
HP pTAL Reference Manual

HP Part Number: 523746-009
Published: Feb 2012
Edition: D44.00 and all subsequent D-series RVUs, all J-series, H-series, and G-series RVUs



© Copyright 2012 Hewlett-Packard Development Company, L.P.

Legal Notice

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S. Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone and The Open Group are trademarks of The Open
Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc. OSF MAKES
NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall not be liable for errors contained herein or for
incidental consequential damages in connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. The OSF documentation and the OSF software to which it relates are derived in part
from materials supplied by the following:© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990, 1991
Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992 International Business Machines Corporation. © 1988, 1989
Massachusetts Institute of Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990, 1991,
1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. © 1989,
1990, 1991 Transarc Corporation.OSF software and documentation are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. OSF acknowledges the following individuals and institutions for their role in its development: Kenneth
C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983, 1985,
1986, 1987, 1988, 1989 Regents of the University of California.



Contents
About This Document...................................................................................16

Supported Release Version Updates (RVUs)................................................................................16
Intended Audience..................................................................................................................16
New and Changed Information................................................................................................16

New and Changed Information for 523746–009...................................................................16
New and Changed Information for 523746–008...................................................................18
New and Changed Information for 523746–007...................................................................19

Document Organization..........................................................................................................19
Notation Conventions..............................................................................................................20

Syntax Diagram Conventions...............................................................................................20
General Syntax Notation....................................................................................................23
Notation for Messages.......................................................................................................25
Notation for Management Programming Interfaces.................................................................26

Related Information.................................................................................................................26
Publishing History...................................................................................................................29
HP Encourages Your Comments................................................................................................29

1 Introduction to pTAL..................................................................................30
pTAL and TAL Compatibility.....................................................................................................30
EpTAL, pTAL, and TAL Compilers...............................................................................................30
pTAL Applications...................................................................................................................31
pTAL Features.........................................................................................................................32

Procedures........................................................................................................................32
Subprocedures..................................................................................................................32
Private Data Area..............................................................................................................32
Recursion..........................................................................................................................33
Parameters........................................................................................................................33
Data Types........................................................................................................................33
Data Grouping..................................................................................................................33
Pointers.............................................................................................................................34
Data Operations................................................................................................................34
Bit Operations...................................................................................................................34
Built-in Routines.................................................................................................................34
Compiler Directives............................................................................................................34
Modular Programming.......................................................................................................34

System Services......................................................................................................................34
System Procedures..................................................................................................................34
pTAL and the CRE...................................................................................................................34

2 Language Elements...................................................................................36
Character Set.........................................................................................................................36
Keywords..............................................................................................................................37
Delimiters..............................................................................................................................38
Operators..............................................................................................................................39
Base Address Symbols............................................................................................................40
Indirection Symbols.................................................................................................................41
Declarations..........................................................................................................................41

Identifiers..........................................................................................................................42
Variables..........................................................................................................................43
Scope..............................................................................................................................43

Typed Integer Constants..........................................................................................................44
Statements.............................................................................................................................45

Contents 3



3 Data Representation..................................................................................46
Data Types............................................................................................................................46

Specifying Data Types........................................................................................................47
Data Type Aliases..............................................................................................................48
Operations by Data Type....................................................................................................48

Address Types........................................................................................................................49
Storing Addresses in Variables.............................................................................................51
Converting Between Address Types and Numeric Data Types...................................................51
Converting Between Address Types......................................................................................52
Using Indexes to Access Array Elements................................................................................54
Incrementing and Decrementing Addresses (Stepping Pointers).................................................54

Constants..............................................................................................................................57
Character String................................................................................................................57
STRING Numeric...............................................................................................................58
INT Numeric.....................................................................................................................58
INT(32) Numeric...............................................................................................................59
FIXED Numeric..................................................................................................................61
REAL and REAL(64) Numeric...............................................................................................62
Constant Lists.....................................................................................................................63
Constant List Alignment Specification....................................................................................64

4 Data Alignment........................................................................................66
Misalignment Tracing Facility...................................................................................................66
Misalignment Handling...........................................................................................................67

5 Expressions..............................................................................................69
Data Types of Expressions........................................................................................................70
Operator Precedence..............................................................................................................70
Arithmetic Expressions.............................................................................................................72
Signed Arithmetic Operators....................................................................................................73

Scaling of FIXED Operands.................................................................................................74
Using FIXED(*) Variables....................................................................................................74

Unsigned Arithmetic Operators.................................................................................................75
Bitwise Logical Operators...................................................................................................76
Using Bitwise Logical Operators and INT(32) Operands.........................................................76

Comparing Addresses.............................................................................................................77
Extended Addresses...........................................................................................................77
Nonextended Addresses.....................................................................................................78

Constant Expressions...............................................................................................................81
Conditional Expressions..........................................................................................................81

NOT, OR, and AND Operators...........................................................................................82
Relational Operators..........................................................................................................83

Special Expressions.................................................................................................................85
Assignment.......................................................................................................................85
CASE...............................................................................................................................86
IF.....................................................................................................................................87
Group Comparison............................................................................................................88

Bit Operations........................................................................................................................92
Bit Extractions....................................................................................................................93
Bit Shifts...........................................................................................................................94

6 LITERALs and DEFINEs..............................................................................97
Declaring Literals....................................................................................................................97
Declaring DEFINEs.................................................................................................................98
Calling DEFINEs...................................................................................................................100
How the Compiler Processes DEFINEs.....................................................................................100

4 Contents



Passing Actual Parameters to DEFINEs.....................................................................................100
7 Simple Variables....................................................................................103

Declaring Simple Variables....................................................................................................103
Specifying Simple Variable Address Types...............................................................................105
Initializing Simple Variables With Numbers.............................................................................105
Initializing Simple Variables With Character Strings..................................................................105
Examples.............................................................................................................................105

8 Arrays...................................................................................................108
Declaring Arrays..................................................................................................................108

Declaring Read-Only Arrays..............................................................................................111
Using Constant Lists in Array Declarations...........................................................................113

9 Structures..............................................................................................114
Structure Layout....................................................................................................................115

Overview of Structure Alignment........................................................................................116
Structures Aligned at Odd-Byte Boundaries..........................................................................117

Overview of Field Alignment..................................................................................................117
SHARED2.......................................................................................................................117
SHARED8.......................................................................................................................118
PLATFORM......................................................................................................................118
AUTO.............................................................................................................................118
Differences Between PLATFORM and AUTO.........................................................................119

Field and Base Alignment......................................................................................................119
Base Alignment...............................................................................................................119
Structure Alignment Examples............................................................................................120

Array Alignment in Structures.................................................................................................122
Structure Alignment...............................................................................................................123
Substructure Alignment..........................................................................................................124
Alignment Considerations for Substructures..............................................................................126
FIELDALIGN Clause..............................................................................................................127
FIELDALIGN Compiler Directive..............................................................................................127
SHARED2 Parameter.............................................................................................................128
SHARED8 Parameter.............................................................................................................129

Alignment of Fields...........................................................................................................131
Optimizing Structure Layouts..............................................................................................131
Structure Length...............................................................................................................132
Alignment of UNSIGNED(17-31) Fields................................................................................133

Reference Alignment With Structure Pointers.............................................................................134
REFALIGNED Clause........................................................................................................134
Default Reference Alignment..............................................................................................135
REFALIGNED(2)...............................................................................................................135
REFALIGNED(8)...............................................................................................................136
Code Generation for Structure References...........................................................................137

STRUCTALIGN (MAXALIGN) Attribute.....................................................................................137
VOLATILE Attribute................................................................................................................138
Declaring Definition Structures................................................................................................138
Declaring Template Structures.................................................................................................139
Declaring Referral Structures...................................................................................................141
Declaring Simple Variables in Structures..................................................................................142
Declaring Arrays in Structures.................................................................................................143
Declaring Substructures.........................................................................................................144

Definition Substructures.....................................................................................................144
Referral Substructures........................................................................................................146

Declaring Filler.....................................................................................................................147

Contents 5



Declaring Simple Pointers in Structures.....................................................................................148
Using Simple Pointers.......................................................................................................149
Assigning Addresses to Pointers in Structures........................................................................150

Declaring Structure Pointers in Structures..................................................................................151
Declaring Redefinitions..........................................................................................................153

Simple Variable...............................................................................................................153
Array.............................................................................................................................154
Definition Substructure......................................................................................................155
Referral Substructure.........................................................................................................157
Simple Pointer.................................................................................................................158
Structure Pointer...............................................................................................................159

10 Pointers...............................................................................................161
Overview of Pointer Declaration..............................................................................................161
Declaring VOLATILE Pointers...................................................................................................163

Simple............................................................................................................................163
Structure.........................................................................................................................164

Address Types......................................................................................................................164
BADDR and WADDR .......................................................................................................167
SGBADDR, SGWADDR, SGXBADDR, and SGXWADDR (System Globals) ...............................167
PROCADDR, PROC32ADDR, and PROC64ADDR (Procedures, Procedure Pointers, and Procedure
Entry Points) ...................................................................................................................168
Subprocedures, Subprocedure Entry Points, Labels, and Read-Only Arrays (CBADDR and CWADDR
Address Types)................................................................................................................169
EXTADDR, EXT32ADDR, and EXT64ADDR (Extended Addresses)............................................169

Declaring Simple Pointers......................................................................................................170
Initializing Simple Pointers.....................................................................................................172
Declaring Structure Pointers....................................................................................................173
Initializing Structure Pointers...................................................................................................174
Declaring System Global Pointers............................................................................................176

11 Equivalenced Variables..........................................................................177
Declaring Equivalenced Variables...........................................................................................178
Memory Allocation...............................................................................................................179
Declaring Nonstructure Equivalenced Variables........................................................................180

Memory Usage for Nonstructured Equivalenced Variables.....................................................181
Equivalenced Arrays.........................................................................................................181
Indirect Arrays.................................................................................................................182
Equivalenced Simple Variables..........................................................................................182
Equivalenced Simple Pointers.............................................................................................183

Equivalencing Procedure Addresses (PROCADDR, PROC32ADDR, and PROC64ADDR) and Pointer
Variables (PROCPTR, PROC32PTR, and PROC64PTR)................................................................187
Declaring Equivalenced Definition Structures.............................................................................188

Structure Variants.............................................................................................................191
Memory Usage for Structured Equivalenced Variables...........................................................192
FIELDALIGN Clause..........................................................................................................193

System Global Equivalenced Variable Declarations...................................................................193
Equivalenced Simple Variable...........................................................................................193
Equivalenced Definition Structure........................................................................................194
Equivalenced Referral Structure..........................................................................................195
Equivalenced Simple Pointer..............................................................................................196
Equivalenced Structure Pointer............................................................................................197

12 Statements...........................................................................................199
Using Semicolons in Statements..............................................................................................199
Compound Statements...........................................................................................................200

6 Contents



ASSERT...............................................................................................................................200
Assignment..........................................................................................................................201

Pointer Assignment...........................................................................................................203
Assigning Numbers to FIXED Variables...............................................................................203
Assigning Character Strings..............................................................................................203
Examples........................................................................................................................203

Bit-Deposit Assignment..........................................................................................................204
CALL...................................................................................................................................205
CASE..................................................................................................................................207

Empty CASE...................................................................................................................207
Labeled CASE.................................................................................................................207
Unlabeled CASE..............................................................................................................209

DO-UNTIL............................................................................................................................210
DROP.................................................................................................................................212

Dropping Labels..............................................................................................................212
Dropping Temporary Variables..........................................................................................212

FOR....................................................................................................................................212
Nested...........................................................................................................................213
Standard........................................................................................................................214
Optimized......................................................................................................................214

GOTO................................................................................................................................215
Local..............................................................................................................................215
Nonlocal........................................................................................................................215
GOTO and Target Statements With Different Trapping States.................................................216

IF.......................................................................................................................................217
Testing Address Types.......................................................................................................218
Testing Hardware Indicators..............................................................................................218

Move..................................................................................................................................218
Destination Shorter Than Source.............................................................................................222
$FILL8, $FILL16, and $FILL32 Statements..................................................................................222
RETURN..............................................................................................................................223

Functions........................................................................................................................224
Procedures and Subprocedures..........................................................................................225
Condition Codes.............................................................................................................225

SCAN and RSCAN...............................................................................................................228
Determining What Stopped a Scan....................................................................................230
Extended Pointers.............................................................................................................230
Crossing Variable Boundaries............................................................................................230
P-Relative Arrays..............................................................................................................231

USE....................................................................................................................................232
WHILE................................................................................................................................232

13 Hardware Indicators..............................................................................234
Managing Overflow Traps.....................................................................................................234

[NO]OVERFLOW_TRAPS Procedure Attribute......................................................................234
[EN|DIS]ABLE_OVERFLOW_TRAPS Block Attribute...............................................................235

Hardware Indicators After Assignments....................................................................................236
$OVERFLOW..................................................................................................................236
$CARRY.........................................................................................................................236
Condition Codes.............................................................................................................237

Hardware Indicators in Conditional Expressions.......................................................................239
Nesting Condition Code Tests................................................................................................242
Using Hardware Indicators Across Procedures..........................................................................244

Testing a Hardware Indicator Set in the Calling Procedure.....................................................244
Returning a Condition Code to the Calling Procedure...........................................................244

Contents 7



Returning the Value of $OVERFLOW or $CARRY to the Calling Procedure...............................245
14 Procedures, Subprocedures, and Procedure Pointers..................................246

Procedure Declarations..........................................................................................................246
Procedure Attributes..............................................................................................................248

Parameters and VARIABLE and EXTENSIBLE Procedures........................................................250
VARIABLE, EXTENSIBLE and RETURNSCC Procedures as Actual Parameters.............................251

Formal Parameter Specification...............................................................................................251
Using STRUCT as a Formal Parameter.................................................................................255
Passing an Extended Address Parameter to a Non-EXTENDED Reference Parameter..................255
Using the PROC Formal Parameter.....................................................................................256
Referencing Parameters.....................................................................................................256

Procedure Body....................................................................................................................256
Subprocedure Declarations....................................................................................................257
Subprocedure Body..............................................................................................................259
Entry-Point Declarations.........................................................................................................260

Procedure Entry-Point Identifiers..........................................................................................260
Subprocedure Entry-Point Identifiers....................................................................................262

Procedure Pointers................................................................................................................263
Declaring Procedure Pointer Variables.................................................................................266
Declaring Procedure Pointers in Structures............................................................................267
Declaring PROCPTRs as Formal Parameters.........................................................................268
Assignments to Procedure Pointers......................................................................................269
Dynamically Selected Procedure Calls................................................................................271

Labels in Procedures.............................................................................................................273
15 Built-In Routines.....................................................................................274

Privileged Mode...................................................................................................................274
Parameters...........................................................................................................................275

Addresses as Parameters...................................................................................................275
Expressions as Parameters.................................................................................................275

Hardware Indicators.............................................................................................................276
Atomic Operations ...............................................................................................................276

$ATOMIC_ADD...............................................................................................................276
$ATOMIC_AND..............................................................................................................277
$ATOMIC_DEP................................................................................................................278
$ATOMIC_GET...............................................................................................................279
$ATOMIC_OR.................................................................................................................280
$ATOMIC_PUT................................................................................................................280

Nonatomic Operations .........................................................................................................281
pTAL Privileged Routines....................................................................................................281
Type-Conversion Routines..................................................................................................282
Address-Conversion Routines.............................................................................................283
Character-Test Routines.....................................................................................................284
Minimum and Maximum Routines......................................................................................285
Arithmetic Routines...........................................................................................................285
Carry and Overflow Routines............................................................................................285
FIXED-Expression Routines.................................................................................................285
Variable-Characteristic Routines.........................................................................................285
Procedure-Parameter Routines............................................................................................286
Miscellaneous Routines.....................................................................................................286
$ABS.............................................................................................................................291
$ALPHA.........................................................................................................................291
$ASCIITOFIXED...............................................................................................................292
$AXADR.........................................................................................................................293
$BADDR_TO_EXTADDR....................................................................................................294

8 Contents



$BADDR_TO_WADDR......................................................................................................294
$BITLENGTH...................................................................................................................295
$BITOFFSET....................................................................................................................296
$CARRY.........................................................................................................................297
$CHECKSUM..................................................................................................................297
$COMP.........................................................................................................................298
$COUNTDUPS................................................................................................................299
$DBL..............................................................................................................................300
$DBLL.............................................................................................................................301
$DBLR............................................................................................................................301
$DFIX.............................................................................................................................302
$EFLT.............................................................................................................................302
$EFLTR...........................................................................................................................303
$EXCHANGE..................................................................................................................303
$EXECUTEIO...................................................................................................................304
$EXTADDR_TO_BADDR....................................................................................................305
$EXTADDR_TO_WADDR...................................................................................................306
$EXT64ADDR_TO_EXTADDR.............................................................................................306
$EXT64ADDR_TO_EXT32ADDR.........................................................................................307
$EXT64ADDR_TO_EXT32ADDR_OV .................................................................................307
$EXTADDR_TO_EXT64ADDR ............................................................................................308
$FILL8, $FILL16, and $FILL32 ............................................................................................308
$FIX...............................................................................................................................309
$FIXD.............................................................................................................................309
$FIXED0_TO_EXT64ADDR................................................................................................310
$FIXEDTOASCII...............................................................................................................310
$FIXEDTOASCIIRESIDUE...................................................................................................311
$FIXI..............................................................................................................................312
$FIXL..............................................................................................................................312
$FIXR.............................................................................................................................313
$FLT...............................................................................................................................314
$FLTR.............................................................................................................................314
$FREEZE.........................................................................................................................315
$HALT............................................................................................................................315
$HIGH...........................................................................................................................315
$IFIX..............................................................................................................................316
$INT..............................................................................................................................317
$INT_OV........................................................................................................................318
$INTERROGATEHIO........................................................................................................318
$INTERROGATEIO...........................................................................................................320
$INTR............................................................................................................................321
$IS_32BIT_ADDR ............................................................................................................321
$LEN.............................................................................................................................322
$LFIX..............................................................................................................................323
$LMAX...........................................................................................................................323
$LMIN...........................................................................................................................324
$LOCATESPTHDR.............................................................................................................324
$LOCKPAGE...................................................................................................................325
$MAX............................................................................................................................326
$MIN.............................................................................................................................327
$MOVEANDCXSUMBYTES...............................................................................................327
$MOVENONDUP...........................................................................................................328
$NUMERIC.....................................................................................................................329
$OCCURS......................................................................................................................330
$OFFSET........................................................................................................................332

Contents 9



$OPTIONAL...................................................................................................................333
$OVERFLOW..................................................................................................................335
$PARAM........................................................................................................................336
$POINT..........................................................................................................................336
$PROCADDR..................................................................................................................337
$PROC32ADDR..............................................................................................................337
$PROC64ADDR..............................................................................................................338
$READBASELIMIT............................................................................................................338
$READCLOCK.................................................................................................................339
$READSPT......................................................................................................................339
$READTIME....................................................................................................................340
$SCALE..........................................................................................................................340
$SGBADDR_TO_EXTADDR................................................................................................341
$SGBADDR_TO_SGWADDR.............................................................................................342
$SGWADDR_TO_EXTADDR..............................................................................................342
$SGWADDR_TO_SGBADDR.............................................................................................343
$SPECIAL.......................................................................................................................343
$STACK_ALLOCATE.........................................................................................................344
$TRIGGER......................................................................................................................345
$TYPE............................................................................................................................345
$UDBL............................................................................................................................346
$UDIVREM16..................................................................................................................347
$UDIVREM32..................................................................................................................348
$UFIX ............................................................................................................................349
$UNLOCKPAGE..............................................................................................................349
$WADDR_TO_BADDR......................................................................................................350
$WADDR_TO_EXTADDR...................................................................................................350
$WRITEPTE.....................................................................................................................351
$XADR...........................................................................................................................352
$XADR32.......................................................................................................................352
$XADR64.......................................................................................................................353

16 Compiling and Linking pTAL Programs.....................................................355
Compiling Source Files..........................................................................................................355

Input Files.......................................................................................................................356
Output Files.....................................................................................................................356
Running the Compiler.......................................................................................................357
Completion Codes Returned by the Compiler.......................................................................358

Linking Object Files...............................................................................................................358
Creating a Dynamic Linked Library (DLL)..................................................................................362
Compiling With Global Data Blocks.......................................................................................362

Declaring Global Data.....................................................................................................362
Allocating Global Data Blocks...........................................................................................365
Address Assignments........................................................................................................365
Sharing Global Data Blocks..............................................................................................365

Compiling With Saved Global Data........................................................................................366
Using the Code Profiling Utilities.............................................................................................366

17 Compiler Directives...............................................................................367
Specifying Compiler Directives...............................................................................................367

Compilation Command.....................................................................................................367
Directive Line...................................................................................................................367

File Names as Compiler Directive Arguments............................................................................368
Directive Stacks....................................................................................................................369

Pushing Directive Settings..................................................................................................369
Popping Directive Settings.................................................................................................369

10 Contents



Example.........................................................................................................................369
Toggles...............................................................................................................................370

Named Toggles...............................................................................................................370
Numeric Toggles..............................................................................................................370
Examples........................................................................................................................371

Saving and Using Global Data Declarations............................................................................372
Saving Global Data Declarations.......................................................................................373
Retrieving Global Data Declarations...................................................................................374
Examples........................................................................................................................374
Migrating from TNS/R to TNS/E.......................................................................................375

Summary of Compiler Directives.............................................................................................377
ASSERTION.........................................................................................................................381
BASENAME.........................................................................................................................381
BEGINCOMPILATION...........................................................................................................382
BLOCKGLOBALS..................................................................................................................382
CALL_SHARED.....................................................................................................................383
CHECKSHIFTCOUNT............................................................................................................384
CODECOV..........................................................................................................................385
COLUMNS..........................................................................................................................385
DEFEXPAND........................................................................................................................386
DEFINETOG........................................................................................................................388
DO_TNS_SYNTAX................................................................................................................389
ENDIF.................................................................................................................................390
ERRORFILE...........................................................................................................................391
ERRORS..............................................................................................................................393
EXPORT_GLOBALS................................................................................................................393
__EXT64.............................................................................................................................394
FIELDALIGN.........................................................................................................................395
FMAP.................................................................................................................................396
GLOBALIZED.......................................................................................................................396
GMAP................................................................................................................................397
GP_OK...............................................................................................................................397
IF and IFNOT.......................................................................................................................398
INNERLIST ..........................................................................................................................400
INVALID_FOR_PTAL..............................................................................................................401
LINES..................................................................................................................................401
LIST.....................................................................................................................................401
MAP...................................................................................................................................402
OPTIMIZE............................................................................................................................404
OPTIMIZEFILE.......................................................................................................................404
OVERFLOW_TRAPS..............................................................................................................406
PAGE..................................................................................................................................407
PRINTSYM...........................................................................................................................408
PROFDIR.............................................................................................................................408
PROFGEN...........................................................................................................................409
PROFUSE............................................................................................................................409
REFALIGNED.......................................................................................................................410
RESETTOG...........................................................................................................................411
ROUND..............................................................................................................................412
SAVEGLOBALS.....................................................................................................................413
SECTION............................................................................................................................414
SETTOG..............................................................................................................................415
SOURCE.............................................................................................................................416

Section Names................................................................................................................417
Nesting Levels.................................................................................................................418

Contents 11



Effect of Other Directives...................................................................................................418
Including System Procedure Declarations.............................................................................419
Examples........................................................................................................................419

SRL.....................................................................................................................................420
SUPPRESS............................................................................................................................420
SYMBOLS............................................................................................................................421
SYNTAX..............................................................................................................................422
TARGET...............................................................................................................................423
USEGLOBALS.......................................................................................................................423
WARN................................................................................................................................424

18 pTAL Cross Compiler.............................................................................426
NonStop pTAL (ETK)..............................................................................................................426
pTAL or EpTAL (PC Command Line)..........................................................................................427
Compilation and Linking........................................................................................................429
Debugging..........................................................................................................................429
Tools and Utilities.................................................................................................................430

NonStop ar Utility............................................................................................................430
TACL DEFINE Tool (ETK)....................................................................................................431
PC-to-NonStop-Host Transfer Tools......................................................................................431

Documentation.....................................................................................................................431
A Syntax Summary....................................................................................432

Data Types..........................................................................................................................432
Constants............................................................................................................................432

Character String..............................................................................................................432
STRING Numeric.............................................................................................................432
INT Numeric...................................................................................................................433
INT(32) Numeric.............................................................................................................433
FIXED Numeric................................................................................................................433
REAL and REAL(64) Numeric.............................................................................................433
Constant List....................................................................................................................434

Expressions..........................................................................................................................434
Arithmetic.......................................................................................................................434
Conditional.....................................................................................................................435
Assignment.....................................................................................................................435
CASE.............................................................................................................................435
IF...................................................................................................................................435
Group Comparison..........................................................................................................435
Bit Extraction...................................................................................................................436
Bit Shift..........................................................................................................................436

Declarations........................................................................................................................436
LITERAL...........................................................................................................................436
DEFINE..........................................................................................................................436
Simple Variable...............................................................................................................437
Array.............................................................................................................................437
Read-Only Array..............................................................................................................438
Structures........................................................................................................................438
Redefinition.....................................................................................................................442
Pointer............................................................................................................................444
Equivalenced Variable......................................................................................................445
Procedure and Subprocedure............................................................................................449

Statements...........................................................................................................................455
Compound......................................................................................................................456
ASSERT..........................................................................................................................456
Assignment.....................................................................................................................456

12 Contents



Bit Deposit Assignment.....................................................................................................456
CALL..............................................................................................................................457
Labeled CASE.................................................................................................................457
Unlabeled CASE..............................................................................................................457
DO-UNTIL.......................................................................................................................458
DROP.............................................................................................................................458
FOR...............................................................................................................................458
GOTO............................................................................................................................458
IF...................................................................................................................................458
Move.............................................................................................................................459
RETURN.........................................................................................................................459
SCAN and RSCAN..........................................................................................................459
USE...............................................................................................................................459
WHILE...........................................................................................................................460

Overflow Traps.....................................................................................................................460
OVERFLOW_TRAPS Directive.............................................................................................460
[EN|DIS]ABLE_OVERFLOW_TRAPS Block Attribute...............................................................460

Built-in Routines....................................................................................................................460
Atomic...........................................................................................................................460
Nonatomic......................................................................................................................462

Compiler Directives...............................................................................................................494
Directive Line...................................................................................................................495
ASSERTION....................................................................................................................495
BASENAME....................................................................................................................495
BEGINCOMPILATION......................................................................................................496
BLOCKGLOBALS..............................................................................................................496
CALL_SHARED................................................................................................................496
CHECKSHIFTCOUNT.......................................................................................................497
CODECOV.....................................................................................................................497
COLUMNS.....................................................................................................................498
DEFEXPAND...................................................................................................................498
DEFINETOG....................................................................................................................499
DO_TNS_SYNTAX...........................................................................................................500
ENDIF............................................................................................................................500
ERRORFILE......................................................................................................................500
ERRORS..........................................................................................................................500
EXPORT_GLOBALS...........................................................................................................501
__EXT64.........................................................................................................................501
FIELDALIGN....................................................................................................................502
FMAP.............................................................................................................................502
GLOBALIZED...................................................................................................................502
GMAP............................................................................................................................503
GP_OK..........................................................................................................................503
IF, IFNOT, and ENDIF.......................................................................................................504
INNERLIST......................................................................................................................505
INVALID_FOR_PTAL..........................................................................................................505
LINES.............................................................................................................................506
LIST................................................................................................................................506
MAP..............................................................................................................................506
OPTIMIZE.......................................................................................................................507
OPTIMIZEFILE..................................................................................................................507
OVERFLOW_TRAPS.........................................................................................................508
PAGE.............................................................................................................................508
PRINTSYM......................................................................................................................509
PROFDIR.........................................................................................................................509

Contents 13



PROFGEN......................................................................................................................509
PROFUSE........................................................................................................................510
REFALIGNED...................................................................................................................510
RESETTOG......................................................................................................................511
ROUND.........................................................................................................................512
SAVEGLOBALS................................................................................................................512
SECTION........................................................................................................................513
SETTOG.........................................................................................................................513
SOURCE.........................................................................................................................514
SRL................................................................................................................................514
SUPPRESS.......................................................................................................................515
SYMBOLS.......................................................................................................................515
SYNTAX.........................................................................................................................516
TARGET..........................................................................................................................516
USEGLOBALS..................................................................................................................516
WARN...........................................................................................................................517

B Disk File Names and HP TACL Commands.................................................518
Disk File Names...................................................................................................................518

Parts of a Disk File Name..................................................................................................518
Partial File Names............................................................................................................519
Logical File Names..........................................................................................................520
Internal File Names..........................................................................................................520

HP TACL Commands.............................................................................................................520
DEFINE..........................................................................................................................521
PARAM SWAPVOL...........................................................................................................522
ASSIGN.........................................................................................................................522

C Differences Between the pTAL and EpTAL Compilers....................................525
General..............................................................................................................................525
Data Types and Alignment.....................................................................................................525
Routines..............................................................................................................................525
Compiler Directives...............................................................................................................527

D RETURN, RETURNSCC, and C/C++ on TNS/E..........................................528
E 64-bit Addressing Functionality.................................................................531

Address Types......................................................................................................................531
EXT32ADDR....................................................................................................................531
EXT64ADDR....................................................................................................................531
PROC32ADDR................................................................................................................531
PROC64ADDR................................................................................................................531

Procedure Pointer Types.........................................................................................................531
PROC32PTR....................................................................................................................531
PROC64PTR....................................................................................................................531

Indirection Symbols...............................................................................................................532
.EXT32...........................................................................................................................532
.EXT64...........................................................................................................................532

Built-in Routines....................................................................................................................532
$EXT64ADDR_TO_EXTADDR.............................................................................................532
$EXT64ADDR_TO_EXT32ADDR.........................................................................................532
$EXT64ADDR_TO_EXT32ADDR_OV..................................................................................532
$EXTADDR_TO_EXT64ADDR.............................................................................................532
$FIXED0_TO_EXT64ADDR................................................................................................532
$FIX...............................................................................................................................532
$IS_32BIT_ADDR.............................................................................................................532
$PROCADDR..................................................................................................................533

14 Contents



$PROC32ADDR..............................................................................................................533
$PROC64ADDR..............................................................................................................533
$UFIX.............................................................................................................................533
$XADR...........................................................................................................................533
$XADR32.......................................................................................................................533
$XADR64.......................................................................................................................533

Implicitly Defined Compilation Toggle __EXT64........................................................................534
Directives.............................................................................................................................534

__EXT64.........................................................................................................................534
DEFINETOG, RESETTOG, and SETTOG..............................................................................534
IF and IFNOT..................................................................................................................534

Implicit Address Conversions..................................................................................................534
Index.......................................................................................................536

Contents 15



About This Document
The Portable Transaction Application Language for HP NonStop systems (pTAL) is a high-level,
block-structured language used to write systems software and transaction-oriented applications.
This manual gives guidelines for using the pTAL language and the EpTAL and pTAL compilers,
including:

• How to create, structure, compile, and run a pTAL program

• The process environment, addressing modes, and storage allocation

• How to declare and access procedures and variables
You can compile pTAL source programs with either the pTAL compiler or the EpTAL compiler (for
their differences, see Figure 16 (page 361)).
In this manual:

Meaning (unless otherwise specified)Word

The pTAL and EpTAL compilerscompiler

The nld, ld, and eld linkerslinker

Supported Release Version Updates (RVUs)
This manual supports D44.00 and all subsequent D-series RVUs, all J-series, H-series, and G-series
RVUs, unless otherwise indicated by its replacement publication.

Intended Audience
This manual is intended for system programmers and application programmers familiar with
NonStop systems.

New and Changed Information
Changes to this manual are itemized for each RVU.

New and Changed Information for 523746–009
• Added a new Appendix E, 64-bit Addressing Functionality (page 531).

• Added the following new Address Types:
EXT32ADDR◦

◦ EXT64ADDR

◦ PROC32ADDR

◦ PROC64ADDR

• Added the following new Procedure Pointers:
PROC32PTR◦

◦ PROC64PTR

• Added a new 64-bit directive, __EXT64 (page 394) in the chapter “Compiler Directives”.
• Added the following 64-bit built-in routines:

$EXT64ADDR_TO_EXTADDR (page 306)◦
◦ $EXT64ADDR_TO_EXT32ADDR (page 307)

◦ $EXT64ADDR_TO_EXT32ADDR_OV (page 307)

16



◦ $EXTADDR_TO_EXT64ADDR (page 308)

◦ $FIXED0_TO_EXT64ADDR (page 310)

◦ $IS_32BIT_ADDR (page 321)

◦ $PROC32ADDR (page 337)

◦ $PROC64ADDR (page 338)

◦ $UFIX (page 349)

◦ $XADR32 (page 352)

◦ $XADR64 (page 353)

• Updated the following directives:
DEFINETOG (page 388)◦

◦ ENDIF (page 390)

◦ IF and IFNOT (page 398)

◦ RESETTOG (page 411)

◦ SETTOG (page 415)

• Updated the following built-in routines:
$INT (page 317)◦

◦ $PROCADDR (page 337)

◦ $XADR (page 352)

• Updated the following sections with 64-bit addressing functionality:
pTAL and TAL Compatibility (page 30)◦

◦ Typed Integer Constants (page 44)

◦ Converting Between Address Types and Numeric Data Types (page 51)

◦ Using Arithmetic Operations to Adjust Addresses (page 55)

◦ Comparing Addresses to Addresses (page 56)

◦ Extended Addresses (page 77)

◦ Initializing Simple Variables With Character Strings (page 105)

◦ Assigning Addresses to Pointers in Structures (page 150)

◦ Overview of Pointer Declaration (page 161)

◦ PROCADDR, PROC32ADDR, and PROC64ADDR (Procedures, Procedure Pointers, and
Procedure Entry Points) (page 168)

◦ EXTADDR, EXT32ADDR, and EXT64ADDR (Extended Addresses) (page 169)

◦ Declaring Simple Pointers (page 170)

◦ EXTADDR, EXT32ADDR, and EXT64ADDR Declarations (page 170)

◦ Equivalencing Procedure Addresses (PROCADDR, PROC32ADDR, and PROC64ADDR)
and Pointer Variables (PROCPTR, PROC32PTR, and PROC64PTR) (page 187)

◦ Extended Pointers (page 230)

◦ Passing an Extended Address Parameter to a Non-EXTENDED Reference Parameter
(page 255)

◦ Procedure Pointers (page 263)

◦ Declaring Procedure Pointer Variables (page 266)

New and Changed Information 17



◦ Declaring Procedure Pointers in Structures (page 267)

◦ Assignments to Procedure Pointers (page 269)

◦ Syntax Summary (page 432)

◦ Differences Between the pTAL and EpTAL Compilers (page 525)

• Updated the following tables with 64-bit addressing functionality:
Data Types (page 33)◦

◦ Reserved Keywords (page 37)

◦ Base Address Symbols (page 40)

◦ Indirection Symbols (page 41)

◦ Data Types and Their Address Types (page 49)

◦ Valid Address Conversions (page 53)

◦ Expressions (page 69)

◦ Valid Address Expressions (page 79)

◦ Signed Relational Operators (page 83)

◦ Addresses in Simple Pointers (page 149)

◦ Address Types (page 165)

◦ Object Data Types and Their Addresses (page 166)

◦ Valid Equivalenced Variable Declarations (page 178)

◦ Data Types for Equivalenced Variables (page 185)

◦ Formal Parameter Specification (page 254)

◦ Type-Conversion Routines (page 282)

◦ Built-In Address-Conversion Routines (page 283)

◦ Built-In Routines for Nonatomic Operations (page 286)

◦ Compiler Directives by Category (page 377)

◦ Compiler Directives by Name (page 379)

◦ Data Types and Alignment (page 525)

New and Changed Information for 523746–008
• Added a caution under Debugging (page 429) on the manner in which the CODECOV

(page 385) command line option interacts when you are debugging an instrumented application.
Under CODECOV, placed a reference to this caution in the Debugging section.

• Changed $INT (page 317) to indicate that overflow can occur for INT(64).

• Added new Document Organization (page 19) section to the manual.

• Added J-series to Supported Release Version Updates (RVUs) (page 16).

18



New and Changed Information for 523746–007
• In Chapter 16: Compiling and Linking pTAL Programs (page 355), updated the overview of

the Code Profiling Utilities to include the profile-guided optimization capability.
• In Chapter 17: Compiler Directives (page 367), added descrptions and syntax of the following

directive:
◦ BASENAME directive (Guardian) and -basename directive (Windows)

◦ PROFDIR directive (Guardian) and -profdir directive (Windows)

◦ PROFGEN directive (Guardian) and -profdir directive (Windows)

◦ PROFUSE directive (Guardian) and -profuse directive (Windows)

• In Appendix A: Syntax Summary (page 432), added syntax descriptions of the preceding
directives.

Document Organization
This document is organized as follows:

Table 1 Summary of Contents

This chapter . . .Chapter

Describes the differences between pTAL and TAL, and the
applications, features, system services and procedures of
pTAL.

Chapter 1: Introduction to pTAL

Describes pTAL language elements, such as character set,
keywords, delimiters, operators, symbols, declarations,
constants, and statements.

Chapter 2: Language Elements

Describes pTAL variables and constants, including data
types and address types.

Chapter 3: Data Representation

Describes how data items are aligned; covers the
misalignment tracing facility and misalignment handling.

Chapter 4: Data Alignment

Describes expressions. An expression is a sequence of
operands and operators that produces a single value.

Chapter 5: Expressions

Operands in an expression include variables, constants,
and routine identifiers. Operators in an expression perform
arithmetic or conditional operations on the operands. pTAL
supports arithmetic, address, constant, and conditional
expressions.

Describes how to declare LITERALs and DEFINEs and refer
to them throughout the program. A LITERAL declaration

Chapter 6: LITERALs and DEFINEs

associates identifiers with constant values. A DEFINE
declaration associates identifiers and parameters with text.

Describes the syntax for declaring simple variables. A
simple variable is a single-element data item of a specified
data type that is not an array, a structure, or a pointer.

Chapter 7: Simple Variables

Describes the syntax for declaring arrays. An array is a
one-dimensional set of elements of the same data type.

Chapter 8: Arrays

Describes structures. A structure is a collectively stored set
of data items that you can access individually or as a
group.

Chapter 9: Structures

Describes the syntax for declaring and initializing pointers
you manage yourself.

Chapter 10: Pointers

Document Organization 19



Table 1 Summary of Contents (continued)

This chapter . . .Chapter

Describes equivalenced variables. Equivalencing lets you
declare more than one identifier and description for a
location in a storage area.

Chapter 11: Equivalenced Variables

Describes statements. Statements — also known as
executable statements — perform operations in a program.

Chapter 12: Statements

They can modify the program’s data or control the
program’s flow.

Describes hardware indicators. Includes managing overflow
traps, hardware indicators after assignments, hardware

Chapter 13: Hardware Indicators

indicators in conditional expressions, nesting condition
code tests, and using hardware indicators across
procedures.

Describes procedures, which are program units that contain
the executable portions of a pTAL program and that are
callable from anywhere in the program.

Chapter 14: Procedures, Subprocedures, and Procedure
Pointers

Describes built-in routine calls whose results do not depend
on the values of variables and can be used wherever
constant values are allowed.

Chapter 15: Built-In Routines

Describes how to compile and link pTAL programs. Input
to the compiler is a source file containing pTAL source text

Chapter 16: Compiling and Linking pTAL Programs

(such as data declarations, statements, compiler directives,
and comments). Output from the compiler is a linkfile
consisting of relocatable code and data blocks. To produce
an executable pTAL program, you link one or more linkfiles
into a single loadfile.

Describes how to specify compiler directives. You can
specify compiler directives either in the compilation

Chapter 17: Compiler Directives

command or in a directive line in the source code, unless
otherwise specified. The compiler interprets and processes
each directive at the point of occurrence.

Describes the optional pTAL cross compiler that runs on
PC platforms.

Chapter 18: pTAL Cross Compiler

Provides a summary of syntax for data types, constants,
expressions, declarations, statements, overflow traps,
built-in routines, and compiler directives.

Appendix A: Syntax Summary

For Guardian platforms only, describes disk file names and
HP TACL commands.

Appendix B: Disk File Names and HP TACL Commands

Describes the differences between the pTAL and EpTAL
compilers.

Appendix C: Differences Between the pTAL and EpTAL
Compilers

Describes RETURN, RETURNSCC, and C/C++ on TNS/E.
Read this appendix if you write or call pTAL procedures

Appendix D: RETURN, RETURNSCC, and C/C++ on
TNS/E

that return both a traditional function value by means of
the RETURN statement and an unrelated condition code
value by means of the RETURNSCC attribute.

Notation Conventions

Syntax Diagram Conventions
This manual presents syntax in railroad diagrams. Here is a generic railroad diagram:

20



To use a railroad diagram, follow the direction of the arrows and specify syntactic items as indicated
by the diagram pieces:

MeaningDiagram Piece

Type KEYWORD as shown. You can type letters in
uppercase or lowercase.

Replace item with a value that fits its description, which
follows the syntax diagram.

Type content (punctuation mark, symbol, or letter) as shown.
You can type a letter in uppercase or lowercase.

Some examples of the meanings of simple diagrams are:

MeaningDiagram Piece

Choose item1 or item2.

Choose item1, item2, or neither.

Specify item one or more times, separating occurrences
with commas.

Specify item at most n times.

NOTE: To refer to a particular railroad diagram or figure when giving feedback to HP, use the
number at the bottom right corner of that railroad diagram or figure (for example, VST742.vsd).

Spacing rules are:

• If the arrow between two diagram pieces is labelled “ns,” put no spaces between the syntactic
items that they represent. For example:

Notation Conventions 21



means that you type:
$NEWVOL

not
$ NEWVOL

• An “ns” on the top line of a choice structure applies to the lower lines in the choice structure
as well. For example:

means that you type one of the following:
"^RETURN^SORT^ERRORS"
"RETURN_SORT_ERRORS_"

• If two diagram pieces are not separated by a separator character (such as a comma, semicolon,
or parenthesis), separate the syntactic items that they represent by at least one space or a
new line. For example:

means that you type:
MU<IPLY 3 4

not
MU<IPLY34

• If two diagram pieces are separated by a separator character, separating the syntactic items
that they represent by spaces is optional. For example:

means that you type:
MU<IPLY 3,4

or
MU<IPLY 3, 4

• If a diagram piece is immediately followed by a period, putting spaces between the syntactic
item and the period is optional. For example:

means that you can type:
END PROGRAM SORT.

or
END PROGRAM SORT .

22



• Diagram elements need not be on the same line. For example:

BLOCK DATA BEGIN

is equivalent to:
BLOCK DATA
  BEGIN

• Explicit spacing rules given for individual railroad diagrams override the aforementioned
rules.

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.
UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown.
Items not enclosed in brackets are required. For example:
MAXATTACH

Italic Letters

Italic letters, regardless of font, indicate variable items that you supply. Items not enclosed in
brackets are required. For example:
file-name

Computer Type

Computer type letters indicate:
• C and Open System Services (OSS) keywords, commands, and reserved words. Type

these items exactly as shown. Items not enclosed in brackets are required. For example:
Use the cextdecs.h header file.

• Text displayed by the computer. For example:
Last Logon: 14 May 2006, 08:02:23

• A listing of computer code. For example
if (listen(sock, 1) < 0)
{
perror("Listen Error");
exit(-1);
}

Bold Text

Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE

?123
CODE RECEIVED:      123.00

The user must press the Return key after typing the input.
[ ] Brackets

Brackets enclose optional syntax items. For example:
TERM [\system-name.]$terminal-name

INT[ERRUPTS]

Notation Conventions 23



A group of items enclosed in brackets is a list from which you can choose one item or none.
The items in the list can be arranged either vertically, with aligned brackets on each side of
the list, or horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:
FC [ num  ]
   [ -num ]
   [ text ]

K [ X | D ] address

{ } Braces
A group of items enclosed in braces is a list from which you are required to choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side of the
list, or horizontally, enclosed in a pair of braces and separated by vertical lines. For example:
LISTOPENS PROCESS { $appl-mgr-name }
                  { $process-name  }

ALLOWSU { ON | OFF }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:
INSPECT { OFF | ON | SAVEABEND }

… Ellipsis
An ellipsis immediately following a pair of brackets or braces indicates that you can repeat
the enclosed sequence of syntax items any number of times. For example:
M address [ , new-value ]…

 - ] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax
item any number of times. For example:
"s-char…"

Punctuation
Parentheses, commas, semicolons, and other symbols not previously described must be typed
as shown. For example:
error := NEXTFILENAME ( file-name ) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a required
character that you must type as shown. For example:
"[" repetition-constant-list "]"

Item Spacing
Spaces shown between items are required unless one of the items is a punctuation symbol such
as a parenthesis or a comma. For example:
CALL STEPMOM ( process-id ) ;

If there is no space between two items, spaces are not permitted. In this example, no spaces
are permitted between the period and any other items:
$process-name.#su-name

Line Spacing
If the syntax of a command is too long to fit on a single line, each continuation line is indented
three spaces and is separated from the preceding line by a blank line. This spacing distinguishes
items in a continuation line from items in a vertical list of selections. For example:

24



ALTER [ / OUT file-spec / ] LINE

   [ , attribute-spec ]…

!i and !o
In procedure calls, the !i notation follows an input parameter (one that passes data to the called
procedure); the !o notation follows an output parameter (one that returns data to the calling
program). For example:
CALL CHECKRESIZESEGMENT (  segment-id                    !i
                         , error        ) ;              !o

!i,o
In procedure calls, the !i,o notation follows an input/output parameter (one that both passes
data to the called procedure and returns data to the calling program). For example:
error := COMPRESSEDIT ( filenum ) ;                      !i,o

!i:i
In procedure calls, the !i:i notation follows an input string parameter that has a corresponding
parameter specifying the length of the string in bytes. For example:
error := FILENAME_COMPARE_ (  filename1:length           !i:i
                            , filename2:length ) ;       !i:i

!o:i
In procedure calls, the !o:i notation follows an output buffer parameter that has a corresponding
input parameter specifying the maximum length of the output buffer in bytes. For example:
error := FILE_GETINFO_ (  filenum                        !i
                        , [ filename:maxlen ] ) ;        !o:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed messages in this
manual.
Bold Text

Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE

?123
CODE RECEIVED:      123.00

The user must press the Return key after typing the input.
Nonitalic Text

Nonitalic letters, numbers, and punctuation indicate text that is displayed or returned exactly
as shown. For example:
Backup Up.

Italic Text

Italic text indicates variable items whose values are displayed or returned. For example:
p-register

process-name

[ ] Brackets
Brackets enclose items that are sometimes, but not always, displayed. For example:
Event number = number [ Subject = first-subject-value ]

A group of items enclosed in brackets is a list of all possible items that can be displayed, of
which one or none might actually be displayed. The items in the list can be arranged either
vertically, with aligned brackets on each side of the list, or horizontally, enclosed in a pair of
brackets and separated by vertical lines. For example:

Notation Conventions 25



proc-name trapped [ in SQL | in SQL file system ]

{ } Braces
A group of items enclosed in braces is a list of all possible items that can be displayed, of
which one is actually displayed. The items in the list can be arranged either vertically, with
aligned braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:
obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown.          }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:
Transfer status: { OK | Failed }

% Percent Sign
A percent sign precedes a number that is not in decimal notation. The % notation precedes an
octal number. The %B notation precedes a binary number. The %H notation precedes a
hexadecimal number. For example:
%005400

%B101111

%H2F 

P=%p-register E=%e-register

Notation for Management Programming Interfaces
This list summarizes the notation conventions used in the boxed descriptions of programmatic
commands, event messages, and error lists in this manual.
UPPERCASE LETTERS

Uppercase letters indicate names from definition files. Type these names exactly as shown. For
example:
ZCOM-TKN-SUBJ-SERV

lowercase letters
Words in lowercase letters are words that are part of the notation, including Data Definition
Language (DDL) keywords. For example:
token-type

!r
The !r notation following a token or field name indicates that the token or field is required. For
example:
ZCOM-TKN-OBJNAME      token-type ZSPI-TYP-STRING.          !r

!o
The !o notation following a token or field name indicates that the token or field is optional. For
example:
ZSPI-TKN-MANAGER      token-type ZSPI-TYP-FNAME32.         !o

Related Information
• Table 2 (page 27)

• Table 3 (page 27)

26



• Table 4 (page 27)

• Table 5 (page 28)

Table 2 Related Manuals

DescriptionManual

Provides information needed to convert TAL programs
to pTAL programs.

pTAL Conversion Guide

Gives guidelines for writing TAL code that you can
migrate later to pTAL code with as few changes as
possible.

pTAL Guidelines for TAL Programmers

Helps you get started in creating, structuring, compiling,
running and debugging programs. Explains how to

TAL Programmer’s Guide

declare and access procedures and variables and how
the TAL compiler allocates storage for variables.

Describes the syntax for declaring variables and
procedures and for specifying expressions, statements,

TAL Reference Manual

built-in routines, and compiler directives. Lists error and
warning messages.

Summarizes the TAL syntax diagrams.TAL Reference Summary

Table 3 System Manuals

DescriptionManual

Gives guidelines for migrating from a C-series system
to a D-series system

D-Series System Migration Planning Guide

Provides an overview of D-series enhancements to the
Guardian operating system

Introduction to D-Series Systems

Provides an overview of the system hardware and
software

Introduction to Tandem NonStop Systems

Describes the syntax of HP TACLTACL Reference Manual

Table 4 Programming Manuals

DescriptionManual

Contains information that you need about HP C and
C++ for NonStop systems if you plan to call HP C and
C++ routines from pTAL programs

C/C++ Programmer’s Guide

Contains information that you need about HP COBOL
for TNS and TNS/R programs if you plan to call
HP COBOL routines from pTAL programs

COBOL Manual for TNS and TNS/R Programs

Contains information that you need about HP COBOL
for TNS/E programs if you plan to call HP COBOL
routines from pTAL programs

COBOL Manual for TNS/E Programs

Explains how to use the Common Runtime Environment
(CRE) for running mixed-language programs

CRE Programmer’s Guide

Gives guidelines for converting C-series TNS programs
to D-series TNS programs, and for converting TNS
programs to TNS/R programs

Guardian Application Conversion Guide

Describes the syntax and programming considerations
for using system procedures

Guardian Procedure Calls Reference Manual

Describes error codes, error lists, system messages, and
trap numbers for system procedures

Guardian Procedure Errors and Messages Manual

Related Information 27



Table 4 Programming Manuals (continued)

DescriptionManual

Explains how to use the programmatic interface of the
operating system

Guardian Programmer’s Guide

Explains how to migrate programs from TNS/R to
TNS/E

H-Series Application Migration Guide

Contains information that you need about the
HP Transaction Application Language (TAL) if you plan
to call TAL routines from TNS HP COBOL programs

TAL Programmer’s Guide

Documents the data alignment requirements of TALTAL Programmer’s Guide Data Alignment Addendum

Table 5 Program Development Manuals

DescriptionManual

Explains how to accelerate TNS object files for a TNS/R
system

Accelerator Manual

Documents the data alignment requirements of the
Accelerator

Accelerator Manual Data Alignment Addendum

Explains how to bind TNS compilation units (or modules)
using Binder

Binder Manual

Explains how to use the Code Coverage Utilities to
perform profile-guided optimization and to generate
code coverage reports.

Code Profiling Utilities Manual

Explains how to collect cross-reference information using
the stand-alone Crossref product

CROSSREF Manual

Explains how to debug programs using the Debug
machine-level interactive debugger

Debug Manual

Explains position-independent code (PIC) and
dynamic-link libraries (DLLs) on TNS/E systems

DLL Programmer’s Guide for TNS/E Systems

Explains position-independent code (PIC) and
dynamic-link libraries (DLLs) on TNS/R systems

DLL Programmer’s Guide for TNS/R Systems

Explains how to create and edit a text file using the Edit
line and virtual-screen text editor

Edit User’s Guide and Reference Manual

Explains how to use the eld utility to link and change
the attributes of TNS/E object files

eld Manual

Describes the Event Management Service (EMS). The
misalignment tracing facility generates EMS events (see
Misalignment Tracing Facility (page 66))

EMS Manual

Explains how to use the enoft utility to display TNS/E
object files

enoft Manual

Explains how to debug programs using the Inspect
source-level and machine-level interactive debugger

Inspect Manual

Explains how to use the ld utility to link and change
the attributes of TNS/R PIC object files

ld Manual

Explains how to debug programs using the Native
Inspect source-level and machine-level interactive
debugger

Native Inspect Manual

Explains how to use the nld utility to link and change
the attributes of TNS/R non-PIC object files and how the
ar utility works

nld Manual

28



Table 5 Program Development Manuals (continued)

DescriptionManual

Explains how to use the noft utility to display TNS/R
object files (PIC and non-PIC)

noft Manual

Explains how to accelerate TNS and TNS/R object files
for a TNS/E system.

Object Code Accelerator Manual

Explains how to create and edit a text file using the PS
Text Edit full-screen text editor

PS Text Edit Reference Manual

Describes the Subsystem Control Facility (SCF), whose
user interface you can use to control tracing (see
Misalignment Tracing Facility (page 66))

SCF Reference Manual for the Kernel Subsystem

Explains how to debug programs using the Visual Inspect
source-level and machine-level interactive debugger

Visual Inspect Online Help

Code Coverage Tool Reference Manual

Publishing History

Publication DateProduct VersionPart Number

July 2005pTAL D44, EpTAL H01523746-005

November 2006pTAL D44, EpTAL H01523746-006

February 2007pTAL D44, EpTAL H01523746-007

May 2009pTAL D44, EpTAL H01523746-008

February 2012pTAL D44, EpTAL H01523746-009

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to providing
documentation that meets your needs. Send any errors found, suggestions for improvement, or
compliments to docsfeedback@hp.com.
Include the document title, part number, and any comment, error found, or suggestion for
improvement you have concerning this document.

Publishing History 29

mailto:docsfeedback@hp.com


1 Introduction to pTAL
pTAL is based on the HP Transaction Application Language (TAL). You can compile pTAL source
code with either the pTAL or EpTAL compiler.
Topics:

• pTAL and TAL Compatibility (page 30)

• EpTAL, pTAL, and TAL Compilers (page 30)

• pTAL Applications (page 31)

• pTAL Features (page 32)

• System Services (page 34)

• System Procedures (page 34)

• pTAL and the CRE (page 34)

pTAL and TAL Compatibility
The pTAL language is a superset of the TAL language except that TAL supports constructs that
depend on characteristics of the underlying TNS architecture, while pTAL (with a few exceptions)
does not depend on the underlying TNS/R architecture or TNS/E architecture. For example, pTAL
code cannot:

• Access a caller’s stack marker

• Use CODE statements to execute instructions

• Build parameter masks for calls to VARIABLE and EXTENSIBLE procedures

• Embed SQL statements
Also, TAL code cannot use 64-bit addressing functionality added to TNS/E pTAL starting with SPR
T0561H01^AAP . For more information, see “64-bit Addressing Functionality” (page 531).
Because pTAL uses few machine-dependent constructs, it works efficiently with the system hardware
to provide optimal object program performance and is more portable than TAL.
Most pTAL and TAL declarations and executable statements have the same syntax and semantics.
Minor semantic differences might affect your programs; for these differences, you must change
your source code.
To accommodate migration from TAL to pTAL, pTAL retains some of TAL’s operability.
For information about pTAL and TAL differences, see:

• pTAL Conversion Guide

• pTAL Guidelines for TAL Programmers

EpTAL, pTAL, and TAL Compilers
NOTE: This topic includes only enough information about the TAL compiler to compare it to the
EpTAL and pTAL compilers. For complete information about the TAL compiler, see:
• TAL Reference Manual

• TAL Programmer’s Guide

• TAL Programmer’s Guide Data Alignment Addendum

You can compile pTAL source programs using either the pTAL compiler or the EpTAL compiler.

30 Introduction to pTAL



Table 6 EpTAL, pTAL, and TAL Compiler Characteristics

Object Code GeneratedCompiler

TNS/E object code—PIC (position-independent code)EpTAL

TNS/R object code—Non-PIC (default) or PICpTAL

TNS object code—Non-PICTAL

Difference between pTAL and EpTAL compilers:

EpTAL CompilerpTAL Compiler

On Guardian platforms, object files have the file code 800On Guardian platforms, object files have the file code 700

EpTAL code can use 64-bit addressing functionality added
to TNS/E pTAL starting with SPR T0561H01^AAP. For

pTAL code cannot use 64-bit addressing functionality added
to TNS/E pTAL starting with SPR T0561H01^AAP. For

more information, see Appendix E, “64-bit Addressing
Functionality” (page 531).

more information, see Appendix E, “64-bit Addressing
Functionality” (page 531).

The compilers in Table 6 execute under control of the HP NonStop operating systems in Table 7.

Table 7 HP NonStop Operating Systems

RVUArchitecture

TNS/E G06.20 and later
H06.01 and later

D40 and laterTNS/R

TNS C-series
D-series

This manual indicates when pTAL behaves differently on TNS/E and TNS/R architectures. When
no architecture is specifically mentioned, the syntax works the same way on TNS/E and TNS/R
architectures.
For more information:

SourceTopic

Intel Itanium Architecture Software Developer’s ManualItanium® chips used in TNS/E systems

MIPS RISC Architecture by Gerry Kane and Joe HeinrichRISC chips used in TNS/R systems

System description manual for your systemTNS/R or TNS/E architecture

Chapter 16 (page 355)Compiling pTAL source programs

pTAL Applications
The pTAL language is appropriate for writing applications where optimal performance has high
priority, for example:

• Systems software
Operating system components◦

◦ Compilers and interpreters

◦ Command interpreters

pTAL Applications 31



◦ Special subsystems

◦ Special routines that support data communication activities

• Transaction-oriented applications
Server processes used with HP data management software◦

◦ Conversion routines that allow data transfer between HP software and other applications

◦ Procedures that are callable from programs written in other languages

◦ Applications that require optimal performance

You cannot embed SQL/MP or SQL/MX statements in pTAL source code.

pTAL Features
• Procedures (page 32)

• Subprocedures (page 32)

• Private Data Area (page 32)

• Recursion (page 33)

• Parameters (page 33)

• Data Types (page 33)

• Data Grouping (page 33)

• Pointers (page 34)

• Data Operations (page 34)

• Bit Operations (page 34)

• Built-in Routines (page 34)

• Compiler Directives (page 34)

• Modular Programming (page 34)

Procedures
Each pTAL program contains one or more procedures. A procedure is a discrete sequence of
declarations and statements that performs a specific task. A procedure is callable from anywhere
in the program.
Each procedure executes in its own environment and can contain local variables that are not
affected by the actions of other procedures. When a procedure calls another procedure, the
operating system saves the caller’s environment and restores that environment when the called
procedure returns control to the caller.

Subprocedures
A procedure can contain subprocedures, callable only from within the same procedure. A
subprocedure can have sublocal variables that are not affected by the actions of other
subprocedures. When a subprocedure calls another subprocedure, the caller’s environment remains
in place. The operating system saves the location in the caller to which control is to return when
the called subprocedure terminates.

Private Data Area
Each activation of a procedure or subprocedure has its own data area. Upon termination, each
activation relinquishes its private data area, thereby minimizing the amount of memory that the
program uses.

32 Introduction to pTAL



Recursion
Because each activation of a procedure or subprocedure has its own data area, a procedure or
subprocedure can call itself or can call another procedure that in turn calls the original procedure.

Parameters
A procedure or subprocedure can have optional or required parameters. The same procedure or
subprocedure can process different sets of variables sent by different calls to it.

Data Types
A pTAL program can declare and refer to the following types of data:

DescriptionData Type

8-bit integer byteSTRING

16-bit integer wordINT, INT(16)

32-bit integer doublewordINT(32)

64-bit integer quadruplewordFIXED, FIXED(0), INT(64)

Fixed-point quadruplewordFIXED(-19 to -1)

Fixed-point quadruplewordFIXED(1 to 19)

32-bit floating-point doublewordREAL, REAL(32)

64-bit floating-point quadruplewordREAL(64)

n-bit field, where 1 <= n <= 31UNSIGNED(n)

32-bit byte addressBADDR

32-bit 2-byte addressWADDR

32-bit byte code word addressCBADDR

32-bit 2-byte code word addressCWADDR

16-bit SG-relative byte addressSGBADDR

16-bit SG-relative 2-byte addressSGWADDR

32-bit SG-relative 2-byte addressSGXBADDR

32-bit SG-relative 2-byte addressSGXWADDR

32-bit byte addressEXTADDR

Explicitly named 32-bit byte addressEXT32ADDR*

64-bit byte addressEXT64ADDR*

32-bit code byte addressPROCADDR

Explicitly named 32-bit code byte addressPROC32ADDR*

64-bit code byte addressPROC64ADDR*

* These data types are 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP.
For more information, see Appendix E, “64-bit Addressing Functionality” (page 531).

Data Grouping
A pTAL program can declare and use groups of related variables, such as arrays and structures
(records).

pTAL Features 33



Pointers
A pTAL program can declare pointers (variables that can contain addresses) and use them to
access locations throughout memory. You can store addresses in pointers when you declare them
or later in your program.

Data Operations
A pTAL program can copy a contiguous group of words or bytes and compare one group with
another. It can scan a series of bytes for the first byte that matches (or fails to match) a given
character.

Bit Operations
A pTAL program can perform bit deposits, bit extractions, and bit shifts.

Built-in Routines
A pTAL program can use built-in routines to convert data types and addresses, test for an ASCII
character, or determine the length, offset, type, or number of occurrences of a variable.

Compiler Directives
You can use directives to control a compilation. You can, for example, check the syntax in your
source code or control the content of compiler listings.

Modular Programming
You can divide a large pTAL program into modules, compile them separately, and then link the
resulting object files into a new object file.

System Services
Your program can ignore many things such as the presence of other running programs and whether
your program fits into memory. For example, programs are loaded into memory for you and absent
pages are brought from disk into memory as needed.

System Procedures
The file system treats all devices as files, including disk files, disk packs, terminals, printers, and
programs running on the system. File-system procedures provide a file-access method that lets you
ignore the peculiarities of devices. Your program can refer to a file by the file’s symbolic name
without knowing the physical address or configuration status of the file.
Your program can call system procedures that activate and terminate programs running on any
processor on the system, and can also call system procedures that monitor the operation of a
running program or processor. If the monitored program stops or a processor fails, your program
can determine this fact.
For more information about system procedures see:

• Guardian Procedure Calls Reference Manual

• Guardian Programmer’s Guide

pTAL and the CRE
pTAL does not have a run-time environment defined by a run-time library such as HP C and
HP COBOL. The CRE provides a common foundation for language-specified run-time libraries that
enables mixed-language programming.
A program with a pTAL main routine cannot run in the CRE because pTAL does not perform the
necessary initialization of the run-time environment. pTAL routines can run in the CRE if they are

34 Introduction to pTAL



called from a program with an HP C main routine. There are additional restrictions on what
operations can be performed in the pTAL routines. For complete details on writing pTAL routines
that run in the CRE, see the CRE Programmer’s Guide.

pTAL and the CRE 35



2 Language Elements
The elements that make up the pTAL language include:

• Character Set (page 36)

• Keywords (page 37)

• Delimiters (page 38)

• Operators (page 39)

• Base Address Symbols (page 40)

• Indirection Symbols (page 41)

• Declarations (page 41)

• Typed Integer Constants (page 44)

• Statements (page 45)

Character Set
pTAL supports the complete ASCII character set, which includes:

• Uppercase and lowercase alphabetic characters (A through Z.)

• Numeric characters (0 through 9)

• Special characters

Table 8 Special Characters

DescriptionCharacterDescriptionCharacter

Quotation mark"Exclamation point!

Percent sign%Dollar sign$

Apostrophe'Ampersand&

Closing parenthesis)Opening parenthesis(

Plus+Asterisk*

Hyphen (minus)-Comma,

Right slash/Period (decimal point).

Semicolon;Colon:

Equals=Less than<

Question mark?Greater than>

Opening bracket[Commercial at sign@

Closing bracket]Back slash\

Underscore_Circumflex^

Opening brace{Grave accent`

Closing brace}Vertical line|

Tilde~

36 Language Elements



Keywords
Keywords have predefined meanings to the compiler when used as shown in the syntax diagrams
in this manual.

DescriptionKeyword Type

Reserved by the compiler. Do not use reserved keywords (shown in Table 9 (page 37))
for your identifiers.

Reserved

You can use nonreserved keywords anywhere identifiers are allowed except as noted
in the Restrictions column of Table 10 (page 37).

Nonreserved

Table 9 Reserved Keywords

SGXBADDRPROC32ADDR*INTERRUPTELSEAND

SGXWADDRPROC64ADDR*LABELENDASSERT

UNTILPROCPTRLANDENTRYBADDR

USEPROC32PTR*LITERALEXTERNALBEGIN

VARIABLEPROC64PTR*LOREXTADDRBY

VOLATILEREALMAINEXT32ADDR*CALL

WADDRREFALIGNEDNOTEXT64ADDR*CALLABLE

WHILERESIDENTOFFIELDALIGNCASE

RETURNORFIXEDCBADDR

RSCANOTHERWISEFORCWADDR

SCANPRIVFORWARDDEFINE

SGBADDRPROCADDRIFDO

SGWADDRPROCINTDOWNTO
* These reserved keywords are available in the 64-bit addressing functionality added to the EpTAL compiler starting
with SPR T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality” (page 531).

Table 10 Nonreserved Keywords

RestrictionsKeyword

Allowed in BLOCK declarationsAT

NoneAUTO

Allowed in BLOCK declarationsBELOW

Not to be used as an identifier within a structureBIT_FILLER

Not to be used as an identifier in a source file that contains the NAME declarationBLOCK

Not to be used as an identifier of a LITERAL or DEFINEBYTES

NoneC

Not to be used as an identifier of a LITERAL or DEFINEELEMENTS

NoneEXT

NoneEXTENSIBLE

Not to be used as an identifier within a structureFILLER

NoneLANGUAGE

Keywords 37



Table 10 Nonreserved Keywords (continued)

RestrictionsKeyword

NoneNAME

NoneNODEFAULT

Not to be used as an identifier in a source file that contains the NAME declarationPRIVATE

NoneRETURNSCC

NoneSHARED2

NoneSHARED8

NoneUNSPECIFIED

Not to be used as an identifier of a LITERAL or DEFINEWORDS

Delimiters
Delimiters are symbols that begin, end, or separate fields of information. Delimiters tell the compiler
how to handle the fields of information.

Table 11 Delimiters

UsesCharacter RepresentationSymbol

Begins and optionally ends a commentExclamation mark!

Begins a commentTwo consecutive hyphens--

Separates fields of information, such as in
declarations, statements, directives, and constant lists

Comma,

Semicolon; • Terminates data declarations

• Separates statements

• Separates declaration options

Separates identifier levels in a qualified structure item
identifier

Period.

Delimits a bit field in a bit operationAngle brackets<n :n >

Colon: • Denotes a statement label

• Denotes a procedure entry point

• Denotes an ASSERT statement assert level

• Denotes a parameter pair

Parentheses( ) • Delimit subexpressions within an expression

• Delimit the parameter list of a DEFINE, procedure,
subprocedure, or CALL statement

• Delimit the referral in a structure pointer
declaration

• Delimit the implied decimal point position in a
FIXED variable

Delimit the bounds specification in the declaration
of an array, structure, or substructure

Square brackets[n :n ]

38 Language Elements



Table 11 Delimiters (continued)

UsesCharacter RepresentationSymbol

Hyphen plus right angle bracket-> • Begins one or more labels in a labeled CASE
statement

• Begins a next-addr clause in a SCAN or
RSCAN statement

• Begins a next-addr clause in a move statement

• Begins a next-addr clause in a group
comparison expression

Delimit a character stringQuotation marks"string"

The first quotation mark indicates that the second
quotation mark is not a delimiter in a character string

Consecutive quotation marks""

= • Used in LITERAL declarationsEqual sign
EQL

• Used in equivalence variable declarations

• Used in redefinition declarations

Delimit the body in a DEFINE declarationEqual sign and hash mark= body #

Delimit a comma that is not a delimiter in a DEFINE
parameter

Single quotation marks‘,’

Denotes a built-in routine (such as $ABS) or a built-in
routine (such as $ASCIITOFIXED)

Dollar sign$

Begins a directive lineQuestion mark?

Operators
Operators specify operations, such as arithmetic or assignments, that you want to perform on data
items.

Table 12 Operators

DescriptionOperatorContext

Data declaration initialization; assignment statement,
FOR statement, and assignment expression

:=Assignment

Left-to-right move':='Move statement

Right-to-left move'=:'

Concatenated move&

Describes a range of case alteratives. .(two periods)Labeled CASE statement

Accesses the address contained in a pointer or the
address of a nonpointer item

@Remove indirection

Repetition factor in a constant list* (asterisk)Repetition

Template structure declaration(*)Template structure

Value parameter to be treated as FIXED(*)FIXED(*) parameter type

Accesses a bit-deposit or bit-extraction field (<n > or
<n :n >)

. (period)Bit-field access

Signed left shift<<Bit shift

Signed right shift>>

Unsigned left shift'<<'

Operators 39



Table 12 Operators (continued)

DescriptionOperatorContext

Unsigned right shift'>>'

Signed addition+Arithmetic expression

Signed subtraction-

Signed multiplication*

Signed division/

Unsigned addition'+'

Unsigned subtraction'-'

Unsigned multiplication'*'

Unsigned division'/'

Unsigned modulo division'\'

Logical OR bit-wise operationLOR

Logical AND bit-wise operationLAND

Exclusive OR bit-wise operationXOR

Signed less than<Relational expression

Signed equal to=

Signed greater than>

Signed less than or equal to<=

Signed greater than or equal to>=

Signed not equal to<>

Unsigned less than'<'

Unsigned equal to'='

Unsigned greater than'>'

Unsigned less than or equal to'<='

Unsigned greater than or equal to'>='

Unsigned not equal to'<>'

Logical conjunctionAND

Logical disjunctionOR

Logical negationNOT

Base Address Symbols
Base address symbols let you declare pointers to specific data segments.

Table 13 Base Address Symbols

DescriptionSymbol

P-register addressing (read-only array declaration)'P'

Define base address equivalencies, system global space (privileged procedures only)'SG'

References data in the system data segment.'SGX'

40 Language Elements



Table 13 Base Address Symbols (continued)

DescriptionSymbol

References data relative to the beginning of the Global data area (not supported by
pTAL).

'G'

References data relative to the beginning of the Procedure (not supported by pTAL).'L'

References data relative to the beginning of the Subprocedure (not supported by
pTAL).

'S'

Indirection Symbols
Indirection symbols determine the address types of variables. Use indirection symbols when declaring
formal parameters to cause them to be passed by reference (rather than by value).

Table 14 Indirection Symbols

Declares ...Symbol

. (period) • An array or structure as having standard direct addressing

• A simple pointer or structure pointer

.EXT • An array or structure as having extended 32-bit addressing

• An extended (32-bit) simple pointer or structure pointer

.EXT32*
• An array or structure as having extended 32-bit addressing

• An extended (32-bit) simple pointer or structure pointer

.EXT64*
• An array or structure as having extended 64-bit addressing

• An extended (64-bit) simple pointer or structure pointer

A standard (16-bit) system global pointer.SG

An extended (32-bit) system global pointer..SGX
* These indirection symbols are available in the 64-bit addressing functionality added to the EpTAL compiler starting
with SPR T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality” (page 531).

Declarations
Declarations allocate storage and associate identifiers with declarable objects in a program; that
is:

• Variables

• LITERALs and DEFINEs (see Chapter 6 (page 97))

• Procedures (see Chapter 14 (page 246))

• Labels (see Labels in Procedures (page 273))

• Entry points (see Entry-Point Declarations (page 260))
Topics:

• Identifiers (page 42)

• Variables (page 43)

• Scope (page 43)

Indirection Symbols 41



Identifiers
Identifiers must conform to these rules:

• Identifiers can have up to 132 characters. You can limit the identifier to 31 characters by
setting the DO_TNS_SYNTAX (page 389).

• Identifiers begin with an alphabetic character, an underscore (_), or a circumflex (^).

• Identifiers contain alphabetic characters, numeric characters, underscores, or circumflexes.

• Identifiers contain lowercase and uppercase alphabetic characters. The compiler treats all
characters as uppercase.

• Identifiers cannot be reserved keywords (see Table 9 (page 37)).

• Identifiers can be nonreserved keywords, except as noted in Table 10 (page 37).
In addition to the preceding rules, HP recommends that you:

• Use underscores rather than circumflexes to separate words in identifiers (for example, use
Name_Using_Circumflexes rather than Name^Using^Circumflexes). This guideline
reflects international character-set standards, which allow the character printed for the circumflex
to vary by country.

• Do not end identifiers with an underscore. The trailing underscore is reserved for identifiers
supplied by the operating system (such as Name_Using_Trailing_Underscore_).

Example 1 Correct Identifiers

a2
HP
_2345678012_31_characters
name_with_exactly_31_characters

Example 2 Incorrect Identifiers

ProblemIdentifier

Begins with a number2abc

Contains % symbolab%99

Reserved wordVARIABLE

Each identifier belongs to an identifier class. The compiler determines the identifier class based
on how you declare the identifier.

Table 15 Identifier Classes

DescriptionClass

Global data blockBlock

Read only (P-relative) arrayCode

Simple variable, array, nonstructure pointer, structure pointer, structure, or structure
data item

Variable

Named textDEFINE*

Procedure or subprocedure that returns a valueFunction

Statement labelLabel

Named constantLITERAL

Procedure or subprocedure that does not return a valuePROC

42 Language Elements



Table 15 Identifier Classes (continued)

DescriptionClass

Template structureTemplate

* Available only on Guardian platforms.

Variables
A variable is a symbolic representation of data. It can be a single-element variable or a
multiple-element variable. You use variables to store data that can change during program execution.
Before you can access data stored in a variable you must either:

• Initialize the variable with a value when you declare the variable

• Assign a value to the variable after you declare the variable

Table 16 Variable Types

DescriptionVariable Type

A variable that contains one element of a specified data typeSimple variable

A variable that contains multiple elements of the same data typeArray

A variable that can contain variables of different data typesStructure

A structure nested within a structure or substructureSubstructure

A simple variable, array, simple pointer, substructure, or structure pointer declared
in a structure or substructure; also known as a structure field

Structure item

A variable that contains a memory address, usually of a simple variable or an array
element, which you can access with this nonstructure pointer

Nonstructure pointer

A variable that contains the memory address of a structure, which you can access
with this structure pointer

Structure pointer

Scope
Every declared item in a pTAL program has a scope that determines where in the program it is
visible (after the point of declaration).

Visible ...Declared in a ...Scope

Everywhere in the programProgramGlobal

Only in the procedure that declares it (including the
subprocedures of that procedure)

ProcedureLocal

Only in the subprocedure that declares itSubprocedureSublocal

Formal parameters of procedures and subprocedures have local and sublocal scope, respectively.

Example 3 Scope of Declared Items

int i;         ! i has global scope and is visible everywhere
               !  from this point forward.
proc p;        ! p has global scope.  If p had formal
               !  parameters, they would have local scope.
begin
  int j := i;  ! j has local scope and is visible everywhere in
               !  procedure p from this point forward.
  subproc s;   ! s has local scope.  If s had formal parameters,
               !  they would have sublocal scope.
  begin

Declarations 43



    int k := i + j;  ! k has sublocal scope and is visible only
                     !  in subprocedure s.
  end;
  ! k is not visible here.  It is created and destroyed every

  !  time subprocedure s is called.
end;
! j is not visible here.  It is created and destroyed every time
!  procedure p is called.
! i is accessible here and exists as long as the program is
!  running.

Variables that have different scopes can have the same name, but they are different variables.

Example 4 Global and Local Variable With the Same Name

int(32) i;       ! This i is global
proc p;
begin
  int i;         ! This i is local to procedure p, different
                 !  from global variable i, and makes access to
                 !  global variable i impossible ("hides" it).
  i  := i + 1D;  ! ERROR: local variable i is INT(16)
end;

For local and sublocal variables, the compiler generates code to evaluate and store an initialization
expression. For example, for the expression
int k := i * j;

if i, j, and k are local or sublocal variables, the compiler generates code to multiply i by j and
store the product in k.
For global variables, the compiler does not generate such initialization code. Initial values assigned
to global variables are determined by the linker.

Typed Integer Constants
A constant is a value you can store in a variable, declare as a LITERAL, or use as part of an
expression. Constants can be numbers or character strings. The following are examples of constants:

ExampleConstant Type

"abc"Character string

654Numeric

You can specify numeric constants in binary, octal, decimal, or hexadecimal base, depending on
the data type of the constant. The default number base in pTAL is decimal. The following are
example constants in each number base:

ExampleNumber Base

-654INT(16) Decimal

+654D or +654 D (% not allowed)INT(32) Decimal

654F or 654 F (% not allowed)FIXED Decimal

%B101111INT(16) Binary

%B101111D or %B101111%D or %B101111% DINT(32) Binary

%B101111F or %B101111%F or %B101111% FFIXED Binary

44 Language Elements



ExampleNumber Base

%57INT(16) Octal

%57D or %57%D or %57 DINT(32) Octal

%57D or %57%F or %57 FFIXED Octal

%H2FINT(16) Hexadecimal

%H2F%D or %H2F D (space or % required)INT(32) Hexadecimal

%H2F%F or %H2F F (space or % required)FIXED Hexidecimal

Statements
A statement specifies operations to be performed on declared objects. Statements are discussed
in Chapter 12 (page 199), and summarized in Table 55 (page 199).

Statements 45



3 Data Representation
A program operates on data—variables and constants—which it stores in the storage units that
Table 17 (page 46) describes.

Table 17 Storage Units

DescriptionNumber of BitsStorage Unit

Smallest addressable unit of memory.8Byte

2 bytes, with byte 0 (most significant) on the left and byte 1 (least significant)
on the right

16Word

4 bytes32Doubleword

8 bytes64Quadrupleword

Contiguous bit fields within 2 bytes1-16n-bit field

Contiguous bit fields within 4 bytes17-31

Topics:

• Data Types (page 46)

• Address Types (page 49)

• Constants (page 57)

Data Types
When you declare a variable, you specify its data type, which determines:

• Its storage unit

• The values that you can assign to it

• The operations that you can perform on it

• Its address type

Table 18 Data Types

Values the Data Type Can RepresentStorage Unit1Data Type

ByteSTRING • ASCII character

• Unsigned 8-bit integer in the range 0 through 255

Word • String of one or two ASCII charactersINT
INT(16)2

• Unsigned 6-bit integer in the range 0 through 65,535

• Signed 6-bit integer in the range -32,768 through 32,767

32-bit integer in the range -2,147,483,648 through +2,147,483,647DoublewordINT(32)

32-bit floating-point number in the range ±8.6361685550944444E-78
through ±1.15792089237316192E, precise to approximately 6.5
significant decimal digits.

DoublewordREAL
REAL(32)3

64-bit fixed-point number. For FIXED, FIXED(0), FIXED (*), and INT(64)
the range is -9,223,372,036,854,775,808 through
+9,223,372,036,854,775,807.

QuadruplewordFIXED
FIXED(0)
INT(64)4

FIXED(-19 to -1)
FIXED(1 to 19)

46 Data Representation



Table 18 Data Types (continued)

Values the Data Type Can RepresentStorage Unit1Data Type

64-bit floating-point number in the same range as data type REAL but
precise to approximately 16.5 significant decimal digits.

QuadruplewordREAL(64)

UNSIGNED(1-15) and UNSIGNED(17-31): Unsigned integer in the range
0 through (2n - 1)

n-bit fieldUNSIGNED

UNSIGNED(16):
• Unsigned integer in the range 0 through 65,535

• Signed integer in the range -32,768 through 32,767

UNSIGNED simple variable: The bit field can be 1 to 31 bits.
UNSIGNED array: The element bit field can be 1, 2, 4, or 8 bits.

1 Table 17 (page 46) describes storage units.
2 INT and INT(16) are the same type.
3 REAL and REAL(32) are the same type.
4 FIXED, FIXED(0), and INT(64) are the same type.

Topics:

• Specifying Data Types (page 47)

• Data Type Aliases (page 48)

• Operations by Data Type (page 48)

Specifying Data Types
The syntax for specifying the data type in a variable declaration is:

width

is a constant expression that specifies the width, in bits, of the variable. The value of width
must be appropriate for the data type (see Example 5 (page 48)):

Value of widthData Type

16INT (16)*

32INT (32)

64INT (64)*

32REAL(32)*

64REAL(64)

In the range 1 through 31UNSIGNED(n )

* Data type alias (see Data Type Aliases (page 48))

Data Types 47



fpoint

is the implied fixed-point (decimal-point) setting. fpoint is an integer in the range -19 through
19. The default fpoint is 0 (no decimal places).
A positive fpoint specifies the number of places to the right of the decimal point:
FIXED(3) x := 0.642F;  ! Stored as 642

A negative fpoint specifies a number of places to the left of the decimal point. When the
value is stored, it is truncated leftward from the decimal point by the specified number of digits.
When the value is accessed, zeros replace the truncated digits:
FIXED(-3) y := 642945F;  ! Stored as 642; accessed as 642000

*(asterisk)

prevents scaling of the initialization values (for an explanation of scaling, see Scaling of FIXED
Operands (page 74)).

Example 5 Constant Expressions in Data Type Specifications

LITERAL a = 2,
        b = 35;
INT(a + 30) aaa;    ! OK: INT(32) is valid
INT(b - 5) bbb;     ! ERROR: expression must evaluate to valid
                    !  bit length (16, 32, or 64 for an INT)
REAL (b - 19) ccc;  ! ERROR: expression must evaluate to valid
                    !  bit length (32 or 64 for REAL)
REAL (b + 29) ddd;  ! OK: REAL(64) is valid
UNSIGNED (a) eee;   ! OK: UNSIGNED fields can be any number of
                    !  bits from 1 to 31.

Data Type Aliases
The compiler accepts these data type aliases:

AliasesData Type

INT(16)INT

REAL(32)REAL

FIXED(0)INT(64)FIXED

The remainder of this manual avoids using data type aliases.

Operations by Data Type
The data type of a variable determines the operations you can perform on the variable.

Table 19 Operations by Data Type

REAL or REAL(64)FIXED

INT(32) or
UNSIGNED
(17-31)

INT or UNSIGNED
(1-16)STRINGOperation

NoNoYesYesYesUnsigned
arithmetic

YesYesYesYesYesSigned arithmetic

NoNoYesYesYesLogical
operations

YesYesYesYesYesRelational
operations

48 Data Representation



Table 19 Operations by Data Type (continued)

REAL or REAL(64)FIXED

INT(32) or
UNSIGNED
(17-31)

INT or UNSIGNED
(1-16)STRINGOperation

NoNoYesYesYesBit shifts

YesYesYesYesYesByte scans

The data type of a variable also determines which built-in routines you can use with the variable
(see Chapter 15 (page 274)).

Address Types
Every identifier that you declare has both a data type and an address type. The data type describes
the data item itself. The address type describes the address of the data item. If you declare a pointer
to the data item, the value that you assign to the pointer must be of that address type.
You cannot explicitly declare the address type of a pointer. When you declare a pointer, the
compiler determines its address type.

Table 20 Data Types and Their Address Types

Storage Unit1Address TypeData TypePointer Declaration

ByteBADDRSTRING.s;STRING

WordWADDRINT.i;INT

WordWADDRINT(32).j;INT(32)

WordWADDRREAL.r;REAL

WordWADDRREAL(64).s;REAL(64)

WordWADDRFIXED.f;FIXED

WordWADDRnone.t;STRUCT

ByteBADDRnone.v;SUBSTRUCT

WordWADDRaddress_type3.a;addr-type2

ByteEXTADDRSTRING.EXT s;STRING

ByteEXTADDRINT.EXT i;INT

ByteEXTADDRINT(32).EXT j;INT(32)

ByteEXTADDRREAL.EXT r;REAL

ByteEXTADDRREAL(64).EXT s;REAL(64)

ByteEXTADDRFIXED.EXT f;FIXED

ByteEXTADDRnone.EXT t;STRUCT

ByteEXTADDRnone.EXT v;SUBSTRUCT

ByteEXTADDRaddress_type3.EXT a;addr-type2

ByteEXT32ADDR4STRING.EXT32 s;STRING

ByteEXT32ADDR4INT.EXT32 i;INT

ByteEXT32ADDR4INT(32).EXT32 k;INT(32)

ByteEXT32ADDR4REAL.EXT32 r;REAL

ByteEXT32ADDR4FIXED.EXT32 f;FIXED

Address Types 49



Table 20 Data Types and Their Address Types (continued)

Storage Unit1Address TypeData TypePointer Declaration

ByteEXT32ADDR4none.EXT32 t;STRUCT

ByteEXT32ADDR4none.EXT32 v;SUBSTRUCT

ByteEXT32ADDR4address_type.EXT32 a;addr-type

ByteEXT64ADDR4STRING.EXT64 s;STRING

ByteEXT64ADDR4INT.EXT64 i;INT

ByteEXT64ADDR4INT(32).EXT64 k;INT(32)

ByteEXT64ADDR4REAL.EXT64 r;REAL

ByteEXT64ADDR4FIXED.EXT64 f;FIXED

ByteEXT64ADDR4None.EXT64 t;STRUCT

ByteEXT64ADDR4none.EXT64 v;SUBSTRUCT

ByteEXT64ADDR4address_type.EXT64 a;addr-type

ByteSGBADDRSTRING.SG s;STRING

WordSGWADDRINT.SG i;INT

WordSGWADDRINT(32).SG j;INT(32)

WordSGWADDRREAL.SG r;REAL

WordSGWADDRREAL(64).SG s;REAL(64)

WordSGWADDRFIXED.SG f;FIXED

WordSGWADDRaddress_type3.SG a;addr-type2

ByteSGXBADDRSTRING.SGX s;STRING

WordSGXWADDRINT.SGX i;INT

WordSGXWADDRINT(32).SGX j;INT(32)

WordSGXWADDRREAL.SGX r;REAL

WordSGXWADDRREAL(64).SGX s;REAL(64)

WordSGXWADDRFIXED.SGX f;FIXED

WordSGXWADDRaddress_type3.SGX a;addr-type2

DoublewordPROCADDRPROCPROC p;

DoublewordPROCADRPROCPTRPROCPTR p(); END PROCPTR

DoublewordPROC32PTR4PROC32PTRPROC32PTR p(); END PROCPTR

QuadwordPROC64PTR4PROC64PTRPROC64PTR p(); END PROCPTR

DoublewordPROCADDRPROCprocedure e; ENTRY

ByteCBADDRSTRINGSTRING v ='p':="ab";

WordCWADDRINTINT v ='p':="ab";

WordCWADDRSUBPROCSUBPROC

WordCWADDRSubprocedure ENTRY e;

WordCWADDRLABELLABEL 1;

50 Data Representation



1 Table 17 (page 46) describes storage units.
2 addr-type is any of the ten address types.
3 address_type is the same address type as specified in the declaration.
4 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,

see Appendix E, “64-bit Addressing Functionality” (page 531).

You can compare addresses using the relational operators described in Table 12 (page 39).
Topics:

• Storing Addresses in Variables (page 51)

• Converting Between Address Types and Numeric Data Types (page 51)

• Converting Between Address Types (page 52)

• Using Indexes to Access Array Elements (page 54)

• Incrementing and Decrementing Addresses (Stepping Pointers) (page 54)

• Computing the Number of Bytes Between Addresses (page 55)

• Comparing Addresses to Addresses (page 56)

• Comparing Addresses to Constants (page 56)

• Comparing Procedure Addresses and Procedure Pointers (page 56)

• Testing a Pointer for a Nonzero Value (page 56)

Storing Addresses in Variables
You can store an address into a variable when either of the following is true:

• The address is the same data type as the variable into which you are storing the address.

• The address is convertible to the data type of the variable into which you are storing the
address.

Converting Between Address Types and Numeric Data Types
You can move any 16-bit integer value—a constant or variable—into any system global address
type (SGBADDR, SGWADDR, SGXBADDR, or SGXWADDR). Conversely, you can move the value
of any system global data type into a 16-bit integer variable.
You can move an EXTADDR into an INT(32), or an INT(32) into an EXTADDR.
You can also move an EXTA32DDR into an INT(32), or an INT(32) into an EXT32ADDR.
Exceptions: You cannot convert the following address types to numeric data types:

• CBADDR

• CWADDR

• PROCADDR

• PROC32ADDR

• PROC64ADDR

NOTE: The address types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
available in the 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Address Types 51



Converting Between Address Types
You can convert an address from one address type to another using either:

• Built-in address-conversion functions (see Table 61 (page 283))

• Shift operations and low-level built-in routines
These conversions are supported for compatibility with TAL. HP recommends that you use the
equivalent pTAL routine when you write pTAL code.

Equivalent Routine CallOperand TypeExpression

$WADDR_TO_BADDR(e )WADDRe '<<' 1

$SGWADDR_TO_SGBADDR(e )SGWADDRe '<<' 1

$SGWADDR_TO_SGBADDR(e )SGXWADDRe '<<' 1

$BADDR_TO_WADDR(e )BADDRe '>>' 1

$SGBADDR_TO_SGWADDR(e )SGBADDRe '>>' 1

$SGBADDR_TO_SGWADDR(e )SGXBADDRe '>>' 1

$BADDR_TO_EXTADDR(e )BADDR$UDBL(e )

$BADDR_TO_EXTADDR(e )BADDR$DBLL(0,e )

$WADDR_TO_EXTADDR(e )WADDR$UDBL(e ) '<<' 1

$WADDR_TO_EXTADDR(e )WADDR$DBLL(0,e ) '<<' 1

The compiler generates code for implicit conversions for the following operations:

• Block moves and compares
The compiler automatically converts an address type if required for the source or destination
pointer in a block move or block compare instruction.

• Call-by-reference actual parameters
The compiler automatically converts the address type of an actual parameter to the address
type of a formal parameter if the conversion could not cause data loss. For example:

◦ BADDR can be converted to EXTADDR

◦ WADDR can be converted to EXTADDR

◦ EXTADDR cannot be converted to WADDR

◦ EXTADDR and EXT32ADDR can be converted to EXT64ADDR

◦ PROCADDR and PROC32ADDR can be converted to PROC64ADDR

◦ PROCPTR and PROC32PTR can be converted to PROC64PTR (if same parameter profile.
For more information, see “Procedure Pointers” (page 263).)

52 Data Representation



Table 21 Valid Address Conversions

FROM

F
I

INT

(32)

INTP
R
O
C

E
X
T
64

P
R
O
C

P
R
O
C

E
X
T
32

E
X
T
A

S
G
X
W

S
G
W
A

S
G
X
B

S
G
B
A

C
W
A
D

C
B
A
D

W
A
D
D
R

B
A
D
D
R

TO

X
E
D
0

64
A
D

A
D
D
R

32
A
D
D
R

A
D
D
R

A
D
D
R
*

D
D
R

A
D
D
R

D
D
R

A
D
D
R

D
D
R

D
R

D
R

D
R
*

*
*

r1crrr7=BADDR

r2crr=r9WADDR

9=CBADDR

=9CWADDR

y3cr7R7==SGBADDR

y3cr7R7==SGXBADDR

y4c==r8r8SGWADDR

y4c==r8r8SGXWADDR

ycy=rrrrc11c11rrEXTADDR

yc=yrrrrc11c11rrEXT32ADDR*

c10y10=10PROCADDR

c10=10r10PROC32ADDR*

y12=yyrrrrrrEXT64ADDR*

=10r10r10PROC64ADDR*

cc=y6y6y5y5INT

c=cyyINT(32)

=ccc13FIXED(0)

Key to Symbols:

= Same type, no conversion needed

y Implicit conversion for assignments, actual parameters (either by value or by reference) and function return statements

I Implicit conversion for assignments, actual parameters (passed either by value or by reference), and RETURN statements

r Implicit conversion for reference parameters; requires explicit conversion for other contexts

c Requires explicit conversion

1-13 See note (below)

Blank Always unsupported
* These address types are available in the 64-bit addressing functionality added to the EpTAL compiler starting with
SPR T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality” (page 531).

Address Types 53



NOTE:
1. In assignment statements, only INT constants are allowed. They are interpreted as a ‘G’-relative

byte address.
2. In assignment statements, only INT constants are allowed. They are interpreted as a ‘G’-relative

word address.
3. Input INT interpreted as ‘SG’-relative byte address.
4. Input INT interpreted as ‘SG’-relative word address.
5. Output INT holds ‘SG’-relative byte address.
6. Output INT holds ‘SG’-relative word address.
7. Compiler assumes object is in lower half of the stack or in the lower half of the ‘SG’ segment

(TNS only); there is no dynamic check for msb=0.
8. The result is undefined if lsb=1; the round-down effect of TNS is not guaranteed. pTAL issues

a warning if the BADDR or SGBADDR address is known to be an odd-byte offset from some
word-addressed base. No warning is issued if pTAL cannot determine whether the offset is
odd or even.

9. Conversions between CWADDR and CBADDR are unsupported and illegal, because these
conversions are probably unneeded, and because it is difficult to ensure that a word-addressed
‘P’-relative structure is in the byte-addressable lower half of a TNS code segment.

10. PROCPTR, PROC32PTR, and PROC64PTR variables and addresses of procedures are implicitly
of type PROCADDR, PROC32ADDR, and PROC64ADDR, respectively, but are subject to
matching of parameter profiles and procedure attributes. See “Assignments to Procedure
Pointers” (page 269). Implicit conversions from PROC32ADDR to PROCADDR, PROC32ADDR
to PROC64ADDR, and PROCADDR to PROC64ADDR are also allowed (again subject to the
parameter and attribute matching rules, described in the section noted directly above).

11. $XADR of a CWADDR and CBADDR yields an EXTADDR.
12. In assignment statements, only FIXED(0) constants are allowed. They are interpreted as a byte

address.
13. $FIX of an EXT64ADDR yields a FIXED(0).

Using Indexes to Access Array Elements
Indexing produces the correct result for all data types including structures. Use indexing wherever
possible to adjust pointers.

Example 6 Using Indexing to Access an Array Element

int .p;
@p := @p[2]      ! This statement is equivalent to
@p := @p '+' 4;  !  this statement

Incrementing and Decrementing Addresses (Stepping Pointers)
You can increment or decrement the value of a pointer (step a pointer) by:

• Using Arithmetic Operations to Adjust Addresses (page 55)

• Computing the Number of Bytes Between Addresses (page 55)

• Comparing Addresses to Addresses (page 56)

• Comparing Addresses to Constants (page 56)

• Comparing Procedure Addresses and Procedure Pointers (page 56)

• Testing a Pointer for a Nonzero Value (page 56)

54 Data Representation



Using Arithmetic Operations to Adjust Addresses
You can add an integer value to any address type except PROCADDR, PROC32ADDR, and
PROC64ADDR. The address can be on either side of the operator.

Example 7 Adding Integer Values to Addresses

INT .p;
@p := @p '+' 4;  ! Increment WADDR pointer by four 16-bit words
@p := 4 '+' @p;  ! Increment WADDR pointer by four 16-bit words
@p := @p[2];

You can subtract an integer value from any address type except PROCADDR, PROC32ADDR, and
PROC64ADDR. The address must be on the left side of the subtraction operator and the integer
must be on the right.

Example 8 Subtracting Integer Values From Addresses

INT .p;
@p := @p '-' 4;  ! Decrement WADDR pointer by four 16-bit words
@p := 4 '-' @p;  ! ERROR: The address must be on the right,
                  ! the integer on the left

You must use signed operators for operations on EXTADDRs and unsigned operators for all other
address types.

Example 9 Signed and Unsigned Operators in Address Arithmetic

INT .p;
INT .EXT e;
INT .EXT32 e32;
INT .EXT64 e64;

@p := @p '-' 4;    ! Unsigned arithmetic on WADDRs
@p := 4 '+' @p;    ! Unsigned arithmetic on WADDRs
@e := @e + 4D;     ! Signed arithmetic on EXTADDRs
@e32 := @e32 + 4D; ! Signed arithmetic on EXT32ADDRs
@e64 := @e64 + 8F; ! Signed arithmetic on EXT32ADDRs

If you increment or decrement a pointer, the number that you add to, or subtract from, a byte
address (such as BADDR) is the number of bytes to move the pointer. Similarly, the number that
you add to a word address (such as WADDR) is the number of 16-bit words to move the pointer,
not the number of 32-bit words.
If you step a byte address (such as BADDR), the number you specify is added to, or subtracted
from, the address in the pointer.
If you step a word address (such as WADDR), the address is incremented decremented by twice
the number you specify, because addresses on TNS/R and TNS/E architecture are represented
as byte addresses.

Computing the Number of Bytes Between Addresses
You can subtract two addresses except PROCADDR, PROC32ADDR, and PROC64ADDR addresses.
The address types of both operands must be the same except that SGBADDR and SGXBADDR are
interchangeable, and SGWADDR and SGXWADDR are interchangeable.

NOTE: The address types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
available in the 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Address Types 55



Comparing Addresses to Addresses
You can compare addresses only if both addresses are the same address type, except that:

• SGBADDR and SGXBADDR are interchangeable with one another

• SGWADDR and SGXWADDR are interchangeable with one another
You must use signed relational operators (<, =, >,<=, <>, >=) to compare EXTADDR, EXT32ADDR,
and EXT64ADDR addresses. For all other address types, you must use unsigned relational operators
(‘<‘, ‘=’, ‘>’, ‘<=’, ‘<>’, ‘>=’), or signed equal (‘=’) or signed not equal operators (‘<>’).
The result of comparing two addresses is an INT value that indicates whether the relationship is
true (nonzero) or false (zero).
You can test the condition code after an IF statement that compares two addresses only if certain
conditions are met. These conditions are described in Chapter 13 (page 234).

Comparing Addresses to Constants
You can compare a BADDR, WADDR, SGBADDR, SGWADDR, SGXBADDR, or SGXWADDR
address to a 16-bit constant value. The requirements for Comparing Addresses to Addresses
(page 56) also apply to comparing addresses to constants.

Comparing Procedure Addresses and Procedure Pointers
You can compare PROCADDR, PROC32ADDR, and PROC64ADDR addresses with PROCPTR,
PROC32PTR, and PROC64PTR addresses for equality and inequality. The result of comparing the
addresses of two different procedures is always “not equal,” but the result of comparing the two
addresses of the same procedure is not always “equal.”

NOTE: The address types and procedure pointers, PROC32ADDR, PROC64ADDR, PROC32PTR,
and PROC64PTR are available in the 64-bit addressing functionality added to the EpTAL compiler
starting with SPR T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing
Functionality” (page 531).

Testing a Pointer for a Nonzero Value
You can test a pointer for a nonzero value without specifying the constant zero. For example, if i
is declared:
int .i;

Then these two statements are equivalent:
IF @i THEN ...
IF (@i <> 0) ...

You can test an EXTADDR or EXT32ADDR pointer for a nonzero value without specifying the
constant zero. For example, if j is declared:
int.EXT j;
INT .EXT32 k;

Then these four statements are equivalent:
IF @j THEN ...
IF @k THEN ...
IF @j <> 0D THEN ...
IF @k <> 0D THEN ...

You can test an EXT64ADDR pointer for a nonzero value without specifying the constant zero. For
example, if m is declared, then these two statements are equivalent:
IF @m THEN ...
IF @m <> 0F THEN ...

56 Data Representation



Constants
• Character String (page 57)

• STRING Numeric (page 58)

• INT Numeric (page 58)

• INT(32) Numeric (page 59)

• FIXED Numeric (page 61)

• REAL and REAL(64) Numeric (page 62)

• Constant Lists (page 63)

• Constant List Alignment Specification (page 64)

Character String
A character string constant consists of one or more ASCII characters stored in a contiguous group
of bytes.

string

is a sequence of one or more ASCII characters enclosed in quotation mark delimiters. If a
quotation mark is a character within the sequence of ASCII characters, use two quotation marks
(in addition to the quotation mark delimiters). The compiler does not upshift lowercase characters.

Each character in a character string requires one byte of contiguous storage. The maximum length
of a character string you can specify differs for initializations and for assignments.

Initializations
You can initialize simple variables or arrays of any data type with character strings.
When you initialize a simple variable, the character string can have the same number of bytes as
the simple variable or fewer. This example declares an INT variable and initializes it with a
character string:
INT chars := "AB";

When you initialize an array, the character string can have up to 127 characters and must fit on
one line. If a character string is too long for one line, use a constant list (described Constant Lists
(page 63)) to break the character string into smaller character strings.

Assignments
You can assign character strings to STRING, INT, and INT(32) variables, but not to FIXED, REAL,
or REAL(64) variables.
In assignment statements, a character string can contain at most four characters, depending on
the data type of the variable:

Data Types to Which String Can Be AssignedNumber of Bytes in String

STRING, INT1

STRING, INT2

INT(32)3

INT(32)4

Constants 57



Example 10 Assigning Character Strings to Variables

STRING s;
INT i;
s := "a";    ! OK
s := "ab";   ! OK: same as s := "b"
s := "abc";  ! ERROR: too big
i := "a";    ! OK
i := "ab";   ! OK
I := "abc";  ! ERROR: too big

STRING Numeric

Unsigned 8-bit integerRepresentation

0 through 255Range

base

indicates a number base as follows:

%Octal

%bBinary

%hHexadecimal

If you omit the base, the default base is decimal.
integer

is one or more of the following digits:

0 through 9Decimal

0 through 7Octal

0 or 1Binary

0 through 9, A through F (not case-sensitive)Hexadecimal

Examples of STRING numeric constants:

255Decimal

%12Octal

%B101Binary

%h2AHexadecimal

INT Numeric

Signed or unsigned 16-bit integerRepresentation

0 through 65,535Range (unsigned)

-32,768 through 32,767Range (signed)

58 Data Representation



base

indicates a number base as follows:

%Octal

%bBinary

%hHexadecimal

The default base is decimal.
integer

is one or more of the following digits:

0 through 9Decimal

0 through 7Octal

0 or 1Binary

0 through 9, A through F (not case-sensitive)Hexadecimal

Examples of INT numeric constants:

3
-32045

Decimal

%177
-%5

Octal

%B01010
%b1001111000010001

Binary

%H1A
%h2f

Hexadecimal

The system stores signed integers in two’s complement notation. It obtains the negative of a number
by inverting each bit position in the number, and then adding 1.

00000000000000102 is stored as

1111111111111110-2 is stored as

INT(32) Numeric

Signed or unsigned 32-bit integerRepresentation

-2,147,483,648 through 4,294,967,295Range

Constants 59



base

indicates a number base as follows:

%Octal

%bBinary

%hHexadecimal

The default base is decimal.
integer

is one or more of the following digits:

0 through 9Decimal

0 through 7Octal

0 or 1Binary

0 through 9, A through F (not case-sensitive)Hexadecimal

D, %D
are suffixes that specify INT(32) constants:

DDecimal

DOctal

DBinary

%DHexadecimal

Examples of INT(32) numeric constants:

0D
+14769D
-327895066d

Decimal

%1707254361d
-%24700000221D

Octal

%B000100101100010001010001001dBinary

%h096228d%d
-%H99FF29%D

Hexadecimal

For readability, always specify the % in the %D hexadecimal suffix to prevent the suffix from being
confused with the integer part of the constant. The following format, where a space replaces the
% in the %D suffix, is allowed but not recommended:
-%H99FF29 D

The system stores signed integers in two’s complement notation (see INT Numeric (page 58)).

