
Spooler Programmer’s
Guide
Abstract

This manual describes the Spooler subsystem, its uses, and its applications. This
guide is intended for application programmers who want to use the Spooler interface
procedures to spool data programmatically.

Product Version

Spooler D48, H01, and H02

Supported Releases

This manual supports D48.03, G06.15, and H06.03 and all subsequent release version
updates until otherwise indicated in a new edition.

Part Number Published

522287-002 August 2012

Document History
Part Number Product Version Published

106813 Spooler D41 January 1995

103190 Spooler D41 July 1997

135720 Spooler D41 August 1997

522287-001 Spooler D48 August 2002

522287-002 Spooler D48, H01, and H02 August 2012

Legal Notices
© Copyright 2012 Hewlett-Packard Development Company, L.P.

Legal Notice

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial

Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc. OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE
OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for incidental consequential damages in connection with the
furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. The OSF documentation and the OSF
software to which it relates are derived in part from materials supplied by the following:© 1987, 1988,
1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.

© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc. ©
1987, 1988, 1989, 1990, 1991

Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992 International Business
Machines Corporation. © 1988, 1989 Massachusetts Institute of Technology. © 1988, 1989, 1990 Mentat
Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990, 1991, 1992 SecureWare, Inc. © 1990,
1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. ©
1989,1990, 1991 Transarc Corporation.OSF software and documentation are based in part on the
Fourth Berkeley Software Distribution under license from The Regents of the University of California.
OSF acknowledges the following individuals and institutions for their role in its development: Kenneth
C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert
Elz. © 1980, 1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Spooler Programmer’s Guide
Index Examples Figures Tables
Legal Notices

What’s New in This Manual vii

Manual Information vii

New and Changed Information vii

About This Manual ix

Who Should Use This Manual ix

How This Manual Is Organized x

Related Manuals xi

HP Encourages Your Comments xi

Notation Conventions xii

1. Introduction to the Spooler Subsystem
Spooler and Spooler Plus Comparison 1-2

Spooler Features 1-2

Spooler Components 1-3

Spooler Supervisor 1-3

Collector 1-3

Print Processes 1-3

Perusal Processes 1-3

Spoolcom 1-4

Disk Files Maintained by the Spooler 1-6

Multiple Spoolers 1-6

Spooler States 1-7

Spooling From an Application Program 1-9

Data Compression 1-9

Job States While Spooling From a Program 1-10

Collectors 1-10

Collector Attributes 1-10

Collector States 1-11

Unit Size 1-12

Print Processes 1-13
 Hewlett-Packard Company—522287-002
i

Contents 1. Introduction to the Spooler
Subsystem (continued)
Print Process Attributes 1-13

1. Introduction to the Spooler Subsystem (continued)
Print Process States 1-14

Independent Print Processes 1-15

Devices 1-16

Device Attributes 1-16

Device States 1-19

Declaring and Initializing Devices 1-20

Virtual Devices 1-21

Device Ownership 1-21

Device Queues 1-21

Routing Structure 1-22

Locations 1-22

Connecting Devices and Locations 1-22

Jobs 1-23

Job Attributes 1-23

Job States 1-24

Job Numbers 1-25

Occurrences of Jobs 1-25

Controlling Jobs 1-26

The Spooler and Batch Jobs 1-26

2. Using the Spooler Interface Procedures
External Declarations for Spooler Interface Procedures 2-2

Levels of Spooling From an Application Program 2-2

Opening a File to a Collector 2-3

Summary of Spooling From an Application Program 2-4

COBOL Spooling 2-14

COBOL Spooling—Level 1 2-14

COBOL Spooling—Levels 2 and 3 2-14

Spooling From a NonStop Process Pair 2-17

Use of Sync Depth 2-17

Spooling—Levels 1 and 2 2-17

Spooling—Level 3 2-25
Spooler Programmer’s Guide—522287-002
ii

Contents 3. Using the Spooler Print Procedures, Print
Processes, and Perusal Processes
3. Using the Spooler Print Procedures, Print Processes, and
Perusal Processes
Print and Perusal Processes 3-1

Summary of Print Procedures 3-1

How the Print Process Handles a Job 3-2

External Declarations for Print Procedures 3-3

Writing a Print Process 3-3

Print Process Startup Message 3-4

Retrieving and Printing Spooled Data 3-4

Communicating With the Spooler Supervisor 3-5

Device Errors 3-6

PRINTREAD Errors 3-7

Combining Data Retrieval With Spooler Communication 3-8

Debugging Print Processes 3-8

Writing a Perusal Process 3-9

Outline of the Basic Perusal Process 3-10

4. Spooler Procedure Calls
PRINTCOMPLETE[2] Procedure 4-3

Considerations 4-3

Example 4-4

PRINTINFO Procedure 4-5

Considerations 4-6

PRINTINIT[2] Procedure 4-7

Considerations 4-8

PRINTREAD Procedure 4-9

Considerations 4-10

Example 4-11

PRINTREADCOMMAND Procedure 4-12

Considerations 4-15

Example 4-16

PRINTSTART[2] Procedure 4-17

Considerations 4-18

PRINTSTATUS[2] Procedure 4-19

Considerations 4-21

Example 4-22

SPOOLBATCHNAME Procedure 4-23

Considerations 4-23

SPOOLCONTROL Procedure 4-24
Spooler Programmer’s Guide—522287-002
iii

Contents 4. Spooler Procedure Calls (continued)
4. Spooler Procedure Calls (continued)
Considerations 4-25

SPOOLCONTROLBUF Procedure 4-26

Considerations 4-27

Example 4-27

SPOOLEND Procedure 4-28

Considerations 4-29

Example 4-29

SPOOLERCOMMAND Procedure 4-30

SPOOLERCOMMAND Procedure and Subcommand Parameters 4-32

Considerations 4-40

Example 4-41

SPOOLEREQUEST[2] Procedure 4-42

Considerations 4-43

SPOOLERSTATUS2 Procedure 4-44

Considerations 4-46

Obtaining the Spooler Statistics and Status 4-46

SPOOLJOBNUM Procedure 4-60

Considerations 4-60

Example 4-61

SPOOLSETMODE Procedure 4-62

Considerations 4-63

Example 4-63

SPOOLSTART Procedure 4-64

Considerations 4-67

SPOOLWRITE Procedure 4-69

Considerations 4-70

Example 4-70

A. Sample Print Process

B. Sample Perusal Process

C. Spooler-Related Errors
Interface Errors C-1

File-System Errors C-3

Spooler Utility Errors C-6

Print Procedure Errors C-10
Spooler Programmer’s Guide—522287-002
iv

Contents Index
Index

Examples
Example 2-1. Annotated Example of Level-1 Spooling 2-6

Example 2-2. Annotated Example of Level-2 Spooling 2-8

Example 2-3. Annotated Example of Level-3 Spooling 2-11

Example 2-4. Example of Spooling From COBOL 2-15

Example 2-5. Annotated Example of Level-1 Spooling From a NonStop Process Pair
With a Zero Sync Depth 2-18

Example 2-6. Annotated Example of Level-2 Spooling From a NonStop Process Pair
With a Nonzero Sync Depth 2-21

Example 2-7. Annotated Example of Level-3 Spooling From a NonStop Process Pair
With a Zero Sync Depth 2-27

Example 2-8. Annotated Example of Level-3 Spooling From a NonStop Process Pair
With a Nonzero Sync Depth 2-31

Figures
Figure 1-1. Components of the Spooler 1-5

Figure 1-2. Spooler Life Cycle 1-7

Figure 1-3. Collector States 1-11

Figure 1-4. Print Process States 1-14

Figure 1-5. Device States 1-19

Figure 1-6. Job States 1-24

Figure 1-7. How the Spooler Determines Which Jobs Are to Be Batched 1-27

Figure 2-1. Buffer Overflow Logic 2-26

Figure 4-1. Spooler Ready List 4-55

Tables
Table i. Contents x

Table 1-1. Spooler Processes and Procedures 1-3

Table 1-2. Default Attributes for Jobs 1-9

Table 1-3. Collector Attributes 1-11

Table 1-4. Spoolcom PRINT Subcommands and Print Process Default
Values 1-13

Table 1-5. Device Attributes 1-17

Table 1-6. Location Attributes 1-22

Table 1-7. Job Attributes 1-23

Table 2-1. Summary of Spooler Interface Procedures 2-1

Table 3-1. Summary of Print Procedures 3-2

Table 3-2. Startup Message From the Spooler Supervisor 3-4
Spooler Programmer’s Guide—522287-002
v

Contents Tables (continued)
Tables (continued)
Table 4-1. Summary of Spooler and Print Procedures 4-1

Table 4-2. PRINTSTATUS[2] Message Type and Parameters 4-21

Table 4-3. SPOOLERCOMMAND Parameters for Spoolcom DEV 4-33

Table 4-4. SPOOLERCOMMAND Parameters for Spoolcom JOB 4-35

Table 4-5. SPOOLERCOMMAND Parameters for Spoolcom LOC 4-36

Table 4-6. SPOOLERCOMMAND Parameters for Spoolcom COLLECT 4-37

Table 4-7. SPOOLERCOMMAND Parameters for Spoolcom PRINT 4-38

Table 4-8. SPOOLERCOMMAND Parameters for Spoolcom SPOOLER 4-39

Table 4-9. SPOOLERCOMMAND Parameters for Spoolcom FONT 4-39

Table 4-10. SPOOLERCOMMAND Parameters for Spoolcom BATCH 4-40

Table 4-11. SPOOLERSTATUS2 Command Codes 4-45
Spooler Programmer’s Guide—522287-002
vi

What’s New in This Manual

Manual Information
Spooler Programmer’s Guide

Abstract

This manual describes the Spooler subsystem, its uses, and its applications. This
guide is intended for application programmers who want to use the Spooler interface
procedures to spool data programmatically.

Product Version

Spooler D48, H01, and H02

Supported Releases

This manual supports D48.03, G06.15, and H06.03 and all subsequent release version
updates until otherwise indicated in a new edition.

Document History

Changes in the August 2012 manual:

 Updated information about SPOOLEREQUEST error code under
SPOOLEREQUEST[2] Procedure on page 4-42.

 Updated the SPOOLEREQUEST error code details on C-8.

 Added an additional criteria for SPOOLERSTATUS2 on 4-51.

 Added a note about the status of a collector for large values on 4-53.

Changes in the August 2002 manual:

The following additions and changes have been added to the guide:

Part Number Published

522287-002 August 2012

Part Number Product Version Published

106813 Spooler D41 January 1995

103190 Spooler D41 July 1997

135720 Spooler D41 August 1997

522287-001 Spooler D48 August 2002

522287-002 Spooler D48, H01, and H02 August 2012
Spooler Programmer’s Guide—522287-002
vii

What’s New in This Manual Changes in the August 2002 manual:
 In Section 1, Introduction to the Spooler Subsystem new information about the
specification of the unit size and buffer size for SPOOLCOM has been added to
the Unit Size subsection.

 In Section 4, Spooler Procedure Calls:

 Material has been added to the description of the PRINTSTART[2] Procedure
call.

 A complete list for flag and devflagx bit values defined in the
SPOOLERSTATUS2 Procedure call has been added.

 The extended-level-3-buff definition has been corrected in the SPOOLSTART
Procedure.

This publication has been updated to reflect new product names:

 Since product names are changing over time, this publication might contain both
HP and Compaq product names.

 Product names in graphic representations are consistent with the current product
interface.
Spooler Programmer’s Guide—522287-002
viii

About This Manual
The Spooler Programmer’s Guide describes the Spooler subsystem, its uses, and its
applications for experienced programmers.

This guide includes

 Detailed information about the Spooler subsystem and its components

 An explanation of how to use the Spooler interface and print procedures

 Complete syntax and considerations for all Spooler-related procedures

 Sample print and perusal processes

 Descriptions of Spooler-related errors

Who Should Use This Manual
This guide is intended for application programmers who want to use the Spooler
interface procedures to spool data programmatically. Users who want to use the
spooler interactively should refer to the Spooler Utilities Reference Manual.

Note. Some of the tasks described in this guide are normally performed by a system operator
(user ID 255, n).
Spooler Programmer’s Guide—522287-002
ix

About This Manual How This Manual Is Organized
How This Manual Is Organized
Table i summarizes the contents of this manual.

Table i. Contents

Section or
Appendix Title Contents

1 Introduction to the
Spooler Subsystem

Provides detailed information on the Spooler
subsystem and its components that is of special
interest to programmers. All programmers
should read this section before reading any of
the other parts of this guide.

2 Using the Spooler
Interface Procedures

Describes the use of the Spooler interface
procedures. This section supplies examples of
spooling on three levels, along with COBOL
spooling and spooling from a NonStop process
pair for most of these levels. The latter
examples include discussion of zero and
nonzero sync depth.

3 Using the Spooler
Print Procedures, Print
Processes, and
Perusal Processes

Describes the use of the Spooler print
procedures. Information on print processes
includes reading the startup message, retrieving
and printing the spooled data, and
communicating with the spooler supervisor.

This section also discusses how to handle
device errors and PRINTREAD errors, gives
pointers on debugging print processes, and
covers combining data retrieval with spooler
communication.

This section also describes a user-written
perusal process which can access spooled data
without communicating with the spooler
supervisor.

4 Spooler Procedure
Calls

Presents the complete syntax and
considerations for all Spooler-related
procedures. The SPOOLERSTATUS Struts are
of particular interest to application programmers
for use in finding the status of Spooler
components.

A Sample Print Process Presents a sample print process.

B Sample Perusal
Process

Presents a sample perusal process.

C Spooler-Related
Errors

Describes errors codes returned by the Spooler
interface and by the print and utility procedures.
Spooler Programmer’s Guide—522287-002
x

About This Manual Related Manuals
Related Manuals
Before reading this guide, you should be familiar with the following manuals:

 Spooler Utilities Reference Manual

This manual contains the complete syntax, considerations, and examples for the
utilities Peruse, Spoolcom, Font, and RPSetup.

 Guardian Procedure Errors and Messages Manual

This manual describes in detail file-system and other types of errors that are
referred to by number in some Peruse and Spoolcom messages

Also recommended, although not necessary, are the following manuals:

 Guardian Programmer's Guide,

This manual describes the system procedures that programmers can call from
within their programs.

 Guardian Procedure Calls Reference Manual

This manual contains the procedure-call syntax for procedures supported by HP
that can be called from the Transaction Application Language (TAL).

 TAL Reference Manual

This manual provides syntax descriptions and error messages for TAL (Transaction
Application Language) for system and application programmers.

 COBOL85 Manual

This manual describes the HP implementation of the 1985 version of the COBOL
language.

Notation Conventions

General Syntax Notation

The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name
Spooler Programmer’s Guide—522287-002
xi

About This Manual General Syntax Notation
computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words; enter these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list may be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

LIGHTS [ON]
 [OFF]
 [SMOOTH [num]]

K [X | D] address-1

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list may be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address-1 [, new-value]...

[-] {0|1|2|3|4|5|6|7|8|9}...

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char..."
Spooler Programmer’s Guide—522287-002
xii

About This Manual General Syntax Notation
Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] CONTROLLER

 [, attribute-spec]...

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i
Spooler Programmer’s Guide—522287-002
xiii

About This Manual Notation for Messages
!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages

The following list summarizes the notation conventions for the presentation of
displayed messages in this manual.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list might
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

LDEV ldev [CU %ccu | CU %...] UP [(cpu,chan,%ctlr,%unit)]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list might be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

LBU { X | Y } POWER FAIL

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }
Spooler Programmer’s Guide—522287-002
xiv

About This Manual Notation for Management Programming Interfaces
% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
%þnotation precedes an octal number. The %Bþnotation precedes a binary number.
The %Hþnotation precedes a hexadecimal number. For example:

%005400

P=%p-register E=%e-register

Notation for Management Programming Interfaces

UPPERCASE LETTERS. Uppercase letters indicate names from definition files; enter these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters. Words in lowercase letters are words that are part of the notation,
including Data Definition Language (DDL) keywords. For example:

token-type

!r. The !r notation following a token or field name indicates that the token or field is
required. For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o. The !o notation following a token or field name indicates that the token or field is
optional. For example:

ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

Change Bar Notation

Change bars are used to indicate substantive differences between this edition of the
manual and the preceding edition. Change bars are vertical rules placed in the right
margin of changed portions of text, figures, tables, examples, and so on. Change bars
highlight new or revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all
messages except LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com. Include the document
title, part number, and any comment, error found, or suggestion for improvement
concerning this document.
Spooler Programmer’s Guide—522287-002
xv

About This Manual HP Encourages Your Comments
Spooler Programmer’s Guide—522287-002
xvi

1
Introduction to the Spooler
Subsystem

The Spooler subsystem serves as a buffer between an application writing to a print
device and the device itself, allowing applications to create hard-copy output without
affecting the status of print devices. The Spooler subsystem performs its work by
storing the output from each application on disk and monitoring the status of print
devices. When the appropriate device becomes available, the Spooler subsystem
prints the output.

Topics described in this section include

Topic Page

Spooler and Spooler Plus comparison 1-2

Spooler features 1-2

Spooler components 1-3

Disk files maintained by the spooler 1-6

Multiple spoolers 1-6

Spooler states 1-7

Spooling from an application program 1-9

Collectors 1-10

Print processes 1-13

Devices 1-16

Routing structure 1-22

Jobs 1-23

The spooler and batch jobs 1-26
Spooler Programmer’s Guide—522287-002
1-1

Introduction to the Spooler Subsystem Spooler and Spooler Plus Comparison
Spooler and Spooler Plus Comparison
Spooler Plus is an optional product containing Spoolcom and Peruse modules that can
be used to replace the Spoolcom and Peruse modules provided by the D41 or later
product versions of the Spooler subsystem. You can use the Spooler Plus Spoolcom
and Peruse utilities to configure and manage expanded configurations of the Spooler
subsystem. You must use these utilities if the maximum jobs has been configured
above 8191.

The Spooler Plus subsystem is described in the Spooler Plus Utilities Reference
Manual.

Spooler Features
Features of the Spooler subsystem include:

 Continuous operation. The Spooler subsystem keeps working even if a processor
fails.

 Fault-tolerant applications. You can run application processes on the HP NonStop
system to avoid loss or duplication of data in the event of a failure.

 Custom print processes. You can write your own print processes or use the print
processes supplied by HP.

 Flexible routing structure. The Spooler subsystem allows the destination of
program output to be changed after the program has been run.

 Interactive user control. The Spoolcom utility permits you to inspect or alter the
status of jobs and devices, specify the routing structure, and initialize the Spooler
subsystem.

 Support for batch processing. You can specify attributes for jobs before they are
created using the CLASS SPOOL DEFINE procedure call.

Note. Because spooler is an industry-standard term used to describe a printer spooling
system, it used throughout the remainder of this guide to refer to the Spooler subsystem.
Spooler Programmer’s Guide—522287-002
1-2

Introduction to the Spooler Subsystem Spooler Components
Spooler Components
The spooler consists of a set of related processes and procedures, as shown in
Table 1-1.

Spooler Supervisor

The spooler supervisor process monitors and communicates with the other spooler
processes and decides when and where to print jobs.

Collector

All output that is to be printed is sent to the collector. Spooler collection processes
(collectors) accept output from applications and store the output on disk.

Print Processes

A set of print processes performs the task of retrieving and printing spooled data. The
FASTP print process is supplied with the spooler; to write your own print processes,
you use the print procedures described in Section 3, Using the Spooler Print
Procedures, Print Processes, and Perusal Processes.

Perusal Processes

Perusal processes examine a job’s data file without intervention by the spooler
supervisor. They use the print procedures to read data from a collector’s data file.
Perusal processes, unlike print processes, function without interactive communication
with the supervisor. They are useful for studying the spooled data from a job before it
is printed. The Peruse utility is an example of a perusal process. The complete syntax
and considerations of Peruse appear in the Spooler Utilities Reference Manual.

Table 1-1. Spooler Processes and Procedures

Process Function Related Procedures

Spooler
supervisor

Monitors and controls operation of
the spooler

Collector Transfers data from applications to
disk

Spooler interface procedures

Print process Transfers data from disk to print
devices

Spooler print procedures allow
users to write their own print
processes

Perusal processes Reads spooled data from jobs and
modifies attributes of jobs

Spooler utility procedures and
print procedures work together

Spoolcom Provides system operator’s
interface to the spooler

Spooler utility procedures issue
commands to the spooler
Spooler Programmer’s Guide—522287-002
1-3

Introduction to the Spooler Subsystem Spoolcom
Spoolcom

The Spoolcom utility allows you to declare and initialize collectors and print processes,
define and modify the routing structure, control the printing of jobs, and obtain the
status of any component of the spooler. You can run Spoolcom from a terminal to
translate your commands into messages to the spooler supervisor, which carries out
your instructions. You can enter Spoolcom commands either interactively from a
terminal or from a command file, which you specify by using the IN option of the
Spoolcom command. Spoolcom performs its work by calling the spooler utility
procedures, which can also be used by programmers who want to control the spooler
from their programs. The complete syntax and considerations of Spoolcom appear in
the Spooler Utilities Reference Manual.

An overview of a spooler subsystem is shown in Figure 1-1, which includes the spooler
utilities: Peruse, Spoolcom, Font, and RPSetup. By using print and spooler
procedures described in this manual, you can write an application that performs some
or all the functions of these utilities.
Spooler Programmer’s Guide—522287-002
1-4

Introduction to the Spooler Subsystem Spoolcom

Figure 1-1. Components of the Spooler

Printers

Spoolcom

Peruse

Print
Process

Collector
DataCollectorApplication

Spooler
Control
Files

Supervisor

Font and
RPSetup

\SYS

Applications can perform all the functions of Peruse, Spoolcom, Font,
and RPSetup; therefore, these programs can be considered
applications.

Legend

A print process can be FASTP, PSPOOL, PSPOOLB, or user written

VST011.vsd

Spooler Subsystem

Input/
Output

Process
Spooler Programmer’s Guide—522287-002
1-5

Introduction to the Spooler Subsystem Disk Files Maintained by the Spooler
Disk Files Maintained by the Spooler
The spooler maintains two sets of disk files: data files and control files.

Data files are unstructured files containing the spooled data from all the jobs in the
spooler subsystem. Each collector has its own data file to hold jobs written to it. The
collector maintains an internal structure in the data file to ensure the integrity of jobs
and most efficiently use the storage space. The spooler library print routines are used
to fetch jobs from the collector data file. You can create data files at any time prior to
starting the collector.

Control files contain information regarding the attributes of all components of the
spooler: devices, processes, jobs, and so on.

The control file name has the same form as a disk file name. The control file name you
supply when you start the spooler is used to create these control files. You can specify
only seven letters or digits in the control file name; the spooler appends a integer
(0 through 9) to the control file name you specified. All 10 control file names should be
reserved for use by the spooler.

A particular control file defines a particular spooler subsystem. When a spooler has
been brought to an orderly halt (by means of the Spoolcom command SPOOLER
DRAIN), you can always restart it without any initialization by passing the control file
name to the supervisor (using the SPOOL command).

See the Guardian System Operations Guide for more information on how data file
names and control file names are selected and assigned.

Multiple Spoolers
The spooler can handle up to 8191 jobs and 511 output devices at one time, which
should suffice for most applications. However, if you need more spooling capability,
you can run any number of spooler subsystems at the same time.

To create additional spooler subsystems, simply follow the starting procedure as many
times as needed, each time using a different control file name and process name.
When running multiple spoolers, you should consider the following:

 Spoolcom communicates with the spooler supervisor designated by the Spoolcom
OPEN command. The default supervisor name is $SPLS.

