if a procedure attempts to test the condition
code after calling a procedure that does not specify RETURNSCC.

RETURN 225

Example 177 Procedure Without RETURNSCC

PROC p;
BEGIN
END;
PROC q;
BEGIN
CALL p;
IF < THEN ... I ERROR: p did not return a condition code
1 or a return value

END;

Example 178 (page 226) is similar to Example 177 (page 226), but is syntactically correct because
p specifies RETURNSCC and returns a condition code value.

Example 178 Procedure With RETURNSCC

PROC p RETURNSCC;
BEGIN
INT i;

RETURN 1i;
END;

PROC q;
BEGIN

CALL p;

IF < THEN ... ! OK: p returns a condition code
END;

Functions that do not specify RETURNSCC return a condition code that is based on the numeric
value returned by the function, regardless of the nature of the expression in the RETURN statement.

Example 179 Function Without RETURNSCC
INT PROC p(i);

INT i;
BEGIN
RETURN IF 1 = 0 THEN -1 I Returns a condition code
ELSE IF 1 = 1 THEN O ! based on the value returned
ELSE 1
END;

Functions can return a condition code that is independent of the value returned by the function, as
follows:

e The function declaration must specify the RETURNSCC attribute.

e Each RETURN statement in the function must specify the value of the condition code.

226 Statements

Example 180 Function With RETURNSCC

INT i;
BEGIN
INT cc_result;

cc_result :=
IF 1 < max _val THEN -1
ELSE
IF i =
ELSE 1;
RETURN i,
END;

max_val THEN O

cc_result; ! Return a function value and a
1 condition code that indicates
1 whether the function value is
1 less than, equal to, or

]

greater than some maximum

NOTE: The EpTAL compiler issues a warning whenever a pTAL procedure returns both a traditional
function value and a condition code value. For details, see Appendix D (page 528).

A function or procedure that specifies RETURNSCC must include cc- expr essi on on every
RETURN statement. Conversely, specify cc- expr essi on in RETURN statements only in functions
and procedures that specify RETURNSCC.

You can test the condition code returned by a function, even if you call the function in a CALL
statement.

Example 181 Condition Code Returned by Function Called by CALL Statement

INT PROC pl1(i);

INT i;

BEGIN
RETURN 1i;

END;

INT PROC p2(i) RETURNSCC;

INT i;

BEGIN
INT j
RETURN i, j;

END;

CALL p1(1);

IF < THEN ...

CALL p2(1);

IF < THEN ...

i+ 1;

NOTE: The EpTAL compiler issues a warning whenever a pTAL procedure returns both a traditional
function value and a condition code value. For details, see Appendix D (page 528).

RETURN 227

Example 182 Condition Code Based on Numeric Value

INT PROC p(i);

INT i;
BEGIN

ééfURN i; ! Return i and set the condition code
END; 1 based on the numeric value of i

Example 183 Condition Code That Is Independent of the Function’s Value

INT PROC p(i) RETURNSCC;

INT i;
BEGIN

ééfURN i, F(i); ! Return the value of i and set the
END; 1 condition code according to the

1 value returned by function f

NOTE: The EpTAL compiler issues a warning whenever a pTAL procedure returns both a traditional
function value and a condition code value. For details, see Appendix D (page 528).

Example 184 Invalid Function That Attempts to Return an Explicit Condition Code

INT PROC p(i);
INT i;
BEGIN

ééfURN i, F(i); ! ERROR: Cannot specify an explicit
END; 1 condition code because procedure
1 header does not specify RETURNSCC

SCAN and RSCAN

The SCAN and RSCAN statements search a scan area for a test character from left to right or from
right to left, respectively.

The scan variable in an RSCAN or SCAN statement can be a pointer declared with the .EXT, .
EXT32, or .EXT64 indirection symbol.

NOTE: The “Indirection Symbols” (page 41), .EXT32 and .EXT64 are available in the 64-bit
addressing functionality added to the EpTAL compiler starting with SPR TO561HO1"AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

-SCAN variable WHILE
N

[

WITOSS ved

SCAN

indicates a left-to-right search.
RSCAN

indicates a right-to-left search.

228 Statements

vari abl e
is the identifier, with or without an index, of a variable at which fo start the scan. The following
restrictions apply:

e The variable can be a simple variable, array, read-only array, simple pointer, structure
pointer, structure, or structure data item.

e The variable can be of any data type but UNSIGNED.
e The variable cannot have extended indirection.

WHILE
specifies that the scan continues until a character other than t est - char occurs or until a O
occurs. A scan stopped by a character other than t est - char resets SCARRY. A scan stopped
by a O sets $CARRY.

UNTIL
specifies that the scan continues either until t est - char occurs or until a O occurs. A scan
stopped by t est - char resets the hardware carry bit. A scan stopped by a O sets the hardware
carry bit.

test-char
is an INT arithmetic expression whose value is a maximum of eight significant bits (one byte).
A larger value might cause execution errors.

next - addr

is a variable of address type BADDR, SGXBADDR, SGBADDR, EXTADDR, EXT32ADDR, or
EXT64ADDR. If the source for the scan uses standard (non-extended) addressing, the next-address
variable must have the type BADDR.

NOTE: The address types, EXT32ADDR and EXT64ADDR are available in the 64-bit addressing
functionality added to the EpTAL compiler starting with SPR TO561HO1*AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

Delimit the scan area with zeros; otherwise, a scan operation might continue to pass all valid data
if either:

e A SCAN UNTIL operation does not find a zero or the test character.
e A SCAN WHILE operation does not find a zero or a character other than the test character.

To delimit the scan areq, you can specify zeros as follows:

INT _buffer[-1:10] := [0," John James Jones ',0];

Example 185 (page 229) converts the word address of an INT array to a byte address. The
assignment statement stores the resulting byte address in a STRING pointer. The SCAN statement
then scans the bytes in the array until it finds a comma.

Example 185 SCAN UNTIL Statement

INT .words[-1:3] :
STRING .byte ptr :

[0,"Doe, J",0];

@words[0] "<<" 1; ! Initialize with byte
1 address of words[0]

SCAN byte ptr[0] UNTIL **,"; 1 Scan bytes in words

Topics:

e Determining What Stopped a Scan (page 230)
e Extended Pointers (page 230)

e Crossing Variable Boundaries (page 230)

e P-Relative Arrays (page 231)

SCAN and RSCAN 229

Determining What Stopped a Scan

To determine what stopped a scan, test SCARRY in an IF statement immediately after the SCAN
or RSCAN statement.

Example 186 Determining What Stopped a Scan

IF $CARRY THEN ... ; 1 If test character not found
IF NOT $CARRY THEN ... ; ! If test character found

If $CARRY is true after a SCAN UNTIL, the test character did not occur. If $CARRY is true after
SCAN WHILE, a character other than the test character did not occur.

To determine the number of multibyte elements processed, divide (next - addr '-' byte address of
i dentifier)by the number of bytes per element using unsigned arithmetic.

For more information about $CARRY, see Chapter 13 (page 234).

Extended Pointers

Example 187 Extended Pointers in SCAN and RSCAN Statements

STRING .EXT eas;
STRING .EXT eat;
EXTADDR ea;

STRING .EXT32 e32as;
STRING .EXT32 e32at;
EXT32ADDR e32a;
STRING .EXT64 e64as;
STRING .EXT64 e64at;
EXT64ADDR eb64a;

SCAN eas until " " -> (@Qeat; I OK
SCAN eas until "™ " -> ea; 1 OK
SCAN e32as until " " -> @e32at; ! OK
SCAN e32as until " " -> e32a; 1 OK
SCAN e64as until " " -> @e64at; ! OK
SCAN e64as until "™ " -> eb4a; 1 OK

NOTE: EXT32ADDR, EXT64ADDR, .EXT32, and .EXT64 are é64-bit addressing functionality added
to the EpTAL compiler starting with SPR TO561HO1”AAP. For more information, see Appendix E,
“64-bit Addressing Functionality” (page 531).

Crossing Variable Boundaries

SCAN and RSCAN statements can access data contained within single named variables or arrays
as long as the scan encounters either the target character specified in the SCAN or RSCAN
statement or a O byte before it reaches the end of the named variable or array.

SCAN and RSCAN statements that depend on accessing data that precedes or follows the variable
named in the SCAN or RSCAN statement do not work.

Topics:
e Data Layout Considerations (page 231)

e Data Passed to Procedures in Reference Parameters (page 231)

230 Statements

Data Layout Considerations

Example 188 Scanning Adjacent Fields Within a Structure

STRUCT s FIELDALIGN(SHARED2);
BEGIN
STRING buffer[0:99];
STRING stopper;
END;
BADDR end_addr;

é:étopper = 0;

SCAN s.buffer UNTIL char -> end_addr;

IF end_addr = @s.stopper THEN ! Target character was not found
BEGIN

END:

Data Passed to Procedures in Reference Parameters

The rules in of the preceding subsection about data layouts apply if the buffer scanned in a SCAN
statement is a reference parameter.

P-Relative Arrays

The address type of pointers in a SCAN statement that scans a P-relative array must be CBADDR
or CWADDR.

When the SCAN statement in Example 189 (page 231) completes, t_start points to the first
character in the third message, and t_end points immediately after the last character in the third
message. The object data type of t_start and t_end is STRING; therefore, their address type
is BADDR.

Example 189 Scanning Data in a P-Relative Array

STRING s = "P" := 1 STRING P-relative array s
[1, "msgl.",
2, '"msg2.",
3, "msg3.",
0 1;
STRING .t_start, Start address of msg
.t _end; End address of msg
INT c = 3, Value to scan for in s
z = """ Value to stop the scan

Scan s for ¢ and store c"s
address iIn t_start

SCAN s UNTIL c ;>’@t_start;

@t_start = @t _start "+ 1; I Skip c
SCAN s[@t_start "-" @s]
UNTIL z -> @t_end; ! Find end of message

In Example 190 (page 231), the data type of t_start and of t_end is CBADDR. The object data
type of s is STRING. lts address type is CBADDR, not BADDR; therefore, you can subtract @s from
t_start because the data types of both are CBADDR.

Example 190 Scanning Data in a P-Relative Array

STRING s = "P" = [1 STRING P-relative array s
1, "msgl.",
2, '"'msg2.",
3, "msg3.",
01;
CBADDR t_start, 1 Start address of msg
t_end; I End address of msg

SCAN and RSCAN 231

INT c = 3,
z = -1;
SCAN s UNTIL ¢ -> t_start;

Value to scan for iIn s

Value to stop the scan?
Scan s for c and store c"s
address in t_start

Skip character in c

t_start = t_start "+° 1;
SCAN s[t_start "-" @s]
UNTIL z -> t_end; ! Find end of message

USE

The USE statement creates a temporary variable.

5
VETESE vl

identifier
is the name of the temporary variable being created.
A temporary variable that the USE statement creates:
e s equivalent to a variable declared INT
e Is usually kept in a register
e Exists until either:
> You drop it with the statement DROP (page 212) (recommended)

o The procedure that creates it ends

WHILE

The WHILE statement is a pretest loop that repeatedly executes a statement while a specified
condition is true.

—>< WHILE H condition |—>{ Do)

WETIST s

P
-

condi tion
is either:
e A conditional expression

e AnINT, INT(32), or FIXED arithmetic expression. If the result of the arithmetic expression
is not O, condi ti on is true. If the result is O, condi ti on is false.

st at enent
is any pTAL statement.

The WHILE statement tests the condi ti on before each iteration of the loop. If the condi ti on
is false before the first iteration, the loop never executes.

Hardware indicators cannot appear in the conditional expression of a WHILE statement.

232 Statements

Example 191 WHILE Statement

LITERAL len = 100;

INT .array[O:len - 1];
INT item = O;

WHILE item < len DO

BEGIN
array[item] := 0;
item := item + 1;
END;

! item equals len at this point

The WHILE statement in Example 192 (page 233) increments index until a nonalphabetic character
occurs.

Example 192 WHILE Statement

LITERAL len = 255;

STRING .array[O:len - 1];

INT index := -1;

WHILE (index < len - 1) AND
($ALPHA(array[index := index + 1]))
DO ... ;

WHILE 233

13 Hardware Indicators

Table 56 Hardware Indicators

Hardware Indicator Representation Meaning

Overflow bit $OVERFLOW

Carry bit $CARRY

Condition code <or'< Less than
>or >’ Greater than
=or ‘=’ Equal
<= or ‘<=’ Less than or equal
>=or ‘>=' Greater than or equal
<> or ‘<>’ Not equal

In TNS architecture, a “hardware indicator” is one of three fields of the environment (ENV) register.

Topics:

Managing Overflow Traps (page 234)

Hardware Indicators After Assignments (page 236)
Hardware Indicators in Conditional Expressions (page 239)
Nesting Condition Code Tests (page 242)

Using Hardware Indicators Across Procedures (page 244)

Managing Overflow Traps

pTAL provides a “static T flag” with which you specify whether traps are enabled or disabled at
any point in your program. You manipulate the static T flag with:

Directive or Atiribute Scope Comment

OVERFLOW _TRAPS Compilation unit OVERFLOW _TRAPS is the default
[NO]OVERFLOW_TRAPS Procedure Procedure or subprocedure Overrides the [NO]JOVERFLOW_TRAPS
Attribute directive
[EN|DIS]JABLE_OVERFLOW_TRAPS Block Overrides both the

Block Attribute [NO]OVERFLOW_TRAPS directive and

the [NO]JOVERFLOW_TRAPS procedure
attribute

The directives and attributes active when a pTAL statement is compiled determine the overflow
trapping state of the code that the compiler generates for that statement. A procedure does not
inherit the trapping state of its caller.

[NO]JOVERFLOW _TRAPS Procedure Attribute
The OVERFLOW_TRAPS and NOOVERFLOW_TRAPS procedure attributes specify the default

overflow trapping behavior for a procedure or subprocedure (see Procedure Attributes (page 248)).

The OVERFLOW_TRAPS and NOOVERFLOW_TRAPS procedure attributes override the current
setting of the directive OVERFLOW_TRAPS (page 508).

234 Hardware Indicators

Example 193 OVERFLOW_TRAPS Compiler Directive and Procedure Atiribute

?0VERFLOW_TRAPS 1 Enable traps
PROC x NOOVERFLOW_TRAPS; 1 Disable traps for x
BEGIN
END;
PROC vy; I Traps for y are still enabled
BEGIN
END;
PROC z NOOVERFLOW_TRAPS; 1 Disable traps for z
BEGIN
SUBPROC s OVERFLOW_TRAPS; ! Enable traps for s
BEGIN
END:
s;

- ! Traps for z are still disabled
END; 1 upon return from s

[EN | DISJABLE_OVERFLOW_TRAPS Block Attribute

The ENABLE_OVERFLOW _TRAPS and DISABLE_ OVERFLOW _TRAPS block attributes establish the
trapping state of a block, regardless of the trapping state of the procedure’s or subprocedure’s
caller or of the code surrounding the block.

BEGIN >
ENAELE_OVERFLOW_TRAPS
DISABELE_OVERFLOW_TRAPS

WETHER ved

Example 194 ENABLE_OVERFLOW_TRAPS and DISABLE_OVERFLOW_TRAPS Block Atiributes

PROC p;
BEGIN: ENABLE_OVERFLOW_TRAPS 1 Enable traps for block

END;
PROC q;
BEGIN
SUBPROC q1;
BEGIN: DISABLE OVERFLOW_TRAPS ! Disable traps for block

END:

END;
PROC r;
BEGIN: ENABLE_OVERFLOW_TRAPS
CALL p; 1 Call p with traps enabled
END;
PROC s;
BEGIN: DISABLE_OVERFLOW_TRAPS
CALL p; I Call p with traps disabled
END;

Managing Overflow Traps 235

Hardware Indicators After Assignments
Topics:
e $OVERFLOW (page 236)
e $CARRY (page 236)
e Condition Codes (page 237)

$OVERFLOW

After every assignment statement, the compiler generates code that tests for overflow if either:
e Overflow traps are enabled
e All of the following conditions are true:
> Overflow traps are disabled.
> The root operator is one of the following:
— Negation (unary), +, -, *, /, /'
— $DBL of an INT, FIXED, REAL, or REAL(64) value
— $DBLR of an INT, FIXED, REAL, or REAL(64) value
— $FLTR of a REAL(64) value
— $FIX of a REAL or REAL(64) value
- $FIXD
- $FKXI
- $FIXL
— $FIXR of a REAL or REAL(64) value
— $INT of a FIXED, REAL, or REAL(64) value
— $INTR of a FIXED, REAL, or REAL(64) value
— $FIXEDTOASCII
— $SCALE for which 1 <= exponent <=4

o The next statement is an IF statement that tests $OVERFLOW.

$CARRY

You can test $CARRY if the root operator is one of the following:

e Signed integer addition or subtraction

INT 1, J, k;
i = j + k; I $CARRY can be tested after this statement
i = j - k; I $CARRY can be tested after this statement

e Unsigned integer addition or subtraction
INT i, . k;

I := J "+" ﬁ; I $CARRY can be tested after this statement

I :=j "-" k; ! $CARRY can be tested after this statement
e Unary minus

INT i;

i = -1i; I $CARRY can be tested after this statement

236 Hardware Indicators

Condition Codes

When the condition code is accessible following an assignment statement, the numeric value of
the evaluated expression on the right side of the assignment statement determines the value of the
condition code.

Topics:
e When Condition Codes Are Accessible (page 237)
e Typed Integer Constants (page 44)

When Condition Codes Are Accessible
The condition code is accessible after an assignment statement only if:

e The right side of the assignment statement is not:
o A lbyte item:
STRING s;
INT 1;
i :=s; ! Condition code is not accessible
o A call to a built-in routine (for a list of these, see Table 58 (page 276)):
I := $ABS(i); ! Condition code iIs not accessible

> An expression whose value is an address type (for example, WADDR or EXTADDR):

INT 1;
INT .p;
@p = @i; ! Right side is a WADDR value;
1 condition code is not accessible

> An expression whose value is a floating-point data type [REAL or REAL(64)]:
REAL r :-= 1.0EO;
r := r + 1.0EO; I Right side is a floating-point number;
I condition is code not accessible
o A constant or constant expression:
INT a;

a = 2 << 3; I Right side is a constant expression;
I condition is code not accessible
e None of the exceptions in When Condition Codes Are Not Accessible apply
When Condition Codes Are Not Accessible

The following exceptions override the conditions in When Condition Codes Are Accessible

(page 237):
o If the last operation on the right side of an assignment statement is a function call, these rules
apply:

o Ifthe function specifies the RETURNSCC attribute, you can test the condition code following
the assignment statement, independent of the data type of the value returned by the
function.

o The numeric value returned by the function always determines the value of the condition
code.

o If the right side of an assignment statement is an INT function, the condition code is
determined by the INT value returned by the function. The value returned is always an
INT, even if the expression in the function’s RETURN statement is a byte value. The byte
value is not sign-extended.

INT PROC p;
BEGIN

Hardware Indicators Affer Assignments 237

RETURN "A"™; I P is an INT function but the
END; I expression in the RETURN statement
I vyields a single byte

BEGIN
PROC p1;

INT i;

i = p; I Condition code is accessible because
END; I p returns an INT value

The left side of the assignment statement must be one of:

> Alocal or sublocal simple variable:

PROC p;

BEGIN
INT i; I Declare a local simple variable
i ;=1 +1; 1 Condition code accessible

END;

o The address cell of a local pointer:

INT i;

INT .ptr; I Declare a local pointer

@ptr := f(i); ! Condition code is accessible if

I f specifies RETURNSCC

> A value parameter:
PROC p (param);

INT param; I Value parameter
BEGIN
INT 1 := 0;
param := i; ! Condition code is accessible
END;
o The left side of the assignment statement cannot be:
o A STRING variable:
STRING s;
s = "a"; ! Condition code is not accessible

o

An UNSIGNED(n) variable:

UNSIGNED(12) u;
u = %HFFF; I Condition code is not accessible

o

A global variable:

INT g;
PROC p;
BEGIN
INT i = 0;
g = 1i; I Condition code is not accessible
END;

° A pointer:
INT _p;
INT i = O;
p :=1; I Condition code is not accessible

> A variable containing indexing, field selection, or bit selection:

STRUCT s;
BEGIN

INT F;
END;

INT a[0:9];
INT 1;
s. T := i; ! Field selection: condition code is

238 Hardware Indicators

not accessible

a[9] := i;

1

; 1
i.<3:5> = a; ! Bit Selection:
I not accessible

Index: condition code is not accessible

condition code is

Example 195 Assignments After Which You Can Test Condition Codes

1 OK: Left and right sides are simple
1 OK: Left and right sides are simple

is RETURNSCC function

is reference parameter

index

field and index
field reference
bit selection
1-byte item
call to

address type

INT m;
PROC p(x, Y);
INT X;
INT .Y,
BEGIN
INT a[0:9];
INT i;
INT .EXT k;
INT(32) j;
STRING str;
REAL r;
EXTADDR SUBPROC f(x) RETURNSCC;
INT X;
BEGIN
RETURN %200000D, Xx;
END;
STRUCT s;
BEGIN
INT s1[0:4];
INT s2;
END;
i = k; !
i =i+ 1; !
X 1= X + 1; 1 OK: Left side is value parameter,
1 right side is INT
ek := F(0O); 1 OK: Left side is pointer cell,
! right side
y =i + 1; ! ERROR: Left side
a[i] := a[i+1]; ! ERROR: Left side has
s.s1[0] := 1; 1 ERROR: Left side has
S.s2 = 0; ! ERROR: Left side has
1.<0:8> = 1; 1 ERROR: Left side has
i = str; ! ERROR: Right side is
i = $ABS(i); I ERROR: Right side is
1 built-in routine
@k = @k + 1D; I ERROR: Right side is
r := r + 1.0E0; ! ERROR: Right side is

floating-point type

Hardware Indicators in Conditional Expressions

Hardware indicators can appear in conditional expressions in these statements:

e DO-UNTIL (page 210)

The last statement in the DO-UNTIL statement must set the hardware indicator. The last statement

can be nested in a BEGIN...END statement. See Example 196 (page 240).

e |F(page 217)

These are valid references to hardware indicators:

Hardware Indicators in Conditional Expressions 239

IF $OVERFLOW THEN ...
IF $CARRY THEN ...
IF < THEN ...

e WHILE (page 232)

Both the statement preceding the WHILE statement and the last statement in the WHILE statement
must set the condition code indicator. See Example 197 (page 240).

Example 196 Hardware Indicators in DO-UNTIL Statements

proc p returnscc;
begin
end;

proc q;
begin

endz-

do
call p O I Sets condition code indicator
until = ; I 0K

do
begin

call p O;
end
until = ; I OK

do
begin

call 9 O;
end
until > ; I ERROR: last statement in do-until statement
1 does not set condition indicator

int i := 0;
do
begin
=i+ 1;
end

until $overflow; ! ERROR: $overflow and $carry not allowed
I in do-until statement

Example 197 Hardware Indicators in WHILE Statements

int proc p;
begin

end;

proc q;
begin

end;

call p O; I Sets condition code indicator
while >= do I 0K

call p O; I Sets condition code indicator

240 Hardware Indicators

call p O; Sets condition code indicator

while > do I OK
begin
ééil p (O; ! Sets condition code indicator
end;
call g Q; I Doesn"t set the condition code indicator
while > do I ERROR: statement preceding WHILE
begin I and last statement of WHILE
- I must both set condition code indicator
call p (O; ! Sets condition code indicator
end;
call p O; I Sets the condition code indicator
while >= do I ERROR: statement preceding WHILE
begin 1 and last statement of WHILE
. 1 must both set condition code indicator
call g (O; ! Doesn"t set condition code indicator
end;
int i;
i =1+ 1;

whille not $overflow do ! ERROR: not a condition code indicator
begin

1 =1+ 1;
end;

You cannot:

Reference a hardware indicator in an expression other than in the conditional expression of

an |F statement
INT i;

i := IF < THEN -i ELSE i; UYERROR: invalid in IF expression

Assign the value of a hardware indicator to a variable in an assignment statement
INT i;

i = >; I ERROR: invalid in assignment statement

Pass a hardware indicator as an actual parameter to a procedure

INT i;
CALL p(<); I ERROR: invalid as parameter

An IF statement that tests a hardware indicator must either:

Immediately follow the statement that establishes the value of the hardware indicator

INT a;

a:=a-1;

IF < THEN ... I OK: hardware indicator tested immediately
a:=a+1;

IF $CARRY THEN ... ! OK: hardware indicator tested

immediately

CALL WRITEREAD(...);

IF <> THEN. .. 1 OK: hardware indicator tested
I immediately

IF < THEN ... ! ERROR: intervening BEGIN is invalid

Hardware Indicators in Conditional Expressions 241

a =
END;

a+ 1;

IF $CARRY THEN ... I ERROR: intervening END is invalid
CALL WRITEREAD(--..);

Ffirstchar := str_buff;

IF <= THEN... I ERROR: intervening assignment

1 statement is invalid

CALL WRITEREAD(--..);

IF < THEN ... ! ERROR: previous statement does not
! set condition code
e Be part of a nest of IF statements as described in Nesting Condition Code Tests (page 242)

The hardware indicator in the conditional expression of an IF statement must be the first operand

in the expression.

IF $CARRY

THEN ... 1 OK: hardware indicator is
1 first operand

IF <= OR a >= 99 THEN ... 1 OK: hardware indicator is

1 first operand

IF 1 <= 999 AND > THEN ... I ERROR: condition code must be

T
o)}
1

T
D
I

The first statement in an IF statement’'s THEN clause or ELSE clause (or both) can, in turn, be an IF
statement that fests the condition code established by the conditional expression of the containing
In this case, the root operator in the containing IF statement’s conditional expression

IF statement.

1 first operand

b OR $CARRY THEN ... I ERROR: $CARRY must be

1 first operand

b OR $OVERFLOW THEN ... ! ERROR: $OVERFLOW must be

1 first operand

must be either:

e A relational operator

+ 1;

IF 1 >= 0 THEN I OK: >= is a relational operator

IF >

THEN ...

e An expression that consists only of a condition code

1 =1 + 1;
IF >= THEN 1 OK: >= is a condition code
IF > THEN. ..

An IF statement that tests a hardware indicator cannot be labeled.

Nesting Condition Code Tests

You can test

for more than one value of a condition code by nesting IF statements; for example:

I =i + 1;
IF < THEN
ELSE IF = THEN
ELSE I Must be >
INT PROC p;
BEGIN
CALL READX(...):

IF < THEN RETURN -1

ELSE IF

> THEN RETURN 1

ELSE RETURN O;

END;

242 Hardware Indicators

The following rules apply to nested IF statements:

Neither SOVERFLOW nor $CARRY can appear in the conditional expression of any IF statement
in a nest of IF statements.

I =1 + 1;
IF > THEN
IF $OVERFLOW THEN ... ' ERROR: cannot test $OVERFLOW in
1 nest of IF statements
i =1+ 1;
IF $CARRY THEN 1 ERROR: cannot test $CARRY in
IF > THEN ... I nest of IF statements

You cannot test SOVERFLOW or $ CARRY to determine if an overflow or carry occurred while
evaluating an IF statement’s conditional expression.
IF i + 1 < 100 THEN

BEGIN

IF $CARRY THEN ... ! ERROR: invalid to test $CARRY here

END
You can test $OVERFLOW or $CARRY by evaluating, in a separate assignment statement,
the expression in which overflow or carry could occur, then test SOVERFLOW or $CARRY.

INT temp;
temp = 1 + 1; I Carry could occur here
IF NOT $CARRY THEN I OK to test $CARRY here
BEGIN
IF temp < 100 THEN ...
END
ELSE ... I Handle $CARRY condition

Except as noted in the following item, the conditional expression in each IF statement in a nest
of IF statements can test only the value of the condition code, optionally preceded by the NOT
operator. The conditional expression cannot include any other operator or operand.

1 =1 + 1;
IF <= THEN
IF NOT = THEN ... I OK

The conditional expression of the innermost IF statement can be a complex expression, but
the condition code must be the first operand in the expression.

1 = +1;
IF >= THEN
IF=AND (g +4)/5*5>0THEN ... I OK

If the root operator in the conditional expression of an IF statement is a relational operator,
the first statement in the THEN or ELSE clause of the IF statement can be an IF statement that
tests the condition code set by the root operator of the encompassing IF statement.

IF (i + 10) <= (m - 2) THEN I Root operator (<=) is

BEGIN I relational operator
IF < THEN 1 OK: test if condition was
S 1 "less than"
ELSE
END;
IF (i < -1) OR (i > 1) THEN
BEGIN
IF < THEN I ERROR: root operator of IF
S 1 statement is Boolean,
END; I not relational

It an outer IF statement’s conditional expression uses a signed operator (= or <>) o compare
two 16-bit addresses, an inner IF statement’s THEN or ELSE clause cannot test the condition
code established by the outer IF statement’s conditional expression.

Nesting Condition Code Tests 243

WADDR wl, w2;
EXTADDR el, e2;
IF el <> e2 THEN

BEGIN
IF < THEN ... 1 OK: el and e2 are EXTADDR values
END;
IF wl "<>" w2 THEN
BEGIN
IF < THEN ... I OK: Original test is unsigned
END;
IF wl <> w2 THEN
BEGIN
IF < THEN ... I ERROR: cannot test condition code
END; 1 set by signed comparison of

1 16-bit addresses

Using Hardware Indicators Across Procedures
Topics:
e Testing a Hardware Indicator Set in the Calling Procedure (page 244)
e Returning a Condition Code to the Calling Procedure (page 244)
e Returning the Value of $SOVERFLOW or $CARRY to the Calling Procedure (page 245)

Testing a Hardware Indicator Set in the Calling Procedure

A called procedure cannot test the value of a hardware indicator that was set in the procedure
that called the hardware indicator. To achieve this effect:
1. In the calling procedure:

a. Test the value of the hardware indicator and set a variable to reflect its value.

b. Pass the variable to the called procedure.

2. In the called procedure, test the variable that you passed to the procedure in FIX_THIS_LINK.

Example 198 Testing a Hardware Indicator Set in a Calling Procedure

PROC b(status); 1 Called procedure
INT status;
BEGIN
IF status <> 0 THEN ... ! Test parameter value from PROC a
END;
PROC a; 1 Calling procedure
BEGIN
INT 1, j, k;
J =1i;
IF <> THEN k =1 I Test hardware indicator and set k
ELSE k := 0;k
CALL b(k); 1 Call PROC b, passing k

END;

Returning a Condition Code to the Calling Procedure

A called procedure can return a condition code value to its caller by using the RETURNSCC
procedure attribute in its procedure or subprocedure declaration and a RETURN statement.

244 Hardware Indicators

For more information:

Topic Source

Procedure declarations Procedure Declarations (page 246)
Subprocedure declarations Subprocedure Declarations (page 257)
RETURNSCC procedure attribute Procedure Attributes (page 248)
RETURN statement RETURN (page 223)

Returning the Value of $OVERFLOW or $CARRY to the Calling Procedure

A called procedure cannot return the value of $OVERFLOW or $CARRY to its caller. To achieve
this effect, set variables with the values of these indicators and return the variables’ values using
either parameters, global variables, or return values.

Example 199 Returning the Value of SOVERFLOW in a Reference Parameter

PROC p; 1 Calling procedure
BEGIN

INT rtn_ovfl;

CALL q(rtn_ovfl);

IF rtn_ovfl = O THEN ...

q returns rtn_ovfl
Test value of rtn_ovfl

END;
PROC q(ovfl); 1 Called procedure
INT .ovfl;
BEGIN
INT 1 = 32767;
i =1+ 1;
IF $OVERFLOW THEN I Test hardware indicator and
ovfl =1 1 set ovfl
ELSE
ovfl = 0;
END; 1 Return ovfl to caller

Using Hardware Indicators Across Procedures 245

14 Procedures, Subprocedures, and Procedure Pointers

Procedures are program units that contain the executable portions of a pTAL program and that are
callable from anywhere in the program. Procedures allow you to segment a program into discrete
parts that each perform a particular task such as 1/O or error handling.

An executable program contains at least one procedure. One procedure in the program has the
attribute MAIN, which identifies it as the first procedure to execute when you run the program.

A procedure can contain subprocedures, which are callable from various points within the same
procedure.

A function is a procedure or subprocedure that returns a value. A function is also known as a typed
procedure or typed subprocedure.

Topics:
e Procedure Declarations (page 246)
e Procedure Attributes (page 248)
e Formal Parameter Specification (page 251)
e Procedure Body (page 256)
e Subprocedure Declarations (page 257)
e Subprocedure Body (page 259)
e Entry-Point Declarations (page 260)
e Procedure Pointers (page 263)
e Llabels in Procedures (page 273)
In this section, references to procedures refers to procedures and subprocedures unless otherwise
specified.
Procedure Declarations

A procedure is a program unit that is callable from anywhere in the program. You declare a
procedure as follows:

PROCH Idenllﬂer
e |

parameter Ilst pm-D-attnbute O}

s |0

. | EXTERNI!\L
FORWARD

WETDGE. wad

type
specifies that the procedure is a function that returns a result and indicates the data type of the
returned result. t ype can be any data type described in Chapter 3 (page 46).

identifier
is the procedure identifier to use in the compilation unit.

246 Procedures, Subprocedures, and Procedure Pointers

publ i c- name- spec

° o public-name o

WETZ0H v

If a procedure declaration includes publ i c- name- spec, it must also include EXTERNAL.
If a procedure declaration includes LANGUAGE, it must also include publ i ¢- nane- spec.
publi c- nane

is the procedure name to use in the linker, not in the compilation unit. The default

publ i c- name is identifier . publ i c- name must conform to the identifier rules of the
language in which the external procedure is written. For all languages except HP C, the
compiler upshifts publ i c- nane automatically.

paraneter-1i st

param-narme

param-pair

WET210.vsd

par am name
is the identifier of a formal parameter. A procedure can have up to 32 formal parameters.
par am pai r

is a pair of formal parameter identifiers that comprise a language-independent string descriptor
in the form:

e |

WETOAE vsd

string

is the identifier of a standard or extended STRING simple pointer. The actual parameter is
the identifier of a STRING array or simple pointer declared inside or outside a structure.

| ength

is the identifier of a directly addressed INT simple variable. The actual parameter is an INT
expression that specifies the length of st ri ng, in bytes.

proc-attribute
is a procedure attribute, as described in Procedure Attributes (page 248).
par am spec

specifies the parameter type of a formal parameter and whether it is a value or reference
parameter, as described in Formal Parameter Specification (page 251).

proc- body

is a BEGIN-END block that contains local declarations and statements, as described in Procedure
Body (page 256).

FORWARD
specifies that the procedure body is declared later in the compilation.
EXTERNAL

specifies that the procedure body is either declared in another compilation unit or later in this
compilation unit.

Procedure Declarations 247

Example 200 Procedure Declaration

INT var; ! var is a global INT
WADDR PROC p(i), RETURNSCC,; ! Attributes: empty, RETURNSCC,
1 and empty
INT .i;
BEGIN
RETURN @var, i+1; ! Return address and
END; 1 condition code value
Example 200 (page 248) illustrates the following procedure declarations:

p specifies three attributes, the first and third of which are empty.

The second attribute to p, RETURNSCC, is a valid procedure, subprocedure, or function
attribute, which, if present, requires that the code execute a RETURN statement that specifies

a value from which to determine the condition code to return to the caller. For more information
about using RETURNSCC, see RETURN (page 223).

The data type of the value returned by p is WADDR: namely, the address of the global variable
var. The RETURN statement sets the condition code to CCL, CCE, or CCG, depending on
whether the value of 1+1 is less than, equal to, or greater than 0.

Procedure Atftributes

Procedures can have the following attributes:

MAI

Ji
y
M
y
M
M
® ®
RETURNSCC) |
OVERFLOW_THAPS) |
NOQVERFLOW_TRAPS) 1
LANGUAGE Ja 4
. A
PASCAL
UNSF'EC.IFIED

WETEID. wad

N

causes the procedure to execute first when you run the program. When the MAIN procedure
completes execution, it passes control to the PROCESS_STOP_ system procedure, rather than
executing an EXIT instruction.

If more than one procedure in a compilation has the MAIN attribute, the compiler emits a
warning and uses the first main procedure it sees as the main procedure. For example, in the
following source code, procedures main_procl and main_proc2 have the MAIN attribute,
but in the object file only main_proc1 has the MAIN attribute:

PROC main_procl MAIN; ! This MAIN procedure is MAIN

BEGIN I in the object file
CALL this_proc;

248 Procedures, Subprocedures, and Procedure Pointers

CALL that_proc;
END;
PROC main_proc2 MAIN; ! This MAIN procedure is not MAIN
BEGIN 1 in the object file
CALL some_proc;
END;

INTERRUPT

causes the pTAL compiler to generate an interrupt exit instruction instead of an EXIT instruction
at the end of execution. Only operating system interrupt handlers use the INTERRUPT attribute.
An example is:

PROC int_handler INTERRUPT;

BEGIN

I Do some work
END;

NOTE: The EpTAL compiler ignores INTERRUPT.

RESIDENT

causes procedure code to remain in main memory for the duration of program execution. The
operating system does not swap pages of this code. The linker allocates storage for RESIDENT
procedures as the first procedures in the code space. An example is:

PROC res_proc RESIDENT;

BEGIN

I Do some work
END;

CALLABLE

authorizes a procedure to call a PRIV procedure (described next). Nonprivileged procedures
can call CALLABLE procedures, which can call PRIV procedures. Thus, nonprivileged procedures
can only access PRIV procedures indirectly by first calling CALLABLE procedures. Normally,
only operating system procedures have the CALLABLE attribute. In the following example, a
CALLABLE procedure calls the PRIV procedure declared next:
PROC callable_proc CALLABLE;
BEGIN

CALL priv_proc;
END;

PRIV

means the procedure can execute privileged instructions. Only PRIV or CALLABLE procedures
can call a PRIV procedure. Normally, only operating system procedures have the PRIV attribute.
PRIV protects the operating system from unauthorized (nonprivileged) calls to its internal
procedures.

The following PRIV procedure is called by the preceding CALLABLE procedure:

PROC priv_proc PRIV;
BEGIN

I Privileged instructions
END;

For information about privileged mode, see Privileged Mode (page 274).
VARIABLE

means the compiler treats all parameters of the subprocedure as if they are optional, even if
some are required by your code. If you add parameters to the VARIABLE subprocedure
declaration, all procedures that call it must be recompiled. The following example declares a
VARIABLE subprocedure:

SUBPROC v (a, b) VARIABLE;
INT a, b;
BEGIN

Procedure Attributes 249

! Lots of code
END;
When you call a VARIABLE subprocedure, the compiler allocates space in the parameter area
for all the parameters. The value of the data for a missing parameter is unspecified.

EXTENSIBLE

lets you add new parameters to the procedure declaration without recompiling its callers. The
compiler treats all parameters of the procedure as if they are optional, even if some are required
by your code. The following example declares an EXTENSIBLE procedure:

PROC x (a, b) EXTENSIBLE;

INT a, b;
BEGIN

1 Do some work
END;

When you call an EXTENSIBLE procedure, the compiler allocates space in the parameter area
for all the parameters. The values of missing parameters are unspecified.

Declare procedures EXTENSIBLE, but not subprocedures.

count

converts a VARIABLE procedure to an EXTENSIBLE procedure. The count value is the
number of formal parameters in the VARIABLE procedure that you are converting to
EXTENSIBLE. For the count value, specify an INT value in the range 1 through 15.

RETURNSCC

causes a procedure fo return a condition code. The compiler reports an error if a procedure
attempts to test the condition code after calling a procedure that does not specify RETURNSCC.
Procedures declared with RETURNSCC cannot return 64-bit values.

NOTE: The EpTAL compiler issues a warning if a procedure that has this attribute returns both
a traditional function value and a condition code value by means of RETURN (page 223). The
reason for this warning is described in Appendix D (page 528).

OVERFLOW_TRAPS

enables overflow traps for a procedure.
NOOVERFLOW_TRAPS

disables overflow traps for a procedure.
LANGUAGE

specifies that the external routine is an HP C, HP COBOL, FORTRAN, or Pascal routine. If you
do not know if the external routine is an HP C, HP COBOL, FORTRAN, or Pascal routine, use
LANGUAGE UNSPECIFIED. The following example shows the LANGUAGE COBOL option
and a public name "a_proc" (in HP COBOL identifier format):

PROC a_proc = "a-proc” (a, b, c¢) ! EXTERNAL declaration for

LANGUAGE COBOL; 1 HP COBOL procedure
STRING .a, .b, .c;
EXTERNAL ;

Specify no more than one LANGUAGE attribute in a declaration.

Because no FORTRAN or Pascal compilers exist especially for TNS/R or TNS/E architecture, LANGUAGE FORTRAN
and LANGUAGE PASCAL have no meaning on TNS/R or TNS/E architecture.

If a procedure declaration includes LANGUAGE, it must also include publ i c- name- spec.

Parameters and VARIABLE and EXTENSIBLE Procedures
To determine which parameters were passed by the caller, use the $PARAM (page 336).

250 Procedures, Subprocedures, and Procedure Pointers

Memory is allocated for all parameters to VARIABLE procedures or EXTENSIBLE procedures;
therefore, your program can store default values for parameters the caller does not pass.

VARIABLE, EXTENSIBLE and RETURNSCC Procedures as Actual Parameters

You can pass a procedure or procedure pointer that includes an EXTENSIBLE, VARIABLE, or
RETURNSCC attribute as a parameter to a procedure whose formal parameter is a PROC, but you
cannot reference the PROC formal parameter identifier in a CALL statement. Instead, you must
assign the address from the formal parameter to a procedure pointer and then specify the procedure
pointer in a CALL statement.

Example 201 EXTENSIBLE Procedures as Actual Parameters

PROC pl (i, j) EXTENSIBLE;

INT 1, J;
EXTERNAL ;
PROC p2(p):
PROC p;
BEGIN
PROCPTR pp(a, b) EXTENSIBLE; INT a, b; END PROCPTR;
INT i, j;
pp == pi;
CALL pp(i, §);
PROC p3;
BEGIN

CALL p2(pl);
ND;

Formal Parameter Specification

A formal parameter specification defines the parameter type of a formal parameter and whether
the parameter is a value parameter or a reference parameter.

g p|param-name

REFALIGNED

WETE 3G vad

paramtype
is the parameter type of the formal parameter and can be one of the following:

Formal Parameter Specification 251

STRING

width
width

EXTADDR
EXT32ADDR
EXTE4ADDR
PROCADDR

PROC3ZADDR

PROCE4ADDR
CBADDR

CWADDR

SGXBADDR

SGXWADDR

| N N U N U VO VO W WO WO WL W W W N ¥

M

L PROC VETEIT vad
—

Descriptions for STRUCT, PROC, PROC(32), and t ype, are included below. You can find
descriptions of the remaining data types in Chapter 3 (page 46).

STRUCT
means the parameter is one of:

e A standard indirect or extended indirect definition structure (not supported in future
software platforms)

e A standard indirect or extended indirect referral structure

PROC
is the address of the entry point of a procedure. You must assign PROC to a PROCPTR
before you can call it.

type
specifies that the parameter is a function procedure, the return value of which is one of the
following data types:

STRING

Y

WET214 vsd

252 Procedures, Subprocedures, and Procedure Pointers

wi dt h
is a constant expression that specifies the number of bits in the variable. The result of
the constant expression must be one of the following values:

Data Type width

INT 16, 32, or 64

REAL 32 or 64

UNSIGNED A value in the range 1 through 31

UNSIGNED parameters must be passed by value; you cannot use an indirection symbol
(see Table 14 (page 41)) with UNSIGNED parameters.

f poi nt
is an infeger in the range -19 through 19 that specifies the implied decimal point
position. The default is O (no decimal places). A positive f poi nt specifies the number
of decimal places to the right of the decimal point. A negative f poi nt specifies a
number of integer places to the left of the decimal point.

prevents scaling of the f poi nt of a FIXED actual parameter to match the f poi nt in
the parameter specification. Such scaling might cause loss of precision. The called
procedure treats the actual parameter as having an f poi nt of 0.

I ndirection |
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)). |

NOTE: “Indirection Symbols” (page 41), .EXT32 and .EXT64 are 64-bit addressing
functionality added to the EpTAL compiler starting with SPR TO561HO1"AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

par am nane
is the identifier of a formal parameter. The identifier has local scope if declared in a procedure
or sublocal scope if declared in a subprocedure.

referral
is the identifier of a previously declared structure or structure pointer. The diagram under
paramtype describes lists the kind parameter requiring aref erral .

REFAL1GNED

For simple pointers, the default for REFALIGNED is the value you specity in the REFALIGNED
(page 510).

specifies that the variables and structures that identifier references are aligned as they would
be aligned in TAL (and might not be well-aligned in pTAL).

specifies that the variables and structures are well-aligned in pTAL (and in TAL, that they might
have more space).

For nonstructure pointers, the default for REFALIGNED is the value you specify in the
REFALIGNED (page 510).

When a procedure is called, each actual parameter is bound to its corresponding formal parameter.
Parameters passed by value must follow the same rules for assignment compatibility as do assignment
statements. Each actual value parameter corresponds to the right side of an assignment statement.

Table 57 (page 254) lists the characteristics that you can declare in a formal parameter specification
depending on the kind of actual parameter the procedure or subprocedure expects.

Formal Parameter Specification 253

Table 57 Formal Parameter Specification

Formal Parameter Characteristics

Expected Actual Declare Formal Parameter Type Indirection Symbol Referral
Parameter Parameter As:

Simple variable A value or reference STRING* Value, no; reference, No
parameter INT yes
INT(32)
REAL
REAL(64)
FIXED(n)
FIXED(*)

Simple variable A value parameter UNSIGNED No No

Array or simple A reference parameter STRING Yes No
pointer INT

INT(32)

REAL

REAL(64)

FIXED(n)

Definition structure, A reference parameter INT or STRING Yes Yes
referral structure, or
structure pointer

Referral structure or A reference parameter STRUCT Yes Yes
structure pointer

Constant expression** A value parameter INT No No
(including INT(32)
@i dentifier) UNSIGNED
REAL
REAL(64)
FIXED(n)
Procedure A value parameter PROC No No
PROC(32)

* You cannot declare a STRING value parameter. The compiler reports a syntax error if you declare a STRING value
parameter.

** The data type of the expression and of the formal parameter must match, except that you can mix the STRING,
INT, and UNSIGNED (1-16) data types, and you can mix the INT(32) and UNSIGNED(17-31) data types.

Any of the 13 address types can be used as formal parameters.

In Example 202 (page 255), the compiler treats varl as if it were a simple variable and treats
var?2 as if it were a simple pointer.

254 Procedures, Subprocedures, and Procedure Pointers

Example 202 Function With Value and Reference Formal Parameters

PROC mult (varl, var2);

INT varl, 1 Value parameter
.var2; 1 Reference parameter
BEGIN
var2 := var2 + varl; 1 Manipulate parameters
END;

Example 203 Reference Structure as a Formal Reference Parameter

STRUCT template (*); I Template structure
BEGIN
INT a;
INT b;
END;
PROC .EXT p;
STRUCT ref_struct (template);
BEGIN
1 Lots of code
END;

Topics:

e Using STRUCT as a Formal Parameter (page 255)

e Passing an Extended Address Parameter to a Non-EXTENDED Reference Parameter (page 255)
e Using the PROC Formal Parameter (page 256)

e Referencing Parameters (page 256)

Using STRUCT as a Formal Parameter

You cannot declare a definition STRUCT as a formal parameter. You can, however, achieve the
same effect by using a referral STRUCT as a formal parameter, and having it reference a previously
declared structure.

Example 204 Using a Referral STRUCT as a Formal Parameter

INT .EXT ea;

INT .EXT32 e32a;
INT .EXT64 eb4a;
PROC p(a);

INT .a;

BEGIN

END;
p(ea); ! OKAY

p(e32a); ! OKAY
p(e64a); ' ERROR: EXT64ADDR not assignment compatible with WADDR.

Passing an Extended Address Parameter to a Non-EXTENDED Reference Parameter

You can pass a variable declared with a .EXT or .EXT32 indirection symbol to a formal parameter |
declared with a “.” indirection symbol. pTAL converts the extended address to a BADDR or WADDR,
as appropriate. In the following example, pTAL converts the extended address of | to a WADDR
address:

Formal Parameter Specification 255

Example 205 Converting the extended address of | to a WADDR address

INT .EXT ea;

INT _EXT32 e32a;
INT _EXT64 e64a;
PROC p(a);

INT .a;

BEGIN

END;
p(ea); ! OKAY

p(e32a); ! OKAY
p(e64a); ' ERROR: EXT64ADDR not assignment compatible with WADDR

NOTE: The “Indirection Symbols” (page 41), .EXT32 and .EXT64 are 64-bit addressing
functionality added to the EpTAL compiler starting with SPR TO561HO1”*AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

Using the PROC Formal Parameter

The @ character is not allowed on the actual parameter if the formal parameter is a PROC.

Referencing Parameters

Do not depend on the order in which parameters are allocated in memory. You must refer to each
parameter only as a named entity. Do not refer to one parameter as a base off of which you
reference other parameters.

Guidelines:

e Do not treat a procedure’s formal parameters as an implied array or implied structure.

e Do not index a parameter to access another parameter or local variable.

e Do not perform block moves in which the source or destination spans more than one parameter.

e Do not pass the address of a value parameter to another procedure that expects the address
of an array or structure.

e Do not proceed through a parameter list using indexing and address calculations.

Procedure Body

A procedure body can contain local declarations, subprocedure declarations, and statements.

BEGIN

=
. (50—

subproc-dec I

WETOE vsd

| ocal - decl
is a declaration for one of:

e simple variable
e array (direct, indirect, or read-only)

e structure (direct or indirect)

256 Procedures, Subprocedures, and Procedure Pointers

e simple pointer

e structure pointer

e equivalenced variable

e LITERAL
e DEFINE
o |abel

e entry point

e FORWARD subprocedure

subpr oc- decl

is a subprocedure declaration, as described in Subprocedure Declarations (page 257).

st at enent

is any statement described in Chapter 12 (page 199).

Example 206 Procedures

INT c; !
PROC first;
BEGIN 1
INT a, 1
b;

END;

PROC second;

BEGIN !
éALL first; 1

END;

Global declaration

! Procedure body

Local declarations

Procedure body

Call first procedure

Example 207 FORWARD Declaration for a Procedure

INT g2;
PROC procb (paraml);
INT paraml;
FORWARD;
PROC proca;
BEGIN
INT 11 = 2;
CALL procb (il);
END;
PROC procb (paraml);
INT paraml;
BEGIN
g2 = g2 + paraml;
END;

1 FORWARD declaration for procb

1 Call procb

1 Body for procb

Subprocedure Declarations

You can declare subprocedures within procedures, but not within subprocedures.

Subprocedure Declarations 257

L{SUBPRDCH idantifier I
\W—v paramatar -list
-~

M ;
VARIABLE -
RETURNSCC
\){DVERFLDW TRAPS
\-p(NOOVERFLOW TRAPS

-~
N P sUbproc- I:H:u:ly .

o w

VETTOZ vad

type
specifies that the subprocedure is a function that returns a result and indicates the data type
of the returned result. t ype can be any data type described in Chapter 3 (page 46).

identifier
is the identifier of the subprocedure.
paraneter-|ist

param-name

param-pair

WET2 10w

par am nane
is the identifier of a formal parameter. The number of formal parameters a subprocedure
can have is limited by space available in the parameter area of the subprocedure.
par ant pai r
is a pair of formal parameter identifiers that comprise a language-independent string
descriptor in the form:

o }—()—s[rai

WETDIAE vad

string
is the identifier of a standard or extended STRING simple pointer. The actual parameter
is the identifier of a STRING array or simple pointer declare inside or outside a structure.
| engt h
is the identifier of a directly addressed INT simple variable. The actual parameter is an
expression that specifies the length of st ri ng in bytes.
VARIABLE
specifies that the compiler treats all parameters as optional, even if some are required by your
code.
RETURNSCC

causes a subprocedure to return a condition code. The compiler reports an error if a
subprocedure attempts to test the condition code after calling a subprocedure that does not
specify RETURNSCC. Subprocedures declared with RETURNSCC cannot return é4-bit values.

258 Procedures, Subprocedures, and Procedure Pointers

OVERFLOW_TRAPS

enables overflow traps for a subprocedure.
NOOVERFLOW_TRAPS

disables overflow traps for a subprocedure.
par amet er - spec

specifies the parameter type of a formal parameter and whether it is a value or reference
parameter, as described in Formal Parameter Specification (page 251).

subpr oc- body

is a BEGIN-END block that contains sublocal declarations and statements—see Subprocedure
Body (page 259).

FORWARD
means the subprocedure body is declared later in this procedure.

Subprocedure Body

A subprocedure body can contain sublocal declarations and statements.

BEGIN
» { END
statement

sublocal-decl I
WETO6Z veel

subl ocal - decl
is a declaration for one of:

e simple variable

e array (direct or read-only)
e structure (direct only)

e simple pointer

e structure pointer

e equivalenced variable

e LITERAL
e DEFINE
o |abel

e entry point

st at enent
is any statement described in Chapter 12 (page 199).

In subprocedures, declare pointers and directly addressed variables only. Here are examples:

Sublocal Variable Example

Simple variable (always direct) INT var;

Direct array INT array[0:5];

Read-only array INT ro_array = "P" := [0,1,2,3,4,5];
Simple variable (always direct) INT var;

Subprocedure Body 259

Sublocal Variable Example

Direct array INT array[0:5];

Read-only array INT ro_array = "P" := [0,1,2,3,4,5];

Example 208 Function Subprocedure

PROC p;
BEGIN
SUBPROC p1;
BEGIN
INT .a[0:9];
INT .ext b[0:9];
a[0] := 1;
b[9] := 2;
END;
CALL p1;
END;
PROC q;
BEGIN
SUBPROC q1;
BEGIN
STRUCT .s;
BEGIN
INT i;
INT j;
END;
END;
END;

Entry-Point Declarations

The entry-point declaration associates an identifier with a secondary location in a procedure or
subprocedure where execution can start.

T) ()

WaT1ea.ved

identifier
is an entry-point identifier to be placed in the procedure or subprocedure body. It is an alternate
or secondary point in the procedure or subprocedure at which to start executing.

Topics:
e Procedure Entry-Point Identifiers (page 260)
e Subprocedure Entry-Point Identifiers (page 262)

Procedure Entry-Point Identifiers
Here are guidelines for using procedure entry point identifiers:
e Declare all entry-point identifiers for a procedure within the procedure.

e Place each entry-point identifier and a colon (:) at a point in the procedure at which execution
is to start.

e You can call a procedure entry-point identifier from anywhere in the program. (For functions,
use the entry-point identifier in an expression; for other procedures, use a CALL statement.)

e Pass actual parameters as if you were calling the procedure identifier.

260 Procedures, Subprocedures, and Procedure Pointers

You cannot use a GOTO statement to branch to a procedure entry-point identifier.

To obtain the address of a procedure entry-point identifier, preface the identifier with @.

You can specity FORWARD or EXTERNAL procedure entry-point declarations, which look like
FORWARD procedure declarations and EXTERNAL procedure declarations.

Example 209 Procedure Entry-Point Identifiers

INT to_this := 314; I Declare global data
PROC add_3 (g2);

INT .g2;
BEGIN
ENTRY add_2; I Declare entry-point identifiers
ENTRY add_1;
INT m2 = 1;
g2 = g2 + m2;
add_2: I Location of entry-point identifier add 2
g2 = g2 + m2;
add_1: I Location of entry-point identifier add_1
g2 = g2 + m2;
END;
PROC mymain MAIN; 1 Main procedure
BEGIN
CALL add_1 (to_this); ! Call entry point add_1
END;

Example 210 FORWARD Declarations for Entry Points
INT to_this := 314;

PROC add_1 (g2); I FORWARD entry-point identifier
INT .g2; I declaration
FORWARD;
PROC add 2 (g2); I FORWARD entry-point identifier
INT .g2; 1 declaration
FORWARD ;
PROC add_3 (g2); I FORWARD procedure declaration
INT .g2;
FORWARD;
PROC mymain MAIN; I Main procedure declaration
BEGIN
CALL add_1 (to_this); ! Call entry-point identifier
END;
PROC add_3 (g2); 1 Body for FORWARD procedure
INT .g2;
BEGIN
ENTRY add_2; I Declare entry-point identifiers
ENTRY add_1;
INT m2 = 1;
g2 = g2 + m2;
add_2: I Location of entry-point identifier
g2 = g2 + m2; I add_2
add_1: I Location of entry-point identifier
g2 = g2 + m2; I add_ 1
END;

Entry-Point Declarations 261

Subprocedure Entry-Point Identifiers

Here are guidelines for using subprocedure entry-point identifiers:

Declare all entry-point identifiers for a subprocedure within the subprocedure.

Place each entry-point identifier and a colon (:) at a point in the subprocedure at which
execution is to start.

You call a subprocedure entry-point identifier from anywhere in the encompassing procedure,
including from within the same subprocedure. (For functions, use the entry-point identifier in
an expression; for other subprocedures, use a CALL statement.)

Pass actual parameters as if you were calling the subprocedure identifier.
You cannot use a GOTO statement to branch to a subprocedure entry-point identifier.

To obtain the code address of a subprocedure entry-point identifier, preface the identifier with

@.

You can specity FORWARD subprocedure entry-point declarations, which look like FORWARD
subprocedure declarations.

262 Procedures, Subprocedures, and Procedure Pointers

Example 211 Subprocedure Entry-Point Identifiers

literal write_op,
read_op,
writeread_op,
readwrite_op;

int proc io (op, buf);

int op;
int .ext buf;
begin

int subproc do_read_op (buf);
int .ext buf;
forward;
int subproc do write op (buf);
int .ext buf;
forward;
int subproc do_writeread_op (buf);
int .ext buf;
begin
entry do_read _op;
call do write op (buf);
do_read_op:
1 Perform read operation
end;
int subproc do_readwrite_op (buf);
int .ext buf
begin
entry do _write_op;
call do_read_op (buf);
do_write_op:
1 Perform write operation

end;
case op of
begin
I write op ! call do_write op (buf);
! read_op ! call do_read_op (buf);
! writeread op ! call writeread op (buf);
! readwrite_op ! call readwrite op (buf);
end;
end;

Procedure Pointers

Procedure pointers allow a program to call a variable dynamically or to call an EXTENSIBLE
procedure.

The syntax of procedure pointers is similar to the syntax of forward procedures; however, instead
of the keyword PROC, you declare a procedure pointer using the keywords PROCPTR, PROC32PTR,
or PROC64PTR. As with a forward procedure, a procedure pointer fully specifies the procedure’s

attributes and formal parameters but has no body—a procedure pointer does not include executable
statements.

The size of PROCPTRs and PROC32PTRs is 32-bits in length. The size of PROC64PTRs is 64-bits
in length.