60 Data Representation



FIXED Numeric

Signed 64-bit fixed-point numberRepresentation

-9,223,372,036,854,775,808 through
+9,223,372,036,854,775,807

Range

base

indicates a number base as follows:

%Octal

%BBinary

%HHexadecimal

The default base is decimal.
integer

is one or more of the following digits:

0 through 9Decimal

0 through 7Octal

0 or 1Binary

0 through 9, A through FHexadecimal

fraction

is one or more decimal digits. fraction is legal only for decimal base.
F, %F

are suffixes that specify FIXED constants:

FDecimal

FOctal

FBinary

%FHexadecimal

Examples of FIXED numeric constants:

1200.09F
0.1234567F

Decimal

239840984939873494F
-10.09F

%765235512FOctal

Constants 61



%B1010111010101101010110FBinary

%H298756%FHexadecimal

For readability, always specify the % in the %F hexadecimal suffix to prevent the suffix from being
confused with the integer part of the constant. The following format, where a space replaces the
% in the %F suffix, is allowed but not recommended:
-%H99FF29 F

The system stores a FIXED number in binary notation. When the system stores a FIXED number, it
scales the constant as dictated by the declaration or expression. Scaling means the system multiplies
or divides the constant by powers of 10 to move the decimal.
For information about scaling of FIXED values in expressions, see Chapter 5 (page 69). For
information about scaling of FIXED values in declarations, see Chapter 7 (page 103).

REAL and REAL(64) Numeric

Signed 32-bit REAL or 64-bit REAL(64) floating-point numberRepresentation

Range ±8.6361685550944446 * 10-78 through
±1.15792089237316189 * 10+77

Precision REAL—to approximately 6.5 significant decimal digits
REAL(64)—to approximately 16.5 significant decimal digits

integer

is one or more decimal digits that compose the integer part.
fraction

is one or more decimal digits that compose the fractional part.
E

specifies the floating-point constant REAL.
L

specifies the floating-point constant REAL(64).
exponent

is one or two decimal digits that compose the exponential part.
Examples of REAL and REAL(64) numeric constants, showing the integer part, the fractional part,
the E or L suffix, and the exponent part:

REAL(64)REALDecimal Value

0.0L00.0E00

2 2.0L02.0e0
0.2L10.2E1

62 Data Representation



REAL(64)REALDecimal Value

20.0L-120.0E-1

-17.2 -17.2L0-17.2E0
-1720.0L-2-1720.0E-2

The system stores the number in binary scientific notation in the form:
x * 2y

x is a value of at least 1 but less than 2. Because the integer part of x is always 1, only the fractional
part of x is stored.
The exponent can be in the range -256 through 255 (%377). The system adds 256 (%400) to the
exponent before storing it as y. Thus, the value stored as y is in the range 0 through 511 (%777),
and the exponent is y minus 256.
If the value of the number to be represented is zero, the sign is 0, the fraction is 0, and the exponent
is 0.
The system stores the parts of a floating-point constant as follows:

ExponentFractionSign BitData Type

<23:31><1:22><0>REAL

<55:63><1:54><0>REAL(64)

Examples of storage formats:
1. For the following REAL constant, the sign bit is 0, the fraction bits are 0, and the exponent

bits contain %400 + 2, or %402:
4 = 1.0 * 22 stored as %000000 %000402

2. For the following REAL constant, the sign bit is 1, the fraction bits contain %.2 (decimal .25
is 2/8), and the exponent bits contain %400 + 3, or %403:
-10 = -(1.25 * 23) stored as %120000 %000403

3. For the following REAL(64) constant, the sign bit is 0, the fraction bits contain the octal
representation of .33333..., and the exponent bits contain %400 - 2, or %376:
1/3 = .33333…* 2-2 stored as %025252 %125252 %125252 %125376

Constant Lists
A constant list is a list of one or more constants. You can use constant lists in:

• initializations of array declarations that are not contained in structures

• group comparison expressions

• move statements
You cannot use constant lists in assignment statements

Constants 63



repetition-constant-list

repetition-factor

is an INT constant that specifies the number of times constant-list-seq occurs.
constant-list-seq

is a list of one or more constants, each stored on an element boundary:

constant

is a character string, a number, or a LITERAL specified as a single operand. The range and
syntax for specifying constants depends on the data type, as described for each data type
on preceding pages.

FIELDALIGN-clause

specifies how you want the compiler to align the base of the structure and fields in the structure.
The offsets of fields in a structure are aligned relative to the base of the structure. For more
information about constant list alignment, see Constant List Alignment Specification (page 64).
SHARED2

specifies that the base of the structure and each field in the structure must begin at an even
byte address except STRING fields, which can begin at any byte address, and UNSIGNED
fields.

SHARED8

specifies that the offset of each field in the structure from the base of the structure must be
begin at an address that is an integral multiple of the width of the field.

Constant List Alignment Specification
A constant list alignment specification controls the alignment of elements of constant lists whose
element type is not STRING. Such a constant list can have an alignment of SHARED2 or SHARED8.
Nested constant lists cannot have an alignment specification; they inherit the alignment of the
containing constant list. SHARED2 causes alignment identical to TAL. SHARED8 additionally requires
that 4-byte and 8-byte scalars are aligned to their size. You must insert filler constants of ensure
proper alignment of 4-byte and 8-byte aligned items. A SHARED8 constant list containing an item
that is misaligned is an error.
An optional alignment specification gives the alignment of a constant list. It occurs immediately
before the opening bracket of the constant list. There is no default constant list alignment. The
alignment specification is required if SHARED2 and SHARED8 would give different results.

64 Data Representation



A1 ':=' [1,2,3,4];                     ! No alignment specification
                                       !  required
A1 ':=' FIELDALIGN(SHARED2) [1,2D,4];  ! Alignment specification required
                                       !  to specify 2-byte alignment for
                                       !  2D

Examples of constant lists:
1. In each of the following pairs, the list on the left is equivalent to the list on the right:

[ "ABCD...Z" ][ "A", "BCD" , "...", "Z" ]

[0,0,0,0,0,0,0,0,0,0]10 * [0];

[1,1,0,0,1,1,0,0,1,1,0,0][3 * [2 * [1], 2 * [0]]]

[" "]10 * [" "]

2. The following is an example of the FIELDALIGN clause:
STRING i [0:3] := FIELDALIGN(SHARED2) [0,1,2,3];

3. The following example shows how you can break a constant string that is too long for one
line into smaller constant strings specified as a constant list. The system stores one character
to a byte:
STRING  a[0:99] := ["These three constant strings will ",
                   "appear as if they were one constant ",
                   "string continued on multiple lines."];

4. The following example initializes a STRING array with a repetition constant list:
STRING b[0:79] := 80 * [" "];

5. The following example initializes an INT(32) array with a mixed constant list containing values
of the same data type. The diagram shows how the compiler allocates storage for the variable
and the constant list that initializes the variable:

Constants 65



4 Data Alignment
In native mode, a data item is aligned if its address is a multiple of its size. For example, a 4-byte
data item is aligned if its address is a multiple of four. An address that is not aligned is called
misaligned. In native mode, a compiler requires data to be aligned unless otherwise indicated.
Unexpected misalignment causes the program to run slowly, but usually with the expected results.
The only time a nonprivileged program running in TNS/R native mode could have data alignment
problems is when calling the atomic routines whose names begin with “$ATOMIC_”. Those routines
operate correctly only when given aligned operand addresses. This section explains some ways
to diagnose bad calls at run time.
TNS-compiled programs must follow more stringent alignment rules, which apply to all data. Those
rules are explained in:

DocumentT NumberProduct

Accelerator Manual Data Alignment AddendumT9276Accelerator

C/C++ Programmer’s GuideT9255TNS C

C/C++ Programmer’s GuideT9541TNS C++

C/C++ Programmer’s GuideT8629TNS c89

COBOL Manual for TNS and TNS/R ProgramsT9257TNS COBOL

TAL Programmer’s Guide Data Alignment AddendumT9250TAL

Topics:

• Misalignment Tracing Facility (page 66)

• Misalignment Handling (page 67)

Misalignment Tracing Facility
The misalignment tracing facility is enabled or disabled on a system-wide basis (that is, for all
processors in the node). By default, it is enabled (set to ON). It can be disabled (set to OFF) only
by the persons who configure the system, by means of the Subsystem Control Facility (SCF) attribute
MISALIGNLOG. Instructions are in the SCF Reference Manual for the Kernel Subsystem.

NOTE: HP recommends that the MISALIGNLOG attribute be left ON (its default setting) so that
a process that is subject to rounding of misaligned addresses generates log entries, facilitating
diagnosis and repair of the code. Only if the volume of misalignment events degrades performance
should this attribute be turned OFF.

When a misaligned address causes an exception that RVUs prior to G06.17 would have rounded
down, the tracing facility traces the exception.

NOTE: The tracing facility does not count and trace every misaligned address, only those that
cause round-down exceptions. Other accesses that use misaligned addresses without rounding
them down do not cause exceptions and are not counted or traced. Also, only a periodic sample
of the counted exceptions are traced by means of their own EMS event messages.

While a process runs, the tracing facility:

• Counts the number of misaligned-address exceptions that the process causes (the exception
count)

• Records the program address and code-file name of the instruction that causes the first
misaligned-address exception

66 Data Alignment



Because a process can run for a long time, the tracing facility samples the process (that is, checks
its exception data) periodically (approximately once an hour). If the process recorded an exception
since the previous sample, the tracing facility records an entry in the EMS log. If the process ends
and an exception has occurred since the last sample, the operating system produces a final Event
Management Service (EMS) event.
The EMS event includes:

• The process’s exception count

• Details about one misaligned-address exception, including the program address, data address,
and relevant code-file names

Sampling is short and infrequent enough to avoid flooding the EMS log, even for a continuous
process with many misaligned-address exceptions. One sample logs a maximum of 100 events,
and at most one event is logged for any process.
If misaligned-address exceptions occur in different periods of a process, the operating system
produces multiple EMS events for the same process, and these EMS events might have different
program addresses.
For more information about EMS events or the EMS log, see the EMS Manual.

Misalignment Handling
Misalignment handling is determined by the following SCF attributes, which are set system-wide
(that is, for all processors in the node) by the persons who configure the system:

• MISALIGNLOG

• TNSMISALIGN (applies only to programs running in TNS mode or TNS accelerated mode,
and therefore, does not apply to pTAL programs)

• NATIVEATOMICMISALIGN
MISALIGNLOG enables or disables the tracing facility (see Misalignment Tracing Facility (page 66)).
NATIVEATOMICMISALIGN applies to atomic routines in programs running in TNS/R native mode;
that is, the pTAL and TAL routines whose names begin with “$ATOMIC_”
For normal, nonatomic access in TNS/R native mode, the system uses the operand’s full address
(never rounded down) to complete the operation.
For normal, nonatomic access in TNS/R native mode, the system uses the operand’s full address
(never rounded down) to complete the operation.
Table 22 (page 67) lists and describes the possible settings for NATIVEATOMICMISALIGN. Each
setting represents a different misalignment handling method. For more information about
NATIVEATOMICMISALIGN, see the SCF Reference Manual for the Kernel Subsystem.

Table 22 TNS/R Native Atomic Misalignment Handling Methods

DescriptionMethod

After rounding down a misaligned address, the system proceeds to access the address
atomically, as in G06.16 and earlier RVUs.

ROUND (default)

Instead of rounding down a misaligned address, the system considers the call to have
failed.This failure generates a SIGILL signal (signal #4). By default, this signal causes process

FAIL

termination, but the program can specify other behavior (for example, entering the debugger
or calling a specified signal-handler procedure). The signal cannot be ignored. For information
about signal handling, see the explanation of the sigaction() function in the Open System
Services System Calls Reference Manual.

The method that you choose does not apply to every misaligned address, only to those that would
have been rounded down in earlier RVUs.

Misalignment Handling 67



NOTE: ROUND misalignment handling is intended as a temporary solution, not as a substitute
for changing your atomic calls to ensure that they have only aligned addresses. ROUND
misalignment handling cannot be migrated to past and future NonStop OS platforms.

68 Data Alignment



5 Expressions
An expression is a sequence of operands and operators that, when evaluated, produces a single
value. Operands in an expression include variables, constants, and routine identifiers. Operators
in an expression perform arithmetic or conditional operations on the operands. pTAL supports the
following types of expressions:

ExamplesDescriptionExpression

398 + num / 8410 LOR 12An expression, consisting of operands
and arithmetic operators, that
produces a single numeric value.

Arithmetic expression

IF @p + 0 > @q THEN ...
nl

An expression containing relational
and or add and subtract arithmetic

Address expression

IF @p <> 0 THEN ...;
nl

operators. You can use arithmetic
expressions to compute addresses,

IF @p - @q > 5 THEN ...;compare addresses, or compare them
to a constant.

398 + 46 / 84An arithmetic expression that contains
only constants, LITERALs, and DEFINEs
as operands.

Constant expression

a < c a OR bAn expression establishing the
relationship between values and

Conditional expression

resulting in a true or false value. A
conditional expression consists of
relational conditions and conditional
operators.

Expressions can appear in:

• LITERAL declarations

• Variable initialization and assignments

• Array and structure bounds

• Indexes to variables

• Conditional statements

• Parameters to procedures or subprocedures
An expression can be:

• A single operand, such as the number 5

• A unary plus or minus (+ or -) operator applied to a single operand, such as -5

• A binary operator applied to two operands, such as 5 * 8

• A complex sequence such as:
(((alpha + beta) / chi) * (delta - 145.9)) / zeta

Topics:

• Data Types of Expressions (page 70)

• Operator Precedence (page 70)

• Arithmetic Expressions (page 72)

• Signed Arithmetic Operators (page 73)

• Unsigned Arithmetic Operators (page 75)

69



• Comparing Addresses (page 77)

• Constant Expressions (page 81)

• Conditional Expressions (page 81)

• Special Expressions (page 85)

• Bit Operations (page 92)

Data Types of Expressions
The result of an expression can be any data type or address type except STRING or UNSIGNED.
The compiler determines the data type of the result from the data type of the operands in the
expression. All operands in an expression must have the same data type, with the following
exceptions:

• An INT expression can include STRING, INT, and UNSIGNED(1-16) operands. The system
treats STRING and UNSIGNED(1-16) operands as if they were 16-bit values. That is, the
system:
◦ Puts a STRING operand in the right byte of a 16-bit word and sets the left byte to 0, with

no sign extension.
◦ Puts an UNSIGNED(1-16) operand in the right bits of a 16-bit word and sets the unused

left bits to 0, with no sign extension. For example, for an UNSIGNED(2) operand, the
system fills the 14 leftmost bits of the word with zeros.

• An INT(32) expression can include INT(32) and UNSIGNED(17-31) operands. The system
treats UNSIGNED(17-31) operands as if they were 32-bit values. The system places an
UNSIGNED(17-31) operand in the right bits of a doubleword and sets the unused left bits to
0, with no sign extension. For example, for an UNSIGNED(29) operand, the system fills the
three leftmost bits of the doubleword with zeros.

In all other cases, if the data types do not match, use the type transfer functions described in
Chapter 15 (page 274).

Operator Precedence
Operators in expressions can be arithmetic (signed, unsigned, or logical) or conditional (relational,
signed or unsigned). Within an expression, the compiler evaluates the operators in the order of
precedence. Within each level of precedence, the compiler evaluates the operators from left to
right.

Table 23 Precedence of Operators

PrecedenceOperationOperator

0 (highest)Signed left bit shift<<

Signed right bit shift>>

Unsigned left bit shift'<<'

Unsigned right bit shift'>>'

1Indexing[n ]

Address of identifier@

Unary plus+

Unary minus-

2Bit extraction<...>

3Signed multiplication*

70 Expressions



Table 23 Precedence of Operators (continued)

PrecedenceOperationOperator

Signed division/

Unsigned multiplication'*'

Unsigned division'/'

Unsigned remainder'\'

4Signed addition+

Signed subtraction-

Unsigned addition'+'

Unsigned subtraction'-'

Bitwise logical ORLOR

Bitwise logical ANDLAND

Bitwise exclusive ORXOR

5Signed less than<

Signed equal to=

Signed greater than>

Signed less than or equal to<=

Signed greater than or equal to>=

Signed not equal to<>

Unsigned less than'<'

Unsigned equal to'='

Unsigned greater than'>'

Unsigned less than or equal to'<='

Unsigned greater than or equal to'>='

Unsigned not equal to'<>'

6NegationNOT

7ConjunctionAND

8DisjunctionOR

9 (lowest)Assignment:=

Bit deposit<...> :=

You can use parentheses to override the precedence of operators. You can nest the parenthesized
operations. The compiler evaluates nested parenthesized operations outward starting with the
innermost level.

Figure 1 Parentheses’ Effect on Operator Precedence

Operator Precedence 71



Arithmetic Expressions
An arithmetic expression is a sequence of operands and arithmetic operators that computes a
single numeric value of a specific data type.

+, -
are unary plus and minus operators. The default is unary plus.

operand

is one of the elements in Table 24 (page 72).
arithmetic-operator

is one of the following:

+, -, *, /Signed arithmetic operator

'+', '-', '*', '/', '\'Unsigned arithmetic operator

LOR, LAND, XORLogical operator

Table 24 Operands in Arithmetic Expressions

ExampleDescriptionElement

var[10]The identifier of a simple variable,
array element, pointer, structure data

Variable

item, or equivalenced variable, with
or without @ or an index

103375A character string or numeric constantConstant

file_sizeThe identifier of a named constantLITERAL

$LEN (x)The invocation of a procedure that
returns a value

Function invocation

x := yAny expressionexpression

(x := y)Any expression, enclosed in
parentheses

(expression)

@label_aThe identifier of a procedure,
subprocedure, or label prefixed with

Code space item

@ or a read-only array optionally
prefixed with @, with or without an
index

Table 25 Arithmetic Expressions

ExampleSyntax

var-1operand

-var-1- operand

+var-1 * 2+ operand arithmetic-operator operand

var-1 / var-2operand arithmetic-operator operand

var-1 / (-var-2)operand arithmetic-operator operand

72 Expressions



Table 25 Arithmetic Expressions (continued)

ExampleSyntax

2 * 3 + var / 2expression operand expression

2 * var * 4expression operand expression

A condition code cannot appear inside an arithmetic expression; for example, the following is not
valid in pTAL:
a := <;  !Illegal

Signed Arithmetic Operators
Table 26 Signed Arithmetic Operators

ExampleOperand Type*OperationOperator

+5Any data typeUnary plus+

-5Any data typeUnary minus-

alpha + betaAny data typeBinary signed addition+

alpha - betaAny data typeBinary signed subtraction-

alpha * betaAny data typeBinary signed multiplication*

alpha / betaAny data typeBinary signed division/

* The data type of the operands must match, except as noted in Data Types of Expressions (page 70).

In Table 27 (page 73), the order of the data types is interchangeable.

Table 27 Signed Arithmetic Operand and Result Types

ExampleResult TypeOperand TypeOperand Type

byte1 + byte2INTSTRINGSTRING

word1 - word2INTINTINT

dbl1 * dbl2INT(32)INT(32)INT(32)

real1 + real2REALREALREAL

quad1 + quad2REAL(64)REAL(64)REAL(64)

fixed1 * fixed2FIXEDFIXEDFIXED

word1 / byte1INTSTRINGINT

word + unsign12INTUNSIGNED(1-16)INT

double + unsign20INT(32)UNSIGNED(17-31)INT(32)

unsign6 + unsign9INTUNSIGNED(1-16)UNSIGNED(1-16)

unsign26 + unsign31INT(32)UNSIGNED(17-31)UNSIGNED(17-31)

The compiler treats a STRING or UNSIGNED(1-16) operand as an INT operand. If bit <0> contains
0, the operand is positive; if bit <0> contains 1, the operand is negative. For more information,
see Data Types of Expressions (page 70).
The compiler treats an UNSIGNED(17-31) operand as a positive INT(32) operand.
Signed arithmetic operators affect the hardware indicators as described in Chapter 13 (page 234).

Signed Arithmetic Operators 73



Topics:

• Scaling of FIXED Operands (page 74)

• Using FIXED(*) Variables (page 74)

Scaling of FIXED Operands
When you declare a FIXED variable, you can specify an implied fixed-point (fpoint ) setting (see
Specifying Data Types (page 47)).
When FIXED operands in an arithmetic expression have different fixed-points, the system “scales”
them, depending on the operation:

ScalingOperation

The system adjusts the smaller fixed-point to match the larger fixed-point. The result
inherits the larger fixed-point. For example, the system adjusts the smaller fixed-point
in 3.005F + 6.01F to 6.010F, and the result is 9.015F.

Addition or subtraction

The fixed-point of the result is the sum of the fixed-points of the two operands. For
example, 3.091F * 2.56F results in the FIXED(5) value 7.91296F.

Multiplication

The fixed-point of the result is the fixed-point of the dividend minus the fixed-point
of the divisor (some precision is lost). For example, 4.05F / 2.10F results in the
FIXED value 1.

Division

To retain precision when you divide operands that have nonzero fixed-points, use the routine
$SCALE (page 487).

Using FIXED(*) Variables
pTAL does not scale data items that it stores into FIXED(*) items.
The following procedure has one local variable whose data type is FIXED(*):
PROC p;
BEGIN
  FIXED(*) f;
  f := 1234F;
END;

The data type of a FIXED(*) variable is the same as a FIXED variable when it is used in an
expression:
FIXED(*) f1 := 123F;
FIXED(2) f2;
f2 := f1;             ! f2 is assigned 123.00

pTAL does not scale data when it is stored into a FIXED(*) variable:
FIXED(2) f1 := 1.23F;
FIXED(*) f2;
FIXED    f3;
f2 := f1;             ! f2 is assigned 123
f3 := f1;             ! f3 is assigned 1

The following example further illustrates this:
FIXED(*) f1;
FIXED(3) f2 := 1.234F;
f1 := f2;               ! f1 = 1234
f2 := f1;               ! f2 = 1234.000
f1 := f2;               ! f1 = 1234000
f2 := f1;               ! f2 = 1234000.000
f1 := f2;               ! f1 = 1234000000
f2 := f1;               ! f2 = 1234000000.000

74 Expressions



Unsigned Arithmetic Operators
Typically, you use binary unsigned arithmetic on operands with values in the range 0 through
65,535. For example, you can use unsigned arithmetic with pointers that contain standard
addresses.

Table 28 Unsigned Arithmetic Operators

ExampleOperand TypeOperationOperator

alpha '+' betaSTRING, INT, or
UNSIGNED(1-16)

Unsigned addition'+'

alpha '-' betaSTRING, INT, or
UNSIGNED(1-16)

Unsigned subtraction'-'

alpha '*' betaSTRING, INT, or
UNSIGNED(1-16)

Unsigned multiplication'*'

alpha '/' betaINT(32) or UNSIGNED (17-31)
dividend and STRING, INT, or
UNSIGNED(1-16) divisor

Unsigned division'/'

alpha '\' betaINT(32) or UNSIGNED (17-31)
dividend and STRING, INT, or
UNSIGNED(1-16) divisor

Unsigned remainder*'\'

* If the quotient exceeds 16 bits, an overflow condition occurs and the results will have unpredictable values. For
example, the operation 200000D '\' 2 causes an overflow because the quotient exceeds 16 bits.

In Table 29 (page 75), the order of the operand types in each combination is interchangeable
except in the last case.

Table 29 Unsigned Arithmetic Operand and Result Types

ExampleResult TypeOperand TypeOperand TypeOperator

byte1 '-' byte2INTSTRINGSTRING'+''-'

word1 '+' word2INTINTINT

byte1 '-' word1INTSTRINGINT

word1 '+' uns8INTUNSIGNED (1-16)INT

byte1 '-' uns5INTUNSIGNED (1-16)STRING

uns1 '+' uns7INTUNSIGNED(1-16)UNSIGNED(1-16)

byte1 '*' byte2INT(32)STRINGSTRING'*'

wrd1 '*' wrd2INT(32)INTINT

byte1 '*' wrd1INT(32)INTSTRING

wrd1 '*' uns9INT(32)UNSIGNED (1-16)INT

uns1 '*' uns7INT(32)UNSIGNED (1-16)STRING

uns1 '*' uns7INT(32)UNSIGNED(1-16)UNSIGNED(1-16)

dbwd '\' word1INTSTRING, INT, or
UNSIGNED(1-16)
divisor

UNSIGNED(17-31) or
INT(32) dividend

'/' '\'

Topics:

• Bitwise Logical Operators (page 76)

• Using Bitwise Logical Operators and INT(32) Operands (page 76)

Unsigned Arithmetic Operators 75



Bitwise Logical Operators
Use bitwise logical operators (LOR, LAND, and XOR) to perform bit-by-bit operations on STRING,
INT, UNSIGNED(1-16) operands. Use INT(32) operands to return INT(32) results. 16-bit operands
produce a 16-bit result. 32-bit operands produce a 32-bit result. Bitwise logical operators are not
defined for 64-bit operands.

Table 30 Bitwise Logical Operators

ExampleBit OperationsOperand TypeOperationOperator

10 LOR 12 = 14
  10   1 0 1 0

1 LOR 1 = 1
1 LOR 0 = 1
0 LOR 0 = 0

STRING, INT, or
UNSIGNED(1-16)

Bitwise logical
OR

LOR

  12   1 1 0 0
  __   _ _ _ _
  14   1 1 1 0

10 LAND 12 = 8
  10   1 0 1 0

1 LAND 1 = 1
1 LAND 0 = 0
0 LAND 0 = 0

STRING, INT, or
UNSIGNED(1-16)

Bitwise logical
ADD

LAND

  12   1 1 0 0
  __   _ _ _ _
   8   1 0 0 0

10 XOR 12 = 6
  10   1 0 1 0

1 XOR 1 = 0
1 XOR 0 = 1
0 XOR 0 = 0

STRING, INT, or
UNSIGNED(1-16)

Bitwise exclusive
OR

XOR

  12   1 1 0 0
  __   _ _ _ _
   6   0 1 1 0

The Bit Operations column in Table 30 (page 76) shows the bit-by-bit operations that occur on
16-bit values. Each 1-bit operand pair results in a 1-bit result. The bit operands are commutative.

Using Bitwise Logical Operators and INT(32) Operands
You can use INT(32) operands with:

• Logical operators (LOR, LAND, and XOR)
The following example swaps the values stored in i and j:
INT(32) i;
INT(32) j;
i := i XOR j;
j := i XOR j;
i := i XOR j;

• Unsigned relational operators ('<', '<=', '=', '<>', '>=', and '>').
The INT(32) operands are treated as nonnegative values in the range 0 to 232-1.

• Unsigned addition and subtraction operators ('+' and '-')
The INT(32) operands are treated as nonnegative values in the range 0 to 232-1.
Unsigned and signed addition and subtraction are the same except that $OVERFLOW
(page 335) returns false after an unsigned operation.

• Unsigned multiplication operator ('*')
The INT(32) operands are treated as nonnegative values in the range 0 to 232-1. The unsigned
product of two INT(32) values is an FIXED value. $OVERFLOW (page 335) returns false after
an unsigned multiplication operator.

• Unsigned division and remainder operators ('/' and '\')
You can use an FIXED dividend and INT(32) divisor with the unsigned-division and remainder
operators. The FIXED dividend is treated as a nonnegative value in the range 0 to 264-1. The
INT(32) divisor is treated as a nonnegative value in the range 0 to 232-1.

76 Expressions



The quotient or remainder of an FIXED dividend and an INT(32) divisor is an INT(32) quotient
in the range 0 to 232-1.
$OVERFLOW (page 335) returns false after an unsigned division or remainder operator unless
either of the following is true:

◦ The divisor is 0

◦ The quotient is greater than 216-1 for an INT quotient, 232-1 for an INT(32)

Comparing Addresses
pTAL rules for comparing address types are more restrictive than the rules for comparing nonaddress
types.

Table 31 Valid Address-Type Comparisons

Non-Extended AddressesExtended Addresses

Operators Unsigned relational operators:Unsigned relational operators:
'<', '=', '>', '<=', '<>', '>='none

Signed relational operators:Signed relational operators:
=, <><, =, >, <=, <>, >=

Abbreviated forms Testing address type as true or false:Testing address type as true or false:
IF @p THENIF @p THEN
IF NOT @p THEN...IF NOT @p THEN...

Topics:

• Extended Addresses (page 77)

• Nonextended Addresses (page 78)

Extended Addresses
The following rules apply when you compare extended addresses (EXTADDRs, EXT32ADDRs, and
EXT64ADDRs):

• Use signed relational operators to compare extended addresses. Unsigned operators are not
valid.

• If you compare an EXTADDR or EXT32ADDR address to a constant, the constant must be a
32-bit integer.

• If you compare an EXT64ADDR address to a constant, the constant must be of type FIXED.

• If you compare two different sized extended addresses, the smaller address is implicitly cast
to the larger address and then compared.

NOTE: The address types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
available in the 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Comparing Addresses 77



Example 11 Extended Addresses

EXTADDR e;
EXT32ADDR e32;
EXT64ADDR e64;
INT .EXT i;
INT .EXT32 j;
INT .EXT64 k;

IF e < @i THEN ...     ! OK: e and @i are both EXTADDR
IF e < @j THEN ...     ! OK, e and @j are both extended addresses
IF e < @k THEN ...     ! OK, e and @k are both extended addresses
IF @i >= 0D THEN ...   ! OK: @i is EXTADDR, 0D is 32 bits
IF @j >= 0D THEN ...   ! OK: @j is EXT32ADDR, 0D is 32 bits
IF @k >= 0F THEN ...   ! OK: @K is EXT64ADDR, 0F is 64 bits
IF e = 0D THEN ...     ! OK
IF e <> 0D THEN ...    ! OK
IF e THEN ...          ! OK
IF NOT e THEN ...      ! OK
IF e32 = 0D THEN ...   ! OK
IF e32 <> 0D THEN ...  ! OK
IF e32 THEN ...        ! OK
IF NOT e32 THEN ...    ! OK
IF e64 = 0F THEN ...   ! OK
IF e64 <> 0F THEN ...  ! OK
IF e64 THEN ...        ! OK
IF NOT e64 THEN ...    ! OK
IF e > i THEN ...      ! ERROR: e is EXTADDR, i is INT
IF e32 > i THEN ...    ! ERROR: e32 is EXT32ADDR, i is INT
IF e64 > i THEN ...    ! ERROR: e64 is EXT64ADDR, i is INT 
IF e '<' @i THEN ...   ! ERROR: Unsigned operators are
                       !        not valid with EXTADDRs
IF e32 '<>' 0D THEN ...! ERROR: Unsigned operators are
                       !        not valid with EXT32ADDRs
IF e64 '>' 0F THEN ... ! ERROR: Unsigned operators are
                       !        not valid with EXT64ADDRs

NOTE: The address types, EXT32ADDR and EXT64ADDR are 64-bit addressing functionality
added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information, see
Appendix E, “64-bit Addressing Functionality” (page 531).

Nonextended Addresses
The following rules apply when you compare nonextended addresses:

• Use unsigned relational operators ( '<', '=', '>', '<=', '<>', '>='), a signed equality operator
(=), or a signed inequality operator (<>) to compare nonextended addresses. The signed and
unsigned equality operators produce the same results. Similarly, the signed and unsigned
inequality operators produce the same results.

• Do not compare nonextended addresses using signed operators that test for greater than or
less than (<, <=, >, >=).
Valid comparisons:
INT .p, .q;
IF @p = 0 THEN ...
IF @p <> 0 THEN ...
IF @p = @q THEN ...

Both operands must have the same address type:
STRING .s;
BADDR  .b;

78 Expressions



IF @s = b THEN ...   ! OK: @s is BADDR, b is BADDR
IF @s = @b THEN ...  ! ERROR: @s is BADDR, @b is WADDR

• If one operand of a relational operator is a nonextended address and the other is a constant,
the constant must be 16 bits in length:
INT .p;
IF @p = 100 THEN ...   ! OK
IF @p = 100D THEN ...  ! ERR

Table 32 Valid Address Expressions

ExamplesResult TypeTemplate

INT .EXT p;
@p := @p[2];

atype *atype [k];

INT .p;
@p := @p '+' 2;
@p := @p '-' 4;

atype *atype '+' INT

INT .p;
@p := 2 '+' @p;

atype *INT '+' atype

INT .EXT p;
@p := @p + 4D;
@p := @p – 4D;

EXTADDREXTADDR '±' INT(32)

INT .EXT p;
@p := 4D '+' @p;

EXTADDRINT(32) '+' EXTADDR

INT .EXT32 p;
@p := @p + 4D;
@p := @p – 4D

EXT32ADDR**EXT32ADDR ± INT(32)

INT .EXT32 p;
@p := 4D + @p;

EXT32ADDR**INT(32) + EXT32ADDR

INT .EXT64 p;
@p := @p + 8F;
@p := @p – 8F;

EXT64ADDR**EXT64ADDR ± FIXED

INT .EXT64 p;
@p := 8F + @p;

EXT64ADDR**FIXED + EXT64ADDR

INT .b, .bp, i;
i := @bp '-' @b;

INTatype '-' atype

The result of subtracting two byte-oriented (BADDR,
CBADDR, SGBADDR, SGXBADDR) addresses is the
number of bytes between them.
The result of subtracting two word-oriented (WADDR,
CWADDR, SGWADDR, SGXWADDR) addresses is
the number of 16-bit words between them.

INT .EXT b, bp, i32;
i32 := @bp - @b;

INT(32)**EXTADDR - EXTADDR

EXT32ADDR - EXT32ADDR  INT(32) 
INT.EXT32 b, bp;
INT(32) i32;
i32 := @bp - @b;

EXTADDR - EXT32ADDR INT(32) INT.EXT b;
INT.EXT32 bp;
INT(32) i32;
i32 := @bp - @b;

EXT32ADDR - EXTADDR INT(32)  INT.EXT32
 b;
INT.EXT bp;

Comparing Addresses 79



Table 32 Valid Address Expressions (continued)

ExamplesResult TypeTemplate

INT(32) i32;
i32 := @bp - @b;

EXT64ADDR - EXT64ADDR FIXED(0)  INT 
.EXT64 b bp;
FIXED i64;
i64 := @pb - b;

BADDR b1, b2;
INT i;

INTatype relational atype

IF b1 '<' b2 THEN ...;
i := b1 '<' b2;

relational must be an unsigned relational
operation ('<', '=', '>', '<=', '<>', '>=') or signed
equal or not equal (=, <>).

EXTADDR ea1, ea2;
EXT32ADDR e32a1, e32a2;

INTExtended address type
relational extended address
type EXT64ADDR e64a1, e64a2;

INT i;
IF ea1 < ea2 THEN ...;
i := b1 < b2;
IF e32a1 < ea32a2 THEN ...;
i := e32a1 < ea32a2;
IF ea64a1 < ea64a2 THEN ...;
i := e64a1 < ea64a2;
IF ea1 < e32a1 THEN ...;
IF ea1 < e32a1 THEN ...;              
             IF ea1 < e64a1 THEN ...;
IF e64a1 < ea1 THEN ...;
IF e64a1 < e32a1 THEN ...;
IF e32a1 < e64a1 THEN ...;

If the sizes of the extended addresses differ, the
smaller address is implicitly sign-extended to the size
of the larger address before the comparison is
performed.

BADDR b1;
INT i;

INTatype relational
CONSTANT

IF b1 '>' 100 THEN ...;
i := b1 '<>' nil;

relational must be an unsigned relational
operation ('<', '=', '>', '<=', '<>', '>=') or signed
equal or not equal (=, <>).

EXTADDR ea;
EXT32ADDR e32a;

INTExtended address relational
CONSTANT

EXT64ADDR e64a;
INT i;
IF ea < 0D THEN ...;
IF e32a >= 0D THEN ...
IF e64a <> 0F THEN ...
i := b1 < 65535D;
i := e32a > 100D;
i := e64a = 10F;

relational must be a signed relational operation
(<, =, >, <=, <>, >=).
CONSTANT relational extended address INT.
EXTADDR ea;
EXT32ADDR e32a;
EXT64ADDR e64a;
INT I;
IF 0D > ea THEN ...

80 Expressions



Table 32 Valid Address Expressions (continued)

ExamplesResult TypeTemplate

IF 20d < e32a THEN ...
IF 0D <> e64a THEN ...

* atype represents any address type except PROCADDR or EXTADDR.

** 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

Constant Expressions
A constant expression is an arithmetic expression that contains only constants, LITERALs, or DEFINEs
as operands.
You can use a constant expression anywhere a single constant is allowed.

Example 12 Constant Expressions

255
8 * 5 + 45 / 2

For more information, see Chapter 6 (page 97).

Conditional Expressions
A conditional expression is a sequence of conditions and relational operators that establishes the
relationship between values. You can use conditional expressions to direct program flow.

NOT

is an operator that produces a true state if condition has the value false:

Value of NOT aValue of a

FalseTrue

TrueFalse

condition

is an expression whose value is either true or false.
AND

is an operator that produces a true state if both its operands have the value true:

Value of a AND bValue of bValue of a

TrueTrueTrue

FalseFalseTrue

FalseTrueFalse

FalseFalseFalse

Constant Expressions 81



OR

is an operator that produces a true state if at least one of its operands has the value true:

Value of a AND bValue of bValue of a

TrueTrueTrue

TrueFalseTrue

TrueTrueFalse

FalseFalseFalse

Table 33 Conditional Expressions

ExampleSyntax

acondition

NOT aNOT condition

a OR bcondition OR condition

a AND bcondition AND condition

a AND NOT b OR ccondition AND NOT condition

Table 34 Conditions in Conditional Expressions

ExampleDescriptionElement

If a = b THEN ...Two conditions connected by a relational operator.
The result type is INT; a -1 if true or a 0 if false. The
example is true if A equals B.

Relational expression

IF a = b FOR 20 WORDS THEN
...

Unsigned comparison of a group of contiguous
elements with another. The result type is INT; a -1 if
true or a 0 if false. The example compares 20 words
of two INT arrays.

Group comparison
expression

IF NOT (b OR c) THEN ...A conditional expression enclosed in parentheses.
The result type is INT; a -1 if true or a 0 if false. The

(conditional expression)

example is true if both B and C are false. The system
evaluates the parenthesized condition first, then
applies the NOT operator.

IF x THEN ...An arithmetic, assignment, CASE, or IF expression
that has an INT or INT(32) result*. The expression

Arithmetic expression

is treated as true if its value is not 0 and false if its
value is 0. The example is true if the value of X is not
0.

IF < THEN ...A signed or unsigned relational operator that tests a
condition code. Condition code settings are CCL

Relational operator

(negative), CCE (0), or CCG (positive). The example
is true if the condition code setting is CCL.

* If an arithmetic expression has a result other than INT, use a signed relational expression.

Topics:

• NOT, OR, and AND Operators (page 82)

• Relational Operators (page 83)

NOT, OR, and AND Operators
You use the operators NOT, OR, and AND to set the state of a single value or the relationship
between two values.

82 Expressions



Table 35 Results of NOT, OR, and AND Operators

ExampleResultOperand TypeOperationOperator

NOT aTrue/FalseSTRING, INT, or
UNSIGNED(1-16)

Negation; tests
condition for false
state

NOT

a OR bTrue/FalseSTRING, INT, or
UNSIGNED(1-16)

Disjunction; produces
true state if either

OR

adjacent condition is
true

a AND bTrue/FalseSTRING, INT, or
UNSIGNED(1-16)

Conjunction; produces
true state if both

AND

adjacent conditions
are true

Topics:

• Evaluating NOT, OR, and AND Operations (page 83)

• NOT, OR, and AND Operators and Condition Codes (page 83)

Evaluating NOT, OR, and AND Operations
NOT, OR, and AND operations are evaluated by means of “short-circuit expression evaluation;”
that is:

• Conditions connected by the OR operator are evaluated from left to right only until a true
condition occurs.

• Conditions connected by the AND operator are evaluated from left to right until a false condition
occurs. The next condition is evaluated only if the preceding condition is true.

In Example 13 (page 83), function f will not be called because a <> 0 is false.

Example 13 Short-Circuit Expression Evaluation

a := 0;
IF a <> 0 AND f(x) THEN ... ;

NOT, OR, and AND Operators and Condition Codes
If the root operator in the conditional expression of an IF statement is a relational operator (<, =,
>, <=, <>, >=, '<', '=', '>', '<=', '<>', '>='), pTAL sets the condition code according to the result
of the comparison.
Relational operators that test the condition code (for example, IF < THEN...) do not set the condition
code.
NOT, OR, and AND operators set the condition code indicator as described in Chapter 13
(page 234).

Relational Operators
• Signed Relational Operators (page 83)

• Unsigned Relational Operators (page 84)

Signed Relational Operators
Signed relational operators perform signed comparison of two operands and return a true or false
state.

Conditional Expressions 83



Table 36 Signed Relational Operators

ResultOperand Type*MeaningOperator

True/FalseAny data typeSigned less than<

True/FalseAny data typeSigned equal to=

True/FalseAny data typeSigned greater than>

True/FalseAny data typeSigned less than or equal to<=

True/FalseAny data typeSigned greater than or equal
to

>=

True/FalseAny data typeSigned not equal to<>

* The data type of the operands must match except as noted in Data Types of Expressions (page 70). Only the operators
= and <> can be used when comparing operands of procedure pointer types (PROCPTR, PROC32PTR, and PROC64PTR).
For more information, see “Procedure Pointers” (page 263) and “Syntax Summary” (page 432). Comparison of procedure
pointer types are only allowed if the signatures of the types (return and parameter types) match.

Unsigned Relational Operators
Unsigned relational operators perform unsigned comparison of two operands and return a true or
false state.

Table 37 Unsigned Relational Operators

ResultOperand Type*OperationOperator

True/FalseSTRING, INT, INT(32), UNSIGNED (1-16)Unsigned less than'<'

True/FalseSTRING, INT, UNSIGNED (1-16)Unsigned equal to'='

True/FalseSTRING, INT, INT(32), UNSIGNED (1-16)Unsigned greater than'>'

True/FalseSTRING, INT, INT(32), UNSIGNED (1-16)Unsigned less than or equal to'<='

True/FalseSTRING, INT, INT(32), UNSIGNED (1-16)Unsigned greater than or equal
to

'>='

True/FalseSTRING, INT, INT(32), UNSIGNED (1-16)Unsigned not equal to'<>'

*Unsigned relational operators cannot be used with operands of the extended address (EXTADDR, EXT32ADDR, and
EXT64ADDR) and the procedure pointer (PROCPTR, PROC32PTR, and PROC64PTR) types.

NOTE: The extended address (EXTADDR, EXT32ADDR, and EXT64ADDR) and the procedure
pointer (PROCPTR, PROC32PTR, and PROC64PTR) types are 64-bit addressing functionality added
to the EpTAL compiler starting with SPR T0561H01^AAP. For more information, see Appendix E,
“64-bit Addressing Functionality” (page 531).

A condition code reflects the value of the most recently evaluated root operator.
Used with no operands, signed and unsigned operators are equivalent. The result returned by such
a relational operator is:

Result ReturnedRelational Operator

True if CCL< or '<'

True if CCG> or '>'

True if CCE= or '='

True if not CCE<> or '<>'

84 Expressions



Result ReturnedRelational Operator

True if CCL or CCE<= or '<='

True if CCE or CCG>= or '>='

Examples of unsigned operators are as follows:

IF VAR '>' 10 THEN
  ...
ELSE IF < THEN    -- Unsigned less than
  ... ;
IF VAR '<' 5 THEN
  ...
ELSE IF '>' THEN  -- Unsigned greater than
  ... ;

Special Expressions
Special expressions allow you to perform specialized arithmetic or conditional operations.

Table 38 Special Expressions

DescriptionExpression TypeSpecial Expression

Assigns the value of an expression to a variableArithmeticAssignment

Selects one of several expressionsArithmeticCASE

Selects one of two expressionsArithmeticIF

Performs unsigned comparison of two sets of dataConditionalGroup Comparison

Assignment
The assignment expression assigns the value of an expression to a variable.

variable

is the identifier of a variable in which to store the result of expression (variable can
have an optional bit-deposit field).

expression

is an expression of the same data type as variable. The result of expression becomes
the result of the assignment expression. expression is either:
• An arithmetic expression

• A conditional expression (excluding a relational operator with no operands), the result of
which has data type INT.

Examples of assignment expressions:
1. This example decrements a. As long as a- 1 is not 0, the condition is true and the THEN clause

is executed:
IF (a := a - 1) THEN ... ;

2. This example shows the assignment form used as an index. It decrements a and accesses the
next array element:

Special Expressions 85



IF array[a := a - 1] <> 0 THEN ... ;

3. This example mixes the assignment form with a relational form. It assigns the value of b to a,
then checks for equality with 0:
IF (a := b) = 0 THEN ... ;

CASE
The CASE expression selects one of several expressions.

selector

is an arithmetic expression [INT or INT(32)] that selects the expression to evaluate.
expression-1

is an expression of any data type. If you specify more than one expression-1, their data
types must be compatible.

expression-2

is an expression whose data type is compatible with the data type of expression-1. It is
evaluated if selector does not select an expression-1. If you omit the OTHERWISE
clause and an out-of-range case occurs, results are unpredictable.

All expressions in the CASE statement must have compatible data types:

• Every data type is compatible with itself.

• String and unsigned (1-16) data types are compatible with INT

• Unsigned (17-32) data types are compatible with INT(32)

• All fixed-point data types are compatible with each other; however, if expression-1 and
expression-2 are differently scaled fixed-point expressions, the data type of the IF
expression is the data type of the fixed-point expression whose scale factor is largest. The
smaller operand is implicitly scaled to match the type of the IF expression. For example, these
return statements are equivalent:
INT i;                   INT i;
FIXED(2) f2;             FIXED(2) f2;
FIXED(3) f3;             FIXED(3) f3;
FIXED(3) PROC p;         FIXED(3) PROC p;
BEGIN                    BEGIN
  RETURN IF i THEN f2      RETURN IF i THEN $SCALE(f2,1);
         ELSE f3;                 ELSE f3;
END                      END

The compiler numbers the instances of expression-1 consecutively, starting with 0. If selector
matches the compiler-assigned number of an expression-1, that expression-1 is evaluated
and becomes the result of the CASE expression. If selector does not match a compiler-assigned
number, expression-2 is evaluated.
You can nest CASE expressions. CASE expressions resemble unlabeled CASE statements except
that CASE expressions select expressions rather than statements.
Example 14 (page 87) selects an expression based on the value of a and assigns it to x:

86 Expressions



Example 14 CASE Expression

INT x, a, b, c, d;
!Code to initialize variables
x := CASE a OF
     BEGIN
       b;             ! If a is 0, assign value of b to X.
       c;             ! If a is 1, assign value of c to X.
       d;             ! If a is 2, assign value of d to X.
       OTHERWISE -1;  ! If a is any other value,
     END;             !  assign -1 to x.

IF
The IF expression selects one of two expressions, usually for assignment to a variable.

condition

is either:
• A conditional expression

• An INT arithmetic expression. If the result of the arithmetic expression is not 0, the
condition is true. If the result is 0, condition is false.

expression-1, expression-2

are expressions of any data type, but their data types must be compatible:
• Every data type is compatible with itself.

• String and unsigned (1-16) data types are compatible with INT

• Unsigned (17-32) data types are compatible with INT(32)

• All fixed-point data types are compatible with each other; however, if expression-1
and expression-2 are differently scaled fixed-point expressions, the data type of the
CASE expression is the data type of the fixed-point expression whose scale factor is largest.
For example, these return statements are equivalent:

INT i;                   INT i;
FIXED(-2) f2;            FIXED(-2) f2;
FIXED(-3) f3;            FIXED(-3) f3;
FIXED(-4) f4;            FIXED(-4) f4;
FIXED(-2) proc p;        FIXED(-2) PROC p;
BEGIN                    BEGIN
  RETURN CASE i OF         RETURN CASE i OF
    BEGIN                    BEGIN
      f3;                      $SCALE(f3,1);
      f2;                      f2;
      OTHERWISE f4             OTHERWISE $SCALE(f4,2)
    END                      END
END                      END

If condition is true, the result of the expression-1 becomes the result of the overall IF
expression.
If condition is false, the result of expression-2 becomes the result of the overall IF expression.

Special Expressions 87



You can nest IF expressions within an IF expression or within other expressions. The IF expression
resembles the IF (page 217) except that the IF expression:

• Requires the ELSE clause

• Contains expressions, not statements
Examples of IF expressions:
1. This example assigns an arithmetic expression to var based on the condition length > 0:

var := IF length > 0 THEN 10 ELSE 20;

2. This example nests an IF expression (in parentheses) within another expression:
var * index + (IF index > limit THEN var * 2 ELSE var * 3)

3. This example nests an IF expression within another IF expression:
var := IF length < 0 THEN -1
       ELSE IF length = 0 THEN 0
            ELSE 1;

Group Comparison
The group comparison expression compares a variable with a variable or constant. With PVU
T9248AAD, you can compare any variable up to the current maximum allowed size for any object
of 127.5 megabytes.

var-1

is the identifier of a variable, with or without an index, that you want to compare to var-2,
constant, or constant-list. var-1 can be a simple variable, array, simple pointer,
structure, structure data item, or structure pointer, but not a read-only array.

relational-operator

is one of the following operators:

<, =, >, <=, >=, <>Signed relational operator

'<', '=', '>', '<=', '>=', '<>'Unsigned relational operator

All comparisons are unsigned whether you use a signed or unsigned operator.
var-2

is the identifier of a variable, with or without an index, to which var-1 is compared. var-2
can be a simple variable, array, read-only array, simple pointer, structure, structure item, or
structure pointer.

88 Expressions



count

is a unsigned INT arithmetic expression that defines the number of units in var-2 to compare.
When count-unit is not present, the units compared are:

Units ComparedData Typevar-2

Simple variable, array, simple
pointer (including those declared in
structures)

BytesSTRING
WordsINT
DoublewordsINT(32) or REAL
QuadruplewordsFIXED or REAL(64)

WordsNot applicableStructure

BytesNot applicableSubstructure

Structure pointer BytesSTRING
WordsINT

count-unit

is BYTES, WORDS, or ELEMENTS. count-unit changes the meaning of count to the
following:

Compares count bytes; however, if var-1 and var-2 both have word addresses,
BYTES implicitly generates a word comparison for (count +1)/2 words.

BYTES

Compares count words.WORDS

Compares count elements. The elements compared depend on the nature of var-2
and its data type as follows:

ELEMENTS

Units ComparedData Typevar-2

Simple variable, array,
simple pointer (including
those declared in structures)

BytesSTRING
WordsINT
DoublewordsINT(32) or REAL
QuadruplewordsFIXED or REAL(64)

Structure occurrencesNot applicableStructure
(For structure pointers,
STRING and INT have
meaning only in group
comparison expressions
and move statements.)

Substructure occurrencesNot applicableSubstructure

Simple variable, array,
simple pointer (including
those declared in structures)

BytesSTRING
WordsINT
DoublewordsINT(32) or REAL
QuadruplewordsFIXED or REAL(64)

If count-unit is specified and is not BYTES, WORDS, or ELEMENTS, the compiler issues
an error. If you specify BYTES, WORDS, or ELEMENTS, the term cannot also appear as an
identifier in a LITERAL or DEFINE declaration in the global declarations or in any procedure
or subprocedure in which the group comparison expression appears.

constant

is a number, a character string, or a LITERAL to which var-1 is compared.
If you enclose a simple numeric constant in brackets ([ ]) and if the destination has a byte
address or is a STRING structure pointer, the system compares a single byte regardless of the
size of constant. If you do not enclose constant in brackets or if the destination has a
word address or is an INT structure pointer, the system compares a word, doubleword, or
quadrupleword as appropriate for the size of constant.

Special Expressions 89



constant-list

is a list of one or more constants, which are concatenated and compared to var-1. Specify
constant-list in the form shown in Chapter 3 (page 46).

next-addr

is a variable to contain the address of the first byte or word in var-1 that does not match the
corresponding byte or word in var-2. The compiler returns a 16-bit or 32-bit address as
described in the following subsection.

pTAL programs access all data using byte addresses. pTAL uses the low-order bit of addresses;
therefore, when you use an odd-byte address to access a 16-bit word that you have declared with
.EXT, you access the data beginning at the odd-byte address.
You can use group comparisons for:

• Changing the Data Type of the Data (page 90)

• Testing Group Comparisons (page 91)

Changing the Data Type of the Data
You can compare two strings using a group comparison expression, and save the address where
the comparison stopped in a variable or pointer.
Figure 2 (page 90) and Figure 3 (page 91) show that changing the data type of a variable from
INT to STRING can affect whether the address stored in the result pointer, p, is an even-byte or
odd-byte address.
In Figure 2 (page 90), the IF statement compares x to y on a word-by-word basis. Because the 16
bits in x are not equal to the 16 bits in y, the conditional expression is false, and p points to the
beginning of string x.

Figure 2 Ending Address After Comparing INT Strings
PROC p;
BEGIN
  INT  x[0:1] := ["AB","CD"]
  INT  y      := "AX";
  INT .p;
  INT  q;
  IF x = y FOR 1 WORDS -> @p THEN ... ;
  q := p;  ! Assign "AB" to q
END;

Figure 3 (page 91) is the same as Figure 2 (page 90) except that in Figure 3 (page 91), y is a
2-byte STRING array. The IF statement, therefore, compares x to y on a byte-by-byte basis. Because
the first (upper) bytes of x and y are equal, the comparison continues to the second byte.
Because the second byte of x is “B”, but the second byte of y is “C”, the conditional expression
is false. In Figure 3 (page 91), therefore, the IF statement stores in p the address of the second
(lower) byte of x.

90 Expressions



Figure 3 Ending Address After Comparing Strings of Data Type STRING and INT
PROC p;
BEGIN
  INT    x[0:1] := ["AB","CD"];
  STRING y[0:1] := ["A","C"];
  STRING p;
  INT    q;
  IF x = y FOR 1 WORDS -> @p THEN ... ;
  q := p;  ! Assign "BC" to q
END;

Testing Group Comparisons
If you use a group comparison in an IF statement, you can test the condition code after the group
comparison is evaluated by setting by using the following relational operators (with no operands)
in a conditional expression:

MeaningOperator

CCL if var-1 '<' var-2<

CCE if var-1 = var-2=

CCG if var-1 '>' var-2>

See Example 15 (page 92).
The compiler does a standard comparison and returns a 16-bit next-addr if:

• Both var-1 and var-2 have standard byte addresses

• Both var-1 and var-2 have standard word addresses
The compiler does an extended comparison (which is slightly less efficient) and returns a 32-bit
next-addr if:

• Either var-1 or var-2 has a standard byte address and the other has a standard word
address

• Either var-1 or var-2 has an extended address
Variables (including structure data items) are byte addressed or word addressed as follows:

Byte addressed STRING simple variables
STRING arrays
Variables to which STRING simple pointers point
Variables to which STRING structure pointers point
Substructures

Word addressed INT, INT(32), FIXED, REAL, or REAL(64) simple variables
INT, INT(32), FIXED, REAL, or REAL(64) arrays
Variables to which INT, INT(32), FIXED, REAL, or REAL(64) simple pointers point
Variables to which INT structure pointers point
Structures

Special Expressions 91



After an element comparison, next-addr might point into the middle of an element, rather than
to the beginning of the element, because next-addr always refers to the first byte or 16-bit word
(as appropriate) that differs.
Example 15 (page 92) compares two arrays and then tests the condition code setting to see if the
value of the element in d_array that stopped the comparison is less than the value of the
corresponding element in s_array.

Example 15 Array Comparison

INT d_array[0:9];
INT s_array[0:9];
! Code to assign values to arrays
IF d_array = s_array FOR 10 ELEMENTS -> @pointer THEN
  BEGIN                  ! They matched
    ! Do something
  END
ELSE
  IF < THEN ... ;        ! Pointer points to element of d_array
    ! Do something else     that is less than the corresponding
                         !  element of s_array

When you compare array elements (as in Example 15 (page 92)), the ELEMENTS keyword is
optional but provides clearer source code.
To compare structure or substructure occurrences, you must specify the ELEMENTS keyword in the
group comparison expression, as in Example 16 (page 92).

Example 16 Structure Comparison

STRUCT struct_one [0:9];
BEGIN
  INT a[0:2];
  INT b[0:7];
  STRING c;
END;
STRUCT struct_two (struct_one) [0:9];
! Code here to assign values to structures
IF struct_one = struct_two FOR 10 ELEMENTS THEN ... ;

Example 17 (page 92) contrasts a comparison to a bracketed (single-byte) constant with a
comparison to an unbracketed (element) constant.

Example 17 Constant Comparison

STRING var[0:1];
...
IF var = [0] THEN ... ;  ! Compare var[0] to one byte
IF var = 0 THEN ... ;    ! Compare var[0:1] to two bytes or
                         !  one 16-bit word

Bit Operations
You can access individual bits or groups of bits in a STRING or INT variable.

92 Expressions



Table 39 Bit Operations

DescriptionBit Operation

Accesses a bit-extraction field in an INT expression without altering the expressionExtraction

Assigns a bit value to a bit-deposit field in a variableDeposit

Shifts a bit-shift field in an INT or INT(32) expression to the left or to the right by a
specified number of bits

Shift

Topics:

• Bit Extractions (page 93)

• Bit Shifts (page 94)

Bit Extractions

int-expression

is an INT(32) expression.
left-bit

is an INT constant in the range 0 through 15 that specifies the bit number of either:
• The leftmost bit of the bit-extraction field

• The only bit (if right-bit is the same value as left-bit or is omitted)
If int-expression is a STRING value, left-bit must be in the range 8 through 15. (In
a string value, bit 8 is the leftmost bit and bit 15 is the rightmost bit.)

right-bit

is an INT constant that specifies the rightmost bit of the bit field. If int-expression is a
STRING value, right-bit must be in the range 8 through 15. right-bit must be equal
to or greater than left-bit. To access a single bit, omit right-bit or specify the same
value as left-bit.

You can perform bit extractions and deposits on 16-bit and 32-bit items. pTAL reports an error,
however, if you attempt to reference bits outside of the bits declared in the variable’s declaration.

Bit Operations 93



Example 18 Bit Extraction

INT         i;
UNSIGNED(4) j;
STRING      k;
INT(32)     l;
i := j.<7:11>;  ! ERROR: You can reference only bits 12
                !  through 15 of j
i := k.<0:7>;   ! ERROR: You can reference only bits 8
                !  through 15 of k
i := l.<8:31>;  ! OK: You can reference any of bits 0
                !  through 31 of l

Example 19 Bit Extraction From an Array

STRING right_byte;
INT array[0:7];
right_byte := array[5].<8:15>;

Example 20 (page 94) assigns bits 4 through 7 of the sum of two numbers to RESU<. The
parentheses cause the numbers to be added before the bits are extracted.

Example 20 Modifying Bits Before Extracting Them

INT result;
INT num1 := 51;
INT num2 := 28;
result := (num1 + num2).<4:7>;

Example 21 (page 94) checks bit 15 for a nonzero value.

Example 21 Checking a Bit for a Nonzero Value

STRING var;
IF var.<15> THEN ... ;

Bit Shifts
A bit shift operation shifts a bit field a specified number of positions to the left or to the right within
a variable without altering the variable. RISC and Itanium architectures do not include a signed
left-shift operation, so pTAL compiles a signed left shift (for example, i << 8) as an unsigned left
shift (i '<<' 8).

int-expression

is an INT arithmetic expression. int-expression can contain STRING, INT, or
UNSIGNED(1-16) operands. The bit shift occurs within a word.

dbl-expression

is an INT(32) arithmetic expression. dbl-expression can contain INT(32) or
UNSIGNED(17-31) operands. The bit shift occurs within a doubleword.

shift-operator

is one of the operators described in Table 23 (page 70).

94 Expressions



positions

is an INT expression that specifies the number of bit positions to shift the bit field. A value
greater than 31 gives undefined results.

The shift count must be less than the number of bits in the shifted value; therefore, you can shift an
INT value up to 15 bits left or right, and an INT(32) value up to 31 bits left or right.
The compiler reports an error if the shift count is a constant and its value is greater than the number
of bits in the value to shift.
If the shift amount is a dynamic expression and is greater than the maximum allowed (one bit less
than the number of bits being shifted), the result depends on the CHECKSHIFTCOUNT compiler
directive, as follows:

• If CHECKSHIFTCOUNT is enabled and a dynamic shift count is equal to or greater than the
number of bits in the value being shifted, the system aborts your program with an instruction
trap.

• If CHECKSHIFTCOUNT is disabled (you specify NOCHECKSHIFTCOUNT), and a dynamic
shift count is equal to or greater than the number of bits in the value being shifted, program
operation is undefined.

The compiler implements arithmetic left shifts as unsigned left shifts (and warns you when it does
this).
Most programs do not need to perform signed left shifts. If your program does require an arithmetic
left shift, use the functions in Example 22 (page 95) to perform signed left-shift operations.

Example 22 Arithmetic Left Shift

INT PROC ashift16(a, count);
  INT a, count;
BEGIN
  STRUCT s = a;
  BEGIN
    UNSIGNED(1)  sign_bit;
    UNSIGNED(15) rest;
  END;
  s.rest := s.rest '<<' count;
  RETURN a;
END;
INT(32)  PROC ashift32(a, count);
  INT(32) a;
  INT  count;
BEGIN
  STRUCT s = a;
  BEGIN
    UNSIGNED(1)  sign_bit;
    UNSIGNED(31) rest;
  END;
  s.rest := s.rest '<<' count;
  RETURN a;
END;

Table 40 Bit-Shift Operators

ResultRoutineOperator

Zeros fill vacated bits from the rightUnsigned left shift through bit 0'<<'

Zeros fill vacated bits from the left.Unsigned right shift'>>'

Sign bit (bit 0) unchanged; sign bit fills vacated
bits from the left

Signed right shift>>

Bit Operations 95



Bit-shift operations include:

User ActionOperation

For each power of 2, shift the field one bit to the left. (Some data
might be lost.)

Multiplication by powers of 2

For each power of 2, shift the field one bit to the right (Some data
might be lost.)

Unsigned division by powers of 2

Shift the word address one bit to the left by using an unsigned
shift operator.

Word-to-byte address conversion

Bit shift examples:
1. This unsigned left shift shows how zeros fill the vacated bits from the right:

Initial value  =  0 010 111 010 101 000
       '<<' 2  =  1 011 101 010 100 000

2. This unsigned right shift shows how zeros fill the vacated bits from the left:
Initial value  =  1 111 111 010 101 000
       '>>' 2  =  0 011 111 110 101 010

3. This signed right shift shows how the sign bit fills the vacated bits from the left:
Initial value =   1 111 010 101 000 000
        >> 3   =  1 111 111 010 101 000

4. These examples show multiplication and division by powers of two:
a := b << 1;  ! Multiply by 2
a := b << 2;  ! Multiply by 4
a := b >> 3;  ! Divide by 8
a := b >> 4;  ! Divide by 16

5. This unsigned bit shift converts the word address of an INT array to a byte address, which
allows byte access to the INT array:
INT a[0:5];                 ! INT array>
STRING .p := @a[0] '<<' 1;  ! Initialize STRING simple
                            !  pointer with byte address
p[3] := 0;                  ! Access fourth byte of A

6. This example shifts the right-byte value into the left byte of the same word and sets the right
byte to a zero:
INT b;          ! INT variable
b := b '<<' 8;  ! Shift right-byte value into left byte

96 Expressions



6 LITERALs and DEFINEs
A LITERAL declaration associates identifiers with constant values. A DEFINE declaration associates
identifiers (and parameters if any) with text.
You can declare LITERALs and DEFINEs once in a program, and then refer to them by identifier
many times throughout the program. They allow you to efficiently make significant changes in the
source code. You only need to change the declaration, not every reference to it in the program.
Topics:

• Declaring Literals (page 97)

• Declaring DEFINEs (page 98)

• Calling DEFINEs (page 100)

• How the Compiler Processes DEFINEs (page 100)

• Passing Actual Parameters to DEFINEs (page 100)

Declaring Literals
A LITERAL declaration specifies one or more identifiers and associates each with a constant value.
Each identifier in a LITERAL declaration is known as a LITERAL.

identifier

is the LITERAL identifier. Literal identifiers make the source code more readable. For example,
identifiers such as BUFFER_LENGTH and TABLE_SIZE are more meaningful than their respective
constant values of 80 and 128.

constant

is one of the following:
• A character string of 1 to 4 characters.

• Any of the following numeric constant expressions whose value is not the address of a
global variable (global variables are relocatable during linking):
◦ FIXED(n)

◦ INT

◦ INT(32)

◦ REAL

◦ REAL(64)

◦ UNSIGNED(n)

If you omit any constants, the compiler supplies the omitted numeric constants. The compiler uses
unsigned arithmetic to compute the constants it supplies:

• If you omit the first constant in the declaration, the compiler supplies a zero.

• If you omit a constant that follows an INT constant, the compiler supplies an INT constant that
is one greater than the preceding constant. If you omit a constant that follows a constant of
any data type except INT, an error message results.

Declaring Literals 97



You access a LITERAL constant by using its identifier in declarations and statements.
The compiler does not allocate storage for LITERAL constants. It substitutes the constant at each
occurrence of the identifier.

Example 23 Literal Declarations

All constants specified:
LITERAL true          = -1,
        false         = 0,
        buffer_length = 80,
        table_size    = 128,
        table_base    = %1000,
        entry_size    = 4,
        timeout       = %100000D,
        CR            = %15,
        LF            = %12;

All constants supplied by compiler:
LITERAL a,  ! Compiler assigns 0
        b,  ! Compiler assigns 1
        c;  ! Compiler assigns 2

Two constants specified, six supplied by compiler:
LITERAL d,        ! Compiler assigns  0
        e,        ! Compiler assigns  1
        f,        ! Compiler assigns  2
        g = 0,
        h,        ! Compiler assigns  1
        i = 17,
        j,        ! Compiler assigns 18
        k;        ! Compiler assigns 19

LITERAL identifier in array declaration:
LITERAL length = 50;       ! Length of array
INT buffer[0:length - 1];  ! Array declaration

LITERAL identifiers in subsequent LITERAL declarations:
LITERAL number_of_file_extents = 16;
LITERAL file_extent_size_in_pages = 32;
LITERAL file_size_in_bytes = (number_of_file_extents '*'
        file_extent_size_in_pages) * 2048D  ! bytes per page !;

Declaring DEFINEs
A DEFINE declaration associates an identifier (and optional parameters) with text.

item-list

identifier

is the identifier of the DEFINE.

98 LITERALs and DEFINEs



param-list

param-name is is the identifier of a formal parameter. You can specify up to 31 formal
parameters. An actual parameter can be up to 500 bytes. A formal parameter cannot be a
pTAL reserved word.

define-body

specifies all characters between the = and # delimiters. define-body can span multiple
source lines. Enclose character strings in quotation marks ("). To use # as part of the
define-body rather than as a delimiter, enclose the # in quotation marks or embed the #
in a character string.

DEFINE declaration requirements:

• If a DEFINE and a formal parameter have the same identifier, the formal parameter has priority
during expansion.

• A DEFINE must not reference itself.

• A DEFINE declaration must not appear within a DEFINE body; that is, do not nest a DEFINE
within a DEFINE.

• To ensure proper grouping and order of evaluation of expressions in the DEFINE body, use
parentheses around each DEFINE parameter used in an expression.

• Within the DEFINE body, place any compound statements within a BEGIN-END block.

• Directives appearing within a DEFINE body are evaluated immediately; they are not part of
the DEFINE itself.

• Expanded DEFINEs must produce correct pTAL constructs. To list the expanded DEFINEs in
the compiler listing, specify the DEFEXPAND directive before the DEFINE declarations.

Example 24 DEFINE Declarations

Parentheses direct the DEFINE body evaluation:
DEFINE value = ( (45 + 22) * 8 / 2 ) #;

Incrementing and decrementing utilities included:
DEFINE increment (x) = x := x + 1 #;
DEFINE decrement (y) = y := y - 1 #;

Loads numbers into specified bit positions:
DEFINE word_val (a, b) = ((a) '<<' 12) LOR (b) #;

When a STRUCT item and a DEFINE have the same name, the compiler issues a warning when
the STRUCT item is referenced. In Example 25 (page 99), DEFINE myname accesses the structure
item1 named in the DEFINE body. The compiler issues a warning because 2 is assigned to
mystruct.yrname, not to mystruct.myname.

Example 25 STRUCT and DEFINE Macro Items With the Same Name

PROC myproc MAIN;
BEGIN
  DEFINE myname = item1#,
         yrname = item2#;
  STRUCT mystruct;
  BEGIN

Declaring DEFINEs 99



    INT item1;
    INT item2;
    INT yrname;          ! Structure item has same
  END;                   !  identifier as a DEFINE
  mystruct.myname := 1;  ! OK: 1 is assigned to mystruct.item1
  mystruct.yrname := 2;  ! Compiler issues warning;
                         !  2 is assigned to mystruct.yrname,
                         !  not to mystruct.item2
  ! More code
END;

Calling DEFINEs
You call a DEFINE by using its identifier in a statement. The invocation can span multiple lines.
If you call a DEFINE within an expression, make sure the expression evaluates as you intend. For
instance, if you want the DEFINE body to be evaluated before it becomes part of the expression,
enclose the DEFINE body in parentheses.

Example 26 Parenthesized and Nonparenthesized DEFINE Bodies

DEFINE expr = (5 + 2) #;
j := expr * 4;            ! Expands to: (5 + 2) * 4;
                          !  assigns 28 to j
DEFINE expr = 5 + 2 #; 
j := expr * 4;            ! Expands to: 5 + 2 * 4;
                          !  assigns 13 to j

DEFINE identifiers are not called when specified:

• Within a comment

• Within a character string constant

• On the left side of a declaration
For example, the following declaration can call a DEFINE named y but not a DEFINE named
x:
INT x := y;

How the Compiler Processes DEFINEs
The compiler does not allocate storage for DEFINE declarations. When the compiler encounters a
statement using a DEFINE identifier, the compiler expands the DEFINE declaration as follows:

• It replaces the DEFINE identifier with the DEFINE body, replaces formal parameters with actual
parameters, and compiles the resulting declaration.

• It expands quoted character strings intact.

• It expands actual parameters after instantiation. Depending on the order of evaluation, the
expansion can change the scope of a DEFINE declaration.

• Emits machine instructions at the appropriate processing interval.
If the DEFEXPAND directive is active, the compiler lists each expanded DEFINE declaration in the
compiler listing following the invocation of the DEFINE. The expanded listing includes:

• The DEFINE body, excluding comments

• Parameters to the DEFINE declaration

Passing Actual Parameters to DEFINEs
If the DEFINE declaration has formal parameters, supply the actual parameters when you use the
DEFINE identifier in a statement.

100 LITERALs and DEFINEs



The number of actual parameters can be less than the number of formal parameters. If actual
parameters are missing, the corresponding formal parameters expand to empty text. For each
missing actual parameter, you can use a placeholder comma, as in Example 27 (page 101).

Example 27 Fewer Actual Parameters Than Formal Parameters

INT PROC d (a, b, c) EXTENSIBLE; EXTERNAL;
DEFINE something (a, b, c) = d (a, b, c) #;
nothing := something ( , , c);  ! Placeholder commas

If a DEFINE has formal parameters and you pass no actual parameters to the DEFINE, you must
specify an empty actual parameter list. You can include commas between the list delimiters, but
need not, as in Example 28 (page 101).

Example 28 No Actual Parameters

DEFINE something (a, b, c) = anything and everything #;
nothing := something ( );  ! Empty parameter list

If the number of actual parameters exceeds the number of formal parameters, as in Example 29
(page 101), the compiler issues an error.

Example 29 More Actual Parameters Than Formal Parameters

DEFINE something (a, b, c) = anything and everything #;
nothing := something (a, b, c, d);  ! Too many parameters

If an actual parameter in a DEFINE invocation requires commas, enclose each comma in apostrophes
('). An example is an actual parameter that is a parameter list, as in Example 30 (page 101).

Example 30 Commas in an Actual Parameter

DEFINE varproc (proc1, param) = CALL proc1 (param) #;
varproc (myproc, i ',' j ',' k);  ! Expands to:

An actual parameter in a DEFINE invocation can include parentheses, as in Example 31 (page 101).

Example 31 Parentheses in an Actual Parameter

DEFINE varproc (proc1, param) = CALL proc1 (param) #;
varproc (myproc, (i + j) * k);  ! Expands to:
                                !  CALL myproc ((i+j)*k);

Example 32 (page 102) shows a DEFINE declaration that has one formal parameter and an
assignment statement that uses the DEFINE identifier, passing a parameter of 3.

Passing Actual Parameters to DEFINEs 101



Example 32 Assignment Statement Using DEFINE Macro Identifier

DEFINE cube (x) = ( x * x * x ) #;
INT result;
result := cube (3) '>>' 1;
  ! Expands to: (3 * 3 * 3) '>>' 1 = 27 '>>' 1 = 13

Example 33 Incrementing and Decrementing Utilities

DEFINE increment (x) = x := x + 1 #;
DEFINE decrement (y) = y := y - 1 #;
INT index := 0;
increment(index);  ! Expands to: index := index + 1;

Example 34 Filling an Array With Zeros

DEFINE zero_array (array, length) =
BEGIN
  array[0]  :=  0;
  array[1] ':=' array FOR length - 1;
END #;
LITERAL len = 50;
INT buffer[0:len - 1];
zero_array (buffer, len);  ! Fill buffer with zeros

Example 35 (page 102) displays a message, checks the condition code, and assigns an error if
one occurs.

Example 35 Checking a Condition Code

INT error;
INT file;
INT .buffer[0:50];
INT count_written;
INT i;
DEFINE emit (filenum, text, bytes, count, err) =
BEGIN
  CALL WRITE (filenum, text, bytes, count);
  IF < THEN
    BEGIN
      CALL FILEINFO (filenum, err);
      ! Process errors if any
    END;
END #;
! Lots of code
IF i = 1 THEN
  emit (file, buffer, 80, count_written, error);

102 LITERALs and DEFINEs



7 Simple Variables
A simple variable is a single-element data item of a specified data type that is not an array, a
structure, or a pointer. After you declare a simple variable, you can use its identifier in statements
to access or change the data contained in the variable. You must declare variables before you
use them.
This section defines the syntax for declaring simple variables. The declaration determines:

• The kind of values the simple variable can represent

• The amount of storage the compiler allocates for the variable

• The operations you can perform on the variable

• The byte or word addressing mode of the variable

• The direct or indirect addressing mode of the variable

• How the compiler allocates storage for simple variables

• How you access the variables
Topics:

• Declaring Simple Variables (page 103)

• Specifying Simple Variable Address Types (page 105)

• Initializing Simple Variables With Numbers (page 105)

• Initializing Simple Variables With Character Strings (page 105)

• Examples (page 105)

Declaring Simple Variables
The simple variable declaration associates an identifier with a single-element data item and
optionally initializes it.

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type

is one of the following data types:
• BADDR

• CBADDR

• CWADDR

Declaring Simple Variables 103



• EXTADDR

• EXT32ADDR

• EXT64ADDR

• INT

• INT(32)

• FIXED

• FIXED (fpoint )

• PROCADDR

• PROC32ADDR

• PROC64ADDR

• REAL

• REAL

• REAL(64)

• SGBADDR

• SGWADDR

• SGXBADDR

• SGXWADDR

• STRING

• UNSIGNED (width )

• WADDR

NOTE: The data types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP.
For more information, see Appendix E, “64-bit Addressing Functionality” (page 531).

fpoint

For the FIXED data type, fpoint is the implied fixed-point setting. fpoint is an integer
in the range -19 through 19. If you omit fpoint, the default fpoint is 0 (no decimal places).
A positive fpoint specifies the number of decimals to the right of the decimal point. A
negative fpoint specifies a number of integers to the left of the decimal point.
fpoint can also be an asterisk (*).

width

For INT, REAL, and UNSIGNED data types, the value in parentheses is a constant expression
specifying the width, in bits of the variable. The constant expression can include LITERALs
and DEFINEs. The result of the constant expression must be one of the following values:

width in bitsData Type Prefix

16, 32, or 64INT

32 or 64REAL

a value in the range 1 through 31UNSIGNED
(simple variable, parameter, or function result)

1, 2, 4, or 8UNSIGNED (array)

104 Simple Variables



identifier

is the identifier of the simple variable, specified in the form described in Section 2, Language
Elements.

initialization

is an expression that represents the value to store in identifier. The default number base
is decimal. The kind of expression you can specify depends on the scope of the simple variable:
• For a global simple variable, use a constant expression.

• For a local or sublocal simple variable, use any arithmetic expression including variables.
You can initialize simple variables of any data type except UNSIGNED. For more information
about initializing a simple variable, see the following subsections.

Specifying Simple Variable Address Types
The address type of a simple variable is the same as the address type of a pointer to data of the
same object data type as the simple variable, as in the following examples:
INT .j;  ! A pointer: address type is WADDR
INT i;   ! A simple variable:  address type is WADDR

Initializing Simple Variables With Numbers
When you initialize with a number, it must match the data type specified for the simple variable.
The data type determines what kind of values the simple variable can store:

• STRING, INT, and INT(32) simple variables can contain integer constants in binary, decimal,
hexadecimal, or octal base.

• REAL and REAL(64) simple variables can contain signed floating-point numbers.

• FIXED simple variables can contain signed 64-bit fixed-point numbers in binary, decimal,
hexadecimal, or octal base. For decimal numbers, you can also specify a fractional part,
preceded by a decimal point. If a FIXED number has a different decimal setting than the
specified fpoint, the system scales the number to match the fpoint. If the number is scaled
down, some precision is lost.

Chapter 3 (page 46) describes the syntax for specifying numeric constants in each number base
by data type.

Initializing Simple Variables With Character Strings
STRING, INT, and UNSIGNED simple variables can be initialized with character strings. The
character string can contain the same number of bytes as the simple variable or fewer. Unspecified
bytes are zero bytes. Each character in a character string requires one byte of storage.

Examples
• Example 36 (page 106)

• Example 37 (page 106)

• Example 38 (page 107)

• Example 39 (page 107)

• Example 40 (page 107)

• Example 41 (page 107)

Specifying Simple Variable Address Types 105



Example 36 Declaring Simple Variables Without Initializing Them

STRING b;
INT(32) dblwd1;
REAL(64) long;
UNSIGNED(5) flavor;
BADDR  ba;
WADDR  wa;
EXTADDR  ea;

Example 37 Declaring and Initializing Simple Variables

STRING y := "A";                         ! Character string
STRING z := 255;                         ! Byte value
INT a := "AB";                           ! Character string
INT b := 5 * 2;                          ! Expression
INT c := %B110;                          ! Word value
INT(32) dblwd2 := %B1011101D;            ! Doubleword value
INT(32) dblwd3 := $DBL(%177775);         ! Built-in routine
REAL flt1 := 365335.6E-3;                ! Doubleword value
REAL(64) flt2 := 2718.2818284590452L-3;  ! Quadrupleword value
WADDR w;
INT t;
STRING s;
INT ro_wd = 'p' := 3;
STRING ro_b = 'p'  := "A";
BADDR   ba   := @s;
WADDR   wa   := @t;
CWADDR  cwa  := @ro_wd;
CBADDR  cba  := @ro_b;
SGWADDR sgwa := 0;
SGBADDR sgnq := 1;
EXTADDR ea   := $DBL (1);
EXT32ADDR e32a := 10D;
EXT64ADDR e64a := 10F;

106 Simple Variables



Example 38 Effect of fpoint on FIXED Simple Variables

FIXED(-3) f := 642987F;  ! Stored as 642; accessed as 642000
FIXED(3)  g := 0.642F;   ! Stored as 642, accessed as 0.642
FIXED(2)  h := 1.234F;   ! Stored as 123; accessed as 1.23

Example 39 Initializing Simple Variables With Constants and Variables

INT global := 34;                  ! Only constants allowed
                                   !  in global initialization
PROC mymain MAIN;
  BEGIN
    INT local := global + 10;      !Any expression allowed
    INT local2 := global * local;  ! in local or sublocal
    FIXED local3 := $FIX(local2);  ! initialization
    !Lots of code
  END;                             ! End of mymain procedure

Example 40 Declaring Simple VOLATILE Variables

VOLATILE INT          i;
VOLATILE UNSIGNED(3)  mask;
VOLATILE STRING       gs;

Example 41 Procedure Addresses and Procedure Pointers

PROCADDR pa;
PROC32ADDR p32a;
PROC64ADDR p64a; 
PROCPTR p (j); INT j; END PROCPTR;
PROC32PTR p32 (k); INT k; END PROCPTR;
INT PROC64PTR p64 (l, m); INT(32) l; INT(64) m; END PROCPTR;
STRUCT abc;
BEGIN
  PROCPTR z (i); INT i; END PROCPTR;
END;

NOTE: The address and pointer types, EXT32ADDR, EXT64ADDR, PROC32ADDR, PROC64ADDR,
PROC32PTR, and PROC64PTR are available in the 64-bit addressing functionality added to the
EpTAL compiler starting with SPR T0561H01^AAP. For more information, see Appendix E, “64-bit
Addressing Functionality” (page 531).

Examples 107



8 Arrays
An array is a one-dimensional set of elements of the same data type. Each array is stored as a
collective group of elements. You use arrays to store constants, especially character strings. After
you declare an array, you can use its identifier to access the array elements individually or as a
group.
You can declare:

• Arrays

• Read-only arrays

• Address arrays
The declaration includes initializing the array as well as allocating storage for the array. In addition
the declaration determines:

• The kind of values the array can represent

• The operations you can perform on the array

• The byte or word addressing mode of the array
This section defines the syntax for declaring:

• Arrays

• Read-only arrays

• Address arrays
Chapter 9 (page 114) describes the syntax for declaring arrays within structures and how to declare
structures that simulate arrays of arrays, or arrays of structures (including multidimensional arrays).
Topics:

• Declaring Arrays (page 108)

• Declaring Read-Only Arrays (page 111)

• Using Constant Lists in Array Declarations (page 113)

Declaring Arrays
An array declaration associates an identifier with a set of elements of the same data type. The
data type of an array can be one of the pTAL address types.

type

is one of the following:
• BADDR

• CBADDR

108 Arrays



• CWADDR

• EXTADDR

• EXT32ADDR

• EXT64ADDR

• FIXED (fpoint )

• INT

• INT(32)

• FIXED

• PROCADDR

• PROC32ADDR

• PROC64ADDR

• REAL

• REAL

• REAL(64)

• SGBADDR

• SGWADDR

• SGXBADDR

• SGXWADDR

• STRING

• UNSIGNED (width )

• WADDR

NOTE: The data types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
available in the 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

The data type determines:

• The kind of values that are appropriate for the array

• The storage unit the compiler allocates for each array element as follows:
width

is a constant expression specifying the width, in bits, of the variable.
fpoint

is the implied fixed point of the FIXED variable.

identifier

is the array name.
Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).
range

Declaring Arrays 109



lower-bound

is an INT or INT(32) constant expression (in the range -32,768 through 32,767) that
specifies the index (relative to the zeroth element) of the first array element you want
allocated.

upper-bound

is an INT or INT(32) constant expression (in the range -32,768 through 32,767) that
specifies the index (relative to the zeroth element) of the last array element you want
allocated.

For arrays declared outside of structures, upper-bound must be equal to or larger than
lower-bound.
Here are some examples of bounds:
STRING a_array [0:2];
INT b_array [0:19];
UNSIGNED(1) flags [0:15];

initialization

is a constant or a constant list of values to assign to the array elements, beginning with the
lower-bound element. (Constant lists are described in Chapter 3 (page 46).) If you specify
fewer initialization values than the number of elements, the values of uninitialized elements are
undefined. You cannot initialize extended indirect local arrays or UNSIGNED arrays.
Specify initialization values that are appropriate for the data type of the array. For example,
if the decimal setting of an initialization value differs from the fpoint of a FIXED array, the
system scales the initialization value to match the fpoint. If the initialization value is scaled
down, some precision is lost.

Examples:

• Example 42 (page 110)

• Example 43 (page 110)

• Example 44 (page 110)

• Example 45 (page 111)

• Example 46 (page 111)

• Example 47 (page 111)

• Example 48 (page 112)

Example 42 Declaring Arrays With Various Bounds

FIXED      .array_a[0:3];   ! Four-element array
INT        .array_b[0:49];  ! Fifty-element array
UNSIGNED(1) flags[0:15];    ! Array of 16 one-bit elements

Example 43 Declaring Arrays and Initializing Them With Constants

INT a_array[0:3] := -1;      ! Store -1 in element [0];
                             !  values in elements [1:3] are undefined
INT b_array[0:1] := "abcd";  ! Store one character per byte

Example 44 Declaring Arrays and Initializing Them With Constant Lists

INT c_array[0:5] := [1,2,3,4,5,6];  ! Constant list
STRING buffer[0:102] := [ "A constant list can consist ",
                          "of several character string constants, ",
                          "one to a line, separated by commas." ];
INT(32) mixed[0:3] := ["abcd", 1D, %B0101011D, %20D];  ! Mixed constant list
LITERAL len = 80;                           ! Length of array

110 Arrays



STRING buffer[0:len - 1] := len * [" "];    ! Repetition factor
FIXED f[0:35] := 3*[2*[1F,2F], 4*[3F,4F]];  ! Repetition factors
LITERAL cr = %15,
        lf = %12;
STRING err_msg[0:9] := [cr, lf, "ERROR", cr, lf, 0];  ! Constant list

Example 45 Initializing Arrays

INT(32) a[0:1] := [5D, 7D];    ! Initialize global array
PROC my_procedure;
BEGIN
  STRING b[0:1] := ["A","B"];  ! Initialize local standard array
  FIXED EXT c[0:3];            ! Cannot initialize local
                               !  extended indirect array
  SUBPROC my_subproc;
  BEGIN
    INT d[0:2] := ["Hello!"];  ! Initialize sublocal array
    ! Lots of code
  END;
END;

Example 46 Array With Positive fpoint

FIXED(2) x[0:1] := [ 0.64F, 2.348F ];
! Stored as 64 and 234; accessed as 0.64 and 2.34

Example 47 Array With Negative fpoint

FIXED(-3) y[0:1] := [ 642913F, 1234F ];
! Stored as 642 and 1; accessed as 642000 and 1000

Declaring Read-Only Arrays
A read-only array declaration allocates storage for a nonmodifiable array in a user code segment.
Read-only arrays are sometimes referred to as p-relative arrays, because they are addressed using
the program counter (the p register).

type

is any data type described in Declaring Arrays (page 108) except UNSIGNED. The data type
of a read-only array cannot be an address type.

identifier

is the identifier of the read-only array.
range

Declaring Arrays 111



lower-bound

is an INT or INT(32) constant expression (in the range -32,768 through 32,767) that
specifies the index (relative to the zeroth element) of the first array element you want
allocated. The default value is 0.

upper-bound

is an INT or INT(32) constant expression (in the range -32,768 through 32,767) that
specifies the index (relative to the zeroth element) of the last array element you want
allocated. The default value is the number of elements initialized minus one.

'p'

specifies a read-only array.
initialization

is a constant list to assign to the array elements. You must initialize read-only arrays when you
declare them. (Constant lists are described in Chapter 3 (page 46).)
Specify initialization values that are appropriate for the data type of the array. For example,
if the decimal setting of an initialization value differs from the fpoint of a FIXED array, the
system scales the initialization value to match the fpoint. If the initialization value is scaled
down, some precision is lost.

The compiler reports a warning if a read-only array declaration specifies an indirection symbol
(see Table 14 (page 41)).

Example 48 Read-Only Array Declaration With Indirection Symbol

PROC p;
BEGIN
  INT     i = 'P' := [2,3,4];  ! OK
  INT    .j = 'P' := [5,6,7];  ! Compiler reports a warning
  STRING  k = 'P' := ["abc"];  ! OK
  STRING .l = 'P' := ["ccc"];  ! Compiler reports a warning
END;

You must initialize read-only arrays.
UNSIGNED read-only arrays are not allowed, because they cannot be initialized.
If you declare a read-only array in a RESIDENT procedure, the array is also resident in main
memory.
The linker links each global read-only array into any code segment containing a procedure that
references the array.
You can access read-only arrays as you access any other array, except that:

• You cannot modify a read-only array; that is, you cannot specify a read-only array on the left
side of an assignment or move operator.

• You cannot specify a read-only array on the left side of a group comparison expression.

• In a SCAN or RSCAN statement, you cannot use next-addr to read the last character of
a string. You can use next-addr to compute the length of the string.

112 Arrays



Example 49 Declaring and Initializing a Read-Only Array

STRING prompt = 'P' := ["Enter Character: ", 0];
INT    error  = 'P' := ["INCORRECT INPUT"];

Using Constant Lists in Array Declarations
pTAL requirements for array declarations are:

• If an array declaration includes an initialization string, the size of a constant list must be less
than or equal to the size of the array. If the constant list is larger than the array, an error
occurs.

• If the alignment of the elements of the initialization string under SHARED2 rules and SHARED8
rules is different, you must specify a FIELDALIGN clause in the initialization string.

The number of bits in a constant list that you assign to a read-write array must be the same as the
number of bits in the array. The number of bits in a constant list that you assign to a read-only
array must be the less than or equal to the number of bits in the array.
Topics:

• Read-Only Arrays (page 113)

• Nonstring Arrays (page 113)

Read-Only Arrays
The number of bits in the initialization string must equal the number of bits in the read-only array.
If the read-only-array declaration does not specify array bounds, the number of bits in the
initialization string must be an integral multiple of the number of bits in the array’s base type.

Example 50 Declaring Read-Only Arrays With Constant Lists

INT p         = 'P' := "abcd";      ! OK
INT q[0:3]    = 'P' := "abcdabcd";  ! OK
STRING r      = 'P' := "abcd";      ! OK
STRING s[0:3] = 'P' := "abcd";      ! OK
STRING t      = 'P' := [1,2,3];     ! OK
STRING u[0:3] = 'P' := [1,2,3];     ! ERROR: Initialization size
                                    !  (24 bits) must equal the
                                    !  array's size (32 bits)
STRING v      = 'P' := [1,2,3,4];   ! OK
STRING w[0:3] = 'P' := [1,2,3,4];   ! OK
INT    x      = 'P' := "abc";       ! ERROR: Initialization size
                                    !  must be an integral
                                    !  multiple of array's base
                                    !  type size

Nonstring Arrays
You can specify an initialization string when you declare an array:
INT .a[0:3] := [0,1,2,3];

The length of the initialization string must be less than or equal to the length of the array.

Example 51 Declaring Nonstring Arrays With Constant Lists

INT .a[0:3] := [0,1,2];      ! OK: Init string is shorter than array
INT .a[0:3] := [0,1,2,3];    ! OK: Init string is right length
INT .a[0:3] := [0,1,2,3,4];  ! ERROR: Init string is too long
INT .a[0:3] := [%H1234567812345678%F];  !OK: Init string is right length

Declaring Arrays 113



9 Structures
A structure is a collectively stored set of data items that you can access individually or as a group.
Structures contain structure items (fields) such as simple variables, arrays, simple pointers, structure
pointers, and nested structures (called substructures). The structure items can be of different data
types.
Structures usually contain related data items such as the fields of a file record. For example, in an
inventory control application, a structure might contain an item number, the unit price, and the
quantity on hand.
A structure declaration associates an identifier with one of the kinds of structures listed in Table 41
(page 114).

Table 41 Kinds of Structures

DescriptionStructure

Describes a structure layout and allocates storage for itDefinition

Describes a structure layout but allocates no storage for itTemplate

Allocates storage for a structure whose layout is the same as the layout of a previously
declared structure

Referral

The TNS/E instructions setjmp() and longjmp() require data to be aligned on 16-byte
boundaries. To ensure that this data is aligned on 16-byte boundaries, you must declare it in a
template structure using STRUCTALIGN (MAXALIGN).
Topics:

• Structure Layout (page 115)

• Overview of Field Alignment (page 117)

• Field and Base Alignment (page 119)

• Array Alignment in Structures (page 122)

• Structure Alignment (page 123)

• Substructure Alignment (page 124)

• Alignment Considerations for Substructures (page 126)

• FIELDALIGN Clause (page 127)

• FIELDALIGN Compiler Directive (page 127)

• SHARED2 Parameter (page 128)

• SHARED8 Parameter (page 129)

• Reference Alignment With Structure Pointers (page 134)

• STRUCTALIGN (MAXALIGN) Attribute (page 137)

• VOLATILE Attribute (page 138)

• Declaring Definition Structures (page 138)

• Declaring Template Structures (page 139)

• Declaring Referral Structures (page 141)

• Declaring Simple Variables in Structures (page 142)

• Declaring Arrays in Structures (page 143)

• Declaring Substructures (page 144)

114 Structures



• Declaring Filler (page 147)

• Declaring Simple Pointers in Structures (page 148)

• Declaring Structure Pointers in Structures (page 151)

• Declaring Redefinitions (page 153)

• Simple Variable (page 153)

• Array (page 154)

• Definition Substructure (page 155)

• Referral Substructure (page 157)

• Simple Pointer (page 158)

• Structure Pointer (page 159)
Equivalenced structures are discussed in Chapter 11 (page 177).

Structure Layout
The structure layout (or body) is a BEGIN-END block that contains declarations of structure items.

Table 42 Structure Items

DescriptionStructure Item

A single-element variableSimple variable

A variable that contains multiple elements of the same data typeArray

A structure nested within a structure (to a maximum of 64 levels)Substructure

A place-holding byteFiller byte

A place-holding bitFiller bit

A variable that contains a memory address, usually of a simple variable or array,
which you can access with this simple pointer

Simple pointer

A variable that contains the memory address of a structure, which you can access
with this structure pointer

Structure pointer

A new identifier and sometimes a new description for a substructure, simple variable,
array, or pointer declared in the same structure

Redefinition

You can nest substructures within structures (that is, you can declare a substructure within a
substructure within a substructure, and so on) as deeply as the pTAL stack allows (approximately
60 levels). The structure and each substructure has a BEGIN-END level depending on the level of
nesting.
The syntax for declaring each structure item is described after the syntax for declaring structures.
The following rules apply to all structure items:

• You can declare the same identifier in different structures and substructures, but you cannot
repeat an identifier at the same BEGIN-END level.

• You cannot initialize a structure item when you declare it. After you have declared it, however,
you can assign a value to it by using an assignment statement or move statement.

Structure Layout 115



• You can control how the compiler aligns a structure in memory and the fields of a structure
within a structure by using the FIELDALIGN clause or FIELDALIGN compiler directive.
Definition structure and template structure declarations can optionally include a FIELDALIGN
clause. You cannot specify a FIELDALIGN clause on a referral structure declaration.

• If you declare a structure pointer and assign the address of a structure to it or use a reference
parameter to address structure data you can specify a REFALIGNED clause to ensure that the
structure is well-aligned.

Topics:

• Overview of Structure Alignment (page 116)

• Structures Aligned at Odd-Byte Boundaries (page 117)

Overview of Structure Alignment
The memory alignment of the fields of a structure is important to pTAL. A field that is aligned for
fastest access is said to be well-aligned. A field that is not aligned for fastest access is said to be
misaligned.
A structure is well-aligned if the address of the base of the structure in memory is a multiple of its
base alignment; otherwise, the structure is misaligned. If a structure is misaligned, some or all of
its fields will also be misaligned.
The layout of structures and the alignment options you specify affect the object code generated by
pTAL. If you specify that the fields of a structure are not well-aligned (by specifying the FIELDALIGN
clause with the SHARED2 parameter) pTAL generates conservative code for each reference.
Conservative code might require more instructions to reference structure fields than references to
well aligned fields.
Each structure declaration specifies whether pTAL generates fast code or conservative code when
your program references a field of the structure.
Fast code takes full advantage of the RISC and Itanium architectures and produces the best
performance, provided that the field being referenced is well-aligned. If the field is misaligned, an
exception occurs. Access to the misaligned field is handled by a millicode exception handler that
completes the access but at a significant performance cost.
Conservative code is somewhat slower than fast code but does not cause exceptions when it
accesses misaligned data.
pTAL ensures that definition structures and referral structures are well-aligned; however, if you
declare a structure pointer and assign the address of a structure to it or use a reference parameter
to address structure data, the compiler cannot ensure that the structure is well-aligned; therefore,
when you declare a structure pointer, you can specify what assumptions you want pTAL to make
when it generates code to access your data. You can specify a REFALIGNED clause (see
REFALIGNED Clause (page 134)).
The overall guidelines for alignment for a native process are:

• Accessing data in memory takes the least amount of time if the data is well-aligned and either
the compiler has allocated the data or you reference the data with a pointer that specifies
REFALIGNED(8). A data item is well-aligned if its byte address is an integral multiple of its
length. For example, an INT is well-aligned if it begins at an even-byte address, an INT(32)
at an address that is a multiple of four, and so forth.

• Accessing data is somewhat slower if the data is not well-aligned and you reference the data
using a pointer that specifies REFALIGNED(2).

• Accessing data is significantly slower if the data is not well-aligned, but pTAL generates code
that functions as if the data is well-aligned. In this case, your program traps to the millicode
exception handler, which completes the data access and returns to your program.

116 Structures



To comply with these guidelines, some structures require that you explicitly add filler to ensure that:

• Each field begins at an address that is a multiple of its length.

• The total length of a structure is a multiple of the widest field in the structure.

Structures Aligned at Odd-Byte Boundaries
If you attempt to access data at an odd-byte address, the results are undefined, whether the data
is a simple variable or a field of a structure. Your program might or might not trap.

Overview of Field Alignment
This subsection gives you an overview of the FIELDALIGN clause and the FIELDALIGN compiler
directive, and the field alignment parameters SHARED2, SHARED8, PLATFORM, and AUTO.
The FIELDALIGN clause specifies the alignment of a structure and of all substructures that do not
specify a FIELDALIGN clause. For details, see FIELDALIGN Clause (page 127).
The FIELDALIGN compiler directive specifies the default alignment for all structures. It includes the
SHARED2, SHARED8, PLATFORM, and AUTO parameters as well as a NODEFAULT parameter.
For more information, see Chapter 17 (page 367).
When you declare a definition or template structure, you specify (either explicitly using a FIELDALIGN
clause or implicitly according to the current setting of the FIELDALIGN compiler directive) how you
want the compiler to allocate memory for the structure. The field alignment for each such structure
is specified by one of the following parameters to a FIELDALIGN clause or directive:
You use SHARED2 and SHARED8 field alignment for structure data used by processes running in
either pTAL or TAL. You can share data by interprocess communication or by accessing it on a
shared storage medium such as disk or tape.
Your program might use library routines that require that structure data be in a SHARED2 or
SHARED8 format. If you use library routines that include structures that specify SHARED2 or
SHARED8, you might need to declare your structures with the same field alignment as the structures
in the library.
If more than one program uses the same source file, you might want to include a FIELDALIGN
clause on every structure declaration in the source file. This ensures that the field alignment of every
structure is consistent across all programs that compile the source file.
If you do not specify a FIELDALIGN clause, each structure will use the current setting of the
FIELDALIGN compiler directive, which might be different for different compilations.
Topics:

• SHARED2 (page 117)

• SHARED8 (page 118)

• PLATFORM (page 118)

• AUTO (page 118)

• Differences Between PLATFORM and AUTO (page 119)

SHARED2
FIELDALIGN(SHARED2) directs the compiler to allocate the structure’s fields. Specify
FIELDALIGN(SHARED2) when:

• Your process is limited by the available stack space in TAL programs.

• You want the structure to hold data (for example, interprocess messages, memory, or files)
that is shared by processes or applications running on a combination of TAL-compiled processes
and RISC and Itanium architectures.

For more information, see FIELDALIGN Clause (page 127) and SHARED2 Parameter (page 128).

Overview of Field Alignment 117



SHARED8
FIELDALIGN(SHARED8) directs the compiler to allocate the structure’s fields for optimal performance
in pTAL. Specify FIELDALIGN(SHARED8) when:

• You want optimal performance in pTAL.

• The fields you reference in the structure are well-aligned.

• All processes that share the data can use SHARED8 alignment.

• You want the structure to hold data (for example, interprocess messages, memory, or files)
that is shared by processes or applications that are composed of both pTAL and TAL code.
In TAL, access to SHARED8 components is as efficient as access to SHARED2 components,
but SHARED8 components usually require more space than SHARED2 components.

For more information, see FIELDALIGN Clause (page 127) and SHARED8 Parameter (page 129).

PLATFORM
FIELDALIGN(PLATFORM) directs the compiler to allocate the structure’s fields according to a layout
that is consistent across different programming languages running on a given architecture.
(PLATFORM field alignment is not consistent across different architectures.) The data might be
shared among modules written in different programming languages, in one of these ways:

• Running within a single process

• Running in separate processes, all of which are either pTAL, TAL, or C/C++, but not a
combination of these

pTAL allocates the fields of a PLATFORM structure according to the rules used by the native mode
HP C compiler for PLATFORM layouts; that is:

• Each field begins at an address that is an integral multiple of the length of the field. That is,
pTAL allocates 1-byte, 2-byte, 4-byte, and 8-byte fields at addresses that are integral multiples
of one, two, four, and eight, respectively.

• UNSIGNED fields are not necessarily aligned to byte boundaries. They can share 1-byte,
2-byte, and 4-byte containers with other items. An UNSIGNED field, however, cannot span
an address that is an integral multiple of four. If an UNSIGNED item would span a 4-byte
address boundary, the compiler allocates the UNSIGNED field beginning at the next 4-byte
boundary.

• The alignment of a structure or substructure is the alignment of its widest field, unless the
structure or substructure contains an UNSIGNED field, in which case, the alignment of the
structure or substructure is at least four.

• The compiler adds bytes, as needed, to the end of a PLATFORM structure or substructure such
that the length of the structure or substructure is an integral multiple of its widest field.

AUTO
FIELDALIGN(AUTO) directs the compiler to align structure fields for optimal access on the architecture
on which the object file will be run. Specify AUTO only for structures whose data exists solely
within a process. Use PLATFORM to share data across processes.
Use AUTO field alignment for a structure that you use only locally—that is, only within a process—not
between processes that run on different architectures. (AUTO field alignment is not consistent across
different architectures and compilers.)
A structure’s layout can be different in pTAL, TAL, and C/C++ if the structure describes data that
is used only within a process and only for the duration of the process. In this case, you can specify
AUTO as the FIELDALIGN parameter.
Specify FIELDALIGN(AUTO) for structures that are not used to exchange data between processes.

118 Structures



Do not assume that fields of an AUTO structure are contiguous in memory. The compilers insert
filler where required for optimal alignment.
Pointer fields and nonpointer fields in structures declared with AUTO field alignment can be any
address type or data type, respectively.
TAL, pTAL, and C lay out AUTO structures differently.