 A spooler is always characterized by its control file. When a spooler is stopped
and then restarted, the control file name (not the process name of the spooler
supervisor) determines which spooler gets started.

 Ensure that all collector and print process names are unique across all spooler
subsystems created on a given system. The presence of duplicate collector or
print process names is not immediately apparent when multiple spoolers are
starting. As long as the supervisor names are unique, all of the spooler
subsystems will start without error. However, nonunique collector or print process
Spooler Programmer’s Guide—522287-002
1-6

Introduction to the Spooler Subsystem Spooler States
names will cause the affected components to fail. When starting multiple spooler
subsystems, monitor the spooler error log file (usually $0, the event log file for
operator messages) for reports of process creation errors that indicate that the
specified collector or print process could not be started because the name given
was already in use.

Spooler States
During its life, the spooler cycles through the five states shown in Figure 1-2.

Figure 1-2. Spooler Life Cycle

002CDT .CDD

WARM ACTIVE
SPOOLER

DRAIN
DRAIN

DORMANT

Spooler has

finished draining

SPOOLER

START

COLD

SPOOLER

START

Create another

supervisor

Declare and initialize

collectors and

print processes

You can

set

and modify

attributes
Spooler Programmer’s Guide—522287-002
1-7

Introduction to the Spooler Subsystem Spooler States
The meanings of the spooler states are as follows:

COLD The first step in creating the spooler is to run the spooler supervisor.
The spooler is in the COLD state as soon as you start the supervisor.
At this time, use Spoolcom to declare and initialize the collectors and
print processes.

ACTIVE After declaring and initializing the collectors and print processes,
issue the Spoolcom command SPOOLER START, which puts the
spooler into the ACTIVE state. In this state, the spooler is fully
operational and ready to accept output from application processes.
You can then use Spoolcom to add, delete, or modify collectors and
print processes.

DRAIN It is sometimes necessary to halt the spooler. You should never
issue a TACL STOP command for any spooler process, because the
spooler recovery from STOP can be time-consuming. Instead, bring
the spooler to an orderly halt by issuing the Spoolcom command
SPOOLER DRAIN. This command puts the spooler into the DRAIN
state. When the spooler is in this state, the following events take
place:

 Each collector stops accepting new jobs, rejects new opens with
file-system error 66 (device downed by operator), finishes
accepting and storing any jobs that are currently open, and stops.

 Each print process finishes the jobs currently printing and stops.

 The supervisor updates its control files and stops.

 Any attempt to print to a stopped spooler is rejected with file-
system error 14 (device does not exist).

DORMANT Once drained, a spooler is in the DORMANT state. In this state, it
consists solely of a set of disk files, including: program files
containing object code, data files containing spooled jobs, and control
files containing the names and attributes of the components and jobs
known to the spooler.

You cannot use Spoolcom to obtain information regarding a
DORMANT spooler, because in the DORMANT state there is no
supervisor for Spoolcom to communicate with.

WARM When you start another supervisor (from TACL using the RUN
command), the spooler enters the WARM state. This state is the
same as the COLD state in that the supervisor is the only process
running and that collectors and print processes can be added,
deleted, or modified. The only difference is that the WARM state
indicates the restarting of a spooler that was formerly ACTIVE, while
the COLD state indicates the starting of a new spooler.

To bring the spooler from the WARM state to the ACTIVE state, enter
the command SPOOLER START.
Spooler Programmer’s Guide—522287-002
1-8

Introduction to the Spooler Subsystem Spooling From an Application Program
Spooling From an Application Program
Spooling from an application program can be performed with the Guardian file-system
procedures or with the spooler interface procedures described in Section 2, Using the
Spooler Interface Procedures. These procedures give you complete control of the
contents and attributes of your job. You can find the procedure syntax for the spooler
and print procedures in Section 4, Spooler Procedure Calls. See the Guardian
Procedure Calls Reference Manual for the operating system procedure calls.

The spooler includes one or more collectors, described in Collectors on page 1-10.
Applications can direct their output to a particular collector by treating the collector as a
file (that is, an application can open a file to any collector and begin writing its output
by using the Guardian file-system WRITE[X] procedure). In this case, the collector
assigns default attributes to the job as shown in Table 1-2.

As an alternative method of spooling a job from a program, use the spooler interface
procedures, described in Section 2, Using the Spooler Interface Procedures. These
procedures provide an application process with the following abilities:

 To specify job attributes (see SPOOLSTART Procedure on page 4-64)

 To compress and block data and write it to the collection process (see
SPOOLWRITE Procedure on page 4-69)

 To send CONTROL, CONTROLBUF, and SETMODE instructions to the collector
(see SPOOLCONTROL Procedure on page 4-24, SPOOLCONTROLBUF
Procedure on page 4-26, and SPOOLSETMODE Procedure on page 4-62)

Data Compression

All spooled data is compressed before being stored on disk. Data spooled with the
Guardian file-system procedures is compressed by the collector, while data spooled
with SPOOLWRITE is compressed before being written to the collector.

Nulls, zeros, and spaces are compressed on word by word basis. Each sequence of
consecutive words containing %0 (two nulls), %020040 (two spaces), or %030060 (two

Table 1-2. Default Attributes for Jobs

Attribute Default Value

Priority 4

Form name blanks

Copies 1

Hold flag Off

Hold after flag Off

Location #DEFAULT

Report name Owner’s group and username
Spooler Programmer’s Guide—522287-002
1-9

Introduction to the Spooler Subsystem Job States While Spooling From a Program
zeros) is replaced by one word describing the character and the number of words
being compressed. For example, an 80-character line containing all blanks would be
compressed into a single word.

Job States While Spooling From a Program

The term job refers to the data written by an application process to a collector. The
collector creates a job when an application opens a file to it and either issues a
Guardian file-system WRITE[X], CONTROL, CONTROLBUF, or SETMODE procedure
call to the collector, or calls SPOOLSTART.

At this point, the job is in the open state, meaning that the application is sending data
to the spooler.

Spooling is completed either when the application closes the file to the collector or
when an application using the interface procedures calls SPOOLEND.

By using the CONTROL, CONTROLBUF, and SETMODE procedures or the
SPOOLCONTROL, SPOOLCONTROLBUF, and SPOOLSETMODE procedures, the
spooler gives applications complete control of the devices on which their jobs are
printing. For this reason, applications should issue a top-of-form control, using
CONTROL or SPOOLCONTROL, to guarantee the state of the print device before and
after the job has been printed. Otherwise, data from two different jobs could appear on
the same printed page. All software supported by HP performs this step when
spooling a job.

If an application using the interface procedures closes the file to the collector without
first calling SPOOLEND, the job is completed but the collector assumes that an
abnormal termination has occurred and places the job in the hold state.

Collectors
The spooler includes one or more collectors, each of which is a continuously running
copy of the program in $SYSTEM.SYSTEM.CSPOOL. Applications can direct output
from an application program to a collector by treating the collector as their OUT file;
that is, an application can open a file to any collector and begin writing its output using
the Guardian file-system WRITE[X] procedure. Applications can also use the spooler
interface procedures to spool their output (described in Section 2, Using the Spooler
Interface Procedures).

While the spooler is in the cold or warm state, you can declare and initialize the spooler
collectors by using the Spoolcom COLLECT command, specifying attributes such as
execution priority and program file name.

Collector Attributes

Table 1-3 lists the default attributes of collectors and the Spoolcom COLLECT
subcommands used to specify them.
Spooler Programmer’s Guide—522287-002
1-10

Introduction to the Spooler Subsystem Collector States

Collector States

The collector is always in one of four states, as shown in Figure 1-3.

Table 1-3. Collector Attributes

Collector Attribute
Spoolcom COLLECT
Subcommand Default Value

Program file FILE $SYSTEM.SYSTEM.CSPOOL

Primary CPU CPU Processor of supervisor

Backup CPU BACKUP No backup processor

Execution priority PRI 145

Data file DATA None

Unit size UNIT 4

Page size PAGESIZE 60

Figure 1-3. Collector States

003CDT .CDD

ERROR ACTIVE
COLLECT

DRAIN

DORMANT

Collector has

finished draining

You can

set

and modify

attributes

Supervisor

declares error

COLLECT

START

COLLECT

START

DRAIN
Spooler Programmer’s Guide—522287-002
1-11

Introduction to the Spooler Subsystem Unit Size
The meanings of the collector states are as follows:

You can declare, initialize, and delete collectors whenever the spooler is in either the
cold or the warm state or whenever the collector is in the dormant state. At other
times, these operations are rejected.

When you issue a SPOOLER START or COLLECT START command, any collector
attributes that have not been specified take their default values. You must specify the
data file, however, because it has no default attributes. If you issue the SPOOLER
START command and the collector has no data file specified, the collector will
abnormally terminate.

Unit Size

The Spoolcom COLLECT UNIT command is used to specify a unit size for the
collector. The unit size specifies the number of 512-word blocks the collector allocates
from its data file each time it needs more space for a job. The maximum number of
units is limited only by the size of the file.

The larger the unit size, the less often the collector must allocate a new unit. For this
reason, you should specify a relatively large unit size if you expect that most spooled
jobs will be large. You should also use a large extent size if you are using large block
sizes.

A smaller unit size provides more efficient use of disk space, because once the
controller reserves space for a job, that space cannot be used by any other job. If the
unit size is 10 and a spooled job requires only 1 block, the other 9 blocks are wasted. It
is best to use a unit size that is a whole multiple of the buffer size.

DORMANT A collector in the dormant state cannot accept new jobs for spooling,
and no jobs are currently being spooled. You can set and modify
collector attributes while it is in the dormant state. The Spoolcom
command COLLECT START puts a dormant collector in the active
state.

ACTIVE A collector in the active state can accept new jobs for spooling. You
cannot change a collector’s attributes while it is in the active state.
The Spoolcom command COLLECT DRAIN puts an active collector in
the drain state.

DRAIN A collector in the drain state will not accept new jobs for spooling, but
jobs currently being spooled will continue until completion. When all
open jobs have been completed, the collector enters the dormant
state. You cannot change a collector's attributes while it is in the drain
state.

ERROR A collector in the error state cannot function. The Spoolcom
COLLECT STATUS command tells you whether the collector is in an
error state. The octal error number is either %1000 plus a Guardian
file-system error number or %100000 plus a NEWPROCESS error
number.
Spooler Programmer’s Guide—522287-002
1-12

Introduction to the Spooler Subsystem Print Processes
The collector file size can be any size allowed by the Guardian file system. The file’s
buffer size attribute is used to set the collector’s internal buffer size. The Collector unit
size attribute must be a whole multiple of the buffer size attribute, or the buffer size
must be a whole multiple of the unit size. You must set the buffer size to at least 2K
bytes. You can also set the buffer size to a multiple of 2K bytes. For best performance,
HP recommends that you set the buffer size to 4K bytes and the unit size to 4K bytes.

You should set the unit size of a collector once and not change it. If a different unit
size is required, delete the old collector and start a new one.

It can be useful to have two collectors, one with a large unit size and the other with a
small unit size, to be used for large and small jobs. For example, compiler listings are
spooled to the collector with a large unit size, while short jobs (one-page or two-page
memos, for example) are spooled to the collector with the small unit size.

Print Processes
Each output device known to the spooler is assigned a print process, which has the
task of getting spooled data from disk and writing it to the device. You declare print
processes when initializing the spooler; they are run by the supervisor as needed.

Some print processes are copies of the $SYSTEM.SYSTEM.FASTP program supplied
by HP. However, you can write others. See Section 4, Spooler Procedure Calls, for full
syntax and considerations for the print procedures. See Section 3, Using the Spooler
Print Procedures, Print Processes, and Perusal Processes, for descriptions of how you
can declare and initialize print processes.

Print Process Attributes

Table 1-4 lists the default attributes of a print process and the Spoolcom PRINT
subcommands used to specify them.

Table 1-4. Spoolcom PRINT Subcommands and Print Process Default Values

Print Process Attribute
Spoolcom PRINT
Subcommand Default Value

Program file FILE Independent process

Primary processor CPU Processor of supervisor

Backup processor BACKUP No backup processor

Execution priority PRI 145

Print process parameter PARM 0

Debug mode DEBUG OFF
Spooler Programmer’s Guide—522287-002
1-13

Introduction to the Spooler Subsystem Print Process States
Print Process States

A print process, once declared, is always in one of three states: active, dormant, or
procerror, as shown in Figure 1-4.

The print process states are as follows:

Figure 1-4. Print Process States

ACTIVE The print process is running. A print process enters the ACTIVE
state for one of three reasons:

 The print process is printing a job.

 A device controlled by the print process has been declared
exclusive and must therefore be kept open even when a job is
not printing.

 The print process is independent and is always running, as
described in Independent Print Processes on page 1-15.

DORMANT The print process is not running. The print process enters the
DORMANT state whenever it has no job to print, controls only
shared devices, and is not an independent print process.

You can modify print process attributes when the print process is in
the DORMANT state.

ACTIVE

DORMANT

You can set
and modify
attributes

PROCERROR

Supervisor notifies
print process
that a job is

ready to be printed

Job finished
printing

Supervisor
declares

error

PRINT
START

VST013.vsd
Spooler Programmer’s Guide—522287-002
1-14

Introduction to the Spooler Subsystem Independent Print Processes
Independent Print Processes

A print process can be started independently of the supervisor. You do not need to
start the print process before starting the supervisor.

To define an independent print process, do not specify the FILE subcommand in the
Spoolcom PRINT command. The spooler supervisor flags a null print process file
name as an independent print process.

When started, the independent print process receives two startup messages. The first
startup message is the normal message sent by TACL. The second startup message
is sent by the supervisor and contains the process name of the spooler supervisor in
the OUTFILE field. This supervisor message is in the same format as the TACL
message. See the Guardian Procedure Errors and Messages Manual for an
explanation of this format. An independent print process can be started, stopped, and
restarted without the knowledge of the supervisor, as long as no jobs are active for that
print process. If no jobs are active, the second startup message is not sent.

If a job targeted for an independent print process arrives before the print process is
started, the process is placed in the error state with error %5016 (device does not
exist). The device is placed in the PROCERROR state, and an error message is
written to the spooler log file. To clear the error state and begin the print job, issue this
Spoolcom command:

PRINT print-process-name, START

Once an independent print process is started and the startup messages are read, the
independent print process runs in the same manner as a standard print process. The
spooler supervisor does not stop an independent print process. Independent print
processes remain ACTIVE until you remove them from the ACTIVE state.

Stopping an independent print process is a two-step procedure. First, issue this
Spoolcom command:

PRINT print-process-name, DELETE

PROCERROR The supervisor has determined that the print process is not
responding correctly. When the supervisor places a print process
into this state, it writes a message to the error log file. (These
messages are typically sent to the console, although their
destination is set at system startup time and can be changed with
the Spoolcom SPOOLER ERRLOG command. The error log
messages are described in the Operator Messages Manual.) You
should debug the print process to determine the cause of failure.

You can modify print process attributes when the process is in the
PROCERROR state. To remove a print process from the
PROCERROR state, use the PRINT START command.
Spooler Programmer’s Guide—522287-002
1-15

Introduction to the Spooler Subsystem Devices
The Spoolcom PRINT DELETE command removes the independent print process from
the spooler subsystem but does not stop the physical process. Second, stop the
physical process by issuing the TACL STOP command. When you use both of these
commands to stop an independent print process, no error message is written to the log
file.

Stopping an independent print process without using the Spoolcom PRINT DELETE
command or abending an independent print process results in error %5311 (current
path to device is down). This error occurs regardless of the state of the independent
print process prior to the stop or abend. An error message is written to the spooler log
file.

To restart an abended print process or one stopped without the Spoolcom PRINT
DELETE command, start the physical print process first. Then restart the independent
print process using the following Spoolcom command:

PRINT print-process-name, START

The Spoolcom PRINT START command clears the PRINT and DEV error states and
begins the print job.

When restarting an independent print process that was stopped with both the
Spoolcom PRINT DELETE and TACL STOP commands, the order of the procedures
does not matter. You can run the physical process before or after reconfiguring and
starting the print process using Spoolcom.

Devices
Most jobs eventually print on a spooler device, which can be a physical device (such
as a line printer, terminal, or tape drive), a process, or a virtual device (explained in
Declaring and Initializing Devices on page 1-20).

Device Attributes

Table 1-5 lists the default attributes of spooler devices and the Spoolcom DEV
subcommands used to specify them. Refer to the Spooler Utilities Reference Manual
for a complete description of the Spoolcom DEV subcommands.
Spooler Programmer’s Guide—522287-002
1-16

Introduction to the Spooler Subsystem Device Attributes

Table 1-5. Device Attributes (page 1 of 2)

Device
Attribute

Spoolcom DEV
Subcommand Default Value Comment

Form name FORM All blanks Guarantees that only certain
types of jobs print on the
device. Most commonly used
when device is loaded with
special paper or ribbon.

Speed SPEED 100 (lines per
minute)

Value used by supervisor in
calculating how long jobs will
take to print on the device.
Used only for job selection; has
no effect on device printing
speed.

Print process
name

PROCESS (None) Each device must have a print
process associated with it if it is
going to print jobs. The print
process retrieves jobs from disk
and writes the spooled data to
the device.

Ownership mode EXCLUSIVE EXCLUSIVE
OFF

Truncation mode TRUNC TRUNC OFF Tells a standard print process
whether to truncate or to wrap
around long lines.

Device width WIDTH Value from
DEVICEINFO

If user does not supply this,
standard print process calls
Guardian file-system
DEVICEINFO procedure to
obtain record size of the device.

Device
parameter

PARM 0 Affects the FASTP print process
as described in the Spoolcom
DEV command.

Selection
algorithm

FIFO FIFO OFF FIFO orders the jobs on a first-
in, first-out basis. FIFO OFF
(the default) orders the printing
queue based on the length of
the incoming job and how long
the other jobs have been in the
queue.

Retry interval RETRY 5 (seconds)

Number of
retries

TIMEOUT 360 (seconds)
Spooler Programmer’s Guide—522287-002
1-17

Introduction to the Spooler Subsystem Device Attributes
Header message HEADER HEADER Printed at beginning (and
optionally at end) of every job.
Its type is determined by the
print process. The standard
print process header contains
the job report name, location,
and job number.

Restart RESTART OFF Controls automatic restart of
devices that have encountered
non-retryable errors or have
timed out on retryable errors.

Multibyte
character set

CHARMAP NONE Specifies whether or not
character set translation is
required.

Table 1-5. Device Attributes (page 2 of 2)

Device
Attribute

Spoolcom DEV
Subcommand Default Value Comment
Spooler Programmer’s Guide—522287-002
1-18

Introduction to the Spooler Subsystem Device States
Device States

At any particular time, each device in the spooler subsystem is in one of several states,
as shown in Figure 1-5.

Figure 1-5. Device States

OFFLINE SUSPENDED PROCERROR DEVERRROR

DEV
SUSPEND

DEV
DRAIN

BUSY

WAITING

DEV START
(if spooler is ACTIVE,

WARM, or COLD)
—or—

SPOOLER START
(if spooler is WARM or COLD)

Declare and
specify attributes

Spooler sends
spooled job to
device

Supervisor
declares
an error

Guardian
file-system

error

VST006.vsd

You can set
and modify attributes
Spooler Programmer’s Guide—522287-002
1-19

Introduction to the Spooler Subsystem Declaring and Initializing Devices
The state of a device describes what the device is doing and determines which
Spoolcom commands are valid. The meanings of the device states are as follows:

Declaring and Initializing Devices

Devices are declared and initialized using Spoolcom commands, and the spooler can
be active, warm, or cold.

A device is declared with the DEV command. As soon as you issue the DEV
command, the device is considered to be part of the spooler subsystem, with all default
attributes, but it is in the offline state. You can then change the default attributes or
leave them as they are. After specifying all attributes, bring the device into the waiting
state (in which it is ready to print jobs) with the DEV START command.

If you initialize the device with the spooler in a warm or cold state, you can bring the
device into the waiting state with the SPOOLER START command.

You can change the attributes of a device only after putting it in the offline state with
the DEV DRAIN command. The DRAIN subcommand allows the job currently printing
(if any) to finish, then puts the device offline.

The usual way to cause a job to leave the spooler subsystem is to send it to an output
device (the only other way is to delete the job from the system). In most cases, the
output device is a printer; however, it can also be a terminal, tape drive, disk, or virtual
device, as explained in Declaring and Initializing Devices on page 1-20.

Although the supervisor makes the decision to print a job on a particular device, the
supervisor does not directly interface to a device. Instead, each device has an

BUSY The device is currently printing a job.

WAITING The device is ready to print a job, but no job is available to print on
the device, because either there are no jobs in the device queue or
none of the jobs in the queue have a form name that matches the
form name of the device.

OFFLINE The device is not available for printing jobs. Device attributes can
be changed only when the device is in the offline state.

SUSPENDED A job was printing on the device, but printing has stopped as a
result of a Spoolcom DEV SUSPEND command.

DEVERROR A Guardian file-system error occurred on the device while a job was
printing.

PROCERROR The supervisor has determined that the device print process is not
working correctly and writes a message to the error log file. (These
messages are typically sent to the console, although their
destination is set at system startup time and can be changed with
the Spoolcom SPOOLER ERRLOG command. The error log
messages are described in the Operator Messages Manual.) The
device is therefore unusable until the print process is restarted.
Spooler Programmer’s Guide—522287-002
1-20

Introduction to the Spooler Subsystem Virtual Devices
associated print process that performs the task of retrieving and printing jobs on that
device. Refer to Section 3, Using the Spooler Print Procedures, Print Processes, and
Perusal Processes, for more information on using print processes.

Virtual Devices

When a device becomes available, the supervisor tells the print process associated
with the device to retrieve and print the next job. It then becomes the responsibility of
the print process to access the spooled data and issue a succession of Guardian file-
system WRITE[X] procedure calls to the correct device.

A print process can perform a function with the spooled data other than writing it to a
device. If, for example, you want to perform a statistical analysis of numerical data that
has been spooled from an application, you can write a print process that retrieves the
spooled data and performs the desired analysis. To do this you must declare a
fictitious (virtual) device by using the Spoolcom DEV command. Then assign the print
process to control that device.

Device Ownership

Physical devices that are declared as part of the spooler subsystem can be accessed
by other processes when they are not being used by the spooler. A device that can be
accessed by other processes is called a shared device.

The print process opens a shared device when the spooler wants to print a job on the
device. When the job is finished printing, the print process closes the device to allow
access to the device by other processes. The print process competes with all other
processes for access to a shared device.

An exclusive device, on the other hand, is kept open all the time, preventing any other
process from gaining access.

If a print process controls only shared devices, it runs only when one of the devices is
actually being used by the spooler. If a print process controls an exclusive device, it
must run all the time to keep the device open.

Device Queues

Associated with each device is a device queue, which is simply a list of jobs waiting for
that device in the order that they are scheduled to print. The device queue for a
particular device contains jobs routed to all locations connected to the device. A job is
added to a device queue whenever the job becomes ready to print.

Device queues are not queues in the usual sense of the term, because jobs are not
always added to device queues on a first-in, first-out (FIFO) basis. The default
queueing method orders the print jobs in the device queue based on the length of the
incoming job and how long the other jobs have been in the queue.
Spooler Programmer’s Guide—522287-002
1-21

Introduction to the Spooler Subsystem Routing Structure
Routing Structure
The spooler includes a flexible routing structure whose function is to direct jobs to print
devices. The routing structure consists of a set of locations, logically organized into
groups, and connections between locations and print devices.

Locations

A location is the logical destination of a job (as opposed to the physical destination,
which is a print device). At the time each job enters the spooler subsystem, it is
associated with a location. If a device is associated with that location, then the job
prints on that device.