You can declare procedure pointers as:
e Variables
e Formal parameters

e Structure fields

Procedure Pointers 263

;I procpir-size H procplr-name
return-type
C.l formal-param-names |—>| attributes }_’Qj

(.l formal-param-spec |—.{END HF‘RDCF‘TR)—D

WETEI0 ved

procptr-size
specifies the size of the procedure pointer and can be any one of:
e PROCPTR
e PROC32PTR
e PROC64PTR
PROCPTR and PROC32PTR are 32-bits in length and PROC64PTR is 64-bits in length.

return-type

specifies that the procedure is a function that returns a result and indicates the data type of the
returned result, and can be any of:

e BADDR

o CBADDR
o CWADDR
o EXTADDR

o EXT32ADDR
o EXT64ADDR

e FIXED

e FIXED [(scal e)]
e INT

e REAL

e REAL(64)

e PROCADDR

e PROC32ADDR
e PROC64ADDR

e SGWADDR
e SGBADDR

e SGXWADDR

e SGXBADDR

e STRING

e UNSIGNED (wi dth)
« WADDR

NOTE: The address types and procedure pointers, EXT32ADDR, EXT64ADDR, PROC32ADDR,
PROC64ADDR, PROC32PTR, and PROC64PTR are 64-bit addressing functionality added to
the EpTAL compiler starting with SPR TO561HO1”AAP. For more information, see Appendix

E, “64-bit Addressing Functionality” (page 531).

264 Procedures, Subprocedures, and Procedure Pointers

scal e
is a constant integer expression from -19 to 19.
wi dt h
is a constant integer expression from 1 to 31.
procptr-name
is the name of the procedure pointer.
f or mal - par am nanes

is the identifier of a formal parameter. A procedure can have up to 32 formal parameters, with
no limit on the number of words of parameters and has the form:

param-narme

param-pair

WET210.vsd

par am nane
is the identifier of a formal parameter. A procedure can have up to 32 formal parameters,
with no limit on the number of words of parameters.

par am pai r
is a pair of formal parameter identifiers that comprise a language-independent string
descriptor in the form:

e |

WETOAE vsd

string
is the identifier of a standard or extended STRING simple pointer. The actual parameter
is the identifier of a STRING array or simple pointer declared inside or outside a
structure.
| engt h
is the identifier of a directly addressed INT simple variable. The actual parameter is an
INT expression that specifies the length of st ri ng in bytes.
attributes
is an attribute described in Procedure Attributes (page 248).
f or mal - par am spec
is a formal parameter and has the following form:

procptr (_',=
:: param-typa »| identifier

A

° refarral o
\ { jo——

WETT 12w

Procedure Pointers 265

procptr
is a procedure pointer identifier. |

paramtype
is any data type described in the dat a- t ype parameter of this syntax description.

I ndi rection |
., -EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14
(page 41)).

NOTE: The “Indirection Symbols” (page 41), .EXT32 and .EXT64 are 64-bit addressing

functionality added to the EpTAL compiler starting with SPR TO561HO1"AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

identifier
is an identifier (as described in Identifiers (page 42)).
referral

is the name of a previously declared structure or structure pointer. You must include
referral if the formal parameter i denti fi er is the name of a structure.

Topics:

e Declaring Procedure Pointer Variables (page 266) |
e Declaring Procedure Pointers in Structures (page 267) |
e Declaring PROCPTRs as Formal Parameters (page 268)

e Assignments to Procedure Pointers (page 269) |

e Dynamically Selected Procedure Calls (page 271)

Declaring Procedure Pointer Variables |

° prev-identifier
“e procaddr

WETT14. w2

procptr
is a procedure pointer identifier. |
prev-identifier
is the identifier of a previously declared variable. On TNS architecture, prev-i denti fi er
must be 16 bits. On TNS/R and TNS/E architecture, prev-i denti fi er must be 32 bits or
more.
pr ocaddr

is a constant or dynamic expression of type PROCADDR, PROC32ADDR, or PROC64ADDR.
procaddr must be the name of a procedure, procedure pointer, or PROCADDR,
PROC32ADDR, or PROC64ADDR variable. If pr ocaddr is a procedure or procedure pointer,
the parameters of pr ocpt r and procaddr must match and the following procedure attributes
must match: EXTENSIBLE, VARIABLE, RETURNSCC, MAIN, and INTERRUPT; the following
procedure attributes do not have to match: OVERFLOW_TRAPS, CALLABLE, PRIV, and RESIDENT.

You can declare a procedure pointer anywhere a data declaration is valid. For purposes of |

declarations, procedure pointers are treated as data, not as procedures.

The address type of a PROCPTR, PROC32PTR, and PROC64PTR is PROCADDR, PROC32ADDR,
and PROC64ADDR, respectively.

The address type of a procedure pointer variable is WADDR. |

266 Procedures, Subprocedures, and Procedure Pointers

The object data type of a reference to a function procedure pointer is the data type returned by
the procedure pointer.

You can equivalence a procedure pointer (PROCPTR, PROC32PTR, or PROC64PTR) to any previously
declared variable, if the width of the previous variable is greater than or equal to the width of the
procedure pointer.

You can assign and pass procedure pointers of smaller or equal size to other procedure pointers,
provided that the parameters and attributes match.

Example 212 Procedure Pointers as Variables and Formal Parameters

INT i;

INT _EXT j;

REAL k;

PROCADDR pa;

PROC32ADDR p32a;

PROC64addr p64a;

PROC p (i, jJ) EXTENSIBLE, CALLABLE;

Declare PROC p in a

INT i, .EXT j; 1 FORWARD declaration
FORWARD;
PROCPTR pp (i, j) EXTENSIBLE,CALLABLE; ! Declare PROCPTR a and
INT i, _EXT j; I initialize it to point

END PROCPTR := @p;

PROC64PTR p64pa (i, j) EXTENSIBLE,CALLABLE;
INT 1, -EXT j;

END PROCPTR := @p;

PROC64PTR p64pb (i, j) EXTENSIBLE,CALLABLE;
INT 1, .EXT j;

END PROCPTR := @pp;

FIXED PROCPTR b (str : length);
STRING .str; INT length;

END PROCPTR;

PROCPTR ¢ (p); Declare PROCPTR c with one
REAL PROC32PTR p(x); REAL x; END PROCPTR;! one parameter, p, which is

END PROCPTR; a PROC32PTR

REAL PROCPTR d (x); REAL x; END PROCPTR; Declare REAL PROCPTR d

END PROCPTR; with one REAL parameter

PROCPTR e(i); Declare PROCPTR e
INT i; Equivalence e to d

END PROCPTR = d;

to PROC p

Declare PROC64PTR p64pa
and initialize it to point
to PROC p

Declare PROC64PTR p64pb
and initialize it to point
to PROC p too

Declare FIXED PROCPTR b
with a parameter pair

Declaring Procedure Pointers in Structures

You can declare PROCPTR fields within structure declarations.

e prev-identifier

WETT1E wad

procptr
is a procedure pointer identifier.
previous-identifier
The identifier of a field at the same level as pr ocpt r in the same structure.

Example 213 (page 268) declares a REAL PROCPTR as a field in a structure array of 10 elements.

Use an index to reference elements of array s1:
CALL s1[3]-f(3.0el);

Procedure Pointers 267

Example 213 Procedure Pointers in a Structure

STRUCT s1 [0:9];
BEGIN
REAL PROCPTR f(x); REAL x; END PROCPTR;
PROC32PTR g; END PROCPTR;
PROC64PTR h (X, Yy, z) EXTENSIBLE;
INT X, vy, Z;
END PROCPTR;
END;

Example 214 (page 268) declares a template structure s2 with three components. When s2 is the
referent of a referral structure, pTAL allocates space for procedure pointer F. pTAL does not allocate
space for procedure pointers g or h because they redefine procedure pointer f. Procedure pointers
T, g, and h are the same except for the type of the parameter passed to the procedure.

Example 214 Equivalenced Procedure Pointers in a Structure

STRUCT s2 (*);
BEGIN
REAL PROCPTR f(X);
REAL Xx;
END PROCPTR;
REAL PROC32PTR g(Xx);
INT X;
END PROCPTR = f;
REAL PROCPTR h(X);
FIXED x;
END PROCPTR = g;
END;

The code in Example 215 (page 268) uses the structure s2 in Example 214 (page 268).
Example 215 Code That Uses the Structure in Example 214 (page 268)

STRUCT s(s2);
REAL my_real;
INT my_index := type_int;
CASE my_index OF
BEGIN

type_real -> my real := s.f(3.0E1l);
type int -> my real := s.g(3);
type_fixed -> my real = s_h(3F);

END;

Declaring PROCPTRs as Formal Parameters
The compiler:

e Ensures that the procedure attributes and parameter data types of procedures passed as actual
parameters match those defined in the formal parameters of the called procedure

e Builds parameter masks for calls to VARIABLE procedures and EXTENSIBLE procedures

268 Procedures, Subprocedures, and Procedure Pointers

Example 216 Procedure Pointers as Formal Parameters

PROC a(i); INT i; EXTERNAL;
PROC b(p);

PROCPTR p(a); INT a; END PROCPTR;
EXTERNAL ;
PROC c(p);

PROC64PTR p(a); INT a; END PROCPTR;
EXTERNAL ;

PROC d(pa); PROCADDR pa; BEGIN END;
PROC e(pa); PROC32ADDR pa; BEGIN END;

PROC f;

BEGIN
CALL b(a); 1 OK
CALL b(@a); ! ERROR: @ character is
CALL c(a); 1 OK
CALL c(@a); ' ERROR: @ character i
CALL d(a); I ERROR: @ character is
CALL d(@a); ! OK
CALL e(ad); I ERROR: @ character is
CALL e(@a); ! OK

END;

not valid

s not valid

required

required

NOTE: Address type PROC32ADDR and procedure pointer type PROC64PTR are 64-bit addressing
functionality added to the EpTAL compiler starting with SPR T0561HO1”AAP. For more information,

see Appendix E, “64-bit Addressing Functionality” (page 531).

An @ character in front of the actual parameter is:

e Not allowed if the formal parameter is a PROC or a PROCPTR

e Required if the formal parameter is a PROCADDR

Assignments to Procedure Pointers

You can assign values to a procedure pointer variable in much the same way as you assign values
to any variable; however, only values of data type procedure address can be assigned to a

procedure pointer.

You can assign the following items to a procedure pointer:

e The address of a procedure or function

e The value of another procedure pointer

e The value of a variable whose data type is procedure address

Assignment statements involving procedure pointers fall into one of two categories:

o If the left side is a procedure pointer and right side is an @ character followed by the name
of a procedure, subprocedure, or function—that is, neither the left side nor the right side is a
procedure address variable—the attributes and the formal parameter types of each side of
the assignment must match. The attributes specified must be the same but do not have to be

presented in the same order.

o If either the left side or the right side of the assignment statement is a procedure address
variable, the compiler does not attempt to match attributes or parameter types.

e Subject to the matching rules above, you can assign procedure pointers and procedure
addresses to other procedure pointers and procedure addresses if the size of the target is

equal to or larger than the size of the source.

Procedure Pointers 269

Example 217 Assignments to procedure pointers, First Example

PROCPTR ppl (a, b) RETURNSCC;
INT a, b;

END PROCPTR;

PROCPTR pp2 (&) RETURNSCC;
INT a;

END PROCPTR;

PROCPTR pp3 (a, b);
INT a, b;

END PROCPTR;

PROC p(i, j) RETURNSCC;

INT i, j;
BEGIN

RETURN ,j;
END;
PROCADDR paddr;
paddr := @p; 1 OK: PROCADDR variable is assigned PROC addr
@ppl := @p; 1 OK: Left side is PROCPTR, right side is PROC
@ppl := @pp2; ! ERROR: ppl has two parameters, pp2 has one
@ppl := @pp3; 1 ERROR: ppl specifies RETURNSCC, pp3 does not

paddr := @pp2;
@ppl := paddr;

OK: paddr is a PROCADDR variable
OK: paddr is a PROCADDR variable

Example 218 Assignments to procedure pointers, Second Example

REAL r;
INT i;
STRUCT s1 [0:9];:
BEGIN
REAL PROCPTR f(X);
REAL Xx;
END PROCPTR;
END;
PROC p (i, j) EXTENSIBLE, CALLABLE; Declare PROC p in a
INT i, .EXT j; 1 FORWARD declaration
FORWARD ;
PROCPTR a (i, j) EXTENSIBLE,CALLABLE; Declare PROCPTR a and
INT i, _EXT j; initialize it to
END PROCPTR; 1 point to PROC p
PROCPTR ¢ (p):
REAL PROCPTR p (X);
REAL Xx;
END PROCPTR;
END PROCPTR;
REAL PROCPTR d (X); 1 Declare REAL PROCPTR d
REAL Xx; with REAL parametera
END PROCPTR;
@a = @p;
@d := @s1[2]-f;
@s1[3]-f = @d;
CALL c(d);

270 Procedures, Subprocedures, and Procedure Pointers

Example 219 Assignments to Procedure Pointers, Third Example

PROCPTR pp; END PROCPTR;
PROC32PTR p32p;
PROC64PTR p64p;
PROCADDR pa;

PROC32ADDR p32a;
PROC64ADDR p64a;

@pp
@pp
@pp

pa :

p32a :
p32a :
p32a :
p32a :
p32a :
p32a :
p64a :
p64a :
p64a :
p6da :
p64a :
p64a :

0
p
0

@pp;

pa
@p32p;
p32a;
@p64p;
p64a;

= @p32p;
p32a;
@pp;
pa;
@p64p;
p64a;
@p64p;
p64a;
@pp;
pa;
@p32p;
= p32a;
pp;

a;
p32p;

END PROCPTR;
END PROCPTR;

OK
OK
OK
OK
ERROR,
ERROR,
OK
OK
OK
OK
ERROR,
ERROR,
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
ERROR,
ERROR,
OK
OK
OK
OK
ERROR,
ERROR,
OK
OK
OK
OK
OK
OK

@p64p is 64-bits long, @pp is 32-bits long
@p6d4a is 64-bits long, @pp is 32-bits long

@p64p is 64-bits long, @pp is 32-bits long
@p64p is 64-bits long, @p32p is 32-bits long

@p64p is 64-bits long, pa is 32-bits long
p64a is 64-bits long, pa is 32-bits long

@p64p is 64-bits long, p32a is 32-bits long
p64a is 64-bits long, p32a is 32-bits long

NOTE:

Address types PROC32ADDR and PROC64ADDR and procedure pointer types PROC32PTR
and PROC64PTR are 64-bit addressing functionality added to the EpTAL compiler starting with
SPR TO561HO1~AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Once you have set up a procedure pointer to point to a procedure, you can call the procedure by
using the procedure pointer name in a CALL statement or, if the procedure pointer is typed, in an
expression:
CALL a(l, 2):
r = d(r);

IF (si[i].F(r)) < 1.0E0 THEN ...

Dynamically Selected Procedure Calls

You can use a procedure pointer to dynamically select a procedure to call.

Procedure Pointers 271

Example 220 Dynamically Selected Procedure Call

LITERAL dev_6530, dev_3270, dev_dove;
INT device_ type;
INT paraml, param2;

PROC device_6530(i, j);
INT 1, j;

EXTERNAL ;

PROC device 3270(i1, j);
INT 1, J;

EXTERNAL;

PROC device dove(i, j);
INT 1, j;

EXTERNAL ;

PROCPTR p(i, j);
INT 1, J;

END PROCPTR;
CASE device_type of
BEGIN
dev_6530 -> @p :
dev_3270 -> @p :
dev_dove -> @p :
END;
CALL p(paraml, param2);

@device_6530;
@device _3270;
@device_dove;

Although you cannot create an array of procedure pointers, you can create a structure that includes
a procedure pointer field. You can choose dynamically which procedure pointer in the structure
array to call.

Example 221 Dynamically Selected Procedure Call

LITERAL dev_6530, dev_3270, dev_dove;
STRUCT sl1 [dev_6530:dev_dove]; ! Array of PROCPTRs
BEGIN

PROCPTR d(device, param);

INT device, param;
END PROCPTR;
END;
PROC device 6530(i1, j);

INT i, j;

EXTERNAL ;

PROC device_3270(i, j);
INT i, j;

EXTERNAL ;

PROC device dove(i, j);
INT i, j;

EXTERNAL ;

You must initialize the array s1 to hold the addresses of the procedures that you want to dynamically
call, as in the following example:

@s1[dev_6530].d := @device 6530;

@s1[dev_3270].d := @device 3270;

@s1[dev_dove].-d := @device_dove;

Use an index to choose which element of array s1 to call, as in the following example:
CALL si[dev_6530].d(80, 2):

272 Procedures, Subprocedures, and Procedure Pointers

Labels in Procedures
A label is the target location of a GOTO statement.

—}(LABEL identifiar

WVET196.vad

identifier
is as described in Identifiers (page 42). It cannot be an entry-point identifier.
The following guidelines apply:

e LABEL is not a valid data type for a formal procedure parameter. You cannot pass a label to
a procedure.

e Alabel is not a valid actual procedure parameter.

e If a GOTO statement in a subprocedure branches to a label in the containing procedure, the
label must be declared in a LABEL declaration in the containing procedure, before the
subprocedure that contains the GOTO statement (see Nonlocal (page 215)).

NOTE: This is not recommended in pTAL because it is very inefficient.

e The executable statement identified by a label cannot be an IF statement that tests the hardware
indicator.

The conditional expression in an IF statement that is identified by a label cannot test a hardware
indicator.

Example 222 IF Statements Identified by Labels

INT i, jJ :=0

i =10+ 1;

IF < THEN . I OK

i=i+1

label _a:

IF < THEN ... I ERROR: label cannot immediately precede an

I |F statement that tests a hardware indicator

Labels in Procedures 273

15 Built-In Routines

Topics:

e Privileged Mode (page 274)

e Parameters (page 275)

e Hardware Indicators (page 276)

e Atomic Operations (page 276)

¢ Nonatomic Operations (page 281)

Built-in routine calls whose results do not depend on the values of variables (such as $LEN(n) or
$INT(10D)) can be used wherever constant values are allowed.

The syntax descriptions in this section use these terms:

Term Definition
sINT Signed 16-bit integer. Range is -32,768 through 32,767.
ulNT Unsigned 16-bit integer. Range is O through 65,535. Must be an INT variable,

not a STRING or UNSIGNED variable.

word 16-bit word unless otherwise specified

“sINT” and “uINT” are not pTAL data types. This section uses them only to specify how built-in
routines use INT parameters.

Privileged Mode

Many built-in routines can be executed only by processes running in privileged mode.
Routines that operate in privileged mode can:

e Call other routines that operate in privileged mode

e Perform privileged operations by means of calls to system procedures

e Execute privileged instructions that can affect other programs or the operating system
e Use system global pointers and 'SG' equivalencing to:

o Access system tables (which are described in the system description manual for your
system)

o Access the system data area
o Compare and move data between the system data area and the user data area
o Initiate certain input-output transfers

(Only procedures that operate in privileged mode can access system global data.)

Routines that operate in privileged mode must be specially licensed, because they might (if
improperly written) adversely affect the status of the processor in which they are running.

The following execute in privileged mode:

o CALLABLE procedures (that is, procedures declared with the attribute CALLABLE)
e PRIV procedures (that is, procedures declared with the attribute PR1V)

e Nonprivileged procedures that are called by CALLABLE or PRIV procedures

e plAL Privileged Routines (page 281)

274 BuiltIn Routines

Parameters
Parameters of built-in routines are always passed by value.
Topics:
e Addresses as Parameters (page 275)

e Expressions as Parameters (page 275)

Addresses as Parameters

It o parameter of a built-in routine is an address, the address must have the correct address
type—whether the parameter is an input parameter, an output parameter, or both.

In Example 223 (page 275), the built-in routine $BUI<_IN_T1 has one formal parameter whose data
type is BADDR. The corresponding actual parameter must be either a BADDR variable or the
address field of a STRING pointer.

Example 223 Built-In Routine With Address Parameter

BADDR b;

STRING .s;

$BUI<_IN_1(b); 1 OK: data type of b is BADDR
$BUI<_IN_1(@s); ! OK: address type of @s is BADDR
$BUI<_IN_1(s); 1 ERROR: data type of s is STRING

It an output parameter of a built-in routine is an address, the corresponding actual parameter must
not be an indirect array pointer or an indirect structure pointer.

In Example 224 (page 275), the built-in routine $BUI<_IN_2 has one formal output parameter whose
data type is BADDR.

Example 224 Built-In Routine With Address Output Parameter

STRING .s[0:99];
$BUI<_IN_2(@s):; ! ERROR: s has no address container
I in which to store a new address

Expressions as Parameters

Many built-in routines accept expressions as parameters (see their individual syntax descriptions).
It o parameter of a built-in routine is an expression:

e The value of the expression can be any data type except STRING or UNSIGNED.
e Except in INT and INT(32) expressions, all operands must be of the same data type.
e An INT expression can include STRING, INT, and UNSIGNED(1-16) operands.

The system treats STRING and UNSIGNED(1-16) operands as if they were 16-bit values; that
is, the system:

o Places a STRING operand in the right byte of a word and sets the left byte to O.

o Places an UNSIGNED(1-16) operand in the right bits of a word and sets the unused left
bits to 0.

Parameters 275

e An INT(32) expression can include INT(32) and UNSIGNED(17-31) operands.

The system treats UNSIGNED(17-31) operands as if they were 32-bit values. Before evaluating
the expression, the system places an UNSIGNED(17-31) operand in the right bits of a
doubleword and sets the unused left bits to O.

e The built-in routine, not the expression or its data type, determines whether the value of the
parameter is signed or unsigned:

o Builtin routines that expect signed arguments treat unsigned expressions as if they were
signed.

o Builtin routines that expect unsigned arguments treat signed expressions as if they were
unsigned.

Hardware Indicators

The description of each built-in routine specifies which hardware indicators (condition code,
$CARRY, and $OVERFLOW) the built-in routine sefs. If the description does not specify the conditions
for which the built-in routine sets the value of a hardware indicator, see the system description
manual for your system.

It a built-in routine does not set a particular hardware indicator, then the value of that hardware
indicator is undefined after the built-in routine completes. If you reference a hardware indicator
when its value is undefined, the compiler reports a syntax error.

If the value of $OVERFLOW would be nonzero after executing a built-in routine, an overflow trap
occurs if overflow traps are enabled. If overflow traps are disabled, you must test $OVERFLOW
explicitly in your program.

For general information about hardware indicators, see Chapter 13 (page 234).

Atomic Operations

The built-in routines in Table 58 (page 276) perform atomic operations. No other process can access
the memory referenced by an atomic operation until the atomic operation completes; for example,

$ATOMIC_ADD is equivalent to the following algorithm:

var := var + val ue;

After the atomic operation reads var , no other process can access the memory location associated
with var until the read completes. The read, add, and store operations are performed without
interruption, as if the three operations were one.

Table 58 Built-In Routines for Atomic Operations

Routine Atomic Operation Can Set ...

$ATOMIC_ADD Adds two INT values Condition code
$CARRY
$OVERFLOW

$ATOMIC_AND Performs a LAND on two INT values Condition code

[EN | DISJABLE_OVERFLOW_TRAPS Deposits bits into an INT variable Condition code

Block Attribute

$ATOMIC_GET Gets (returns) the value of a variable Condition code

Substructure Alignment Performs a LOR on two INT values Condition code

$ATOMIC_PUT Puts a value into a variable

$ATOMIC_ADD

$ATOMIC_ADD atomically adds two INT values.

276 BuiltIn Routines

(o750 D> OO

WETEOT vad

Sets condition code Yes (according the final value of var)
Sets $CARRY Yes, if traps are disabled
Sets $OVERFLOW Yes, if traps are disabled; otherwise, traps on overflow
var
input,output

sINT:variable
is the variable that $ATOMIC_ADD increments.
val ue
input
sINT:value
is the value $ATOMIC_ADD adds to var .
$ATOMIC_ADD performs the following operation:
var := var + value

The read, add, and store operations are performed without interruption, as if the three operations
were one.

Example 225 $ATOMIC_ADD Routine

INT var;
INT value;
$ATOMIC_ADD (var, value);

The following table shows examples of $ATOMIC_ADD:

var value result

%H1234 %HAAAA %HBCDE

%H1234 %H5555 %H6789

%H6789 %HAAAA %H1233

%H6789 %H5555 %HBCDE
$ATOMIC_AND

$ATOMIC_AND performs an atomic LAND on two INT values.

I S Sy B g Sy B G NGy

WETH. waad

Sets condition code Yes (according the final value of var)
Sets $CARRY No
Sets SOVERFLOW No
var
input,output

Atomic Operations 277

sINT:variable
is the variable to which $ ATOMIC_AND applies mask.
mask
input
INT:value
is a 16-bit mask that SATOMIC_AND applies to var .
$ATOMIC_AND performs the following operation:
var = var LAND mask

The read, LAND, and store operations are performed without interruption, as if the three operations
were one.

Example 226 $ATOMIC_AND Routine

INT var;
INT mask;
$ATOMIC_AND(var, mask);

The following table shows examples of $ ATOMIC_AND:

var value result

%H1234 %BHAAAA %HBCDE

%H1234 %H5555 %H6789

%H6789 %BHAAAA %H1233

%H6789 %H5555 %HBCDE
$ATOMIC_DEP

$ ATOMIC_DEP atomically deposits bits into an INT variable.

) S S o B S [BN B
[(D)

WETEDE ved

Sets condition code Yes (according the final value of var)
Sets $CARRY No
Sets SOVERFLOW No
var
input,output

INT:variable
is the variable into which $ATOMIC_DEP deposits bits from val ue.
mask
input
INT:value

is a 16-bit mask word that determines which bits of value to deposit into var .
$ATOMIC_DEP stores into each bit position of var . The corresponding bit in value after
performing an “and” operation between the corresponding bits in val ue and mask.

278 BuiltIn Routines

val ue
input
INT:value
holds the bits that, after being masked, $ ATOMIC_DEP deposits in var .
$ATOMIC_DEP performs the following operation:
var := (var LAND $COMP(mask)) LOR (val ue LAND mask)
All the operations are performed without interruption, as if they were one.

Example 227 $ATOMIC_DEP Routine

INT var;

INT mask;

INT value;

$ATOMIC _DEP(var, mask, value);

The following table shows examples of $ ATOMIC_DEP:

var value mask result

%HO000 %H1234 %HAAAA %H0220

%H0000 %H1234 %H5555 %H1010

%H0000 %H6789 %BHAAAA %H2288

%HO0000 %H6789 9%H5555 %H1010
$ATOMIC_GET

$ATOMIC_GET atomically gets (returns) the value of a variable.

Sirome G)—(0) D—0O

WETE1D e

Sets condition code Yes
Sets $CARRY No
Sets SOVERFLOW No
var
input

type:variable
is the variable whose value $ATOMIC_GET returns. var must be one of:

e A well-aligned byte, 2-byte, or 4-byte variable whose address is an integral multiple
of its width.

e Abitfield fully contained in a 1-byte, 2-byte, or 4-byte variable that is aligned on an
even-byte boundary.

It var is not well aligned, an error occurs.

The operation is performed without interruption.

Atomic Operations 279

Example 228 $ATOMIC_GET Routine

INT varl;

INT var2;

varl :-= $ATOMIC_GET(var2);

if < then ... 1 OK: $ATOMIC_GET sets condition code

$ATOMIC_OR
$ATOMIC_OR performs an atomic LOR on two INT values.

CECEY S0) B S B G SNG

WETE vad

Sets condition code Yes (according the final value of var)
Sets $CARRY No

Sets SOVERFLOW No
var

input,output
INT:variable
is the variable to which $ ATOMIC_OR applies nask.
mask
input
INT:value
is a 16-bit mask that SATOMIC_OR applies to var .
$ATOMIC_OR performs the following statement:
var := var LOR mask

The read, LOR, and store operations are performed without interruption, as if the three operations
were one.

Example 229 $ATOMIC_OR Routine

INT var;
INT mask;
$ATOMIC_OR(var, mask);

The following table shows examples of $ATOMIC_OR:

var mask result

%H1234 %HAAAA %HBABC

%H1234 %H5555 %H5775

%H6789 %BHAAAA %HEFAB

%H6789 %H5555 %H77DB
$ATOMIC_PUT

$ATOMIC_PUT atomically puts a value into a variable.

280 Built-In Routines

CE SO S e S o =G

WETE12. W

Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
var

output

type:variable
the variable into which $ATOMIC_PUT stores val ue. var must be one of:

e A l-byte, 2-byte, or 4-byte variable whose address is an integral multiple of its width.

e A bit field fully contained in a T-byte, 2-byte, or 4-byte variable that is aligned on an
even-byte boundary.
val ue
input
type:value
the value $ATOMIC_PUT stores in var . val ue must be assignment-compatible with var .
$ATOMIC_PUT performs the following action:

var := val ue

Example 230 SATOMIC_PUT Routine

INT var;
INT value;
$ATOMIC_PUT(var, value);

Nonatomic Operations

e plAL Privileged Routines (page 281)
e Type-Conversion Routines (page 282)
e Address-Conversion Routines (page 283)
e Character-Test Routines (page 284)
e Minimum and Maximum Routines (page 285)
e Arithmetic Routines (page 285)
e Carry and Overflow Routines (page 285)
o FIXED-Expression Routines (page 285)
e Variable-Characteristic Routines (page 285)
e Procedure-Parameter Routines (page 286)
e Miscellaneous Routines (page 286)
Table 70 (page 286) lists the built-in routines for nonatomic operations alphabetically and shows
which hardware indicators they can can set.
pTAL Privileged Routines
pTAL privileged routines execute in privileged mode (see Privileged Mode (page 274)).
The pTAL compiler supports all pTAL privileged routines except $TRIGGER.

Nonatomic Operations 281

The EpTAL compiler supports no pTAL privileged routines except $TRIGGER.
Table 59 pTAL Privileged Routines

Procedure Description

$AXADR Converts a standard address or a relative extended address to an absolute
extended address

$EXECUTEIO Executes an /O operation

$FREEZE Freezes (halts) the processor in which its process is running and any other
processes on the same node that have FREEZE enabled

VOLATILE Attribute Halts the processor in which its process is running

$INTERROGATEIO Stores cause and status information from an /O interrupt

$LOCKPAGE Locks one page of memory

$READBASELIMIT Returns the base and limit of the current extended segment

$TRIGGER Replaces $FREEZE and $HALT, which are available only for code generated for
the TNS/R architecture

$UNLOCKPAGE Unlocks one page of memory

$WRITEPTE Writes a segment-page-table entry

Type-Conversion Routines

A type-conversion routine converts its argument or arguments from one data type to another data
type.
Table 60 Built-In Type-Conversion Routines

Routine Converts ... To ...
$ASCIITOFIXED ASCI! value FIXED value
$DBL INT, INT(32), FIXED, REAL, or INT(32) value

REAL(64), or UNSIGNED(1-31) value
EXTADDR or PROCADDR address

$DBLL Two INT values INT(32) value

$DBLR INT, INT(32), FIXED, REAL, or REAL(64) Rounded INT(32) value
value

$DFIX INT(32) value FIXED(f poi nt) value

SEFLT INT, INT(32), FIXED(f poi nt), REAL or REAL(64) value
REAL(64) value

SEFLTR INT, INT(32), FIXED(f poi nt), or REAL, Rounded REAL(64) value
or REAL(64) value

$FIX INT, INT(32), REAL, REAL(64), FIXED, FIXED value
or EXT64ADDR' value

$FIXD FIXED value INT(32) value

$FIXEDTOASCII Absolute value of a FIXED value ASCII value

$FIXEDTOASCIIRESIDUE Same as $FIXEDTOASCII but returns
the value of the residue

$FIXI FIXED value Signed INT value

$FIXL FIXED value Unsigned INT value

282 BuiltIn Routines

Table 60 Built-In Type-Conversion Routines (continued)

Routine Converts ... To ...

$FIXR INT, INT(32), REAL, REAL(64), or FIXED Rounded FIXED value
value

SFIT INT, INT(32), FIXED(f poi nt), REAL or REAL value
REAL(64) value

$FLTR INT, INT(32), FIXED(f poi nt), REAL, or Rounded REAL value
REAL(64) value

$HIGH Upper 16 bits of an INT(32) or INT value
EXTADDR value

$IFIX Signed INT value FIXED(f poi nt) value

$INT INT, INT(32), FIXED, UNSIGNED INT value

(1-31), REAL, or REAL(64) value
Some address types

$INT_OV Same as $INT, but sets $OVERFLOW
in some cases
$INTR Low-order 16 bits of an INT, INT(32), Rounded INT value

or FIXED value
REAL or REAL(64) value

$LFIX Unsigned INT value FIXED(f poi nt) value
$UDBL Unsigned INT value INT(32) value
$UFIX ! INT(32) FIXED 2

! 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HO1~AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).
2 Zero extends the INT(32) value to FIXED; does not sign extend.

Type-conversion routines that convert an argument from a smaller data type to a larger data type,
such as $DFIX, perform a sign extension of the expression fo the high bits.

Type-conversion routines whose names end in R, such as $DBLR, round their results. All other
type-transfer routines truncate their results.

Type-conversion routines round values as follows:

(IF value < O THEN value - 5 ELSE value + 5) /7 10

That is:

1. Ifval ue is negative, 5 is subtracted; if val ue is positive, 5 is added.

2. Integer division by 10 truncates the result; therefore, if the absolute value of the least significant
digit of the result after initial truncation is 5 or more, one is added to the absolute value of
the final least significant digit.

Rounding has no effect on INT, INT(32), or FIXED expressions.

Address-Conversion Routines
An address-conversion routine converts one address type to another address type.

Table 61 Built-In Address-Conversion Routines

Routine Converts ... To ...
$BADDR_TO_EXTADDR BADDR address EXTADDR address
$BADDR_TO_WADDR BADDR address WADDR address

Nonatomic Operations 283

Table 61 Built-In Address-Conversion Routines (continued)

Routine Converts ... To ...
$EXTADDR_TO_BADDR EXTADDR address BADDR address
$EXTADDR_TO_WADDR EXTADDR address WADDR address
$EXT64ADDR_TO_EXTADDR' EXT64ADDR' EXTADDR address
$EXTADDR_TO_EXT64ADDR ' EXTADDR EXT64ADDR address'
$EXT64ADDR_TO_EXT32ADDR! EXT64ADDR' EXT32ADDR address'
$EXT64ADDR_TO_EXT32ADDR_OV'' EXT64ADDR' EXT32ADDR address " 2

$IS_32BIT_ADDR '
$PROCADDR
$PROC32ADDR'
$PROC64ADDR!
$SGBADDR_TO_EXTADDR
$SGBADDR_TO_SGWADDR
$SGWADDR_TO_EXTADDR

$SGWADDR_TO_SGBADDR

$WADDR_TO_BADDR
$WADDR_TO_EXTADDR
$XADR

$XADR32'

$XADR64!

Extended address

Procedure address or INT(32)
Procedure address or INT(32)
Procedure address or FIXED
SGBADDR or SGXBADDR address
SGBADDR or SGXBADDR address
SGWADDR or SGXWADDR

address

SGWADDR or SGXWADDR

address

WADDR address
WADDR address
Variable or struct
Variable or struct

Variable or struct

INT?

PROCADDR address
PROC32ADDR address'
PROC64ADDR address'
EXTADDR address
SGWADDR address
EXTADDR address

SGBADDR address

BADDR address
EXTADDR address
EXTADDR address*
EXT32ADDR address'” *
EXT64ADDR address' *

! 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HOT~AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).
2 |f the specified address cannot be represented in 32-bits, an overflow trap occurs. This trap cannot be disabled using

the arithmetic trap controls (for example, NO_OVERFLOW_TRAPS, DISABLE_OVERFLOW_TRAPS, efc.)
3 Returns -1 if the specified address can be represented as a 32-bit address otherwise, returns 0.

* Returns the address of the specified variable or struct in the desired extended address type.

The pTAL privileged routine $AXADR (page 293), supported only by the pTAL compiler, is also an

address-conversion routine.

Character-Test Routines

A character-test routine tests the right byte of an INT value for an alphabetic, numeric, or special

character, returning a true value if the character is there and a false value otherwise.

Table 62 Built-In Character-Test Routines

Routine Tests for ...

$ALPHA Alphabetic character

$NUMERIC Numeric character

$SPECIAL Special (ASCII nonalphanumeric) character (see Table 8 (page 36))

284 BuiltIn Routines

Minimum and Maximum Routines

Minimum routines return the minimum of two arguments. Maximum routines return the maximum
of two arguments.

Table 63 Built-In Minimum and Maximum Routines

Arguments are of the type ... Minimum Maximum
Unsigned INT $LMIN $LMAX
Signed INT, INT(32), FIXED(f poi nt), REAL, or SRL $MAX
REAL(64)

Arithmetic Routines
Table 64 Built-In Arithmetic Routines

Routine Description

$ABS Returns the absolute value of its argument

$COMP Returns the one’s complement of its argument

$UDIVREM16 Divides an INT(32) dividend by an INT divisor to produce an INT quotient and
an INT remainder

$UDIVREM32 Divides an INT(32) dividend by an INT divisor to produce an INT(32) quotient

and an INT remainder

Carry and Overflow Routines
Table 65 Built-In Carry and Overflow Routines

Routine Indicates whether ...

$CARRY An arithmetic carry occurred during certain arithmetic operations or during
execution of a SCAN or RSCAN statement

$OVERFLOW An overflow occurred during certain arithmetic operations

FIXED-Expression Routines
Table 66 Built-In FIXED-Expression Routines

Routine Description

$POINT Returns the f poi nt value of a FIXED expression

$SCALE Moves the position of the implied decimal point by changing a FIXED(f poi nt)
value

Variable-Characteristic Routines
Variable-characteristic routines return INT values that represent various characteristics of variables.

Table 67 Built-In Variable-Characteristic Routines

Routine Returns an INT value that is the ...

$BITLENGTH Length, in bits, of a variable

$BITOFFSET Offset, in bits, of a structure data item from the address of the zeroth structure
occurrence

$LEN Length, in bytes, of a variable

$OCCURS Number of elements in an array

Nonatomic Operations 285

Table 67 Built-In Variable-Characteristic Routines (continued)

Routine Returns an INT value that is the ...
$OFFSET Offset, in bytes, of a structure item from the beginning of the structure
$TYPE Data type of a variable

Procedure-Parameter Routines

Table 68 Built-In Procedure-Parameter Routines

Routine Description

$OPTIONAL Controls whether a given parameter or parameter pair is passed fo a VARIABLE
procedure or EXTENSIBLE procedure

$PARAM Checks for the presence or absence of an actual parameter in the call that called

the current procedure or subprocedure

Miscellaneous Routines

Table 69 Miscellaneous Built-In Routines

Routine Description

$CHECKSUM Returns the checksum of data

$COUNTDUPS Returns the number of duplicate words in a buffer
$EXCHANGE Exchanges the values of two variables of the same data type

$FILL8, $FILL16, and $FILL32

$INTERROGATEHIO*, **
$LOCATESPTHDR*, * *

Declaring Arrays in Structures

$MOVENONDUP
$READCLOCK
$READSPT*, **
$READTIME
$STACK_ALLOCATE

Fill an array or structure with repetitions of an 8-bit, 16-bit, and 32-bit value,
respectively

Stores cause and status information from a high-priority 1/O inferrupt
Returns the address of the Segment Page Table (SPT)

Moves bytes from one memory location to another and computes a checksum
(bytewise exclusive “or”) on them

Moves words until it encounters two adjacent identical words
Returns the current setting of the system clock

Returns (copies) an entry from the Segment Page Table (SPT)
Returns the number of microseconds since the last cold load

Allocates a block of memory on the stack and returns the address of the block

* Only procedures executing in privileged mode can call this routine (see Privileged Mode (page 274))

** The EpTAL compiler does not support this routine

Table 70 Built-In Routines for Nonatomic Operations

Routine Description Can Set ...
$ABS Returns the absolute value of its $OVERFLOW
argument

$ALPHA Tests for an alphabetic character

$ASCIITOFIXED

286 Built-In Routines

Converts an ASClI value to a FIXED Condition code
value $OVERFLOW

Table 70 Built-In Routines for Nonatomic Operations (continued)

Routine

Description Can Set ...

$AXADR' %3

$BADDR_TO_EXTADDR
$BADDR_TO_WADDR
$BITLENGTH

$BITOFFSET

$CARRY

$CHECKSUM
$COMP

$COUNTDUPS
$DBL

$DBLL

$DBLR

$DFIX

$EFLT

$EFLTR
$EXCHANGE

$EXECUTEIQ' %3
$EXTADDR_TO_BADDR

$EXTADDR_TO_WADDR
$EXT64ADDR_TO_EXTADDR*
$EXT64ADDR_TO_EXT32ADDR*

$EXT64ADDR_TO_EXT32ADDR_OV *

Converts a standard address or a
relative extended address to an
absolute extended address

Converts a BADDR address to an
EXTADDR address

Converts a BADDR address to a
WADDR address

Condition code
Condition code

Returns the length, in bits, of a
variable

Returns the offset, in bits, of a
structure data item from the address
of the zeroth structure occurrence

Indicates whether an arithmetic carry
occurred during certain arithmetic
operations or during execution of a
SCAN or RSCAN statement

Returns the checksum of data

Returns the one’s complement of its
argument

Returns the number of duplicate
words in a buffer

Converts its argument to an INT(32) $OVERFLOW
value

Converts two INT values to an

INT(32) value

Converts its argument fo a rounded

INT(32) value

Converts an INT(32) value to a $OVERFLOW

FIXED(f poi nt) value

Converts its argument to a REAL(64)
value

Converts its argument fo a rounded

REAL(64) value

Exchanges the values of two
variables of the same data type
Executes an /O operation Condition code

Converts a EXTADDR address to a
BADDR address

Converts a EXTADDR address to a
WADDR address

Converts address of type
EXT64ADDR* to EXTADDR

Converts address of type

EXT64ADDR* to EXT32ADDR*

Converts address of type
EXT64ADDR* to EXT32ADDR?.

Nonatomic Operations

287

Table 70 Built-In Routines for Nonatomic Operations (continued)

Routine Description Can Set ...
Overflow trap occurs if the address
cannot be represented by 32-bits
$EXTADDR_TO_EXT64ADDR * Converts address of type EXTADDR
to EXT64ADDR*
$FILL8, $FILL16, and $FILL32 Fill an array or structure with
repetitions of an 8-bit, 16-bit, and
32-bit value, respectively
$FIX Converts its argument to a FIXED
value
$FIXD Converts a FIXED value to an INT(32) $OVERFLOW
value
$FIXEDTOASCII Converts the absolute value of a $OVERFLOW
FIXED value to an ASCII value
$FIXEDTOASCIIRESIDUE Converts the absolute value of a $OVERFIOW
FIXED value to an ASCII value and
returns the value of the residue
$FIXI Converts a FIXED value to a signed $OVERFLOW
INT value
$FIXL Converts a FIXED value to an $OVERFLOW
unsigned INT value
$FIXR Converts its argument to a rounded ~ $OVERFLOW
FIXED value
$FLT Converts its argument to a REAL
value
$FLTR Converts its argument to a rounded ~ $OVERFLOW
REAL value
$FREEZE" %3 Freezes (halts) the processor in which
its process is running and any other
processes on the same node that
have FREEZE enabled
$HALT' 23 Halts the processor in which its
process is running
$HIGH Converts the high-order (leftmost) 16
bits of an INT(32) or EXTADDR value
to an INT value
$IFIX Converts a signed INT value to a
FIXED(f poi nt) value
$INT Converts its argument to an INT value
$INT_OV Same as $INT, but sets overflow $OVERFLOW

$INTERROGATEHIO? 3
$INTERROGATEIO % 3

$INTR

288 Built-In Routines

indicator in some cases

Stores cause and status information
from a high-priority I/O interrupt

Stores cause and status information
from an /O interrupt

Converts the low-order 16 bits of an
INT, INT(32), or FIXED value to an
INT value

Condition code

Condition code

$OVERFLOW

Table 70 Built-In Routines for Nonatomic Operations (continued)

Routine Description Can Set ...

Converts a REAL or REAL(64) value
to a rounded INT value

$IS_32BIT_ADDR * Returns INT typed value -1 if the
specified address can be represented
by 32-bits and O otherwise.

$LEN Returns the length, in bytes, of a
variable
$LFIX Converts an unsigned INT value to a

FIXED(f poi nt) value

$LMAX Returns the maximum of two unsigned
INT values
$LMIN Returns the minimum of two unsigned
INT values
$LOCATESPTHDR? 2 Returns the address of the Segment $CARRY
Page Table (SPT)
$LOCKPAGE'- % Locks one page of memory Condition code
$CARRY
$MAX Returns the maximum of two signed
values
$MIN Returns the minimum of two signed
values
$MOVEANDCXSUMBYTES Moves bytes from one memory

location to another and computes a
checksum (bytewise exclusive “or”)

on them

$MOVENONDUP Moves words until it encounters two Condition code
adjacent identical words

$NUMERIC Tests for a numeric character

$OCCURS Returns the number of elements in an
array

$OFFSET Returns the offset, in bytes, of a

structure item from the beginning of
the structure

$OPTIONAL Controls whether a given parameter
or parameter pair is passed to a
VARIABLE procedure or EXTENSIBLE

procedure

$OVERFLOW Indicates whether an overflow
occurred during certain arithmetic
operations

$PARAM Checks for the presence or absence

of an actual parameter in the call that
called the current procedure or

subprocedure

$POINT Returns the f poi nt value of a FIXED
expression

$PROCADDR Converts an procedure address to a
PROCADDR address

Nonatomic Operations 289

Table 70 Built-In Routines for Nonatomic Operations (continued)

Routine Description Can Set ...
$PROC32ADDR* Converts procedure address to

PROC32ADDR*
$PROCG4ADDR* Converts procedure address to

$READBASELIMIT' 2
$READCLOCK
$READSPT> 3
$READTIME

$SCALE

$SGBADDR_TO_EXTADDR
$SGBADDR_TO_SGWADDR

$SGWADDR_TO_EXTADDR

$SGWADDR_TO_SGBADDR

$SPECIAL

$STACK_ALLOCATE

$TRIGGER" % °

$TYPE
$UDBL

$UDIVREM16

$UDIVREM32

$UFIX 4

$UNLOCKPAGE'" %3
$WADDR_TO BADDR

290 BuiltIn Routines

PROC64ADDR*

Returns the base and limit of the
current extended segment

Returns the current setting of the
system clock

Returns (copies) an entry from the $CARRY
Segment Page Table (SPT)

Returns the number of microseconds
since the last cold load

Moves the position of the implied $OVERFLOW
decimal point by changing a
FIXED(f poi nt) value

Converts a SGBADDR or SGXBADDR
address to an EXTADDR address

Converts a SGBADDR or SGXBADDR
address to a SGWADDR address

Converts a SGWADDR or
SGXWADDR address to an EXTADDR
address

Converts a SGWADDR or
SGXWADDR address to a SGBADDR
address

Tests for a special (ASCII
nonalphanumeric) character

Allocates a block of memory on the
stack and returns the address of the

block

Replaces $FREEZE and $HALT, which
are available only for code
generated for the TNS/R architecture

Returns an INT value that represents
the data type of a variable

Converts an unsigned INT value to

an INT(32) value

Divides an INT(32) dividend by an $OVERFLOW
INT divisor to produce an INT
quotient and INT remainder

Divides an INT(32) dividend by an $OVERFLOW
INT divisor to produce an INT(32)
quotient and INT remainder

converts INT(32) to FIXED, zero

extended
Unlocks one page of memory Condition code

Converts a WADDR address to a
BADDR address

Table 70 Built-In Routines for Nonatomic Operations (continued)

Routine Description Can Set ...
$WADDR_TO_EXTADDR Converts a WADDR address to an

EXTADDR address
$WRITEPTE" %3 Writes a segment-page table entry ~ $CARRY
$XADR Returns the address of the specified

variable or struct as type EXTADDR.®
$XADR32* Returns the address of the specified

variable or struct as type

EXT32ADDRA4.°
$XADR64* Returns the address of the specified

variable or struct as type

EXT64ADDR4.

pTAL privileged procedure (see Privileged Mode (page 274))

Only procedures operating in privileged mode can execute this routine (see Privileged Mode (page 274)).

The EpTAL compiler does not support this routine.

64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HO1*AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

The pTAL compiler does not support this routine.

AW N

The desired address is returned only if there exists a valid, explicit type conversion from @var or @struct to the desired
extended address type.

$ABS

$ABS returns the absolute value of its argument. The returned value has the same data type as the
argument.

(28) (D—sfemmion]} (1)

WETOT 2w

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW Yes

expr essi on
is an expression (as described in Chapter 5 (page 69)).

It the absolute value of a negative INT, INT(32), or FIXED expression cannot be represented in
two’s complement form (for example, if expr essi on has the INT value -32,768), $ABS traps if
overflow traps are enabled (see Chapter 13 (page 234)); otherwise, $ABS ignores the problem.

Example 231 $ABS Routine
INT int_val := -5;

INT abs_val;
abs val := $ABS(int_val); ! Return 5, the absolute value of -5

$ALPHA
$ALPHA tests the right byte of an INT value for the presence of an alphabetic character.

Nonatomic Operations 291

e) —(0 ®

WVETOTA.ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

i nt - expression
is an INT expression.
$ALPHA inspects bits <8:15> of i nt - expr essi on and ignores bits <0:7>. It tests for an
alphabetic character according to the following criteria:
i nt-expression>="A" AND i nt - expressi on <="Z" OR

i nt - expression>="a" AND i nt - expressi on <="z"

It an alphabetic character occurs, $ALPHA sets the condition code indicator to CCE (condition
code equal to). If you plan to check the condition code, do so before an arithmetic operation or
assignment occurs.

If the character passes the test, $ALPHA returns a -1 (true); otherwise, it returns a O (false).

i nt-expression can include STRING and UNSIGNED(1-16) operands, as described in
“Expression Arguments” at the beginning of this section.

Example 232 $ALPHA Routine

STRING some_char;
IF $ALPHA (some_char) THEN ... ; ! Test for alphabetic character

$ASCITOFIXED
$ASCIITOFIXED converts an ASCII value to a FIXED value.

© O O
(-bl remainingdigits |—b-[qvaluein . o .

WETADE. wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code Yes
Sets SCARRY No
Sets SOVERFLOW Yes
buf f er addr

input,output

BADDR:variable

is the byte address from which $ASCIITOFIXED reads ASCII digits. When $ASCIITOFIXED
completes, buf f er addr contains the address following the last byte read.

292 BuiltIn Routines

maxdigits
input
ulNT:value
is the maximum number of ASCII digits to read from buf f er addr .
remai ningdigits
output
ulNT:variable
is the number of bytes that $ ASCIITOFIXED did not convert because it encountered a
nonnumeric ASCII byte. r emai ni ngdi gi t s must be an INT variable; it cannot be a
STRING, UNSIGNED, or USE variable or a bit field.
gval uei n
input
FIXED(*) :value
is a value that $ASCIITOFIXED adds to the result of converting the bytes at buf f er addr .
$ASCIITOFIXED multiplies gqval uei n by 10 for each digit it converts from ASCII to FIXED.

After it converts the last digit at bufferaddr, $ASCIITOFIXED adds gvaluein to the result of
the conversion to establish the value that it returns qval ueout .

gval ueout
output

FIXED(*):variable
is a quadrupleword integer value that holds the final result of the conversion.

$ASCIITOFIXED converts a string of ASCll-coded digits at buf f er addr to a binary-coded
FIXED value, adds gqval uei n times 10n, where n is the number of digits converted, and
stores the result in qval ueout .

If a nondigit ASCII code is encountered, $ ASCIITOFIXED ends the conversion. $ASCIITOFIXED
converts only the digits before the nondigit ASCIl code. CCG indicates that $ASCIITOFIXED
converted only part of the ASCIl number. CCE indicates $ASCIITOFIXED converted the entire
string. If overflow traps are enabled and the result is greater than 263-1 or less than 263,
$ASCIITOFIXED sets $OVERFLOW and gval ueout is undefined.

Example 233 $ASCITOFIXED Routine

LITERAL buffer_len = 100;
STRING -buffer[O:buffer_len - 1]; ! Buffer to convert

STRING .ptr := @buffer; 1 pointer to buffer
INT maxdigits;

INT remainingdigits;

FIXED qvaluein;

FIXED qvalueout;

$ASCIITOFIXED (@ptr, maxdigits, remainingdigits, qvaluein,
qvalueout);

$AXADR

NOTE: The EpTAL compiler does not support this routine. (The EpTAL compiler does allow $AXADR
as a DEFINE name.)

$AXADR converts a standard address or a relative extended address to an absolute extended
address.

Nonatomic Operations 293

FAXADR variable
(O veriabe |—(1)

WET116.vsd

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No
vari abl e

is the identifier of a simple variable, pointer, array element, structure, or structure data item.

If vari abl e is a pointer, $AXADR returns the absolute extended address of the item to which
the pointer points, not the address of the pointer itself.

Example 234 $SAXADR Routine

PROC myproc PRIV;

BEGIN
STRING .EXT str;
INT intr;
1 Lots of code
@str := $AXADR (intr); ! Convert standard address of intr
I to an absolute extended address
IMore code
END;

$BADDR_TO EXTADDR
$BADDR_TO_EXTADDR converts a BADDR address to an EXTADDR address.

_>($BADD R_TO_EXTADDR o o

WETEE. el

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code Yes
Sets SCARRY No
Sets $OVERFLOW No

expr essi on
is an expression whose value is a BADDR address.

Example 235 $BADDR_TO_EXTADDR Routine

STRING .EXT s;
STRING t;
@s :-= $BADDR_TO_EXTADDR(@t); ! @t is a BADDR address

$BADDR_TO_WADDR
$BADDR_TO_WADDR converts a BADDR address to a WADDR address.

294 BuiltIn Routines

_p($BADDR_TO_WADDR o o

WETHE, e

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code Yes
Sets $CARRY No
Sets $OVERFLOW No

expr essi on
is an expression whose value is a BADDR address.

The result of $BADDR_TO_WADDR is undefined if the least significant bit of expr essi on is 1.
The least significant bit of an address is not truncated when a byte address is converted to a word
address—the address is not rounded down to the preceding even-byte address.

Example 236 $BADDR_TO_WADDR Routine

INT Ji;

STRING s;

@1 -= $BADDR_TO_WADDR(@s); ! @s is a BADDR address
$BITLENGTH

$BITLENGTH returns an INT value that is the length, in bits, of a variable.

CLE O K 0

WETOTA vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
vari abl e

is the identifier of a simple variable, array element, pointer, structure, or structure data item.

$BITLENGTH returns the length, in bits, of a single occurrence of a simple variable, array element,
structure, structure item, or item to which a pointer points.

The length of a structure or substructure occurrence is the sum of the lengths of all items contained
in the structure or substructure. Complete the structure before you use $BITLENGTH to obtain the
length of any of the items in the structure.

To compute the total number of bits in an entire array or substructure, multiply the value returned
by $BITLENGTH by the value returned by $OCCURS. To compute the total number of bits in a
structure, first round up the value returned by $BITLENGTH to the word boundary and then multiply
the rounded value by the value returned by $OCCURS.

You can use $BITLENGTH in LITERAL expressions and global initializations, because it always
returns a constant value.

Nonatomic Operations 295

Example 237 $BITLENGTH Routine

INT s _len;
STRUCT .s[0:3]; 1 Declare four occurrences of a
BEGIN 1 structure

UNSIGNED(1) flags[0:15];
UNSIGNED(2) status;
BIT_FILLER 14;

END;

s _len = $BITLENGTH (s);

Return 32, the number of bits
in one structure occurrence

$BITOFFSET

$BITOFFSET returns an INT value that is the offset, in bits, of a structure data item from the address
of the zeroth structure occurrence.

SBITOFFSET variable
(somorrseT —(O—sf varibe }—())

WETOT . wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets SOVERFLOW No
vari abl e

is the fully qualified identifier of a structure item.

The zeroth structure occurrence has an offset of O. For items other than substructure, simple variable,
array, or pointer declared within a structure, $BITOFFSET returns a O.

When you qualify the identifier of var i abl e, you can use constant indexes but not variable
indexes; for example:

$BITOFFSET (structl.subst[1l].item) !1 is a constant index
To find the offset of an item in a structure, complete the structure before you use $BITOFFSET.

You can use $BITOFFSET in LITERAL expressions and global initializations, because it always
returns a constant value.

296 Built-In Routines

Example 238 $BITOFFSET Routine

STRUCT a;
BEGIN
INT array[0:40];
STRUCT ab[0:9];
BEGIN
UNSIGNED(1) flag;
UNSIGNED(15) offset;

END;
END;
INT c;
c := $BITOFFSET (a.ab[2]); ! Return offset of 3rd occurrence
1 of ab
$CARRY

$CARRY returns a value that indicates whether an arithmetic carry occurred during certain arithmetic
operations or during execution of a SCAN or RSCAN statement.

SCARRY
p——
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets SOVERFLOW No

The value returned by $CARRY is based on instructions emitted by the compiler that determine
whether a carry occurred. $CARRY returns -1 if a carry occurred, O otherwise.

Procedures cannot return $CARRY.
You can test $CARRY only after one of the following statements:

e An assignment statement in which the final operator executed in the expression on the right
side of the assignment is one of the following:

o Signed integer add, subtract, or negate
> Unsigned integer add, subtract, or negate
e A SCAN or RSCAN statement.
$CARRY cannot be an actual parameter. If it is important to pass the value of $CARRY to a

procedure, use code similar to that in Example 239.

Example 239 $CARRY Routine

INT a, carry_flag;
carry_flag := O;

a :=a+ 1;

IF $CARRY THEN carry_flag := 1;

CALL pl(carry_flag, -.--);
$CHECKSUM

$CHECKSUM returns the checksum of data.

Nonatomic Operations 297

G SO S CEE SO S E o O
oo }—(D—+()

WETE1A ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
checksum

input,output

ulNT:variable
the initial value (“seed” value) of the checksum. When $CHECKSUM completes, checksum
holds the final checksum. checksum must be an INT variable. It cannot be a STRING,
UNSIGNED, or USE variable or a bit field.

buf f er addr

input

EXTADDR:value
the address of the first 16-bit word to include in the checksum

wor dcount
input
ulNT:value
the number of 16-bit words to include in the checksum

$CHECKSUM accumulates the checksum by performing an exclusive-or operation on the
accumulated checksum and wor dcount successive 16-bit words, starting at buf f er addr .
When $ CHECKSUM completes, checksum holds the accumulated checksum and buf f er addr
is unchanged.

Example 240 $CHECKSUM Routine

LITERAL buffer_len = 100;

INT c_sum_val;

INT .EXT bufferl [O:buffer_len - 1];

INT _EXT buffer2 [O:buffer_len - 1];

bufferl ":=" [%H0123, %H4567, %HB9AB];

c_sum_val:= 3;

$CHECKSUM(c_sum_val, @bufferl, buffer_len);

1 Value of c_sum_val is now %HCDEF

1 Checksum buffer2 in same checksum word as bufferl
$CHECKSUM(c_sum_val, @buffer2, buffer_len);

I ¢c_sum _val now has the combined checksum of bufferl & buffer2

$COMP

$COMP returns the one’s complement of its argument.

298 BuiltIn Routines

scom)—(0) ®

WETOTT vad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

i nt - expression
is an expression whose value is an INT or INT(32) value.
The data type of the expression returned by $COMP is the same as the data type of its argument.