Differences Between PLATFORM and AUTO
PLATFORM structures and substructures can contain UNSIGNED and STRING items within a 2-byte
word. In AUTO structures and substructures, STRING items and UNSIGNED items are not allocated
within a 2-byte word.
PLATFORM structures and substructures can contain an odd number of bytes. AUTO (and SHARED8)
structures must contain an even number of bytes. pTAL adds an extra byte at the end of AUTO
structures if, without the byte, the structure would contain an odd number of bytes.
The length of PLATFORM structures or substructures that contains an UNSIGNED item must be an
integral multiple of four bytes. pTAL adds extra bytes, as needed, to the end of such structures and
substructures.

Field and Base Alignment
The field alignment of a structure specifies the offsets at which fields of the structure must begin
relative to the base of the structure. A scalar field is well-aligned when its byte offset is an integral
multiple of its width. A substructure is well-aligned when the offset of its base, relative to its
encompassing structure, is an integral multiple of its widest field.
Use the FIELDALIGN clause to specify how you want pTAL to align the fields in the structure. For
more information, see FIELDALIGN Clause (page 127).
Topics:

• Base Alignment (page 119)

• Structure Alignment Examples (page 120)

Base Alignment
The base alignment of a structure is the alignment of the widest field in the structure. The base
alignment determines where the structure can be located in memory and be well-aligned. A structure
is well-aligned when the memory address at which it is located is an integral multiple of its base
alignment.

Table 43 Base Alignment and Field Alignment Relationships

FIELDALIGN(SHARED8)FIELDALIGN(SHARED2)Width of Widest Field in Structure

1 or 2*1 or 2*1

222

424

828

*Definition (inline) substructures have a base alignment of one. All other structures—definition structures, referral
structures, and referral substructures—have a base alignment of two.

A structure is well-aligned if the address of the base of the structure in memory is a multiple of its
base alignment; otherwise, the structure is misaligned. If a structure is misaligned, some or all of
its fields will also be misaligned.

Field and Base Alignment 119



Structure Alignment Examples
The following examples illustrate how your structure data layout is affected by structure alignment.
Only SHARED8 structures are shown because SHARED2 structures are not well-aligned. pTAL
always generates conservative code for references to fields of a SHARED2 structure that are more
than 16 bits long.
Figure 4 (page 120) shows a structure, s1, that specifies FIELDALIGN(SHARED8). Because the
widest field in the structure, f, is a FIXED field, the base alignment of s1 is 8. To be well-aligned,
s1 must be allocated at a memory address that is an integral multiple of eight. Filler is added as
follows:

• Before i32 so that i32 begins at an offset that is a multiple of four relative to the beginning
of the structure.

• Before f so that f begins at an offset that is a multiple of eight relative to the beginning of
the structure.

• At the end of the structure so that the total length of the structure is an integral multiple of the
widest field in the structure.

Figure 4 Alignment of SHARED8 Structure With Base Alignment of 8
STRUCT s FIELDALIGN(SHARED8);  ! Base alignment of s1 is 8
BEGIN
  INT     i;    ! Begins at offset 0
  FILLER  2;    ! 2 bytes of filler required
  INT(32) i32;  ! Begins at offset 4
  STRING  s1;   ! Begins at offset 8
  STRING  s2;   ! Begins at offset 9
  FILLER  6;    ! 6 bytes of filler required
  FIXED   f;    ! Begins at offset 16
  INT     k;    ! Begins at offset 24
  FILLER  6;    ! Must pad to multiple of widest field, f
END;            ! Total length of s1: 32 bytes

Figure 5 (page 121) shows which fields of s1 are misaligned if the base of the structure in memory
is not at an integral multiple of its base alignment. Only structures whose base is at an even-byte
address are shown. Accessing structures whose base is at an odd-byte offset produces undefined
results. For more information, see Overview of Structure Alignment (page 116).

120 Structures



Figure 5 Well-Aligned and Misaligned SHARED8 Structures With Base Alignment of 8

Figure 6 (page 121) shows a structure that is declared FIELDALIGN(SHARED8). The widest fields
in s2, i32a and i32b, are each four bytes; therefore, although the field alignment of s2 is
SHARED8, the base alignment of s2 is four, not eight. s2 is well-aligned in memory if the base of
the structure begins at any address that is a multiple of four.

Figure 6 Alignment of a SHARED8 Structure With Base Alignment of 4
STRUCT s2 FIELDALIGN(SHARED8);  ! Base alignment is 4
BEGIN
  STRING  s1     ! Begins at offset 0
  FILLER  3;     ! 3 bytes of filler required
  INT(32) i32a;  ! Begins at offest 4
  STRING  s2     ! Begins at offset 8
  STRING  s3     ! Begins at offset 9
  FILLER  2;     ! 2 bytes of filler required
  INT(32) i32b;  ! Begins at offest 12
  INT     k;     ! Begins at offest 16
  FILLER  2;     ! Must pad to multiple of base alignment
END;             ! Total length of s2: 20 bytes

Figure 7 (page 122) shows which fields are misaligned if s2 is allocated at an address other than
a 4-byte address.

Field and Base Alignment 121



Figure 7 Well-Aligned and Misaligned SHARED8 Structures With Base Alignment of 4

Array Alignment in Structures
When you declare an array in a structure, the alignment of the beginning of the array is the
alignment of the base type of the array. Thus, for example, the field alignment of an array of INTs
is the same as the field alignment of a single INT, which is 2. Declaring an array in a structure is
the same as explicitly declaring individual fields, each with the same data type as the array’s base
type.
In Example 52 (page 122), the layouts and base alignments of s1 and s2 are identical:

Example 52 Arrays Within Structures

STRUCT s1 FIELDALIGN(SHARED8);
BEGIN
  INT i;
  INT a[0:2];
  STRUCT s1[0:1];
  BEGIN
    INT(32)w;
    INT y;
    INT x;
  END;
END;

STRUCT s2 FIELDALIGN(SHARED8);
BEGIN
  INT i;
  INT a;
  INT b;
  INT c;
  STRUCT s1a;
  BEGIN
    INT(32)w;
    INT y;
    INT x;
  END;
  STRUCT s1b;
  BEGIN
    INT(32)w;
    INT y;
    INT x;
  END;
END;

122 Structures



An array of structures or substructures is the same as an array of a pTAL data type. The width of
the widest field of an element of such an array, combined with the FIELDALIGN parameter you
specify, determines the required alignment of the structure or substructure and of its fields.

Example 53 SHARED2: 2-Byte Alignment

STRUCT s1[0:9] FIELDALIGN(SHARED2);  ! s1 is SHARED2
BEGIN                                ! Alignment is 2
  INT       i;
  FILLER 2;
  INT(32)   j;
END;

Example 54 SHARED8: 4-Byte Alignment

STRUCT s2[0:9] FIELDALIGN(SHARED8);  ! s2 is SHARED8
BEGIN                                ! Alignment is 4
  INT       i;
  FILLER 2;
  INT(32)   j;
END;

Example 55 8-Byte Alignment and 4-Byte Alignment

STRUCT s3[0:9] FIELDALIGN(SHARED8);  ! s3 is SHARED8
BEGIN                                ! Alignment is 8
  STRUCT s4[0:4];                    ! s4 is SHARED8
  BEGIN                              ! Alignment is 4
    INT       i;
    FILLER 2;
    INT(32)   j;
  END;
  REAL(64)    k;
END;

Structure Alignment
A structure’s alignment is the alignment of the widest field declared in the structure and is always
less than or equal to the alignment specified in a FIELDALIGN clause or FIELDALIGN compiler
directive. For alignment values of structure fields, see Table 43 (page 119). The alignment of a field
that is a substructure is the alignment of the widest field contained in the substructure.
If the alignment of the widest field in a SHARED8 structure is 2, the structure must begin at a 2-byte
address, and the structure’s base alignment is 2. If the alignment of the widest field in the structure
is four bytes, for example an INT(32), the structure must begin at a 4-byte address. If the alignment
of the widest field in the structure is eight bytes, for example an FIXED field, the structure must begin
at an 8-byte address.

Example 56 SHARED8 Structures With Different Base Alignments

STRUCT s1 FIELDALIGN(SHARED8);  ! Base alignment of structure is
BEGIN                           !  2 because of INT c
  STRING a;
  STRING b;
  INT    c;                     ! c is field with widest
END;                            !  alignment: 2
STRUCT s2 FIELDALIGN(SHARED8);  ! Base alignment of structure is
BEGIN                           !  4 because of INT(32) c
  STRING  a;
  STRING  b;
  FILLER  2;

Structure Alignment 123



  INT(32) c;                    ! c is field with widest
END;                            !  alignment: 4
STRUCT s3 FIELDALIGN(SHARED8);  ! Base alignment of structure is
BEGIN                           !  8 because of FIXED c
  STRING a;
  STRING b;
  FILLER 6;
  FIXED  c;                     ! c is field with widest
END;                            !  alignment: 8

Substructure Alignment
The rules for field alignment of substructures are the same as the rules for structures. You can specify
the field alignment of a substructure explicitly using a FIELDALIGN clause or implicitly by allowing
the field alignment of the substructure to default to the field alignment of the containing structure
or substructure. In either case, the alignment of fields must conform to the rules described previously,
under “Using Field Alignment.” For SHARED8 structures, you must ensure that every field begins
at an appropriate address and that the end of the structure includes filler, if necessary, so that the
total length of the substructure is an integral multiple of its widest field.
The following rules apply to substructures:

• A definition substructure that does not specify a FIELDALIGN clause inherits the field alignment
of its containing structure or substructure.

• The base alignment of a substructure is the alignment of the widest field of the substructure.

• Begin the base of a substructure at an offset that is an integral multiple of the substructure’s
alignment, relative to the start of its containing structure or substructure. If the substructure is
a definition substructure and both the structure and substructure have SHARED8 field alignment,
the substructure must be well aligned.

Example 57 Well-Aligned Structure With Well-Aligned Substructure

STRUCT s FIELDALIGN(SHARED8);
BEGIN
  INT i;
  FILLER 2;        ! ss is 4-byte aligned.  Use FILLER 2 to
                   !  force ss to a 4-byte address
  STRUCT ss;       ! Specified alignment of ss is SHARED8,
  BEGIN            !  inherited from s
    INT(32) m;
    INT n;
    FILLER 2;      ! Alignment of substructure ss is 4
  END;             ! FILLER 2 makes total length of ss 8
  INT j;
  STRING t[0:2];
  FILLER 3;        ! Alignment of structure s is 4: declare
END;               !  FILLER 3 to make length of s an integral
                   !  multiple of its widest field

For further information about substructures, see Alignment Considerations for Substructures
(page 126).

124 Structures



Example 58 SHARED8 Structures With SHARED2 Substructures

STRUCT t_s2(*) FIELDALIGN(SHARED2);  ! Base alignment of t_s2
BEGIN                                !  is 2
  INT(32) j;
END;
STRUCT t_s8(*) FIELDALIGN(SHARED8);  ! Base alignment of t_s8
BEGIN                                !  is 4
  INT(32) j;
END;

Example 59 SHARED2 Structures With SHARED8 Substructure

STRUCT s1 FIELDALIGN(SHARED2);
BEGIN
  INT i;
  STRUCT s2(t_s8);            ! s2 has SHARED8 alignment
END;                          ! Base alignment of s2 is 2
INT .p2(t_s8) REFALIGNED(2);  ! Reference alignment is 2
INT .p3(t_s8);                ! Reference alignment defaults
                              !  to 8
PROC p;
BEGIN
  INT i;
  @p2 := @s1.s2 '>>' 1;
  @p3 := @s1.s2 '>>' 1;
  i := p2.j;
  i := p3.j;
  ...
END;

In Example 59 (page 125):

• Because s1 specifies SHARED2 field alignment, pTAL generates conservative code that ensures
that an exception does not occur when you reference s1.s2.j.

• p2 refers to t_s8, a SHARED8 substructure. p2 specifies a reference alignment of 2, which
ensures that pTAL generates conservative code that will not cause exceptions for misaligned
memory references.

• p3 does not have a REFALIGNED clause. Its reference alignment, therefore, defaults to the
field alignment of its referent, which is t_s8, which has SHARED8 field alignment. pTAL
generates fast code for each reference to p3.j.

In the formal parameter specification for a structure pointer, declare reference alignment 2 unless
you are certain that all pointers passed to the parameter reference SHARED8 structures that you
know are well-aligned. If you are not certain that all references are well-aligned, use the same
approach as that shown earlier to ensure that references to structures passed as actual parameters
do not cause a trap.
When you design routines that return addresses to their callers, return addresses that are well-aligned
whenever possible.

Substructure Alignment 125



Example 60 SHARED8 Structure With SHARED2 Substructure

STRUCT s3 FIELDALIGN(SHARED8);
BEGIN               ! Base alignment of s3 is 4
  INT i;
  STRUCT s4(t_s2);  ! s2 has SHARED8 alignment
END;                ! Base alignment of s2 is 4
INT .p4(t_s2);      ! Uses default alignment: 2

The compiler always generates conservative code. In Example 60 (page 126), references to s3.s4.j
do not cause traps because, although s3 is SHARED8, the offset of s3.s4.j is not a multiple of
4. For each reference pTAL determines whether the referenced field is well-aligned. References to
fields in s4 using the pointer p4—for example, p4.j—do not cause traps because the field
alignment of s4 is SHARED2 and the compiler generates conservative code for such references.

Example 61 Combining SHARED2 and SHARED8 Structures

PROC p;
BEGIN
  STRUCT s1 FIELDALIGN(SHARED8);  ! OK
  BEGIN
    FIXED i;
  END;
  STRUCT s2 FIELDALIGN(SHARED2);  ! OK
  BEGIN
    INT(32) i;                    ! OK
    STRUCT sub (s1);              ! WARNING: SHARED8
  END;                            !  substructure in SHARED2
                                  !  structure can cause
                                  !  significant loss of
                                  !  performance
  STRUCT s3 (s1) = s2;
  STRUCT s4 FIELDALIGN(SHARED8);
  BEGIN
    INT i;
    STRUCT sub1 (s2);         ! OK: SHARED2
    STRUCT sub2 (s1) = sub1;  ! WARNING: SHARED8 substructure
    FILLER 2;                 !  redefines SHARED2 substructure
  END;                        !  can cause significant loss of
END;                          !  performance

Alignment Considerations for Substructures
When you declare a substructure, you must be aware of how the base alignment of the substructure
and its containing structure affect references to the fields of the structure and substructure.

Table 44 Field Alignment of Substructures

Structure Field Alignment

SHARED2SHARED8PLATFORMAUTOSubstructure Field
Alignment

InvalidInvalidPLATFORMAUTOAUTO

invalidinvalidPLATFORMinvalidPLATFORM

SHARED8SHARED8SHARED8SHARED8SHARED8

SHARED2SHARED2SHARED2SHARED2SHARED2

SHARED2SHARED8PLATFORMAUTODefault

If a SHARED8 substructure is contained in a SHARED2 structure (or in an AUTO structure), fields
in the SHARED8 substructure will be well-aligned with respect to the base of the SHARED8

126 Structures



substructure but might not be well-aligned with respect to the base of the SHARED2 structure.
Performance will be somewhat degraded when fields in the substructure are referenced.
If a SHARED2 substructure is contained in a SHARED8 structure (or in an AUTO structure), fields
in the SHARED2 substructure will be well-aligned with respect to the base of the SHARED2
substructure but might not be well-aligned with respect to the base of the SHARED8 structure.
Performance will be significantly degraded when fields in the substructure are not well-aligned for
SHARED8 access. Each such reference will cause a trap to the millicode exception handler to
resolve the reference. Your program will behave correctly but will be significantly slower than it
would without the trap.

Example 62 AUTO Field Alignment in Structure (Error)

STRUCT s FIELDALIGN(SHARED8);
BEGIN
  STRUCT s1 FIELDALIGN(AUTO);  ! ERROR: Substructure cannot be
  BEGIN                        !  FIELDALIGN(AUTO)
    ...
  END;
END;

The compiler pads SHARED2 structures and substructures with an extra byte if the end of the last
field in the structure or substructure ends at an odd-byte address, unless the structure has 1-byte
alignment—that is, all fields in the structure or substructure are STRINGs or UNSIGNED(1-8).
STRING fields in structures can begin at any byte offset.

FIELDALIGN Clause
You use a FIELDALIGN clause in a structure declaration to specify how you want pTAL to align the
fields in the structure. Fields can be aligned for:

FIELDALIGN ClauseAccess

FIELDALIGN(AUTO)Exclusive, optimized for best resource utilization on each architecture

FIELDALIGN(SHARED2)Shared between pTAL and TAL programs

FIELDALIGN(PLATFORM)Shared by program modules written in different programming languages
and running on the same architecture

FIELDALIGN(SHARED8)Shared between TNS, TNS/R, and TNS/E architecture with optimal
performance on TNS/R and TNS/E architecture

FIELDALIGN Compiler Directive
As with the FIELDALIGN clause, the parameters to the FIELDALIGN compiler directive include
SHARED2, SHARED8, PLATFORM, and AUTO. In addition, you can specify NODEFAULT as the
parameter to the FIELDALIGN compiler directive.
You can specify only one FIELDALIGN directive within a compilation, and it must precede all data,
block, and procedure declarations. Only comments, blank lines, and other directives can precede
a FIELDALIGN directive.
The default value of the FIELDALIGN directive is AUTO.
If you specify the FIELDALIGN (NODEFAULT) compiler directive, pTAL requires you to specify a
FIELDALIGN clause on every structure declaration. You might use the FIELDALIGN (NODEFAULT)
directive to ensure that you do not inadvertently omit a FIELDALIGN clause on any structure.
If you do not specify a FIELDALIGN (NODEFAULT) directive, pTAL does not require you to specify
a FIELDALIGN clause on each structure declaration.

FIELDALIGN Clause 127



SHARED2 Parameter
Since the SHARED2 parameter is included with both the FIELDALIGN clause and the FIELDALIGN
compiler directive, the following information relates to both usages:

• In a SHARED2 structure, all fields must begin at an even-byte address except STRING fields,
which can begin at any byte address, and UNSIGNED fields, which can begin at any bit
address except as follows:
◦ An UNSIGNED(1-16) field cannot cross an even-byte address boundary.

◦ An UNSIGNED(17-31) field can cross only one even-byte address boundary.

◦ An UNSIGNED field that is not preceded by an UNSIGNED field must begin at an
even-byte address.

• The address type of pointers in a SHARED2 structure must be EXTADDR, EXT32ADDR,
EXT64ADDR, PROC32ADDR, PROC64ADDR, SGBADDR, or SGWADDR; for example:
STRUCT s FIELDALIGN(SHARED2);
BEGIN
  INT .EXT ea;     ! OK: EXTADDR pointer
  INT .EXT32 e32a; ! OK: EXT32ADDR pointer
  INT .EXT64 e64a; ! OK: EXT64ADDR pointer
  INT .SG j;       ! OK: SGWADDR pointer
 STRING .s;        ! ERROR: BADDR pointer is not valid
END;

NOTE: The address types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR
are available in the 64-bit addressing functionality added to the EpTAL compiler starting with
SPR T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

• If the data type of a field in a SHARED2 structure is an address type, the type must be
EXTADDR, EXT32ADDR, EXT64ADDR, PROC32ADDR, PROC64ADDR, SGBADDR, or
SGWADDR; for example:
STRUCT s FIELDALIGN(SHARED2);
BEGIN
  EXTADDR ea;       ! OK
  EXT32ADDR e32a;   ! OK
  EXT64ADDR e64a;   ! OK
  PROCADDR pa;      ! ERROR: not allowed in SHARED2 struct.
  PROC32ADDR p32a;  ! OK
  WADDR w;          ! ERROR: not allowed in a SHARED2 struct;
END;

• If you include a FIELDALIGN(SHARED2) compiler directive, include a REFALIGNED(2) compiler
directive as well. The default for the REFALIGNED compiler directive is 8. With field alignment
SHARED2, pTAL can allocate a 32-bit or 64-bit field at any even-byte address. pTAL generates
optimal code for data references that use a pointer whose reference alignment is 8. If the
pointer is used to reference 32-bit or 64-bit data that is not well-aligned, each reference to
the data will be slow. By default, pTAL generates conservative code when you reference data
using a pointer that specifies REFALIGNED(2). The REFALIGNED(2) directive ensures that pTAL
generates conservative code for pointers that do not specify a REFALIGNED clause.

128 Structures



Example 63 FIELDALIGN(SHARED2) and REFALIGNED(2) Directives

?FIELDALIGN(SHARED2)
?REFALIGNED(2)
INT(32).ptr;            ! Global pointer
PROC p;
BEGIN
  @ptr :=  @str.F32;    ! str.F32 might or might not be aligned
                        !  at a 32-bit address. REFALIGNED
  ...  :=  ptr  +  3D;  !  directive ensures that pTAL
                        !  generates conservative code for
END;                    !  references to ptr.

Example 64 Byte Offsets (Decimal) of Fields of a SHARED2 Structure

STRUCT s1 FIELDALIGN(SHARED2);
BEGIN
  INT         i;   ! i begins at byte offset:  0
  INT(32)     j;   ! j begins at byte offset:  2
  STRING      s1;  ! s1 begins at byte offset: 6
  UNSIGNED(3) u1;  ! u1 begins at byte offset: 8
  UNSIGNED(2) u2;  ! u2 begins at byte offset: 8 + 3 bits
  STRING      s2;  ! s2 begins at byte offset: 10
  FIXED       f;   ! f begins at byte offset:  12
  INT         k;   ! k begins at byte offset:  20
END;

SHARED8 Parameter
Since the SHARED8 parameter is included with both the FIELDALIGN clause and the FIELDALIGN
compiler directive, the following information relates to both usages:

• The structure must begin at an address that is an integral multiple of the width of the widest
field in the structure. Thus:
◦ A 1-byte field (STRING) can begin at any byte address.

◦ The byte offset of a 2-byte field [INT or UNSIGNED(1-16)] must be an even number,
except that contiguous UNSIGNED fields can be packed.

◦ The byte offset of a 4-byte field [INT(32), REAL, UNSIGNED(17-31)] must be an integral
multiple of four, except that contiguous UNSIGNED fields can be packed.

◦ The byte offset of an 8-byte field [FIXED or REAL(64] must be an integral multiple of eight.

◦ The byte offset of a substructure field must be an integral multiple of the widest field in
the substructure.

◦ The byte offset of an array must be an integral multiple of an element of the array—that
is, one of the previous items in this list.

• In a SHARED8 structure or substructure, you must explicitly declare filler items as needed to
ensure that fields are aligned according to the preceding rules.

Table 45 Variable Alignment

NotesAlignmentData Type

1STRING

2INT

Multiple UNSIGNED fields can be packed in a word
or doubleword.

2UNSIGNED(1-16)

.SG pointers are 16 bits in both pTAL and TAL.*2.SG pointers

SHARED8 Parameter 129



Table 45 Variable Alignment (continued)

NotesAlignmentData Type

Allowed in structures only with AUTO field
alignment.**

4.SGX pointers

Allowed in structures only with AUTO field
alignment.**

4Other 16-bit pointers

432-bit Pointer

864-bit Pointer***

4INT(32)

4REAL

Multiple UNSIGNED fields can be packed into a
doubleword.

4UNSIGNED(17-31)

8FIXED

8REAL(64)

* In pTAL, the alignment for all address types is 4, except SGBADDR, SGWADDR, EXT64ADDR, and
PROC64ADDR addresses for which the alignment is 2, 2, 8, and 8 respectively. In TAL, the alignment of all
address types is 2.

** The alignment of an array is the alignment of its element type.

*** 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

• For compatibility with TAL, pTAL requires you to explicitly declare filler items to optimally align
a SHARED8 structure’s fields for RISC and Itanium architecture. pTAL does not add filler
automatically to SHARED8 structures and reports a syntax error if you do not declare filler
where a structure requires it. The compiler listing shows where each structure requires filler.
You must add filler:
◦ Before a field if the field’s offset from the beginning of the structure is not an integral

multiple of the field’s width (see Table 43 (page 119))
◦ If the total length of the structure or substructure would not be an integral multiple of the

structure or substructure’s widest field
◦ If an UNSIGNED(1-16) field would otherwise cross an even byte address

◦ If an UNSIGNED(17-31) field would otherwise cross a four byte address

• The address type of pointers in a SHARED8 structure must be EXTADDR, SGBADDR, or
SGWADDR.

• If the data type of a field in a SHARED8 structure is an address type, the type must be
EXTADDR, EXT32ADDR, EXT64ADDR, PROC32ADDR, PROC64ADDR, SGBADDR, or
SGWADDR, as shown in the following example:
STRUCT s FIELDALIGN(SHARED8);
BEGIN
 EXTADDR      x;    ! OK: EXTADDR field
 EXT32ADDR    y;    ! OK: EXT32ADDR field 
 EXT64ADDR    z;    ! OK: EXT64ADDR field 
 PROC32ADDR   a;    ! OK: PROC32ADDR field 
 FILLER 4;
 PROC64ADDR   b;    ! OK  PROC64ADDR field 
 INT .EXT     ea;   ! OK: EXTADDR pointer
 INT .EXT32   e32a; ! OK: EXT32ADDR pointer 
 INT .EXT64   e64a; ! OK: EXT64ADDR pointer 
 INT.SG       j;    ! OK: SGWADDR pointer

130 Structures



 STRING       s;    ! ERROR: BADDR pointer is not valid
END;

NOTE: The address types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP.
For more information, see Appendix E, “64-bit Addressing Functionality” (page 531).

Topics:

• Alignment of Fields (page 131)

• Optimizing Structure Layouts (page 131)

• Structure Length (page 132)

• Alignment of UNSIGNED(17-31) Fields (page 133)

Alignment of Fields
If a field in a SHARED8 structure is not well-aligned, you must explicitly declare filler to force the
field to be well-aligned.

Example 65 Filler Forcing Alignment in a SHARED8 Structure

STRUCT s FIELDALIGN(SHARED8);
BEGIN
  INT          a;        ! 0 a uses 2 bytes
  FILLER 2;              ! 2 Force b to a 4-byte offset
  INT(32)      b;        ! 4 b uses 4 bytes
  STRING       c [0:2];  ! 8 c uses 3 bytes
  FILLER 5;              ! 11 Force d to an 8-byte offset
  FIXED        d;        ! 16 d uses 8 bytes
  INT(32)      e[0:1];   ! 24 e uses 8 bytes
  INT          f;        ! 32 f uses 2 bytes
  UNSIGNED(5)  g;        ! 34 g uses 5 bits
  BIT_FILLER  11;        ! Force h to a 4-byte offset
  UNSIGNED(17) h;        ! 36 h uses 2 bytes plus 1 bit
  UNSIGNED(15) i;        ! 38 i uses 15 bits
END;                     ! Total structure length: 40 bytes

The first filler item (FILLER 2) forces b to begin at a 4-byte address. The second filler item (FILLER
5) forces d to begin at an 8-byte address. The third filler item (BIT_FILLER 11) forces h to begin at
a 4-byte address.

Optimizing Structure Layouts
You do not need to declare filler items in a SHARED2 structure to align its fields. If filler is
needed—for example to align bit fields, string fields, or fields that follow bit fields and string
fields—the compiler inserts the needed filler.

SHARED8 Parameter 131



Example 66 Structure With SHARED2 Field Alignment

STRUCT s1 FIELDALIGN(SHARED2);
BEGIN
  INT     i;  ! i  begins at offset:  0
  INT(32) j;  ! j  begins at offset:  2
  STRING s1;  ! s1 begins at offset:  6
  STRING s2;  ! s1 begins at offset:  7
  FIXED   f;  ! f  begins at offset:  8
  INT     k;  ! k  begins at offset: 16
END;          ! Total length of s1:  18 bytes

Structures that specify SHARED8 field alignment, however, require you to explicitly declare filler
items to force fields to be well-aligned, as previously described. You might be able to reduce the
size of a structure if you can arrange its fields to minimize the number of filler items required.
In Example 67 (page 132), the structure s2 has the same fields as s1 in Example 66 (page 132),
but s2 has SHARED8 field alignment and includes filler items where required. Offsets are shown
in bytes. s2 is 32 bytes.

Example 67 Structure With SHARED8 Field Alignment

STRUCT s2 FIELDALIGN(SHARED8);
BEGIN
  INT     i;  ! i begins at offset 0
  FILLER  2;  ! 2 bytes of filler
  INT(32) j;  ! j begins at offset 4
  STRING s1;  ! s1 begins at offset 8
  STRING s2;  ! s2 begins at offset 9
  FILLER  6;  ! 6 bytes of filler
  FIXED   f;  ! f begins at offset 16
  INT     k;  ! k begins at offset 24
  FILLER  6;  ! Pad to a multiple of the widest field (f)
END;          ! Total length of s2: 2 bytes

s2 has SHARED8 field alignment, and uses 14 more bytes than s1. If the order of the fields within
the structure is not important; however, you can rearrange the fields so that the structure contains
fewer bytes, as shown in Example 68 (page 132).

Example 68 Optimized Structure With SHARED8 Field Alignment

STRUCT s3 FIELDALIGN(SHARED8);
BEGIN
  INT     i;  ! i  begins at offset 0
  STRING s1;  ! s1 begins at offset 2
  STRING s2;  ! s2 begins at offset 3
  INT(32) j;  ! j  begins at offset 4
  FIXED   f;  ! f  begins at offset 8
  INT     k;  ! k  begins at offset 16
  FILLER  6;  ! Pad to a multiple of the widest field (f)
END;          ! Total length of s3: 24 bytes

By rearranging the order of the fields, s3 requires 24 bytes, rather than the 32 bytes required by
s2, even though the information in s3 and s2 is the same. s3 uses only six more bytes than s1.

Structure Length
The total number of bytes in a SHARED8 structure must be an integral multiple of the widest field
in the structure. If needed, you must explicitly declare filler at the end of a SHARED8 structure to
ensure this condition.

132 Structures



Example 69 Structures That Need Filler

STRUCT s1 FIELDALIGN(SHARED8);
BEGIN
  FIXED   i;  ! Structure's widest field is 8 bytes
  INT(32) j;  ! j is 4 bytes FILLER 4
  FILLER  4;  ! Pad with 4 bytes
END;
STRUCT s2 FIELDALIGN(SHARED8);
BEGIN
  INT(32) i;  ! Structure's widest field is 4 bytes
  INT     j;  ! j is 2 bytes
  FILLER  2;  ! Pad with 2 bytes
END;

UNSIGNED(1-16) fields cannot cross an even-byte address.

Example 70 Structure Field Crossing an Even-Byte Address (Error)

STRUCT s FIELDALIGN(SHARED8);
BEGIN
  UNSIGNED(10) u1;
  UNSIGNED(16) u2;  ! Invalid field -- crosses even-byte address
END;

In Example 71 (page 133), u1 starts at the beginning of the structure. u2, therefore, would begin
at a 10-bit offset from the beginning of s. Because u2 is 16 bits, the last ten bits of u2 would be
allocated in a second word, which would cause u2 to cross an even-byte address; therefore, you
must explicitly declare filler to force u2 to begin at the next even-byte offset from the beginning of
s.

Example 71 Structure That Needs Filler

STRUCT s FIELDALIGN(SHARED8);
BEGIN
  UNSIGNED(10) u1;
  BIT_FILLER 6;     ! Forces u2 to begin at next even-byte address
  UNSIGNED(16) u2;
END;

Alignment of UNSIGNED(17-31) Fields
In a SHARED8 structure, UNSIGNED(17-31) fields cannot cross a 4-byte address. Because an
UNSIGNED(17-31) field is longer than 16 bits, its base alignment is 4 bytes.
In Example 72 (page 133), i starts at the beginning of the structure. u, therefore, begins at an
even-byte offset from the beginning of s. Because u is 28 bits, the last 12 bits of u would be
allocated in the next word, which would cause u to cross a 4-byte address.

Example 72 SHARED8 Structure With Misaligned UNSIGNED Fields

STRUCT s FIELDALIGN(SHARED8);
BEGIN
  INT i;
  UNSIGNED(28) u;  ! Invalid field
END;

You must explicitly declare filler to force u to begin at the next 4-byte offset from the beginning of
s.

SHARED8 Parameter 133



Example 73 SHARED8 Structure With Correctly Aligned UNSIGNED Fields

STRUCT s FIELDALIGN(SHARED8);
BEGIN
  INT i;
  FILLER 2;        ! Forces u to begin at a 4-byte address
  UNSIGNED(28) u;
  BIT_FILLER 4;    ! Makes length of s an integral multiple of
END;               !  4 bytes

Reference Alignment With Structure Pointers
When you declare a structure pointer, you can specify a REFALIGNED clause as part of the
declaration. (For the syntax of a structure pointer, see Chapter 11 (page 177).) You can use a
REFALIGNED clause to override the base alignment of an instance of a structure, even though the
field alignment for the structure does not change. For example, if you specify a REFALIGNED(2)
clause on a structure pointer, pTAL generates conservative code each time you use the pointer to
reference fields of the structure.
A REFALIGNED clause specifies the base alignment of the structures that the structure pointer will
reference. The distinction between FIELDALIGN and REFALIGNED is required because structures
referenced by a structure pointer can be located anywhere in memory, and might not be
well-aligned. A structure might not be well-aligned if it is located in a dynamic memory area such
as a heap, or was read from a file as part of a larger record.
The alignment of a structure pointer is the alignment specified in a REFALIGNED clause if present,
or if not present, by the field alignment of the structure it references.
The REFALIGNED compiler directive does not affect the reference alignment of structure pointers.
It is used only for pointers to nonstructure data.
You can specify the REFALIGNED clause on any pointer field. In Example 74 (page 134), field d
is a 32-bit pointer in pTAL and is valid only if the field alignment of structure s is AUTO or
PLATFORM.

Example 74 REFALIGNED Clause With Structure Pointers

STRUCT s;
BEGIN
  INT .d REFALIGNED(2);      ! Standard pointer with REFALIGNED
                             !  clause
  INT. EXT e REFALIGNED(8);  ! An extended pointer
END;

The same syntax and semantics of fields and pointer fields declared with a REFALIGNED clause
is the same as that of variables and pointers declared with a REFALIGNED clause, respectively.
Topics:

• REFALIGNED Clause (page 134)

• Default Reference Alignment (page 135)

• REFALIGNED(2) (page 135)

• REFALIGNED(8) (page 136)

• Code Generation for Structure References (page 137)

REFALIGNED Clause
In a SHARED2 or SHARED8 structure, you can include only pointers whose address type is
SGBADDR, SGWADDR, EXTADDR, EXT32ADDR, EXT64ADDR, PROC32ADDR, or PROC64ADDR.
Pointers whose address type is any other type are 16 bits in TAL, but 32 bits in pTAL.

134 Structures



Similarly, if the data type of a nonpointer field in a SHARED2 and SHARED8 structure is an address
type, its type must be SGBADDR, SGWADDR, EXTADDR, EXT32ADDR, EXT64ADDR, PROC32ADDR,
or PROC64ADDR.

NOTE: The address types, EXT32ADDR, EXT64ADDR, PROC32ADDR, and PROC64ADDR are
available in the 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Example 75 REFALIGNED Clause

STRUCT s FIELDALIGN(SHARED2);
BEGIN
  INT   i;  ! OK:  i is a simple variable
  INT  .j;  ! ERROR: j's address type is WADDR
  BADDR b;  ! ERROR: b's data type is BADDR
END;

Default Reference Alignment
If you do not specify a REFALIGNED clause in a structure pointer declaration, the reference alignment
for the pointer is the alignment of the structure that the pointer references in its declaration. In
Example 76 (page 135), none of the pointers p1, p2, or p3 specifies an alignment. Their alignment,
therefore, is the field alignment of the structures s1, s2, and s3 that they reference.

Example 76 Default Reference Alignment

STRUCT s1 FIELDALIGN(SHARED2);
BEGIN
  INT i;
  INT(32) j;
END;
STRUCT s2 FIELDALIGN(SHARED8);
BEGIN
  INT i;
  FILLER 2;
  INT(32) j;
END;
STRUCT s3 FIELDALIGN(AUTO);
BEGIN
  INT i;
  INT(32) j;
END;
INT .p1(s1);  ! Reference alignment is 2
INT .p2(s2);  ! Reference alignment is 8
INT .p3(s3);  ! Reference alignment is 8

REFALIGNED(2)
When a structure pointer specifies REFALIGNED(2), the base of the structure might or might not
be well-aligned for RISC and Itanium access. When you reference the pointer in an expression,
pTAL generates conservative code that might not be as optimal as the code it generates when you
specify REFALIGNED(8).
When you use a structure pointer in an executable statement, the field to which the pointer refers
might not be well-aligned. For example, if you are accessing a structure whose address was passed
as a parameter to a procedure, you might not know whether the field is well-aligned. Although the
fields of the structure are well-aligned from the base of the structure, the base of the structure might
not be well-aligned in memory.
Similarly, if you reference a field in a structure that is stored at an arbitrary address on a heap,
you might not know in advance whether the fields in the structure are well aligned.

Reference Alignment With Structure Pointers 135



To ensure good performance, use REFALIGNED(2) to access the field, even if it happens to be
well-aligned. Always use REFALIGNED(2) unless you are certain that nearly all fields referenced
by the pointer are well-aligned.

Example 77 REFALIGNED(2)

WADDR a_str;
STRUCT s_templ(*) FIELDALIGN(SHARED8);
BEGIN
  INT i;
  FILLER 2;
  INT(32) j;
END;
STRUCT s(s_templ);
PROC p(struct_addr, p1);
  WADDR   struct_addr;
  INT    .p1(s_templ);                  ! Use template for structure definition
BEGIN
  INT .p2(s);                           ! Reference compiler-allocated structure with
                                        !  SHARED8 alignment
  INT .p3(s_templ) REFALIGNED(2) = p2;  ! Equivalence p3 to p2
  INT .p4(s_templ) REFALIGNED(2) := struct_addr;
                                        ! Use template but use address passed as parameter
  INT .p5(s_templ) REFALIGNED(2) := a_str;
                                        ! Use template but address stored in globals
  @p2 := @s;                            ! Ensure p2 is well-aligned
  a := p1.i;                            ! Might incur significant overhead if p1.i is not
                                        ! well-aligned.  See REFALIGNED(8) (page 136)
  a := p2.i;                            ! Optimal code: p2 references s which is known to
                                        ! be well-aligned
  a := p3.i;                            ! Suboptimal access
  a := p4.i;                            ! Suboptimal access
  a := p5.i;                            ! Suboptimal access
END;

The field alignment of s_templ is SHARED8. Pointers p1, p3, p4, and p5 use s_templ to define
the layout of the structures they reference. p2 uses the global definition structure s to define its
layout.
The field alignment of s and s_templ is SHARED8. Because the declaration of p1 does not specify
a REFALIGNED clause, the statement a := p1.i might cause performance degradation. See
REFALIGNED(8) (page 136). The pointers p3, p4, and p5 specify REFALIGNED(2). Compared to
p1, references to p3, p4, and p5 will have somewhat degraded performance when the fields they
reference are well-aligned. When the fields they reference are not well-aligned, references to p1
will have significantly degraded performance compared p3, p4, or p5.

REFALIGNED(8)
When the reference alignment specified for a structure pointer is 8, the code generated by pTAL
for each reference to the pointer assumes that the base of the structure and the fields in the structure
are well-aligned in memory. If the field alignment of a structure is SHARED8—or is declared AUTO
and the program is compiled by pTAL to run on RISC and Itanium architecture—and the base of
the structure is well-aligned, references to the pointer will execute with optimal performance in both
pTAL and TAL.
If a structure pointer specifies REFALIGNED(8) or inherits its reference alignment from a SHARED8
structure, but the base of the structure is not well-aligned, your program might run significantly
slower than you anticipate. You will observe significantly degraded performance if your
REFALIGNED(8) pointer references a structure field that is not, in fact, well-aligned. Each such
reference in your program will cause a trap to the millicode exception handler, which accesses
the field your program is referencing and then returns to your program. Your program’s behavior
is not affected by having to access the field from the exception handler except that its performance
for each such trap is significantly degraded.
pTAL generates conservative code for references to a pointer that specifies REFALIGNED(8) if it
detects that a trap would occur if it generated optimal code.

136 Structures



Example 78 REFALIGNED(8)

STRUCT t1 (*) FIELDALIGN(SHARED2);
BEGIN
  INT(32) i;
END;
STRUCT t2 (*) FIELDALIGN(SHARED8);
BEGIN
  STRUCT  s (t1);
  INT(32) i;
END;
INT .EXT p1 (t1) REFALIGNED (8) := extended-address;
INT .EXT p2 (t2) REFALIGNED (2) := extended-address;
INT .EXT p3 (t2)                := extended-address;
INT(32) i32;
i32 := p1.i;
i32 := p2.i;
i32 := p3.s.i;

For the assignment i32 := p1.i, pTAL generates fast code to access the field described by t1
because the declaration of pointer p1 specifies REFALIGNED(8). If the field is not well-aligned,
your program will run significantly slower because each reference to elements of p1 will trap to
the millicode exception handler to resolve each memory access.
For the assignment i32 := p2.i, pTAL generates conservative code to access the field described
by t2 because the field might not be well-aligned. The compiler might generate extra instructions
to access the field.
For the assignment i32 := p3.s.i, pTAL generates fast code to access the field because the
declaration of p3 does not include a REFALIGNED clause. The reference alignment therefore
defaults to the field alignment of t2, which is SHARED8. Even though the layout of is based on
t2 (which, in turn, incorporates t1, which is SHARED2), the reference alignment of p3 is 8 because
t2 is SHARED8. The access uses optimal code because, even though substructure s has SHARED2
alignment, its containing structure has SHARED8 alignment, and pTAL can determine that the offset
of p3.s.i is well-aligned.

Code Generation for Structure References
When pTAL generates code for references to the fields of structures and substructures, it generates
two kinds of code. These are referred to as:

• Fast code

• Conservative code
pTAL generates fast code if you reference fields in a structure compiled with FIELDALIGN(SHARED8).
It generates conservative code if you reference fields in a structure compiled with
FIELDALIGN(SHARED2).

STRUCTALIGN (MAXALIGN) Attribute
NOTE: Use this clause only with the EpTAL compiler. The pTAL compiler reports a syntax error.

The STRUCTALIGN (MAXALIGN) attribute applies only to template structures. If a template structure
has this attribute:

• Each definition structure that uses the template structure is aligned on a 16-byte boundary.

• If this template is used within a SHARED8 or PLATFORM structure, the enclosing structures are
also aligned on 16-byte boundaries.

• If this template is used within a SHARED8 structure, the EpTAL compiler warns you that this
structure is not compatible with the same SHARED8 structure on the TNS/R architecture.

STRUCTALIGN (MAXALIGN) Attribute 137



Do not use STRUCT(MAXALIGN) within a SHARED2 structure.

VOLATILE Attribute
The VOLATILE attribute specifies that the value of this variable must be maintained in memory, not
in a register. Each reference to a VOLATILE data item causes the data item to be read or written
to memory even when code is optimized. Based on the order of reads and writes in the source
code, VOLATILE also causes that precise order of memory references to be preserved, again, when
code is optimized.
You can specify the VOLATILE attribute on any field except a substructure.
The syntax and semantics of VOLATILE fields and VOLATILE pointer fields is the same as those of
VOLATILE variables and pointers, respectively.

Example 79 VOLATILE Attribute

STRUCT s;
BEGIN
  VOLATILE INT a;                 ! A simple VOLATILE field
  VOLATILE INT .EXT b;            ! A VOLATILE extended pointer
  VOLATILE INT .c REFALIGNED(2);  ! A VOLATILE standard pointer
END;                              !  with a REFALIGNED clause

Declaring Definition Structures

., Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).
identifier

is the identifier of the new referral structure.
range

lower-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth structure occurrence) of the first structure occurrence you want
to allocate. Each occurrence is one copy of the structure.

upper-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth structure occurrence) of the last structure occurrence you want
to allocate. For a single-occurrence structure, omit both bounds or specify the same value
for both bounds.

138 Structures



field-alignment

FIELDALIGN

specifies how you want the compiler to align the base of the structure and fields in the
structure. The offsets of fields in a structure are aligned relative to the base of the structure.
If a definition substructure does not specify a FIELDALIGN clause, the contained substructure’s
field alignment is the field alignment of its encompassing structure or substructure.
If you do not specify a FIELDALIGN clause on a structure declaration, pTAL uses the current
value of the FIELDALIGN compiler directive. The default value of the FIELDALIGN directive
is AUTO.
If you specify a FIELDALIGN (NODEFAULT) compiler directive, you must specify a
FIELDALIGN clause on every definition structure and template structure.

SHARED2

specifies that the base of the structure and each field in the structure must begin at an
even-byte address except STRING fields.

SHARED8

specifies that the offset of each field in the structure from the base of the structure must be
begin at an address that is an integral multiple of the width of the field.

AUTO

specifies that the structure and the fields of the structure be aligned according to the optimal
alignment for the architecture on which the program will run (this is not the same behavior
as the AUTO attribute has in the native mode HP C compiler).

PLATFORM

specifies that the structure and the fields of the structure must begin at addresses that are
consistent across all languages on the same architecture.

structure-layout

is the identifier of a previously declared structure or structure pointer that provides the structure
layout for this structure.

Declaring Template Structures
A template structure declaration describes a structure layout but allocates no space for it. You use
the template layout in subsequent structure, substructure, or structure pointer declarations.

Declaring Template Structures 139



identifier

is the identifier of the template structure.
(*)

is the symbol for a template structure.
STRUCTALIGN (MAXALIGN)

causes each definition structure that uses this template to be aligned on a 16-byte boundary
(for more information, see STRUCTALIGN (MAXALIGN) Attribute (page 137)).

field-alignment

FIELDALIGN

specifies how you want the compiler to align the base of the structure and fields in the
structure. The offsets of fields in a structure are aligned relative to the base of the structure.
If a definition substructure does not specify a FIELDALIGN clause, the contained substructure’s
field alignment is the field alignment of its encompassing structure or substructure.
If you do not specify a FIELDALIGN clause on a structure declaration, pTAL uses the current
value of the FIELDALIGN compiler directive. The default value of the FIELDALIGN directive
is AUTO.
If you specify a FIELDALIGN (NODEFAULT) compiler directive, you must specify a
FIELDALIGN clause on every definition structure and template structure.

SHARED2

specifies that the base of the structure and each field in the structure, except STRING fields,
must begin at an even-byte address.

SHARED8

specifies that the offset of each field in the structure from the base of the structure must
begin at an address that is an integral multiple of the width of the field.

AUTO

specifies that the structure and the fields of the structure be aligned according to the optimal
alignment for the architecture on which the program will run (this is not the same behavior
as the AUTO attribute has in the native mode HP C compiler).

PLATFORM

specifies that the structure and the fields of the structure must begin at addresses that are
consistent across all languages on the same architecture.

A template structure has meaning only when you refer to it in the subsequent declaration of a
referral structure, referral substructure, or structure pointer. The subsequent declaration allocates
space for a structure whose layout is the same as the template layout.
The declaration in Example 80 (page 141) associates an identifier with a template structure layout
but allocates no space for it.

140 Structures



Example 80 Template Structure Declaration

STRUCT inventory (*);  ! Template structure
BEGIN                  ! Structure layout
  INT item;
  FIXED(2) price;
  INT quantity;
END;

In Example 81 (page 141):

• a and b are template structures. The compiler does not allocate space for them.

• a1 and b1 are definition structures, defined using the layouts of template structures a and b,
respectively. The compiler allocates space for a1 and b1.

• STRUCTALIGN(MAXALIGN) in template structure a affects the alignment of definition structures
a1 and b1 and causes a warning (see the comments in the code).

Example 81 Template Structure With STRUCTALIGN(MAXALIGN)

STRUCT A (*) STRUCTALIGN (MAXALIGN) FIELDALIGN (SHARED8);
BEGIN
  INT     I;    ! Located at byte-offset 0 as defined by SHARED8
  FILLER  2;
  INT(32) J;    ! Located at byte-offset 3 as defined by SHARED8
END;

STRUCT A1 (A);  ! Base of A1 is guaranteed to be aligned on a
                !  16-byte boundary
STRUCT B (*) FIELDALIGN (SHARED8);
BEGIN
  INT         K;
  FILLER     14;
  STRUCT A2 (A);  ! Base of A2 is guaranteed to be aligned on
                  !  16-byte boundary.  Compiler issues warning
                  !  here because A is declared with STRUCTALIGN
                  !  (MAXALIGN) and B is a SHARED8 structure.
END;

STRUCT B1 (B);  ! Base of B1 is guaranteed to be aligned on
                !  16-byte boundary because the largest
                !  alignment of the components of B1 (A2) is
                !  16 bytes.

Declaring Referral Structures
A referral structure declaration allocates storage for a structure whose layout is the same as the
layout of a previously declared structure or structure pointer.

Declaring Referral Structures 141



Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).
identifier

is the identifier of the new referral structure.
referral

is the identifier of a previously declared structure or structure pointer that provides the structure
layout for this structure.

range

lower-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth structure occurrence) of the first structure occurrence you want
to allocate. Each occurrence is one copy of the structure.

upper-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth structure occurrence) of the last structure occurrence you want
to allocate. For a single-occurrence structure, omit both bounds or specify the same value
for both bounds.

The compiler allocates storage for the referral structure based on the following characteristics:

• The addressing mode and number of occurrences specified in the new declaration

• The layout of the previous declaration
Structures declared in subprocedures must be directly addressed.
Structures always start on a word boundary.
Example 82 (page 142) declares a template structure and a referral structure that references the
template structure. The referral structure imposes its addressing mode and number of occurrences
on the layout of the template structure.

Example 82 Referral Structure That References a Template Structure

STRUCT record (*);                 ! Declare template structure
BEGIN
  STRING name[0:19];
  STRING addr[0:29];
  INT acct;
END;
STRUCT .customer (record) [1:50];  ! Declare referral structure

Declaring Simple Variables in Structures
The simple variable declaration associates a name with a single-element data item. When you
declare a simple variable inside a structure, the form is:

142 Structures



VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type

is any data type described in Chapter 3 (page 46).
identifier

is the identifier of the simple variable.
You cannot initialize a simple variable when you declare it inside a structure. You can subsequently
assign a value to the simple variable by using an assignment statement.

Example 83 Simple Variables Within a Structure

STRUCT .inventory[0:49];  ! Declare definition structure
BEGIN
  INT      item;          ! Declare three simple variables
  FIXED(2) price;         !  within structure layout
  INT      quantity;
END;

Declaring Arrays in Structures
An array declaration associates an identifier with a collectively stored set of elements of the same
data type. When you declare an array inside a structure, the form is:

type

is any data type described in Chapter 3 (page 46).
identifier

is the identifier of the array.
range

lower-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth array element) of the first array element you want allocated.
Both lower and upper bounds are required.

upper-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth array element) of the last array element you want allocated.
Both lower and upper bounds are required.

Declaring Arrays in Structures 143



When you declare arrays inside a structure, the following guidelines apply:

• You cannot initialize arrays declared in structures. You can assign values to such arrays only
by using assignment statements.

• You cannot declare indirect arrays or read-only arrays in structures.

• You can specify array bounds of [n : n-1] in structures (for example, [6:5]).
Such an array is called a zero-length array. It is often used to initialize a structure, as in
Example 85 (page 144). This method of initialization allows you to name something with the
same address as the next “thing” in the list without allocating data for it, similar to a union or
equivalence.

Example 84 Arrays Within a Structure

STRUCT record;        ! Declare definition structure
BEGIN
  STRING name[0:19];  ! Declare arrays within the structure
  STRING addr[0:29];  !  layout
  INT acct;
END;

Example 85 Using a Zero-Length Array to Initialize a Structure

STRUCT s;
BEGIN
  STRING a[0:-1];             ! @a[0] is the same as @b
  INT b;
  STRUCT t;
  BEGIN
    ...
  END;
  ...
END;
s.a[0] := 0;
s.a[1] := s.a[0] for $LEN(s);  ! Very efficient
...

Declaring Substructures
A substructure is a structure embedded within another structure or substructure. You can declare
substructures that have the following characteristics:

• Substructures must be directly addressed.

• Substructures have byte addresses, not word addresses.

• Substructures can be nested to a maximum of 64 levels.

• Substructures can have bounds of [n : n-1] (for example, [6:5]).
Topics:

• Definition Substructures (page 144)

• Referral Substructures (page 146)

Definition Substructures
A definition substructure describes a layout and allocates storage for it.

144 Structures



identifier

is the identifier of the definition substructure.
field-alignment

FIELDALIGN

specifies how you want the compiler to align the base of the structure and fields in the
structure. The offsets of fields in a structure are aligned relative to the base of the structure.
If a definition substructure does not specify a FIELDALIGN clause, the contained substructure’s
field alignment is the field alignment of its encompassing structure or substructure.
If you do not specify a FIELDALIGN clause on a structure declaration, pTAL uses the current
value of the FIELDALIGN compiler directive. The default value of the FIELDALIGN directive
is AUTO.
If you specify a FIELDALIGN (NODEFAULT) compiler directive, you must specify a
FIELDALIGN clause on every definition structure and template structure.

SHARED2

specifies that the base of the structure and each field in the structure must begin at an
even-byte address except STRING fields.

SHARED8

specifies that the offset of each field in the structure from the base of the structure must be
begin at an address that is an integral multiple of the width of the field.

AUTO

specifies that the structure and the fields of the structure be aligned according to the optimal
alignment for the architecture on which the program will run (this is not the same behavior
as the AUTO attribute has in the native mode HP C compiler).

PLATFORM

specifies that the structure and the fields of the structure must begin at addresses that are
consistent across all languages on the same architecture.

range

lower-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth substructure occurrence) of the first substructure occurrence you
want allocated. Each occurrence is one copy of the substructure.

Declaring Substructures 145



upper-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth substructure occurrence) of the last substructure occurrence you
want allocated. For a single-occurrence substructure, omit both bounds or specify the same
value for both bounds.

structure-layout

is the same BEGIN-END block as for structures. It can contain declarations for simple variables,
arrays, substructures, filler bits, filler bytes, redefinitions, simple pointers, and structure pointers.
The size of one substructure occurrence is the size of the layout, either in odd or even bytes.
The total layout for one occurrence of the encompassing structure must not exceed 32,767
bytes.

Example 86 Declaring Definition Substructures

STRUCT .warehouse[0:1];     ! Two warehouses
BEGIN
  STRUCT inventory [0:49];  ! Definition substructure
  BEGIN                     !  50 items in each warehouse
    INT item_number;
    FIXED(2) price;
    INT on_hand;
  END;
END;

Referral Substructures
A referral substructure allocates storage for a substructure whose layout is the same as the layout
of a previously declared structure or structure pointer.

identifier

is the identifier of the referral substructure.
referral

is the identifier of a structure that provides the structure layout. You can specify any previously
declared structure (except the encompassing structure) or structure pointer. If the previous
structure has an odd-byte size, the compiler rounds the size of the new substructure up so that
it has an even-byte size.

range

lower-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth occurrence) of the first substructure occurrence you want
allocated. Each occurrence is one copy of the substructure.

146 Structures



upper-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth occurrence) of the last substructure occurrence you want
allocated. For a single-occurrence substructure, omit both bounds or specify the same value
for both bounds.

Example 87 Declaring a Referral Substructure

STRUCT temp(*);             ! Template structure --
BEGIN                       !  no space allocated
  STRING a[0:2];
  INT    b;
  STRING c;
END;
STRUCT .ind_struct;         ! Definition structure --
BEGIN                       !  space allocated
  INT    header[0:1];
  STRING abyte;
  STRUCT abc (temp) [0:1];  ! Declare referral substructure
END;                        ! Size of ind_struct.abc[0] is
                            !  8 bytes

Declaring Filler
A filler declaration allocates a byte or bit place holder in a structure.

FILLER

allocates the specified number of byte place holders.
BIT_FILLER

allocates the specified number of bit place holders.
constant-expression

is a positive integer constant value that specifies a number of filler units in one of the following
ranges:

0 through 32,767 bytesFILLER

0 through 255 bitsBIT_FILLER

You can declare filler bits and filler bytes, but you cannot access such filler locations.
If the structure layout must match a structure layout defined in another program, your structure
declaration need only include data items used by your program and can use filler bits or bytes for
the unused space.
The compiler allocates space for each byte or bit you specify in a filler declaration. If the alignment
of the next data item requires additional pad bytes or bits, the compiler allocates those also.

Declaring Filler 147



Example 88 Filler Byte Declarations

LITERAL last = 11;    ! Last occurrence
STRUCT .x[1:last];
BEGIN
  STRING byte[0:2];
  FILLER 1;           ! Document word-alignment pad byte
  INT word1;
  INT word2;
  INT(32) integer32;
  FILLER 30;          ! Place holder for unused space
END;

See also the filler byte example in Definition Substructure (page 155).

Example 89 Filler Bit Declaration

STRUCT .flags;
BEGIN
  UNSIGNED(1) flag1;
  UNSIGNED(1) flag2;
  UNSIGNED(2) state;  ! State = 0, 1, 2, or 3
  BIT_FILLER  12;     ! Place holder for unused space
END;

Declaring Simple Pointers in Structures
A simple pointer is a variable that contains the memory address of a simple variable or an array.
When you declare a simple pointer inside a structure, the form is:

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type

is any data type except UNSIGNED. The data type determines how much data the simple
pointer can access at a time—a byte, word, doubleword, or quadrupleword.

148 Structures



Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).

NOTE: Indirection symbols, .EXT32 and .EXT64 are available in the 64-bit addressing
functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

identifier

is the identifier of the simple pointer.
REFALIGNED

specifies the base alignment of the structures that the structure pointer will reference.
2

references a structure that might not be well-aligned.
8

indicates that the base of the structure and the fields in the structure are well aligned in memory

Example 90 Simple Pointers Within a Structure

STRUCT my_struct;
BEGIN
  FIXED   .       std_pointer;   ! Standard simple pointer
  STRING  .EXT    ext_pointer;   ! Extended 32-bit simple pointer
  STRING  .EXT32  ext32_pointer  ! Extended 32-bit simple pointer
  INT     .EXT64  ext64_pointer  ! Extended 64-bit simple pointer
END;

Topics:

• Using Simple Pointers (page 149)

• Assigning Addresses to Pointers in Structures (page 150)

Using Simple Pointers
The data type determines the size of data a simple pointer can access at a time.

Table 46 Data Accessed by Simple Pointers

Accessed DataData Type

ByteSTRING

WordINT

DoublewordINT(32)

DoublewordREAL

QuadruplewordREAL(64)

QuadruplewordFIXED

The addressing mode and data type determine the kind of address the simple pointer can contain.

Table 47 Addresses in Simple Pointers

Kind of AddressData TypeAddressing Mode

16-bit byte addressSTRINGStandard

16-bit word addressAny except STRINGStandard

32-bit or 64-bit* byte address, normally in the automatic
extended data segment

STRINGExtended

Declaring Simple Pointers in Structures 149



Table 47 Addresses in Simple Pointers (continued)

Kind of AddressData TypeAddressing Mode

32-bit or 64-bit* even-byte address, normally in the
automatic extended data segment (if you specify an odd-byte
address, results are undefined)

Any except STRINGExtended

* 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

Assigning Addresses to Pointers in Structures
You can assign to pointers the kinds of addresses listed in Table 44 (page 126) and Table 45
(page 129). To assign an address to a pointer within a structure, specify the fully qualified pointer
identifier in an assignment statement. Prefix the structure identifier with @. For example, the
assignment statement to assign an address to ptr_x declared in substruct_a in struct_b
is:
@struct_b.substruct_a.ptr_x := arith_expression;

In the preceding example, @ applies to ptr_x, the most qualified item. On the left side of the
assignment operator, @ changes the address contained in the pointer, not the value of the item to
which the pointer points.
You can also prefix @ to a variable on the right side of the assignment operator. If the variable is
a pointer, @ returns the address contained in the pointer. If the variable is not a pointer, @ returns
the address of the variable itself.

Example 91 Assigning Addresses to Pointers in Structures

INT .array[0:99];
STRUCT .st;
BEGIN
INT .std_ptr;
INT .EXT ext_ptr;
INT .EXT32 ext32_ptr;                   
INT .EXT64 ext64_ptr;                   
END;
PROC e MAIN;
BEGIN
  @st.std_ptr := @array[0];
  @st.ext_ptr := $XADR(array[0]);
  @st.ext_ptr := $XADR32(array[0]);     
  @st.ext32_ptr := @array[0];
  @st.ext32_ptr := $XADR(array[0]);
  @st.ext32_ptr := $XADR32(array[0]);   
  @st.ext64_ptr := @array[0];
  @st.ext64_ptr := $XADR(array[0]);
  @st.ext64_ptr := $XADR32(array[0]);   
  @st.ext64_ptr := $XADR64(array[0]);   
END;

Example 92 (page 151) assigns the address of a structure to structure pointers declared in another
structure.

150 Structures



Example 92 Assigning Addresses to Pointers in Structures

STRUCT .s1;
BEGIN
  INT var1;
  INT var2;
END;
STRUCT .s2;
BEGIN
  INT .std_ptr (s1);
  INT .EXT ext_ptr (s1);
  INT .EXT32 ext32_ptr (s1);                
  INT .EXT64 ext64_ptr (s1);                
END;
PROC g MAIN;
BEGIN
  @s2.std_ptr := @s1;
  @s2.ext_ptr := $XADR(s1);
  @s2.ext32_ptr := $WADDR_TO_EXTADDR(@s1);  
  @s2.ext32_ptr := $XADR(s1);               
  @s2.ext32_ptr := $XADR32(s1);             
  @s2.ext64_ptr := $WADDR_TO_EXTADDR(@s1);  
  @s2.ext64_ptr := $XADR32(s1);             
  @s2.ext64_ptr := $XADR64(s1);             
END;

Declaring Structure Pointers in Structures
A structure pointer is a variable that contains the address of a structure. When you declare a
structure pointer inside a structure, the form is:

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

STRING

is the STRING attribute.

Declaring Structure Pointers in Structures 151



INT

is the INT attribute
Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).

NOTE: Indirection symbols, .EXT32 and .EXT64 are available in the 64-bit addressing
functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

identifier

is the identifier of the structure pointer.
referral

is the identifier of a structure that provides the structure layout. You can specify any previously
declared structure (including the encompassing structure) or structure pointer.

REFALIGNED

specifies the base alignment of the structures that the structure pointer will reference.
2

references a structure that might not be well-aligned.
8

indicates that the base of the structure and the fields in the structure are well aligned in memory
The addressing mode and STRING or INT attribute determine the kind of addresses a structure
pointer can contain, as described in Table 48 (page 152).

Table 48 Addresses in Structure Pointers

Kind of AddressSTRING or INT AttributeAddressing Mode

16-bit byte address of a substructure, STRING simple
variable, or STRING array declared in a structure

STRING1Standard

16-bit word address of any structure data itemINT2Standard

32-bit or 64-bit3 byte address of any structure item
located in any segment, normally the automatic
extended data segment

STRING1Extended

32-bit or 64-bit3 byte address of any structure item
located in any segment, normally the automatic
extended data segment

INT2Extended

1 If the pointer is the source in a move statement or group comparison expression that omits a count-unit, the
count-unit is BYTES.

2 If the pointer is the source in a move statement or group comparison expression that omits a count-unit, the
count-unit is WORDS.

3 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

152 Structures



Example 93 Declaring a Structure Pointer Within a Structure

STRUCT struct_a;
BEGIN
  INT a;
  INT b;
END;
STRUCT struct_b;
BEGIN
  INT .EXT struct_pointer (struct_a);
  STRING a;
END;

Declaring Redefinitions
A redefinition declares a new identifier and sometimes a new description for a previous item in
the same structure.
The following rules apply to all redefinitions in structures:

• The new item must be of the same length or shorter than the previous item.

• The new item and the previous item must be at the same BEGIN-END level of a structure.
Additional rules are given in subsections that describe each kind of redefinition in the following
topics:

• Simple Variable (page 153)

• Array (page 154)

• Definition Substructure (page 155)

• Referral Substructure (page 157)

• Simple Pointer (page 158)

• Structure Pointer (page 159)
For information about redefinitions outside structures, see Chapter 11 (page 177).

Simple Variable
A simple variable redefinition associates a new simple variable with a previous item at the same
BEGIN-END level of a structure.

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type

is any data type except UNSIGNED.
identifier

is the identifier of the new simple variable.

Declaring Redefinitions 153



previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously declared in the
same structure. You cannot specify an index with this identifier.

In a redefinition, the new item and the previous (nonpointer) item both must have a byte address
or both must have a word address. If the previous item is a pointer, the data it points to must be
word addressed or byte addressed to match the new item.
Example 94 (page 154) redefines the left byte of int_var as string_var.

Example 94 Simple Variable Redefinition

STRUCT .mystruct;
BEGIN
  INT int_var;
  STRING string_var = int_var;  ! Redefinition
END;

Array
An array redefinition associates a new array with a previous item at the same BEGIN-END level
of a structure.

type

is any data type except UNSIGNED.
identifier

is the identifier of the new array.
range

lower-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth element) of the first array element you want allocated.

upper-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth element) of the last array element you want allocated.

previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously declared in the
same structure. You cannot specify an index with this identifier.

In a redefinition, the new item and the previous (nonpointer) item both must have a byte address
or both must have a word address. If the previous item is a pointer, the data it points to must be
word addressed or byte addressed to match the new item.

154 Structures



Example 95 Array Redefinition

STRUCT .s;
BEGIN
  INT     a[0:3];
  INT(32) b[0:1] = a;  ! Redefine INT array as INT(32) array
END;

Definition Substructure
A definition substructure redefinition associates a new definition substructure with a previous item
at the same BEGIN-END level of a structure.

identifier

is the identifier of the new substructure.
range

lower-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth substructure occurrence) of the first substructure occurrence you
want allocated. Each occurrence is one copy of the substructure.

upper-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth substructure occurrence) of the last substructure occurrence you
want allocated.
To declare a single-occurrence substructure, omit both bounds or specify the same value
for both bounds.

field-alignment

FIELDALIGN

specifies how you want the compiler to align the base of the structure and fields in the
structure. The offsets of fields in a structure are aligned relative to the base of the structure.
If a definition substructure does not specify a FIELDALIGN clause, the contained substructure’s
field alignment is the field alignment of its encompassing structure or substructure.
If you do not specify a FIELDALIGN clause on a structure declaration, pTAL uses the current
value of the FIELDALIGN compiler directive. The default value of the FIELDALIGN directive
is AUTO.

Declaring Redefinitions 155



If you specify a FIELDALIGN (NODEFAULT) compiler directive, you must specify a
FIELDALIGN clause on every definition structure and template structure.

SHARED2

specifies that the base of the structure and each field in the structure must begin at an even
byte address except STRING fields.

SHARED8

specifies that the offset of each field in the structure from the base of the structure must be
begin at an address that is an integral multiple of the width of the field.

AUTO

specifies that the structure and the fields of the structure be aligned according to the optimal
alignment for the architecture on which the program will run (this is not the same behavior
as the AUTO attribute has in the native mode HP C compiler).

PLATFORM

specifies that the structure and the fields of the structure must begin at addresses that are
consistent across all languages on the same architecture.

previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously declared in the
same structure. No index is allowed with this identifier.

structure-layout

is the same BEGIN-END block as for structures. It can contain declarations for simple variables,
arrays, substructures, filler bits, filler bytes, redefinitions, simple pointers, and structure pointers.
The size of one substructure occurrence is the size of the layout, either in odd or even bytes.
The total layout for one occurrence of the encompassing structure must not exceed 32,767
bytes.

If the previous item is a substructure and you omit the bounds or if either bound is 0, the new
substructure and the previous substructure occupy the same space and have the same offset from
the beginning of the structure.

156 Structures



Example 96 Definition Substructure Redefinition

STRUCT a;
BEGIN
  STRING x;
  STRUCT b;      ! b starts on odd byte
  BEGIN
    STRING y;
  END;
  STRUCT c = b;  ! Redefine b as c, also on odd byte
  BEGIN
    STRING z;
  END;
END;

Example 97 Definition Substructure Redefinition

STRUCT mystruct;
BEGIN
  STRUCT mysub1;
  BEGIN
    INT int_var;
  END;
  STRUCT mysub2 = mysub1;  ! Redefine mysub1 as mysub2
  BEGIN
    STRING string_var;
  END;
END;

Referral Substructure
A referral substructure redefinition associates a new referral substructure with a previous item at
the same BEGIN-END level of a structure.

identifier

is the identifier of the new substructure.
referral

is the identifier of a structure that provides the structure layout. You can specify any previously
declared structure (except the encompassing structure) or structure pointer. If the previous
structure has an odd-byte size, the compiler rounds the size of the new substructure up so it
has an even-byte size.

range

lower-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth substructure occurrence) of the first substructure occurrence you
want allocated. Each occurrence is one copy of the substructure.

Declaring Redefinitions 157



upper-bound

is an INT constant expression (in the range -32,768 through 32,767) that specifies the
index (relative to the zeroth substructure occurrence) of the last substructure occurrence you
want allocated.
To declare a single-occurrence substructure, omit both bounds or specify the same value
for both bounds.

previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously declared in the
same structure. No index is allowed with this identifier.

If the previous item is a substructure and you omit the bounds or if either bound is 0, the new
substructure and the previous substructure occupy the same space and have the same offset from
the beginning of the structure.

Example 98 Referral Substructure Redefinition

STRUCT temp(*);                   ! Template structure
BEGIN
  STRING a[0:2];
  INT    b;
  STRING c;
END;
STRUCT .ind_struct;               ! Definition structure
BEGIN
  INT    header[0:1];
  STRING abyte;
  STRUCT abc (temp) [0:1];
  STRUCT xyz (temp) [0:1] = abc;  ! Redefine abc as xyz
END;

Simple Pointer
A simple pointer redefinition associates a new simple pointer with a previous item at the same
BEGIN-END level of a structure.

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

158 Structures



type

is any data type except UNSIGNED. The data type determines how much data the simple
pointer can access at a time—a byte, word, doubleword, or quadrupleword.

Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).
identifier

is the identifier of the new simple pointer.
REFALIGNED

specifies the base alignment of the structures that the structure pointer will reference.
2

references a structure that might not be well-aligned.
8

indicates that the base of the structure and the fields in the structure are well aligned in memory
previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously declared in the
same structure. No index is allowed with this identifier.

Example 99 Simple Pointer Redefinition

STRUCT my_struct;
BEGIN
  STRING var[0:5];                ! Simple variable
  STRING .EXT ext_pointer = var;  ! Redefine var as simple
                                  !  pointer, ext_pointer
END;

Structure Pointer
A structure pointer redefinition associates a new structure pointer with a previous item at the same
BEGIN-END level of a structure.

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE

Declaring Redefinitions 159



also causes that precise order of memory references to be preserved, again, when code is
optimized.

STRING

is the STRING attribute.
INT

is the INT attribute.
Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).
identifier

is the identifier of the new structure pointer.
referral

is the identifier of a structure that provides the structure layout. You can specify any previously
declared structure (including the encompassing structure) or structure pointer.

REFALIGNED

specifies the base alignment of the structures that the structure pointer will reference.
2

references a structure that might not be well-aligned.
8

indicates that the base of the structure and the fields in the structure are well aligned in memory
previous-identifier

is the identifier of a simple variable, array, substructure, or pointer previously declared in the
same structure. No index is allowed with this identifier.

The addressing mode and STRING or INT attribute determine the kind of addresses a structure
pointer can contain, as described in Table 47 (page 149).

Example 100 Structure Pointer Redefinition

STRUCT record;
BEGIN
  FIXED data;
  INT std_link_addr;
  INT .std_link (record) = std_link_addr;      ! Redefinition
  INT(32) ext_link_addr;
  INT .EXT ext_link (record) = ext_link_addr;  ! Redefinition
END;

160 Structures



10 Pointers
This section describes the syntax for declaring and initializing pointers you manage yourself. You
can declare the following kinds of pointers:

• Simple pointer—a variable into which you store a memory address, usually of a simple variable
or array, which you can access with this simple pointer.

• Structure pointer—a variable into which you store the memory address of a structure which
you can access with this structure pointer.

The compiler allocates 32 bits for all pointers except .SG. In expressions involving addresses,
however, the compiler treats all operands as if they were word addresses except extended addresses
the and addresses of strings. The pointer’s object data type determines the pointer’s address type
and identifies the addressing type and location of data that your pointers will reference. For
information about working with addresses, see Chapter 5 (page 69).
Some portions of this section describe how you reference data in system globals. System globals
can be accessed only by programs running as privileged procedures.
Topics:

• Overview of Pointer Declaration (page 161)

• Declaring VOLATILE Pointers (page 163)

• Address Types (page 164)

• Declaring Simple Pointers (page 170)

• Initializing Simple Pointers (page 172)

• REAL and REAL(64) Numeric (page 62)

• Initializing Structure Pointers (page 174)

• Declaring System Global Pointers (page 176)

Overview of Pointer Declaration
This subsection gives you the general pointer syntax and explains the syntax elements.

Overview of Pointer Declaration 161



VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type

Is one of the following data types depending on whether the pointer is a simple pointer or a
structure pointer:
• BADDR

• CBADDR

• CWADDR

• EXTADDR

• EXT32ADDR

• EXT64ADDR

• FIXED [(fpoint )]

• INT

• INT (16)

• INT (32)

• INT (64)

• PROCADDR

• PROC32ADDR

• PROC64ADDR

• REAL

• REAL (32)

• REAL (64)

• SGBADDR

• SGWADDR

• SGXBADDR

• SGXWADDR

• STRING

• UNSIGNED (width)

• WADDR
fpoint

is the implied fixed point of the FIXED variable. fpoint can also be an asterisk (*) as in:

FIXED(*) .f;

width

is a constant expression specifying the width, in bits, of the variable.
Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).

162 Pointers



identifier

is the identifier of the pointer.
REFALIGNED

Specifies the alignment of the variables or structures that identifier references.
2

specifies that the variables and structures identifier references are aligned as they would
be aligned in TAL (and might not be well aligned in pTAL).

8

specifies that the variables and structures are well aligned for use in pTAL.
For nonstructure pointers, the default for REFALIGNED is the value you specify in the
REFALIGNED (page 410).

initialization

is an expression representing a memory address. For more information about operations on
addresses, see Chapter 5 (page 69).

Declaring VOLATILE Pointers
Declare pointers VOLATILE if they can be accessed asynchronously by other processes such as
another process in your application or an I/O driver.
Topics:

• Simple (page 163)

• Structure (page 164)

Simple
When you declare a VOLATILE simple pointer, the value of the pointer and the data referenced
by the pointer are treated as VOLATILE and are maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is optimized.

Example 101 Declaring VOLATILE Simple Pointers

INT i;
INT a;
INT b[0:9];
VOLATILE INT .p1 := @a;
VOLATILE INT .p2 := @b;

i := p1;      ! pTAL treats pointer p1 and data p1 references,
              !  a, as volatile.  Program reads value of pointer
              !  p1 each time statement executes

i := a;       ! pTAL does not treat direct reference to a as
              !  volatile even though p1 still points to it,
              !  because a is not declared volatile

i := p2[a];   ! For each reference to p2[a], program:
              !  * Reads value of pointer p2 from memory
              !  * Adds value of a, which can be kept in a
              !    register because a is not volatile
              !  * Reads from memory the value referenced by
              !    p2[a]

i := p2[p1];  ! Data referenced by p2[p1] is the same as p2[a]
              !  in the preceding example, but both p1 and p2

Declaring VOLATILE Pointers 163



              !  are volatile.  Program reads from memory p1,
              !  p2, a, and element of array b referenced by p1

Structure
When you declare a VOLATILE structure pointer, the compiler generates code that maintains the
value of the pointer in memory, not in a register. Each reference to a VOLATILE data item causes
the data item to be read or written to memory even when code is optimized. Based on the order
of reads and writes in the source code, VOLATILE also causes that precise order of memory
references to be preserved, again, when code is optimized.
You must specify the VOLATILE attribute on each field that you want to be volatile.

Example 102 Declaring VOLATILE Structure Pointers

INT i;
STRUCT s;
BEGIN
  INT m;           ! Field m is never treated as volatile
  VOLATILE INT n;  ! Field n is always treated as volatile
END;

VOLATILE INT .s1(s) := @s;
         INT .s2(s) := @s;

i := s1.m;         ! Value of pointer s1 is read from memory on
                   !  every reference, but value of field s1.m
                   !  might be maintained in a register

i := s1.n;         ! Value of pointer s1 is read from memory on
                   !  every reference, as is value of s1.n
                   !  because field n specifies VOLATILE

i := s2.n;         ! Value of pointer s2 might or might not be
                   !  from memory, but having read the pointer,
                   !  the field s2.n is always read from memory

Address Types
pTAL address types control the addresses you store into pointers. A 32-bit address can reference
data anywhere in memory with optimal performance. The hardware does not require programs
to specify an addressing type or memory storage area.
The compiler determines the address type of a pointer from the pointer declaration. You cannot
explicitly declare a pointer’s address type.
Address types are used primarily to describe the addresses that you assign to a pointer, not the
data your program is processing.
Only operations that are meaningful for addresses are valid on address types.
A pointer is associated with two data types:

DescriptionData Type

Data type of the objects that the pointer can referenceObject data type

Data type of the addresses that you can store in the pointerAddress data type

164 Pointers



Table 49 Address Types

ExamplePointer SizeTarget DataAddress TypeData Type

STRING .s;3216-bit address to
1-byte-aligned data

ByteBADDR

INT .i;3216-bit address to
2-byte-aligned data

WordWADDR

STRING s ='P':="A";3216-bit address to
1-byte-aligned, read-only
data

ByteCBADDR

INT i = 'P' := 123;3216-bit address to
2-byte-aligned, read-only
data

WordCWADDR

STRING .SG s;1616-bit address to
1-byte-aligned,
'SG'-relative data

ByteSGBADDR

INT .SG i;1616-bit address to
2-byte-aligned,
'SG'-relative data

WordSGWADDR

STRING .SGX s;3232-bit address to
1-byte-aligned,
'SG'-relative data

ByteSGXBADDR

INT .SGX i;3232-bit address to
2-byte-aligned,
'SG'-relative data

WordSGXWADDR

INT .EXT x;3232-bit address to dataByteEXTADDR

INT .EXT32 x;3232-bit address to dataByteEXT32ADDR*

INT .EXT64 x;3264-bit address to dataByteEXT64ADDR*

PROCPTR p; 
BEGIN END PROCPTR;

32Address denoting PROC
Code

N.A.PROCADDR

PROC32PTR p;
 BEGIN END PROCPTR;

3232-bit address denoting
PROC code

N.A.PROC32ADDR*

PROC64PTR p;
 BEGIN END PROCPTR;

6464-bit address denoting
PROC code

N.A.PROC64ADDR*

* These data types and indirection symbols, .EXT32 and .EXT64 are 64-bit addressing functionality added to the EpTAL
compiler starting with SPR T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

You cannot explicitly declare or change the address type of a pointer. pTAL determines the address
type based on the pointer declaration.
Every identifier you declare in a pTAL program has an object data type and an address type.
Table 50 (page 166) lists the address type for all pTAL constructs except simple variables. The
address type of a simple variable is the same as the address type of a pointer to data of the same
object data type as the simple variable.

Address Types 165



Example 103 Determining Address Types

INT .j;  ! Pointer:  address type is WADDR
INT i;   ! Simple variable:  address type is WADDR

Example 104

STRING .EXT s; 
EXTADDR STRING INT .EXT i;
EXTADDR INT INT(32) .EXT j;
EXTDDR INT(32)REAL .EXT r;
EXTADDR REAL REAL(64) .EXT s;
EXTADDR REAL(64)FIXED .EXT f;
EXTADDR FIXED UNSIGNED(n) .EXT u;
EXTADDR UNSIGNED STRUCT .EXT t;
EXTADDR none SUBSTRUCT .EXT v;
EXTADDR none address_typeaddr-type .EXT a; 
EXTADDR 2

Table 50 Object Data Types and Their Addresses

Object Data TypeAddress TypeDeclaration

STRINGEXTADDR.EXT s;STRING

INTEXTADDR.EXT i;INT

INT(32)EXTADDR.EXT j;INT(32)

REALEXTADDR.EXT r;REAL

REAL(64)EXTADDR.EXT s;REAL(64)

FIXEDEXTADDR.EXT f;FIXED

noneEXTADDR.EXT t;STRUCT

noneEXTADDR.EXT v;SUBSTRUCT

address_type2EXTADDR.EXT a;addr-type1

STRINGEXT32ADDR3.EXT32 s;3STRING

INTEXT32ADDR3.EXT32 i;3INT

INT(32)EXT32ADDR3.EXT32 j;3INT(32)

REALEXT32ADDR3.EXT32 r;3REAL

REAL(64)EXT32ADDR3.EXT32 s;3REAL(64)

FIXEDEXT32ADDR3.EXT32 f;3FIXED

noneEXT32ADDR3.EXT32 t;3STRUCT

noneEXT32ADDR3.EXT32 v;3SUBSTRUCT

address_type2EXT32ADDR3.EXT32 a;3addr-type1

STRINGEXT64ADDR3.EXT64 s;3STRING

INTEXT64ADDR3.EXT64 i;3INT

INT(32)EXT64ADDR3.EXT64 j;3INT(32)

REALEXT64ADDR3.EXT64 r;3REAL

REAL(64)EXT64ADDR3.EXT64 s;3REAL(64)

FIXEDEXT64ADDR3.EXT64 f;3FIXED

166 Pointers



Table 50 Object Data Types and Their Addresses (continued)

Object Data TypeAddress TypeDeclaration

noneEXT64ADDR3.EXT64 t;3STRUCT

noneEXT64ADDR3.EXT64 v;3SUBSTRUCT

address_type2EXT64ADDR3.EXT64 a;3addr-type1

PROCPTRPROCADDRPROCPTR p(); BEGIN END
PROCPTR;

PROC32PTR3PROC32ADDR3PROC32PTR p(); BEGIN
END PROCPTR;

PROC64PTR3PROC64ADDR3PROC64PTR p(); BEGIN
END PROCPTR;

1 addr-type is any of the twelve address types: WADDR, BADDR, SGWADDR, SGBADDR, CWADDR, CBADDR,
EXTADDR, EXT32ADDR, EXT64ADDR, PROCADDR, SGXWADDR, and SGXBADDR.

2 address_type is the same address type as specified in the declaration.
3 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,

see Appendix E, “64-bit Addressing Functionality” (page 531).

Topics:

• BADDR and WADDR (page 167)

• SGBADDR, SGWADDR, SGXBADDR, and SGXWADDR (System Globals) (page 167)

• PROCADDR, PROC32ADDR, and PROC64ADDR (Procedures, Procedure Pointers, and
Procedure Entry Points) (page 168)

• Subprocedures, Subprocedure Entry Points, Labels, and Read-Only Arrays (CBADDR and
CWADDR Address Types) (page 169)

• EXTADDR, EXT32ADDR, and EXT64ADDR (Extended Addresses) (page 169)

BADDR and WADDR
The address type of pointers is WADDR, except for STRING pointers, for which the address type
is BADDR.

Example 105 BADDR and WADDR

INT     a;       ! Variable:       address type is WADDR
INT    .b;       ! Pointer:        address type is WADDR
STRING .c;       ! Pointer:        address type is BADDR
INT(32) d[0:9];  ! Direct array:   address type is WADDR
INT    .e[0:9];  ! Indirect array: address type is WADDR

SGBADDR, SGWADDR, SGXBADDR, and SGXWADDR (System Globals)
The address type of a pointer to system global data is one of SGBADDR, SGWADDR, SGXBADDR,
or SGXWADDR. You can declare pointers to system global data by using either .SG notation or
.SGX notation. In either case, the pointer is not in system globals, but the data is. pTAL allocates
16 bits for pointers you declare with .SG and 32 bits pointers declared with .SGX.

Address Types 167



Example 106 SGBADDR, SGWADDR, SGXBADDR, and SGXWADDR

STRING  .SG  s;  ! s is 16 bits
INT     .SG  i;  ! i is 16 bits
STRING  .SGX t;  ! t is 32 bits
INT     .SGX j;  ! j is 32 bits

PROCADDR, PROC32ADDR, and PROC64ADDR (Procedures, Procedure Pointers,
and Procedure Entry Points)

The address type of procedures, procedure pointers (PROCPTRs), and procedure entry points is
PROCADDR.

Example 107 PROCADDR, PROC32ADDR, and PROC64ADDR

PROCADDR pa;
PROC32ADDR p32a;
PROC64ADDR p64a;
PROCPTR q( j ); INT j; END PROCPTR;       ! @q is type PROCADDR
PROC32PTR r( j ); INT j; END PROCPTR;     ! @r is type PROC32ADDR
PROC64PTR s( j); INT j; END PROCPTR;      ! @s is type PROC64ADDR
PROC64PTR t( j); INT(32) j; END PROCPTR;  ! @t is type PROCADDR
PROC p( j );                              ! @p is type PROCADDR
  INT j;
BEGIN
  ENTRY p1;                               ! @p1 is type PROCADDR
p1:
  pa := @q;
  pa := @r;
  pa := @s;    ! ERROR: can’t implicitly convert from larger procedure
               !        address type to smaller procedure address type
  pa := @p;
  pa := @p1;

  p32a := @q;
  p32a := @r;
  p32a := @s;  ! ERROR: can’t implicitly convert larger procedure
               !        address type to smaller procedure address type
  p32a := @p;
  p32a := @p1;

  p64a := @q;
  p64a := @r;

 p64a := @s;   ! OK
  p64a := @p;
  p64a := @p1;

  pa := p32a;
  p32a := pa;

  p64a := pa;
  p64a := p32a;

  pa := p64a;  ! ERROR: can’t implicitly convert from larger procedure
               !        address type to smaller procedure address type

  P32a := p64a;! ERROR: can’t implicitly convert from larger procedure
               !        address type to smaller procedure address type

  pa := $PROCADDR (p32a);
  pa := $PROCADDR (p64a); ! OK
  p32a := $PROCADDR (pa);
  p32a := $PROCADDR (p64a); ! OK

168 Pointers



  p64a := $PROCADDR (pa);
  p64a := $PROCADDR (p32a);
END;

NOTE: PROC32ADDR, PROC64ADDR, PROC32PTR, and PROC64PTR are 64-bit addressing
functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

Subprocedures, Subprocedure Entry Points, Labels, and Read-Only Arrays (CBADDR
and CWADDR Address Types)

The address type of a pointer to code in a user code segment—that is, a read-only array—is
CWADDR if the pointer is type INT and is CBADDR if the pointer is type STRING. The address
type of subprocedures, subprocedure entry points, and all labels—in both procedures and
subprocedures—is CWADDR.

Example 108 CBADDR and CWADDR

INT    sa = 'P' := [1,2,3,4];  ! Address type of sa is CWADDR
STRING sb = 'P' := ["ABCD"];   ! Address type of sb is CBADDR
PROC p;
BEGIN
  LABEL lab1;
  SUBPROC subp1;
  BEGIN
    CWADDR cw;
    CBADDR cb;
    ENTRY ent1;
    ent1:
    lab2:
    cw := @subp1;  ! Address type of @subp1 is CWADDR
    cw := @lab1;   ! Address type of @lab1  is CWADDR
    cw := @lab2;   ! Address type of @lab2  is CWADDR
    cw := @ent1;   ! Address type of @ent1  is CWADDR
    cw := @sa;     ! Address type of @sa    is CWADDR
    cb := @sb;     ! Address type of @sb    is CBADDR
  END;
  lab1:
END;

EXTADDR, EXT32ADDR, and EXT64ADDR (Extended Addresses)
An EXTADDR is 32 bits. You can store the address of any of your processes’ 32-bit addressable
data in an EXTADDR pointer. An EXT64ADDR is 64 bits. You can store the address of any of your
processes' data in an EXT64ADDR pointer.

Address Types 169



Example 109 EXTADDR, EXT32ADDR, and EXT64ADDR Declarations

INT    .EXT i;
STRING .EXT s;
INT    .EXT g = 'SG' + 0;
REAL   .EXT r;
INT    .EXT32 i32;
STRING .EXT32 s32;
INT    .EXT32 g32 = 'SG' + 0;
REAL   .EXT32 r32;
INT    .EXT64 i64;
STRING .EXT64 s64;
INT    .EXT64 g64 = 'SG' + 0;
REAL   .EXT64 r64;

Declaring Simple Pointers
A simple pointer declaration associates an identifier with a memory location that contains the
user-initialized address of a simple variable or array.

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type

is one of the following data types:
• BADDR

• CBADDR

• CWADDR

• EXTADDR

• EXT32ADDR

• EXT64ADDR

170 Pointers



• FIXED [ (fpoint ) ]

• INT

• INT (16)

• INT (32)

• INT (64)

• PROCADDR

• PROC32ADDR

• PROC64ADDR

• REAL

• REAL (32)

• REAL

• REAL (32)

• REAL (64)

• SGBADDR

• SGWADDR

• SGXBADDR

• SGXWADDR

• STRING

• WADDR
fpoint

The implied fixed point of the FIXED variable. fpoint can also be an asterisk (*) as in:
FIXED(*) .f;

Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).
identifier

is the identifier of the pointer.
REFALIGNED

For simple pointers, the default for REFALIGNED is the value you specify in the REFALIGNED
(page 510).

2

specifies that the variables and structures that identifier references are aligned as they would
be aligned in TAL (and might not be well-aligned in pTAL).

8

specifies that the variables and structures are well-aligned for use in pTAL (and in TAL, that
they have more space).
For nonstructure pointers, the default for REFALIGNED is the value you specify in the
REFALIGNED (page 510).

initialization

An expression representing a memory address. For more information about operations on
addresses, see Chapter 5 (page 69).

The data type determines the size of data a simple pointer can access at a time.

Declaring Simple Pointers 171



The addressing mode and data type of the simple pointer determines the kind of address the pointer
can contain.
For information about data types and addresses, see Table 49 (page 165) and Table 50 (page 166).
Furthermore, the kind of expression you can specify for the address depends on the level at which
you declare the pointer:

• At the global level, use a constant expression.

• At the local or sublocal level, you can use any arithmetic expression.

Initializing Simple Pointers
You can initialize global standard pointers by using constant expressions such as:

MeaningExpression

Accesses address of variable@identifier

If @identifier is a WADDR address, ‘<<‘ converts it to a BADDR address.If
@identifier is a SGWADDR address, ‘<<‘ converts it to a SGBADDR address.

@identifier '<<' 1

If @identifier is a BADDR address, ‘>>‘ converts it to a WADDR address.If
@identifier is a SGBADDR address, ‘>>‘ converts it to a SGWADDR address.

@identifier '>>' 1

Accesses address of variable indicated by index@identifier [index ]

Any that return a constant value, such as $OFFSETBuilt-in routine

Expressions other than those in the preceding list can perform valid type conversions, but the
compiler recognizes only those in the preceding list and might diagnose others as errors.
You can apply the @ operator to these global variables:

@identifier?Variable

YesDirect array

YesStandard indirect array

NoExtended indirect array

YesDirect structure

YesStandard indirect structure

NoExtended indirect structure

NoSimple pointer

NoStructure pointer

Simple pointers receive their initial values when you compile the source code. Local or sublocal
simple pointers receive their initial values at each activation of the encompassing procedure or
subprocedure.

172 Pointers



Example 110 Declaring But Not Initializing a Simple Pointer

INT(32) .ptr;

Example 111 Declaring and Initializing a Simple Pointer

STRING .bytes[0:3];          ! Indirect array
STRING .s_ptr := @bytes[3];  ! Simple pointer initialized with
                             !  address of bytes[3]

Example 112 Declaring and Initializing a STRING Simple Pointer

INT .a[0:39];                 ! INT array
STRING .ptr := @a[0] '<<' 1;  ! STRING simple pointer
                              !  initialized with byte address
                              !  of a[0]

Example 113 Declaring and Initializing Simple Pointers

INT a[0:1] := [%100000, %110000];  ! Array
INT .int_ptr1 := a[0];             ! Simple pointer
                                   !  initialized with %100000
INT .int_ptr2 := a[1];             ! Simple pointer
                                   !  initialized with %110000

Example 114 Declaring and Initializing a Simple Pointer, Using $XADR

INT a[0:1];                     ! 16-bit word-addressed array
STRING .EXT s := $XADR (a[0]);  ! Extended simple pointer
                                ! initialized with
                                ! 32-bit byte address of a[0]

Example 115 Declaring and Initializing an Extended Simple Pointer

INT .EXT32 x32 [-100:100];      ! Array
INT .EXT32 x32_ptr := @x[-1];   ! Extended simple pointer initialized
                                ! 32-bit byte address if x32[-1];
INT .EXT64 x64 [-100:100];      ! Array
INT .EXT64 x64_ptr := @x[-1];   ! Extended simple pointer initialized
                                ! 64-bit byte address if x32[-1];

NOTE: The “Indirection Symbols” (page 41) .EXT32 and .EXT64 are 64-bit addressing functionality
added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information, see
Appendix E, “64-bit Addressing Functionality” (page 531).

Declaring Structure Pointers
The structure pointer declaration associates a previously declared structure with the memory location
to which the structure pointer points. You access data in the associated structure by referencing
the qualified structure pointer identifier.

Declaring Structure Pointers 173



VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

STRING

is the STRING attribute.
INT

is the INT attribute, as INT, INT(32), or FIXED.
., .EXT, .EXT32, .EXT64, .SG, .SGX

are indirection symbols (see Table 14 (page 41)).
identifier

is the identifier of the pointer.
referral

is the identifier of a previously-declared structure, structure template, or structure pointer.
Specify referral only for pointers to structures.

initialization

is an expression representing a memory address. For more information about operations on
addresses, see Chapter 5 (page 69).

Initializing Structure Pointers
The addressing mode and data type of the simple pointer determines the kind of address the pointer
can contain.
For information about data types and addresses, see Table 49 (page 165) and Table 50 (page 166).
Furthermore, the kind of expression you can specify for the address depends on the level at which
you declare the pointer:

• Use a constant expression at the global level. See also Initializing Simple Pointers (page 172).

• At the local or sublocal level, you can use any arithmetic expression.
If the expression is the address of a structure with an index, the structure pointer points to a particular
occurrence of the structure. If the expression is the address of an array, with or without an index,
you impose the structure on top of the array.

174 Pointers



Global structure pointers receive their initial values when you compile the source code. Local and
sublocal structure pointers receive their initial values each time the procedure or subprocedure is
activated.

Example 116 Declaring and Initializing a Structure Pointer, Using $OFFSET

STRUCT t (*);  ! Template structure
BEGIN
  INT k;
END;
STRUCT .st;    ! Definition structure
BEGIN
  INT j;
  STRUCT ss (t);
END;
INT .ip := @st '+' $OFFSET (st.j) '>>' 1;  ! Simple pointer
INT .stp (t) := @st '+' $OFFSET (st.ss) '>>' 1;
! INT structure pointer
STRING .sstp (t) := @st '<<' 1 '+' $OFFSET (st.ss);
! STRING structure pointer

A standard STRING structure pointer can access only these structure items:

• Substructure

• STRING simple variable

• STRING array
The last declaration in Example 116 (page 175) shows a STRING structure pointer initialized with
the converted byte address of a substructure.
Example 117 (page 175) shows another way to access a STRING item in a structure. You can
convert the word address of the structure to a byte address when you initialize the STRING structure
pointer and then access the STRING item in a statement.

Example 117 Declaring and Initializing a STRING Structure Pointer

STRUCT .astruct[0:1];
BEGIN
  STRING s1;
  STRING s2;
  STRING s3;
END;
STRING .ptr (astruct) := ! STRING ptr initialized with converted
  @astruct[1] '<<' 1;    ! byte address of astruct[1].
ptr.s2 := %4;            ! Access STRING structure item

Example 118 Declaring and Initializing a Local Structure Pointer

PROC my_proc MAIN;
BEGIN
  STRUCT my_struct[0:2];
  BEGIN
    INT array[0:7];
  END;
  INT .struct_ptr (my_struct) := @my_struct[1]; 
  ! Structure pointer contains address of my_struct[1]
END;

Example 119 Declaring and Initializing a Local STRING Structure Pointer

STRUCT name_def(*);
BEGIN

Initializing Structure Pointers 175



  STRING first[0:3];
  STRING last[0:3];
END;
STRUCT .record;
BEGIN
  STRUCT name (name_def);  ! Declare substructure
  INT age;
END;
STRING .my_name (name_def) := @record.name;  ! Structure pointer
                                             !  contains address
                                             !  of substructure
my_name ':=' ["Sue Law"];

Example 120 Declaring and Initializing a Local STRING Structure Pointer

BEGIN
  INT array[0:7];
  STRUCT a_struct (*);
  BEGIN
    INT    var;
    INT    buffer1[0:3];
    STRING buffer2[0:4];
  END;
  INT .struct_ptr (a_struct) := @array;  ! Structure pointer
END;                                     !  contains address of
                                         !  array

Declaring System Global Pointers
NOTE: Only procedures that operate in privileged mode can access system global data.

The system global pointer declaration associates an identifier with a memory location at which
you store the address of a variable located in the system global data area.

type

is any data type except UNSIGNED; specifies the data type of the value to which the pointer
points.

.SG

is an indirection symbol (see Table 14 (page 41)).
identifier

is the identifier of the pointer.
preset-address

is the address of a variable in the system global data area. The address is determined by you
or the system during system generation.

Example 121 System Global Pointer Declaration

INT .SG newname;

176 Pointers



11 Equivalenced Variables
Equivalencing lets you declare more than one identifier and description for a location in a storage
area. Equivalenced variables that represent the same location can have different data types and
byte-addressing and word-addressing attributes. For example, you can refer to an INT(32) variable
as two separate words or four separate bytes.
You can equivalence any variable in the first column of Table 51 (page 177) to any variable in the
second column.

Table 51 Equivalenced Variables

Previous VariableEquivalenced (New) Variable

Simple variableSimple variable
Simple pointerSimple pointer
StructureStructure
Structure pointerStructure pointer
Array
Equivalenced variable

You can use an equivalenced variable in an expression anywhere an operand is valid.

Table 52 Equivalenced Variable Terminology

DefinitionTerm

The identifier that appears on the left side of an equivalenced
declaration; for example:
INT previous;
INT equivalenced = previous;

Equivalenced variable

The identifier that appears on the right side of the equivalenced
declaration. The previous variable can, itself, be an equivalenced
variable; for example:
INT base_previous;
INT equivalenced1 = base_previous;
INT equivalenced2 = equivalenced1;

Previous variable

The equivalenced variable is a simple variable, direct array, direct
structure, standard pointer (including a standard structure pointer), or

Direct equivalent declaration

extended pointer (including an extended structure pointer). Direct items
can be equivalenced only to other direct items (with two exceptions).

The equivalenced variable is a standard indirect array or standard
indirect structure. Standard indirect items can be equivalenced only to
other standard indirect items.

Indirect equivalent declaration

The equivalenced variable is an extended indirect array or extended
indirect structure. Extended indirect items can be equivalenced only to
other extended indirect items.

Extended equivalent declaration

The equivalenced variable is a pointer to data.Standard pointer equivalent declaration

The equivalenced variable is a pointer to data in an EXTADDR.Extended pointer equivalent declaration

Topics:

• Declaring Equivalenced Variables (page 178)

• Memory Allocation (page 179)

• Declaring Nonstructure Equivalenced Variables (page 180)

• Equivalencing Procedure Addresses (PROCADDR, PROC32ADDR, and PROC64ADDR) and
Pointer Variables (PROCPTR, PROC32PTR, and PROC64PTR) (page 187)

177



• Declaring Equivalenced Definition Structures (page 188)

• System Global Equivalenced Variable Declarations (page 193)

Declaring Equivalenced Variables
Table 53 Valid Equivalenced Variable Declarations

Previous Variable CategoryVariable ExampleEquivalenced Variable
Equivalenced Variable
Category

Direct or PointerINT i;Simple VariableDirect

INT i[0:3];Direct array

STRUCT s;
BEGIN

Direct structure

  INT i;
END;

IndirectINT .a[0:3];Indirect arrayIndirect

STRUCT s;
BEGIN

Indirect structure

  INT i;
END;

EXTADDRINT .EXT a[0:3];Extended arrayExtended

EXT32ADDR1INT .EXT32 b[0:3];1

EXT64ADDR1INT .EXT64 c[0:3];1

EXTADDRSTRUCT .EXT s;
BEGIN

Extended structure

  INT i;
END;

EXT32ADDR1STRUCT .EXT32 t;
BEGIN
  INT I;
END;

EXT64ADDR1STRUCT .EXT64 u;
BEGIN
  INT I;
END;

A pointer, simple variable,
indirect array, or indirect
structure

INT .p;Standard pointerStandard Pointer

INT .s(t);Standard structure pointer

Direct or Extended with the
same address type
(EXTADDR)

INT .EXT e;Extended pointerExtended Pointer

EXT32ADDR1INT .EXT32 f;1

EXT64ADDR1INT .EXT64 g;1

INT .EXT s(t);Extended structure pointer

INT .EXT32 u(t);1

INT .EXT64 v(t);1

178 Equivalenced Variables



1 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

You can index a variable that participates in an equivalenced declaration either as the equivalenced
variable or as the previous variable even if none of the variables in the equivalenced group specify
array bounds.

Example 122 Declaring Equivalenced Variables

INT a;         ! a is a simple variable, and cannot be indexed
INT b;         ! "Previous variable" for the next decl
INT c = b;     ! b and c can be indexed
INT d = c;     ! c and d can be indexed
! Variables b, c, and d can be indexed because each appears in
!  an equivalenced declaration:
c[2] := b[1];  ! OK: b and c appear in equivalenced declaration
d[2] := c[1];  ! OK: c and d appear in equivalenced declaration
d[2] := a;     ! OK: d appears in equivalenced declaration
               !  and can be indexed.
a[1] := d;     ! ERROR: a cannot be indexed

Memory Allocation
pTAL does not allocate memory for equivalenced variables. In the following example, pTAL allocates
memory only for base_previous:
INT base_previous;
INT equivalenced1 = base_previous;
INT equivalenced2 = equivalenced1;

An equivalenced variable is an alias for memory allocated for a previously declared variable. The
equivalenced declaration can specify different attributes; for example, a different data type than
those of the previous variable. In the following example, pTAL allocates 32 bits for i. The
equivalenced declaration for j references the memory allocated for i, but specifies that the bits
be treated as a REAL number:
INT(32) i;
REAL    j = i;

If an equivalenced variable is a standard or extended pointer and the previous variable is the
implicit pointer of an indirect array or indirect structure, the equivalenced variable is a read-only
pointer. You can use the value of the pointer in an expression, but you cannot store an address or
other value into the pointer because doing so would be the same as storing an address into the
implicit pointer of the array or structure. You can, however, use a pointer to read or write the data
to which the pointer points.

Example 123 Equivalenced Pointers

INT .a[0:3];
INT .p = a;
WADDR w;
PROC p1;
BEGIN
  a[1] := a[1] + 1;  ! Increment second word of a
  p[1] := p[1] + 1;  ! Increment second word of p (= a)
  w := @a;           ! Assign address of first word of a to w
  w := @p;           ! Assign address of first word of p (= a)
                     !  to w
END;
PROC p2;
BEGIN
  @p := w;  ! ERROR: Cannot assign to an equivalenced pointer
            !  when it is equivalenced to an indirect or

Memory Allocation 179



            !  standard indirect variable
END;

Declaring Nonstructure Equivalenced Variables
Nonstructure equivalenced declarations include simple variables, pointers, and arrays.