Location names have two parts: a group name and a destination name. The group
name is always preceded by the # symbol. For example, #RED.LP is a valid
location name.

Table 1-6 lists the default attributes of locations and the Spoolcom LOC subcommands
used to change them.

For a job to print on a device, the job location must be connected to that device.

Connecting Devices and Locations

The Spoolcom LOC DEV command establishes connections between devices and
locations. You can connect a specific location to a device or all locations with a
specific destination name to a device.

To connect a specific location to a device, you make a single connection. You make
additional connections to that device with subsequent LOC DEV commands. To
connect all locations with a specific destination name to a device, you make several
connections at the same time. However, the LOC DEV command applies only to
existing locations. For example, if the existing routing structure includes two locations,
#RED.LP and #BLUE.LP, the command LOC LP, DEV $LP would associate the device
$LP to both locations. If you create a third location, #GREEN.LP, use another LOC
DEV command to connect $LP.

It is not possible to connect more than one device to the same location. However, it is
possible to connect multiple devices to a single group. In this case, the group will
contain at least one destination name for each device connected to it. Using Spoolcom

Table 1-6. Location Attributes

Location Attribute
Spoolcom LOC
Subcommand Default Value

Device DEV None

Location FONT None

Broadcast mode BROADCAST BROADCAST OFF
Spooler Programmer’s Guide—522287-002
1-22

Introduction to the Spooler Subsystem Jobs
LOC, you can set the broadcast mode attribute for the group to print a job at every
device associated with the group (BROADCAST ON) or only at the device that would
finish the job first (BROADCAST OFF).

Devices can have any number of locations connected to them, but each location can
have only one device connected to it. A group can have several devices associated
with it. Each device must be connected to a different destination contained in the
group. Make these connections in any order that best suits the particular needs of
your system.

Jobs
The term job refers to the data written by an application process to a collector.

Job Attributes

A set of attributes is specified for each job when the job is created (that is, when it
enters the open state). These attributes can be changed with the Spoolcom JOB
command. Table 1-7 lists the default attributes of jobs and the Spoolcom JOB
subcommands used to specify them.

Table 1-7. Job Attributes

Job Attribute
Spoolcom JOB
Subcommand Default Value

Form name FORM Blanks

Report name REPORT User ID

Number of copies COPIES 1

Selection priority SELPRI 4

Location LOC #DEFAULT

Holdafter flag HOLDAFTER OFF

Hold flag HOLD OFF

Owner name OWNER User ID

Batch Name BATCHNAME Blanks

Maximum # of lines MAXPRINTLINES No limit

Maximum # of pages MAXPRINTPAGES No limit

Page size PAGESIZE 60
Spooler Programmer’s Guide—522287-002
1-23

Introduction to the Spooler Subsystem Job States
Job States

The status of a job is described by its state. At any time, each job in the spooler
subsystem is in one of several states, shown in Figure 1-6.

Different Spoolcom JOB subcommands are valid in different job states. The state of a
job determines which Spoolcom commands are valid. Refer to the Spoolcom JOB
command in the Spooler Utilities Reference Manual for a description of the JOB
subcommands to use in which job states.

Figure 1-6. Job States

006CDT .CDD

PRINT

User puts

job on hold

Job waits

in device

queue

READY

OPEN

Job finishes

spooling

Job enters

spooler

You can modify

attributes with

SPOOLCOM

HOLD

Spooler deletes

printed job

If holdafter

flag is set
Spooler Programmer’s Guide—522287-002
1-24

Introduction to the Spooler Subsystem Job Numbers
The meanings of the job states are as follows:

The description of the Spoolcom JOB command in the Spooler Utilities Reference
Manual lists all the ways a user can alter a job. To change job attributes, the job must
be in the hold state. The JOB subcommands HOLD, START, and DELETE allow a job
to be put on hold, taken off hold, or deleted from the spooler subsystem.

Job Numbers

At the time it is created, each job is assigned a number in the range 1 through the
maximum number of jobs allowed in the spooler subsystem. That maximum is
specified when the spooler is first initialized and cannot exceed 65535. Job numbers
are assigned consecutively. If the last number assigned is the maximum, the next job
number assigned will be 1. If the number that would be assigned to a job is already in
use, the next available number is assigned.

A job numbered 0 indicates a corrupted control file. Recovery requires at least a
warmstart and rebuild of the spooler; if this is not successful, a coldstart is required.

Occurrences of Jobs

A job routed to a group enters the device queue of each device connected to the
locations in that group. Each entry in a device queue is a separate occurrence of the
job, indicating that the job has been routed to multiple locations.

OPEN The job has been added to the spooler. It remains in this state until it has
finished spooling.

READY The job is ready to print, but it has not yet begun to print because another
job is ahead of it in the device queue or because its location is not
connected to a device.

HOLD You can place a job on HOLD in order to prevent it from printing or to
change its attributes. You can put a job on HOLD at any time except
when it is in the OPEN state.

If you put on HOLD a job that has multiple occurrences, then all
occurrences of the job lose their place in their respective device queues.
A currently printing job is also placed on HOLD.

If you put a job on HOLD and then immediately take it off HOLD, you
remove the job from the device queue and then add it back to the queue.
This causes the job to lose its place in the device queue.

PRINT The job is being printed.

If you set the HOLDAFTER flag on a job, the spooler places the job on
HOLD after printing is complete, rather than deleting it. When you later
remove the HOLD, the job will print another time and again enter the
HOLD state until you either delete it or remove the HOLD.
Spooler Programmer’s Guide—522287-002
1-25

Introduction to the Spooler Subsystem Controlling Jobs
Controlling Jobs

The Spoolcom JOB subcommands HOLD, START, and DELETE allow a job to be put
on hold, taken off hold, or deleted from the spooler subsystem. To change job
attributes, the job must be in the hold state. You can place a job on hold at any time
except when it is open.

Placing a job on hold takes the job off any device queue that it is on. If a job has
multiple occurrences, then all occurrences of the job lose their place in their respective
device queues as a result of a HOLD command. Any occurrence currently printing is
also placed on hold.

When a job enters the ready state and a device is connected to the job’s location, it is
added to a device queue. Putting a job on hold and then immediately taking it off hold
causes the job to be removed from the device queue and then added to the queue.
This causes the job to lose its place in the device queue.

The Spooler and Batch Jobs
In the spooler, a batch job is a group of associated spooler jobs. Typically, these are
jobs from a NetBatch application. Each spooler job has certain attributes, called key
attributes, which allow jobs to be linked together in a continuous listing when printed.
The values of these key attributes when the spooler collector is opened dictate whether
or not a job enters the queue as part of a batch job. Any job that does not meet the
key attribute criteria remains a normal job.

The first job that has all the necessary key attributes for a batch job is assigned a batch
number by the spooler. Any subsequent job whose attributes match those of the first
job in the batch job is linked to that same batch job and assigned the same batch
number.

The meanings of the key attributes that determine whether a spooler job is part of a
batch job are as follows:

JOBID This identifier is the same for all jobs in a batch job. A job that is not part
of a batch job does not have this identifier. (JOBID can be set through a
TACL RUN command or a DEFINE for the application generating the
batch job.)

FORM Each job in a batch job must use the same print device and paper.

OWNER Each job in a batch job must be owned by the same user.

LOC The device associated with each logical location within the spooler must
be the same for all members of a batch job. A location name has two
parts: #group.destination, where destination represents the
device. You can specify the destination in the location name used by the
application or configured for the location through a Spoolcom DEV
command. For more information see the Spooler Utilities Reference
Manual.
Spooler Programmer’s Guide—522287-002
1-26

Introduction to the Spooler Subsystem The Spooler and Batch Jobs
The method that the spooler uses to determine if a job becomes a normal job, the first
job in a batch job, or a job to be linked to an existing batch job is shown in Figure 1-7.

If a job is part of a batch job, you cannot alter the key attributes unless you use the
Peruse UNLINK command or the UNLINK option of the Spoolcom BATCH command to
unlink the job from the batch job.

Other job attributes have no effect on whether the job is linked to a batch job. Some
attributes might have no meaning for a job that is part of a batch job. For example,
if every job within a batch job contains a different report name, only the report name
associated with the first job in the batch job is printed on the header pages for that
batch job. Attributes that have meaning only to the first job in a batch job are the report
name, batch name, and selection priority.

Figure 1-7. How the Spooler Determines Which Jobs Are to Be Batched

FUP/OUT$S7. output-device,NOWAIT/COPY filename

Spooler Collector OPEN
request
to $S

Is there
a JOBID?Job is a normal

job

Yes

Is there an
open spooler
batch job with
the same key

attributes?

Yes

Link this job to the
first spooler batch

job

Create a new spooler
batch job

First job for the
assigned
spooler batch
job

VST004.vst

No

No
Spooler Programmer’s Guide—522287-002
1-27

Introduction to the Spooler Subsystem The Spooler and Batch Jobs
Spooler Programmer’s Guide—522287-002
1-28

2
Using the Spooler Interface
Procedures

Application programs can spool jobs (that is, write the data for a spooler job) using a
group of procedures that act as an interface between an application program and a
collector process in a spooler subsystem. These procedures are usually referred to as
spooler interface procedures. This section describes how to use these procedures in
an application program.

Table 2-1 contains a summary of the spooler interface procedures. Section 4, Spooler
Procedure Calls, contains complete descriptions of the procedures and their
parameters. Refer to Appendix C, Spooler-Related Errors, for those error codes that
are relevant to spooler interface procedures, along with file-system errors that have
special significance for the spooler.

Table 2-1. Summary of Spooler Interface Procedures

Procedure Function

SPOOLBATCHNAME Returns the name of the spooler batch job currently being
spooled to the collector.

SPOOLCONTROL Replaces the Guardian file-system CONTROL procedure when
spooling at level 3.

SPOOLCONTROLBUF Replaces the Guardian file-system CONTROLBUF procedure
when spooling at level 3.

SPOOLEND Writes any remaining blocked data to the spooler and signals end
of job; can be used to modify the job attributes.

SPOOLERCOMMAND Issues a SPOOLCOM command to the supervisor.

SPOOLEREQUEST Obtains a Startup message from the supervisor suitable for
reading a job.

SPOOLEREQUEST2 Obtains a startup message from the supervisor suitable for
reading a job. Includes batch enhancements to
SPOOLEREQUEST.

SPOOLERSTATUS Obtains status of spooler components.

SPOOLERSTATUS2 Obtains status of spooler components. Includes batch
enhancements to SPOOLERSTATUS.

SPOOLJOBNUM Returns the job number of the job currently being spooled to the
collector.

SPOOLSETMODE Replaces the Guardian file-system SETMODE procedure when
spooling at level 3.

SPOOLSTART Specifies job attributes and optionally initializes a level-3 buffer.

SPOOLWRITE Compresses, blocks, and sends data to the spooler.
Spooler Programmer’s Guide—522287-002
2-1

Using the Spooler Interface Procedures External Declarations for Spooler Interface
Procedures
External Declarations for Spooler Interface
Procedures

To use spooler interface procedures in a TAL program, you must declare them to be
external to your program. The external declarations for the interface procedures are
located in the file $SYSTEM.SYSTEM.EXTDECS0. They can be sourced into your
program with the following compiler command:

?SOURCE $SYSTEM.SYSTEM.EXTDECS0 (SPOOLSTART, SPOOLWRITE, ...)

See the TAL Reference Manual for a full explanation of the EXTERNAL procedure
declaration and the ?SOURCE compiler directive.

Levels of Spooling From an Application
Program

The three ways for an application program to spool a job to a collector are as follows:

 Level-1 spooling

 Job attributes default to the default attribute values.

 The application sends data for a job to the collector by using the WRITE[X],
CONTROL, and SETMODE Guardian file-system procedures.

 Level-2 spooling

 Job attributes can be specified using the SPOOLSTART procedure.

 The application sends data for a job to the collector by using the WRITE[X],
CONTROL, and SETMODE Guardian file-system procedures.

 Level-3 spooling

 Job attributes can be specified using the SPOOLSTART procedure.

 The application sends data for a job to the collector by using the
SPOOLWRITE, SPOOLCONTROL, SPOOLCONTROLBUF, and
SPOOLSETMODE procedures.

Instead of requiring the transfer of data from the procedure buffer to the
collector each time a procedure is called, the spooler interface procedures
allow you to collect (but not transfer) the data in a special buffer. Each time the
SPOOLWRITE procedure is called, it checks to see whether the write
operation can cause this buffer to overflow. If it can, the procedure initiates the
transfer of the buffer contents and then begins filling the buffer again.

Two types of buffer areas for the data can be used in the spooler interface
procedures:
Spooler Programmer’s Guide—522287-002
2-2

Using the Spooler Interface Procedures Opening a File to a Collector
 A buffer allocated above the data stack that is limited to 500 bytes. This
buffer is indicated by the level-3-buff parameter.

 A buffer allocated in an extended data segment. Extended data segments
can be much larger than 512 bytes This buffer is indicated by the
extended-level-3-buff parameter. Extended data segments are
discussed in the Guardian Programmer’s Guide.

Use either the level-3-buff or extended-level-3-buff, but not
both. The buffer is specified in the SPOOLSTART procedure call and must
be used in all subsequent spooler interface procedure calls.

A program can spool data for several jobs concurrently, but a separate file must be
open to a collector for each job. A single application can spool up to 256 jobs to each
collector.

Jobs spooled concurrently can be spooled at different levels. For example, an
application might open three files to the collector and send it data for three separate
jobs, spooling one job at each level. However, one job cannot be spooled at two
different levels at the same time (in other words, you cannot use both the Guardian file-
system WRITE[X] procedure and the SPOOLWRITE procedure on the same job).

Opening a File to a Collector

Before a program can send data to the spooler, it must have a file open to a collector.
This is accomplished by using the Guardian file-system OPEN procedure or the
FILE_OPEN_ procedure. The program must open the collector with shared access.

If an application is spooling at level 1, the file can be opened with either waited or
nowait input/output (I/O). However, if level-2 or level-3 spooling will be performed, you
must open the file to the collector with waited I/O.

To open a collector, the program must specify the collector and location for the job as
follows:

 A call to the OPEN procedure must provide the collector name and location for the
job in 12-word internal format. The format is

 Words[0:3] contain the $collector-name, blank filled.

 Words[4:7] contain the #group-name, blank filled.

 Words[8:11] contain the destination-name, blank filled.

 The FILE_OPEN_ procedure provides extended features not available from the
OPEN procedure. On a call to FILE_OPEN_ , you must provide a variable-length

Note. The collector cannot accept more than 1024 jobs simultaneously. Thus, if there is more
than one process spooling to the same collector at the same time, the actual limit for one
particular process might be lower than 1024.
Spooler Programmer’s Guide—522287-002
2-3

Using the Spooler Interface Procedures Summary of Spooling From an Application Program
string for the collector and location (as the filename input parameter) and the
length of the string.

The parameters required in the FILE_OPEN_ procedure call are

CALL FILE_OPEN_ (filename:length,filenum) ;

For example, if the filename parameter specifies the collector name and location
$S.#LP2, the length parameter must be 7. The system returns a value in
filenum.

All considerations of job routing described under Routing Structure on page 1-22 apply
to routes specified implicitly when using OPEN or FILE_OPEN_ to establish
communication with a collector.

$collector-name is required in the call to OPEN and $collector-name and
length are required in the call to FILE_OPEN_. If #group-name or destination-
name is filled with blanks in a call to OPEN or is not present in a call to FILE_OPEN,
then the job will be assigned a location according to the rules for default routing.

In level-2 and level-3 spooling, you can change the job location in the call to
SPOOLSTART.

Summary of Spooling From an Application Program

The following points summarize spooling from an application program:

 All three spooling levels have in common the requirement that the application must
have a file open to a collector before spooling can begin.

 An application can spool data from several jobs concurrently. You must open a
separate file to a collector for each job.

 The application process can use different levels of spooling to the same collector
at the same time. However, the levels cannot be combined with one another to
spool data for the same job.

 Level-1 spooling does not involve any of the interface procedures. Jobs spooled in
this manner are assigned the default job attributes.

 Level-2 spooling is the same as level 1, except that you can specify job attributes
using SPOOLSTART.

 Level-3 spooling requires the use of the spooler interface procedures:
SPOOLSTART, SPOOLJOBNUM, SPOOLWRITE, SPOOLEND,
SPOOLCONTROL, SPOOLCONTROLBUF, and SPOOLSETMODE. These allow
a more efficient data transfer than is possible at levels 1 or 2.

Note. If the filename input parameter is not fully qualified, FILE_OPEN_ uses the current
settings, including the system name, in the =_DEFAULTS DEFINE, for unspecified parts
including the system.
Spooler Programmer’s Guide—522287-002
2-4

Using the Spooler Interface Procedures Summary of Spooling From an Application Program
 SPOOLCONTROL, SPOOLCONTROLBUF, and SPOOLSETMODE take the place
of the Guardian file-system procedures CONTROL, CONTROLBUF, and
SETMODE, for level-3 spooling.

 SPOOLWRITE compresses and stores the data from several successive calls.
Only when its buffer is full does it write to the spooler.

 Applications should issue a top-of-form control at the beginning and end of all jobs.
This ensures that data from two different jobs will not be printed on the same page.

Example of a Level-1 Application Program

You send data to the spooler at level 1 in 3 steps:

1. Open a file to the collector using the Guardian file-system OPEN procedure.

2. Write data to the collector with calls to the Guardian file-system procedures
WRITE[X], CONTROL, CONTROLBUF, and SETMODE. The amount of data
written by a given call might vary.

3. Signal the end of the job by using the Guardian file-system CLOSE procedure to
close the file to the collector. When the collector receives a system message
telling it that the file has been closed, it removes the job from the open state and
places it in the ready state at the appropriate destination.

Example 2-1 is an example of level-1 spooling.
Spooler Programmer’s Guide—522287-002
2-5

Using the Spooler Interface Procedures Summary of Spooling From an Application Program

Example 2-1. Annotated Example of Level-1 Spooling (page 1 of 2)

! This program is an example of level-1 spooling. It consists of 3
! procedures: error, getline, and root, and it calls the
! Guardian procedures OPEN, CLOSE, WRITE, and STOP.

! error --this procedure handles I/O errors. It performs the
! necessary steps for recovery or it aborts the program.

! sperror --this procedure handles Spooler errors. It performs the
! necessary steps for recovery or it aborts the program. It has
! a single INT parameter that is the error code returned from a
! Spooler Interface Procedure.

! getline --this procedure returns a line of data for spooling.
! It is an INT procedure that returns a zero (FALSE) value when
! it has no data to spool. It has two parameters: line and
! length. line is a reference to a 40-word (80-byte) array.
! The array is filled with the line of data to be spooled.
! length is a reference to an INT that is set to the number of
! bytes to be written from line.

! root --this is the main procedure. It performs all the file
! management to the collector and calls the other procedures in
! the program as needed.

?nolist
INT counter := 0;
?SOURCE $SYSTEM.SYSTEM.EXTDECS(OPEN, CLOSE, WRITE, STOP)

PROC error;
 BEGIN
 CALL STOP;
 END;
INT PROC getline(line, length);
 INT .line,
 .length;
Spooler Programmer’s Guide—522287-002
2-6

Using the Spooler Interface Procedures Summary of Spooling From an Application Program
Example of a Level-2 Application Program

You send data to the spooler at level 2 in 4 steps:

1. Open a file to a collector with the Guardian file-system OPEN procedure. This file
must be opened with waited I/O.

2. Call SPOOLSTART, passing the file number. You can specify the location, form
name, report name, number of copies, page size, and instructions on whether or
not to place the job in the HOLD state.

3. Send data to the spooler with calls to file-system procedures WRITE[X],
CONTROL, CONTROLBUF, and SETMODE. Each call to WRITE[X] is limited to
900 bytes or fewer.

 BEGIN
 int temp, done;
 temp :=0;
 temp := counter.<13:15> ;
 temp := temp * 5;
 line [0] ':=' " ";
 line [1] ':=' line[0] for 39;
 line [temp] ':=' "0123456789";
 length := 80;
 IF counter > 120 THEN done := 0 ELSE done := 1;
 counter := counter + 1;
 return done;
 END;
?list
PROC root MAIN;
BEGIN
 ! Declarations
 INT collector [0:11] := "$S #LLP LLP ",
 ! contains the collector and location name in
 ! internal format
 line [0:39],
 ! contains the line of data to spool
 length,
 ! contains the number of bytes to write from line
 collectnum;
 ! contains the collector's file number returned from open

 ! Open file to collector, and check for errors.
 CALL OPEN(collector, collectnum);
 IF <> THEN CALL error;
 ! Get a line of data and test for done.
 ! If done, fall through.
 WHILE getline(line, length) DO
 BEGIN
 ! Write the line to the collector and check for errors
 CALL WRITE (collectnum, line, length);
 IF <> THEN CALL error;
 END;
 ! Close the file to the collector and stop the program
 CALL CLOSE(collectnum);
 IF <> THEN CALL error;
 CALL STOP;

 END;

Example 2-1. Annotated Example of Level-1 Spooling (page 2 of 2)
Spooler Programmer’s Guide—522287-002
2-7

Using the Spooler Interface Procedures Summary of Spooling From an Application Program
4. The job leaves the open state when you close the file to the collector with the file-
system CLOSE procedure. Depending on the hold option specified in the call to
SPOOLSTART, the job will go to the READY state or the HOLD state at the
location specified.

Example 2-2 is an example of level-2 spooling.

Example 2-2. Annotated Example of Level-2 Spooling (page 1 of 3)

! This program is an example of level-2 spooling. It consists of 4
! procedures: error, sperror, getline, and root, and it calls the
! Guardian procedures OPEN, CLOSE, WRITE, and STOP. It also
! calls SPOOLSTART to specify the attributes of the job.

! error --this procedure handles I/O errors. It performs
! the necessary steps for recovery or it aborts the program.

! sperror --this procedure handles spooler errors. It
! performs the necessary steps for recovery or it aborts the
! program. It has a single INT parameter that is the error
! code returned from the spooler interface procedure.

! getline --this procedure returns a line of data for
! spooling. It is an INT procedure that returns a zero
! (FALSE) value when it has no data to spool. It has two
! parameters: line and length. line is a reference to a
! 40-word (80-byte) array. The array is filled with the line
! of data to be spooled. length is a reference to an INT that
! is set to the number of bytes to be written from line.

! root --this is the main procedure. It performs all
! the file management to the collector and calls the other
! procedures in the program as needed.
Spooler Programmer’s Guide—522287-002
2-8

Using the Spooler Interface Procedures Summary of Spooling From an Application Program
?nolist
INT counter := 0;
?SOURCE $SYSTEM.SYSTEM.EXTDECS(OPEN, CLOSE, WRITE, STOP,
?SPOOLSTART)

PROC error;
 BEGIN
 CALL STOP;
 END;
PROC sperror (errnum);
 INT errnum;
 BEGIN
 CALL STOP;
 END;
INT PROC getline(line, length);
 INT .line,
 .length;
 BEGIN
 int temp, done;
 temp :=0;
 temp := counter.<13:15> ;
 temp := temp * 5;
 line [0] ':=' " ";
 line [1] ':=' line[0] for 39;
 line [temp] ':=' "0123456789";
 length := 80;
 IF counter > 120 THEN done := 0 ELSE done := 1;
 counter := counter + 1;
 RETURN done;
 END;
?list
PROC root MAIN;
BEGIN
 ! Declarations
 INT collector [0:11] := "$S #LP3 LP3 ",
 ! contains the collector and location name in internal
 ! format
 line [0:39],
 ! contains the line of data to spool
 length,
 ! contains the number of bytes to write from line
 collectnum,
 ! contains the collector's file number returned from OPEN
 location [0:7] := "#LPRMT3 ",
 ! contains the job's new location
 sperrnum;
 ! receives SPOOLSTART error code

Example 2-2. Annotated Example of Level-2 Spooling (page 2 of 3)
Spooler Programmer’s Guide—522287-002
2-9

Using the Spooler Interface Procedures Summary of Spooling From an Application Program
Example of a Level-3 Application Program

You send data to the spooler at level 3 in 5 steps:

1. Open a file to a collector with the file-system OPEN procedure. This file must be
opened with waited I/O.

2. Call SPOOLSTART, including the level-3-buffer parameter.

3. Send data to the collector with calls to the SPOOLWRITE, SPOOLCONTROL,
SPOOLCONTROLBUF, and SPOOLSETMODE procedures. As noted earlier, not
all calls to these procedures actually write data to the spooler. However, the
blocking of data is transparent to the user.