Example 241 $COMP Routine
INT i;

INT(32) j;

i 2= $COMP(i);

$COMP(J);

$COUNTDUPS

$COUNTDUPS returns the number of consecutive words, starting at the beginning of a buffer, that
are equal fo the first word in the buffer.

scounTours)—»(() O O
duplicationcount o ’

i

VETE14 vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No
srcaddr

input,output

EXTADDR:variable

an address. Starting at srcaddr, $COUNTDUPS scans 16-bit words until it encounters
two adjacent words that are not equal. At the end of the operation, srcaddr points to
the word that differs from the first word and which, therefore, terminated the scan. If there
are no duplicates in the buffer, sr caddr points immediately after the last two words it
compared—that is, at the first word $COUNTDUPS did not examine.

maxwor ds

input,output

Nonatomic Operations 299

ulNT:variable

the maximum number of 16-bit words to scan at sr caddr . At the end of the operation,
maxwor ds contains:

e 0 if $COUNTDUPS scanned the entire buffer.

e The number of words $COUNTDUPS did not scan because it found a nonduplicate
pair.
maxwor ds must be an INT variable; it cannot be a STRING, UNSIGNED, or USE variable
or a bit field.
dupl i cati oncount

input,output

ulNT:variable
holds an initial value. At the end of the operation, dupl i cati oncount contains its
original value plus the number of duplicate words found by $COUNTDUPS.

dupl i cati oncount must be an INT variable; it cannot be a STRING, UNSIGNED, or
USE variable or a bit field.

$COUNTDUPS scans a buffer from left to right until it encounters two adjacent unequal words or
until it reads maxwords words.

Example 242 $COUNTDUPS Routine

LITERAL buffersize = 100;
INT _EXT buffer[O:buffersize-1];

INT maxwords;
INT duplication_count;
maxwords := maxbuff;

$COUNTDUPS(@buffer, maxwords, duplication_count);

$DBL
$DBL converts its argument to an INT(32) value.

(D[} (D)

WETOTA.wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW Yes, if expr essi on is a fixed value

expr essi on

is an expression whose value is an INT, INT(32), FIXED, REAL, REAL(64), UNSIGNED(1-16),
UNSIGNED(17-31), EXTADDR, or PROCADDR value.

300 BuiltIn Routines

Example 243 $DBL Routine

INT _EXT i;

EXTADDR e;

INT(32) j:

j = $DBL(e); ! OK: e is type EXTADDR

j = $DBL(@i); ! OK: @i is type EXTADDR
j = $DBL(i); ! OK: i is type INT

J = $DBL(@J); ! ERROR: @j is type WADDR
J = $DBL(@e); ! ERROR: @e is type WADDR

$DBLL
$DBLL converts to INT values an INT(32) value.

WETOT Qvsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets SOVERFLOW No

i nt - expression
is an INT expression.

To form the INT(32) value, $DBLL places the first i nt - expr essi on in the high-order 16 bits and
the second i nt - expr essi on in the low-order 16 bits.

Example 244 $DBLL Routine

INT First_int, second_int;
INT(32) some_double;

INT .EXT p; 1 32-bit simple pointer
some_double := $DBLL (First_int, second_int);
I Return INT(32) value
@p := ($DBLL (2, 7)) "<<" 1; I Return 32-bit address in
1 user code segment

$DBLR

$DBLR converts its argument to an INT(32) value and rounds the result.

EaR)—(D—s{emmion (1)

WETOEDwsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

Nonatomic Operations 301

expr essi on
is an INT, INT(32), FIXED, REAL, or REAL(64) expression.

If expr essi on s too large to be represented by a 32-bit two's complement integer, $DBLR traps
if overflow traps are enabled (see Chapter 13 (page 234)); otherwise, $DBLR ignores the problem.

Example 245 $DBLR Routine

REAL r2 := 1.5e0;
INT(32) b32;

REAL realnum := 123.456E0;

INT(32) dblnum;

b32 := $DBLR (r2); I Return 2d
dblnum :-= $DBLR (realnum); I Return 123D

$DFIX
$DFIX converts an INT(32) value to a FIXED(f poi nt) value.

SDFIX o dbl-expression . @—.

WVETDET vad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW Yes

dbl - expressi on
is an INT(32) expression.

f poi nt
is a value in the range -19 through +19 that specifies the position of the implied decimal point
in the result. A positive f poi nt specifies the number of decimal places to the right of the

decimal. A negative f poi nt specifies the number of integer places to the left of the decimal
point.

$DFIX converts an INT(32) expression to a FIXED(f poi nt) expression by performing the equivalent
of a signed right shift of 32 positions from the left 32 bits into the right 32 bits of a quadrupleword
unit.

Example 246 $DFIX Routine
FIXED(2) fixnum;

INT(32) dblnum := -125D;
fixnum := $DFIX (dblnum, 2); ! Return -1.25

$EFLT
$EFLT converts its argument to a REAL(64) value.

302 BuiltIn Routines

o exprassion o

WETOE wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

expr essi on
is an INT, INT(32), FIXED(f poi nt), REAL, or REAL(64) expression.

If a FIXED expression has a nonzero f poi nt, the compiler multiplies or divides the result by the
appropriate power of ten.

Example 247 $EFLT Routine

REAL(64) dbrlInum;
FIXED(3) fixnum := 12345.678F;
dorinum := $EFLT (Ffixnum); 1 Return 12345678L-3

$EFLTR
$EFLTR converts its argument to a REAL(64) value and rounds the result.

(e (Do | (1)

WETOEL s

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

expr essi on
is an INT, INT(32), FIXED(f poi nt), REAL, or REAL(64) expression.

If a FIXED expression has a nonzero f poi nt, the compiler multiplies or divides the result by the
appropriate power of ten.

Example 248 SEFLTR Routine
REAL(64) rndnum;

FIXED(3) fixnum := 12345.678F;
rndnum := $EFLTR (Fixnum); 1 Return rounded REAL(64) value

$EXCHANGE
$EXCHANGE exchanges the values of two variables of the same data type.

Nonatomic Operations 303

() DT DT>

WETE1 5.

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No
varl

input,output

anytype: var
a variable whose contents are exchanged with var 2.
var 2
input,output
anytype: var
a variable whose contents are exchanged with var 1.

var1l and var2 must meet the following requirements:
e varl andvar2 must both be INT variables or both be INT(32) variables.
e Neither var 1 norvar 2 can be a structure, but they can be fields of structures.

e Neither var 1 nor var 2 can be STRING, UNSIGNED, or USE variables, nor can they be
bit strings.

e varl,var2, orboth can be array elements.

e Ifvarl orvar2 names an entire array, $EXCHANGE exchanges element O of the array.

$EXECUTEIO

NOTE: The EpTAL compiler does not support this procedure.

$EXECUTEIO executes an /O operation.

(om0) D—s{Emme ([()

O}

channel-status o .

WETEIE ved

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code Yes
Sets SCARRY No
Sets $OVERFLOW No

304 BuiltIn Routines

channel
input
ulNT:value
is the channel number to which the 1/O is initialized.-
| pr nconmand
input
ulNT:value
is the load parameter.
| acsubcommand
input
sINT:value
is the load address and the command word.
rdst devst at us
output
ulNT:variable
is the controller and device status.
channel - st at us
output
sINT:variable
See the system description manual for your system for details.

Example 249 $SEXECUTEIO Routine

INT channel;

INT Iprm_command;

INT lac_subcommand;

INT rdst_dev_status;

INT channel _status;

$EXECUTEIO (channel, lprm_command, lac_subcommand,
rdst_dev_status, channel_status);

$EXTADDR_TO _BADDR
$EXTADDR_TO_BADDR converts an EXTADDR address to a BADDR address.

WETESE. vad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

expr essi on
is an expression whose value is an EXTADDR address.

Nonatomic Operations 305

Example 250 SEXTADDR_TO_BADDR Routine

PROC p(x);

STRING _EXT X;
BEGIN

STRING _j;

@ := $EXTADDR_TO_BADDR(@x);

@ := $EXTADDR_TO_BADDR(X); I ERROR: x is STRING,
END; 1 not EXTADDR

$EXTADDR_TO_WADDR
$EXTADDR_TO_WADDR converts an EXTADDR address to an WADDR address.

_p(SExTADDR_TD_WADDR o o

WETEET wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

expressi on
is an expression whose value is an EXTADDR address.

Example 251 SEXTADDR_TO_WADDR Routine

PROC p(xX);

INT _EXT Xx;
BEGIN

INT _j;

@ := $EXTADDR_TO_WADDR(@x);

@ := $EXTADDR_TO_WADDR(X); I ERROR: x is INT, not EXTADDR
END;

$EXT64ADDR_TO_EXTADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1"*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$EXT64ADDR_TO_EXTADDR converts an EXT64ADDR address to an EXTADDR address. No check
is performed to see if the resulting EXTADDR address is valid.

—»{(5ExT64ADDR_TO_EXTADDR }—{ (}—#] expression |—() }—»

WETEET vad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

306 BuiltIn Routines

expr essi on
is an expression whose value is an EXT64ADDR address.

$EXT64ADDR_TO_EXT32ADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$EXT64ADDR_TO_EXT32ADDR converts an EXT64ADDR address to an EXT32ADDR address. No
check is performed to see if the resulting EXT32ADDR address is valid.

—b($EKTE‘»4ADDR_T0_EXT32ADDR

WITHET W

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

expr essi on
is an expression whose value is an EXT64ADDR address.

$EXT64ADDR_TO_EXT32ADDR_OV

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$EXT64ADDR_TO_EXT32ADDR_QV converts an EXT64ADDR address to an EXT32ADDR address.
If the address cannot be represented as an EXT32ADDR value, an overflow trap occurs. This trap
cannot be disabled using the existing overflow trap controlling mechanisms.

—>($EXT64ADDR_T0_EKT32ADDR_O

WVETEET ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

expr essi on
is an expression whose value is an EXT64ADDR address.

Nonatomic Operations 307

$EXTADDR_TO_EXT64ADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$EXTADDR_TO_EXT64ADDR converts an EXTADDR address to an EXT64ADDR address.

—>($EXTADDR_TO_EXTB4ADDR o o

WVETHS? vad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

expressi on
is an expression whose value is an EXTADDR or EXT32ADDR address. |

$FILL8, $FILL16, and $FILL32

$FILL8, $FILL16, and $FILL32 fill an array or structure with repetitions of an 8-bit, 16-bit, or 32-bit
value, respectively (sometimes called a “smear” operation).

SFILLE
SFILL1G
SFILL32

bd

o area-to-fill . repelitions . o

WETEAE vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No
area-to-fill
:r:qv:)riﬁlklale of any data type. The address of area-to-fil | specifies the beginning of the

repetitions
is an INT expression whose value specifies the number of times to write.

val ue
is an expression whose value is a STRING value for $FILL8, to an INT value for $FILL16, and
to an INT(32) value for $FILL32.

$FILL16 and $FILL32 cause an alignment trap if ar ea-t o-fi | | is not aligned to at least a 2-byte
boundary.

308 BuiltIn Routines

$FILL32 performance is significantly degraded if ar ea-to-fi |l | is not aligned to at least a
4-byte boundary.

None of the fill procedures ($FILL8, $FILL16, $FILL32) perform bounds-checking on their parameters.
It you write more bytes than the size of area-to-fil |, the results are undefined. You might
overwrite other data in your program with no immediate error, or you might cause any of several
addressing errors, such as attempting to write in an area for which you do not have write permission,
attempting to write in an unmapped page, and so forth.

Example 252 $FILL8 Procedure

PROC a MAIN;
BEGIN
STRUCT s(s_t);

CALL SFILL8(s, SLEN(S), 0):

END;
$FIX
$FIX converts its argument to a FIXED value.
© ®
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets SOVERFLOW No
expr essi on
is an INT, INT(32), FIXED, REAL, EXT64ADDR, or REAL(64) expression. |
If expr essi on is too large in magnitude to be represented by a 64-bit two's complement integer,
$FIX traps if overflow traps are enabled (see Chapter 13 (page 234)); otherwise, $FIX ignores the
problem.
Example 253 $FIX Routine
FIXED fixnum;
INT intnum := 5;
fixnum = $FIX (intnum); ! Return 5F
$FIXD

$FIXD converts a FIXED value to an INT(32) value.

(5700)—>{(O—s{remmemsin |—(7)

WETOE5. wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No

Nonatomic Operations 309

Sets SCARRY No
Sets SOVERFLOW Yes

fi xed-expression
is a FIXED expression, which $FIXD treats as a FIXED expression, ignoring any implied decimal
point.

If the result cannot be represented in a signed doubleword, $FIXD traps if overflow traps are
enabled (see Chapter 13 (page 234)); otherwise, $FIXD ignores the problem.

Example 254 $FIXD Routine

INT(32) dblnum;
FIXED fixnum := 1234F;
dblnum := $FIXD (Fixnum); ! Return 1234D

$FIXEDO_TO_EXT64ADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$FIXEDO_TO_EXT64ADDR converts a FIXED value to an EXT64ADDR address.

—>($FIXEDO_TO_EXTB4ADDR o o

WETEET wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

expr essi on
is an expression whose value is FIXED.

$FIXEDTOASCII
$FIXEDTOASCII converts the absolute value of a FIXED value to an ASCII value.

G SO S T O S e e
SO0

WETET v

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets SOVERFLOW Yes

310 BuiltIn Routines

gval ue
input
FIXED(*):value
is a quadrupleword integer value to convert to ASCII digits.
buf f er addr
input
BADDR:value
is the byte address at which to write the ASCII digits.
maxdi gits
input
ulNT:value
is the maximum number of ASCII digits to write at buf f er addr .
If SFIXEDTOASCII converts maxdi gi t s bytes but leading digits in qval ue are not converted,
and $OVERFLOW can be checked, $FIXEDTOASCII sets $OVERFLOW; otherwise, it resets
$OVERFLOW.
Example 255 $FIXEDTOASCII Routine

LITERAL buffer_len = 100;

FIXED val;

STRING -buffer[O:buffer_len - 1];
$FIXEDTOASCI I (val, @buffer, buffer_len);

$FIXEDTOASCIIRESIDUE

$FIXEDTOASCIIRESIDUE converts the absolute value of a FIXED value to an ASCII value and returns
the value of the residue.

45($FIXEDTDASCIIRESIDUE)—> .
O O (0

WETET . v

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW Yes
gval ue

input

FIXED(*) :value
is a quadrupleword integer value to convert to ASCII digits.
buf f er addr
input
BADDR:value
is the byte address at which to write the ASCII digits.

Nonatomic Operations 311

maxdigits
input
ulNT:value
is the maximum number of ASCII digits to write at buf f er addr .
gr esi due
output
FIXED(*):variable

holds any of the original value that was not converted because maxdi gi ts bytes were
converted without converting all of qval ue.

$FIXEDTOASCIIRESIDUE returns in qr esi due any portion of qval ue that it does not convert
because maxdi gi t s digits were written but qval ue was not fully converted.

It $FIXEDTOASCIIRESIDUE converts maxdi gi t s bytes but leading digits in qval ue are not
converted, and $OVERFLOW can be checked, $FIXEDTOASCIIRESIDUEI sets $OVERFLOW;
otherwise, it resets $OVERFLOW.

Example 256 $FIXEDTOASCIIRESIDUE Routine
LITERAL buffer_len = 100;

FIXED val ;
STRING -buffer[O:buffer_len - 1];
FIXED residue;
$FIXEDTOASCI IRESIDUE(val, @buffer, buffer_len, residue);
$FIXI
$FIXI converts a FIXED value to a signed INT value.
© ®
WETDEE vad
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW Yes
fi xed-expression
is a FIXED expression, which $FIXI treats as a FIXED expression, ignoring any implied decimal
point.
If the result cannot be represented in a signed 16-bit integer, $FIXI traps it overflow traps are
enabled (see Chapter 13 (page 234)); otherwise, $FIXI ignores the problem.
Example 257 $FIXI Routine
INT intnum;
FIXED fixnum = %177777F;
intnum := $FIXI (Fixnum); ! Return -1
$FIXL

$FIXL converts a FIXED value to an unsigned INT value.

312 BuiltIn Routines

$FIXR

50— ®

WETOET wadd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW Yes

fi xed-expressi on
is a FIXED expression, which $FIXL treats as a FIXED expression, ignoring any implied decimal
point.

If the result cannot be represented in an unsigned 16-bit integer, $FIXL traps if overflow traps are
enabled (see Chapter 13 (page 234)); otherwise, $FIXL ignores the problem.

Example 258 $FIXL Routine

INT intnum;
FIXED fixnum := 32767F;
intnum = $FIXL (Fixnum); ! Return 32,767

$FIXR converts its argument to a FIXED value and rounds the result.

) (D—s{emmion (1)

WETOER. wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets SOVERFLOW Yes

expr essi on
is an INT, INT(32), FIXED, REAL, or REAL(64) expression.

If expr essi on is too large in magnitude to be represented by a 64-bit two's complement integer,
$FIXR traps if overflow traps are enabled (see Chapter 13 (page 234)); otherwise, $FIXR ignores
the problem.

Nonatomic Operations 313

$FLT

$FLTR

Example 259 $FIXR Routine

FIXED rfixnum;

REAL(64) bigrealnum := -1.5L0;

FIXED rndfnum;

REAL realnum := 123.456EO0;

rfixnum := $FIXR (bigrealnum); ! Return -1F
rndfnum := $FIXR (realnum); ! Return 123F

$FLT converts its argument to a REAL value.

Gy (D—s{mmion]—(1)

WETOEE. wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

expr essi on
is an INT, INT(32), FIXED(f poi nt), REAL, or REAL(64) expression

It a FIXED expression has a nonzero f poi nt, the compiler multiplies or divides the result by the
appropriate power of ten.

Example 260 $FLT Routine

REAL realnum;
INT(32) dblnum := 147D;
realnum := $FLT (dblnum); ! Return 147EO

$FLTR converts its argument to a REAL value and rounds the result.

) D—s[ommion (D)

WETOS. wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW Yes

expr essi on
is an INT, INT(32), FIXED(f poi nt), REAL, or REAL(64) expression

I a FIXED expression has a nonzero f poi nt, the compiler multiplies or divides the result by the
appropriate power of ten.

314 BuiltIn Routines

Example 261 $FLTR Routine

REAL rrinum;
INT(32) dblnum := 147D;
rrinum := $FLTR (dblnum); ! Return rounded REAL value

$FREEZE

SHALT

$HIGH

NOTE:

e The EpTAL compiler does not support this procedure. Use $TRIGGER (page 345) instead. (The
EpTAL compiler does allow $FREEZE as a DEFINE name.)

e Execution does not return from this call.

$FREEZE halts the processor in which its process is running and any other processors on the same
node that have FREEZE enabled.

WETE19. ved

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No
NOTE:

e The EpTAL compiler does not support this procedure. Use $TRIGGER (page 345) instead. (The
EpTAL compiler does allow $HALT as a DEFINE name.)

e Execution does not return from this call.

$HALT halts the processor in which its process is running.

WETEA ved

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

$HIGH converts the high-order (leftmost) 16 bits of an INT(32) or EXTADDR value to an INT value.

Nonatomic Operations 315

$IFIX

G)—»(O—s[Frmmmion ()

WETIO ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

dbl - expressi on
is an expression whose value is INT(32) or EXTADDR.

$HIGH returns the high-order 16 bits of dbl - expr essi on and preserves the sign bit. $HIGH
does not cause overflow.

Example 262 $HIGH Routine

INT a;INT(32) b;

INT .EXT c;

EXTADDR d;

a := $HIGH(b); 1 OK: b is INT(32)

a := $HIGH(@c); ! OK: @c is EXTADDR
a := $HIGH(@b); ! ERROR: @b is WADDR
a = $HIGH(c); I ERROR: c is INT

a = $HIGH(d); 1 OK: d is EXTADDR

$IFIX converts a signed INT value to a FIXED(f poi nt) value.

WVETDE2 vad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

i nt - expression
is a signed INT expression.

f poi nt
is a value in the range -19 through +19 that specifies the position of the implied decimal point
in the result. A positive f poi nt specifies the number of decimal places to the right of the
decimal. A negative f poi nt specifies the number of integer places to the left of the decimal
point.

When $IFIX converts the signed INT expression to a FIXED value, it performs the equivalent of a
signed right shift of 48 positions in a quadrupleword unit.

In Example 263 (page 317), $IFIX returns a FIXED(2) value from a signed INT expression and an
f poi nt of 2.

316 BuiltIn Routines

Example 263 $IFIX Routine

FIXED(2) fixnum;
INT intnum := 12345;
fixnum = $IFIX (intnum, 2); ! Return 123.45

$INT

$INT converts its argument to an INT value.

(D[} —>(D)

WET9).vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

expr essi on
is an expression whose value is an INT, INT(32), UNSIGNED(1-16), UNSIGNED(17-31),
FIXED, REAL, REAL(64), SGBADDR, SGWADDR, SGXBADDR, SGXWADDR, or EXTADDR value.

If expr essi on is not a FIXED, INT (64), REAL, or REAL(64) value, $INT returns the low-order |
(rightmost) 16 bits of expr essi on. $INT never causes overflow. $INT does not explicitly maintain
the sign of expr essi on. In Example 264 (page 317), $INT returns -1 although the argument to
$INT is a positive number.

Example 264 SINT Routine

INT 1;
i = $INT(WHFFFFFF%D) ;

If the value of the expression in Example 264 (page 317) is a FIXED, REAL, or REAL(64) value, $INT
returns the result of converting expression arithmetically to an INT value— $INT does not just truncate
an expression. If the converted value of expression is too large to fit in 16 bits, an exception trap
occurs.

For details on SG and SGX variables, see Chapter 3 (page 46).

Nonatomic Operations 317

Example 265 $INT Routine

PROC p;
BEGIN
INT .SG a;
SGXBADDR b;
INT i;
INT _EXT e;
i := SINT(a); 1 OK: a is INT
$INT(@a); ! OK: @a is SGWADDR
SINT(b); I OK: b is SGXBADDR

]
I
]
$INT(i); ! OK: i is INT
]
]
]

O == ommi omm oy oy ommy

$INT(@b); ! ERROR: @b is WADDR
$INT(@i); ! ERROR: @i is WADDR
$INT(@e); ! OK: @e is EXTADDR
END;
$INT_OV

NOTE: $INT_OV is supported in the D40 and later product versions.

$INT_OV converts its argument to an INT value and sets $OVERFLOW in some cases.

CED S OSSN G

WETHED. wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets SOVERFLOW Yes

expressi on
is an expression whose value is an INT, INT(32), UNSIGNED(1-31), FIXED, REAL, REAL(64),
SGBADDR, SGWADDR, SGXBADDR, SGXWADDR, or EXTADDR value.

If the data type of its argument is an INT(32) value greater than 32767 or less than -32768,
$INT_QV traps if overflow traps are enabled (see Chapter 13 (page 234)); otherwise, $INT_OV

ignores the problem.

Example 266 Difference Between $INT and $INT_OV

INT i;

INT(32) j := 32767;

INT(32) k := 32768;

i = SINT(Q); ! INT never sets overflow

IF $OVERFLOW THEN ... ' $OVERFLOW is false

i 2= SINT(K); ' INT never sets overflow
1

IF $OVERFLOW THEN ...
i = SINT_OV();

$OVERFLOW is false

IF $OVERFLOW THEN ... ! $OVERFLOW is false
i = SINT_OV(K);
IF $OVERFLOW THEN ... ! $OVERFLOW is true

$INTERROGATEHIO

NOTE: The EpTAL compiler does not support this procedure.

318 BuiltIn Routines

$INTERROGATEHIO stores cause and status information from a high-priority 1/O interrupt, which
the operating system uses to reset the interrupt

—»(HTERROGATEO)—» (1) O
O O O

WETESD ved

pTAL privileged procedure No
Can be executed only by privileged procedures Yes
Sets condition code Yes
Sets $CARRY No
Sets SOVERFLOW No
sel ect

output

ulNT:variable
is an integer variable that is always set to O.
rank- channe
output
ulNT:variable
is an integer variable that is always set to O.
ric-int-cause
output
ulNT:variable
is the read interrupt cause received from the controller holding the completed 1/O.
rist-int-cause
output
ulNT:variable
is the read interrupt status received from the controller holding the completed |/O.
channel - st at us
output
ulNT:variable
is an integer variable that holds the status returned by the controller.

Nonatomic Operations 319

Example 267 SINTERROGATEHIO Routine

INT select;

INT rank_channel;

INT ric_interrupt_status;

INT rist_interrupt_cause;

INT channel_status;

$INTERROGATEHIO(select, rank_channel, ric_interrupt_status,
rist_interrupt_status, channel_status);

$INTERROGATEIO

NOTE: The EpTAL compiler does not support this procedure.

$INTERROGATEIO stores cause and status information from an /O interrupt, which the operating
system uses to reset the inferrupt.

—»((NTERROSATED)—>(D) O
O O O

WETEAS vad

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code Yes
Sets $CARRY No
Sets SOVERFLOW No
sel ect
output

sINT:variable
is an integer variable that is always set to O.
rank- channe
output
sINT:variable
is an integer variable that is always set to O.
ric-int-cause
output
sINT:variable
is the read interrupt cause received from the controller holding the completed 1/O.
rist-int-cause
output
sINT:variable
is the read interrupt status received from the controller holding the completed |/O.
channel - st at us
output

320 BuiltIn Routines

sINT:variable
is an integer variable that holds the status returned by the controller.

Example 268 SINTERROGATEIO Routine

INT select;

INT rank_channel;

INT ric_interrupt_status;

INT rist_interrupt_cause;

INT channel_status;

$INTERROGATEIO(select, rank channel, ric_interrupt_status,
rist_interrupt_status, channel_status);

$INTR
$INTR converts:

e The low-order 16 bits of an INT, INT(32), or FIXED value to an INT value
e A REAL or REAL(64) value to a rounded INT value

(SR)y—(D—s{emmion (1)

WETOS, v

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW Yes

expr essi on
is an INT, INT(32), FIXED, REAL, or REAL(64) expression.

If expr essi on is type INT, INT(32) or FIXED, $INTR returns the low-order (least significant) 16
bits and does not explicitly maintain the sign. No overflow occurs.

If expr essi on is type REAL or REAL(64), $INTR returns a fully converted and rounded INT value,
not a truncation. If the converted value of expr essi on is too large to be represented by a 16-bit
two’s complement integer, an overflow trap occurs.

Example 269 $INTR Routine

INT rndnum;
REAL realnum := 12345E-2;
rndnum := $INTR (realnum); ! Return 123

$IS_32BIT_ADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$IS_32BIT_ADDR returns the INT-typed value -1 if the specified address value can be represented
as a 32-bit extended address; otherwise, it returns O.

Nonatomic Operations 321

—s T 00RO a{TE ()

WETIN ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

expr essi on
is any of the address types, except SGWADDR and SGBADDR which are 16-bits in length.

$LEN
$LEN returns an INT value that is the length, in bytes, of a variable.
© ®
WETOSE, vad

pTAL privileged procedure No

Can be executed only by privileged procedures No

Sets condition code No

Sets SCARRY No

Sets $OVERFLOW No
vari abl e

is the identifier of a simple variable, array element, pointer, structure, or structure data item.

The compiler reports an error if you apply the $LEN routine to a structure that consists of an odd
number of bytes, exclusive of a pad byte.

You can avoid this error by using one of the following solutions:

e Declare explicitly a 1-byte filler item at the end of structures that consist of an odd number of
bytes.

e Use $BITLENGTH (page 295) instead of $LEN.

The compiler reports an error if you apply $LEN to an UNSIGNED variable or structure field. Use
$BITLENGTH to obtain the length of an UNSIGNED variable or structure.

322 BuiltIn Routines

Example 270 $LEN Routine

INT b;
INT a [0:11];
b := $LEN (a); ! Return 2

Example 271 $LEN Routine

INT s _len;
STRUCT .s[0:99];
BEGIN
INT(32) array[0:2];
END;
s _len = $LEN (s); I Return 12

Example 272 $LEN Routine

INT array_length;

INT(32) array[0:2];

array_length := $LEN (array) * $0CCURS (array);

1 Return 12, the length of the entire array in bytes

$LFIX

$LFIX converts an unsigned INT value to a FIXED(f poi nt) value.

® O D
WETDET wad

pTAL privileged procedure No

Can be executed only by privileged procedures No

Sets condition code No

Sets SCARRY No

Sets $OVERFLOW No

i nt - expression
is an unsigned INT expression.

f poi nt
is a value in the range 19 through +19 that specifies the position of the implied decimal point
in the result. A positive f poi nt specifies the number of decimal places to the right of the
decimal. A negative f poi nt specifies the number of integer places to the left of the decimal
point.

$LFIX places the INT value in the low-order (least significant) word of the quadrupleword and sets

the three high-order (most significant) words to O.

Example 273 $LFIX Routine

FIXED(2) fixnum;

INT intnum := 125;

fixnum = $LFIX (intnum, 2); ! Return 1.25

$LMAX

$LMAX returns the maximum of two unsigned INT values.

Nonatomic Operations 323

WETO98.wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

i nt - expression
is an unsigned INT expression.

Example 274 SLMAX Routine

INT intval = 3;
max := $LMAX (intval, 5); ! Return 5

$LMIN

$LMIN returns the minimum of two unsigned INT values.

WETIZE, ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

i nt - expression
is an unsigned INT expression.

Example 275 $LMIN Routine

INT intval := 3;
min = $LMIN (intval, 5); ! Return 3

$LOCATESPTHDR

NOTE: The EpTAL compiler does not support this procedure.

$LOCATESPTHDR returns the address of the Segment Page Table (SPT).

324 BuiltIn Routines

—> (EOCATESPT08)—(O)—+{eiae (s[>
e }—(D—0)

WETEL S we=d

pTAL privileged procedure No
Can be executed only by privileged procedures Yes
Sets condition code No
Sets SCARRY Yes
Sets $OVERFLOW No

header si ze
input
ulNT:value
is the unsigned byte offset from the beginning of the SPT to the beginning of the header.
Because the SPT header always precedes the SPT, header si ze is subtracted from the
address of the SPT to obtain the address of the start of the header.
vi rt addr
input
EXTADDR:value
is the address of the SPT.
spt base
output
EXTADDR:variable
is the address of the segment-page-table header associated with vi rt addr .

$LOCATESPTHDR returns in spt base the address of the segment-page table for the address in
virtaddr.

Example 276 SLOCATESPTHDR Routine

INT headersize;

EXTADDR addr;

EXTADDR seg_page table base;
$LOCATESPTHDR(headersize, addr, seg_page_table base);

$LOCKPAGE

NOTE: The EpTAL compiler does not support this procedure.
$LOCKPAGE locks one page of memory.

(iscomce (DT} OO
Gt (O

WETESE vl

pTAL privileged procedure Yes

Can be executed only by privileged procedures Yes

Nonatomic Operations 325

Sets condition code Yes
Sets SCARRY Yes
Sets $OVERFLOW No

only-if-Iocked
input
sINT:value

is an INT value. Ifonl y-i f - | ocked is greater than or equal to zero, the page will always
be locked. If onl y-i f -1 ocked is less than zero, the page will be locked (that is, lock
count will be incremented) only if it is already locked.

| ock- count
input
sINT:value
is the total number of bytes to lock in the page.
vi rt addr
input
EXTADDR:value

is the beginning virtual address to lock. $LOCKPAGE calculates the page associated with
virtaddr.

Example 277 $LOCKPAGE Routine
INT only if_locked;
INT lock_count;

EXTADDR virtaddr;
$LOCKPAGE(onlly_if_locked, lock_count, virtaddr);

$MAX

$MAX returns the maximum of two signed values.

(G0 (D[| [}—(1)

WET100, ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

expr essi on

is a signed INT, INT(32), FIXED(f poi nt), REAL, or REAL(64) expression. Both expressions
must be of the same data type.

326 BuiltIn Routines

$MIN

Example 278 $MAX Routine

REAL realval := -3EO;
max := $MAX (realval, 5E0); ! Return 5EO

$MIN returns the minimum of two signed values.

@ ° expression . expression o

WET101 ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

expr essi on
is an INT, INT(32), FIXED(f poi nt), REAL, or REAL(64) expression. Both expressions must be
of the same data type.

Example 279 $MIN Routine

FIXED fixval := -3F;
min := $MIN (Fixval, 5F); ! Return -3F

$MOVEANDCXSUMBYTES

$MOVEANDCXSUMBYTES moves a specified number of bytes from one memory location to
another and computes a checksum (bytewise exclusive “or”) on the bytes moved.

H@MDVEANDCXSUMBYTE

st} (O ()

WETELT vud

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
checksum

input,output

ulNT:variable

contains an initial value for the checksum When $MOVEANDCXSUMBYTES completes,
checksum contains the newly computed value.

dest addr
input,output

Nonatomic Operations 327

EXTADDR:variable

is the address to which $MOVEANDCXSUMBYTES moves data. When
$MOVEANDCXSUMBYTES completes, dest addr points to the memory location following
the last byte written.

srcaddr
input,output
EXTADDR:variable

is the address from which bytes are read. When $MOVEANDCXSUMBYTES completes,
srcaddr points to the memory location following the last byte read.

count
input
ulNT:value
is the number of bytes to move.

$MOVEANDCXSUMBYTES transfers count bytes from srcaddr to dest addr and computes a
checksum (bytewise exclusive “or”) on the data moved. When $SMOVEANDCXSUMBYTES completes,
srcaddr points to the immediate right of the last byte read, dest addr points to the immediate

right of the last byte written, and checksum holds the newly computed checksum.
$MOVEANDCXSUMBYTES does not ensure that the source and destination buffers do not overlap.

Example 280 SMOVEANDCXSUMBYTES Routine

INT checksum;

INT .EXT source;

INT .EXT dest;

INT(32) count;

checksum := 0;

$MOVEANDCXSUMBYTES(checksum, @dest, @source, count);

$MOVENONDUP

$MOVENONDUP moves words from one location to another until it encounters two adjacent
identical words.

(H0ver0io0r) — (D[| s
[ramvats ({0

WETELA. wed

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code Yes
Sets SCARRY No
Sets $OVERFLOW No
dest addr
input,output

EXTADDR:variable

is the address to which words are moved. When $MOVENONDUP completes, dest addr
is the address after which SMOVENONDUP stored the last byte.

328 BuiltIn Routines

srcaddr
input,output
EXTADDR:variable

is the address from which 16-bit words are moved. When $MOVENONDUP completes,
srcaddr is the address after which SMOVENONDUP read the last byte it moved.

maxwor ds
input,output
sINT:variable

is the maximum number of 16-bit words to move. When $MOVENONDUP completes,
maxwor ds is the number of words not moved because $MOVENONDUP found a duplicate,
or, if a duplicate was not found, maxwor ds is zero.

| ast word
input,output
ulNT:variable

holds the 16-bit word against which the first word at sr caddr is compared. When
$MOVENONDUP completes, | ast wor d contains the last word moved.

Example 281 SMOVENONDUP Routine

INT .EXT source;
INT _EXT destination;

INT maxword;

INT latestword;

$MOVENONDUP(@destination, @source, maxword, latestword);
$NUMERIC

$NUMERIC tests the right byte of an INT value for the presence of a numeric character.

G SO SO S

WIT102Z.

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

i nt - expression
is an INT expression.

$NUMERIC inspects bits <8:15> of i nt - expr essi on and ignores bits <0:7>. It tests for a
numeric character according fo the criterion:

i nt - expression>="0" AND i nt - expr essi on <="9"

If a numeric character occurs, $NUMERIC sets the condition code to CCL (condition code less
than). If you plan to test the condition code, do so before an arithmetic operation or assignment
occurs.

If the character passes the test, $NUMERIC returns a -1 (true); otherwise, it returns a O (false).

i nt - expression can include STRING and UNSIGNED(1-16) operands, as described in
“Expression Arguments” at the beginning of this section.

Nonatomic Operations 329

Example 282 SNUMERIC Routine

STRING char;
IF $NUMERIC (char) THEN ... ; I Test for numeric character

$OCCURS

$OCCURS returns an INT value that is the number of elements in an array.

SOCCURS variable
veriable |

WET102.vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No
vari abl e

is the name of a variable, array, structure, or structure field. vari abl e cannot be the name
of a structure template.
Ifi dentifier isthe identifier of an explicitly declared array—that is, it is not a reference

parameter—and identifier is the unindexed name of the array, $OCCURS returns the number of
array elements specified in the array’s declaration; otherwise, $OCCURS returns 1.

Table 71 $OCCURS for Nonstructure Arrays

$OCCURS Argument Example $OCCURS Returns

Entire array INT a[0:9]; 10
$OCCURS (a);

Value parameter or simple variable INT a; 1
$OCCURS (a);

Reference parameter or pointer INT .a; 1
$OCCURS (a):

Array element using constant index INT a[0:9]; 1
$OCCURS (a[31):

Array element using expression in index INT a[0:9]; 1
$OCCURS (aliD);

Table 72 $OCCURS for Structure Arrays and Arrays Within Structures

$OCCURS Argument Example $OCCURS Returns
Unindexed structure array or STRUCT s [0:9];
substructure array BEGIN
STRUCT
or BEGIN
an element of a structure array or INT
substructure array, END;
END;
or
an array that is a field within a $OCCURS (S); 10
structure or substructure $0CCURS (a[7D); 1
$OCCURS (a[7]-1t); 8
$OCCURS (a[7]1-t[3D): 1

330 BuiltIn Routines

Table 72 $OCCURS for Structure Arrays and Arrays Within Structures (continued)

$OCCURS Argument Example $OCCURS Returns
$OCCURS (a[7]1-t[3]1-1); 5
$OCCURS (a[7]1-t[3]1-i[vD):; 1

Entire structure STRUCT s;
BEGIN

or INT ;

nonarray field of a structure or END;

substructure

$0CCURS (s); 1
$OCCURS (s.T): 1
Structure template STRUCT s;
BEGIN
INT f[0:9];
END;
$OCCURS (S):
$OCCURS (s.F): 10
$OCCURS (s.F[51); 1

Compile-time err

Example 283 $SOCCURS Routine With Nonstructure Arrays

PROC p(X, Y);

INT X,

-Ys

BEGIN

INT a[0:9];

INT 1;

INT .r;
i $OCCURS(a);
$0CCURS(i);
$OCCURS(X) ;
$0CCURS(a[31):
$OCCURS(a[iD);
$OCCURS(r);
$OCCURS(Y);

O =i mmi ommy omm o oo

END;

OK: a is an entire array
OK: $0OCCURS returns 1

OK: $0OCCURS returns 1

WARNING: $OCCURS returns
WARNING: $OCCURS returns
WARNING: $OCCURS returns
WARNING: $OCCURS returns

RPRRR

Example 284 $OCCURS Routine With Structure Arrays

INT i;
STRUCT s[0:9];
BEGIN
STRUCT t[0:7];
BEGIN
INT i[0:4];
INT f;
END;
END;

$OCCURS(S) ;
$OCCURS(s[7]-1);
$OCCURS(S[7]-t[3]-i);
$OCCURS(s[7]-t[3]1-1);
$0CCURS(S[7D):
$0CCURS(s[7]1-t[31);
$OCCURS(s[7]1-t[3]-i[VvD);

OK: s is an entire array
OK: t is an entire array
OK: i is an entire array
OK: $0CCURS returns 1

WARNING: $0OCCURS returns
WARNING: $0OCCURS returns
WARNING: $OCCURS returns

1
1
1

Nonatomic Operations

331

Example 285 $SOCCURS Routine With Template Structure Arrays

INT i;
STRUCT s(*);
BEGIN
INT f[0:9];
END;
i = $0CCURS(S); 1 ERROR: Template structure not OK
i = $OCCURS(s.TF); 1 OK: f is an array

$OCCURS(s.f[5]1); ! WARNING: $OCCURS returns 1

$OFFSET

$OFFSET returns an INT value that is the offset, in bytes, of a structure item from the beginning of
the structure.

(07720 (Ol ()

WET104.ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No
vari abl e

is the fully qualified identifier of a structure field.

The compiler reports an error for the following uses of $OFFSET:
o $OFFSET applied to an UNSIGNED field. Use $BITOFFSET instead of $OFFSET.
o $OFFSET applied to an item that is not a field in a structure.

e SOFFSET applied to a structure array whose lower bound is nonzero; however, $OFFSET
applied to a substructure array whose lower bound is nonzero returns the appropriate offset.

o $OFFSET for which the result would be greater than 216-1.
Example 286 $SOFFSET Routine

STRUCT a;
BEGIN
INT array[0:40];
STRUCT ab[0:9];
BEGIN
1 Lots of declarations
END;
END;
INT c;
1 Some code
c := $OFFSET (a-ab[2]); ! Return offset of third
1 occurrence of substructure

Example 287 $OFFSET Routine

STRUCT .tt;
BEGIN

332 BuiltIn Routines

INT i;

INT(32) d;

STRING s;
END;

STRUCT .st;
BEGIN

INT i;

INT j;

INT .st_ptr(tt); ! Declare structure pointer
END; 1 that points to structure tt
INT x;

X 1= $OFFSET (st.j); 1 x gets 2
X 1= $OFFSET (tt.s); 1 x gets 6
X 1= $OFFSET (st.st_ptr.s); ! x gets 6

Example 288 $OFFSET Routine Applied to a Template Structure

INT Xx;
STRUCT st[-1:1];
BEGIN
INT item;
FIXED(2) price;
END;
X = $OFFSET (st[-1].item); Ix gets -10

$OPTIONAL

$OPTIONAL controls whether a given parameter or parameter pair is passed to a VARIABLE
procedure or EXTENSIBLE procedure.

SOPTIONAL
© O~
param-pair

WET21 3 wed

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

cond- expr essi on
is a conditional expression. If cond- expr essi on is true, par am or par am pai r is passed.
If cond- expr essi on is false, par am (or par am pai r) is not passed.

par am
is an a variable identifier or an expression that defines an actual parameter to pass to a formal
parameter declared in the called procedure if cond- expr essi on is true.

par ant pai r
is an actual parameter pair to pass to a formal parameter pair declared in the called procedure
if cond- expr essi on is true. par am pai r has the form:

o }—()—s[rai

WETDIAE vad

Nonatomic Operations 333

string
is the identifier of a STRING array or simple pointer declared inside or outside a structure.
| engt h
is an INT expression that specifies the length, in bytes, of st ri ng.
A call to a VARIABLE or EXTENSIBLE procedure can omit some or all parameters. $OPTIONAL lets

your program pass a parameter (or parameter-pair) based on a condition at execution time.
$OPTIONAL is evaluated as follows each time the encompassing CALL statement is executed:

e Ifcond- expression is true, the parameter is passed; $PARAM, if present, is set to true for
the corresponding formal parameter.

e Ifcond- expression is false, the parameter is not passed; $PARAM, if present, is set to
false for the corresponding formal parameter.

A called procedure cannot distinguish between a parameter that is passed conditionally and one
that is passed unconditionally. Passing parameters conditionally, however, is slower than passing
them unconditionally. In the first case, the EXTENSIBLE mask is computed at execution time; in the
second case, the mask is computed at compilation time.

Example 289 Parameters Passed Conditionally and Unconditionally

PROC pl (i) EXTENSIBLE;
INT i;
BEGIN
! Lots of code
END;
PROC p2;
BEGIN
INT n == 1;
CALL pl ($OPTIONAL (n > 0, n)); ! These two calls are
CALL p1 (n); 1 indistinguishable
END;

Example 290 Parameters Omitted Conditionally and Unconditionally

PROC pl (i) EXTENSIBLE;
INT i;
BEGIN
1 Lots of code
END;
PROC p2;
BEGIN
INT n = 1;
CALL pl ($OPTIONAL (n < 0, n)); ! These two calls are
CALL p1 (); 1 indistinguishable
END;

Example 291 Parameters Passed Conditionally

PROC pl1 (str:len, b) EXTENSIBLE;

STRING .str;
INT len;
INT b;
BEGIN
1 Lots of code
END;
PROC p2;
BEGIN
STRING .s[0:79];
INT 1:= 1;
INT j:= 1;
CALL pl ($OPTIONAL (i < 9, s:i), ! Pass s:i ifi <9

334 BuiltIn Routines

$OPTIONAL (J > 2, J)); ! Pass j if j > 2
END;

You can use $OPTIONAL when one procedure provides a front-end interface for another procedure
that does the actual work, as Example 292 (page 335) shows.

Example 292 $OPTIONAL Routine for a Front-End Interface
PROC pl1 (i, j) EXTENSIBLE;

INT .1;
INT .j;
BEGIN
1 Lots of code
END;
PROC p2 (p, q) EXTENSIBLE;
INT .p;
INT .q;
BEGIN

1 Lots of code
CALL pl ($OPTIONAL ($SPARAM (P), P).,
SOPTIONAL ($PARAM (@), q));
1 Lots of code
END;

$OVERFLOW

$OVERFLOW returns a value indicating whether an overflow occurred during certain arithmetic
operations.

WET105.ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

$OVERFLOW indicates whether an overflow occurred. You can test $OVERFLOW only if overflow
traps are disabled and only following an assignment statement in which the final operator executed
on the right side of the assignment is one $FIX of a REAL or REAL(64) value of the following operators
or built-in routines:

e Negate (unary -), +, -, *, /,//"

o $DBL of an INT, FIXED, REAL, or REAL(64) value
e $FLTR of a REAL(64) value

e $FIX of a REAL or REAL(64) value

e S$FIXD
e $FIX
o S$FIXL

e $FIXR of a REAL or REAL(64) value

Nonatomic Operations 335

e $INT of a FIXED, REAL, or REAL(64) value
e $INT of a FIXED, REAL, or REAL(64) value
e $INTR of a FIXED, REAL, or REAL(64) value
o $SCALE, for which: 1 <= exponent <= 4

Example 293 $OVERFLOW Routine

I =1 + 1;
IF $OVERFLOW THEN ...

For more information about overflow, see Chapter 13 (page 234).

$PARAM

$PARAM checks for the presence or absence of an actual parameter in the call that called the
current procedure or subprocedure.

(5000 (D[()

WET10G.

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

formal - param
is the identifier of a formal parameter as specified in the procedure or subprocedure declaration.

If the actual parameter corresponding to f or mal - par am is present in the CALL statement, $PARAM

returns 1 (not -1 as other Boolean operations do). If the actual parameter is absent from the CALL
statement, $PARAM returns O.

Only a VARIABLE procedure or subprocedure or an EXTENSIBLE procedure can use $PARAM. If
such a procedure or subprocedure has required parameters, it must check for the presence or
absence of each required parameter in CALL statements. The procedure or subprocedure can also
use $PARAM to check for optional parameters.

Example 294 $PARAM Routine

PROC var_proc (buffer,length,key) VARIABLE;
INT _buffer, length, ! Required parameters
key; 1 Optional parameter

BEGIN

IF NOT $PARAM (buffer) OR NOT $PARAM (length) THEN RETURN;
I Return 1 or O for each required parameter
IF $PARAM (key) THEN ... ;
I Return 1 if optional parameter is present
END;

$POINT
$POINT returns the f poi nt value (as an integer) of a FIXED expression.

336 BuiltIn Routines

s7on)—»(0) ®

WETHOT e

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

fi xed-expressi on
is a FIXED expression.

The compiler emits no instructions when evaluating f i xed- expr essi on ; therefore,
fi xed- expressi on cannot call a routine and cannot be an assignment expression.

Example 295 $POINT Routine

FIXED(3) result;

FIXED(3) a;

FIXED(3) b;

result := $SCALE (a, $POINT (b)) / b;

1 Return fpoint of FIXED expression & scale value by that factor

$PROCADDR

$PROCADDR converts a PROCADDR address, PROC32ADDR address, PROC64ADDR address,
or INT(32) expression to a PROCADDR address. No check is performed to see if the resulting
PROCADDR address is valid.

(oo (Dl —(D

WETIE s

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
expression

is an expression whose value is an INT(32), PROCADDR, or PROC32ADDR address.
$PROC32ADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$PROC32ADDR converts a PROCADDR address, PROC32ADDR address, PROC64ADDR address,
or INT(32) expression to a PRO32ADDR address. No check is performed to see if the resulting
PROC32ADDR address is valid.

Nonatomic Operations 337

—» (SR) {TE (D)

WETIN ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
expression
is an expression whose value is an INT(32), PROCADDR, PROC32ADDR, or PROC64ADDR
address.
$PROC64ADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR

TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$PROC6H64ADDR converts a PROCADDR address, PROC32ADDR address, PROC64ADDR address,
or FIXED value to a PROC64ADDR address. No check is performed to see if the resulting
PROC64ADDR address is valid.

—s (rceonn ({0

WETISS ved

pTAL privileged procedure No

Can be executed only by privileged procedures No

Sets condition code No

Sets SCARRY No

Sets SOVERFLOW No

expression
is an expression whose value is a FIXED, PROCADDR, PROC32ADDR, or PROC64ADDR
address.

$READBASELIMIT

NOTE: The EpTAL compiler does not support this procedure.

$READBASELIMIT returns the base and limit of the current extended segment.

sReverseLmT)—(0) O ®

WITHAE. e

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code No

338 BuiltIn Routines

Sets SCARRY No
Sets $OVERFLOW No

xbase

INT(32):variable
is the base address of the current extended segment.
xlimt
output

INT(32):variable
is the limit of the current extended segment.

Consult the system description manual for your system for the format in which the base and limit
values are returned.

Example 296 $READBASELIMIT Routine
INT(32) xbase;

INT(32) xlimit;
$READBASELIMIT(xbase, xlimit);

$READCLOCK
$READCLOCK returns the current setting of the system clock as a FIXED value.

SREADCLOCK

WET108.%ad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

Example 297 $READCLOCK Routine

FIXED the_ time;
the time := $READCLOCK; ! Return current clock time

$READSPT

NOTE: The EpTAL compiler does not support this procedure.

$READSPT returns (copies) an entry from the Segment Page Table (SPT).

© O

WETES. ved

pTAL privileged procedure No
Can be executed only by privileged procedures Yes
Sets condition code No

Nonatomic Operations 339

Sets SCARRY Yes
Sets $OVERFLOW No

vi rt addr
input
EXTADDR:value
is the virtual address of the SPT entry to copy.
spt ent r yaddr
output
EXTADDR:variable
is the address at which $READSPT stores the SPT entry.

Example 298 $READSPT Routine
EXTADDR virtual addr;

INT _EXT spt_entry(spt_template) := spt_entry_addr;
$READSPT(virtual_addr, @spt_entry);

$READTIME

$READTIME returns the number of microseconds since the last cold load.

NOTE: $READTIME is not affected by the TACL command SETTIME; therefore, $READTIME does
not always return the value [JULANTIMESTAMP(O) - JULANTIMESTAMP(1)]

For a description of the SETTIME command, see the TACL Reference Manual. For a description of
the JULIANTIMESTAMP function, see the Guardian Procedure Calls Reference Manual.

SREADTIME

WETES1 wadd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

Example 299 $READTIME Routine

FIXED time_now;
time_now = $READTIME;

$SCALE

$SCALE moves the position of the implied fixed-point (decimal point) by changing a FIXED(f poi nt)
value.

340 BuiltIn Routines

SAE)—(D) © ®

WVET110.ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW Yes

fi xed-expressi on
is the FIXED expression whose implied decimal point is to be changed.

scal e
is an INT constant in the range -19 to +19 that specifies the number of positions to move the
implied decimal point with respect to the least significant digit. If scal e is negative, the implied
decimal point moves to the left; if scal e is positive, the implied decimal point moves to the
right.

$SCALE adjusts the implied decimal point of the stored FIXED value by multiplying or dividing the

value by 10 to the scal e power. Some precision might be lost with negative scal e values.

If the result of the scale operation exceeds the range of a FIXED expression, $SCALE traps if
overflow traps are enabled (see Chapter 13 (page 234)); otherwise, $SCALE ignores the problem.

Example 300 $SCALE Routine

FIXED(3) a := 9.123F;

FIXED(7) result;

result := $SCALE (a, 4); ! Return FIXED(7) value from
I FIXED(3) value

To retain precision when you divide operands that have nonzero f poi nt settings, use the $SCALE
built-in routine to scale up the f poi nt of the dividend by a factor equal to the f poi nt of the
divisor, as in Example 301 (page 341).

Example 301 Using the $SCALE Routine to Maintain Precision

FIXED(3) num, a, b; I fpoint of 3
num := $SCALE (a,3) /7 b; ! Scale a to FIXED(6); result is a
1 FIXED(3) value

$SGBADDR_TO_EXTADDR
$SGBADDR_TO_EXTADDR converts an SGBADDR or SGXBADDR address to an EXTADDR address.

—>($SGBADDR_TD_ExTADDR

WETEDD vad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

Nonatomic Operations 341

expr essi on
is an expression whose value is an SGBADDR or SGXBADDR address.
$SGBADDR_TO_EXTADDR returns expr essi on converted to an EXTADDR address.

Example 302 $SGBADDR_TO_EXTADDR Routine

STRING .SG s;
INT JEXT 1;
INT J;
@1 := $SGBADDR_TO EXTADDR(@s[J]1); !'??: OK if @s[jJ] is at an
1 even-byte offset;
I otherwise, @i is undefined.

$SGBADDR_TO_SGWADDR

$SGBADDR_TO_SGWADDR converts an SGBADDR or SGXBADDR address to an SGWADDR
address.

_>($SGBADDR_TO_$GWADDR

WETHD. e

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets SOVERFLOW No

expr essi on
is an expression whose value is an SGBADDR or SGXBADDR address.

$SGBADDR_TO_SGWADDR returns expression converted to an SGWADDR address. The result
is undefined if the least significant bit of expr essi on is 1.

Example 303 $SGBADDR_TO_SGWADDR Routine

STRING .SG s;
INT .SG i;
INT i;
@1 := $SGBADDR_TO SGWADDR(@s[J1); !'??: OK if @s[jJ] is at an
1 even-byte offset;
1 otherwise, @1 is undefined.

$SGWADDR_TO_EXTADDR

$SGWADDR_TO_EXTADDR converts an SGWADDR or SGXWADDR address to an EXTADDR
address.

_>($SGWADDR_T0_E)<TADDR

WITHOG.

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No

342 BuiltIn Routines

Sets SCARRY No
Sets $OVERFLOW No

expr essi on
is an expression whose value is N SGWADDR or SGXWADDR address.

$SGWADDR_TO_EXTADDR returns expr essi on converted to an EXTADDR address.
Example 304 $SGWADDR_TO_EXTADDR Routine
STRING .EXT s;

INT .SG i:
@s := $SGWADDR_TO_EXTADDR(@i):

$SGWADDR_TO_SGBADDR

$SGWADDR_TO_SGBADDR converts an SGWADDR or SGXWADDR address to an SGBADDR
address.

—>@SGWADDR_TO_SGBADDR

WETEOD. wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

expr essi on
is an expression whose value is an SGWADDR or SGXWADDR address.

If expr essi on is not an address in the lower half of the 64K word segment, the address returned
by $SGWADDR_TO_SGBADDR is undefined.

Example 305 $SGWADDR_TO_SGBADDR Routine

STRING .SG s;
INT .SG i;
@s := $SGWADDR_TO_SGBADDR(@i); !OK: OK if 1 is in the
I lower half of system globals

$SPECIAL

$SPECIAL tests the right byte of an INT value for the presence of an ASCII special (nonalphanumeric)
character (see Table 8 (page 36)).

ssPecas—»(0) ®

WVET111 . ved
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No

Nonatomic Operations 343

Sets SCARRY No
Sets $OVERFLOW No

i nt-expression
is an INT expression.

$SPECIAL inspects bits <8:15> of the i nt - expr essi on and ignores bits <0:7>. $SPECIAL
(i nt - expr essi on) has the same value as:

NOT $NUMERIC(i nt - expr essi on) AND NOT $ALPHABETIC(i nt - expr essi on)
If the character passes the test, $SPECIAL returns a -1 (true); otherwise, $SPECIAL returns a O (false).

i nt - expressi on can include STRING and UNSIGNED(1-16) operands (see Expressions as
Parameters (page 275)).

In Example 306, $SPECIAL tests for the presence of a special character in a STRING argument,
which the system places in the right byte of a word and treats as an INT value.

Example 306 $SPECIAL Routine

STRING char;
IF $SPECIAL (char) THEN ... ; I Test for special character

$ STACK_ALLOCATE

NOTE: The pTAL and EpTAL compilers behave differently.
$STACK_ALLOCATE allocates a block of memory on the stack and returns the address of the block.

_>($5TACK_ALLDCME®_’

WETOE2. e

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
si ze

is an INT expression that specifies the number of bytes to allocate. si ze is an unsigned value
from O through 65534.

Difference between pTAL and EpTAL compilers:

pTAL Compiler EpTAL Compiler

If si ze is not an integral multiple of 8, If si ze is not an integral multiple of 32,
$STACK_ALLOCATE rounds si ze up to the next integral $STACK_ALLOCATE rounds si ze up to the next integral
multiple of 8. multiple of 32.

The returned value is aligned to an 8-byte boundary. The returned value is aligned to a 32-byte boundary.

Blocks returned by multiple calls to $STACK_ALLOCATE are not necessarily contiguous.
$STACK_ALLOCATE returns a WADDR address, which is the lowest address in the allocated

memory.

344 BuiltIn Routines

$STACK_ALLOCATE does not clear the allocated data area.

$STACK_ALLOCATE does not return error conditions, but stack overflow can occur within
$STACK_ALLOCATE or on a subsequent procedure call from within the procedure that calls
$STACK_ALLOCATE.

When a procedure or routine returns to its caller, the system deallocates all memory allocated by
$STACK_ALLOCATE within that procedure.

pTAL does not support calls to $STACK_ALLOCATE from subprocedures and reports a syntax error
if it encounters one. From within a subprocedure, however, you can reference data in a block
allocated in the encompassing procedure.

Example 307 $STACK_ALLOCATE Routine

INT .p(template);
INT(32) .a;
INT(32) i132;
op :
@a :

$STACK_ALLOCATE (S$LEN(template));
$STACK_ALLOCATE ($LEN(i32) * 10);

For more information about $STACK_ALLOCATE, see the pTAL Conversion Guide.

$TRIGGER

$TYPE

NOTE:
e The TAL and pTAL compilers do not support this routine.

e Execution does not return from this call.

$TRIGGER replaces $FREEZE (page 315) and $HALT (page 315), which are available only for code
generated for the TNS/R architecture.

(FrsseR) (O 5 ()

WETED. ved

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
op

is an INT(32) value.

Example 308 $TRIGGER Routine

INT(32) op;
$TRIGGER (op); ! or
call $TRIGGER (op);

$TYPE returns an INT value that represents the data type of a variable.

Nonatomic Operations 345

G (D ()

WET112.0ad

pTAL privileged procedure No

Can be executed only by privileged procedures No

Sets condition code No

Sets $CARRY No

Sets $OVERFLOW No
vari abl e

is the identifier of a simple variable, array, simple pointer, structure, structure data item, or
structure pointer.

$TYPE returns an INT value that has a meaning as follows:

Value Meaning Value Meaning

0 Undefined 5 REAL

1 STRING 6 REAL(64)

2 INT 7 Substructure
3 INT(32) 8 Structure

4 FIXED 9 UNSIGNED

For a structure pointer, $TYPE returns the value 8, regardless of whether the structure pointer points
to a structure or to a substructure.

You can use $TYPE in LITERAL expressions and global initializations, because $TYPE always returns
a constant value.

Example 309 $STYPE Routine

REAL(64) varl;
INT typel;
typel := $TYPE (varl); ! Return 6 for REAL(64)

$UDBL
$UDBL converts an unsigned INT value to an INT(32) value.

(E5580)— (D[rmmmion ()

VETH 130
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets SOVERFLOW No

i nt - expression
is an unsigned INT expression.

346 BuiltIn Routines

$UDBL places the INT value in the low-order 16 bits of an INT(32) variable and sets the high-order
16 bits to 0.

Example 310 $UDBL Routine

INT al6 = -1;s
INT(32) a32;
a32 := $UDBL (al6); ! Return 65535D

$UDIVREM 16
$UDIVREM16 divides an INT(32) dividend by an INT divisor to produce an INT quotient and INT

remainder.