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type

If referral is present, must be STRING or INT; otherwise, type is any data type except
UNSIGNED.

identifier

is the identifier of the equivalenced variable to be made equivalent to previous-identifier.
referral

is the identifier of a previously declared structure, structure layout, or structure pointer.
previous-identifier

the identifier of a previously-declared variable, direct array element, pointer, structure, structure
pointer, or equivalenced variable.

index

is an INT constant that specifies an element offset from previous-identifier to which
the equivalenced pointer or variable refers. Specify index only with direct variables. index
must end on a word boundary.

+, -
is the word or byte offset, relative to the base of previous-identifier, where the
equivalenced variable is placed. For example, if a and b are declared:
INT a[0:9];
INT b = a+5

then b is placed at a[5].

180 Equivalenced Variables



offset

is an INT constant that specifies a word offset from previous-identifier, which can be
a direct or indirect variable. If previous-identifier is indirect, the offset is from the
location of the pointer, not from the location of the data pointed to.

The following are valid equivalenced declarations:
INT a;
INT b = a;
INT(32) c[0:3];
INT d[0:7] = c;

Topics:

• Memory Usage for Nonstructured Equivalenced Variables (page 181)

• Equivalenced Arrays (page 181)

• Indirect Arrays (page 182)

• Equivalenced Simple Variables (page 182)

• Equivalenced Simple Pointers (page 183)

Memory Usage for Nonstructured Equivalenced Variables
The memory referenced by an equivalenced variable including all fields of an equivalenced structure
and all elements of an equivalenced array must be contained entirely within the memory allocated
for the previous variable. You can index the previous variable, but the memory referenced after
applying the index must be contained within the memory allocated for the previous variable.
An equivalenced variable, including all elements of an equivalenced array or equivalenced structure,
must be the same size or smaller than the lowest-level previous variable, even if an intermediate
previous variable is not as the equivalenced variable you are declaring:
INT     h;
FIXED   i;

INT     j = i;  ! OK: j is smaller than I
INT(32) k = j;  ! OK: k is 32 bits, i is 64 bits
FIXED   l = h;  ! ERROR: l > h

The number of bits in an equivalenced variable (including all elements of an array or structure)
must be less than or equal to the number of bits in the previous variable. Equivalenced variables
for which the previous variable is itself an equivalenced variable, must be contained entirely within
the memory allocated for the previous variable for which the compiler allocates memory.

Example 124 Memory Usage for Nonstructured Equivalenced Variables

FIXED   i;           ! i is 64 bits
INT(32) j[0:1] = i;  ! OK: j is 64 bits and coincident with i
INT     k[0:1] = i;  ! OK: k is 32 bits and contained within i
INT     m[0:3] = k;  ! OK: Although m is 64 bits and k is
                     !  32 bits, pTAL requires only that
                     !  m be contained within i, not k.
INT     x[0:15];
FIXED   y = x[10];   ! ERROR: y does not fit entirely within x

Equivalenced Arrays
Use the lower-bnd1 and upper-bnd2 parameters as shown in the nonstructure declaration
syntax.

Declaring Nonstructure Equivalenced Variables 181



Indirect Arrays
Figure 8 (page 182) shows how pTAL implements indirect arrays. The compiler allocates storage
for the four elements of the array a, but not for a pointer to a. References to a access the data
directly not indirectly through a pointer.

Figure 8 Indirect Array
pTAL Indirect Array

INT .A[0:3] := [10,20,30,40];
! Object date type: INT
! Address type: WADDR

Equivalenced Simple Variables
An equivalenced simple variable declaration associates a new simple variable with a previously
declared variable.

VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type

If referral is present, type must be STRING or INT; otherwise, type is any data type
except UNSIGNED.

identifier

is the identifier of the simple equivalenced variable to be made equivalent to
previous-identifier.

previous-identifier

is the identifier of a previously declared simple variable.

182 Equivalenced Variables



index

is an INT constant that specifies an element offset from previous-identifier, which must
be a direct variable. The data type of previous-identifier dictates the element size.
The location represented by index must begin on a word boundary.

+, -
is the word or byte offset, relative to the base of previous-ident, where the equivalenced
variable is placed. For example, if a and b are declared:
INT(32) a[0:9];
INT b = a+6

then b is placed in the first six bits of a.
offset

is an INT constant that specifies an element offset from previous-identifier, which must
be a direct variable. The data type of previous-identifier dictates the element size.
The location represented by index must begin on a word boundary.

Equivalencing a simple variable to an indirect array or structure is not recommended. If you do
so, the simple variable is made equivalent to the location of the implicit pointer, not the location
of the data pointed to.
In Figure 9 (page 183), a STRING variable and an INT(32) variable are equivalenced to an INT
array.

Figure 9 Equivalenced Simple Variables
INT w[0:1];
STRING b = w[0];
INT(32) d = b;

Equivalenced Simple Pointers
An equivalenced simple pointer declaration associates a new simple pointer with a previously
declared variable.

Declaring Nonstructure Equivalenced Variables 183



VOLATILE

specifies that the value of this variable must be maintained in memory, not in a register. Each
reference to a VOLATILE data item causes the data item to be read or written to memory even
when code is optimized. Based on the order of reads and writes in the source code, VOLATILE
also causes that precise order of memory references to be preserved, again, when code is
optimized.

type

is any data type except UNSIGNED. The data type determines how much data the simple
pointer can access at a time (byte, word, doubleword, or quadrupleword).

Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).

NOTE: Indirection symbols, .EXT32 and .EXT64 are available in the 64-bit addressing
functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

identifier

is the identifier of a simple pointer to be made equivalent to previous-identifier.
previous-identifier

is the identifier of a previously-declared variable, direct array element, pointer, structure,
structure pointer, or equivalenced variable.

index

is an INT constant that specifies an element offset from previous-identifier, which must
be a direct variable. The data type of previous-identifier dictates the element size.
The location represented by index must begin on a word boundary.

+, -
is the word or byte offset, relative to the base of previous-ident, where the equivalenced
variable is placed. For example, if a and b are declared:
INT(32) a[0:9];
INT b = a+6

then b is placed in the first six bits of a.
offset

is an INT constant that specifies an element offset from previous-identifier, which must
be a direct variable. The data type of previous-identifier dictates the element size.
The location represented by index must begin on a word boundary.

Topics:

• Using Equivalenced Simple Pointers (page 184)

• REFALIGNED Clause for Equivalenced Simple Pointers (page 187)

Using Equivalenced Simple Pointers
If the previous variable is a pointer, an indirect array, or an indirect structure, the previous pointer
and the new pointer must both contain either:

• A standard byte address

• A standard word address

• An extended address
Otherwise, the pointers will point to different locations, even if they both contain the same value.
That is, a standard STRING or extended pointer normally points to a byte address, and a standard
pointer of any other data type normally points to a word address.

184 Equivalenced Variables



You can equivalence standard pointers to indirect arrays and indirect structures, but you can only
read the value of the pointer. You cannot store an address into the pointer. You can, however,
read or write the data to which the pointer points.
You can equivalence extended pointers to extended arrays and extended structures, but you can
only read the value of the pointer. You cannot store an address into the pointer. You can, however,
read or write the data to which the pointer points.
You can equivalence a standard pointer to an indirect array or indirect structure but you cannot
equivalence an indirect array or indirect structure to a standard pointer. A pointer equivalenced
to an indirect item is a read-only pointer—you can read the address in the pointer, but you cannot
store an address into the pointer.

Example 125 Read-Only Pointer

INT .a[0:3];      ! Indirect array
INT .b;           ! Standard pointer
INT .c = a;       ! OK: Equivalence a pointer to an indirect
                  !  array (c is read-only)
INT .d[0:3] = b;  ! ERROR: Cannot equivalence an indirect item
                  !  to a pointer
@c := @c + 1;     ! ERROR: Cannot modify a pointer that is
                  !  equivalenced to an indirect item

When you declare indirect and extended pointers in equivalenced declarations:

• The address type of a STRING standard pointer is BADDR. The address type of all other
standard pointers is WADDR.

• The address type of extended pointers is always EXTADDR, regardless of the data type of the
objects to which the pointer will refer.

Figure 10 (page 185) shows two examples of the data types associated with pointers. Figure 10
(page 185) shows the object data type and address type. Use Table 54 (page 185) to determine
valid equivalenced declarations.

Figure 10 The Object and Address Types of a Pointer

Table 54 Data Types for Equivalenced Variables

Address TypeObject Data TypeExample

WADDRINTINT a;

WADDRINTINT .b;

EXTADDRINTINT .EXT c;

EXT32ADDR1INTINT .EXT32 e;1

EXT64ADDR1INTINT .EXT64 f;1

WADDRBADDRBADDR a;

Declaring Nonstructure Equivalenced Variables 185



Table 54 Data Types for Equivalenced Variables (continued)

Address TypeObject Data TypeExample

WADDRBADDRBADDR .b;

EXTADDRBADDRBADDR .EXT c;

EXT32ADDR1BADDRBADDR EXT32 d;1

EXT64ADDR1BADDRBADDR EXT64 .e;1

WADDREXTADDREXTADDR a;

WADDREXTADDREXTADDR .b;

EXTADDREXTADDREXTADDR .EXT c;

EXT32ADDR1EXTADDREXTADDR .EXT32 d;1

EXT64ADDR1EXTADDREXTADDR .EXT64 e;1

EXTADDREXT32ADDR1EXT32ADDR .EXT f;

EXT32ADDR1EXT32ADDR1EXT32ADDR .EXT32 g;1

EXT64ADDR1EXT32ADDR1EXT32ADDR .EXT64 h;1

EXTADDREXT64ADDREXT64ADDR .EXT i;

EXT32ADDR1EXT64ADDR1EXT64ADDR .EXT32 j;1

EXT64ADDR1EXT64ADDR1EXT64ADDR .EXT64 k;1

BADDRSTRINGSTRING a;

BADDRSTRINGSTRING .b;

EXTADDRSTRINGSTRING .EXT c;

EXT32ADDR1STRINGSTRING .EXT32 d;1

EXT64ADDR1STRINGSTRING .EXT64 e;1

1 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

The code in Figure 11 (page 186) declares an INT(32) simple pointer equivalent to an INT simple
pointer. Both contain a word address.

Figure 11 Equivalenced Simple Pointer Declaration
INT     .ptr1 := 200;
INT(32) .ptr2 := ptr1;

186 Equivalenced Variables



pTAL does not verify that the lengths of the objects to which an equivalenced pointer refers are
equal. pTAL accepts the declaration in Example 126 (page 187) because the address types of both
pointers are WADDR.

Example 126 Equivalenced Objects of Unequal Length

INT   .a;      ! a is a pointer to an INT
FIXED .b = a;  ! OK: a and b are pointers; pTAL does not require
               !  that the data referenced by b be contained
               !  inside the data referenced by a

REFALIGNED Clause for Equivalenced Simple Pointers
The REFALIGNED clause assigns a REFALIGNED attribute (2 or 8) to a simple equivalenced pointer
when you declare the pointer. Equivalenced pointers do not inherit the reference alignment of the
previous variable.

Example 127 REFALIGNED Clause for Equivalenced Simple Pointers

?REFALIGNED(8)             ! Default reference alignment is 8
INT .p REFALIGNED(2);      ! Reference alignment of p is 2
INT .q REFALIGNED(8) = p;  ! Reference alignment of q is 8
INT .r REFALIGNED(2) = p;  ! Reference alignment of r is 2
INT .s               = p;  ! Reference alignment of s is 8
INT .t;                    ! Reference alignment of t is 8  

Equivalencing Procedure Addresses (PROCADDR, PROC32ADDR, and
PROC64ADDR) and Pointer Variables (PROCPTR, PROC32PTR, and
PROC64PTR)

You can equivalence Pointer Variables to Procedure Addresses and other Pointer Variables, and
you can equivalence Procedure Addresses to Pointer Variables and other Procedure Addresses.

NOTE: The procedure address and pointer types, PROC32ADDR, PROC64ADDR, PROC32PTR,
and PROC64PTR are 64-bit addressing functionality added to the EpTAL compiler starting with
SPR T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Equivalencing Procedure Addresses (PROCADDR, PROC32ADDR, and PROC64ADDR) and Pointer Variables (PROCPTR,
PROC32PTR, and PROC64PTR)

187



Example 128 Equivalencing Procedure Addresses and Pointer Variables

PROCPTR pp;               ! pp is a 32-bit procedure pointer
END PROCPTR;
PROC32PTR p32p;           ! p32p is a 32-bit procedure pointer
END PROCPTR;
PROC64PTR p64p;           ! p64p is a 64-bit procedure pointer
END PROCPTR;

PROCADDR pae = pp;        ! pa is a procedure address equivalenced to a
                          ! procedure pointer
PROC32ADDR p32ae = p32p;  ! pa is a procedure address equivalenced to a
                          ! procedure pointer
PROC64ADDR p64ae = p64p;  ! p64a is a procedure address equivalenced to a
                          ! procedure pointer
PROCADDR pa;
PROC32ADDR p32a;
PROC64ADDR p64a;

PROCPTR ppe;              ! ppe is a procedure pointer equivalenced to a
END PROCPTR = pa;         ! procedure pointer
PROC32PTR p32pe;          ! p32pe is a procedure pointer equivalenced to a
END PROCPTR = p32a;       ! procedure pointer
PROC64PTR p64pe;          ! p64pe is a procedure pointer equivalenced to a
END PROCPTR = p64a;       ! procedure pointer

PROCPTR pp1;              ! pp is a procedure pointer equivalenced to a
END PROCPTR = pp;         ! procedure pointer

INT PROCPTR i;            ! OK, however it is not recommended to
END PROCPTR = p64p;       ! equivalence procedure pointers with different
                          ! signatures or with different sizes

PROCADDR pa1 = p64a;      ! OK, however it is not recommended to
                          ! equivalence procedure pointers or addresses
                          ! to procedure pointers or addresses with
                          ! different sizes

Declaring Equivalenced Definition Structures
An equivalenced definition structure declaration associates a new structure with a previously
declared variable.

Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).

188 Equivalenced Variables



structure

is the identifier that the declaration creates.
referral

is the identifier of a previously declared structure, structure layout, or structure pointer.
field-alignment

FIELDALIGN

specifies the memory alignment for the base of the structure and for fields within the structure.
For details about the FIELDALIGN clause, see Chapter 9 (page 114).

SHARED2

specifies that the base of the structure and each field in the structure must begin at an even
byte address except STRING fields.

SHARED8

specifies that the offset of each field in the structure from the base of the structure must be
begin at an address that is an integral multiple of the width of the field.

AUTO

specifies that the structure and the fields of the structure be aligned according to the optimal
alignment for the architecture on which the program will run (this is not the same behavior
as the AUTO attribute has in the native mode HP C compiler).

PLATFORM

specifies that the structure and the fields of the structure must begin at addresses that are
consistent across all languages on the same architecture.

previous-identifier

is the name of a previously declared simple variable, direct array element, structure, structure
layout, structure pointer, or equivalenced variable.

index

is an INT constant that specifies the offset of the element in previous-ident to which the
equivalenced pointer or variable refers. Specify index only with direct variables. index must
end on a word boundary.

+ -

is the word or byte offset, relative to the base of previous-ident, where the equivalenced
variable is placed. For example, if a and b are declared:
INT(32) a[0:9];
INT b = a+6

then b is placed in bytes 12 and 13 of a.
offset

is an INT constant that specifies a word offset. Specify offset only with indirect variables. The
offset is from the location of the pointer, not from the location of the data pointed to.

structure-layout

is a BEGIN-END block that contains declarations. For more information about the structure
layout, see Chapter 9 (page 114).

Declaring Equivalenced Definition Structures 189



You must specify either referral or structure-layout but not both in an equivalenced
structure declaration.
You can specify a FIELDALIGN clause only if you specify structure-layout. You cannot specify
a FIELDALIGN clause for a referral structure.

Example 129 Declaring Equivalenced Structures

STRUCT a;
BEGIN
  INT i;
  INT j;
END;
STRUCT b = a;
BEGIN
  INT(32) z;
END;
STRUCT c[0:3];
BEGIN
  INT i;
  INT j;
END;
STRUCT d[0:3] = c;
BEGIN
  INT(32) z;
END;

The code in Figure 12 (page 190) declares an extended indirect definition structure equivalent to
a previously declared extended indirect structure.

Figure 12 Equivalenced Definition Structure for CISC Architecture
STRUCT .EXT xstrl;
BEGIN
  STRING old_name[0:20];
  STRING old_addr[0:50];
END;
STRUCT .EXT xstr2;
BEGIN
  STRING new_name[0:30];
  STRING new_addr[0:40];
END;

If the new structure is to occupy the same location as the previous variable, their addressing modes
must match. You can declare a direct or indirect structure equivalent to the following previous
variables:

Previous VariableNew Structure

Direct structure Simple variable

190 Equivalenced Variables



Previous VariableNew Structure

Direct structure
Direct array

Standard indirect structure Standard indirect structure
Standard indirect array
Standard structure pointer

Extended indirect structure Extended indirect structure
Extended indirect array
Extended structure pointer

If the previous variable is a structure pointer, the new structure is really a pointer.
Topics:

• Structure Variants (page 191)

• Memory Usage for Structured Equivalenced Variables (page 192)

• FIELDALIGN Clause (page 193)

Structure Variants
You use substructures to declare variant records in structures. pTAL does not detect addresses that
are redefined by equivalenced variant structures.

Example 130 Structure Variants

STRUCT s FIELDALIGN(AUTO);
BEGIN
  STRUCT v1;
  BEGIN
    INT .p;        ! .p is 4 bytes
    INT  q;
  END;
  STRUCT v2 = v1;  ! v2 is equivalenced to v1
  BEGIN            ! v2 is 4 bytes
    INT .EXT e;
  END;
END;

When you compile Example 130 (page 191), the compiler allocates 8 bytes, the length of v1.
Although v1 and v2 are different lengths and their fields have different data types, the compiler
does not report an error or a warning. You must ensure that the variants are meaningful for your
algorithms.
The structure in Example 131 (page 192) contains the same variants as the structure in Example 130
(page 191), but the variants are in reverse order.

Declaring Equivalenced Definition Structures 191



Example 131 Structure Variants

STRUCT s FIELDALIGN(AUTO);
BEGIN
  STRUCT v1;
  BEGIN
    INT .EXT e;  ! e is 4 bytes
  END;
  STRUCT v2 FIELDALIGN(SHARED8) = v1;
  BEGIN
    INT .p;  ! p is 4 bytes
    INT  q;  ! Compiler reports a warning
  END;
END;

In Example 131 (page 192), v1 is 4 bytes, but v2 is 8 bytes. The compiler reports a warning. Data
that your program stores into s.v2.q overwrites the data in the memory locations that follow s.
v2 is 8 bytes to maintain the alignment of variables in memory. For more information about lengths
of pTAL structures, see Chapter 9 (page 114).

Memory Usage for Structured Equivalenced Variables
The memory referenced in an equivalenced declaration must fit within the memory allocated for
the previous variable. When you determine the length of a structure, you must account for filler
that pTAL adds to the structure. In Example 132 (page 192), the equivalenced declaration is not
valid because b is 4 bytes, but a is only 3 bytes. pTAL adds an extra byte at the end of b so that
its total length is an integral multiple of its longest component, i.

Example 132 Memory Usage for Structured Equivalenced Variables (Incorrect)

STRUCT a FIELDALIGN(SHARED2);   ! Structure a is 3 bytes
BEGIN
  STRING i;
  STRING j;
  STRING k;
END;
STRUCT b FIELDALIGN(AUTO) = a;  ! Structure b is 4 bytes
BEGIN
  INT i;
  STRING j;  ! pTAL adds a byte after field j
END;

If you declare b and then declare a, pTAL does not report an error because a fits within the four
bytes already allocated for b, as in Example 133 (page 193).

192 Equivalenced Variables



Example 133 Memory Usage for Structured Equivalenced Variables (Correct)

STRUCT b FIELDALIGN(AUTO);
BEGIN
  INT i;
  STRING j;  ! pTAL adds a byte after the declaration of j
END;
STRUCT a FIELDALIGN(SHARED2) = b;
BEGIN
  STRING i;
  STRING j;
  STRING k;
END;

FIELDALIGN Clause
The FIELDALIGN clause specifies the alignment of the fields of a structure and the alignment of the
structure itself in memory. You can use an equivalenced declaration to create two layouts for the
same area, one optimized for TAL programs on TNS architecture and the other optimized for pTAL
programs on TNS/R or TNS/E architecture. Declare the pTAL structure first.

Example 134 FIELDALIGN Clause in Structured Equivalenced Variables

STRUCT a FIELDALIGN(SHARED8);
BEGIN
  INT i;
  INT j;
END;
STRUCT b FIELDALIGN(SHARED2) = a;
BEGIN
  INT i;
  INT j;
END;

In Example 134 (page 193), structures a and b declare the same fields, but a specifies
FIELDALIGN(SHARED8), the optimal alignment for pTAL, whereas b specifies
FIELDALIGN(SHARED2), the alignment for TAL. pTAL generates fast code for references to a.i,
but conservative code for references to b.i

For more information about using the FIELDALIGN clause, see Chapter 9 (page 114).

System Global Equivalenced Variable Declarations
NOTE: Only procedures that operate in privileged mode can access system global data.

System global equivalencing associates a global, local, or sublocal identifier with a location that
is relative to the base address. You can declare the following equivalenced variables for either
system global ('SG') or extended system global ('SGX') addresses:

• Equivalenced Simple Variable (page 193)

• Equivalenced Definition Structure (page 194)

• Equivalenced Referral Structure (page 195)

• Equivalenced Simple Pointer (page 196)

• Equivalenced Structure Pointer (page 197)

Equivalenced Simple Variable
An equivalenced simple variable declaration associates a simple variable with a location that is
relative to the 'SG' base address.

System Global Equivalenced Variable Declarations 193



type

is any data type except UNSIGNED; specifies the data type of identifier.
identifier

is the identifier of a simple variable to be made equivalent to 'SG'.
'SG'

a symbol that denotes a 16-bit system global address.
index

is an INT constant that specifies the offset of the element in previous-ident to which the
equivalenced pointer or variable refers. Specify index only with direct variables. index must
end on a word boundary.

+, -
is the word or byte offset, relative to the base of previous-ident, where the equivalenced
variable is placed. For example, if a and b are declared:
INT a[0:9];
INT b = a+5

then b is placed at a[5].
offset

an equivalent INT values in the range 0 through 63.

Example 135 Equivalenced Simple Variable Declaration

INT item = 'SG' + 15;

Equivalenced Definition Structure
An equivalenced definition structure declaration associates a definition structure with a location
relative to a system global ('SG') or extended system global ('SGX') base address.

194 Equivalenced Variables



Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).
identifier

is the identifier of a definition structure to be made equivalent to 'SG'.
'SG'

denotes a 16-bit system global address.
index

is an INT constant that specifies the offset of the element in previous-ident to which the
equivalenced pointer or variable refers. Specify index only with direct variables. index must
end on a word boundary.

+, -
is the word or byte offset, relative to the base of previous-ident, where the equivalenced
variable is placed. For example, if a and b are declared:
INT a[0:9];
INT b = a+5

then b is placed at a[5].
offset

an equivalent INT values in the range 0 through 63.
structure-layout

a BEGIN-END block that contains declarations for structure items.

Example 136 Equivalenced Definition Structure Declaration

STRUCT def_struct = 'SG'[10];
BEGIN
  STRING out;
  FIXED up;
  REAL in;
END;

Equivalenced Referral Structure
The equivalenced referral structure declaration associates a referral structure with a location relative
to the base address of the system global ('SG') or the extended system global ('SGX') data area.

Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).
identifier

is the identifier of a referral structure to be made equivalent to 'SG'.

System Global Equivalenced Variable Declarations 195



referral

is the identifier of a previously declared structure or structure pointer that is to provide the layout
for this structure.

'SG'

denotes a 16-bit system global address.
index

is an INT constant that specifies the offset of the element in previous-ident to which the
equivalenced pointer or variable refers. Specify index only with direct variables. index must
end on a word boundary.

+, -
is the word or byte offset, relative to the base of previous-ident, where the equivalenced
variable is placed. For example, if a and b are declared:
INT a[0:9];
INT b = a+5

then b is placed at a[5].
offset

an equivalent INT values in the range 0 through 63.
If you specify an indirection symbol (see Table 14 (page 41)), the structure behaves like a structure
pointer. If you do not specify an indirection symbol, the structure has direct addressing.

Example 137 Equivalenced Referral Structure Declaration

STRUCT def_struct;
BEGIN
  STRING a[0:99];
  REAL b[0:9];
END;
STRUCT ref_struct (def_struct) = 'SG'[30];

Equivalenced Simple Pointer
The equivalenced simple pointer declaration associates a simple pointer with a location relative
to the base address of the system global ('SG') or the extended system global ('SGX') data area.

type

is any data type except UNSIGNED and specifies the data type of the value to which the
pointer points.

Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).

196 Equivalenced Variables



identifier

is the identifier of a simple pointer to be made equivalent to 'SG'.
'SG'

denotes a 16-bit system global address.
index

is an INT constant that specifies the offset of the element in previous-ident to which the
equivalenced pointer or variable refers. Specify index only with direct variables. index must
end on a word (16-bit) boundary.

+, -
is the word or byte offset, relative to the base of previous-ident, where the equivalenced
variable is placed. For example, if a and b are declared:
INT a[0:9];
INT b = a+5

then b is placed at a[5].
offset

an equivalent INT values in the range 0 through 63.

Example 138 Equivalenced Simple Pointer Declaration

INT .ptr = 'SG' + 2;

Equivalenced Structure Pointer
The equivalenced structure pointer declaration associates a structure pointer with a location relative
to the base address of the system global (.SG) or the extended system global (SGX) data area.

STRING

is the STRING attribute.
INT

is the INT attribute.
Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).
identifier

is the identifier of a structure pointer to be made equivalent to 'SG'.

System Global Equivalenced Variable Declarations 197



referral

is the identifier of a previously declared structure or structure pointer that is to provide the layout
for identifier.

'SG'

denotes a 16-bit system global address.
index

is an INT constant that specifies the offset of the element in previous-ident to which the
equivalenced pointer or variable refers. Specify index only with direct variables. index must
end on a word (16-bit) boundary.

+, -
is the word or byte offset, relative to the base of previous-ident, where the equivalenced
variable is placed. For example, if a and b are declared:
INT a[0:9];
INT b = a+5

then b is placed at a[5].
offset

an equivalent INT values in the range 0 through 63.
on page 10-6 describes the kind of addresses a structure pointer can contain depending on the
STRING or INT attribute and addressing symbol.

Example 139 Equivalenced Structure Pointer Declaration

STRUCT .some_struct;
BEGIN
  INT a;
  INT b[0:5];
END;
INT .struct_ptr (some_struct) = 'SG' + 30;

198 Equivalenced Variables



12 Statements
Statements—also known as executable statements—perform operations in a program. They can
modify the program’s data or control the program’s flow.

Table 55 Summary of Statements

OperationStatementCategory

Conditionally calls a procedureASSERTProgram control

Calls a procedure or subprocedureCALL

Selects a set of statements based on a
selector value

CASE

A post-test loop that repeatedly executes
a statement until a specified condition
becomes true

DO-UNTIL

Executes a pretest loop n timesFOR

Unconditionally branches to a label
within a procedure or subprocedure

GOTO

Conditionally selects one of two
possible statements

IF

Returns from a procedure or a
subprocedure to the caller; returns a

RETURN

value from a function; returns a
condition code value

Executes a pretest loop while a
condition is true

WHILE

Stores a value in a variableAssignmentData transfer

Stores a value in a bit or in a group of
sequential bits

Bit-Deposit Assignment

Scan data for a test character,
left-to-right and right-to-left, respectively

SCAN and RSCANData scan

Removes either a label (from the symbol
table) or a temporary variable that was
created by a USE statement

DROPData allocation

Creates a temporary variableUSE

In addition to the statements summarized in Table 55 (page 199), this section describes:

• Using Semicolons in Statements (page 199)

• Compound Statements (page 200)

Using Semicolons in Statements
You use semicolons with statements as follows:

• A semicolon is required between successive statements.

• A semicolon is optional before an END keyword that terminates a compound statement.

• A semicolon must not immediately precede an ELSE or UNTIL keyword.

• A semicolon alone in place of a statement creates a null statement. The compiler generates
no code for null statements. You can use a null statement wherever you can use a statement
except immediately before an ELSE or UNTIL keyword.

Using Semicolons in Statements 199



Compound Statements
A compound statement is a BEGIN-END block that groups statements to form a single logical
statement.

BEGIN

indicates the start of the compound statement.
statement

is a statement described in this section.
; (semicolon)

is a statement separator that is required between successive statements. A semicolon before
an END that terminates a compound statement is optional and represents a null statement.

END

indicates the end of the compound statement.
You can use compound statements anywhere you can use a single statement. You can nest them
to any level in statements such as IF, DO, FOR, WHILE, or CASE.

Example 140 Null Compound Statement

BEGIN
END;

Example 141 Compound Statement

BEGIN
  a := b + c;
  d := %B101;
  f := d - e;
END;

ASSERT
The ASSERT statement conditionally calls the procedure specified in the active directive ASSERTION
(page 495).

assert-level

is an integer in the range 0 through 32,767.
If assert-level is greater than or equal to the assertion-level specified in the active
ASSERTION directive and if condition is true, the program calls the procedure specified
in the active ASSERTION directive.

condition

is a conditional expression (see Conditional Expressions (page 81)).
To use the ASSERT statement and the ASSERTION directive together for debugging or error-handling:

200 Statements



1. Put an ASSERTION directive in the source code, specifying an assertion-level and an
error-handling procedure.

2. Put an ASSERT statement at each place where you want to execute the error-handling procedure
when an error occurs. In each ASSERT statement, specify:
• An assert-level that is greater than or equal to the assertion-level

• A condition that will be true when an error occurs

During program execution, if an assert-level is greater than or equal to the active
assertion-level and the associated condition is true, the program calls the error-handling
procedure.
Example 142 (page 201) calls PROCESS_DEBUG_ whenever a carry or overflow condition occurs.

Example 142 ASSERTION Directive and ASSERT Statement

?SOURCE $SYSTEM.SYSTEM.EXTDECS (PROCESS_DEBUG_)
?ASSERTION 5, PROCESS_DEBUG_  ! Activates all ASSERT conditions
SCAN array WHILE " " -> @pointer;
ASSERT 10 : LOCAL_CARRY_FLAG;
!Lots of code
ASSERT 10 : LOCAL_CARRY_FLAG;
!More code
ASSERT 20 : LOCAL_OVERFLOW_FLAG;  ! $OVERFLOW routine tests for
                                  !   arithmetic overflow

In Example 142 (page 201):

• If you change the assertion-level from 5 to 15, you nullify the two ASSERT statements
that specify assert-level 10 and the LOCAL_CARRY_FLAG condition.

• If you change the assertion-level from 5 to 30, you nullify all the ASSERT statements.
If all ASSERT statements that cover a particular condition have the same assert-level, it is
easier to nullify specific levels of ASSERT statements.

Assignment
The assignment statement assigns a value to a previously declared variable.

variable

is the identifier of a simple variable, array element, simple pointer, structure pointer, or structure
data item, with or without a bit deposit field and/or index. To update a pointer’s content, prefix
the pointer identifier with @.

expression

is either:
• An arithmetic expression of the same data type as variable

• A conditional expression, which always has an INT result
expression can be a bit extraction value or an identifier prefixed with @ (the address of a
variable). expression cannot be a constant list.

In general, the data types of variable and expression must match. To convert the data type
of expression to match the data type of variable, use a type-transfer routine, described in
Chapter 15 (page 274).

Assignment 201



The following rules apply to assignment statements:

• The data type of the expression on the right side of an assignment statement must be compatible
with the data type of the destination on the left side of the assignment statement.

• You cannot store a value into the implicit pointer of an indirect array or indirect structure.

• You cannot store a value into the implicit pointer of an equivalenced variable that references
the data of an indirect array or indirect structure.

• Do not depend on whether the left side or the right side of an assignment statement is evaluated
first.

• Address types must match.

• pTAL disallows all assignments of unlike data types except the following:
STRING and UNSIGNED(1-16) variables are syntactically and semantically equivalent
to INT variables. Thus, STRING and UNSIGNED(1-16) variables are valid anywhere an
INT variable is valid.
An UNSIGNED(1-16) variable or one-byte STRING value that is used as an INT value is
left-filled with binary zeros. Conversely, the high-order bits of an INT value are lost if the

◦

value is stored in an UNSIGNED variable that is less than 16 bits, or to a one-byte STRING
variable, as shown in the following examples:
INT          i := 3;
STRING       s;
UNSIGNED(12) u1;
UNSIGNED(24) u2;
s  := i + 1;     ! OK: Assignment of INT to STRING
i  := s + %H20;  ! OK: Assignment of STRING to INT
u1 := i + s;     ! OK: INT + STRING
u2 := i;         ! ERROR: INT and UNSIGNED(17-31) are not
                 !  assignment-compatible

When an INT variable is assigned to a STRING variable, the upper 8 bits of the INT
variable are not retained in any way in the STRING variable. Thus, the comparison of
i1 to i2 in the final statement of the following code fails because i2 still holds the full
16 bits that were assigned to it at the beginning of the code, but i1 holds only the lower
8 bits. The upper 8 bits of I1 are not transferred to s in the assignment statement s :=
i1.
INT i1 := %HFFFF,
i2;
STRING s;
i2 := i1;         ! Copy i1 to i2
s  := i1;         ! Assign 16-bit INT to 8-bit STRING
i1 := s;          ! Assign 8-bit STRING to 16-bit INT
IF i1 = i2 THEN;  ! i1 (%HFF) is not equal to i2 (%HFFFF)

◦ UNSIGNED(17-31) variables are syntactically and semantically equivalent to INT(32)
variables. Thus, UNSIGNED(17-31) variables are valid anywhere INT(32) variables are
valid:
INT(32)      i;
UNSIGNED(31) u;
INT          j;
I := u;  ! OK: No bits are lost in assignment
u := i;  ! WARNING: Most significant bit of i could
         !  be lost
u := j;  ! ERROR: INT and UNSIGNED(17-31) are not
         !  assignment-compatible

202 Statements



Topics:

• Pointer Assignment (page 203)

• Assigning Numbers to FIXED Variables (page 203)

• Assigning Character Strings (page 203)

• Examples (page 203)

Pointer Assignment
The result of applying an @ operator to a variable or pointer is an address whose data type is one
of the pTAL address types.
In an assignment statement, one of the following must be true:

• Both operands are the same address type.

• Neither operand is an address type.
You can use type-conversion built-in routines to convert some address types to other address types.
For more information:

See ...Topic

Chapter 15 (page 274)Type-conversion built-in routines

Chapter 5 (page 69)Converting addresses

Chapter 10 (page 161)Pointers

Assigning Numbers to FIXED Variables
When you assign a number to a FIXED variable, the system scales the value up or down to match
the fpoint value. If the system scales the value down, you lose some precision depending on
the amount of scaling; for example:
FIXED(2) a;
a := 2.348F;  ! System scales value to 2.34F

If the ROUND directive is active, the system scales the value as needed, then rounds the value
away from zero as follows:
(IF value < 0 THEN value - 5 ELSE value + 5) / 10

For example, if you assign 2.348F to a FIXED(2) variable, the ROUND directive scales the value
by one digit and then rounds it to 2.35F.

Assigning Character Strings
You can assign a character string to STRING, INT, or INT(32) variables.
If you assign a one-character string such as "A" to an INT simple variable, the system places the
value in the right byte of a word and 0 in the left byte. To store a character in the left byte, assign
the character and a space, as in:
"A "

If you assign a character string to a FIXED, REAL, or REAL(64) variable, the compiler issues a type
incompatibility error.

Examples

Example 143 Assignment Statements

INT array[0:2];                ! Array
INT .ptr;                      ! Simple pointer
REAL real_var;                 ! REAL variable

Assignment 203



FIXED fixed_var;               ! FIXED variable
array[2] := 255;               ! Assign a value to array[2]
@ptr := @array[1];             ! Assign address of array[1]
                               !  to ptr
ptr := array[2];               ! Assign value of array[2]
                               !  to array[1], to which ptr
                               !  points
real_var := 36.6E-3;           ! Assign a REAL value to a
                               !  REAL variable
fixed_var := $FIX (real_var);  ! Convert a REAL value to FIXED
                               !  and assign to a FIXED variable

Assignment statements can assign character strings but not constant lists, so in Example 144
(page 204), the three assignment statements together store the same value as the one constant list
in the declaration.

Example 144 Assignment Statements Equivalent to a Constant List

INT .b[0:2] := ["ABCDEF"];  ! Declare and initialize
                            !  with constant list
b[0] := ["AB"];
b[1] := ["CD"];
b[2] := ["EF"];

In Example 145 (page 204), the first assignment statement (which contains assignment expressions)
is equivalent to the three separate assignments that follow it.

Example 145 Assignment Statement With Assignment Expressions

INT int1;
INT int2;
INT int3;
INT var := 16;
int1 := int2 := int3 := var;  ! Assignment that contains
                              !  assignment expressions
int1 := var;                  ! Separate assignments
int2 := var;
int3 := var;

Bit-Deposit Assignment
The bit deposit form of the assignment statement lets you assign a value to an individual bit or to
a group of sequential bits.

variable

is the identifier of a STRING or INT variable, but not an UNSIGNED(1-16) variable. variable
can be the identifier of a simple variable, array element, or simple pointer (inside or outside
a structure).

left-bit

is an INT constant that specifies the leftmost bit of the bit deposit field.
For STRING variables, specify a bit number in the range 8 through 15. Bit 8 is the leftmost bit
in a STRING variable; bit 15 is the rightmost bit.

204 Statements



right-bit

is an INT constant specifying the rightmost bit of the bit deposit field. right-bit must be
equal to or greater than left-bit.
For STRING variables, specify a bit number in the range 8 through 15. Bit 8 is the leftmost bit
in a STRING variable; bit 15 is the rightmost bit.

expression

is an INT arithmetic or conditional expression, with or without a bit field specification.
The bit deposit field is on the left side of the assignment operator (:=). The bit deposit assignment
changes only the bit deposit field. If the value on the right side has more bits than the bit deposit
field, the system ignores the excess high-order bits when making the assignment.
Specify the variable/bit-field construct with no intervening spaces as shown:
myvar.<0:5> 

Do not use bit deposit fields to pack data. Instead, declare an UNSIGNED variable and specify
the appropriate number of bits in the bit field.
Examples:
1. The bit deposit assignment sets bits 3 through 7 of the word designated by x:

INT x;
x.<3:7> := %B11111;

2. The bit deposit assignment replaces bits <10> and <11> with zeros:
INT old := -1;     ! old = %b1111111111111111
old.<10:11> := 0;  ! old = %b1111111111001111

3. The bit deposit assignment sets bit <8>, the leftmost bit of strng, to 0:
STRING strng := -1;  ! strng = %b11111111
strng.<8> := 0;      ! strng = %b01111111

4. The value %577 is too large to fit in bits <7:12> of var. The system truncates %577 to %77
before performing the bit deposit:
INT var := %125252;  ! var  = %b1010101010101010
var.<7:12> := %577;  ! %77  = %b0000000101111111
                     ! var  = %b1010101111111010

5. The bit deposit assignment replaces bits <7:8> of new with bits <8:9> of old:
INT new := -1;           ! new = %b1111111111111111
INT old :=  0;           ! old = %b0000000000000000
new.<7:8> := old.<8:9>;  ! new = %b1111111001111111

CALL
The CALL statement calls a procedure, subprocedure, or entry-point identifier and optionally passes
parameters to it.
In pTAL, a procedure’s formal and actual parameters either match if the data type of each formal
parameter and its corresponding actual parameter match exactly or match if the data type of the
actual parameter is converted according to the rules under Converting Between Address Types
(page 52).

CALL 205



identifier

is the identifier of a previously declared procedure, subprocedure, or entry-point identifier.
param-name

is a variable identifier or an expression that defines an actual parameter to pass to a formal
parameter declared in identifier.

param-pair

is an actual parameter pair to pass to a formal parameter pair declared in identifier.
param-pair has the form:

string

is an expression of the type STRING . or STRING .EXT.
length

is an INT expression that specifies the length, in bytes, of string.
Use the CALL statement to call procedures and subprocedures (but usually not functions).
To call functions, you usually use their identifiers in expressions. If you call a function by using a
CALL statement, the caller does not use the returned value of the function.
Actual parameters are value or reference parameters and are optional or required depending on
the formal parameter specification in the called procedure or subprocedure declaration (described
in Chapter 14 (page 246)). A value parameter passes the content of a location; a reference parameter
passes the address of a location.
In a CALL statement to a VARIABLE procedure or subprocedure or to an EXTENSIBLE procedure,
you can omit optional parameters in two ways:

• You can omit parameters or parameter pairs unconditionally. Use an empty comma for each
omitted parameter or parameter pair up to the last specified parameter or parameter pair. If
you omit all parameters, you can specify an empty parameter list (parentheses with no commas)
or you can omit the parameter list altogether.

• You can omit parameters or parameter pairs conditionally. Use the $OPTIONAL built-in routine
as described in Chapter 15 (page 274).

After the called procedure or subprocedure completes execution, control returns to the statement
following the CALL statement that calls the procedure or subprocedure.

206 Statements



Example 146 CALL Statement

PROC p (a, b, c);
  INT(32)  a;
  REAL     b;
  REAL(64) c;
BEGIN
END;
PROC q;
BEGIN
  CALL p(1.0E0, ! ERROR: Cannot pass REAL to INT(32)
         1D,    ! ERROR: Cannot pass INT(32)  to REAL
         1F);   ! ERROR: Cannot pass FIXED    to REAL(64)
END;

CASE
The CASE statement executes a choice of statements based on a selector value. Normally, you use
labeled CASE statements. Labeled CASE statements are described first, followed by unlabeled
CASE statements.
If a case index does not match any alternative, an instruction trap occurs.
Topics:

• Empty CASE (page 207)

• Labeled CASE (page 207)

• Unlabeled CASE (page 209)

Empty CASE
pTAL does not allow empty CASE statements. A CASE statement include at least one alternative,
even if there are no statements specified for that alternative.

Example 147 Empty CASE Statement

CASE i OF
BEGIN       ! In this unlabeled CASE statement,
  ;         !  the semicolon creates an alternative
END;

Labeled CASE
The labeled CASE statement executes a choice of statements when the value of the selector matches
a case label associated with those statements.

selector

is an INT or INT (32) value arithmetic expression that uniquely selects the case-alternative
for the program to execute.

CASE 207



case-alternative

associates one or more case-label s or one or more ranges of case-label s with one or
more statement s. The statement s of a case-alternative are executed if selector
equals an associated case-label. Each case-alternative has the form:

case-label

a signed INT constant or LITERAL. Each case-label must be unique in the CASE statement.
lower-case-label

is the smallest value in an inclusive range of signed INT constants or LITERALs.
upper-case-label

is the largest value in an inclusive range of signed INT constants or LITERALs.
statement-1

is any statement described in this section.
OTHERWISE

specifies an optional sequence of statements to execute if selector does not select any
case-alternative. If no OTHERWISE clause is present and selector does not match
a case-alternative, a run-time error occurs. Always include an OTHERWISE clause, even
if it contains no statements.

statement-2

is any statement described in this section.
A CASE statement must have at least one alternative.
If you omit the OTHERWISE clause and selector is out of range (negative or greater than n),
the a divide-by-zero instruction trap occurs.
A CASE index matches an alternative identified by the keyword OTHERWISE if and only if the
case index does not match any other alternative and OTHERWISE is an alternative.

Example 148 Labeled CASE Statement

LITERAL apple, orange, pear, peach, prune;
INT i;
i := peach;              ! Set index value
CASE i OF                ! Execute CASE
 BEGIN
  apple     -> CALL p1;
  orange    -> CALL p2;
  prune     -> CALL p3;
  OTHERWISE -> CALL p4;  ! Execute this alternative
 END;

Example 149 Labeled CASE Statement

INT location;
LITERAL bay_area, los_angeles, hawaii, elsewhere;
PROC area_proc (area_code);
  INT area_code;             ! Declare selector as

208 Statements



BEGIN                        !  formal parameter
  CASE area_code OF          ! Selector is area_code
  BEGIN
    408, 415 ->
      location := bay_area;
    213, 818 ->
      location := los_angeles;
    808 ->
      location := hawaii;
    OTHERWISE ->
      location := elsewhere;
  END;                       ! End CASE statement
END;                         ! End area_proc

Unlabeled CASE
The unlabeled CASE statement executes a choice of statements, based on an inclusive range of
implicit selector values, from 0 through n, with one statement for each value.

selector

is an INT or INT (32) arithmetic expression that selects the statement to execute.
statement-1

is any statement described in this section. Include a statement-1 for each value in the
implicit selector range, from 0 through n. If a selector has no action, specify a null
statement (semicolon with no statement). If you include more than one statement-1 for a
value, you must use a compound statement.

OTHERWISE

indicates the statement to execute for any case outside the range of selector values. If the
OTHERWISE clause consists of a null statement, control passes to the statement following the
unlabeled CASE statement.

statement-2

is any statement described in this section. Include a statement-2 for each value in the
implicit selector range, from 0 through n. If a selector has no action, specify a null
statement (semicolon with no statement). If you include more than one statement-2 for a
value, you must use a compound statement.

The compiler numbers each statement in the BEGIN clause consecutively, starting with 0. If the
selector matches the compiler-assigned number of a statement, that statement is executed.
For example, if the selector is 0, the first statement executes; if the selector is 4, the
fifth statement executes. Conversely, if the selector does not match a compiler-assigned
number, the OTHERWISE statement, if any, executes.
The index of an unlabeled CASE statement and the selector of a labeled CASE statement can be
INT(32) expressions.

CASE 209



Example 150 Unlabeled CASE Statement

INT(32) i;
CASE i OF
BEGIN
  ...
END;
CASE i OF
BEGIN
  0-> ...
  1-> ...
END;

If you omit the OTHERWISE clause and selector is out of range (negative or greater than n),
a divide-by-zero instruction trap occurs.

Example 151 Unlabeled CASE Statement

INT selector;
INT var0;
INT var1;
CASE selector OF
BEGIN
  var0 := 0;             ! Executes if selector=0
  var1 := 1;             ! Executes if selector=1
  OTHERWISE
    CALL error_handler;  ! Executes if selector is not 0 or 1
END;

Example 152 (page 210) selectively moves one of several messages into an array.

Example 152 Unlabeled CASE Statement Assigning Text to Array

PROC msg_handler (selector);
  INT selector;
BEGIN
  LITERAL len = 80;            ! Length of array
  STRING .a_array[0:len - 1];  ! Destination array
  CASE selector OF
  BEGIN                        ! Move statements
    !0! a_array ':=' "Training Program";
    !1! a_array ':=' "End of Program";
    !2! a_array ':=' "Input Error";
    !3! a_array ':=' "Home Terminal Now Open";
    OTHERWISE
        a_array ':=' "Bad Message Number";
  END;                         ! End of CASE statement
END;                           ! End of procedure

DO-UNTIL
The DO-UNTIL statement is a posttest loop that repeatedly executes a statement until a specified
condition becomes true.

statement

is any statement described in this section.

210 Statements



condition

is either:
• A conditional expression

• An INT, INT(32), or FIXED arithmetic expression. If the result of the arithmetic expression
is not 0, condition is true. If the result is 0, condition is false.

If condition is false, the DO-UNTIL statement continues to execute. If condition is true,
the statement following the DO-UNTIL statement executes.

A DO-UNTIL statement always executes at least once (unlike the WHILE (page 232)).
In Example 153 (page 211), the DO-UNTIL statement loops through array_a, testing the content
of each element until an alphabetic character occurs.

Example 153 DO-UNTIL Statement

index := -1;
DO index := index + 1 UNTIL $ALPHA (array_a[index]);

In Example 154 (page 211), the DO-UNTIL statement loops through array_a, assigning a 0 to
each element until all the elements contain a 0.

Example 154 DO-UNTIL Statement

LITERAL limit = 9;
INT index := 0;
STRING .array_a[0:limit];y
DO
  BEGIN                   ! Compound statement to execute in
    array_a[index] := 0;  !  DO loop
    index := index + 1;
  END
UNTIL index > limit;      ! Condition for ending loop

The conditional expression cannot reference hardware indicators (<, <=, =, <>, >, >=, '<', '<=',
'=', '<>', '>', '>=', $OVERFLOW, and $CARRY). Only IF statements can test hardware indicators.
For more information, see Chapter 13 (page 234).
To use a hardware indicator’s value to control a DO-UNTIL loop, save the hardware indicator’s
value and either test the saved value (as in Example 155 (page 212)) or execute an explicit GOTO
statement to exit the loop (as in Example 156 (page 212)). Hardware indicators cannot appear in
the conditional expression of a DO-UNTIL statement.

DO-UNTIL 211



Example 155 DO-UNTIL Statement With Hardware Indicator

INT exit_loop;
...
exit_loop := FALSE;
DO
  BEGIN
    ...
    READ(...);
    IF <> THEN exit_loop := TRUE;
  END
UNTIL exit_loop;

Example 156 DO-UNTIL Statement With GOTO Statement

DO
  BEGIN
    ...
    READ(...);
    IF <> THEN GOTO out;
  END
UNTIL false;
out:
...

DROP
The DROP statement removes either a label (from the symbol table) or a temporary variable that
was created by the statement USE (page 232).

identifier

is the identifier of either a label or a temporary variable.

Dropping Labels
You can drop a label only if you have already declared the label or used it to label a statement.
Before you drop a label, be sure there are no further references to the label. If a GOTO statement
refers to a dropped label, a run-time error occurs. After you drop a label, you can, however, use
the identifier to label a statement preceding the GOTO statement that refers to the label.

Dropping Temporary Variables
When you no longer need a temporary variable, drop (remove) it by using a DROP statement.
After you drop a temporary variable, do not use its identifier without using a new USE statement
to assign a value to the temporary variable.
If you do not drop all temporary variables, the compiler automatically drops them when the
procedure or subprocedure completes execution.
If you reserve an temporary variable for a FOR loop, do not drop the temporary variable within
the scope of the loop.

FOR
The FOR statement is a pretest loop that repeatedly executes a statement while incrementing or
decrementing an index automatically.

212 Statements



index

is a value that increments or decrements automatically.
In Standard (page 214), index is the identifier of an INT or INT(32) simple variable, array element,
simple pointer, or structure data item.
In Optimized (page 214), index is the identifier of an index register you have reserved with the
USE (page 232).
initial-value

is an arithmetic expression (such as 0) that initializes index. If index is INT, initial-value
is INT. If index is INT(32), initial-value is INT(32).

TO

increments index each time the loop executes until index is greater than or equal to limit,
at which point the loop stops.

DOWNTO

decrements index each time the loop executes until index is less than or equal to limit,
at which point the loop stops.

limit

is an arithmetic expression that terminates the loop. If index is INT, initial-value is
INT. If index is INT(32), initial-value is INT(32).

step

is an arithmetic expression by which to increment or decrement index each time the loop
executes. If index is INT, then step is INT; otherwise, index is INT(32). The default is 1.

statement

is any statement described in this section.
The FOR statement tests index at the beginning of each iteration of the loop. If index exceeds
limit on the first test, the loop never executes.
Topics:

• Nested (page 213)

• Standard (page 214)

• Optimized (page 214)

Nested
You can nest FOR statements to any level.
The nested FOR statement in Example 157 (page 214) uses multiples as a two-dimensional
array. It fills the first row with multiples of 1, the next row with multiples of 2, and so on.

FOR 213



Example 157 Nested FOR Statement

INT .multiples[0:10*10-1];
INT row;
INT column;
FOR row := 0 TO 9 DO
  FOR column := 0 TO 9 DO
    multiples [row * 10 + column] := column * (row + 1);

Standard
For index, standard FOR statements specify an INT or INT(32) variable. Standard FOR statements
execute as follows:

• When the looping terminates, index is greater than limit if:
The step value is 1.◦

◦ You use the TO keyword (not DOWNTO).

◦ The limit value (not a GOTO statement) terminates the looping.

• limit and step are recomputed at the start of each iteration of the statement.
The standard FOR statement in Example 158 (page 214) uses the DOWNTO clause to reverse a
string from "BAT" to "TAB".

Example 158 Standard FOR Statement

LITERAL len = 3;
LITERAL limit = len - 1;
STRING .normal_str[0:limit] := "BAT";
STRING .reversed_str[0:limit];
INT index;
FOR index := limit DOWNTO 0 DO
  reversed_str[limit - index] := normal_str[index];

Optimized
For index, an optimized FOR statement specifies a temporary variable created by the statement
USE (page 232). Optimized FOR statements execute faster than standard FOR statements because
limit is computed only once, at the start of the first iteration of the statement.

Example 159 Standard and Optimized FOR Statements

INT x;
INT y;
INT PROC f;
BEGIN
  x := x + 1;
  RETURN 10;
END;

INT PROC p1;                  ! p1 has standard FOR statement
BEGIN
  INT i;
  x := 0;
  FOR i := 1 to f() DO ... ;  ! f is called 10 times
                              ! i=11 here
  RETURN x;                   ! p1 returns 10
END;

INT PROC q;
BEGIN
  x := y + 1;

214 Statements



  RETURN 10;
END;

INT PROC p2;                  ! p2 has optimized FOR statement
BEGIN
  USE i;
  y := 0;
  FOR i := 1 to q() DO ... ;  ! q is called 1 time
                              ! i=10 here
  RETURN x;                   ! p2 returns 1
END;

GOTO
The GOTO statement unconditionally transfers control to a labeled target statement.

label-name

is the label that precedes the target statement (see Labels in Procedures (page 273)).
A GOTO statement can be either local or nonlocal.
Topics:

• Local (page 215)

• Nonlocal (page 215) (not recommended)

• GOTO and Target Statements With Different Trapping States (page 216)

Local
If the GOTO statement and the target statement are in the same procedure or in the same
subprocedure, the GOTO statement is local.

Example 160 Local GOTO Statement

PROC p
BEGIN
  LABEL calc_a;   ! Declare local label
  INT a;
  INT b := 5;
  calc_a :        ! Place label at local statement
  a := b * 2;
  ! Lots of code
  GOTO calc_a;    ! Local branch to local label
END;

Nonlocal

NOTE: Nonlocal GOTO statements are inefficient and not recommended.

If the GOTO statement is in a subprocedure and the target statement is in the enclosing procedure,
the GOTO statement is nonlocal.

Example 161 Nonlocal GOTO Statement

int global_var;
proc p;
begin

GOTO 215



  int   i;
  label L1;
  int subproc s (x);
    int (x);
  begin
    label L2:
    if x = 0 then goto L1;   ! Nonlocal goto
    if x > 10 goto L2;       ! Local goto
    return 1;
    L2: return x;
  end;
  i := s (global_var);
  if i <> 1 then goto L1;    ! Local goto
  ! Processing occurs here
  L1:
end;

GOTO and Target Statements With Different Trapping States
A GOTO statement, local or nonlocal, must have the same trapping state as its target statement.

Example 162 Local GOTO and Target Statements That Have Different Trapping States

proc p nooverflow_traps;
begin
  subproc s overflow_traps;
  begin
    goto L1;  ! Illegal trapping states differ
end;
L1:
end;

If a GOTO statement and the target statement are in different BEGIN-END blocks:

• You must declare the target label in a LABEL declaration in the containing procedure.

NOTE: LABEL is an invalid data type for a formal parameter. You cannot pass a label as
an actual parameter.

• Overflow trapping must be enabled in both blocks or disabled in both blocks. The respective
overflow trapping states can be established by compiler directive, by procedure attribute, or
by BEGIN-END block attribute.

• A GOTO statement in a BEGIN-END block that does not specify a block-level trapping attribute
cannot branch to a label in a BEGIN-END block in which a block-level trapping attribute is
specified.

The compiler uses attributes on BEGIN-END blocks to determines whether a GOTO within one
BEGIN-END block can branch to a label in another BEGIN-END block.
For more information, see Chapter 13 (page 234).

Example 163 Nonlocal GOTO and Target Statements That Have Different Trapping States

PROC p OVERFLOW_TRAPS;
BEGIN
  INT i := 0;
  label_a:            ! Overflow traps are enabled at label_a
  i := i + 1;
  IF i < 10 THEN
    GOTO label_a      ! OK: Traps enabled here and at label_a
  ELSE
    BEGIN:ENABLE_OVERFLOW_TRAPS
      GOTO label_a;   ! OK: Branch from block with traps

216 Statements



      IF i <> 1 THEN  !  specified
        BEGIN
          label_b: ...
        END;
    END;
    BEGIN:DISABLE_OVERFLOW_TRAPS
      GOTO label_b;   ! ERROR: Cannot branch between blocks
    END;              !  that have different trapping states
    BEGIN
      GOTO label_b;   ! ERROR: Cannot branch from a BEGIN-END
    END;              !  block that does not specify a trapping
END;                  !  attribute to a BEGIN-END block that
                      !  does 

IF
The IF statement conditionally selects one of two statements to execute.

condition

is either:
• A conditional expression whose value has 16 bits

• An INT, INT(32), or FIXED arithmetic expression. If the result of the arithmetic expression
is not 0, condition is true. If the result is 0, condition is false.

statement-1

specifies the statement to execute if condition is true. statement-1 can be any statement
described in this section. If you omit statement-1, no action occurs for the THEN clause.

statement-2

specifies the statement to execute if condition is false. statement-2 can be any statement
described in this section.

If the condition is true, statement-1 executes. If the condition is false, statement-2
executes. If no ELSE clause is present, the statement following the IF statement executes.
Example 164 (page 217) compares two arrays.

Example 164 IF Statement

INT .new_array[0:9];
INT .old_array[0:9];
INT item_ok;
IF new_array = old_array FOR 10 WORDS THEN
  item_ok := 1
ELSE
  item_ok := 0;

You can nest IF statements to any level.

IF 217



Topics:

• Testing Address Types (page 218)

• Testing Hardware Indicators (page 218)

Testing Address Types
An IF statement can test the following as if they were Boolean values:

• Any 16-bit-compatible value:
INT◦

◦ STRING

◦ UNSIGNED(1-16)

• All address-typed variables except:
CBADDR◦

◦ CWADDR

◦ PROCADDR

◦ PROC32ADDR

◦ PROC64ADDR

NOTE: The procedure address types, PROC32ADDR, and PROC64ADDR are available in
the 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Testing Hardware Indicators
pTAL does not have the hardware indicators—the overflow bit, the carry bit, or the condition
codes—that TAL has. Instead, the compiler emits code that supports the $OVERFLOW, $CARRY,
and condition code test operators (<, >, =, <=, >=, <>,'<', '>', '=', '<=', '>=', '<>').
For more information, see Chapter 13 (page 234).

Move
A move statement copies a block of data from one location in memory to another. You specify the
number of bytes, words, or elements to copy in the move statement. With PVU T9248AAD, you
can move any variable up to the current maximum allowed size for any object on a TNS/R platform
of 127.5 megabytes.
A value parameter cannot be the target of a move statement.

218 Statements



destination

the identifier, with or without an index, of the variable to which the copy operation begins. It
can be a simple variable, array, simple pointer, structure, structure data item, or structure
pointer, but not a read-only array.

=':='

specifies a left-to-right sequential move. It starts copying data from the leftmost item in source.
='=:'

specifies a right-to-left sequential move. It starts copying data from the rightmost item in source.
source

the identifier, with or without an index, of the variable from which the copy operation begins.
It can be a simple variable, array, read-only array, simple pointer, structure, structure data
item, or structure pointer.

count

is an unsigned INT arithmetic expression that defines the number of units in source to copy.
If you omit count-unit, the units copied (depending on the nature of the source variable)
are:

Units CopiedData TypeSource Variable

Bytes
Words

STRING
INT

Simple variable, array, simple
pointer (including structure item)

Doublewords
Quadruplewords

INT(32) or REAL
FIXED or REAL(64)

WordsNot applicableStructure

BytesNot applicableSubstructure

Bytes
Words

STRING 
INT 

Structure pointer

count-unit

is the value BYTES, WORDS, or ELEMENTS. count-unit changes the meaning of count
from that described previously to the following:

Copies count bytes. If both source and destination have word addresses,
BYTES generates a word move for (count + 1) / 2 words.

BYTES

Copies count words. (WORDS is 16 bits)WORDS

Move 219



Copies count elements as follows (depending on the nature of the source variable):ELEMENTS

Units CopiedData TypeSource Variable

BytesSTRINGSimple variable

WordsINTArray

Simple pointer (including
structure item)

DoublewordsINT(32) or REAL
QuadruplewordsFIXED or REAL(64)

Structure occurrencesNot applicableStructure

Substructure occurrencesNot applicableSubstructure

Structure occurrencesStructure Pointer (STRING
and INT have meaning

STRING
INT

only in group comparison
expressions and move
statements.)

If count-unit is not BYTES, WORDS, or ELEMENTS, the compiler issues an error. If you
specify BYTES, WORDS, or ELEMENTS for count-unit, that term cannot also appear as a
LITERAL or DEFINE identifier in the global declarations or in any procedure or subprocedure
in which the move statement appears.

constant

is a numeric constant, a character string constant, or a LITERAL to copy.
If you enclose constant in brackets ([ ]) and if destination has a byte address or is a
STRING structure pointer, the system copies constant as a single byte regardless of the size
of constant. If you do not enclose constant in brackets or if destination has a word
address or is an INT structure pointer, the system copies a word, doubleword, or quadrupleword
as appropriate for the size of constant.

constant-list

is a list of constants to copy. Specify constant-list in the form shown in Chapter 3
(page 46).

next-addr

is a variable to contain the location in destination that follows the last item copied. The
compiler returns a 16-bit, 32-bit, or 64-bit address as described in “Usage Considerations”
that follows.

&

is the concatenation operator. It lets you move more than one source or constant-list,
each separated by the concatenation operator.

Usage Considerations
The following rules apply to using MOVE statements:

• A value parameter cannot be the target of a move statement.

• The compiler reports a warning if it can determine that there are more bytes in the source of
the move than in the destination of the move (see Destination Shorter Than Source (page 222)).

• Built-in routines, $FILL8, $FILL16, and $FILL32, fill an array with repetitions of the same 8-bit,
16-bit, or 32-bit data, respectively (see $FILL8, $FILL16, and $FILL32 Statements (page 222)).

• If the type of address specified as the next-addr is an extended address, it must be able to
safely store the address value. For example,

220 Statements



Example 165

INT .EXT ea;
INT .EXT64 e64a;
INT .EXT64 n64a;
INT .EXT na;

e64a ‘:=’ ea FOR 10 words -> @n64a; ! OKAY
e64a ‘:=’ ea FOR 10 words -> @na;   ! Error: can’t store an address 
                                    ! of type EXT64ADDR in a variable of type EXTADDR

Example 166 (page 221) copies spaces into the first five elements of an array and then uses
next-addr as destination to copy dashes into the next five elements.

Example 166 MOVE Statement Copying to an Array

LITERAL len = 10;          ! Length of array
LITERAL num = 5;           ! Number of elements
STRING .array[0:len - 1];  ! Destination array
STRING .next_addr;         ! Next address simple pointer
array[0] ':=' num * [" "] -> @next_addr;
! Do first copy and capture next-addr
next_addr ':=' num * ["-"];
! Use next-addr as start of second copy

Example 167 (page 221) contrasts copying a bracketed constant with copying an unbracketed
constant. A bracketed constant copies a single byte regardless of the size of the constant. An
unbracketed constant copies words, doublewords, or quadruplewords depending on the size of
the constant.

Example 167 MOVE Statement Copying Bracketed and Unbracketed Constants

STRING x[0:8];
x[0] ':=' [0];  ! Copy one byte
x[0] ':=' 0;    ! Copy two bytes

Example 168 MOVE Statement Copying From One Structure to Another

LITERAL copies = 3;              ! Number of occurrences
STRUCT .s[0:copies - 1];         ! Source structure
BEGIN
  INT a, b, c;
END;
STRUCT .d (s) [0:copies - 1];    ! Destination structure
PROC p;
BEGIN
  d ':=' s FOR copies ELEMENTS;  ! Word move of three
END;                             !  structure occurrences

Example 169 MOVE Statement Copying a Substructure

LITERAL copies = 3;            ! Number of occurrences
STRUCT .s;
BEGIN
  STRUCT s_sub[0:copies - 1];  ! Source substructure
  BEGIN
    INT a, b;
  END;
END;
STRUCT .d (s);                 ! Destination substructure
                               !  is within structure d

PROC p;

Move 221



BEGIN
  d.s_sub ':=' s.s_sub FOR copies ELEMENTS;  !Byte move of three
END;                                         ! substructure
                                             ! occurrences

Destination Shorter Than Source
The compiler reports a warning when it can detect that there are more bytes in the source of a
move than in the destination of the move. For example, if the number of bytes to move is a constant
or constant expression whose value is larger than the number of bytes in the destination. The
compiler does not report a warning if the destination is:

• A global variable

• A reference parameter

• An array or an element of an array
If the number of bytes to move is a dynamic expression, the compiler reports a warning only if the
number of bytes in the source is greater than the number of bytes in the destination. It cannot detect
whether the number of bytes to move is too large.

Example 170 MOVE Statement With Destination Shorter Than Source

INT g;
INT(32) m;
PROC p( r );
  INT .r;

BEGIN
  FIXED f;
  INT n[0:9];
  INT i;
  g    ':=' f FOR 8 BYTES;  ! OK: g is global
  n    ':=' m FOR 8 BYTES;  ! OK: n is an array
  n[3] ':=' m FOR 8 BYTES;  ! OK: n is an array element
  r    ':=' m FOR 8 BYTES;  ! OK: r is a reference param
  i    ':=' m FOR 8 BYTES;  ! Warning
END;

$FILL8, $FILL16, and $FILL32 Statements
pTAL provides the built-in routines $FILL8, $FILL16, and $FILL32, which fill a data area with
repetitions of the same 8-bit, 16-bit, or 32-bit value, respectively. This operation is sometimes
referred to as a “smear.”

Example 171 FILL16 Statement

$FILL16(a, a_size, 0);

For more information, see $FILL8, $FILL16 and, $FILL32 in Chapter 15 (page 274).

222 Statements



Variables (including structure data items) are byte addressed or word addressed as follows:

Byte addressed • STRING simple variables

• STRING arrays

• Variables to which STRING simple pointers point

• Variables to which STRING structure pointers point

• Substructures

Word addressed • INT, INT(32), FIXED, REAL, or REAL(64) simple variables

• INT, INT(32), FIXED, REAL, or REAL(64) arrays

• Variables to which INT, INT(32), FIXED, REAL, or REAL(64) simple pointers point

• Variables to which INT structure pointers point

• Structures

After a move, next-addr might point to the middle of an element, rather than to the beginning
of the element. If destination is word addressed and source is byte addressed and you
copy an odd number of bytes, next-addr will not point to an element boundary.

RETURN
A RETURN statement causes a procedure or function to return control to its caller. When you return
from a function, the RETURN statement also specifies a value to return to the function’s caller.

NOTE:
• In the discussion of the RETURN statement, the word “procedure” implies both procedures

and subprocedures but not functions.
• The EpTAL compiler issues a warning whenever a pTAL procedure returns both a

result-expression and a cc-expression and has the procedure attribute RETURNSCC
(see Procedure Attributes (page 248)). The reason for this warning is in Appendix D (page 528).

cc-expression

is an INT expression whose numeric value specifies the condition code value to return to the
caller:

The condition code is set to ...Value of cc-expression

Less than (<)Less than 0

Equal (=)Equal to 0

Greater than (>)Greater than 0

Specify cc-expression in RETURN statements only in functions and procedures that specify
the attribute RETURNSCC (see Procedure Attributes (page 248)).

RETURN 223



result-expression

is an arithmetic or conditional expression that a function must return to the caller.
result-expression must be of the same return type as the data type specified in the
function header. The data type of a conditional expression is always INT. Specify
result-expression only when returning from a function.
If result-expression is any type except FIXED or REAL(64), a function can return both
result-expression and cc-expression.

Topics:

• Functions (page 224)

• Procedures and Subprocedures (page 225)

• Condition Codes (page 225)

Functions
Every function must include at least one RETURN statement. The compiler does not verify that every
path through a function’s code includes a RETURN statement; therefore, a function can reach the
end of its code without executing a RETURN statement. If this happens, the function returns zero.
Functions that return a condition code that is not based on the value returned by the function must
specify explicitly the condition code value to return to the function’s caller.

Example 172 RETURN Statements Nested in an IF Statement

INT PROC other (nuff, more);  ! Function with return type INT
  INT nuff;
  INT more;
BEGIN
  IF nuff < more THEN         ! IF statement
    RETURN nuff * more        ! Return a value
  ELSE
    RETURN 0;                 ! Return a different value
END;

Example 173 RETURN Statement That Returns a Value and a Condition Code

INT PROC p (i);
  INT i;
BEGIN
  RETURN i, i - max_val;  ! Return a value and a condition code
END;

If you call a function, rather than calling it in an expression, you can test the returned condition
code, as Example 174 (page 224) does.

Example 174 Testing a Condition Code

INT PROC p1 (i);
  INT i;
BEGIN
  RETURN i;
END;

INT PROC p2 (i);
  INT i;
BEGIN
  INT j := i + 1;
  RETURN i, j;
END;

224 Statements



CALL p1 (i);
IF < THEN ... ;  ! Test return value
CALL p2 (i);
IF < THEN ... ;  ! Test condition code

Procedures and Subprocedures
In procedures and subprocedures that are not functions, a RETURN statement is optional. A
nonfunction procedure or subprocedure that returns a condition code value, however, must return
to the caller by executing a RETURN statement that includes cc-expression.
In a procedure designated MAIN, a RETURN statement stops execution of the procedure and
passes control to the operating system.
Procedures that return a condition code must specify explicitly the value of the condition code to
return to the procedure’s caller. In general, a procedure or subprocedure returns control to the
caller when:

• A RETURN statement is executed.

• The called procedure or subprocedure reaches the end of its code.

Example 175 RETURN Statement in a Procedure

PROC something;
BEGIN
  INT a,
      b;
  ! Manipulate a and b
  IF a < b THEN
    RETURN;             ! Return to caller
  ! Lots more code
END;

The procedure in Example 176 (page 225) returns a condition code that indicates whether an add
operation overflows.

Example 176 RETURN Statement in a Procedure That Returns a Condition Code

PROC p (s, x, y) RETURNSCC;
  INT .s, x, y;
BEGIN
  INT cc_result;
  INT i;
  i := x + y;
  IF $OVERFLOW THEN cc_result := 1
               ELSE cc_result := 0;
  s := i;
  RETURN cc_result;  ! If overflow, condition code is >;
END;                 !  otherwise, it is =

Condition Codes
A procedure (but not a function) returns a condition code only if the procedure declaration includes
the RETURNSCC attribute. The compiler reports an error if a procedure attempts to test the condition
code after calling a procedure that does not specify RETURNSCC.

RETURN 225



Example 177 Procedure Without RETURNSCC

PROC p;
BEGIN
END;
PROC q;
BEGIN
  CALL p;
  IF < THEN ...  ! ERROR: p did not return a condition code
                 !  or a return value
END;

Example 178 (page 226) is similar to Example 177 (page 226), but is syntactically correct because
p specifies RETURNSCC and returns a condition code value.

Example 178 Procedure With RETURNSCC

PROC p RETURNSCC;
BEGIN
  INT i;
  ...

  RETURN i;
END;

PROC q;
BEGIN
  CALL p;
  IF < THEN ...  ! OK: p returns a condition code
END;

Functions that do not specify RETURNSCC return a condition code that is based on the numeric
value returned by the function, regardless of the nature of the expression in the RETURN statement.

Example 179 Function Without RETURNSCC

INT PROC p(i);
  INT i;
BEGIN
  RETURN IF i = 0 THEN -1      ! Returns a condition code
         ELSE IF i = 1 THEN 0  ! based on the value returned
         ELSE 1
END;

Functions can return a condition code that is independent of the value returned by the function, as
follows:

• The function declaration must specify the RETURNSCC attribute.

• Each RETURN statement in the function must specify the value of the condition code.

226 Statements



Example 180 Function With RETURNSCC

INT i;
BEGIN
  INT cc_result;
  ...
  cc_result :=
  IF i < max_val THEN -1
  ELSE
    IF i = max_val THEN 0
    ELSE 1;
  RETURN i, cc_result;  ! Return a function value and a
END;                    !  condition code that indicates
                        !  whether the function value is
                        !  less than, equal to, or
                        !  greater than some maximum

NOTE: The EpTAL compiler issues a warning whenever a pTAL procedure returns both a traditional
function value and a condition code value. For details, see Appendix D (page 528).

A function or procedure that specifies RETURNSCC must include cc-expression on every
RETURN statement. Conversely, specify cc-expression in RETURN statements only in functions
and procedures that specify RETURNSCC.
You can test the condition code returned by a function, even if you call the function in a CALL
statement.

Example 181 Condition Code Returned by Function Called by CALL Statement

INT PROC p1(i);
INT i;
BEGIN
  RETURN i;
END;
INT PROC p2(i) RETURNSCC;
INT i;
BEGIN
  INT j := i + 1;
  RETURN i, j;
END;
CALL p1(1);
IF < THEN ...
CALL p2(1);
IF < THEN ...

NOTE: The EpTAL compiler issues a warning whenever a pTAL procedure returns both a traditional
function value and a condition code value. For details, see Appendix D (page 528).

RETURN 227



Example 182 Condition Code Based on Numeric Value

INT PROC p(i);
INT i;
BEGIN
  ...
  RETURN i;  ! Return i and set the condition code
END;         !  based on the numeric value of i

Example 183 Condition Code That Is Independent of the Function’s Value

INT PROC p(i) RETURNSCC;
INT i;
BEGIN
  ...
  RETURN i, f(i);  ! Return the value of i and set the
END;               !  condition code according to the
                   !  value returned by function f

NOTE: The EpTAL compiler issues a warning whenever a pTAL procedure returns both a traditional
function value and a condition code value. For details, see Appendix D (page 528).

Example 184 Invalid Function That Attempts to Return an Explicit Condition Code

INT PROC p(i);
INT i;
BEGIN
  ...
  RETURN i, f(i);  ! ERROR: Cannot specify an explicit 
END;               !  condition code because procedure
                   !  header does not specify RETURNSCC

SCAN and RSCAN
The SCAN and RSCAN statements search a scan area for a test character from left to right or from
right to left, respectively.
The scan variable in an RSCAN or SCAN statement can be a pointer declared with the .EXT, .
EXT32, or .EXT64 indirection symbol.

NOTE: The “Indirection Symbols” (page 41), .EXT32 and .EXT64 are available in the 64-bit
addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

SCAN

indicates a left-to-right search.
RSCAN

indicates a right-to-left search.

228 Statements



variable

is the identifier, with or without an index, of a variable at which to start the scan. The following
restrictions apply:
• The variable can be a simple variable, array, read-only array, simple pointer, structure

pointer, structure, or structure data item.
• The variable can be of any data type but UNSIGNED.

• The variable cannot have extended indirection.
WHILE

specifies that the scan continues until a character other than test-char occurs or until a 0
occurs. A scan stopped by a character other than test-char resets $CARRY. A scan stopped
by a 0 sets $CARRY.

UNTIL

specifies that the scan continues either until test-char occurs or until a 0 occurs. A scan
stopped by test-char resets the hardware carry bit. A scan stopped by a 0 sets the hardware
carry bit.

test-char

is an INT arithmetic expression whose value is a maximum of eight significant bits (one byte).
A larger value might cause execution errors.

next-addr

is a variable of address type BADDR, SGXBADDR, SGBADDR, EXTADDR, EXT32ADDR, or
EXT64ADDR. If the source for the scan uses standard (non-extended) addressing, the next-address
variable must have the type BADDR.

NOTE: The address types, EXT32ADDR and EXT64ADDR are available in the 64-bit addressing
functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

Delimit the scan area with zeros; otherwise, a scan operation might continue to pass all valid data
if either:

• A SCAN UNTIL operation does not find a zero or the test character.

• A SCAN WHILE operation does not find a zero or a character other than the test character.
To delimit the scan area, you can specify zeros as follows:

INT .buffer[-1:10] := [0,"  John James Jones  ",0];

Example 185 (page 229) converts the word address of an INT array to a byte address. The
assignment statement stores the resulting byte address in a STRING pointer. The SCAN statement
then scans the bytes in the array until it finds a comma.

Example 185 SCAN UNTIL Statement

INT .words[-1:3] := [0,"Doe, J",0];
STRING .byte_ptr := @words[0] '<<' 1;  ! Initialize with byte
                                       !  address of words[0]
SCAN byte_ptr[0] UNTIL ",";            ! Scan bytes in words

Topics:

• Determining What Stopped a Scan (page 230)

• Extended Pointers (page 230)

• Crossing Variable Boundaries (page 230)

• P-Relative Arrays (page 231)

SCAN and RSCAN 229



Determining What Stopped a Scan
To determine what stopped a scan, test $CARRY in an IF statement immediately after the SCAN
or RSCAN statement.

Example 186 Determining What Stopped a Scan

IF $CARRY THEN ... ;      ! If test character not found
IF NOT $CARRY THEN ... ;  ! If test character found

If $CARRY is true after a SCAN UNTIL, the test character did not occur. If $CARRY is true after
SCAN WHILE, a character other than the test character did not occur.
To determine the number of multibyte elements processed, divide (next-addr '-' byte address of
identifier ) by the number of bytes per element using unsigned arithmetic.
For more information about $CARRY, see Chapter 13 (page 234).

Extended Pointers

Example 187 Extended Pointers in SCAN and RSCAN Statements

STRING .EXT eas;
STRING .EXT eat;
EXTADDR ea;
STRING .EXT32 e32as;
STRING .EXT32 e32at;
EXT32ADDR e32a;
STRING .EXT64 e64as;
STRING .EXT64 e64at;
EXT64ADDR e64a;
SCAN eas until " " -> @eat;     ! OK
SCAN eas until " " -> ea;       ! OK
SCAN e32as until " " -> @e32at; ! OK
SCAN e32as until " " -> e32a;   ! OK
SCAN e64as until " " -> @e64at; ! OK
SCAN e64as until " " -> e64a;   ! OK

NOTE: EXT32ADDR, EXT64ADDR, .EXT32, and .EXT64 are 64-bit addressing functionality added
to the EpTAL compiler starting with SPR T0561H01^AAP. For more information, see Appendix E,
“64-bit Addressing Functionality” (page 531).

Crossing Variable Boundaries
SCAN and RSCAN statements can access data contained within single named variables or arrays
as long as the scan encounters either the target character specified in the SCAN or RSCAN
statement or a 0 byte before it reaches the end of the named variable or array.
SCAN and RSCAN statements that depend on accessing data that precedes or follows the variable
named in the SCAN or RSCAN statement do not work.
Topics:

• Data Layout Considerations (page 231)

• Data Passed to Procedures in Reference Parameters (page 231)

230 Statements



Data Layout Considerations

Example 188 Scanning Adjacent Fields Within a Structure

STRUCT s FIELDALIGN(SHARED2);
BEGIN
  STRING buffer[0:99];
  STRING stopper;
END;
BADDR end_addr;
...
s.stopper := 0;
SCAN s.buffer UNTIL char -> end_addr;
IF end_addr = @s.stopper THEN  ! Target character was not found
  BEGIN
    ...
  END;

Data Passed to Procedures in Reference Parameters
The rules in of the preceding subsection about data layouts apply if the buffer scanned in a SCAN
statement is a reference parameter.

P-Relative Arrays
The address type of pointers in a SCAN statement that scans a P-relative array must be CBADDR
or CWADDR.
When the SCAN statement in Example 189 (page 231) completes, t_start points to the first
character in the third message, and t_end points immediately after the last character in the third
message. The object data type of t_start and t_end is STRING; therefore, their address type
is BADDR.

Example 189 Scanning Data in a P-Relative Array

STRING s = 'P' :=            ! STRING P-relative array s
  [ 1,  "msg1.",
    2,  "msg2.",
    3,  "msg3.",
    0 ];
STRING  .t_start,            ! Start address of msg
        .t_end;              ! End address of msg
INT      c := 3,             ! Value to scan for in s
         z := ".";           ! Value to stop the scan
SCAN s UNTIL c -> @t_start;  ! Scan s for c and store c's
                             !  address in t_start
@t_start := @t_start '+' 1;  ! Skip c
SCAN s[@t_start '-' @s]
  UNTIL z -> @t_end;         ! Find end of message

In Example 190 (page 231), the data type of t_start and of t_end is CBADDR. The object data
type of s is STRING. Its address type is CBADDR, not BADDR; therefore, you can subtract @s from
t_start because the data types of both are CBADDR.

Example 190 Scanning Data in a P-Relative Array

STRING s = 'P' := [         ! STRING P-relative array s
     1,  "msg1.",
     2,  "msg2.",
     3,  "msg3.",
     0 ];
CBADDR   t_start,           ! Start address of msg
         t_end;             ! End address of msg

SCAN and RSCAN 231



INT      c := 3,            ! Value to scan for in s
         z := -1;           ! Value to stop the scan?
SCAN s UNTIL c -> t_start;  ! Scan s for c and store c's
                            !  address in t_start
t_start := t_start '+' 1;   ! Skip character in c
SCAN s[t_start '-' @s]
  UNTIL z -> t_end;         ! Find end of message

USE
The USE statement creates a temporary variable.

identifier

is the name of the temporary variable being created.
A temporary variable that the USE statement creates:

• Is equivalent to a variable declared INT

• Is usually kept in a register

• Exists until either:
You drop it with the statement DROP (page 212) (recommended)◦

◦ The procedure that creates it ends

WHILE
The WHILE statement is a pretest loop that repeatedly executes a statement while a specified
condition is true.

condition

is either:
• A conditional expression

• An INT, INT(32), or FIXED arithmetic expression. If the result of the arithmetic expression
is not 0, condition is true. If the result is 0, condition is false.

statement

is any pTAL statement.
The WHILE statement tests the condition before each iteration of the loop. If the condition
is false before the first iteration, the loop never executes.
Hardware indicators cannot appear in the conditional expression of a WHILE statement.

232 Statements



Example 191 WHILE Statement

LITERAL len = 100;
INT .array[0:len - 1];
INT item := 0;
WHILE item < len DO
  BEGIN
    array[item] := 0;
    item := item + 1;
  END;
! item equals len at this point

The WHILE statement in Example 192 (page 233) increments index until a nonalphabetic character
occurs.

Example 192 WHILE Statement

LITERAL len = 255;
STRING .array[0:len - 1];
INT index := -1;
WHILE (index < len - 1) AND
      ($ALPHA(array[index := index + 1]))
DO ... ;

WHILE 233



13 Hardware Indicators
Table 56 Hardware Indicators

MeaningRepresentationHardware Indicator

$OVERFLOWOverflow bit

$CARRYCarry bit

Less than< or ‘<’Condition code

Greater than> or ‘>’

Equal= or ‘=’

Less than or equal<= or ‘<=’

Greater than or equal>= or ‘>=’

Not equal<> or ‘<>’

In TNS architecture, a “hardware indicator” is one of three fields of the environment (ENV) register.

Topics:

• Managing Overflow Traps (page 234)

• Hardware Indicators After Assignments (page 236)

• Hardware Indicators in Conditional Expressions (page 239)

• Nesting Condition Code Tests (page 242)

• Using Hardware Indicators Across Procedures (page 244)

Managing Overflow Traps
pTAL provides a “static T flag” with which you specify whether traps are enabled or disabled at
any point in your program. You manipulate the static T flag with:

CommentScopeDirective or Attribute

OVERFLOW_TRAPS is the defaultCompilation unitOVERFLOW_TRAPS

Overrides the [NO]OVERFLOW_TRAPS
directive

Procedure or subprocedure[NO]OVERFLOW_TRAPS Procedure
Attribute

Overrides both the
[NO]OVERFLOW_TRAPS directive and

Block[EN|DIS]ABLE_OVERFLOW_TRAPS
Block Attribute

the [NO]OVERFLOW_TRAPS procedure
attribute

The directives and attributes active when a pTAL statement is compiled determine the overflow
trapping state of the code that the compiler generates for that statement. A procedure does not
inherit the trapping state of its caller.

[NO]OVERFLOW_TRAPS Procedure Attribute
The OVERFLOW_TRAPS and NOOVERFLOW_TRAPS procedure attributes specify the default
overflow trapping behavior for a procedure or subprocedure (see Procedure Attributes (page 248)).
The OVERFLOW_TRAPS and NOOVERFLOW_TRAPS procedure attributes override the current
setting of the directive OVERFLOW_TRAPS (page 508).

234 Hardware Indicators



Example 193 OVERFLOW_TRAPS Compiler Directive and Procedure Attribute

?OVERFLOW_TRAPS               ! Enable traps
PROC x NOOVERFLOW_TRAPS;      ! Disable traps for x
BEGIN
  ...
END;
PROC y;                       ! Traps for y are still enabled
BEGIN
  ...
END;
PROC z NOOVERFLOW_TRAPS;      ! Disable traps for z
BEGIN
   SUBPROC s OVERFLOW_TRAPS;  ! Enable traps for s
   BEGIN
    ...
   END;
   ...
   s;
   ...                        ! Traps for z are still disabled
END;                          !  upon return from s

[EN|DIS]ABLE_OVERFLOW_TRAPS Block Attribute
The ENABLE_OVERFLOW_TRAPS and DISABLE_OVERFLOW_TRAPS block attributes establish the
trapping state of a block, regardless of the trapping state of the procedure’s or subprocedure’s
caller or of the code surrounding the block.

Example 194 ENABLE_OVERFLOW_TRAPS and DISABLE_OVERFLOW_TRAPS Block Attributes

PROC p;
BEGIN: ENABLE_OVERFLOW_TRAPS     ! Enable traps for block
  ...
END;
PROC q;
BEGIN
  SUBPROC q1;
  BEGIN: DISABLE_OVERFLOW_TRAPS  ! Disable traps for block
    ...
  END;
  ...
END;
PROC r;
BEGIN: ENABLE_OVERFLOW_TRAPS
  CALL p;                        ! Call p with traps enabled
END;
PROC s;
BEGIN: DISABLE_OVERFLOW_TRAPS
  CALL p;                        ! Call p with traps disabled
END;   

Managing Overflow Traps 235



Hardware Indicators After Assignments
Topics:

• $OVERFLOW (page 236)

• $CARRY (page 236)

• Condition Codes (page 237)

$OVERFLOW
After every assignment statement, the compiler generates code that tests for overflow if either:

• Overflow traps are enabled

• All of the following conditions are true:
Overflow traps are disabled.◦

◦ The root operator is one of the following:
Negation (unary -), +, -, *, /, '/'–

– $DBL of an INT, FIXED, REAL, or REAL(64) value

– $DBLR of an INT, FIXED, REAL, or REAL(64) value

– $FLTR of a REAL(64) value

– $FIX of a REAL or REAL(64) value

– $FIXD

– $FIXI

– $FIXL

– $FIXR of a REAL or REAL(64) value

– $INT of a FIXED, REAL, or REAL(64) value

– $INTR of a FIXED, REAL, or REAL(64) value

– $FIXEDTOASCII

– $SCALE for which 1 <= exponent <= 4

◦ The next statement is an IF statement that tests $OVERFLOW.

$CARRY
You can test $CARRY if the root operator is one of the following:

• Signed integer addition or subtraction
INT i, j, k;
i := j + k;    ! $CARRY can be tested after this statement
i := j - k;    ! $CARRY can be tested after this statement

• Unsigned integer addition or subtraction
INT i, j, k;
I := j '+' k;  ! $CARRY can be tested after this statement
I := j '-' k;  ! $CARRY can be tested after this statement

• Unary minus
INT i;
i := -i;       ! $CARRY can be tested after this statement

236 Hardware Indicators



Condition Codes
When the condition code is accessible following an assignment statement, the numeric value of
the evaluated expression on the right side of the assignment statement determines the value of the
condition code.
Topics:

• When Condition Codes Are Accessible (page 237)

• Typed Integer Constants (page 44)

When Condition Codes Are Accessible
The condition code is accessible after an assignment statement only if:

• The right side of the assignment statement is not:
A 1-byte item:◦
STRING s;
INT i;
i := s;  ! Condition code is not accessible

◦ A call to a built-in routine (for a list of these, see Table 58 (page 276)):
I := $ABS(i);  ! Condition code is not accessible

◦ An expression whose value is an address type (for example, WADDR or EXTADDR):
INT i;
INT .p;
@p := @i;  ! Right side is a WADDR value;
           !  condition code is not accessible

◦ An expression whose value is a floating-point data type [REAL or REAL(64)]:
REAL r := 1.0E0;
r := r + 1.0E0;   ! Right side is a floating-point number;
                  !  condition is code not accessible

◦ A constant or constant expression:
INT a;
a := 2 << 3;      ! Right side is a constant expression;
                  !  condition is code not accessible

• None of the exceptions in When Condition Codes Are Not Accessible apply

When Condition Codes Are Not Accessible
The following exceptions override the conditions in When Condition Codes Are Accessible
(page 237):

• If the last operation on the right side of an assignment statement is a function call, these rules
apply:
◦ If the function specifies the RETURNSCC attribute, you can test the condition code following

the assignment statement, independent of the data type of the value returned by the
function.

◦ The numeric value returned by the function always determines the value of the condition
code.

◦ If the right side of an assignment statement is an INT function, the condition code is
determined by the INT value returned by the function. The value returned is always an
INT, even if the expression in the function’s RETURN statement is a byte value. The byte
value is not sign-extended.
INT PROC p;
BEGIN

Hardware Indicators After Assignments 237



  RETURN "A";  ! P is an INT function but the
END;           !  expression in the RETURN statement
               !  yields a single byte
BEGIN
PROC p1;
  INT i;
  i := p;      ! Condition code is accessible because
END;           !  p returns an INT value

The left side of the assignment statement must be one of:

◦ A local or sublocal simple variable:
PROC p;
BEGIN
  INT i;       ! Declare a local simple variable
  i := i + 1;  ! Condition code accessible
END;

◦ The address cell of a local pointer:
INT i;
INT .ptr;      ! Declare a local pointer
@ptr := f(i);  ! Condition code is accessible if
               !  f specifies RETURNSCC

◦ A value parameter:
PROC p (param);
  INT param;   ! Value parameter
BEGIN
  INT i := 0;
  param := i;  ! Condition code is accessible
END;

• The left side of the assignment statement cannot be:
A STRING variable:◦
STRING s;
s := "a";  ! Condition code is not accessible

◦ An UNSIGNED(n) variable:
UNSIGNED(12) u;
u := %HFFF;      ! Condition code is not accessible

◦ A global variable:
INT g;
PROC p;
BEGIN
  INT i := 0;
  g := i;      ! Condition code is not accessible
END;

◦ A pointer:
INT .p;
INT i := 0;
p := i;        ! Condition code is not accessible

◦ A variable containing indexing, field selection, or bit selection:
STRUCT s;
BEGIN
  INT f;
END;

INT a[0:9];
INT i;
s.f := i;      ! Field selection: condition code is

238 Hardware Indicators



               !  not accessible
a[9] := i;     ! Index: condition code is not accessible
i.<3:5> := a;  ! Bit Selection: condition code is
               !  not accessible

Example 195 Assignments After Which You Can Test Condition Codes

INT m;

PROC p(x, y);
  INT      x;
  INT     .y;
BEGIN
  INT      a[0:9];
  INT      i;
  INT .EXT k;
  INT(32)  j;
  STRING   str;
  REAL     r;
  EXTADDR SUBPROC f(x) RETURNSCC;
    INT x;
  BEGIN
    RETURN %200000D, x;
  END;

 STRUCT s;
  BEGIN
    INT s1[0:4];
    INT s2;

  END;

  i := k;          ! OK: Left and right sides are simple
  i := i + 1;      ! OK: Left and right sides are simple
  x := x + 1;      ! OK: Left side is value parameter,
                   !  right side is INT
  @k := f(0);      ! OK: Left side is pointer cell,
                   !  right side is RETURNSCC function
  y := i + 1;      ! ERROR: Left side is reference parameter
  a[i] := a[i+1];  ! ERROR: Left side has index
  s.s1[0] := i;    ! ERROR: Left side has field and index
  s.s2    := i;    ! ERROR: Left side has field reference
  i.<0:8> := i;    ! ERROR: Left side has bit selection
  i := str;        ! ERROR: Right side is 1-byte item
  i := $ABS(i);    ! ERROR: Right side is call to 
                   !  built-in routine
  @k := @k + 1D;   ! ERROR: Right side is address type
  r := r + 1.0E0;  ! ERROR: Right side is floating-point type
END;  

Hardware Indicators in Conditional Expressions
Hardware indicators can appear in conditional expressions in these statements:

• DO-UNTIL (page 210)
The last statement in the DO-UNTIL statement must set the hardware indicator. The last statement
can be nested in a BEGIN...END statement. See Example 196 (page 240).

• IF (page 217)
These are valid references to hardware indicators:

Hardware Indicators in Conditional Expressions 239



IF $OVERFLOW THEN ...
IF $CARRY THEN ...
IF < THEN ...

• WHILE (page 232)
Both the statement preceding the WHILE statement and the last statement in the WHILE statement
must set the condition code indicator. See Example 197 (page 240).

Example 196 Hardware Indicators in DO-UNTIL Statements

proc p returnscc;
begin
  ...
end;

proc q;
begin
  ...
end;

do
  call p ()       ! Sets condition code indicator
until = ;         ! OK

do
  begin
    ...
    call p ();
  end
until = ;         ! OK

do
  begin
    ...
    call q ();
  end
until > ;         ! ERROR: last statement in do-until statement
                  !  does not set condition indicator

int i := 0;
...
do
  begin
    ...
    i := i + 1;
  end
until $overflow;  ! ERROR: $overflow and $carry not allowed
                  !  in do-until statement

Example 197 Hardware Indicators in WHILE Statements

int proc p;
begin
  ...
end;

proc q;
begin
end;

call p ();      ! Sets condition code indicator
while >= do     ! OK

call p ();      ! Sets condition code indicator

240 Hardware Indicators



call p ();      ! Sets condition code indicator

while > do      ! OK
  begin
    ...
    call p ();  ! Sets condition code indicator
  end;

call q ();      ! Doesn't set the condition code indicator
while > do      ! ERROR: statement preceding WHILE
  begin         !  and last statement of WHILE
    ...         !  must both set condition code indicator
    call p ();  ! Sets condition code indicator
  end;

call p ();      ! Sets the condition code indicator
while >= do     ! ERROR: statement preceding WHILE
  begin         !   and last statement of WHILE
    ...         !   must both set condition code indicator
    call q ();  ! Doesn't set condition code indicator
  end;

int i;
...
i := i + 1;

while not $overflow do  ! ERROR: not a condition code indicator
begin
  ...
  i := i + 1;
end;

You cannot:

• Reference a hardware indicator in an expression other than in the conditional expression of
an IF statement
INT i;
i := IF < THEN -i ELSE i;  !ERROR: invalid in IF expression

• Assign the value of a hardware indicator to a variable in an assignment statement
INT i;
i := >;  ! ERROR: invalid in assignment statement

• Pass a hardware indicator as an actual parameter to a procedure
INT i;
CALL p( < );  ! ERROR: invalid as parameter

An IF statement that tests a hardware indicator must either:

• Immediately follow the statement that establishes the value of the hardware indicator
INT a;
a := a - 1;
IF < THEN ...  ! OK: hardware indicator tested immediately
a := a + 1;
IF $CARRY THEN ...  ! OK: hardware indicator tested
                    !  immediately
CALL WRITEREAD(...);
IF <> THEN...         ! OK: hardware indicator tested
                      !  immediately
a := a - 1;
BEGIN
  IF < THEN ...  ! ERROR: intervening BEGIN is invalid
  ...

Hardware Indicators in Conditional Expressions 241



  a := a + 1;
END;
IF $CARRY THEN ...  ! ERROR: intervening END is invalid
CALL WRITEREAD(...);
firstchar := str_buff;
IF <= THEN...           ! ERROR: intervening assignment
                        !  statement is invalid
CALL WRITEREAD(...);
IF < THEN ...         ! ERROR: previous statement does not
                      !  set condition code

• Be part of a nest of IF statements as described in Nesting Condition Code Tests (page 242)
The hardware indicator in the conditional expression of an IF statement must be the first operand
in the expression.
IF $CARRY THEN ...              ! OK: hardware indicator is
                                !  first operand
IF <= OR a >= 99 THEN ...       ! OK: hardware indicator is
                                !  first operand
IF I <= 999 AND > THEN ...      ! ERROR: condition code must be
                                !  first operand
IF a = b OR $CARRY THEN ...     ! ERROR: $CARRY must be
                                !  first operand
IF a = b OR $OVERFLOW THEN ...  ! ERROR: $OVERFLOW must be
                                !  first operand

The first statement in an IF statement’s THEN clause or ELSE clause (or both) can, in turn, be an IF
statement that tests the condition code established by the conditional expression of the containing
IF statement. In this case, the root operator in the containing IF statement’s conditional expression
must be either:

• A relational operator
I := i + 1;
IF i >= 0 THEN    ! OK: >= is a relational operator
  IF > THEN ...

• An expression that consists only of a condition code
I := i + 1;
IF >= THEN        ! OK: >= is a condition code
  IF > THEN...

An IF statement that tests a hardware indicator cannot be labeled.

Nesting Condition Code Tests
You can test for more than one value of a condition code by nesting IF statements; for example:
I := i + 1;
IF < THEN
  ...
ELSE IF = THEN
  ...
  ELSE  ! Must be >
    ...
INT PROC p;

BEGIN
  CALL READX( ... );
  IF < THEN RETURN -1
  ELSE IF > THEN RETURN 1
       ELSE RETURN 0;
END;

242 Hardware Indicators



The following rules apply to nested IF statements:

• Neither $OVERFLOW nor $CARRY can appear in the conditional expression of any IF statement
in a nest of IF statements.
I := i + 1;
IF > THEN
  IF $OVERFLOW THEN ...  ! ERROR: cannot test $OVERFLOW in
                         !  nest of IF statements
i := i + 1;
IF $CARRY THEN           ! ERROR: cannot test $CARRY in
  IF > THEN ...          !  nest of IF statements

You cannot test $OVERFLOW or $CARRY to determine if an overflow or carry occurred while
evaluating an IF statement’s conditional expression.
IF i + 1 < 100 THEN
  BEGIN
    IF $CARRY THEN ...  ! ERROR: invalid to test $CARRY here
  END

You can test $OVERFLOW or $CARRY by evaluating, in a separate assignment statement,
the expression in which overflow or carry could occur, then test $OVERFLOW or $CARRY.
INT temp;
temp := i + 1;              ! Carry could occur here
IF NOT $CARRY THEN          ! OK to test $CARRY here
  BEGIN
    IF temp < 100 THEN ...
   END
ELSE ...                    ! Handle $CARRY condition 

• Except as noted in the following item, the conditional expression in each IF statement in a nest
of IF statements can test only the value of the condition code, optionally preceded by the NOT
operator. The conditional expression cannot include any other operator or operand.
I := i + 1;
IF <= THEN
  IF NOT = THEN ...  ! OK

• The conditional expression of the innermost IF statement can be a complex expression, but
the condition code must be the first operand in the expression.
I := j + 1;
IF >= THEN
  IF = AND (j + 4) / 5 * 5 > 0 THEN ...  ! OK

• If the root operator in the conditional expression of an IF statement is a relational operator,
the first statement in the THEN or ELSE clause of the IF statement can be an IF statement that
tests the condition code set by the root operator of the encompassing IF statement.
IF (i + 10) <= (m - 2) THEN  ! Root operator (<=) is
  BEGIN                      !  relational operator
    IF < THEN                ! OK: test if condition was
      ...                    !  "less than"
    ELSE
  END;

IF (i < -1) OR (i > 1) THEN
  BEGIN
    IF < THEN                ! ERROR: root operator of IF
      ...                    !  statement is Boolean,
  END;                       !  not relational

• If an outer IF statement’s conditional expression uses a signed operator (= or <>) to compare
two 16-bit addresses, an inner IF statement’s THEN or ELSE clause cannot test the condition
code established by the outer IF statement’s conditional expression.

Nesting Condition Code Tests 243



WADDR   w1, w2;
EXTADDR e1, e2;
IF e1 <> e2 THEN
  BEGIN
    IF < THEN ...    ! OK: e1 and e2 are EXTADDR values
  END;

IF w1 '<>' w2 THEN
  BEGIN
    IF < THEN ...    ! OK: Original test is unsigned
  END;

IF w1 <> w2 THEN
  BEGIN
    IF < THEN ...    ! ERROR: cannot test condition code
   END;              !  set by signed comparison of
                     !  16-bit addresses

Using Hardware Indicators Across Procedures
Topics:

• Testing a Hardware Indicator Set in the Calling Procedure (page 244)

• Returning a Condition Code to the Calling Procedure (page 244)

• Returning the Value of $OVERFLOW or $CARRY to the Calling Procedure (page 245)

Testing a Hardware Indicator Set in the Calling Procedure
A called procedure cannot test the value of a hardware indicator that was set in the procedure
that called the hardware indicator. To achieve this effect:
1. In the calling procedure:

a. Test the value of the hardware indicator and set a variable to reflect its value.
b. Pass the variable to the called procedure.

2. In the called procedure, test the variable that you passed to the procedure in FIX_THIS_LINK.

Example 198 Testing a Hardware Indicator Set in a Calling Procedure

PROC b(status);            ! Called procedure
  INT status;
BEGIN
  IF status <> 0 THEN ...  ! Test parameter value from PROC a
END;

PROC a;                    ! Calling procedure
BEGIN
  INT i, j, k;
  ...
  j := i;
  IF <> THEN k := 1        ! Test hardware indicator and set k
        ELSE k := 0;k
  CALL b(k);               ! Call PROC b, passing k
END;

Returning a Condition Code to the Calling Procedure
A called procedure can return a condition code value to its caller by using the RETURNSCC
procedure attribute in its procedure or subprocedure declaration and a RETURN statement.

244 Hardware Indicators



For more information:

SourceTopic

Procedure Declarations (page 246)Procedure declarations

Subprocedure Declarations (page 257)Subprocedure declarations

Procedure Attributes (page 248)RETURNSCC procedure attribute

RETURN (page 223)RETURN statement

Returning the Value of $OVERFLOW or $CARRY to the Calling Procedure
A called procedure cannot return the value of $OVERFLOW or $CARRY to its caller. To achieve
this effect, set variables with the values of these indicators and return the variables’ values using
either parameters, global variables, or return values.