4. The application signals the end of the job by calling the SPOOLEND procedure.
Because you call SPOOLEND instead of the file-system CLOSE procedure to
close the file, you can begin spooling another job without reopening a file to the
collector.

5. At the end of the program run, close the collector file.

Example 2-3 is an example of level-3 spooling.

 ! Open file to collector, and check for errors.
 CALL OPEN(collector, collectnum);
 IF <> THEN CALL error;
 ! Call SPOOLSTART to specify job's attributes
 ! location #LPRMT3
 ! form name blanks (default)
 ! report name user's name and group name (default)
 ! number of copies 1 (default)
 ! page size 40
 ! flags
 ! hold off
 ! holdafter on
 ! NonStop bit off
 ! priority 7
 sperrnum := SPOOLSTART(collectnum,,location,,,,
 40,%B0000000000100111);
 ! Test for an error from SPOOLSTART
 IF sperrnum THEN CALL sperror(sperrnum);
 ! Get a line of data and test for done.
 ! If done, fall through.
 WHILE getline(line, length) DO
 BEGIN
 ! Write the line to the collector and test for errors
 CALL WRITE (collectnum, line, length);
 IF <> THEN CALL error;
 END;

 ! Close the file to the collector and stop the program
 CALL CLOSE(collectnum);
 IF <> THEN CALL error;
 CALL STOP;
 END;

Example 2-2. Annotated Example of Level-2 Spooling (page 3 of 3)
Spooler Programmer’s Guide—522287-002
2-10

Using the Spooler Interface Procedures Summary of Spooling From an Application Program

Example 2-3. Annotated Example of Level-3 Spooling (page 1 of 3)

! This program is an example of level-3 spooling. It consists of 4
! procedures: error, sperror, getline, and root, and it calls the
! Guardian procedures OPEN, CLOSE, and STOP. It uses the
! spooler interface procedures SPOOLSTART, SPOOLWRITE, and SPOOLEND
! to spool the job.

! error --this procedure handles I/O errors. It performs the
! necessary steps for recovery or it aborts the program.

! sperror --this procedure handles spooler errors. It performs the
! necessary steps for recovery or it aborts the program. It has
! a single INT value parameter that is the error code returned
! from the spooler interface procedures.

! getline --this procedure returns a line of data for spooling.
! It is an INT procedure that returns a zero (FALSE) value when
! it has no data to spool. It has two parameters: line and
! length. line is a reference to a 40-word (80-byte) array.
! The array is filled with the line of data to be spooled.
! length is a reference to an INT that is set to the number of
! bytes to be written from line.

! root --this is the main procedure. It performs all the file
! management to the collector and calls the other procedures in
! the program as needed.

?nolist
INT counter := 0;
Spooler Programmer’s Guide—522287-002
2-11

Using the Spooler Interface Procedures Summary of Spooling From an Application Program
?SOURCE $SYSTEM.SYSTEM.EXTDECS (OPEN, CLOSE, WRITE, STOP, ?SPOOLSTART,
SPOOLWRITE, SPOOLEND)
PROC error;
 BEGIN
 CALL STOP;
 END;
PROC sperror (errnum);
INT errnum;
 BEGIN
 CALL STOP;
 END;
INT PROC getline(line, length);
 INT .line,
 .length;
 BEGIN
 int temp, done;
 temp :=0;
 temp := counter.<13:15> ;
 temp := temp * 5;
 line [0] ':=' " ";
 line [1] ':=' line[0] for 39;
 line [temp] ':=' "0123456789";
 length := 80;
 IF counter > 120 THEN done := 0 ELSE done := 1;
 counter := counter + 1;
 RETURN done;
 END;
?list

PROC root MAIN;
BEGIN
 ! Declarations
 INT collector [0:11] := "$S #LP3 LP3 ",
 ! contains the file name of the collector and
 ! location in internal format
 line [0:39],
 ! contains the line of data to spool
 length,
 ! contains the number of bytes to write from line
 collectnum,
 ! contains the file number returned from OPEN
 location [0:7] := "#LPRMT3 ",
 ! contains the new location for the job
 sperrnum,
 ! receives SPOOLSTART error code
 .buffer[0:511];
 ! this is the level-3 buffer
 ! Open file to collector, and check for errors.

Example 2-3. Annotated Example of Level-3 Spooling (page 2 of 3)
Spooler Programmer’s Guide—522287-002
2-12

Using the Spooler Interface Procedures Summary of Spooling From an Application Program
 CALL OPEN(collector, collectnum);
 IF <> THEN CALL error;
 ! Call SPOOLSTART to specify new job attributes
 ! location #LPRMT3
 ! form name blanks (default)
 ! report name user's name and group name (default)
 ! number of copies 1 (default)
 ! page size 40
 ! flags
 ! hold off
 ! holdafter on
 ! NonStop bit off
 ! priority 7

 sperrnum :=
 SPOOLSTART(collectnum, buffer, location,,,, 40,
 %B0000000000100111);

 ! Test for an error from SPOOLSTART
 If sperrnum THEN CALL sperror(sperrnum);

 ! Get a line of data and test for done.
 ! If done, fall through.

 WHILE getline(line, length) DO
 BEGIN
 ! Write line to collector and check for errors
 sperrnum := SPOOLWRITE (buffer, line, length);
 IF sperrnum THEN CALL sperror(sperrnum);
 END;

 ! End this job and change the flag settings to
 ! flags
 ! cancel off
 ! hold on
 ! holdafter off
 ! NonStop bit off
 ! priority 4
 sperrnum := SPOOLEND(buffer, %B0000000001000100);
 IF sperrnum THEN CALL sperror(sperrnum);

 ! Close the file to the collector and stop the program

 CALL CLOSE(collectnum);
 IF <> THEN CALL error;
 CALL STOP;
 END;

Example 2-3. Annotated Example of Level-3 Spooling (page 3 of 3)
Spooler Programmer’s Guide—522287-002
2-13

Using the Spooler Interface Procedures COBOL Spooling
COBOL Spooling
Programs written in COBOL can spool their data at level 2 or 3 in the same manner as
a TAL program. COBOL users typically use the spooling facilities provided by COBOL.
See the COBOL85 Manual for more information.

COBOL Spooling—Level 1

Level-1 spooling from COBOL is not supported.

COBOL Spooling—Levels 2 and 3

To spool from COBOL, use one of the COBOL utility routines:

 COBOLSPOOLOPEN permits level-2 spooling for COBOL users.

 COBOL85^SPECIAL^OPEN permits level-2 or level-3 spooling for COBOL85
users.

 COBOL_SPECIAL_OPEN permits level-2 or level-3 spooling.

Use any of the above procedures to perform both the OPEN and SPOOLSTART
operations. Following the OPEN, write the data to the collector as follows:

1. Using a SELECT statement, assign a COBOL file descriptor name to the process
name of the collector. For example, if $SPL is a collector, the Input-Output Section
of the Environment Division would contain the statement:

SELECT SPOOLER ASSIGN "$SPL".

2. In the File Section of the Data Division, use a file definition (FD) to specify the
record to be associated with writes to the spooler:

FD SPOOLER RECORD CONTAINS 80 CHARACTERS LABEL RECORDS ARE
OMITTED. 01 SPOOL-LINE PIC X(80).

3. In the Procedure Division, open the spooler as the output file:

OPEN OUTPUT SPOOLER.

4. Write each line of data to the spooler. For example, if the data to be spooled is in
DATA-LINE, the WRITE statement for the above FD would look like the following:

WRITE SPOOL-LINE FROM DATA-LINE.

Example 2-4 is an example of a program that performs COBOL spooling. A
specification in the Working Storage Section determines whether level-2 or level-3
spooling is used.
Spooler Programmer’s Guide—522287-002
2-14

Using the Spooler Interface Procedures COBOL Spooling—Levels 2 and 3

Example 2-4. Example of Spooling From COBOL (page 1 of 2)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. SPOOLER.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.
 SOURCE-COMPUTER. HP.
 OBJECT-COMPUTER. HP.
 SPECIAL-NAMES. FILE "$SYSTEM.SYSTEM.CBL85UTL" IS CBL85UTL.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT IN-FILE
 ASSIGN TO "SPOOLEE"
 FILE STATUS IS FILE-STAT.
 SELECT OUT-FILE
 ASSIGN TO "$S"
 FILE STATUS IS FILE-STAT.

 DATA DIVISION.
 FILE SECTION.

 FD IN-FILE
 RECORD CONTAINS 1 TO 80 CHARACTERS,
 LABEL RECORDS ARE OMITTED.
 01 IN-REC PIC X(80).

 FD OUT-FILE
 LABEL RECORDS ARE OMITTED.
 01 OUT-REC PIC X(132).

 WORKING-STORAGE SECTION.

 01 FILE-STAT.
 05 FILE-STAT-1 PIC X.
 88 IN-FILE-EOF VALUE "1".
 05 FILE-STAT-2 PIC X.

 01 FLAGS PIC 9(4) COMP VALUE 99.
* 99 = 64 (HOLD)
* +32 (HOLDAFTER)
* + 3 (PRIORITY 3)
 01 ERROR-CODE PIC 9(4).
 01 LOCATION.
 03 GROUP-NAME PIC X(8) VALUE "#LP ".
 03 LOCATION-NAME PIC X(8) VALUE SPACES.
 01 FORM-NAME PIC X(16) VALUE "PREPRINTED".
 01 REPORT-NAME PIC X(16) VALUE "NAME OF REPORT".
 01 SPOOLER-OPEN PIC S9(4) COMP VALUE 1.
 01 LEVEL-2 PIC S9(4) COMP VALUE 0.
 01 LEVEL-3 PIC S9(4) COMP VALUE 1.
Spooler Programmer’s Guide—522287-002
2-15

Using the Spooler Interface Procedures COBOL Spooling—Levels 2 and 3
 PROCEDURE DIVISION.
 DECLARATIVES.
 UA-IN-FILE SECTION.
 USE AFTER ERROR PROCEDURE ON IN-FILE.
 UA-IN-FILE-PROC.
 IF NOT IN-FILE-EOF DISPLAY "IN-FILE ERROR=" FILE-STAT.
 UA-OUT-FILE SECTION.
 USE AFTER ERROR PROCEDURE ON OUT-FILE.
 UA-OUT-FILE-PROC.
 IF NOT IN-FILE-EOF DISPLAY "OUT-FILE ERROR=" FILE-STAT.
 END DECLARATIVES.

 MAIN SECTION.
 BEGIN-PROGRAM.
 PERFORM A-INIT
 PERFORM B-DO-IT UNTIL IN-FILE-EOF
 PERFORM C-EOJ
 STOP RUN.
 A-INIT.
 OPEN INPUT IN-FILE
 ENTER "COBOL85^SPECIAL^OPEN" OF CBL85UTL
 USING OUT-FILE
 SPOOLER-OPEN
 OMITTED
 OMITTED
 OMITTED
 LEVEL-2
 LOCATION
 FORM-NAME
 REPORT-NAME
 OMITTED
 OMITTED
 FLAGS
 GIVING ERROR-CODE
 IF ERROR-CODE NOT = 0
 DISPLAY "COBOL85^SPECIAL^OPEN ERROR=" ERROR-CODE
 STOP RUN
 END-IF
 .
 B-DO-IT.
 READ IN-FILE
 NOT AT END WRITE OUT-REC FROM IN-REC
 END-READ
 .
 C-EOJ.
 CLOSE IN-FILE
 OUT-FILE
 .

Example 2-4. Example of Spooling From COBOL (page 2 of 2)
Spooler Programmer’s Guide—522287-002
2-16

Using the Spooler Interface Procedures Spooling From a NonStop Process Pair
Spooling From a NonStop Process Pair
An application process sending data to a collector can run as a NonStop process pair.
Programmers writing such applications should be aware of the checkpointing
considerations described in this subsection.

This discussion assumes that you already have knowledge of fault-tolerant
programming (coding NonStop process pairs).

For an application program to run as a NonStop process pair, the system spooler
should also be running as a NonStop process pair. Otherwise, an attempt at NonStop
spooling from the application will not be fully effective.

If the collector is running as a NonStop process pair, you can spool with or without the
spooler interface procedures. However, the considerations are different in each case.

You must decide whether or not the application can tolerate duplication of a line of data
in the event of a failure of the application’s primary process. If the application cannot
tolerate duplication of any lines, then sync depth must be specified when the collector
is opened.

Use of Sync Depth

When a NonStop process pair opens the collector, it can set the sync-depth parameter
of the file-system OPEN or FILE_OPEN_ procedure to a value of 1 or more, up to 15.
Each write to the collector is then tagged by the file system with a sync ID. This
ensures that, in the event of a failure of the primary processor, the collector will
recognize any line rewritten by the backup.

If you have opened the collector with a nonzero sync depth, the information
checkpointed should include the synchronization block of the file to the collector. A
sync depth greater than 1 allows the application to perform less-frequent checkpoints.
If you open the file to the collector with a sync depth of n, the application need only
checkpoint before every nth write operation.

Spooling—Levels 1 and 2

The considerations for spooling on levels 1 and 2 from a NonStop process pair are
very similar. Your main concern while performing such spooling from an application
program is whether you can afford duplication in your spooled job.

Spooling With a Zero Sync Depth

If duplication of data lines can be tolerated, then a reasonable checkpointing strategy is
to checkpoint the primary processor stack, the line of data to be spooled, and the

Note. The examples in this subsection deal with checkpointing only to ensure the integrity of
the application-collector interface. Checkpointing the remainder of the program is left to the
programmer.
Spooler Programmer’s Guide—522287-002
2-17

Using the Spooler Interface Procedures Spooling—Levels 1 and 2
synchronization block for the file to the collector immediately before every write of a
line of data to the collector.

In the event of a failure after the checkpoint, the backup process will execute the write
with the correct line.

If the failure occurs following the write but before the next checkpoint, the backup will
re-execute the write of the last line sent. When you print this job, the listing will contain
two copies of the line.

Example 2-5 illustrates this checkpointing strategy in level-1 spooling.

Note. When you open a job with a sync depth of 0, the collector does not checkpoint as often
for level-1 jobs as it does for jobs with a higher sync depth. Level-1 jobs opened with a sync
depth of 0 could lose lines of data when a collector takeover occurs.

Example 2-5. Annotated Example of Level-1 Spooling From a NonStop Process
Pair With a Zero Sync Depth (page 1 of 3)

! This program is an example of level-1 NonStop spooling with a
! zero sync depth. It consists of 5 procedures: error, cherror,
! stbackup, getline, and root, and it calls the Guardian
! procedures OPEN, CLOSE, WRITE, STOP, CHECKOPEN, and CHECKPOINT.

! error --this procedure handles I/O errors. It performs the
! necessary steps for recovery or it aborts the program.

! cherror --this procedure handles checkpointing errors.
! It performs the necessary steps for recovery or it aborts the
! program. It has a single INT parameter that is the back error
! returned from CHECKOPEN or the status word returned from
! CHECKPOINT. If it is called with a 0 value, it will stop the
! backup process.

! stbackup --this procedure opens $RECEIVE, checks the Startup
! message, and decides whether this program is the primary or
! backup procedure. If it is the primary, it starts a backup.
! Otherwise, it waits for checkpointing information from the
! primary.

! getline --this procedure returns a line of data for spooling.
! It is an INT procedure that returns a zero (FALSE) value when
! it has no data to spool. It has two parameters: line and
! length. line is a reference to a 40-word (80-byte) array.
! length is a reference to an INT that is set to the number of
! bytes to be written from line.

! root --this is the main procedure. It performs all the file
! management to the collector and calls the other procedures in
! the program as needed.

?nolist
INT counter := 0;
Spooler Programmer’s Guide—522287-002
2-18

Using the Spooler Interface Procedures Spooling—Levels 1 and 2
?SOURCE $SYSTEM.SYSTEM.EXTDECS(OPEN, CLOSE, WRITE, STOP,
?CHECKOPEN,CHECKPOINT)

PROC error;
 BEGIN
 CALL STOP;
 END;
PROC cherror (george);
 INT george;
 BEGIN
 CALL STOP;
 END;
PROC stbackup;
 BEGIN
 counter := counter;
 END;
INT PROC getline(line, length);
 INT .line,
 .length;
 BEGIN
 int temp, done;
 temp :=0;
 temp := counter.<13:15> ;
 temp := temp * 5;
 line [0] ':=' " ";
 line [1] ':=' line[0] for 39;
 line [temp] ':=' "0123456789";
 length := 80;
 IF counter > 120 THEN done := 0 ELSE done := 1;
 counter := counter + 1;
 RETURN done;
 END;
?list
PROC root MAIN;
BEGIN
 ! Declarations
 INT collector [0:11] := "$S #LP3 LP3 ",
 ! contains the collector and location name in
 ! internal format
 collectnum,
 ! contains the collector's file number returned from open
 err,
 ! contains the CHECKOPEN back error or the CHECKPOINT status
 ! word
 flags := %B0100100000000000,
 ! contains the bit pattern for the flags parameter to OPEN
 ! and CHECKOPEN

Example 2-5. Annotated Example of Level-1 Spooling From a NonStop Process
Pair With a Zero Sync Depth (page 2 of 3)
Spooler Programmer’s Guide—522287-002
2-19

Using the Spooler Interface Procedures Spooling—Levels 1 and 2
 line [0:39],
 ! contains the line of data to spool
 length;
 ! contains the number of bytes to write from line

 ! Start the backup and check if this is the backup

 CALL stbackup;

 ! Open file to collector, and check for errors.
 CALL OPEN(collector, collectnum, flags, 0);
 IF <> THEN CALL error;

 ! CHECKOPEN the successful open to the collector
 ! and test for error.
 CALL CHECKOPEN(collector, collectnum, flags,0,,, err);
 IF <> THEN CALL cherror(err);

 ! Get a line of data and test for done.
 ! If done, fall through.

 WHILE getline(line, length) DO
 BEGIN

 ! CHECKPOINT stack (including line of data) and
 ! synchronization block

 err := CHECKPOINT(line, , collectnum);

 ! Write the line to the collector and check for errors
 CALL WRITE (collectnum, line, length);
 IF <> THEN CALL error;
 END;

 ! Close the file to the collector

 CALL CLOSE(collectnum);
 IF <> THEN CALL error;

 ! Stop backup and stop primary

 CALL cherror(0);
 CALL STOP;
 END;

Example 2-5. Annotated Example of Level-1 Spooling From a NonStop Process
Pair With a Zero Sync Depth (page 3 of 3)
Spooler Programmer’s Guide—522287-002
2-20

Using the Spooler Interface Procedures Spooling—Levels 1 and 2
Spooling With a Nonzero Sync Depth

To prevent a line from being duplicated, you can take advantage of the sync depth
feature of the file system.

To use this feature, you should open the collector with a nonzero sync depth. The
program should perform a checkpoint before every nth write to the collector, where n is
the sync depth. At that time, the following should be checkpointed:

 The data stack

 The data line about to be written to the collector

 The synchronization block of the file to the collector, including the current sync ID
and the access control block

The collector will keep track of up to 15 sync IDs; therefore, an application program
can open the collector with any sync depth up to and including 15.

Example 2-6 is an example of level-2 spooling with a nonzero sync depth.

Example 2-6. Annotated Example of Level-2 Spooling From a NonStop Process
Pair With a Nonzero Sync Depth (page 1 of 4)

! This program is an example of level-2 NonStop spooling with a
! sync depth of 5. It consists of 6 procedures: cherror,
! stbackup, error, sperror, getline, and root, and it calls the
! Guardian procedures OPEN, CLOSE, WRITE, STOP, CHECKOPEN, and
! CHECKPOINT. It also calls SPOOLSTART to specify the attributes
! of the job.

! cherror --this procedure handles checkpointing errors.
! It performs the necessary steps for recovery or it aborts the
! program. It has a single INT parameter that is the back error
! returned from CHECKOPEN or the status word returned from
! CHECKPOINT. If it is called with a 0 value, it will stop the
! backup process.

! stbackup --this procedure decides whether this program is the
! primary or backup procedure. If it is the primary, it starts a
! backup. Otherwise, it waits for checkpointing information from
! the primary. Opens $RECEIVE and reads the Startup message.

! error --this procedure handles I/O errors. It performs the
! necessary steps for recovery or it aborts the program.

! sperror --this procedure handles spooler errors. It performs the
! necessary steps for recovery or it aborts the program. It has
! a single INT parameter that is the error code returned from the
! spooler interface procedure.
Spooler Programmer’s Guide—522287-002
2-21

Using the Spooler Interface Procedures Spooling—Levels 1 and 2
! getline --this procedure returns a line of data for spooling.
! It is an INT procedure that returns a zero (FALSE) value when
! it has no data to spool. It has two parameters: line and
! length. line is a reference to a 40-word (80-byte) array.
! The array is filled with the line of data to be spooled.
! length is a reference to an INT that is set to the number of
! bytes to be written from line.

! root --this is the main procedure. It performs all the file
! management to the collector and calls the other procedures in
! the program as needed.