(i) (O—sfe -+ O—sfir— Oy
et | (Ot [()0

WETES) wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW Yes, if the divisor is O or the quotient is too large

di vi dend
input
INT(32):value
di vi sor
input
sINT:value
quot i ent
output
sINT:variable
remai nder
output
sINT:variable
The compiler checks the following conditions during compilation:
o Ifthe value of di vi sor is a constant value of zero, the compiler reports an error that division
by zero is not valid:
$UDIVREM16(dividend, 2 / 2 - 1, quot, rem); ! Report error
e Ifboth di vi dend and di vi sor have constant values whose unsigned quotient is greater
than 16 bits, the compiler reports overflow:
INT quot, rem;
$UDIVREM16(65536 * 1024, 256, quot, rem); I Report error
e If both di vi dend and di vi sor are constants, and you test $OVERFLOW following the
call to $UDIVREM16, the compiler reports a warning that overflow cannot occur:
SUDIVREM16(32767, 256, quot, rem);

Nonatomic Operations 347

IF $OVERFLOW THEN ... 1 Report warning

If the compiler reports an error because overflow occurs for constant dividend and constant divisor,
it does not report a warning if you test $OVERFLOW in the following IF statement:

$UDIVREM16(65536 * 1024, 256, quot, rem); ! Report error
IF $OVERFLOW THEN. ... I No warning or error

Example 311 SUDIVREM16 Routine
INT(32) dividend;

INT divisor;

INT quotient;

INT remainder;
$UDIVREM16(dividend, divisor, quotient, remainder);

$UDIVREM32

$UDIVREM32 divides an INT(32) dividend by an INT divisor to produce an INT(32) quotient and
INT remainder.

(085)— (T O T+
e (s T (DO

WETESS wed

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW Yes, if and only if the divisor is O

di vi dend
input
INT(32):value
di vi sor
input
sINT:value
quot i ent
output
INT(32):variable
remai nder
output
sINT:variable
The compiler checks the following conditions during compilation:

e Ifthe value of di vi sor is a constant value of zero, the compiler reports an error that division
by zero is not valid:

$UDIVREM32(dividend, 2 / 2 - 1, quot, rem); ! Report error

e If both di vi dend and di vi sor are constants, and you test $§OVERFLOW following the
call to $UDIVREM32, the compiler reports a warning that overflow cannot occur:

348 BuiltIn Routines

$UDIVREM32(32767, 256, quot, rem);
IF $OVERFLOW THEN ... I Report warning

If the compiler reports an error because overflow occurs for constant dividend and constant divisor,
it does not report a warning if you test $OVERFLOW in the following IF statement:

$UDIVREM32(65536 * 1024, 256, quot, rem); ! Report error
IF $OVERFLOW THEN. ... I No warning or error

Example 312 $UDIVREM32 Routine
INT(32) dividend;

INT divisor;
INT(32) quotient;
INT remainder;

$UDIVREM32(dividend, divisor, quotient, remainder);

$UFIX
NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).
$UFIX returns the FIXED-type zero-extended value of the specified INT(32)—typed expression.
© o
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No
expr essi on
is INT(32) expression.
$UNLOCKPAGE

NOTE: The EpTAL compiler does not support this procedure.
$UNLOCKPAGE unlocks one page of memory.

SUNLOCKPAGE unlockcount virtaddr
(sunL0cKPAGE) ()—{uriookcount | —()—»{vitadir |—»())

Co—

WETEIS ved

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code Yes

Nonatomic Operations 349

Sets SCARRY No
Sets SOVERFLOW No

unl ockcount
input
sINT:value
is the total number of bytes to unlock in the page.
vi rt addr
input
EXTADDR:value

is the beginning virtual address to unlock. $UNLOCKPAGE calculates the page associated
with virtaddr.

Example 313 SUNLOCKPAGE Routine

INT unlockcount;
EXTADDR addr;
$UNLOCKPAGE (unlockcount, addr);

$WADDR_TO BADDR
$WADDR_TO_BADDR converts a WADDR address to a BADDR address.

_p(SWADDR_TO_BADDR o sxpression o

WITES e

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

expr essi on
is an expression whose value is a WADDR address.

Example 314 SWADDR_TO_BADDR Routine

STRING .s;
INT t;
@s :-= $WADDR_TO BADDR(@t); ! @t is a WADDR address

$WADDR_TO_EXTADDR
$WADDR_TO_EXTADDR converts a WADDR address to an EXTADDR address.

350 BuiltIn Routines

_>($WADDR_TO_E><TADDR o o

WITHAZ. W

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

expr essi on
is an expression whose value is a WADDR address.

Example 315 $SWADDR_TO_EXTADDR Routine
STRING .EXT s;

INT t;
@s := $WADDR_TO_EXTADDR(@t); ! @t is a WADDR address

$WRITEPTE

NOTE: The EpTAL compiler does not support this procedure.

$WRITEPTE writes a segment-page-table entry.
© o O

WETESE. v

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code No
Sets $CARRY Yes
Sets $OVERFLOW No
pt et ag

input

ulNT:value
are the page attribute bits associated with pagef r anme.
pagef ramne
input
INT(32):value
is the frame number of the physical frame associated with abs.
abs
input
EXTADDR:value
is the virtual address to which $WRITEPTE maps pagef r ane.

Nonatomic Operations 351

Example 316 SWRITEPTE Routine

INT ptetag;

INT(32) pageframe;

EXTADDR abs;

$SWRITEPTE(ptetag, pageframe, abs);

$XADR
$XADR converts a standard address to an EXTADDR address.

(50 (O s (D)

WET11 5.

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
vari abl e

is a variable that has a standard, extended, or system-global address.

$XADR returns an EXTADDR address. If the argument to $XADR is not a variable, the compiler
reports an error.

$XADR returns an absolute extended EXTADDR address in absolute segment 1 if variable is a
system global address (an SGBADDR, SGWADDR, SGXBADDR, or SGXWADDR address).

Variable can be the name of a pointer preceded by an “@” operator. In this case, $XADR returns
the absolute address of the pointer, as in the following example.

Example 317 $XADR Routine

PROC p;
BEGIN
INT .p;
INT _EXT e;

@e := $XADR(EP):
END:

$XADR32

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$XADR converts a standard extended, or extended system-global address to an EXT32ADDR

address. No check is performed to determine if the resulting address is valid.

352 BuiltIn Routines

(SXR0R2) (O s (D)

WET115.vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No
vari abl e

is a variable that has a standard, extended, or system-global address. |

$XADR returns an EXT32ADDR address. The compiler reports an error if there is no explicit
conversion defined from the address type of the variable to EXT32ADDR or EXTADDR.

$XADR32 returns an absolute extended EXT32ADDR address in absolute segment 1 if variable is
an extended system global address (an SGBADDR, SGWADDR, SGXBADDR, or SGXWADDR).

Variable can be the name of a pointer preceded by an “@” operator. In this case, $XADR32
returns the EXT32ADDR address of the pointer.

Example 318 $XADR32 Routine |

PROC p;
BEGIN
INT .p;
INT .EXT32 e;

""@e := $XADR32(@p):
END

$XADR64

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1”*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$XADR64 converts a standard extended, or extended system-global address to an EXT64ADDR
address.

(Sr0r00)—(D—s e (D)

WET115.vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No
variabl e

is a variable that has a standard, extended, or system-global address.

Nonatomic Operations 353

$XADR64 returns an EXT64ADDR address. The compiler reports an error if there is no explicit
conversion defined from the address type of the variable to EXT6é4ADDR.

$XADR64 returns an absolute extended EXT64ADDR address in absolute segment 1 if variable is
an extended system global address (an SGBADDR, SGWADDR, SGXBADDR, or SGXWADDR).

Variable can be the name of a pointer preceded by an “@” operator. In this case, $XADR64
returns the EXT64ADDR address of the pointer.

Example 319 $XADR64 Routine

PROC p;
BEGIN
INT _p;
INT _EXT64 e;

""@e := $XADR64(@p):

END

354 BuiltIn Routines

16 Compiling and Linking pTAL Programs

Input to the compiler is a source file containing pTAL source text (such as data declarations,
statements, compiler directives, and comments).

Output from the compiler is a linkfile consisting of relocatable code and data blocks.
To produce an executable pTAL program, link one or more linkfiles into a single loadfile (see
Figure 13).

Figure 13 Compiling and Linking pTAL Programs

pTAL Source File 1

pTAL Source File 2

pTAL Source File n

Monexecutable Monexecutable Monexecutable
Object File 1 Object File 2 Obiject File n
Executable
Object File
WETEES . vsd
Topics:

e Compiling Source Files (page 355)

e linking Object Files (page 358)

e Creating a Dynamic Linked Library (DLL) (page 362)
e Compiling With Global Data Blocks (page 362)

e Compiling With Saved Global Data (page 366)

e Using the Code Profiling Utilities (page 366)

NOTE: The remainder of this section applies only to Guardian platforms. To compile and link
pTAL programs on Windows platforms, see Chapter 18 (page 426).

Compiling Source Files

The compiler reads input files, produces output files, and uses swap files and temporary files as
needed. On Guardian platforms, you use HP TACL commands to compile source files. The compiler
accepts information you specify in HP TACL commands (DEFINE, PARAM, and ASSIGN) if you
issue them before you run the compiler. For a summary of HP TACL commands, see Appendix B
(page 518).

Compiling Source Files 355

Example 320 Compiler Command Lines

ptal /7 in test, out $s.#test, nowait/ testobj; symbols
eptal / in test, out $s.#test, nowait/ testobj; symbols

The compiler reads input only from a single edit-format disk file. You can use the SOURCE (page 514)
in this input file to read code from other source files during compilation. The input file and code
read from other source files comprise a compilation unit.

In general, the compiler opens each source file as it needs the source file and keeps the source
file open until the end of the compilation. This behavior ensures that the contents of the file cannot
change between the time the compiler reads the file and creates a listing. You can open a source
file for read access, but generally not for write access, while the source file is compiling.

When the number of files read exceeds the maximum number of files that Guardian allows to be
open, the compiler closes the least recently used file (unless that file is the primary source file,
which is always kept open) in order to continue to open and read source files.

If you edit a file before the compiler creates an output listing, the source code in the listing will not
match the code in the source file. The compiler reports a warning if it discovers that part of a source
file has changed. Do not alter the source files until the compilation ends.

Topics:

e Input Files (page 356)

e Output Files (page 356)

e Running the Compiler (page 357)

e Completion Codes Returned by the Compiler (page 358)

Input Files
The compiler reads input only from an edit-format disk file up to @ maximum of 132 characters for
each record, ignoring characters after the 132nd (and issuing a warning for each such line). The
compiler does not read input from a terminal or from any other source or file format.
Output Files
You can direct list output from the compiler to any of the following types of files:
e Spooler
e Entry-sequenced file
e Relative file
e Terminal
e Process
e Printer
e Editformat file
e HP TACL variable

If you direct output to a disk file that does not exist, the compiler creates an edit-format file and
writes the compiler listing to the newly created file.

If you direct output to an edit-format file that already exists, the compiler removes the existing file
from your current compilation and creates a new file using the file name you specified.

356 Compiling and Linking pTAL Programs

Difference between pTAL and EpTAL compilers:

pTAL Compiler EpTAL Compiler

On Guardian platforms, object files have the file code 700 On Guardian platforms, object files have the file code 800

Running the Compiler

To run the compiler on Guardian platforms, issue a compilation command at the HP TACL prompt.
Options that you can specify in the compilation command are:

e IN File Option (page 357)

e OUT File Option (page 357)

e HP TACL Run Options (page 357)
e Target File Option (page 358)

You can include one or more compiler directives in the compilation command (see Compilation

Command (page 367)).
IN File Option

The IN file is the primary source file. You can specity a file name or a DEFINE as described in
Appendix B (page 518). In this example, the IN file is mysource.

pTAL ZIN mysource/ myobject
EpTAL /IN mysource/ myobject

The IN file must be an edit-format disk file. The compiler reads the file as 132-byte records.

OUT File Option

The OUT file receives the compiler listings. The OUT file can be any of the files listed in Output
Files (page 356).

In an unstructured disk file, each record has 132 characters; partial lines are filled with blanks
through column 132. You can specify a file name or a DEFINE name. The OUT file is offen a
spooler location, such as $s.#1ists in the following example:

PTAL /IN mysource, OUT $s.#lists/ myobject
EPTAL /IN mysource, OUT $s.#lists/ myobject

If you omit OUT and the HP TACL product is in interactive mode, the listings go to the home terminal.
In noninteractive mode, the listings go to the current HP TACL OUT file:

PTAL /IN mysource/ myobject
EPTAL /IN mysource/ myobject

HP TACL Run Options
You can include one or more HP TACL run options in the compilation command, such as:
e A process name
e A CPU number
e A priority level
e The NOWAIT option
e A swap volume

For example, you can specify CPU 3 and NOWAIT when you run the compiler:

pTAL Z/IN mysource, CPU 3, NOWAIT/ myobject
EpTAL /IN mysource, CPU 3, NOWAIT/ myobject

For information about HP TACL run options, see the RUN command in the TACL Reference Manual.

Compiling Source Files 357

By default, the compiler and its processes can run at a high PIN. If your compilation accesses files
on systems running C-series software, you must run the compiler at a low PIN.

To run the compiler at a low PIN, set HIGHPIN OFF, as shown in the following HP TACL command:
SET HIGHPIN OFF

When you set HIGHPIN OFF in the HP TACL program, the program runs all processes at a low
PIN except processes that explicitly specify the HIGHPIN ON option when the process is created.

To ensure that the compiler runs at a low PIN without affecting other processes, specify the run
command’s HIGHPIN OFF option, as in the following example:

PTAL 7/ HIGHPIN OFF .../ ...
EPTAL / HIGHPIN OFF .../ ...

Target File Option

The target file is the disk file that is to receive the object code. You can specify a file name or a
DEFINE name as described in Appendix B (page 518).

These examples write the object code to a disk file named myobject:
pTAL /ZIN mysource/ myobject
EpTAL /IN mysource/ myobject

It you omit the target file, the compiler creates a file named object on your current default
subvolume.

It an existing file has the name object or the name you specify, and the existing file has the
correct filecode (700 for the pTAL compiler, 800 for EpTAL compiler), the compiler overwrites the
existing file. (The compiler overwrites the existing file by purging it and then creating a new file
that has the same name and filecode.)

If the compiler cannot purge the existing file, the compiler creates a file named ZZPTnnnn, where
nnnn is a different number each time.

Completion Codes Returned by the Compiler

When the compiler compiles a source file, it either completes the compilation normally or stops
abnormally. It then returns a process-completion code to the HP TACL product indicating the status
of the compilation.

Table 73 Completion Codes

Code Termination Meaning

0 Normal The compiler found no errors or unsuppressed warnings in the source file. (Warnings
suppressed by the NOWARN directive do not count.) The obiject file is complete
and valid (unless a SYNTAX directive suppressed its creation).

1 Normal The compiler found at least one unsuppressed warning. (Warnings suppressed by
the NOWARN directive have no effect.) The object file is complete and valid
(unless a SYNTAX directive suppressed its creation).

2 Normal The compiler found at least one compilation error and did not create an object
file, but completed processing the source.

3 Abnormal The compiler exhausted an internal resource such as symbol table space or could
not access an external resource such as a file. The compiler did not create an
object file.

8 Normal The compiler could not use the object file name you specified, so it chose the name

reported in the summary. The object file is complete and valid.

Linking Obiject Files

The linker links one or more linkfiles to produce either a loadfile or another linkfile.

358 Compiling and Linking pTAL Programs

The compiler and compiler directives you use determine the linker you must use and the kind of
executable object code that is produced:

Compiler Compiler Directive Linker Object Code

EpTAL CALL_SHARED (default) eld PIC
NOCALL_SHARED (error)

pTAL CALL_SHARED 1d PIC
NOCALL_SHARED (default) nld Non-PIC

The linker can also strip nonessential information from an object file and modify the object file's
process attributes (such as HIGHPIN). For more information, see:

e eld Manual

e Ild Manual

e nld Manual

The simplest cases are:

e On TNS/E, use the EpTAL compiler and the eld utility to create an object file that executes
on TNS/E (see Figure 14 (page 359)).

e OnTNS/R, use the pTAL compiler and either the 1d or nld utility to create an object file that

executes on TNS/R (see Figure 15 (page 360)).

Also, TNS allows you to create object files that execute on TNS/R. Use the TAL compiler and Binder
on TNS and the Accelerator (AXCEL) on either TNS or TNS/R to create an object file that executes

on TNS/R (see Figure 16 (page 361)). (In this case, you begin with TAL source code rather than
pTAL source code.)

You can input some kinds of loadfiles to the Accelerator (AXCEL) and the Object Code Accelerator
(OCA\) to produce hybrid loadfiles (see Figure 17 (page 362)).

You cannot link PIC and non-PIC object files into a single object file.

Figure 14 Creating a Loadfile on TNS/E for TNS/E

pTAL Source Code

v

EpTAL Compiler

TNS/E Monexecutable
Object Code (PIC)

TNS/E Execulable
Object Code (PIC)

WETMS vad

Linking Object Files 359

The source code can be in one or more files. From each source code file, the compiler generates
a single nonexecutable object code file. Input these object code files to the linker to produce a
single loadfile. (See Figure 13 (page 355).)

Figure 15 Creating Loadfiles on TNS/R for TNS/R

pTAL Source Code

pTAL Compiler

NOCALL_SHARED
directive (default)

CALL_SHARED
directive

TNS/R Monexecutable TNS/R Nonexecutable
Object Code (non-PIC) Object Code (PIC)
TMS/R Executable TNS/R Executable
Object Code (non-PIC) Object Code (PIC)
WETO5d wsd

The source code can be in one or more files. From each source code file, the compiler generates
a single nonexecutable object code file.

If you compile multiple source files, either compile all of them using the CALL_SHARED directive
or all of them without using the CALL_SHARED directive (you cannot link PIC and non-PIC object
files into a single object file). Input these object code files to the appropriate linker to produce a
single loadfile. (See Figure 13 (page 355).)

360 Compiling and Linking pTAL Programs

Figure 16 Creating a Loadfile on TNS for TNS/R
THS

TAL Source Code

TAL Compiler

THS Monexecutable
Chject Code (non-PI1C)

Binder

THE Executable Chject
Code (non-FIC)

|
L
TNS & TNS/R

Executahble
Chject Code (non-PI1C)

TH SR

The source code can be in one or more files. From each source code file, the compiler generates
a single nonexecutable object code file. Input these object code files to Binder to produce a single
loadfile. (Figure 13 (page 355) illustrates this concept, but uses a linker instead of Binder.)

As Figure 16 (page 361) shows, the Accelerator (AXCEL) is available on both TNS/R and TNS
processors; therefore, you can do either of the following:

e Accelerate your TNS executable object code while it is on a TNS processor and then move
the resulting executable object code to a TNS/R processor.

e Move your TNS executable object code to a TNS/R processor and then accelerate it.

In both cases, the resulting executable object code executes only on TNS/R processors.

Linking Obsject Files 361

Figure 17 Producing Hybrid Loadfiles

TNS Executable Object
Code (non-PIC)

TNS & TNS/R
Executable
Object Code {non-PIC)

¢
=D =0

TNS & TNS/R & TNS/E TNS & TNS/E
Executable Object Code Executable Object Code
(PIC) {PIC)

WETOA vad

AXCEL is available on TNS/E, TNS/R, and TNS processors.
OCA is available on TNS/E and TNS/R processors.

Non-PIC hybrid loadfiles run on the TNS/R architecture. PIC hybrid loadfiles run on the TNS/E
architecture.

Creating a Dynamic Linked Library (DLL)

To create a dynamiclink library (DLL) from pTAL source files, compile the pTAL source files by using
the CALL_SHARED directive (in the Guardian environment) or the ~cal l_shared flag (in the
Windows environment), and then use 1d or eld to link the pTAL source files through the -shared
option.

The compiler does not automatically export program names. You must specify —~export_all or
-export to the linker.

Compiling With Global Data Blocks

When you compile modules of a program separately or link pTAL code with code written in other
languages, the linking process relocates some of your global data.

Topics:

e Declaring Global Data (page 362)

e Allocating Global Data Blocks (page 365)
e Address Assignments (page 365)

e Sharing Global Data Blocks (page 365)

Declaring Global Data
You can declare blocked and unblocked global data (variables, LITERALs, and DEFINEs).

Blocked global data declarations are those appearing within BLOCK declarations. BLOCK
declarations let you group global data declarations into named or private blocks. Named blocks
are shareable among all compilation units in a program. The private block is private to the current

362 Compiling and Linking pTAL Programs

compilation unit. If you include a BLOCK declaration in a compilation unit, you must assign an
identifier to the compilation unit by using a NAME declaration.

Unblocked global data declarations are those appearing outside a BLOCK declaration. Such
declarations are also relocatable and shareable among all compilation units in a program.

If you do not use the BLOCKGLOBALS directive, then all separate compilations must specity exactly
the same list of unblocked global data declarations.

It present in a compilation unit, global declarations must appear in the following order:
1. NAME declaration

2. Unblocked global data declarations

3. BLOCK declarations

4. PROC declarations

Topics:

e Naming Compilation Units (page 363)

e Declaring Named Data Blocks (page 363)
e Declaring Private Data Blocks (page 364)
e Declaring Unblocked Data (page 364)

Naming Compilation Units

To assign an identifier fo a compilation unit, specify the NAME declaration as the first declaration
in the compilation unit. (If no BLOCK declaration appears in the compilation unit, you need not
include the NAME declaration.) In the NAME declaration, specify an identifier that is unique among
all BLOCK and NAME declarations in the target file.

Example 321 Naming a Compilation Unit

NAME input_module; ! Name the compilation unit

Declaring Named Data Blocks

A named data block is a global data block that is shareable among all compilation units in a
program. You can include any number of named data blocks in a compilation unit. To declare a
named data block:

e Put a NAME declaration in the compilation (see Naming Compilation Units (page 363)).

e Specify an identifier in the BLOCK declaration that is unique among all BLOCK and NAME
declarations in the target file.

Example 322 Declaring a Named Data Block

BLOCK globals; 1 Declare named data block
INT .vol _array[0:7]; 1 Declare global data
INT .out _array[0:34];
DEFINE xaddr = INT(32)#;

END BLOCK;

A variable declared in a named data block can have the same name as the data block. Modules
written in pTAL can share global variables with modules written in HP C by placing each shared
variable in its own block and giving the variable and the block the same name.

Compiling With Global Data Blocks 363

Example 323 Data Block and Variable With the Same Name

BLOCK c_var;
INT c_var;
END BLOCK;

Declaring Private Data Blocks

A private data block is a global data block that is shareable only among the procedures within a
compilation unit. You can include only one private data block in a compilation unit. The private
data block inherits the identifier you specify in the NAME declaration; therefore, the NAME
declarations in all compilations that you use to assemble an executable program must have unique
names. To declare a private global data block, specify the PRIVATE option of the BLOCK declaration.

Example 324 Declaring a Private Data Block

BLOCK PRIVATE; 1 Declare private global data block
INT term_num; 1 Declare global data
LITERAL msg_buf = 79;

END BLOCK;

Declaring Unblocked Data

Place all unblocked global declarations (those not contained in BLOCK declarations) before the
first BLOCK declaration. Unblocked declarations are relocatable and shareable among all

compilation units in a program. The linking name of the private data block is derived from the
NAME declaration.

Example 325 Declaring Unblocked Data

INT a;

INT .b[0:9];

INT .EXT c[0:14];
LITERAL limit = 32;

The compiler places unblocked data declarations in implicit primary data blocks, created as follows:
1. When you use named blocks, private blocks, or the BLOCKGLOBALS directive, each data

item becomes its own block. All the other unblocked data items are grouped into a block
named _GLOBAL and $_GLOBAL.

2. Each block so created is split into two blocks to separate “large” data from “small” data.
“large” data means arrays or structures declared with “.” or “.EXT” notation. “Small” data is
everything else. When both blocks exist, the “large” data block has a $ in front of its name.

For example, if you have the following global data declarations:

INT Xx;

INT .y;

INT .z [0:113]

Variables x and y are placed in the block named _GLOBAL, and z is placed in the block named
$_GLOBAL.

Named data blocks are split the same way. For example:

BLOCK blk;

INT x;

INT .y;

INT .ext z [0:99];
END BLOCK;

Two data blocks are created. Variables x and y are placed in the block named BLK and z is
placed in the block named $BLK.

You can link obiject files compiled with and without template blocks with no loss of information.

364 Compiling and Linking pTAL Programs

A referral structure and the structure layout to which it refers can appear in different data blocks.
The structure layout must appear first.

In all other cases, a data declaration and any data to which it refers must appear in the same data
block. The following declarations, for example, must appear in the same data block:

INT var; 1 Declare var
INT .ptr := @var; ! Declare ptr by referring to var

If the reference is not in the same block, the compiler issues an error message.

Allocating Global Data Blocks

When you compile a program, the compiler constructs relocatable blocks of code and data that
are linked info the object file. The compiler:

e Allocates each read-only array in its own data block in the code segment of the object file

e Allocates all other variables in relocatable global data blocks in the data segment (except
LITERALs and DEFINEs, which require no storage space)

Data is divided between “large” and “small” data sections.

The compiler associates the symbol information for the allocated variables with that data block.
The compiler also associates the symbol information for any LITERALs, DEFINEs, or read-only arrays
declared in that data block, but allocates O words of storage for such declarations.

Address Assignments

The compiler assigns each direct variable and each pointer an offset from the beginning of the
encompassing global data block. Within the data block, it allocates storage for each data
declaration according fo its data type and size.

Sharing Global Data Blocks

Because the length of any shared data block must match in all compilation units, it is recommended
that you declare all shareable global data in one source file. You can then share that global data
block with other source files as follows:

1. In the source file that declares the data block, specify the SECTION directive at the beginning
of the data block to assign a section name to the data block. The SECTION directive remains
active until another SECTION directive or the end of the source file occurs:

NAME calc_unit;
?SECTION unblocked_globals ! Name first section
LITERAL true = -1, I Implicit data block
false = O;
STRING read_only_array = *P" = [" *","COBOL", "FORTRAN",
"PASCAL™, "pTAL"];
?SECTION default I Name second section
BLOCK default_vol; I Declare named block
INT .vol_array [0:7],
.out_array [0:34];

END BLOCK;
?SECTION msglits I Name third section
BLOCK msg_literals; I Declare named block
LITERAL msg_eof = 0,
msg_open =1,
msg_read = 2;
END BLOCK; I End msglits section

?SECTION end_of data_sections

2. In each source file that needs to include the sections, specify the file name and the section
names in a SOURCE directive:

Compiling With Global Data Blocks 365

NAME input_file;
?SOURCE calcsrc(unblocked globals) ! Specify implicit block
?SOURCE calcsrc(default) I Specify named block

3. If you then change any declaration within a data block that has a section name, you must
recompile all source files that include SOURCE directives listing the changed data block.

Compiling With Saved Global Data

NOTE: This topic applies only to the pTAL compiler. If you are using the EpTAL compiler, see
Migrating from TNS/R to TNS/E (page 375).

During program development or maintenance, you often need to change procedural code or data
without changing the global declarations. You can save the global data in a file during a compilation
session and then use the saved global data during a subsequent compilation. You can shorten the
compile time by not compiling global declarations each time. For more information, see Saving
and Using Global Data Declarations (page 372).

Using the Code Profiling Utilities
The Code Profiling Utilities provide these capabilities

e Evaluate the code coverage provided by application test cases. The utilities use information
provided by a specially-instrumented object file to produce a report that indicates which
functions and blocks were executed, and how many times each was executed.

e Optimize an application through a process called profile-guided optimization. In profile-guided
optimization, a specially-instrumented object file is executed to produce a data file containing
code profiling information. That data file, along with the original source code, is input to the
compiler to generate more efficient object code.

Using the Code Profiling Utilities requires a special compilation to produce an object file containing
the required instrumentation. To create such an object file, specify the CODECOV or PROFGEN
option on the compiler command line. Several other compiler options are related to code profiling.
These are the PROFDIR, PROFUSE, and BASENAME options.

NOTE: The Code Profiling Utilities are intended for data generation and collection in a test
environment only. The use of instrumented object code is not recommended for production
environments. Applications compiled with code profiling instrumentation will experience greatly
reduced performance.

For details on using the Code Profiling Utilities, see the Code Profiling Utilities Manual.

366 Compiling and Linking pTAL Programs

17 Compiler Directives

Topics:

Specifying Compiler Directives (page 367)

File Names as Compiler Directive Arguments (page 368) (Guardian platforms only)

Directive Stacks (page 369)

Toggles (page 370)

Saving and Using Global Data Declarations (page 372)

Summary of Compiler Directives (page 377)

Topics for individual compiler directives, beginning with ASSERTION (page 381)

Specitying Compiler Directives

You can specifty compiler directives either in the compilation command or in a directive line in the
source code, unless otherwise specified. The compiler interprets and processes each directive at
the point of occurrence.

Topics:

Compilation Command (page 367)

Directive Line (page 367)

Compilation Command

—>|I:Dmpi|aliun-mmmand o . I directive .

WETED vad

conpi | ati on- conmand
is as described in Running the Compiler (page 357).

directive

is a directive listed in Table 74 (page 377) or Table 75 (page 379), except the following, which
can appear only in the source file (see Compilation Command (page 367)):

ASSERTION (page 381)

BEGINCOMPILATION (page 382) (not recommended)
ENDIF (page 390)

IF and IFNOT (page 398)

PAGE (page 407)

SECTION (page 414)

SOURCE (page 416)

Example 326 Compilation Commands With Compiler Directives

EPTAL /IN mysrc, OUT $s.#lists/ myobj; NOMAP, NOLIST
pTAL ZIN mysrc, OUT $s.#lists/ myobj; NOMAP, NOLIST

Directive Line

The general form of a directive line is:

Specifying Compiler Directives 367

TS

WET1 20 wed

indicates a directive line, and can appear only in column 1.

directive
is a directive listed in Table 74 (page 377) or Table 75 (page 379), except OPTIMIZEFILE, which
can appear only in the command line (see Compilation Command (page 367)).

Rules for directive lines:
e Begin each directive line by specifying ? in column 1. (? is not part of the directive name.)

e Place the name of the directive and its arguments on the same line unless the directive
description says you can use continuation lines.

e Do not put extra characters (such as semicolons) at the end of a directive line.

e Do not use an equal sign (=) in the directive unless the directive’s syntax includes one (as in
ASSERTION (page 381)).

Rules for continuation lines:

e Begin each continuation line by specifying ? in column 1.
?NOLIST, SYMBOLS, NOMAP, GMAP
?INNERLIST
e Place the opening parenthesis of the argument list on the same line as the directive name.

?NOLIST, SOURCE $system.system.extdecs (
? process_getinfo_,
? process_stop)

File Names as Compiler Directive Arguments

NOTE: This topic applies only to Guardian platforms, not Windows platforms.

The following directives accept Disk File Names (page 518), DEFINE names, and ASSIGN names

as arguments:

e ERRORFILE (page 391)

e SAVEGIOBALS (page 413) (not recommended)
e SOURCE (page 416)

e USEGILOBALS (page 423) (not recommended)

A DEFINE name or an ASSIGN name is considered a logical file name (see Logical File Names
(page 520)). The directives listed above accept a logical file name in place of a file name.

You can specity partial file names. If you specify a partial file name, the compiler uses default
values as described in Partial File Names (page 519).

For the USEGLOBALS directive (not recommended) and the SOURCE and directive, the compiler
can use the node (system), volume, and subvolume specified in ASSIGN SSV commands, as in
Example 328 (page 372).

368 Compiler Directives

Directive Stacks

Each of these directives has a compile-time directive stack onto which you can push, and from
which you can pop, directive settings:

o CHECKSHIFTCOUNT (page 384)

e DEFEXPAND (page 386)

e DO_TNS_SYNTAX (page 389)

e GP_OK (page 397)

e INNERLIST (page 400)

o LIST (page 401)

e MAP (page 402)

e OVERFLOW_TRAPS (page 4006)

e REFALIGNED (page 410)

Each directive stack is 31 levels deep.
Topics:

e Pushing Directive Settings (page 369)
e Popping Directive Settings (page 369)
e Example (page 369)

Pushing Directive Settings

When you push the current directive setting onto a directive stack, the current directive setting of
the source file remains unchanged until you specify a new directive setting.

To push a directive setting onto a directive stack, specify the directive name prefixed by PUSH.
For example, to push the current setting of the LIST directive onto the LIST directive stack, specify
PUSHLIST. The other values in the directive stack move down one level. If a value is pushed off the
bottom of the directive stack, that value is lost. No diagnostic message is issued if too many items
are pushed onto the stack.

Popping Directive Settings

To restore the top value from a directive stack as the current setting from the source file, specify
the directive name prefixed by POP. For example, to restore the top value off the LIST directive
stack, specity POPLIST. The remaining values in the directive stack move up one level, and the
vacated level at the bottom of the stack is set to the off state. No diagnostic message is issued if
too many items are popped from the stack.

Example

In Example 327 (page 370):

LIST is the default setting for the source file.

PUSHLIST pushes the LIST directive setting onto the LIST directive stack.
NOLIST suppresses listing of procedures included by the SOURCE directive.

POPLIST pops the top value from the LIST directive stack and restores LIST as the current setfting
for the remainder of the source file.

PO~

Directive Stacks 369

Example 327 Pushing and Popping a Directive Stack

1 LIST is the default setting for the source file
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
? PROCESS_GETINFO_, FILE OPEN_, WRITEREADX, READX)

?POPLIST
Toggles

Toggles allow these directives to effect conditional compilation:

Directive Description

DEFINETOG Specifies toggles without changing their settings. If DEFINETOG is specifying a

toggle for the first time, its setting is off.

SETTOG Specifies toggles and turns them on

RESETTOG Specifies toggles and turns them off

IF and IFNOT Begin conditional compilation, based on the value of a specified toggle
ENDIF Ends conditional compilation
Topics:

e Named Toggles (page 370)
e Numeric Toggles (page 370)
e Examples (page 371)

Named Toggles

Before you use a named toggle in an IF or IFNOT directive, you must specify that name in a
DEFINETOG, SETTOG, or RESETTOG directive. Which of these directives you use depends on
whether you want the setting of the toggle to be unchanged, turned on, or turned off.

Setting
Directive New Toggle Specified Existing Toggle
DEFINETOG Off Unchanged
SETTOG On On
RESETTOG Off Off

You can use DEFINETOG if you are not sure the toggles were created earlier in the compilation,
possibly in a file that you included by using a SOURCE directive. If you specify toggles that already
exist, DEFINETOG does not change their settings (as SETTOG and RESETTOG do).

Numeric Toggles

The numeric toggles are 1 through 15. All other toggles (including 16, 17, and so on) are
considered named toggles.

You can use a numeric toggle in an IF or IFNOT directive even if that toggle has not been specified
in a DEFINETOG, SETTOG, or RESETTOG directive.

By default, all numeric toggles not turned on by SETTOG are turned off. To turn off numeric toggles
turned on by SETTOG, use RESETTOG.

370 Compiler Directives

Examples

Example 328 (page 372)
Example 329 (page 372)
Example 330 (page 372)
Example 331 (page 372)
Example 332 (page 372)

Toggles 371

Example 328 DEFINETOG, IF, and ENDIF Directives

?DEFINETOG scanner ! Define toggle

5iﬁ scanner I Test toggle for on state
PROC skipped; I Find 1t off, skip procedure
BEGIN
END;
?ENDIF scanner 1 End of skipped procedure

Example 329 DEFINETOG, IFNOT, and ENDIF Directives Directive

?DEFINETOG emitter ! Define toggle

5iﬁNOT emitter 1 Test toggle for off state

PROC kept; ! Find it off, compile procedure
BEGIN
END;

?ENDIF emitter 1 End of compiled procedure

Example 330 SETTOG, IF, and ENDIF Directives

?SETTOG keep ! Create & turn on toggle

5iﬁ keep 1 Test toggle for on state

PROC kept; ! Find it on, compile procedure
BEGIN
END;

?ENDIF keep 1 End of compiled procedure

Example 331 SETTOG, IFNOT, and ENDIF Directives

?SETTOG (done, nested) ! Create & turn on toggles

?1FNOT done 1 Test toggle for off state
PROC skipped; ! Find i1t on, skip procedure
BEGIN
END;
?ENDIF done 1 End of skipped procedure

Example 332 SETTOG, RESETTOG, IF, and ENDIF Directives
?SETTOG (versnl, versn2, 7, 4, 11) ! Turn on toggles

?SETTOG versn3 I Turn on toggle
?RESETTOG (versn2, 7) I Turn off toggles
%iﬁ versn2 I Test toggle for on state
PROC version_2; I Find 1t off,
BEGIN 1 skip procedure
END;
?ENDIF versn2 1 End of skipped procedure

Saving and Using Global Data Declarations

For the pTAL compiler, these directives allow you to compile and initialize global data declarations
in one compilation and use them in subsequent compilations:

Directive Description

372 Compiler Directives

Directive Description

SAVEGLOBALS Saves global data declarations and initial values in one file
USEGLOBALS Reads global data declarations and initial values saved in a file
BEGINCOMPILATION Marks the point in the source file where compilation is to begin if the

USEGLOBALS directive is active

NOTE:
e The EpTAL compiler does not accept the SAVEGLOBALS or USEGLOBALS directive.
o The EpTAL compiler ignores the BEGINCOMPILATION directive.

Topics:

e Saving Global Data Declarations (page 373)

e Retrieving Global Data Declarations (page 374)
e Examples (page 374)

e Migrating from TNS/R to TNS/E (page 375)

Terms used in the following topics:

Term Meaning

SAVEGLOBALS compilation The compilation for which you specify SAVEGLOBALS
SAVEGLOBALS compilation file The source file for the SAVEGLOBALS compilation
USEGLOBALS compilation The compilation for which you specify USEGLOBALS
USEGLOBALS compilation file The source file for the USEGLOBALS compilation

Saving Global Data Declarations

When you compile with SAVEGLOBALS, the compiler saves the global data declarations—global
data identifiers and their attributes (such as data type and kind of variable initialization)—in a file
whose file code is 701.

If you make no changes in the global data declarations, you can use the saved declarations in
subsequent USEGLOBALS compilations, reducing their compilation time.

SAVEGLOBALS does not save FORWARD procedure declarations or EXTERNAL procedure
declarations. You must recompile these declarations in the USEGLOBALS compilation.

When you use the following directives in the SAVEGLOBALS compilation, they affect subsequent
USEGLOBALS compilations as follows:

Directive in SAVEGLOBALS Compilation Effect in Subsequent USEGLOBALS Compilations

SYNTAX Negates the need for using the USEGLOBALS compilation because no
object file was produced by the SAVEGLOBALS compilation

PRINTSYM Continues fo print symbols in the listing

SYMBOLS Continues to make symbols available for all data blocks that had symbols

during the SAVEGLOBALS compilation

You must use the same version of the compiler for the SAVEGLOBALS compilation and the
USEGLOBALS compilation; otherwise, an error occurs in the USEGLOBALS compilation.

Whenever you switch to a new version of the compiler, you must recompile the source code using
SAVEGLOBALS to create a new global declarations file.

Saving and Using Global Data Declarations 373

Retrieving Global Data Declarations

After a SAVEGLOBALS compilation completes successfully, you can specify the following directives
in a USEGLOBALS compilation to retrieve the global data declarations and initializations:

Directive in USEGLOBALS Compilation Effect in Same USEGLOBALS Compilation

USEGLOBALS o Retrieves global data declarations

o Suppresses compilation of text lines and SOURCE directives (but not
other directives) until BEGINCOMPILATION appears

BEGINCOMPILATION Begins compilation of text lines and SOURCE directives

A CAUTION: Be sure the global data declarations in both the SAVEGLOBALS and USEGLOBALS
compilations are identical. If you include new or changed global data declarations anywhere in
the USEGLOBALS source file, results are unpredictable.

The USEGLOBALS compilation terminates if the global declarations file:

e Cannot be found or opened by the compiler

e Was created using a different version of the compiler

Examples

The source file in Example 333 (page 374) (MYPROG) is compiled in examples Example 334
(page 375) through Example 337 (page 375), which show how the SAVEGLOBALS, USEGLOBALS,
BEGINCOMPILATION, and SYNTAX directives interact.

Example 333 MYPROG Source File for Example 334 Through Example 337

Source File MYPROG

1 Source file MYPROG
1 Unless USEGLOBALS is active, compile the entire source File.
?SOURCE SHARGLOB
?BEGINCOMPILATION I When USEGLOBALS is active, compile
1 following code
?PUSHLIST, NOLIST, SOURCE $system.system.extdecs
?POPLIST
PROC my_first_proc;
BEGIN

END;
PROC my_last proc;
BEGIN

END;
File of Shared Global Data, SHARGLOB

?SOURCE glbfilel (sectionl, section2)
?SOURCE moreglbs

INT ignore_mel;

INT ignore_me2;

The compilation command in Example 334 (page 375) compiles myprog (the source file in
Example 333) and saves global data declarations and data initializations.

374 Compiler Directives

Example 334 Saving Global Data Declarations and Data Initializations

pTAL ZIN myprog/ myobj; SAVEGLOBALS ptalsym

A USEGLOBALS compilation (Example 335 (page 375)) then produces obiject file newobj and
retrieves global data declarations and initialization from ptalsym and global initializations from
myobj. When USEGLOBALS is active, the compiler ignores text lines and SOURCE directives until
BEGINCOMPILATION appears in the source file.

Example 335 Retrieving Global Data Declarations and Data Initializations

pTAL /IN myprog/ newobj; USEGLOBALS ptalsymj

You can check the syntax of global data declarations before saving them, as in Example 336

(page 375).

Example 336 Checking the Syntax of Global Data Declarations

pTAL ZIN myprog/; SAVEGLOBALS ptalsym, SYNTAX

After you correct any errors, you can recompile myprog as in Example 337 (page 375).

Example 337 Recompiling MYPROG After Correcting Errors

pTAL ZIN myprog/; USEGLOBALS ptalsym

Migrating from TNS/R to TNS/E
The EpTAL compiler does not accept the SAVEGLOBALS and USEGLOBALS directives.
To migrate a pTAL program that uses SAVEGLOBALS and USEGLOBALS from TNS/R to TNS/E:

1. Remove SAVEGLOBALS from the SAVEGLOBALS compilation command line.

2. Compile the file from FIX_THIS_LINK using the EpTAL compiler, omitting SAVEGLOBALS from
the compilation command.

3. Remove USEGLOBALS from each USEGLOBALS compilation command line.

You can leave BEGINCOMPILATION in this file. The EpTAL compiler ignores
BEGINCOMPILATION, and you need BEGINCOMPILATION if you want to compile the same
files using the pTAL compiler.

4. Compile each file from FIX_THIS_LINK using the EpTAL compiler, omitting USEGLOBALS from

each compilation command.

If all files compile without errors, the migration is done. (To compile the same files using the pTAL
compiler, specify SAVEGLOBALS in the SAVEGLOBALS compilation command and USEGLOBALS
in each USEGLOBALS compilation command.)

It some files do not compile successfully because of missing global data declarations, the source
code files were not set up correctly and you must modify one or more of them.

For example:

1. Suppose that the original SAVEGLOBALS compilation source file is COMP1 in Example 338
(page 375).

Example 338 Original SAVEGLOBALS Compilation Source File

I COMP1

?FI1ELDALIGN (SHARED2)
name X;

?source FILE1l
?source FILE2

Saving and Using Global Data Declarations 375

?source FILENn
int il

struct s(*);
begin

end;

I All other common declarations and directives in the
1 compilation ...

I End of global declarations

?BEGINCOMPILATION

I All nonglobal declarations,

I including procedure declarations

I End of COMP1

2. Extract all directives and declarations from the beginning of COMP1 to (but not including)
BEGINCOMPILATION. Put them in a new source file called GLOBALS (see Example 339

(page 376)).

Example 339 New GLOBALS Source File
I GLOBALS

?F1ELDALIGN (SHARED2)

name X;

?source FILE1
?source FILE2

?source FILEn
int i1l

struct s(*);
begin

end;

1 All other common declarations and directives in the
I compilation

1 End of GLOBALS

3. Use a SOURCE directive to include GLOBALS in COMP1 (as in Example 340 (page 376)).

Example 340 Corrected SAVEGLOBALS Compilation Source File

1 COMP1

?source GLOBALS

1 End of global declarations
?BEGINCOMPILATION

I All other non-global declarations,

I including procedure declarations ...
I End of COMP1

4. In each file that depended on the global data declarations file that the original COMP1
produced:

e Use a SOURCE directive to include GLOBALS.

The SOURCE directive must appear before any other declarations and must be immediately
followed by the BEGINCOMPILATION directive.

o Affer the BEGINCOMPILATION directive, specifty any additional directives that were
originally specified in the compilation command.

376 Compiler Directives

Summary of Compiler Directives

Table 74 summarizes directives by categories.

Table 75 (page 379) lists directives by name in alphabetical order.

Table 74 Compiler Directives by Category

Category Directive Operation
Compiler input BEGINCOMPILATION' Marks the point in the source file where
compilation is to begin if the
USEGLOBALS directive is active
COLUMNS Treats as comments any text that
appears beyond the specified column
SAVEGLOBALS? Saves global data declarations and
initial values in a file for subsequent use
SECTION Names a section of the source file
SOURCE Reads source code from another input
file
USEGLOBALS? Reads global data declarations and
initial values from a file
Compiler listing DEFEXPAND Expands DEFINEs in the compiler listing
FMAP Lists the file map in the compiler listing
GMAP Lists the global map in the compiler
listing
INNERLIST Lists mnemonics after each source
statement
LINES Skips to the top of form after a specified
number of lines if the list file is a line
printer or a process
LIST Lists the source code
MAP Lists the identifier map
PAGE Sets the string to be printed as part of
the heading for each page. Each
subsequent PAGE prints the heading
and causes a page eject.
PRINTSYM Lists symbols in the compiler listing
SUPPRESS Suppresses all listings but the header,
diagnostics, and trailer
Diagnostics ERRORFILE Writes error and warning messages to
an error file
ERRORS Terminates compilation after the

Objectile content

DO_TNS_SYNTAX

INVALID_FOR_PTAL

WARN
ASSERTION

specified number of error messages

Issues warnings for pTAL constructs that
are not valid in TAL

Causes errors for TAL constructs that are
not valid in pTAL

Suppresses compiler warnings

Conditionally executes a debugging
procedure

Summary of Compiler Directives 377

Table 74 Compiler Directives by Category (continued)

Category

Directive

Operation

Conditional compilation

378 Compiler Directives

BASENAME

BLOCKGLOBALS

CALL_SHARED?®
CHECKSHIFTCOUNT

CODECOV

EXPORT_GLOBALS
FIELDALIGN

GLOBALIZED

GP_OK!

OPTIMIZE
OPTIMIZEFILE
OVERFLOW_TRAPS®
PROFDIR

PROFGEN

PROFUSE

REFALIGNED

ROUND
SRL
SYNTAX
DEFINETOG
ENDIF

IF and IFNOT

Specifies that the raw data file (used
for code profiling) generated by the
executing process is fo contain only the
base part ot the file name.

Determines how the compiler allocates
global data that is not declared within
the scope of a named data block or the
private data block

Generates shared code (PIC)

Causes overflow traps for invalid
bit-shift operations

Generates instrumented object code for
use by the Code Coverage Utility

Exports globals

Specifies the default memory alignment
for structures

Generates preemptable object code for
use when building DLLs that require
such code

Generates code that has GP-relative
addressing

Sets the object code’s default
optimization level

Sets the optimization level for individual
procedures and subprocedures

Controls whether overflow traps are

enabled

Specifies where an instrumented object
file is to create the raw data file.

Generate an instrumented object file for
use in profile-guided optimization.

Generates optimized object code based
information in a DP! file.

Specifies the default memory alignment
for pointers to nonstructure items and
procedure reference pointers

Rounds FIXED values assigned to FIXED
variables with smaller f poi nt values

Generates code that can be included
in a user library

Checks the syntax, suppressing the
object code

Defines toggles without changing their
settings

Identifies the end of code that is to be
conditionally compiled

Identifies the beginning of code that is
to be conditionally compiled

Table 74 Compiler Directives by Category (continued)

Category Directive Operation
RESETTOG Turns toggles off |
SETTOG Turns toggles on |
TARGET® Specifies the architecture on which the
program will run
Run-time environment SYMBOLS Generates a symbol table for a
symbolic debugger
Feature control __EXT64 Enables 64-bit addressing functionality

added to the EpTAL compiler starting
with SPR TO561HO1"AAP. For more
information, see “64-bit Addressing
Functionality” (page 531).

! The EpTAL compiler ignores this directive.

2 The EpTAL compiler does not accept this directive.
% The pTAL and EpTAL compilers treat this directive differently.

Table 75 Compiler Directives by Name

Directive Operation

ASSERTION Conditionally executes a debugging procedure

BASENAME Specifies that the raw data file (used for code profiling) generated by the
executing process is to contain only the base part ot the file name.

BEGINCOMPILATION' Marks the point in the source file where compilation is to begin if the
USEGLOBALS directive is active

BLOCKGLOBALS Determines how the compiler allocates global data that is not declared within

CALL_SHARED?

CHECKSHIFTCOUNT

CODECOV
COLUMNS
DEFEXPAND
DEFINETOG
DO_TNS_SYNTAX
ENDIF

ERRORFILE
ERRORS
EXPORT_GLOBALS
__EXT64

FIELDALIGN
FMAP
GLOBALIZED

the scope of a named data block or the private data block

Generates shared code (PIC)

Causes overflow traps for invalid bit-shift operations

Generates instrumented object code for use by the Code Coverate Tool

Treats as comments any text that appears beyond the specified column

Expands DEFINEs in the compiler listing

Defines toggles without changing their settings |
Issues warnings for pTAL constructs that are not valid in TAL

Identifies the end of code that is to be conditionally compiled |
Writes error and warning messages to an error file

Terminates compilation after the specified number of error messages

Exports globals

Directs the compiler to recognize the 64-bit keywords, indirection symbols,
and built-in routines are 64-bit addressing functionality added to the EpTAL
compiler starting with SPR TO561HO1*AAP. For more information, see “64-bit
Addressing Functionality” (page 531).

Specifies the default memory alignment for structures
Lists the file map in the compiler listing

Generates preemptable object code for use when building DLLs that require
such code

Summary of Compiler Directives 379

Table 75 Compiler Directives by Name (continued)

Directive Operation

GMAP Lists the global map in the compiler listing

GP_OK! Generates code that has GP-relative addressing

IF and IFNOT Identifies the beginning of code that is to be conditionally compiled
INNERLIST Lists mnemonics after each source statement

INVALID_FOR_PTAL
LINES

LIST

MAP

OPTIMIZE
OPTIMIZEFILE
OVERFLOW_TRAPS?
PAGE

PRINTSYM
PROFDIR
PROFGEN
PROFUSE
REFALIGNED

RESETTOG
ROUND
SAVEGLOBALS®
SECTION
SETTOG
SOURCE

SRL

SUPPRESS
SYMBOLS
SYNTAX
TARGET?
USEGLOBALS®
WARN

Causes errors for TAL constructs that are not valid in pTAL

Specifies the maximum number of output lines per page if the list file is a line
printer or a process

Lists the source code

Lists the identifier map

Sets the object code’s default optimization level

Sets the optimization level for individual procedures and subprocedures
Controls whether overflow traps are enabled.

Sets the string to be printed as part of the heading for each page. Each
subsequent PAGE prints the heading and causes a page eject.

Lists symbols in the compiler listing

Specifies where an instrumented obiject file is to create the raw data file.
Generates an instrumented object file for use in profile-guided optimization.
Generates an optimized object file based on information in a DP! file.

Specifies the default alignment for pointers to nonstructure items and procedure
reference pointers

Turns off toggles

Rounds FIXED values assigned to FIXED variables with smaller f poi nt values
Saves global data declarations and initial values in a file for subsequent use
Names a section of the source file

Turns on toggles

Reads source code from another input file

Generates code that can be included in a user library

Suppresses all listings but the header, diagnostics, and trailer

Generates a symbol table for a symbolic debugger

Checks the syntax, suppressing the object code

Specifies the architecture on which the program will run

Reads global data declarations and initial values from a file

Suppresses compiler warnings

" The EpTAL compiler ignores this directive.
2 The pTAL and EpTAL compilers treat this directive differently.
% The EpTAL compiler does not accept this directive.

380 Compiler Directives

NOTE: In the following directive topics, “Default:” identifies the default for the compiler directive
itself, not for its optional parameter(s). This default applies if a program does not contain the
compiler directive at all.

ASSERTION

ASSERTION executes a procedure when the condition specified in the active ASSERT statement is
true.

assertion-|evel
is an unsigned decimal constant in the range O through 32,767.

WET1ZA vsd

pr ocedur e- nane
is the name of the procedure to execute if both:

e The condi ti on defined in the active ASSERT statement is true.
e assertion-level islessthanthe assert-|evel inthe active ASSERT statement.

This procedure must not have parameters.

Default: None

Placement: o Anywhere in the source file (not in the compilation command)

e Must be the last directive on the directive line

Scope: Applies until another ASSERTION overrides it
Dependencies: Has no effect without the ASSERT statement
References: ASSERT (page 200)

ASSERT (page 200) explains how to use the ASSERTION directive and the ASSERT statement together.
BASENAME

This directive can be used only with the EpTAL compiler.

BASENAME specifies that when an instrumented object file is run, the raw data file created by the
running process will contain only the base part of the source file name and not the full file path.
For detailed information about using the BASENAME option when performing profile-guided
optimization, see the Code Profiling Utilities Manual.

WETEAD wad
Default: The raw data file contains the full path name of the source file
Placement: Only on the command line
Scope: Applies to the compilation unit

ASSERTION 381

Dependencies: Use the BASENAME option only with the PROFGEN option
References: PROFGEN

BEGINCOMPILATION

NOTE: The EpTAL compiler ignores this directive. See Migrating from TNS/R to TNS/E (page 375).

BEGINCOMPILATION marks the point in the source file where:
e The information saved by the SAVEGLOBALS operation ends
o Compilation is to begin if the USEGLOBALS directive is active.

_,(_E.EelNcomplLAﬂou_)_.

WETES vad

Default: None

Placement: ¢ In the source file between the last global data declaration and the first
procedure declaration, including any EXTERNAL and FORWARD
declarations

o Can appear only once in a compilation unit
Scope: Applies to all source code that follows it in the compilation unit

Dependencies: e Has no effect without the USEGLOBALS directive

o If you specify either SAVEGLOBALS or USEGLOBALS, your compilation
unit must have exactly one BEGINCOMPILATION directive

e Interacts with SAVEGLOBALS and USEGLOBALS (see Saving and Using
Global Data Declarations (page 372))

References: o SAVEGLOBALS (page 413)
e USEGIOBALS (page 423)

BLOCKGLOBALS

BLOCKGLOBALS determines how the compiler allocates global data that is not declared within
the scope of a named data block or the private data block.

BLOCKGLOBALS

WITHSE.wad

Default: The compiler allocates data items in the _GLOBAL and $_GLOBAL data blocks
Placement: Before the first data declaration in a compilation

Scope: Applies to the compilation unit

Dependencies: None

If you specity BLOCKGLOBALS, the compiler allocates its own data block for each global variable
that is not declared in the scope of a named data block or the private data block. The name of
the data block is the same as the name of the variable contained in the data block.

382 Compiler Directives

Table 76 Data Block Names

Declaration Without BLOCKGLOBALS With BLOCKGLOBALS
INT a; _GLOBAL A
INT .a; _GLOBAL A
INT _EXT a; _GLOBAL A
INT a[0:9] _GLOBAL A
STRUCT a; _GLOBAL A
BEGIN

INT i;
END
int .ext a [0:9] $_GLOBAL A
struct .ext a; $_GLOBAL A
begin

int i;
end;

Separately compiled modules can share access to a data block only if both modules allocate the
block in the small data area or both modules allocate the block in the large data area.

References to data in the small data area are faster than references to data in the large data area.
All data blocks in a shared run-time library must be allocated in the large data area.

If the name of a variable is the same as the name of the data block in which the variable is located,
and the block only contains one variable, the compiler allocates the data block in the small data
area if the length of the block is eight or fewer bytes; otherwise, the compiler allocates the data
block in the large data area. (This is the allocation strategy used by the native HP C compiler.)

The compiler does not allocate memory for LITERALs, DEFINEs, or templates and, therefore, does
not create an implicit global data block for these items.

CALL_SHARED

NOTE:
e This directive is useful only for the pTAL compiler. The EpTAL compiler ignores it (and issues
a warning).

e You cannot link PIC and non-PIC object files into a single object file.

‘ CALL_SHARED ’

WIS, e

CALL_SHARED
generates shared code (PIC), the only option for the EpTAL compiler.

NOCALL_SHARED
causes the pTAL compiler to generate nonshared code (non-PIC).

Default: pTAL compiler: NOCALL_SHARED
EpTAL compiler: CALL_SHARED

Placement: Anywhere

Scope: Applies to the compilation unit

CALL_SHARED 383

Dependencies: o [f both CALL_SHARED and
NOCALL_SHARED appear in the
same compilation unit, the compiler
uses the one that appears last

e Do not use CALL_SHARED with
GP_OK

References: GP_OK (page 397)

CHECKSHIFTCOUNT

CHECKSHIFTCOUNT

NOCHECKSHIFTCOUNT
PUSHCHECKSHIFTCOUNT

POPCHECKSHIFTCOUNT

WETAES. ved

CHECKSHIFTCOUNT
generates code that causes an overflow trap if the number of positions in a bit-shift operation
is too large, as in:
INT j == 20;
INT 1;
I =1 << j;

(For more information about bit shifts, see Bit Shifts (page 94).)
NOCHECKSHIFTCOUNT

suppresses the generation of code that causes an overflow trap if the number of positions in a
bit-shift operation is too large.

A CAUTION: If such a bit-shift operation occurs, subsequent program behavior is undefined.

PUSHCHECKSHIFTCOUNT
pushes the current setting (CHECKSHIFTCOUNT or NOCHECKSHIFTCOUNT) onto the
CHECKSHIFTCOUNT directive stack. Does not change the current setting.
POPCHECKSHIFTCOUNT
pops the top value from the CHECKSHIFTCOUNT directive stack and changes the current

setting to that value.
For an explanation of directive stacks, see Directive Stacks (page 369).

Default: NOCHECKSHIFTCOUNT
Placement: Anywhere
Scope: o CHECKSHIFTCOUNT applies to the shift operators that follow it until it is

overridden by NOCHECKSHIFTCOUNT

o NOCHECKSHIFTCOUNT applies to the shift operators that follow it until
it is overridden by CHECKSHIFTCOUNT

Dependencies: None

384 Compiler Directives

CODECOV

NOTE:

o This directive can be used only with the EpTAL compiler.

e Instrumented object code can result in greatly reduced performance. Therefore, the CODECOV
directive should be used only in a test environment. See the caution under Debugging
(page 429), which indicates how CODECQV affects debugging applications.

CODECOQV causes the compiler to generate instrumented object code for use by the Code Coverage
Utility. For detailed information about the Code Coverage Utility, see the Code Profiling Utilities

Manual.
—=(CopECOV)=
WETAM vsd
Default: No code coverage instrumentation in object code
Placement: Only on the command line
Scope: Applies to the compilation unit

Dependencies:

None

COLUMNS

COLUMNS causes the compiler to treat any text beyond the specified column as comments.