Example 199 Returning the Value of $OVERFLOW in a Reference Parameter

PROC p;                     ! Calling procedure
BEGIN
  INT rtn_ovfl;
  CALL q(rtn_ovfl);         ! q returns rtn_ovfl
  IF rtn_ovfl = 0 THEN ...  ! Test value of rtn_ovfl
END;
PROC q(ovfl);               ! Called procedure
  INT .ovfl;
BEGIN
  INT i := 32767;
  i := i + 1;
  IF $OVERFLOW THEN         ! Test hardware indicator and
    ovfl := 1               !  set ovfl
  ELSE
    ovfl := 0;
END;                        ! Return ovfl to caller  

Using Hardware Indicators Across Procedures 245



14 Procedures, Subprocedures, and Procedure Pointers
Procedures are program units that contain the executable portions of a pTAL program and that are
callable from anywhere in the program. Procedures allow you to segment a program into discrete
parts that each perform a particular task such as I/O or error handling.
An executable program contains at least one procedure. One procedure in the program has the
attribute MAIN, which identifies it as the first procedure to execute when you run the program.
A procedure can contain subprocedures, which are callable from various points within the same
procedure.
A function is a procedure or subprocedure that returns a value. A function is also known as a typed
procedure or typed subprocedure.
Topics:

• Procedure Declarations (page 246)

• Procedure Attributes (page 248)

• Formal Parameter Specification (page 251)

• Procedure Body (page 256)

• Subprocedure Declarations (page 257)

• Subprocedure Body (page 259)

• Entry-Point Declarations (page 260)

• Procedure Pointers (page 263)

• Labels in Procedures (page 273)
In this section, references to procedures refers to procedures and subprocedures unless otherwise
specified.

Procedure Declarations
A procedure is a program unit that is callable from anywhere in the program. You declare a
procedure as follows:

type

specifies that the procedure is a function that returns a result and indicates the data type of the
returned result. type can be any data type described in Chapter 3 (page 46).

identifier

is the procedure identifier to use in the compilation unit.

246 Procedures, Subprocedures, and Procedure Pointers



public-name-spec

If a procedure declaration includes public-name-spec, it must also include EXTERNAL.
If a procedure declaration includes LANGUAGE, it must also include public-name-spec.
public-name

is the procedure name to use in the linker, not in the compilation unit. The default
public-name is identifier . public-name must conform to the identifier rules of the
language in which the external procedure is written. For all languages except HP C, the
compiler upshifts public-name automatically.

parameter-list

param-name

is the identifier of a formal parameter. A procedure can have up to 32 formal parameters.
param-pair

is a pair of formal parameter identifiers that comprise a language-independent string descriptor
in the form:

string

is the identifier of a standard or extended STRING simple pointer. The actual parameter is
the identifier of a STRING array or simple pointer declared inside or outside a structure.

length

is the identifier of a directly addressed INT simple variable. The actual parameter is an INT
expression that specifies the length of string, in bytes.

proc-attribute

is a procedure attribute, as described in Procedure Attributes (page 248).
param-spec

specifies the parameter type of a formal parameter and whether it is a value or reference
parameter, as described in Formal Parameter Specification (page 251).

proc-body

is a BEGIN-END block that contains local declarations and statements, as described in Procedure
Body (page 256).

FORWARD

specifies that the procedure body is declared later in the compilation.
EXTERNAL

specifies that the procedure body is either declared in another compilation unit or later in this
compilation unit.

Procedure Declarations 247



Example 200 Procedure Declaration

INT var;                      ! var is a global INT
WADDR PROC p(i), RETURNSCC,;  ! Attributes: empty, RETURNSCC,
                              !  and empty
INT .i;
BEGIN
  RETURN @var, i+1;           ! Return address and
END;                          !  condition code value

Example 200 (page 248) illustrates the following procedure declarations:

• p specifies three attributes, the first and third of which are empty.

• The second attribute to p, RETURNSCC, is a valid procedure, subprocedure, or function
attribute, which, if present, requires that the code execute a RETURN statement that specifies
a value from which to determine the condition code to return to the caller. For more information
about using RETURNSCC, see RETURN (page 223).

• The data type of the value returned by p is WADDR: namely, the address of the global variable
var. The RETURN statement sets the condition code to CCL, CCE, or CCG, depending on
whether the value of i+1 is less than, equal to, or greater than 0.

Procedure Attributes
Procedures can have the following attributes:

MAIN

causes the procedure to execute first when you run the program. When the MAIN procedure
completes execution, it passes control to the PROCESS_STOP_ system procedure, rather than
executing an EXIT instruction.
If more than one procedure in a compilation has the MAIN attribute, the compiler emits a
warning and uses the first main procedure it sees as the main procedure. For example, in the
following source code, procedures main_proc1 and main_proc2 have the MAIN attribute,
but in the object file only main_proc1 has the MAIN attribute:
PROC main_proc1 MAIN;  ! This MAIN procedure is MAIN
BEGIN                  !  in the object file
  CALL this_proc;

248 Procedures, Subprocedures, and Procedure Pointers



  CALL that_proc;
END;
PROC main_proc2 MAIN;  ! This MAIN procedure is not MAIN
BEGIN                  !  in the object file
  CALL some_proc;
END;

INTERRUPT

causes the pTAL compiler to generate an interrupt exit instruction instead of an EXIT instruction
at the end of execution. Only operating system interrupt handlers use the INTERRUPT attribute.
An example is:
PROC int_handler INTERRUPT;
BEGIN
  ! Do some work
END;

NOTE: The EpTAL compiler ignores INTERRUPT.

RESIDENT

causes procedure code to remain in main memory for the duration of program execution. The
operating system does not swap pages of this code. The linker allocates storage for RESIDENT
procedures as the first procedures in the code space. An example is:
PROC res_proc RESIDENT;
BEGIN
  ! Do some work
END;

CALLABLE

authorizes a procedure to call a PRIV procedure (described next). Nonprivileged procedures
can call CALLABLE procedures, which can call PRIV procedures. Thus, nonprivileged procedures
can only access PRIV procedures indirectly by first calling CALLABLE procedures. Normally,
only operating system procedures have the CALLABLE attribute. In the following example, a
CALLABLE procedure calls the PRIV procedure declared next:
PROC callable_proc CALLABLE;
BEGIN
  CALL priv_proc;
END;

PRIV

means the procedure can execute privileged instructions. Only PRIV or CALLABLE procedures
can call a PRIV procedure. Normally, only operating system procedures have the PRIV attribute.
PRIV protects the operating system from unauthorized (nonprivileged) calls to its internal
procedures.
The following PRIV procedure is called by the preceding CALLABLE procedure:
PROC priv_proc PRIV;
BEGIN
  ! Privileged instructions
END;

For information about privileged mode, see Privileged Mode (page 274).
VARIABLE

means the compiler treats all parameters of the subprocedure as if they are optional, even if
some are required by your code. If you add parameters to the VARIABLE subprocedure
declaration, all procedures that call it must be recompiled. The following example declares a
VARIABLE subprocedure:
SUBPROC v (a, b) VARIABLE;
  INT a, b;
BEGIN

Procedure Attributes 249



  ! Lots of code
END;

When you call a VARIABLE subprocedure, the compiler allocates space in the parameter area
for all the parameters. The value of the data for a missing parameter is unspecified.

EXTENSIBLE

lets you add new parameters to the procedure declaration without recompiling its callers. The
compiler treats all parameters of the procedure as if they are optional, even if some are required
by your code. The following example declares an EXTENSIBLE procedure:
PROC x (a, b) EXTENSIBLE;
  INT a, b;
BEGIN
  ! Do some work
END;

When you call an EXTENSIBLE procedure, the compiler allocates space in the parameter area
for all the parameters. The values of missing parameters are unspecified.
Declare procedures EXTENSIBLE, but not subprocedures.
count

converts a VARIABLE procedure to an EXTENSIBLE procedure. The count value is the
number of formal parameters in the VARIABLE procedure that you are converting to
EXTENSIBLE. For the count value, specify an INT value in the range 1 through 15.

RETURNSCC

causes a procedure to return a condition code. The compiler reports an error if a procedure
attempts to test the condition code after calling a procedure that does not specify RETURNSCC.
Procedures declared with RETURNSCC cannot return 64-bit values.

NOTE: The EpTAL compiler issues a warning if a procedure that has this attribute returns both
a traditional function value and a condition code value by means of RETURN (page 223). The
reason for this warning is described in Appendix D (page 528).

OVERFLOW_TRAPS

enables overflow traps for a procedure.
NOOVERFLOW_TRAPS

disables overflow traps for a procedure.
LANGUAGE

specifies that the external routine is an HP C, HP COBOL, FORTRAN, or Pascal routine. If you
do not know if the external routine is an HP C, HP COBOL, FORTRAN, or Pascal routine, use
LANGUAGE UNSPECIFIED. The following example shows the LANGUAGE COBOL option
and a public name "a_proc" (in HP COBOL identifier format):
PROC a_proc = "a-proc" (a, b, c)  ! EXTERNAL declaration for
LANGUAGE COBOL;                   !  HP COBOL procedure
  STRING .a, .b, .c;
EXTERNAL;

Specify no more than one LANGUAGE attribute in a declaration.

Because no FORTRAN or Pascal compilers exist especially for TNS/R or TNS/E architecture, LANGUAGE FORTRAN
and LANGUAGE PASCAL have no meaning on TNS/R or TNS/E architecture.

If a procedure declaration includes LANGUAGE, it must also include public-name-spec.

Parameters and VARIABLE and EXTENSIBLE Procedures
To determine which parameters were passed by the caller, use the $PARAM (page 336).

250 Procedures, Subprocedures, and Procedure Pointers



Memory is allocated for all parameters to VARIABLE procedures or EXTENSIBLE procedures;
therefore, your program can store default values for parameters the caller does not pass.

VARIABLE, EXTENSIBLE and RETURNSCC Procedures as Actual Parameters
You can pass a procedure or procedure pointer that includes an EXTENSIBLE, VARIABLE, or
RETURNSCC attribute as a parameter to a procedure whose formal parameter is a PROC, but you
cannot reference the PROC formal parameter identifier in a CALL statement. Instead, you must
assign the address from the formal parameter to a procedure pointer and then specify the procedure
pointer in a CALL statement.

Example 201 EXTENSIBLE Procedures as Actual Parameters

PROC p1 (i, j) EXTENSIBLE;
  INT i, j;
EXTERNAL;
PROC p2( p );
PROC p;
BEGIN
  PROCPTR pp(a, b) EXTENSIBLE; INT a, b; END PROCPTR;
  INT i, j;
   ...
  pp := pi;
  CALL pp(i, j);
END;
PROC p3;
BEGIN
  CALL p2(p1);
END;

Formal Parameter Specification
A formal parameter specification defines the parameter type of a formal parameter and whether
the parameter is a value parameter or a reference parameter.

param-type

is the parameter type of the formal parameter and can be one of the following:

Formal Parameter Specification 251



Descriptions for STRUCT, PROC, PROC(32), and type, are included below. You can find
descriptions of the remaining data types in Chapter 3 (page 46).
STRUCT

means the parameter is one of:
• A standard indirect or extended indirect definition structure (not supported in future

software platforms)
• A standard indirect or extended indirect referral structure

PROC

is the address of the entry point of a procedure. You must assign PROC to a PROCPTR
before you can call it.

type

specifies that the parameter is a function procedure, the return value of which is one of the
following data types:

252 Procedures, Subprocedures, and Procedure Pointers



width

is a constant expression that specifies the number of bits in the variable. The result of
the constant expression must be one of the following values:

widthData Type

16, 32, or 64INT

32 or 64REAL

A value in the range 1 through 31UNSIGNED

UNSIGNED parameters must be passed by value; you cannot use an indirection symbol
(see Table 14 (page 41)) with UNSIGNED parameters.

fpoint

is an integer in the range -19 through 19 that specifies the implied decimal point
position. The default is 0 (no decimal places). A positive fpoint specifies the number
of decimal places to the right of the decimal point. A negative fpoint specifies a
number of integer places to the left of the decimal point.

*

prevents scaling of the fpoint of a FIXED actual parameter to match the fpoint in
the parameter specification. Such scaling might cause loss of precision. The called
procedure treats the actual parameter as having an fpoint of 0.

Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14 (page 41)).

NOTE: “Indirection Symbols” (page 41), .EXT32 and .EXT64 are 64-bit addressing
functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

param-name

is the identifier of a formal parameter. The identifier has local scope if declared in a procedure
or sublocal scope if declared in a subprocedure.

referral

is the identifier of a previously declared structure or structure pointer. The diagram under
param-type describes lists the kind parameter requiring a referral.

REFALIGNED

For simple pointers, the default for REFALIGNED is the value you specify in the REFALIGNED
(page 510).

2

specifies that the variables and structures that identifier references are aligned as they would
be aligned in TAL (and might not be well-aligned in pTAL).

8

specifies that the variables and structures are well-aligned in pTAL (and in TAL, that they might
have more space).
For nonstructure pointers, the default for REFALIGNED is the value you specify in the
REFALIGNED (page 510).

When a procedure is called, each actual parameter is bound to its corresponding formal parameter.
Parameters passed by value must follow the same rules for assignment compatibility as do assignment
statements. Each actual value parameter corresponds to the right side of an assignment statement.
Table 57 (page 254) lists the characteristics that you can declare in a formal parameter specification
depending on the kind of actual parameter the procedure or subprocedure expects.

Formal Parameter Specification 253



Table 57 Formal Parameter Specification

Formal Parameter Characteristics

ReferralIndirection SymbolParameter TypeDeclare Formal
Parameter As:

Expected Actual
Parameter

NoValue, no; reference,
yes

A value or reference
parameter

Simple variable STRING*
INT
INT(32)
REAL
REAL(64)
FIXED(n)
FIXED(*)

NoNoUNSIGNEDA value parameterSimple variable

NoYesA reference parameterArray or simple
pointer

STRING
INT
INT(32)
REAL
REAL(64)
FIXED(n)

YesYesINT or STRINGA reference parameterDefinition structure,
referral structure, or
structure pointer

YesYesSTRUCTA reference parameterReferral structure or
structure pointer

NoNoA value parameterConstant expression**
(including
@identifier )

INT
INT(32)
UNSIGNED
REAL
REAL(64)
FIXED(n)

NoNoA value parameterProcedure PROC
PROC(32)

* You cannot declare a STRING value parameter. The compiler reports a syntax error if you declare a STRING value
parameter.

** The data type of the expression and of the formal parameter must match, except that you can mix the STRING,
INT, and UNSIGNED (1-16) data types, and you can mix the INT(32) and UNSIGNED(17-31) data types.

Any of the 13 address types can be used as formal parameters.

In Example 202 (page 255), the compiler treats var1 as if it were a simple variable and treats
var2 as if it were a simple pointer.

254 Procedures, Subprocedures, and Procedure Pointers



Example 202 Function With Value and Reference Formal Parameters

PROC mult (var1, var2);
  INT var1,              ! Value parameter
     .var2;              ! Reference parameter
BEGIN
  var2 := var2 + var1;   ! Manipulate parameters
END;

Example 203 Reference Structure as a Formal Reference Parameter

STRUCT template (*);      ! Template structure
BEGIN
  INT a;
  INT b;
END;
PROC .EXT p;
STRUCT ref_struct (template);
BEGIN
  ! Lots of code
END;

Topics:

• Using STRUCT as a Formal Parameter (page 255)

• Passing an Extended Address Parameter to a Non-EXTENDED Reference Parameter (page 255)

• Using the PROC Formal Parameter (page 256)

• Referencing Parameters (page 256)

Using STRUCT as a Formal Parameter
You cannot declare a definition STRUCT as a formal parameter. You can, however, achieve the
same effect by using a referral STRUCT as a formal parameter, and having it reference a previously
declared structure.

Example 204 Using a Referral STRUCT as a Formal Parameter

INT .EXT ea;
INT .EXT32 e32a;
INT .EXT64 e64a;
PROC p(a);
INT .a;
BEGIN
  ...
END;
...
p(ea);   ! OKAY
p(e32a); ! OKAY
p(e64a); ! ERROR: EXT64ADDR not assignment compatible with WADDR.

Passing an Extended Address Parameter to a Non-EXTENDED Reference Parameter
You can pass a variable declared with a .EXT or .EXT32 indirection symbol to a formal parameter
declared with a “.” indirection symbol. pTAL converts the extended address to a BADDR or WADDR,
as appropriate. In the following example, pTAL converts the extended address of I to a WADDR
address:

Formal Parameter Specification 255



Example 205 Converting the extended address of I to a WADDR address

INT .EXT ea;
INT .EXT32 e32a;
INT .EXT64 e64a;
PROC p(a);
INT .a;
BEGIN
  ...
END;
...
p(ea);   ! OKAY
p(e32a); ! OKAY
p(e64a); ! ERROR: EXT64ADDR not assignment compatible with WADDR

NOTE: The “Indirection Symbols” (page 41), .EXT32 and .EXT64 are 64-bit addressing
functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

Using the PROC Formal Parameter
The @ character is not allowed on the actual parameter if the formal parameter is a PROC.

Referencing Parameters
Do not depend on the order in which parameters are allocated in memory. You must refer to each
parameter only as a named entity. Do not refer to one parameter as a base off of which you
reference other parameters.
Guidelines:

• Do not treat a procedure’s formal parameters as an implied array or implied structure.

• Do not index a parameter to access another parameter or local variable.

• Do not perform block moves in which the source or destination spans more than one parameter.

• Do not pass the address of a value parameter to another procedure that expects the address
of an array or structure.

• Do not proceed through a parameter list using indexing and address calculations.

Procedure Body
A procedure body can contain local declarations, subprocedure declarations, and statements.

local-decl

is a declaration for one of:
• simple variable

• array (direct, indirect, or read-only)

• structure (direct or indirect)

256 Procedures, Subprocedures, and Procedure Pointers



• simple pointer

• structure pointer

• equivalenced variable

• LITERAL

• DEFINE

• label

• entry point

• FORWARD subprocedure
subproc-decl

is a subprocedure declaration, as described in Subprocedure Declarations (page 257).
statement

is any statement described in Chapter 12 (page 199).

Example 206 Procedures

INT c;             ! Global declaration
PROC first;
BEGIN              ! Procedure body
  INT a,           ! Local declarations
      b;
  ...
END;
PROC second;
BEGIN              ! Procedure body
  ...
  CALL first;      ! Call first procedure
  ...
END;

Example 207 FORWARD Declaration for a Procedure

INT g2;
PROC procb (param1);  ! FORWARD declaration for procb
  INT param1;
FORWARD;
PROC proca;
BEGIN
  INT i1 := 2;
  CALL procb (i1);    ! Call procb
END;
PROC procb (param1);  ! Body for procb
  INT param1;
BEGIN
  g2 := g2 + param1;
END;

Subprocedure Declarations
You can declare subprocedures within procedures, but not within subprocedures.

Subprocedure Declarations 257



type

specifies that the subprocedure is a function that returns a result and indicates the data type
of the returned result. type can be any data type described in Chapter 3 (page 46).

identifier

is the identifier of the subprocedure.
parameter-list

param-name

is the identifier of a formal parameter. The number of formal parameters a subprocedure
can have is limited by space available in the parameter area of the subprocedure.

param-pair

is a pair of formal parameter identifiers that comprise a language-independent string
descriptor in the form:

string

is the identifier of a standard or extended STRING simple pointer. The actual parameter
is the identifier of a STRING array or simple pointer declare inside or outside a structure.

length

is the identifier of a directly addressed INT simple variable. The actual parameter is an
expression that specifies the length of string in bytes.

VARIABLE

specifies that the compiler treats all parameters as optional, even if some are required by your
code.

RETURNSCC

causes a subprocedure to return a condition code. The compiler reports an error if a
subprocedure attempts to test the condition code after calling a subprocedure that does not
specify RETURNSCC. Subprocedures declared with RETURNSCC cannot return 64-bit values.

258 Procedures, Subprocedures, and Procedure Pointers



OVERFLOW_TRAPS

enables overflow traps for a subprocedure.
NOOVERFLOW_TRAPS

disables overflow traps for a subprocedure.
parameter-spec

specifies the parameter type of a formal parameter and whether it is a value or reference
parameter, as described in Formal Parameter Specification (page 251).

subproc-body

is a BEGIN-END block that contains sublocal declarations and statements—see Subprocedure
Body (page 259).

FORWARD

means the subprocedure body is declared later in this procedure.

Subprocedure Body
A subprocedure body can contain sublocal declarations and statements.

sublocal-decl

is a declaration for one of:
• simple variable

• array (direct or read-only)

• structure (direct only)

• simple pointer

• structure pointer

• equivalenced variable

• LITERAL

• DEFINE

• label

• entry point
statement

is any statement described in Chapter 12 (page 199).
In subprocedures, declare pointers and directly addressed variables only. Here are examples:

ExampleSublocal Variable

INT var;Simple variable (always direct)

INT array[0:5];Direct array

INT ro_array = 'P' := [0,1,2,3,4,5];Read-only array

INT var;Simple variable (always direct)

Subprocedure Body 259



ExampleSublocal Variable

INT array[0:5];Direct array

INT ro_array = 'P' := [0,1,2,3,4,5];Read-only array

Example 208 Function Subprocedure

PROC p;
BEGIN
  SUBPROC p1;
  BEGIN
    INT .a[0:9];
    INT .ext b[0:9];
    a[0] := 1;
    b[9] := 2;
  END;
  CALL p1;
END;
PROC q;
BEGIN
  SUBPROC q1;
  BEGIN
    STRUCT .s;
    BEGIN
      INT i;
      INT j;
    END;
  END;
END;

Entry-Point Declarations
The entry-point declaration associates an identifier with a secondary location in a procedure or
subprocedure where execution can start.

identifier

is an entry-point identifier to be placed in the procedure or subprocedure body. It is an alternate
or secondary point in the procedure or subprocedure at which to start executing.

Topics:

• Procedure Entry-Point Identifiers (page 260)

• Subprocedure Entry-Point Identifiers (page 262)

Procedure Entry-Point Identifiers
Here are guidelines for using procedure entry point identifiers:

• Declare all entry-point identifiers for a procedure within the procedure.

• Place each entry-point identifier and a colon (:) at a point in the procedure at which execution
is to start.

• You can call a procedure entry-point identifier from anywhere in the program. (For functions,
use the entry-point identifier in an expression; for other procedures, use a CALL statement.)

• Pass actual parameters as if you were calling the procedure identifier.

260 Procedures, Subprocedures, and Procedure Pointers



• You cannot use a GOTO statement to branch to a procedure entry-point identifier.

• To obtain the address of a procedure entry-point identifier, preface the identifier with @.

• You can specify FORWARD or EXTERNAL procedure entry-point declarations, which look like
FORWARD procedure declarations and EXTERNAL procedure declarations.

Example 209 Procedure Entry-Point Identifiers

INT to_this := 314;   ! Declare global data
PROC add_3 (g2);
  INT .g2;
BEGIN
  ENTRY add_2;        ! Declare entry-point identifiers
  ENTRY add_1;
  INT m2 := 1;
  g2 := g2 + m2;
  add_2:              ! Location of entry-point identifier add_2
    g2 := g2 + m2;
  add_1:              ! Location of entry-point identifier add_1
    g2 := g2 + m2;
END;
PROC mymain MAIN;        ! Main procedure
BEGIN
  CALL add_1 (to_this);  ! Call entry point add_1
END;

Example 210 FORWARD Declarations for Entry Points

INT to_this := 314;
PROC add_1 (g2);         ! FORWARD entry-point identifier
  INT .g2;               !  declaration
FORWARD;

PROC add_2 (g2);         ! FORWARD entry-point identifier
  INT .g2;               !  declaration
FORWARD;
PROC add_3 (g2);         ! FORWARD procedure declaration
  INT .g2;
FORWARD;
PROC mymain MAIN;        ! Main procedure declaration

BEGIN
  CALL add_1 (to_this);  ! Call entry-point identifier
END;
PROC add_3 (g2);         ! Body for FORWARD procedure
  INT .g2;
BEGIN
  ENTRY add_2;           ! Declare entry-point identifiers
  ENTRY add_1;
  INT m2 := 1;
  g2 := g2 + m2;
  add_2:                 ! Location of entry-point identifier
    g2 := g2 + m2;       !  add_2
  add_1:                 ! Location of entry-point identifier
    g2 := g2 + m2;       !  add_1
END;

Entry-Point Declarations 261



Subprocedure Entry-Point Identifiers
Here are guidelines for using subprocedure entry-point identifiers:

• Declare all entry-point identifiers for a subprocedure within the subprocedure.

• Place each entry-point identifier and a colon (:) at a point in the subprocedure at which
execution is to start.

• You call a subprocedure entry-point identifier from anywhere in the encompassing procedure,
including from within the same subprocedure. (For functions, use the entry-point identifier in
an expression; for other subprocedures, use a CALL statement.)

• Pass actual parameters as if you were calling the subprocedure identifier.

• You cannot use a GOTO statement to branch to a subprocedure entry-point identifier.

• To obtain the code address of a subprocedure entry-point identifier, preface the identifier with
@.

• You can specify FORWARD subprocedure entry-point declarations, which look like FORWARD
subprocedure declarations.

262 Procedures, Subprocedures, and Procedure Pointers



Example 211 Subprocedure Entry-Point Identifiers

literal write_op,
        read_op,
        writeread_op,
        readwrite_op;
int proc io (op, buf);
  int      op;
  int .ext buf;
begin
  int subproc do_read_op (buf);
    int .ext buf;
  forward;
  int subproc do_write_op (buf);
    int .ext buf;
  forward;
  int subproc do_writeread_op (buf);
    int .ext buf;
  begin
    entry do_read_op;
    call do_write_op (buf);
    do_read_op:
      ! Perform read operation
  end;
  int subproc do_readwrite_op (buf);
    int .ext buf
  begin
    entry do_write_op;
    call do_read_op (buf);
    do_write_op:
      ! Perform write operation
  end;
  case op of
    begin
      ! write_op !      call do_write_op (buf);
      ! read_op !       call do_read_op (buf);
      ! writeread_op !  call writeread_op (buf);
      ! readwrite_op !  call readwrite_op (buf);
    end;
 end; 

Procedure Pointers
Procedure pointers allow a program to call a variable dynamically or to call an EXTENSIBLE
procedure.
The syntax of procedure pointers is similar to the syntax of forward procedures; however, instead
of the keyword PROC, you declare a procedure pointer using the keywords PROCPTR, PROC32PTR,
or PROC64PTR. As with a forward procedure, a procedure pointer fully specifies the procedure’s
attributes and formal parameters but has no body—a procedure pointer does not include executable
statements.
The size of PROCPTRs and PROC32PTRs is 32-bits in length. The size of PROC64PTRs is 64-bits
in length.
You can declare procedure pointers as:

• Variables

• Formal parameters

• Structure fields

Procedure Pointers 263



procptr-size

specifies the size of the procedure pointer and can be any one of:
• PROCPTR

• PROC32PTR

• PROC64PTR
PROCPTR and PROC32PTR are 32-bits in length and PROC64PTR is 64-bits in length.

return-type

specifies that the procedure is a function that returns a result and indicates the data type of the
returned result, and can be any of:
• BADDR

• CBADDR

• CWADDR

• EXTADDR

• EXT32ADDR

• EXT64ADDR

• FIXED

• FIXED [(scale )]

• INT

• REAL

• REAL(64)

• PROCADDR

• PROC32ADDR

• PROC64ADDR

• SGWADDR

• SGBADDR

• SGXWADDR

• SGXBADDR

• STRING

• UNSIGNED (width )

• WADDR

NOTE: The address types and procedure pointers, EXT32ADDR, EXT64ADDR, PROC32ADDR,
PROC64ADDR, PROC32PTR, and PROC64PTR are 64-bit addressing functionality added to
the EpTAL compiler starting with SPR T0561H01^AAP. For more information, see Appendix
E, “64-bit Addressing Functionality” (page 531).

264 Procedures, Subprocedures, and Procedure Pointers



scale

is a constant integer expression from -19 to 19.
width

is a constant integer expression from 1 to 31.
procptr-name

is the name of the procedure pointer.
formal-param-names

is the identifier of a formal parameter. A procedure can have up to 32 formal parameters, with
no limit on the number of words of parameters and has the form:

param-name

is the identifier of a formal parameter. A procedure can have up to 32 formal parameters,
with no limit on the number of words of parameters.

param-pair

is a pair of formal parameter identifiers that comprise a language-independent string
descriptor in the form:

string

is the identifier of a standard or extended STRING simple pointer. The actual parameter
is the identifier of a STRING array or simple pointer declared inside or outside a
structure.

length

is the identifier of a directly addressed INT simple variable. The actual parameter is an
INT expression that specifies the length of string in bytes.

attributes

is an attribute described in Procedure Attributes (page 248).
formal-param-spec

is a formal parameter and has the following form:

Procedure Pointers 265



procptr

is a procedure pointer identifier.
param-type

is any data type described in the data-type parameter of this syntax description.
Indirection

., .EXT, .EXT32, .EXT64, .SG, and .SGX are indirection symbols (see Table 14
(page 41)).

NOTE: The “Indirection Symbols” (page 41), .EXT32 and .EXT64 are 64-bit addressing
functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more
information, see Appendix E, “64-bit Addressing Functionality” (page 531).

identifier

is an identifier (as described in Identifiers (page 42)).
referral

is the name of a previously declared structure or structure pointer. You must include
referral if the formal parameter identifier is the name of a structure.

Topics:

• Declaring Procedure Pointer Variables (page 266)

• Declaring Procedure Pointers in Structures (page 267)

• Declaring PROCPTRs as Formal Parameters (page 268)

• Assignments to Procedure Pointers (page 269)

• Dynamically Selected Procedure Calls (page 271)

Declaring Procedure Pointer Variables

procptr

is a procedure pointer identifier.
prev-identifier

is the identifier of a previously declared variable. On TNS architecture, prev-identifier
must be 16 bits. On TNS/R and TNS/E architecture, prev-identifier must be 32 bits or
more.

procaddr

is a constant or dynamic expression of type PROCADDR, PROC32ADDR, or PROC64ADDR.
procaddr must be the name of a procedure, procedure pointer, or PROCADDR,
PROC32ADDR, or PROC64ADDR variable. If procaddr is a procedure or procedure pointer,
the parameters of procptr and procaddr must match and the following procedure attributes
must match: EXTENSIBLE, VARIABLE, RETURNSCC, MAIN, and INTERRUPT; the following
procedure attributes do not have to match: OVERFLOW_TRAPS, CALLABLE, PRIV, and RESIDENT.

You can declare a procedure pointer anywhere a data declaration is valid. For purposes of
declarations, procedure pointers are treated as data, not as procedures.
The address type of a PROCPTR, PROC32PTR, and PROC64PTR is PROCADDR, PROC32ADDR,
and PROC64ADDR, respectively.
The address type of a procedure pointer variable is WADDR.

266 Procedures, Subprocedures, and Procedure Pointers



The object data type of a reference to a function procedure pointer is the data type returned by
the procedure pointer.
You can equivalence a procedure pointer (PROCPTR, PROC32PTR, or PROC64PTR) to any previously
declared variable, if the width of the previous variable is greater than or equal to the width of the
procedure pointer.
You can assign and pass procedure pointers of smaller or equal size to other procedure pointers,
provided that the parameters and attributes match.

Example 212 Procedure Pointers as Variables and Formal Parameters

INT i;
INT .EXT j;
REAL k;
PROCADDR pa;
PROC32ADDR p32a;
PROC64addr p64a;
PROC p (i, j) EXTENSIBLE, CALLABLE;        ! Declare PROC p in a
  INT i, .EXT j;                           ! FORWARD declaration
FORWARD;
PROCPTR pp (i, j) EXTENSIBLE,CALLABLE;     ! Declare PROCPTR a and
  INT i, .EXT j;                           ! initialize it to point
END PROCPTR := @p;                         ! to PROC p
PROC64PTR p64pa (i, j) EXTENSIBLE,CALLABLE;! Declare PROC64PTR p64pa
  INT i, .EXT j;                           ! and initialize it to point
END PROCPTR := @p;                         ! to PROC p
PROC64PTR p64pb (i, j) EXTENSIBLE,CALLABLE;! Declare PROC64PTR p64pb
  INT i, .EXT j;                           ! and initialize it to point
END PROCPTR := @pp;                        ! to PROC p too
FIXED PROCPTR b (str : length);            ! Declare FIXED PROCPTR b
  STRING .str; INT length;                 ! with a parameter pair
END PROCPTR;
PROCPTR c (p);                             ! Declare PROCPTR c with one
  REAL PROC32PTR p(x); REAL x; END PROCPTR;! one parameter, p, which is
END PROCPTR;                               ! a PROC32PTR
REAL PROCPTR d (x);  REAL x; END PROCPTR;  ! Declare REAL PROCPTR d
END PROCPTR;                               ! with one REAL parameter
PROCPTR e(i);                              ! Declare PROCPTR e
  INT i;                                   ! Equivalence e to d
END PROCPTR = d;

Declaring Procedure Pointers in Structures
You can declare PROCPTR fields within structure declarations.

procptr

is a procedure pointer identifier.
previous-identifier

The identifier of a field at the same level as procptr in the same structure.
Example 213 (page 268) declares a REAL PROCPTR as a field in a structure array of 10 elements.
Use an index to reference elements of array s1:
CALL s1[3].f(3.0e1);

Procedure Pointers 267



Example 213 Procedure Pointers in a Structure

STRUCT s1 [0:9];
BEGIN
  REAL PROCPTR f(x); REAL x; END PROCPTR;
  PROC32PTR g; END PROCPTR;
  PROC64PTR h (x, y, z) EXTENSIBLE;
    INT x, y, z;
  END PROCPTR;
END;

Example 214 (page 268) declares a template structure s2 with three components. When s2 is the
referent of a referral structure, pTAL allocates space for procedure pointer f. pTAL does not allocate
space for procedure pointers g or h because they redefine procedure pointer f. Procedure pointers
f, g, and h are the same except for the type of the parameter passed to the procedure.

Example 214 Equivalenced Procedure Pointers in a Structure

STRUCT s2 (*);
BEGIN
  REAL PROCPTR f(x);
    REAL x;
  END PROCPTR;
  REAL PROC32PTR g(x);
    INT x;
  END PROCPTR = f;
  REAL PROCPTR h(x);
    FIXED x;
  END PROCPTR = g;
END;

The code in Example 215 (page 268) uses the structure s2 in Example 214 (page 268).

Example 215 Code That Uses the Structure in Example 214 (page 268)

STRUCT s(s2);
REAL my_real;
INT my_index := type_int;
CASE my_index OF
  BEGIN
    type_real  -> my_real := s.f(3.0E1);
    type_int   -> my_real := s.g(3);
    type_fixed -> my_real := s.h(3F);
  END;

Declaring PROCPTRs as Formal Parameters
The compiler:

• Ensures that the procedure attributes and parameter data types of procedures passed as actual
parameters match those defined in the formal parameters of the called procedure

• Builds parameter masks for calls to VARIABLE procedures and EXTENSIBLE procedures

268 Procedures, Subprocedures, and Procedure Pointers



Example 216 Procedure Pointers as Formal Parameters

PROC a(i); INT i; EXTERNAL;
PROC b(p);
  PROCPTR p(a); INT a; END PROCPTR;
EXTERNAL;
PROC c(p);
  PROC64PTR p(a); INT a; END PROCPTR;
EXTERNAL;

PROC d(pa); PROCADDR pa; BEGIN END;
PROC e(pa); PROC32ADDR pa; BEGIN END;

PROC f;
BEGIN
  CALL b(a);   ! OK
  CALL b(@a);  ! ERROR: @ character is not valid
  CALL c(a);   ! OK
  CALL c(@a);  ! ERROR: @ character is not valid
  CALL d(a);   ! ERROR: @ character is required
  CALL d(@a);  ! OK
  CALL e(a);   ! ERROR: @ character is required
  CALL e(@a);  ! OK
END;

NOTE: Address type PROC32ADDR and procedure pointer type PROC64PTR are 64-bit addressing
functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

An @ character in front of the actual parameter is:

• Not allowed if the formal parameter is a PROC or a PROCPTR

• Required if the formal parameter is a PROCADDR

Assignments to Procedure Pointers
You can assign values to a procedure pointer variable in much the same way as you assign values
to any variable; however, only values of data type procedure address can be assigned to a
procedure pointer.
You can assign the following items to a procedure pointer:

• The address of a procedure or function

• The value of another procedure pointer

• The value of a variable whose data type is procedure address
Assignment statements involving procedure pointers fall into one of two categories:

• If the left side is a procedure pointer and right side is an @ character followed by the name
of a procedure, subprocedure, or function—that is, neither the left side nor the right side is a
procedure address variable—the attributes and the formal parameter types of each side of
the assignment must match. The attributes specified must be the same but do not have to be
presented in the same order.

• If either the left side or the right side of the assignment statement is a procedure address
variable, the compiler does not attempt to match attributes or parameter types.

• Subject to the matching rules above, you can assign procedure pointers and procedure
addresses to other procedure pointers and procedure addresses if the size of the target is
equal to or larger than the size of the source.

Procedure Pointers 269



Example 217 Assignments to procedure pointers, First Example

PROCPTR pp1 (a, b) RETURNSCC;
  INT a, b;
END PROCPTR;
PROCPTR pp2 (a) RETURNSCC;
  INT a;
END PROCPTR;
PROCPTR pp3 (a, b);
  INT a, b;
END PROCPTR;
PROC p(i, j) RETURNSCC;
  INT i, j;
BEGIN
  RETURN ,j;
END;
PROCADDR paddr;
paddr := @p;    ! OK: PROCADDR variable is assigned PROC addr
@pp1 := @p;     ! OK: Left side is PROCPTR, right side is PROC
@pp1 := @pp2;   ! ERROR: pp1 has two parameters, pp2 has one
@pp1 := @pp3;   ! ERROR: pp1 specifies RETURNSCC, pp3 does not
paddr := @pp2;  ! OK: paddr is a PROCADDR variable
@pp1 := paddr;  ! OK: paddr is a PROCADDR variable

Example 218 Assignments to procedure pointers, Second Example

REAL r;
INT  i;
STRUCT s1 [0:9];
BEGIN
  REAL PROCPTR f(x);
    REAL x;
  END PROCPTR;
END;
PROC p (i, j) EXTENSIBLE, CALLABLE;    ! Declare PROC p in a
  INT i, .EXT j;                       !  FORWARD declaration
FORWARD;
PROCPTR a (i, j) EXTENSIBLE,CALLABLE;  ! Declare PROCPTR a and
  INT i, .EXT j;                       !  initialize it to
END PROCPTR;                           !  point to PROC p
PROCPTR c (p);
  REAL PROCPTR p (x);
    REAL x;
  END PROCPTR;
END PROCPTR;
REAL PROCPTR d (x);                    ! Declare REAL PROCPTR d
  REAL x;                              !  with REAL parametera
END PROCPTR;
@a := @p;
@d := @s1[2].f;
@s1[3].f := @d;
CALL c(d);

270 Procedures, Subprocedures, and Procedure Pointers



Example 219 Assignments to Procedure Pointers, Third Example

PROCPTR pp; END PROCPTR;
PROC32PTR p32p; END PROCPTR;
PROC64PTR p64p; END PROCPTR;
PROCADDR pa;
PROC32ADDR p32a;
PROC64ADDR p64a;

@pp := @pp;     ! OK
@pp := pa       ! OK
@pp := @p32p;   ! OK
@pp := p32a;    ! OK
@pp := @p64p;   ! ERROR, @p64p is 64-bits long, @pp is 32-bits long
@pp := p64a;    ! ERROR, @p64a is 64-bits long, @pp is 32-bits long
@p32p := @p32p; ! OK
@p32p := p32a;  ! OK
@p32p := @pp;   ! OK
@p32p := pa;    ! OK
@p32p := @p64p; ! ERROR, @p64p is 64-bits long, @pp is 32-bits long
@p32p := p64a;  ! ERROR, @p64p is 64-bits long, @p32p is 32-bits long
@p64p := @p64p; ! OK
@p64p := p64a;  ! OK
@p64p := @pp;   ! OK
@p64p := pa;    ! OK 
@p64p := @p32p; ! OK
@p64p := p32a;  ! OK
pa := @pp;      ! OK
pa := pa;       ! OK
pa := @p32p;    ! OK
pa := p32a;     ! OK
pa := @p64p;    ! ERROR, @p64p is 64-bits long, pa is 32-bits long
pa := p64a;     ! ERROR, p64a is 64-bits long, pa is 32-bits long
p32a := @pp;    ! OK
p32a := pa;     ! OK
p32a := @p32p;  ! OK
p32a := p32a;   ! OK
p32a := @p64p;  ! ERROR, @p64p is 64-bits long, p32a is 32-bits long
p32a := p64a;   ! ERROR, p64a is 64-bits long, p32a is 32-bits long
p64a := @pp;    ! OK
p64a := pa;     ! OK
p64a := @p32p;  ! OK
p64a := p32a;   ! OK
p64a := @p64p;  ! OK
p64a := p64a;   ! OK

NOTE: Address types PROC32ADDR and PROC64ADDR and procedure pointer types PROC32PTR
and PROC64PTR are 64-bit addressing functionality added to the EpTAL compiler starting with
SPR T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Once you have set up a procedure pointer to point to a procedure, you can call the procedure by
using the procedure pointer name in a CALL statement or, if the procedure pointer is typed, in an
expression:
CALL a(1, 2);
r := d(r);
IF (s1[i].f(r)) < 1.0E0 THEN ...

Dynamically Selected Procedure Calls
You can use a procedure pointer to dynamically select a procedure to call.

Procedure Pointers 271



Example 220 Dynamically Selected Procedure Call

LITERAL dev_6530, dev_3270, dev_dove;
INT device_type;
INT param1, param2;

PROC device_6530(i, j);
  INT i, j;
EXTERNAL;
PROC device_3270(i, j);
  INT i, j;
EXTERNAL;
PROC device_dove(i, j);
  INT i, j;
EXTERNAL;
PROCPTR p(i, j);
  INT i, j;

END PROCPTR;
CASE device_type of
  BEGIN
    dev_6530 -> @p := @device_6530;
    dev_3270 -> @p := @device_3270;
    dev_dove -> @p := @device_dove;
  END;
CALL p(param1, param2);

Although you cannot create an array of procedure pointers, you can create a structure that includes
a procedure pointer field. You can choose dynamically which procedure pointer in the structure
array to call.

Example 221 Dynamically Selected Procedure Call

LITERAL dev_6530, dev_3270, dev_dove;
STRUCT s1 [dev_6530:dev_dove];  ! Array of PROCPTRs
BEGIN
  PROCPTR d(device, param);

    INT device, param;
  END PROCPTR;
END;
PROC device_6530(i, j);

  INT i, j;
EXTERNAL;
PROC device_3270(i, j);
  INT i, j;
EXTERNAL;
PROC device_dove(i, j);
  INT i, j;
EXTERNAL;

You must initialize the array s1 to hold the addresses of the procedures that you want to dynamically
call, as in the following example:
@s1[dev_6530].d := @device_6530;
@s1[dev_3270].d := @device_3270;
@s1[dev_dove].d := @device_dove;

Use an index to choose which element of array s1 to call, as in the following example:
CALL s1[dev_6530].d(80, 2);

272 Procedures, Subprocedures, and Procedure Pointers



Labels in Procedures
A label is the target location of a GOTO statement.

identifier

is as described in Identifiers (page 42). It cannot be an entry-point identifier.
The following guidelines apply:

• LABEL is not a valid data type for a formal procedure parameter. You cannot pass a label to
a procedure.

• A label is not a valid actual procedure parameter.

• If a GOTO statement in a subprocedure branches to a label in the containing procedure, the
label must be declared in a LABEL declaration in the containing procedure, before the
subprocedure that contains the GOTO statement (see Nonlocal (page 215)).

NOTE: This is not recommended in pTAL because it is very inefficient.

• The executable statement identified by a label cannot be an IF statement that tests the hardware
indicator.

The conditional expression in an IF statement that is identified by a label cannot test a hardware
indicator.

Example 222 IF Statements Identified by Labels

INT i, j := 0;
i := i + 1;
IF < THEN ...  ! OK
i := i + 1
label_a:
IF < THEN ...  ! ERROR: label cannot immediately precede an
               !  IF statement that tests a hardware indicator

Labels in Procedures 273



15 Built-In Routines
Topics:

• Privileged Mode (page 274)

• Parameters (page 275)

• Hardware Indicators (page 276)

• Atomic Operations (page 276)

• Nonatomic Operations (page 281)
Built-in routine calls whose results do not depend on the values of variables (such as $LEN(n ) or
$INT(10D)) can be used wherever constant values are allowed.
The syntax descriptions in this section use these terms:

DefinitionTerm

Signed 16-bit integer. Range is -32,768 through 32,767.sINT

Unsigned 16-bit integer. Range is 0 through 65,535. Must be an INT variable,
not a STRING or UNSIGNED variable.

uINT

16-bit word unless otherwise specifiedword

“sINT” and “uINT” are not pTAL data types. This section uses them only to specify how built-in
routines use INT parameters.

Privileged Mode
Many built-in routines can be executed only by processes running in privileged mode.
Routines that operate in privileged mode can:

• Call other routines that operate in privileged mode

• Perform privileged operations by means of calls to system procedures

• Execute privileged instructions that can affect other programs or the operating system

• Use system global pointers and 'SG' equivalencing to:
Access system tables (which are described in the system description manual for your
system)

◦

◦ Access the system data area

◦ Compare and move data between the system data area and the user data area

◦ Initiate certain input-output transfers
(Only procedures that operate in privileged mode can access system global data.)

Routines that operate in privileged mode must be specially licensed, because they might (if
improperly written) adversely affect the status of the processor in which they are running.
The following execute in privileged mode:

• CALLABLE procedures (that is, procedures declared with the attribute CALLABLE)

• PRIV procedures (that is, procedures declared with the attribute PRIV)

• Nonprivileged procedures that are called by CALLABLE or PRIV procedures

• pTAL Privileged Routines (page 281)

274 Built-In Routines



Parameters
Parameters of built-in routines are always passed by value.
Topics:

• Addresses as Parameters (page 275)

• Expressions as Parameters (page 275)

Addresses as Parameters
If a parameter of a built-in routine is an address, the address must have the correct address
type—whether the parameter is an input parameter, an output parameter, or both.
In Example 223 (page 275), the built-in routine $BUI<_IN_1 has one formal parameter whose data
type is BADDR. The corresponding actual parameter must be either a BADDR variable or the
address field of a STRING pointer.

Example 223 Built-In Routine With Address Parameter

BADDR   b;
STRING .s;
$BUI<_IN_1(b);   ! OK: data type of b is BADDR
$BUI<_IN_1(@s);  ! OK: address type of @s is BADDR
$BUI<_IN_1(s);   ! ERROR: data type of s is STRING

If an output parameter of a built-in routine is an address, the corresponding actual parameter must
not be an indirect array pointer or an indirect structure pointer.
In Example 224 (page 275), the built-in routine $BUI<_IN_2 has one formal output parameter whose
data type is BADDR.

Example 224 Built-In Routine With Address Output Parameter

STRING .s[0:99];
$BUI<_IN_2(@s);  ! ERROR: s has no address container
                  !  in which to store a new address

Expressions as Parameters
Many built-in routines accept expressions as parameters (see their individual syntax descriptions).
If a parameter of a built-in routine is an expression:

• The value of the expression can be any data type except STRING or UNSIGNED.

• Except in INT and INT(32) expressions, all operands must be of the same data type.

• An INT expression can include STRING, INT, and UNSIGNED(1-16) operands.
The system treats STRING and UNSIGNED(1-16) operands as if they were 16-bit values; that
is, the system:

◦ Places a STRING operand in the right byte of a word and sets the left byte to 0.

◦ Places an UNSIGNED(1-16) operand in the right bits of a word and sets the unused left
bits to 0.

Parameters 275



• An INT(32) expression can include INT(32) and UNSIGNED(17-31) operands.
The system treats UNSIGNED(17-31) operands as if they were 32-bit values. Before evaluating
the expression, the system places an UNSIGNED(17-31) operand in the right bits of a
doubleword and sets the unused left bits to 0.

• The built-in routine, not the expression or its data type, determines whether the value of the
parameter is signed or unsigned:
◦ Built-in routines that expect signed arguments treat unsigned expressions as if they were

signed.
◦ Built-in routines that expect unsigned arguments treat signed expressions as if they were

unsigned.

Hardware Indicators
The description of each built-in routine specifies which hardware indicators (condition code,
$CARRY, and $OVERFLOW) the built-in routine sets. If the description does not specify the conditions
for which the built-in routine sets the value of a hardware indicator, see the system description
manual for your system.
If a built-in routine does not set a particular hardware indicator, then the value of that hardware
indicator is undefined after the built-in routine completes. If you reference a hardware indicator
when its value is undefined, the compiler reports a syntax error.
If the value of $OVERFLOW would be nonzero after executing a built-in routine, an overflow trap
occurs if overflow traps are enabled. If overflow traps are disabled, you must test $OVERFLOW
explicitly in your program.
For general information about hardware indicators, see Chapter 13 (page 234).

Atomic Operations
The built-in routines in Table 58 (page 276) perform atomic operations. No other process can access
the memory referenced by an atomic operation until the atomic operation completes; for example,
$ATOMIC_ADD is equivalent to the following algorithm:
var := var + value;

After the atomic operation reads var, no other process can access the memory location associated
with var until the read completes. The read, add, and store operations are performed without
interruption, as if the three operations were one.

Table 58 Built-In Routines for Atomic Operations

Can Set ...Atomic OperationRoutine

Adds two INT values$ATOMIC_ADD Condition code
$CARRY
$OVERFLOW

Condition codePerforms a LAND on two INT values$ATOMIC_AND

Condition codeDeposits bits into an INT variable[EN|DIS]ABLE_OVERFLOW_TRAPS
Block Attribute

Condition codeGets (returns) the value of a variable$ATOMIC_GET

Condition codePerforms a LOR on two INT valuesSubstructure Alignment

Puts a value into a variable$ATOMIC_PUT

$ATOMIC_ADD
$ATOMIC_ADD atomically adds two INT values.

276 Built-In Routines



Yes (according the final value of var )Sets condition code

Yes, if traps are disabledSets $CARRY

Yes, if traps are disabled; otherwise, traps on overflowSets $OVERFLOW

var

input,output
sINT:variable

is the variable that $ATOMIC_ADD increments.
value

input
sINT:value

is the value $ATOMIC_ADD adds to var.
$ATOMIC_ADD performs the following operation:
var := var + value

The read, add, and store operations are performed without interruption, as if the three operations
were one.

Example 225 $ATOMIC_ADD Routine

INT var;
INT value;
$ATOMIC_ADD (var, value);

The following table shows examples of $ATOMIC_ADD:

resultvaluevar

%HBCDE%HAAAA%H1234

%H6789%H5555%H1234

%H1233%HAAAA%H6789

%HBCDE%H5555%H6789

$ATOMIC_AND
$ATOMIC_AND performs an atomic LAND on two INT values.

Yes (according the final value of var )Sets condition code

NoSets $CARRY

NoSets $OVERFLOW

var

input,output

Atomic Operations 277



sINT:variable

is the variable to which $ATOMIC_AND applies mask.
mask

input
INT:value

is a 16-bit mask that $ATOMIC_AND applies to var.
$ATOMIC_AND performs the following operation:
var := var LAND mask

The read, LAND, and store operations are performed without interruption, as if the three operations
were one.

Example 226 $ATOMIC_AND Routine

INT var;
INT mask;
$ATOMIC_AND(var, mask);

The following table shows examples of $ATOMIC_AND:

resultvaluevar

%HBCDE%HAAAA%H1234

%H6789%H5555%H1234

%H1233%HAAAA%H6789

%HBCDE%H5555%H6789

$ATOMIC_DEP
$ATOMIC_DEP atomically deposits bits into an INT variable.

Yes (according the final value of var )Sets condition code

NoSets $CARRY

NoSets $OVERFLOW

var

input,output
INT:variable

is the variable into which $ATOMIC_DEP deposits bits from value.
mask

input
INT:value

is a 16-bit mask word that determines which bits of value to deposit into var.
$ATOMIC_DEP stores into each bit position of var. The corresponding bit in value after
performing an “and” operation between the corresponding bits in value and mask.

278 Built-In Routines



value

input
INT:value

holds the bits that, after being masked, $ATOMIC_DEP deposits in var.
$ATOMIC_DEP performs the following operation:
var := (var LAND $COMP(mask)) LOR (value LAND mask)

All the operations are performed without interruption, as if they were one.

Example 227 $ATOMIC_DEP Routine

INT var;
INT mask;
INT value;
$ATOMIC_DEP(var, mask, value);

The following table shows examples of $ATOMIC_DEP:

resultmaskvaluevar

%H0220%HAAAA%H1234%H0000

%H1010%H5555%H1234%H0000

%H2288%HAAAA%H6789%H0000

%H1010%H5555%H6789%H0000

$ATOMIC_GET
$ATOMIC_GET atomically gets (returns) the value of a variable.

YesSets condition code

NoSets $CARRY

NoSets $OVERFLOW

var

input
type:variable

is the variable whose value $ATOMIC_GET returns. var must be one of:
• A well-aligned byte, 2-byte, or 4-byte variable whose address is an integral multiple

of its width.
• A bit field fully contained in a 1-byte, 2-byte, or 4-byte variable that is aligned on an

even-byte boundary.
If var is not well aligned, an error occurs.
The operation is performed without interruption.

Atomic Operations 279



Example 228 $ATOMIC_GET Routine

INT var1;
INT var2;
var1 := $ATOMIC_GET(var2);
if < then ...              ! OK: $ATOMIC_GET sets condition code

$ATOMIC_OR
$ATOMIC_OR performs an atomic LOR on two INT values.

Yes (according the final value of var )Sets condition code

NoSets $CARRY

NoSets $OVERFLOW

var

input,output
INT:variable

is the variable to which $ATOMIC_OR applies mask.
mask

input
INT:value

is a 16-bit mask that $ATOMIC_OR applies to var.
$ATOMIC_OR performs the following statement:
var := var LOR mask

The read, LOR, and store operations are performed without interruption, as if the three operations
were one.

Example 229 $ATOMIC_OR Routine

INT var;
INT mask;
$ATOMIC_OR(var, mask);

The following table shows examples of $ATOMIC_OR:

resultmaskvar

%HBABC%HAAAA%H1234

%H5775%H5555%H1234

%HEFAB%HAAAA%H6789

%H77DB%H5555%H6789

$ATOMIC_PUT
$ATOMIC_PUT atomically puts a value into a variable.

280 Built-In Routines



NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

var

output
type:variable

the variable into which $ATOMIC_PUT stores value. var must be one of:
• A 1-byte, 2-byte, or 4-byte variable whose address is an integral multiple of its width.

• A bit field fully contained in a 1-byte, 2-byte, or 4-byte variable that is aligned on an
even-byte boundary.

value

input
type:value

the value $ATOMIC_PUT stores in var. value must be assignment-compatible with var.
$ATOMIC_PUT performs the following action:
var := value

Example 230 $ATOMIC_PUT Routine

INT var;
INT value;
$ATOMIC_PUT(var, value);

Nonatomic Operations
• pTAL Privileged Routines (page 281)

• Type-Conversion Routines (page 282)

• Address-Conversion Routines (page 283)

• Character-Test Routines (page 284)

• Minimum and Maximum Routines (page 285)

• Arithmetic Routines (page 285)

• Carry and Overflow Routines (page 285)

• FIXED-Expression Routines (page 285)

• Variable-Characteristic Routines (page 285)

• Procedure-Parameter Routines (page 286)

• Miscellaneous Routines (page 286)
Table 70 (page 286) lists the built-in routines for nonatomic operations alphabetically and shows
which hardware indicators they can can set.

pTAL Privileged Routines
pTAL privileged routines execute in privileged mode (see Privileged Mode (page 274)).
The pTAL compiler supports all pTAL privileged routines except $TRIGGER.

Nonatomic Operations 281



The EpTAL compiler supports no pTAL privileged routines except $TRIGGER.

Table 59 pTAL Privileged Routines

DescriptionProcedure

Converts a standard address or a relative extended address to an absolute
extended address

$AXADR

Executes an I/O operation$EXECUTEIO

Freezes (halts) the processor in which its process is running and any other
processes on the same node that have FREEZE enabled

$FREEZE

Halts the processor in which its process is runningVOLATILE Attribute

Stores cause and status information from an I/O interrupt$INTERROGATEIO

Locks one page of memory$LOCKPAGE

Returns the base and limit of the current extended segment$READBASELIMIT

Replaces $FREEZE and $HALT, which are available only for code generated for
the TNS/R architecture

$TRIGGER

Unlocks one page of memory$UNLOCKPAGE

Writes a segment-page-table entry$WRITEPTE

Type-Conversion Routines
A type-conversion routine converts its argument or arguments from one data type to another data
type.

Table 60 Built-In Type-Conversion Routines

To ...Converts ...Routine

FIXED valueASCII value$ASCIITOFIXED

INT(32) value$DBL INT, INT(32), FIXED, REAL, or
REAL(64), or UNSIGNED(1-31) value
EXTADDR or PROCADDR address

INT(32) valueTwo INT values$DBLL

Rounded INT(32) valueINT, INT(32), FIXED, REAL, or REAL(64)
value

$DBLR

FIXED(fpoint ) valueINT(32) value$DFIX

REAL(64) valueINT, INT(32), FIXED(fpoint), REAL, or
REAL(64) value

$EFLT

Rounded REAL(64) valueINT, INT(32), FIXED(fpoint), or REAL,
or REAL(64) value

$EFLTR

FIXED valueINT, INT(32), REAL, REAL(64), FIXED,
or EXT64ADDR1 value

$FIX

INT(32) valueFIXED value$FIXD

ASCII valueAbsolute value of a FIXED value$FIXEDTOASCII

Same as $FIXEDTOASCII but returns
the value of the residue

$FIXEDTOASCIIRESIDUE

Signed INT valueFIXED value$FIXI

Unsigned INT valueFIXED value$FIXL

282 Built-In Routines



Table 60 Built-In Type-Conversion Routines (continued)

To ...Converts ...Routine

Rounded FIXED valueINT, INT(32), REAL, REAL(64), or FIXED
value

$FIXR

REAL valueINT, INT(32), FIXED(fpoint), REAL, or
REAL(64) value

$FLT

Rounded REAL valueINT, INT(32), FIXED(fpoint), REAL, or
REAL(64) value

$FLTR

INT valueUpper 16 bits of an INT(32) or
EXTADDR value

$HIGH

FIXED(fpoint ) valueSigned INT value$IFIX

INT value$INT INT, INT(32), FIXED, UNSIGNED
(1-31), REAL, or REAL(64) value
Some address types

Same as $INT, but sets $OVERFLOW
in some cases

$INT_OV

Rounded INT value$INTR Low-order 16 bits of an INT, INT(32),
or FIXED value
REAL or REAL(64) value

FIXED(fpoint ) valueUnsigned INT value$LFIX

INT(32) valueUnsigned INT value$UDBL

FIXED 2INT(32)$UFIX 1

1 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

2 Zero extends the INT(32) value to FIXED; does not sign extend.

Type-conversion routines that convert an argument from a smaller data type to a larger data type,
such as $DFIX, perform a sign extension of the expression to the high bits.
Type-conversion routines whose names end in R, such as $DBLR, round their results. All other
type-transfer routines truncate their results.
Type-conversion routines round values as follows:
(IF value < 0 THEN value  - 5 ELSE value + 5) / 10

That is:
1. If value is negative, 5 is subtracted; if value is positive, 5 is added.
2. Integer division by 10 truncates the result; therefore, if the absolute value of the least significant

digit of the result after initial truncation is 5 or more, one is added to the absolute value of
the final least significant digit.

Rounding has no effect on INT, INT(32), or FIXED expressions.

Address-Conversion Routines
An address-conversion routine converts one address type to another address type.

Table 61 Built-In Address-Conversion Routines

To ...Converts ...Routine

EXTADDR addressBADDR address$BADDR_TO_EXTADDR

WADDR addressBADDR address$BADDR_TO_WADDR

Nonatomic Operations 283



Table 61 Built-In Address-Conversion Routines (continued)

To ...Converts ...Routine

BADDR addressEXTADDR address$EXTADDR_TO_BADDR

WADDR addressEXTADDR address$EXTADDR_TO_WADDR

EXTADDR addressEXT64ADDR1$EXT64ADDR_TO_EXTADDR1

EXT64ADDR address1EXTADDR$EXTADDR_TO_EXT64ADDR 1

EXT32ADDR address1EXT64ADDR1$EXT64ADDR_TO_EXT32ADDR1

EXT32ADDR address 1, 2EXT64ADDR1$EXT64ADDR_TO_EXT32ADDR_OV 1

INT3Extended address$IS_32BIT_ADDR 1

PROCADDR addressProcedure address or INT(32)$PROCADDR

PROC32ADDR address1Procedure address or INT(32)$PROC32ADDR1

PROC64ADDR address1Procedure address or FIXED$PROC64ADDR1

EXTADDR addressSGBADDR or SGXBADDR address$SGBADDR_TO_EXTADDR

SGWADDR addressSGBADDR or SGXBADDR address$SGBADDR_TO_SGWADDR

EXTADDR addressSGWADDR or SGXWADDR
address

$SGWADDR_TO_EXTADDR

SGBADDR addressSGWADDR or SGXWADDR
address

$SGWADDR_TO_SGBADDR

BADDR addressWADDR address$WADDR_TO_BADDR

EXTADDR addressWADDR address$WADDR_TO_EXTADDR

EXTADDR address4Variable or struct$XADR

EXT32ADDR address1, 4Variable or struct$XADR321

EXT64ADDR address1, 4Variable or struct$XADR641

1 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

2 If the specified address cannot be represented in 32-bits, an overflow trap occurs. This trap cannot be disabled using
the arithmetic trap controls (for example, NO_OVERFLOW_TRAPS, DISABLE_OVERFLOW_TRAPS, etc.)

3 Returns -1 if the specified address can be represented as a 32-bit address otherwise, returns 0.
4 Returns the address of the specified variable or struct in the desired extended address type.

The pTAL privileged routine $AXADR (page 293), supported only by the pTAL compiler, is also an
address-conversion routine.

Character-Test Routines
A character-test routine tests the right byte of an INT value for an alphabetic, numeric, or special
character, returning a true value if the character is there and a false value otherwise.

Table 62 Built-In Character-Test Routines

Tests for ...Routine

Alphabetic character$ALPHA

Numeric character$NUMERIC

Special (ASCII nonalphanumeric) character (see Table 8 (page 36))$SPECIAL

284 Built-In Routines



Minimum and Maximum Routines
Minimum routines return the minimum of two arguments. Maximum routines return the maximum
of two arguments.

Table 63 Built-In Minimum and Maximum Routines

MaximumMinimumArguments are of the type ...

$LMAX$LMINUnsigned INT

$MAXSRLSigned INT, INT(32), FIXED(fpoint ), REAL, or
REAL(64)

Arithmetic Routines
Table 64 Built-In Arithmetic Routines

DescriptionRoutine

Returns the absolute value of its argument$ABS

Returns the one’s complement of its argument$COMP

Divides an INT(32) dividend by an INT divisor to produce an INT quotient and
an INT remainder

$UDIVREM16

Divides an INT(32) dividend by an INT divisor to produce an INT(32) quotient
and an INT remainder

$UDIVREM32

Carry and Overflow Routines
Table 65 Built-In Carry and Overflow Routines

Indicates whether ...Routine

An arithmetic carry occurred during certain arithmetic operations or during
execution of a SCAN or RSCAN statement

$CARRY

An overflow occurred during certain arithmetic operations$OVERFLOW

FIXED-Expression Routines
Table 66 Built-In FIXED-Expression Routines

DescriptionRoutine

Returns the fpoint value of a FIXED expression$POINT

Moves the position of the implied decimal point by changing a FIXED(fpoint )
value

$SCALE

Variable-Characteristic Routines
Variable-characteristic routines return INT values that represent various characteristics of variables.

Table 67 Built-In Variable-Characteristic Routines

Returns an INT value that is the ...Routine

Length, in bits, of a variable$BITLENGTH

Offset, in bits, of a structure data item from the address of the zeroth structure
occurrence

$BITOFFSET

Length, in bytes, of a variable$LEN

Number of elements in an array$OCCURS

Nonatomic Operations 285



Table 67 Built-In Variable-Characteristic Routines (continued)

Returns an INT value that is the ...Routine

Offset, in bytes, of a structure item from the beginning of the structure$OFFSET

Data type of a variable$TYPE

Procedure-Parameter Routines
Table 68 Built-In Procedure-Parameter Routines

DescriptionRoutine

Controls whether a given parameter or parameter pair is passed to a VARIABLE
procedure or EXTENSIBLE procedure

$OPTIONAL

Checks for the presence or absence of an actual parameter in the call that called
the current procedure or subprocedure

$PARAM

Miscellaneous Routines
Table 69 Miscellaneous Built-In Routines

DescriptionRoutine

Returns the checksum of data$CHECKSUM

Returns the number of duplicate words in a buffer$COUNTDUPS

Exchanges the values of two variables of the same data type$EXCHANGE

Fill an array or structure with repetitions of an 8-bit, 16-bit, and 32-bit value,
respectively

$FILL8, $FILL16, and $FILL32

Stores cause and status information from a high-priority I/O interrupt$INTERROGATEHIO*,**

Returns the address of the Segment Page Table (SPT)$LOCATESPTHDR*,**

Moves bytes from one memory location to another and computes a checksum
(bytewise exclusive “or”) on them

Declaring Arrays in Structures

Moves words until it encounters two adjacent identical words$MOVENONDUP

Returns the current setting of the system clock$READCLOCK

Returns (copies) an entry from the Segment Page Table (SPT)$READSPT*,**

Returns the number of microseconds since the last cold load$READTIME

Allocates a block of memory on the stack and returns the address of the block$STACK_ALLOCATE

* Only procedures executing in privileged mode can call this routine (see Privileged Mode (page 274))

** The EpTAL compiler does not support this routine

Table 70 Built-In Routines for Nonatomic Operations

Can Set ...DescriptionRoutine

$OVERFLOWReturns the absolute value of its
argument

$ABS

Tests for an alphabetic character$ALPHA

Converts an ASCII value to a FIXED
value

$ASCIITOFIXED Condition code
$OVERFLOW

286 Built-In Routines



Table 70 Built-In Routines for Nonatomic Operations (continued)

Can Set ...DescriptionRoutine

Converts a standard address or a
relative extended address to an
absolute extended address

$AXADR1, 2, 3

Condition codeConverts a BADDR address to an
EXTADDR address

$BADDR_TO_EXTADDR

Condition codeConverts a BADDR address to a
WADDR address

$BADDR_TO_WADDR

Returns the length, in bits, of a
variable

$BITLENGTH

Returns the offset, in bits, of a
structure data item from the address
of the zeroth structure occurrence

$BITOFFSET

Indicates whether an arithmetic carry
occurred during certain arithmetic

$CARRY

operations or during execution of a
SCAN or RSCAN statement

Returns the checksum of data$CHECKSUM

Returns the one’s complement of its
argument

$COMP

Returns the number of duplicate
words in a buffer

$COUNTDUPS

$OVERFLOWConverts its argument to an INT(32)
value

$DBL

Converts two INT values to an
INT(32) value

$DBLL

Converts its argument to a rounded
INT(32) value

$DBLR

$OVERFLOWConverts an INT(32) value to a
FIXED(fpoint) value

$DFIX

Converts its argument to a REAL(64)
value

$EFLT

Converts its argument to a rounded
REAL(64) value

$EFLTR

Exchanges the values of two
variables of the same data type

$EXCHANGE

Condition codeExecutes an I/O operation$EXECUTEIO1, 2, 3

Converts a EXTADDR address to a
BADDR address

$EXTADDR_TO_BADDR

Converts a EXTADDR address to a
WADDR address

$EXTADDR_TO_WADDR

Converts address of type
EXT64ADDR4 to EXTADDR

$EXT64ADDR_TO_EXTADDR4

Converts address of type
EXT64ADDR4 to EXT32ADDR4

$EXT64ADDR_TO_EXT32ADDR4

Converts address of type
EXT64ADDR4 to EXT32ADDR4.

$EXT64ADDR_TO_EXT32ADDR_OV 4

Nonatomic Operations 287



Table 70 Built-In Routines for Nonatomic Operations (continued)

Can Set ...DescriptionRoutine

Overflow trap occurs if the address
cannot be represented by 32-bits

Converts address of type EXTADDR
to EXT64ADDR4

$EXTADDR_TO_EXT64ADDR 4

Fill an array or structure with
repetitions of an 8-bit, 16-bit, and
32-bit value, respectively

$FILL8, $FILL16, and $FILL32

Converts its argument to a FIXED
value

$FIX

$OVERFLOWConverts a FIXED value to an INT(32)
value

$FIXD

$OVERFLOWConverts the absolute value of a
FIXED value to an ASCII value

$FIXEDTOASCII

$OVERFLOWConverts the absolute value of a
FIXED value to an ASCII value and
returns the value of the residue

$FIXEDTOASCIIRESIDUE

$OVERFLOWConverts a FIXED value to a signed
INT value

$FIXI

$OVERFLOWConverts a FIXED value to an
unsigned INT value

$FIXL

$OVERFLOWConverts its argument to a rounded
FIXED value

$FIXR

Converts its argument to a REAL
value

$FLT

$OVERFLOWConverts its argument to a rounded
REAL value

$FLTR

Freezes (halts) the processor in which
its process is running and any other

$FREEZE1, 2, 3

processes on the same node that
have FREEZE enabled

Halts the processor in which its
process is running

$HALT1, 2, 3

Converts the high-order (leftmost) 16
bits of an INT(32) or EXTADDR value
to an INT value

$HIGH

Converts a signed INT value to a
FIXED(fpoint) value

$IFIX

Converts its argument to an INT value$INT

$OVERFLOWSame as $INT, but sets overflow
indicator in some cases

$INT_OV

Condition codeStores cause and status information
from a high-priority I/O interrupt

$INTERROGATEHIO2, 3

Condition codeStores cause and status information
from an I/O interrupt

$INTERROGATEIO1, 2, 3

$OVERFLOW$INTR Converts the low-order 16 bits of an
INT, INT(32), or FIXED value to an
INT value

288 Built-In Routines



Table 70 Built-In Routines for Nonatomic Operations (continued)

Can Set ...DescriptionRoutine

Converts a REAL or REAL(64) value
to a rounded INT value

Returns INT typed value -1 if the
specified address can be represented
by 32-bits and 0 otherwise.

$IS_32BIT_ADDR 4

Returns the length, in bytes, of a
variable

$LEN

Converts an unsigned INT value to a
FIXED(fpoint) value

$LFIX

Returns the maximum of two unsigned
INT values

$LMAX

Returns the minimum of two unsigned
INT values

$LMIN

$CARRYReturns the address of the Segment
Page Table (SPT)

$LOCATESPTHDR2, 3

Locks one page of memory$LOCKPAGE1, 2, 3 Condition code
$CARRY

Returns the maximum of two signed
values

$MAX

Returns the minimum of two signed
values

$MIN

Moves bytes from one memory
location to another and computes a

$MOVEANDCXSUMBYTES

checksum (bytewise exclusive “or”)
on them

Condition codeMoves words until it encounters two
adjacent identical words

$MOVENONDUP

Tests for a numeric character$NUMERIC

Returns the number of elements in an
array

$OCCURS

Returns the offset, in bytes, of a
structure item from the beginning of
the structure

$OFFSET

Controls whether a given parameter
or parameter pair is passed to a

$OPTIONAL

VARIABLE procedure or EXTENSIBLE
procedure

Indicates whether an overflow
occurred during certain arithmetic
operations

$OVERFLOW

Checks for the presence or absence
of an actual parameter in the call that

$PARAM

called the current procedure or
subprocedure

Returns the fpoint value of a FIXED
expression

$POINT

Converts an procedure address to a
PROCADDR address

$PROCADDR

Nonatomic Operations 289



Table 70 Built-In Routines for Nonatomic Operations (continued)

Can Set ...DescriptionRoutine

Converts procedure address to
PROC32ADDR4

$PROC32ADDR4

Converts procedure address to
PROC64ADDR4

$PROC64ADDR4

Returns the base and limit of the
current extended segment

$READBASELIMIT1, 2

Returns the current setting of the
system clock

$READCLOCK

$CARRYReturns (copies) an entry from the
Segment Page Table (SPT)

$READSPT2, 3

Returns the number of microseconds
since the last cold load

$READTIME

$OVERFLOWMoves the position of the implied
decimal point by changing a
FIXED(fpoint) value

$SCALE

Converts a SGBADDR or SGXBADDR
address to an EXTADDR address

$SGBADDR_TO_EXTADDR

Converts a SGBADDR or SGXBADDR
address to a SGWADDR address

$SGBADDR_TO_SGWADDR

Converts a SGWADDR or
SGXWADDR address to an EXTADDR
address

$SGWADDR_TO_EXTADDR

Converts a SGWADDR or
SGXWADDR address to a SGBADDR
address

$SGWADDR_TO_SGBADDR

Tests for a special (ASCII
nonalphanumeric) character

$SPECIAL

Allocates a block of memory on the
stack and returns the address of the
block

$STACK_ALLOCATE

Replaces $FREEZE and $HALT, which
are available only for code
generated for the TNS/R architecture

$TRIGGER1, 2, 5

Returns an INT value that represents
the data type of a variable

$TYPE

Converts an unsigned INT value to
an INT(32) value

$UDBL

$OVERFLOWDivides an INT(32) dividend by an
INT divisor to produce an INT
quotient and INT remainder

$UDIVREM16

$OVERFLOWDivides an INT(32) dividend by an
INT divisor to produce an INT(32)
quotient and INT remainder

$UDIVREM32

converts INT(32) to FIXED, zero
extended

$UFIX 4

Condition codeUnlocks one page of memory$UNLOCKPAGE1, 2, 3

Converts a WADDR address to a
BADDR address

$WADDR_TO_BADDR

290 Built-In Routines



Table 70 Built-In Routines for Nonatomic Operations (continued)

Can Set ...DescriptionRoutine

Converts a WADDR address to an
EXTADDR address

$WADDR_TO_EXTADDR

$CARRYWrites a segment-page table entry$WRITEPTE1, 2, 3

Returns the address of the specified
variable or struct as type EXTADDR.6

$XADR

Returns the address of the specified
variable or struct as type
EXT32ADDR4.6

$XADR324

Returns the address of the specified
variable or struct as type
EXT64ADDR4.6

$XADR644

1 pTAL privileged procedure (see Privileged Mode (page 274))
2 Only procedures operating in privileged mode can execute this routine (see Privileged Mode (page 274)).
3 The EpTAL compiler does not support this routine.
4 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,

see Appendix E, “64-bit Addressing Functionality” (page 531).
5 The pTAL compiler does not support this routine.
6 The desired address is returned only if there exists a valid, explicit type conversion from @var or @struct to the desired

extended address type.

$ABS
$ABS returns the absolute value of its argument. The returned value has the same data type as the
argument.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

expression

is an expression (as described in Chapter 5 (page 69)).
If the absolute value of a negative INT, INT(32), or FIXED expression cannot be represented in
two’s complement form (for example, if expression has the INT value -32,768), $ABS traps if
overflow traps are enabled (see Chapter 13 (page 234)); otherwise, $ABS ignores the problem.

Example 231 $ABS Routine

INT int_val := -5;
INT abs_val;
abs_val := $ABS(int_val);  ! Return 5, the absolute value of -5

$ALPHA
$ALPHA tests the right byte of an INT value for the presence of an alphabetic character.

Nonatomic Operations 291



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

int-expression

is an INT expression.
$ALPHA inspects bits <8:15> of int-expression and ignores bits <0:7>. It tests for an
alphabetic character according to the following criteria:
int-expression >= "A" AND int-expression <= "Z" OR
int-expression >= "a" AND int-expression <= "z"
If an alphabetic character occurs, $ALPHA sets the condition code indicator to CCE (condition
code equal to). If you plan to check the condition code, do so before an arithmetic operation or
assignment occurs.
If the character passes the test, $ALPHA returns a -1 (true); otherwise, it returns a 0 (false).
int-expression can include STRING and UNSIGNED(1-16) operands, as described in
“Expression Arguments” at the beginning of this section.

Example 232 $ALPHA Routine

STRING some_char;
IF $ALPHA (some_char) THEN ... ;  ! Test for alphabetic character

$ASCIITOFIXED
$ASCIITOFIXED converts an ASCII value to a FIXED value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

YesSets $OVERFLOW

bufferaddr

input,output
BADDR:variable

is the byte address from which $ASCIITOFIXED reads ASCII digits. When $ASCIITOFIXED
completes, bufferaddr contains the address following the last byte read.

292 Built-In Routines



maxdigits

input
uINT:value

is the maximum number of ASCII digits to read from bufferaddr.
remainingdigits

output
uINT:variable

is the number of bytes that $ASCIITOFIXED did not convert because it encountered a
nonnumeric ASCII byte. remainingdigits must be an INT variable; it cannot be a
STRING, UNSIGNED, or USE variable or a bit field.

qvaluein

input
FIXED(*):value

is a value that $ASCIITOFIXED adds to the result of converting the bytes at bufferaddr.
$ASCIITOFIXED multiplies qvaluein by 10 for each digit it converts from ASCII to FIXED.
After it converts the last digit at bufferaddr, $ASCIITOFIXED adds qvaluein to the result of
the conversion to establish the value that it returns qvalueout.

qvalueout

output
FIXED(*):variable

is a quadrupleword integer value that holds the final result of the conversion.
$ASCIITOFIXED converts a string of ASCII-coded digits at bufferaddr to a binary-coded
FIXED value, adds qvaluein times 10n, where n is the number of digits converted, and
stores the result in qvalueout.
If a nondigit ASCII code is encountered, $ASCIITOFIXED ends the conversion. $ASCIITOFIXED
converts only the digits before the nondigit ASCII code. CCG indicates that $ASCIITOFIXED
converted only part of the ASCII number. CCE indicates $ASCIITOFIXED converted the entire
string. If overflow traps are enabled and the result is greater than 263-1 or less than 263,
$ASCIITOFIXED sets $OVERFLOW and qvalueout is undefined.

Example 233 $ASCIITOFIXED Routine

LITERAL   buffer_len = 100;
STRING   .buffer[ 0:buffer_len - 1 ];  ! Buffer to convert
STRING   .ptr := @buffer;              !  pointer to buffer
INT       maxdigits;
INT       remainingdigits;
FIXED     qvaluein;
FIXED     qvalueout;
$ASCIITOFIXED (@ptr, maxdigits, remainingdigits, qvaluein,
               qvalueout);

$AXADR

NOTE: The EpTAL compiler does not support this routine. (The EpTAL compiler does allow $AXADR
as a DEFINE name.)

$AXADR converts a standard address or a relative extended address to an absolute extended
address.

Nonatomic Operations 293



YespTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

variable

is the identifier of a simple variable, pointer, array element, structure, or structure data item.
If variable is a pointer, $AXADR returns the absolute extended address of the item to which
the pointer points, not the address of the pointer itself.

Example 234 $AXADR Routine

PROC myproc PRIV;
BEGIN
  STRING .EXT str;
  INT  intr;
  ! Lots of code
  @str := $AXADR (intr);  ! Convert standard address of intr
                          !  to an absolute extended address
    !More code
END;

$BADDR_TO_EXTADDR
$BADDR_TO_EXTADDR converts a BADDR address to an EXTADDR address.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is a BADDR address.

Example 235 $BADDR_TO_EXTADDR Routine

STRING .EXT s;
STRING      t;
@s := $BADDR_TO_EXTADDR(@t);  ! @t is a BADDR address

$BADDR_TO_WADDR
$BADDR_TO_WADDR converts a BADDR address to a WADDR address.

294 Built-In Routines



NopTAL privileged procedure

NoCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is a BADDR address.
The result of $BADDR_TO_WADDR is undefined if the least significant bit of expression is 1.
The least significant bit of an address is not truncated when a byte address is converted to a word
address—the address is not rounded down to the preceding even-byte address.

Example 236 $BADDR_TO_WADDR Routine

INT    .i;
STRING  s;
@i := $BADDR_TO_WADDR(@s);  ! @s is a BADDR address

$BITLENGTH
$BITLENGTH returns an INT value that is the length, in bits, of a variable.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

variable

is the identifier of a simple variable, array element, pointer, structure, or structure data item.
$BITLENGTH returns the length, in bits, of a single occurrence of a simple variable, array element,
structure, structure item, or item to which a pointer points.
The length of a structure or substructure occurrence is the sum of the lengths of all items contained
in the structure or substructure. Complete the structure before you use $BITLENGTH to obtain the
length of any of the items in the structure.
To compute the total number of bits in an entire array or substructure, multiply the value returned
by $BITLENGTH by the value returned by $OCCURS. To compute the total number of bits in a
structure, first round up the value returned by $BITLENGTH to the word boundary and then multiply
the rounded value by the value returned by $OCCURS.
You can use $BITLENGTH in LITERAL expressions and global initializations, because it always
returns a constant value.

Nonatomic Operations 295



Example 237 $BITLENGTH Routine

INT s_len;
STRUCT .s[0:3];             ! Declare four occurrences of a
BEGIN                       !  structure
  UNSIGNED(1) flags[0:15];
  UNSIGNED(2) status;
  BIT_FILLER 14;
END;
s_len := $BITLENGTH (s);    ! Return 32, the number of bits
                            !  in one structure occurrence

$BITOFFSET
$BITOFFSET returns an INT value that is the offset, in bits, of a structure data item from the address
of the zeroth structure occurrence.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

variable

is the fully qualified identifier of a structure item.
The zeroth structure occurrence has an offset of 0. For items other than substructure, simple variable,
array, or pointer declared within a structure, $BITOFFSET returns a 0.
When you qualify the identifier of variable, you can use constant indexes but not variable
indexes; for example:
$BITOFFSET (struct1.subst[1].item)  !1 is a constant index

To find the offset of an item in a structure, complete the structure before you use $BITOFFSET.
You can use $BITOFFSET in LITERAL expressions and global initializations, because it always
returns a constant value.

296 Built-In Routines



Example 238 $BITOFFSET Routine

STRUCT a;
BEGIN
  INT array[0:40];
  STRUCT ab[0:9];
  BEGIN
    UNSIGNED(1) flag;
    UNSIGNED(15) offset;
  END;
END;
INT c;
c := $BITOFFSET (a.ab[2]);  ! Return offset of 3rd occurrence
                            !  of ab

$CARRY
$CARRY returns a value that indicates whether an arithmetic carry occurred during certain arithmetic
operations or during execution of a SCAN or RSCAN statement.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

The value returned by $CARRY is based on instructions emitted by the compiler that determine
whether a carry occurred. $CARRY returns -1 if a carry occurred, 0 otherwise.
Procedures cannot return $CARRY.
You can test $CARRY only after one of the following statements:

• An assignment statement in which the final operator executed in the expression on the right
side of the assignment is one of the following:
◦ Signed integer add, subtract, or negate

◦ Unsigned integer add, subtract, or negate

• A SCAN or RSCAN statement.
$CARRY cannot be an actual parameter. If it is important to pass the value of $CARRY to a
procedure, use code similar to that in Example 239.

Example 239 $CARRY Routine

INT a, carry_flag;
carry_flag := 0;
a := a + 1;
IF $CARRY THEN carry_flag := 1;
CALL p1(carry_flag, .... );

$CHECKSUM
$CHECKSUM returns the checksum of data.

Nonatomic Operations 297



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

checksum

input,output
uINT:variable

the initial value (“seed” value) of the checksum. When $CHECKSUM completes, checksum
holds the final checksum. checksum must be an INT variable. It cannot be a STRING,
UNSIGNED, or USE variable or a bit field.

bufferaddr

input
EXTADDR:value

the address of the first 16-bit word to include in the checksum.
wordcount

input
uINT:value

the number of 16-bit words to include in the checksum.
$CHECKSUM accumulates the checksum by performing an exclusive-or operation on the
accumulated checksum and wordcount successive 16-bit words, starting at bufferaddr.
When $CHECKSUM completes, checksum holds the accumulated checksum and bufferaddr
is unchanged.

Example 240 $CHECKSUM Routine

LITERAL buffer_len  = 100;
INT       c_sum_val;
INT  .EXT buffer1 [ 0:buffer_len - 1 ];
INT  .EXT buffer2 [ 0:buffer_len - 1 ];
buffer1 ':=' [%H0123, %H4567, %H89AB];
c_sum_val:= 3;
$CHECKSUM(c_sum_val, @buffer1, buffer_len);
! Value of c_sum_val is now %HCDEF
! Checksum buffer2 in same checksum word as buffer1
$CHECKSUM(c_sum_val, @buffer2, buffer_len);
! c_sum_val now has the combined checksum of buffer1 & buffer2

$COMP
$COMP returns the one’s complement of its argument.

298 Built-In Routines



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

int-expression

is an expression whose value is an INT or INT(32) value.
The data type of the expression returned by $COMP is the same as the data type of its argument.

Example 241 $COMP Routine

INT     i;
INT(32) j;
i := $COMP(i);
j := $COMP(j);

$COUNTDUPS
$COUNTDUPS returns the number of consecutive words, starting at the beginning of a buffer, that
are equal to the first word in the buffer.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

srcaddr

input,output
EXTADDR:variable

an address. Starting at srcaddr, $COUNTDUPS scans 16-bit words until it encounters
two adjacent words that are not equal. At the end of the operation, srcaddr points to
the word that differs from the first word and which, therefore, terminated the scan. If there
are no duplicates in the buffer, srcaddr points immediately after the last two words it
compared—that is, at the first word $COUNTDUPS did not examine.

maxwords

input,output

Nonatomic Operations 299



uINT:variable

the maximum number of 16-bit words to scan at srcaddr. At the end of the operation,
maxwords contains:
• 0 if $COUNTDUPS scanned the entire buffer.

• The number of words $COUNTDUPS did not scan because it found a nonduplicate
pair.

maxwords must be an INT variable; it cannot be a STRING, UNSIGNED, or USE variable
or a bit field.

duplicationcount

input,output
uINT:variable

holds an initial value. At the end of the operation, duplicationcount contains its
original value plus the number of duplicate words found by $COUNTDUPS.
duplicationcount must be an INT variable; it cannot be a STRING, UNSIGNED, or
USE variable or a bit field.

$COUNTDUPS scans a buffer from left to right until it encounters two adjacent unequal words or
until it reads maxwords words.

Example 242 $COUNTDUPS Routine

LITERAL  buffersize = 100;
INT .EXT buffer[ 0:buffersize-1 ];
INT      maxwords;
INT      duplication_count;
maxwords := maxbuff;
$COUNTDUPS(@buffer, maxwords, duplication_count);

$DBL
$DBL converts its argument to an INT(32) value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

Yes, if expression is a fixed valueSets $OVERFLOW

expression

is an expression whose value is an INT, INT(32), FIXED, REAL, REAL(64), UNSIGNED(1-16),
UNSIGNED(17-31), EXTADDR, or PROCADDR value.

300 Built-In Routines



Example 243 $DBL Routine

INT .EXT i;
EXTADDR  e;
INT(32)  j;
j := $DBL(e);   ! OK: e is type EXTADDR
j := $DBL(@i);  ! OK: @i is type EXTADDR
j := $DBL(i);   ! OK: i is type INT
j := $DBL(@j);  ! ERROR: @j is type WADDR
j := $DBL(@e);  ! ERROR: @e is type WADDR

$DBLL
$DBLL converts to INT values an INT(32) value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

int-expression

is an INT expression.
To form the INT(32) value, $DBLL places the first int-expression in the high-order 16 bits and
the second int-expression in the low-order 16 bits.

Example 244 $DBLL Routine

INT first_int, second_int;
INT(32) some_double;

INT .EXT p;                   ! 32-bit simple pointer
some_double := $DBLL (first_int, second_int);
                              ! Return INT(32) value
@p := ($DBLL (2, 7)) '<<' 1;  ! Return 32-bit address in
                              !  user code segment

$DBLR
$DBLR converts its argument to an INT(32) value and rounds the result.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

Nonatomic Operations 301



expression

is an INT, INT(32), FIXED, REAL, or REAL(64) expression.
If expression is too large to be represented by a 32-bit two’s complement integer, $DBLR traps
if overflow traps are enabled (see Chapter 13 (page 234)); otherwise, $DBLR ignores the problem.

Example 245 $DBLR Routine

REAL r2 := 1.5e0;
INT(32) b32;

REAL realnum := 123.456E0;
INT(32) dblnum;
b32 := $DBLR (r2);          ! Return 2d
dblnum := $DBLR (realnum);  ! Return 123D

$DFIX
$DFIX converts an INT(32) value to a FIXED(fpoint ) value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

dbl-expression

is an INT(32) expression.
fpoint

is a value in the range -19 through +19 that specifies the position of the implied decimal point
in the result. A positive fpoint specifies the number of decimal places to the right of the
decimal. A negative fpoint specifies the number of integer places to the left of the decimal
point.

$DFIX converts an INT(32) expression to a FIXED(fpoint ) expression by performing the equivalent
of a signed right shift of 32 positions from the left 32 bits into the right 32 bits of a quadrupleword
unit.

Example 246 $DFIX Routine

FIXED(2) fixnum;
INT(32) dblnum := -125D;
fixnum := $DFIX (dblnum, 2);  ! Return -1.25

$EFLT
$EFLT converts its argument to a REAL(64) value.

302 Built-In Routines



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an INT, INT(32), FIXED(fpoint ), REAL, or REAL(64) expression.
If a FIXED expression has a nonzero fpoint, the compiler multiplies or divides the result by the
appropriate power of ten.

Example 247 $EFLT Routine

REAL(64) dbrlnum;
FIXED(3) fixnum := 12345.678F;
dbrlnum := $EFLT (fixnum);      ! Return 12345678L-3

$EFLTR
$EFLTR converts its argument to a REAL(64) value and rounds the result.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an INT, INT(32), FIXED(fpoint ), REAL, or REAL(64) expression.
If a FIXED expression has a nonzero fpoint, the compiler multiplies or divides the result by the
appropriate power of ten.

Example 248 $EFLTR Routine

REAL(64) rndnum;
FIXED(3) fixnum := 12345.678F;
rndnum := $EFLTR (fixnum);      ! Return rounded REAL(64) value

$EXCHANGE
$EXCHANGE exchanges the values of two variables of the same data type.

Nonatomic Operations 303



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

var1

input,output
anytype: var

a variable whose contents are exchanged with var2.
var2

input,output
anytype: var

a variable whose contents are exchanged with var1.
var1 and var2 must meet the following requirements:

• var1 and var2 must both be INT variables or both be INT(32) variables.

• Neither var1 nor var2 can be a structure, but they can be fields of structures.

• Neither var1 nor var2 can be STRING, UNSIGNED, or USE variables, nor can they be
bit strings.

• var1, var2, or both can be array elements.

• If var1 or var2 names an entire array, $EXCHANGE exchanges element 0 of the array.

$EXECUTEIO

NOTE: The EpTAL compiler does not support this procedure.

$EXECUTEIO executes an I/O operation.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

NoSets $OVERFLOW

304 Built-In Routines



channel

input
uINT:value

is the channel number to which the I/O is initialized.-
lprmcommand

input
uINT:value

is the load parameter.
lacsubcommand

input
sINT:value

is the load address and the command word.
rdstdevstatus

output
uINT:variable

is the controller and device status.
channel-status

output
sINT:variable

See the system description manual for your system for details.

Example 249 $EXECUTEIO Routine

INT channel;
INT lprm_command;
INT lac_subcommand;
INT rdst_dev_status;
INT channel_status;
$EXECUTEIO (channel, lprm_command, lac_subcommand,
            rdst_dev_status, channel_status);

$EXTADDR_TO_BADDR
$EXTADDR_TO_BADDR converts an EXTADDR address to a BADDR address.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is an EXTADDR address.

Nonatomic Operations 305



Example 250 $EXTADDR_TO_BADDR Routine

PROC p(x);
  STRING .EXT x;
BEGIN
  STRING .j;
  @j := $EXTADDR_TO_BADDR(@x);
  @j := $EXTADDR_TO_BADDR(x);   ! ERROR: x is STRING,
END;                            !  not EXTADDR

$EXTADDR_TO_WADDR
$EXTADDR_TO_WADDR converts an EXTADDR address to an WADDR address.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is an EXTADDR address.

Example 251 $EXTADDR_TO_WADDR Routine

PROC p(x);
  INT .EXT x;
BEGIN
  INT .j;
  @j := $EXTADDR_TO_WADDR(@x);
  @j := $EXTADDR_TO_WADDR(x);   ! ERROR: x is INT, not EXTADDR
END;

$EXT64ADDR_TO_EXTADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$EXT64ADDR_TO_EXTADDR converts an EXT64ADDR address to an EXTADDR address. No check
is performed to see if the resulting EXTADDR address is valid.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

306 Built-In Routines



expression

is an expression whose value is an EXT64ADDR address.

$EXT64ADDR_TO_EXT32ADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$EXT64ADDR_TO_EXT32ADDR converts an EXT64ADDR address to an EXT32ADDR address. No
check is performed to see if the resulting EXT32ADDR address is valid.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is an EXT64ADDR address.

$EXT64ADDR_TO_EXT32ADDR_OV

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$EXT64ADDR_TO_EXT32ADDR_OV converts an EXT64ADDR address to an EXT32ADDR address.
If the address cannot be represented as an EXT32ADDR value, an overflow trap occurs. This trap
cannot be disabled using the existing overflow trap controlling mechanisms.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is an EXT64ADDR address.

Nonatomic Operations 307



$EXTADDR_TO_EXT64ADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$EXTADDR_TO_EXT64ADDR converts an EXTADDR address to an EXT64ADDR address.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is an EXTADDR or EXT32ADDR address.

$FILL8, $FILL16, and $FILL32
$FILL8, $FILL16, and $FILL32 fill an array or structure with repetitions of an 8-bit, 16-bit, or 32-bit
value, respectively (sometimes called a “smear” operation).

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

area-to-fill

is a variable of any data type. The address of area-to-fill specifies the beginning of the
area to fill.

repetitions

is an INT expression whose value specifies the number of times to write.
value

is an expression whose value is a STRING value for $FILL8, to an INT value for $FILL16, and
to an INT(32) value for $FILL32.

$FILL16 and $FILL32 cause an alignment trap if area-to-fill is not aligned to at least a 2-byte
boundary.

308 Built-In Routines



$FILL32 performance is significantly degraded if area-to-fill is not aligned to at least a
4-byte boundary.
None of the fill procedures ($FILL8, $FILL16, $FILL32) perform bounds-checking on their parameters.
If you write more bytes than the size of area-to-fill, the results are undefined. You might
overwrite other data in your program with no immediate error, or you might cause any of several
addressing errors, such as attempting to write in an area for which you do not have write permission,
attempting to write in an unmapped page, and so forth.

Example 252 $FILL8 Procedure

PROC a MAIN;
BEGIN
  STRUCT s(s_t);
   ...
  CALL $FILL8(s, $LEN(s), 0);
END;

$FIX
$FIX converts its argument to a FIXED value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an INT, INT(32), FIXED, REAL, EXT64ADDR, or REAL(64) expression.
If expression is too large in magnitude to be represented by a 64-bit two’s complement integer,
$FIX traps if overflow traps are enabled (see Chapter 13 (page 234)); otherwise, $FIX ignores the
problem.

Example 253 $FIX Routine

FIXED fixnum;
INT intnum := 5;
fixnum := $FIX (intnum);  ! Return 5F

$FIXD
$FIXD converts a FIXED value to an INT(32) value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

Nonatomic Operations 309



NoSets $CARRY

YesSets $OVERFLOW

fixed-expression

is a FIXED expression, which $FIXD treats as a FIXED expression, ignoring any implied decimal
point.

If the result cannot be represented in a signed doubleword, $FIXD traps if overflow traps are
enabled (see Chapter 13 (page 234)); otherwise, $FIXD ignores the problem.

Example 254 $FIXD Routine

INT(32) dblnum;
FIXED fixnum := 1234F;
dblnum := $FIXD (fixnum);  ! Return 1234D

$FIXED0_TO_EXT64ADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$FIXED0_TO_EXT64ADDR converts a FIXED value to an EXT64ADDR address.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is FIXED.

$FIXEDTOASCII
$FIXEDTOASCII converts the absolute value of a FIXED value to an ASCII value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

310 Built-In Routines



qvalue

input
FIXED(*):value

is a quadrupleword integer value to convert to ASCII digits.
bufferaddr

input
BADDR:value

is the byte address at which to write the ASCII digits.
maxdigits

input
uINT:value

is the maximum number of ASCII digits to write at bufferaddr.
If $FIXEDTOASCII converts maxdigits bytes but leading digits in qvalue are not converted,
and $OVERFLOW can be checked, $FIXEDTOASCII sets $OVERFLOW; otherwise, it resets
$OVERFLOW.

Example 255 $FIXEDTOASCII Routine

LITERAL   buffer_len = 100;
FIXED     val;
STRING   .buffer[ 0:buffer_len - 1 ];
$FIXEDTOASCII(val, @buffer, buffer_len);

$FIXEDTOASCIIRESIDUE
$FIXEDTOASCIIRESIDUE converts the absolute value of a FIXED value to an ASCII value and returns
the value of the residue.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

qvalue

input
FIXED(*):value

is a quadrupleword integer value to convert to ASCII digits.
bufferaddr

input
BADDR:value

is the byte address at which to write the ASCII digits.

Nonatomic Operations 311



maxdigits

input
uINT:value

is the maximum number of ASCII digits to write at bufferaddr.
qresidue

output
FIXED(*):variable

holds any of the original value that was not converted because maxdigits bytes were
converted without converting all of qvalue.

$FIXEDTOASCIIRESIDUE returns in qresidue any portion of qvalue that it does not convert
because maxdigits digits were written but qvalue was not fully converted.
If $FIXEDTOASCIIRESIDUE converts maxdigits bytes but leading digits in qvalue are not
converted, and $OVERFLOW can be checked, $FIXEDTOASCIIRESIDUEI sets $OVERFLOW;
otherwise, it resets $OVERFLOW.

Example 256 $FIXEDTOASCIIRESIDUE Routine

LITERAL   buffer_len = 100;
FIXED     val;
STRING   .buffer[ 0:buffer_len - 1 ];
FIXED     residue;
$FIXEDTOASCIIRESIDUE(val, @buffer, buffer_len, residue);

$FIXI
$FIXI converts a FIXED value to a signed INT value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

fixed-expression

is a FIXED expression, which $FIXI treats as a FIXED expression, ignoring any implied decimal
point.

If the result cannot be represented in a signed 16-bit integer, $FIXI traps if overflow traps are
enabled (see Chapter 13 (page 234)); otherwise, $FIXI ignores the problem.

Example 257 $FIXI Routine

INT intnum;
FIXED fixnum := %177777F;
intnum := $FIXI (fixnum);  ! Return -1

$FIXL
$FIXL converts a FIXED value to an unsigned INT value.

312 Built-In Routines



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

fixed-expression

is a FIXED expression, which $FIXL treats as a FIXED expression, ignoring any implied decimal
point.

If the result cannot be represented in an unsigned 16-bit integer, $FIXL traps if overflow traps are
enabled (see Chapter 13 (page 234)); otherwise, $FIXL ignores the problem.

Example 258 $FIXL Routine

INT intnum;
FIXED fixnum := 32767F;
intnum := $FIXL (fixnum);  ! Return 32,767

$FIXR
$FIXR converts its argument to a FIXED value and rounds the result.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

expression

is an INT, INT(32), FIXED, REAL, or REAL(64) expression.
If expression is too large in magnitude to be represented by a 64-bit two’s complement integer,
$FIXR traps if overflow traps are enabled (see Chapter 13 (page 234)); otherwise, $FIXR ignores
the problem.

Nonatomic Operations 313



Example 259 $FIXR Routine

FIXED rfixnum;
REAL(64) bigrealnum := -1.5L0;
FIXED rndfnum;
REAL realnum := 123.456E0;
rfixnum := $FIXR (bigrealnum);  ! Return -1F
rndfnum := $FIXR (realnum);     ! Return 123F

$FLT
$FLT converts its argument to a REAL value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an INT, INT(32), FIXED(fpoint ), REAL, or REAL(64) expression
If a FIXED expression has a nonzero fpoint, the compiler multiplies or divides the result by the
appropriate power of ten.

Example 260 $FLT Routine

REAL realnum;
INT(32) dblnum := 147D;
realnum := $FLT (dblnum);  ! Return 147E0

$FLTR
$FLTR converts its argument to a REAL value and rounds the result.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

expression

is an INT, INT(32), FIXED(fpoint ), REAL, or REAL(64) expression
If a FIXED expression has a nonzero fpoint, the compiler multiplies or divides the result by the
appropriate power of ten.

314 Built-In Routines



Example 261 $FLTR Routine

REAL rrlnum;
INT(32) dblnum := 147D;
rrlnum := $FLTR (dblnum);  ! Return rounded REAL value

$FREEZE

NOTE:
• The EpTAL compiler does not support this procedure. Use $TRIGGER (page 345) instead. (The

EpTAL compiler does allow $FREEZE as a DEFINE name.)
• Execution does not return from this call.

$FREEZE halts the processor in which its process is running and any other processors on the same
node that have FREEZE enabled.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

$HALT

NOTE:
• The EpTAL compiler does not support this procedure. Use $TRIGGER (page 345) instead. (The

EpTAL compiler does allow $HALT as a DEFINE name.)
• Execution does not return from this call.

$HALT halts the processor in which its process is running.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

$HIGH
$HIGH converts the high-order (leftmost) 16 bits of an INT(32) or EXTADDR value to an INT value.

Nonatomic Operations 315



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

dbl-expression

is an expression whose value is INT(32) or EXTADDR.
$HIGH returns the high-order 16 bits of dbl-expression and preserves the sign bit. $HIGH
does not cause overflow.

Example 262 $HIGH Routine

INT      a;INT(32)  b;
INT .EXT c;
EXTADDR  d;
a := $HIGH(b);   ! OK: b is INT(32)
a := $HIGH(@c);  ! OK: @c is EXTADDR
a := $HIGH(@b);  ! ERROR: @b is WADDR
a := $HIGH(c);   ! ERROR: c is INT
a := $HIGH(d);   ! OK: d is EXTADDR

$IFIX
$IFIX converts a signed INT value to a FIXED(fpoint ) value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

int-expression

is a signed INT expression.
fpoint

is a value in the range -19 through +19 that specifies the position of the implied decimal point
in the result. A positive fpoint specifies the number of decimal places to the right of the
decimal. A negative fpoint specifies the number of integer places to the left of the decimal
point.

When $IFIX converts the signed INT expression to a FIXED value, it performs the equivalent of a
signed right shift of 48 positions in a quadrupleword unit.
In Example 263 (page 317), $IFIX returns a FIXED(2) value from a signed INT expression and an
fpoint of 2.

316 Built-In Routines



Example 263 $IFIX Routine

FIXED(2) fixnum;
INT intnum := 12345;
fixnum := $IFIX (intnum, 2);  ! Return 123.45

$INT
$INT converts its argument to an INT value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is an INT, INT(32), UNSIGNED(1-16), UNSIGNED(17-31),
FIXED, REAL, REAL(64), SGBADDR, SGWADDR, SGXBADDR, SGXWADDR, or EXTADDR value.

If expression is not a FIXED, INT (64), REAL, or REAL(64) value, $INT returns the low-order
(rightmost) 16 bits of expression. $INT never causes overflow. $INT does not explicitly maintain
the sign of expression. In Example 264 (page 317), $INT returns -1 although the argument to
$INT is a positive number.