?nolist
INT counter := 0;

?SOURCE $SYSTEM.SYSTEM.EXTDECS(OPEN, CLOSE, WRITE, STOP,
? SPOOLSTART, CHECKOPEN, CHECKPOINT)
PROC cherror (george);
 INT george;
 BEGIN
 CALL STOP;
 END;
PROC stbackup;
 BEGIN
 counter := counter;
 END;
PROC error;
 BEGIN
 CALL STOP;
 END;
PROC sperror (errnum);
 INT errnum;
 BEGIN
 CALL STOP;
 END;
INT PROC getline(line, length);
 INT .line,
 .length;
 BEGIN
 int temp, done;
 temp :=0;
 temp := counter.<13:15> ;
 temp := temp * 5;
 line [0] ':=' " ";
 line [1] ':=' line[0] for 39;
 line [temp] ':=' "0123456789";
 length := 80;

Example 2-6. Annotated Example of Level-2 Spooling From a NonStop Process
Pair With a Nonzero Sync Depth (page 2 of 4)
Spooler Programmer’s Guide—522287-002
2-22

Using the Spooler Interface Procedures Spooling—Levels 1 and 2
 IF counter > 120 THEN done := 0 ELSE done := 1;
 counter := counter + 1;
 RETURN done;
 END;
?list
PROC root MAIN;
BEGIN
 ! Declarations
 INT collector [0:11] := "$S #LP3 LP3 ",
 ! contains the collector and location name in
 ! internal format
 collectnum,
 ! contains the collector's file number returned from OPEN
 flags := %B0100100000000000,
 ! contains the bit pattern for the flags parameter to OPEN
 ! and CHECKOPEN
 location [0:7] := "#LPRMT3 ",
 ! contains the job's new location
 line [0:39],
 ! contains the line of data to spool
 length,
 ! contains the number of bytes to write from line
 chcount := 0,
 ! contains the number of uncheckpointed writes pending
 err,
 ! contains the CHECKOPEN back error or the CHECKPOINT
 ! status word
 sperrnum;
 ! receives SPOOLSTART error code
 ! Open file to collector
 ! flags
 ! receive messages on
 ! access mode write only
 ! open process nowait off
 ! exclusion mode shared
 ! wait/nowait wait
 ! sync depth 5
 CALL OPEN(collector, collectnum, flags, 5);
 ! Check for errors
 IF <> THEN CALL error;
 ! CHECKOPEN the successful open to the collector
 CALL CHECKOPEN(collector,collectnum, flags, 5,,, err);
 ! Check for a CHECKOPEN error
 IF <> THEN CALL cherror(err);

Example 2-6. Annotated Example of Level-2 Spooling From a NonStop Process
Pair With a Nonzero Sync Depth (page 3 of 4)
Spooler Programmer’s Guide—522287-002
2-23

Using the Spooler Interface Procedures Spooling—Levels 1 and 2
 ! Checkpoint call to SPOOLSTART (in this example none of the
 ! parameters to SPOOLSTART have been computed so this checkpoint
 ! is not necessary, but most practical programs would need this
 ! checkpoint).
 CALL CHECKPOINT(location);
 ! Call SPOOLSTART to specify job's attributes
 ! location #LPRMT3
 ! form name blanks (default)
 ! report name user's name and group name (default)
 ! number of copies 1 (default)
 ! page size 40
 ! flags
 ! hold off
 ! holdafter on
 ! NonStop bit off
 ! priority 7

 sperrnum := SPOOLSTART(collectnum,,location,,,,
 40,%B0000000000100111);

 ! Test for an error from SPOOLSTART
 If sperrnum THEN CALL sperror(sperrnum);
 ! Get a line of data and test for done.
 ! If done, fall through.
 WHILE getline(line, length) DO
 BEGIN
 ! Increment sync depth counter and test for
 ! sync depth overflow
 chcount := chcount + 1;
 IF chcount = 5 THEN
 BEGIN
 ! Checkpoint the stack (including line of data)
 ! and synchronization block. Reset sync count.
 CALL CHECKPOINT(line, , collectnum);
 chcount := 1;
 END;
 ! Write the line to the collector and test for errors
 CALL WRITE (collectnum, line, length);
 IF <> THEN CALL error;
 END;
 ! Close the file to the collector
 CALL CLOSE(collectnum);
 IF <> THEN CALL error;
 ! Stop backup and stop primary
 CALL cherror (0);
 CALL STOP;
 END;

Example 2-6. Annotated Example of Level-2 Spooling From a NonStop Process
Pair With a Nonzero Sync Depth (page 4 of 4)
Spooler Programmer’s Guide—522287-002
2-24

Using the Spooler Interface Procedures Spooling—Level 3
Spooling—Level 3

An application process spooling at level 3 writes data to the collector using the spooler
interface procedures. SPOOLWRITE, SPOOLCONTROL, SPOOLCONTROLBUF, and
SPOOLSETMODE do not actually write a line of data to the collector each time one of
them is called. Instead, they put the data in the level-3-buffer you specified in an
earlier call to SPOOLSTART.

At the point that data specified in a call to a SPOOLWRITE, SPOOLCONTROL,
SPOOLCONTROLBUF, or SPOOLSETMODE procedure would cause the level-3-
buffer to overflow, the procedure checks to see whether bit 11 of the SPOOLSTART
flags parameter has been set to 1. If that bit is 0, the procedure writes the buffer to
the collector and begins refilling the buffer with the data line that would have
overflowed the buffer.

If bit 11 of flags is 1, however, the procedure exits before writing the level-3-
buffer to the collector and returns a spooler error code value of %11000. This
indicates to the application process that the level-3-buffer is about to be written to
the collector and that a checkpoint should be performed.

After checkpointing, you must use the same data again to call the procedure that
returned the %11000. This time, that procedure writes the buffer to the collector and
begins refilling the buffer with the data line.

When using the spooler interface procedures, you can perform spooling from a
NonStop process pair with or without checkpointing. In fact, you do not even have to
use the fault-tolerant bit in SPOOLSTART (bit 11 of the flags parameter), but this
would lead to inefficient checkpointing. Only fault-tolerant programs that use bit 11 of
flags are considered. The application must checkpoint the data stack, the lbuffer, the
latest line of data to be written, and the synchronization block of the file to the collector.

Figure 2-1 shows a flow chart of SPOOLWRITE, SPOOLSETMODE,
SPOOLCONTROL, and SPOOLCONTROLBUF procedures for handling a call that
would overflow the level-3-buffer.
Spooler Programmer’s Guide—522287-002
2-25

Using the Spooler Interface Procedures Spooling—Level 3

Figure 2-1. Buffer Overflow Logic

Enter

Would buffer
overflow

?

No

No

Yes

flags. <11>=1
?

Is this second
call?

Yes

Return
%1100

User must
checkpoint buffer

and recall
SPOOLWRITE

Return
0

Put current
line in buffer

No

Yes

Write
buffer to
collector

VST007.vst
Spooler Programmer’s Guide—522287-002
2-26

Using the Spooler Interface Procedures Spooling—Level 3
Spooling With a Zero Sync Depth

After opening and initializing the level-3-buffer, you can begin spooling with the
interface procedures.

If SPOOLCONTROL, SPOOLSETMODE, SPOOLCONTROLBUF, or SPOOLWRITE
returns an error code of %11000, then the data given in the last call to that procedure
would cause the level-3-buffer to be written to the collector. The following
information should be checkpointed:

 The data stack

 The level-3-buffer (the number of bytes of level-3-buffer containing
valid data is returned in the bytes-written-to-buffer parameter of the
SPOOLWRITE, SPOOLSETMODE, SPOOLCONTROL, and
SPOOLCONTROLBUF procedures)

 The data line that caused the %11000 return

After this information has been checkpointed, again call the procedure that returned
the %11000 as an error code, using the same data. It writes the level-3-buffer to
the collector on the second call and then begins refilling the buffer with the last line of
data that was resubmitted.

If the primary fails after the level-3-buffer has been written to the collector but
before the next checkpoint, it is possible that the entire level-3-buffer will be
written twice. To prevent this duplication, a nonzero sync depth is required.

Example 2-7 is an example of level-3 spooling with a zero sync depth.

Example 2-7. Annotated Example of Level-3 Spooling From a NonStop Process
Pair With a Zero Sync Depth (page 1 of 4)

! This program is an example of level-3 NonStop spooling with a
! zero sync depth. It consists of 6 procedures: cherror,
! stbackup, error, sperror, getline, and root, and it calls the
! Guardian procedures OPEN, CLOSE, STOP, CHECKOPEN, and
! CHECKPOINT. It uses the spooler interface procedures SPOOLSTART,
! SPOOLWRITE, and SPOOLEND to spool the job.

! cherror --this procedure handles checkpointing errors.
! It performs the necessary steps for recovery or it aborts the
! program. It has a single INT parameter that is the back error
! returned from CHECKOPEN or the status word returned from
! CHECKPOINT. If it is called with a 0 value, it will stop the
! backup process.

! stbackup --this procedure decides whether this program is the
! primary or backup procedure. If it is the primary, it starts a
! backup. Otherwise, it waits for checkpointing information from
! the primary.
Spooler Programmer’s Guide—522287-002
2-27

Using the Spooler Interface Procedures Spooling—Level 3
! error --this procedure handles I/O errors. It performs the
! necessary steps for recovery or it aborts the program.

! sperror --this procedure handles spooler errors. It performs the
! necessary steps for recovery or it aborts the program. It has
! a single INT value parameter that is the error code returned
! from the spooler interface procedures.

! getline --this procedure returns a line of data for spooling.
! It is an INT procedure that returns a zero (FALSE) value when
! it has no data to spool. It has two parameters: line and
! length. line is a reference to a 40-word (80-byte) array.
! The array is filled with the line of data to be spooled.
! length is a reference to an INT that is set to the number of
! bytes to be written from line.

! root --this is the main procedure. It performs all the file
! management to the collector and calls the other procedures in
! the program as needed.

?nolist
INT counter := 0;
?SOURCE $SYSTEM.SYSTEM.EXTDECS(OPEN, CLOSE, WRITE, STOP, ?SPOOLSTART,
SPOOLWRITE, SPOOLEND,CHECKOPEN, CHECKPOINT)
PROC cherror (george);
 INT george;
 BEGIN
 CALL STOP;
 END;
PROC stbackup;
 BEGIN
 counter := counter;
 END;
PROC error;
 BEGIN
 CALL STOP;
 END;
PROC sperror (errnum);
INT errnum;
 BEGIN
 CALL STOP;
 END;
INT PROC getline(line, length);
 INT .line,
 .length;
 BEGIN
 INT temp, done;
 temp :=0;
 temp := counter.<13:15> ;
 temp := temp * 5;
 line [0] ':=' " ";
 line [1] ':=' line[0] for 39;
 line [temp] ':=' "0123456789";
 length := 80;
 IF counter > 120 THEN done := 0 ELSE done := 1;
 counter := counter + 1;
 RETURN done;
 END;

Example 2-7. Annotated Example of Level-3 Spooling From a NonStop Process
Pair With a Zero Sync Depth (page 2 of 4)
Spooler Programmer’s Guide—522287-002
2-28

Using the Spooler Interface Procedures Spooling—Level 3
?list
PROC root MAIN;
BEGIN
 ! Declarations
 INT collector [0:11] := "$S #LP3 LP3 ",
 ! contains the file name of the collector and
 ! location in internal format
 collectnum,
 ! contains the file number returned from OPEN
 location [0:7] := "#LPRMT3 ",
 ! contains the new location for the job
 flags := %B0100100000000000,
 ! contains the bit pattern for the flags parameter to OPEN
 ! and CHECKOPEN
 line [0:39],
 ! contains the line of data to spool
 length,
 ! contains the number of bytes to write from line
 err,
 ! contains the CHECKOPEN back error or the CHECKPOINT
 ! status word
 sperrnum,
 ! receives spooler error code
 .buffer[0:511],
 ! this is the level 3 buffer
 bytecount;
 ! contains the number of bytes written to the buffer

 ! Open file to collector, and check for errors.
 CALL OPEN(collector, collectnum, flags);
 IF <> THEN CALL error;

 ! CHECKOPEN successful open of the collector
 CALL CHECKOPEN(collector,collectnum, flags,,,, err);
 ! Check for a CHECKOPEN error
 IF <> THEN CALL cherror(err);
 ! Checkpoint call to SPOOLSTART (in this example none of the
 ! parameters to SPOOLSTART have been computed so this checkpoint
 ! is not necessary, but most practical programs would need this
 ! checkpoint)
 CALL CHECKPOINT(location);
 ! Call SPOOLSTART to specify new job attributes and level-3
 ! buffer
 ! location #LPRMT3
 ! form name blanks (default)
 ! report name user's name and group name (default)
 ! number of copies 1 (default)
 ! page size 40
 ! flags
 ! hold off
 ! holdafter on
 ! NonStop bit on
 ! priority 7

Example 2-7. Annotated Example of Level-3 Spooling From a NonStop Process
Pair With a Zero Sync Depth (page 3 of 4)
Spooler Programmer’s Guide—522287-002
2-29

Using the Spooler Interface Procedures Spooling—Level 3
 sperrnum :=
 SPOOLSTART(collectnum, buffer, location,,,, 40,
 %B0000000000110111);

 ! Test for an error from SPOOLSTART
 If sperrnum THEN CALL sperror(sperrnum);

 ! Get a line of data and test for done.
 ! If done, fall through.

 WHILE getline(line, length) DO
 BEGIN
 ! Write line to collector and check for errors
 sperrnum := SPOOLWRITE (buffer, line, length);
 ! If buffer is ready to be written to collector
 ! call CHECKPOINT, then write buffer
 IF sperrnum = %11000 THEN
 BEGIN
 err := CHECKPOINT(line, buffer, bytecount,, collectnum);
 IF err THEN CALL cherror(err);
 sperrnum := SPOOLWRITE(buffer, line, length, bytecount);
 END;

 ! If there was an error from the first or second call to
 ! SPOOLWRITE, call sperror with the error code.
 IF sperrnum THEN CALL sperror(sperrnum);
 END;
 ! Call checkpoint before final write to collector by
 ! SPOOLEND
 err := CHECKPOINT(line, buffer, bytecount,,collectnum);
 IF err THEN CALL cherror(err);
 ! End this job and change the flag setting to
 ! flags
 ! cancel off
 ! hold on
 ! holdafter off
 ! NonStop bit off
 ! priority 4
 sperrnum := SPOOLEND(buffer, %B0000000001000100);
 IF sperrnum THEN CALL sperror(sperrnum);
 ! Close the file to the collector
 CALL CLOSE(collectnum);
 IF <> THEN CALL error;
 ! Stop backup and stop primary
 CALL cherror (0);
 CALL STOP;
 END;

Example 2-7. Annotated Example of Level-3 Spooling From a NonStop Process
Pair With a Zero Sync Depth (page 4 of 4)
Spooler Programmer’s Guide—522287-002
2-30

Using the Spooler Interface Procedures Spooling—Level 3
Spooling With a Nonzero Sync Depth

In this type of spooling, you must specify the sync depth when you open the collector
and set bit 11 of flags in SPOOLSTART. Your program need not perform a
checkpoint each time SPOOLWRITE, SPOOLSETMODE, SPOOLCONTROL, or
SPOOLCONTROLBUF returns an error code of %11000. You should perform a
checkpoint each time the number of writes performed since the last checkpoint equals
the sync depth. When you do checkpoint data, the following information should be
checkpointed:

 The data stack

 The level-3-buffer (the number of bytes of level-3-buffer containing
valid data is returned in the bytes-written-to-buffer parameter of the
SPOOLWRITE, SPOOLSETMODE, and SPOOLCONTROL procedures)

 The data line that caused the %11000 return

Example 2-8 is an example of level-3 spooling from a NonStop process pair with a
sync depth greater than zero.

Example 2-8. Annotated Example of Level-3 Spooling From a NonStop Process
Pair With a Nonzero Sync Depth (page 1 of 5)

! This program is an example of level-3 NonStop spooling with a
! sync depth of 3. It consists of 6 procedures: cherror,
! stbackup, error, sperror, getline, and root, and it calls the
! Guardian procedures OPEN, CLOSE, STOP, CHECKOPEN, and
! CHECKPOINT. It uses the spooler interface procedures SPOOLSTART,
! SPOOLWRITE, and SPOOLEND to spool the job.

! cherror --this procedure handles checkpointing errors.
! It performs the necessary steps for recovery or it aborts the
! program. It has a single INT parameter that is the back error
! returned from CHECKOPEN or the status word returned from
! CHECKPOINT. If it is called with a 0 value, it will stop the
! backup process.

! stbackup --this procedure decides whether this program is the
! primary or backup procedure. If it is the primary, it starts a
! backup. Otherwise, it waits for checkpointing information from
! the primary.

! error --this procedure handles I/O errors. It performs the
! necessary steps for recovery or it aborts the program.

! sperror --this procedure handles spooler errors. It performs
! the necessary steps for recovery or it aborts the program.
! It has a single INT value parameter that is the error code
! returned from the spooler interface procedures.
Spooler Programmer’s Guide—522287-002
2-31

Using the Spooler Interface Procedures Spooling—Level 3
! getline --this procedure returns a line of data for spooling.
! It is an INT procedure that returns a zero (FALSE) value when
! it has no data to spool. It has two parameters: line and
! length. line is a reference to a 40-word (80-byte) array.
! The array is filled with the line of data to be spooled.
! length is a reference to an INT that is set to the number of
! bytes to be written from line.

! root --this is the main procedure. It performs all the file
! management to the collector and calls the other procedures in
! the program as needed.

?nolist
INT counter := 0;
?SOURCE $SYSTEM.SYSTEM.EXTDECS(OPEN, CLOSE, WRITE, STOP, ?SPOOLSTART,
SPOOLWRITE, SPOOLEND,CHECKOPEN, CHECKPOINT)
PROC cherror (george);
 INT george;
 BEGIN
 CALL STOP;
 END;

PROC stbackup;
 BEGIN
 counter := counter;
 END;
PROC error;
 BEGIN
 CALL STOP;
 END;
PROC sperror (errnum);
INT errnum;
 BEGIN
 CALL STOP;
 END;
INT PROC getline(line, length);
 INT .line,
 .length;
 BEGIN
 INT temp, done;
 temp :=0;
 temp := counter.<13:15> ;
 temp := temp * 5;
 line [0] ':=' " ";
 line [1] ':=' line[0] for 39;
 line [temp] ':=' "0123456789";
 length := 80;

Example 2-8. Annotated Example of Level-3 Spooling From a NonStop Process
Pair With a Nonzero Sync Depth (page 2 of 5)
Spooler Programmer’s Guide—522287-002
2-32

Using the Spooler Interface Procedures Spooling—Level 3
 IF counter > 120 THEN done := 0 ELSE done := 1;
 counter := counter + 1;
 RETURN done;
 END;
?list
PROC root MAIN;
BEGIN
 ! Declarations
 INT collector [0:11] := "$S #LLP LLP ",
 ! contains the file name of the collector and
 ! location in internal format
 collectnum,
 ! contains the file number returned from OPEN
 location [0:7] := "#LPRMT3 ",
 ! contains the new location for the job
 flags := %B0100100000000000,
 ! contains the bit pattern for the flags parameter to OPEN
 ! and CHECKOPEN
 line [0:39],
 ! contains the line of data to spool
 length,
 ! contains the number of bytes to write from line
 syncount := 0,
 ! contains the count of synchronized writes to the collector
 err,
 ! contains the CHECKOPEN back error or the CHECKPOINT
 ! status word
 sperrnum,
 ! receives spooler error code
 .buffer[0:511],
 ! this is the level-3 buffer
 bytecount;
 !contains the number of bytes already written to the buffer
 ! Open file to collector, and check for errors.
 CALL OPEN(collector, collectnum, flags, 5);
 IF <> THEN CALL error;
 ! CHECKOPEN successful open of the collector
 CALL CHECKOPEN(collector,collectnum, flags, 5,,, err);
 ! Check for a CHECKOPEN error
 IF <> THEN CALL cherror(err);

Example 2-8. Annotated Example of Level-3 Spooling From a NonStop Process
Pair With a Nonzero Sync Depth (page 3 of 5)
Spooler Programmer’s Guide—522287-002
2-33

Using the Spooler Interface Procedures Spooling—Level 3
 ! Checkpoint call to SPOOLSTART (in this example none of the
 ! parameters to SPOOLSTART have been computed so this checkpoint
 ! is not necessary, but most practical programs would need this
 ! checkpoint)
 CALL CHECKPOINT(location);
 ! Call SPOOLSTART to specify new job attributes and level-3
 ! buffer
 ! location #LPRMT3
 ! form name blanks (default)
 ! report name user's name and group name (default)
 ! number of copies 1 (default)
 ! page size 40
 ! flags
 ! hold off
 ! holdafter on
 ! NonStop bit on
 ! priority 7

 sperrnum :=
 SPOOLSTART(collectnum, buffer, location,,,, 40,
 %B0000000000110111);

 ! Test for an error from SPOOLSTART
 IF sperrnum THEN CALL sperror(sperrnum);
 ! Get a line of data and test for done.
 ! If done fall through.
 WHILE getline(line, length) DO
 BEGIN
 ! Write line to collector and check for errors
 sperrnum := SPOOLWRITE (buffer, line, length);
 ! If buffer is ready to be written to collector
 ! call CHECKPOINT then write buffer
 IF sperrnum = %11000 THEN
 BEGIN
 !Increment sync depth counter and check for overflow
 syncount := syncount + 1 ;
 IF syncount = 3 THEN
 BEGIN
 err := CHECKPOINT(line, buffer, bytecount,,collectnum);
 IF err THEN CALL cherror(err);
 syncount := 1
 END;

Example 2-8. Annotated Example of Level-3 Spooling From a NonStop Process
Pair With a Nonzero Sync Depth (page 4 of 5)
Spooler Programmer’s Guide—522287-002
2-34

Using the Spooler Interface Procedures Spooling—Level 3
 ! Write buffer to collector
 sperrnum := SPOOLWRITE(buffer, line, length, bytecount);
 IF sperrnum THEN CALL sperror(sperrnum);
 END
 ELSE CALL sperror(sperrnum);
 END;
 ! Call checkpoint before final write to collector by
 ! SPOOLEND
 err := CHECKPOINT(line, buffer, bytecount,,collectnum);
 IF err THEN CALL cherror(err);
 ! End this job and change the flag setting to
 ! flags
 ! cancel off
 ! hold on
 ! holdafter off
 ! NonStop bit off
 ! priority 4

 sperrnum := SPOOLEND(buffer, %B0000000001000100);
 IF sperrnum THEN CALL sperror(sperrnum);
 ! Close the file to the collector
 CALL CLOSE(collectnum);
 IF <> THEN CALL error;
 ! stop backup and stop primary
 CALL cherror (0);
 CALL STOP;
 END;

Example 2-8. Annotated Example of Level-3 Spooling From a NonStop Process
Pair With a Nonzero Sync Depth (page 5 of 5)
Spooler Programmer’s Guide—522287-002
2-35

Using the Spooler Interface Procedures Spooling—Level 3
Spooler Programmer’s Guide—522287-002
2-36

3
Using the Spooler Print Procedures,
Print Processes, and Perusal
Processes

The spooler print procedures enable print and perusal processes to access spooled
data and enable all print processes to communicate with the spooler supervisor. This
section describes how to use the spooler print procedures and write print and perusal
processes.

Print and Perusal Processes
A print process retrieves spooled job data from disk and sends it to the appropriate
output device. The spooler can include several print processes, each controlling a
number of different output devices.

Every device known to the supervisor has a print process associated with it. When a
device becomes available and a job is waiting to print on that device, the supervisor
instructs the print process associated with the device to begin reading and printing the
job.

The standard print processes communicate with the supervisor and keep track of
devices and jobs in a manner that is entirely transparent to the users of the spooler.
However, if you choose to write your own print process, be aware of the interaction
between print processes and the supervisor. The print procedures make this task
easier. An example of a user-written print process is shown in Appendix A, Sample
Print Process.

A process that can access spooled data without communicating with the supervisor is
called a perusal process. The Peruse utility is the perusal process supported by HP.
An example of a perusal process is shown in Appendix B, Sample Perusal Process.

Summary of Print Procedures
The procedures involved in accessing spooled data are PRINTSTART, PRINTSTART2,
PRINTINFO, and PRINTREAD.

The procedures involved in communicating with the spooler control process are
PRINTINIT, PRINTINIT2, PRINTSTATUS, PRINTSTATUS2, PRINTREADCOMMAND,
PRINTCOMPLETE, and PRINTCOMPLETE2.

The program filename of the standard print process is $SYSTEM.SYSTEM.FASTP.

Table 3-1 contains a summary of the print procedures. You can find the complete
syntax and considerations of the spooler print procedures in Section 4, Spooler
Spooler Programmer’s Guide—522287-002
3-1

Using the Spooler Print Procedures, Print
Processes, and Perusal Processes

How the Print Process Handles a Job
Procedure Calls. Refer to Print Procedure Errors on page C-10 for a list of print
procedure error codes.

How the Print Process Handles a Job
The following sequence of events occurs when the print process prints a job:

1. The spooler supervisor starts the print process associated with the device (unless it
is already running) and sends it a startup message.

2. The print process opens a file to the supervisor and calls PRINTINIT.

3. When the supervisor tries to send a message to the print process, the print
process calls PRINTCOMPLETE to obtain the message.

4. The message from the supervisor is interpreted by PRINTREADCOMMAND. If it
is a start job message, the print process opens the data file and the device
specified in the message.