_><COLUMNS

col ums-val ue

columns-value I—p

WET12T vad

is an unsigned decimal constant in the range 12 through 132, the column beyond which the
compiler is to treat text as comments.

If col unms- val ue is smaller than 12 or larger than 132, the compiler issues an error

message.
Default: COLUMNS 132
Placement: o Anywhere, but if COLUMNS appears in the source code, it must be the
only directive on the directive line
o Typically specified before any SECTION directive
Scope: Applies to all source code that follows it unless overridden by:

Dependencies:

References:

o Another COLUMNS directive in the same source file (not recommended)

o A COLUMNS directive in a source file included by means of a SOURCE
directive

o A COLUMNS directive in a section identified by a SECTION directive
For details, see the explanation that follows this table.

None

e SECTION (page 414)
e SOURCE (page 416)

CODECOV 385

The col unmms- val ue active at any given time depends on the context, as follows:

e The main input file initially has the col unms- val ue set by the last COLUMNS directive in
the compilation command. If there was no COLUMNS directive in the compilation command,
the main input file initially has the default col unms- val ue of 132.

e At each SOURCE directive, each included file initially has the col umms- val ue active when
the SOURCE directive appeared.

e Ateach SECTION directive, col uims- val ue is set by the last COLUMNS directive before
the first SECTION directive in the included file. If there is no such COLUMNS directive, each
SECTION initially has the col unms- val ue active at the beginning of the included file.

e Within a section, a COLUMNS directive sets the col unims- val ue only until the next
COLUMNS or SECTION directive or the end of the file.

o After a SOURCE directive completes execution (that is, after all sections listed in the SOURCE
directive are read or the end of the file is reached), the compiler restores col ums- val ue
to what it was when the SOURCE directive appeared.

e Inall other cases, col uims- val ue is set by the most recently processed COLUMNS directive.

If a SOURCE directive lists sections, the compiler processes no source code outside the listed
sections except any COLUMNS directives that appear before the first SECTION directive in the
included file. For more information about including files or sections, see SOURCE (page 416) and

SECTION (page 414).
DEFEXPAND

I Crosereemiy
(FraErmnis)
(rrrommey

WET2D.wmd

DEFEXPAND
expands DEFINEs in the compiler listing.

NOTE: MAP DEFINEs are available only on Guardian platforms.

NODEFEXPAND
suppresses the expansion of DEFINEs in the compiler listing.

PUSHDEFEXPAND
pushes the current setting (DEFEXPAND or NODEFEXPAND) onto the DEFEXPAND directive
stack. Does not change the current setting.

POPDEFEXPAND

pops the top value from the DEFEXPAND directive stack and changes the current setting to that
value.

For an explanation of directive stacks, see Directive Stacks (page 369).

Default: NODEFEXPAND

Placement: Anywhere

386 Compiler Directives

Scope: o DEFEXPAND applies to subsequent code it until it is overridden by

NODEFEXPAND
o NODEFEXPAND applies to subsequent code until it is overridden by
DEFEXPAND
Dependencies: DEFEXPAND has no effect if NOLIST or SUPPRESS is active
References: o LIST (page 401)

e SUPPRESS (page 420)

In the DEFEXPAND listing, the DEFINE body appears on lines following the DEFINE identifier. In
the listing:

o All letters are uppercase.
e No comments, line boundaries, or extra blanks appear.
e The lexical level of the DEFINE appears in the left margin, starting at 1.

e Parameters to the DEFINE appear as #n, where n is the sequence number of the parameter,
starting at 1.

Example 341 DEFEXPAND Directive
?DEFEXPAND I List expanded DEFINEs

DEFINE increment (X) = x = X + 1#; ! Expanded DEFINE
DEFINE decrement (y) =y =y - 1#; | Expanded DEFINE
1 Other global data declarations

DEFEXPAND 387

DEFINETOG

DEFINETOG specifies toggles for use in conditional compilation. If DEFINETOG is specifying a
toggle for the first time, its sefting is off. DEFINETOG has no effect on toggles already in use.

DEFINETOG

foggle-name

s

L J

WET212.ved

t oggl e- nane
is an identifier with a maximum of 31 characters in length.
The only characters allowed in a toggle-name are alphabetic (“A” through “Z” and “a” through

“z'), numeric (‘0" through “9”), underscore (“_"), and circumflex (“*"); the first character must
be alphabetic.

Names are case-insensitive (For example, abc is the same as Abc.)
t oggl e- nunber
is an unsigned decimal constant in the range 1 through 15. Leading zeros are ignored.
t ar get
is as defined in “TARGET” (page 423).
PTAL
is a toggle implicitly defined and set by the TAL, pTAL and EpTAL compilers. It is set on if the
compiler in use is any pTAL or EpTAL compiler, otherwise it is set off.

It can be used with the directives “IF and IFNOT” (page 398) to conditionally compile code.
Source code enclosed within the IF PTAL directive is compiled only when using the pTAL or
EpTAL compilers. Likewise, source code enclosed within the IFNOT PTAL directive is compiled
only when using the TAL compiler.

Compiler IF pTAL IFNOT pTAL
pTAL or EpTAL True False

TAL False True

_ EXT64

is a toggle implicitly defined and set by the EpTAL compiler starting with SPR TO561HO1~ AAP.

It is set on if the corresponding __EXT64 directive has been specified otherwise, it is set off.

388 Compiler Directives

The __EXTé4 directive controls the availability of 64-bit addressing functionality; for more
details, see Appendix E “64-bit Addressing Functionality” (page 531).

The toggle __EXT64 is used with the directives “IF and IFNOT” (page 398) to conditionally
compile source code containing 64-bit addressing functionality.

This toggle is not supported by the EpTAL compilers prior to SPR TO561HO1*AAP nor is it
supported by any pTAL or TAL compiler. If you need to compile using earlier versions of EpTAL,
pTAL, or TAL compiler, explicitly specity __ EXTé4 in a DEFINETOG directive which explicitly
defines and sets the toggle off in these compilers.

You can specify DEFINETOG __EXT64 using EpTAL compilers starting with SPR TO561HO1*AAP
. However, doing so has no effect on the implicitly defined __EXT64 toggle setting.

Default: None

Placement: o With a parenthesized list, it can appear anywhere
o Without a parenthesized list, it must be the last directive on the directive
line or compilation command line

Scope: Applies to the compilation unit

Dependencies: Interacts with:
o SETTOG
o RESETTOG
e [Fand IFNOT
o ENDIF
o TARGET
o _ EXT64

References: e SETTOG (page 415)
e RESETTOG (page 411)
e IF and IFNOT (page 398)
¢ ENDIF (page 390)
e “TARGET” (page 423)
o “__EXT64” (page 394)
e Toggles (page 370)

DO_TNS_SYNTAX

DO_TNS_SYNTAX

NODO_THNS_SYNTAX

PUSHDO_TNS_SYNTAX
POPDO_TNS_SYNTAX

WETEEL wad

DO_TNS_SYNTAX

issues a warning for each occurrence of certain constructs that are valid in pTAL but not in TAL
(for these constructs, see the pTAL Conversion Guide).

NODO_TNS_SYNTAX

suppresses warnings for each occurrence of a construct that is valid in pTAL but not in TAL.
PUSHTNS_SYNTAX

pushes the current setting (DOTNS_SYNTAX or NODOTNS_SYNTAX) onto the DOTNS_SYNTAX

directive stack. Does not change the current setting.

DO_TNS_SYNTAX 389

POPTNS_SYNTAX
pops the top value from the DOTNS_SYNTAX directive stack and changes the current setting

to that value.

Default: NODO_TNS_SYNTAX

Placement: o Can appear only once in a compilation

o Must precede any TARGET directive and any nondirective lines

Scope: Applies to the compilation unit
Dependencies: None
References: TARGET (page 423)

ENDIF I

ENDIF identifies the end of code that is to be conditionally compiled. |

loggle-name

lc:-ggle-numbe

WETHII vad

t oggl e- nane
is an identifier that was used as a t oggl e- name in an earlier IF or IFNOT directive. |

The only characters allowed in a toggle-name are alphabetic (“A” through “Z” and “a” through

'), numeric (‘0" through “9"), underscore (“_"), and circumflex (“*"); the first character must
be alphabetic.

Names are case-insensitive (For example, abc is the same as Abc.)
t oggl e- nunber
is an unsigned decimal constant in the range 1 through 15 that was used as a t oggl e- name
in an earlier IF or IFNOT directive. Leading zeros are ignored.
t ar get |
is as defined in “TARGET” (page 423). |
PTAL |

is a toggle implicitly defined and set by the TAL, pTAL and EpTAL compilers. It is set on if the
compiler in use is any pTAL or EpTAL compiler, otherwise it is set off. See “DEFINETOG”
(page 388).

__EXT64 |

is a toggle implicitly defined and set by the EpTAL compiler starting with SPR TO561HO1~AAP.
It is set on if the corresponding “__EXT64" (page 394) directive has been specified otherwise,
it is set off. The __EXT64 directive controls the availability of 64-bit addressing functionality;

see “DEFINETOG” (page 388) and Appendix E, “64-bit Addressing Functionality” (page 531).

The next compiled ENDIF that matches the most recently compiled IF or IFNOT with the same toggle
or target specified identifies the end of code to be conditionally compiled. For example:

?SETTOG togl -- Create and turn on togl

?RESETTOG tog2 — Create and turn off tog2

?1F togl
-— Statements for true condition

390 Compiler Directives

-- compiled because togl is on
?1F tog2
-- Statements for true condition
-- skipped because tog2 is off
?ENDIF togl — Not compiled, part of skipped code for tog2
?ENDIF tog2 -- End of conditional code for tog2
?ENDIF togl -- End of conditional code for togl

Default:

Placement:

Scope:

Dependencies:

References:

None

o Anywhere in the source file (not in the compilation command)
o Must be the only directive on the directive line

Everything between ENDIF and the most recently compiled IF or IFNOT
directive that specifies the same toggle, target, or keyword

Interacts with:

e SETTOG

e RESETTOG

e |F and IFNOT
e ENDIF

e TARGET

o _ EXT64

e SETTOG (page 415)

e RESETTOG (page 411)

e IF and IFNOT (page 398)
e ENDIF (page 390)

o “TARGET” (page 423)

o “__EXT64" (page 394)

o Toggles (page 370)

ERRORFILE

ERRORFILE writes compilation errors and warnings to an error file so you can use the HP TACL
FIXERRS macro (available only on Guardian platforms) to view the diagnostic messages in one PS
Text Edit window and correct the source file in another window.

ERRORFILE

fil e-nanme

file-name

define-name

assign-name

VET137 vad

is the name of either:

e An existing error file created by ERRORFILE. Such a file has file code 106 (an
entry-sequenced disk file used only with the HP TACL FIXERRS macro). The compiler purges
any data in it before logging errors and warnings.

e A new error file to be created by ERRORFILE if errors occur.

If a file with the same name exists but the file code is not 106, the compiler terminates
compilation to prevent overwriting the file.

You can specify partial file names as described in Partial File Names (page 519). The compiler
uses the current default volume and subvolume names as needed. For this directive, the compiler

ERRORFILE 391

does not use HP TACL ASSIGN SSV information (available only on Guardian platforms) to
complete the file name.

defi ne- nane
is the name of a MAP DEFINE that refers to an error file.

NOTE: MAP DEFINEs are available only on Guardian platforms.

assi gn- nane
is a logical file name you have equated with an error file by issuing an ASSIGN command.

Default: None

Placement: ¢ In the compilation command or in the source code before any declarations

e Can appear only once in a compilation unit

Scope: Applies to the compilation unit

Dependencies: None

The compiler writes a header record to the error file and then writes a record for each error or
warning. Each record contains information such as:

e The location of the error or warning—source file name, edit line number, and column number
e The message text of the error or warning

At the end of the compilation, the compiler prints the complete name of the error file in the trailer
message of the compilation listing.

After the compiler logs messages to the error file, you can call the HP TACL FIXERRS macro and
correct the source file. FIXERRS uses the PS Text Edit ANYHOW option to open the source file in

a two-window session. One window displays a diagnostic message. The other window displays
the source code to which the message applies. If you have write access to the file, you can correct
the source code. If you have only read access, you can view the source code, but you cannot
correct it.

Initially, the edit cursor is located in the source code at the first diagnostic. To move the cursor to
the next or previous diagnostic, use the PS Text Edit NEXTERR or PREVERR command.

The HP TACL command for calling FIXERRS is:

e]
—><FIKERRS)—p-| error-file |

L J

. tedit-cmds

WET211

error-file

is the name of the error file specified in the ERRORFILE directive.
tedit-cmds

is any PS Text Edit commands that are allowed on the PS Text Edit run line.

Example 342 (page 393) issues an HP TACL DEFINE command that calls FIXERRS and defines PS
Text Edit function keys for NEXTERR and PREVERR.

392 Compiler Directives

Example 342 FIXERRS Macro

[#DEF MYFIXERRS MACRO |BODY|
FIXERRS %1%; SET <F9>, NEXTERR; SET <SF9>, PREVERR
1

Example 343 ERRORFILE Directive

I MYSOURCE file
?ERRORFILE myerrors ! Compiler reports errors and warnings

1 to the file myerrors
1Global declarations

ERRORS

ERRORS sets the maximum number of error messages to allow before the compiler terminates the
compilation.

ERRORS - ~ :i AUM-Messages |_>

WET13E wed

num nmessages

is an unsigned decimal constant in the range O through 32,767 that represents the maximum
number of error messages to allow before the compilation terminates.

Default: Unlimited number of errors
Placement: Anywhere

Scope: Applies to the compilation unit
Dependencies: None

A single error can cause many error messages. The compiler counts each error message separately.
If the compiler’s count exceeds the maximum you specify, the compiler terminates the compilation.
(Warning messages do not affect the count.)

Example 344 ERRORS Directive
I MYSOURCE file

?ERRORS 10 1 Stop compiling when 10 errors are found
1Global declarations

EXPORT_GLOBALS

EXPORT_GLOBALS
NOEXPORT_GLOBALS
PUSHEXPORT_GLOBALS
POPEXPORT_GLOBALS

WETHEZ ved

EXPORT_GLOBALS

causes the compiler to define (rather than only declare) global data blocks, allocating space
for them and (optionally) giving them initial values, and causes the linker to include in the
program file all global data blocks declared up to the next occurrence of NOEXPORT_GLOBALS
or through the last declared global data block, whichever is first.

ERRORS 393

NOEXPORT_GLOBALS
causes the compiler to declare (rather than define) global data blocks.
PUSHEXPORT_GLOBALS

pushes the current setting (EXPORT_GLOBALS or NOEXPORT_GLOBALS) onto the
EXPORT_GLOBALS directive stack. Does not change the current setting.

POPEXPORT_GLOBALS
pops the top value from the EXPORT_GLOBALS directive stack and changes the current setting

to that value.

Default: EXPORT_GLOBALS

Placement: o Can appear any number of times in a compilation unit
o Must appear before the first procedure is compiled
o Cannot appear within BLOCK declarations

Scope: Applies to the compilation unit, except that NOEXPORT_GLOBALS does not
affect a compilation’s private data block, which is always exported

Dependencies: e You must specify NOEXPORT_GLOBALS when declaring a data block that
belongs to an SRL

¢ In a compilation that includes USEGLOBALS, the compiler exports the data
blocks declared in the USEGLOBALS declarations file only if
EXPORT_GLOBALS is active when the compiler encounters the
BEGINCOMPILATION directive.

References: o BEGINCOMPILATION (page 382)
e SRL (page 420)
e USEGLOBALS (page 423)

You can export only whole data blocks. You cannot export individual variables declared within a

data block.
The compiler exports initialization values for variables that specify them. If a data block is not
being exported, the compiler ignores any specified initial values within the block.

You must export every data block in at least one compilation.

__EXT64
(BT)

WETAM vsd

_ EXT64 directive controls the accessibility of 64-bit addressing functionality support available in
the EpTAL compiler starting with SPR T0561HO1~AAP. See Appendix E, “64-bit Addressing
Functionality” (page 531).

Starting with SPR TO561HO1*AAP, the corresponding implicitly defined toggle __EXT64 is set on
if the __EXT64 directive is specified, otherwise, it is set off. For example:

-- The ?__EXT64 directive is specified appropriately
-— on the EpTAL compiler command line

?DEFINETOG _ EXT64 -- For downward compatibility with
-- compilers that do not support
-- ?__EXT64 and the 64-bit address
-- functionality.

5IF ___EXT64 -- EpTAL version is SPR AAP or newer
-- and 64-bit functionality is needed.

394 Compiler Directives

EXT64ADDR addr; -- Use a 64-bit address type.

?ENDIF __ _EXT64

21FNOT __EXT64 —— EpTAL prior to SPR AAP, pTAL or TAL
EXTADDR addr;

?ENDIF __ EXT64

Default: off

Placement: Must appear either on the compiler command line or in the compiled source
code before the first source code token is scanned by the compiler.

Scope: Affects the entire compilation

Dependencies: None

References: « “DEFINETOG” (page 388)

e “ENDIF” (page 390)

o “IF and IFNOT” (page 398)
e “RESETTOG” (page 411)

o “SETTOG” (page 415)

o Toggles (page 370)

FIELDALIGN

FIELDALIGN specifies the default alignment for structures.

Loy

ﬂ
NODEFAULT

WETEE0 e

SHARED2
specifies that the base of the structure and each field in the structure must begin at an even-byte
address except STRING fields. For more information, see SHARED2 Parameter (page 128).
SHAREDS8

specifies that the offset of each field in the structure from the base of the structure must be begin
at an address that is an integral multiple of the width of the field. For more information, see
SHAREDS8 Parameter (page 129).

AUTO

specifies that the structure and the fields of the structure be aligned according to the optimal
alignment for the architecture on which the program will run (this is not the same behavior as
the AUTO attribute has in the native mode HP C compiler). For more information, see AUTO
(page 118).

PLATFORM

specifies that the structure and the fields of the structure must begin at addresses that are
consistent across all languages on the same architecture. For more information, see PLATFORM
(page 118).

FIELDALIGN 395

NODEFAULT
specifies that every structure declaration must include a FIELDALIGN (page 395).

Default: FIELDALIGN AUTO

Placement: o Can appear only once in a compilation unit

e Must precede all declarations of data, blocks, and procedures

Scope: Applies to the compilation unit

Dependencies: None

FMAP

Nz

WET 141,

FMAP
lists the file map in the compiler listing.
NOFMAP
suppresses the file map in the compiler listing.

Default: NOFMAP

Placement: Anywhere, any number of times. The last FMAP or NOFMAP in the compilation
unit determines whether the compiler lists the file map.

Scope: Applies to the compilation unit

Dependencies: FMAP has no effect if either NOLIST or SUPPRESS is active

References: o LIST (page 401)

o SUPPRESS (page 420)

The file map:
e Appears after the map of global identifiers in the compilation listing

e Starts with the first file that the compiler encounters and includes each file introduced by
SOURCE directives and (on Guardian platforms) HP TACL ASSIGN and DEFINE commands

e Shows the complete name of each file and the date and time when the file was last modified

GLOBALIZED
NOTE: This directive is valid only with the EpTAL compiler.

The GLOBALIZED directive directs the compiler to generate preemptable object code. Preemptable
object code allows named references in a DLL to resolve to externally-defined code and data items
instead of to the DLL's own internally-defined code and data items. You must specify the GLOBALIZED
directive when compiling code that will be linked into a globalized DLL. By default, the compiler
generates non-preemptable object code. Non-preemptable code is more efficient than preemptable
code and results in faster compilation and execution, so you should specify GLOBALIZED only
when required.

396 Compiler Directives

GLOBALIZED

WETAIS v

Default: Generate non-preemptable object code
Placement: On the command line

Scope: Applies to the compilation unit
Dependencies: None

GMAP

N

WET 142 vsd

GMAP
lists the global map in the compiler listing.

NOGMAP
suppresses the global map in the compiler listing.

Default: GMAP

Placement: Anywhere, any number of times. The last GMAP or NOGMAP in the
compilation unit determines whether the compiler lists the global map.

Scope: Applies to the compilation unit

Dependencies: o GMAP has no effect if NOLIST, NOMAP, or SUPPRESS is active

o NOGMAP suppresses the global map even if MAP is active

References: o LIST (page 401)
e MAP (page 402)
o SUPPRESS (page 420)

The global map:
e Appears at the end of the compilation listing

o Lists all identifiers in the compilation unit and tells what kind of objects they are, including
identifier class and type

GP_OK

NOTE: The EpTAL compiler ignores these directives.

s (ioer.o)
s o9

WETEE wsd

GP_OK
causes the pTAL compiler to generate code that has GP-relative addressing (“small” data).

GMAP 397

NOGP_OK

suppresses the generation of code that has GP-relative addressing. (This is the only option for
the EpTAL compiler.)

PUSHGP_OK

pushes the current setting (GP_OK or NOGP_OK) onto the GP_OK directive stack. Does not
change the current setting.

POPGP_OK

pops the top value from the GP_OK directive stack and changes the current setting to that
value.

For an explanation of directive stacks, see Directive Stacks (page 369).

Default: pTAL compiler: GP_OK
EpTAL compiler: NOGP_OK
Placement: Anywhere except inside a data block or inside a procedure declaration
Scope: e GP_OK applies to subsequent code it until it is overridden by NOGP_OK
o NOGP_OK applies to subsequent code until it is overridden by GP_OK
Dependencies: Do not use GP_OK with CALL_SHARED
References: CALL_SHARED (page 383)

A pTAL program that references data in a shared run-time library (SRL) must specify NOGP_OK
when it declares a data block that belongs to a shared run-time library. This behavior prevents the
pTAL compiler from using GP-relative addressing for references to data in an SRL.

Example 345 GP_OK, NOGP_OK, PUSHGP_OK, and POPGP_OK Directive

?PUSHGP_OK
?NOGP_OK
?NOEXPORT_GLOBALS
BLOCK a_block;

END BLOCK:
2EXPORT_GLOBALS
2POPGP_OK

IF and IFNOT |
IF and IFNOT identify the beginning of code that is to be conditionally compiled. |

toggle-name

B

toggle-numb

WETHM. e

t oggl e- nane
is an identifier with a maximum of 31 characters in length |

The only characters allowed in a toggle-name are alphabetic (“A” through “Z” and “a” through

'), numeric (‘0" through “9"), underscore (“_"), and circumflex (“*"); the first character must
be alphabetic.

398 Compiler Directives

Names are case-insensitive (For example, abc is the same as Abc.)

t oggl e- nunber
is an unsigned decimal constant in the range 1 through 15. Leading zeros are ignored.

t ar get
is as defined in “TARGET” (page 516).

PTAL
is a toggle implicitly defined and set by the TAL, pTAL and EpTAL compilers. It is set on if the
compiler in use is any pTAL or EpTAL compiler, otherwise it is set off. See “DEFINETOG”
(page 388).

__EXT64
is a toggle implicitly defined and set by the EpTAL compiler starting with SPR TO561HO1*AAP.
It is set on if the corresponding “__EXT64" (page 394) directive has been specified otherwise,

it is set off. The __EXT64 directive controls the availability of 64-bit addressing functionality;
see “DEFINETOG” (page 388) and Appendix E, “64-bit Addressing Functionality” (page 531).

The most recently compiled IF or IFNOT matches the next compiled ENDIF with the same toggle
or target specified identifies the beginning of code to be conditionally compiled.

Example 346 IF Directive Without Matching ENDIF Directive

?RESETTOG flag ! Create & turn off flag
?1F flag
1 Statements for true condition
1 (skipped because flag is off)
?IFNOT flag
1 Statements for false condition
1 (also skipped, because no ENDIF appears for IF flag)
?ENDIF flag

If you insert an ENDIF for the IF in the code in Example 346 (page 399), as in Example 347
(page 399), the compiler skips only the first part.

Example 347 IF Directive With Matching ENDIF Directive

?RESETTOG flag ! Create & turn off flag
?1F flag
1 Statements for true condition
1 (skipped because flag is off)
?ENDIF flag 1 ENDIF stops the skipping of statements
?IFNOT flag
1 Statements for false condition
1 (compiled because ENDIF appears for IF flag)
?ENDIF flag

Default: None

Placement: e Anywhere in the source file (not in the compilation command)
o Must be the last directive on the directive line

Scope: Everything between IF or IFNOT and the next ENDIF that specifies the same
toggle, target, or keyword

Dependencies: Interacts with:
o DEFINETOG
o ENDIF
o _ EXT64
e RESETTOG

IF and IFNOT 399

o SETTOG
e TARGET

References: o DEFINETOG (page 388)
o ENDIF (page 390)
o “__EXT64" (page 394)
e RESETTOG (page 411)
o SETTOG (page 415)
e TARGET (page 423)
e Toggles (page 370)

An asterisk (*) appears in column 11 of the listing for any statements not compiled because of the
IF or IFNOT directive.

INNERLIST

INNERLIST
g NOINNERLIS
(> pustmnrusT)

WET148 vad

INNERLIST

lists mnemonics for each statement after that statement in the compiler listing.
NOINNERLIST

suppresses the mnemonics for each statement after that statement in the compiler listing.
PUSHINNERLIST

pushes the current setting (INNERLIST or NOINNERLIST) onto the INNERLIST directive stack.

Does not change the current setting.

POPINNERLIST

pops the top value from the INNERLIST directive stack and changes the current setting to that
value.

For an explanation of directive stacks, see Directive Stacks (page 369).

Default: NOINNERLIST

Placement: Anywhere

Scope: o INNERLIST applies to subsequent statements it until it is overridden by
NOINNERLIST

o NOINNERLIST applies to subsequent statements until it is overridden by

INNERLIST

Dependencies: INNERLIST has no effect if NOLIST or SUPPRESS s active

References: e LIST (page 401)

e SUPPRESS (page 420)

400 Compiler Directives

Example 348 INNERLIST and NOINNERLIST Directives

PROC any;
BEGIN
INT X, y, z; ! No innerlisting here
1 Statements that initialize variables
?INNERLIST 1 Start innerlisting here
1 Statements that manipulate variables
?NOINNERLIST 1 Stop innerlisting here
END;

INVALID_FOR_PTAL

INVALID_FOR_PTAL forces the compiler to report an error message. Use it to identify a TAL source
file that the pTAL or EpTAL compiler must not compile.

—)(INVALID_FOR_PTAL)—p

VSTIO ved
Default: None

Placement: After IF or IFNOT and before ENDIF
Scope: Applies to code between itself and ENDIF
Dependencies: None

References: e IF and IFNOT (page 398)

e ENDIF (page 390)

LINES

LINES sets the maximum number of output lines per page if the list file is a line printer or a process.

LINES - -::I num-lines I—p

WET15 vud

num | i nes
is an unsigned decimal constant in the range 10 through 32,767.

Default: LINES 60

Placement: Anywhere

Scope: Applies until overridden by another LINES directive
Dependencies: Has no effect if the list file is a terminal

LIST

LIST

e
e

WET15E wsd

INVALID_FOR_PTAL 401

LIST

lists the source code in the compiler listing.
NOLIST

suppresses the source code the compiler listing.
PUSHLIST

pushes the current setting (LIST or NOLIST) onto the LIST directive stack. Does not change the
current setting.

POPLIST
pops the top value from the LIST directive stack and changes the current setting to that value.
For an explanation of directive stacks, see Directive Stacks (page 369).

Default: LIST
Placement: Anywhere
Scope:

o LIST applies to subsequent code it until it is overridden by NOLIST
o NOLIST applies to subsequent code until it is overridden by LIST

Dependencies: LIST has no effect if SUPPRESS is active
References: SUPPRESS (page 420)

Each line in the source listing consists of:
e An edit file number

e A lexical level:

Lexical Level Meaning

0 Global level

1 Procedure level

2 Subprocedure level

e A nesting level (only for BEGIN-END items such as structures, substructures, IF statements, and
CASE statements)

Example 349 Listing Source Code But Not System Declarations

?NOLIST, SOURCE $system.system.extdecs (
? process_getinfo_, process stop)
?LIST

MAP

K
F"USHMAP

WET157.ved

MAP
lists identifier maps in the compiler listing.

402 Compiler Directives

NOMAP
suppresses identifier maps in the compiler listing.
PUSHMAP

pushes the current setting (MAP or NOMAP) onto the MAP directive stack. Does not change
the current setting.

POPMAP
pops the top value from the MAP directive stack and changes the current setting to that value.
For an explanation of directive stacks, see Directive Stacks (page 369).

Default: MAP

Placement: Anywhere

Scope: o MAP applies to subsequent code it until it is overridden by NOMAP
o NOMAP applies to subsequent code until it is overridden by MAP

Dependencies: MAP has no effect if NOLIST or SUPPRESS is active

References: o LIST (page 401)

e SUPPRESS (page 420)

MAP lists:

e Sublocal identifiers after each subprocedure

e local identifiers after each procedure

e Global identifiers after the last procedure in the source program

Each identifier map includes:

Item Possible Values

Identifier class e VAR
e SUBPROC
e ENTRY
e LABEL
e DEFINE
e LITERAL

Type e Data type

e Structure

e Substructure

e Structure pointer
Addressing mode o Direct

e Indirect

Subprocedure, entry, or label offset

Text of LITERALs and DEFINEs

MAP 403

OPTIMIZE

o

WETHAE vad
| evel

Level Effect

0 Code is not optimized. Provided in case other optimization levels cause errors or interfere with
debugging. Supports symbolic debugging; data is always in memory.

1 Code is optimized within statements and across statement boundaries. The resulting code is
more efficient than that produced by lower levels of optimization and does not interfere with
debugging.

2 Code is optimized within statements and across statement boundaries, and the resulting code

is more efficient than code produced by lower levels.

NOTE: If your program compiles successfully at level O but runs out of memory at level 1 or
2, either compile your program only at level O or split your program into smaller subprograms
and compile those at the same higher level.

Default: OPTIMIZE 1

Placement: Outside the boundary of a separately compiled program

Scope: The optimization level active at the beginning of a separately compiled program
determines the level of optimization for that program and any programs it
contains

Dependencies: None, but OPTIMIZEFILE can override OPTIMIZE in individual procedures

References: OPTIMIZEFILE (page 404)

OPTIMIZEFILE

OPTIMIZEFILE sets the optimization level for individual procedures and subprocedures.

_Q(DPTIMIZEFILEH filename |—..

WETEEE. wsd

filename
is an EDIT file on Guardian platforms and a text file on Windows platforms. Each line of the
file must have this syntax:

routine-name)—§| optimize-level
comment
blank line

WETOES ved

(See Example 350 (page 405).)

404 Compiler Directives

routi ne- nane
is either a:

e procedure name

e subprocedure name of the form pr ocedur e- name. subpr ocedur e- nane

Each routi ne-nanme in fil ename must appear only once in fi | enane.

optim ze-1| evel

is an infeger. If it is not O, 1, or 2, the compiler ignores the line. opti i ze- | evel must
be preceded by white space and it can be followed by white space.

comrent
is any text.
Default: The optimization level that OPTIMIZE specified
Placement: Only in the compilation command (not in the source file)
Scope: Applies to the compilation unit
Dependencies: None
References: OPTIMIZE (page 404)

Example 350 File for OPTIMIZEFILE Directive

This i1s the optimizefile for compilation xyz.

abc.sub O
abc 2

def 1

Difference between pTAL and EpTAL compilers:

pTAL Compiler EpTAL Compiler
Does not issue warnings for errors in Issues a warning when fi | ename :
filename

Does not exist

Cannot be opened

Is not an EDIT file (Guardian operating systems only)

Has the same r out i ne- name on more than one line

Has a line that:

o Exceeds 511 characters (Windows operating systems only)

o Has aroutine-name that does not match any routine declaration
in the source file

o Has anoptim ze-1evel otherthan O, 1, or 2

> Has one or more characters other than spaces or tabs:
— Before rout i ne- nane
— After optimi ze- 1| evel

— Between rout i ne- name and opti n ze-1 evel

OPTIMIZEFILE 405

OVERFLOW_TRAPS

OVERFLOW_TRAPS
NOOVERFLOW_TRAPS

PUSHOVERFLOW_TRAPS

POPOVERFLOW_TRAPS

WETHET. vad

OVERFLOW_TRAPS
enables overflow traps throughout the program.
NOOVERFLOW_TRAPS
disables overflow traps throughout the program, except where you specify an overflow trapping
procedure attribute or block attribute.
PUSHOVERFLOW_TRAPS
pushes the current setting (OVERFLOW_TRAPS or NOOVERFLOW_TRAPS) onto the
OVERFLOW_TRAPS directive stack. Does not change the current setting.
POPOVERFLOW_TRAPS
pops the top value from the OVERFLOW_TRAPS directive stack and changes the current setting
to that value.

For an explanation of directive stacks, see Directive Stacks (page 369).

Default: pTAL compiler: OVERFLOW_TRAPS
EpTAL compiler: NOOVERFLOW_TRAPS
Placement: Before or between procedure declarations
Scope: From where the directive it occurs in the compilation until the directive is
overridden or the compilation ends, whichever occurs first
Dependencies: OVERFLOW_TRAPS is overridden by:

o NOOVERFLOW_TRAPS procedure attribute

o DISABLE_OVERFLOW_TRAPS block attributes
NOOVERFLOW_TRAPS is overridden by:

o OVERFLOW_TRAPS procedure attribute
o ENABLE_OVERFLOW_TRAPS block attributes

References: See Managing Overflow Traps (page 234)

406 Compiler Directives

Example 351 OVERFLOW_TRAPS Compiler Directive

?0VERFLOW_TRAPS 1 Correct
PROC p;
BEGIN
?NOOVERFLOW_TRAPS I Incorrect: OVERFLOW_TRAPS must appear
1 between procedure declarations

END:
2NOOVERFLOW_TRAPS 1 Correct
PROC q;

BEGIN

END:

NOTE: OVERFLOW _TRAPS directive does not control the effects of the
$EXT64ADDR_TO_EXT32ADDR_QV directive (See directive” $EXT64ADDR_TO_EXT32ADDR_OV |
" (page 307)).

PAGE

The first PAGE sets the string to be printed as part of the heading for each page. Each subsequent
PAGE prints the heading and causes a page eject.

(s[5

WET1ED. ved

headi ng-string
is a character string of at most 122 characters. The default is an empty string.

Default: LINES defermines page ejects and no heading is printed
Placement: Only in the source file (not in the compilation command)
Scope: Applies until overridden by another PAGE directive
Dependencies: e Has no effect if either:

o NOLIST or SUPPRESS is active
o The list file is a terminal

o Inferacts with SAVEGLOBALS and USEGLOBALS (see Saving and Using
Global Data Declarations (page 372))

References: o LINES (page 401)
o LIST (page 401)
o SAVEGLOBALS (page 413)
o SUPPRESS (page 420)
o USEGLOBALS (page 423)

PAGE 407

Example 352 PAGE Directive

I MYSOURCE file

?PAGE "'Here are global declarations for MYSOURCE"

1 Global declarations

?PAGE "'Here are procedure declarations for MYSOURCE™"
! Procedure declarations

PRINTSYM

PRINTSYM '
‘ NOPRINTSYM

WET162 wad

PRINTSYM

lists symbols in the compiler listing.
NOPRINTSYM

suppresses symbols in the compiler listing.

Default: PRINTSYM
Placement: Anywhere
Scope: o PRINTSYM applies to subsequent declarations until overridden by
NOPRINTSYM
e NOPRINTSYM applies to subsequent declarations until overridden by
PRINTSYM
Dependencies: o PRINTSYM has no effect if NOLIST or SUPPRESS is active

o PRINTSYM interacts with SAVEGLOBALS and USEGLOBALS (see Saving
Global Data Declarations (page 373))
References: o LIST (page 401)
e SAVEGLOBALS (page 413)
e SUPPRESS (page 420)
o USEGLOBALS (page 423)

You can use PRINTSYM and NOPRINTSYM to list individual symbols or groups of symbols, such
as global, local, or sublocal declarations.

Example 353 PRINTSYM Directive

?NOPRINTSYM ! Turn off symbol listing
INT i;
INT j;

?PRINTSYM I Turn on symbol listing
INT k;

PROFDIR

This directive can be used only with the EpTAL compiler.

PROFDIR specifies where an instrumented process will create the raw data file. For detailed
information about using the PROFDIR directive when performing profile-guided optimization, see
the Code Profiling Utilities Manual.

408 Compiler Directives

-~ e —s{feme

WETHA vad

Default: Default subvolume

Placement: Only on the command line

Scope: Applies to the compilation unit

Dependencies: PROFDIR is ignored if PROFGEN or CODEDQOV is not also specified
References: o PROFGEN (page 409)

« CODECOV (page 385)

PROFGEN

This directive can be used only with the EpTAL compiler.

PROFGEN directs the compiler to generate instrumented object code for use in performing
profile-guided optimization. For more information about profile-guided optimization, see the Code
Profiling Utilities Manual.

o (FRORGED)
WETA42 vsd

Default: No instrumentation in object code

Placement: Only on the command line

Scope: Applies to the compilation unit

Dependencies: None

PROFUSE

This directive can be used only with the EpTAL compiler.

PROFUSE directs the compiler to generate optimized object code based on information in a dynamic
profiling information (DPI) file. For detailed information about the PROFUSE directive and
profile-guided optimization, see the Code Profiling Utilities Manual.

PROFUSE >
T
VETH4A . vsd

Default: None

Placement: Only on the command line

Scope: Applies to the compilation unit

Dependencies: Cannot be specified with PROFGEN or CODECOV
References: o PROFGEN (page 409)

« CODECOV (page 385)

PROFGEN 409

REFALIGNED

PUSHREFALIGNED
POPREFALIGNED

WETEED. ved

REFALIGNED

specifies the default alignment for pointers to nonstructure data items and procedure reference
parameters.

PUSHREFAL IGNED
pushes the current setting [REFALIGNED (2) or REFALIGNED (8)] onto the REFALIGNED directive

stack. Does not change the current setting.
POPREFAL IGNED

pops the top value from the REFALIGNED directive stack and changes the current setting to
that value.

For an explanation of directive stacks, see Directive Stacks (page 369).

Default: REFALIGNED 8
Placement: Anywhere
Scope: Applies to subsequent pointers to nonstructure data items and procedure

reference parameters until overridden by another REFALIGN directive

Dependencies: None

410 Compiler Directives

RESETTOG

RESETTOG turns off either specified toggles or all numeric toggles.

RESETTOG

L J

foggle-name

s

WET164 ved

t oggl e- nane
is an identifier with a maximum of 31 characters in length.
The only characters allowed in a toggle-name are alphabetic (“A” through “Z” and “a” through
“z'), numeric (‘0" through “9”), underscore (“_"), and circumflex (“*"); the first character must
be alphabetic.

Names are case-insensitive (For example, abc is the same as Abc.)

t oggl e- nunber
is an unsigned decimal constant in the range 1 through 15. Leading zeros are ignored.

tar get
is as defined in “TARGET” (page 423). In TAL, a warning is returned if a target is specified and
the RESETTOG directive is ignored. In pTAL and EpTAL, RESETTOG can be applied to a target
only if the target specified was not named in the compiled TARGET directive.

PTAL
is a toggle implicitly defined and set by the TAL, pTAL and EpTAL compilers. It is set on if the
compiler in use is any pTAL or EpTAL compiler, otherwise it is set off. See “DEFINETOG”
(page 388).
The TAL compiler emits a warning if PTAL is specified and the RESETTOG directive is ignored.
In pTAL and EpTAL, an error is emitted if you specify PTAL in a RESETTOG directive.

EXT64
is a toggle implicitly defined and set by the EpTAL compiler starting with SPR TO561HO1*AAP.
It is set on if the corresponding “__EXT64" (page 394) directive has been specified otherwise,
it is set off. The __EXT64 directive controls the availability of 64-bit addressing functionality;
see “DEFINETOG” (page 388) and Appendix E, “64-bit Addressing Functionality” (page 531).

In TAL, pTAL and EpTAL prior to TO561HO1*AAP, you can RESETTOG the __EXT64 toggle
however, this is not recommended. In TO561HO1*AAP EpTAL, RESETTOG can be applied to
the __EXT64 toggle only if the implicit setting of the toggle is already off.

RESETTOG 411

RESETTOG with no arguments turns off all numeric toggles but does not affect named toggles.

Default: None

Placement: e With a parenthesized list, it can appear anywhere
o Without a parenthesized list, it must be the last directive on the directive
line or compilation command line

Scope: Applies to the compilation unit

Dependencies: Interacts with:
o DEFINETOG
o ENDIF
o _ EXT64
e |IF and ENDIF
o SETTOG
e TARGET

References: o DEFINETOG (page 388)
e ENDIF (page 390)
o “__EXT64" (page 394)
e IF and IFNOT (page 398)
e SETTOG (page 415)
e “TARGET” (page 516)
e Toggles (page 370)

ROUND

ROUND rounds FIXED values assigned to FIXED variables that have smaller f poi nt values than
the values you are assigning.

o —

NOROUND

WET 165w

ROUND

turns on rounding. If the f poi nt of the assignment value is greater than that of the variable,
ROUND first truncates the assignment value so that its f poi nt is one greater than that of the
destination variable. The truncated assignment value is then rounded away from zero as follows:

value = (IF value < 0 THEN value - 5 ELSE value + 5) /7 10

In other words, if the truncated assignment value is negative, 5 is subtracted; if positive, 5 is
added. Then, an integer division by 10 is performed, and the result is truncated again, this
time by a factor of 10. Thus, if the absolute value of the least significant digit of the initially
truncated assignment value is 5 or more, a 1 is added to the absolute value of the final least
significant digit.

412 Compiler Directives

NOROUND
turns off rounding. That is, rounding does not occur when a FIXED value is assigned to a FIXED
variable that has a smaller f poi nt . If the f poi nt of the assignment value is greater than
that of the variable, the assignment value is truncated and some precision is lost.

Default: NOROUND
Placement: Anywhere
Scope: o ROUND applies to subsequent code until overridden by NOROUND

o NOROUND applies to subsequent code until overridden by ROUND

Dependencies: None

Example 354 ROUND Directive

?ROUND ! Request rounding
I Global declarations
PROC a;
BEGIN
FIXED(2) f1;
FIXED(3) f2;
fl = 2;
END;

SAVEGLOBALS

NOTE: The EpTAL compiler does not accept this directive. See Migrating from TNS/R to TNS/E
(page 375).

SAVEGLOBALS saves all global data declarations in a file for use in subsequent compilations that
specify the USEGLOBALS directive.

SAVEGLOBALS file-name
define-name

WETETO. vad

file-name
is the name of a disk file to which the compiler is to write the global data declarations.

Iffile-name already exists, the compiler purges the existing file and creates an unstructured
global declarations file.

If the existing file is secured so that the compiler cannot purge it, the compilation terminates.

The compiler uses the current default volume and subvolume names as needed and lists the
complete file name in the trailer message at the end of compilation. For this directive, the
compiler does not use HP TACL ASSIGN SSV information (available only on Guardian platforms)
to complete the file name.

defi ne- nane

is the name of a MAP DEFINE that refers to the disk file to which you want the compiler to write
the global data declarations.

SAVEGLOBALS 413

NOTE: MAP DEFINEs are available only on Guardian platforms.

Default: None

Placement: Either in the compilation command or in the source code before any global
data declarations

Scope: Applies to the compilation unit

Dependencies: o |If SAVEGLOBALS and USEGLOBALS appear in the same compilation unit,

the compiler uses only the one that appears first
o The compilation unit must have exactly one BEGINCOMPILATION directive

o Interacts with the directives referenced in the next row (see Saving and
Using Global Data Declarations (page 372))

References: e BEGINCOMPILATION (page 382)
e PRINTSYM (page 408)
e SYMBOLS (page 421)
e SYNTAX (page 422)
o USEGLOBALS (page 423)

SECTION

SECTION gives a name to a section of a source file for use in a SOURCE directive.

_QCSECTIDNH section-name |—p

WETIT1 vad
section- nane
is an identifier.
Default: None
Placement: o Only in the source file (not in the compilation command)

o Must be the only directive on the directive line

Scope: Applies to subsequent code until another SECTION directive or the end of the
file, whichever is first

Dependencies: Interacts with SOURCE (see Section Names (page 417))

References: SOURCE (page 416)

414 Compiler Directives

Example 355 SECTION Directive

APPLLIB File

I File ID APPLLIB

?SECTION sort_proc

PROC sort_on_key(keyl, key2, key3, length);
INT .keyl, .key2, .key3, length;

BEGIN

END;
?SECTION next_proc
SOURCE directive that includes section sort_proc of the preceding file:

?SOURCE appllib (sort_proc)

SETTOG

SETTOG turns on either specified toggles or all numeric toggles.

foggle-name

toggle-number

L J

SETTOG

. | loggle-number l

__EXT64

\ (M i,
AT

WET1T2.wed

t oggl e- nane

is an identifier with a maximum of 31 characters in length.

The only characters allowed in a toggle-name are alphabetic (“A” through “Z” and “a” through
“z'), numeric (‘0" through “9”), underscore (“_"), and circumflex (“*"); the first character must

be alphabetic.

Names are case-insensitive (For example, abc is the same as Abc.)

t oggl e- nunber

is an unsigned decimal constant in the range 1 through 15. Leading zeros are ignored.

t ar get

is as defined in “TARGET” (page 423).

In TAL, a warning is returned if a target is specified and the SETTOG directive is ignored. In
pTAL and EpTAL, SETTOG can only be applied to a target that was specified in a previously
compiled TARGET directive.

SETTOG 415

PTAL

is a toggle implicitly defined and set by the TAL, pTAL and EpTAL compilers. It is set on if the
compiler in use is any pTAL or EpTAL compiler, otherwise it is set off. See “DEFINETOG”
(page 388).

The TAL compiler emits a warning if PTAL is specified and the SETTOG directive is ignored. In
pTAL and EpTAL, an error is emitted if you specify PTAL in a SETTOG directive.
__EXT64

is a toggle implicitly defined and set by the EpTAL compiler starting with SPR TO561HO1*AAP.
It is set on if the corresponding “__EXT64" (page 394) directive has been specified otherwise,

it is set off. The __EXT64 directive controls the availability of 64-bit addressing functionality;
see “DEFINETOG” (page 388) and Appendix E, “64-bit Addressing Functionality” (page 531).

In TAL, pTAL and EpTAL prior to SPR TO561HO1”*AAP, you can SETTOG the __EXT64 toggle
however, this is not recommended. In TO561HO1*AAP EpTAL, SETTOG can be applied to the
__EXT64 toggle only if the implicit setting of the toggle is already on.

SETTOG with no arguments turns on all numeric toggles but does not affect named toggles.

Default: None

Placement: o With a parenthesized list, it can appear anywhere
o Without a parenthesized list, it must be the last directive on the directive
line or compilation command line

Scope: Applies to the compilation unit

Dependencies: Interacts with:
o DEFINETOG
e ENDIF
o _ EXT64
e |IF and ENDIF
e RESETTOG
o TARGET

References: e DEFINETOG (page 388)
e ENDIF (page 390)
o “_EXT64" (page 394)
e IF and IFNOT (page 398)
e RESETTOG (page 411)
e “TARGET” (page 516)
o Toggles (page 370)

SOURCE

SOURCE reads source code from another source file.

—

file-name

sezone] | \(Or—sfdommns |

assign-name

L J

WETITd ved

416 Compiler Directives

file-name
is the name of a disk file from which the compiler is to read source code. On Guardian
platforms, the compiler uses HP TACL ASSIGN SSV information, if specified, to complete the
file name; otherwise, the compiler uses the current default volume and subvolume names as
needed.

defi ne- nane

is the name of a MAP DEFINE that refers to a disk file from which the compiler is to read source
code.

NOTE: MAP DEFINEs are available only on Guardian platforms.

assi gn- nane

is a logical file name you have equated to a disk file (from which the compiler is to read source
code) by issuing an ASSIGN command.

secti on- name

is an identifier specified within the included file by a SECTION directive. If the compiler does
not find sect i on- nanme in the specified file, it issues a warning.

The list of section names can extend to continuation lines.

Default: None

Placement: e Only in the source file (not in the compilation command)

e Must be the last directive on the directive line

Scope: Applies to the source file

Dependencies: e Interacts with COLUMNS
e Interacts with SECTION (see Section Names (page 417))

e Interacts with the directives referenced in the next row (see Effect of Other
Directives (page 418))

References: o BEGINCOMPILATION (page 382)
e COLUMNS (page 385)
o LIST (page 401)
e SECTION (page 414)
e SUPPRESS (page 420)
e USEGILOBALS (page 423)

Topics:

e Section Names (page 417)

e Nesting Levels (page 418)

e Effect of Other Directives (page 418)

e Including System Procedure Declarations (page 419)

e Examples (page 419)

Section Names

If you specify SOURCE with no section names, the compiler processes the specified source file until
the end of that file. The compiler treats any SECTION directives in the source file as comments.

If you specity SOURCE with section names, the compiler processes the source file until it reads all
the specified sections. A section begins with a SECTION directive and ends with another SECTION
directive or the end of the file, whichever comes first.

SOURCE 417

The compiler reads the sections in order of appearance in the source file, not in the order specified
in the SOURCE directive. If you want the compiler to read sections in a particular order, use a
separate SOURCE directive for each section and place the SOURCE directives in the desired order.

Nesting Levels

You can nest SOURCE directives to a maximum of seven levels, not counting the original outermost
source file. For example, the deepest nesting allowed is as follows:

The MAIN file F sources in file F1.
File F1 sources in file F2.
File F2 sources in file F3.
File F3 sources in file F4.
File F4 sources in file F5.
File F5 sources in file F6.
File F6 sources in file F7.

Effect of Other Directives

e COLUMNS (page 418)

e LIST and NOSUPPRESS (page 418)

e NOLIST (page 418)

e USEGLOBALS and BEGINCOMPILATION (pTAL Compiler Only) (page 419)

COLUMNS

If a SOURCE directive specifies sections of a file, the compiler honors all COLUMNS directives in
that file that precede the first section of that file. (The first section of the file might not be the first
section of the file that the SOURCE directive specifies.) The compiler also honors COLUMN directives
that appear in the sections that the SOURCE directive specifies.

After a SOURCE directive completes execution, the value of COLUMNS is restored to what it was
before the SOURCE directive:

Filel:
?COLUMNS 80

AN o ol e

N

File2:
2COLUMNS 100

2SOURCE filel
I COLUMNS 1is restored to 100 at this point

LIST and NOSUPPRESS

If LIST and NOSUPPRESS are active after a SOURCE directive completes execution, the compiler

prints a line identifying the source file to which it reverts and begins reading at the line following
the SOURCE directive.

NOLIST

You can precede SOURCE with NOLIST to suppress the listings of procedures to be read in. Place
NOLIST and SOURCE on the same line, because the line containing NOLIST is not suppressed:

?PUSHLIST, NOLIST, SOURCE $src.current.routines

1 Suppress listings, read in external declarations of routines
?POPLIST

418 Compiler Directives

USEGLOBALS and BEGINCOMPILATION (pTAL Compiler Only)

It USEGLOBALS is active, the compiler ignores all SOURCE directives until it encounters
BEGINCOMPILATION. For more information about how these directives interact, see Saving and
Using Global Data Declarations (page 372).

Including System Procedure Declarations

You can use SOURCE directives to read in external declarations of system procedures from the
EXTDECS files. In these files, the procedure name and the corresponding section name are the
same. EXTDECSO contains the current RVU of system procedures.

In Example 356 (page 419), a SOURCE directive specifies the current version of system procedures.
A NOLIST directive suppresses the listings for the system procedures. Place NOLIST and SOURCE
on the same line, because the line containing the NOLIST directive is not suppressed.

Example 356 SOURCE Directive Specifying System Procedure Declarations

?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECSO (

? PROCESS DEBUG_, PROCESS STOP)

1 Suppress listings

1 Read external declarations of current system procedures
?POPLIST

A procedure in the same source file can then call the procedures listed in the preceding SOURCE
directive, as in Example 357 (page 419).

Example 357 Procedure That Calls Procedures Specified by SOURCE Directive

PROC a MAIN;
BEGIN

INT x, y, z, error;

1 Code for manipulating x, y, and z

IF x = 5 THEN CALL PROCESS_STOP_;

CALL PROCESS_DEBUG_; 1 Call procedures listed
END; I in SOURCE directive

Examples

The SOURCE directive in Example 358 (page 419) instructs the compiler to process the file until an
end of file occurs. (Any SECTION directives in the file ROUTINES are treated as comments.)

Example 358 SOURCE Directive

?SOURCE $src.current.routines

This SOURCE directive in Example 359 (page 419) reads three sections from the source file. It reads
the files in the order in which they appear in the source file, not in the order specified in the
SOURCE directive. (The specified files appear in the source file in the order sec3, sec2, and
secl, so they are read in that order.)

Example 359 SOURCE Directive

?SOURCE $src.current.routines (secl, sec2, sec3)

Example 360 (page 420) shows how you can specify the order in which the compiler is to read the
sections, regardless of their order in the source file.

SOURCE 419

Example 360 SOURCE Directive

?SOURCE $src.current.routines (secl)
?SOURCE $src.current.routines (sec2)
?SOURCE $src.current.routines (sec3)

SRL

NOTE: The EpTAL compiler ignores this directive.

SRL causes the pTAL compiler to generate code that can be linked into a user library. You must
specify SRL to be able to link the object file created by the compilation into a user library.

SRL
VSTET vad
Default: None
Placement: Anywhere
Scope: Applies to the compilation unit
Dependencies: When declaring a data block that belongs to an SRL, you must specify
NOEXPORT_GLOBALS and NOGP_OK.
References: o EXPORT_GLOBALS (page 393)

e GP_OK (page 397)

SUPPRESS

SUPPRESS
‘ NOSUPPRESS '

WETITE. W

SUPPRESS

suppresses all compilation listings except the compiler leader text, diagnostic messages, and
the trailer text. (Does not alter the source code.)

NOSUPPRESS
allows all compilation listings.

Default: NOSUPPRESS
Placement: Anywhere
Scope: Applies to the compilation unit

420 Compiler Directives

Dependencies: Overrides all the listing directives (referenced in the next row)

References: o DEFEXPAND (page 386)
o FMAP (page 396)
o GMAP (page 397)
e INNERLIST (page 400)
o LIST (page 401)
e MAP (page 402)
o PAGE (page 407)
e PRINTSYM (page 408)

The compilation command in Example 361 (page 421) starts the compilation and suppresses all
source code listings and maps from printing in the compiler output.

Example 361 SUPPRESS Directive
PTAL ZIN mysrc, OUT $s.#lists/ myobj;

SYMBOLS

SYMBOLS saves symbols in a symbol table in the object file, enabling you use a symbolic debugger
to debug the object file.

\sosvueoss

WETET Lwad

SYMBOLS
saves all symbols information.

NOSYMBOLS
saves information about:

e Procedure memos
e Global data block names
e Lline numbers

Does not save information about parameters, local variables, data types, and so on.

Default: NOSYMBOLS

Placement: Before the first declaration in the compilation

Scope: The last legally placed SYMBOLS or NOSYMBOLS applies
to the compilation unit

Dependencies: Interacts with SAVEGLOBALS and USEGLOBALS (see

Saving Global Data Declarations (page 373))

References: o SAVEGLOBALS (page 413)
o USEGILOBALS (page 423)

SYMBOLS 421

NOTE: These linker options discard information that SYMBOLS saves:
e -xdiscards line number information.

e -sdiscards information needed for future linking (use it only in building an executable file).

Usually you save symbols for the entire compilation by specifying SYMBOLS once at the beginning
of the compilation unit. The symbol table then contains all the symbols generated by the source
code.

Example 362 SYMBOLS Directive

1 MYSOURCE file

?SYMBOLS ! Save symbols for compilation unit
1 Declare global data

1 Declare procedures

After debugging the program, you can use the linker to create a new, smaller object file without
symbols. The executable portion of the old object file remains intact, but you dramatically reduce
what you can do with a symbolic debugger.

nld -x -r oldobj -0 newobj
Id -x -r oldobj -0 newobj
eld -x -r oldobj -0 newobj

Use the linker option —s when linking a loadfile, or use the strip utility after creating the loadfile.
STRIP oldobj

SYNTAX

SYNTAX checks the syntax of the source text without producing an obiject file.

VSTH78 e

Default: The compiler produces an object file

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: Interacts with SAVEGLOBALS and USEGLOBALS (see Saving Global Data
Declarations (page 373))

References: o SAVEGLOBALS (page 413)

e USEGILOBALS (page 423)

The compilation command in Example 363 (page 422) checks the syntax of global data declarations
in source file myprog and saves the declarations in file ptal sym for use in subsequent compilations.

Example 363 SYNTAX Directive
pTAL /ZIN myprog/; SAVEGLOBALS ptalsym, SYNTAX

The compilation command in Example 364 (page 423) checks for the syntax of the code or data
in source file myprog. In this compilation, USEGLOBALS retrieves global data declarations saved
in the compilation shown in Example 363 (page 422).

422 Compiler Directives

Example 364 SYNTAX Directive
pTAL ZIN myprog/; USEGLOBALS ptalsym, SYNTAX

TARGET

TARGET specifies the architecture on which you will run the object file produced by the current
compilation.

TARGET

TNS_R_ARCH

TNS_E_TARGET

THNS_ARCH

LIBERTY

WETET I ved

RISC1
specifies the TNS/R architecture. This is the only option that the pTAL compiler accepts. It is
also the default for the pTAL compiler.
_TNS_E_TARGET
specifies the TNS/E architecture. This is the only option that the EpTAL compiler accepts. It is
also the default for the EpTAL compiler.
TNS_ARCH
specifies the TNS architecture. The compiler does not accept this option.
T16
specifies the T16 architecture. The compiler does not accept this option.
TNS_R_ARCH, LIBERTY
specifies the Liberty architecture. The compiler does not accept this option.
ANY
specifies any architecture. The compiler does not accept this option.

Default: pTAL compiler: TNS_R_ARCH
EpTAL compiler: _TNS_E_TARGET

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: None

USEGLOBALS

NOTE: The EpTAL compiler does not accept this directive. See Migrating from TNS/R to TNS/E
(page 375).

USEGLOBALS reads global data declarations and initializations that were saved in a file by
SAVEGLOBALS during a previous compilation.

TARGET 423

USEGLOBALS file-name 7
define-name

WETETd vad

file-name
is the name of the global declarations disk file created by SAVEGLOBALS in a previous
compilation.

On Guardian platforms, the compiler uses HP TACL ASSIGN SSV information, if specified, to
complete the file name; otherwise, the compiler uses the current default volume and subvolume
names as needed.

defi ne- nane
is the name of a MAP DEFINE that refers to the global declarations file.

NOTE: MAP DEFINEs are available only on Guardian platforms.

assi gn- nane
is a logical file name you have equated to a disk file (that refers to the global declarations file)
by issuing an ASSIGN command.

Default: None

Placement: Either in the compilation command or in the source code before any global
data declarations

Scope: Applies to the compilation unit

Dependencies: e The compilation unit must have exactly one BEGINCOMPILATION directive.

o The compiler exports the data blocks declared in the USEGLOBALS
declarations file only if EXPORT_GLOBALS is active when the compiler
encounters the BEGINCOMPILATION directive.

e A module that specifies USEGLOBALS can export a global data block that
was declared in the compilation that specified SAVEGLOBALS only if the
SAVEGLOBALS compilation exported the data block.