Example 264 $INT Routine

INT i;
i := $INT(%HFFFFFF%D);

If the value of the expression in Example 264 (page 317) is a FIXED, REAL, or REAL(64) value, $INT
returns the result of converting expression arithmetically to an INT value—$INT does not just truncate
an expression. If the converted value of expression is too large to fit in 16 bits, an exception trap
occurs.
For details on SG and SGX variables, see Chapter 3 (page 46).

Nonatomic Operations 317



Example 265 $INT Routine

PROC p;
BEGIN
  INT .SG a;
  SGXBADDR b;
  INT i;
  INT .EXT e;
  i := $INT(a);   ! OK: a is INT
  i := $INT(@a);  ! OK: @a is SGWADDR
  i := $INT(b);   ! OK: b is SGXBADDR
  i := $INT(i);   ! OK: i is INT
  i := $INT(@b);  ! ERROR: @b is WADDR
  i := $INT(@i);  ! ERROR: @i is WADDR
  i := $INT(@e);  ! OK: @e is EXTADDR
END;

$INT_OV

NOTE: $INT_OV is supported in the D40 and later product versions.

$INT_OV converts its argument to an INT value and sets $OVERFLOW in some cases.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

expression

is an expression whose value is an INT, INT(32), UNSIGNED(1-31), FIXED, REAL, REAL(64),
SGBADDR, SGWADDR, SGXBADDR, SGXWADDR, or EXTADDR value.

If the data type of its argument is an INT(32) value greater than 32767 or less than -32768,
$INT_OV traps if overflow traps are enabled (see Chapter 13 (page 234)); otherwise, $INT_OV
ignores the problem.

Example 266 Difference Between $INT and $INT_OV

INT i;
INT(32) j  := 32767;
INT(32) k  := 32768;
i := $INT(j);          ! INT never sets overflow
IF $OVERFLOW THEN ...  ! $OVERFLOW is false
i := $INT(k);          ! INT never sets overflow
IF $OVERFLOW THEN ...  ! $OVERFLOW is false
i := $INT_OV(j);
IF $OVERFLOW THEN ...  ! $OVERFLOW is false
i := $INT_OV(k);
IF $OVERFLOW THEN ...  ! $OVERFLOW is true

$INTERROGATEHIO

NOTE: The EpTAL compiler does not support this procedure.

318 Built-In Routines



$INTERROGATEHIO stores cause and status information from a high-priority I/O interrupt, which
the operating system uses to reset the interrupt

NopTAL privileged procedure

YesCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

NoSets $OVERFLOW

select

output
uINT:variable

is an integer variable that is always set to 0.
rank-channel

output
uINT:variable

is an integer variable that is always set to 0.
ric-int-cause

output
uINT:variable

is the read interrupt cause received from the controller holding the completed I/O.
rist-int-cause

output
uINT:variable

is the read interrupt status received from the controller holding the completed I/O.
channel-status

output
uINT:variable

is an integer variable that holds the status returned by the controller.

Nonatomic Operations 319



Example 267 $INTERROGATEHIO Routine

INT select;
INT rank_channel;
INT ric_interrupt_status;
INT rist_interrupt_cause;
INT channel_status;
$INTERROGATEHIO(select, rank_channel, ric_interrupt_status,
                rist_interrupt_status, channel_status);

$INTERROGATEIO

NOTE: The EpTAL compiler does not support this procedure.

$INTERROGATEIO stores cause and status information from an I/O interrupt, which the operating
system uses to reset the interrupt.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

NoSets $OVERFLOW

select

output
sINT:variable

is an integer variable that is always set to 0.
rank-channel

output
sINT:variable

is an integer variable that is always set to 0.
ric-int-cause

output
sINT:variable

is the read interrupt cause received from the controller holding the completed I/O.
rist-int-cause

output
sINT:variable

is the read interrupt status received from the controller holding the completed I/O.
channel-status

output

320 Built-In Routines



sINT:variable

is an integer variable that holds the status returned by the controller.

Example 268 $INTERROGATEIO Routine

INT select;
INT rank_channel;
INT ric_interrupt_status;
INT rist_interrupt_cause;
INT channel_status;
$INTERROGATEIO(select, rank_channel, ric_interrupt_status,
               rist_interrupt_status, channel_status);

$INTR
$INTR converts:

• The low-order 16 bits of an INT, INT(32), or FIXED value to an INT value

• A REAL or REAL(64) value to a rounded INT value

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

expression

is an INT, INT(32), FIXED, REAL, or REAL(64) expression.
If expression is type INT, INT(32) or FIXED, $INTR returns the low-order (least significant) 16
bits and does not explicitly maintain the sign. No overflow occurs.
If expression is type REAL or REAL(64), $INTR returns a fully converted and rounded INT value,
not a truncation. If the converted value of expression is too large to be represented by a 16-bit
two’s complement integer, an overflow trap occurs.

Example 269 $INTR Routine

INT rndnum;
REAL realnum := 12345E-2;
rndnum := $INTR (realnum);  ! Return 123

$IS_32BIT_ADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$IS_32BIT_ADDR returns the INT-typed value -1 if the specified address value can be represented
as a 32-bit extended address; otherwise, it returns 0.

Nonatomic Operations 321



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is any of the address types, except SGWADDR and SGBADDR which are 16-bits in length.

$LEN
$LEN returns an INT value that is the length, in bytes, of a variable.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

variable

is the identifier of a simple variable, array element, pointer, structure, or structure data item.
The compiler reports an error if you apply the $LEN routine to a structure that consists of an odd
number of bytes, exclusive of a pad byte.
You can avoid this error by using one of the following solutions:

• Declare explicitly a 1-byte filler item at the end of structures that consist of an odd number of
bytes.

• Use $BITLENGTH (page 295) instead of $LEN.
The compiler reports an error if you apply $LEN to an UNSIGNED variable or structure field. Use
$BITLENGTH to obtain the length of an UNSIGNED variable or structure.

322 Built-In Routines



Example 270 $LEN Routine

INT b;
INT a [0:11];
b := $LEN (a);  ! Return 2

Example 271 $LEN Routine

INT s_len;
STRUCT .s[0:99];
  BEGIN
  INT(32) array[0:2];
  END;
s_len := $LEN (s);     ! Return 12

Example 272 $LEN Routine

INT array_length;
INT(32) array[0:2];
array_length := $LEN (array) * $OCCURS (array);
! Return 12, the length of the entire array in bytes

$LFIX
$LFIX converts an unsigned INT value to a FIXED(fpoint ) value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

int-expression

is an unsigned INT expression.
fpoint

is a value in the range -19 through +19 that specifies the position of the implied decimal point
in the result. A positive fpoint specifies the number of decimal places to the right of the
decimal. A negative fpoint specifies the number of integer places to the left of the decimal
point.

$LFIX places the INT value in the low-order (least significant) word of the quadrupleword and sets
the three high-order (most significant) words to 0.

Example 273 $LFIX Routine

FIXED(2) fixnum;
INT intnum := 125;
fixnum := $LFIX (intnum, 2);  ! Return 1.25

$LMAX
$LMAX returns the maximum of two unsigned INT values.

Nonatomic Operations 323



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

int-expression

is an unsigned INT expression.

Example 274 $LMAX Routine

INT intval := 3;
max := $LMAX (intval, 5);  ! Return 5

$LMIN
$LMIN returns the minimum of two unsigned INT values.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

int-expression

is an unsigned INT expression.

Example 275 $LMIN Routine

INT intval := 3;
min := $LMIN (intval, 5);  ! Return 3

$LOCATESPTHDR

NOTE: The EpTAL compiler does not support this procedure.

$LOCATESPTHDR returns the address of the Segment Page Table (SPT).

324 Built-In Routines



NopTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

YesSets $CARRY

NoSets $OVERFLOW

headersize

input
uINT:value

is the unsigned byte offset from the beginning of the SPT to the beginning of the header.
Because the SPT header always precedes the SPT, headersize is subtracted from the
address of the SPT to obtain the address of the start of the header.

virtaddr

input
EXTADDR:value

is the address of the SPT.
sptbase

output
EXTADDR:variable

is the address of the segment-page-table header associated with virtaddr.
$LOCATESPTHDR returns in sptbase the address of the segment-page table for the address in
virtaddr.

Example 276 $LOCATESPTHDR Routine

INT     headersize;
EXTADDR addr;
EXTADDR seg_page_table_base;
$LOCATESPTHDR(headersize, addr, seg_page_table_base);

$LOCKPAGE

NOTE: The EpTAL compiler does not support this procedure.

$LOCKPAGE locks one page of memory.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

Nonatomic Operations 325



YesSets condition code

YesSets $CARRY

NoSets $OVERFLOW

only-if-locked

input
sINT:value

is an INT value. If only-if-locked is greater than or equal to zero, the page will always
be locked. If only-if-locked is less than zero, the page will be locked (that is, lock
count will be incremented) only if it is already locked.

lock-count

input
sINT:value

is the total number of bytes to lock in the page.
virtaddr

input
EXTADDR:value

is the beginning virtual address to lock. $LOCKPAGE calculates the page associated with
virtaddr.

Example 277 $LOCKPAGE Routine

INT     only_if_locked;
INT     lock_count;
EXTADDR virtaddr;
$LOCKPAGE(only_if_locked, lock_count, virtaddr);

$MAX
$MAX returns the maximum of two signed values.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is a signed INT, INT(32), FIXED(fpoint ), REAL, or REAL(64) expression. Both expressions
must be of the same data type.

326 Built-In Routines



Example 278 $MAX Routine

REAL realval := -3E0;
max := $MAX (realval, 5E0);  ! Return 5E0

$MIN
$MIN returns the minimum of two signed values.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an INT, INT(32), FIXED(fpoint ), REAL, or REAL(64) expression. Both expressions must be
of the same data type.

Example 279 $MIN Routine

FIXED fixval := -3F;
min := $MIN (fixval, 5F);  ! Return -3F

$MOVEANDCXSUMBYTES
$MOVEANDCXSUMBYTES moves a specified number of bytes from one memory location to
another and computes a checksum (bytewise exclusive “or”) on the bytes moved.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

checksum

input,output
uINT:variable

contains an initial value for the checksum. When $MOVEANDCXSUMBYTES completes,
checksum contains the newly computed value.

destaddr

input,output

Nonatomic Operations 327



EXTADDR:variable

is the address to which $MOVEANDCXSUMBYTES moves data. When
$MOVEANDCXSUMBYTES completes, destaddr points to the memory location following
the last byte written.

srcaddr

input,output
EXTADDR:variable

is the address from which bytes are read. When $MOVEANDCXSUMBYTES completes,
srcaddr points to the memory location following the last byte read.

count

input
uINT:value

is the number of bytes to move.
$MOVEANDCXSUMBYTES transfers count bytes from srcaddr to destaddr and computes a
checksum (bytewise exclusive “or”) on the data moved. When $MOVEANDCXSUMBYTES completes,
srcaddr points to the immediate right of the last byte read, destaddr points to the immediate
right of the last byte written, and checksum holds the newly computed checksum.
$MOVEANDCXSUMBYTES does not ensure that the source and destination buffers do not overlap.

Example 280 $MOVEANDCXSUMBYTES Routine

INT        checksum;
INT   .EXT source;
INT   .EXT dest;
INT(32)    count;
checksum := 0;
$MOVEANDCXSUMBYTES(checksum, @dest, @source, count);

$MOVENONDUP
$MOVENONDUP moves words from one location to another until it encounters two adjacent
identical words.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

NoSets $OVERFLOW

destaddr

input,output
EXTADDR:variable

is the address to which words are moved. When $MOVENONDUP completes, destaddr
is the address after which $MOVENONDUP stored the last byte.

328 Built-In Routines



srcaddr

input,output
EXTADDR:variable

is the address from which 16-bit words are moved. When $MOVENONDUP completes,
srcaddr is the address after which $MOVENONDUP read the last byte it moved.

maxwords

input,output
sINT:variable

is the maximum number of 16-bit words to move. When $MOVENONDUP completes,
maxwords is the number of words not moved because $MOVENONDUP found a duplicate,
or, if a duplicate was not found, maxwords is zero.

lastword

input,output
uINT:variable

holds the 16-bit word against which the first word at srcaddr is compared. When
$MOVENONDUP completes, lastword contains the last word moved.

Example 281 $MOVENONDUP Routine

INT .EXT source;
INT .EXT destination;
INT      maxword;
INT      latestword;
$MOVENONDUP(@destination, @source, maxword, latestword);

$NUMERIC
$NUMERIC tests the right byte of an INT value for the presence of a numeric character.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

int-expression

is an INT expression.
$NUMERIC inspects bits <8:15> of int-expression and ignores bits <0:7>. It tests for a
numeric character according to the criterion:
int-expression >= "0" AND int-expression <= "9"
If a numeric character occurs, $NUMERIC sets the condition code to CCL (condition code less
than). If you plan to test the condition code, do so before an arithmetic operation or assignment
occurs.
If the character passes the test, $NUMERIC returns a -1 (true); otherwise, it returns a 0 (false).
int-expression can include STRING and UNSIGNED(1-16) operands, as described in
“Expression Arguments” at the beginning of this section.

Nonatomic Operations 329



Example 282 $NUMERIC Routine

STRING char;
IF $NUMERIC (char) THEN ... ;  ! Test for numeric character

$OCCURS
$OCCURS returns an INT value that is the number of elements in an array.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

variable

is the name of a variable, array, structure, or structure field. variable cannot be the name
of a structure template.

If identifier is the identifier of an explicitly declared array—that is, it is not a reference
parameter—and identifier is the unindexed name of the array, $OCCURS returns the number of
array elements specified in the array’s declaration; otherwise, $OCCURS returns 1.

Table 71 $OCCURS for Nonstructure Arrays

$OCCURS ReturnsExample$OCCURS Argument

10INT a[0:9];
$OCCURS (a);

Entire array

1INT a;
$OCCURS (a);

Value parameter or simple variable

1INT .a;
$OCCURS (a);

Reference parameter or pointer

1INT a[0:9];
$OCCURS (a[3]);

Array element using constant index

1INT a[0:9];
$OCCURS (a[j]);

Array element using expression in index

Table 72 $OCCURS for Structure Arrays and Arrays Within Structures

$OCCURS ReturnsExample$OCCURS Argument

STRUCT s [0:9];
BEGIN

Unindexed structure array or
substructure array

  STRUCTor   BEGIN
an element of a structure array or
substructure array,

    INT
  END;
END;or

10
1

$OCCURS (s);
$OCCURS (a[7]);

an array that is a field within a
structure or substructure

8$OCCURS (a[7].t);
1$OCCURS (a[7].t[3]);

330 Built-In Routines



Table 72 $OCCURS for Structure Arrays and Arrays Within Structures (continued)

$OCCURS ReturnsExample$OCCURS Argument

$OCCURS (a[7].t[3].i);
$OCCURS (a[7].t[3].i[v]);

5
1

STRUCT s;
BEGIN

Entire structure
or

  INT f;
END;nonarray field of a structure or

substructure

1
1

$OCCURS (s);
$OCCURS (s.f);

STRUCT s;
BEGIN

Structure template

  INT f[0:9];
END;

Compile-time err
10
1

$OCCURS (s);
$OCCURS (s.f);
$OCCURS (s.f[5]);

Example 283 $OCCURS Routine With Nonstructure Arrays

PROC p(x, y);
  INT  x,
      .y;
BEGIN
  INT  a[0:9];
  INT  i;
  INT .r;
  i := $OCCURS(a);     ! OK: a is an entire array
  i := $OCCURS(i);     ! OK: $OCCURS returns 1
  i := $OCCURS(x);     ! OK: $OCCURS returns 1
  i := $OCCURS(a[3]);  ! WARNING: $OCCURS returns 1
  i := $OCCURS(a[i]);  ! WARNING: $OCCURS returns 1
  i := $OCCURS(r);     ! WARNING: $OCCURS returns 1
  i := $OCCURS(y);     ! WARNING: $OCCURS returns 1
END;

Example 284 $OCCURS Routine With Structure Arrays

INT i;
STRUCT s[0:9];
BEGIN
  STRUCT t[0:7];
  BEGIN
    INT i[0:4];
    INT f;
  END;
END;
i := $OCCURS(s);               ! OK: s is an entire array
i := $OCCURS(s[7].t);          ! OK: t is an entire array
i := $OCCURS(s[7].t[3].i);     ! OK: i is an entire array
i := $OCCURS(s[7].t[3].f);     ! OK: $OCCURS returns 1
i := $OCCURS(s[7]);            ! WARNING: $OCCURS returns 1
i := $OCCURS(s[7].t[3]);       ! WARNING: $OCCURS returns 1
i := $OCCURS(s[7].t[3].i[v]);  ! WARNING: $OCCURS returns 1

Nonatomic Operations 331



Example 285 $OCCURS Routine With Template Structure Arrays

INT i;
STRUCT s(*);
BEGIN
  INT f[0:9];
END;
i := $OCCURS(s);       ! ERROR: Template structure not OK
i := $OCCURS(s.f);     ! OK: f is an array
i := $OCCURS(s.f[5]);  ! WARNING: $OCCURS returns 1

$OFFSET
$OFFSET returns an INT value that is the offset, in bytes, of a structure item from the beginning of
the structure.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

variable

is the fully qualified identifier of a structure field.
The compiler reports an error for the following uses of $OFFSET:

• $OFFSET applied to an UNSIGNED field. Use $BITOFFSET instead of $OFFSET.

• $OFFSET applied to an item that is not a field in a structure.

• $OFFSET applied to a structure array whose lower bound is nonzero; however, $OFFSET
applied to a substructure array whose lower bound is nonzero returns the appropriate offset.

• $OFFSET for which the result would be greater than 216-1.

Example 286 $OFFSET Routine

STRUCT a;
BEGIN
  INT array[0:40];
  STRUCT ab[0:9];
  BEGIN
    ! Lots of declarations
  END;
END;
INT c;
! Some code 
c := $OFFSET (a.ab[2]);  ! Return offset of third
                         !  occurrence of substructure

Example 287 $OFFSET Routine

STRUCT .tt;
BEGIN

332 Built-In Routines



  INT     i;
  INT(32) d;
  STRING  s;
END;
STRUCT .st;
BEGIN
  INT i;
  INT j;
  INT .st_ptr(tt);  ! Declare structure pointer
END;                !  that points to structure tt
INT x;
x := $OFFSET (st.j);         ! x gets 2
x := $OFFSET (tt.s);         ! x gets 6
x := $OFFSET (st.st_ptr.s);  ! x gets 6

Example 288 $OFFSET Routine Applied to a Template Structure

INT x;
STRUCT st[-1:1];
BEGIN
  INT item;
  FIXED(2) price;
END;
x := $OFFSET (st[-1].item);  !x gets -10

$OPTIONAL
$OPTIONAL controls whether a given parameter or parameter pair is passed to a VARIABLE
procedure or EXTENSIBLE procedure.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

cond-expression

is a conditional expression. If cond-expression is true, param or param-pair is passed.
If cond-expression is false, param (or param-pair ) is not passed.

param

is an a variable identifier or an expression that defines an actual parameter to pass to a formal
parameter declared in the called procedure if cond-expression is true.

param-pair

is an actual parameter pair to pass to a formal parameter pair declared in the called procedure
if cond-expression is true. param-pair has the form:

Nonatomic Operations 333



string

is the identifier of a STRING array or simple pointer declared inside or outside a structure.
length

is an INT expression that specifies the length, in bytes, of string.
A call to a VARIABLE or EXTENSIBLE procedure can omit some or all parameters. $OPTIONAL lets
your program pass a parameter (or parameter-pair) based on a condition at execution time.
$OPTIONAL is evaluated as follows each time the encompassing CALL statement is executed:

• If cond-expression is true, the parameter is passed; $PARAM, if present, is set to true for
the corresponding formal parameter.

• If cond-expression is false, the parameter is not passed; $PARAM, if present, is set to
false for the corresponding formal parameter.

A called procedure cannot distinguish between a parameter that is passed conditionally and one
that is passed unconditionally. Passing parameters conditionally, however, is slower than passing
them unconditionally. In the first case, the EXTENSIBLE mask is computed at execution time; in the
second case, the mask is computed at compilation time.

Example 289 Parameters Passed Conditionally and Unconditionally

PROC p1 (i) EXTENSIBLE;
  INT i;
BEGIN
  ! Lots of code
END;
PROC p2;
BEGIN
  INT n := 1;
  CALL p1 ($OPTIONAL (n > 0, n) );  ! These two calls are
  CALL p1 (n);                      !  indistinguishable
END;

Example 290 Parameters Omitted Conditionally and Unconditionally

PROC p1 (i) EXTENSIBLE;
  INT i;
BEGIN
  ! Lots of code
END;
PROC p2;
BEGIN
  INT n := 1;
  CALL p1 ($OPTIONAL (n < 0, n) );  ! These two calls are
  CALL p1 ( );                      !  indistinguishable
END;

Example 291 Parameters Passed Conditionally

PROC p1 (str:len, b) EXTENSIBLE;
  STRING .str;
  INT len;
  INT b;
BEGIN
  ! Lots of code
END;
PROC p2;
BEGIN
  STRING .s[0:79];
  INT i:= 1;
  INT j:= 1;
  CALL p1 ($OPTIONAL (i < 9, s:i),  ! Pass s:i if i < 9

334 Built-In Routines



           $OPTIONAL (j > 2, j) );  ! Pass j if j > 2
END;

You can use $OPTIONAL when one procedure provides a front-end interface for another procedure
that does the actual work, as Example 292 (page 335) shows.

Example 292 $OPTIONAL Routine for a Front-End Interface

PROC p1 (i, j) EXTENSIBLE;
  INT .i;
  INT .j;
BEGIN

  ! Lots of code
END;

PROC p2 (p, q) EXTENSIBLE;
  INT .p;
  INT .q;
BEGIN
  ! Lots of code
   CALL p1 ($OPTIONAL ($PARAM (p), p ),
            $OPTIONAL ($PARAM (q), q ));
  ! Lots of code
END;

$OVERFLOW
$OVERFLOW returns a value indicating whether an overflow occurred during certain arithmetic
operations.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

$OVERFLOW indicates whether an overflow occurred. You can test $OVERFLOW only if overflow
traps are disabled and only following an assignment statement in which the final operator executed
on the right side of the assignment is one $FIX of a REAL or REAL(64) value of the following operators
or built-in routines:

• Negate (unary -), +, -, *, /,’/’

• $DBL of an INT, FIXED, REAL, or REAL(64) value

• $FLTR of a REAL(64) value

• $FIX of a REAL or REAL(64) value

• $FIXD

• $FIXI

• $FIXL

• $FIXR of a REAL or REAL(64) value

Nonatomic Operations 335



• $INT of a FIXED, REAL, or REAL(64) value

• $INT of a FIXED, REAL, or REAL(64) value

• $INTR of a FIXED, REAL, or REAL(64) value

• $SCALE, for which: 1 <= exponent <= 4

Example 293 $OVERFLOW Routine

I := i + 1;
IF $OVERFLOW THEN ...

For more information about overflow, see Chapter 13 (page 234).

$PARAM
$PARAM checks for the presence or absence of an actual parameter in the call that called the
current procedure or subprocedure.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

formal-param

is the identifier of a formal parameter as specified in the procedure or subprocedure declaration.
If the actual parameter corresponding to formal-param is present in the CALL statement, $PARAM
returns 1 (not -1 as other Boolean operations do). If the actual parameter is absent from the CALL
statement, $PARAM returns 0.
Only a VARIABLE procedure or subprocedure or an EXTENSIBLE procedure can use $PARAM. If
such a procedure or subprocedure has required parameters, it must check for the presence or
absence of each required parameter in CALL statements. The procedure or subprocedure can also
use $PARAM to check for optional parameters.

Example 294 $PARAM Routine

PROC var_proc (buffer,length,key) VARIABLE;
  INT .buffer, length,  ! Required parameters
       key;             ! Optional parameter

BEGIN
  ...
  IF NOT $PARAM (buffer) OR NOT $PARAM (length) THEN RETURN;
    ! Return 1 or 0 for each required parameter
  IF $PARAM (key) THEN ... ;
    ! Return 1 if optional parameter is present
END;

$POINT
$POINT returns the fpoint value (as an integer) of a FIXED expression.

336 Built-In Routines



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

fixed-expression

is a FIXED expression.
The compiler emits no instructions when evaluating fixed-expression ; therefore,
fixed-expression cannot call a routine and cannot be an assignment expression.

Example 295 $POINT Routine

FIXED(3) result;
FIXED(3) a;
FIXED(3) b;         
result := $SCALE (a, $POINT (b)) / b;
! Return fpoint of FIXED expression & scale value by that factor

$PROCADDR
$PROCADDR converts a PROCADDR address, PROC32ADDR address, PROC64ADDR address,
or INT(32) expression to a PROCADDR address. No check is performed to see if the resulting
PROCADDR address is valid.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression
is an expression whose value is an INT(32), PROCADDR, or PROC32ADDR address.

$PROC32ADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$PROC32ADDR converts a PROCADDR address, PROC32ADDR address, PROC64ADDR address,
or INT(32) expression to a PRO32ADDR address. No check is performed to see if the resulting
PROC32ADDR address is valid.

Nonatomic Operations 337



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression
is an expression whose value is an INT(32), PROCADDR, PROC32ADDR, or PROC64ADDR
address.

$PROC64ADDR

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$PROC64ADDR converts a PROCADDR address, PROC32ADDR address, PROC64ADDR address,
or FIXED value to a PROC64ADDR address. No check is performed to see if the resulting
PROC64ADDR address is valid.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression
is an expression whose value is a FIXED, PROCADDR, PROC32ADDR, or PROC64ADDR
address.

$READBASELIMIT

NOTE: The EpTAL compiler does not support this procedure.

$READBASELIMIT returns the base and limit of the current extended segment.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

338 Built-In Routines



NoSets $CARRY

NoSets $OVERFLOW

xbase

INT(32):variable

is the base address of the current extended segment.
xlimit

output
INT(32):variable

is the limit of the current extended segment.
Consult the system description manual for your system for the format in which the base and limit
values are returned.

Example 296 $READBASELIMIT Routine

INT(32) xbase;
INT(32) xlimit;
$READBASELIMIT(xbase, xlimit);

$READCLOCK
$READCLOCK returns the current setting of the system clock as a FIXED value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

Example 297 $READCLOCK Routine

FIXED the_time;
the_time := $READCLOCK;  ! Return current clock time

$READSPT

NOTE: The EpTAL compiler does not support this procedure.

$READSPT returns (copies) an entry from the Segment Page Table (SPT).

NopTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

Nonatomic Operations 339



YesSets $CARRY

NoSets $OVERFLOW

virtaddr

input
EXTADDR:value

is the virtual address of the SPT entry to copy.
sptentryaddr

output
EXTADDR:variable

is the address at which $READSPT stores the SPT entry.

Example 298 $READSPT Routine

EXTADDR  virtual_addr;
INT .EXT spt_entry(spt_template) := spt_entry_addr;
$READSPT(virtual_addr, @spt_entry);

$READTIME
$READTIME returns the number of microseconds since the last cold load.

NOTE: $READTIME is not affected by the TACL command SETTIME; therefore, $READTIME does
not always return the value [JULIANTIMESTAMP(0) - JULIANTIMESTAMP(1)].
For a description of the SETTIME command, see the TACL Reference Manual. For a description of
the JULIANTIMESTAMP function, see the Guardian Procedure Calls Reference Manual.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

Example 299 $READTIME Routine

FIXED time_now;
time_now := $READTIME;

$SCALE
$SCALE moves the position of the implied fixed-point (decimal point) by changing a FIXED(fpoint )
value.

340 Built-In Routines



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

fixed-expression

is the FIXED expression whose implied decimal point is to be changed.
scale

is an INT constant in the range -19 to +19 that specifies the number of positions to move the
implied decimal point with respect to the least significant digit. If scale is negative, the implied
decimal point moves to the left; if scale is positive, the implied decimal point moves to the
right.

$SCALE adjusts the implied decimal point of the stored FIXED value by multiplying or dividing the
value by 10 to the scale power. Some precision might be lost with negative scale values.
If the result of the scale operation exceeds the range of a FIXED expression, $SCALE traps if
overflow traps are enabled (see Chapter 13 (page 234)); otherwise, $SCALE ignores the problem.

Example 300 $SCALE Routine

FIXED(3) a := 9.123F;
FIXED(7) result;
result := $SCALE (a, 4);  ! Return FIXED(7) value from
                          !  FIXED(3) value

To retain precision when you divide operands that have nonzero fpoint settings, use the $SCALE
built-in routine to scale up the fpoint of the dividend by a factor equal to the fpoint of the
divisor, as in Example 301 (page 341).

Example 301 Using the $SCALE Routine to Maintain Precision

FIXED(3) num, a, b;       ! fpoint of 3
num := $SCALE (a,3) / b;  ! Scale a to FIXED(6); result is a
                          !  FIXED(3) value

$SGBADDR_TO_EXTADDR
$SGBADDR_TO_EXTADDR converts an SGBADDR or SGXBADDR address to an EXTADDR address.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

Nonatomic Operations 341



expression

is an expression whose value is an SGBADDR or SGXBADDR address.
$SGBADDR_TO_EXTADDR returns expression converted to an EXTADDR address.

Example 302 $SGBADDR_TO_EXTADDR Routine

STRING .SG  s;
INT    .EXT i;
INT         j;
@i := $SGBADDR_TO_EXTADDR(@s[j]);  !??: OK if @s[j] is at an
                                   ! even-byte offset;
                                   ! otherwise, @i is undefined.

$SGBADDR_TO_SGWADDR
$SGBADDR_TO_SGWADDR converts an SGBADDR or SGXBADDR address to an SGWADDR
address.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is an SGBADDR or SGXBADDR address.
$SGBADDR_TO_SGWADDR returns expression converted to an SGWADDR address. The result
is undefined if the least significant bit of expression is 1.

Example 303 $SGBADDR_TO_SGWADDR Routine

STRING .SG s;
INT    .SG i;
INT        j;
@i := $SGBADDR_TO_SGWADDR(@s[j]);  !??: OK if @s[j] is at an
                                   ! even-byte offset;
                                   ! otherwise, @i is undefined.

$SGWADDR_TO_EXTADDR
$SGWADDR_TO_EXTADDR converts an SGWADDR or SGXWADDR address to an EXTADDR
address.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

342 Built-In Routines



NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is n SGWADDR or SGXWADDR address.
$SGWADDR_TO_EXTADDR returns expression converted to an EXTADDR address.

Example 304 $SGWADDR_TO_EXTADDR Routine

STRING .EXT s;
INT    .SG  i;
@s := $SGWADDR_TO_EXTADDR(@i);

$SGWADDR_TO_SGBADDR
$SGWADDR_TO_SGBADDR converts an SGWADDR or SGXWADDR address to an SGBADDR
address.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is an SGWADDR or SGXWADDR address.
If expression is not an address in the lower half of the 64K word segment, the address returned
by $SGWADDR_TO_SGBADDR is undefined.

Example 305 $SGWADDR_TO_SGBADDR Routine

STRING .SG s;
INT    .SG i;
@s := $SGWADDR_TO_SGBADDR(@i); !OK: OK if i is in the
                               ! lower half of system globals

$SPECIAL
$SPECIAL tests the right byte of an INT value for the presence of an ASCII special (nonalphanumeric)
character (see Table 8 (page 36)).

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

Nonatomic Operations 343



NoSets $CARRY

NoSets $OVERFLOW

int-expression

is an INT expression.
$SPECIAL inspects bits <8:15> of the int-expression and ignores bits <0:7>. $SPECIAL
(int-expression ) has the same value as:
NOT $NUMERIC(int-expression ) AND NOT $ALPHABETIC(int-expression )
If the character passes the test, $SPECIAL returns a -1 (true); otherwise, $SPECIAL returns a 0 (false).
int-expression can include STRING and UNSIGNED(1-16) operands (see Expressions as
Parameters (page 275)).
In Example 306, $SPECIAL tests for the presence of a special character in a STRING argument,
which the system places in the right byte of a word and treats as an INT value.

Example 306 $SPECIAL Routine

STRING char;
IF $SPECIAL (char) THEN ... ;  ! Test for special character

$STACK_ALLOCATE

NOTE: The pTAL and EpTAL compilers behave differently.

$STACK_ALLOCATE allocates a block of memory on the stack and returns the address of the block.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

size

is an INT expression that specifies the number of bytes to allocate. size is an unsigned value
from 0 through 65534.

Difference between pTAL and EpTAL compilers:

EpTAL CompilerpTAL Compiler

If size is not an integral multiple of 32,
$STACK_ALLOCATE rounds size up to the next integral
multiple of 32.

If size is not an integral multiple of 8,
$STACK_ALLOCATE rounds size up to the next integral
multiple of 8.

The returned value is aligned to a 32-byte boundary.The returned value is aligned to an 8-byte boundary.

Blocks returned by multiple calls to $STACK_ALLOCATE are not necessarily contiguous.
$STACK_ALLOCATE returns a WADDR address, which is the lowest address in the allocated
memory.

344 Built-In Routines



$STACK_ALLOCATE does not clear the allocated data area.
$STACK_ALLOCATE does not return error conditions, but stack overflow can occur within
$STACK_ALLOCATE or on a subsequent procedure call from within the procedure that calls
$STACK_ALLOCATE.
When a procedure or routine returns to its caller, the system deallocates all memory allocated by
$STACK_ALLOCATE within that procedure.
pTAL does not support calls to $STACK_ALLOCATE from subprocedures and reports a syntax error
if it encounters one. From within a subprocedure, however, you can reference data in a block
allocated in the encompassing procedure.

Example 307 $STACK_ALLOCATE Routine

INT .p(template);
INT(32) .a;
INT(32) i32;
...
@p := $STACK_ALLOCATE ($LEN(template));
@a := $STACK_ALLOCATE ($LEN(i32) * 10);

For more information about $STACK_ALLOCATE, see the pTAL Conversion Guide.

$TRIGGER

NOTE:
• The TAL and pTAL compilers do not support this routine.

• Execution does not return from this call.

$TRIGGER replaces $FREEZE (page 315) and $HALT (page 315), which are available only for code
generated for the TNS/R architecture.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

op

is an INT(32) value.

Example 308 $TRIGGER Routine

INT(32) op;
$TRIGGER (op);  ! or
call $TRIGGER (op);

$TYPE
$TYPE returns an INT value that represents the data type of a variable.

Nonatomic Operations 345



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

variable

is the identifier of a simple variable, array, simple pointer, structure, structure data item, or
structure pointer.

$TYPE returns an INT value that has a meaning as follows:

MeaningValueMeaningValue

REAL5Undefined0

REAL(64)6STRING1

Substructure7INT2

Structure8INT(32)3

UNSIGNED9FIXED4

For a structure pointer, $TYPE returns the value 8, regardless of whether the structure pointer points
to a structure or to a substructure.
You can use $TYPE in LITERAL expressions and global initializations, because $TYPE always returns
a constant value.

Example 309 $TYPE Routine

REAL(64) var1;
INT type1;
type1 := $TYPE (var1);  ! Return 6 for REAL(64)

$UDBL
$UDBL converts an unsigned INT value to an INT(32) value.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

int-expression

is an unsigned INT expression.

346 Built-In Routines



$UDBL places the INT value in the low-order 16 bits of an INT(32) variable and sets the high-order
16 bits to 0.

Example 310 $UDBL Routine

INT a16 := -1;s
INT(32) a32;
a32 := $UDBL (a16);  ! Return 65535D

$UDIVREM16
$UDIVREM16 divides an INT(32) dividend by an INT divisor to produce an INT quotient and INT
remainder.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

Yes, if the divisor is 0 or the quotient is too largeSets $OVERFLOW

dividend

input
INT(32):value

divisor

input
sINT:value

quotient

output
sINT:variable

remainder

output
sINT:variable

The compiler checks the following conditions during compilation:

• If the value of divisor is a constant value of zero, the compiler reports an error that division
by zero is not valid:
$UDIVREM16(dividend, 2 / 2 - 1, quot, rem);  ! Report error

• If both dividend and divisor have constant values whose unsigned quotient is greater
than 16 bits, the compiler reports overflow:
INT quot, rem;

$UDIVREM16(65536 * 1024, 256, quot, rem);    ! Report error

• If both dividend and divisor are constants, and you test $OVERFLOW following the
call to $UDIVREM16, the compiler reports a warning that overflow cannot occur:
$UDIVREM16(32767, 256, quot, rem);

Nonatomic Operations 347



IF $OVERFLOW THEN ...                        ! Report warning

If the compiler reports an error because overflow occurs for constant dividend and constant divisor,
it does not report a warning if you test $OVERFLOW in the following IF statement:
$UDIVREM16(65536 * 1024, 256, quot, rem);  ! Report error

IF $OVERFLOW THEN....                      ! No warning or error

Example 311 $UDIVREM16 Routine

INT(32) dividend;
INT     divisor;
INT     quotient;
INT     remainder;
$UDIVREM16(dividend, divisor, quotient, remainder);

$UDIVREM32
$UDIVREM32 divides an INT(32) dividend by an INT divisor to produce an INT(32) quotient and
INT remainder.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

Yes, if and only if the divisor is 0Sets $OVERFLOW

dividend

input
INT(32):value

divisor

input
sINT:value

quotient

output
INT(32):variable

remainder

output
sINT:variable

The compiler checks the following conditions during compilation:

• If the value of divisor is a constant value of zero, the compiler reports an error that division
by zero is not valid:
$UDIVREM32(dividend, 2 / 2 - 1, quot, rem);  ! Report error

• If both dividend and divisor are constants, and you test $OVERFLOW following the
call to $UDIVREM32, the compiler reports a warning that overflow cannot occur:

348 Built-In Routines



$UDIVREM32(32767, 256, quot, rem);

IF $OVERFLOW THEN ...                        ! Report warning

If the compiler reports an error because overflow occurs for constant dividend and constant divisor,
it does not report a warning if you test $OVERFLOW in the following IF statement:
$UDIVREM32(65536 * 1024, 256, quot, rem);  ! Report error

IF $OVERFLOW THEN....                      ! No warning or error

Example 312 $UDIVREM32 Routine

INT(32) dividend;
INT     divisor;
INT(32) quotient;
INT     remainder;
$UDIVREM32(dividend, divisor, quotient, remainder);

$UFIX

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$UFIX returns the FIXED-type zero-extended value of the specified INT(32)–typed expression.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is INT(32) expression.

$UNLOCKPAGE

NOTE: The EpTAL compiler does not support this procedure.

$UNLOCKPAGE unlocks one page of memory.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

YesSets condition code

Nonatomic Operations 349



NoSets $CARRY

NoSets $OVERFLOW

.
unlockcount

input
sINT:value

is the total number of bytes to unlock in the page.
virtaddr

input
EXTADDR:value

is the beginning virtual address to unlock. $UNLOCKPAGE calculates the page associated
with virtaddr.

Example 313 $UNLOCKPAGE Routine

INT      unlockcount;
EXTADDR  addr;
$UNLOCKPAGE(unlockcount, addr);

$WADDR_TO_BADDR
$WADDR_TO_BADDR converts a WADDR address to a BADDR address.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is a WADDR address.

Example 314 $WADDR_TO_BADDR Routine

STRING .s;
INT     t;
@s := $WADDR_TO_BADDR(@t);  ! @t is a WADDR address

$WADDR_TO_EXTADDR
$WADDR_TO_EXTADDR converts a WADDR address to an EXTADDR address.

350 Built-In Routines



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

expression

is an expression whose value is a WADDR address.

Example 315 $WADDR_TO_EXTADDR Routine

STRING .EXT s;
INT         t;
@s := $WADDR_TO_EXTADDR(@t);  ! @t is a WADDR address

$WRITEPTE

NOTE: The EpTAL compiler does not support this procedure.

$WRITEPTE writes a segment-page-table entry.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

YesSets $CARRY

NoSets $OVERFLOW

ptetag

input
uINT:value

are the page attribute bits associated with pageframe.
pageframe

input
INT(32):value

is the frame number of the physical frame associated with abs.
abs

input
EXTADDR:value

is the virtual address to which $WRITEPTE maps pageframe.

Nonatomic Operations 351



Example 316 $WRITEPTE Routine

INT       ptetag;
INT(32)   pageframe;
EXTADDR   abs;
$WRITEPTE(ptetag, pageframe, abs);

$XADR
$XADR converts a standard address to an EXTADDR address.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

variable

is a variable that has a standard, extended, or system-global address.
$XADR returns an EXTADDR address. If the argument to $XADR is not a variable, the compiler
reports an error.
$XADR returns an absolute extended EXTADDR address in absolute segment 1 if variable is a
system global address (an SGBADDR, SGWADDR, SGXBADDR, or SGXWADDR address).
Variable can be the name of a pointer preceded by an “@” operator. In this case, $XADR returns
the absolute address of the pointer, as in the following example.

Example 317 $XADR Routine

PROC p;
BEGIN
  INT .p;
  INT .EXT e;
  ...
  @e := $XADR(@p);
  ...
END;

$XADR32

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$XADR converts a standard extended, or extended system-global address to an EXT32ADDR
address. No check is performed to determine if the resulting address is valid.

352 Built-In Routines



NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

variable

is a variable that has a standard, extended, or system-global address.
$XADR returns an EXT32ADDR address. The compiler reports an error if there is no explicit
conversion defined from the address type of the variable to EXT32ADDR or EXTADDR.
$XADR32 returns an absolute extended EXT32ADDR address in absolute segment 1 if variable is
an extended system global address (an SGBADDR, SGWADDR, SGXBADDR, or SGXWADDR).
Variable can be the name of a pointer preceded by an “@” operator. In this case, $XADR32
returns the EXT32ADDR address of the pointer.

Example 318 $XADR32 Routine

PROC p;
BEGIN
  INT .p;
  INT .EXT32 e;
...
  @e := $XADR32(@p);
...
END;

$XADR64

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$XADR64 converts a standard extended, or extended system-global address to an EXT64ADDR
address.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

variable

is a variable that has a standard, extended, or system-global address.

Nonatomic Operations 353



$XADR64 returns an EXT64ADDR address. The compiler reports an error if there is no explicit
conversion defined from the address type of the variable to EXT64ADDR.
$XADR64 returns an absolute extended EXT64ADDR address in absolute segment 1 if variable is
an extended system global address (an SGBADDR, SGWADDR, SGXBADDR, or SGXWADDR).
Variable can be the name of a pointer preceded by an “@” operator. In this case, $XADR64
returns the EXT64ADDR address of the pointer.

Example 319 $XADR64 Routine

PROC p;
BEGIN
  INT .p;
  INT .EXT64 e;
...
  @e := $XADR64(@p);
...
END

354 Built-In Routines



16 Compiling and Linking pTAL Programs
Input to the compiler is a source file containing pTAL source text (such as data declarations,
statements, compiler directives, and comments).
Output from the compiler is a linkfile consisting of relocatable code and data blocks.
To produce an executable pTAL program, link one or more linkfiles into a single loadfile (see
Figure 13).

Figure 13 Compiling and Linking pTAL Programs

Topics:

• Compiling Source Files (page 355)

• Linking Object Files (page 358)

• Creating a Dynamic Linked Library (DLL) (page 362)

• Compiling With Global Data Blocks (page 362)

• Compiling With Saved Global Data (page 366)

• Using the Code Profiling Utilities (page 366)

NOTE: The remainder of this section applies only to Guardian platforms. To compile and link
pTAL programs on Windows platforms, see Chapter 18 (page 426).

Compiling Source Files
The compiler reads input files, produces output files, and uses swap files and temporary files as
needed. On Guardian platforms, you use HP TACL commands to compile source files. The compiler
accepts information you specify in HP TACL commands (DEFINE, PARAM, and ASSIGN) if you
issue them before you run the compiler. For a summary of HP TACL commands, see Appendix B
(page 518).

Compiling Source Files 355



Example 320 Compiler Command Lines

ptal / in test, out $s.#test, nowait/ testobj; symbols
eptal / in test, out $s.#test, nowait/ testobj; symbols

The compiler reads input only from a single edit-format disk file. You can use the SOURCE (page 514)
in this input file to read code from other source files during compilation. The input file and code
read from other source files comprise a compilation unit.
In general, the compiler opens each source file as it needs the source file and keeps the source
file open until the end of the compilation. This behavior ensures that the contents of the file cannot
change between the time the compiler reads the file and creates a listing. You can open a source
file for read access, but generally not for write access, while the source file is compiling.
When the number of files read exceeds the maximum number of files that Guardian allows to be
open, the compiler closes the least recently used file (unless that file is the primary source file,
which is always kept open) in order to continue to open and read source files.
If you edit a file before the compiler creates an output listing, the source code in the listing will not
match the code in the source file. The compiler reports a warning if it discovers that part of a source
file has changed. Do not alter the source files until the compilation ends.
Topics:

• Input Files (page 356)

• Output Files (page 356)

• Running the Compiler (page 357)

• Completion Codes Returned by the Compiler (page 358)

Input Files
The compiler reads input only from an edit-format disk file up to a maximum of 132 characters for
each record, ignoring characters after the 132nd (and issuing a warning for each such line). The
compiler does not read input from a terminal or from any other source or file format.

Output Files
You can direct list output from the compiler to any of the following types of files:

• Spooler

• Entry-sequenced file

• Relative file

• Terminal

• Process

• Printer

• Edit-format file

• HP TACL variable
If you direct output to a disk file that does not exist, the compiler creates an edit-format file and
writes the compiler listing to the newly created file.
If you direct output to an edit-format file that already exists, the compiler removes the existing file
from your current compilation and creates a new file using the file name you specified.

356 Compiling and Linking pTAL Programs



Difference between pTAL and EpTAL compilers:

EpTAL CompilerpTAL Compiler

On Guardian platforms, object files have the file code 800On Guardian platforms, object files have the file code 700

Running the Compiler
To run the compiler on Guardian platforms, issue a compilation command at the HP TACL prompt.
Options that you can specify in the compilation command are:

• IN File Option (page 357)

• OUT File Option (page 357)

• HP TACL Run Options (page 357)

• Target File Option (page 358)
You can include one or more compiler directives in the compilation command (see Compilation
Command (page 367)).

IN File Option
The IN file is the primary source file. You can specify a file name or a DEFINE as described in
Appendix B (page 518). In this example, the IN file is mysource.
pTAL /IN mysource/ myobject
EpTAL /IN mysource/ myobject

The IN file must be an edit-format disk file. The compiler reads the file as 132-byte records.

OUT File Option
The OUT file receives the compiler listings. The OUT file can be any of the files listed in Output
Files (page 356).
In an unstructured disk file, each record has 132 characters; partial lines are filled with blanks
through column 132. You can specify a file name or a DEFINE name. The OUT file is often a
spooler location, such as $s.#lists in the following example:
PTAL /IN mysource, OUT $s.#lists/ myobject
EPTAL /IN mysource, OUT $s.#lists/ myobject

If you omit OUT and the HP TACL product is in interactive mode, the listings go to the home terminal.
In noninteractive mode, the listings go to the current HP TACL OUT file:
PTAL /IN mysource/ myobject
EPTAL /IN mysource/ myobject

HP TACL Run Options
You can include one or more HP TACL run options in the compilation command, such as:

• A process name

• A CPU number

• A priority level

• The NOWAIT option

• A swap volume
For example, you can specify CPU 3 and NOWAIT when you run the compiler:
pTAL /IN mysource, CPU 3, NOWAIT/ myobject
EpTAL /IN mysource, CPU 3, NOWAIT/ myobject

For information about HP TACL run options, see the RUN command in the TACL Reference Manual.

Compiling Source Files 357



By default, the compiler and its processes can run at a high PIN. If your compilation accesses files
on systems running C-series software, you must run the compiler at a low PIN.
To run the compiler at a low PIN, set HIGHPIN OFF, as shown in the following HP TACL command:
SET HIGHPIN OFF

When you set HIGHPIN OFF in the HP TACL program, the program runs all processes at a low
PIN except processes that explicitly specify the HIGHPIN ON option when the process is created.
To ensure that the compiler runs at a low PIN without affecting other processes, specify the run
command’s HIGHPIN OFF option, as in the following example:
PTAL / HIGHPIN OFF .../ ...
EPTAL / HIGHPIN OFF .../ ...

Target File Option
The target file is the disk file that is to receive the object code. You can specify a file name or a
DEFINE name as described in Appendix B (page 518).
These examples write the object code to a disk file named myobject:
pTAL /IN mysource/ myobject
EpTAL /IN mysource/ myobject

If you omit the target file, the compiler creates a file named object on your current default
subvolume.
If an existing file has the name object or the name you specify, and the existing file has the
correct filecode (700 for the pTAL compiler, 800 for EpTAL compiler), the compiler overwrites the
existing file. (The compiler overwrites the existing file by purging it and then creating a new file
that has the same name and filecode.)
If the compiler cannot purge the existing file, the compiler creates a file named ZZPTnnnn, where
nnnn is a different number each time.

Completion Codes Returned by the Compiler
When the compiler compiles a source file, it either completes the compilation normally or stops
abnormally. It then returns a process-completion code to the HP TACL product indicating the status
of the compilation.

Table 73 Completion Codes

MeaningTerminationCode

The compiler found no errors or unsuppressed warnings in the source file. (Warnings
suppressed by the NOWARN directive do not count.) The object file is complete
and valid (unless a SYNTAX directive suppressed its creation).

Normal0

The compiler found at least one unsuppressed warning. (Warnings suppressed by
the NOWARN directive have no effect.) The object file is complete and valid
(unless a SYNTAX directive suppressed its creation).

Normal1

The compiler found at least one compilation error and did not create an object
file, but completed processing the source.

Normal2

The compiler exhausted an internal resource such as symbol table space or could
not access an external resource such as a file. The compiler did not create an
object file.

Abnormal3

The compiler could not use the object file name you specified, so it chose the name
reported in the summary. The object file is complete and valid.

Normal8

Linking Object Files
The linker links one or more linkfiles to produce either a loadfile or another linkfile.

358 Compiling and Linking pTAL Programs



The compiler and compiler directives you use determine the linker you must use and the kind of
executable object code that is produced:

Object CodeLinkerCompiler DirectiveCompiler

PICeldCALL_SHARED (default)EpTAL

NOCALL_SHARED (error)

PICldCALL_SHAREDpTAL

Non-PICnldNOCALL_SHARED (default)

The linker can also strip nonessential information from an object file and modify the object file’s
process attributes (such as HIGHPIN). For more information, see:

• eld Manual

• ld Manual

• nld Manual
The simplest cases are:

• On TNS/E, use the EpTAL compiler and the eld utility to create an object file that executes
on TNS/E (see Figure 14 (page 359)).

• On TNS/R, use the pTAL compiler and either the ld or nld utility to create an object file that
executes on TNS/R (see Figure 15 (page 360)).

Also, TNS allows you to create object files that execute on TNS/R. Use the TAL compiler and Binder
on TNS and the Accelerator (AXCEL) on either TNS or TNS/R to create an object file that executes
on TNS/R (see Figure 16 (page 361)). (In this case, you begin with TAL source code rather than
pTAL source code.)
You can input some kinds of loadfiles to the Accelerator (AXCEL) and the Object Code Accelerator
(OCA) to produce hybrid loadfiles (see Figure 17 (page 362)).
You cannot link PIC and non-PIC object files into a single object file.

Figure 14 Creating a Loadfile on TNS/E for TNS/E

Linking Object Files 359



The source code can be in one or more files. From each source code file, the compiler generates
a single nonexecutable object code file. Input these object code files to the linker to produce a
single loadfile. (See Figure 13 (page 355).)

Figure 15 Creating Loadfiles on TNS/R for TNS/R

The source code can be in one or more files. From each source code file, the compiler generates
a single nonexecutable object code file.
If you compile multiple source files, either compile all of them using the CALL_SHARED directive
or all of them without using the CALL_SHARED directive (you cannot link PIC and non-PIC object
files into a single object file). Input these object code files to the appropriate linker to produce a
single loadfile. (See Figure 13 (page 355).)

360 Compiling and Linking pTAL Programs



Figure 16 Creating a Loadfile on TNS for TNS/R

The source code can be in one or more files. From each source code file, the compiler generates
a single nonexecutable object code file. Input these object code files to Binder to produce a single
loadfile. (Figure 13 (page 355) illustrates this concept, but uses a linker instead of Binder.)
As Figure 16 (page 361) shows, the Accelerator (AXCEL) is available on both TNS/R and TNS
processors; therefore, you can do either of the following:

• Accelerate your TNS executable object code while it is on a TNS processor and then move
the resulting executable object code to a TNS/R processor.

• Move your TNS executable object code to a TNS/R processor and then accelerate it.
In both cases, the resulting executable object code executes only on TNS/R processors.

Linking Object Files 361



Figure 17 Producing Hybrid Loadfiles

AXCEL is available on TNS/E, TNS/R, and TNS processors.
OCA is available on TNS/E and TNS/R processors.
Non-PIC hybrid loadfiles run on the TNS/R architecture. PIC hybrid loadfiles run on the TNS/E
architecture.

Creating a Dynamic Linked Library (DLL)
To create a dynamic-link library (DLL) from pTAL source files, compile the pTAL source files by using
the CALL_SHARED directive (in the Guardian environment) or the -call_shared flag (in the
Windows environment), and then use ld or eld to link the pTAL source files through the -shared
option.
The compiler does not automatically export program names. You must specify -export_all or
-export to the linker.

Compiling With Global Data Blocks
When you compile modules of a program separately or link pTAL code with code written in other
languages, the linking process relocates some of your global data.
Topics:

• Declaring Global Data (page 362)

• Allocating Global Data Blocks (page 365)

• Address Assignments (page 365)

• Sharing Global Data Blocks (page 365)

Declaring Global Data
You can declare blocked and unblocked global data (variables, LITERALs, and DEFINEs).
Blocked global data declarations are those appearing within BLOCK declarations. BLOCK
declarations let you group global data declarations into named or private blocks. Named blocks
are shareable among all compilation units in a program. The private block is private to the current

362 Compiling and Linking pTAL Programs



compilation unit. If you include a BLOCK declaration in a compilation unit, you must assign an
identifier to the compilation unit by using a NAME declaration.
Unblocked global data declarations are those appearing outside a BLOCK declaration. Such
declarations are also relocatable and shareable among all compilation units in a program.
If you do not use the BLOCKGLOBALS directive, then all separate compilations must specify exactly
the same list of unblocked global data declarations.
If present in a compilation unit, global declarations must appear in the following order:
1. NAME declaration
2. Unblocked global data declarations
3. BLOCK declarations
4. PROC declarations
Topics:

• Naming Compilation Units (page 363)

• Declaring Named Data Blocks (page 363)

• Declaring Private Data Blocks (page 364)

• Declaring Unblocked Data (page 364)

Naming Compilation Units
To assign an identifier to a compilation unit, specify the NAME declaration as the first declaration
in the compilation unit. (If no BLOCK declaration appears in the compilation unit, you need not
include the NAME declaration.) In the NAME declaration, specify an identifier that is unique among
all BLOCK and NAME declarations in the target file.

Example 321 Naming a Compilation Unit

NAME input_module;  ! Name the compilation unit

Declaring Named Data Blocks
A named data block is a global data block that is shareable among all compilation units in a
program. You can include any number of named data blocks in a compilation unit. To declare a
named data block:

• Put a NAME declaration in the compilation (see Naming Compilation Units (page 363)).

• Specify an identifier in the BLOCK declaration that is unique among all BLOCK and NAME
declarations in the target file.

Example 322 Declaring a Named Data Block

BLOCK globals;             ! Declare named data block
  INT .vol_array[0:7];     ! Declare global data
  INT .out_array[0:34];
  DEFINE xaddr = INT(32)#;
END BLOCK;

A variable declared in a named data block can have the same name as the data block. Modules
written in pTAL can share global variables with modules written in HP C by placing each shared
variable in its own block and giving the variable and the block the same name.

Compiling With Global Data Blocks 363



Example 323 Data Block and Variable With the Same Name

BLOCK c_var;
  INT c_var;
END BLOCK;

Declaring Private Data Blocks
A private data block is a global data block that is shareable only among the procedures within a
compilation unit. You can include only one private data block in a compilation unit. The private
data block inherits the identifier you specify in the NAME declaration; therefore, the NAME
declarations in all compilations that you use to assemble an executable program must have unique
names. To declare a private global data block, specify the PRIVATE option of the BLOCK declaration.

Example 324 Declaring a Private Data Block

BLOCK PRIVATE;            ! Declare private global data block
  INT term_num;           ! Declare global data
  LITERAL msg_buf = 79;
END BLOCK;

Declaring Unblocked Data
Place all unblocked global declarations (those not contained in BLOCK declarations) before the
first BLOCK declaration. Unblocked declarations are relocatable and shareable among all
compilation units in a program. The linking name of the private data block is derived from the
NAME declaration.

Example 325 Declaring Unblocked Data

INT a;
INT .b[0:9];
INT .EXT c[0:14];
LITERAL limit = 32;

The compiler places unblocked data declarations in implicit primary data blocks, created as follows:
1. When you use named blocks, private blocks, or the BLOCKGLOBALS directive, each data

item becomes its own block. All the other unblocked data items are grouped into a block
named _GLOBAL and $_GLOBAL.

2. Each block so created is split into two blocks to separate “large” data from “small” data.
“Large” data means arrays or structures declared with “.” or “.EXT” notation. “Small” data is
everything else. When both blocks exist, the “large” data block has a $ in front of its name.

For example, if you have the following global data declarations:
INT x;
INT .y;
INT .z [0:113]

Variables x and y are placed in the block named _GLOBAL, and z is placed in the block named
$_GLOBAL.
Named data blocks are split the same way. For example:
BLOCK blk;
  INT x;
  INT .y;
  INT .ext z [0:99];
END BLOCK;

Two data blocks are created. Variables x and y are placed in the block named BLK and z is
placed in the block named $BLK.
You can link object files compiled with and without template blocks with no loss of information.

364 Compiling and Linking pTAL Programs



A referral structure and the structure layout to which it refers can appear in different data blocks.
The structure layout must appear first.
In all other cases, a data declaration and any data to which it refers must appear in the same data
block. The following declarations, for example, must appear in the same data block:
INT var;           ! Declare var
INT .ptr := @var;  ! Declare ptr by referring to var

If the reference is not in the same block, the compiler issues an error message.

Allocating Global Data Blocks
When you compile a program, the compiler constructs relocatable blocks of code and data that
are linked into the object file. The compiler:

• Allocates each read-only array in its own data block in the code segment of the object file

• Allocates all other variables in relocatable global data blocks in the data segment (except
LITERALs and DEFINEs, which require no storage space)

Data is divided between “large” and “small” data sections.
The compiler associates the symbol information for the allocated variables with that data block.
The compiler also associates the symbol information for any LITERALs, DEFINEs, or read-only arrays
declared in that data block, but allocates 0 words of storage for such declarations.

Address Assignments
The compiler assigns each direct variable and each pointer an offset from the beginning of the
encompassing global data block. Within the data block, it allocates storage for each data
declaration according to its data type and size.

Sharing Global Data Blocks
Because the length of any shared data block must match in all compilation units, it is recommended
that you declare all shareable global data in one source file. You can then share that global data
block with other source files as follows:
1. In the source file that declares the data block, specify the SECTION directive at the beginning

of the data block to assign a section name to the data block. The SECTION directive remains
active until another SECTION directive or the end of the source file occurs:
NAME calc_unit;
?SECTION unblocked_globals  ! Name first section
 LITERAL true   = -1,       ! Implicit data block
         false  =  0;
 STRING read_only_array = 'P' := [ " ","COBOL", "FORTRAN",
                                   "PASCAL", "pTAL"];
?SECTION default            ! Name second section
 BLOCK default_vol;         ! Declare named block
   INT .vol_array [0:7],
       .out_array [0:34];
 END BLOCK;
?SECTION msglits            ! Name third section
 BLOCK msg_literals;        ! Declare named block
   LITERAL msg_eof   = 0,
           msg_open  = 1,
           msg_read  = 2;
 END BLOCK;                 ! End msglits section
?SECTION end_of_data_sections

2. In each source file that needs to include the sections, specify the file name and the section
names in a SOURCE directive:

Compiling With Global Data Blocks 365



NAME input_file;
?SOURCE calcsrc(unblocked_globals)  ! Specify implicit block
?SOURCE calcsrc(default)            ! Specify named block

3. If you then change any declaration within a data block that has a section name, you must
recompile all source files that include SOURCE directives listing the changed data block.

Compiling With Saved Global Data
NOTE: This topic applies only to the pTAL compiler. If you are using the EpTAL compiler, see
Migrating from TNS/R to TNS/E (page 375).

During program development or maintenance, you often need to change procedural code or data
without changing the global declarations. You can save the global data in a file during a compilation
session and then use the saved global data during a subsequent compilation. You can shorten the
compile time by not compiling global declarations each time. For more information, see Saving
and Using Global Data Declarations (page 372).

Using the Code Profiling Utilities
The Code Profiling Utilities provide these capabilities

• Evaluate the code coverage provided by application test cases. The utilities use information
provided by a specially-instrumented object file to produce a report that indicates which
functions and blocks were executed, and how many times each was executed.

• Optimize an application through a process called profile-guided optimization. In profile-guided
optimization, a specially-instrumented object file is executed to produce a data file containing
code profiling information. That data file, along with the original source code, is input to the
compiler to generate more efficient object code.

Using the Code Profiling Utilities requires a special compilation to produce an object file containing
the required instrumentation. To create such an object file, specify the CODECOV or PROFGEN
option on the compiler command line. Several other compiler options are related to code profiling.
These are the PROFDIR, PROFUSE, and BASENAME options.

NOTE: The Code Profiling Utilities are intended for data generation and collection in a test
environment only. The use of instrumented object code is not recommended for production
environments. Applications compiled with code profiling instrumentation will experience greatly
reduced performance.

For details on using the Code Profiling Utilities, see the Code Profiling Utilities Manual.

366 Compiling and Linking pTAL Programs



17 Compiler Directives
Topics:

• Specifying Compiler Directives (page 367)

• File Names as Compiler Directive Arguments (page 368) (Guardian platforms only)

• Directive Stacks (page 369)

• Toggles (page 370)

• Saving and Using Global Data Declarations (page 372)

• Summary of Compiler Directives (page 377)

• Topics for individual compiler directives, beginning with ASSERTION (page 381)

Specifying Compiler Directives
You can specify compiler directives either in the compilation command or in a directive line in the
source code, unless otherwise specified. The compiler interprets and processes each directive at
the point of occurrence.
Topics:

• Compilation Command (page 367)

• Directive Line (page 367)

Compilation Command

compilation-command

is as described in Running the Compiler (page 357).
directive

is a directive listed in Table 74 (page 377) or Table 75 (page 379), except the following, which
can appear only in the source file (see Compilation Command (page 367)):
• ASSERTION (page 381)

• BEGINCOMPILATION (page 382) (not recommended)

• ENDIF (page 390)

• IF and IFNOT (page 398)

• PAGE (page 407)

• SECTION (page 414)

• SOURCE (page 416)

Example 326 Compilation Commands With Compiler Directives

EPTAL /IN mysrc, OUT $s.#lists/ myobj; NOMAP, NOLIST
pTAL /IN mysrc, OUT $s.#lists/ myobj; NOMAP, NOLIST

Directive Line
The general form of a directive line is:

Specifying Compiler Directives 367



?

indicates a directive line, and can appear only in column 1.
directive

is a directive listed in Table 74 (page 377) or Table 75 (page 379), except OPTIMIZEFILE, which
can appear only in the command line (see Compilation Command (page 367)).

Rules for directive lines:

• Begin each directive line by specifying ? in column 1. (? is not part of the directive name.)

• Place the name of the directive and its arguments on the same line unless the directive
description says you can use continuation lines.

• Do not put extra characters (such as semicolons) at the end of a directive line.

• Do not use an equal sign (=) in the directive unless the directive’s syntax includes one (as in
ASSERTION (page 381)).

Rules for continuation lines:

• Begin each continuation line by specifying ? in column 1.
?NOLIST, SYMBOLS, NOMAP, GMAP
?INNERLIST

• Place the opening parenthesis of the argument list on the same line as the directive name.
?NOLIST, SOURCE $system.system.extdecs (
? process_getinfo_, 
? process_stop_) 

File Names as Compiler Directive Arguments
NOTE: This topic applies only to Guardian platforms, not Windows platforms.

The following directives accept Disk File Names (page 518), DEFINE names, and ASSIGN names
as arguments:

• ERRORFILE (page 391)

• SAVEGLOBALS (page 413) (not recommended)

• SOURCE (page 416)

• USEGLOBALS (page 423) (not recommended)
A DEFINE name or an ASSIGN name is considered a logical file name (see Logical File Names
(page 520)). The directives listed above accept a logical file name in place of a file name.
You can specify partial file names. If you specify a partial file name, the compiler uses default
values as described in Partial File Names (page 519).
For the USEGLOBALS directive (not recommended) and the SOURCE and directive, the compiler
can use the node (system), volume, and subvolume specified in ASSIGN SSV commands, as in
Example 328 (page 372).

368 Compiler Directives



Directive Stacks
Each of these directives has a compile-time directive stack onto which you can push, and from
which you can pop, directive settings:

• CHECKSHIFTCOUNT (page 384)

• DEFEXPAND (page 386)

• DO_TNS_SYNTAX (page 389)

• GP_OK (page 397)

• INNERLIST (page 400)

• LIST (page 401)

• MAP (page 402)

• OVERFLOW_TRAPS (page 406)

• REFALIGNED (page 410)
Each directive stack is 31 levels deep.
Topics:

• Pushing Directive Settings (page 369)

• Popping Directive Settings (page 369)

• Example (page 369)

Pushing Directive Settings
When you push the current directive setting onto a directive stack, the current directive setting of
the source file remains unchanged until you specify a new directive setting.
To push a directive setting onto a directive stack, specify the directive name prefixed by PUSH.
For example, to push the current setting of the LIST directive onto the LIST directive stack, specify
PUSHLIST. The other values in the directive stack move down one level. If a value is pushed off the
bottom of the directive stack, that value is lost. No diagnostic message is issued if too many items
are pushed onto the stack.

Popping Directive Settings
To restore the top value from a directive stack as the current setting from the source file, specify
the directive name prefixed by POP. For example, to restore the top value off the LIST directive
stack, specify POPLIST. The remaining values in the directive stack move up one level, and the
vacated level at the bottom of the stack is set to the off state. No diagnostic message is issued if
too many items are popped from the stack.

Example
In Example 327 (page 370):
1. LIST is the default setting for the source file.
2. PUSHLIST pushes the LIST directive setting onto the LIST directive stack.
3. NOLIST suppresses listing of procedures included by the SOURCE directive.
4. POPLIST pops the top value from the LIST directive stack and restores LIST as the current setting

for the remainder of the source file.

Directive Stacks 369



Example 327 Pushing and Popping a Directive Stack

! LIST is the default setting for the source file
?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS (
? PROCESS_GETINFO_, FILE_OPEN_, WRITEREADX, READX)
?POPLIST

Toggles
Toggles allow these directives to effect conditional compilation:

DescriptionDirective

Specifies toggles without changing their settings. If DEFINETOG is specifying a
toggle for the first time, its setting is off.

DEFINETOG

Specifies toggles and turns them onSETTOG

Specifies toggles and turns them offRESETTOG

Begin conditional compilation, based on the value of a specified toggleIF and IFNOT

Ends conditional compilationENDIF

Topics:

• Named Toggles (page 370)

• Numeric Toggles (page 370)

• Examples (page 371)

Named Toggles
Before you use a named toggle in an IF or IFNOT directive, you must specify that name in a
DEFINETOG, SETTOG, or RESETTOG directive. Which of these directives you use depends on
whether you want the setting of the toggle to be unchanged, turned on, or turned off.

Setting

Specified Existing ToggleNew ToggleDirective

UnchangedOffDEFINETOG

OnOnSETTOG

OffOffRESETTOG

You can use DEFINETOG if you are not sure the toggles were created earlier in the compilation,
possibly in a file that you included by using a SOURCE directive. If you specify toggles that already
exist, DEFINETOG does not change their settings (as SETTOG and RESETTOG do).

Numeric Toggles
The numeric toggles are 1 through 15. All other toggles (including 16, 17, and so on) are
considered named toggles.
You can use a numeric toggle in an IF or IFNOT directive even if that toggle has not been specified
in a DEFINETOG, SETTOG, or RESETTOG directive.
By default, all numeric toggles not turned on by SETTOG are turned off. To turn off numeric toggles
turned on by SETTOG, use RESETTOG.

370 Compiler Directives



Examples
• Example 328 (page 372)

• Example 329 (page 372)

• Example 330 (page 372)

• Example 331 (page 372)

• Example 332 (page 372)

Toggles 371



Example 328 DEFINETOG, IF, and ENDIF Directives

?DEFINETOG scanner  ! Define toggle
...
?IF scanner         ! Test toggle for on state
PROC skipped;       ! Find it off, skip procedure
  BEGIN
    ...
  END;
?ENDIF scanner      ! End of skipped procedure

Example 329 DEFINETOG, IFNOT, and ENDIF Directives Directive

?DEFINETOG emitter  ! Define toggle
...
?IFNOT emitter      ! Test toggle for off state
PROC kept;          ! Find it off, compile procedure
  BEGIN
    ...
  END;
?ENDIF emitter      ! End of compiled procedure

Example 330 SETTOG, IF, and ENDIF Directives

?SETTOG keep  ! Create & turn on toggle
...
?IF keep      ! Test toggle for on state
PROC kept;    ! Find it on, compile procedure
  BEGIN
    ...
  END;
?ENDIF keep   ! End of compiled procedure

Example 331 SETTOG, IFNOT, and ENDIF Directives

?SETTOG (done, nested)  ! Create & turn on toggles
?IFNOT done             ! Test toggle for off state
PROC skipped;           ! Find it on, skip procedure
  BEGIN
    ...
  END;
?ENDIF done             ! End of skipped procedure

Example 332 SETTOG, RESETTOG, IF, and ENDIF Directives

?SETTOG (versn1, versn2, 7, 4, 11)  ! Turn on toggles
?SETTOG versn3                      ! Turn on toggle
?RESETTOG (versn2, 7)               ! Turn off toggles
...
?IF versn2                          ! Test toggle for on state
PROC version_2;                     ! Find it off,
  BEGIN                             !  skip procedure
    ...
  END;
?ENDIF versn2                       ! End of skipped procedure

Saving and Using Global Data Declarations
For the pTAL compiler, these directives allow you to compile and initialize global data declarations
in one compilation and use them in subsequent compilations:

DescriptionDirective

372 Compiler Directives



DescriptionDirective

Saves global data declarations and initial values in one fileSAVEGLOBALS

Reads global data declarations and initial values saved in a fileUSEGLOBALS

Marks the point in the source file where compilation is to begin if the
USEGLOBALS directive is active

BEGINCOMPILATION

NOTE:
• The EpTAL compiler does not accept the SAVEGLOBALS or USEGLOBALS directive.

• The EpTAL compiler ignores the BEGINCOMPILATION directive.

Topics:

• Saving Global Data Declarations (page 373)

• Retrieving Global Data Declarations (page 374)

• Examples (page 374)

• Migrating from TNS/R to TNS/E (page 375)
Terms used in the following topics:

MeaningTerm

The compilation for which you specify SAVEGLOBALSSAVEGLOBALS compilation

The source file for the SAVEGLOBALS compilationSAVEGLOBALS compilation file

The compilation for which you specify USEGLOBALSUSEGLOBALS compilation

The source file for the USEGLOBALS compilationUSEGLOBALS compilation file

Saving Global Data Declarations
When you compile with SAVEGLOBALS, the compiler saves the global data declarations—global
data identifiers and their attributes (such as data type and kind of variable initialization)—in a file
whose file code is 701.
If you make no changes in the global data declarations, you can use the saved declarations in
subsequent USEGLOBALS compilations, reducing their compilation time.
SAVEGLOBALS does not save FORWARD procedure declarations or EXTERNAL procedure
declarations. You must recompile these declarations in the USEGLOBALS compilation.
When you use the following directives in the SAVEGLOBALS compilation, they affect subsequent
USEGLOBALS compilations as follows:

Effect in Subsequent USEGLOBALS CompilationsDirective in SAVEGLOBALS Compilation

Negates the need for using the USEGLOBALS compilation because no
object file was produced by the SAVEGLOBALS compilation

SYNTAX

Continues to print symbols in the listingPRINTSYM

Continues to make symbols available for all data blocks that had symbols
during the SAVEGLOBALS compilation

SYMBOLS

You must use the same version of the compiler for the SAVEGLOBALS compilation and the
USEGLOBALS compilation; otherwise, an error occurs in the USEGLOBALS compilation.
Whenever you switch to a new version of the compiler, you must recompile the source code using
SAVEGLOBALS to create a new global declarations file.

Saving and Using Global Data Declarations 373



Retrieving Global Data Declarations
After a SAVEGLOBALS compilation completes successfully, you can specify the following directives
in a USEGLOBALS compilation to retrieve the global data declarations and initializations:

Effect in Same USEGLOBALS CompilationDirective in USEGLOBALS Compilation

USEGLOBALS • Retrieves global data declarations

• Suppresses compilation of text lines and SOURCE directives (but not
other directives) until BEGINCOMPILATION appears

Begins compilation of text lines and SOURCE directivesBEGINCOMPILATION

CAUTION: Be sure the global data declarations in both the SAVEGLOBALS and USEGLOBALS
compilations are identical. If you include new or changed global data declarations anywhere in
the USEGLOBALS source file, results are unpredictable.

The USEGLOBALS compilation terminates if the global declarations file:

• Cannot be found or opened by the compiler

• Was created using a different version of the compiler

Examples
The source file in Example 333 (page 374) (MYPROG) is compiled in examples Example 334
(page 375) through Example 337 (page 375), which show how the SAVEGLOBALS, USEGLOBALS,
BEGINCOMPILATION, and SYNTAX directives interact.

Example 333 MYPROG Source File for Example 334 Through Example 337

Source File MYPROG
! Source file MYPROG
! Unless USEGLOBALS is active, compile the entire source file.
?SOURCE SHARGLOB
?BEGINCOMPILATION   ! When USEGLOBALS is active, compile
                   !  following code
?PUSHLIST, NOLIST, SOURCE $system.system.extdecs
?POPLIST
PROC my_first_proc;
BEGIN
  ...
END;
PROC my_last_proc;
BEGIN
  ...
END;

File of Shared Global Data, SHARGLOB
?SOURCE glbfile1 (section1, section2)
?SOURCE moreglbs
 INT ignore_me1;
 INT ignore_me2;

The compilation command in Example 334 (page 375) compiles myprog (the source file in
Example 333) and saves global data declarations and data initializations.

374 Compiler Directives



Example 334 Saving Global Data Declarations and Data Initializations

pTAL /IN myprog/ myobj; SAVEGLOBALS ptalsym

A USEGLOBALS compilation (Example 335 (page 375)) then produces object file newobj and
retrieves global data declarations and initialization from ptalsym and global initializations from
myobj. When USEGLOBALS is active, the compiler ignores text lines and SOURCE directives until
BEGINCOMPILATION appears in the source file.

Example 335 Retrieving Global Data Declarations and Data Initializations

pTAL /IN myprog/ newobj; USEGLOBALS ptalsymj

You can check the syntax of global data declarations before saving them, as in Example 336
(page 375).

Example 336 Checking the Syntax of Global Data Declarations

pTAL /IN myprog/; SAVEGLOBALS ptalsym, SYNTAX

After you correct any errors, you can recompile myprog as in Example 337 (page 375).

Example 337 Recompiling MYPROG After Correcting Errors

pTAL /IN myprog/; USEGLOBALS ptalsym

Migrating from TNS/R to TNS/E
The EpTAL compiler does not accept the SAVEGLOBALS and USEGLOBALS directives.
To migrate a pTAL program that uses SAVEGLOBALS and USEGLOBALS from TNS/R to TNS/E:
1. Remove SAVEGLOBALS from the SAVEGLOBALS compilation command line.
2. Compile the file from FIX_THIS_LINK using the EpTAL compiler, omitting SAVEGLOBALS from

the compilation command.
3. Remove USEGLOBALS from each USEGLOBALS compilation command line.

You can leave BEGINCOMPILATION in this file. The EpTAL compiler ignores
BEGINCOMPILATION, and you need BEGINCOMPILATION if you want to compile the same
files using the pTAL compiler.

4. Compile each file from FIX_THIS_LINK using the EpTAL compiler, omitting USEGLOBALS from
each compilation command.

If all files compile without errors, the migration is done. (To compile the same files using the pTAL
compiler, specify SAVEGLOBALS in the SAVEGLOBALS compilation command and USEGLOBALS
in each USEGLOBALS compilation command.)
If some files do not compile successfully because of missing global data declarations, the source
code files were not set up correctly and you must modify one or more of them.
For example:
1. Suppose that the original SAVEGLOBALS compilation source file is COMP1 in Example 338

(page 375).

Example 338 Original SAVEGLOBALS Compilation Source File

! COMP1
?FIELDALIGN (SHARED2)
name x;
?source FILE1
?source FILE2
...

Saving and Using Global Data Declarations 375



?source FILEn
int i1
struct s(*);
begin
  ...
end;
! All other common declarations and directives in the
!  compilation ...
! End of global declarations
?BEGINCOMPILATION
! All nonglobal declarations,
!  including procedure declarations
! End of COMP1

2. Extract all directives and declarations from the beginning of COMP1 to (but not including)
BEGINCOMPILATION. Put them in a new source file called GLOBALS (see Example 339
(page 376)).

Example 339 New GLOBALS Source File

! GLOBALS
?FIELDALIGN (SHARED2)
name x;
?source FILE1
?source FILE2
...
?source FILEn
int i1

struct s(*);
begin
  ...
end;
! All other common declarations and directives in the
!  compilation
! End of GLOBALS

3. Use a SOURCE directive to include GLOBALS in COMP1 (as in Example 340 (page 376)).

Example 340 Corrected SAVEGLOBALS Compilation Source File

! COMP1
?source GLOBALS
! End of global declarations
?BEGINCOMPILATION
! All other non-global declarations,
!  including procedure declarations ...
! End of COMP1

4. In each file that depended on the global data declarations file that the original COMP1
produced:
• Use a SOURCE directive to include GLOBALS.

The SOURCE directive must appear before any other declarations and must be immediately
followed by the BEGINCOMPILATION directive.

• After the BEGINCOMPILATION directive, specify any additional directives that were
originally specified in the compilation command.

376 Compiler Directives



Summary of Compiler Directives
Table 74 summarizes directives by categories.
Table 75 (page 379) lists directives by name in alphabetical order.

Table 74 Compiler Directives by Category

OperationDirectiveCategory

Marks the point in the source file where
compilation is to begin if the
USEGLOBALS directive is active

BEGINCOMPILATION1Compiler input

Treats as comments any text that
appears beyond the specified column

COLUMNS

Saves global data declarations and
initial values in a file for subsequent use

SAVEGLOBALS2

Names a section of the source fileSECTION

Reads source code from another input
file

SOURCE

Reads global data declarations and
initial values from a file

USEGLOBALS2

Expands DEFINEs in the compiler listingDEFEXPANDCompiler listing

Lists the file map in the compiler listingFMAP

Lists the global map in the compiler
listing

GMAP

Lists mnemonics after each source
statement

INNERLIST

Skips to the top of form after a specified
number of lines if the list file is a line
printer or a process

LINES

Lists the source codeLIST

Lists the identifier mapMAP

Sets the string to be printed as part of
the heading for each page. Each

PAGE

subsequent PAGE prints the heading
and causes a page eject.

Lists symbols in the compiler listingPRINTSYM

Suppresses all listings but the header,
diagnostics, and trailer

SUPPRESS

Writes error and warning messages to
an error file

ERRORFILEDiagnostics

Terminates compilation after the
specified number of error messages

ERRORS

Issues warnings for pTAL constructs that
are not valid in TAL

DO_TNS_SYNTAX

Causes errors for TAL constructs that are
not valid in pTAL

INVALID_FOR_PTAL

Suppresses compiler warningsWARN

Conditionally executes a debugging
procedure

ASSERTIONObject-file content

Summary of Compiler Directives 377



Table 74 Compiler Directives by Category (continued)

OperationDirectiveCategory

Specifies that the raw data file (used
for code profiling) generated by the

BASENAME

executing process is to contain only the
base part ot the file name.

Determines how the compiler allocates
global data that is not declared within

BLOCKGLOBALS

the scope of a named data block or the
private data block

Generates shared code (PIC)CALL_SHARED3

Causes overflow traps for invalid
bit-shift operations

CHECKSHIFTCOUNT

Generates instrumented object code for
use by the Code Coverage Utility

CODECOV

Exports globalsEXPORT_GLOBALS

Specifies the default memory alignment
for structures

FIELDALIGN

Generates preemptable object code for
use when building DLLs that require
such code

GLOBALIZED

Generates code that has GP-relative
addressing

GP_OK1

Sets the object code’s default
optimization level

OPTIMIZE

Sets the optimization level for individual
procedures and subprocedures

OPTIMIZEFILE

Controls whether overflow traps are
enabled

OVERFLOW_TRAPS3

Specifies where an instrumented object
file is to create the raw data file.

PROFDIR

Generate an instrumented object file for
use in profile-guided optimization.

PROFGEN

Generates optimized object code based
information in a DPI file.

PROFUSE

Specifies the default memory alignment
for pointers to nonstructure items and
procedure reference pointers

REFALIGNED

Rounds FIXED values assigned to FIXED
variables with smaller fpoint values

ROUND

Generates code that can be included
in a user library

SRL1

Checks the syntax, suppressing the
object code

SYNTAX

Defines toggles without changing their
settings

DEFINETOGConditional compilation

Identifies the end of code that is to be
conditionally compiled

ENDIF

Identifies the beginning of code that is
to be conditionally compiled

IF and IFNOT

378 Compiler Directives



Table 74 Compiler Directives by Category (continued)

OperationDirectiveCategory

Turns toggles offRESETTOG

Turns toggles onSETTOG

Specifies the architecture on which the
program will run

TARGET3

Generates a symbol table for a
symbolic debugger

SYMBOLSRun-time environment

Enables 64-bit addressing functionality
added to the EpTAL compiler starting

__EXT64Feature control

with SPR T0561H01^AAP. For more
information, see “64-bit Addressing
Functionality” (page 531).

1 The EpTAL compiler ignores this directive.
2 The EpTAL compiler does not accept this directive.
3 The pTAL and EpTAL compilers treat this directive differently.

Table 75 Compiler Directives by Name

OperationDirective

Conditionally executes a debugging procedureASSERTION

Specifies that the raw data file (used for code profiling) generated by the
executing process is to contain only the base part ot the file name.

BASENAME

Marks the point in the source file where compilation is to begin if the
USEGLOBALS directive is active

BEGINCOMPILATION1

Determines how the compiler allocates global data that is not declared within
the scope of a named data block or the private data block

BLOCKGLOBALS

Generates shared code (PIC)CALL_SHARED2

Causes overflow traps for invalid bit-shift operationsCHECKSHIFTCOUNT

Generates instrumented object code for use by the Code Coverate ToolCODECOV

Treats as comments any text that appears beyond the specified columnCOLUMNS

Expands DEFINEs in the compiler listingDEFEXPAND

Defines toggles without changing their settingsDEFINETOG

Issues warnings for pTAL constructs that are not valid in TALDO_TNS_SYNTAX

Identifies the end of code that is to be conditionally compiledENDIF

Writes error and warning messages to an error fileERRORFILE

Terminates compilation after the specified number of error messagesERRORS

Exports globalsEXPORT_GLOBALS

Directs the compiler to recognize the 64-bit keywords, indirection symbols,
and built-in routines are 64-bit addressing functionality added to the EpTAL

__EXT64

compiler starting with SPR T0561H01^AAP. For more information, see “64-bit
Addressing Functionality” (page 531).

Specifies the default memory alignment for structuresFIELDALIGN

Lists the file map in the compiler listingFMAP

Generates preemptable object code for use when building DLLs that require
such code

GLOBALIZED

Summary of Compiler Directives 379



Table 75 Compiler Directives by Name (continued)

OperationDirective

Lists the global map in the compiler listingGMAP

Generates code that has GP-relative addressingGP_OK1

Identifies the beginning of code that is to be conditionally compiledIF and IFNOT

Lists mnemonics after each source statementINNERLIST

Causes errors for TAL constructs that are not valid in pTALINVALID_FOR_PTAL

Specifies the maximum number of output lines per page if the list file is a line
printer or a process

LINES

Lists the source codeLIST

Lists the identifier mapMAP

Sets the object code’s default optimization levelOPTIMIZE

Sets the optimization level for individual procedures and subproceduresOPTIMIZEFILE

Controls whether overflow traps are enabled.OVERFLOW_TRAPS2

Sets the string to be printed as part of the heading for each page. Each
subsequent PAGE prints the heading and causes a page eject.

PAGE

Lists symbols in the compiler listingPRINTSYM

Specifies where an instrumented object file is to create the raw data file.PROFDIR

Generates an instrumented object file for use in profile-guided optimization.PROFGEN

Generates an optimized object file based on information in a DPI file.PROFUSE

Specifies the default alignment for pointers to nonstructure items and procedure
reference pointers

REFALIGNED

Turns off togglesRESETTOG

Rounds FIXED values assigned to FIXED variables with smaller fpoint valuesROUND

Saves global data declarations and initial values in a file for subsequent useSAVEGLOBALS3

Names a section of the source fileSECTION

Turns on togglesSETTOG

Reads source code from another input fileSOURCE

Generates code that can be included in a user librarySRL1

Suppresses all listings but the header, diagnostics, and trailerSUPPRESS

Generates a symbol table for a symbolic debuggerSYMBOLS

Checks the syntax, suppressing the object codeSYNTAX

Specifies the architecture on which the program will runTARGET2

Reads global data declarations and initial values from a fileUSEGLOBALS3

Suppresses compiler warningsWARN
1 The EpTAL compiler ignores this directive.
2 The pTAL and EpTAL compilers treat this directive differently.
3 The EpTAL compiler does not accept this directive.

380 Compiler Directives



NOTE: In the following directive topics, “Default:” identifies the default for the compiler directive
itself, not for its optional parameter(s). This default applies if a program does not contain the
compiler directive at all.

ASSERTION
ASSERTION executes a procedure when the condition specified in the active ASSERT statement is
true.

assertion-level

is an unsigned decimal constant in the range 0 through 32,767.
procedure-name

is the name of the procedure to execute if both:
• The condition defined in the active ASSERT statement is true.

• assertion-level is less than the assert-level in the active ASSERT statement.
This procedure must not have parameters.

NoneDefault:

Placement: • Anywhere in the source file (not in the compilation command)

• Must be the last directive on the directive line

Applies until another ASSERTION overrides itScope:

Has no effect without the ASSERT statementDependencies:

ASSERT (page 200)References:

ASSERT (page 200) explains how to use the ASSERTION directive and the ASSERT statement together.

BASENAME

This directive can be used only with the EpTAL compiler.

BASENAME specifies that when an instrumented object file is run, the raw data file created by the
running process will contain only the base part of the source file name and not the full file path.
For detailed information about using the BASENAME option when performing profile-guided
optimization, see the Code Profiling Utilities Manual.

The raw data file contains the full path name of the source fileDefault:

Only on the command linePlacement:

Applies to the compilation unitScope:

ASSERTION 381



Use the BASENAME option only with the PROFGEN optionDependencies:

PROFGENReferences:

BEGINCOMPILATION
NOTE: The EpTAL compiler ignores this directive. See Migrating from TNS/R to TNS/E (page 375).

BEGINCOMPILATION marks the point in the source file where:

• The information saved by the SAVEGLOBALS operation ends

• Compilation is to begin if the USEGLOBALS directive is active.

NoneDefault:

Placement: • In the source file between the last global data declaration and the first
procedure declaration, including any EXTERNAL and FORWARD
declarations

• Can appear only once in a compilation unit

Applies to all source code that follows it in the compilation unitScope:

Dependencies: • Has no effect without the USEGLOBALS directive

• If you specify either SAVEGLOBALS or USEGLOBALS, your compilation
unit must have exactly one BEGINCOMPILATION directive

• Interacts with SAVEGLOBALS and USEGLOBALS (see Saving and Using
Global Data Declarations (page 372))

References: • SAVEGLOBALS (page 413)

• USEGLOBALS (page 423)

BLOCKGLOBALS
BLOCKGLOBALS determines how the compiler allocates global data that is not declared within
the scope of a named data block or the private data block.

The compiler allocates data items in the _GLOBAL and $_GLOBAL data blocksDefault:

Before the first data declaration in a compilationPlacement:

Applies to the compilation unitScope:

NoneDependencies:

If you specify BLOCKGLOBALS, the compiler allocates its own data block for each global variable
that is not declared in the scope of a named data block or the private data block. The name of
the data block is the same as the name of the variable contained in the data block.

382 Compiler Directives



Table 76 Data Block Names

With BLOCKGLOBALSWithout BLOCKGLOBALSDeclaration

A_GLOBALINT a;

A_GLOBALINT .a;

A_GLOBALINT .EXT a;

A_GLOBALINT a[0:9]

A_GLOBALSTRUCT a;
BEGIN
  INT i;
END

A$_GLOBALint .ext a [0:9]

A$_GLOBALstruct .ext a;
begin
  int i;
end;

Separately compiled modules can share access to a data block only if both modules allocate the
block in the small data area or both modules allocate the block in the large data area.
References to data in the small data area are faster than references to data in the large data area.
All data blocks in a shared run-time library must be allocated in the large data area.
If the name of a variable is the same as the name of the data block in which the variable is located,
and the block only contains one variable, the compiler allocates the data block in the small data
area if the length of the block is eight or fewer bytes; otherwise, the compiler allocates the data
block in the large data area. (This is the allocation strategy used by the native HP C compiler.)
The compiler does not allocate memory for LITERALs, DEFINEs, or templates and, therefore, does
not create an implicit global data block for these items.

CALL_SHARED
NOTE:
• This directive is useful only for the pTAL compiler. The EpTAL compiler ignores it (and issues

a warning).
• You cannot link PIC and non-PIC object files into a single object file.

CALL_SHARED

generates shared code (PIC), the only option for the EpTAL compiler.
NOCALL_SHARED

causes the pTAL compiler to generate nonshared code (non-PIC).

NOCALL_SHAREDpTAL compiler:Default:

CALL_SHAREDEpTAL compiler:

AnywherePlacement:

Applies to the compilation unitScope:

CALL_SHARED 383



Dependencies: • If both CALL_SHARED and
NOCALL_SHARED appear in the
same compilation unit, the compiler
uses the one that appears last

• Do not use CALL_SHARED with
GP_OK

GP_OK (page 397)References:

CHECKSHIFTCOUNT

CHECKSHIFTCOUNT

generates code that causes an overflow trap if the number of positions in a bit-shift operation
is too large, as in:
INT j := 20;
INT i;
I := i << j;

(For more information about bit shifts, see Bit Shifts (page 94).)
NOCHECKSHIFTCOUNT

suppresses the generation of code that causes an overflow trap if the number of positions in a
bit-shift operation is too large.

CAUTION: If such a bit-shift operation occurs, subsequent program behavior is undefined.

PUSHCHECKSHIFTCOUNT

pushes the current setting (CHECKSHIFTCOUNT or NOCHECKSHIFTCOUNT) onto the
CHECKSHIFTCOUNT directive stack. Does not change the current setting.

POPCHECKSHIFTCOUNT

pops the top value from the CHECKSHIFTCOUNT directive stack and changes the current
setting to that value.

For an explanation of directive stacks, see Directive Stacks (page 369).

NOCHECKSHIFTCOUNTDefault:

AnywherePlacement:

Scope: • CHECKSHIFTCOUNT applies to the shift operators that follow it until it is
overridden by NOCHECKSHIFTCOUNT

• NOCHECKSHIFTCOUNT applies to the shift operators that follow it until
it is overridden by CHECKSHIFTCOUNT

NoneDependencies:

384 Compiler Directives



CODECOV
NOTE:
• This directive can be used only with the EpTAL compiler.

• Instrumented object code can result in greatly reduced performance. Therefore, the CODECOV
directive should be used only in a test environment. See the caution under Debugging
(page 429), which indicates how CODECOV affects debugging applications.

CODECOV causes the compiler to generate instrumented object code for use by the Code Coverage
Utility. For detailed information about the Code Coverage Utility, see the Code Profiling Utilities
Manual.

No code coverage instrumentation in object codeDefault:

Only on the command linePlacement:

Applies to the compilation unitScope:

NoneDependencies:

COLUMNS
COLUMNS causes the compiler to treat any text beyond the specified column as comments.

columns-value

is an unsigned decimal constant in the range 12 through 132, the column beyond which the
compiler is to treat text as comments.
If columns-value is smaller than 12 or larger than 132, the compiler issues an error
message.

COLUMNS 132Default:

Placement: • Anywhere, but if COLUMNS appears in the source code, it must be the
only directive on the directive line

• Typically specified before any SECTION directive

Applies to all source code that follows it unless overridden by:Scope:
• Another COLUMNS directive in the same source file (not recommended)

• A COLUMNS directive in a source file included by means of a SOURCE
directive

• A COLUMNS directive in a section identified by a SECTION directive
For details, see the explanation that follows this table.

NoneDependencies:

References: • SECTION (page 414)

• SOURCE (page 416)

CODECOV 385



The columns-value active at any given time depends on the context, as follows:

• The main input file initially has the columns-value set by the last COLUMNS directive in
the compilation command. If there was no COLUMNS directive in the compilation command,
the main input file initially has the default columns-value of 132.

• At each SOURCE directive, each included file initially has the columns-value active when
the SOURCE directive appeared.

• At each SECTION directive, columns-value is set by the last COLUMNS directive before
the first SECTION directive in the included file. If there is no such COLUMNS directive, each
SECTION initially has the columns-value active at the beginning of the included file.

• Within a section, a COLUMNS directive sets the columns-value only until the next
COLUMNS or SECTION directive or the end of the file.

• After a SOURCE directive completes execution (that is, after all sections listed in the SOURCE
directive are read or the end of the file is reached), the compiler restores columns-value
to what it was when the SOURCE directive appeared.

• In all other cases, columns-value is set by the most recently processed COLUMNS directive.
If a SOURCE directive lists sections, the compiler processes no source code outside the listed
sections except any COLUMNS directives that appear before the first SECTION directive in the
included file. For more information about including files or sections, see SOURCE (page 416) and
SECTION (page 414).

DEFEXPAND

DEFEXPAND

expands DEFINEs in the compiler listing.

NOTE: MAP DEFINEs are available only on Guardian platforms.

NODEFEXPAND

suppresses the expansion of DEFINEs in the compiler listing.
PUSHDEFEXPAND

pushes the current setting (DEFEXPAND or NODEFEXPAND) onto the DEFEXPAND directive
stack. Does not change the current setting.

POPDEFEXPAND

pops the top value from the DEFEXPAND directive stack and changes the current setting to that
value.

For an explanation of directive stacks, see Directive Stacks (page 369).

NODEFEXPANDDefault:

AnywherePlacement:

386 Compiler Directives



Scope: • DEFEXPAND applies to subsequent code it until it is overridden by
NODEFEXPAND

• NODEFEXPAND applies to subsequent code until it is overridden by
DEFEXPAND

DEFEXPAND has no effect if NOLIST or SUPPRESS is activeDependencies:

References: • LIST (page 401)

• SUPPRESS (page 420)

In the DEFEXPAND listing, the DEFINE body appears on lines following the DEFINE identifier. In
the listing:

• All letters are uppercase.

• No comments, line boundaries, or extra blanks appear.

• The lexical level of the DEFINE appears in the left margin, starting at 1.

• Parameters to the DEFINE appear as #n, where n is the sequence number of the parameter,
starting at 1.

Example 341 DEFEXPAND Directive

?DEFEXPAND                           ! List expanded DEFINEs
DEFINE increment (x) = x := x + 1#;  ! Expanded DEFINE
DEFINE decrement (y) = y := y - 1#;  ! Expanded DEFINE
! Other global data declarations

DEFEXPAND 387



DEFINETOG
DEFINETOG specifies toggles for use in conditional compilation. If DEFINETOG is specifying a
toggle for the first time, its setting is off. DEFINETOG has no effect on toggles already in use.

toggle-name

is an identifier with a maximum of 31 characters in length.
The only characters allowed in a toggle-name are alphabetic (“A” through “Z” and “a” through
“z’), numeric (‘0” through “9”), underscore (“_”), and circumflex (“^”); the first character must
be alphabetic.
Names are case-insensitive (For example, abc is the same as Abc.)

toggle-number

is an unsigned decimal constant in the range 1 through 15. Leading zeros are ignored.
target

is as defined in “TARGET” (page 423).
PTAL

is a toggle implicitly defined and set by the TAL, pTAL and EpTAL compilers. It is set on if the
compiler in use is any pTAL or EpTAL compiler, otherwise it is set off.
It can be used with the directives “IF and IFNOT” (page 398) to conditionally compile code.
Source code enclosed within the IF PTAL directive is compiled only when using the pTAL or
EpTAL compilers. Likewise, source code enclosed within the IFNOT PTAL directive is compiled
only when using the TAL compiler.

IFNOT pTALIF pTALCompiler

FalseTruepTAL or EpTAL

TrueFalseTAL

__EXT64

is a toggle implicitly defined and set by the EpTAL compiler starting with SPR T0561H01^AAP.
It is set on if the corresponding __EXT64 directive has been specified otherwise, it is set off.

388 Compiler Directives



The __EXT64 directive controls the availability of 64-bit addressing functionality; for more
details, see Appendix E “64-bit Addressing Functionality” (page 531).
The toggle __EXT64 is used with the directives “IF and IFNOT” (page 398) to conditionally
compile source code containing 64-bit addressing functionality.
This toggle is not supported by the EpTAL compilers prior to SPR T0561H01^AAP nor is it
supported by any pTAL or TAL compiler. If you need to compile using earlier versions of EpTAL,
pTAL, or TAL compiler, explicitly specify __EXT64 in a DEFINETOG directive which explicitly
defines and sets the toggle off in these compilers.
You can specify DEFINETOG __EXT64 using EpTAL compilers starting with SPR T0561H01^AAP
. However, doing so has no effect on the implicitly defined __EXT64 toggle setting.

NoneDefault:

Placement: • With a parenthesized list, it can appear anywhere

• Without a parenthesized list, it must be the last directive on the directive
line or compilation command line

Applies to the compilation unitScope:

Interacts with:Dependencies:
• SETTOG

• RESETTOG

• IF and IFNOT

• ENDIF

• TARGET

• __EXT64

References: • SETTOG (page 415)

• RESETTOG (page 411)

• IF and IFNOT (page 398)

• ENDIF (page 390)

• “TARGET” (page 423)

• “__EXT64” (page 394)

• Toggles (page 370)

DO_TNS_SYNTAX

DO_TNS_SYNTAX

issues a warning for each occurrence of certain constructs that are valid in pTAL but not in TAL
(for these constructs, see the pTAL Conversion Guide).

NODO_TNS_SYNTAX

suppresses warnings for each occurrence of a construct that is valid in pTAL but not in TAL.
PUSHTNS_SYNTAX

pushes the current setting (DOTNS_SYNTAX or NODOTNS_SYNTAX) onto the DOTNS_SYNTAX
directive stack. Does not change the current setting.

DO_TNS_SYNTAX 389



POPTNS_SYNTAX

pops the top value from the DOTNS_SYNTAX directive stack and changes the current setting
to that value.

NODO_TNS_SYNTAXDefault:

Placement: • Can appear only once in a compilation

• Must precede any TARGET directive and any nondirective lines

Applies to the compilation unitScope:

NoneDependencies:

TARGET (page 423)References:

ENDIF
ENDIF identifies the end of code that is to be conditionally compiled.

toggle-name

is an identifier that was used as a toggle-name in an earlier IF or IFNOT directive.
The only characters allowed in a toggle-name are alphabetic (“A” through “Z” and “a” through
“z’), numeric (‘0” through “9”), underscore (“_”), and circumflex (“^”); the first character must
be alphabetic.
Names are case-insensitive (For example, abc is the same as Abc.)

toggle-number

is an unsigned decimal constant in the range 1 through 15 that was used as a toggle-name
in an earlier IF or IFNOT directive. Leading zeros are ignored.

target

is as defined in “TARGET” (page 423).
PTAL

is a toggle implicitly defined and set by the TAL, pTAL and EpTAL compilers. It is set on if the
compiler in use is any pTAL or EpTAL compiler, otherwise it is set off. See “DEFINETOG”
(page 388).

__EXT64

is a toggle implicitly defined and set by the EpTAL compiler starting with SPR T0561H01^AAP.
It is set on if the corresponding “__EXT64” (page 394) directive has been specified otherwise,
it is set off. The __EXT64 directive controls the availability of 64-bit addressing functionality;
see “DEFINETOG” (page 388) and Appendix E, “64-bit Addressing Functionality” (page 531).

The next compiled ENDIF that matches the most recently compiled IF or IFNOT with the same toggle
or target specified identifies the end of code to be conditionally compiled. For example:
?SETTOG tog1 -- Create and turn on tog1
?RESETTOG tog2 – Create and turn off tog2
?IF tog1
  -- Statements for true condition

390 Compiler Directives



  -- compiled because tog1 is on
?IF tog2
  -- Statements for true condition
  -- skipped because tog2 is off
?ENDIF tog1 – Not compiled, part of skipped code for tog2
?ENDIF tog2 -- End of conditional code for tog2
?ENDIF tog1 -- End of conditional code for tog1

NoneDefault:

Placement: • Anywhere in the source file (not in the compilation command)

• Must be the only directive on the directive line

Everything between ENDIF and the most recently compiled IF or IFNOT
directive that specifies the same toggle, target, or keyword

Scope:

Interacts with:Dependencies:
• SETTOG

• RESETTOG

• IF and IFNOT

• ENDIF

• TARGET

• __EXT64

References: • SETTOG (page 415)

• RESETTOG (page 411)

• IF and IFNOT (page 398)

• ENDIF (page 390)

• “TARGET” (page 423)

• “__EXT64” (page 394)

• Toggles (page 370)

ERRORFILE
ERRORFILE writes compilation errors and warnings to an error file so you can use the HP TACL
FIXERRS macro (available only on Guardian platforms) to view the diagnostic messages in one PS
Text Edit window and correct the source file in another window.

file-name

is the name of either:
• An existing error file created by ERRORFILE. Such a file has file code 106 (an

entry-sequenced disk file used only with the HP TACL FIXERRS macro). The compiler purges
any data in it before logging errors and warnings.

• A new error file to be created by ERRORFILE if errors occur.
If a file with the same name exists but the file code is not 106, the compiler terminates
compilation to prevent overwriting the file.
You can specify partial file names as described in Partial File Names (page 519). The compiler
uses the current default volume and subvolume names as needed. For this directive, the compiler

ERRORFILE 391



does not use HP TACL ASSIGN SSV information (available only on Guardian platforms) to
complete the file name.

define-name

is the name of a MAP DEFINE that refers to an error file.

NOTE: MAP DEFINEs are available only on Guardian platforms.

assign-name

is a logical file name you have equated with an error file by issuing an ASSIGN command.