5. The print process passes the file number of the data file to PRINTSTART.

Table 3-1. Summary of Print Procedures

Procedure Function

PRINTCOMPLETE Obtains a message from the spooler.

PRINTCOMPLETE2 Obtains a message from the spooler. This procedure includes
batch enhancements to PRINTCOMPLETE.

PRINTINFO Obtains information regarding a job being printed by the print
process.

PRINTINIT Initializes the print control buffer.

PRINTINIT2 Initializes the print control buffer. This procedure includes
batch enhancements to PRINTINIT.

PRINTREAD Obtains a line of spooled data.

PRINTREADCOMMAND Interprets a message from the spooler supervisor.

PRINTSTART Initializes a job buffer for a new job.

PRINTSTART2 Initializes a job buffer for a new job. This procedure includes
batch enhancements to PRINTSTART.

PRINTSTATUS Sends a message to the supervisor.

PRINTSTATUS2 Sends a message to the supervisor. This procedure includes
batch enhancements to PRINTSTATUS.
Spooler Programmer’s Guide—522287-002
3-2

Using the Spooler Print Procedures, Print
Processes, and Perusal Processes

External Declarations for Print Procedures
6. The print process now reads the job, one line at a time, by a series of calls to
PRINTREAD, and writes each line to the device until an end of file is returned.

7. The print process informs the supervisor that the job is complete by calling
PRINTSTATUS.

8. If the device is shared, the supervisor sends a “close device” indication to the print
process. The print process closes the device and calls STOP.

In addition to the above action, the print process periodically calls AWAITIO[X] to check
for an incoming message from the spooler supervisor. Such a message might indicate
the start of another job (if the print process is capable of handling multiple concurrent
jobs) or an instruction requiring specific action on the part of the print process, such as
“skip to page 17” or “stop job.”

Errors occurring on the device are sent by the print process to the supervisor by using
the PRINTSTATUS command.

The details of the interaction between the spooler supervisor and a print process are
described later in this section.

External Declarations for Print Procedures
To use the print procedures in a TAL program, you must declare them to be external to
your program. The external declarations for all procedures related to the spooler,
including the print procedures, are located in the file $SYSTEM.SYSTEM.EXTDECS0.
They can be sourced into your program with the following compiler command:

?SOURCE $SYSTEM.SYSTEM.EXTDECS0 (PRINTSTART , PRINTINIT ,
? PRINTINFO , PRINTCOMPLETE , PRINTREADCOMMAND ,
? PRINTSTATUS , PRINTREAD)

See the TAL Reference Manual for a full explanation of the EXTERNAL procedure
declaration and the ?SOURCE compiler directive.

Writing a Print Process
The following pages discuss the considerations associated with writing your own print
process. Appendix A, Sample Print Process, contains an example of a user-written
print process.

A print process must perform three tasks:

1. Read the Startup message.

2. Retrieve and print spooled data (using PRINTSTART and PRINTREAD).

Note. Be aware that when some devices (notably drum printers) encounter a non-ASCII
character, the printer can lock up unless you specified CTRLTOSPACE in the system
generation configuration for the printer. Refer to the appropriate system generation
manual for more information.
Spooler Programmer’s Guide—522287-002
3-3

Using the Spooler Print Procedures, Print
Processes, and Perusal Processes

Print Process Startup Message
3. Communicate with the spooler supervisor (using PRINTCOMPLETE,
PRINTSTATUS, and PRINTREADCOMMAND).

Print Process Startup Message

A print process not currently running is started by the spooler supervisor for one of two
reasons:

 A job is ready to be printed on a device controlled by the print process.

 A device controlled by the print process has been declared exclusive.

Immediately after starting a print process, the supervisor sends the print process a
Startup message, passing it the process name of the supervisor.

The format of the Startup message from the supervisor is shown in Table 3-2.

The first action taken by a print process should be to read its Startup message to
obtain the name of the supervisor, its backup processor, and its print process device
parameter.

Retrieving and Printing Spooled Data

The sequence of events involved in retrieving and printing a job is as follows:

1. Open the spooler supervisor with nowait I/O, call PRINTINIT to format a print
control buffer, and call AWAITIO[X] to wait for a message from the supervisor. Call
PRINTCOMPLETE to get the print-control-buffer from the supervisor.

2. Call PRINTREADCOMMAND to interpret the information contained in the
supervisor print-control-buffer. PRINTREADCOMMAND returns the name
of the data file, the job route and attributes, and the name of the device on which
the job is to be printed.

Table 3-2. Startup Message From the Spooler Supervisor

Word Byte Contents

[0] [0:1] -1 (all bits on).

[1:20] [2:41] ASCII blanks.

[21:32] [42:65] Process name of supervisor, blank-filled. This can be passed
by the print process directly to the OPEN procedure.

[33] [66:67] Backup processor number, in ASCII, specified in the Spoolcom
command PRINT BACKUP. If no backup was specified, this
word contains -1 in ASCII (that is, %026461).

[34 left byte] [68] ASCII comma (,).

[34 right byte:
 37 left byte]

[69:74] Print process parameter; field contains six ASCII characters
from the Spoolcom command PRINT PARM.

[37 right byte] [75] ASCII null (0).
Spooler Programmer’s Guide—522287-002
3-4

Using the Spooler Print Procedures, Print
Processes, and Perusal Processes

Communicating With the Spooler Supervisor
3. Open the data file and the device, then call PRINTSTART. This places control
information for the job into a job-control-buffer. The control information in
the job-control-buffer consists of pointers to the current page and line
number, the file numbers of the supervisor and data file, and so on.

4. Call PRINTREAD to get one line of spooled data. PRINTREAD also updates the
control information in the print process buffer to point to the next line.

5. You can now access the job with a succession of calls to PRINTREAD.

In theory, the print process can take any action whatsoever with the data; the usual
action, though, is to write the data to the device specified by
PRINTREADCOMMAND.

Communicating With the Spooler Supervisor

Communication with the supervisor falls into two categories: responding to messages
and sending errors.

Responding to Spooler Supervisor Messages

The print process must periodically check for a completion on the file to the supervisor.
When a completion is detected, PRINTCOMPLETE is called to obtain the message,
which is then passed to PRINTREADCOMMAND for interpretation.
PRINTREADCOMMAND returns a control number to indicate the nature of the
message.

It is up to the programmer to decide how often to check for a supervisor message.
However, the more often you check for a message, the more responsive your print
process will be to Spoolcom commands. For example, a print process that checks for
completion after every write to the device can respond immediately to a message such
as “skip to page 3,” “send job status,” or “suspend job.”

The supervisor times out any print process that waits more than 10 minutes to respond
to a message. A print process that times out is put into the procerror state by the
supervisor, and any devices controlled by that print process are considered unusable.

Note. You can write a print process that handles as many concurrent jobs as you like, subject
to time and memory limitations. A separate job-control-buffer must be maintained for each job,
and there must be some way of keeping track of which job control buffers go with which
devices. The supervisor might attempt to start a job on each device that has been associated
with a print process (using Spoolcom). Therefore, if a print process is associated with devices
X, Y, and Z, it must be capable of handling three jobs concurrently.
Spooler Programmer’s Guide—522287-002
3-5

Using the Spooler Print Procedures, Print
Processes, and Perusal Processes

Device Errors
The controlnum values returned by PRINTREADCOMMAND, and the action that the
print process should take in response, are

Sending Error Messages to the Spooler Supervisor

The only messages that a print process sends to the supervisor without a supervisor
request are error messages. The print process informs the supervisor of errors by
sending the error to the supervisor using the PRINTSTATUS procedure. A print
process can encounter errors from a print device during a call to WRITE[X] or from a
job during a call to PRINTREAD.

Device Errors

When errors are encountered on a print device during the printing of a job, the print
process should call PRINTSTATUS with the following messages:

 For the first occurrence of a device error following any number of successful
operations on the device, the print process should specify a msg-type of 5 and
pass the error number in the error parameter.

0 Open the device specified in the device parameter of PRINTREADCOMMAND.

1 Close the device specified in the device parameter of PRINTREADCOMMAND.

2 Start the job with attributes as specified in the PRINTREADCOMMAND
parameters.

3 Cancel any incomplete I/O associated with the job on the device specified in
the device parameter of PRINTREADCOMMAND. Then stop the job. After
successfully stopping the job, send an “end of job” status to the supervisor by
calling PRINTSTATUS with a msg-type of 2.

4 Resume the job on the device specified in the device parameter of
PRINTREADCOMMAND.

5 Suspend the job on the device specified in the device parameter of
PRINTREADCOMMAND.

Suspend reading and printing activity on the job pending another instruction; no
new job can be started on the device.

6 Print a form-alignment template on the device specified in the device parameter
of PRINTREADCOMMAND.

7 Start printing on the specified page on the device specified in the device
parameter of PRINTREADCOMMAND.

8 Start printing on the page that is offset from the current page by the specified
number of pages on the device specified in the device parameter of
PRINTREADCOMMAND.

9 Send the status of the job printing on the device specified in the device
parameter of PRINTREADCOMMAND.
Spooler Programmer’s Guide—522287-002
3-6

Using the Spooler Print Procedures, Print
Processes, and Perusal Processes

PRINTREAD Errors
 If the print process encounters subsequent errors on the same device without an
intervening successful operation, the print process should specify a msg-type of 1
and pass the error number in the error parameter.

The print process, however, continues printing other jobs on other devices.

For example, following a series of successful I/O operations, a print process receives
an error 102 (paper out) from one of the devices it controls. The print process calls
PRINTSTATUS with msg-type equals 5 and error equals 102. The print process
suspends the job that was printing on that device. Later, the print process receives a
“resume job” message from the supervisor. The print process attempts to resume the
job on the specified device, but receives an error 100 (device not ready) on the first I/O
operation. This time, the print process calls PRINTSTATUS with a msg-type of 1 and
an error of 100.

The print process suspends the job on which the error occurred. A suspended job is
resumed when the print process receives a “resume job” message from the supervisor.
If the error was caused by the job data (Guardian file-system CONTROL and
SETMODE operations), the error could be repeated several times.

PRINTREAD Errors

Most errors returned by PRINTREAD cause an abnormal job termination when passed
to PRINTSTATUS. Error %12001, however, simply indicates the end of a copy.

Errors %12000 and %12002 cause the spooler supervisor to delete the job. For
example, a print process calls PRINTREAD to get the next line of data for a job, and
PRINTREAD returns error %12002, invalid data file. The print process terminates the
job by closing the data file and permanently suspending activity on the job. In a call to
PRINTSTATUS, the print process passes msg-type 2 (end of job) to the supervisor,
along with the error (%12002) and the name of the device on which the job was
printing. The supervisor logs the abnormal termination and the error number and
purges the job. Refer to Appendix C, Spooler-Related Errors, for a list of print
procedure error codes.

Errors %12003, %12004, and %12005 signify that the caller should call the appropriate
file-system operation (CONTROL, SETMODE, or CONTROLBUF).

All other PRINTREAD errors put the job on hold.

Note. A print process can elect to perform its own error checking; for example, it could retry an
operation that returned “device not ready” several times on its own before informing the
supervisor.
Spooler Programmer’s Guide—522287-002
3-7

Using the Spooler Print Procedures, Print
Processes, and Perusal Processes

Combining Data Retrieval With Spooler
Communication
Combining Data Retrieval With Spooler Communication

A print process must perform the tasks of retrieving and printing jobs and responding to
supervisor messages concurrently. This can be accomplished in any manner that you
find convenient. The only limitation is that a print process must respond to a
supervisor message within 10 minutes. However, it is important that the print process
respond as quickly as possible because the supervisor cannot do any useful work until
it gets a response.

To maximize print process responsiveness to Spoolcom commands, however, the file
to the supervisor should be checked for completion following the writing of every line of
data. HP recommends that you use the following procedure:

1. Open each device with nowait I/O. After each write to a device, monitor
completion on any file with AWAITIO[X].

2. If a device has finished, the print process calls PRINTREAD to get the next line of
data for the job printing on that device and starts an I/O operation on the device.

3. If the file to the supervisor finishes, the print process calls PRINTCOMPLETE and
PRINTREADCOMMAND to obtain the message and executes the supervisor
instruction.

After executing the supervisor instruction, the print process loops back to AWAITIO[X].

Debugging Print Processes

To debug a print process using the interactive debugging facility Debug (described in
the Debug Manual), the subcommand DEBUG is specified at the time the print process
is initialized with the Spoolcom PRINT command:

)PRINT $trial, FILE $yrvol.yrsub.pproc, PRI 145, DEBUG

The DEBUG subcommand causes the print process to run in Debug mode, which has
two effects:

 The print process immediately enters the Debug state upon being started by the
supervisor. The Debug facility prompts the terminal where the supervisor was run.

 The supervisor does not time out the print process if the print process fails to
respond to a message within 10 minutes.

To interactively debug a print process, follow this procedure:

1. Coldstart or warmstart a spooler, initializing the print process with the DEBUG
subcommand.

Note. As long as a job is being printed, there is always an operation on the device outstanding
after a supervisor instruction has been executed.

Note. Start a separate spooler dedicated solely to debugging your print process. Because
the supervisor waits indefinitely for message responses from a print process in Debug
mode, the spooler halts when a print process is being debugged.
Spooler Programmer’s Guide—522287-002
3-8

Using the Spooler Print Procedures, Print
Processes, and Perusal Processes

Writing a Perusal Process
2. Declare a print device, specify its print process to be the one you are debugging,
and connect the device to a location.

3. Run a simple job to your debugging spooler—for example, try a TACL FILES or
STATUS command, specifying your collector as the OUT file.

4. When the command interpreter prompt (for example, TACL 17>) comes back,
indicating that the spooler has accepted your job, enter PAUSE.

The Debug prompt should appear at your terminal, and you can now debug your print
process.

To see how to debug spooler with another debugging program such as Garth or a
similar HP product, see the appropriate documentation.

Writing a Perusal Process
The preceding subsection explains how a print process communicates with the spooler
supervisor to access spooled data. This subsection describes how a process can
access spooled data without communicating with the supervisor. This kind of process
is called a perusal process, an example of which appears in Appendix 3, Using the
Spooler Print Procedures, Print Processes, and Perusal Processes. Peruse is the
perusal process supported by HP.

For a perusal process to get the necessary control information that a print process
obtains from a spooler job-start message, it calls the spooler utility procedure
SPOOLEREQUEST, which provides it with a message identical to the message that
the supervisor sends when starting a job. This message allows a perusal process to
use the PRINTREADCOMMAND, PRINTSTART, PRINTSTART2, PRINTREAD, and
PRINTINFO procedures as if it were a print process. However, a perusal process
cannot use the PRINTCOMPLETE, PRINTCOMPLETE2, PRINTINFO, PRINTINIT,
PRINTINIT2, PRINTSTATUS, and PRINTSTATUS2 procedures.

The key difference between a print process and a perusal process is that the print
process operates in conjunction with and under the control of the supervisor, while a
perusal process operates on its own. This independence of a perusal process from the
supervisor makes perusal programs easy to code, because the perusal process need
not monitor and respond to the supervisor.

Nevertheless, a perusal process should monitor its own messages to the supervisor in
case the supervisor goes down (resulting in an error message in response to a
message to it) and prevents the perusal process from running successfully.

A perusal program has no way of preventing a job from being deleted from it. If this
should happen, PRINTREAD returns %12002, invalid data file. When a perusal
process encounters this condition, it can no longer read data from the job.

You can use a perusal process for such things as scanning a job (such as a compiler
listing) in order to decide whether the job should be printed. You can also display data
on a special terminal in a customized way. You can write an interactive job scanner
that allows a user to select a job for scanning and displays pages of the job on the
Spooler Programmer’s Guide—522287-002
3-9

Using the Spooler Print Procedures, Print
Processes, and Perusal Processes

Outline of the Basic Perusal Process
home terminal. Commands would allow you to display a specific page, skip ahead or
back pages, and so forth. You can implement the “display page” command with the
pagenum parameter of PRINTREAD; you can implement skipping relative to the
present page by calling PRINTINFO to determine the present page number and
computing the desired new page.

You could also use such a job scanner in conjunction with the SPOOLERCOMMAND
utility procedure, giving the job scanner the ability to delete a job (for example, if the
compilation contained too many errors) or to change the location of a job.

Outline of the Basic Perusal Process

The following steps summarize the perusal process:

1. Open a file to the spooler supervisor:

CALL OPEN(cntrlr^name, cntrlr^fnum); ! must be waited

2. Pass to SPOOLEREQUEST the file number of the supervisor (obtained in Step 1)
and the job number of the job to be accessed. SPOOLEREQUEST returns a
message whose format is identical to the format of the message that the
supervisor sends to a print process to start a new job:

err := SPOOLEREQUEST(cntrlr^fnum, job^num, msg,);
IF err THEN ... ! error occurred
ELSE ... ! successful

3. Call PRINTREADCOMMAND to obtain the name of the data file in which the job is
located. If desired, you can also obtain job attributes. Open the data file:

CALL PRINTREADCOMMAND(msg,,,,,,, data^file,, location);
CALL OPEN(data^file, data^file^fnum);

4. Call PRINTSTART, passing a 560-word job-buffer:

err := PRINTSTART(job^buf, msg, data^filenum);
IF err THEN ... ! PRINTSTART error
ELSE ... ! OK to begin reading the job

5. The job can now be accessed with a succession of calls to PRINTREAD:

err := PRINTREAD(job^buf, data^line, read^count);
IF err THEN ... ! PRINTREAD error
ELSE ... ! data^line contains the
 ! next line of spooled data

At this point, the perusal process performs an operation with data^line, such as writing
it to a terminal. The next call to PRINTREAD returns the next line of the job, and so
on, until end of file.

Note. Some PRINTREAD messages occur normally, such as end of file, end of copy,
CONTROL, and SETMODE.
Spooler Programmer’s Guide—522287-002
3-10

4 Spooler Procedure Calls

There are two types of spooler procedures: print procedures, whose names start with
PRINT, and spooler procedures, whose names start with SPOOL. These procedures
are summarized in Table 4-1 and their use is described in the remainder of this section.

Table 4-1. Summary of Spooler and Print Procedures (page 1 of 2)

Procedure Description

PRINTCOMPLETE Obtains a message from the spooler.

PRINTCOMPLETE[2] Obtains a message from the spooler. This procedure includes
batch enhancements to PRINTCOMPLETE.

PRINTINFO Obtains information regarding a job being printed by the print
process.

PRINTINIT Initializes the print control buffer.

PRINTINIT2 Initializes the print control buffer. This procedure includes
batch enhancements to PRINTINIT.

PRINTREAD Obtains a line of spooled data.

PRINTREADCOMMAND Interprets a message from the spooler supervisor.

PRINTSTART Initializes a job buffer for a new job.

PRINTSTART2 Initializes a job buffer for a new job. This procedure includes
batch enhancements to PRINTSTART.

PRINTSTATUS Sends a message to the supervisor.

PRINTSTATUS2 Sends a message to the supervisor. This procedure includes
batch enhancements to PRINTSTATUS.

SPOOLBATCHNAME Returns the name of the spooler batch job currently being
spooled to the collector.

SPOOLCONTROL Replaces the Guardian file-system CONTROL procedure
when spooling at level 3.

SPOOLCONTROLBUF Replaces the Guardian file-system CONTROLBUF procedure
when spooling at level 3.

SPOOLEND Writes any remaining blocked data to the spooler and signals
end of job; can be used to modify the job attributes.

SPOOLERCOMMAND Issues a Spoolcom command to the supervisor.

SPOOLEREQUEST Obtains a Startup message from the supervisor suitable for
reading a job.

SPOOLEREQUEST2 Obtains a Startup message from the supervisor suitable for
reading a job. Includes batch enhancements to
SPOOLEREQUEST.

SPOOLERSTATUS Obtains status of spooler components.

SPOOLERSTATUS2 Obtains status of spooler components. Includes batch
enhancements to SPOOLERSTATUS.
Spooler Programmer’s Guide—522287-002
4-1

Spooler Procedure Calls
SPOOLJOBNUM Returns the job number of the job currently being spooled to
the collector.

SPOOLSETMODE Replaces the Guardian file-system SETMODE procedure
when spooling at level 3.

SPOOLSTART Specifies job attributes and optionally initializes a level-3
buffer.

SPOOLWRITE Compresses, blocks, and sends data to the spooler.

Table 4-1. Summary of Spooler and Print Procedures (page 2 of 2)

Procedure Description
Spooler Programmer’s Guide—522287-002
4-2

Spooler Procedure Calls PRINTCOMPLETE[2] Procedure
PRINTCOMPLETE[2] Procedure
The PRINTCOMPLETE[2] procedure is used by a print process to communicate with
the spooler supervisor.

The PRINTCOMPLETE procedure obtains a message from the supervisor.

PRINTCOMPLETE[2] is the same procedure with a larger buffer.

error-code returned value

INT

returns the following spooler error codes:

filenum-of-supervisor input

INT:value

is the file number of an open supervisor file. The file number is returned when the
supervisor is opened.

print-control-buffer output

on return, contains a message from the supervisor.

Considerations

The following considerations apply to the use of the PRINTCOMPLETE[2] procedure:

 PRINTCOMPLETE[2] should not be used by a perusal process. The print process
operates with, and under the control of, the supervisor, while a perusal process
operates on its own.

 The message returned by PRINTCOMPLETE[2] is interpreted through a call to
PRINTREADCOMMAND.

error-code := PRINTCOMPLETE[2] (filenum-of-supervisor ! i
 ,print-control-buffer); ! o

%3000-%3377 Supervisor file error (<8:15> contains a file error). This error
indicates a communication problem with the supervisor. A print
process receiving this error can call ABEND, retry the
operation a number of times, or continue reading and printing
jobs without any further communication with the supervisor.

%14015 The process is not a spooler supervisor.

INT:ref:64 (Use with PRINTCOMPLETE)

INT:ref:128 (Use with PRINTCOMPLETE[2])
Spooler Programmer’s Guide—522287-002
4-3

Spooler Procedure Calls Example
 PRINTCOMPLETE[2] must be called immediately following the completion of a call
on the file to the supervisor.

 In addition to obtaining the supervisor message, PRINTCOMPLETE[2] also
initiates a nowait operation to the supervisor file. Thus, a call to AWAITIO[X] must
be issued to the supervisor file at some time after a call to PRINTCOMPLETE[2].

 You can use PRINTCOMPLETE to access jobs that reside in the D41 and later
releases of the spooler only if they are in the form of file code 129 job files;
otherwise you must use PRINTCOMPLETE2.

Example

PRINT^ERROR := PRINTCOMPLETE (FILENUM^SUP , PRINT^BUFF);
Spooler Programmer’s Guide—522287-002
4-4

Spooler Procedure Calls PRINTINFO Procedure
PRINTINFO Procedure
The PRINTINFO procedure is used in print processes to communicate with the spooler
supervisor.

The PRINTINFO procedure returns information regarding a job to the supervisor in
response to a “send status” request. This includes spooler job files.

error-code returned value

INT

returns the following spooler error code:

job-buffer input

INT:ref:560

contains control information for the job started. PRINTINFO interprets the contents
of job-buffer.

copies-remaining output

INT:ref:1

returns the number of copies of the job that are left to print, including the current
copy.

current-page output

INT:ref:1

returns the page number of the current page.

current-line output

INT:ref:1

returns the current line of the current page being printed.

lines-printed output

INT:ref:1

returns the total number of lines printed for this copy of the job.

error-code := PRINTINFO (job-buffer ! i
 ,[copies-remaining] ! o
 ,[current-page] ! o
 ,[current-line] ! o
 ,[lines-printed]); ! o

%1000
1

Parameter present, but its content is
wrong.
Spooler Programmer’s Guide—522287-002
4-5

Spooler Procedure Calls Considerations
Considerations

The following considerations apply to the use of the PRINTINFO procedure:

 PRINTINFO should not be used by a perusal process. A print process operates
with, and under the control of, the supervisor, while a perusal process operates on
its own.