Typically, a project that uses SAVEGLOBALS explicitly links globals into
the object file and specifies NOEXPORT_GLOBALS (the default) for all
individual compilations.

o Interacts with the directives referenced in the next row (see Saving and
Using Global Data Declarations (page 372))

References: « BEGINCOMPILATION (page 382)
o EXPORT_GLOBALS (page 393)
e PRINTSYM (page 408)
e SAVEGLOBALS (page 413)
e SYMBOLS (page 421)
o SYNTAX (page 422)

WARN

WARMN >

WETETS.vad

WARN
prints specific (or all) warning messages in the compiler listing.

424 Compiler Directives

NOWARN
suppresses specific (or all) warning messages in the compiler listing.
war ni ng- numrber
is the number of a warning message. The default is all warning messages.

If war ni ng- nunber is outside the range of all pTAL warnings and all TAL warnings, the
compiler issues a warning. If war ni ng- nunber is inside either range but not assigned
warning text, the compiler ignores the WARN directive. For an explanation of how the compiler
handles TAL warnings, see the pTAL Conversion Guide.

Default: WARN
Placement: Anywhere
Scope: o WARN applies to subsequent code until overridden by NOWARN

o NOWARN applies to subsequent code until overridden by WARN; however:
To print selected warnings, you must specify WARN before any NOWARN
directives. If you specify NOWARN first, subsequent WARN
war ni ng- nunber directives have no effect.

Dependencies: None

You can use NOWARN when a compilation produces a warning and you have determined that
no real problem exists. Before the source line that produces the warning, specify NOWARN and
the number of the warning you want suppressed. Following that source line, specify a WARN
directive.

It NOWARN is active, the compiler records the number of suppressed and unsuppressed warnings.
The compilation statistics at the end of the compiler listing include the following counts:

Number of unsuppressed compiler warnings = count
Number of warnings suppressed by NOWARN = count

Unsuppressed compiler warnings are compiler warnings that are not suppressed by NOWARN
directives. The summary does not report the location of the last compiler warning.

If no compiler errors and no unsuppressed compiler warnings occur, the completion code is zero.

The following directive specifies that the compiler does not print warning message 12:
?NOWARN 12

WARN 425

18 pTAL Cross Compiler

The optional pTAL cross compiler runs on the PC platforms in Table 77 (page 426).
Table 77 pTAL Cross Compiler Platforms

Platform Windows Operating System
PC Guardian Cross Compiler Name NT 4.0 2000 XP
ETK' TNS/R NonStop pTAL Yes Yes Yes
TNS/E? NonStop pTAL No Yes Yes
PC command line TNS/R® ptal Yes Yes Yes
TNS/E? eptal No Yes Yes

' HP Enterprise Toolkit—NonStop Edition

? H06.01 and later RVUs

¥ G06.14 and later RVUs

On all Windows platforms, valid pTAL cross compiler source files must have the extension - tal.
The pTAL cross compiler allows you to:

e Write, compile, and link NonStop RISC-based or ltanium-based server applications (NonStop
Guardian executable files, static libraries, user libraries, and DLLs) on the PC and transfer
them to the Guardian platform for use in production.

Object files built on the PC platform are functionally identical object files built in the NonStop
RISC-based or ltanium-based server platform.

e Link pTAL, C/C++, and NMCOBOL or ECOBOL objects into a single object file.

e When multiple RVUs are installed, use any installed RVUs of the cross compilers and libraries.

(Tools must come from the same RVU—HP does not test the interactions of tools used in one
RVU with tools from other RVUs.)

e On the ETK platform, enter ADD, MODIFY, SET, and DELETE statements into a TACL DEFINE
file (see TACL DEFINE Tool (ETK) (page 431)).

The pTAL cross compiler is delivered on a separate CD and is not available on the site update
tape (SUT).

Topics:

e NonStop pTAL (ETK) (page 426)

e plAL or EpTAL (PC Command Line) (page 427)
e Compilation and Linking (page 429)

e Debugging (page 429)

e Tools and Utilities (page 430)

e Documentation (page 431)

NonStop pTAL (ETK)

The optional pTAL cross compiler for use with the ETK, NonStop pTAL, is available for TNS/R and
TNS/E.

The ETK is a GUI-based extension package to Visual Studio .NET that provides full application
development functions targeted for NonStop servers. Development, editing, and building functions
are very similar on Visual Studio .NET and the ETK.

426 pTAL Cross Compiler

NonStop pTAL components are:

File
Component Name TNS/R TNS/E
Driver executable ptal .exe eptal .exe
Driver DLL ptaldvr.dll (No driver)
Front end ptalc.dll eptalcom.exe
External declaration file extdec.tal eextdec.tal
The directory structure of NonStop pTAL is:
Files

Directory TNS/R TNS/E
bin ptal .exe eptal _.exeeld.exe

nld.exe

Id.exe
cmplr ptaldvr._dll eptalcom.exe

ptalc.dll

uopt.dll

ugen.dll

asl.dll

nid.dll

1d.dll
include extdec.tal extdec.tal

For PC and NonStop server hardware and software requirements, see the ETK online help. For
instructions for accessing the online help, see Documentation (page 431).

pTAL or EpTAL (PC Command Line)

Beginning with RVU G06.14, you can call the pTAL cross compiler from the TNS/R command line
(DOS prompt) on your PC by using the command ptal.

Beginning with RVU H06.01, you can call the pTAL cross compiler from the TNS/E command line
(DOS prompt) on your PC by using the command eptal.

NOTE: Before you can use eptal, you must set the COMP_ROOT environment variable so that
it points to the root of the directory location of the cross compiler. For instructions, see Using the
Command-Line Cross Compilers on Windows.

ptal

N AN i A O S

flag ptal-directive

ptal
calls the pTAL cross compiler from the command line. ptal is not case-sensitive.

WETOG ward

pTAL or EpTAL (PC Command line) 427

eptal
’ calls the EpTAL cross compiler from the command line. eptal is not case-sensitive.
obj ect-file
is the name of the object file to be created. The default is sour cefil e.o.
directory

is the name of a directory for the compiler to search. If no directory is specified, the compiler
searches only in the current working directory. If any directories are specified, the compiler
searches them in the order in which they are listed, but does not search the current directory
unless it is explicitly named.

flag

is one of the following:

flag Directs the compiler to:

-Whelp Display information about how to run the compiler. No compilation system
components are run.

-Wusage Display information about how to run the compiler. No compilation system
components are run.

-Wverbose Displays the command line used when the driver calls each component

of the compiler.

ptal -directive

is one of the following:

Directives

Sources

-blockglobals
-[no]call_shared
-[no]checkshiftcount
-codecov (eptal only)
—-columns=n
-[no]defexpand
-[no]do_tns_syntax
-errors=n
-export_globals
-fieldalign(val ue)
-[no]fmap
-globalized (eptal only)
-[noJgmap
-[no]lgp_ok
—-[no]innerlist
—-invalid_for_ptal
-[no]list

-[no]map

-optimize=n

428 pTAL Cross Compiler

BLOCKGLOBALS (page 496)
CALL_SHARED (page 496)
CHECKSHIFTCOUNT (page 497)
CODECOQV (page 497)
COLUMNS (page 498)
DEFEXPAND (page 498)
DO_TNS_SYNTAX (page 500)
ERRORS (page 500)
EXPORT_GLOBALS (page 501)
FIELDALIGN (page 502)

FMAP (page 502)
GLOBALIZED (page 502)
GMAP (page 503)

GP_OK (page 503)

INNERLIST (page 505)
INVALID_FOR_PTAL (page 505)
LIST (page 506)

MAP (page 506)

OPTIMIZE (page 507)

Directives Sources

-[no]overflow_traps OVERFLOW_TRAPS (page 508)
-[no]printsym PRINTSYM (page 509)
-refaligned(n) REFALIGNED (page 510)
-resettog(val ue) RESETTOG (page 511)
-[no]round ROUND (page 512)
-settog(val ue) SETTOG (page 513)
-[no]symbols SYMBOLS (page 515)
-[no]syntax SYNTAX (page 516)

-warn=n WARN (page 517)

The command:-line interface allows you to create batch scripts for use on multiple platforms.

Compilation and Linking

The pTAL cross compiler can compile only one pTAL source file at a time.
Difference between platforms:

ETK Platform (NonStop pTAL) Command-Line Platform (ptal or eptal)

Compilation and linking can be performed in one step. Linking must be performed as a separate step after
compilation.

Provides a GUl-based interface for you to select linker You must specify the run-time libraries to the linker.

options.

pTAL cross compiler linking is performed with one of the cross linkers:

Cross Linker Cross Compilers Directive Object Code
nld NonStop pTAlptal -nocal l_shared* Non-PIC

Id NonStop pTAlptal -call_shared** PIC

eld NonStop pTAleptal -call_shared PIC

* Default for pTAL. EpTAL ignores it (and issues a warning).
** Default for EpTAL.

NOTE: You cannot link PIC and non-PIC object files into a single object file.

For more information:

Topic Source

nld options nld Manual
Id options Id Manual
eld options eld Manual

Debugging

On the ETK platform, debug pTAL source code using Visual Inspect. After Visual Inspect is installed
on your workstation, you can configure Visual Inspect as an external tool.

Compilation and Linking 429

On the command-line platform, debug loadfiles that were compiled through the pTAL cross compiler
either by using Visual Inspect on Windows or by running Native Inspect on the NonStop RISC-based
or ltanium-based server. To use Native Inspect, you must copy the loadfiles and the source files to
the host (see PC-to-NonStop-Host Transfer Tools (page 431)).

For more information:

Topic Source
Visual Inspect Visual Inspect online help
Native Inspect Native Inspect Manual

A CAUTION: If you use the CODECOV (page 385) command line option to direct a TNS/E EpTAL
compiler fo generate instrumented object code, the Code Coverage Utility connects to the application
program as a debugger to read its memory, and so on.

This causes all the debug requests to wait until the Code Coverage Utility (the active debugger)
detaches from the application. The Code Coverage Utility only detaches after the instrumented
application stops.

Therefore, if you must debug an instrumented application, it should be started in debug mode by
using the TACL RUND or RUNV commands.

Tools and Utilities

The following tools and utilities allow you to use the pTAL cross compiler more efficiently:
e NonStop ar Utility (page 430)

e TACL DEFINE Tool (ETK) (page 431)

e PC+o-NonStop-Host Transfer Tools (page 431)

NonStop ar Utility

The NonStop ar utility creates and maintains archives composed of groups of object files. After
an archive has been created, new files can be added and existing files can be extracted, deleted,
or replaced.

The ar utility accepts all OSS files, Guardian TNS code files, Guardian C text files (file code 180
files), TNS/R (PIC and non-PIC) native object files, and TNS/E native linkfiles or loadfiles as archive
members.

You can mix one or more object file formats in one archive file; however, such an archive file will
not contain the symbols table and cannot be used by the linker.

If an archive contains one or more native object files of the same format, the linker can use the
archive as an obiject file library, replacing most functions provided by the Binder SELECT SEARCH

command.
This cross linker can use the archive
If an archive contains one or more ... as an object file library ... For more information, see ...
TNS/R non-PIC object files nld on a G-Series system nld Manual
TNS/R PIC object files Id Id Manual
TNS/E PIC object files eld eld Manual

430 pTAL Cross Compiler

TACL DEFINE Tool (ETK)

On the ETK platform, this GUI-based tool allows you to add ADD, MODIFY, SET, and DELETE
statements to a DEFINE file. The TACL DEFINE tool automatically sets the first entry in the DEFINE
obey file to be SET DEFMODE ON. You can leave this default or change it to SET DEFMODE OFF.
Files created by the TACL DEFINE tool have the extension . tdf.

PC-to-NonStop-Host Transfer Tools
ETK

The Deploy command builds and copies each project in the active solution to the NonStop host.
The Transfer Tool moves any kind of files to the NonStop host for execution and debugging.
The Transfer Tool is better for transferring very large, complex applications to the NonStop host.
For most applications, Deploy is more convenient.

PC Command Line

From the PC command line, you can use any FTP application to transfer executable and source
files to the NonStop host.

Documentation

The ETK has online help that provides conceptual, reference, task-oriented, and error message
information, as well as quick-start tutorials. To access the online help, do either of the following:

e From the Help menu, select Contents, Index, or Search.
o Click the Help button in any ETK dialog box.

The command-line documentation, Using the Command-Line Cross Compilers on Windows, is
available:

e On the pTAL cross compiler CD
e On the EpTAL cross compiler CD
e Inthe ETK online help in the References chapter

Syntax information for pTAL and EpTAL is also available from the command-line:

ptal -Whelp
eptal -Whelp

Documentation 431

A Syntax Summary

e Data Types (page 432)

e Constants (page 432)

e Expressions (page 434)

e Declarations (page 436)

e Statements (page 455)

e Overflow Traps (page 460)

e Built-in Routines (page 460)

e Compiler Directives (page 494)

Data Types

STRING

WET214 vsd

More information: Specifying Data Types (page 47)

Constants

e Character String (page 432)

e STRING Numeric (page 432)

e INT Numeric (page 433)

e INT(32) Numeric (page 433)

e FIXED Numeric (page 433)

e REAL and REAL(64) Numeric (page 433)
e Constant List (page 434)

Character String
O O

More information: Character String (page 57)
STRING Numeric

[z |—>

WETIZ vad

More information: STRING Numeric (page 58)

432 Syntax Summary

INT Numeric

More information: INT Numeric (page 58)
INT(32) Numeric

ns
p integer o
g = e

WETO2E ved

|ntagar

WETOET Wi

More information: INT(32) Numeric (page 59)
FIXED Numeric

0' N I E}

WETODS wed

More information: FIXED Numeric (page 61)
REAL and REAL(64) Numeric

&85 Yo

WETODE, vad

More information: REAL and REAL(64) Numeric (page 62)

Constants 433

Constant List

v

FIELDALIGH
FEPENNGR-COnaand-lial 7!@
consfani-lsf-saq

repetition-constant-|ist

(i ®
repetition-factor °

constant-1list-seq
constant | >
repetition-constant-list]
e
\\:_/1-
More information: Constant Lists (page 63)
Expressions
e Arithmetic (page 434)
e Conditional (page 435)
e Assignment (page 435)
o CASE (page 435)
e |F (page 435)
¢ Group Comparison (page 435)
e Bit Extraction (page 436)
e Bit Shift (page 436)
Arithmetic
operand | >
}-’l arithmefic-operator I—p-l operand }—{

More information: Arithmetic Expressions (page 72)

434 Syntax Summary

Conditional

More information: Conditional Expressions (page 81)
Assignment

variable e BXpression

WETINZ.ved

More information: Assignment (page 85)

CASE
—p(CASEH selector |—p(OF BEGIN
More information: CASE (page 86) .v
IF

—>®—>| condition |—>(THEN)—>|express|on-1H(ELSEHexpression-zH

WET 4. v

More information: IF (page 87)

Group Comparison

_>| var-1 |—>| relational-operator I—)
var-2 |—>(FUR>—>| count H

constant

constant —’@

constant-list

count-unit

(& r—s[romwas

WETD1 5. wed

More information: Group Comparison (page 88)

Expressions 435

Bit Extraction

O—sfw]

More information: Bit Extractions (page 93)

Bit Shift

int-expression shift-operator I—.-l positions I—p

dbl-expression

WETINT wed

More information: Bit Shifts (page 94)

Declarations

e LITERAL (page 436)

e DEFINE (page 436)

e Simple Variable (page 437)

e Array (page 437)

e Read-Only Array (page 438)

e Structures (page 438)

e Redefinition (page 442)

e Pointer (page 444)

e Equivalenced Variable (page 445)

e Procedure and Subprocedure (page 449)

LITERAL

LITERAL identifier

A J

(O —sfm]
(e
D,

More information: Declaring Literals (page 97)

DEFINE
O

WETO B

436 Syntax Summary

item|ist

idantifier . o

WETH95.vsd

param| i st

param-name
eEsaY

More information: Declaring DEFINEs (page 98)
Simple Variable

» ype
VOLATILE

identifier :@_,
@)

N

More information: Declaring Simple Variables (page 103)

Array

—>| type +—>| identifier I_)
(

Indirection

" a
T

WETO21 wed

range

(Dot —>(O—sfmriond—(D)

WaTEE vad

More information: Declaring Arrays (page 108)

- range | :@—b
T So—E

Declarations 437

Read-Only Array

—>| lype identifier °
OO 5O

WETD22 wadd

range

® O (D)

More information: Declaring Read-Only Arrays (page 111)

Structures

e Definition Structure (page 438)

e Template Structure (page 439)

e Referral Structure (page 439)

e Simple Variables Declared in Structure (page 440)
e Arrays Declared in Structure (page 440)

e Definition Substructure (page 440)

e Referral Substructure (page 440)

e Filler in Structure (page 441)

e Simple Pointers Declared in Structure (page 441)

e Structure Pointers Declared in Structure (page 441)

Definition Structure

STRUCT »| identifier

> structure-layout

WETEZS vsd

figld-alignment

range

® O (D)

WETIEI ved

438 Syntax Summary

field-alignnent

FIELDALIGN

SHAREDZ

SHA REDa -
NS =y

More information: Declaring Definition Structures (page 138)

Template Structure

H(STRUCT)—pl identifier I_.®_.®_.@7

STRUGTALIGN o4 J
! structure-layout

WETHZS wad

field-alignment

field-alignment

FIELDALIGN

SHAREDZ

SHA REDa -
NS =y

More information: Declaring Template Structures (page 139)

Referral Structure

—(E) [FT} (0 @}

¢

WITDZG. v

range

® Ot —+(D)

WETIEI ved

More information: Declaring Referral Structures (page 141)

Declarations 439

Simple Variables Declared in Structure

;I type identifier
VOLATILE ;

WETTOG. v

More information: Declaring Simple Variables in Structures (page 142)

Arrays Declared in Structure

—>| lype }T—p{ identifier |»—>| range
;

WETZ0 v

range

® Ot —+(D)

More information: Declaring Arrays in Structures (page 143)

Definition Substructure

_.CSTRUCT)—p| identifier)—)
\,I_IJW

range

field-alignment

WETEIE vsd

field-alignnent

FIELDALIGN

SHAREDZ

SHA REDa -
NS =y

WETEA wed

range

® Ot —+(D)

More information: Definition Substructures (page 144)

Referral Substructure

—>< STRUCT)—>| identifier o o
T

WETIOL wad

440 Syntax Summary

range

(Dot —>(O—sfmriond—(D)

More information: Referral Substructures (page 146)

Filler in Structure

FILLER constant-expression l—p@—.
BIT_FILLER

WETOZE vad

More information: Declaring Filler (page 147)

Simple Pointers Declared in Structure

»| type
WVOLATILE
_

REFALIGNED

WETE2T. wed

More information: Declaring Simple Pointers in Structures (page 148)

Structure Pointers Declared in Structure
STRING

G
¢

> [aenie }—+(O—>[e ()
r’

Y

REFALIGNED

WETE2E wed

(r—

Declarations 441

More information: Declaring Structure Pointers in Structures (page 151)

Redefinition
e Simple Variable (page 442)
e Array (page 442)
e Definition Substructure (page 442)
e Referral Substructure (page 443)
e Simple Pointer (page 443)
e Structure Pointer (page 444)

Simple Variable

| f "
{ type |—|-| identifier
VOLATILE

previous-identifier

WETTOE ved

More information: Simple Variable (page 153)
Array

identifier [» = previous-identifier .
e/

WETOH.wsd

range

(Dot —>(O—sfmriond—(D)

WaTEE vad

More information: Array (page 154)

Definition Substructure

—(STRUCT }—p| identiier |
\p‘ﬂl—/ field-alignment J

° pravious-identifier o structure-layout .

WETTO? vsd

range

® Ot —+(D)

WETIEI ved

442 Syntax Summary

field-alignnent

FIELDALIGN

SHAREDZ

SHAREDB-
LATFDRM '

More information: Definition Substructure (page 155)

Referral Substructure

_.(STRUCT)—>| identifier m

previous-identifier

WET208 ved

range

(Dot —>(O—sfmriond—(D)

WaTEE vad

More information: Referral Substructure (page 157)

l Indirection l

Simple Pointer

\some/

identifier

REFALIGMED

° previous-identifier °

WETTIE vad

More information: Simple Pointer (page 158)

Declarations 443

Structure Pointer

p{ STRING } P identifier

o referral o

REFALIGMED

° previous-identifier °

WETT0E. vsd
More information: Structure Pointer (page 159)

Pointer
e Simple (page 444)
e Structure (page 445)
e System Global (page 445)

Simple

»| type
WOLATILE
identifiar
l'

REFALIGNED

e initialization

VETETE. vad

More information: Declaring Simple Pointers (page 170)

444 Syntax Summary

Structure

#(STRING

(e :
b »| identifier

(D[]

WETETT vl
More information: Declaring Structure Pointers (page 173)

System Global

identifier

»(—»

(Or—s[emerasirs

More information: Declaring System Global Pointers (page 176)

Equivalenced Variable

e Nonstructure (page 446)

e Simple Variable (page 446)

e Simple Pointer (page 447)

e Definition Structure (page 447)

e 'SG'Equivalenced Simple Variable (page 448)

e 'SG'-Equivalenced Definition Structure (page 448)
e 'SG'Equivalenced Referral Structure (page 448)

e 'SG'Equivalenced Simple Pointer (page 449)

e 'SG'-Equivalenced Structure Pointer (page 449)

Declarations 445

Nonstructure

e |

G 0 ®
O

offset

VETE2D.ved

More information: Declaring Nonstructure Equivalenced Variables (page 180)

Simple Variable

@ type
WVOLATILE

(O 0
GO [

offset

WETOH0E var

More information: Equivalenced Simple Variables (page 182)

446 Syntax Summary

Simple Pointer

» lype
WVOLATILE

¢ o[(O ®

GO fmmme]
offset

WVETESD ved

More information: Equivalenced Simple Pointers (page 183)

Definition Structure

ndirection

4

pravious-identifier

field-alignment

.

>)
Ny

offset

WETELZ vsd

field-alignnment

FIELDALIGN

SHAREDZ

SHAREDB
'J

o

WETEE2 wed

More information: Declaring Equivalenced Definition Structures (page 188)

Declarations 447

'SG'-Equivalenced Simple Variable

identifier

=

]

index 7,@_/
offset

TP
NS

-~

More information: Equivalenced Simple Variables (page 182)

'SG'-Equivalenced Definition Structure

STRUCT »

index

identifier

v

structure-layout .

L

offset

More information: Equivalenced Definition Structure (page 194)

'SG'-Equivalenced Referral Structure

STRUGT »| identifier
offset

More information: Equivalenced Referral Structure (page 195)

|

WETTOD wand

448 Syntax Summary

'SG'-Equivalenced Simple Pointer

p| identifier

type 7
offsat |

WETTDS vsd

More information: Equivalenced Simple Pointer (page 196)

'SG'-Equivalenced Structure Pointer

)

(Do (s (5

#{::}———I-

index

offsat

WETT11.vad

More information: Equivalenced Structure Pointer (page 197)

Procedure and Subprocedure

Procedure (page 450)
Subprocedure (page 452)
Formal Parameters (page 453)
Entry Point (page 454)

Label (page 454)

Procedure Pointer (page 454)

Declarations 449

Procedure

»PRO

|
(F C)—pl identifier [
e

parameter-list

—

O ‘Emﬁm

FORWARD

WETDSE wad

type
See Data Types (page 432).
publ i c- name- spec

° 0 publlc-name o

WETZ0H v

paraneter-|ist

param-narme

param-pair

WET210.vsd

par am pai r
(5o |)—{eno]

WETDIAE vad

450 Syntax Summary

proc-attribute

Ji
y
A
y
_
A
® ®
RETURNSCC) o
OVERFLOW_TRAPS) ~
NOOVERFLOW_TR#\PEN 1
LANGUAGE é\ o
_
PﬁSCAL

UNSPECIFIED

WEBTEIS. wad

NOTE:
e The EpTAL compiler ignores INTERRUPT.

e Because no FORTRAN or Pascal compilers exist especially for TNS/R or TNS/E architecture,
LANGUAGE FORTRAN and LANGUAGE PASCAL have no meaning on TNS/R or TNS/E

architecture.

More information: Procedure Attributes (page 248)

par am spec
See Formal Parameters (page 453).

proc- body
More information: Procedure Declarations (page 246)

»
k
staterment

BEGIN

WETIE vsd

Declarations 451

Subprocedure

- |
SUBPROC)—.' idantifier [
paramatar-list

W’\RIABLE -
RETURNSCC
OVERFLOW_TRAPS
NOOVERFLOW_TRAPS

P 5L bproc-b-n .

WETTOZ wed

type
See Data Types (page 432).

paraneter-|ist

param-name

param-pair

WET2 10w

par ant pai r

WETOAE vsd

par am spec
See Formal Parameters (page 453).

subpr oc- body

» L END

WETOER. e

[

More information: Subprocedure Body (page 259)
More information: Subprocedure Declarations (page 257)

452 Syntax Summary

Formal Parameters

L_f

param-name

WETH3E vad

param t ype

STRING

—

A
width
width
-y
Ot

STRUCT 0 —
_.i
v
EXTADDR -‘
EXT32ADDR ~
EXTS4ADDR —
PROCADDR =
PROC32ADDR -
PROCB4ADDR -
CEADDR -~
CWADDR 1
>y
>
SGXBADDR -~
SGXWADDR -~
FPROC VSTBJT.-MJ

NOTE: The EpTAL compiler does not allow you to assign label or subprocedure addresses
to CBADDR and CWADDR address types.

Declarations 453

Y

More information: Formal Parameter Specification (page 251)

Entry Point

ENTRY identifiar .

b

More information: Entry-Point Declarations (page 260)

Label

e}~
CES0

More information: Labels in Procedures (page 273)

Procedure Pointer

;I procpir-size H procplr-name
relurn-type
C.l formal-param-names |—p| attributes }_'Qj

C>| formal-param-spec |—>{END HPROCF‘TR)—r

WETEI0 ved

f or mal - par am nanes

param-name

param-pair

WET2 10w

par ant pai r
®

WETOAE vsd

454 Syntax Summary

attributes

Ji
y
A
y
_
A
® ®
RETURNSCC) o
OVERFLOW_TRAPS) ~
NOOVERFLOW_TR#\PEN 1
LANGUAGE o
_
PﬁSCAL

UNSPECIFIED

WEBTEIS. wad

NOTE:
e The EpTAL compiler ignores INTERRUPT.

Because no FORTRAN or Pascal compilers exist especially for TNS/R or TNS/E architecture,
LANGUAGE FORTRAN and LANGUAGE PASCAL have no meaning on TNS/R or TNS/E

architecture.

f or mal - par am spec

T: procptr I’_=
param-typa identifier

Ilndirectiun l

AL

(O }—0)
\ (.)e———~

WETT 1 2.usd

More information: Procedure Pointers (page 263)

Statements

Compound (page 456)

ASSERT (page 456)

Assignment (page 456)

Bit Deposit Assignment (page 456)
CALL (page 457)

Statements

455

e Llabeled CASE (page 457)

e Unlabeled CASE (page 457)
e DO-UNTIL (page 458)

e DROP (page 458)

e FOR (page 458)

e GOTO (page 458)

e |F (page 458)

e Move (page 459)

e RETURN (page 459)

e SCAN and RSCAN (page 459)
e USE (page 459)

e WHILE (page 460)

Compound

» END

Lo
C—O—

WETHI ved

More information: Compound Statements (page 200)

ASSERT
—p(ASSERT_)—bl assert-level

WETDAE vad

More information: ASSERT (page 200)

Assignment

The assignment statement assigns a value to a previously declared variable.

variable e BXpression

WETINZ.ved

More information: Assignment (page 201)

Bit Deposit Assignment

. ° left-bit p >
®

e expression

WETOAT vasd

More information: Bit-Deposit Assignment (page 204)

456 Syntax Summary

CALL

[identifier l >

» i
e T N0

param-name

param-pair

WETOIE vsd

param pair

e |

More information: CALL (page 205)
Labeled CASE

—p@ASE)—.[selector]—.< OF H BEGIN

. I case-alternalive

END

OTHERWISE == »

case-al ternative

case-label l -
:: lower-case-label . upper-case-label
-
-

WETOA] vad

Ny

statement-1
ClEs

More information: Labeled CASE (page 207)
Unlabeled CASE

%GASEH selector |_>< OF Dj

\f-p-[BEGIN '} Lt
statemeni-1

O
statement-2

OTHERWISE

WETMO v

Statements

457

More information: Unlabeled CASE (page 209)
DO-UNTIL

h.f’ it
—@ »(UNTIL] condiion |—»
statement

WETOAG sl

More information: DO-UNTIL (page 210)
DROP

oroP - —{ e]~

More information: DROP (page 212)
FOR

@ index e initial-value TO m

DOWNTO

» DO} >
AN

More information: FOR (page 212)
GOTO

—><G(:-To>_>| label-name |_>

WET4D.

WETD4A. waad

NOTE: Nonlocal GOTO statements are are inefficient and not recommended.

More information: GOTO (page 215)

—>< IF Hcondmm THEN}
E..(@

More information: IF (page 217)

WVETDSD. wad

458 Syntax Summary

Move

desunatlon ‘e'

(—-\
)
F

C
i N
r

sOUrce l—p(FOR)—pl count I

count-unit

constant

|-
@—) constant

-

Ll

constant-list

WETHEY wed

More information: Move (page 218)
RETURN

NOTE: The EpTAL compiler issues a warning whenever a pTAL procedure returns both a
resul t - expressi on and a cc-expressi on and has the procedure attribute RETURNSCC
on page 14-8. The reason for this warning is in Appendix D, RETURN, RETURNSCC, and C/C++

on TNS/E.
cc-e:r.pressmn
result-expression
DD-exprsssmn

WaETIE2 ved

RETURN

More information: RETURN (page 223)
SCAN and RSCAN

‘ RSCAN ' ‘

L J

[

More information: SCAN and RSCAN (page 228)
USE

UsSE

identifier
L

WETDSE wad

More information: USE (page 232)

Statements 459

WHILE

—>< WHILE)—>| condition |—>< DO)

WETIST s

P
L

More information: WHILE (page 232)
Overflow Traps

OVERFLOW _TRAPS Directive
See OVERFLOW_TRAPS (page 508).

[EN | DISJABLE_OVERFLOW_TRAPS Block Attribute

BEGIN >
ENABLE_OVERFLOW_TRAPS
DISABLE_OVERFLOW_TRAPS

WETHE ved

More information: [EN | DISJABLE_OVERFLOW_TRAPS Block Attribute (page 235)

Built-in Routines

e Atomic (page 460)
e Nonatomic (page 462)

Atomic

o $ATOMIC_ADD (page 460)
e $ATOMIC_AND (page 461)
o $ATOMIC_DEP (page 461)
e SATOMIC_GET (page 461)
o $ATOMIC_OR (page 461)

o $ATOMIC_PUT (page 462)

$ATOMIC_ADD

G SO S B S o B NGy

WVETEO7 ved

Sets condition code Yes (according the final value of var)
Sets $CARRY Yes, if traps are disabled
Sets SOVERFLOW Yes, if traps are disabled; otherwise, traps on overflow

More information: $ATOMIC_ADD (page 276)

460 Syntax Summary

$ATOMIC_AND
© o 0

WETH. waad

Sets condition code Yes (according the final value of var)
Sets SCARRY No
Sets SOVERFLOW No

More information: $ATOMIC_AND (page 277)
$ATOMIC_DEP

) S S o B S [BN B
[(D)

WETEDE ved

Sets condition code Yes (according the final value of var)
Sets SCARRY No
Sets SOVERFLOW No

More information: $ATOMIC_DEP (page 278)
$ATOMIC_GET

) S0 S oSG

WETE 0.

Sets condition code No
Sets $CARRY No
Sets SOVERFLOW No

More information: $ATOMIC_GET (page 279)
$ATOMIC_OR

CECEY S0) B S B G SNG

WETE vad

Sets condition code Yes (according the final value of var)
Sets SCARRY No
Sets SOVERFLOW No

More information: $ATOMIC_OR (page 280)

Built-in Routines 461

$ATOMIC_PUT

WETE12. W

© O
Sets condition code No
Sets $CARRY No
Sets SOVERFLOW No

More information: $ATOMIC_PUT (page 280)

Nonatomic

o $ABS (page 464)

e $ALPHA (page 464)

e $ASCITOFIXED (page 465)

e $AXADR (page 465)

e $BADDR_TO_EXTADDR (page 465)

e $BADDR_TO_WADDR (page 466)

e $BITLENGTH (page 4606)

e $BITOFFSET (page 466)

e $CARRY (page 467)

e $CHECKSUM (page 467)

e $COMP (page 467)

e $COUNTDUPS (page 468)

o $DBL (page 468)

e $DBLL (page 468)

e $DBIR (page 469)

e $DFIX (page 469)

o $EFLT (page 469)

e $EFLTR (page 470)

e $EXCHANGE (page 470)

e $EXECUTEIO (page 470)

e $EXTADDR_TO_BADDR (page 471)

e $EXTADDR_TO_WADDR (page 471)

e $EXT64ADDR_TO_EXTADDR (page 471)
o $EXT64ADDR_TO_EXT32ADDR (page 471)
e $EXT64ADDR_TO_EXT32ADDR_QOV (page 472)
e $EXTADDR_TO_EXT64ADDR (page 472)
e $FILL8, $FILL16, and $FILL32 (page 473)
e $FIX (page 473)

e $FIXD (page 473)

e $FIXEDO_TO_EXT64ADDR (page 474)

462 Syntax Summary

$FIXEDTOASCII (page 474)

$FIXEDTOASCIIRESIDUE (page 474)

$FIXI (page 475)

$FIXL (page 475)

$FIXR (page 475)

$FLT (page 475)

$FLTR (page 476)

$FREEZE (page 476)

$HALT (page 476)

$HIGH (page 477)

$IFIX (page 477)

$INT (page 477)

$INT_OV (page 478)
$INTERROGATEHIO (page 478)
$INTERROGATEIO (page 478)
$INTR (page 479)
$IS_32BIT_ADDR (page 479)
$LEN (page 480)

$LFIX (page 480)

$LMAX (page 480)

$LMIN (page 480)
$LOCATESPTHDR (page 481)
$LOCKPAGE (page 481)
$MAX (page 481)

$MIN (page 482)

$MOVEANDCXSUMBYTES (page 482)

$MOVENONDUP (page 482)
$NUMERIC (page 483)
$OCCURS (page 483)
$OFFSET (page 483)
$OPTIONAL (page 484)
$OVERFLOW (page 484)
$PARAM (page 484)
$POINT (page 485)
$PROCADDR (page 485)
$PROC32ADDR (page 485)
$PROCH4ADDR (page 486)
$READBASELIMIT (page 486)
$READCLOCK (page 486)
$READSPT (page 486)
$READTIME (page 487)

Built-in Routines 463

e $SCALE (page 487)

« $SGBADDR_TO_EXTADDR (page 487)
e plAL Privileged Routines (page 281)

« $SGWADDR_TO_EXTADDR (page 488)
e $SGWADDR_TO_SGBADDR (page 488)
e $SPECIAL (page 489)

o $STACK_ALLOCATE (page 489)

e $TRIGGER (page 489)

e $TYPE (page 490)

e $UDBL (page 490)

e $UDIVREM16 (page 490)

e $UDIVREM32 (page 491)

e $UNLOCKPAGE (page 491)

e $WADDR_TO_BADDR (page 492)

e $WADDR_TO_EXTADDR (page 492)

e $WRITEPTE (page 492)

e $XADR (page 493)

o $XADR32 (page 493)

e $XADR64 (page 493)

$ABS
® o

WETOT 2w

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No
More information: $ABS (page 291)
$ALPHA
© ®
WVETOTA.ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

464 Syntax Summary

More information: $ALPHA (page 291)
$ASCIITOFIXED

© O O
(-pl remainingdigits |—p-[qvaluein . o o

WETADE. wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code Yes
Sets SCARRY No
Sets SOVERFLOW Yes

More information: $ASCIITOFIXED (page 292)
$AXADR

SAXADR variable
(O—fvariave }—())

WET1 18w

NOTE: The EpTAL compiler does not support this routine. (The EpTAL compiler does allow $AXADR
as a DEFINE name.)

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $AXADR (page 293)
$BADDR_TO_EXTADDR

WITHE. W

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $BADDR_TO_EXTADDR (page 294)

Built-in Routines 465

$BADDR_TO_WADDR

_p($BADDR_TO_WADDR o expression o

VETES vad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $BADDR_TO_WADDR (page 294)
$BITLENGTH

(e (O (0

WETOTA vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $BITLENGTH (page 295)
$BITOFFSET

CED O K 0

WETOTS.vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $BITOFFSET (page 296)

466 Syntax Summary

$CARRY

SCARRY
VSTO76 v
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $CARRY (page 297)
$CHECKSUM

CEETD SO S LR SO s Ci =0
oz (D)

WETETA ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $CHECKSUM (page 297)

$COMP
© 0
WETDT? vad
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $COMP (page 298)

Built-in Routines 467

$COUNTDUPS

ScouNToPS)—»(() O O
duplicationcount o o

WETE1 4 vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $COUNTDUPS (page 299)

$DBL
© ®
WETOTA vud

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No
More information: $DBL (page 300)

$DBLL

WETOT D vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $DBLL (page 301)

468 Syntax Summary

$DBLR

$DFIX

$EFLT

o exprassion o

WETOE. wsd

pTAL privileged procedure

Can be executed only by privileged procedures
Sets condition code

Sets $CARRY

Sets SOVERFLOW

More information: $DBLR (page 301)

SOFIX o dbl-expression .

O)r—

WETOE wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No
More information: $DFIX (page 302)
Oz} —0)
WETOE2 wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $EFLT (page 302)

Built-in Routines 469

$EFLTR
© o

WETOEL.wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $EFLTR (page 303)
$EXCHANGE

CELD SO S SO S s S SN e

WITE1 5.

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $EXCHANGE (page 303)
$EXECUTEIO

NOTE: The EpTAL compiler does not support this routine.

(om0) D—s{Emme ([()

(e[()

channel-status o °

WETEIE ved

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code Yes
Sets $CARRY No
Sets $OVERFLOW No

More information: $EXECUTEIO (page 304)

470 Syntax Summary

$EXTADDR_TO_BADDR

WITHEE. wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $EXTADDR_TO_BADDR (page 305)
$EXTADDR_TO_WADDR

_>($ExTADDR_To_WADDR o o

WITHET W

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $EXTADDR_TO_WADDR (page 306)
$EXT64ADDR_TO_EXTADDR

—»{(5ExT64ADDR_TO_EXTADDR }—{ (}—#] expression |—() }—»

WETEET vad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $EXT64ADDR_TO_EXTADDR (page 306)
$EXT64ADDR_TO_EXT32ADDR

—b($EKTE‘»4ADDR_T0_EXT32ADDR

WITHET W

pTAL privileged procedure No
Can be executed only by privileged procedures No

Built-in Routines 471

Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $EXT64ADDR_TO_EXT32ADDR (page 307)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$EXT64ADDR_TO_EXT32ADDR_OV

—>($EXT64ADDR_T0_EKT32ADDR_O

WVETEET ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

More information: $EXT64ADDR_TO_EXT32ADDR_OV (page 307)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1"*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$EXTADDR_TO_EXT64ADDR
—b($EXTADDR_TO_EXTB4ADDR o o

WETEET vad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $EXTADDR_TO_EXT64ADDR (page 308)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

472 Syntax Summary

$FILL8, $FILL16, and $FILL32

$FIX

$FIXD

SFILLE
SFILL1G
SFILL32

bd

(O—s[emmm () O

value

WETEAE vsd

pTAL privileged procedure

Can be executed only by privileged procedures
Sets condition code

Sets $CARRY

Sets SOVERFLOW

More information: $FILL8, $FILL16, and $FILL32 (page 308)

o expression o

WETIE. wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
More information: $FIX (page 309)
© ®
WETOES. ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $FIXD (page 309)

Built-in Routines 473

$FIXEDO _TO_EXT64ADDR
—(_ SFIXEDO_TO_EXTE4ADDR (O) ()

WITHET W

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $FIXEDO_TO_EXT64ADDR (page 310)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$FIXEDTOASCI
© O O
G OO

WETEAT vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW Yes

More information: $FIXEDTOASCII (page 310)
$FIXEDTOASCIIRESIDUE

—b(ﬂiFIXEDTOASCIIRESIDUE)—; .
O O D—0O)

WETEAR wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW Yes

More information: $FIXEDTOASCIIRESIDUE (page 311)

474 Syntax Summary

$FIXI
© ®

WETEE ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $FIXI (page 312)

$FIXL
© o
WETDET wad
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
More information: $FIXL (page 312)
$FIXR
© ®
WETOER ved
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No
More information: $FIXR (page 313)
$FLT

o expression o

WETOEE. wsd

pTAL privileged procedure No

Can be executed only by privileged procedures No

Built-in Routines 475

Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $FLT (page 314)

$FLTR
o expression o
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
More information: $FLTR (page 314)
$FREEZE
NOTE:
e The EpTAL compiler does not support this procedure. Use $TRIGGER (page 345) instead. (The
EpTAL compiler does allow $FREEZE as a DEFINE name.)
e Execution does not return from this call.
pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No
More information: $FREEZE (page 315)
$HALT

NOTE:

e The EpTAL compiler does not support this procedure. Use $TRIGGER (page 345) instead. (The
EpTAL compiler does allow $HALT as a DEFINE name.)

e Execution does not return from this call.

476 Syntax Summary

VSTa20 vl
pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $HALT (page 315)

$HIGH
® ®
WETDE vad
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
More information: $HALT (page 315)
$IFIX
GRO—(D O ®
WVETDE2 vad
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No
More information: $IFIX (page 316)
$INT

o expression o

WETISD. s

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No

Built-in Routines 477

Sets SCARRY No
Sets $OVERFLOW No

More information: $INT (page 317)
$INT_OV

NOTE: $INT_QV is supported in the D40 and later RVUs.

CED S OSC SNG

WETEED. wsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW Yes

More information: $INT_OV (page 318)
$INTERROGATEHIO

NOTE: The EpTAL compiler does not support this routine.

—>($INTERROGATEHIO)—§ .
O O O

GO

WETEA vsd

pTAL privileged procedure No
Can be executed only by privileged procedures Yes
Sets condition code Yes
Sets SCARRY No
Sets $OVERFLOW No

More information: $INTERROGATEHIO (page 318)
$INTERROGATEIO

NOTE: The EpTAL compiler does not support this routine.

478 Syntax Summary

—»(GrTERR0eATED (D) O
O O O [Fameraans

WETEAS vad

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code Yes
Sets $CARRY No
Sets $OVERFLOW No

More information: $INTERROGATEIO (page 320)
$INTR

(SR D—s[emion (D)

WETO9 vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $INTR (page 321)
$IS_32BIT_ADDR

—» @ 2008 D[}

WETISS ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $IS_32BIT_ADDR (page 321)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Built-in Routines 479

$LEN
© ®

WETISE ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $LEN (page 322)

$LFIX
© O O—
WETDET wad
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
More information: $LFIX (page 323)
$LMAX
® o O
WETO0E vad
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No
More information: $LMAX (page 323)
$LMIN

WETIZE, ved

pTAL privileged procedure No

Can be executed only by privileged procedures No

480 Syntax Summary

Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $LMIN (page 324)
$LOCATESPTHDR

NOTE: The EpTAL compiler does not support this routine.

N s SO S [Tz BYe ST =
e (D)

WETEL S we=d

pTAL privileged procedure No
Can be executed only by privileged procedures Yes
Sets condition code No
Sets SCARRY Yes
Sets $OVERFLOW No

More information: $LOCATESPTHDR (page 324)
$LOCKPAGE

NOTE: The EpTAL compiler does not support this routine.

SLOCKPAGE o only-focked . Qj
O

WITEAE. v

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code Yes
Sets $CARRY Yes
Sets $OVERFLOW No

More information: $LOCKPAGE (page 325)
$MAX

WET100. ved

pTAL privileged procedure No

Can be executed only by privileged procedures No

Built-in Routines 481

Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $MAX (page 326)
$MIN

@ o expression . expression o

WET101 . wed

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $LMIN (page 324)
$MOVEANDCXSUMBYTES

H@MDVEANDCXSUMBYTE

seaie | {0 O—O

WVETEST wed

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $MOVEANDCXSUMBYTES (page 327)
$MOVENONDUP

(H0ver0io0r) — (D[| s
[ramvats ({0

WETELA. wed

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code Yes
Sets SCARRY No
Sets $OVERFLOW No

482 Syntax Summary

More information: SMOVENONDUP (page 328)
$NUMERIC

G SO SO S

WIT102Z.

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $NUMERIC (page 329)

$OCCURS
© ®
WET103 vsd
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

More information: $OCCURS (page 330)

$OFFSET
© ®
WET104 vad
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $OFFSET (page 332)

Built-in Routines 483

$OPTIONAL
© O~
'parar'rrpalr

WET21 3w

par ant pai r
O
WETOAS vad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

More information: $OPTIONAL (page 333)

$OVERFLOW
WET105.ved
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

More information: $OVERFLOW (page 335)

$PARAM
© 0
WET10G.wad
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $PARAM (page 336)

484 Syntax Summary

$POINT
® ®

WET107 wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No
More information: $POINT (page 336)
$PROCADDR
© ®
WETOE.wsd
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No
More information: $PROCADDR (page 337)
$PROC32ADDR
()0 o
WVETOSS vad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $PROC32ADDR (page 337)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”

(page 531).

Built-in Routines 485

$PROC64ADDR
— (srrooamonn (D) ®

WETIN ved

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $PROC64ADDR (page 338)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$READBASELIMIT

NOTE: The EpTAL compiler does not support this procedure.

sReverseLmT)—(0) O ®

WITHAE. e

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $READBASELIMIT (page 338)
$READCLOCK

SREADCLOCK

WET108.

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $READCLOCK (page 339)
$READSPT

NOTE: The EpTAL compiler does not support this routine.

486 Syntax Summary

(T) Dt} {1

WVETES.ved

pTAL privileged procedure No
Can be executed only by privileged procedures Yes
Sets condition code No
Sets SCARRY Yes
Sets SOVERFLOW No

More information: $READSPT (page 339)
$READTIME

SREADTIME

WETES1 wadd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $READTIME (page 340)

$SCALE
© O ®
VET110.ved
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $SCALE (page 340)
$SGBADDR_TO_EXTADDR

_>($5GBADDR_TO_E><TADDR o o

WITHOD. W

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No

Built-in Routines 487

Sets SCARRY No
Sets $OVERFLOW No

More information: $SGBADDR_TO_EXTADDR (page 341)
$SGBADDR_TO_SGWADDR

—>@SGBADDR_TO_SGWADDR

WETEOM waed

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

More information: $SGBADDR_TO_SGWADDR (page 342)
$SGWADDR_TO_EXTADDR

—b(SSGWADDR_TO_EJ(TADDR

WETEO5.wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

More information: $SGWADDR_TO_EXTADDR (page 342)
$SGWADDR_TO_SGBADDR

—>@SGWADDR_TO_SGBADDR

WETEOD. wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

More information: $SGWADDR_TO_SGBADDR (page 343)

488 Syntax Summary

$SPECIAL
© ®

VSTH1 s
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $SPECIAL (page 343)
$STACK_ALLOCATE

NOTE: The pTAL and EpTAL compilers behave differently.

_>($5TACK_ALLOCATE®_’

WETOE2. e

pTAL privileged procedure

Can be executed only by privileged procedures
Sets condition code

Sets $CARRY

Sets $OVERFLOW

No
No

More information: $STACK_ALLOCATE (page 344)

$TRIGGER

NOTE:

e The TAL and pTAL compilers does not support this routine.

e Execution does not return from this call.

(rioaER) (O ()

WETIED. ved

pTAL privileged procedure

Can be executed only by privileged procedures
Sets condition code

Sets SCARRY

Sets SOVERFLOW

Yes

Yes

More information: $TRIGGER (page 345)

Built-in Routines 489

$TYPE
® O

VETH1Z s
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $TYPE (page 345)
$UDBL

D0 ®

WET113.wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $UDBL (page 346)
$UDIVREM16

(i) (O—sfe -+ O—sfir— Oy
et | (Ot [()0

WETES) wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets SOVERFLOW Yes, if the divisor is O or the quotient is too large

More information: $UDIVREM 16 (page 347)

490 Syntax Summary

$UDIVREM32

$UFIX

CIED SO I e

@j

(O (DO

WETESS wed

pTAL privileged procedure

Can be executed only by privileged procedures
Sets condition code

Sets $CARRY

Sets SOVERFLOW

Yes, if and only if the divisor is O

More information: $UDIVREM32 (page 348)

o expression o

WETOS, v

pTAL privileged procedure

Can be executed only by privileged procedures
Sets condition code

Sets $CARRY

Sets SOVERFLOW

No
No

No
No

More information: $UFIX (page 349)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”

(page 531).

$UNLOCKPAGE

NOTE: The EpTAL compiler does not support this routine.

(sE567E (O[]0

Co—

WETEIS ved

pTAL privileged procedure

Can be executed only by privileged procedures
Sets condition code

Sets $CARRY

Sets SOVERFLOW

Yes
Yes
Yes
No

Built-in Routines

491

More information: $UNLOCKPAGE (page 349)
$WADDR_TO_BADDR

_>(SWADDR_TO_BADDR o o

WETEO wadd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

More information: $WADDR_TO_BADDR (page 350)
$WADDR_TO_EXTADDR

_p(SWADDR_TD_ExTADDR o o

WETEA2 wad

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets $OVERFLOW No

More information: $WADDR_TO_EXTADDR (page 350)
$WRITEPTE

NOTE: The EpTAL compiler does not support this routine.

(SrTerTE)—»(D[()

WETESE. ward

pTAL privileged procedure Yes
Can be executed only by privileged procedures Yes
Sets condition code No
Sets SCARRY Yes
Sets SOVERFLOW No

More information: $WRITEPTE (page 351)

492 Syntax Summary

$XADR
© o

WET115.vsd

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets SCARRY No
Sets SOVERFLOW No

More information: $XADR (page 352)

$XADR32
© ®
WET115.sd
pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $XADR32 (page 352)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$XADR64
© o

WET11 5.

pTAL privileged procedure No
Can be executed only by privileged procedures No
Sets condition code No
Sets $CARRY No
Sets $OVERFLOW No

More information: $XADR64 (page 353)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
TO561HO1*AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Built-in Routines 493

Compiler Directives

Directive Line (page 495)
ASSERTION (page 495)
BASENAME (page 495)
BEGINCOMPILATION (page 496)
BLOCKGLOBALS (page 496)
CALL_SHARED (page 496)
CHECKSHIFTCOUNT (page 497)
CODECQV (page 497)
COLUMNS (page 498)
DEFEXPAND (page 498)
DEFINETOG (page 499)
DO_TNS_SYNTAX (page 500)
ENDIF (page 500)

ERRORFILE (page 500)

ERRORS (page 500)
EXPORT_GLOBALS (page 501)
__EXT64 (page 501)
FIELDALIGN (page 502)

FMAP (page 502)
GLOBALIZED (page 502)
GMAP (page 503)

GP_OK (page 503)

IF, IFNOT, and ENDIF (page 504)
INNERLIST (page 505)
INVALID_FOR_PTAL (page 505)
LINES (page 506)

LIST (page 506)

MAP (page 506)

OPTIMIZE (page 507)
OPTIMIZEFILE (page 507)
OVERFLOW_TRAPS (page 508)
PAGE (page 508)

PRINTSYM (page 509)
PROFDIR (page 509)
PROFGEN (page 509)
PROFGEN (page 509)
REFALIGNED (page 510)
RESETTOG (page 511)
ROUND (page 512)
SAVEGLOBALS (page 512)

494 Syntax Summary

e SECTION (page 513)

e SETTOG (page 513)

e SOURCE (page 514)

e SRL (page 514)

e SUPPRESS (page 515)

e SYMBOILS (page 515)

e SYNTAX (page 516)

e TARGET (page 516)

o USEGLOBALS (page 516)
e WARN (page 517)

Directive Line

0 . I directive .
WET120.wmd

More information: Directive Line (page 367)

ASSERTION

Default: None

WET1ZA vsd

Placement: o Anywhere in the source file (not in the compilation command)

e Must be the last directive on the directive line

Scope: Applies until another ASSERTION overrides it
Dependencies: Has no effect without the ASSERT statement
References: ASSERT (page 456)

More information: ASSERTION (page 381)
BASENAME
NOTE: This directive can be used only with the EpTAL compiler.

WITHAD e
Default: The raw data file contains the full path name of the source file
Placement: Only on the command line
Scope: Applies to the compilation unit

Compiler Directives 495

Dependencies: Use the BASENAME option only with the PROFGEN option
References: PROFGEN

More information: BASENAME (page 381)
BEGINCOMPILATION

NOTE:
e This directive can appear only in the source file, not in the compilation command.

e The EpTAL compiler ignores this directive.

_.(EEGINGDMPILATION)—Q

WETIS ved

Default: None

Placement: o In the source file between the last global data declaration and the first

procedure declaration, including any EXTERNAL and FORWARD declarations

o Can appear only once in a compilation unit
Scope: Applies to all source code that follows it in the compilation unit

Dependencies: e Has no effect without the USEGLOBALS directive

o If you specify either SAVEGLOBALS or USEGLOBALS, your compilation unit
must have exactly one BEGINCOMPILATION directive

o Inferacts with SAVEGLOBALS and USEGLOBALS

References: o SAVEGLOBALS (page 512)
« USEGLOBALS (page 516)

More information: BEGINCOMPILATION (page 382)
BLOCKGLOBALS

BLOCKGLOBALS

WETESE.wad

Default: The compiler allocates data items in the _GLOBAL and $_GLOBAL data blocks
Placement: Before the first data declaration in a compilation

Scope: Applies to the compilation unit

Dependencies: None

More information: BLOCKGLOBALS (page 382)
CALL_SHARED

NOTE:
e This directive is useful only for the pTAL compiler. The EpTAL compiler ignores it (and issues
a warning).

e You cannot link PIC and non-PIC object files into a single object file.

496 Syntax Summary

‘ CALL_SHARED q

WIS, e

Default: pTAL compiler: NOCALL_SHARED
EpTAL compiler: CALL_SHARED

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: o If both CALL_SHARED and

NOCALL_SHARED appear in the
same compilation unit, the compiler
uses the one that appears last

e Do not use CALL_SHARED with
GP_OK

References: GP_OK (page 503)

More information: CALL_SHARED (page 383)
CHECKSHIFTCOUNT

CHECKSHIFTCOUNT
NOCHECKSHIFTCOUNT
PUSHCHECKSHIFTCOUMNT
POPCHECKSHIFTCOUNT

WETES. ved

Default: NOCHECKSHIFTCOUNT
Placement: Anywhere
Scope: o CHECKSHIFTCOUNT applies to the shift operators that follow it until it is

overridden by NOCHECKSHIFTCOUNT

o NOCHECKSHIFTCOUNT applies to the shift operators that follow it until it
is overridden by CHECKSHIFTCOUNT

Dependencies: None

A CAUTION: If NOCHECKSHIFT is active and a bit-shift operation occurs in which the number of
positions in a bit-shift operation is too large, subsequent program behavior is undefined.

More information: CHECKSHIFTCOUNT (page 384)

CODECQV
NOTE: This directive is valid only in the EpTAL command line.

—a={ CODECOQV

WETAM vsd
Default: No code coverage instrumentation in object code
Placement: Only on the command line

Compiler Directives 497

Scope:

Dependencies:

Applies to the compilation unit

None

More information:

e See Using the Code Profiling Utilities (page 366).
e See the Code Profiling Utilities Manual.

COLUMNS

_><COLUMNS columns-value I—p

WET12T vad

Default:

Placement:

Scope:

Dependencies:

References:

COLUMNS 132

o Anywhere, but if COLUMNS appears in the source code, COLUMNS must
be the only directive on the directive line

o Typically specified before any SECTION directive

Applies to all source code that follows it unless overridden by:
o Another COLUMNS directive in the same source file (not recommended)

o A COLUMNS directive in a source file included by means of a SOURCE
directive

o A COLUMNS directive in a section identified by a SECTION directive
For details, see the explanation that follows this table.

None

e SECTION (page 513)
e SOURCE (page 514)

More information: COLUMNS (page 385)

DEFEXPAND

I Crosereemiy
‘ PUSHDEFEXFPAND
(rrrommey

WET2D.wmd

Default:
Placement:

Scope:

Dependencies:

References:

NODEFEXPAND
Anywhere

o DEFEXPAND applies to subsequent code it until it is overridden by
NODEFEXPAND

o NODEFEXPAND applies to subsequent code until it is overridden by
DEFEXPAND

DEFEXPAND has no effect it NOLIST or SUPPRESS is active

e LIST (page 5006)
o SUPPRESS (page 515)

498 Syntax Summary

More information: DEFEXPAND (page 386)
DEFINETOG

DEFINETOG

toggle-name

toggle-number

L J

_ _EXTo64

. | loggle-number I

PTAL
__EXT64
\ () ~
L/
WET212.vsd
Default: None
Placement: o With a parenthesized list, it can appear anywhere

e Without a parenthesized list, it must be the last directive on the directive
line or compilation command line

Scope: Applies to the compilation unit

Dependencies: Interacts with:
e SETTOG
o RESETTOG
e IF and IFNOT
o ENDIF
o TARGET
o _ EXT64

References: e SETTOG (page 415)
e RESETTOG (page 411)
o IF and IFNOT (page 398)
e ENDIF (page 390)
o “TARGET” (page 423)
o “_EXT64" (page 394)
o Toggles (page 370)

More information: DEFINETOG (page 388)

Compiler Directives 499

DO_TNS_SYNTAX

DO_TNS_SYNTAX
NODO_TNS_SYNTAX

PUSHDO_TNS_SYNTAX
POPDO_TNS_SYNTAX

WETEEL wad

Default: NODO_TNS_SYNTAX

Placement: o Can appear only once in a compilation

o Must precede any TARGET directive and any nondirective lines

Scope: Applies to the compilation unit
Dependencies: None
References: TARGET (page 516)

More information: DO_TNS_SYNTAX (page 389)

ENDIF
See IF, IFNOT, and ENDIF (page 504).

—(ERRORFILE file-name
define-name
assign-name
VET137 . ved
Default: None
Placement: e In the compilation command or in the source code before any declarations
o Can appear only once in a compilation unit
Scope: Applies to the compilation unit
Dependencies: None

More information: ERRORFILE (page 391)
ERRORS

ERRORS < - ::= num-messages I—p

WET13E wed

Default: Unlimited number of errors
Placement: Anywhere

Scope: Applies to the compilation unit
Dependencies: None

500 Syntax Summary

More information: ERRORS (page 393)
EXPORT_GLOBALS

EXPORT_GLOBALS
NOEXPORT_GLOBALS
PUSHEXPORT_GLOBALS
POPEXPORT_GLOBALS

WETHEZ ved

Default: EXPORT_GLOBALS

Placement: o Can appear any number of times in a compilation unit
o Must appear before the first procedure is compiled
o Cannot appear within BLOCK declarations

Scope: Applies to the compilation unit, except that NOEXPORT_GLOBALS does not
affect a compilation’s private data block, which is always exported

Dependencies: o You must specify NOEXPORT_GLOBALS when declaring a data block that
belongs fo an SRL

e In a compilation that includes USEGLOBALS, the compiler exports the data
blocks declared in the USEGLOBALS declarations file only if
EXPORT_GLOBALS is active when the compiler encounters the
BEGINCOMPILATION directive.