NoneDefault:

Placement: • In the compilation command or in the source code before any declarations

• Can appear only once in a compilation unit

Applies to the compilation unitScope:

NoneDependencies:

The compiler writes a header record to the error file and then writes a record for each error or
warning. Each record contains information such as:

• The location of the error or warning—source file name, edit line number, and column number

• The message text of the error or warning
At the end of the compilation, the compiler prints the complete name of the error file in the trailer
message of the compilation listing.
After the compiler logs messages to the error file, you can call the HP TACL FIXERRS macro and
correct the source file. FIXERRS uses the PS Text Edit ANYHOW option to open the source file in
a two-window session. One window displays a diagnostic message. The other window displays
the source code to which the message applies. If you have write access to the file, you can correct
the source code. If you have only read access, you can view the source code, but you cannot
correct it.
Initially, the edit cursor is located in the source code at the first diagnostic. To move the cursor to
the next or previous diagnostic, use the PS Text Edit NEXTERR or PREVERR command.
The HP TACL command for calling FIXERRS is:

error-file

is the name of the error file specified in the ERRORFILE directive.
tedit-cmds

is any PS Text Edit commands that are allowed on the PS Text Edit run line.
Example 342 (page 393) issues an HP TACL DEFINE command that calls FIXERRS and defines PS
Text Edit function keys for NEXTERR and PREVERR.

392 Compiler Directives



Example 342 FIXERRS Macro

[#DEF MYFIXERRS MACRO |BODY|
      FIXERRS %1%; SET <F9>, NEXTERR; SET <SF9>, PREVERR
]

Example 343 ERRORFILE Directive

! MYSOURCE file
?ERRORFILE myerrors  ! Compiler reports errors and warnings
                     !  to the file myerrors
!Global declarations

ERRORS
ERRORS sets the maximum number of error messages to allow before the compiler terminates the
compilation.

num-messages

is an unsigned decimal constant in the range 0 through 32,767 that represents the maximum
number of error messages to allow before the compilation terminates.

Unlimited number of errorsDefault:

AnywherePlacement:

Applies to the compilation unitScope:

NoneDependencies:

A single error can cause many error messages. The compiler counts each error message separately.
If the compiler’s count exceeds the maximum you specify, the compiler terminates the compilation.
(Warning messages do not affect the count.)

Example 344 ERRORS Directive

! MYSOURCE file
?ERRORS 10             ! Stop compiling when 10 errors are found
!Global declarations

EXPORT_GLOBALS

EXPORT_GLOBALS

causes the compiler to define (rather than only declare) global data blocks, allocating space
for them and (optionally) giving them initial values, and causes the linker to include in the
program file all global data blocks declared up to the next occurrence of NOEXPORT_GLOBALS
or through the last declared global data block, whichever is first.

ERRORS 393



NOEXPORT_GLOBALS

causes the compiler to declare (rather than define) global data blocks.
PUSHEXPORT_GLOBALS

pushes the current setting (EXPORT_GLOBALS or NOEXPORT_GLOBALS) onto the
EXPORT_GLOBALS directive stack. Does not change the current setting.

POPEXPORT_GLOBALS

pops the top value from the EXPORT_GLOBALS directive stack and changes the current setting
to that value.

EXPORT_GLOBALSDefault:

Placement: • Can appear any number of times in a compilation unit

• Must appear before the first procedure is compiled

• Cannot appear within BLOCK declarations

Applies to the compilation unit, except that NOEXPORT_GLOBALS does not
affect a compilation’s private data block, which is always exported

Scope:

Dependencies: • You must specify NOEXPORT_GLOBALS when declaring a data block that
belongs to an SRL

• In a compilation that includes USEGLOBALS, the compiler exports the data
blocks declared in the USEGLOBALS declarations file only if
EXPORT_GLOBALS is active when the compiler encounters the
BEGINCOMPILATION directive.

References: • BEGINCOMPILATION (page 382)

• SRL (page 420)

• USEGLOBALS (page 423)

You can export only whole data blocks. You cannot export individual variables declared within a
data block.
The compiler exports initialization values for variables that specify them. If a data block is not
being exported, the compiler ignores any specified initial values within the block.
You must export every data block in at least one compilation.

__EXT64

__EXT64 directive controls the accessibility of 64-bit addressing functionality support available in
the EpTAL compiler starting with SPR T0561H01^AAP. See Appendix E, “64-bit Addressing
Functionality” (page 531).
Starting with SPR T0561H01^AAP, the corresponding implicitly defined toggle __EXT64 is set on
if the __EXT64 directive is specified, otherwise, it is set off. For example:
-- The ?__EXT64 directive is specified appropriately
-- on the EpTAL compiler command line

?DEFINETOG __EXT64 -- For downward compatibility with
                   -- compilers that do not support
                   -- ?__EXT64 and the 64-bit address
                   -- functionality.
…
?IF __EXT64        -- EpTAL version is SPR AAP or newer
                   -- and 64-bit functionality is needed.

394 Compiler Directives



EXT64ADDR addr;    -- Use a 64-bit address type.
?ENDIF __EXT64
?IFNOT __EXT64     -- EpTAL prior to SPR AAP, pTAL or TAL
EXTADDR addr;       
?ENDIF __EXT64

offDefault:

Must appear either on the compiler command line or in the compiled source
code before the first source code token is scanned by the compiler.

Placement:

Affects the entire compilationScope:

NoneDependencies:

References: • “DEFINETOG” (page 388)

• “ENDIF” (page 390)

• “IF and IFNOT” (page 398)

• “RESETTOG” (page 411)

• “SETTOG” (page 415)

• Toggles (page 370)

FIELDALIGN
FIELDALIGN specifies the default alignment for structures.

SHARED2

specifies that the base of the structure and each field in the structure must begin at an even-byte
address except STRING fields. For more information, see SHARED2 Parameter (page 128).

SHARED8

specifies that the offset of each field in the structure from the base of the structure must be begin
at an address that is an integral multiple of the width of the field. For more information, see
SHARED8 Parameter (page 129).

AUTO

specifies that the structure and the fields of the structure be aligned according to the optimal
alignment for the architecture on which the program will run (this is not the same behavior as
the AUTO attribute has in the native mode HP C compiler). For more information, see AUTO
(page 118).

PLATFORM

specifies that the structure and the fields of the structure must begin at addresses that are
consistent across all languages on the same architecture. For more information, see PLATFORM
(page 118).

FIELDALIGN 395



NODEFAULT

specifies that every structure declaration must include a FIELDALIGN (page 395).

FIELDALIGN AUTODefault:

Placement: • Can appear only once in a compilation unit

• Must precede all declarations of data, blocks, and procedures

Applies to the compilation unitScope:

NoneDependencies:

FMAP

FMAP

lists the file map in the compiler listing.
NOFMAP

suppresses the file map in the compiler listing.

NOFMAPDefault:

Anywhere, any number of times. The last FMAP or NOFMAP in the compilation
unit determines whether the compiler lists the file map.

Placement:

Applies to the compilation unitScope:

FMAP has no effect if either NOLIST or SUPPRESS is activeDependencies:

References: • LIST (page 401)

• SUPPRESS (page 420)

The file map:

• Appears after the map of global identifiers in the compilation listing

• Starts with the first file that the compiler encounters and includes each file introduced by
SOURCE directives and (on Guardian platforms) HP TACL ASSIGN and DEFINE commands

• Shows the complete name of each file and the date and time when the file was last modified

GLOBALIZED
NOTE: This directive is valid only with the EpTAL compiler.

The GLOBALIZED directive directs the compiler to generate preemptable object code. Preemptable
object code allows named references in a DLL to resolve to externally-defined code and data items
instead of to the DLL’s own internally-defined code and data items. You must specify the GLOBALIZED
directive when compiling code that will be linked into a globalized DLL. By default, the compiler
generates non-preemptable object code. Non-preemptable code is more efficient than preemptable
code and results in faster compilation and execution, so you should specify GLOBALIZED only
when required.

396 Compiler Directives



Generate non-preemptable object codeDefault:

On the command linePlacement:

Applies to the compilation unitScope:

NoneDependencies:

GMAP

GMAP

lists the global map in the compiler listing.
NOGMAP

suppresses the global map in the compiler listing.

GMAPDefault:

Anywhere, any number of times. The last GMAP or NOGMAP in the
compilation unit determines whether the compiler lists the global map.

Placement:

Applies to the compilation unitScope:

Dependencies: • GMAP has no effect if NOLIST, NOMAP, or SUPPRESS is active

• NOGMAP suppresses the global map even if MAP is active

References: • LIST (page 401)

• MAP (page 402)

• SUPPRESS (page 420)

The global map:

• Appears at the end of the compilation listing

• Lists all identifiers in the compilation unit and tells what kind of objects they are, including
identifier class and type

GP_OK
NOTE: The EpTAL compiler ignores these directives.

GP_OK

causes the pTAL compiler to generate code that has GP-relative addressing (“small” data).

GMAP 397



NOGP_OK

suppresses the generation of code that has GP-relative addressing. (This is the only option for
the EpTAL compiler.)

PUSHGP_OK

pushes the current setting (GP_OK or NOGP_OK) onto the GP_OK directive stack. Does not
change the current setting.

POPGP_OK

pops the top value from the GP_OK directive stack and changes the current setting to that
value.

For an explanation of directive stacks, see Directive Stacks (page 369).

GP_OKpTAL compiler:Default:

NOGP_OKEpTAL compiler:

Anywhere except inside a data block or inside a procedure declarationPlacement:

Scope: • GP_OK applies to subsequent code it until it is overridden by NOGP_OK

• NOGP_OK applies to subsequent code until it is overridden by GP_OK

Do not use GP_OK with CALL_SHAREDDependencies:

CALL_SHARED (page 383)References:

A pTAL program that references data in a shared run-time library (SRL) must specify NOGP_OK
when it declares a data block that belongs to a shared run-time library. This behavior prevents the
pTAL compiler from using GP-relative addressing for references to data in an SRL.

Example 345 GP_OK, NOGP_OK, PUSHGP_OK, and POPGP_OK Directive

?PUSHGP_OK
?NOGP_OK
?NOEXPORT_GLOBALS
BLOCK a_block;
  ...
END BLOCK;
?EXPORT_GLOBALS
?POPGP_OK

IF and IFNOT
IF and IFNOT identify the beginning of code that is to be conditionally compiled.

toggle-name

is an identifier with a maximum of 31 characters in length
The only characters allowed in a toggle-name are alphabetic (“A” through “Z” and “a” through
“z’), numeric (‘0” through “9”), underscore (“_”), and circumflex (“^”); the first character must
be alphabetic.

398 Compiler Directives



Names are case-insensitive (For example, abc is the same as Abc.)
toggle-number

is an unsigned decimal constant in the range 1 through 15. Leading zeros are ignored.
target

is as defined in “TARGET” (page 516).
PTAL

is a toggle implicitly defined and set by the TAL, pTAL and EpTAL compilers. It is set on if the
compiler in use is any pTAL or EpTAL compiler, otherwise it is set off. See “DEFINETOG”
(page 388).

__EXT64

is a toggle implicitly defined and set by the EpTAL compiler starting with SPR T0561H01^AAP.
It is set on if the corresponding “__EXT64” (page 394) directive has been specified otherwise,
it is set off. The __EXT64 directive controls the availability of 64-bit addressing functionality;
see “DEFINETOG” (page 388) and Appendix E, “64-bit Addressing Functionality” (page 531).

The most recently compiled IF or IFNOT matches the next compiled ENDIF with the same toggle
or target specified identifies the beginning of code to be conditionally compiled.

Example 346 IF Directive Without Matching ENDIF Directive

?RESETTOG flag  ! Create & turn off flag
?IF flag
  ! Statements for true condition
  !  (skipped because flag is off)
?IFNOT flag
  ! Statements for false condition
  !  (also skipped, because no ENDIF appears for IF flag)
?ENDIF flag

If you insert an ENDIF for the IF in the code in Example 346 (page 399), as in Example 347
(page 399), the compiler skips only the first part.

Example 347 IF Directive With Matching ENDIF Directive

?RESETTOG flag  ! Create & turn off flag
?IF flag
  ! Statements for true condition
  !  (skipped because flag is off)
?ENDIF flag     ! ENDIF stops the skipping of statements
?IFNOT flag
  ! Statements for false condition
  !  (compiled because ENDIF appears for IF flag)
?ENDIF flag

NoneDefault:

Placement: • Anywhere in the source file (not in the compilation command)

• Must be the last directive on the directive line

Everything between IF or IFNOT and the next ENDIF that specifies the same
toggle, target, or keyword

Scope:

Interacts with:Dependencies:
• DEFINETOG

• ENDIF

• __EXT64

• RESETTOG

IF and IFNOT 399



• SETTOG

• TARGET

References: • DEFINETOG (page 388)

• ENDIF (page 390)

• “__EXT64” (page 394)

• RESETTOG (page 411)

• SETTOG (page 415)

• TARGET (page 423)

• Toggles (page 370)

An asterisk (*) appears in column 11 of the listing for any statements not compiled because of the
IF or IFNOT directive.

INNERLIST

INNERLIST

lists mnemonics for each statement after that statement in the compiler listing.
NOINNERLIST

suppresses the mnemonics for each statement after that statement in the compiler listing.
PUSHINNERLIST

pushes the current setting (INNERLIST or NOINNERLIST) onto the INNERLIST directive stack.
Does not change the current setting.

POPINNERLIST

pops the top value from the INNERLIST directive stack and changes the current setting to that
value.

For an explanation of directive stacks, see Directive Stacks (page 369).

NOINNERLISTDefault:

AnywherePlacement:

Scope: • INNERLIST applies to subsequent statements it until it is overridden by
NOINNERLIST

• NOINNERLIST applies to subsequent statements until it is overridden by
INNERLIST

INNERLIST has no effect if NOLIST or SUPPRESS is activeDependencies:

References: • LIST (page 401)

• SUPPRESS (page 420)

400 Compiler Directives



Example 348 INNERLIST and NOINNERLIST Directives

PROC any;
BEGIN
  INT x, y, z;  ! No innerlisting here
  ! Statements that initialize variables
?INNERLIST      ! Start innerlisting here
  ! Statements that manipulate variables
?NOINNERLIST    ! Stop innerlisting here
END;

INVALID_FOR_PTAL
INVALID_FOR_PTAL forces the compiler to report an error message. Use it to identify a TAL source
file that the pTAL or EpTAL compiler must not compile.

NoneDefault:

After IF or IFNOT and before ENDIFPlacement:

Applies to code between itself and ENDIFScope:

NoneDependencies:

References: • IF and IFNOT (page 398)

• ENDIF (page 390)

LINES
LINES sets the maximum number of output lines per page if the list file is a line printer or a process.

num-lines

is an unsigned decimal constant in the range 10 through 32,767.

LINES 60Default:

AnywherePlacement:

Applies until overridden by another LINES directiveScope:

Has no effect if the list file is a terminalDependencies:

LIST

INVALID_FOR_PTAL 401



LIST

lists the source code in the compiler listing.
NOLIST

suppresses the source code the compiler listing.
PUSHLIST

pushes the current setting (LIST or NOLIST) onto the LIST directive stack. Does not change the
current setting.

POPLIST

pops the top value from the LIST directive stack and changes the current setting to that value.
For an explanation of directive stacks, see Directive Stacks (page 369).

LISTDefault:

AnywherePlacement:

Scope: • LIST applies to subsequent code it until it is overridden by NOLIST

• NOLIST applies to subsequent code until it is overridden by LIST

LIST has no effect if SUPPRESS is activeDependencies:

SUPPRESS (page 420)References:

Each line in the source listing consists of:

• An edit file number

• A lexical level:

MeaningLexical Level

Global level0

Procedure level1

Subprocedure level2

• A nesting level (only for BEGIN-END items such as structures, substructures, IF statements, and
CASE statements)

Example 349 Listing Source Code But Not System Declarations

?NOLIST, SOURCE $system.system.extdecs (
? process_getinfo_, process_stop_)
?LIST

MAP

MAP

lists identifier maps in the compiler listing.

402 Compiler Directives



NOMAP

suppresses identifier maps in the compiler listing.
PUSHMAP

pushes the current setting (MAP or NOMAP) onto the MAP directive stack. Does not change
the current setting.

POPMAP

pops the top value from the MAP directive stack and changes the current setting to that value.
For an explanation of directive stacks, see Directive Stacks (page 369).

MAPDefault:

AnywherePlacement:

Scope: • MAP applies to subsequent code it until it is overridden by NOMAP

• NOMAP applies to subsequent code until it is overridden by MAP

MAP has no effect if NOLIST or SUPPRESS is activeDependencies:

References: • LIST (page 401)

• SUPPRESS (page 420)

MAP lists:

• Sublocal identifiers after each subprocedure

• Local identifiers after each procedure

• Global identifiers after the last procedure in the source program
Each identifier map includes:

Possible ValuesItem

Identifier class • VAR

• SUBPROC

• ENTRY

• LABEL

• DEFINE

• LITERAL

Type • Data type

• Structure

• Substructure

• Structure pointer

Addressing mode • Direct

• Indirect

Subprocedure, entry, or label offset

Text of LITERALs and DEFINEs

MAP 403



OPTIMIZE

level

EffectLevel

Code is not optimized. Provided in case other optimization levels cause errors or interfere with
debugging. Supports symbolic debugging; data is always in memory.

0

Code is optimized within statements and across statement boundaries. The resulting code is
more efficient than that produced by lower levels of optimization and does not interfere with
debugging.

1

Code is optimized within statements and across statement boundaries, and the resulting code
is more efficient than code produced by lower levels.

2

NOTE: If your program compiles successfully at level 0 but runs out of memory at level 1 or
2, either compile your program only at level 0 or split your program into smaller subprograms
and compile those at the same higher level.

OPTIMIZE 1Default:

Outside the boundary of a separately compiled programPlacement:

The optimization level active at the beginning of a separately compiled program
determines the level of optimization for that program and any programs it
contains

Scope:

None, but OPTIMIZEFILE can override OPTIMIZE in individual proceduresDependencies:

OPTIMIZEFILE (page 404)References:

OPTIMIZEFILE
OPTIMIZEFILE sets the optimization level for individual procedures and subprocedures.

filename

is an EDIT file on Guardian platforms and a text file on Windows platforms. Each line of the
file must have this syntax:

(See Example 350 (page 405).)

404 Compiler Directives



routine-name

is either a:
• procedure name

• subprocedure name of the form procedure-name.subprocedure-name

Each routine-name in filename must appear only once in filename.
optimize-level

is an integer. If it is not 0, 1, or 2, the compiler ignores the line. optimize-level must
be preceded by white space and it can be followed by white space.

comment

is any text.

The optimization level that OPTIMIZE specifiedDefault:

Only in the compilation command (not in the source file)Placement:

Applies to the compilation unitScope:

NoneDependencies:

OPTIMIZE (page 404)References:

Example 350 File for OPTIMIZEFILE Directive

# This is the optimizefile for compilation xyz.
abc.sub 0
abc 2

def 1

Difference between pTAL and EpTAL compilers:

EpTAL CompilerpTAL Compiler

Issues a warning when filename :Does not issue warnings for errors in
filename • Does not exist

• Cannot be opened

• Is not an EDIT file (Guardian operating systems only)

• Has the same routine-name on more than one line

• Has a line that:
◦ Exceeds 511 characters (Windows operating systems only)

◦ Has a routine-name that does not match any routine declaration
in the source file

◦ Has an optimize-level other than 0, 1, or 2

◦ Has one or more characters other than spaces or tabs:
– Before routine-name

– After optimize-level

– Between routine-name and optimize-level

OPTIMIZEFILE 405



OVERFLOW_TRAPS

OVERFLOW_TRAPS

enables overflow traps throughout the program.
NOOVERFLOW_TRAPS

disables overflow traps throughout the program, except where you specify an overflow trapping
procedure attribute or block attribute.

PUSHOVERFLOW_TRAPS

pushes the current setting (OVERFLOW_TRAPS or NOOVERFLOW_TRAPS) onto the
OVERFLOW_TRAPS directive stack. Does not change the current setting.

POPOVERFLOW_TRAPS

pops the top value from the OVERFLOW_TRAPS directive stack and changes the current setting
to that value.

For an explanation of directive stacks, see Directive Stacks (page 369).

OVERFLOW_TRAPSpTAL compiler:Default:

NOOVERFLOW_TRAPSEpTAL compiler:

Before or between procedure declarationsPlacement:

From where the directive it occurs in the compilation until the directive is
overridden or the compilation ends, whichever occurs first

Scope:

OVERFLOW_TRAPS is overridden by:Dependencies:
• NOOVERFLOW_TRAPS procedure attribute

• DISABLE_OVERFLOW_TRAPS block attributes
NOOVERFLOW_TRAPS is overridden by:
• OVERFLOW_TRAPS procedure attribute

• ENABLE_OVERFLOW_TRAPS block attributes

See Managing Overflow Traps (page 234)References:

406 Compiler Directives



Example 351 OVERFLOW_TRAPS Compiler Directive

?OVERFLOW_TRAPS    ! Correct
PROC p;
  BEGIN
?NOOVERFLOW_TRAPS  ! Incorrect: OVERFLOW_TRAPS must appear
   ...             !  between procedure declarations
END;
?NOOVERFLOW_TRAPS  ! Correct
PROC q;
BEGIN
  ...
END;

NOTE: OVERFLOW_TRAPS directive does not control the effects of the
$EXT64ADDR_TO_EXT32ADDR_OV directive (See directive“$EXT64ADDR_TO_EXT32ADDR_OV
” (page 307)).

PAGE
The first PAGE sets the string to be printed as part of the heading for each page. Each subsequent
PAGE prints the heading and causes a page eject.

heading-string

is a character string of at most 122 characters. The default is an empty string.

LINES determines page ejects and no heading is printedDefault:

Only in the source file (not in the compilation command)Placement:

Applies until overridden by another PAGE directiveScope:

• Has no effect if either:Dependencies:

• NOLIST or SUPPRESS is active

• The list file is a terminal

• Interacts with SAVEGLOBALS and USEGLOBALS (see Saving and Using
Global Data Declarations (page 372))

References: • LINES (page 401)

• LIST (page 401)

• SAVEGLOBALS (page 413)

• SUPPRESS (page 420)

• USEGLOBALS (page 423)

PAGE 407



Example 352 PAGE Directive

! MYSOURCE file
?PAGE "Here are global declarations for MYSOURCE"
! Global declarations
?PAGE "Here are procedure declarations for MYSOURCE"
! Procedure declarations

PRINTSYM

PRINTSYM

lists symbols in the compiler listing.
NOPRINTSYM

suppresses symbols in the compiler listing.

PRINTSYMDefault:

AnywherePlacement:

Scope: • PRINTSYM applies to subsequent declarations until overridden by
NOPRINTSYM

• NOPRINTSYM applies to subsequent declarations until overridden by
PRINTSYM

Dependencies: • PRINTSYM has no effect if NOLIST or SUPPRESS is active

• PRINTSYM interacts with SAVEGLOBALS and USEGLOBALS (see Saving
Global Data Declarations (page 373))

References: • LIST (page 401)

• SAVEGLOBALS (page 413)

• SUPPRESS (page 420)

• USEGLOBALS (page 423)

You can use PRINTSYM and NOPRINTSYM to list individual symbols or groups of symbols, such
as global, local, or sublocal declarations.

Example 353 PRINTSYM Directive

?NOPRINTSYM  ! Turn off symbol listing
  INT i;
  INT j;
?PRINTSYM    ! Turn on symbol listing
  INT k;

PROFDIR

This directive can be used only with the EpTAL compiler.

PROFDIR specifies where an instrumented process will create the raw data file. For detailed
information about using the PROFDIR directive when performing profile-guided optimization, see
the Code Profiling Utilities Manual.

408 Compiler Directives



Default subvolumeDefault:

Only on the command linePlacement:

Applies to the compilation unitScope:

PROFDIR is ignored if PROFGEN or CODEDOV is not also specifiedDependencies:

References: • PROFGEN (page 409)

• CODECOV (page 385)

PROFGEN

This directive can be used only with the EpTAL compiler.

PROFGEN directs the compiler to generate instrumented object code for use in performing
profile-guided optimization. For more information about profile-guided optimization, see the Code
Profiling Utilities Manual.

No instrumentation in object codeDefault:

Only on the command linePlacement:

Applies to the compilation unitScope:

NoneDependencies:

PROFUSE

This directive can be used only with the EpTAL compiler.

PROFUSE directs the compiler to generate optimized object code based on information in a dynamic
profiling information (DPI) file. For detailed information about the PROFUSE directive and
profile-guided optimization, see the Code Profiling Utilities Manual.

NoneDefault:

Only on the command linePlacement:

Applies to the compilation unitScope:

Cannot be specified with PROFGEN or CODECOVDependencies:

References: • PROFGEN (page 409)

• CODECOV (page 385)

PROFGEN 409



REFALIGNED

REFALIGNED

specifies the default alignment for pointers to nonstructure data items and procedure reference
parameters.

PUSHREFALIGNED

pushes the current setting [REFALIGNED (2) or REFALIGNED (8)] onto the REFALIGNED directive
stack. Does not change the current setting.

POPREFALIGNED

pops the top value from the REFALIGNED directive stack and changes the current setting to
that value.

For an explanation of directive stacks, see Directive Stacks (page 369).

REFALIGNED 8Default:

AnywherePlacement:

Applies to subsequent pointers to nonstructure data items and procedure
reference parameters until overridden by another REFALIGN directive

Scope:

NoneDependencies:

410 Compiler Directives



RESETTOG
RESETTOG turns off either specified toggles or all numeric toggles.

toggle-name

is an identifier with a maximum of 31 characters in length.
The only characters allowed in a toggle-name are alphabetic (“A” through “Z” and “a” through
“z’), numeric (‘0” through “9”), underscore (“_”), and circumflex (“^”); the first character must
be alphabetic.
Names are case-insensitive (For example, abc is the same as Abc.)

toggle-number

is an unsigned decimal constant in the range 1 through 15. Leading zeros are ignored.
target

is as defined in “TARGET” (page 423). In TAL, a warning is returned if a target is specified and
the RESETTOG directive is ignored. In pTAL and EpTAL, RESETTOG can be applied to a target
only if the target specified was not named in the compiled TARGET directive.

PTAL

is a toggle implicitly defined and set by the TAL, pTAL and EpTAL compilers. It is set on if the
compiler in use is any pTAL or EpTAL compiler, otherwise it is set off. See “DEFINETOG”
(page 388).
The TAL compiler emits a warning if PTAL is specified and the RESETTOG directive is ignored.
In pTAL and EpTAL, an error is emitted if you specify PTAL in a RESETTOG directive.

__EXT64

is a toggle implicitly defined and set by the EpTAL compiler starting with SPR T0561H01^AAP.
It is set on if the corresponding “__EXT64” (page 394) directive has been specified otherwise,
it is set off. The __EXT64 directive controls the availability of 64-bit addressing functionality;
see “DEFINETOG” (page 388) and Appendix E, “64-bit Addressing Functionality” (page 531).
In TAL, pTAL and EpTAL prior to T0561H01^AAP, you can RESETTOG the __EXT64 toggle
however, this is not recommended. In T0561H01^AAP EpTAL, RESETTOG can be applied to
the __EXT64 toggle only if the implicit setting of the toggle is already off.

RESETTOG 411



RESETTOG with no arguments turns off all numeric toggles but does not affect named toggles.

NoneDefault:

Placement: • With a parenthesized list, it can appear anywhere

• Without a parenthesized list, it must be the last directive on the directive
line or compilation command line

Applies to the compilation unitScope:

Interacts with:Dependencies:
• DEFINETOG

• ENDIF

• __EXT64

• IF and ENDIF

• SETTOG

• TARGET

References: • DEFINETOG (page 388)

• ENDIF (page 390)

• “__EXT64” (page 394)

• IF and IFNOT (page 398)

• SETTOG (page 415)

• “TARGET” (page 516)

• Toggles (page 370)

ROUND
ROUND rounds FIXED values assigned to FIXED variables that have smaller fpoint values than
the values you are assigning.

ROUND

turns on rounding. If the fpoint of the assignment value is greater than that of the variable,
ROUND first truncates the assignment value so that its fpoint is one greater than that of the
destination variable. The truncated assignment value is then rounded away from zero as follows:

value  = (IF value < 0 THEN value - 5 ELSE value + 5) / 10

In other words, if the truncated assignment value is negative, 5 is subtracted; if positive, 5 is
added. Then, an integer division by 10 is performed, and the result is truncated again, this
time by a factor of 10. Thus, if the absolute value of the least significant digit of the initially
truncated assignment value is 5 or more, a 1 is added to the absolute value of the final least
significant digit.

412 Compiler Directives



NOROUND

turns off rounding. That is, rounding does not occur when a FIXED value is assigned to a FIXED
variable that has a smaller fpoint. If the fpoint of the assignment value is greater than
that of the variable, the assignment value is truncated and some precision is lost.

NOROUNDDefault:

AnywherePlacement:

Scope: • ROUND applies to subsequent code until overridden by NOROUND

• NOROUND applies to subsequent code until overridden by ROUND

NoneDependencies:

Example 354 ROUND Directive

?ROUND  ! Request rounding
! Global declarations
PROC a;
BEGIN
  FIXED(2) f1;
  FIXED(3) f2;
  f1 := f2;
END;

SAVEGLOBALS
NOTE: The EpTAL compiler does not accept this directive. See Migrating from TNS/R to TNS/E
(page 375).

SAVEGLOBALS saves all global data declarations in a file for use in subsequent compilations that
specify the USEGLOBALS directive.

file-name

is the name of a disk file to which the compiler is to write the global data declarations.
If file-name already exists, the compiler purges the existing file and creates an unstructured
global declarations file.
If the existing file is secured so that the compiler cannot purge it, the compilation terminates.
The compiler uses the current default volume and subvolume names as needed and lists the
complete file name in the trailer message at the end of compilation. For this directive, the
compiler does not use HP TACL ASSIGN SSV information (available only on Guardian platforms)
to complete the file name.

define-name

is the name of a MAP DEFINE that refers to the disk file to which you want the compiler to write
the global data declarations.

SAVEGLOBALS 413



NOTE: MAP DEFINEs are available only on Guardian platforms.

NoneDefault:

Either in the compilation command or in the source code before any global
data declarations

Placement:

Applies to the compilation unitScope:

Dependencies: • If SAVEGLOBALS and USEGLOBALS appear in the same compilation unit,
the compiler uses only the one that appears first

• The compilation unit must have exactly one BEGINCOMPILATION directive

• Interacts with the directives referenced in the next row (see Saving and
Using Global Data Declarations (page 372))

References: • BEGINCOMPILATION (page 382)

• PRINTSYM (page 408)

• SYMBOLS (page 421)

• SYNTAX (page 422)

• USEGLOBALS (page 423)

SECTION
SECTION gives a name to a section of a source file for use in a SOURCE directive.

section-name

is an identifier.

NoneDefault:

Placement: • Only in the source file (not in the compilation command)

• Must be the only directive on the directive line

Applies to subsequent code until another SECTION directive or the end of the
file, whichever is first

Scope:

Interacts with SOURCE (see Section Names (page 417))Dependencies:

SOURCE (page 416)References:

414 Compiler Directives



Example 355 SECTION Directive

APPLLIB File
! File ID APPLLIB
?SECTION sort_proc
PROC sort_on_key(key1, key2, key3, length);
  INT .key1, .key2, .key3, length;
BEGIN
  ...
END;
?SECTION next_proc

SOURCE directive that includes section sort_proc of the preceding file:
?SOURCE appllib (sort_proc)

SETTOG
SETTOG turns on either specified toggles or all numeric toggles.

toggle-name

is an identifier with a maximum of 31 characters in length.
The only characters allowed in a toggle-name are alphabetic (“A” through “Z” and “a” through
“z’), numeric (‘0” through “9”), underscore (“_”), and circumflex (“^”); the first character must
be alphabetic.
Names are case-insensitive (For example, abc is the same as Abc.)

toggle-number

is an unsigned decimal constant in the range 1 through 15. Leading zeros are ignored.
target

is as defined in “TARGET” (page 423).
In TAL, a warning is returned if a target is specified and the SETTOG directive is ignored. In
pTAL and EpTAL, SETTOG can only be applied to a target that was specified in a previously
compiled TARGET directive.

SETTOG 415



PTAL

is a toggle implicitly defined and set by the TAL, pTAL and EpTAL compilers. It is set on if the
compiler in use is any pTAL or EpTAL compiler, otherwise it is set off. See “DEFINETOG”
(page 388).
The TAL compiler emits a warning if PTAL is specified and the SETTOG directive is ignored. In
pTAL and EpTAL, an error is emitted if you specify PTAL in a SETTOG directive.

__EXT64

is a toggle implicitly defined and set by the EpTAL compiler starting with SPR T0561H01^AAP.
It is set on if the corresponding “__EXT64” (page 394) directive has been specified otherwise,
it is set off. The __EXT64 directive controls the availability of 64-bit addressing functionality;
see “DEFINETOG” (page 388) and Appendix E, “64-bit Addressing Functionality” (page 531).
In TAL, pTAL and EpTAL prior to SPR T0561H01^AAP, you can SETTOG the __EXT64 toggle
however, this is not recommended. In T0561H01^AAP EpTAL, SETTOG can be applied to the
__EXT64 toggle only if the implicit setting of the toggle is already on.

SETTOG with no arguments turns on all numeric toggles but does not affect named toggles.

NoneDefault:

Placement: • With a parenthesized list, it can appear anywhere

• Without a parenthesized list, it must be the last directive on the directive
line or compilation command line

Applies to the compilation unitScope:

Interacts with:Dependencies:
• DEFINETOG

• ENDIF

• __EXT64

• IF and ENDIF

• RESETTOG

• TARGET

References: • DEFINETOG (page 388)

• ENDIF (page 390)

• “__EXT64” (page 394)

• IF and IFNOT (page 398)

• RESETTOG (page 411)

• “TARGET” (page 516)

• Toggles (page 370)

SOURCE
SOURCE reads source code from another source file.

416 Compiler Directives



file-name

is the name of a disk file from which the compiler is to read source code. On Guardian
platforms, the compiler uses HP TACL ASSIGN SSV information, if specified, to complete the
file name; otherwise, the compiler uses the current default volume and subvolume names as
needed.

define-name

is the name of a MAP DEFINE that refers to a disk file from which the compiler is to read source
code.

NOTE: MAP DEFINEs are available only on Guardian platforms.

assign-name

is a logical file name you have equated to a disk file (from which the compiler is to read source
code) by issuing an ASSIGN command.

section-name

is an identifier specified within the included file by a SECTION directive. If the compiler does
not find section-name in the specified file, it issues a warning.
The list of section names can extend to continuation lines.

NoneDefault:

Placement: • Only in the source file (not in the compilation command)

• Must be the last directive on the directive line

Applies to the source fileScope:

Dependencies: • Interacts with COLUMNS

• Interacts with SECTION (see Section Names (page 417))

• Interacts with the directives referenced in the next row (see Effect of Other
Directives (page 418))

References: • BEGINCOMPILATION (page 382)

• COLUMNS (page 385)

• LIST (page 401)

• SECTION (page 414)

• SUPPRESS (page 420)

• USEGLOBALS (page 423)

Topics:

• Section Names (page 417)

• Nesting Levels (page 418)

• Effect of Other Directives (page 418)

• Including System Procedure Declarations (page 419)

• Examples (page 419)

Section Names
If you specify SOURCE with no section names, the compiler processes the specified source file until
the end of that file. The compiler treats any SECTION directives in the source file as comments.
If you specify SOURCE with section names, the compiler processes the source file until it reads all
the specified sections. A section begins with a SECTION directive and ends with another SECTION
directive or the end of the file, whichever comes first.

SOURCE 417



The compiler reads the sections in order of appearance in the source file, not in the order specified
in the SOURCE directive. If you want the compiler to read sections in a particular order, use a
separate SOURCE directive for each section and place the SOURCE directives in the desired order.

Nesting Levels
You can nest SOURCE directives to a maximum of seven levels, not counting the original outermost
source file. For example, the deepest nesting allowed is as follows:
1. The MAIN file F sources in file F1.
2. File F1 sources in file F2.
3. File F2 sources in file F3.
4. File F3 sources in file F4.
5. File F4 sources in file F5.
6. File F5 sources in file F6.
7. File F6 sources in file F7.

Effect of Other Directives
• COLUMNS (page 418)

• LIST and NOSUPPRESS (page 418)

• NOLIST (page 418)

• USEGLOBALS and BEGINCOMPILATION (pTAL Compiler Only) (page 419)

COLUMNS
If a SOURCE directive specifies sections of a file, the compiler honors all COLUMNS directives in
that file that precede the first section of that file. (The first section of the file might not be the first
section of the file that the SOURCE directive specifies.) The compiler also honors COLUMN directives
that appear in the sections that the SOURCE directive specifies.
After a SOURCE directive completes execution, the value of COLUMNS is restored to what it was
before the SOURCE directive:
File1:
  ?COLUMNS 80
  ...
File2:
  ?COLUMNS 100
  ...
  ?SOURCE file1
  ! COLUMNS is restored to 100 at this point

LIST and NOSUPPRESS
If LIST and NOSUPPRESS are active after a SOURCE directive completes execution, the compiler
prints a line identifying the source file to which it reverts and begins reading at the line following
the SOURCE directive.

NOLIST
You can precede SOURCE with NOLIST to suppress the listings of procedures to be read in. Place
NOLIST and SOURCE on the same line, because the line containing NOLIST is not suppressed:
?PUSHLIST, NOLIST, SOURCE $src.current.routines
! Suppress listings, read in external declarations of routines
?POPLIST

418 Compiler Directives



USEGLOBALS and BEGINCOMPILATION (pTAL Compiler Only)
If USEGLOBALS is active, the compiler ignores all SOURCE directives until it encounters
BEGINCOMPILATION. For more information about how these directives interact, see Saving and
Using Global Data Declarations (page 372).

Including System Procedure Declarations
You can use SOURCE directives to read in external declarations of system procedures from the
EXTDECS files. In these files, the procedure name and the corresponding section name are the
same. EXTDECS0 contains the current RVU of system procedures.
In Example 356 (page 419), a SOURCE directive specifies the current version of system procedures.
A NOLIST directive suppresses the listings for the system procedures. Place NOLIST and SOURCE
on the same line, because the line containing the NOLIST directive is not suppressed.

Example 356 SOURCE Directive Specifying System Procedure Declarations

?PUSHLIST, NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS0 (
?   PROCESS_DEBUG_, PROCESS_STOP_)
! Suppress listings
! Read external declarations of current system procedures
?POPLIST

A procedure in the same source file can then call the procedures listed in the preceding SOURCE
directive, as in Example 357 (page 419).

Example 357 Procedure That Calls Procedures Specified by SOURCE Directive

PROC a MAIN;
BEGIN
  INT x, y, z, error;
  ! Code for manipulating x, y, and z
  IF x = 5 THEN CALL PROCESS_STOP_;
  CALL PROCESS_DEBUG_;                  ! Call procedures listed
END;                                    !  in SOURCE directive

Examples
The SOURCE directive in Example 358 (page 419) instructs the compiler to process the file until an
end of file occurs. (Any SECTION directives in the file ROUTINES are treated as comments.)

Example 358 SOURCE Directive

?SOURCE $src.current.routines

This SOURCE directive in Example 359 (page 419) reads three sections from the source file. It reads
the files in the order in which they appear in the source file, not in the order specified in the
SOURCE directive. (The specified files appear in the source file in the order sec3, sec2, and
sec1, so they are read in that order.)

Example 359 SOURCE Directive

?SOURCE $src.current.routines (sec1, sec2, sec3)

Example 360 (page 420) shows how you can specify the order in which the compiler is to read the
sections, regardless of their order in the source file.

SOURCE 419



Example 360 SOURCE Directive

?SOURCE $src.current.routines (sec1)
?SOURCE $src.current.routines (sec2)
?SOURCE $src.current.routines (sec3)

SRL
NOTE: The EpTAL compiler ignores this directive.

SRL causes the pTAL compiler to generate code that can be linked into a user library. You must
specify SRL to be able to link the object file created by the compilation into a user library.

NoneDefault:

AnywherePlacement:

Applies to the compilation unitScope:

When declaring a data block that belongs to an SRL, you must specify
NOEXPORT_GLOBALS and NOGP_OK.

Dependencies:

References: • EXPORT_GLOBALS (page 393)

• GP_OK (page 397)

SUPPRESS

SUPPRESS

suppresses all compilation listings except the compiler leader text, diagnostic messages, and
the trailer text. (Does not alter the source code.)

NOSUPPRESS

allows all compilation listings.

NOSUPPRESSDefault:

AnywherePlacement:

Applies to the compilation unitScope:

420 Compiler Directives



Overrides all the listing directives (referenced in the next row)Dependencies:

References: • DEFEXPAND (page 386)

• FMAP (page 396)

• GMAP (page 397)

• INNERLIST (page 400)

• LIST (page 401)

• MAP (page 402)

• PAGE (page 407)

• PRINTSYM (page 408)

The compilation command in Example 361 (page 421) starts the compilation and suppresses all
source code listings and maps from printing in the compiler output.

Example 361 SUPPRESS Directive

PTAL /IN mysrc, OUT $s.#lists/ myobj;

SYMBOLS
SYMBOLS saves symbols in a symbol table in the object file, enabling you use a symbolic debugger
to debug the object file.

SYMBOLS

saves all symbols information.
NOSYMBOLS

saves information about:
• Procedure memos

• Global data block names

• Line numbers
Does not save information about parameters, local variables, data types, and so on.

NOSYMBOLSDefault:

Before the first declaration in the compilationPlacement:

The last legally placed SYMBOLS or NOSYMBOLS applies
to the compilation unit

Scope:

Interacts with SAVEGLOBALS and USEGLOBALS (see
Saving Global Data Declarations (page 373))

Dependencies:

References: • SAVEGLOBALS (page 413)

• USEGLOBALS (page 423)

SYMBOLS 421



NOTE: These linker options discard information that SYMBOLS saves:
• -x discards line number information.

• -s discards information needed for future linking (use it only in building an executable file).

Usually you save symbols for the entire compilation by specifying SYMBOLS once at the beginning
of the compilation unit. The symbol table then contains all the symbols generated by the source
code.

Example 362 SYMBOLS Directive

! MYSOURCE file
?SYMBOLS  ! Save symbols for compilation unit
! Declare global data
! Declare procedures

After debugging the program, you can use the linker to create a new, smaller object file without
symbols. The executable portion of the old object file remains intact, but you dramatically reduce
what you can do with a symbolic debugger.
nld -x -r oldobj -o newobj
ld -x -r oldobj -o newobj
eld -x -r oldobj -o newobj

Use the linker option -s when linking a loadfile, or use the strip utility after creating the loadfile.
STRIP oldobj

SYNTAX
SYNTAX checks the syntax of the source text without producing an object file.

The compiler produces an object fileDefault:

AnywherePlacement:

Applies to the compilation unitScope:

Interacts with SAVEGLOBALS and USEGLOBALS (see Saving Global Data
Declarations (page 373))

Dependencies:

References: • SAVEGLOBALS (page 413)

• USEGLOBALS (page 423)

The compilation command in Example 363 (page 422) checks the syntax of global data declarations
in source file myprog and saves the declarations in file ptalsym for use in subsequent compilations.

Example 363 SYNTAX Directive

pTAL /IN myprog/; SAVEGLOBALS ptalsym, SYNTAX

The compilation command in Example 364 (page 423) checks for the syntax of the code or data
in source file myprog. In this compilation, USEGLOBALS retrieves global data declarations saved
in the compilation shown in Example 363 (page 422).

422 Compiler Directives



Example 364 SYNTAX Directive

pTAL /IN myprog/; USEGLOBALS ptalsym, SYNTAX

TARGET
TARGET specifies the architecture on which you will run the object file produced by the current
compilation.

RISC1

specifies the TNS/R architecture. This is the only option that the pTAL compiler accepts. It is
also the default for the pTAL compiler.

_TNS_E_TARGET

specifies the TNS/E architecture. This is the only option that the EpTAL compiler accepts. It is
also the default for the EpTAL compiler.

TNS_ARCH

specifies the TNS architecture. The compiler does not accept this option.
T16

specifies the T16 architecture. The compiler does not accept this option.
TNS_R_ARCH, LIBERTY

specifies the Liberty architecture. The compiler does not accept this option.
ANY

specifies any architecture. The compiler does not accept this option.

TNS_R_ARCHpTAL compiler:Default:

_TNS_E_TARGETEpTAL compiler:

AnywherePlacement:

Applies to the compilation unitScope:

NoneDependencies:

USEGLOBALS
NOTE: The EpTAL compiler does not accept this directive. See Migrating from TNS/R to TNS/E
(page 375).

USEGLOBALS reads global data declarations and initializations that were saved in a file by
SAVEGLOBALS during a previous compilation.

TARGET 423



file-name

is the name of the global declarations disk file created by SAVEGLOBALS in a previous
compilation.
On Guardian platforms, the compiler uses HP TACL ASSIGN SSV information, if specified, to
complete the file name; otherwise, the compiler uses the current default volume and subvolume
names as needed.

define-name

is the name of a MAP DEFINE that refers to the global declarations file.

NOTE: MAP DEFINEs are available only on Guardian platforms.

assign-name

is a logical file name you have equated to a disk file (that refers to the global declarations file)
by issuing an ASSIGN command.

NoneDefault:

Either in the compilation command or in the source code before any global
data declarations

Placement:

Applies to the compilation unitScope:

Dependencies: • The compilation unit must have exactly one BEGINCOMPILATION directive.

• The compiler exports the data blocks declared in the USEGLOBALS
declarations file only if EXPORT_GLOBALS is active when the compiler
encounters the BEGINCOMPILATION directive.

• A module that specifies USEGLOBALS can export a global data block that
was declared in the compilation that specified SAVEGLOBALS only if the
SAVEGLOBALS compilation exported the data block.
Typically, a project that uses SAVEGLOBALS explicitly links globals into
the object file and specifies NOEXPORT_GLOBALS (the default) for all
individual compilations.

• Interacts with the directives referenced in the next row (see Saving and
Using Global Data Declarations (page 372))

References: • BEGINCOMPILATION (page 382)

• EXPORT_GLOBALS (page 393)

• PRINTSYM (page 408)

• SAVEGLOBALS (page 413)

• SYMBOLS (page 421)

• SYNTAX (page 422)

WARN

WARN

prints specific (or all) warning messages in the compiler listing.

424 Compiler Directives



NOWARN

suppresses specific (or all) warning messages in the compiler listing.
warning-number

is the number of a warning message. The default is all warning messages.
If warning-number is outside the range of all pTAL warnings and all TAL warnings, the
compiler issues a warning. If warning-number is inside either range but not assigned
warning text, the compiler ignores the WARN directive. For an explanation of how the compiler
handles TAL warnings, see the pTAL Conversion Guide.

WARNDefault:

AnywherePlacement:

Scope: • WARN applies to subsequent code until overridden by NOWARN

• NOWARN applies to subsequent code until overridden by WARN; however:
To print selected warnings, you must specify WARN before any NOWARN
directives. If you specify NOWARN first, subsequent WARN
warning-number directives have no effect.

NoneDependencies:

You can use NOWARN when a compilation produces a warning and you have determined that
no real problem exists. Before the source line that produces the warning, specify NOWARN and
the number of the warning you want suppressed. Following that source line, specify a WARN
directive.
If NOWARN is active, the compiler records the number of suppressed and unsuppressed warnings.
The compilation statistics at the end of the compiler listing include the following counts:
Number of unsuppressed compiler warnings = count
Number of warnings suppressed by NOWARN = count

Unsuppressed compiler warnings are compiler warnings that are not suppressed by NOWARN
directives. The summary does not report the location of the last compiler warning.
If no compiler errors and no unsuppressed compiler warnings occur, the completion code is zero.
The following directive specifies that the compiler does not print warning message 12:
?NOWARN 12

WARN 425



18 pTAL Cross Compiler
The optional pTAL cross compiler runs on the PC platforms in Table 77 (page 426).

Table 77 pTAL Cross Compiler Platforms

Windows Operating SystemPlatform

XP2000NT 4.0Cross Compiler NameGuardianPC

YesYesYesNonStop pTALTNS/RETK1

YesYesNoNonStop pTALTNS/E2

YesYesYesptalTNS/R3PC command line

YesYesNoeptalTNS/E2

1 HP Enterprise Toolkit—NonStop Edition
2 H06.01 and later RVUs
3 G06.14 and later RVUs

On all Windows platforms, valid pTAL cross compiler source files must have the extension .tal.
The pTAL cross compiler allows you to:

• Write, compile, and link NonStop RISC-based or Itanium-based server applications (NonStop
Guardian executable files, static libraries, user libraries, and DLLs) on the PC and transfer
them to the Guardian platform for use in production.
Object files built on the PC platform are functionally identical object files built in the NonStop
RISC-based or Itanium-based server platform.

• Link pTAL, C/C++, and NMCOBOL or ECOBOL objects into a single object file.

• When multiple RVUs are installed, use any installed RVUs of the cross compilers and libraries.
(Tools must come from the same RVU—HP does not test the interactions of tools used in one
RVU with tools from other RVUs.)

• On the ETK platform, enter ADD, MODIFY, SET, and DELETE statements into a TACL DEFINE
file (see TACL DEFINE Tool (ETK) (page 431)).

The pTAL cross compiler is delivered on a separate CD and is not available on the site update
tape (SUT).
Topics:

• NonStop pTAL (ETK) (page 426)

• pTAL or EpTAL (PC Command Line) (page 427)

• Compilation and Linking (page 429)

• Debugging (page 429)

• Tools and Utilities (page 430)

• Documentation (page 431)

NonStop pTAL (ETK)
The optional pTAL cross compiler for use with the ETK, NonStop pTAL, is available for TNS/R and
TNS/E.
The ETK is a GUI-based extension package to Visual Studio .NET that provides full application
development functions targeted for NonStop servers. Development, editing, and building functions
are very similar on Visual Studio .NET and the ETK.

426 pTAL Cross Compiler



NonStop pTAL components are:

File

TNS/ETNS/RComponent Name

eptal.exeptal.exeDriver executable

(No driver)ptaldvr.dllDriver DLL

eptalcom.exeptalc.dllFront end

eextdec.talextdec.talExternal declaration file

The directory structure of NonStop pTAL is:

Files

TNS/ETNS/RDirectory

eptal.exeeld.exeptal.exe
nld.exe
ld.exe

bin

eptalcom.exeptaldvr.dll
ptalc.dll

cmplr

uopt.dll
ugen.dll
as1.dll
nld.dll
ld.dll

extdec.talextdec.talinclude

For PC and NonStop server hardware and software requirements, see the ETK online help. For
instructions for accessing the online help, see Documentation (page 431).

pTAL or EpTAL (PC Command Line)
Beginning with RVU G06.14, you can call the pTAL cross compiler from the TNS/R command line
(DOS prompt) on your PC by using the command ptal.
Beginning with RVU H06.01, you can call the pTAL cross compiler from the TNS/E command line
(DOS prompt) on your PC by using the command eptal.

NOTE: Before you can use eptal, you must set the COMP_ROOT environment variable so that
it points to the root of the directory location of the cross compiler. For instructions, see Using the
Command-Line Cross Compilers on Windows.

ptal

calls the pTAL cross compiler from the command line. ptal is not case-sensitive.

pTAL or EpTAL (PC Command Line) 427



eptal

calls the EpTAL cross compiler from the command line. eptal is not case-sensitive.
object-file

is the name of the object file to be created. The default is sourcefile.o.
directory

is the name of a directory for the compiler to search. If no directory is specified, the compiler
searches only in the current working directory. If any directories are specified, the compiler
searches them in the order in which they are listed, but does not search the current directory
unless it is explicitly named.

flag

is one of the following:

Directs the compiler to:flag

Display information about how to run the compiler. No compilation system
components are run.

-Whelp

Display information about how to run the compiler. No compilation system
components are run.

-Wusage

Displays the command line used when the driver calls each component
of the compiler.

-Wverbose

ptal-directive

is one of the following:

SourcesDirectives

BLOCKGLOBALS (page 496)-blockglobals

CALL_SHARED (page 496)-[no]call_shared

CHECKSHIFTCOUNT (page 497)-[no]checkshiftcount

CODECOV (page 497)-codecov (eptal only)

COLUMNS (page 498)-columns=n

DEFEXPAND (page 498)-[no]defexpand

DO_TNS_SYNTAX (page 500)-[no]do_tns_syntax

ERRORS (page 500)-errors=n

EXPORT_GLOBALS (page 501)-export_globals

FIELDALIGN (page 502)-fieldalign(value)

FMAP (page 502)-[no]fmap

GLOBALIZED (page 502)-globalized (eptal only)

GMAP (page 503)-[no]gmap

GP_OK (page 503)-[no]gp_ok

INNERLIST (page 505)-[no]innerlist

INVALID_FOR_PTAL (page 505)-invalid_for_ptal

LIST (page 506)-[no]list

MAP (page 506)-[no]map

OPTIMIZE (page 507)-optimize=n

428 pTAL Cross Compiler



SourcesDirectives

OVERFLOW_TRAPS (page 508)-[no]overflow_traps

PRINTSYM (page 509)-[no]printsym

REFALIGNED (page 510)-refaligned(n)

RESETTOG (page 511)-resettog(value)

ROUND (page 512)-[no]round

SETTOG (page 513)-settog(value)

SYMBOLS (page 515)-[no]symbols

SYNTAX (page 516)-[no]syntax

WARN (page 517)-warn=n

The command-line interface allows you to create batch scripts for use on multiple platforms.

Compilation and Linking
The pTAL cross compiler can compile only one pTAL source file at a time.
Difference between platforms:

Command-Line Platform (ptal or eptal)ETK Platform (NonStop pTAL)

Linking must be performed as a separate step after
compilation.

Compilation and linking can be performed in one step.

You must specify the run-time libraries to the linker.Provides a GUI-based interface for you to select linker
options.

pTAL cross compiler linking is performed with one of the cross linkers:

Object CodeDirectiveCross CompilersCross Linker

Non-PIC-nocall_shared*NonStop pTALptalnld

PIC-call_shared**NonStop pTALptalld

PIC-call_sharedNonStop pTALeptaleld

* Default for pTAL. EpTAL ignores it (and issues a warning).

** Default for EpTAL.

NOTE: You cannot link PIC and non-PIC object files into a single object file.

For more information:

SourceTopic

nld Manualnld options

ld Manualld options

eld Manualeld options

Debugging
On the ETK platform, debug pTAL source code using Visual Inspect. After Visual Inspect is installed
on your workstation, you can configure Visual Inspect as an external tool.

Compilation and Linking 429



On the command-line platform, debug loadfiles that were compiled through the pTAL cross compiler
either by using Visual Inspect on Windows or by running Native Inspect on the NonStop RISC-based
or Itanium-based server. To use Native Inspect, you must copy the loadfiles and the source files to
the host (see PC-to-NonStop-Host Transfer Tools (page 431)).
For more information:

SourceTopic

Visual Inspect online helpVisual Inspect

Native Inspect ManualNative Inspect

CAUTION: If you use the CODECOV (page 385) command line option to direct a TNS/E EpTAL
compiler to generate instrumented object code, the Code Coverage Utility connects to the application
program as a debugger to read its memory, and so on.
This causes all the debug requests to wait until the Code Coverage Utility (the active debugger)
detaches from the application. The Code Coverage Utility only detaches after the instrumented
application stops.
Therefore, if you must debug an instrumented application, it should be started in debug mode by
using the TACL RUND or RUNV commands.

Tools and Utilities
The following tools and utilities allow you to use the pTAL cross compiler more efficiently:

• NonStop ar Utility (page 430)

• TACL DEFINE Tool (ETK) (page 431)

• PC-to-NonStop-Host Transfer Tools (page 431)

NonStop ar Utility
The NonStop ar utility creates and maintains archives composed of groups of object files. After
an archive has been created, new files can be added and existing files can be extracted, deleted,
or replaced.
The ar utility accepts all OSS files, Guardian TNS code files, Guardian C text files (file code 180
files), TNS/R (PIC and non-PIC) native object files, and TNS/E native linkfiles or loadfiles as archive
members.
You can mix one or more object file formats in one archive file; however, such an archive file will
not contain the symbols table and cannot be used by the linker.
If an archive contains one or more native object files of the same format, the linker can use the
archive as an object file library, replacing most functions provided by the Binder SELECT SEARCH
command.

For more information, see ...
This cross linker can use the archive
as an object file library ...If an archive contains one or more ...

nld Manualnld on a G-Series systemTNS/R non-PIC object files

ld ManualldTNS/R PIC object files

eld ManualeldTNS/E PIC object files

430 pTAL Cross Compiler



TACL DEFINE Tool (ETK)
On the ETK platform, this GUI-based tool allows you to add ADD, MODIFY, SET, and DELETE
statements to a DEFINE file. The TACL DEFINE tool automatically sets the first entry in the DEFINE
obey file to be SET DEFMODE ON. You can leave this default or change it to SET DEFMODE OFF.
Files created by the TACL DEFINE tool have the extension .tdf.

PC-to-NonStop-Host Transfer Tools

ETK
The Deploy command builds and copies each project in the active solution to the NonStop host.
The Transfer Tool moves any kind of files to the NonStop host for execution and debugging.
The Transfer Tool is better for transferring very large, complex applications to the NonStop host.
For most applications, Deploy is more convenient.

PC Command Line
From the PC command line, you can use any FTP application to transfer executable and source
files to the NonStop host.

Documentation
The ETK has online help that provides conceptual, reference, task-oriented, and error message
information, as well as quick-start tutorials. To access the online help, do either of the following:

• From the Help menu, select Contents, Index, or Search.

• Click the Help button in any ETK dialog box.
The command-line documentation, Using the Command-Line Cross Compilers on Windows, is
available:

• On the pTAL cross compiler CD

• On the EpTAL cross compiler CD

• In the ETK online help in the References chapter
Syntax information for pTAL and EpTAL is also available from the command-line:
ptal -Whelp
eptal -Whelp

Documentation 431



A Syntax Summary
• Data Types (page 432)
• Constants (page 432)
• Expressions (page 434)
• Declarations (page 436)
• Statements (page 455)
• Overflow Traps (page 460)
• Built-in Routines (page 460)
• Compiler Directives (page 494)

Data Types

More information: Specifying Data Types (page 47)

Constants
• Character String (page 432)
• STRING Numeric (page 432)
• INT Numeric (page 433)
• INT(32) Numeric (page 433)
• FIXED Numeric (page 433)
• REAL and REAL(64) Numeric (page 433)
• Constant List (page 434)

Character String

More information: Character String (page 57)

STRING Numeric

More information: STRING Numeric (page 58)

432 Syntax Summary



INT Numeric

More information: INT Numeric (page 58)

INT(32) Numeric

More information: INT(32) Numeric (page 59)

FIXED Numeric

More information: FIXED Numeric (page 61)

REAL and REAL(64) Numeric

More information: REAL and REAL(64) Numeric (page 62)

Constants 433



Constant List

repetition-constant-list

constant-list-seq

More information: Constant Lists (page 63)

Expressions
• Arithmetic (page 434)
• Conditional (page 435)
• Assignment (page 435)
• CASE (page 435)
• IF (page 435)
• Group Comparison (page 435)
• Bit Extraction (page 436)
• Bit Shift (page 436)

Arithmetic

More information: Arithmetic Expressions (page 72)

434 Syntax Summary



Conditional

More information: Conditional Expressions (page 81)

Assignment

More information: Assignment (page 85)

CASE

More information: CASE (page 86)

IF

More information: IF (page 87)

Group Comparison

More information: Group Comparison (page 88)

Expressions 435



Bit Extraction

More information: Bit Extractions (page 93)

Bit Shift

More information: Bit Shifts (page 94)

Declarations
• LITERAL (page 436)
• DEFINE (page 436)
• Simple Variable (page 437)
• Array (page 437)
• Read-Only Array (page 438)
• Structures (page 438)
• Redefinition (page 442)
• Pointer (page 444)
• Equivalenced Variable (page 445)
• Procedure and Subprocedure (page 449)

LITERAL

More information: Declaring Literals (page 97)

DEFINE

436 Syntax Summary



item-list

param-list

More information: Declaring DEFINEs (page 98)

Simple Variable

More information: Declaring Simple Variables (page 103)

Array

range

More information: Declaring Arrays (page 108)

Declarations 437



Read-Only Array

range

More information: Declaring Read-Only Arrays (page 111)

Structures
• Definition Structure (page 438)
• Template Structure (page 439)
• Referral Structure (page 439)
• Simple Variables Declared in Structure (page 440)
• Arrays Declared in Structure (page 440)
• Definition Substructure (page 440)
• Referral Substructure (page 440)
• Filler in Structure (page 441)
• Simple Pointers Declared in Structure (page 441)
• Structure Pointers Declared in Structure (page 441)

Definition Structure

range

438 Syntax Summary



field-alignment

More information: Declaring Definition Structures (page 138)

Template Structure

field-alignment

More information: Declaring Template Structures (page 139)

Referral Structure

range

More information: Declaring Referral Structures (page 141)

Declarations 439



Simple Variables Declared in Structure

More information: Declaring Simple Variables in Structures (page 142)

Arrays Declared in Structure

range

More information: Declaring Arrays in Structures (page 143)

Definition Substructure

field-alignment

range

More information: Definition Substructures (page 144)

Referral Substructure

440 Syntax Summary



range

More information: Referral Substructures (page 146)

Filler in Structure

More information: Declaring Filler (page 147)

Simple Pointers Declared in Structure

More information: Declaring Simple Pointers in Structures (page 148)

Structure Pointers Declared in Structure

Declarations 441



More information: Declaring Structure Pointers in Structures (page 151)

Redefinition
• Simple Variable (page 442)
• Array (page 442)
• Definition Substructure (page 442)
• Referral Substructure (page 443)
• Simple Pointer (page 443)
• Structure Pointer (page 444)

Simple Variable

More information: Simple Variable (page 153)

Array

range

More information: Array (page 154)

Definition Substructure

range

442 Syntax Summary



field-alignment

More information: Definition Substructure (page 155)

Referral Substructure

range

More information: Referral Substructure (page 157)

Simple Pointer

More information: Simple Pointer (page 158)

Declarations 443



Structure Pointer

More information: Structure Pointer (page 159)

Pointer
• Simple (page 444)
• Structure (page 445)
• System Global (page 445)

Simple

More information: Declaring Simple Pointers (page 170)

444 Syntax Summary



Structure

More information: Declaring Structure Pointers (page 173)

System Global

More information: Declaring System Global Pointers (page 176)

Equivalenced Variable
• Nonstructure (page 446)
• Simple Variable (page 446)
• Simple Pointer (page 447)
• Definition Structure (page 447)
• 'SG'-Equivalenced Simple Variable (page 448)
• 'SG'-Equivalenced Definition Structure (page 448)
• 'SG'-Equivalenced Referral Structure (page 448)
• 'SG'-Equivalenced Simple Pointer (page 449)
• 'SG'-Equivalenced Structure Pointer (page 449)

Declarations 445



Nonstructure

More information: Declaring Nonstructure Equivalenced Variables (page 180)

Simple Variable

More information: Equivalenced Simple Variables (page 182)

446 Syntax Summary



Simple Pointer

More information: Equivalenced Simple Pointers (page 183)

Definition Structure

field-alignment

More information: Declaring Equivalenced Definition Structures (page 188)

Declarations 447



'SG'-Equivalenced Simple Variable

More information: Equivalenced Simple Variables (page 182)

'SG'-Equivalenced Definition Structure

More information: Equivalenced Definition Structure (page 194)

'SG'-Equivalenced Referral Structure

More information: Equivalenced Referral Structure (page 195)

448 Syntax Summary



'SG'-Equivalenced Simple Pointer

More information: Equivalenced Simple Pointer (page 196)

'SG'-Equivalenced Structure Pointer

More information: Equivalenced Structure Pointer (page 197)

Procedure and Subprocedure
• Procedure (page 450)
• Subprocedure (page 452)
• Formal Parameters (page 453)
• Entry Point (page 454)
• Label (page 454)
• Procedure Pointer (page 454)

Declarations 449



Procedure

type
See Data Types (page 432).

public-name-spec

parameter-list

param-pair

450 Syntax Summary



proc-attribute

NOTE:
• The EpTAL compiler ignores INTERRUPT.
• Because no FORTRAN or Pascal compilers exist especially for TNS/R or TNS/E architecture,

LANGUAGE FORTRAN and LANGUAGE PASCAL have no meaning on TNS/R or TNS/E
architecture.

More information: Procedure Attributes (page 248)
param-spec

See Formal Parameters (page 453).
proc-body

More information: Procedure Declarations (page 246)

Declarations 451



Subprocedure

type
See Data Types (page 432).

parameter-list

param-pair

param-spec
See Formal Parameters (page 453).

subproc-body

More information: Subprocedure Body (page 259)
More information: Subprocedure Declarations (page 257)

452 Syntax Summary



Formal Parameters

param-type

NOTE: The EpTAL compiler does not allow you to assign label or subprocedure addresses
to CBADDR and CWADDR address types.

Declarations 453



type

More information: Formal Parameter Specification (page 251)

Entry Point

More information: Entry-Point Declarations (page 260)

Label

More information: Labels in Procedures (page 273)

Procedure Pointer

formal-param-names

param-pair

454 Syntax Summary



attributes

NOTE:
• The EpTAL compiler ignores INTERRUPT.
• Because no FORTRAN or Pascal compilers exist especially for TNS/R or TNS/E architecture,

LANGUAGE FORTRAN and LANGUAGE PASCAL have no meaning on TNS/R or TNS/E
architecture.

formal-param-spec

More information: Procedure Pointers (page 263)

Statements
• Compound (page 456)
• ASSERT (page 456)
• Assignment (page 456)
• Bit Deposit Assignment (page 456)
• CALL (page 457)

Statements 455



• Labeled CASE (page 457)
• Unlabeled CASE (page 457)
• DO-UNTIL (page 458)
• DROP (page 458)
• FOR (page 458)
• GOTO (page 458)
• IF (page 458)
• Move (page 459)
• RETURN (page 459)
• SCAN and RSCAN (page 459)
• USE (page 459)
• WHILE (page 460)

Compound

More information: Compound Statements (page 200)

ASSERT

More information: ASSERT (page 200)

Assignment
The assignment statement assigns a value to a previously declared variable.

More information: Assignment (page 201)

Bit Deposit Assignment

More information: Bit-Deposit Assignment (page 204)

456 Syntax Summary



CALL

param-pair

More information: CALL (page 205)

Labeled CASE

case-alternative

More information: Labeled CASE (page 207)

Unlabeled CASE

Statements 457



More information: Unlabeled CASE (page 209)

DO-UNTIL

More information: DO-UNTIL (page 210)

DROP

More information: DROP (page 212)

FOR

More information: FOR (page 212)

GOTO

NOTE: Nonlocal GOTO statements are are inefficient and not recommended.

More information: GOTO (page 215)

IF

More information: IF (page 217)

458 Syntax Summary



Move

More information: Move (page 218)

RETURN

NOTE: The EpTAL compiler issues a warning whenever a pTAL procedure returns both a
result-expression and a cc-expression and has the procedure attribute RETURNSCC
on page 14-8. The reason for this warning is in Appendix D, RETURN, RETURNSCC, and C/C++
on TNS/E.

More information: RETURN (page 223)

SCAN and RSCAN

More information: SCAN and RSCAN (page 228)

USE

More information: USE (page 232)

Statements 459



WHILE

More information: WHILE (page 232)

Overflow Traps

OVERFLOW_TRAPS Directive
See OVERFLOW_TRAPS (page 508).

[EN|DIS]ABLE_OVERFLOW_TRAPS Block Attribute

More information: [EN|DIS]ABLE_OVERFLOW_TRAPS Block Attribute (page 235)

Built-in Routines
• Atomic (page 460)
• Nonatomic (page 462)

Atomic
• $ATOMIC_ADD (page 460)
• $ATOMIC_AND (page 461)
• $ATOMIC_DEP (page 461)
• $ATOMIC_GET (page 461)
• $ATOMIC_OR (page 461)
• $ATOMIC_PUT (page 462)

$ATOMIC_ADD

Yes (according the final value of var )Sets condition code

Yes, if traps are disabledSets $CARRY

Yes, if traps are disabled; otherwise, traps on overflowSets $OVERFLOW

More information: $ATOMIC_ADD (page 276)

460 Syntax Summary



$ATOMIC_AND

Yes (according the final value of var )Sets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $ATOMIC_AND (page 277)

$ATOMIC_DEP

Yes (according the final value of var )Sets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $ATOMIC_DEP (page 278)

$ATOMIC_GET

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $ATOMIC_GET (page 279)

$ATOMIC_OR

Yes (according the final value of var )Sets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $ATOMIC_OR (page 280)

Built-in Routines 461



$ATOMIC_PUT

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $ATOMIC_PUT (page 280)

Nonatomic
• $ABS (page 464)
• $ALPHA (page 464)
• $ASCIITOFIXED (page 465)
• $AXADR (page 465)
• $BADDR_TO_EXTADDR (page 465)
• $BADDR_TO_WADDR (page 466)
• $BITLENGTH (page 466)
• $BITOFFSET (page 466)
• $CARRY (page 467)
• $CHECKSUM (page 467)
• $COMP (page 467)
• $COUNTDUPS (page 468)
• $DBL (page 468)
• $DBLL (page 468)
• $DBLR (page 469)
• $DFIX (page 469)
• $EFLT (page 469)
• $EFLTR (page 470)
• $EXCHANGE (page 470)
• $EXECUTEIO (page 470)
• $EXTADDR_TO_BADDR (page 471)
• $EXTADDR_TO_WADDR (page 471)
• $EXT64ADDR_TO_EXTADDR (page 471)
• $EXT64ADDR_TO_EXT32ADDR (page 471)
• $EXT64ADDR_TO_EXT32ADDR_OV (page 472)
• $EXTADDR_TO_EXT64ADDR (page 472)
• $FILL8, $FILL16, and $FILL32 (page 473)
• $FIX (page 473)
• $FIXD (page 473)
• $FIXED0_TO_EXT64ADDR (page 474)

462 Syntax Summary



• $FIXEDTOASCII (page 474)
• $FIXEDTOASCIIRESIDUE (page 474)
• $FIXI (page 475)
• $FIXL (page 475)
• $FIXR (page 475)
• $FLT (page 475)
• $FLTR (page 476)
• $FREEZE (page 476)
• $HALT (page 476)
• $HIGH (page 477)
• $IFIX (page 477)
• $INT (page 477)
• $INT_OV (page 478)
• $INTERROGATEHIO (page 478)
• $INTERROGATEIO (page 478)
• $INTR (page 479)
• $IS_32BIT_ADDR (page 479)
• $LEN (page 480)
• $LFIX (page 480)
• $LMAX (page 480)
• $LMIN (page 480)
• $LOCATESPTHDR (page 481)
• $LOCKPAGE (page 481)
• $MAX (page 481)
• $MIN (page 482)
• $MOVEANDCXSUMBYTES (page 482)
• $MOVENONDUP (page 482)
• $NUMERIC (page 483)
• $OCCURS (page 483)
• $OFFSET (page 483)
• $OPTIONAL (page 484)
• $OVERFLOW (page 484)
• $PARAM (page 484)
• $POINT (page 485)
• $PROCADDR (page 485)
• $PROC32ADDR (page 485)
• $PROC64ADDR (page 486)
• $READBASELIMIT (page 486)
• $READCLOCK (page 486)
• $READSPT (page 486)
• $READTIME (page 487)

Built-in Routines 463



• $SCALE (page 487)
• $SGBADDR_TO_EXTADDR (page 487)
• pTAL Privileged Routines (page 281)
• $SGWADDR_TO_EXTADDR (page 488)
• $SGWADDR_TO_SGBADDR (page 488)
• $SPECIAL (page 489)
• $STACK_ALLOCATE (page 489)
• $TRIGGER (page 489)
• $TYPE (page 490)
• $UDBL (page 490)
• $UDIVREM16 (page 490)
• $UDIVREM32 (page 491)
• $UNLOCKPAGE (page 491)
• $WADDR_TO_BADDR (page 492)
• $WADDR_TO_EXTADDR (page 492)
• $WRITEPTE (page 492)
• $XADR (page 493)
• $XADR32 (page 493)
• $XADR64 (page 493)

$ABS

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $ABS (page 291)

$ALPHA

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

464 Syntax Summary



More information: $ALPHA (page 291)

$ASCIITOFIXED

NopTAL privileged procedure

NoCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

YesSets $OVERFLOW

More information: $ASCIITOFIXED (page 292)

$AXADR

NOTE: The EpTAL compiler does not support this routine. (The EpTAL compiler does allow $AXADR
as a DEFINE name.)

YespTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $AXADR (page 293)

$BADDR_TO_EXTADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $BADDR_TO_EXTADDR (page 294)

Built-in Routines 465



$BADDR_TO_WADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $BADDR_TO_WADDR (page 294)

$BITLENGTH

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $BITLENGTH (page 295)

$BITOFFSET

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $BITOFFSET (page 296)

466 Syntax Summary



$CARRY

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $CARRY (page 297)

$CHECKSUM

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $CHECKSUM (page 297)

$COMP

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $COMP (page 298)

Built-in Routines 467



$COUNTDUPS

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $COUNTDUPS (page 299)

$DBL

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $DBL (page 300)

$DBLL

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $DBLL (page 301)

468 Syntax Summary



$DBLR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $DBLR (page 301)

$DFIX

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $DFIX (page 302)

$EFLT

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $EFLT (page 302)

Built-in Routines 469



$EFLTR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $EFLTR (page 303)

$EXCHANGE

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $EXCHANGE (page 303)

$EXECUTEIO

NOTE: The EpTAL compiler does not support this routine.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $EXECUTEIO (page 304)

470 Syntax Summary



$EXTADDR_TO_BADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $EXTADDR_TO_BADDR (page 305)

$EXTADDR_TO_WADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $EXTADDR_TO_WADDR (page 306)

$EXT64ADDR_TO_EXTADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $EXT64ADDR_TO_EXTADDR (page 306)

$EXT64ADDR_TO_EXT32ADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

Built-in Routines 471



NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $EXT64ADDR_TO_EXT32ADDR (page 307)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$EXT64ADDR_TO_EXT32ADDR_OV

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $EXT64ADDR_TO_EXT32ADDR_OV (page 307)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$EXTADDR_TO_EXT64ADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $EXTADDR_TO_EXT64ADDR (page 308)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

472 Syntax Summary



$FILL8, $FILL16, and $FILL32

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $FILL8, $FILL16, and $FILL32 (page 308)

$FIX

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $FIX (page 309)

$FIXD

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $FIXD (page 309)

Built-in Routines 473



$FIXED0_TO_EXT64ADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $FIXED0_TO_EXT64ADDR (page 310)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$FIXEDTOASCII

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

More information: $FIXEDTOASCII (page 310)

$FIXEDTOASCIIRESIDUE

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

More information: $FIXEDTOASCIIRESIDUE (page 311)

474 Syntax Summary



$FIXI

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $FIXI (page 312)

$FIXL

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $FIXL (page 312)

$FIXR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $FIXR (page 313)

$FLT

NopTAL privileged procedure

NoCan be executed only by privileged procedures

Built-in Routines 475



NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $FLT (page 314)

$FLTR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $FLTR (page 314)

$FREEZE

NOTE:
• The EpTAL compiler does not support this procedure. Use $TRIGGER (page 345) instead. (The

EpTAL compiler does allow $FREEZE as a DEFINE name.)
• Execution does not return from this call.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $FREEZE (page 315)

$HALT

NOTE:
• The EpTAL compiler does not support this procedure. Use $TRIGGER (page 345) instead. (The

EpTAL compiler does allow $HALT as a DEFINE name.)
• Execution does not return from this call.

476 Syntax Summary



YespTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $HALT (page 315)

$HIGH

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $HALT (page 315)

$IFIX

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $IFIX (page 316)

$INT

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

Built-in Routines 477



NoSets $CARRY

NoSets $OVERFLOW

More information: $INT (page 317)

$INT_OV

NOTE: $INT_OV is supported in the D40 and later RVUs.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

YesSets $OVERFLOW

More information: $INT_OV (page 318)

$INTERROGATEHIO

NOTE: The EpTAL compiler does not support this routine.

NopTAL privileged procedure

YesCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $INTERROGATEHIO (page 318)

$INTERROGATEIO

NOTE: The EpTAL compiler does not support this routine.

478 Syntax Summary



YespTAL privileged procedure

YesCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $INTERROGATEIO (page 320)

$INTR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $INTR (page 321)

$IS_32BIT_ADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $IS_32BIT_ADDR (page 321)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Built-in Routines 479



$LEN

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $LEN (page 322)

$LFIX

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $LFIX (page 323)

$LMAX

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $LMAX (page 323)

$LMIN

NopTAL privileged procedure

NoCan be executed only by privileged procedures

480 Syntax Summary



NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $LMIN (page 324)

$LOCATESPTHDR

NOTE: The EpTAL compiler does not support this routine.

NopTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

YesSets $CARRY

NoSets $OVERFLOW

More information: $LOCATESPTHDR (page 324)

$LOCKPAGE

NOTE: The EpTAL compiler does not support this routine.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

YesSets condition code

YesSets $CARRY

NoSets $OVERFLOW

More information: $LOCKPAGE (page 325)

$MAX

NopTAL privileged procedure

NoCan be executed only by privileged procedures

Built-in Routines 481



NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $MAX (page 326)

$MIN

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $LMIN (page 324)

$MOVEANDCXSUMBYTES

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $MOVEANDCXSUMBYTES (page 327)

$MOVENONDUP

NopTAL privileged procedure

NoCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

NoSets $OVERFLOW

482 Syntax Summary



More information: $MOVENONDUP (page 328)

$NUMERIC

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $NUMERIC (page 329)

$OCCURS

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $OCCURS (page 330)

$OFFSET

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $OFFSET (page 332)

Built-in Routines 483



$OPTIONAL

param-pair

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $OPTIONAL (page 333)

$OVERFLOW

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $OVERFLOW (page 335)

$PARAM

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $PARAM (page 336)

484 Syntax Summary



$POINT

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $POINT (page 336)

$PROCADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $PROCADDR (page 337)

$PROC32ADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $PROC32ADDR (page 337)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Built-in Routines 485



$PROC64ADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $PROC64ADDR (page 338)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$READBASELIMIT

NOTE: The EpTAL compiler does not support this procedure.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $READBASELIMIT (page 338)

$READCLOCK

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $READCLOCK (page 339)

$READSPT

NOTE: The EpTAL compiler does not support this routine.

486 Syntax Summary



NopTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

YesSets $CARRY

NoSets $OVERFLOW

More information: $READSPT (page 339)

$READTIME

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $READTIME (page 340)

$SCALE

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $SCALE (page 340)

$SGBADDR_TO_EXTADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

Built-in Routines 487



NoSets $CARRY

NoSets $OVERFLOW

More information: $SGBADDR_TO_EXTADDR (page 341)

$SGBADDR_TO_SGWADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $SGBADDR_TO_SGWADDR (page 342)

$SGWADDR_TO_EXTADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $SGWADDR_TO_EXTADDR (page 342)

$SGWADDR_TO_SGBADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $SGWADDR_TO_SGBADDR (page 343)

488 Syntax Summary



$SPECIAL

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $SPECIAL (page 343)

$STACK_ALLOCATE

NOTE: The pTAL and EpTAL compilers behave differently.

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $STACK_ALLOCATE (page 344)

$TRIGGER

NOTE:
• The TAL and pTAL compilers does not support this routine.
• Execution does not return from this call.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $TRIGGER (page 345)

Built-in Routines 489



$TYPE

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $TYPE (page 345)

$UDBL

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $UDBL (page 346)

$UDIVREM16

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

Yes, if the divisor is 0 or the quotient is too largeSets $OVERFLOW

More information: $UDIVREM16 (page 347)

490 Syntax Summary



$UDIVREM32

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

Yes, if and only if the divisor is 0Sets $OVERFLOW

More information: $UDIVREM32 (page 348)

$UFIX

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $UFIX (page 349)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$UNLOCKPAGE

NOTE: The EpTAL compiler does not support this routine.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

YesSets condition code

NoSets $CARRY

NoSets $OVERFLOW

Built-in Routines 491



More information: $UNLOCKPAGE (page 349)

$WADDR_TO_BADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $WADDR_TO_BADDR (page 350)

$WADDR_TO_EXTADDR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $WADDR_TO_EXTADDR (page 350)

$WRITEPTE

NOTE: The EpTAL compiler does not support this routine.

YespTAL privileged procedure

YesCan be executed only by privileged procedures

NoSets condition code

YesSets $CARRY

NoSets $OVERFLOW

More information: $WRITEPTE (page 351)

492 Syntax Summary



$XADR

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $XADR (page 352)

$XADR32

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $XADR32 (page 352)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

$XADR64

NopTAL privileged procedure

NoCan be executed only by privileged procedures

NoSets condition code

NoSets $CARRY

NoSets $OVERFLOW

More information: $XADR64 (page 353)

NOTE: 64-bit addressing functionality added to the EpTAL compiler starting with SPR
T0561H01^AAP. For more information, see Appendix E, “64-bit Addressing Functionality”
(page 531).

Built-in Routines 493



Compiler Directives
• Directive Line (page 495)
• ASSERTION (page 495)
• BASENAME (page 495)
• BEGINCOMPILATION (page 496)
• BLOCKGLOBALS (page 496)
• CALL_SHARED (page 496)
• CHECKSHIFTCOUNT (page 497)
• CODECOV (page 497)
• COLUMNS (page 498)
• DEFEXPAND (page 498)
• DEFINETOG (page 499)
• DO_TNS_SYNTAX (page 500)
• ENDIF (page 500)
• ERRORFILE (page 500)
• ERRORS (page 500)
• EXPORT_GLOBALS (page 501)
• __EXT64 (page 501)
• FIELDALIGN (page 502)
• FMAP (page 502)
• GLOBALIZED (page 502)
• GMAP (page 503)
• GP_OK (page 503)
• IF, IFNOT, and ENDIF (page 504)
• INNERLIST (page 505)
• INVALID_FOR_PTAL (page 505)
• LINES (page 506)
• LIST (page 506)
• MAP (page 506)
• OPTIMIZE (page 507)
• OPTIMIZEFILE (page 507)
• OVERFLOW_TRAPS (page 508)
• PAGE (page 508)
• PRINTSYM (page 509)
• PROFDIR (page 509)
• PROFGEN (page 509)
• PROFGEN (page 509)
• REFALIGNED (page 510)
• RESETTOG (page 511)
• ROUND (page 512)
• SAVEGLOBALS (page 512)

494 Syntax Summary



• SECTION (page 513)
• SETTOG (page 513)
• SOURCE (page 514)
• SRL (page 514)
• SUPPRESS (page 515)
• SYMBOLS (page 515)
• SYNTAX (page 516)
• TARGET (page 516)
• USEGLOBALS (page 516)
• WARN (page 517)

Directive Line

More information: Directive Line (page 367)

ASSERTION

NoneDefault:

Placement: • Anywhere in the source file (not in the compilation command)

• Must be the last directive on the directive line

Applies until another ASSERTION overrides itScope:

Has no effect without the ASSERT statementDependencies:

ASSERT (page 456)References:

More information: ASSERTION (page 381)

BASENAME

NOTE: This directive can be used only with the EpTAL compiler.

The raw data file contains the full path name of the source fileDefault:

Only on the command linePlacement:

Applies to the compilation unitScope:

Compiler Directives 495



Use the BASENAME option only with the PROFGEN optionDependencies:

PROFGENReferences:

More information: BASENAME (page 381)

BEGINCOMPILATION

NOTE:
• This directive can appear only in the source file, not in the compilation command.
• The EpTAL compiler ignores this directive.

NoneDefault:

Placement: • In the source file between the last global data declaration and the first
procedure declaration, including any EXTERNAL and FORWARD declarations

• Can appear only once in a compilation unit

Applies to all source code that follows it in the compilation unitScope:

Dependencies: • Has no effect without the USEGLOBALS directive

• If you specify either SAVEGLOBALS or USEGLOBALS, your compilation unit
must have exactly one BEGINCOMPILATION directive

• Interacts with SAVEGLOBALS and USEGLOBALS

References: • SAVEGLOBALS (page 512)

• USEGLOBALS (page 516)

More information: BEGINCOMPILATION (page 382)

BLOCKGLOBALS

The compiler allocates data items in the _GLOBAL and $_GLOBAL data blocksDefault:

Before the first data declaration in a compilationPlacement:

Applies to the compilation unitScope:

NoneDependencies:

More information: BLOCKGLOBALS (page 382)

CALL_SHARED

NOTE:
• This directive is useful only for the pTAL compiler. The EpTAL compiler ignores it (and issues

a warning).
• You cannot link PIC and non-PIC object files into a single object file.

496 Syntax Summary



NOCALL_SHAREDpTAL compiler:Default:

CALL_SHAREDEpTAL compiler:

AnywherePlacement:

Applies to the compilation unitScope:

Dependencies: • If both CALL_SHARED and
NOCALL_SHARED appear in the
same compilation unit, the compiler
uses the one that appears last

• Do not use CALL_SHARED with
GP_OK

GP_OK (page 503)References:

More information: CALL_SHARED (page 383)

CHECKSHIFTCOUNT

NOCHECKSHIFTCOUNTDefault:

AnywherePlacement:

Scope: • CHECKSHIFTCOUNT applies to the shift operators that follow it until it is
overridden by NOCHECKSHIFTCOUNT

• NOCHECKSHIFTCOUNT applies to the shift operators that follow it until it
is overridden by CHECKSHIFTCOUNT

NoneDependencies:

CAUTION: If NOCHECKSHIFT is active and a bit-shift operation occurs in which the number of
positions in a bit-shift operation is too large, subsequent program behavior is undefined.

More information: CHECKSHIFTCOUNT (page 384)

CODECOV

NOTE: This directive is valid only in the EpTAL command line.

No code coverage instrumentation in object codeDefault:

Only on the command linePlacement:

Compiler Directives 497



Applies to the compilation unitScope:

NoneDependencies:

More information:
• See Using the Code Profiling Utilities (page 366).
• See the Code Profiling Utilities Manual.

COLUMNS

COLUMNS 132Default:

Placement: • Anywhere, but if COLUMNS appears in the source code, COLUMNS must
be the only directive on the directive line

• Typically specified before any SECTION directive

Applies to all source code that follows it unless overridden by:Scope:
• Another COLUMNS directive in the same source file (not recommended)

• A COLUMNS directive in a source file included by means of a SOURCE
directive

• A COLUMNS directive in a section identified by a SECTION directive
For details, see the explanation that follows this table.

NoneDependencies:

References: • SECTION (page 513)

• SOURCE (page 514)

More information: COLUMNS (page 385)

DEFEXPAND

NODEFEXPANDDefault:

AnywherePlacement:

Scope: • DEFEXPAND applies to subsequent code it until it is overridden by
NODEFEXPAND

• NODEFEXPAND applies to subsequent code until it is overridden by
DEFEXPAND

DEFEXPAND has no effect if NOLIST or SUPPRESS is activeDependencies:

References: • LIST (page 506)

• SUPPRESS (page 515)

498 Syntax Summary



More information: DEFEXPAND (page 386)

DEFINETOG

NoneDefault:

Placement: • With a parenthesized list, it can appear anywhere

• Without a parenthesized list, it must be the last directive on the directive
line or compilation command line

Applies to the compilation unitScope:

Interacts with:Dependencies:
• SETTOG

• RESETTOG

• IF and IFNOT

• ENDIF

• TARGET

• __EXT64

References: • SETTOG (page 415)

• RESETTOG (page 411)

• IF and IFNOT (page 398)

• ENDIF (page 390)

• “TARGET” (page 423)

• “__EXT64” (page 394)

• Toggles (page 370)

More information: DEFINETOG (page 388)

Compiler Directives 499



DO_TNS_SYNTAX

NODO_TNS_SYNTAXDefault:

Placement: • Can appear only once in a compilation

• Must precede any TARGET directive and any nondirective lines

Applies to the compilation unitScope:

NoneDependencies:

TARGET (page 516)References:

More information: DO_TNS_SYNTAX (page 389)

ENDIF
See IF, IFNOT, and ENDIF (page 504).

ERRORFILE

NoneDefault:

Placement: • In the compilation command or in the source code before any declarations

• Can appear only once in a compilation unit

Applies to the compilation unitScope:

NoneDependencies:

More information: ERRORFILE (page 391)

ERRORS

Unlimited number of errorsDefault:

AnywherePlacement:

Applies to the compilation unitScope:

NoneDependencies:

500 Syntax Summary



More information: ERRORS (page 393)

EXPORT_GLOBALS

EXPORT_GLOBALSDefault:

Placement: • Can appear any number of times in a compilation unit

• Must appear before the first procedure is compiled

• Cannot appear within BLOCK declarations

Applies to the compilation unit, except that NOEXPORT_GLOBALS does not
affect a compilation’s private data block, which is always exported

Scope:

Dependencies: • You must specify NOEXPORT_GLOBALS when declaring a data block that
belongs to an SRL

• In a compilation that includes USEGLOBALS, the compiler exports the data
blocks declared in the USEGLOBALS declarations file only if
EXPORT_GLOBALS is active when the compiler encounters the
BEGINCOMPILATION directive.

References: • BEGINCOMPILATION (page 496)

• SRL (page 514)

• USEGLOBALS (page 516)

More information: EXPORT_GLOBALS (page 393)

__EXT64

offDefault:

Must appear either on the compiler command line or in the compiled source
code before the first source code token is scanned by the compiler.

Placement:

Affects the entire compilationScope:

NoneDependencies:

References: • “DEFINETOG” (page 388)

• “ENDIF” (page 390)

• “IF and IFNOT” (page 398)

• “RESETTOG” (page 511)

• “SETTOG” (page 415)

• Toggles (page 370)

More information: __EXT64 (page 394)

Compiler Directives 501



NOTE: This directive is available in the 64-bit addressing functionality added to the EpTAL
compiler starting with SPR T0561H01^AAP. For more information, see Appendix E, “64-bit
Addressing Functionality” (page 531).

FIELDALIGN

FIELDALIGN AUTODefault:

Placement: • Can appear only once in a compilation unit

• Must precede all declarations of data, blocks, and procedures

Applies to the compilation unitScope:

NoneDependencies:

More information: FIELDALIGN (page 395)

FMAP

NOFMAPDefault:

Anywhere, any number of times. The last FMAP or NOFMAP in the compilation
unit determines whether the compiler lists the file map.

Placement:

Applies to the compilation unitScope:

FMAP has no effect if either NOLIST or SUPPRESS is activeDependencies:

References: • LIST (page 506)

• SUPPRESS (page 515)

More information: FMAP (page 396)

GLOBALIZED

NOTE: This directive is valid only in the eptal command line.

Generate non-preemptable object codeDefault:

On the command linePlacement:

502 Syntax Summary



Applies to the compilation unitScope:

NoneDependencies:

GMAP

GMAPDefault:

Anywhere, any number of times. The last GMAP or NOGMAP in the compilation
unit determines whether the compiler lists the global map.

Placement:

Applies to the compilation unitScope:

Dependencies: • GMAP has no effect if NOLIST, NOMAP, or SUPPRESS is active

• NOGMAP suppresses the global map even if MAP is active

References: • LIST (page 506)

• MAP (page 506)

• SUPPRESS (page 515)

More information: GMAP (page 397)

GP_OK

NOTE: The EpTAL compiler ignores this directive.

GP_OKpTAL compiler:Default:

NOGP_OKEpTAL compiler:

Anywhere except inside a data block
or inside a procedure declaration

Placement:

Scope: • GP_OK applies to subsequent code
it until it is overridden by
NOGP_OK

• NOGP_OK applies to subsequent
code until it is overridden by
GP_OK

Do not use GP_OK with
CALL_SHARED

Dependencies:

CALL_SHARED (page 496)References:

More information: GP_OK (page 397)

Compiler Directives 503



IF, IFNOT, and ENDIF

target

Implicitly ResetsImplicitly SetsCompiler

_TNS_E_TARGETpTAL • RISC1

• TARGETSPECIFIED

RISC1EpTAL • _TNS_E_TARGET

• TARGETSPECIFIED

pTAL

IFNOT pTALIF pTALCompiler

FalseTruepTAL or EpTAL

TrueFalseTAL

NoneDefault:

Placement: • Anywhere in the source file (not in the compilation command)

• IF or IFNOT must be the last directive on its directive line

• ENDIF must be the only directive on its directive line

Everything between IF or IFNOT and the next ENDIF that specifies the same
toggle, target, or keyword

Scope:

504 Syntax Summary



Interact with:Dependencies:
• DEFINETOG

• SETTOG

• RESETTOG

• TARGET

References: • DEFINETOG (page 499)

• RESETTOG (page 511)

• SETTOG (page 513)

• TARGET (page 516)

• Toggles (page 370)

More information:
• IF and IFNOT (page 398)
• ENDIF (page 390)

INNERLIST

NOINNERLISTDefault:

AnywherePlacement:

Scope: • INNERLIST applies to subsequent statements it until it is overridden by
NOINNERLIST

• NOINNERLIST applies to subsequent statements until it is overridden by
INNERLIST

INNERLIST has no effect if NOLIST or SUPPRESS is activeDependencies:

References: • LIST (page 506)

• SUPPRESS (page 515)

More information: INNERLIST (page 400)

INVALID_FOR_PTAL

NoneDefault:

After IF or IFNOT and before ENDIFPlacement:

Applies to code between itself and ENDIFScope:

NoneDependencies:

IF, IFNOT, and ENDIF (page 504)References:

Compiler Directives 505



More information: INVALID_FOR_PTAL (page 401)

LINES

LINES 60Default:

AnywherePlacement:

Applies until overridden by another LINES directiveScope:

Has no effect if the list file is a terminalDependencies:

More information: LINES (page 401)

LIST

LISTDefault:

AnywherePlacement:

Scope: • LIST applies to subsequent code it until it is overridden by NOLIST

• NOLIST applies to subsequent code until it is overridden by LIST

LIST has no effect if SUPPRESS is activeDependencies:

SUPPRESS (page 515)References:

More information: LIST (page 401)

MAP

MAPDefault:

AnywherePlacement:

506 Syntax Summary



Scope: • MAP applies to subsequent code it until it is overridden by NOMAP

• NOMAP applies to subsequent code until it is overridden by MAP

MAP has no effect if NOLIST or SUPPRESS is activeDependencies:

References: • LIST (page 506)

• SUPPRESS (page 515)

More information: MAP (page 402)

OPTIMIZE

OPTIMIZE 1Default:

Outside the boundary of a separately compiled programPlacement:

The optimization level active at the beginning of a separately compiled program
determines the level of optimization for that program and any programs it
contains

Scope:

NoneDependencies:

More information: OPTIMIZE (page 404)

OPTIMIZEFILE

filename

The optimization level that OPTIMIZE specifiedDefault:

Only in the compilation command (not in the source file)Placement:

Applies to the compilation unitScope:

NoneDependencies:

OPTIMIZE (page 507)References:

NOTE: The pTAL and EpTAL compilers behave differently.

More information: OPTIMIZEFILE (page 404)

Compiler Directives 507



OVERFLOW_TRAPS

OVERFLOW_TRAPSpTAL compiler:Default:

NOOVERFLOW_TRAPSEpTAL compiler:

Before or between procedure declarationsPlacement:

From the point it occurs in the compilation until it is overridden or the compilation
ends, whichever occurs first

Scope:

OVERFLOW_TRAPS is overridden by:Dependencies:
• NOOVERFLOW_TRAPS procedure attribute

• DISABLE_OVERFLOW_TRAPS block attributes
NOOVERFLOW_TRAPS is overridden by:
• OVERFLOW_TRAPS procedure attribute

• ENABLE_OVERFLOW_TRAPS block attributes

See Managing Overflow Traps (page 234)References:

More information: OVERFLOW_TRAPS (page 406)

PAGE

LINES determines page ejects and no heading is printedDefault:

Only in the source file (not in the compilation command)Placement:

Applies until overridden by another PAGE directiveScope:

Has no effect if either:Dependencies:
• NOLIST or SUPPRESS is active

• The list file is a terminal

References: • LINES (page 506)

• LIST (page 506)

• SUPPRESS (page 515)

More information: PAGE (page 407)

508 Syntax Summary



PRINTSYM

PRINTSYMDefault:

AnywherePlacement:

Scope: • PRINTSYM applies to subsequent declarations until overridden by
NOPRINTSYM

• NOPRINTSYM applies to subsequent declarations until overridden by
PRINTSYM

Dependencies: • PRINTSYM has no effect if NOLIST or SUPPRESS is active

• PRINTSYM interacts with SAVEGLOBALS and USEGLOBALS

References: • LIST (page 506)

• SAVEGLOBALS (page 512)

• SUPPRESS (page 515)

• USEGLOBALS (page 516)

More information: PRINTSYM (page 408)

PROFDIR

NOTE: This directive can be used only with the EpTAL compiler.

Default subvolumeDefault:

Only on the command linePlacement:

Applies to the compilation unitScope:

PROFDIR is ignored if PROFGEN or CODEDOV is not also
specified

Dependencies:

References: • PROFGEN (page 509)

• CODECOV (page 385)

More information: PROFDIR (page 408)

PROFGEN

NOTE: This directive can be used only with the EpTAL compiler.

No instrumentation in object codeDefault:

Only on the command linePlacement:

Compiler Directives 509



Applies to the compilation unitScope:

NoneDependencies:

More information: PROFGEN (page 409)

PROFUSE

NOTE: This directive can be used only with the EpTAL compiler.

NoneDefault:

AnywherePlacement:

Applies to the compilation unitScope:

Cannot be specified with PROFGEN or CODECOVDependencies:

References: • PROFGEN (page 509)

• CODECOV (page 385)

More information: PROFUSE (page 409)

REFALIGNED

REFALIGNED 8Default:

AnywherePlacement:

Applies to subsequent pointers to nonstructure data items and procedure
reference parameters until overridden by another REFALIGN directive

Scope:

NoneDependencies:

More information: REFALIGNED (page 410)

510 Syntax Summary



RESETTOG

NoneDefault:

Placement: • With a parenthesized list, it can appear anywhere

• Without a parenthesized list, it must be the last directive on the directive
line or compilation command line

Applies to the compilation unitScope:

Interacts with:Dependencies:
• DEFINETOG

• ENDIF

• __EXT64

• IF and ENDIF

• SETTOG

• TARGET

References: • DEFINETOG (page 388)

• ENDIF (page 390)

• “__EXT64” (page 394)

• IF and IFNOT (page 398)

• SETTOG (page 415)

• “TARGET” (page 516)

• Toggles (page 370)

More information: RESETTOG (page 411)

Compiler Directives 511



ROUND

NOROUNDDefault:

AnywherePlacement:

Scope: • ROUND applies to subsequent code until overridden by NOROUND

• NOROUND applies to subsequent code until overridden by ROUND

NoneDependencies:

More information: ROUND (page 412)

SAVEGLOBALS

NOTE: The EpTAL compiler does not accept this directive.

NoneDefault:

Either in the compilation command or in the source code before any global
data declarations

Placement:

Applies to the compilation unitScope:

Dependencies: • If SAVEGLOBALS and USEGLOBALS appear in the same compilation unit,
the compiler uses only the one that appears first

• The compilation unit must have exactly one BEGINCOMPILATION directive

• Interacts with the directives referenced in the next row

References: • BEGINCOMPILATION (page 496)

• PRINTSYM (page 509)

• SYMBOLS (page 515)

• SYNTAX (page 516)

• USEGLOBALS (page 516)

More information: SAVEGLOBALS (page 413)

512 Syntax Summary



SECTION

NoneDefault:

Placement: • Only in the source file (not in the compilation command)

• Must be the only directive on the directive line

Applies to subsequent code until another SECTION directive or the end of the
file, whichever is first

Scope:

Interacts with SOURCE (see Section Names (page 417))Dependencies:

SOURCE (page 416)References:

More information: SECTION (page 414)

SETTOG

NoneDefault:

Placement: • With a parenthesized list, it can appear anywhere

• Without a parenthesized list, it must be the last directive on the directive
line or compilation command line

Applies to the compilation unitScope:

Interacts with:Dependencies:
• DEFINETOG

• ENDIF

• __EXT64

• IF and ENDIF

Compiler Directives 513



• RESETTOG

• TARGET

References: • DEFINETOG (page 388)

• ENDIF (page 390)

• “__EXT64” (page 394)

• IF and IFNOT (page 398)

• RESETTOG (page 411)

• “TARGET” (page 516)

• Toggles (page 370)

More information: SETTOG (page 415)

SOURCE

NoneDefault:

Placement: • Only in the source file (not in the compilation command)

• Must be the last directive on the directive line

Applies to the source fileScope:

Dependencies: • Interacts with COLUMNS

• Interacts with SECTION (see Section Names (page 417))

• Interacts with the directives referenced in the next row

References: • BEGINCOMPILATION (page 496)

• COLUMNS (page 498)

• LIST (page 506)

• SECTION (page 513)

• SUPPRESS (page 515)

• USEGLOBALS (page 516)

More information: SOURCE (page 416)

SRL

NOTE: The EpTAL compiler ignores this directive.

514 Syntax Summary



NoneDefault:

AnywherePlacement:

Applies to the compilation unitScope:

When declaring a data block that belongs to an SRL, you must specify
NOEXPORT_GLOBALS and NOGP_OK.

Dependencies:

References: • EXPORT_GLOBALS (page 501)

• GP_OK (page 503)

More information: SRL (page 420)

SUPPRESS

NOSUPPRESSDefault:

AnywherePlacement:

Applies to the compilation unitScope:

Overrides all the listing directives (see the following row)Dependencies:

References: • DEFEXPAND (page 498)

• FMAP (page 502)

• GMAP (page 503)

• INNERLIST (page 505)

• LIST (page 506)

• MAP (page 506)

• PAGE (page 508)

• PRINTSYM (page 509)

More information: SUPPRESS (page 420)

SYMBOLS

NOSYMBOLSDefault:

Before the first declaration in the compilationPlacement:

The last legally placed SYMBOLS or NOSYMBOLS applies to the compilation
unit

Scope:

Compiler Directives 515



Interacts with SAVEGLOBALS and USEGLOBALSDependencies:

References: • SAVEGLOBALS (page 512)

• USEGLOBALS (page 516)

NOTE: These linker options discard information that SYMBOLS saves:
• -x discards line number information.
• -s discards information needed for future linking (use it only in building an executable file).

More information: SYMBOLS (page 421)

SYNTAX

The compiler produces an object fileDefault:

AnywherePlacement:

Applies to the compilation unitScope:

Interacts with SAVEGLOBALS and USEGLOBALSDependencies:

References: • SAVEGLOBALS (page 512)

• USEGLOBALS (page 516)

More information: SYNTAX (page 422)

TARGET

TNS_R_ARCHpTAL compiler:Default:

_TNS_E_TARGETEpTAL compiler:

AnywherePlacement:

Applies to the compilation unitScope:

NoneDependencies:

More information: TARGET (page 423)

USEGLOBALS

NOTE: The EpTAL compiler does not accept this directive.