 PRINTINFO is used by a print process (the PRINTSTART or PRINTREAD
procedure) to respond to a status request from the supervisor.

 The lines-printed parameter is not always an indication of how many lines
remain to be printed on a job, because it includes lines that are printed more than
once as a result of a page-skip action.
Spooler Programmer’s Guide—522287-002
4-6

Spooler Procedure Calls PRINTINIT[2] Procedure
PRINTINIT[2] Procedure
The PRINTINIT[2] procedure is used in print processes to initialize communication with
the spooler supervisor.

The PRINTINIT procedure initializes the print process's print control buffer, which is
used in calls to other print procedures.

PRINTINIT[2] is the same procedure with a larger buffer.

error-code returned value

INT

returns one of the following spooler error codes:

filenum-of-supervisor input

INT:value

is the file number of an open supervisor file. The file number is returned when the
supervisor is opened. This file must be opened nowait.

print-control-buffer input, output

is formatted by PRINTINIT[2] and should be passed unaltered to other print
procedures.

error-code := PRINTINIT[2] (filenum-of-supervisor ! i
 ,print-control-buffer); ! i,o

%2000-%2377 File error on data file (bits <8:15> contain a Guardian file-
system error number).

%3000-%3377 Supervisor file error (<8:15> contains a file error). This error
indicates a communication problem with the supervisor. A print
process receiving this error can call ABEND, retry the operation
a number of times, or continue reading and printing jobs
without any further communication with the supervisor.

%4000-%4377 Device error sent to the supervisor by the print process (bits
<8:15> contain a file-system error number).

%10000 Missing parameter.

%10001 Parameter present, but its content is wrong.

INT:ref:64 (Use with PRINTINIT)

INT:ref:128 (Use with PRINTINIT2)
Spooler Programmer’s Guide—522287-002
4-7

Spooler Procedure Calls Considerations
Considerations

The following considerations apply to the use of the PRINTINIT[2] procedure:

 PRINTINIT[2] should not be used by a perusal process. A print process operates
with, and under the control of, the supervisor, while a perusal process operates on
its own.

 Before calling PRINTINIT[2], a print process must have a file open to the
supervisor with nowait I/O and a sync depth of, at most, 1.

 PRINTINIT[2] must be followed at some point by a call to AWAITIO[X].

 The print-control-buffer returned by PRINTINIT[2] is used by the
supervisor to send messages to the print process. The print process should never
alter this buffer except with calls to the print procedures.

 Usually, PRINTINIT[2] is called only once by a print process.
Spooler Programmer’s Guide—522287-002
4-8

Spooler Procedure Calls PRINTREAD Procedure
PRINTREAD Procedure
The PRINTREAD procedure can be used in print and perusal processes to access
spooled data and to allow print processes to communicate with the spooler supervisor.
This includes spooler data stored in a spooler job file.

The PRINTREAD procedure returns one line of spooled data.

error-code returned value

INT

returns a spooler error code. Certain nonzero error-codes from PRINTREAD
have special significance:

See Appendix C, Spooler-Related Errors, for a list of spooler errors and their
meanings.

job-buffer input, output

INT:ref:560

is the job buffer for the job being read.

data-line output

INT:ref:450 (or less)

error-code := PRINTREAD (job-buffer ! i,o
 ,data-line ! o
 ,read-count ! i
 ,[count-read] ! o
 ,[pagenum]); ! i

%1200
0

End of file. All lines in the job have been transferred (send an “end
job” message to the supervisor by PRINTSTATUS; this error is
returned only for print processes—not for perusal processes).

%1200
1

End of copy.

%1200
2

Invalid data file.

%1200
3

CONTROL found.

%1200
4

SETMODE found.

%1200
5

CONTROLBUF found.
Spooler Programmer’s Guide—522287-002
4-9

Spooler Procedure Calls Considerations
returns a line of spooled data.

read-count input

INT:value

specifies the maximum number of bytes to be read.

count-read output

INT:ref:1

is the number of bytes actually read.

pagenum input

INT:value

returns one of the following:

Considerations

The following considerations apply to the use of the PRINTREAD procedure:

 The size of data-line never exceeds 450 words; however, in most cases, it is
smaller.

 Errors returned from PRINTREAD other than %12000-%12001 and %12003-
%12005 are critical. In the case of a print process (not for perusal processes), the
error should be sent to the supervisor using PRINTSTATUS.

 When the error-code returns %12003 = CONTROL found, the data line contains
a file-system CONTROL message for the print device. The format of the
CONTROL message is

data-line [0] = operation
data-line [1] = parameter

See the Guardian Procedure Calls Reference Manual for a description of the
CONTROL operations.

 When the error-code returns %12004 = SETMODE found, the data line contains
a file-system SETMODE instruction. The SETMODE instruction format is

data-line [0] = SETMODE function
data-line [1] = param-1
data-line [2] = param-2

> 0 PRINTREAD returns the first line on the page specified by this
parameter.

< 0 PRINTREAD repeats the last line returned.

= 0 or
absent

PRINTREAD returns the next sequential line.
Spooler Programmer’s Guide—522287-002
4-10

Spooler Procedure Calls Example
See the Guardian Procedure Calls Reference Manual for a description of the
SETMODE functions.

Example

READ^ERROR := PRINTREAD (JOB^BUFF , LINE , COUNT ,
 COUNT^READ);
Spooler Programmer’s Guide—522287-002
4-11

Spooler Procedure Calls PRINTREADCOMMAND Procedure
PRINTREADCOMMAND Procedure
The PRINTREADCOMMAND procedure can be used in print and perusal processes
to access spooled data and to allow print processes to communicate with the spooler
supervisor.

The PRINTREADCOMMAND procedure interprets the information contained in the
print control buffer returned from a call to PRINTCOMPLETE (in a print process) or
SPOOLEREQUEST[2] (in a perusal process).

error-code returned value

INT

returns one of the following spooler error codes:

print-control-buffer input

INT:ref:64

is passed exactly as it is returned from PRINTCOMPLETE[2] or
SPOOLEREQUEST[2].

controlnum output

INT:value

error-code := PRINTREADCOMMAND (print-control-buffer ! i
 ,[controlnum] ! o
 ,[device] ! o
 ,[devflags] ! o
 ,[devparam] ! o
 ,[devwidth] ! o
 ,[skipnum] ! o
 ,[data-file] ! o
 ,[jobnum] ! o
 ,[location] ! o
 ,[form-name] ! o
 ,[report-name] ! o
 ,[pagesize] ! o
 ,[batchname] ! o
 ,[batchid] ! o
 ,[owner] ! o
 ,[charmap] ! o
 ,[devflagx]); ! o

%1000
0

Missing parameter.

%1000
1

Parameter is present, but its content is wrong.
Spooler Programmer’s Guide—522287-002
4-12

Spooler Procedure Calls PRINTREADCOMMAND Procedure
specifies the action requested by the supervisor:

0 = Open device
1 = Close device
2 = Start job on device
3 = Stop job on device
4 = Resume job on device
5 = Suspend job on device
6 = Print form-alignment template on device
7 = Skip to page
8 = Skip over pages
9 = Send status of job printing on device

device output

INT:ref:12

specifies the particular device referred to by the control number.

devflags output

INT:ref:1

indicates the state of the device's truncation and header flags.
Where applicable: 1 = on, 0 = off

devparam output

INT:ref:1

is the parameter specified in the Spoolcom DEV PARM command.

devwidth output

INT:ref:1

<0:3> Device type

<4:5> Startff on/off

<6> Specifies job is a font job

<7> NetBatch job initial form feed (TOF)

<8> Job is dependent on downloaded font

<9> Batch header

<10> Truncation flag

<11> Device reset on/off

<12> Reserved (set to 0)

<13> Header flag

<14> Exclusive on/off

<15> Endff on/off
Spooler Programmer’s Guide—522287-002
4-13

Spooler Procedure Calls PRINTREADCOMMAND Procedure
is the device width specified in the Spoolcom DEV WIDTH command.

skipnum output

INT:ref:1

returns the number of pages to skip. The meaning of this number depends on the
control number:

controlnum is neither 7 nor 8. The skipnum parameter has no meaning.

data-file output

INT:ref:12

is the data file in which the job is stored if the control number is 2 (start job);
otherwise, this parameter has no meaning.

jobnum output

INT:ref:1

is the number of the job referred to if the control number is 2 (start job); otherwise,
this parameter has no meaning.

location output

INT:ref:8

is the location of the job started if the control number is 2 (start job); otherwise, this
parameter has no meaning.

form-name output

INT:ref:8

is the form name of the job being referred to if the control number is 2 (start job);
otherwise, this parameter has no meaning.

report-name output

INT:ref:8

is the report name of the job being referred to if the control number is 2 (start job);
otherwise, this parameter has no meaning.

pagesize output

INT:ref:1

controlnum
= 7

(skip to page). skipnum specifies the page that should be
skipped to.

controlnum
= 8

(skip over pages). skipnum specifies the number of pages
relative to the current page that should be skipped.
Spooler Programmer’s Guide—522287-002
4-14

Spooler Procedure Calls Considerations
is the page size of the job being referred to if the control number is 2 (start job);
otherwise, this parameter has no meaning.

batchname output

INT:ref:16

is the name of the batch job.

batchid output

INT:ref:1

is the batch number.

owner output

INT:ref:1

is the owner of the job.

charmap output

INT:ref:1

returns one of the following codes indicating which character sets are supported:

devflagx output

INT:ref:1

When devflagx.<1> = 0, the device is not in pretranslate mode.

When devflagx.<1> = 1, the device is in pretranslate mode.

All other bits in devflagx are reserved for use by the spooler.

Considerations

The following considerations apply to the use of the PRINTREADCOMMAND
procedure:

 If desired, PRINTREADCOMMAND can be called once to get the controlnum
and then a second time to get whatever particular information is needed.

 The print process can use the location, form-name, report-name, and
devflags values to print out a header message.

-1 Device does not support MBCS characters.

2 Device supports IBMKANJIKANA characters.

5 Device supports JEFKANJIKANA characters.

8 Device supports JISKANJIKANA characters.
Spooler Programmer’s Guide—522287-002
4-15

Spooler Procedure Calls Example
 If the control number is 7, the skipnum parameter can pass directly to
PRINTREAD.

 If the control number is 8, PRINTINFO must be called to get the current-page.
skipnum must then be added to the current-page to find the page number to
pass to PRINTREAD.

 A print process can ignore the header and truncation flags and the devwidth
parameter.

Example

READ^ERROR:= PRINTREADCOMMAND (PRINT^BUFFER ! print buffer
 , CNTRL^NUM ! control number
 , ! device
 , ! device flags
 , ! device parameter
 , ! device width
 , ! pages to skip
 , DATA^FILE); ! data file
Spooler Programmer’s Guide—522287-002
4-16

Spooler Procedure Calls PRINTSTART[2] Procedure
PRINTSTART[2] Procedure
The PRINTSTART procedure formats the job buffer for a spooler job being started.
The buffer is used in subsequent calls to PRINTREAD.

PRINTSTART[2] is the same procedure with a larger buffer.

error-code returned value

INT

returns one of the following spooler error codes:

job-buffer output

INT:ref:560

contains control information for the job being started in a form suitable for passing
to other print procedures.

print-control-buffer input

is the buffer obtained from PRINTCOMPLETE[2] or SPOOLEREQUEST[2] for
spooler jobs. For spooler job files, print-control-buffer must be passed but
previous buffer contents are ignored.

error-code := PRINTSTART[2] (job-buffer ! o
 ,print-control-buffer ! i
 ,data-filenum); ! i

0 Successful operation.

%2000-%2377 File error on data file (bits <8:15> contain a file-system error
number).

%3000-%3377 Supervisor file error (<8:15> contains a file error). This error
indicates a communication problem with the supervisor. A print
process receiving this error can call ABEND, retry the operation
a number of times, or continue reading and printing jobs without
any further communication with the supervisor.

%4000-%4377 Device error sent to the supervisor by the print process (bits
<8:15> contain a file-system error number).

%10001 Parameter is present, but its content is wrong.

INT:ref:64 (Use with PRINTSTART)

INT:ref:128 (Use with PRINTSTART2)
Spooler Programmer’s Guide—522287-002
4-17

Spooler Procedure Calls Considerations
data-filenum input

INT:value

is the file number of the data file containing the started job.

Considerations

The following considerations apply to the use of the PRINTSTART[2] procedure:

 In addition to containing control information for the job, the PRINTREAD procedure
uses job-buffer to store a block of spooled data.

 PRINTSTART[2] is called once for each job started on a device.

 The job buffer should not be altered by the print or perusal process.

 A spooler job file can be initialized for reading by passing its file number as data-
filenum. In this case, neither PRINTCOMPLETE[2] nor SPOOLEREQUEST[2]
needs to be called prior to calling PRINTSTART[2] to initialize print-control-
buffer.

 You can use PRINTSTART to access jobs that reside in the D41 and later releases
of the spooler only if they are in the form of file code 129 job files; otherwise you
must use PRINTSTART2. If the files do not have a file code of 129, you will receive
file system error number %14015.
Spooler Programmer’s Guide—522287-002
4-18

Spooler Procedure Calls PRINTSTATUS[2] Procedure
PRINTSTATUS[2] Procedure
The PRINTSTATUS procedure can be used in print processes to communicate with the
supervisor and to send an unsolicited status message to the spooler supervisor.

PRINTSTATUS[2] is the same procedure with a larger buffer.

error-code returned value

INT

returns one of the following spooler error codes:

filenum-of-supervisor input

INT:value

is the file number of an open supervisor file. The file number is returned when the
supervisor is opened.

print-control-buffer input

is the buffer obtained from the PRINTCOMPLETE[2] procedure.

error-code := PRINTSTATUS[2] (filenum-of-supervisor ! i
 ,print-control-buffer ! i
 ,msg-type ! i
 ,device ! i
 ,[error] ! i
 ,[num-copies] ! i
 ,[page] ! i
 ,[line] ! i
 ,[lines-printed]); ! i

%2000-%2377 File error on data file (bits <8:15> contain a file-system error
number).

%3000-%3377 Supervisor file error (bits <8:15> contain a file-system error
number). This error indicates a communication problem with
the supervisor. A print process receiving this error can call
ABEND, retry the operation a number of times, or continue
reading and printing jobs without any further communication
with the supervisor.

%4000-%4377 Device error sent to the supervisor by the print process (bits
<8:15> contain a file-system error number).

INT:ref:64 (Use with PRINTSTATUS)

INT:ref:128 (Use with PRINTSTATUS2)
Spooler Programmer’s Guide—522287-002
4-19

Spooler Procedure Calls PRINTSTATUS[2] Procedure
msg-type input

INT:value

specifies the type of message being sent, as follows:

0 = Sending status of job
1 = Error occurred on print device; previous operation was
unsuccessful
2 = End of job
3 = Unable to open device
4 = Invalid operation in this state
5 = Error occurred on print device; previous operation was
successful

device input

INT:ref:12

is the name of the device on which an error occurred.

error input

INT:value

is the error that caused this call to PRINTSTATUS[2]. It is sent to the supervisor.
The list of errors follows.

Refer to Appendix C, Spooler-Related Errors, for a complete list and description of
spooler errors.

num-copies input

INT:value

is the number of copies of the job remaining to be printed.

page input

INT:value

is the current page number.

%4000-
%4377

Device error sent to the supervisor by the print process (bits
<8:15> contain a Guardian file-system error number).

%13000 No such device.

%13001 Device already open.

%13002 No job on device.

%13003 Job is running.

%13004 TABLE IS FULL is sent by a print process to the supervisor
when the print process is already handling as many jobs as it
can, and the supervisor instructs it to start another job.
Spooler Programmer’s Guide—522287-002
4-20

Spooler Procedure Calls Considerations
line input

INT:value

if present, is the current line number (from PRINTINFO).

lines-printed input

INT:value

is the number of lines printed.

Considerations

The following considerations apply to the use of the PRINTSTATUS[2] procedure:

 PRINTSTATUS[2] should not be used by a perusal process. A print process
operates with, and under the control of, the supervisor, while a perusal process
operates on its own.

 The file number to supervisor, print control buffer, message type, and device
parameters are required parameters and must always be present in a call to
PRINTSTATUS[2]. The remaining parameters are optional; PRINTSTATUS[2]
might need these parameters, however, depending on the message type.

Table 4-2 shows which parameters are needed for each message type.

 PRINTSTATUS[2] is a nowait operation and must be completed with a call to
AWAITIO[X].

 Message types 1 and 5 inform the supervisor of an error occurring on a print
device.

 Message type 5 is sent if the previous operation on the device was successful.
When it receives the message, the supervisor can instruct the print process to retry
the operation. If the operation fails again, the print process sends message type 1,
which indicates to the supervisor that a retry of an operation failed.

Message type 5 causes the supervisor to reset its retry count for that device.

Table 4-2. PRINTSTATUS[2] Message Type and Parameters

Message
Type Error

Number of
Copies

Pag
e Lines Printed

0 X X X

1 X

2

3

4 X

5 X
Spooler Programmer’s Guide—522287-002
4-21

Spooler Procedure Calls Example
Example

STATUS^ERROR := PRINTSTATUS (FILENUM^SUP
 , PRINT^BUFF
 , MSG
 , DEVICE
 , ! error
 , ! num copies
 , PAGE
 , ! line
 , NUM^LINES);
Spooler Programmer’s Guide—522287-002
4-22

Spooler Procedure Calls SPOOLBATCHNAME Procedure
SPOOLBATCHNAME Procedure
The SPOOLBATCHNAME procedure returns the name of the batch job currently being
spooled to the collector. This procedure can be used when spooling at levels 1, 2, or
3.

error-code returned value

INT

returns one of the following spooler error codes:

filenum-of-collector input

INT:value

is the file number of an open supervisor file. The file number is returned when the
supervisor is opened.

batchname output

INT:ref:16

is the name of the batch job currently being spooled to the collector through the
specified file number. If the spooler job does not belong to a batch job, blanks are
returned.

Considerations

The following considerations apply to the use of the SPOOLBATCHNAME procedure:

 A call to SPOOLBATCHNAME can be issued by an application spooling at any
level.

 When spooling at level 1, a job is not created until after the WRITE[X], SETMODE,
or CONTROL procedure is called once.

 When spooling at level 2 or 3, a job is not created until after the SPOOLSTART
procedure is called.

error-code := SPOOLBATCHNAME (filenum-of-collector ! i
 ,batchname); ! o

0 Successful operation

%1000-%1377 Error on file to collector (bits <8:15> contain a file-system error
number

%10000 Missing parameter

%11001 Attempted to write to collector without opening the file first
Spooler Programmer’s Guide—522287-002
4-23

Spooler Procedure Calls SPOOLCONTROL Procedure
SPOOLCONTROL Procedure
The SPOOLCONTROL procedure is used to perform device-dependent I/O operations
when the application process is spooling at level 3.

If a level-3 buffer is specified in a call to SPOOLSTART, the SPOOLCONTROL
procedure must be used in place of the CONTROL procedure.

error-code returned value

INT

returns one of the following spooler error codes:

level-3-buff input, output

INT:ref:512

is the level-3-buff specified in the SPOOLSTART procedure.

operation input

INT:value

is a CONTROL operation value (see the CONTROL procedure in the Guardian
Procedure Calls Reference Manual for information about CONTROL operations).

param input

INT:value

is a parameter for the specified CONTROL operation (see the Guardian
Procedure Calls Reference Manual for more information on CONTROL
operations).

error-code := SPOOLCONTROL (level-3-buff ! i,o
 ,operation ! i
 ,param ! i
 ,[bytes-written-to-buff]) ! o
 ,[extended-level-3-buff]); ! i,o

0 Successful operation

%1000-%1377 Error on file to collector (bits <8:15> contain a file-system error
number; see Considerations on page 4-25)

%10000 Missing parameter

%10001 Parameter is present, but its content is wrong

%11000 Checkpoint exit

%11001 Attempted to write to the collector without first opening the file
Spooler Programmer’s Guide—522287-002
4-24

Spooler Procedure Calls Considerations
bytes-written-to-buff output

INT:ref:1

returns the number of bytes to be checkpointed from the level-3-buff.
This parameter is used by fault-tolerant applications.

extended-level-3-buff input,output

INT:.EXT.ref.*

is the extended-level-3-buff specified in the SPOOLSTART procedure.

Considerations

The following considerations apply to the use of the SPOOLCONTROL procedure:

 If flags.<11> of SPOOLSTART is set to 1, a return of %11000 from
SPOOLCONTROL indicates that the level-3-buff is about to be written to the
collector. The buffer should be checkpointed, and SPOOLCONTROL should be
called again.

 Some file-system errors have special significance to a process sending data to a
collector; these errors are described in the Guardian Procedure Errors and
Messages Manual.

A program using level-1 or level-2 spooling gets these errors from the WRITE[X],
OPEN, or FILE_OPEN_ procedure while a program spooling at level 3 obtains
these errors in bits <8:15> of a spooler error code in the %1000 range.
Spooler Programmer’s Guide—522287-002
4-25

Spooler Procedure Calls SPOOLCONTROLBUF Procedure
SPOOLCONTROLBUF Procedure
The SPOOLCONTROLBUF procedure is used to perform device-dependent I/O
operations requiring a data buffer when the application process is spooling at level 3.

This procedure must be used in place of CONTROLBUF if a level-3 buffer is specified
in a call to SPOOLSTART.

error-code returned value

INT

returns one of the following spooler error codes:

level-3-buff input, output

INT:ref:512

is the level-3-buff specified in the SPOOLSTART procedure.

operation input

INT:value

is a SPOOLCONTROLBUF operation as follows:

buffer input

INT:ref:*

error-code := SPOOLCONTROLBUF (level-3-buff ! i,o
 ,operation ! i
 ,buffer ! i
 ,count ! i
 ,[bytes-written-to-buff] ! o
 ,[extended-level-3-buff]); ! i,o

0 Successful operation

%1000-%1377 Error on file to collector (bits <8:15> contain a file-system error
number; see Considerations on page 4-27)

%10000 Missing parameter

%10001 Parameter is present, but its content is wrong

%11000 Checkpoint exit

%11001 Attempted to write to the collector without first opening the file

operation Definition

1 Load DAVFU (printer subtype 4)

buffer = VFU buffer to be loaded
count = number of bytes contained in buffer
Spooler Programmer’s Guide—522287-002
4-26

Spooler Procedure Calls Considerations
is an array containing the control information to be sent to the print device.

count input

INT:value

is the number of bytes of information contained in the buffer.

bytes-written-to-buff output

INT:ref:1

returns the number of bytes to be checkpointed from the level-3-buff.
This parameter is used by fault-tolerant applications.

extended-level-3-buff input,output

INT:.EXT.ref.*

is the extended-level-3-buff specified in the SPOOLSTART procedure.

Considerations

The following considerations apply to the use of the SPOOLCONTROLBUF procedure:

 If flags.<11> of SPOOLSTART is set to 1, a return of %11000 from
SPOOLCONTROLBUF indicates that the level-3-buff is about to be written to
the collector. The buffer should be checkpointed, and SPOOLCONTROLBUF
should be called again.

 Some file-system errors have special significance to a process sending data to a
collector; these errors are described in the Guardian Procedure Errors and
Messages Manual.

A program using level-1 or level-2 spooling gets these errors from the WRITE[X] or
OPEN procedure, while a program spooling at level 3 obtains these errors in bits
<8:15> of a spooler error code in the %1000 range.