References: o BEGINCOMPILATION (page 496)
e SRL (page 514)
e USEGLOBALS (page 516)

More information: EXPORT_GLOBALS (page 393)

__EXT64
T~
WETAM vsd
Default: off
Placement: Must appear either on the compiler command line or in the compiled source
code before the first source code token is scanned by the compiler.
Scope: Affects the entire compilation
Dependencies: None
References: « “DEFINETOG” (page 388)

e “ENDIF” (page 390)

e “IF and IFNOT” (page 398)
e “RESETTOG” (page 511)

o “SETTOG” (page 415)

o Toggles (page 370)

More information: __EXT64 (page 394)

Compiler Directives 501

NOTE: This directive is available in the 64-bit addressing functionality added to the EpTAL
compiler starting with SPR T0561HO1*AAP. For more information, see Appendix E, “64-bit
Addressing Functionality” (page 531).

FIELDALIGN

=
o]
‘ﬁ

WETEE0 e

Default: FIELDALIGN AUTO

Placement: o Can appear only once in a compilation unit

e Must precede all declarations of data, blocks, and procedures

Scope: Applies to the compilation unit

Dependencies: None

More information: FIELDALIGN (page 395)
FMAP

NG o

WET 141,

Default: NOFMAP

Placement: Anywhere, any number of times. The last FMAP or NOFMAP in the compilation
unit determines whether the compiler lists the file map.

Scope: Applies to the compilation unit

Dependencies: FMAP has no effect if either NOLIST or SUPPRESS is active

References: e LIST (page 506)

o SUPPRESS (page 515)

More information: FMAP (page 396)
GLOBALIZED

NOTE: This directive is valid only in the eptal command line.

GLOBALIZED

WETAIS v

Default: Generate non-preemptable object code

Placement: On the command line

502 Syntax Summary

Scope: Applies to the compilation unit

Dependencies: None
GMAP
WDy
WET142.wsd

Default: GMAP

Placement: Anywhere, any number of times. The last GMAP or NOGMAP in the compilation
unit determines whether the compiler lists the global map.

Scope: Applies to the compilation unit

Dependencies: o GMAP has no effect if NOLIST, NOMAP, or SUPPRESS is active
o NOGMAP suppresses the global map even if MAP is active

References: o LIST (page 506)

e MAP (page 500)
e SUPPRESS (page 515)

More information: GMAP (page 397)
GP_OK
NOTE: The EpTAL compiler ignores this directive.

I
N

WETEE wsd

Default: pTAL compiler: GP_OK
EpTAL compiler: NOGP_OK
Placement: Anywhere except inside a data block

or inside a procedure declaration

Scope: o GP_OK applies to subsequent code
it until it is overridden by

NOGP_OK
o NOGP_OK applies to subsequent

code until it is overridden by

GP_OK
Dependencies: Do not use GP_OK with
CALL_SHARED
References: CALL_SHARED (page 496)

More information: GP_OK (page 397)

Compiler Directives 503

IF, IFNOT, and ENDIF

toggle-name

toggle-numbe

WETEOM wadd

ENDIF

WaTEE. ved

t ar get

L J

ANY
bR
‘ TNS_ARC
N D
_TNS_E_TAR

TARGETSPECIFIED

WETALS ved

Compiler Implicitly Sets Implicitly Resets

pTAL e RISCI _TNS_E_TARGET
« TARGETSPECIFIED

EpTAL o _TNS_E_TARGET RISC1
o TARGETSPECIFIED

pTAL
Compiler IF pTAL IFNOT pTAL
pTAL or EpTAL True False
TAL False True
Default: None
Placement: o Anywhere in the source file (not in the compilation command)
o IF or IFNOT must be the last directive on its directive line
o ENDIF must be the only directive on its directive line
Scope: Everything between IF or IFNOT and the next ENDIF that specifies the same

toggle, target, or keyword

504 Syntax Summary

Dependencies:

References:

Interact with:

e DEFINETOG
o SETTOG

e RESETTOG

o TARGET

e DEFINETOG (page 499)
e RESETTOG (page 511)
e SETTOG (page 513)

o TARGET (page 516)

o Toggles (page 370)

More information:
e IFand IFNOT (page 398)
e ENDIF (page 390)

INNERLIST

INNERLIST
g NOINNERLIS
. PUSHINNERLIET

WET148 vad

Default:
Placement:

Scope:

Dependencies:

References:

NOINNERLIST
Anywhere

o INNERLIST applies to subsequent statements it until it is overridden by
NOINNERLIST

o NOINNERLIST applies to subsequent statements until it is overridden by
INNERLIST

INNERLIST has no effect if NOLIST or SUPPRESS is active

o LIST (page 5006)
o SUPPRESS (page 515)

More information: INNERLIST (page 400)

INVALID_FOR_PTAL
—)(INVALID_FOR_PTAL)—p

WETTO.wed

Default:
Placement:
Scope:
Dependencies:

References:

None

After IF or IFNOT and before ENDIF
Applies to code between itself and ENDIF
None

IF, IFNOT, and ENDIF (page 504)

Compiler Directives 505

More information: INVALID_FOR_PTAL (page 401)

LINES
—p@ :I num-lines I—p
\’6_/ VET154.ved
Default: LINES 60
Placement: Anywhere
Scope: Applies until overridden by another LINES directive
Dependencies: Has no effect if the list file is a terminal
More information: LINES (page 401)
LIST
=Ty
MOLIST
g
WET155 vsd
Default: LIST
Placement: Anywhere
Scope: o LIST applies to subsequent code it until it is overridden by NOLIST
o NOILIST applies to subsequent code until it is overridden by LIST
Dependencies: LIST has no effect if SUPPRESS is active
References: SUPPRESS (page 515)
More information: LIST (page 401)
MAP

s
F'USHMAP

WBT157 ved

Default: MAP

Placement: Anywhere

506 Syntax Summary

Scope: e MAP applies to subsequent code it until it is overridden by NOMAP
o NOMAP applies to subsequent code until it is overridden by MAP

Dependencies: MAP has no effect if NOLIST or SUPPRESS is active

References: e LIST (page 506)
o SUPPRESS (page 515)

More information: MAP (page 402)
OPTIMIZE

OPTIMIZE "

WETEAE vsd

Default: OPTIMIZE 1

Placement: Outside the boundary of a separately compiled program

Scope: The optimization level active at the beginning of a separately compiled program
determines the level of optimization for that program and any programs it
contains

Dependencies: None

More information: OPTIMIZE (page 404)
OPTIMIZEFILE

_>(DPTIMIZEFILE)—>| filename |—p

WETEES. wsd

fil enane

routine-name }—>| optimize-level
comment
blank line |

WETDES vsd

Default: The optimization level that OPTIMIZE specified
Placement: Only in the compilation command (not in the source file)
Scope: Applies to the compilation unit

Dependencies: None

References: OPTIMIZE (page 507)

NOTE: The pTAL and EpTAL compilers behave differently.
More information: OPTIMIZEFILE (page 404)

Compiler Directives 507

OVERFLOW_TRAPS

OVERFLOW_TRAPS
NOOVERFLOW_TRAPS

PUSHOVERFLOW_TRAPS

POPOVERFLOW_TRAPS

WETEDT wad

Default: pTAL compiler: OVERFLOW_TRAPS
EpTAL compiler: NOOVERFLOW_TRAPS

Placement: Before or between procedure declarations

Scope: From the point it occurs in the compilation until it is overridden or the compilation
ends, whichever occurs first

Dependencies: OVERFLOW_TRAPS is overridden by:

o NOOVERFLOW_TRAPS procedure attribute

o DISABLE_OVERFLOW_TRAPS block attributes
NOOVERFLOW_TRAPS is overridden by:

o OVERFLOW_TRAPS procedure attribute
o ENABLE_OVERFLOW_TRAPS block attributes

References: See Managing Overflow Traps (page 234)

More information: OVERFLOW_TRAPS (page 406)
PAGE

PAGE

L J

(D—s[ressingsima}—»(")

WET1ED. ved

Default: LINES determines page ejects and no heading is printed
Placement: Only in the source file (not in the compilation command)
Scope: Applies until overridden by another PAGE directive
Dependencies: Has no effect if either:

o NOLIST or SUPPRESS is active

o The list file is a terminal

References: e LINES (page 506)
o LIST (page 506)
e SUPPRESS (page 515)

More information: PAGE (page 407)

508 Syntax Summary

PRINTSYM

PRINTSYM
‘ NOPRINTSYM '

WET162 vad

Default: PRINTSYM
Placement: Anywhere
Scope: o PRINTSYM applies to subsequent declarations until overridden by
NOPRINTSYM
o NOPRINTSYM applies to subsequent declarations until overridden by
PRINTSYM
Dependencies: o PRINTSYM has no effect if NOLIST or SUPPRESS is active

e PRINTSYM interacts with SAVEGLOBALS and USEGLOBALS

References: e LIST (page 506)
o SAVEGLOBALS (page 512)
e SUPPRESS (page 515)
e USEGLOBALS (page 516)

More information: PRINTSYM (page 408)
PROFDIR
NOTE: This directive can be used only with the EpTAL compiler.

-~ e —s{feme

WETHA vad

Default: Default subvolume

Placement: Only on the command line

Scope: Applies to the compilation unit

Dependencies: PROFDIR is ignored if PROFGEN or CODEDOV is not also
specified

References: « PROFGEN (page 509)

e CODECQV (page 385)

More information: PROFDIR (page 408)

PROFGEN
NOTE: This directive can be used only with the EpTAL compiler.
o (ROFGER) =
WETEA2 vsd
Default: No instrumentation in object code
Placement: Only on the command line

Compiler Directives 509

Scope:

Dependencies:

Applies to the compilation unit

None

More information: PROFGEN (page 409)

PROFUSE

NOTE: This directive can be used only with the EpTAL compiler.

PROFUSE
o
VETEAA. vsd

Default:
Placement:
Scope:
Dependencies:

References:

None
Anywhere
Applies to the compilation unit

Cannot be specified with PROFGEN or CODECOV

e PROFGEN (page 509)
e CODECOQV (page 385)

More information: PROFUSE (page 409)

REFALIGNED

PUSHREFALIGNED

POPREFALIGNED

VETEED. ved

Default:
Placement:

Scope:

Dependencies:

REFALIGNED 8
Anywhere

Applies to subsequent pointers o nonstructure data items and procedure
reference parameters until overridden by another REFALIGN directive

None

More information: REFALIGNED (page 410)

510 Syntax Summary

RESETTOG

toggle-name

toggle-number

L J

e
AT

WET164 ved

Default:

Placement:

Scope:

Dependencies:

References:

None

With a parenthesized list, it can appear anywhere

Without a parenthesized list, it must be the last directive on the directive
line or compilation command line

Applies to the compilation unit

Interacts with:

DEFINETOG
ENDIF
_EXT64

IF and ENDIF
SETTOG
TARGET

DEFINETOG (page 388)
ENDIF (page 390)
“_EXT64" (page 394)

IF and IFNOT (page 398)
SETTOG (page 415)
“TARGET” (page 516)
Toggles (page 370)

More information: RESETTOG (page 411)

Compiler Directives

51

ROUND

\(iomome)/

WET 165w

Default: NOROUND
Placement: Anywhere
Scope: o ROUND applies to subsequent code until overridden by NOROUND

o NOROUND applies to subsequent code until overridden by ROUND

Dependencies: None

More information: ROUND (page 412)
SAVEGLOBALS

NOTE: The EpTAL compiler does not accept this directive.

SAVEGLOBALS file-name
define-name

WETETD.ved

Default: None

Placement: Either in the compilation command or in the source code before any global
data declarations

Scope: Applies to the compilation unit

Dependencies: o |f SAVEGLOBALS and USEGLOBALS appear in the same compilation unit,

the compiler uses only the one that appears first
o The compilation unit must have exactly one BEGINCOMPILATION directive

o Interacts with the directives referenced in the next row

References: e BEGINCOMPILATION (page 496)
e PRINTSYM (page 509)
e SYMBOLS (page 515)
o SYNTAX (page 516)
e USEGLOBALS (page 516)

More information: SAVEGLOBALS (page 413)

512 Syntax Summary

SECTION
—f(SECTION)—’l section-name |—b

WETIT idd

Default: None

Placement: o Only in the source file (not in the compilation command)

o Must be the only directive on the directive line

Scope: Applies to subsequent code until another SECTION directive or the end of the
file, whichever is first

Dependencies: Interacts with SOURCE (see Section Names (page 417))

References: SOURCE (page 416)

More information: SECTION (page 414)
SETTOG

—p{ SETTOG |-

Y

=|| toggle-name

toggle-number .

\ () —
N
WET1T2.ved
Default: None
Placement: e With a parenthesized list, it can appear anywhere

o Without a parenthesized list, it must be the last directive on the directive
line or compilation command line

Scope: Applies to the compilation unit

Dependencies: Interacts with:
o DEFINETOG
o ENDIF
o _ EXT64
e |F and ENDIF

Compiler Directives 513

References:

RESETTOG
TARGET

DEFINETOG (page 388)
ENDIF (page 390)
“__EXT64" (page 394)

IF and IFNOT (page 398)
RESETTOG (page 411)
“TARGET” (page 516)
Toggles (page 370)

More information: SETTOG (page 415)

SOURCE

|

f

ile-name

define-name

assign-name

L

WETITA. ved

Default:

Placement:

Scope:

Dependencies:

References:

None

Only in the source file (not in the compilation command)

Must be the last directive on the directive line

Applies to the source file

Interacts with COLUMNS
Interacts with SECTION (see Section Names (page 417))

Interacts with the directives referenced in the next row

BEGINCOMPILATION (page 496)
COLUMNS (page 498)

LIST (page 5006)

SECTION (page 513)

SUPPRESS (page 515)
USEGLOBALS (page 516)

More information: SOURCE (page 416)

SRL

NOTE: The EpTAL compiler ignores this directive.

514 Syntax Summary

SREL

WETET1 wadd

Default: None

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: When declaring a data block that belongs to an SRL, you must specify

NOEXPORT_GLOBALS and NOGP_OK.

References: e EXPORT_GLOBALS (page 501)
e GP_OK (page 503)

More information: SRL (page 420)
SUPPRESS

SUPPRESS '
‘ NOSUPPRESS

VSTITS yad
Default: NOSUPPRESS

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: Overrides all the listing directives (see the following row)
References: o DEFEXPAND (page 498)

e FMAP (page 502)

e GMAP (page 503)

e INNERLIST (page 505)
e LIST (page 506)

¢ MAP (page 500)

e PAGE (page 508)

e PRINTSYM (page 509)

More information: SUPPRESS (page 420)
SYMBOLS

\sosvueoss

WETET Lwad

Default: NOSYMBOLS

Placement: Before the first declaration in the compilation

Scope: The last legally placed SYMBOLS or NOSYMBOLS applies to the compilation
unit

Compiler Directives

Dependencies: Interacts with SAVEGLOBALS and USEGLOBALS

References: o SAVEGLOBALS (page 512)
e USEGLOBALS (page 516)

NOTE: These linker options discard information that SYMBOLS saves:

e -xdiscards line number information.
e -sdiscards information needed for future linking (use it only in building an executable file).
More information: SYMBOLS (page 421)

SYNTAX

WET178 ved

Default: The compiler produces an object file
Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: Interacts with SAVEGLOBALS and USEGLOBALS
References: « SAVEGLOBALS (page 512)

o USEGLOBALS (page 516)

More information: SYNTAX (page 422)
TARGET

G

" TNS_E_TARGET

WETHT v

Default: pTAL compiler: TNS_R_ARCH
EpTAL compiler: _TNS_E_TARGET

Placement: Anywhere

Scope: Applies to the compilation unit

Dependencies: None

More information: TARGET (page 423)
USEGLOBALS

NOTE: The EpTAL compiler does not accept this directive.

516 Syntax Summary

USEGLOBALS file-name 7
define-name

WETETd vad

Default: None

Placement: Either in the compilation command or in the source code before any global
data declarations

Scope: Applies to the compilation unit

Dependencies: o The compilation unit must have exactly one BEGINCOMPILATION directive.

o The compiler exports the data blocks declared in the USEGLOBALS
declarations file only if EXPORT_GLOBALS is active when the compiler
encounters the BEGINCOMPILATION directive.

o A module that specifies USEGLOBALS can export a global data block that
was declared in the compilation that specified SAVEGLOBALS only if the
SAVEGLOBALS compilation exported the data block.

Typically, a project that uses SAVEGLOBALS explicitly links globals into the
obiject file and specifies NOEXPORT_GLOBALS (the default) for all individual

compilations.

o |Interacts with the directives referenced in the next row.

References: o BEGINCOMPILATION (page 496)
o EXPORT_GLOBALS (page 501)
e PRINTSYM (page 509)
o SAVEGLOBALS (page 512)
e SYMBOLS (page 515)
o SYNTAX (page 516)

More information: USEGLOBALS (page 423)

WARN
WARN >
WETETS.vad

Default: WARN

Placement: Anywhere

Scope: e WARN applies to subsequent code until overridden by NOWARN

o NOWARN applies to subsequent code until overridden by WARN; however:

To print selected warnings, you must specify WARN before any NOWARN
directives. If you specify NOWARN first, subsequent WARN
war ni ng- nunber directives have no effect.

Dependencies: None

More information: WARN (page 424)

Compiler Directives 517

B Disk File Names and HP TACL Commands

NOTE: This appendix applies only to Guardian platforms, not Windows platforms.

e Disk File Names (page 518)
e HP TACL Commands (page 520)

For information about process or device file names, see the Guardian Programmer’s Guide.

Disk File Names

A disk file name identifies a file that contains data or a program. A disk file name reflects the
specified file’s location on a NonStop system. The location of a disk file on a NonStop system is
analogous to the location of a form in a file cabinet. To find the form, you must know:

e Which file cabinet it is in

e Which drawer it is in

e Which folder it is in

e Which form it is

Analogously, to find a disk file on a NonStop system, you must know:
e Which node (system) it is on

e Which volume it is on

e Which subvolume it is on

e Which disk file it is

In general, disk file names:

e Cannot contain spaces

e Can contain ASCII characters only

e Are not case-sensitive; the following names are equivalent:

myFfile
MyFile
MYFILE

e language functions and system procedures that return file names might return them in uppercase
letters (even if the file name was originally in lowercase letters). Check the description of the
routine that you are using.

Topics:

e Parts of a Disk File Name (page 518)
e Partial File Names (page 519)

e logical File Names (page 520)

e Internal File Names (page 520)

Parts of a Disk File Name

A disk file has a unique file name that consists of four parts, with each part separated by a period:
e A D-series node name or a C-series system name
e A volume name

e A subvolume name

e AfileID

518 Disk File Names and HP TACL Commands

Example 365 Disk File Name

\mynode . $myvol _.mysubvol _.myfileid

You can name your own subvolumes and file IDs, but nodes (systems) and volumes are named by
the system manager.

All parts of the file name except the file ID are optional except as noted in the following discussion.

It you omit any part of the file name, the system uses values as described in Partial File Names
(page 519).

Topics:

e Node or System Name (page 519)
e Volume Name (page 519)

e Subvolume Name (page 519)

e File ID (page 519)

Node or System Name

The node or system name, such as \MYNODE, is the name of the node or system where the file
resides. If specified, the node or system name must begin with a backslash (\) followed by one to
seven alphanumeric characters. The character following the backslash must be an alphabetic
character.

Volume Name

The volume name, such as $MYVOL, is the name of the disk volume where the file resides. If
specified, the volume name must begin with a dollar sign ($), followed by one to six or one to
seven alphanumeric characters as follows. The character following the dollar sign must be an
alphabetic character.

On a D-series system, the volume name can contain one to seven alphanumeric characters.
On a Csseries system, the volume name can contain:

e One to six alphanumeric characters if you include the system name

e One to seven alphanumeric characters if you omit the system name

On a Cseries system, if you specify the system name, you must also specify the volume name. If
you omit the system name, specifying the volume name is optional.

Subvolume Name

File ID

The subvolume name, such as MYSUBVOL, is the name of the set of files, on the disk volume, within
which the file resides. The subvolume name can contain from one to eight alphanumeric characters,
the first of which must be alphabetic.

On a D-series system, if you specify the volume name, you must also specify the subvolume name.
It you omit the volume name, specifying the subvolume name is optional.

The file ID, such as MYFILE, is the identifier of the file in the subvolume. The file ID can contain
from one to eight alphanumeric characters, the first of which must be alphabetic.

The file ID is required.

Partial File Names

A partial file name contains at least the file ID, but does not contain all the file-name parts. When
you specify a partial file name, the operating system or other process fills in the missing file-name

Disk File Names 519

parts by using your current default values. Following are the optional file-name parts and their
default values:

File-Name Part Default

node (system) Node (system) on which your program is executing
volume Current default volume

subvolume Current default subvolume

Following are all the partial file names you can specify for a disk file named
\BRANCH.$DIV.DEPT.EMP:

Omiitted File-Name Parts Partial File Name D-Series System C-Series System
Node (system) $div.dept.emp Yes Yes
Node (system), volume dept.emp Yes Yes
Node (system), volume, subvolume emp Yes Yes
Volume \branch.dept.emp Yes No
Volume, subvolume \branch.emp Yes No
Subvolume \branch.$div.emp No Yes
Node (system), subvolume $div.emp No Yes

You can change your current default values in various ways:

e You can change the volume and subvolume with the VOLUME command of, for example, the
HP TACL products.

e In some cases, you can specify node (system), volume, and subvolume names by issuing
HP TACL ASSIGN SSV commands.
Logical File Names

You can use a logical file name in place of the disk file name. A logical file name is an alternate
name you specify in an HP TACL DEFINE or ASSIGN command.

Internal File Names

The C-series operating system uses the internal form of a file name when passing it between your
program and the operating system. The D-series operating system uses the internal form only if
your program has not been converted to use D-series features.

For information about converting external file names to internal file names in a program, see the
Guardian Programmer’s Guide and the Guardian Procedure Calls Reference Manual.

HP TACL Commands

Before starting the compiler, you can send information to it by using the following HP TACL
commands:

e DEFINE (page 521)

e PARAM SWAPVOL (page 522)

e ASSIGN (page 522)

For complete information about these commands, see the following manuals:
e TACL Reference Manual (syntactic information)

e TACL Programmer’s Guide (programmatic information)

520 Disk File Names and HP TACL Commands

e Guardian User’s Guide (interactive information)

e Guardian Programmer’s Guide (programmatic information)

DEFINE

e Substituting File Names for DEFINE Macros (page 521)
e DEFINE Names (page 521)

To create a DEFINE message or set its attributes, you must set a CLASS attribute for the DEFINE.
The CLASS attributes are:

e MAP DEFINE (Guardian Platforms Only) (page 521)

o TAPE DEFINE (D-Series Systems Only) (page 522)

e SPOOL DEFINE (page 522)

« DEFAULTS DEFINE (page 522)

Each attribute has an initial setting based on whether the attribute is required, optional, or default.

Substituting File Names for DEFINE Macros

To substitute a file name for a DEFINE name that is being passed by a nonprivileged program to
a system procedure, use the following HP TACL commands:

HP TACL Command Purpose

SET DEFMODE ON Enable DEFINE processing

SET DEFINE CLASS Set the initial attribute of a DEFINE command to CLASS
MAP*

SET DEFINE Set the working attributes

ADD DEFINE Specify a file name to substitute for a DEFINE name

* MAP DEFINEs are available only on Guardian platforms.

DEFINE Names
HP TACL DEFINE names:
e Are not case-sensitive
e Have 2 to 24 characters
e Begin with an equals sign (=) followed by an alphabetic character
. ((;\o)nﬁnue with any combination of letters, digits, hyphens (-), underscores (_), and circumflexes
DEFINE names that begin with an equals sign followed by an underscore (=_) are reserved by HP
(for example, =_DEFAULTS).

Example 366 DEFINE Names

=A

=The_chosen_file
=Long-but-not-too-long
=The-File-of-The-Week

MAP DEFINE (Guardian Platforms Only)

When you log on, the default CLASS attribute is MAP, which requires a file name. A MAP DEFINE
substitutes a file name for a DEFINE name used in the source file. For example, suppose that your
current CLASS attribute is MAP and your source file includes the DEFINE name =MU<I in a SOURCE
directive:

HP TACL Commands 521

?SOURCE =multi

Before running the compiler, you can associate file name \brig.$ulIx.cable.port with
=multi:
ADD DEFINE =multi, FILE \brig.$ullx.cable.port

During compilation, the compiler passes the DEFINE name to a system procedure, which makes
the file available to the compiler. If the system procedure cannot make the file available, the open
operation fails.

TAPE DEFINE (D-Series Systems Only)

The TAPE DEFINE lets you specify attributes for labeled magnetic tapes. For instance, it lets you
specify attributes such as block length, recording density, record format and length, number of
reels, and labeling.

SPOOL DEFINE

The SPOOL DEFINE lets you specify spooler settings or attributes, such as number of copies, form
name, location, owner, report name, and priority.

DEFAULTS DEFINE

In the DEFAULTS class, a permanently built-in DEFINE named =_DEFAULTS has the following
attributes, which are active regardless of any DEFMODE setting:

Attribute Required Purpose

VOLUME Yes Contains the default node, volume, and subvolume names for the current
process as set by the HP TACL VOLUME, SYSTEM, and LOGON
commands

SWAP No Contains the node and volume name in which the operating system is
to store swap files

CATALOG No Contains a substitute name for a catalog as described in the SQL/MP

Reference Manual and the SQL/MX Reference Manual.

PARAM SWAPVOL

The PARAM SWAPVOL command lets you specify the volume that the compiler and SYMSERV use
for temporary files. For example:

PARAM SWAPVOL $myvol

The compiler ignores any node specification and allocates temporor?/ files on its own node. If you
omit the volume, the compiler uses the default volume for temporary files; SYMSERV uses the volume
that is to receive the object file.

Use this command when:
e The volumes normally used for temporary files might not have sufficient space.

e The default volume or the volume to receive the object file is on a different node from the
compiler.

ASSIGN

You can issue the HP TACL ASSIGN command before starting the compiler to substitute actual file
names for logical file names used in the source file. The HP TACL product stores the file-name
mapping until the compiler requests it.

ASSIGN commands fall into two categories:
e Ordinary ASSIGN Command (page 523)
e ASSIGN SSV (page 523)

522 Disk File Names and HP TACL Commands

Ordinary ASSIGN Command

The ordinary ASSIGN command equates a file name with a logical file name used in ERRORFILE,
SAVEGLOBALS, SEARCH, SOURCE, and USEGLOBALS directives. The compiler accepts only the
first 75 ordinary ASSIGN messages.

NOTE: The EpTAL compiler ignores the SAVEGLOBALS and USEGLOBALS directives.

In each ASSIGN command, specify a logical identifier followed by a comma and the file name
or an HP TACL DEFINE name:

ASSIGN dog, \a.$b.c.dog
ASSIGN cat, =mycat

If the file name is incomplete, the HP TACL product completes it from your current default node,
volume, and subvolume. For example, if your current defaults are \X_$Y.Z, the HP TACL product
completes the incomplete file names in ASSIGN commands as follows:

Incomplete File Names Complete File Names

ASSIGN qq, cat ASSIGN qg, \x.$y.z.cat
ASSIGN ss, b.dog ASSIGN ss, \x.$y.b.dog
ASSIGN tt, $a.b.rat ASSIGN tt, \x.%a.b.rat.

If you use an HP TACL DEFINE name in place of a file name, the HP TACL product qualifies the
file name specified in the ADD DEFINE command when it processes the ASSIGN command. Even

if you specify new node, volume, and subvolume defaults between the ADD DEFINE command
and the ASSIGN command, the ASSIGN mapping still reflects the ADD DEFINE settings.

If you issue the following commands:

ASSIGN aa, $a.b.cat

ASSIGN bb, $a.b.dog

ASSIGN cc, =my_zebra

ADD DEFINE =my_zebra, CLASS MAP, FILE $a.b.zebra
pTAL ZIN mysource, OUT $s/ obj

the compiler equates SOURCE directives in MYSOURCE to files as follows:

?SOURCE aa ! Equivalent to ?SOURCE $a.b.cat
?SOURCE cc ! Equivalent to ?SOURCE $a.b.zebra
?SOURCE bb ! Equivalent to ?SOURCE $a.b.dog

You can name new source files at each compilation without changing the contents of the source
file.

ASSIGN SSV

The ASSIGN SSV (search subvolume) command lets you specify which node, volume, and subvolume
to take files from. The compiler uses ASSIGN SSV information to resolve partial file names in the
SEARCH, SOURCE, and USEGLOBALS directives.

NOTE: The EpTAL compiler ignores the USEGLOBALS directive.

For each ASSIGN SSV command, append to the SSV keyword a value in the range O through 49.
Values in the range O through 9 can appear with or without a leading O.

For example, if you specify:

ASSIGN SSV1, oldfiles

and the compiler encounters the directive:
?SOURCE myutil

the compiler looks for oldfiles._myutil.
If you then specity:

ASSIGN SSV1, newfiles

HP TACL Commands 523

and run the compiler again, it looks for newfiles.myutil.

If you omit the node or volume, the HP TACL product uses the current default node or volume. If
you omit the subvolume, the compiler ignores the command. HP TACL DEFINE names are not
allowed.

The ASSIGN SSV command also lets you specify the order in which subvolumes are searched.
You can specity ASSIGN SSV commands in any order. If the same SSV value appears more than
once, the HP TACL product stores only the last command having that value.

For example, if you issue the following commands, the HP TACL product stores only two of the

messages:

Assign SSV Command Stored
ASSIGN SSvV28, $a.b Yes
ASSIGN SSv7, $c.d No
ASSIGN SSV7, $e.f No
ASSIGN SSV07, $g-h Yes

The compiler stores ASSIGN SSV messages in its SSV table in ascending order.

For each file name the compiler processes, the compiler scans the SSVs in ascending order from
SSVO until it finds a subvolume that holds the file.

For example, if you issue the following ASSIGN commands before running the compiler:

ASSIGN SSV7, %$aa.b3

ASSIGN SSV10, S$aa.grplip
ASSIGN SSv8, mylib

ASSIGN SSV20, S$cc.divlib
ASSIGN trig, $sp.math.xtrig

and the compiler encounters the following SOURCE directive:
?SOURCE unpack

the compiler first looks for an ASSIGN message having the logical name unpack. If there is none,
the compiler looks for the file in subvolumes in the following order:

$aa.b3.unpack (SSvV7)
$default-volume.mylib._unpack (Ssv8)
$aa.grplib.unpack (SSV10)
$cc.divlib.unpack (SSV20)

$default-volume.default-subvolume.unpack
The compiler uses the first file it finds. If it finds none named unpack, it issues an error message.

When the compiler encounters this directive:
?SOURCE trig

it tries only $sp.math.xtrig; if it does not find that exact file, it issues an error message.

524 Disk File Names and HP TACL Commands

C Differences Between the pTAL and EpTAL Compilers

e General (page 525)

e Data Types and Alignment (page 525)
e Routines (page 525)

e Compiler Directives (page 527)

General
Topic pTAL Compiler EpTAL Compiler
RVU D40 and later G06.20 and laterH06.01 and later
Compiler command ptal eptal
Cross compiler* NonStop pTAL NonStop EpTAL
Obsject code generated e TNS/R object code o TNS/E object code
e Non-PIC (default) or PIC e PIC
o Object files have file code 700 on ¢ Object files have file code 800 on
Guardian platform Guardian platform
e Preemptable e Non-preemptable (default) or

preemptable

* For differences between cross compilers, see NonStop pTAL (ETK) (page 426)

Data Types and Alignment

Topic pTAL Compiler EpTAL Compiler

STRUCTALIGN clause with Syntax error Accepted in template structure

MAXALIGN attribute declarations (see Declaring Template
Structures (page 139))

EXT32ADDR’ Syntax error Accepted

EXT64ADDR” Syntax error Accepted

PROC32ADDR” Syntax error Accepted

PROC64ADDR" Syntax error Accepted

PROC32PTR” Syntax error Accepted

PROC64PTR’ Syntax error Accepted

" 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HOT*AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531). |

Routines
Routine or Attribute pTAL Compiler EpTAL Compiler
INTERRUPT attribute Not recognized
RETURN statement Issues a warning if a RETURN statement

includes both aresul t - expr essi on
and a cc- expressi on (see
Appendix D (page 528))

General 525

Routine or Attribute pTAL Compiler EpTAL Compiler

$AXADR routine Not supported except as a DEFINE
name
$EXECUTEIO routine Not supported
$FREEZE routine Not supported except as a DEFINE
name. Use $TRIGGER instead.
$HALT routine Not supported except as a DEFINE
name. Use $TRIGGER instead.
$INTERROGATEHIO routine Not supported
$INTERROGATEIO routine Not supported
$LOCATESPTHDR routine Not supported
$LOCKPAGE routine Not supported
$READBASELIMIT routine Not supported
$READSPT routine Not supported
$STACKALLOCATE routine o Ifsize is not an integral multiple o If si ze is not an integral multiple
of 8, $STACK_ALLOCATE rounds of 16, $STACK_ALLOCATE rounds
si ze up to the next integral si ze up to the next integral
multiple of 8. multiple of 16.
o The returned value is aligned to an ¢ The returned value is aligned to a
8-byte boundary. 16-byte boundary.
$UNLOCKPAGE routine Not supported
$TRIGGER routine Not supported
$UNLOCKPAGE routine Not supported
$WRITEPTE routine Not supported
$EXT64ADDR_TO_EXTADDR™ Not supported Supported
$EXTADDR_TO_EXT32ADDR” Not supported Supported
$EXT64ADDR_TO_EXT32ADDR_OV" Not supported Supported
$FIXEDO_TO_EXT64DDR” Not supported Supported
$1S_32BIT_ADDR" Not supported Supported
$PROC32ADDR’ Not supported Supported
$PROC64ADDR” Not supported Supported
$UFIX Not supported Supported
$XADR32" Not supported Supported
$XADR64" Not supported Supported

" 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HO1”AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531). |

In EpTAL compiler starting with SPR TO561HO1*AAP, the directive ?__EXT64 expands the
functionality of the following routines:

e $PROCADDR: Enables $PROCADDR to convert PROC32ADDR and PROC64ADDR addresses
to PROCADDR addresses.

e $XADR: Enables $XADR to convert EXT32ADDR and EXT64ADDR typed variable addresses
to EXTADDR addresses.

526 Differences Between the pTAL and EpTAL Compilers

Compiler Directives

Directive pTAL Compiler EpTAL Compiler
BEGINCOMPILATION Ignored
SAVEGLOBALS Not accepted
USEGLOBALS Not accepted

CALL_SHARED
NOCALL_SHARED
GP_OK
NOGP_OK
PUSHGP_OK
POPGP_OK
OPTIMIZEFILE

OVERFLOW_TRAPS
NOOVERFLOW_TRAPS
SRL

TARGET

__EXT64

" 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561HO1”AAP. For more information,

Default

Does not issue warnings for errors in
filename

Default

Default and only accepted option is
TNS_R_ARCH

Not accepted

see Appendix E, “64-bit Addressing Functionality” (page 531).

Default
Not accepted
Not accepted
Ignored
Ignored
Ignored

Issues a warning when fi | enane
meets one of the”Compiler Directives”
(page 527)

Default
Not accepted

Default and only accepted option is
_TNS_E_TARGET

Accepted

NOTE:

Conditions:

The EpTAL compiler issues a warning when the fi | enane in OPTIMIZEFILE:

e Does not exist

e Cannot be opened

e Is not an EDIT file (Guardian operating systems only)

e Has the same r out i ne- nanme on more than one line

e Has a line that:

o Exceeds 511 characters (Windows operating systems only)

o Has aroutine-nane that does not match any routine declaration in the source file

o Hasanoptimze-1evel otherthanO, 1, or 2

> Has one or more characters other than spaces or tabs:

— Beforerouti ne- nane

— Afteroptini ze- | evel

— Betweenrouti ne-name and opti ni ze- 1| evel

Compiler Directives 527

D RETURN, RETURNSCC, and C/C++ on TNS/E

Read this appendix if you write or call pTAL procedures that:
e Return both:

> A traditional function value by means of the RETURN statement
> An unrelated condition code value by means of the RETURNSCC attribute

e And are called by C or C++ procedures

On the TNS architecture, a TAL procedure can return both a traditional function value and an
unrelated condition code value. Both return values are accessible after the procedure call. pTAL
procedures emulate this behavior on both the TNS/R and TNS/E architectures, but C/C++

procedures do not.

On the TNS/R architecture, if a C/C++ procedure calls a pTAL procedure that returns both a
traditional function value and a condition code value, the C/C++ compiler issues an error message.

Some programmers work around this C/C++ compile-time error by writing C/C++ prototypes that
rely on the knowledge that on the TNS/R architecture, pTAL object code stores the two return values
in a single 64-bit value. After the C/C++ procedure calls the pTAL procedure, it extracts from the
64-bit value either both return values (see Example 367 (page 528)) or only the traditional function
value (see Example 368 (page 529)).

A CAUTION: C/C++ prototypes such as these are not guaranteed to work on the TNS/R architecture,
and extracting only the traditional function value (as in Example 368 (page 529)) does not work
on the TNS/E architecture.

The EpTAL compiler issues a warning whenever a pTAL procedure returns both a traditional function
value and a condition code value. To migrate such a procedure to TNS/E, HP recommends that
you:

1. Write a pTAL shell procedure that returns the two values in the way that C/C++ returns them
(in Example 369 (page 529), this procedure is P_SHELL).

2. Change the alias of the C/C++ prototype to the name of the pTAL shell procedure in
FIX_THIS_LINK. (This change eliminates the need to change the calls to this prototype.)

3. Retire the original pTAL procedure linkage name. This allows the eld utility to identify any
uses of unchanged C/C++ prototypes, instead of producing an executable program that uses
the old prototypes (because the eld utility does not produce an executable program if there
are unresolved procedure references).

Example 367 C Procedure Extracting Two pTAL Return Values from a 64-Bit Value (Works
Only on TNS/R Systems—Not Recommended)

PTAL procedure with two return val ues:

int proc p (i, j: k) returnscc;

int(16) i;

int(32) .ext j;

int(64) k;
begin

return i, jJ < k; I Traditional function value is the value of 1.
1 Expression j < k sets condition code.
end;
C/ C++ prototype for accessing pTAL procedure:
_tal _alias ('P™) long long some_name (short i, int* j, long long k);

C/ C++ code that captures the 64-bit val ue:

528 RETURN, RETURNSCC, and C/C++ on TNS/E

typedef union val_cc_combo

{

long long combo;
struct

{

long value;
long condition_code;
} parts
} val_cc_combo
val_cc_combo.combo = some_name ();
C/ C++ code that extracts the condition code fromthe 64-bit val ue:

(short)val _cc_combo.parts.value /* For 16-bit return value */
val_cc_combo.parts.value /* For 32-bit return value */

C/ C++ code that extracts the two return values fromthe 64-bit val ue:

(short)val_cc_combo.parts.condition_code /* Always 16-bits */

Example 368 C Procedure Extracting Only the Traditional Function Value from a 64-Bit Value
(Works Only on TNS/R Systems)

pTAL procedure with two return values:

int proc p (i, jJ, k) returnscc;

int(16) i;
int(32) .ext j;
int(64) k;
begin
return i, jJ < k; ! Traditional function value is the value of 1i.
1 Expression j < k sets condition code.
end;

C/C++ prototype for accessing pTAL procedure:

_tal _alias ("P") long some_namel (short i, int* j, long long k);

Example 369 Migrating a pTAL Procedure With Two Return Values to TNS/E (Works on TNS/R and
TNS/E Systems)

pPTAL shell procedure that returns values in the way that C C++ does:
int proc p_shell (result, i, j, kK);

int(32) . result;
int(16) i;
int(32) .ext j;
int(64) k;
begin
int cc;
result :=p (i, J, K);
if < then
cc = -1D
else
if > then
cc := 1D
else
cc = 0D;

529

return cc;
end;

Decl aration of pTAL procedure P in Exanple 367 (page 528):

int proc p (1, j: k) returnscc;

int(16) i;
int(32) .ext j;
int(64) k;
begin
return i, J < k; I Traditional function value is the value of 1i.
1 Expression j < k sets condition code.
end;

C/ C++ prototype for accessing pTAL shell procedure:

_tal _alias ('P_SHELL'™) short xyz
(int* result, short i, int* j, long long k);

530 RETURN, RETURNSCC, and C/C++ on TNS/E

E 64-bit Addressing Functionality

64-bit addressing functionality has been added to the EpTAL compiler starting with SPR
TO561HO1*AAP. This functionality is accessible only when the directive _ EXTé4 is specified.

Code generated for the 64-bit addressing functionality can be executed on all H-series and J-series
RVUs. This functionality is not supported %y the TAL and pTAL compilers nor can it be executed on
D-series and G-series RVUs.

For more detailed information, see:

e “Address Types” (page 49)

e “Procedure Pointers” (page 263)
e “BuiltIn Routines” (page 274)

e “DEFINETOG” (page 388)

e “IF and IFNOT” (page 398)

o “_EXT64" (page 394)

The following sections describe the address types, procedure pointer types, built-in routines, toggles,
and directives for 64-bit addressing functionality:

Address Types

EXT32ADDR

An explicit 32-bit extended address type. The behavior of EXT32ADDR is identical to EXTADDR
and implicit conversions to and from EXT32ADDR and EXTADDR are allowed.

EXTADDR e32al;
EXT32ADDR e32a2;

EXT64ADDR

A 64-bit extended address type similar to EXTADDR and EXT32ADDR.
EXT64ADDR e64a;

PROC32ADDR

An explicit 32-bit procedure address type similar to PROCADDR.
PROC32ADDR p32a;

PROC64ADDR

A 64-bit procedure address type similar to PROCADDR and PROC32ADDR.
PROC64ADDR p64a;

Procedure Pointer Types

PROC32PTR

An explicit 32-bit procedure pointer that is similar to PROCPTR.

PROC32PTR p (X,Y)
INT(16) x;
INT(16) vy;
END PROCPTR; -- Note keyword PROCPTR here.

PROC64PTR
A 64-bit procedure pointer that is similar to PROCPTR and PROC32PTR.

Address Types 531

PROC64PTR p (X,Y)
INT(16) X;
INT(16) v;
END PROCPTR; -- Note keyword PROCPTR here.

Indirection Symbols

EXT32
An explicit 32-bit extended address type indirection symbol similar to .EXT.
INT _EXT I; ! @l is type EXTADDR
INT .EXT32 J; ! @J is type EXT32ADDR
EXT64
A 64-bit extended address type indirection symbol similar to .EXT and .EXT32.
INT .EXT64 J; I @J is type EXT64ADDR

Built-in Routines
$EXT64ADDR_TO EXTADDR

$EXT64ADDR_TO_EXTADDR (<EXTG4ADDR expression>)

Converts 64-bit extended address values to 32-bit extended EXTADDR-typed address values; no
check is performed to see if the resulting 32-bit extended address value is valid.

$EXT64ADDR_TO_EXT32ADDR

$EXT64ADDR_TO_EXT32ADDR (<EXT64ADDR expression>)

Converts 64-bit extended address values to 32-bit EXT32ADDR-typed extended address values;
no check is performed to see if the 32-bit address value is valid.

$EXT64ADDR_TO EXT32ADDR_QV
$EXT64ADDR_TO EXT32ADDR OV (<EXTG4ADDR expression>)

Converts 64-bit extended address values to 32-bit EXT32 ADDR-typed extended address values; if
the address cannot be represented in 32-bits, an overflow trap occurs. This trap cannot be disabled

using the existing overflow trap controlling mechanisms (For example, using
NO_OVERFLOW_TRAPS).

$EXTADDR_TO_EXT64ADDR

$EXTADDR_TO_EXT64ADDR (<EXTADDR or EXT32ADDR expression>)
Converts 32-bit extended address values to 64-bit EXT64ADDRtyped extended address values.

$FIXEDO_TO_EXT64ADDR

$FIXEDO_TO_EXT64ADDR (<FIXED expression>)
Converts value of type FIXED to EXT64ADDR address value.

$FIX
$FIX (<EXT64ADDR expression>)

In addition to the conversions supported by $FIX, it also converts a value of type EXT64ADDR to
integer type FIXED.

$IS_32BIT_ADDR

$1S_32BIT_ADDR (<address expression>)

532 64-bit Addressing Functionality

Returns -1 if the specified address value can be represented as a 32-bit byte address; otherwise,
returns O. Input values can be any of the address types except SGWADDR and SGBADDR, which
are 16-bits in length.

$PROCADDR

$PROCADDR (<INT(32), PROCADDR, PROC32ADDR, or PROC64ADDR expression>)

This standard function converts an INT(32), PROCADDR, PROC32ADDR, or PROC64ADDR
expression to a PROCADDR. The bit pattern is unchanged.

$PROC32ADDR

$PROC32ADDR (<INT(32), PROCADDR, PROC32ADDR, or PROC64ADDR expression>)

This standard function converts a PROCADDR, PROC32ADDR, or PROC64ADDR expression to a
PROC32ADDR. The bit pattern is unchanged.

$PROC64ADDR

$PROC64ADDR (<PROCADDR, PROC32ADDR, or PROC64ADDR expression>)

This standard function converts a PROCADDR, PROC32ADDR, or PROC64ADDR expression to a
PROC64ADDR. In pTAL, the bit pattern is unchanged.

$UFIX
SUFIX (<INT(32)-typed expression>)
$UFIX returns a value of type FIXED.
Returns the FIXED-type zero-extended value of the specified INT(32)-typed expression.

$XADR

x
$XADDR (<variable or struct expression>)
$XADR returns a value of the extended address type EXTADDR.

When system global addresses are converted to extended addresses, $XADR returns an absolute
extended address in absolute segment 1. Conversions are allowed only if there is an explicit
conversion defined to EXTADDR.

$XADR32

$XADR32 (<variable or struct expression>)

Similar in function to $XADR(), $XADR32() returns the 32-bit extended address value of type
EXTADDR for the specified variable or formal parameter. Conversions are allowed only if there is
an explicit conversion defined to EXT32ADDR or to EXTADDR.

When system global addresses are converted to extended addresses, $XADR32() returns an
absolute extended address in absolute segment 1.

$XADR64

$XADR64 (<variable or struct expression>)

Similar in function to $XADR(), $XADR64() returns the extended 64-bit address value of type
EXT64ADDR for the specified variable or formal parameter. Conversions are allowed only if there

is an explicit conversion defined to EXT64ADDR or to EXTADDR.

When system global addresses are converted to extended addresses, $XADR64() returns an
absolute extended address in absolute segment 1.

Built-in Routines 533

Implicitly Defined Compilation Toggle _ EXT64 |

The state of this toggle reflects whether the __EXT64 directive (see _ EXT64) has been specified.
It the__EXTé4 directive is not specified, the compiler implicitly sets the __EXT64 toggle off. Likewise,
if the __EXT64 directive is specifed, the compiler implicitly sets this toggle on.

This toggle is implicitly defined and maintained by all versions of EpTAL starting with SPR
TO561HO1*AAP. It is not supported by earlier versions of EpTAL or any version of the pTAL or
TAL compiler.

For downward compatibility with earlier versions of EpTAL and with pTAL and TAL, the toggle can
be specified in a DEFINETOG directive which creates the toggle and implicitly resets it. For more
information, see “DEFINETOG” (page 388).

Directives

|
__EXT64 |
__EXTe4 |

Directs the compiler to recognize the keywords and functionality for 64-bit address support. Default
is off (the new keywords are not recognized). This directive also sets the implicitly defined toggle
__EXT64 as described in “Implicitly Defined Compilation Toggle __EXT64” (page 534).

__EXT64 must be specitied on the command line or before the first token in the source is parsed. |

DEFINETOG, RESETTOG, and SETTOG |

DEFINETOG __ EXT64
RESETTOG _ EXT64 -- Not recommended
SETTOG __ EXT64 -- Not recommended

The implicitly defined toggle __EXT64 reflects the status of the __EXT64 directive.

This implicitly defined toggle is not supported by the EpTAL compilers prior to SPR T0561HO1"*AAP
nor is it supported by any pTAL or TAL compiler. If you need to compile using earlier versions of
EpTAL, pTAL, or TAL compiler, explicitly specity __EXT64 in a DEFINETOG directive which explicitly
defines and sets the toggle off in these compilers.

You can specify DEFINETOG __EXT64 using EpTAL compilers starting with SPR TO561HOT*AAP
however, doing so has no effect on the implicitly defined __EXT64 toggle

In TAL, pTAL, and EpTAL prior to TO561HO1"*AAP, you can RESETTOG and SETTOG the _ EXT64
toggle, however, this is not recommended. In TO561HO1*AAP EpTAL, RESETTOG can be applied
to the __EXT64 toggle only if the implicit setting of the toggle is already off; likewise SETTOG can
be applied to the __EXT64 toggle only if the implicit setting of the toggle is already on.

IF and IFNOT |
IF[NOT] { __EXT64 } |

In addition to the existing functionality of IF and IFNOT, IF __EXT64 evaluates to true if and only
if the directive __EXT64 has been specified.

Implicit Address Conversions |

Implicit conversions are allowed from smaller extended address, procedure address, and procedure
pointer types to larger extended address, procedure address, and procedure pointer types,
respectively. In the case of procedure pointers, the prototypes of the two types must also match.

EXT64ADDR e64a;

EXTADDR ea;

PROC64ADDR p64a;

PROC32ADDR p32a;

PROC64PTR p64p (X); INT(16) x; END PROCPTR;
PROC64PTR p64pl(x); INT(32) x; END PROCPTR;
PROC32PTR p32p (X); INT(16) x; END PROCPTR;

534 64-bit Addressing Functionality

PROC p;

BEGIN
ebda :-= ea;
p64a :-= p32a;
@p64p := @p32p;
ea = ebda; -- Error: conversion must be explicit.
p32a := pb64a; -— Error: *” e e e
@p32p := @p64p; -- Error: 7 weroogem
@p64pl := @p32p; -- Error: mismatched prototypes.
END;

Implicit conversions to/from INT(32) and EXT32ADDR are allowed.
Implicit conversions to/from EXTADDR and EXT32ADDR are allowed.

Implicit conversions from FIXED to EXT64ADDR are allowed in assignments only if the FIXED
exrression yields a constant value known at compile-time; they are interpreted as a byte address
value.

Implicit Address Conversions 535

Index

Symbols
" (quotation mark), 39
$ (dollar sign), 39
$ABS routine, 291
$ALPHA routine, 291
$ASCITOFIXED routine, 292
$ATOMIC_ routines, 66, 67
$ATOMIC_ADD routine, 276
$ATOMIC_AND routine, 277
$ ATOMIC_DEP routine, 278
$ATOMIC_GET routine, 279
$ ATOMIC_OR routine, 280
$ATOMIC_PUT routine, 280
$AXADR routine, 293
$BADDR_TO_EXTADDR routine, 294
$BADDR_TO_WADDR routine, 294
$BITLENGTH routine, 295
$BITOFFSET routine, 296
$CARRY routine
description of, 297
after assignments, 236
atomic operation that can set, 276
in nested IF statements, 243
nonatomic operations that can set, 289
returning its value to calling procedure, 245
$CHECKSUM routine, 297
$COMP routine, 298
$COUNTDUPS routine, 299
$DBL routine, 300
$DBLL routine, 301
$DBLR routine, 301
$DFIX routine, 302
$EFLT routine, 302
$EFLTR routine, 303
$EXCHANGE routine, 303
$EXECUTEIO routine, 304
$EXT64ADDR_TO_EXT32ADDR routine, 307
$EXT64ADDR_TO_EXT32ADDR_QV routine, 307
$EXT64ADDR_TO_EXTADDR routine, 306
$EXTADDR_TO_BADDR routine, 305
$EXTADDR_TO_EXT64ADDR routine, 308
$EXTADDR_TO_WADDR routine, 306
$FILL16 procedure, 308
$FILL32 procedure, 308
$FILL8 procedure, 308
$FIX routine, 309
$FIXD routine, 309
$FIXEDO_TO_EXT64ADDR, 310
$FIXEDTOASCII routine, 310
$FIXEDTOASCIIRESIDUE routine, 311
$FIXI routine, 312
$FIXL routine, 312
$FIXR routine, 313
$FLTR routine, 314
$FLTroutine, 314

536 Index

$FREEZE routine, 315
$HALT routine, 315
$HIGH routine, 315
$IFIX routine, 316
$INT routine, 317
$INT_QV routine, 318
$INTERROGATEHIO routine, 319
$INTERROGATEIO routine, 320
$INTR routine, 321
$IS_32BIT_ADDR routine, 321
$LEN routine, 322
$LFIX routine, 323
$LMAX routine, 323
$LMIN routine, 324
$LOCATESPTHDR routine, 324
$LOCKPAGE routine, 325
$MAX routine, 326
$MIN routine, 327
$MOVEANDCXSUMBYTES routine, 327
$MOVENONDUP routine, 328
$NUMERIC routine, 329
$OCCURS routine, 330
$OFFSET routine
description of, 332
structure pointers and, 175
$OPTIONAL routine, 333
$OVERFLOW routine
description of, 335
after assignments, 236
atomic operation that can set, 276
built-in routines and, 276
in nested IF statements, 243
nonatomic operations that can set, 286
returning its value to calling procedure, 245
$PARAM routine, 336
$POINT routine, 336
$PROC32ADDR routine, 337
$PROC64ADDR routine, 338
$PROCADDR routine, 337
$READBASELIMIT routine, 338
$READCLOCK routine, 339
| SREADSPT routine, 339
$READTIME routine, 340
$SCALE routine, 340
$SGBADDR_TO_EXTADDR routine, 341
$SGBADDR_TO_SGWADDR routine, 342
$SGWADDR_TO_EXTADDR routine, 342
$SGWADDR_TO_SGBADDR routine, 343
| $SPECIAL routine, 343
$STACK_ALLOCATE routine, 344
$TRIGGER routine, 345
$TYPE routine, 345
$UDBL routine, 346
$UDIVREM 16 routine, 347
$UDIVREM32 routine, 348
$UFIX routine, 349

$UNLOCKPAGE routine, 349
$WADDR_TO_BADDR routine, 350
$WADDR_TO_EXTADDR routine, 350
$WRITEPTE routine, 351
$XADR routine, 352
$XADR32 routine, 352
$XADR64 routine, 353
& (concatenation operator), 220
' (single quotation mark), 39
(exclamation mark), 38
(semicolon)
as delimiter, 38
in statements, 199
), 38
as delimiter, 38
in statements, 199
*
See Asterisk (*), 48
+
See Plus sign (+), 70
- see Hyphen (-)
See Minus sign (-), 70
>
in labeled CASE statement, 207
in move statement, 218
in RSCAN statement, 228
in SCAN statement, 228

See Period (.), 38
... (ellipsis), 207
EXT
in equivalenced variables, 194
in formal parameters, 251
in pointers
simple, 170
structure, 173
in referral structures, 141
SG
in system global pointers, 176
tal file extension, 426
64-bit addressing functionality, 531
Address Types for, 531
Built-in Routines for, 532
Directives for, 534
Implicit Address Conversions for, 534
Implicitly Defined Compilation Toggle __EXT64 for, 534
Indirection Symbols for, 532
Procedure Pointer Types for, 531

assignment operator, 71 see also Assignments
< see less than operator, signed (<)
< > (angle brackets);Brackets
angle (< >), 38
<...> (bit extraction), 70
<...> := (bit deposit operator), 71
<< (signed left bit shift), 70
<= see less than or equal operator, signed (<=)
<> see Not equal operator, signed (<>)
> see Greater than operator, signed (>)

>= see Greater than or equal operator, signed (>=)
>> (signed right bit shift), 70
? (question mark), 39
@ operator

in entry-point identifiers

for procedures, 260
for subprocedures, 262

in pointers, 172

in PROC parameters, 256

in reference parameters, 254

precedence of, 70
\, 38, 199

(colon), 260
\['\] (square brackets);Brackets

square (\, 38
__EXT64, 534
__EXT64 directive, 394, 501, 534
"*' see Multiplication operator, unsigned ('*')
'+' see Addition operator, unsigned ('+’)
"' see Subtraction operator, unsigned (')
‘<<’ (unsigned left bit shift), 70
'<=" see Less than or equal operator, unsigned ('<=")
'<>" see Not equal operator, unsigned ('<>’)
‘<’ see Less than operator, unsigned ('<’)
'=" see Equal sign, as equal operator, unsigned
'>=" see Greater than or equal operator, unsigned (">=")
'>>" (unsigned right bit shift), 70
'>" see Greater than operator, unsigned ('>')
"\\' see Remainder operator ("\\)
'P’" (read-only array symbol) see Read-only arrays
'SG’-equivalenced variables see Equivalenced variables
/' see Division operator, unsigned (/)
/ see Division operator, signed ()

A
ABS routine, 291
Absolute value, 291
Actual parameters
description of, 206
checking for presence of, 336
in CALL statement, 205
of DEFINEs, 100
Addition operator
signed (+)
in arithmetic expression, 72
operand types for, 73
precedence of, 71
unsigned ('+')
in arithmetic expression, 72
operand types for, 75
precedence of, 71
result types for, 75
with INT(32) operands, 76
Address misalignment
causes of, 66
handling, 67
tracing facility for, 66
Address symbols, base; Symbols, base address, 40
Address types

537

description of, 49
converting, 52
stored in pointers, 164
Address-conversion routines, 283
Addresses
See also Data addresses, 55
arrays of, 108
as parameters to built-in routines, 275
assignment of, 365
extended, 77
in simple pointers, 172, 174
in structure pointers
description of, 174
within structures, 152
nonextended, 78
of structures declared in subprocedures, 142
types of see Address types
Aliases for data types, 48
Alignment
base, 119
of constant lists, 64
of data, 66
of structure fields, 117
of structures
in depth, 123
overview, 116
of substructures, 124
ALPHA routine, 291
AND operator
description of, 82
condition codes and, 83
in conditional expression, 81
operand types for, 83
precedence of, 71
truth table for, 81
Angle brackets (< >), 38
ar utility, 430
Architecture and RVUs, 31
Arguments, 368
See also Parameters, 275
Arithmetic expressions, 72
Arithmetic operators
signed
description of, 73
in arithmetic expressions, 72
unsigned
description of, 75
in arithmetic expressions, 72
Arithmetic overflow testing, 335
Arrays
description of, 108
alignment of, in structures, 122
as parameters, 254
data type of, 345
declaring
in structures, 143
read-only, 111
read-write, 108
elements of

538 Index

accessing, 54
number of, 330
length of
in bits, 295
in bytes, 322
nonstring, 113
number of elements of, 330
of addresses, 108
redefining, 154
ASCII characters
set of, 36
testing for
alphabetic, 291
numeric, 329
special (nonalphanumeric), 343
ASCIITOFIXED routine, 292
ASSERT statement, 200
ASSERTION directive, 381
ASSIGN command
description of, 522
ordinary, 523
search subvolume (SSV), 523
Assignment operator (:=), 71
See also Assignments, 71
Assignments
description of, 201
bit-deposit, 204
character string, 203
expressions in, 85
FIXED variable, 203
hardware indicators after, 236
initial, 103
move statement, 218
number, 203
of addresses, 365
pointer, 203
procedure pointer, 269
Asterisk (*)
as multiplication operator see Multiplication operator
in $ASCIITOFIXED routine, 293
in $FIXEDTOASCII routine, 311
in $FIXEDTOASCIIRESIDUE routine, 311, 312
in compiler listing, 400
in constant lists, 39
in template structures, 140
in value parameter, 39
to prevent scaling
of FIXED initialization value, 48
of FIXED parameter, 251
Afomic operations
description of, 276
data misalignment and, 66, 67
ATOMIC_ADD routine, 276
ATOMIC_AND routine, 277
ATOMIC_DEP routine, 278
ATOMIC_GET routine, 279
ATOMIC_OR routine, 280
ATOMIC_PUT routine, 280
Attributes

block, 235
procedure, 248
SCF user interface, 67
AUTO parameter
description of, 118
compared to PLATFORM parameter, 119
FIELDALIGN clause and, 117
AXADR routine, 293