516 Syntax Summary



NoneDefault:

Either in the compilation command or in the source code before any global
data declarations

Placement:

Applies to the compilation unitScope:

Dependencies: • The compilation unit must have exactly one BEGINCOMPILATION directive.

• The compiler exports the data blocks declared in the USEGLOBALS
declarations file only if EXPORT_GLOBALS is active when the compiler
encounters the BEGINCOMPILATION directive.

• A module that specifies USEGLOBALS can export a global data block that
was declared in the compilation that specified SAVEGLOBALS only if the
SAVEGLOBALS compilation exported the data block.
Typically, a project that uses SAVEGLOBALS explicitly links globals into the
object file and specifies NOEXPORT_GLOBALS (the default) for all individual
compilations.

• Interacts with the directives referenced in the next row.

References: • BEGINCOMPILATION (page 496)

• EXPORT_GLOBALS (page 501)

• PRINTSYM (page 509)

• SAVEGLOBALS (page 512)

• SYMBOLS (page 515)

• SYNTAX (page 516)

More information: USEGLOBALS (page 423)

WARN

WARNDefault:

AnywherePlacement:

Scope: • WARN applies to subsequent code until overridden by NOWARN

• NOWARN applies to subsequent code until overridden by WARN; however:
To print selected warnings, you must specify WARN before any NOWARN
directives. If you specify NOWARN first, subsequent WARN
warning-number directives have no effect.

NoneDependencies:

More information: WARN (page 424)

Compiler Directives 517



B Disk File Names and HP TACL Commands
NOTE: This appendix applies only to Guardian platforms, not Windows platforms.

• Disk File Names (page 518)
• HP TACL Commands (page 520)
For information about process or device file names, see the Guardian Programmer’s Guide.

Disk File Names
A disk file name identifies a file that contains data or a program. A disk file name reflects the
specified file’s location on a NonStop system. The location of a disk file on a NonStop system is
analogous to the location of a form in a file cabinet. To find the form, you must know:
• Which file cabinet it is in
• Which drawer it is in
• Which folder it is in
• Which form it is
Analogously, to find a disk file on a NonStop system, you must know:
• Which node (system) it is on
• Which volume it is on
• Which subvolume it is on
• Which disk file it is
In general, disk file names:
• Cannot contain spaces
• Can contain ASCII characters only
• Are not case-sensitive; the following names are equivalent:

myfile
MyFile
MYFILE

• Language functions and system procedures that return file names might return them in uppercase
letters (even if the file name was originally in lowercase letters). Check the description of the
routine that you are using.

Topics:
• Parts of a Disk File Name (page 518)
• Partial File Names (page 519)
• Logical File Names (page 520)
• Internal File Names (page 520)

Parts of a Disk File Name
A disk file has a unique file name that consists of four parts, with each part separated by a period:
• A D-series node name or a C-series system name
• A volume name
• A subvolume name
• A file ID

518 Disk File Names and HP TACL Commands



Example 365 Disk File Name

\mynode.$myvol.mysubvol.myfileid

You can name your own subvolumes and file IDs, but nodes (systems) and volumes are named by
the system manager.
All parts of the file name except the file ID are optional except as noted in the following discussion.
If you omit any part of the file name, the system uses values as described in Partial File Names
(page 519).
Topics:
• Node or System Name (page 519)
• Volume Name (page 519)
• Subvolume Name (page 519)
• File ID (page 519)

Node or System Name
The node or system name, such as \MYNODE, is the name of the node or system where the file
resides. If specified, the node or system name must begin with a backslash (\) followed by one to
seven alphanumeric characters. The character following the backslash must be an alphabetic
character.

Volume Name
The volume name, such as $MYVOL, is the name of the disk volume where the file resides. If
specified, the volume name must begin with a dollar sign ($), followed by one to six or one to
seven alphanumeric characters as follows. The character following the dollar sign must be an
alphabetic character.
On a D-series system, the volume name can contain one to seven alphanumeric characters.
On a C-series system, the volume name can contain:
• One to six alphanumeric characters if you include the system name
• One to seven alphanumeric characters if you omit the system name
On a C-series system, if you specify the system name, you must also specify the volume name. If
you omit the system name, specifying the volume name is optional.

Subvolume Name
The subvolume name, such as MYSUBVOL, is the name of the set of files, on the disk volume, within
which the file resides. The subvolume name can contain from one to eight alphanumeric characters,
the first of which must be alphabetic.
On a D-series system, if you specify the volume name, you must also specify the subvolume name.
If you omit the volume name, specifying the subvolume name is optional.

File ID
The file ID, such as MYFILE, is the identifier of the file in the subvolume. The file ID can contain
from one to eight alphanumeric characters, the first of which must be alphabetic.
The file ID is required.

Partial File Names
A partial file name contains at least the file ID, but does not contain all the file-name parts. When
you specify a partial file name, the operating system or other process fills in the missing file-name

Disk File Names 519



parts by using your current default values. Following are the optional file-name parts and their
default values:

DefaultFile-Name Part

Node (system) on which your program is executingnode (system)

Current default volumevolume

Current default subvolumesubvolume

Following are all the partial file names you can specify for a disk file named
\BRANCH.$DIV.DEPT.EMP:

C-Series SystemD-Series SystemPartial File NameOmitted File-Name Parts

YesYes$div.dept.empNode (system)

YesYesdept.empNode (system), volume

YesYesempNode (system), volume, subvolume

NoYes\branch.dept.empVolume

NoYes\branch.empVolume, subvolume

YesNo\branch.$div.empSubvolume

YesNo$div.empNode (system), subvolume

You can change your current default values in various ways:
• You can change the volume and subvolume with the VOLUME command of, for example, the

HP TACL products.
• In some cases, you can specify node (system), volume, and subvolume names by issuing

HP TACL ASSIGN SSV commands.

Logical File Names
You can use a logical file name in place of the disk file name. A logical file name is an alternate
name you specify in an HP TACL DEFINE or ASSIGN command.

Internal File Names
The C-series operating system uses the internal form of a file name when passing it between your
program and the operating system. The D-series operating system uses the internal form only if
your program has not been converted to use D-series features.
For information about converting external file names to internal file names in a program, see the
Guardian Programmer’s Guide and the Guardian Procedure Calls Reference Manual.

HP TACL Commands
Before starting the compiler, you can send information to it by using the following HP TACL
commands:
• DEFINE (page 521)
• PARAM SWAPVOL (page 522)
• ASSIGN (page 522)
For complete information about these commands, see the following manuals:
• TACL Reference Manual (syntactic information)
• TACL Programmer’s Guide (programmatic information)

520 Disk File Names and HP TACL Commands



• Guardian User’s Guide (interactive information)
• Guardian Programmer’s Guide (programmatic information)

DEFINE
• Substituting File Names for DEFINE Macros (page 521)
• DEFINE Names (page 521)
To create a DEFINE message or set its attributes, you must set a CLASS attribute for the DEFINE.
The CLASS attributes are:
• MAP DEFINE (Guardian Platforms Only) (page 521)
• TAPE DEFINE (D-Series Systems Only) (page 522)
• SPOOL DEFINE (page 522)
• DEFAULTS DEFINE (page 522)
Each attribute has an initial setting based on whether the attribute is required, optional, or default.

Substituting File Names for DEFINE Macros
To substitute a file name for a DEFINE name that is being passed by a nonprivileged program to
a system procedure, use the following HP TACL commands:

PurposeHP TACL Command

Enable DEFINE processingSET DEFMODE ON

Set the initial attribute of a DEFINE command to CLASS
MAP*

SET DEFINE CLASS

Set the working attributesSET DEFINE

Specify a file name to substitute for a DEFINE nameADD DEFINE

* MAP DEFINEs are available only on Guardian platforms.

DEFINE Names
HP TACL DEFINE names:
• Are not case-sensitive
• Have 2 to 24 characters
• Begin with an equals sign (=) followed by an alphabetic character
• Continue with any combination of letters, digits, hyphens (-), underscores (_), and circumflexes

(^)
DEFINE names that begin with an equals sign followed by an underscore (=_) are reserved by HP
(for example, =_DEFAULTS).

Example 366 DEFINE Names

=A
=The_chosen_file
=Long-but-not-too-long
=The-File-of-The-Week

MAP DEFINE (Guardian Platforms Only)
When you log on, the default CLASS attribute is MAP, which requires a file name. A MAP DEFINE
substitutes a file name for a DEFINE name used in the source file. For example, suppose that your
current CLASS attribute is MAP and your source file includes the DEFINE name =MU<I in a SOURCE
directive:

HP TACL Commands 521



?SOURCE =multi

Before running the compiler, you can associate file name \brig.$ullx.cable.port with
=multi:
ADD DEFINE =multi, FILE \brig.$ullx.cable.port

During compilation, the compiler passes the DEFINE name to a system procedure, which makes
the file available to the compiler. If the system procedure cannot make the file available, the open
operation fails.

TAPE DEFINE (D-Series Systems Only)
The TAPE DEFINE lets you specify attributes for labeled magnetic tapes. For instance, it lets you
specify attributes such as block length, recording density, record format and length, number of
reels, and labeling.

SPOOL DEFINE
The SPOOL DEFINE lets you specify spooler settings or attributes, such as number of copies, form
name, location, owner, report name, and priority.

DEFAULTS DEFINE
In the DEFAULTS class, a permanently built-in DEFINE named =_DEFAULTS has the following
attributes, which are active regardless of any DEFMODE setting:

PurposeRequiredAttribute

Contains the default node, volume, and subvolume names for the current
process as set by the HP TACL VOLUME, SYSTEM, and LOGON
commands

YesVOLUME

Contains the node and volume name in which the operating system is
to store swap files

NoSWAP

Contains a substitute name for a catalog as described in the SQL/MP
Reference Manual and the SQL/MX Reference Manual.

NoCATALOG

PARAM SWAPVOL
The PARAM SWAPVOL command lets you specify the volume that the compiler and SYMSERV use
for temporary files. For example:
PARAM SWAPVOL $myvol

The compiler ignores any node specification and allocates temporary files on its own node. If you
omit the volume, the compiler uses the default volume for temporary files; SYMSERV uses the volume
that is to receive the object file.
Use this command when:
• The volumes normally used for temporary files might not have sufficient space.
• The default volume or the volume to receive the object file is on a different node from the

compiler.

ASSIGN
You can issue the HP TACL ASSIGN command before starting the compiler to substitute actual file
names for logical file names used in the source file. The HP TACL product stores the file-name
mapping until the compiler requests it.
ASSIGN commands fall into two categories:
• Ordinary ASSIGN Command (page 523)
• ASSIGN SSV (page 523)

522 Disk File Names and HP TACL Commands



Ordinary ASSIGN Command
The ordinary ASSIGN command equates a file name with a logical file name used in ERRORFILE,
SAVEGLOBALS, SEARCH, SOURCE, and USEGLOBALS directives. The compiler accepts only the
first 75 ordinary ASSIGN messages.

NOTE: The EpTAL compiler ignores the SAVEGLOBALS and USEGLOBALS directives.

In each ASSIGN command, specify a logical identifier followed by a comma and the file name
or an HP TACL DEFINE name:
ASSIGN dog, \a.$b.c.dog
ASSIGN cat, =mycat

If the file name is incomplete, the HP TACL product completes it from your current default node,
volume, and subvolume. For example, if your current defaults are \X.$Y.Z, the HP TACL product
completes the incomplete file names in ASSIGN commands as follows:

Complete File NamesIncomplete File Names

ASSIGN qq, \x.$y.z.catASSIGN qq, cat

ASSIGN ss, \x.$y.b.dogASSIGN ss, b.dog

ASSIGN tt, \x.$a.b.rat.ASSIGN tt, $a.b.rat

If you use an HP TACL DEFINE name in place of a file name, the HP TACL product qualifies the
file name specified in the ADD DEFINE command when it processes the ASSIGN command. Even
if you specify new node, volume, and subvolume defaults between the ADD DEFINE command
and the ASSIGN command, the ASSIGN mapping still reflects the ADD DEFINE settings.
If you issue the following commands:
ASSIGN aa, $a.b.cat
ASSIGN bb, $a.b.dog
ASSIGN cc, =my_zebra
ADD DEFINE =my_zebra, CLASS MAP, FILE $a.b.zebra
pTAL /IN mysource, OUT $s/ obj

the compiler equates SOURCE directives in MYSOURCE to files as follows:
?SOURCE aa  ! Equivalent to ?SOURCE $a.b.cat
?SOURCE cc  ! Equivalent to ?SOURCE $a.b.zebra
?SOURCE bb  ! Equivalent to ?SOURCE $a.b.dog

You can name new source files at each compilation without changing the contents of the source
file.

ASSIGN SSV
The ASSIGN SSV (search subvolume) command lets you specify which node, volume, and subvolume
to take files from. The compiler uses ASSIGN SSV information to resolve partial file names in the
SEARCH, SOURCE, and USEGLOBALS directives.

NOTE: The EpTAL compiler ignores the USEGLOBALS directive.

For each ASSIGN SSV command, append to the SSV keyword a value in the range 0 through 49.
Values in the range 0 through 9 can appear with or without a leading 0.
For example, if you specify:
ASSIGN SSV1, oldfiles

and the compiler encounters the directive:
?SOURCE myutil

the compiler looks for oldfiles.myutil.
If you then specify:
ASSIGN SSV1, newfiles

HP TACL Commands 523



and run the compiler again, it looks for newfiles.myutil.
If you omit the node or volume, the HP TACL product uses the current default node or volume. If
you omit the subvolume, the compiler ignores the command. HP TACL DEFINE names are not
allowed.
The ASSIGN SSV command also lets you specify the order in which subvolumes are searched.
You can specify ASSIGN SSV commands in any order. If the same SSV value appears more than
once, the HP TACL product stores only the last command having that value.
For example, if you issue the following commands, the HP TACL product stores only two of the
messages:

StoredAssign SSV Command

YesASSIGN SSV28, $a.b

NoASSIGN SSV7, $c.d

NoASSIGN SSV7, $e.f

YesASSIGN SSV07, $g.h

The compiler stores ASSIGN SSV messages in its SSV table in ascending order.
For each file name the compiler processes, the compiler scans the SSVs in ascending order from
SSV0 until it finds a subvolume that holds the file.
For example, if you issue the following ASSIGN commands before running the compiler:
ASSIGN SSV7,  $aa.b3
ASSIGN SSV10, $aa.grplip
ASSIGN SSV8,  mylib
ASSIGN SSV20, $cc.divlib
ASSIGN trig,  $sp.math.xtrig

and the compiler encounters the following SOURCE directive:
?SOURCE unpack

the compiler first looks for an ASSIGN message having the logical name unpack. If there is none,
the compiler looks for the file in subvolumes in the following order:
$aa.b3.unpack                            (SSV7)
$default-volume.mylib.unpack             (SSV8)
$aa.grplib.unpack                        (SSV10)
$cc.divlib.unpack                        (SSV20)
$default-volume.default-subvolume.unpack

The compiler uses the first file it finds. If it finds none named unpack, it issues an error message.
When the compiler encounters this directive:
?SOURCE trig

it tries only $sp.math.xtrig; if it does not find that exact file, it issues an error message.

524 Disk File Names and HP TACL Commands



C Differences Between the pTAL and EpTAL Compilers
• General (page 525)
• Data Types and Alignment (page 525)
• Routines (page 525)
• Compiler Directives (page 527)

General

EpTAL CompilerpTAL CompilerTopic

G06.20 and laterH06.01 and laterD40 and laterRVU

eptalptalCompiler command

NonStop EpTALNonStop pTALCross compiler*

Object code generated • TNS/E object code• TNS/R object code

• •Non-PIC (default) or PIC PIC

•• Object files have file code 800 on
Guardian platform

Object files have file code 700 on
Guardian platform

• •Preemptable Non-preemptable (default) or
preemptable

* For differences between cross compilers, see NonStop pTAL (ETK) (page 426)

Data Types and Alignment

EpTAL CompilerpTAL CompilerTopic

Accepted in template structure
declarations (see Declaring Template
Structures (page 139))

Syntax errorSTRUCTALIGN clause with
MAXALIGN attribute

AcceptedSyntax errorEXT32ADDR*

AcceptedSyntax errorEXT64ADDR*

AcceptedSyntax errorPROC32ADDR*

AcceptedSyntax errorPROC64ADDR*

AcceptedSyntax errorPROC32PTR*

AcceptedSyntax errorPROC64PTR*

* 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

Routines

EpTAL CompilerpTAL CompilerRoutine or Attribute

Not recognizedINTERRUPT attribute

Issues a warning if a RETURN statement
includes both a result-expression

RETURN statement

and a cc-expression (see
Appendix D (page 528))

General 525



EpTAL CompilerpTAL CompilerRoutine or Attribute

Not supported except as a DEFINE
name

$AXADR routine

Not supported$EXECUTEIO routine

Not supported except as a DEFINE
name. Use $TRIGGER instead.

$FREEZE routine

Not supported except as a DEFINE
name. Use $TRIGGER instead.

$HALT routine

Not supported$INTERROGATEHIO routine

Not supported$INTERROGATEIO routine

Not supported$LOCATESPTHDR routine

Not supported$LOCKPAGE routine

Not supported$READBASELIMIT routine

Not supported$READSPT routine

$STACKALLOCATE routine • If size is not an integral multiple
of 16, $STACK_ALLOCATE rounds

• If size is not an integral multiple
of 8, $STACK_ALLOCATE rounds
size up to the next integral
multiple of 8.

size up to the next integral
multiple of 16.

• •The returned value is aligned to an
8-byte boundary.

The returned value is aligned to a
16-byte boundary.

Not supported$UNLOCKPAGE routine

Not supported$TRIGGER routine

Not supported$UNLOCKPAGE routine

Not supported$WRITEPTE routine

SupportedNot supported$EXT64ADDR_TO_EXTADDR*

SupportedNot supported$EXTADDR_TO_EXT32ADDR*

SupportedNot supported$EXT64ADDR_TO_EXT32ADDR_OV*

SupportedNot supported$FIXED0_TO_EXT64DDR*

SupportedNot supported$IS_32BIT_ADDR*

SupportedNot supported$PROC32ADDR*

SupportedNot supported$PROC64ADDR*

SupportedNot supported$UFIX*

SupportedNot supported$XADR32*

SupportedNot supported$XADR64*

* 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

In EpTAL compiler starting with SPR T0561H01^AAP, the directive ?__EXT64 expands the
functionality of the following routines:
• $PROCADDR: Enables $PROCADDR to convert PROC32ADDR and PROC64ADDR addresses

to PROCADDR addresses.
• $XADR: Enables $XADR to convert EXT32ADDR and EXT64ADDR typed variable addresses

to EXTADDR addresses.

526 Differences Between the pTAL and EpTAL Compilers



Compiler Directives

EpTAL CompilerpTAL CompilerDirective

IgnoredBEGINCOMPILATION

Not acceptedSAVEGLOBALS

Not acceptedUSEGLOBALS

DefaultCALL_SHARED

Not acceptedDefaultNOCALL_SHARED

Not acceptedGP_OK

IgnoredNOGP_OK

IgnoredPUSHGP_OK

IgnoredPOPGP_OK

Issues a warning when filename
meets one of the“Compiler Directives”
(page 527)

Does not issue warnings for errors in
filename

OPTIMIZEFILE

DefaultOVERFLOW_TRAPS

DefaultNOOVERFLOW_TRAPS

Not acceptedSRL

Default and only accepted option is
_TNS_E_TARGET

Default and only accepted option is
TNS_R_ARCH

TARGET

AcceptedNot accepted__EXT64*

* 64-bit addressing functionality added to the EpTAL compiler starting with SPR T0561H01^AAP. For more information,
see Appendix E, “64-bit Addressing Functionality” (page 531).

NOTE:

Conditions:
The EpTAL compiler issues a warning when the filename in OPTIMIZEFILE:

• Does not exist
• Cannot be opened
• Is not an EDIT file (Guardian operating systems only)
• Has the same routine-name on more than one line
• Has a line that:

Exceeds 511 characters (Windows operating systems only)◦
◦ Has a routine-name that does not match any routine declaration in the source file
◦ Has an optimize-level other than 0, 1, or 2
◦ Has one or more characters other than spaces or tabs:

– Before routine-name

– After optimize-level

– Between routine-name and optimize-level

Compiler Directives 527



D RETURN, RETURNSCC, and C/C++ on TNS/E
Read this appendix if you write or call pTAL procedures that:
• Return both:

A traditional function value by means of the RETURN statement◦
◦ An unrelated condition code value by means of the RETURNSCC attribute

• And are called by C or C++ procedures
On the TNS architecture, a TAL procedure can return both a traditional function value and an
unrelated condition code value. Both return values are accessible after the procedure call. pTAL
procedures emulate this behavior on both the TNS/R and TNS/E architectures, but C/C++
procedures do not.
On the TNS/R architecture, if a C/C++ procedure calls a pTAL procedure that returns both a
traditional function value and a condition code value, the C/C++ compiler issues an error message.
Some programmers work around this C/C++ compile-time error by writing C/C++ prototypes that
rely on the knowledge that on the TNS/R architecture, pTAL object code stores the two return values
in a single 64-bit value. After the C/C++ procedure calls the pTAL procedure, it extracts from the
64-bit value either both return values (see Example 367 (page 528)) or only the traditional function
value (see Example 368 (page 529)).

CAUTION: C/C++ prototypes such as these are not guaranteed to work on the TNS/R architecture,
and extracting only the traditional function value (as in Example 368 (page 529)) does not work
on the TNS/E architecture.

The EpTAL compiler issues a warning whenever a pTAL procedure returns both a traditional function
value and a condition code value. To migrate such a procedure to TNS/E, HP recommends that
you:
1. Write a pTAL shell procedure that returns the two values in the way that C/C++ returns them

(in Example 369 (page 529), this procedure is P_SHELL).
2. Change the alias of the C/C++ prototype to the name of the pTAL shell procedure in

FIX_THIS_LINK. (This change eliminates the need to change the calls to this prototype.)
3. Retire the original pTAL procedure linkage name. This allows the eld utility to identify any

uses of unchanged C/C++ prototypes, instead of producing an executable program that uses
the old prototypes (because the eld utility does not produce an executable program if there
are unresolved procedure references).

Example 367 C Procedure Extracting Two pTAL Return Values from a 64-Bit Value (Works
Only on TNS/R Systems—Not Recommended)

pTAL procedure with two return values:

int proc p (i, j, k) returnscc; 
  int(16)       i;
  int(32) .ext  j;
  int(64)       k;
begin
   ...
   return i, j < k;  ! Traditional function value is the value of i.
                     ! Expression j < k sets condition code.
end;

C/C++ prototype for accessing pTAL procedure:

_tal _alias ("P") long long some_name (short i, int* j, long long k);

C/C++ code that captures the 64-bit value:

528 RETURN, RETURNSCC, and C/C++ on TNS/E



typedef union val_cc_combo
  {
  long long combo;
  struct
    {
    long value;
    long condition_code;
    } parts
  } val_cc_combo
...
val_cc_combo.combo = some_name ();

C/C++ code that extracts the condition code from the 64-bit value:

(short)val_cc_combo.parts.value  /* For 16-bit return value */
val_cc_combo.parts.value         /* For 32-bit return value */

C/C++ code that extracts the two return values from the 64-bit value:

(short)val_cc_combo.parts.condition_code  /* Always 16-bits */

Example 368 C Procedure Extracting Only the Traditional Function Value from a 64-Bit Value
(Works Only on TNS/R Systems)

pTAL procedure with two return values:

int proc p (i, j, k) returnscc; 
  int(16)       i;
  int(32) .ext  j;
  int(64)       k;
begin   ...

   return i, j < k;  ! Traditional function value is the value of i.

                     ! Expression j < k sets condition code.

end;

C/C++ prototype for accessing pTAL procedure:

_tal _alias ("P") long some_name1 (short i, int* j, long long k);

Example 369 Migrating a pTAL Procedure With Two Return Values to TNS/E (Works on TNS/R and
TNS/E Systems)

pTAL shell procedure that returns values in the way that C/C++ does:
int proc p_shell (result, i, j, k);
  int(32) .     result;
  int(16)       i;
  int(32) .ext  j;
  int(64)       k;
begin
  int cc;
  result := p (i, j, k);
  if < then
    cc := -1D
  else
    if > then
      cc := 1D
    else
      cc := 0D;

529



  return cc;
end;

Declaration of pTAL procedure P in Example 367 (page 528):

int proc p (i, j, k) returnscc;
  int(16)       i;
  int(32) .ext  j;
  int(64)       k;
begin
  ...
  return i, j < k;  ! Traditional function value is the value of i.
                    ! Expression j < k sets condition code.
end;

C/C++ prototype for accessing pTAL shell procedure:

_tal _alias ("P_SHELL") short xyz
  (int* result, short i, int* j, long long k);

530 RETURN, RETURNSCC, and C/C++ on TNS/E



E 64-bit Addressing Functionality
64-bit addressing functionality has been added to the EpTAL compiler starting with SPR
T0561H01^AAP. This functionality is accessible only when the directive __EXT64 is specified.
Code generated for the 64-bit addressing functionality can be executed on all H-series and J-series
RVUs. This functionality is not supported by the TAL and pTAL compilers nor can it be executed on
D-series and G-series RVUs.
For more detailed information, see:
• “Address Types” (page 49)
• “Procedure Pointers” (page 263)
• “Built-In Routines” (page 274)
• “DEFINETOG” (page 388)
• “IF and IFNOT” (page 398)
• “__EXT64” (page 394)
The following sections describe the address types, procedure pointer types, built-in routines, toggles,
and directives for 64-bit addressing functionality:

Address Types

EXT32ADDR
An explicit 32-bit extended address type. The behavior of EXT32ADDR is identical to EXTADDR
and implicit conversions to and from EXT32ADDR and EXTADDR are allowed.
EXTADDR e32a1;
EXT32ADDR e32a2;

EXT64ADDR
A 64-bit extended address type similar to EXTADDR and EXT32ADDR.
EXT64ADDR e64a;

PROC32ADDR
An explicit 32-bit procedure address type similar to PROCADDR.
PROC32ADDR p32a;

PROC64ADDR
A 64-bit procedure address type similar to PROCADDR and PROC32ADDR.
PROC64ADDR p64a;

Procedure Pointer Types

PROC32PTR
An explicit 32-bit procedure pointer that is similar to PROCPTR.
PROC32PTR p (x,y)
  INT(16) x;
  INT(16) y;
END PROCPTR; -- Note keyword PROCPTR here.

PROC64PTR
A 64-bit procedure pointer that is similar to PROCPTR and PROC32PTR.

Address Types 531



PROC64PTR p (x,y)
  INT(16) x;
  INT(16) y;
END PROCPTR; -- Note keyword PROCPTR here.

Indirection Symbols

.EXT32
An explicit 32-bit extended address type indirection symbol similar to .EXT.
 INT .EXT   I;  ! @I is type EXTADDR
 INT .EXT32 J;  ! @J is type EXT32ADDR

.EXT64
A 64-bit extended address type indirection symbol similar to .EXT and .EXT32.
INT .EXT64 J;  ! @J is type EXT64ADDR

Built-in Routines

$EXT64ADDR_TO_EXTADDR
$EXT64ADDR_TO_EXTADDR ( <EXT64ADDR expression> )

Converts 64-bit extended address values to 32-bit extended EXTADDR-typed address values; no
check is performed to see if the resulting 32-bit extended address value is valid.

$EXT64ADDR_TO_EXT32ADDR
$EXT64ADDR_TO_EXT32ADDR ( <EXT64ADDR expression> ) 

Converts 64-bit extended address values to 32-bit EXT32ADDR-typed extended address values;
no check is performed to see if the 32-bit address value is valid.

$EXT64ADDR_TO_EXT32ADDR_OV
$EXT64ADDR_TO_EXT32ADDR_OV ( <EXT64ADDR expression> )

Converts 64-bit extended address values to 32-bit EXT32ADDR-typed extended address values; if
the address cannot be represented in 32-bits, an overflow trap occurs. This trap cannot be disabled
using the existing overflow trap controlling mechanisms (For example, using
NO_OVERFLOW_TRAPS).

$EXTADDR_TO_EXT64ADDR
$EXTADDR_TO_EXT64ADDR ( <EXTADDR or EXT32ADDR expression> )

Converts 32-bit extended address values to 64-bit EXT64ADDR-typed extended address values.

$FIXED0_TO_EXT64ADDR
$FIXED0_TO_EXT64ADDR ( <FIXED expression> )

Converts value of type FIXED to EXT64ADDR address value.

$FIX
$FIX ( <EXT64ADDR expression> )

In addition to the conversions supported by $FIX, it also converts a value of type EXT64ADDR to
integer type FIXED.

$IS_32BIT_ADDR
$IS_32BIT_ADDR ( <address expression> )

532 64-bit Addressing Functionality



Returns -1 if the specified address value can be represented as a 32-bit byte address; otherwise,
returns 0. Input values can be any of the address types except SGWADDR and SGBADDR, which
are 16-bits in length.

$PROCADDR
$PROCADDR ( <INT(32), PROCADDR, PROC32ADDR, or PROC64ADDR expression> )

This standard function converts an INT(32), PROCADDR, PROC32ADDR, or PROC64ADDR
expression to a PROCADDR. The bit pattern is unchanged.

$PROC32ADDR
$PROC32ADDR ( <INT(32), PROCADDR, PROC32ADDR, or PROC64ADDR expression> )

This standard function converts a PROCADDR, PROC32ADDR, or PROC64ADDR expression to a
PROC32ADDR. The bit pattern is unchanged.

$PROC64ADDR
$PROC64ADDR ( <PROCADDR, PROC32ADDR, or PROC64ADDR expression> )

This standard function converts a PROCADDR, PROC32ADDR, or PROC64ADDR expression to a
PROC64ADDR. In pTAL, the bit pattern is unchanged.

$UFIX
$UFIX ( <INT(32)-typed expression> )

$UFIX returns a value of type FIXED.
Returns the FIXED-type zero-extended value of the specified INT(32)-typed expression.

$XADR
x
$XADDR ( <variable or struct expression> )

$XADR returns a value of the extended address type EXTADDR.
When system global addresses are converted to extended addresses, $XADR returns an absolute
extended address in absolute segment 1. Conversions are allowed only if there is an explicit
conversion defined to EXTADDR.

$XADR32
$XADR32 ( <variable or struct expression> )

Similar in function to $XADR(), $XADR32() returns the 32-bit extended address value of type
EXTADDR for the specified variable or formal parameter. Conversions are allowed only if there is
an explicit conversion defined to EXT32ADDR or to EXTADDR.
When system global addresses are converted to extended addresses, $XADR32() returns an
absolute extended address in absolute segment 1.

$XADR64
$XADR64 ( <variable or struct expression> )

Similar in function to $XADR(), $XADR64() returns the extended 64-bit address value of type
EXT64ADDR for the specified variable or formal parameter. Conversions are allowed only if there
is an explicit conversion defined to EXT64ADDR or to EXTADDR.
When system global addresses are converted to extended addresses, $XADR64() returns an
absolute extended address in absolute segment 1.

Built-in Routines 533



Implicitly Defined Compilation Toggle __EXT64
The state of this toggle reflects whether the __EXT64 directive (see __EXT64) has been specified.
If the__EXT64 directive is not specified, the compiler implicitly sets the __EXT64 toggle off. Likewise,
if the __EXT64 directive is specifed, the compiler implicitly sets this toggle on.
This toggle is implicitly defined and maintained by all versions of EpTAL starting with SPR
T0561H01^AAP. It is not supported by earlier versions of EpTAL or any version of the pTAL or
TAL compiler.
For downward compatibility with earlier versions of EpTAL and with pTAL and TAL, the toggle can
be specified in a DEFINETOG directive which creates the toggle and implicitly resets it. For more
information, see “DEFINETOG” (page 388).

Directives

__EXT64
__EXT64

Directs the compiler to recognize the keywords and functionality for 64-bit address support. Default
is off (the new keywords are not recognized). This directive also sets the implicitly defined toggle
__EXT64 as described in “Implicitly Defined Compilation Toggle __EXT64” (page 534).
__EXT64 must be specified on the command line or before the first token in the source is parsed.

DEFINETOG, RESETTOG, and SETTOG
DEFINETOG __EXT64
RESETTOG __EXT64  -- Not recommended
SETTOG __EXT64    -- Not recommended

The implicitly defined toggle __EXT64 reflects the status of the __EXT64 directive.
This implicitly defined toggle is not supported by the EpTAL compilers prior to SPR T0561H01^AAP
nor is it supported by any pTAL or TAL compiler. If you need to compile using earlier versions of
EpTAL, pTAL, or TAL compiler, explicitly specify __EXT64 in a DEFINETOG directive which explicitly
defines and sets the toggle off in these compilers.
You can specify DEFINETOG __EXT64 using EpTAL compilers starting with SPR T0561H01^AAP
however, doing so has no effect on the implicitly defined __EXT64 toggle
In TAL, pTAL, and EpTAL prior to T0561H01^AAP, you can RESETTOG and SETTOG the __EXT64
toggle, however, this is not recommended. In T0561H01^AAP EpTAL, RESETTOG can be applied
to the __EXT64 toggle only if the implicit setting of the toggle is already off; likewise SETTOG can
be applied to the __EXT64 toggle only if the implicit setting of the toggle is already on.

IF and IFNOT
IF[NOT] { __EXT64 }

In addition to the existing functionality of IF and IFNOT, IF __EXT64 evaluates to true if and only
if the directive __EXT64 has been specified.

Implicit Address Conversions
Implicit conversions are allowed from smaller extended address, procedure address, and procedure
pointer types to larger extended address, procedure address, and procedure pointer types,
respectively. In the case of procedure pointers, the prototypes of the two types must also match.
EXT64ADDR e64a;
EXTADDR ea;
PROC64ADDR p64a;
PROC32ADDR p32a;
PROC64PTR p64p (x); INT(16) x; END PROCPTR;
PROC64PTR p64p1(x); INT(32) x; END PROCPTR;
PROC32PTR p32p (x); INT(16) x; END PROCPTR;

534 64-bit Addressing Functionality



PROC p;
BEGIN
  e64a := ea;
  p64a := p32a;
  @p64p := @p32p;
  ea := e64a;      -- Error: conversion must be explicit.
  p32a := p64a;    -- Error: “”        “”  “”   “”
  @p32p := @p64p;  -- Error: “”        “”  “”   “”
  @p64p1 := @p32p; -- Error: mismatched prototypes.
END;

Implicit conversions to/from INT(32) and EXT32ADDR are allowed.
Implicit conversions to/from EXTADDR and EXT32ADDR are allowed.
Implicit conversions from FIXED to EXT64ADDR are allowed in assignments only if the FIXED
expression yields a constant value known at compile-time; they are interpreted as a byte address
value.

Implicit Address Conversions 535



Index

Symbols
" (quotation mark), 39
$ (dollar sign), 39
$ABS routine, 291
$ALPHA routine, 291
$ASCIITOFIXED routine, 292
$ATOMIC_ routines, 66, 67
$ATOMIC_ADD routine, 276
$ATOMIC_AND routine, 277
$ATOMIC_DEP routine, 278
$ATOMIC_GET routine, 279
$ATOMIC_OR routine, 280
$ATOMIC_PUT routine, 280
$AXADR routine, 293
$BADDR_TO_EXTADDR routine, 294
$BADDR_TO_WADDR routine, 294
$BITLENGTH routine, 295
$BITOFFSET routine, 296
$CARRY routine

description of, 297
after assignments, 236
atomic operation that can set, 276
in nested IF statements, 243
nonatomic operations that can set, 289
returning its value to calling procedure, 245

$CHECKSUM routine, 297
$COMP routine, 298
$COUNTDUPS routine, 299
$DBL routine, 300
$DBLL routine, 301
$DBLR routine, 301
$DFIX routine, 302
$EFLT routine, 302
$EFLTR routine, 303
$EXCHANGE routine, 303
$EXECUTEIO routine, 304
$EXT64ADDR_TO_EXT32ADDR routine, 307
$EXT64ADDR_TO_EXT32ADDR_OV routine, 307
$EXT64ADDR_TO_EXTADDR routine, 306
$EXTADDR_TO_BADDR routine, 305
$EXTADDR_TO_EXT64ADDR routine, 308
$EXTADDR_TO_WADDR routine, 306
$FILL16 procedure, 308
$FILL32 procedure, 308
$FILL8 procedure, 308
$FIX routine, 309
$FIXD routine, 309
$FIXED0_TO_EXT64ADDR, 310
$FIXEDTOASCII routine, 310
$FIXEDTOASCIIRESIDUE routine, 311
$FIXI routine, 312
$FIXL routine, 312
$FIXR routine, 313
$FLTR routine, 314
$FLTroutine, 314

$FREEZE routine, 315
$HALT routine, 315
$HIGH routine, 315
$IFIX routine, 316
$INT routine, 317
$INT_OV routine, 318
$INTERROGATEHIO routine, 319
$INTERROGATEIO routine, 320
$INTR routine, 321
$IS_32BIT_ADDR routine, 321
$LEN routine, 322
$LFIX routine, 323
$LMAX routine, 323
$LMIN routine, 324
$LOCATESPTHDR routine, 324
$LOCKPAGE routine, 325
$MAX routine, 326
$MIN routine, 327
$MOVEANDCXSUMBYTES routine, 327
$MOVENONDUP routine, 328
$NUMERIC routine, 329
$OCCURS routine, 330
$OFFSET routine

description of, 332
structure pointers and, 175

$OPTIONAL routine, 333
$OVERFLOW routine

description of, 335
after assignments, 236
atomic operation that can set, 276
built-in routines and, 276
in nested IF statements, 243
nonatomic operations that can set, 286
returning its value to calling procedure, 245

$PARAM routine, 336
$POINT routine, 336
$PROC32ADDR routine, 337
$PROC64ADDR routine, 338
$PROCADDR routine, 337
$READBASELIMIT routine, 338
$READCLOCK routine, 339
$READSPT routine, 339
$READTIME routine, 340
$SCALE routine, 340
$SGBADDR_TO_EXTADDR routine, 341
$SGBADDR_TO_SGWADDR routine, 342
$SGWADDR_TO_EXTADDR routine, 342
$SGWADDR_TO_SGBADDR routine, 343
$SPECIAL routine, 343
$STACK_ALLOCATE routine, 344
$TRIGGER routine, 345
$TYPE routine, 345
$UDBL routine, 346
$UDIVREM16 routine, 347
$UDIVREM32 routine, 348
$UFIX routine, 349

536 Index



$UNLOCKPAGE routine, 349
$WADDR_TO_BADDR routine, 350
$WADDR_TO_EXTADDR routine, 350
$WRITEPTE routine, 351
$XADR routine, 352
$XADR32 routine, 352
$XADR64 routine, 353
& (concatenation operator), 220
' (single quotation mark), 39
(exclamation mark), 38
(semicolon)

as delimiter, 38
in statements, 199

), 38
as delimiter, 38
in statements, 199

*
See Asterisk (*), 48

+
See Plus sign (+), 70

- see Hyphen (-)
See Minus sign (-), 70

->
in labeled CASE statement, 207
in move statement, 218
in RSCAN statement, 228
in SCAN statement, 228

.
See Period (.), 38

... (ellipsis), 207

.EXT
in equivalenced variables, 194
in formal parameters, 251
in pointers

simple, 170
structure, 173

in referral structures, 141
.SG

in system global pointers, 176
.tal file extension, 426
64-bit addressing functionality, 531

Address Types for, 531
Built-in Routines for, 532
Directives for, 534
Implicit Address Conversions for, 534
Implicitly Defined Compilation Toggle __EXT64 for, 534
Indirection Symbols for, 532
Procedure Pointer Types for, 531

:=
assignment operator, 71 see also Assignments

< see Less than operator, signed (<)
< > (angle brackets);Brackets

angle (< >), 38
<...> (bit extraction), 70
<...> := (bit deposit operator), 71
<< (signed left bit shift), 70
<= see Less than or equal operator, signed (<=)
<> see Not equal operator, signed (<>)
> see Greater than operator, signed (>)

>= see Greater than or equal operator, signed (>=)
>> (signed right bit shift), 70
? (question mark), 39
@ operator

in entry-point identifiers
for procedures, 260
for subprocedures, 262

in pointers, 172
in PROC parameters, 256
in reference parameters, 254
precedence of, 70

\, 38, 199
(colon), 260

\[ \] (square brackets);Brackets
square (\, 38

__EXT64, 534
__EXT64 directive, 394, 501, 534
’*’ see Multiplication operator, unsigned (’*’)
’+’ see Addition operator, unsigned (’+’)
’-’ see Subtraction operator, unsigned (’-’)
’<<’ (unsigned left bit shift), 70
’<=’ see Less than or equal operator, unsigned (’<=’)
’<>’ see Not equal operator, unsigned (’<>’)
’<’ see Less than operator, unsigned (’<’)
’=’ see Equal sign, as equal operator, unsigned
’>=’ see Greater than or equal operator, unsigned (’>=’)
’>>’ (unsigned right bit shift), 70
’>’ see Greater than operator, unsigned (’>’)
’\\’ see Remainder operator (’\\’)
’P’ (read-only array symbol) see Read-only arrays
’SG’-equivalenced variables see Equivalenced variables
’⁄’ see Division operator, unsigned (’⁄’)
⁄ see Division operator, signed (⁄)

A
ABS routine, 291
Absolute value, 291
Actual parameters

description of, 206
checking for presence of, 336
in CALL statement, 205
of DEFINEs, 100

Addition operator
signed (+)

in arithmetic expression, 72
operand types for, 73
precedence of, 71

unsigned (’+’)
in arithmetic expression, 72
operand types for, 75
precedence of, 71
result types for, 75
with INT(32) operands, 76

Address misalignment
causes of, 66
handling, 67
tracing facility for, 66

Address symbols, base; Symbols, base address, 40
Address types

537



description of, 49
converting, 52
stored in pointers, 164

Address-conversion routines, 283
Addresses

See also Data addresses, 55
arrays of, 108
as parameters to built-in routines, 275
assignment of, 365
extended, 77
in simple pointers, 172, 174
in structure pointers

description of, 174
within structures, 152

nonextended, 78
of structures declared in subprocedures, 142
types of see Address types

Aliases for data types, 48
Alignment

base, 119
of constant lists, 64
of data, 66
of structure fields, 117
of structures

in depth, 123
overview, 116

of substructures, 124
ALPHA routine, 291
AND operator

description of, 82
condition codes and, 83
in conditional expression, 81
operand types for, 83
precedence of, 71
truth table for, 81

Angle brackets (< >), 38
ar utility, 430
Architecture and RVUs, 31
Arguments, 368

See also Parameters, 275
Arithmetic expressions, 72
Arithmetic operators

signed
description of, 73
in arithmetic expressions, 72

unsigned
description of, 75
in arithmetic expressions, 72

Arithmetic overflow testing, 335
Arrays

description of, 108
alignment of, in structures, 122
as parameters, 254
data type of, 345
declaring

in structures, 143
read-only, 111
read-write, 108

elements of

accessing, 54
number of, 330

length of
in bits, 295
in bytes, 322

nonstring, 113
number of elements of, 330
of addresses, 108
redefining, 154

ASCII characters
set of, 36
testing for

alphabetic, 291
numeric, 329
special (nonalphanumeric), 343

ASCIITOFIXED routine, 292
ASSERT statement, 200
ASSERTION directive, 381
ASSIGN command

description of, 522
ordinary, 523
search subvolume (SSV), 523

Assignment operator (:=), 71
See also Assignments, 71

Assignments
description of, 201
bit-deposit, 204
character string, 203
expressions in, 85
FIXED variable, 203
hardware indicators after, 236
initial, 103
move statement, 218
number, 203
of addresses, 365
pointer, 203
procedure pointer, 269

Asterisk (*)
as multiplication operator see Multiplication operator
in $ASCIITOFIXED routine, 293
in $FIXEDTOASCII routine, 311
in $FIXEDTOASCIIRESIDUE routine, 311, 312
in compiler listing, 400
in constant lists, 39
in template structures, 140
in value parameter, 39
to prevent scaling

of FIXED initialization value, 48
of FIXED parameter, 251

Atomic operations
description of, 276
data misalignment and, 66, 67

ATOMIC_ADD routine, 276
ATOMIC_AND routine, 277
ATOMIC_DEP routine, 278
ATOMIC_GET routine, 279
ATOMIC_OR routine, 280
ATOMIC_PUT routine, 280
Attributes

538 Index



block, 235
procedure, 248
SCF user interface, 67

AUTO parameter
description of, 118
compared to PLATFORM parameter, 119
FIELDALIGN clause and, 117

AXADR routine, 293

B
Backslash (\\)

See Remainder operator (’\\’), 71
BADDR address type

description of, 165
converting, 53
parameters of, 251
STRING pointers of, 167

BADDR_TO_EXTADDR routine, 294
BADDR_TO_WADDR routine, 294
Base address symbols, 40
BASENAME directive, 381
Bases of constants, 44
BEGIN keyword

in compound statement, 200
in procedure, 256
in structure, 115
in subprocedure, 259

BEGIN-END construct see Compound statements
BEGINCOMPILATION directive

description of, 382
and global data declarations, 373
SOURCE directive and, 419

Bit fields
description of, 46
delimiting, 38

Bit operations
description of, 34, 92
bit-deposit assignment statement, 204
extraction, 93
logical, 76
precedence of, 70
shift, 94

Bit-deposit assignment statement, 204
BIT_FILLER declaration, 147
BITLENGTH routine, 295
BITOFFSET routine, 296
Bitwise logical operators, 76
Block attributes, 235
BLOCKGLOBALS directive, 382
Blocks, data see Global data, blocked
Boolean expressions see Conditional expressions
Built-in routines, 274

See also Atomic operations, 276
BY keyword in FOR statement, 212
Bytes, 46

C
C procedure attribute, 248
C-series RVU, 31

C/C++ procedures, 528
CALL statement, 205
CALL_SHARED directive, 383
CALLABLE procedure attribute, 248, 274
CARRY routine

description of, 297
after assignments, 236
atomic operation that can set, 276
in nested IF statements, 243
nonatomic operations that can set, 289
returning its value to calling procedure, 245

CASE expressions, 86
CASE statement

description of, 207
empty, 207
labeled, 207
unlabeled, 209

CBADDR address type
description of, 165
converting, 53
parameters of, 251
pointers of, 169

Character set for pTAL, 36
Character string constants, 57
Character-test routines, 284
CHECKSHIFTCOUNT directive, 384
CHECKSUM routine, 297
COBOL procedure attribute, 248
Code coverage report, 366
Code Profiling Utilities, 366
CODECOV directive, 385
Codes

completion, 358
condition

See Condition codes, 258
Colon (\

), 38
COLUMNS directive

description of, 385
SOURCE directive and, 418

Comma (,), 38
Commands

ASSIGN
See ASSIGN command, 522

compilation
See Compilation command, 357

DEFINE see DEFINEs
Deploy, 431

Comments, delimiters for, 38
COMP routine, 298
Compatibility of pTAL and TAL, 30
Compilation command

description of, 357
with compiler directives, 367

Compilation units, naming, 363
Compiler directives

interpretation and processing of, 367
specifying

in compilation command line, 367

539



in source code, 367
summary of, 377

Compiler input directives, 377
Compiler listing

conditionally compiled lines and, 400
Compiler listing directives, 377
Compiler listing:asterisk (*) in, 400
Compilers

comparison of EpTAL, pTAL, and TAL, 31
differences between pTAL and EpTAL , 527

Completion codes, 358
Compound statements

syntax of, 200
within DEFINE bodies, 99

Concatenation operator (&), 220
Condition codes

See also Hardware indicators, 234
after assignments, 237
AND operator and, 83
atomic operations that can set, 276
C/C++ procedures on TNS/E and, 528
group comparisons and, 91
nesting, 242
nonatomic operations that alter, 286
NOT operator and, 83
OR operator and, 83
returning

with RETURN statement, 224
with RETURNSCC attribute:in procedure, 248
with RETURNSCC attribute:in subprocedure, 257

testing after function calls, 224
Conditional compilation directives, 378
Conditional expressions

description of, 81
hardware indicators in, 239

Constant expressions
description of, 81
as parameters, 254
in data type specifications, 47

Constant lists
description of, 63
aligning, 64
in array declarations, 113
in move statement, 218

Constants
See also LITERALs, 97
comparing to data addresses, 56
description of, 44
lists of see Constant lists
numeric bases of, 44

Constants:in expressions:See Constant expressions, 64
Continuation lines, 368
Conventions for syntax diagrams, 20
Conversion

between address types, 52
between addresses and numbers, 51
implicit, 52

Copy operation (move statement), 218
COUNTDUPS routine, 299

Cross compilers
ar utility and, 430
compiling with, 429
debugging and, 429, 431
documentation for, 431
features of, 426
file extension for, 426
from PC command line, 427
in ETK, 426
linking and, 429
PC-to-NonStop host transfer tools for, 431
platforms for, 426

CWADDR address type
description of, 165
converting, 53
parameters of, 251
pointers of, 169

D
D-series RVU, 31
Data

alignment of, 66
blocks of:See Global data, blocked, 362
misaligned see Address misalignment
operations on, 34
representation of, 46
scanning, 199
sets of, 33
system global see System global data
transferring

statements for, 199
types of see Data types

Data addresses
arithmetic operations on, 55
comparing

description of, 77
extended addresses, 77
nonextended addresses, 78
to constants, 56
to procedure pointers, 56

computing distance between, 55
converting to numbers, 51
decrementing, 54
incrementing, 54
storing in variables, 51

Data allocation statements, 199
Data types

See also Address types, 46
aliases for, 48
changing, with group comparisons, 90
obtaining, 345
of expressions, 70
pTAL

description of, 46
compared to TAL, 33

specifying, 47
Data:global:See System global data, 40
DBL routine, 300
DBLL routine, 301

540 Index



DBLR routine, 301
Debugging

cross compilers and, 429, 431
Enterprise Toolkit (ETK) and, 429
OPTIMIZE directive and, 404
with ASSERTION directive and ASSERT statement, 200

Decimal point, implied see Implied decimal point
Declarations

description of, 41
array

See Arrays, declaring, 108
BIT_FILLER, 147
DEFINE, 98
entry point, 260
equivalenced see Equivalenced variables, declaring
external, 419
FILLER, 147
function see Procedures, declaring
global see Global data
LITERAL, 97
NAME, 363
pointer

See Pointers, declaring, 161
procedure

See Procedures, declaring, 246
simple variable see Simple variables, declaring
structure see Structures, declaring
sublocal, 259
subprocedure

See Subprocedures, declaring, 257
substructure see Substructures, declaring

Default misalignment handling method, 67
Default target file;Files

OBJECT, 358
DEFAULTS DEFINE, 522
DEFEXPAND directive

description of, 386
output of, 100
position of, 99

DEFINE files, 426
DEFINE tool, 431
DEFINEs

calling, 100
CLASS attributes of, 521
declaring, 98
expansion of, 100
how compiler processes, 100
LITERAL declarations and, 97
names of, 521
parameters of

actual, 100
formal, 98

substituting file names for, 521
DEFINETOG directive, 388
Definition structures, declaring

equivalenced, 194
not equivalenced, 138

Definition substructures
declaring, 144

redefining, 155
Delimiters, 38
Deploy command, 431
DFIX routine, 302
Diagnostics directives, 377
Directive stacks, 369
DISABLE_OVERFLOW_TRAPS block attribute, 235
Disk file names

description of, 518
as compiler directive arguments, 368
ASSIGN command and, 522
internal, 520
logical, 520
partial, 519
parts of, 518
substituting for DEFINE commands, 521

Division operator
signed (⁄)

in arithmetic expression, 72
operand types for, 73
precedence of, 71

unsigned (’⁄’)
in arithmetic expression, 72
operand types for, 75
precedence of, 71
result types for, 75
with INT(32) and FIXED operands, 76

DLLs (dynamic-link libraries);Libraries
dynamic-link (DLLs), 362

DO keyword
in DO-UNTIL statement, 210
in FOR statement, 212
in WHILE statement, 232

DO-UNTIL statement
description of, 210
hardware indicators in, 239

DO_TNS_SYNTAX directive, 389
Dollar sign ($), 39
Doublewords, 46
DOWNTO keyword, 212
DROP statement, 212
Dynamic-link libraries (DLLs), 362
Dynamically selected procedure calls, 271

E
EFLT routine, 302
EFLTR routine, 303
eld utility

ar utility and, 430
migrating to TNS/E and, 528

Ellipsis (...), 207
ELSE keyword, 217
Embedded SQL/MP or SQL/MX, 32
Empty CASE statement, 207
EMS (Event Management Service), 67
ENABLE_OVERFLOW_TRAPS block attribute, 235
END keyword

in compound statement, 200
in procedure, 256

541



in structure, 115
in subprocedure, 259

ENDIF directive, 390
Enterprise Toolkit (ETK)

cross compilers and, 426
debugging and, 429
DEFINE files and, 426
online help for, 431

Entry points
declaring, 260
procedure, 168
subprocedure, 169

Equal sign
as delimiter, 39
as equal operator

signed (=):in conditional expression, 83
signed (=):operand types for, 84
signed (=):precedence of, 71
signed (=):without operands, 84
unsigned (’=’):in conditional expression, 83
unsigned (’=’):operand types for, 84
unsigned (’=’):precedence of, 71
unsigned (’=’):with INT(32) operands, 76
unsigned (’=’):without operands, 84

Equivalenced variables
description of, 177
declaring

description of, 178
nonstructure, 180
system global, 193

memory allocation for, 179
Error messages

logging to a file, 391
maximum allowed, 393

ERRORFILE directive, 391
ERRORS directive, 393
ETK see Enterprise Toolkit (ETK)
Event Management Service (EMS), 67
EXCHANGE routine, 303
Exclamation mark (, 38
Executable statements

See Statements , 199
EXECUTEIO routine, 304
EXPORT_GLOBALS directive, 393
Exporting program names, 362
Expressions

description of, 69
arithmetic, 72
as parameters to built-in routines, 275
assignment, 85
CASE, 86
conditional, 81
constant

description of, 81
as parameters, 254
in data type specifications, 47

data types of, 70
group comparison see Group comparison expressions
IF, 87

special, 85
Expressions:Boolean (conditional), 81
EXT32ADDR address type

description of, 165
EXT64ADDR address type

description of, 165
EXTADDR address type

description of, 165
comparing, 77
converting, 53
parameters of, 251
pointers of, 169

EXTADDR_TO_BADDR routine, 305
EXTADDR_TO_WADDR routine, 306
EXTDECS file, 419
Extended addresses, 77
Extended parameters, 255
EXTENSIBLE procedure attribute, 248, 250
External declarations, 419
EXTERNAL keyword

in procedure declaration, 246, 247
in procedure entry-point declaration, 261

Extracting bits, 93

F
FAIL misalignment handling method, 67
Feature control, 379
FIELDALIGN clause

description of, 127
role in field alignment, 117

FIELDALIGN directive
description of, 127, 395

FIELDALIGN directive:role in field alignment, 117
File IDs, 519
File names see Disk file names
Files

DEFINE, 426
EXTDECS, 419
input, 356
map of, 396
object see Object files
output, 356
source

See Source files, 355
target, 358
temporary, 522

FILL16 procedure, 308
FILL32 procedure, 308
FILL8 procedure, 308
FILLER declaration, 147
FIX routine, 309
FIXD routine, 309
FIXED data type

See also FIXED variables, 251
built-in routines for, 285
constants of, 61
obtaining

with $DFIX routine, 302
with $FIX routine, 309

542 Index



with $FIXD routine, 309
with $FIXED0_TO_EXT64ADDR routine, 310
with $FIXR routine, 313
with $IFIX routine, 316
with $LFIX routine, 323

parameters of, 251, 252
FIXED data type:rounding and, 283
FIXED variables

See also FIXED data type, 251
rounding, 412
scaling

description of, 74
when assigning numbers to, 203

using, 74
FIXED variables:assigning numbers to, 203
FIXED(0) data type see FIXED data type
Fixed-point scaling, 203
FIXED0_TO_EXT64ADDR, 310
FIXEDTOASCII routine, 310
FIXEDTOASCIIRESIDUE routine, 311
FIXERRS macro, 391
FIXI routine, 312
FIXL routine, 312
FIXR routine, 313
FLTR routine, 314
FLTroutine, 314
FMAP directive, 396
FOR keyword

in FOR statement, 212
in move statement, 218

FOR statement
description of, 212
nested, 213
optimized, 214
standard, 214

Formal parameters
indirection symbols and, 41
of DEFINEs, 98
of procedures, 247, 251
of subprocedures, 251, 258
passing by reference, 41
procedure pointers as, 263, 268
specifying, 251

FORTRAN procedure attribute, 248
FORWARD keyword

in procedure declaration, 246, 247
in procedure entry-point declaration, 261
in subprocedure declaration, 257, 259
in subprocedure entry-point declaration, 262

fpoint
changing, 340
obtaining, 336
rounding, 412
scaling, 203
specifying, 323

FREEZE routine, 315
Functions

See also Procedures, 246
atomic

See Atomic operations, 66
definition of, 246
RETURN statement and, 223
with two return values, 528

G
Global data

See also System global data, 362
blocked

allocating, 365
declaring, 362
SECTION directive and, 365
sharing, 365
SOURCE directive and, 365

map of, 397
saving and using, 372
unblocked, 364

Global scope, 43
GLOBALIZED directive, 396
GMAP directive, 397
GOTO statement, 215
GP_OK directive, 397
Greater than operator

signed (>)
in conditional expression, 83
operand types for, 84
precedence of, 71
without operands, 84

unsigned (’>’)
in conditional expression, 83
operand types for, 84
precedence of, 71
with INT(32) operands, 76
without operands, 84

Greater than or equal operator
signed (>=)

in conditional expression, 83
operand types for, 84
precedence of, 71
without operands, 85

unsigned (’>=’)
in conditional expression, 83
operand types for, 84
precedence of, 71
with INT(32) operands, 76
without operands, 85

Group comparison expressions
description of, 88
for changing data types, 90
testing, 91

H
HALT routine, 315
Hardware indicators

See also Condition codes, 234
across procedures, 244
after assignments, 236
built-in routines and, 276
in conditional expressions, 239

543



list of, 234
Hash mark (#), 39
HIGH routine, 315
HP TACL commands

description of, 520
ASSIGN see ASSIGN command
DEFINE see DEFINEs
RUN, 357

Hyphen (-)
followed by hyphen (-), 38
followed by right angle bracket (>), 39

I
Identifiers

description of, 42
classes of, 42
listing

with GMAP directive, 397
with MAP directive, 402
with PRINTSYM directive, 408

saving, 421
IF and IFNOT directives, 398
IF expressions, 87
IF statement

See also Conditional expressions, 217
description of, 217
hardware indicators in, 239

IFIX routine, 316
Implicit address conversion, 52
Implied decimal point

ignoring
with $FIXD routine, 310
with $FIXI routine, 312
with $FIXL routine, 313

in data type declarations, 48
in formal parameters, 253
in simple variable declarations, 104
moving, 340
obtaining

with $DFIX routine, 302
with $IFIX routine, 316
with $LFIX routine, 323

parentheses and, 38
IN file option, 357
Indexes, accessing array elements with, 54
Indirection symbols, 41
Initialization

of exported data, 394
of read-only arrays, 112
of simple pointers, 172
of structure pointers, 174
scope and, 44

INNERLIST directive, 400
Input files, 356
Instruction codes, listing, 400
INT data type

$INTR routine and, 321
$IS_32BIT_ADDR routine , 321
constants of, 58

converting, 53
functions that return values of, 252
high-order word of, 315
parameters of, 251, 252
rounding and, 283
signed value of, 312
unsigned value of, 312

INT routine, 317
INT(16) data type see INT data type
INT(32) address type

bitwise logical operators and, 76
converting, 53
obtaining

with $DBLL routine, 301
with $DBLR routine, 301
with $UDBL routine, 346

unsigned operators and, 76
INT(32) data type

constants of, 59
rounding and, 283

INT(64) data type see INT data type
INT_OV routine, 318
Internal file names, 520
INTERROGATEHIO routine, 319
INTERROGATEIO routine, 320
INTERRUPT procedure attribute, 248, 249
INTR routine, 321
INVALID_FOR_PTAL directive, 401
IS_32BIT_ADDR routine, 321
Itanium architecture see TNS/E architecture

K
Keywords

description of, 37
in syntax diagrams, 21
nonreserved, 38
reserved, 37

L
Labeled CASE statement, 207
Labels

address types of, 169
dropping, 212
in procedures, 273

LAND operator
$ATOMIC_AND routine and, 277
$ATOMIC_DEP routine and, 279
in arithmetic expression, 72
operand types for, 76
precedence of, 71
with INT(32) operands, 76

LANGUAGE procedure attribute, 248
ld utility, 430
Least significant byte, 46
LEN routine, 322
Length parameters

in CALL statements, 206
in declarations

procedure, 247

544 Index



procedure pointer, 265
subprocedure, 258

passing conditionally, 333
Less than operator

signed (<)
in conditional expression, 83
operand types for, 84
precedence of, 71
without operands, 84

unsigned (’<’)
in conditional expression, 83
operand types for, 84
precedence of, 71
with INT(32) operands, 76
without operands, 84

Less than or equal operator
signed (<=)

in conditional expression, 83
operand types for, 84
precedence of, 71
without operands, 85

unsigned (’<=’)
in conditional expression, 83
operand types for, 84
with INT(32) operands, 76
without operands, 85

unsigned (’\<=’)
precedence of, 71

LFIX routine, 323
Libraries

user, 420
LINES directive, 401
Linking

description of, 358
Linking:cross compilers and, 429
LIST directive

description of, 402
SOURCE directive and, 418

LITERAL declarations, 97
LMAX routine, 323
LMIN routine, 324
Local GOTO statement, 215
Local scope, 43
LOCATESPTHDR routine, 324
LOCKPAGE routine, 325
Logical file names

ASSIGN command and, 522
compiler directives that accept, 368
in place of disk file names, 520

Logical operators
bitwise, 76
in arithmetic expressions, 72
with INT(32) operands, 76

longjmp() instruction, 114
Loops

FOR see FOR statement
Loops:WHILE:See WHILE statement, 214
LOR operator

$ATOMIC_DEP routine and, 279

$ATOMIC_OR routine and, 280
in arithmetic expression, 72
operand types for, 76
precedence of, 71
with INT(32) operands, 76

M
MAIN procedure attribute, 248
MAP DEFINE, 521
MAP directive, 402
MAX routine, 326
MAXALIGN attribute, 141
Maximum routines;Routines

minimum, 285
Messages, error see Error messages
MIN routine, 327
Minimum routines, 285
Minus sign (-)

as subtraction operator see Subtraction operator
as unary operator

operand types for, 73
precedence of, 70
syntax of, 72

MISALIGNLOG attribute (SCF)
misalignment handling and, 67
misalignment tracing facility and, 66

Misalignment see Address misalignment
Mnemonics, listing, 400
Modular programming, 34
Most significant byte, 46
Move statement, 218
MOVEANDCXSUMBYTES routine, 327
MOVENONDUP routine, 328
Multiplication operator

signed (*)
description of, 40
in arithmetic expression, 72
operand types for, 73
precedence of, 70

unsigned (’*’)
description of, 40
operand types for, 75
precedence of, 71
with INT(32) operands, 76

N
NAME declarations, 363
Named toggles, 370
Naming compilation units, 363
NATIVEATOMICMISALIGN attribute (SCF), 67
Nesting condition codes, 242
Next address

in move statement, 218
in RSCAN statement, 228
in SCAN statement, 228

nld utility, 430
Node names, 519
NOname directive see name directive
Nonatomic access, 67

545



Nonatomic operations, 281
Nonextended addresses, 78
Nonlocal GOTO statement, 215
Nonreserved keywords, 38
NonStop EpTAL, 426
NonStop operating systems, 31
NonStop pTAL, 426
NonStop Series see TNS architecture
NonStop Series/Itanium see TNS/E architecture
NonStop Series/RISC see TNS/R architecture
Nonstring arrays, 113
NOOVERFLOW_TRAPS procedure attribute

description of, 234
in procedure, 248, 250
in subprocedure, 257, 259

Not equal operator
signed (<>)

in conditional expression, 83
operand types for, 84
precedence of, 71
without operands, 84

unsigned (’<>’)
in conditional expression, 83
operand types for, 84
precedence of, 71
with INT(32) operands, 76
without operands, 84

NOT operator
description of, 82
condition codes and, 83
in conditional expression, 81
operand types for, 83
precedence of, 71
truth table for, 81

Null statement, 199
Numbers, converting to data addresses, 51
NUMERIC routine, 329
Numeric toggles, 370

O
OBJECT file, 358
Object files

creating, 358
generating, 357
linking, 358

Object-file content directives, 377
OCCURS routine, 330
Odd-byte references, 172, 174
OF keyword

in labeled CASE statement, 207
in unlabeled CASE statement, 209

OFFSET routine
description of, 332
structure pointers and, 175

Online help for cross compilers, 431
Operands

in arithmetic expressions, 72
scaling FIXED, 74

Operating systems, 31

Operations
See also Operators, 34
atomic

See Atomic operations, 276
bit see Bit operations
data, 34
listed by data type, 48
nonatomic

See Nonatomic operations, 281
Operators

description of, 39
AND

description of, 82
condition codes and, 83

arithmetic see Arithmetic operators
concatenation (&), 220
logical

description of, 76
in arithmetic expressions, 72

NOT
description of, 82
condition codes and, 83

OR
description of, 82
condition codes and, 83

precedence of, 70
relational see Relational operators
signed

See Signed operators, 73
unsigned

See Unsigned operators, 75
OPTIMIZE directive, 404
OPTIMIZEFILE directive, 404
Optional parameters, 333
OPTIONAL routine, 333
OR operator

description of, 82
condition codes and, 83
in conditional expression, 82
operand types for, 83
precedence of, 71
truth table for, 82

OTHERWISE keyword
in labeled CASE statement, 207
in unlabeled CASE statement, 209

OUT file option, 357
Output files, 356
Overflow

managing
generally, 234
GOTO statement and, 216

testing, 335
OVERFLOW routine

description of, 335
after assignments, 236
atomic operation that can set, 276
in nested IF statements, 243
nonatomic operations that can set, 286
returning its value to calling procedure, 245

546 Index



OVERFLOW_TRAPS directive, 406
OVERFLOW_TRAPS procedure attribute

description of, 234
in procedure, 248, 250
in subprocedure, 257, 259

P
P-relative arrays see Read-only arrays
PAGE directive, 407
Page heading, 407
PARAM routine, 336
PARAM SWAPVOL command, 522
Parameters

See also Arguments, 275
actual see Actual parameters
extended, 255
of built-in routines, 275
optional, 333
referencing, 256

Parameters:formal:See Formal parameters, 206
Parentheses

as delimiters, 38
implied decimal point and, 38
operator precedence and, 71

Partial file names
description of, 519
ASSIGN SSV command and, 523

PASCAL procedure attribute, 248
PC-to-NonStop host transfer tools, 431
Period (.)

in bit-deposit assignment statement, 204
in formal parameters, 251
in pointers

simple, 170
structure, 173

in structure item identifiers, 38
in structures

equivalenced definition, 194
referral, 141

PIC see Position-independent code (PIC)
PLATFORM parameter

description of, 118
compared to AUTO parameter, 119
FIELDALIGN clause and, 117

Plus sign (+)
as addition operator

See Addition operator, 71
as unary operator

in arithmetic expression, 72
operand types for, 73
precedence of, 70

POINT routine, 336
Pointers

description of, 34
address types stored in, 164
allocation of, 161
assignment statements with, 203
declaring

overview, 161

procedure see Procedure pointers, declaring
system global:See System global data, declaring,

pointers, 176
VOLATILE, 163

procedure see Procedure pointers
simple see Simple pointers
structure see Structure pointers
testing for nonzero values, 56

Pointers:declaring:simple:See Simple pointers, declaring,
196

Pointers:declaring:structure:See Structure pointers,
declaring, 197

Pointers:stepping;Stepping pointers, 54
POPname directive see name directive
Position-independent code (PIC), 383
Pound sign (#);# (hash mark or pound sign), 39
Precedence of operators, 70
PRINTSYM directive, 408
PRIV procedure attribute, 248
Private data area, 32
PRIVATE keyword, 364
Privileged mode, 274
Privileged routines, 281
PROC address type, 251
PROC keyword, 246
PROC(32) address type, 251
PROC32ADDR address type

description of, 165
PROC32ADDR routine, 337
PROC64ADDR routine, 338
PROCADDR address type

description of, 165
comparing to PROCPTR, 56
converting, 53
parameters of, 251
pointers of, 168

PROCADDR routine, 337
Procedure calls (CALL statement), 205
Procedure entry points, 168
Procedure pointers

description of, 263
address types of, 168
assignments to, 269
comparing to data addresses, 56
declaring

as formal parameters, 268
as variables, 266
in structures, 267

for dynamically selected procedure calls, 271
Procedure-parameter routines, 286
Procedures

description of, 32, 246
address types of, 168
as parameters, 254
attributes of, 248
bodies of, 256
C/C++, 528
callable, 274
converting from variable to extensible, 250

547



declaring, 246
dynamically selected calls to, 271
extensible, 250
EXTERNAL declaration of, 246, 247
formal parameter specification in, 251
FORWARD declaration of, 246, 247
labels in, 273
languages of, 250
main, 248
resident, 249
scope of, 43
system, 34
that return condition codes, 225, 250
typed

See Functions, 246
using hardware indicators across, 244
variable, 249
with RETURN statements, 223
with two return values, 528

PROCPTRs see Procedure pointers
PROFDIR directive, 408
PROFGEN directive, 409
Profile-guided optimization, 366
PROFUSE directive, 409
Program control statements, 199
pTAL language

applications, 31
character set for, 36
compatibility with TAL, 30
elements of, 36
features of, 32
services for, 34
syntax of see Syntax

Punctuation characters in syntax diagrams, 21
PUSHname directive:See name directive, 367

Q
Quadruplewords, 46
Question mark (?), 39
Quotation mark ("), 39

See also Single quotation mark ('), 39

R
Read-only arrays

address types of, 169
constant lists in, 113
declaring, 111

READBASELIMIT routine, 338
READCLOCK routine, 339
READSPT routine, 339
READTIME routine, 340
REAL data type

numeric constants of, 62
obtaining

with $FLTR routine, 314
with $FLTroutine, 314

parameters of, 251

REAL data type:functions that return values of;UNSIGNED
data type:functions that return values of;FIXED data
type:functions that return values of, 252

REAL(32) data type see REAL data type
REAL(64) data type

numeric constants of, 62
obtaining

with $EFLT routine, 302
with $EFLTR routine, 303

Records see Structures
Recursion, 33
Redefinitions

array, 154
pointer

simple, 158
structure, 159

rules for, 153
simple variable, 153
substructure

definition, 155
referral , 157

REFALIGNED clause
with simple equivalenced pointers, 187
with structure pointers, 134

REFALIGNED directive, 410
Referral structures, declaring

equivalenced, 195
not equivalenced, 141

Referral substructures
declaring, 146
redefining, 157

Relational operators
in conditional expressions, 83
signed

in address comparisons, 77
operand types for, 83
precedence of, 71

unsigned
in address comparisons, 77
operand types for, 84
precedence of, 71
with INT(32) operands, 76

with extended addresses, 77
with nonextended addresses, 78

Relocatable data blocks:See Global data, blocked, 362
Remainder operator (’\\’)

in arithmetic expression, 72
operand types for, 75
precedence of, 71
result types for, 75
with INT(32) and FIXED operands, 76

Reserved keywords, 37
RESETTOG directive, 411
RESIDENT procedure attribute, 248, 249
RETURN statement, 223
RETURNSCC procedure attribute

for procedures, 248, 250
for subprocedures, 257, 258

RISC see TNS/R architecture

548 Index



ROUND (default) misalignment handling method, 67
ROUND directive, 412
Rounding

expressions unaffected by, 283
ROUND directive and, 412
type-conversion routines and, 283

Routines
See also Functions, 274
address-conversion, 283
arithmetic, 285
built-in, 274
character-test, 284
maximum, 285
miscellaneous built-in, 286
procedure-parameter, 286
pTAL privileged, 281
type-conversion, 282
variable-characteristic , 285

RSCAN statement, 228
Run-time environment directives, 379

S
SAVEGLOBALS directive, 372, 413
SCALE routine, 340
Scaling FIXED values

by specifying fpoint, 74
in assignment statements, 203
with $SCALE routine, 340

SCAN statement, 228
SCF user interface

attributes of, 67
misalignment handling and, 67
misalignment tracing facility and, 66

Scope of declared items, 43
Search subvolume (SSV) command, 523
SECTION directive

description of, 414
global data blocks and, 365
SOURCE directive and, 417

Section names, 414
Segment Page Table (SPT)

address of, 324
copying an entry from, 339

Selector
in labeled CASE statement, 207
in unlabeled CASE statement, 209

Semicolon (\, 38, 199
Services

pTAL, 34
system, 34

Services:CRE;CRE services;Common run-time environment
(CRE) services, 34

setjmp() instruction, 114
SETTOG directive, 415
SGBADDR address type

description of, 165
converting, 53
parameters of, 251
pointers of, 167

SGBADDR_TO_EXTADDR routine, 341
SGBADDR_TO_SGWADDR routine, 342
SGWADDR address type

description of, 165
converting, 53
parameters of, 251
pointers of, 167

SGWADDR_TO_EXTADDR routine, 342
SGWADDR_TO_SGBADDR routine, 343
SGXBADDR address type

description of, 165
converting, 53
parameters of, 251
pointers of, 167

SGXWADDR address type
description of, 165
converting, 53
parameters of, 251
pointers of, 167

Shared code
See Position-independent code (PIC), 383

SHARED2 parameter
description of, 117, 128
FIELDALIGN clause and, 117

SHARED8 parameter
description of, 118, 129
FIELDALIGN clause and, 117

Shifting bits
description of, 94
precedence of operators for, 70

Short-circuit expression evaluation, 83
SIGILL signal (signal #4), 67
Signed operators

arithmetic, 73
bit shift, 70
relational, 83

Simple pointers
description of, 161
addresses in, 174
as parameters, 254
declaring

equivalenced, 183
not equivalenced, 170

equivalenced, 183
initializing, 172
redefining, 158
using, 149
VOLATILE, 163
within structures, 148

Simple variables
as parameters, 254
data type of, 345
declaring

equivalenced, 182
not equivalenced, 103

equivalenced, 193
length of

in bits, 295
in bytes, 322

549



redefining, 153
within structures, 142

Single quotation mark ('), 39
sINT, 274
Slash (⁄) see Division operator
Smear operation, 222, 308
Source code listing, 402
SOURCE directive

description of, 416
global data blocks and, 365
NOLIST directive and, 418
system procedure declarations and, 419

Source files
checking syntax of, 422
compiling, 355
listing, 402

Spacing rules in syntax diagrams, 21
Special expressions, 85
SPECIAL routine, 343
SPT , 324
SPT (Segment Page Table)

address of, 324
copying an entry from, 339

SQL/MP or SQL/MX in pTAL, 32
Square brackets (\[ \]), 38
SRL directive, 420
STACK_ALLOCATE routine, 344
Stacks, directive

See Directive stacks, 369
Standard functions see Built-in routines
Statements

categories of, 199
compound see Compound statements
null , 199
role in program, 45

Static T flag, 234
Storage units, 46
STRING data type

functions that return values of, 252
numeric constants of, 58
parameters of

actual:passed conditionally, 334
actual:passed unconditionally, 206
formal:for procedure pointers, 265
formal:for procedures, 247, 251, 252
formal:for subprocedures, 251, 252, 258

STRUCT data type, 251, 252, 255
STRUCT keyword

in structures
definition, 138
referral, 141
template, 139

in substructures
definition: redefined, 155
definition:not redefined, 144
referral:not redefined, 146
referral:redefined, 157

STRUCTALIGN (MAXALIGN) attribute, 137, 140
STRUCTALIGN clause, 141

Structure items
arrays, 143
filler bits or bytes, 147
offsets of

in bits, 296
in bytes, 332

pointers
simple, 148
structure, 151

procedure pointers as, 263
simple variables, 142
substructures

definition, 144
referral, 146

Structure pointers
description of, 161
addresses in, 174
as parameters, 254
declaring, 173
initializing, 174
redefining, 159
reference alignment with, 134
VOLATILE, 164
within structures, 151

Structures
description of, 114
alignment of

description of, 116
arrays in, 122
base, 119
fields of, 117
in depth, 123

as parameters, 254, 255
data type of, 345
declaring

definition:equivalenced, 194
definition:not equivalenced, 138
referral:equivalenced, 195
referral:not equivalenced, 141
template, 139

items within see Structure items
layout of, 115
length of

in bits, 295
in bytes, 322

maximum nesting levels in, 115
number of occurrences of, 330
redefining, 153

Sublocal declarations, 259
Sublocal scope, 43
SUBPROC keyword, 257
Subprocedure entry points, 169
Subprocedures

See also Functions, 246
description of, 32
address types of, 169
bodies of, 259
declaring, 257
formal parameter specification in, 251

550 Index



FORWARD declaration of, 259
sublocal declarations in, 259
that return condition codes, 258
variable, 258
with RETURN statements, 223

Substructures
alignment of, 124
data type of, 345
declaring

definition, 144
referral, 146

length of
in bits, 295
in bytes, 322

number of elements of, 330
redefining

definition, 155
referral, 157

Subsystem Control Facility see SCF user interface
Subtraction operator

signed (-)
in arithmetic expression, 72
operand types for, 73
precedence of, 71

unsigned (’-’)
in arithmetic expression, 72
operand types for, 75
precedence of, 71
result types for, 75
with INT(32) operands, 76

Subvolume names, 519
SUPPRESS directive, 420
Swap volume, 522
SWAPVOL command, 522
SYMBOLS directive, 421
Syntax

checking, 422
conventions for, 20
summary of, 432

SYNTAX directive, 422
System clock setting, 339
System global data

See also Global data, 362
declaring

equivalenced, 193
pointers, 176

pointers to, 167
System names, 519
System procedures

description of, 34
SOURCE directive and, 419

System services, 34

T
TACL commands see HP TACL commands
TACL DEFINE tool, 431
TAL

compatibility with pTAL, 30
procedures that return two values, 528

TARGET directive, 423
Target file option, 358
Template structures, declaring, 139
Temporary files, 522
Temporary variables

creating, 232
dropping, 212

THEN keyword, 217
TNS architecture RVUs;TNS/R architecture RVUs;TNS/E

architecture RVUs, 31
TNS/R native mode, 67
TNSMISALIGN attribute (SCF), 67
TO keyword, 212
Toggles

description of, 370
turning off, 411
turning on , 415

Tracing facility, 66
Transfer Tool, 431
Traps, managing

generally, 234
GOTO statement and, 216

TRIGGER routine, 345
TYPE routine, 345
Type-conversion routines, 282
Typed procedures see Functions

U
UDBL routine, 346
UDIVREM16 routine, 347
UDIVREM32 routine, 348
UFIX routine, 349
uINT, 274
Unlabeled CASE statement, 209
UNLOCKPAGE routine, 349
UNSIGNED data type

parameters of, 251
Unsigned operators

arithmetic, 75
bit shift, 70
relational, 84

UNSPECIFIED procedure attribute, 248
UNTIL keyword

in DO statement, 210
in RSCAN statement, 228
in SCAN statement, 228

USE statement, 232
USEGLOBALS directive

description of, 423
SAVEGLOBALS and BEGINCOMPILATION and, 373
SOURCE directive and, 419

User library, 420

V
VARIABLE procedure attribute

for procedures, 248, 249
for subprocedures, 257, 258

Variable-characteristic routines, 285
VARIABLE-to-EXTENSIBLE procedure conversions, 250

551



Variables
description of, 43
equivalenced see Equivalenced variables
FIXED, 74
procedure pointers as, 263
scope of, 43
simple see Simple variables
storing data addresses in, 51
temporary

creating, 232
dropping, 212

types of, 43
Visual Studio .NET, 426
VOLATILE pointers

simple, 163
structure, 164

VOLATILE procedure attribute, 138
Volume names, 519

W
WADDR address type

description of, 165
converting, 53
parameters of, 251
pointers of, 167

WADDR_TO_BADDR routine, 350
WADDR_TO_EXTADDR routine, 350
WARN directive, 424
Warning messages, 424
WHILE keyword

in RSCAN statement, 228
in SCAN statement, 228
in WHILE statement, 232

WHILE statement
description of, 232
hardware indicators in, 240

Words, 46
WRITEPTE routine, 351

X
XADR routine, 352
XADR32 routine, 352
XADR64 routine, 353
XOR operator

in arithmetic expression, 72
operand types for, 76
precedence of, 71
with INT(32) operands, 76

Z
ZZBInnnn target file, 358

552 Index




	HP pTAL Reference Manual
	Legal Notice
	Contents
	About This Document
	Supported Release Version Updates (RVUs)
	Intended Audience
	New and Changed Information
	New and Changed Information for 523746–009
	New and Changed Information for 523746–008
	New and Changed Information for 523746–007

	Document Organization
	Notation Conventions
	Syntax Diagram Conventions
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces

	Related Information
	Publishing History
	HP Encourages Your Comments

	1 Introduction to pTAL
	pTAL and TAL Compatibility
	EpTAL, pTAL, and TAL Compilers
	pTAL Applications
	pTAL Features
	Procedures
	Subprocedures
	Private Data Area
	Recursion
	Parameters
	Data Types
	Data Grouping
	Pointers
	Data Operations
	Bit Operations
	Built-in Routines
	Compiler Directives
	Modular Programming

	System Services
	System Procedures
	pTAL and the CRE

	2 Language Elements
	Character Set
	Keywords
	Delimiters
	Operators
	Base Address Symbols
	Indirection Symbols
	Declarations
	Identifiers
	Variables
	Scope

	Typed Integer Constants
	Statements

	3 Data Representation
	Data Types
	Specifying Data Types
	Data Type Aliases
	Operations by Data Type

	Address Types
	Storing Addresses in Variables
	Converting Between Address Types and Numeric Data Types
	Converting Between Address Types
	Using Indexes to Access Array Elements
	Incrementing and Decrementing Addresses (Stepping Pointers)
	Using Arithmetic Operations to Adjust Addresses
	Computing the Number of Bytes Between Addresses
	Comparing Addresses to Addresses
	Comparing Addresses to Constants
	Comparing Procedure Addresses and Procedure Pointers
	Testing a Pointer for a Nonzero Value


	Constants
	Character String
	Initializations
	Assignments

	STRING Numeric
	INT Numeric
	INT(32) Numeric
	FIXED Numeric
	REAL and REAL(64) Numeric
	Constant Lists
	Constant List Alignment Specification


	4 Data Alignment
	Misalignment Tracing Facility
	Misalignment Handling

	5 Expressions
	Data Types of Expressions
	Operator Precedence
	Arithmetic Expressions
	Signed Arithmetic Operators
	Scaling of FIXED Operands
	Using FIXED(*) Variables

	Unsigned Arithmetic Operators
	Bitwise Logical Operators
	Using Bitwise Logical Operators and INT(32) Operands

	Comparing Addresses
	Extended Addresses
	Nonextended Addresses

	Constant Expressions
	Conditional Expressions
	NOT, OR, and AND Operators
	Evaluating NOT, OR, and AND Operations
	NOT, OR, and AND Operators and Condition Codes

	Relational Operators
	Signed Relational Operators
	Unsigned Relational Operators


	Special Expressions
	Assignment
	CASE
	IF
	Group Comparison
	Changing the Data Type of the Data
	Testing Group Comparisons


	Bit Operations
	Bit Extractions
	Bit Shifts


	6 LITERALs and DEFINEs
	Declaring Literals
	Declaring DEFINEs
	Calling DEFINEs
	How the Compiler Processes DEFINEs
	Passing Actual Parameters to DEFINEs

	7 Simple Variables
	Declaring Simple Variables
	Specifying Simple Variable Address Types
	Initializing Simple Variables With Numbers
	Initializing Simple Variables With Character Strings
	Examples

	8 Arrays
	Declaring Arrays
	Declaring Read-Only Arrays
	Using Constant Lists in Array Declarations
	Read-Only Arrays
	Nonstring Arrays



	9 Structures
	Structure Layout
	Overview of Structure Alignment
	Structures Aligned at Odd-Byte Boundaries

	Overview of Field Alignment
	SHARED2
	SHARED8
	PLATFORM
	AUTO
	Differences Between PLATFORM and AUTO

	Field and Base Alignment
	Base Alignment
	Structure Alignment Examples

	Array Alignment in Structures
	Structure Alignment
	Substructure Alignment
	Alignment Considerations for Substructures
	FIELDALIGN Clause
	FIELDALIGN Compiler Directive
	SHARED2 Parameter
	SHARED8 Parameter
	Alignment of Fields
	Optimizing Structure Layouts
	Structure Length
	Alignment of UNSIGNED(17‑31) Fields

	Reference Alignment With Structure Pointers
	REFALIGNED Clause
	Default Reference Alignment
	REFALIGNED(2)
	REFALIGNED(8)
	Code Generation for Structure References

	STRUCTALIGN (MAXALIGN) Attribute
	VOLATILE Attribute
	Declaring Definition Structures
	Declaring Template Structures
	Declaring Referral Structures
	Declaring Simple Variables in Structures
	Declaring Arrays in Structures
	Declaring Substructures
	Definition Substructures
	Referral Substructures

	Declaring Filler
	Declaring Simple Pointers in Structures
	Using Simple Pointers
	Assigning Addresses to Pointers in Structures

	Declaring Structure Pointers in Structures
	Declaring Redefinitions
	Simple Variable
	Array
	Definition Substructure
	Referral Substructure
	Simple Pointer
	Structure Pointer


	10 Pointers
	Overview of Pointer Declaration
	Declaring VOLATILE Pointers
	Simple
	Structure

	Address Types
	BADDR and WADDR
	SGBADDR, SGWADDR, SGXBADDR, and SGXWADDR (System Globals)
	PROCADDR, PROC32ADDR, and PROC64ADDR (Procedures, Procedure Pointers, and Procedure Entry Points)
	Subprocedures, Subprocedure Entry Points, Labels, and Read-Only Arrays (CBADDR and CWADDR Address Types)
	EXTADDR, EXT32ADDR, and EXT64ADDR (Extended Addresses)

	Declaring Simple Pointers
	Initializing Simple Pointers
	Declaring Structure Pointers
	Initializing Structure Pointers
	Declaring System Global Pointers

	11 Equivalenced Variables
	Declaring Equivalenced Variables
	Memory Allocation
	Declaring Nonstructure Equivalenced Variables
	Memory Usage for Nonstructured Equivalenced Variables
	Equivalenced Arrays
	Indirect Arrays
	Equivalenced Simple Variables
	Equivalenced Simple Pointers
	Using Equivalenced Simple Pointers
	REFALIGNED Clause for Equivalenced Simple Pointers


	Equivalencing Procedure Addresses (PROCADDR, PROC32ADDR, and PROC64ADDR) and Pointer Variables (PROCPTR, PROC32PTR, and PROC64PTR)
	Declaring Equivalenced Definition Structures
	Structure Variants
	Memory Usage for Structured Equivalenced Variables
	FIELDALIGN Clause

	System Global Equivalenced Variable Declarations
	Equivalenced Simple Variable
	Equivalenced Definition Structure
	Equivalenced Referral Structure
	Equivalenced Simple Pointer
	Equivalenced Structure Pointer


	12 Statements
	Using Semicolons in Statements
	Compound Statements
	ASSERT
	Assignment
	Pointer Assignment
	Assigning Numbers to FIXED Variables
	Assigning Character Strings
	Examples

	Bit-Deposit Assignment
	CALL
	CASE
	Empty CASE
	Labeled CASE
	Unlabeled CASE

	DO-UNTIL
	DROP
	Dropping Labels
	Dropping Temporary Variables

	FOR
	Nested
	Standard
	Optimized

	GOTO
	Local
	Nonlocal
	GOTO and Target Statements With Different Trapping States

	IF
	Testing Address Types
	Testing Hardware Indicators

	Move
	Destination Shorter Than Source
	$FILL8, $FILL16, and $FILL32 Statements
	RETURN
	Functions
	Procedures and Subprocedures
	Condition Codes

	SCAN and RSCAN
	Determining What Stopped a Scan
	Extended Pointers
	Crossing Variable Boundaries
	Data Layout Considerations
	Data Passed to Procedures in Reference Parameters

	P-Relative Arrays

	USE
	WHILE

	13 Hardware Indicators
	Managing Overflow Traps
	[NO]OVERFLOW_TRAPS Procedure Attribute
	[EN|DIS]ABLE_OVERFLOW_TRAPS Block Attribute

	Hardware Indicators After Assignments
	$OVERFLOW
	$CARRY
	Condition Codes
	When Condition Codes Are Accessible
	When Condition Codes Are Not Accessible


	Hardware Indicators in Conditional Expressions
	Nesting Condition Code Tests
	Using Hardware Indicators Across Procedures
	Testing a Hardware Indicator Set in the Calling Procedure
	Returning a Condition Code to the Calling Procedure
	Returning the Value of $OVERFLOW or $CARRY to the Calling Procedure


	14 Procedures, Subprocedures, and Procedure Pointers
	Procedure Declarations
	Procedure Attributes
	Parameters and VARIABLE and EXTENSIBLE Procedures
	VARIABLE, EXTENSIBLE and RETURNSCC Procedures as Actual Parameters

	Formal Parameter Specification
	Using STRUCT as a Formal Parameter
	Passing an Extended Address Parameter to a Non-EXTENDED Reference Parameter
	Using the PROC Formal Parameter
	Referencing Parameters

	Procedure Body
	Subprocedure Declarations
	Subprocedure Body
	Entry-Point Declarations
	Procedure Entry-Point Identifiers
	Subprocedure Entry-Point Identifiers

	Procedure Pointers
	Declaring Procedure Pointer Variables
	Declaring Procedure Pointers in Structures
	Declaring PROCPTRs as Formal Parameters
	Assignments to Procedure Pointers
	Dynamically Selected Procedure Calls

	Labels in Procedures

	15 Built-In Routines
	Privileged Mode
	Parameters
	Addresses as Parameters
	Expressions as Parameters

	Hardware Indicators
	Atomic Operations
	$ATOMIC_ADD
	$ATOMIC_AND
	$ATOMIC_DEP
	$ATOMIC_GET
	$ATOMIC_OR
	$ATOMIC_PUT

	Nonatomic Operations
	pTAL Privileged Routines
	Type-Conversion Routines
	Address-Conversion Routines
	Character-Test Routines
	Minimum and Maximum Routines
	Arithmetic Routines
	Carry and Overflow Routines
	FIXED-Expression Routines
	Variable-Characteristic Routines
	Procedure-Parameter Routines
	Miscellaneous Routines
	$ABS
	$ALPHA
	$ASCIITOFIXED
	$AXADR
	$BADDR_TO_EXTADDR
	$BADDR_TO_WADDR
	$BITLENGTH
	$BITOFFSET
	$CARRY
	$CHECKSUM
	$COMP
	$COUNTDUPS
	$DBL
	$DBLL
	$DBLR
	$DFIX
	$EFLT
	$EFLTR
	$EXCHANGE
	$EXECUTEIO
	$EXTADDR_TO_BADDR
	$EXTADDR_TO_WADDR
	$EXT64ADDR_TO_EXTADDR
	$EXT64ADDR_TO_EXT32ADDR
	$EXT64ADDR_TO_EXT32ADDR_OV
	$EXTADDR_TO_EXT64ADDR
	$FILL8, $FILL16, and $FILL32
	$FIX
	$FIXD
	$FIXED0_TO_EXT64ADDR
	$FIXEDTOASCII
	$FIXEDTOASCIIRESIDUE
	$FIXI
	$FIXL
	$FIXR
	$FLT
	$FLTR
	$FREEZE
	$HALT
	$HIGH
	$IFIX
	$INT
	$INT_OV
	$INTERROGATEHIO
	$INTERROGATEIO
	$INTR
	$IS_32BIT_ADDR
	$LEN
	$LFIX
	$LMAX
	$LMIN
	$LOCATESPTHDR
	$LOCKPAGE
	$MAX
	$MIN
	$MOVEANDCXSUMBYTES
	$MOVENONDUP
	$NUMERIC
	$OCCURS
	$OFFSET
	$OPTIONAL
	$OVERFLOW
	$PARAM
	$POINT
	$PROCADDR
	$PROC32ADDR
	$PROC64ADDR
	$READBASELIMIT
	$READCLOCK
	$READSPT
	$READTIME
	$SCALE
	$SGBADDR_TO_EXTADDR
	$SGBADDR_TO_SGWADDR
	$SGWADDR_TO_EXTADDR
	$SGWADDR_TO_SGBADDR
	$SPECIAL
	$STACK_ALLOCATE
	$TRIGGER
	$TYPE
	$UDBL
	$UDIVREM16
	$UDIVREM32
	$UFIX
	$UNLOCKPAGE
	$WADDR_TO_BADDR
	$WADDR_TO_EXTADDR
	$WRITEPTE
	$XADR
	$XADR32
	$XADR64


	16 Compiling and Linking pTAL Programs
	Compiling Source Files
	Input Files
	Output Files
	Running the Compiler
	IN File Option
	OUT File Option
	HP TACL Run Options
	Target File Option

	Completion Codes Returned by the Compiler

	Linking Object Files
	Creating a Dynamic Linked Library (DLL)
	Compiling With Global Data Blocks
	Declaring Global Data
	Naming Compilation Units
	Declaring Named Data Blocks
	Declaring Private Data Blocks
	Declaring Unblocked Data

	Allocating Global Data Blocks
	Address Assignments
	Sharing Global Data Blocks

	Compiling With Saved Global Data
	Using the Code Profiling Utilities

	17 Compiler Directives
	Specifying Compiler Directives
	Compilation Command
	Directive Line
	Rules for directive lines:
	Rules for continuation lines:


	File Names as Compiler Directive Arguments
	Directive Stacks
	Pushing Directive Settings
	Popping Directive Settings
	Example

	Toggles
	Named Toggles
	Numeric Toggles
	Examples

	Saving and Using Global Data Declarations
	Saving Global Data Declarations
	Retrieving Global Data Declarations
	Examples
	Migrating from TNS/R to TNS/E

	Summary of Compiler Directives
	ASSERTION
	BASENAME
	BEGINCOMPILATION
	BLOCKGLOBALS
	CALL_SHARED
	CHECKSHIFTCOUNT
	CODECOV
	COLUMNS
	DEFEXPAND
	DEFINETOG
	DO_TNS_SYNTAX
	ENDIF
	ERRORFILE
	ERRORS
	EXPORT_GLOBALS
	__EXT64
	FIELDALIGN
	FMAP
	GLOBALIZED
	GMAP
	GP_OK
	IF and IFNOT
	INNERLIST
	INVALID_FOR_PTAL
	LINES
	LIST
	MAP
	OPTIMIZE
	OPTIMIZEFILE
	OVERFLOW_TRAPS
	PAGE
	PRINTSYM
	PROFDIR
	PROFGEN
	PROFUSE
	REFALIGNED
	RESETTOG
	ROUND
	SAVEGLOBALS
	SECTION
	SETTOG
	SOURCE
	Section Names
	Nesting Levels
	Effect of Other Directives
	COLUMNS
	LIST and NOSUPPRESS
	NOLIST
	USEGLOBALS and BEGINCOMPILATION (pTAL Compiler Only)

	Including System Procedure Declarations
	Examples

	SRL
	SUPPRESS
	SYMBOLS
	SYNTAX
	TARGET
	USEGLOBALS
	WARN

	18 pTAL Cross Compiler
	NonStop pTAL (ETK)
	pTAL or EpTAL (PC Command Line)
	Compilation and Linking
	Debugging
	Tools and Utilities
	NonStop ar Utility
	TACL DEFINE Tool (ETK)
	PC-to-NonStop-Host Transfer Tools
	ETK
	PC Command Line


	Documentation

	A Syntax Summary
	Data Types
	Constants
	Character String
	STRING Numeric
	INT Numeric
	INT(32) Numeric
	FIXED Numeric
	REAL and REAL(64) Numeric
	Constant List

	Expressions
	Arithmetic
	Conditional
	Assignment
	CASE
	IF
	Group Comparison
	Bit Extraction
	Bit Shift

	Declarations
	LITERAL
	DEFINE
	Simple Variable
	Array
	Read-Only Array
	Structures
	Definition Structure
	Template Structure
	Referral Structure
	Simple Variables Declared in Structure
	Arrays Declared in Structure
	Definition Substructure
	Referral Substructure
	Filler in Structure
	Simple Pointers Declared in Structure
	Structure Pointers Declared in Structure

	Redefinition
	Simple Variable
	Array
	Definition Substructure
	Referral Substructure
	Simple Pointer
	Structure Pointer

	Pointer
	Simple
	Structure
	System Global

	Equivalenced Variable
	Nonstructure
	Simple Variable
	Simple Pointer
	Definition Structure
	'SG'-Equivalenced Simple Variable
	'SG'-Equivalenced Definition Structure
	'SG'-Equivalenced Referral Structure
	'SG'-Equivalenced Simple Pointer
	'SG'-Equivalenced Structure Pointer

	Procedure and Subprocedure
	Procedure
	Subprocedure
	Formal Parameters
	Entry Point
	Label
	Procedure Pointer


	Statements
	Compound
	ASSERT
	Assignment
	Bit Deposit Assignment
	CALL
	Labeled CASE
	Unlabeled CASE
	DO-UNTIL
	DROP
	FOR
	GOTO
	IF
	Move
	RETURN
	SCAN and RSCAN
	USE
	WHILE

	Overflow Traps
	OVERFLOW_TRAPS Directive
	[EN|DIS]ABLE_OVERFLOW_TRAPS Block Attribute

	Built-in Routines
	Atomic
	$ATOMIC_ADD
	$ATOMIC_AND
	$ATOMIC_DEP
	$ATOMIC_GET
	$ATOMIC_OR
	$ATOMIC_PUT

	Nonatomic
	$ABS
	$ALPHA
	$ASCIITOFIXED
	$AXADR
	$BADDR_TO_EXTADDR
	$BADDR_TO_WADDR
	$BITLENGTH
	$BITOFFSET
	$CARRY
	$CHECKSUM
	$COMP
	$COUNTDUPS
	$DBL
	$DBLL
	$DBLR
	$DFIX
	$EFLT
	$EFLTR
	$EXCHANGE
	$EXECUTEIO
	$EXTADDR_TO_BADDR
	$EXTADDR_TO_WADDR
	$EXT64ADDR_TO_EXTADDR
	$EXT64ADDR_TO_EXT32ADDR
	$EXT64ADDR_TO_EXT32ADDR_OV
	$EXTADDR_TO_EXT64ADDR
	$FILL8, $FILL16, and $FILL32
	$FIX
	$FIXD
	$FIXED0_TO_EXT64ADDR
	$FIXEDTOASCII
	$FIXEDTOASCIIRESIDUE
	$FIXI
	$FIXL
	$FIXR
	$FLT
	$FLTR
	$FREEZE
	$HALT
	$HIGH
	$IFIX
	$INT
	$INT_OV
	$INTERROGATEHIO
	$INTERROGATEIO
	$INTR
	$IS_32BIT_ADDR
	$LEN
	$LFIX
	$LMAX
	$LMIN
	$LOCATESPTHDR
	$LOCKPAGE
	$MAX
	$MIN
	$MOVEANDCXSUMBYTES
	$MOVENONDUP
	$NUMERIC
	$OCCURS
	$OFFSET
	$OPTIONAL
	$OVERFLOW
	$PARAM
	$POINT
	$PROCADDR
	$PROC32ADDR
	$PROC64ADDR
	$READBASELIMIT
	$READCLOCK
	$READSPT
	$READTIME
	$SCALE
	$SGBADDR_TO_EXTADDR
	$SGBADDR_TO_SGWADDR
	$SGWADDR_TO_EXTADDR
	$SGWADDR_TO_SGBADDR
	$SPECIAL
	$STACK_ALLOCATE
	$TRIGGER
	$TYPE
	$UDBL
	$UDIVREM16
	$UDIVREM32
	$UFIX
	$UNLOCKPAGE
	$WADDR_TO_BADDR
	$WADDR_TO_EXTADDR
	$WRITEPTE
	$XADR
	$XADR32
	$XADR64


	Compiler Directives
	Directive Line
	ASSERTION
	BASENAME
	BEGINCOMPILATION
	BLOCKGLOBALS
	CALL_SHARED
	CHECKSHIFTCOUNT
	CODECOV
	COLUMNS
	DEFEXPAND
	DEFINETOG
	DO_TNS_SYNTAX
	ENDIF
	ERRORFILE
	ERRORS
	EXPORT_GLOBALS
	__EXT64
	FIELDALIGN
	FMAP
	GLOBALIZED
	GMAP
	GP_OK
	IF, IFNOT, and ENDIF
	INNERLIST
	INVALID_FOR_PTAL
	LINES
	LIST
	MAP
	OPTIMIZE
	OPTIMIZEFILE
	OVERFLOW_TRAPS
	PAGE
	PRINTSYM
	PROFDIR
	PROFGEN
	PROFUSE
	REFALIGNED
	RESETTOG
	ROUND
	SAVEGLOBALS
	SECTION
	SETTOG
	SOURCE
	SRL
	SUPPRESS
	SYMBOLS
	SYNTAX
	TARGET
	USEGLOBALS
	WARN


	B Disk File Names and HP TACL Commands
	Disk File Names
	Parts of a Disk File Name
	Node or System Name
	Volume Name
	Subvolume Name
	File ID

	Partial File Names
	Logical File Names
	Internal File Names

	HP TACL Commands
	DEFINE
	Substituting File Names for DEFINE Macros
	DEFINE Names
	MAP DEFINE (Guardian Platforms Only)
	TAPE DEFINE (D‑Series Systems Only)
	SPOOL DEFINE
	DEFAULTS DEFINE

	PARAM SWAPVOL
	ASSIGN
	Ordinary ASSIGN Command
	ASSIGN SSV



	C Differences Between the pTAL and EpTAL Compilers
	General
	Data Types and Alignment
	Routines
	Compiler Directives

	D RETURN, RETURNSCC, and C/C++ on TNS/E
	E 64-bit Addressing Functionality
	Address Types
	EXT32ADDR
	EXT64ADDR
	PROC32ADDR
	PROC64ADDR

	Procedure Pointer Types
	PROC32PTR
	PROC64PTR

	Indirection Symbols
	.EXT32
	.EXT64

	Built-in Routines
	$EXT64ADDR_TO_EXTADDR
	$EXT64ADDR_TO_EXT32ADDR
	$EXT64ADDR_TO_EXT32ADDR_OV
	$EXTADDR_TO_EXT64ADDR
	$FIXED0_TO_EXT64ADDR
	$FIX
	$IS_32BIT_ADDR
	$PROCADDR
	$PROC32ADDR
	$PROC64ADDR
	$UFIX
	$XADR
	$XADR32
	$XADR64

	Implicitly Defined Compilation Toggle __EXT64
	Directives
	__EXT64
	DEFINETOG, RESETTOG, and SETTOG
	IF and IFNOT

	Implicit Address Conversions

	Index