B
Backslash (\\)

See Remainder operator ('\\’), 71
BADDR address type

description of, 165

converting, 53

parameters of, 251

STRING pointers of, 167
BADDR_TO_EXTADDR routine, 294
BADDR_TO_WADDR routine, 294
Base address symbols, 40
BASENAME directive, 381
Bases of constants, 44
BEGIN keyword

in compound statement, 200

in procedure, 256

in structure, 115

in subprocedure, 259
BEGIN-END construct see Compound statements
BEGINCOMPILATION directive

description of, 382

and global data declarations, 373

SOURCE directive and, 419
Bit fields

description of, 46

delimiting, 38
Bit operations

description of, 34, 92

bit-deposit assignment statement, 204

extraction, 93

logical, 76

precedence of, 70

shift, 94
Bit-deposit assignment statement, 204
BIT_FILLER declaration, 147
BITLENGTH routine, 295
BITOFFSET routine, 296
Bitwise logical operators, 76
Block attributes, 235
BLOCKGLOBALS directive, 382
Blocks, data see Global data, blocked
Boolean expressions see Conditional expressions
Built-in routines, 274

See also Atomic operations, 276
BY keyword in FOR statement, 212
Bytes, 46

C
C procedure attribute, 248
Csseries RVU, 31

C/C++ procedures, 528
CALL statement, 205
CALL_SHARED directive, 383
CALLABLE procedure attribute, 248, 274
CARRY routine
description of, 297
after assignments, 236
atomic operation that can set, 276
in nested IF statements, 243
nonatomic operations that can set, 289
returning its value to calling procedure, 245
CASE expressions, 86
| CASE statement
description of, 207
| empty, 207
labeled, 207
unlabeled, 209
CBADDR address type
description of, 165
converting, 53
parameters of, 251
| pointers of, 169
Character set for pTAL, 36
Character string constants, 57
Character-test routines, 284
CHECKSHIFTCOUNT directive, 384
CHECKSUM routine, 297
COBOL procedure attribute, 248
Code coverage report, 366
Code Profiling Utilities, 366
CODECQV directive, 385
Codes
completion, 358
condition
See Condition codes, 258
Colon (\
), 38
COLUMNS directive
description of, 385
SOURCE directive and, 418
Comma (,), 38
Commands
ASSIGN
See ASSIGN command, 522
compilation
See Compilation command, 357
DEFINE see DEFINEs
Deploy, 431
Comments, delimiters for, 38
COMP routine, 298
Compatibility of pTAL and TAL, 30
Compilation command
description of, 357
with compiler directives, 367
Compilation units, naming, 363
Compiler directives
interpretation and processing of, 367
specifying
in compilation command line, 367

539

in source code, 367
summary of, 377
Compiler input directives, 377
Compiler listing
conditionally compiled lines and, 400
Compiler listing directives, 377
Compiler listing:asterisk (*) in, 400
Compilers
comparison of EpTAL, pTAL, and TAL, 31
differences between pTAL and EpTAL , 527
Completion codes, 358
Compound statements
syntax of, 200
within DEFINE bodies, 99
Concatenation operator (&), 220
Condition codes
See also Hardware indicators, 234
after assignments, 237
AND operator and, 83
atomic operations that can set, 276
C/C++ procedures on TNS/E and, 528
group comparisons and, 91
nesting, 242
nonatomic operations that alter, 286
NOT operator and, 83
OR operator and, 83
returning
with RETURN statement, 224
with RETURNSCC attribute:in procedure, 248
with RETURNSCC attribute:in subprocedure, 257
testing after function calls, 224
Conditional compilation directives, 378
Conditional expressions
description of, 81
hardware indicators in, 239
Constant expressions
description of, 81
as parameters, 254
in data type specifications, 47
Constant lists
description of, 63
aligning, 64
in array declarations, 113
in move statement, 218
Constants
See also LITERALs, 97
comparing to data addresses, 56
description of, 44
lists of see Constant lists
numeric bases of, 44
Constants:in expressions:See Constant expressions, 64
Continuation lines, 368
Conventions for syntax diagrams, 20
Conversion
between address types, 52
between addresses and numbers, 51
implicit, 52
Copy operation (move statement), 218
COUNTDUPS routine, 299

540 Index

Cross compilers
ar utility and, 430
compiling with, 429
debugging and, 429, 431
documentation for, 431
features of, 426
file extension for, 426
from PC command line, 427
in ETK, 426
linking and, 429
PC-to-NonStop host transfer tools for, 431
platforms for, 426
CWADDR address type
description of, 165
converting, 53
parameters of, 251
pointers of, 169

D
D-series RVU, 31
Data
alignment of, 66
blocks of:See Global data, blocked, 362
misaligned see Address misalignment
operations on, 34
representation of, 46
scanning, 199
sets of, 33
system global see System global data
transferring
statements for, 199
types of see Data types
Data addresses
arithmetic operations on, 55
comparing
description of, 77
extended addresses, 77
nonextended addresses, 78
to constants, 56
to procedure pointers, 56
computing distance between, 55
converting to numbers, 51
decrementing, 54
incrementing, 54
storing in variables, 51
Data allocation statements, 199
Data types
See also Address types, 46
aliases for, 48
changing, with group comparisons, 90
obtaining, 345
of expressions, 70
oTAL
description of, 46
compared to TAL, 33
specifying, 47
Data:global:See System global data, 40
DBL routine, 300
DBLL routine, 301

DBLR routine, 301

Debugging
cross compilers and, 429, 431
Enterprise Toolkit (ETK) and, 429
OPTIMIZE directive and, 404

with ASSERTION directive and ASSERT statement, 200

Decimal point, implied see Implied decimal point
Declarations

description of, 41

array

See Arrays, declaring, 108

BIT_FILLER, 147

DEFINE, 98

entry point, 260

equivalenced see Equivalenced variables, declaring

external, 419
FILLER, 147
function see Procedures, declaring
global see Global data
LITERAL, 97
NAME, 363
pointer
See Pointers, declaring, 161
procedure
See Procedures, declaring, 246
simple variable see Simple variables, declaring
structure see Structures, declaring
sublocal, 259
subprocedure
See Subprocedures, declaring, 257
substructure see Substructures, declaring
Default misalignment handling method, 67
Default target file;Files
OBJECT, 358
DEFAULTS DEFINE, 522
DEFEXPAND directive
description of, 386
output of, 100
position of, 99
DEFINE files, 426
DEFINE tool, 431
DEFINEs
calling, 100
CLASS attributes of, 521
declaring, 98
expansion of, 100
how compiler processes, 100
LITERAL declarations and, 97
names of, 521
parameters of
actual, 100
formal, 98
substituting file names for, 521
DEFINETOG directive, 388
Definition structures, declaring
equivalenced, 194
not equivalenced, 138
Definition substructures
declaring, 144

redefining, 155
Delimiters, 38
Deploy command, 431
DFIX routine, 302
Diagnostics directives, 377
Directive stacks, 369
DISABLE_OVERFLOW_TRAPS block attribute, 235
Disk file names
description of, 518
as compiler directive arguments, 368
ASSIGN command and, 522
internal, 520
logical, 520
partial, 519
parts of, 518
substituting for DEFINE commands, 521
Division operator
signed ()
in arithmetic expression, 72
operand types for, 73
precedence of, 71
unsigned (7)
in arithmetic expression, 72
operand types for, 75
precedence of, 71
result types for, 75
with INT(32) and FIXED operands, 76
DLLs (dynamiclink libraries);Libraries
dynamiclink (DLLs), 362
DO keyword
in DO-UNTIL statement, 210
in FOR statement, 212
in WHILE statement, 232
DO-UNTIL statement
description of, 210
hardware indicators in, 239
DO_TNS_SYNTAX directive, 389
Dollar sign ($), 39
Doublewords, 46
DOWNTO keyword, 212
DROP statement, 212
Dynamiclink libraries (DLLs), 362
Dynamically selected procedure calls, 271

E
EFLT routine, 302
EFLTR routine, 303
eld utility
ar utility and, 430
migrating to TNS/E and, 528
Ellipsis (...), 207
ELSE keyword, 217
Embedded SQL/MP or SQL/MX, 32
Empty CASE statement, 207
EMS (Event Management Service), 67
ENABLE_OVERFLOW_TRAPS block attribute, 235
| END keyword
in compound statement, 200
in procedure, 256

541

in structure, 115 special, 85

in subprocedure, 259 Expressions:Boolean (conditional), 81
ENDIF directive, 390 | EXT32ADDR address type
Enterprise Toolkit (ETK) description of, 165
cross compilers and, 426 EXT64ADDR address type
debugging and, 429 description of, 165
DEFINE files and, 426 EXTADDR address type
online help for, 431 description of, 165
Entry points comparing, 77
declaring, 260 converting, 53
procedure, 168 parameters of, 251
subprocedure, 169 pointers of, 169
Equal sign EXTADDR_TO_BADDR routine, 305
as delimiter, 39 EXTADDR_TO_WADDR routine, 306
as equal operator EXTDECS file, 419
signed (=):in conditional expression, 83 Extended addresses, 77
signed (=):operand types for, 84 Extended parameters, 255
signed (=):precedence of, 71 EXTENSIBLE procedure attribute, 248, 250
signed (=):without operands, 84 External declarations, 419
unsigned ('="):in conditional expression, 83 EXTERNAL keyword
unsigned ('="):operand types for, 84 in procedure declaration, 246, 247
unsigned ('="):precedence of, 71 in procedure entry-point declaration, 261
unsigned ('="):with INT(32) operands, 76 Extracting bits, 93
unsigned ('="):without operands, 84
Equivalenced variables F
description of, 177 FAIL misalignment handling method, 67
declaring Feature control, 379
description of, 178 FIELDALIGN clause
nonstructure, 180 description of, 127
system global, 193 role in field alignment, 117
memory allocation for, 179 FIELDALIGN directive
Error messages description of, 127, 395
logging to a file, 391 FIELDALIGN directive:role in field alignment, 117
maximum allowed, 393 File IDs, 519
ERRORFILE directive, 391 File names see Disk file names
ERRORS directive, 393 Files
ETK see Enterprise Toolkit (ETK) DEFINE, 426
Event Management Service (EMS), 67 EXTDECS, 419
EXCHANGE routine, 303 input, 356
Exclamation mark (, 38 map of, 396
Executable statements object see Object files
See Statements , 199 output, 356
EXECUTEIO routine, 304 source
EXPORT_GLOBALS directive, 393 See Source files, 355
Exporting program names, 362 target, 358
Expressions temporary, 522
description of, 69 FILL16 procedure, 308
arithmetic, 72 FILL32 procedure, 308
as parameters to built-in routines, 275 FILL8 procedure, 308
assignment, 85 FILLER declaration, 147
CASE, 86 FIX routine, 309
conditional, 81 FIXD routine, 309
constant FIXED data type
description of, 81 See also FIXED variables, 251
as parameters, 254 built-in routines for, 285
in data type specifications, 47 constants of, 61
data types of, 70 obtaining
group comparison see Group comparison expressions with $DFIX routine, 302
IF, 87 with $FIX routine, 309

542 Index

with $FIXD routine, 309
with $FIXEDO_TO_EXT64ADDR routine, 310
with $FIXR routine, 313
with $IFIX routine, 316
with $LFIX routine, 323
parameters of, 251, 252
FIXED data type:rounding and, 283
FIXED variables
See also FIXED data type, 251
rounding, 412
scaling
description of, 74
when assigning numbers to, 203
using, 74
FIXED variables:assigning numbers to, 203
FIXED(O) data type see FIXED data type
Fixed-point scaling, 203
FIXEDO_TO_EXT64ADDR, 310
FIXEDTOASCII routine, 310
FIXEDTOASCIIRESIDUE routine, 311
FIXERRS macro, 391
FIXI routine, 312
FIXL routine, 312
FIXR routine, 313
FLTR routine, 314
FLTroutine, 314
FMAP directive, 396
FOR keyword
in FOR statement, 212
in move statement, 218
FOR statement
description of, 212
nested, 213
optimized, 214
standard, 214
Formal parameters
indirection symbols and, 41
of DEFINEs, 98
of procedures, 247, 251
of subprocedures, 251, 258
passing by reference, 41
procedure pointers as, 263, 268
specifying, 251
FORTRAN procedure attribute, 248
FORWARD keyword
in procedure declaration, 246, 247
in procedure entry-point declaration, 261
in subprocedure declaration, 257, 259
in subprocedure entry-point declaration, 262
fpoint
changing, 340
obtaining, 336
rounding, 412
scaling, 203
specifying, 323
FREEZE routine, 315
Functions
See also Procedures, 246
atomic

See Atomic operations, 66
definition of, 246

RETURN statement and, 223
with two return values, 528

G
Global data
See also System global data, 362
blocked
allocating, 365
declaring, 362
SECTION directive and, 365
sharing, 365
SOURCE directive and, 365
map of, 397
saving and using, 372
unblocked, 364
| Global scope, 43
GLOBALIZED directive, 396
GMAP directive, 397
GOTO statement, 215
GP_OK directive, 397
Greater than operator
signed (>)
in conditional expression, 83
operand types for, 84
precedence of, 71
without operands, 84
unsigned ('>)
in conditional expression, 83
operand types for, 84
precedence of, 71
with INT(32) operands, 76
without operands, 84
Greater than or equal operator
signed (>=)
in conditional expression, 83
operand types for, 84
precedence of, 71
without operands, 85
unsigned ('>=')
in conditional expression, 83
operand types for, 84
precedence of, 71
with INT(32) operands, 76
without operands, 85
Group comparison expressions
description of, 88
for changing data types, 90
testing, 91

H
HALT routine, 315
Hardware indicators
See also Condition codes, 234
across procedures, 244
after assignments, 236
built-in routines and, 276
in conditional expressions, 239

543

list of, 234
Hash mark (#), 39
HIGH routine, 315
HP TACL commands
description of, 520
ASSIGN see ASSIGN command
DEFINE see DEFINEs
RUN, 357
Hyphen ()
followed by hyphen (-), 38
followed by right angle bracket (>), 39

Identifiers
description of, 42
classes of, 42
listing
with GMAP directive, 397
with MAP directive, 402
with PRINTSYM directive, 408
saving, 421
IF and IFNOT directives, 398
IF expressions, 87
IF statement
See also Conditional expressions, 217
description of, 217
hardware indicators in, 239
IFIX routine, 316
Implicit address conversion, 52
Implied decimal point
ignoring
with $FIXD routine, 310
with $FIXI routine, 312
with $FIXL routine, 313
in data type declarations, 48
in formal parameters, 253
in simple variable declarations, 104
moving, 340
obtaining
with $DFIX routine, 302
with $IFIX routine, 316
with $LFIX routine, 323
parentheses and, 38
IN file option, 357
Indexes, accessing array elements with, 54
Indirection symbols, 41
Initialization
of exported data, 394
of read-only arrays, 112
of simple pointers, 172
of structure pointers, 174
scope and, 44
INNERLIST directive, 400
Input files, 356
Instruction codes, listing, 400
INT data type
$INTR routine and, 321
$1S_32BIT_ADDR routine , 321
constants of, 58

544 Index

converting, 53
functions that return values of, 252
high-order word of, 315
parameters of, 251, 252
rounding and, 283
signed value of, 312
unsigned value of, 312
INT routine, 317
INT(16) data type see INT data type
INT(32) address type
bitwise logical operators and, 76
converting, 53
obtaining
with $DBLL routine, 301
with $DBLR routine, 301
with $UDBL routine, 346
unsigned operators and, 76
INT(32) data type
constants of, 59
rounding and, 283
INT(64) data type see INT data type
INT_OV routine, 318
Internal file names, 520
INTERROGATEHIO routine, 319
INTERROGATEIO routine, 320
INTERRUPT procedure attribute, 248, 249
INTR routine, 321
INVALID_FOR_PTAL directive, 401
IS_32BIT_ADDR routine, 321
ltanium architecture see TNS/E architecture

K

Keywords
description of, 37
in syntax diagrams, 21
nonreserved, 38
reserved, 37

L
Labeled CASE statement, 207
Labels
address types of, 169
dropping, 212
in procedures, 273
LAND operator
$ATOMIC_AND routine and, 277
$ATOMIC_DEP routine and, 279
in arithmetic expression, 72
operand types for, 76
precedence of, 71
with INT(32) operands, 76
LANGUAGE procedure attribute, 248
|d utility, 430
Least significant byte, 46
LEN routine, 322

| Length parameters

in CALL statements, 206
in declarations

procedure, 247

procedure pointer, 265
subprocedure, 258
passing conditionally, 333
Less than operator
signed (<)
in conditional expression, 83
operand types for, 84
precedence of, 71
without operands, 84
unsigned ('<’)
in conditional expression, 83
operand types for, 84
precedence of, 71
with INT(32) operands, 76
without operands, 84
Less than or equal operator
signed (<=)
in conditional expression, 83
operand types for, 84
precedence of, 71
without operands, 85
unsigned ('<=')
in conditional expression, 83
operand types for, 84
with INT(32) operands, 76
without operands, 85
unsigned ("\<=")
precedence of, 71
LFIX routine, 323
Libraries
user, 420
LINES directive, 401
Linking
description of, 358
Linking:cross compilers and, 429
LIST directive
description of, 402
SOURCE directive and, 418
LITERAL declarations, 97
LMAX routine, 323
LMIN routine, 324
Local GOTO statement, 215
Local scope, 43
LOCATESPTHDR routine, 324
LOCKPAGE routine, 325
Logical file names
ASSIGN command and, 522
compiler directives that accept, 368
in place of disk file names, 520
Logical operators
bitwise, 76
in arithmetic expressions, 72
with INT(32) operands, 76
longjmp() instruction, 114
Loops
FOR see FOR statement
Loops:WHILE:See WHILE statement, 214
LOR operator
$ ATOMIC_DEP routine and, 279

$ATOMIC_OR routine and, 280
in arithmetic expression, 72
operand types for, 76

precedence of, 71
with INT(32) operands, 76

M
MAIN procedure attribute, 248
MAP DEFINE, 521
MAP directive, 402
MAX routine, 326
MAXALIGN attribute, 141
Maximum routines;Routines
minimum, 285
Messages, error see Error messages
MIN routine, 327
Minimum routines, 285
Minus sign (-)
as subtraction operator see Subtraction operator
as unary operator
operand types for, 73
precedence of, 70
syntax of, 72
MISALIGNLOG attribute (SCF)
misalignment handling and, 67
misalignment tracing facility and, 66
Misalignment see Address misalignment
Mnemonics, listing, 400
Modular programming, 34
Most significant byte, 46
Move statement, 218
MOVEANDCXSUMBYTES routine, 327
MOVENONDUP routine, 328
Multiplication operator
signed (*)
description of, 40
in arithmetic expression, 72
operand types for, 73
precedence of, 70
unsigned ('*')
description of, 40
operand types for, 75
precedence of, 71
with INT(32) operands, 76

N
NAME declarations, 363
Named toggles, 370
Naming compilation units, 363
NATIVEATOMICMISALIGN attribute (SCF), 67
Nesting condition codes, 242
Next address
in move statement, 218
in RSCAN statement, 228
in SCAN statement, 228
nld utility, 430
Node names, 519
NOname directive see name directive
Nonatomic access, 67

545

Nonatomic operations, 281
Nonextended addresses, 78
Nonlocal GOTO statement, 215
Nonreserved keywords, 38
NonStop EpTAL, 426
NonStop operating systems, 31
NonStop pTAL, 426
NonStop Series see TNS architecture
NonStop Series/Itanium see TNS/E architecture
NonStop Series/RISC see TNS/R architecture
Nonstring arrays, 113
NOOVERFLOW_TRAPS procedure attribute
description of, 234
in procedure, 248, 250
in subprocedure, 257, 259
Not equal operator
signed (<>)
in conditional expression, 83
operand types for, 84
precedence of, 71
without operands, 84
unsigned ('<>')
in conditional expression, 83
operand types for, 84
precedence of, 71
with INT(32) operands, 76
without operands, 84
NOT operator
description of, 82
condition codes and, 83
in conditional expression, 81
operand types for, 83
precedence of, 71
truth table for, 81
Null statement, 199
Numbers, converting to data addresses, 51
NUMERIC routine, 329
Numeric toggles, 370

O
OBJECT file, 358
Object files

creating, 358
generating, 357
linking, 358
Objectile content directives, 377
OCCURS routine, 330
Odd-byte references, 172, 174
OF keyword
in labeled CASE statement, 207
in unlabeled CASE statement, 209
OFFSET routine
description of, 332
structure pointers and, 175
Online help for cross compilers, 431
Operands
in arithmetic expressions, 72
scaling FIXED, 74
Operating systems, 31

546 Index

Operations
See also Operators, 34
atomic
See Atomic operations, 276
bit see Bit operations
data, 34
listed by data type, 48
nonatomic
See Nonatomic operations, 281
Operators
description of, 39
AND
description of, 82
condition codes and, 83
arithmetic see Arithmetic operators
concatenation (&), 220
logical
description of, 76
in arithmetic expressions, 72
NOT
description of, 82
condition codes and, 83
OR
description of, 82
condition codes and, 83
precedence of, 70
relational see Relational operators
signed
See Signed operators, 73
unsigned
See Unsigned operators, 75
OPTIMIZE directive, 404
OPTIMIZEFILE directive, 404
Optional parameters, 333
OPTIONAL routine, 333
OR operator
description of, 82
condition codes and, 83
in conditional expression, 82
operand types for, 83
precedence of, 71
truth table for, 82
OTHERWISE keyword
in labeled CASE statement, 207
in unlabeled CASE statement, 209
OUT file option, 357
Output files, 356
Overflow
managing
generally, 234
GOTO statement and, 216
testing, 335
OVERFLOW routine
description of, 335
after assignments, 236
atomic operation that can set, 276
in nested IF statements, 243
nonatomic operations that can set, 286
returning its value to calling procedure, 245

OVERFLOW_TRAPS directive, 406
OVERFLOW_TRAPS procedure attribute
description of, 234
in procedure, 248, 250
in subprocedure, 257, 259

P
P-relative arrays see Read-only arrays
PAGE directive, 407
Page heading, 407
PARAM routine, 336
PARAM SWAPVOL command, 522
Parameters
See also Arguments, 275
actual see Actual parameters
extended, 255
of built-in routines, 275
optional, 333
referencing, 256

Parameters:formal:See Formal parameters, 206

Parentheses
as delimiters, 38
implied decimal point and, 38
operator precedence and, 71
Partial file names
description of, 519
ASSIGN SSV command and, 523
PASCAL procedure attribute, 248
PC-to-NonStop host transfer tools, 431
Period (.)
in bit-deposit assignment statement, 204
in formal parameters, 251
in pointers
simple, 170
structure, 173
in structure item identifiers, 38
in structures
equivalenced definition, 194
referral, 141
PIC see Position-independent code (PIC)
PLATFORM parameter
description of, 118
compared to AUTO parameter, 119
FIELDALIGN clause and, 117
Plus sign (+)
as addition operator
See Addition operator, 71
as unary operator
in arithmetic expression, 72
operand types for, 73
precedence of, 70
POINT routine, 336
Pointers
description of, 34
address types stored in, 164
allocation of, 161
assignment statements with, 203
declaring
overview, 161

procedure see Procedure pointers, declaring
system global:See System global data, declaring,
pointers, 176
VOLATILE, 163
procedure see Procedure pointers
simple see Simple pointers
structure see Structure pointers
testing for nonzero values, 56
Pointers:declaring:simple:See Simple pointers, declaring,
196
Pointers:declaring:structure:See Structure pointers,
declaring, 197
Pointers:stepping; Stepping pointers, 54
POPname directive see name directive
Position-independent code (PIC), 383
Pound sign (#);# (hash mark or pound sign), 39
Precedence of operators, 70
PRINTSYM directive, 408
PRIV procedure attribute, 248
Private data area, 32
PRIVATE keyword, 364
Privileged mode, 274
Privileged routines, 281
PROC address type, 251
PROC keyword, 246
PROC(32) address type, 251
PROC32ADDR address type
description of, 165
PROC32ADDR routine, 337
PROC64ADDR routine, 338
PROCADDR address type
description of, 165
comparing to PROCPTR, 56
converting, 53
parameters of, 251
pointers of, 168
PROCADDR routine, 337
Procedure calls (CALL statement), 205
Procedure entry points, 168
Procedure pointers
description of, 263
address types of, 168
assignments to, 269
comparing to data addresses, 56
declaring
as formal parameters, 268
as variables, 266
in structures, 267
for dynamically selected procedure calls, 271
Procedure-parameter routines, 286
Procedures
description of, 32, 246
address types of, 168
as parameters, 254
attributes of, 248
bodies of, 256
C/C++, 528
callable, 274
converting from variable to extensible, 250

547

declaring, 246
dynamically selected calls to, 271
extensible, 250
EXTERNAL declaration of, 246, 247
formal parameter specification in, 251
FORWARD declaration of, 246, 247
labels in, 273
languages of, 250
main, 248
resident, 249
scope of, 43
system, 34
that return condition codes, 225, 250
typed
See Functions, 246
using hardware indicators across, 244
variable, 249
with RETURN statements, 223
with two return values, 528
PROCPTRs see Procedure pointers
PROFDIR directive, 408
PROFGEN directive, 409
Profile-guided optimization, 366
PROFUSE directive, 409
Program control statements, 199
pTAL language
applications, 31
character set for, 36
compatibility with TAL, 30
elements of, 36
features of, 32
services for, 34
syntax of see Syntax
Punctuation characters in syntax diagrams, 21
PUSHname directive:See name directive, 367

Q
Quadruplewords, 46
Question mark (?), 39
Quotation mark ("), 39
See also Single quotation mark ('), 39

R

Read-only arrays
address types of, 169
constant lists in, 113
declaring, 111
READBASELIMIT routine, 338
READCILOCK routine, 339
READSPT routine, 339
READTIME routine, 340
REAL data type
numeric constants of, 62
obtaining
with $FLTR routine, 314
with $FLTroutine, 314
parameters of, 251

548 Index

REAL data type:functions that return values of; UNSIGNED
data type:functions that return values of;FIXED data
type:functions that return values of, 252

REAL(32) data type see REAL data type

REAL(64) data type

numeric constants of, 62
obtaining
with $EFLT routine, 302
with $EFLTR routine, 303

Records see Structures

Recursion, 33

Redefinitions

array, 154
pointer
simple, 158
structure, 159
rules for, 153
simple variable, 153
substructure
definition, 155
referral , 157
REFALIGNED clause
with simple equivalenced pointers, 187
with structure pointers, 134
REFALIGNED directive, 410
Referral structures, declaring
equivalenced, 195
not equivalenced, 141
Referral substructures
declaring, 146
redefining, 157
Relational operators
in conditional expressions, 83
signed
in address comparisons, 77
operand types for, 83
precedence of, 71
unsigned
in address comparisons, 77
operand types for, 84
precedence of, 71
with INT(32) operands, 76
with extended addresses, 77
with nonextended addresses, 78
Relocatable data blocks:See Global data, blocked, 362
Remainder operator ("\\’)
in arithmetic expression, 72
operand types for, 75
precedence of, 71
result types for, 75
with INT(32) and FIXED operands, 76

Reserved keywords, 37

RESETTOG directive, 411

RESIDENT procedure attribute, 248, 249

RETURN statement, 223

RETURNSCC procedure attribute

for procedures, 248, 250
for subprocedures, 257, 258
RISC see TNS/R architecture

ROUND (default) misalignment handling method, 67

ROUND directive, 412
Rounding
expressions unaffected by, 283
ROUND directive and, 412
type-conversion routines and, 283
Routines
See also Functions, 274
address-conversion, 283
arithmetic, 285
built-in, 274
charactertest, 284
maximum, 285
miscellaneous built-in, 286
procedure-parameter, 286
pTAL privileged, 281
type-conversion, 282
variable-characteristic , 285
RSCAN statement, 228

Run-time environment directives, 379

S
SAVEGILOBALS directive, 372, 413
SCALE routine, 340
Scaling FIXED values
by specifying fpoint, 74
in assignment statements, 203
with $SCALE routine, 340
SCAN statement, 228
SCF user interface
attributes of, 67
misalignment handling and, 67
misalignment tracing facility and, 66
Scope of declared items, 43
Search subvolume (SSV) command, 523
SECTION directive
description of, 414
global data blocks and, 365
SOURCE directive and, 417
Section names, 414
Segment Page Table (SPT)
address of, 324
copying an entry from, 339
Selector
in labeled CASE statement, 207
in unlabeled CASE statement, 209
Semicolon (\, 38, 199
Services
oTAL 34
system, 34

Services:CRE;CRE services;Common run-time environment

(CRE) services, 34
setjmp() instruction, 114
SETTOG directive, 415
SGBADDR address type

description of, 165

converting, 53

parameters of, 251
pointers of, 167

SGBADDR_TO_EXTADDR routine, 341
SGBADDR_TO_SGWADDR routine, 342
SGWADDR address type

description of, 165

converting, 53

parameters of, 251

pointers of, 167
SGWADDR_TO_EXTADDR routine, 342
SGWADDR_TO_SGBADDR routine, 343
SGXBADDR address type

description of, 165

converting, 53

parameters of, 251

pointers of, 167
SGXWADDR address type

description of, 165

converting, 53

parameters of, 251

pointers of, 167
Shared code

See Position-independent code (PIC), 383

SHARED?2 parameter
description of, 117, 128
FIELDALIGN clause and, 117

SHAREDS8 parameter
description of, 118, 129
FIELDALIGN clause and, 117

Shifting bits
description of, 94
precedence of operators for, 70

Short-circuit expression evaluation, 83

SIGILL signal (signal #4), 67

Signed operators
arithmetic, 73
bit shift, 70
relational, 83

Simple pointers
description of, 161
addresses in, 174
as parameters, 254
declaring

equivalenced, 183
not equivalenced, 170
equivalenced, 183
initializing, 172
redefining, 158
using, 149
VOLATILE, 163
within structures, 148

Simple variables
as parameters, 254
data type of, 345
declaring

equivalenced, 182

not equivalenced, 103
equivalenced, 193
length of

in bits, 295

in bytes, 322

549

redefining, 153
within structures, 142
Single quotation mark ('), 39
sINT, 274
Slash {) see Division operator
Smear operation, 222, 308
Source code listing, 402
SOURCE directive
description of, 416
global data blocks and, 365
NOLIST directive and, 418
system procedure declarations and, 419
Source files
checking syntax of, 422
compiling, 355
listing, 402
Spacing rules in syntax diagrams, 21
Special expressions, 85
SPECIAL routine, 343
SPT, 324
SPT (Segment Page Table)
address of, 324
copying an entry from, 339
SQL/MP or SQL/MX in pTAL, 32
Square brackets (\[\]), 38
SRL directive, 420
STACK_ALLOCATE routine, 344
Stacks, directive
See Directive stacks, 369
Standard functions see Built-in routines
Statements
categories of, 199
compound see Compound statements
null, 199
role in program, 45
Static T flag, 234
Storage units, 46
STRING data type
functions that return values of, 252
numeric constants of, 58
parameters of
actual:passed conditionally, 334
actual:passed unconditionally, 206
formal:for procedure pointers, 265
formal:for procedures, 247, 251, 252
formal:for subprocedures, 251, 252, 258
STRUCT data type, 251, 252, 255
STRUCT keyword
in structures
definition, 138
referral, 141
template, 139
in substructures
definition: redefined, 155
definition:not redefined, 144
referral:not redefined, 146
referral:redefined, 157

STRUCTALIGN (MAXALIGN) attribute, 137, 140

STRUCTALIGN clause, 141

550 Index

Structure items
arrays, 143
filler bits or bytes, 147
offsets of
in bits, 296
in bytes, 332
pointers
simple, 148
structure, 151
procedure pointers as, 263
simple variables, 142
substructures
definition, 144
referral, 146
Structure pointers
description of, 161
addresses in, 174
as parameters, 254
declaring, 173
initializing, 174
redefining, 159
reference alignment with, 134
VOLATILE, 164
within structures, 151
Structures
description of, 114
alignment of
description of, 116
arrays in, 122
base, 119
fields of, 117
in depth, 123
as parameters, 254, 255
data type of, 345
declaring
definition:equivalenced, 194
definition:not equivalenced, 138
referral:equivalenced, 195
referral:not equivalenced, 141
template, 139
items within see Structure items
layout of, 115
length of
in bits, 295
in bytes, 322
maximum nesting levels in, 115
number of occurrences of, 330
redefining, 153
Sublocal declarations, 259
Sublocal scope, 43
SUBPROC keyword, 257
Subprocedure entry points, 169
Subprocedures
See also Functions, 246
description of, 32
address types of, 169
bodies of, 259
declaring, 257
formal parameter specification in, 251

FORWARD declaration of, 259
sublocal declarations in, 259
that return condition codes, 258
variable, 258
with RETURN statements, 223
Substructures

alignment of, 124
data type of, 345
declaring

definition, 144

referral, 146
length of

in bits, 295

in bytes, 322
number of elements of, 330
redefining

definition, 155

referral, 157

Subsystem Control Facility see SCF user interface

Subtraction operator
signed (-)
in arithmetic expression, 72
operand types for, 73
precedence of, 71
unsigned ("-')
in arithmetic expression, 72
operand types for, 75
precedence of, 71
result types for, 75
with INT(32) operands, 76
Subvolume names, 519
SUPPRESS directive, 420
Swap volume, 522
SWAPVOL command, 522
SYMBOLS directive, 421
Syntax
checking, 422
conventions for, 20
summary of, 432
SYNTAX directive, 422
System clock setting, 339
System global data
See also Global data, 362
declaring
equivalenced, 193
pointers, 176
pointers o, 167
System names, 519
System procedures
description of, 34
SOURCE directive and, 419
System services, 34

T
TACL commands see HP TACL commands
TACL DEFINE tool, 431
TAL
compatibility with pTAL, 30
procedures that return two values, 528

TARGET directive, 423
Target file option, 358
Template structures, declaring, 139
Temporary files, 522
Temporary variables
creating, 232
dropping, 212
THEN keyword, 217

TNS architecture RVUs;TNS/R architecture RVUs; TNS/E

architecture RVUs, 31
TNS/R native mode, 67
TNSMISALIGN attribute (SCF), 67
TO keyword, 212
Toggles

description of, 370

turning off, 411

turning on , 415
Tracing facility, 66
Transfer Tool, 431
Traps, managing

generally, 234

GOTO statement and, 216
TRIGGER routine, 345
TYPE routine, 345
Type-conversion routines, 282
Typed procedures see Functions

U
UDBL routine, 346
UDIVREM16 routine, 347
UDIVREM32 routine, 348
UFIX routine, 349
ulNT, 274
Unlabeled CASE statement, 209
UNLOCKPAGE routine, 349
UNSIGNED data type
parameters of, 251
Unsigned operators
arithmetic, 75
bit shift, 70
relational, 84
UNSPECIFIED procedure attribute, 248
UNTIL keyword
in DO statement, 210
in RSCAN statement, 228
in SCAN statement, 228
USE statement, 232
USEGLOBALS directive
description of, 423

SAVEGLOBALS and BEGINCOMPILATION and, 373

SOURCE directive and, 419
User library, 420

\Y
VARIABLE procedure attribute

for procedures, 248, 249

for subprocedures, 257, 258
Variable-characteristic routines, 285

VARIABLE-to-EXTENSIBLE procedure conversions, 250

551

Variables
description of, 43
equivalenced see Equivalenced variables
FIXED, 74
procedure pointers as, 263
scope of, 43
simple see Simple variables
storing data addresses in, 51
temporary
creating, 232
dropping, 212
types of, 43
Visual Studio .NET, 426
VOLATILE pointers
simple, 163
structure, 164
VOLATILE procedure attribute, 138
Volume names, 519

W
WADDR address type

description of, 165

converting, 53

parameters of, 251

pointers of, 167
WADDR_TO_BADDR routine, 350
WADDR_TO_EXTADDR routine, 350
WARN directive, 424
Warning messages, 424
WHILE keyword

in RSCAN statement, 228

in SCAN statement, 228

in WHILE statement, 232
WHILE statement

description of, 232

hardware indicators in, 240
Words, 46
WRITEPTE routine, 351

X
XADR routine, 352
XADR32 routine, 352
XADR64 routine, 353
XOR operator
in arithmetic expression, 72
operand types for, 76
precedence of, 71
with INT(32) operands, 76

VA
ZZBInnnn target file, 358

552 Index

	HP pTAL Reference Manual
	Legal Notice
	Contents
	About This Document
	Supported Release Version Updates (RVUs)
	Intended Audience
	New and Changed Information
	New and Changed Information for 523746–009
	New and Changed Information for 523746–008
	New and Changed Information for 523746–007

	Document Organization
	Notation Conventions
	Syntax Diagram Conventions
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces

	Related Information
	Publishing History
	HP Encourages Your Comments

	1 Introduction to pTAL
	pTAL and TAL Compatibility
	EpTAL, pTAL, and TAL Compilers
	pTAL Applications
	pTAL Features
	Procedures
	Subprocedures
	Private Data Area
	Recursion
	Parameters
	Data Types
	Data Grouping
	Pointers
	Data Operations
	Bit Operations
	Built-in Routines
	Compiler Directives
	Modular Programming

	System Services
	System Procedures
	pTAL and the CRE

	2 Language Elements
	Character Set
	Keywords
	Delimiters
	Operators
	Base Address Symbols
	Indirection Symbols
	Declarations
	Identifiers
	Variables
	Scope

	Typed Integer Constants
	Statements

	3 Data Representation
	Data Types
	Specifying Data Types
	Data Type Aliases
	Operations by Data Type

	Address Types
	Storing Addresses in Variables
	Converting Between Address Types and Numeric Data Types
	Converting Between Address Types
	Using Indexes to Access Array Elements
	Incrementing and Decrementing Addresses (Stepping Pointers)
	Using Arithmetic Operations to Adjust Addresses
	Computing the Number of Bytes Between Addresses
	Comparing Addresses to Addresses
	Comparing Addresses to Constants
	Comparing Procedure Addresses and Procedure Pointers
	Testing a Pointer for a Nonzero Value

	Constants
	Character String
	Initializations
	Assignments

	STRING Numeric
	INT Numeric
	INT(32) Numeric
	FIXED Numeric
	REAL and REAL(64) Numeric
	Constant Lists
	Constant List Alignment Specification

	4 Data Alignment
	Misalignment Tracing Facility
	Misalignment Handling

	5 Expressions
	Data Types of Expressions
	Operator Precedence
	Arithmetic Expressions
	Signed Arithmetic Operators
	Scaling of FIXED Operands
	Using FIXED(*) Variables

	Unsigned Arithmetic Operators
	Bitwise Logical Operators
	Using Bitwise Logical Operators and INT(32) Operands

	Comparing Addresses
	Extended Addresses
	Nonextended Addresses

	Constant Expressions
	Conditional Expressions
	NOT, OR, and AND Operators
	Evaluating NOT, OR, and AND Operations
	NOT, OR, and AND Operators and Condition Codes

	Relational Operators
	Signed Relational Operators
	Unsigned Relational Operators

	Special Expressions
	Assignment
	CASE
	IF
	Group Comparison
	Changing the Data Type of the Data
	Testing Group Comparisons

	Bit Operations
	Bit Extractions
	Bit Shifts

	6 LITERALs and DEFINEs
	Declaring Literals
	Declaring DEFINEs
	Calling DEFINEs
	How the Compiler Processes DEFINEs
	Passing Actual Parameters to DEFINEs

	7 Simple Variables
	Declaring Simple Variables
	Specifying Simple Variable Address Types
	Initializing Simple Variables With Numbers
	Initializing Simple Variables With Character Strings
	Examples

	8 Arrays
	Declaring Arrays
	Declaring Read-Only Arrays
	Using Constant Lists in Array Declarations
	Read-Only Arrays
	Nonstring Arrays

	9 Structures
	Structure Layout
	Overview of Structure Alignment
	Structures Aligned at Odd-Byte Boundaries

	Overview of Field Alignment
	SHARED2
	SHARED8
	PLATFORM
	AUTO
	Differences Between PLATFORM and AUTO

	Field and Base Alignment
	Base Alignment
	Structure Alignment Examples

	Array Alignment in Structures
	Structure Alignment
	Substructure Alignment
	Alignment Considerations for Substructures
	FIELDALIGN Clause
	FIELDALIGN Compiler Directive
	SHARED2 Parameter
	SHARED8 Parameter
	Alignment of Fields
	Optimizing Structure Layouts
	Structure Length
	Alignment of UNSIGNED(17‑31) Fields

	Reference Alignment With Structure Pointers
	REFALIGNED Clause
	Default Reference Alignment
	REFALIGNED(2)
	REFALIGNED(8)
	Code Generation for Structure References

	STRUCTALIGN (MAXALIGN) Attribute
	VOLATILE Attribute
	Declaring Definition Structures
	Declaring Template Structures
	Declaring Referral Structures
	Declaring Simple Variables in Structures
	Declaring Arrays in Structures
	Declaring Substructures
	Definition Substructures
	Referral Substructures

	Declaring Filler
	Declaring Simple Pointers in Structures
	Using Simple Pointers
	Assigning Addresses to Pointers in Structures

	Declaring Structure Pointers in Structures
	Declaring Redefinitions
	Simple Variable
	Array
	Definition Substructure
	Referral Substructure
	Simple Pointer
	Structure Pointer

	10 Pointers
	Overview of Pointer Declaration
	Declaring VOLATILE Pointers
	Simple
	Structure

	Address Types
	BADDR and WADDR
	SGBADDR, SGWADDR, SGXBADDR, and SGXWADDR (System Globals)
	PROCADDR, PROC32ADDR, and PROC64ADDR (Procedures, Procedure Pointers, and Procedure Entry Points)
	Subprocedures, Subprocedure Entry Points, Labels, and Read-Only Arrays (CBADDR and CWADDR Address Types)
	EXTADDR, EXT32ADDR, and EXT64ADDR (Extended Addresses)

	Declaring Simple Pointers
	Initializing Simple Pointers
	Declaring Structure Pointers
	Initializing Structure Pointers
	Declaring System Global Pointers

	11 Equivalenced Variables
	Declaring Equivalenced Variables
	Memory Allocation
	Declaring Nonstructure Equivalenced Variables
	Memory Usage for Nonstructured Equivalenced Variables
	Equivalenced Arrays
	Indirect Arrays
	Equivalenced Simple Variables
	Equivalenced Simple Pointers
	Using Equivalenced Simple Pointers
	REFALIGNED Clause for Equivalenced Simple Pointers

	Equivalencing Procedure Addresses (PROCADDR, PROC32ADDR, and PROC64ADDR) and Pointer Variables (PROCPTR, PROC32PTR, and PROC64PTR)
	Declaring Equivalenced Definition Structures
	Structure Variants
	Memory Usage for Structured Equivalenced Variables
	FIELDALIGN Clause

	System Global Equivalenced Variable Declarations
	Equivalenced Simple Variable
	Equivalenced Definition Structure
	Equivalenced Referral Structure
	Equivalenced Simple Pointer
	Equivalenced Structure Pointer

	12 Statements
	Using Semicolons in Statements
	Compound Statements
	ASSERT
	Assignment
	Pointer Assignment
	Assigning Numbers to FIXED Variables
	Assigning Character Strings
	Examples

	Bit-Deposit Assignment
	CALL
	CASE
	Empty CASE
	Labeled CASE
	Unlabeled CASE

	DO-UNTIL
	DROP
	Dropping Labels
	Dropping Temporary Variables

	FOR
	Nested
	Standard
	Optimized

	GOTO
	Local
	Nonlocal
	GOTO and Target Statements With Different Trapping States

	IF
	Testing Address Types
	Testing Hardware Indicators

	Move
	Destination Shorter Than Source
	$FILL8, $FILL16, and $FILL32 Statements
	RETURN
	Functions
	Procedures and Subprocedures
	Condition Codes

	SCAN and RSCAN
	Determining What Stopped a Scan
	Extended Pointers
	Crossing Variable Boundaries
	Data Layout Considerations
	Data Passed to Procedures in Reference Parameters

	P-Relative Arrays

	USE
	WHILE

	13 Hardware Indicators
	Managing Overflow Traps
	[NO]OVERFLOW_TRAPS Procedure Attribute
	[EN|DIS]ABLE_OVERFLOW_TRAPS Block Attribute

	Hardware Indicators After Assignments
	$OVERFLOW
	$CARRY
	Condition Codes
	When Condition Codes Are Accessible
	When Condition Codes Are Not Accessible

	Hardware Indicators in Conditional Expressions
	Nesting Condition Code Tests
	Using Hardware Indicators Across Procedures
	Testing a Hardware Indicator Set in the Calling Procedure
	Returning a Condition Code to the Calling Procedure
	Returning the Value of $OVERFLOW or $CARRY to the Calling Procedure

	14 Procedures, Subprocedures, and Procedure Pointers
	Procedure Declarations
	Procedure Attributes
	Parameters and VARIABLE and EXTENSIBLE Procedures
	VARIABLE, EXTENSIBLE and RETURNSCC Procedures as Actual Parameters

	Formal Parameter Specification
	Using STRUCT as a Formal Parameter
	Passing an Extended Address Parameter to a Non-EXTENDED Reference Parameter
	Using the PROC Formal Parameter
	Referencing Parameters

	Procedure Body
	Subprocedure Declarations
	Subprocedure Body
	Entry-Point Declarations
	Procedure Entry-Point Identifiers
	Subprocedure Entry-Point Identifiers

	Procedure Pointers
	Declaring Procedure Pointer Variables
	Declaring Procedure Pointers in Structures
	Declaring PROCPTRs as Formal Parameters
	Assignments to Procedure Pointers
	Dynamically Selected Procedure Calls

	Labels in Procedures

	15 Built-In Routines
	Privileged Mode
	Parameters
	Addresses as Parameters
	Expressions as Parameters

	Hardware Indicators
	Atomic Operations
	$ATOMIC_ADD
	$ATOMIC_AND
	$ATOMIC_DEP
	$ATOMIC_GET
	$ATOMIC_OR
	$ATOMIC_PUT

	Nonatomic Operations
	pTAL Privileged Routines
	Type-Conversion Routines
	Address-Conversion Routines
	Character-Test Routines
	Minimum and Maximum Routines
	Arithmetic Routines
	Carry and Overflow Routines
	FIXED-Expression Routines
	Variable-Characteristic Routines
	Procedure-Parameter Routines
	Miscellaneous Routines
	$ABS
	$ALPHA
	$ASCIITOFIXED
	$AXADR
	$BADDR_TO_EXTADDR
	$BADDR_TO_WADDR
	$BITLENGTH
	$BITOFFSET
	$CARRY
	$CHECKSUM
	$COMP
	$COUNTDUPS
	$DBL
	$DBLL
	$DBLR
	$DFIX
	$EFLT
	$EFLTR
	$EXCHANGE
	$EXECUTEIO
	$EXTADDR_TO_BADDR
	$EXTADDR_TO_WADDR
	$EXT64ADDR_TO_EXTADDR
	$EXT64ADDR_TO_EXT32ADDR
	$EXT64ADDR_TO_EXT32ADDR_OV
	$EXTADDR_TO_EXT64ADDR
	$FILL8, $FILL16, and $FILL32
	$FIX
	$FIXD
	$FIXED0_TO_EXT64ADDR
	$FIXEDTOASCII
	$FIXEDTOASCIIRESIDUE
	$FIXI
	$FIXL
	$FIXR
	$FLT
	$FLTR
	$FREEZE
	$HALT
	$HIGH
	$IFIX
	$INT
	$INT_OV
	$INTERROGATEHIO
	$INTERROGATEIO
	$INTR
	$IS_32BIT_ADDR
	$LEN
	$LFIX
	$LMAX
	$LMIN
	$LOCATESPTHDR
	$LOCKPAGE
	$MAX
	$MIN
	$MOVEANDCXSUMBYTES
	$MOVENONDUP
	$NUMERIC
	$OCCURS
	$OFFSET
	$OPTIONAL
	$OVERFLOW
	$PARAM
	$POINT
	$PROCADDR
	$PROC32ADDR
	$PROC64ADDR
	$READBASELIMIT
	$READCLOCK
	$READSPT
	$READTIME
	$SCALE
	$SGBADDR_TO_EXTADDR
	$SGBADDR_TO_SGWADDR
	$SGWADDR_TO_EXTADDR
	$SGWADDR_TO_SGBADDR
	$SPECIAL
	$STACK_ALLOCATE
	$TRIGGER
	$TYPE
	$UDBL
	$UDIVREM16
	$UDIVREM32
	$UFIX
	$UNLOCKPAGE
	$WADDR_TO_BADDR
	$WADDR_TO_EXTADDR
	$WRITEPTE
	$XADR
	$XADR32
	$XADR64

	16 Compiling and Linking pTAL Programs
	Compiling Source Files
	Input Files
	Output Files
	Running the Compiler
	IN File Option
	OUT File Option
	HP TACL Run Options
	Target File Option

	Completion Codes Returned by the Compiler

	Linking Object Files
	Creating a Dynamic Linked Library (DLL)
	Compiling With Global Data Blocks
	Declaring Global Data
	Naming Compilation Units
	Declaring Named Data Blocks
	Declaring Private Data Blocks
	Declaring Unblocked Data

	Allocating Global Data Blocks
	Address Assignments
	Sharing Global Data Blocks

	Compiling With Saved Global Data
	Using the Code Profiling Utilities

	17 Compiler Directives
	Specifying Compiler Directives
	Compilation Command
	Directive Line
	Rules for directive lines:
	Rules for continuation lines:

	File Names as Compiler Directive Arguments
	Directive Stacks
	Pushing Directive Settings
	Popping Directive Settings
	Example

	Toggles
	Named Toggles
	Numeric Toggles
	Examples

	Saving and Using Global Data Declarations
	Saving Global Data Declarations
	Retrieving Global Data Declarations
	Examples
	Migrating from TNS/R to TNS/E

	Summary of Compiler Directives
	ASSERTION
	BASENAME
	BEGINCOMPILATION
	BLOCKGLOBALS
	CALL_SHARED
	CHECKSHIFTCOUNT
	CODECOV
	COLUMNS
	DEFEXPAND
	DEFINETOG
	DO_TNS_SYNTAX
	ENDIF
	ERRORFILE
	ERRORS
	EXPORT_GLOBALS
	__EXT64
	FIELDALIGN
	FMAP
	GLOBALIZED
	GMAP
	GP_OK
	IF and IFNOT
	INNERLIST
	INVALID_FOR_PTAL
	LINES
	LIST
	MAP
	OPTIMIZE
	OPTIMIZEFILE
	OVERFLOW_TRAPS
	PAGE
	PRINTSYM
	PROFDIR
	PROFGEN
	PROFUSE
	REFALIGNED
	RESETTOG
	ROUND
	SAVEGLOBALS
	SECTION
	SETTOG
	SOURCE
	Section Names
	Nesting Levels
	Effect of Other Directives
	COLUMNS
	LIST and NOSUPPRESS
	NOLIST
	USEGLOBALS and BEGINCOMPILATION (pTAL Compiler Only)

	Including System Procedure Declarations
	Examples

	SRL
	SUPPRESS
	SYMBOLS
	SYNTAX
	TARGET
	USEGLOBALS
	WARN

	18 pTAL Cross Compiler
	NonStop pTAL (ETK)
	pTAL or EpTAL (PC Command Line)
	Compilation and Linking
	Debugging
	Tools and Utilities
	NonStop ar Utility
	TACL DEFINE Tool (ETK)
	PC-to-NonStop-Host Transfer Tools
	ETK
	PC Command Line

	Documentation

	A Syntax Summary
	Data Types
	Constants
	Character String
	STRING Numeric
	INT Numeric
	INT(32) Numeric
	FIXED Numeric
	REAL and REAL(64) Numeric
	Constant List

	Expressions
	Arithmetic
	Conditional
	Assignment
	CASE
	IF
	Group Comparison
	Bit Extraction
	Bit Shift

	Declarations
	LITERAL
	DEFINE
	Simple Variable
	Array
	Read-Only Array
	Structures
	Definition Structure
	Template Structure
	Referral Structure
	Simple Variables Declared in Structure
	Arrays Declared in Structure
	Definition Substructure
	Referral Substructure
	Filler in Structure
	Simple Pointers Declared in Structure
	Structure Pointers Declared in Structure

	Redefinition
	Simple Variable
	Array
	Definition Substructure
	Referral Substructure
	Simple Pointer
	Structure Pointer

	Pointer
	Simple
	Structure
	System Global

	Equivalenced Variable
	Nonstructure
	Simple Variable
	Simple Pointer
	Definition Structure
	'SG'-Equivalenced Simple Variable
	'SG'-Equivalenced Definition Structure
	'SG'-Equivalenced Referral Structure
	'SG'-Equivalenced Simple Pointer
	'SG'-Equivalenced Structure Pointer

	Procedure and Subprocedure
	Procedure
	Subprocedure
	Formal Parameters
	Entry Point
	Label
	Procedure Pointer

	Statements
	Compound
	ASSERT
	Assignment
	Bit Deposit Assignment
	CALL
	Labeled CASE
	Unlabeled CASE
	DO-UNTIL
	DROP
	FOR
	GOTO
	IF
	Move
	RETURN
	SCAN and RSCAN
	USE
	WHILE

	Overflow Traps
	OVERFLOW_TRAPS Directive
	[EN|DIS]ABLE_OVERFLOW_TRAPS Block Attribute

	Built-in Routines
	Atomic
	$ATOMIC_ADD
	$ATOMIC_AND
	$ATOMIC_DEP
	$ATOMIC_GET
	$ATOMIC_OR
	$ATOMIC_PUT

	Nonatomic
	$ABS
	$ALPHA
	$ASCIITOFIXED
	$AXADR
	$BADDR_TO_EXTADDR
	$BADDR_TO_WADDR
	$BITLENGTH
	$BITOFFSET
	$CARRY
	$CHECKSUM
	$COMP
	$COUNTDUPS
	$DBL
	$DBLL
	$DBLR
	$DFIX
	$EFLT
	$EFLTR
	$EXCHANGE
	$EXECUTEIO
	$EXTADDR_TO_BADDR
	$EXTADDR_TO_WADDR
	$EXT64ADDR_TO_EXTADDR
	$EXT64ADDR_TO_EXT32ADDR
	$EXT64ADDR_TO_EXT32ADDR_OV
	$EXTADDR_TO_EXT64ADDR
	$FILL8, $FILL16, and $FILL32
	$FIX
	$FIXD
	$FIXED0_TO_EXT64ADDR
	$FIXEDTOASCII
	$FIXEDTOASCIIRESIDUE
	$FIXI
	$FIXL
	$FIXR
	$FLT
	$FLTR
	$FREEZE
	$HALT
	$HIGH
	$IFIX
	$INT
	$INT_OV
	$INTERROGATEHIO
	$INTERROGATEIO
	$INTR
	$IS_32BIT_ADDR
	$LEN
	$LFIX
	$LMAX
	$LMIN
	$LOCATESPTHDR
	$LOCKPAGE
	$MAX
	$MIN
	$MOVEANDCXSUMBYTES
	$MOVENONDUP
	$NUMERIC
	$OCCURS
	$OFFSET
	$OPTIONAL
	$OVERFLOW
	$PARAM
	$POINT
	$PROCADDR
	$PROC32ADDR
	$PROC64ADDR
	$READBASELIMIT
	$READCLOCK
	$READSPT
	$READTIME
	$SCALE
	$SGBADDR_TO_EXTADDR
	$SGBADDR_TO_SGWADDR
	$SGWADDR_TO_EXTADDR
	$SGWADDR_TO_SGBADDR
	$SPECIAL
	$STACK_ALLOCATE
	$TRIGGER
	$TYPE
	$UDBL
	$UDIVREM16
	$UDIVREM32
	$UFIX
	$UNLOCKPAGE
	$WADDR_TO_BADDR
	$WADDR_TO_EXTADDR
	$WRITEPTE
	$XADR
	$XADR32
	$XADR64

	Compiler Directives
	Directive Line
	ASSERTION
	BASENAME
	BEGINCOMPILATION
	BLOCKGLOBALS
	CALL_SHARED
	CHECKSHIFTCOUNT
	CODECOV
	COLUMNS
	DEFEXPAND
	DEFINETOG
	DO_TNS_SYNTAX
	ENDIF
	ERRORFILE
	ERRORS
	EXPORT_GLOBALS
	__EXT64
	FIELDALIGN
	FMAP
	GLOBALIZED
	GMAP
	GP_OK
	IF, IFNOT, and ENDIF
	INNERLIST
	INVALID_FOR_PTAL
	LINES
	LIST
	MAP
	OPTIMIZE
	OPTIMIZEFILE
	OVERFLOW_TRAPS
	PAGE
	PRINTSYM
	PROFDIR
	PROFGEN
	PROFUSE
	REFALIGNED
	RESETTOG
	ROUND
	SAVEGLOBALS
	SECTION
	SETTOG
	SOURCE
	SRL
	SUPPRESS
	SYMBOLS
	SYNTAX
	TARGET
	USEGLOBALS
	WARN

	B Disk File Names and HP TACL Commands
	Disk File Names
	Parts of a Disk File Name
	Node or System Name
	Volume Name
	Subvolume Name
	File ID

	Partial File Names
	Logical File Names
	Internal File Names

	HP TACL Commands
	DEFINE
	Substituting File Names for DEFINE Macros
	DEFINE Names
	MAP DEFINE (Guardian Platforms Only)
	TAPE DEFINE (D‑Series Systems Only)
	SPOOL DEFINE
	DEFAULTS DEFINE

	PARAM SWAPVOL
	ASSIGN
	Ordinary ASSIGN Command
	ASSIGN SSV

	C Differences Between the pTAL and EpTAL Compilers
	General
	Data Types and Alignment
	Routines
	Compiler Directives

	D RETURN, RETURNSCC, and C/C++ on TNS/E
	E 64-bit Addressing Functionality
	Address Types
	EXT32ADDR
	EXT64ADDR
	PROC32ADDR
	PROC64ADDR

	Procedure Pointer Types
	PROC32PTR
	PROC64PTR

	Indirection Symbols
	.EXT32
	.EXT64

	Built-in Routines
	$EXT64ADDR_TO_EXTADDR
	$EXT64ADDR_TO_EXT32ADDR
	$EXT64ADDR_TO_EXT32ADDR_OV
	$EXTADDR_TO_EXT64ADDR
	$FIXED0_TO_EXT64ADDR
	$FIX
	$IS_32BIT_ADDR
	$PROCADDR
	$PROC32ADDR
	$PROC64ADDR
	$UFIX
	$XADR
	$XADR32
	$XADR64

	Implicitly Defined Compilation Toggle __EXT64
	Directives
	__EXT64
	DEFINETOG, RESETTOG, and SETTOG
	IF and IFNOT

	Implicit Address Conversions

	Index