Example

ERROR := SPOOLCONTROLBUF (COLL^BUFF , 1 , CON^BUFF , COUNT);
Spooler Programmer’s Guide—522287-002
4-27

Spooler Procedure Calls SPOOLEND Procedure
SPOOLEND Procedure
The SPOOLEND procedure can be used to complete a job being spooled at level 3.

The SPOOLEND procedure writes any remaining data in the collection process buffer
to the collector, sends the collection process a termination message, and optionally
modifies the job’s attributes.

error-code returned value

INT

returns one of the following spooler error codes:

level-3-buff input,output

INT:ref:512

is the level-3 buff specified in the call to SPOOLSTART.

flags input

INT:value

overrides the flags specified in SPOOLSTART. If bit <8> is set to 1, the job is
canceled rather than printed.

error-code := SPOOLEND (level-3-buff ! i,o
 ,[flags]); ! i
 ,[extended-level-3-buff]); ! i,o

0 Successful operation

%1000-%1377 Error on file to collector (bits <8:15> contain a file-system error
number; see Considerations on page 4-29)

%10000 Missing parameter

%10001 Parameter is present, but its content is wrong

%11000 Checkpoint exit

%11001 Attempted to write to the collector without first opening the file

<0:7> Reserved for use by the collector

<8> Cancel job flag: 0 = off

1 = on

<9> HOLD flag: 0 = off

1 = on
Spooler Programmer’s Guide—522287-002
4-28

Spooler Procedure Calls Considerations
If this parameter is omitted, the attributes established by the call to SPOOLSTART
are not changed.

extended-level-3-buff input,output

INT:.EXT.ref.*

is the extended-level-3-buff specified in the SPOOLSTART procedure.

Considerations

The following considerations apply to the use of the SPOOLEND procedure:

 A call to SPOOLEND causes any existing data in the collection process buffer to
be written to the collector.

 Following a call to SPOOLEND, a new job can be started without reopening a file
to the collector.

 SPOOLEND must be called to terminate the spooling of any job being spooled at
level 3 (using the spooler interface procedures).

 Calling SPOOLEND with the flags cancel job flag bit (bit 8) set to 1 has the same
effect as if you never started the job.

 Including flags causes all bit fields to override the values specified in the flags
parameter of SPOOLSTART.

 Some file-system errors have special significance to a process sending data to a
collector; these errors are described in the Guardian Procedure Errors and
Messages Manual.

A program using level-1 or level-2 spooling gets these errors from the WRITE[X] or
OPEN procedure, while a program spooling at level 3 obtains these errors in bits
<8:15> of a spooler error code in the %1000 range.

Example

SPERRNUM := SPOOLEND (BUFFER , %B0000000001000100);
 ! put job on HOLD and set priority 4.

<10> HOLDAFTER flag: 0 = off

1 = on

<11> Reserved; must be 0

<12> Close the file

<13:15> Job priority
Spooler Programmer’s Guide—522287-002
4-29

Spooler Procedure Calls SPOOLERCOMMAND Procedure
SPOOLERCOMMAND Procedure
The SPOOLERCOMMAND procedure is used to perform Spoolcom and Peruse
operations from within applications.

The SPOOLERCOMMAND procedure allows a process to send a Spoolcom command
to the spooler supervisor.

error-code returned value

INT

returns one of the following spooler error codes:

error-code := SPOOLERCOMMAND (filenum-of-supervisor ! i
 ,command-code ! i
 ,[command-parameter] ! i
 ,subcommand-code ! i
 ,[subcommand-parameter]); ! i

0 Successful operation

%3000-%3377 Error on file to supervisor (file-system error in bits <8:15>);
refer to the Guardian Procedure Errors and Messages
Manual

%10000 Parameter missing

%10001 Parameter in error

%14000 Invalid command

%14001 Command parameter missing

%14002 Command parameter in error

%14003 Invalid subcommand

%14004 Subcommand missing

%14005 Subcommand parameter in error

%14010 Cannot add entry to tables

%14011 Cannot find entry requested

%14012 Entry not in proper state for requested operation

%14013 Entry in use; cannot be deleted

%14014 Security violation

%14015 Process not a spooler supervisor
Spooler Programmer’s Guide—522287-002
4-30

Spooler Procedure Calls SPOOLERCOMMAND Procedure
filenum-of-supervisor input

INT:value

is the file number of an open supervisor file. The file number is returned when the
supervisor is opened.

command-code input

INT:value

is the number of the command to be executed. command-code values are
described in SPOOLERCOMMAND Procedure and Subcommand Parameters on
page 4-32.

command-parameter input

INT:ref:*

is a buffer containing the parameter to be used with the command-code being
executed. The size and content of this parameter for each command are shown in
SPOOLERCOMMAND Procedure and Subcommand Parameters on page 4-32.

subcommand-code input

INT:value

is the number of the subcommand to be executed. subcommand-code values are
described in SPOOLERCOMMAND Procedure and Subcommand Parameters on
page 4-32.

subcommand-parameter input

INT:ref:*

is a buffer containing the parameter to the subcommand being executed. See the
following explanation for the size and content of this parameter for each
subcommand.

%14017 A job associated with a font cannot be deleted

%14020 Command not valid on spooler batch job

%14021-
%14023

Spooler batch job error code print process (NEWPROCESS
error in bits <8:15>, refer to the Guardian Procedure Errors
and Messages Manual)
Spooler Programmer’s Guide—522287-002
4-31

Spooler Procedure Calls SPOOLERCOMMAND Procedure and Subcommand
Parameters
SPOOLERCOMMAND Procedure and Subcommand Parameters

The SPOOLERCOMMAND procedure is useful to programmers who want to perform
Spoolcom operations from within application programs. The Spoolcom commands that
can be sent are COLLECT, DEV, JOB, LOC, PRINT, and SPOOLER.

The remaining commands—EXIT, FC, HELP, and OPEN—are executed by Spoolcom,
and therefore they are not related to the supervisor.

To send a Spoolcom command to the spooler supervisor from within an application,
you specify its equivalent using SPOOLERCOMMAND procedure commands. The
commands are described here in command-code order, starting with 1.

Spoolcom DEV Command Parameters

To send the equivalent of a Spoolcom DEV command, specify a file number for the
filenum-of-supervisor parameter, a command-code of 1, and the command-
parameter, which in this case is a print device name of up to 32 characters in internal
filename format. Find the subcommand-code and the subcommand-parameter for
the Spoolcom DEV parameters you want from Table 4-3.

filenum-of-supervisor: a file number
command-code: 1
command-parameter: a printer name

For example, to specify the speed of printer $LP3, you could enter the following:

INT .DEV [0:15] := [" $LP3 "];
COM^ERROR := SPOOLERCOMMAND (4, 1, DEV, 101, 300);

Refer to the Spooler Utilities Reference Manual for a description of the Spoolcom DEV
parameters.

Note. Before calling the SPOOLERCOMMAND procedure, you must open a file to the spooler
supervisor. You must specify waited I/O.

Spoolcom
Command

SPOOLERCOMMAND
Command Code

DEV 1

JOB 2

LOC 3

COLLECT 4

PRINT 5

SPOOLER 6

FONT 7

BATCH 8
Spooler Programmer’s Guide—522287-002
4-32

Spooler Procedure Calls SPOOLERCOMMAND Procedure and Subcommand
Parameters
Table 4-3. SPOOLERCOMMAND Parameters for Spoolcom DEV (page 1 of 2)

Spoolcom DEV
Subcommand

subcommand-code
(Fourth Parameter)

subcommand-parameter
(Fifth Parameter)

Blank 100 None

ALIGN 113 None

CHARMAP 133 –1 = does not support MBCS
 2 = supports IBMKANJIKANA
 5 = supports JEFKANJIKANA
 8 = supports JISKANJIKANA

CLEAR 112 1 = DEL
0 = no DEL

(INT:1)

DELETE 116 None

DEVRESET 136 0 = off, 1 = on (INT:1)

DEVTYPE 140 Blank
LU1
LU3
 7
 8
 9
10

(INT:2)

DRAIN 114 None

ENDFF 138 0 = off, 1 = on (INT:1)

EXCLUSIVE 103 0 = off
1 = on
2 = off !

(INT:1)

FIFO 104 0 = off, 1 = on (INT:1)

FORM 107 [form-name] (INT:8)

HEADER 110 0 = off
1 = on
2 = batch

(INT:1)

JOB 117 job-code (INT:1)

LUEOLVALUE 156 0 = CRLF
1 = NL

(INT:1)

LUEOLWHEN 155 0 = LT132
1 = ALWAYS
2 = LTWIDTH
3 = NEVER

(INT:1)

LUTOFVALUE 154 0 = CRFFCR
1 = FFCR
2 = FF
3 = NEVER

(INT:1)

PARM 148 (INT:1)
Spooler Programmer’s Guide—522287-002
4-33

Spooler Procedure Calls SPOOLERCOMMAND Procedure and Subcommand
Parameters
Spoolcom JOB Command Parameters

To send the equivalent of a Spoolcom JOB command, specify a file number for the
filenum-of-supervisor parameter, a command-code of 2, and the command-
parameter, which in this case is a job number. Find the subcommand-code and the
subcommand-parameter for the Spoolcom JOB parameters you want from
Table 4-4.

filenum-of-supervisor: a file number
command-code: 2
command-parameter: a job number

For example, to specify the priority of job number 412 as 6, enter the following:

COM^ERROR := SPOOLERCOMMAND (4, 2, 412, 126, 6);

Refer to the Spooler Utilities Reference Manual for a description of the Spoolcom JOB
parameters.

PREXLATE 134 0 = off, 1 = on (INT:1)

PROCESS 102 process-
name

(INT:3)

RESTART 120 interval (INT:1)

RETRY 105 interval (INT:1)

SKIP 108 + num-pages

– num-pages

(INT:1)

SKIPTO 109 page-num (INT:1)

SPEED 101 lpm (INT:1)

START 115 none

STARTFF 137 0 = off
1 = on
2 = off !

(INT:1)

SUSPEND 111 none

TIMEOUT 106 num-retries (INT:1)

TRUNC 118 0 = off, 1 = on (INT:1)

WIDTH 119 device-
width

(INT:1)

Table 4-3. SPOOLERCOMMAND Parameters for Spoolcom DEV (page 2 of 2)

Spoolcom DEV
Subcommand

subcommand-code
(Fourth Parameter)

subcommand-parameter
(Fifth Parameter)
Spooler Programmer’s Guide—522287-002
4-34

Spooler Procedure Calls SPOOLERCOMMAND Procedure and Subcommand
Parameters

Spoolcom LOC Command Parameters

To send the equivalent of a Spoolcom LOC command, specify a file number for the
filenum-of-supervisor parameter and a command-code of 3. Find the
command-parameter, subcommand-code, and subcommand-parameter for the
Spoolcom LOC parameters you want from Table 4-5.

filenum-of-supervisor: a file number
command-code: 3

For example, to specify $LP as a default print device, you could enter the following:

INT .LOC [0:15] := ["#PRIN DEFAULT "];
INT .DEV [0:15] := [" $LP "];
COM^ERROR := SPOOLERCOMMAND (4, 3, LOC, 131, DEV);

This is equivalent to the interactive command:

SPOOLCOM LOC #PRIN.DEFAULT, DEV $LP

Refer to the Spooler Utilities Reference Manual for a description of the Spoolcom LOC
parameters.

Table 4-4. SPOOLERCOMMAND Parameters for Spoolcom JOB

Spoolcom JOB
Subcommand

subcommand-code
(Fourth Parameter)

subcommand-parameter
(Fifth Parameter)

COPIES 123 num-copies (INT:1)

DELETE 116 None

FORM 107 [form-name] (STRING:8)

HOLD 122 None

HOLDAFTER 121 0 = off
1 = on

(INT:1)

LOC 125 [location-name] (INT:8)

OWNER 127 group = <0:7>
user = <8:15>

(INT:1)

REPORT 124 [report-name] (STRING:8)

SELPRI 126 selection
priority

(INT:1)

START 115 None

SUMMARY 167 None
Spooler Programmer’s Guide—522287-002
4-35

Spooler Procedure Calls SPOOLERCOMMAND Procedure and Subcommand
Parameters

The command-parameter is an INT:16; the first 8 characters contain the group
name, the second 8 characters contain the destination name, and the remaining
characters are not used. The device name is in internal file-name format. The font
name is left-justified and blank-filled.

Spoolcom COLLECT Command Parameters

To send the equivalent of a Spoolcom COLLECT command, specify a file number for
the filenum-of-supervisor parameter, a command-code of 4, and then the
command-parameter, which in this case is the name of the collection process, not
exceeding three words in length. Find the subcommand-code and the
subcommand-parameter for the Spoolcom COLLECT parameters you want from
Table 4-6.

filenum-of-supervisor: a file number
command-code: 4
command-parameter: a collection process

For example, to specify the processor that the collector is to run in, you could enter the
following:

INT .COL [0:15] := ["$S "];
COM^ERROR := SPOOLERCOMMAND (4, 4, COL, 142, 6);

Refer to the Spooler Utilities Reference Manual for a description of the Spoolcom
COLLECT parameters.

Table 4-5. SPOOLERCOMMAND Parameters for Spoolcom LOC

Spoolcom LOC
Subcommand

command-parameter
(Third Parameter)

subcommand-
code
(Fourth
Parameter)

subcommand-
parameter
(Fifth Parameter)

Blank group dest (INT:16
)

100 none

BROADCAST group (INT:16
)

132 0 = off
1 = on

(INT:1)

DELETE group
[dest] (INT:16

)

116 None

DEV [group]
dest (INT:16

)

131 [device-
name]

(INT:16
)

FONT group dest (INT:16
)

149 [font-name
]

(INT:8)
Spooler Programmer’s Guide—522287-002
4-36

Spooler Procedure Calls SPOOLERCOMMAND Procedure and Subcommand
Parameters

The data-filename and the program-filename parameters can be specified as
either an INT:12 or a STRING:24. The format in either case is

$Volume name in bytes 0-7
Subvolume name in bytes 8-15
File name in bytes 16-23

Spoolcom PRINT Command Parameters

To send the equivalent of a Spoolcom PRINT command, specify a file number for the
filenum-of-supervisor parameter, a command-code of 5, and the command-
parameter, which in this case is the name of the print process, not exceeding three
words in length. Find the subcommand-code and the subcommand-parameter for
the Spoolcom PRINT parameters you want from Table 4-7.

filenum-of-supervisor: a file number
command-code: 5
command-parameter: a print process

For example, to specify the backup processor that the print process is to run in
(CPU2), you could enter the following:

INT .PP [0:2] := ["$SPLP "];
COM^ERROR := SPOOLERCOMMAND (4, 5, PP, 143, 2);

Refer to the Spooler Utilities Reference Manual for a description of the Spoolcom
PRINT parameters.

Table 4-6. SPOOLERCOMMAND Parameters for Spoolcom COLLECT

Spoolcom COLLECT
Subcommand

subcommand-code
(Fourth Parameter)

subcommand-parameter
(Fifth Parameter)

blank 100 None

BACKUP 143 backup-cpu (INT:1)

CPU 142 cpu (INT:1)

DATA 145 data-filename (STRING:12)

DELETE 116 None

DRAIN 114 None

FILE 141 program-filename (STRING:12)

PRI 144 process-priority (INT:1)

START 115 None

SUMMARY 167 None

UNIT 146 unit-size (INT:1)
Spooler Programmer’s Guide—522287-002
4-37

Spooler Procedure Calls SPOOLERCOMMAND Procedure and Subcommand
Parameters

The program-filename parameter can be specified as either an INT:12 or a
STRING:24. The format in either case is

$Volume name in bytes 0-7
Subvolume name in bytes 8-15
File name in bytes 16-23

Spoolcom SPOOLER Command Parameters

To send the equivalent of a Spoolcom SPOOLER command, specify a file number for
the filenum-of-supervisor parameter and a command-code of 6. The
command-parameter does not exist, but a place-holder comma for it must be
supplied. Find the subcommand-code and the subcommand-parameter for the
Spoolcom SPOOLER parameters you want from Table 4-8.

filenum-of-supervisor: a file number
command-code: 6

For example, to issue the DRAIN subcommand to stop the spooler in an orderly
manner, you could enter the following:

COM^ERROR := SPOOLERCOMMAND (4, 6, , 114,);

Refer to the Spooler Utilities Reference Manual for a description of the Spoolcom
SPOOLER parameters.

Table 4-7. SPOOLERCOMMAND Parameters for Spoolcom PRINT

Spoolcom PRINT
Subcommand

subcommand-code
(Fourth Parameter)

subcommand-parameter
(Fifth Parameter)

blank 100 None

BACKUP 143 backup-cpu (INT:1)

CPU 142 cpu (INT:1)

DEBUG 147 0 = off, 1 = on (INT:1)

DELETE 116 None

FILE 141 program-filename (STRING:12)

PARM 148 print-process-
param

(INT:1)

PRI 144 process-priority (INT:1)

START 115 None

SUMMARY 167 None
Spooler Programmer’s Guide—522287-002
4-38

Spooler Procedure Calls SPOOLERCOMMAND Procedure and Subcommand
Parameters

The filename parameter can be specified as either an INT:12 or a STRING:24. The
format in either case is

$Volume name in bytes 0-7
Subvolume name in bytes 8-15
File name in bytes 16-23

Spoolcom FONT Command Parameters

To send the equivalent of a Spoolcom FONT command, specify a file number for the
filenum-of-supervisor parameter and a command-code of 7. The command-
parameter in this case is the font name, not to exceed eight words in length. Find
the subcommand-code and the subcommand-parameter for the Spoolcom FONT
parameters you want from Table 4-9.

filenum-of-supervisor: a file number
command-code: 7
command-parameter: a font name

For example, to create a font called PRTPAYCHK and associate font job 1843 with this
font, you could enter the following:

INT .FONTNAME [0:15] := ["PRTPAYCHK "];
COM^ERROR := SPOOLERCOMMAND (4, 7, FONTNAME, 117, 1843);

Refer to the Spooler Utilities Reference Manual for a description of the Spoolcom
FONT parameters.

Table 4-8. SPOOLERCOMMAND Parameters for Spoolcom SPOOLER

Spoolcom SPOOLER
Subcommand

subcommand-code
(Fourth Parameter)

subcommand-parameter
(Fifth Parameter)

DRAIN 114 None

DUMP 157 filename (INT:12)

ERRLOG 151 filename (INT:12)

MGRACCESS 158 0 = off, 1 = on (INT:1)

START 115 None

Table 4-9. SPOOLERCOMMAND Parameters for Spoolcom FONT

Spoolcom FONT
Subcommand

subcommand-code
(Fourth Parameter)

subcommand-parameter
(Fifth Parameter)

DELETE 116 None

JOB 117 job number (INT:1)
Spooler Programmer’s Guide—522287-002
4-39

Spooler Procedure Calls Considerations
Spoolcom BATCH Command Parameters

To send the equivalent of a Spoolcom BATCH command, specify a file number for the
filenum-of-supervisor parameter and a command-code of 8. The command-
parameter in this case is the batch number, not to exceed one word in length. Find
the subcommand-code and the subcommand-parameter for the Spoolcom BATCH
parameters you want from Table 4-10.

filenum-of-supervisor: a file number
command-code: 8
command-parameter: a batch number

For example, to specify that batch 78 requires a special form, you could enter the
following:

STRING .PAYROLL [0:7] := ["PAYROLL "];
COM^ERROR := SPOOLERCOMMAND (4, 8, 78, 107, PAYROLL);

Refer to the Spooler Utilities Reference Manual for a description of the Spoolcom
BATCH parameters.

Considerations

The following considerations apply to the use of the SPOOLERCOMMAND procedure:

 Note that subcommand-code is a required parameter on every call to
SPOOLERCOMMAND.

Table 4-10. SPOOLERCOMMAND Parameters for Spoolcom BATCH

Spoolcom BATCH
Subcommand

subcommand-code
(Fourth Parameter)

subcommand-parameter
(Fifth Parameter)

COPIES 123 num-copies (INT:1)

DELETE 116 None

FORM 107 [form-name] (STRING:8)

HOLD 122 None

HOLDAFTER 121 0 = off, 1 = on (INT:1)

LINK 129 job number (INT:1)

LOC 125 [loc-name] (INT:8)

OWNER 127 group = <0:7>
user = <8:15> (INT:1)

REPORT 124 [report-name] (STRING:8)

SELPRI 126 sel-pri (INT:1)

START 115 None

UNLINK 130 job number (INT:1)
Spooler Programmer’s Guide—522287-002
4-40

Spooler Procedure Calls Example
 Commands not accompanied by subcommands should have code 100 as their
subcommand-code (for example, creating a component with all default
parameters).

 You must put a batch on hold by using the Spoolcom JOB HOLD command before
attempting to use the Spoolcom BATCH LINK and UNLINK subcommands.

 Error %14017 is returned if an attempt is made to delete a job associated with a
font.

 Error %14020 is returned from a Spoolcom JOB command when the command
cannot be done on a portion of a spooler batch job.

 When a Spoolcom BATCH command returns an error code in the range %14021
through %14023, it indicates a problem with the LINK or UNLINK operation. For
more information on spooler-related errors, see Appendix C, Spooler-Related
Errors.

Example

COM^ERROR := SPOOLERCOMMAND (FILENUM
 , COM^CODE
 , ! command parameter
 , SUB^CODE);
Spooler Programmer’s Guide—522287-002
4-41

Spooler Procedure Calls SPOOLEREQUEST[2] Procedure
SPOOLEREQUEST[2] Procedure
The SPOOLEREQUEST procedure allows a perusal process to access a spooled job
outside the control of the spooler supervisor.

SPOOLEREQUEST2 is the same procedure with a larger buffer.

error-code returned value

INT

returns one of the following spooler error codes:

supervisor-filenum input

INT:value

is the file number of an open supervisor file. The file number is returned when the
supervisor is opened.

job-num input

INT:value

is the number of the job to be accessed.

error-code := SPOOLEREQUEST[2] (supervisor-filenum ! i
 ,job-num ! i
 ,print-control-buffer); ! o

0 Successful operation

%3000-
%3377

Error on file to supervisor (file-system error in bits <8:15>); refer
to the Guardian Procedure Errors and Messages Manual

%10000 Parameter missing

%10001 Parameter in error

%14001 Command parameter missing

%14002 Command parameter in error

%14007 Cannot find entry requested

%14014 Security violation

%14015 Process not a spooler supervisor
Spooler Programmer’s Guide—522287-002
4-42

Spooler Procedure Calls Considerations
print-control-buffer output

returns a “start job” message suitable for passing to the PRINTREADCOMMAND
procedure.

Considerations

The following considerations apply to the use of the SPOOLEREQUEST[2] procedure:

 Before calling the SPOOLEREQUEST[2] procedure, you must open a file to the
spooler supervisor. You must specify waited I/O.

 The PRINTCOMPLETE[2], PRINTINFO, PRINTINIT[2], and PRINTSTATUS[2]
spooler print procedures cannot be used by a perusal process.

 SPOOLEREQUEST[2] must be used with the spooler print procedures
(PRINTREADCOMMAND Procedure on page 4-12, PRINTREAD Procedure on
page 4-9, and PRINTSTART[2] Procedure on page 4-17).

 Because the supervisor does not know that the data file is being accessed, it
allows the job to be deleted. If this occurs, PRINTREAD returns an “invalid data
file” error (%12002) when attempting to read a line of data that is no longer there.

 SPOOLEREQUEST[2] returns job information only if the process access ID (PAID)
of the process calling SPOOLEREQUEST[2] (for example, the user executing
SPOOLEREQUEST[2]) matches the job’s owner.

 You can use SPOOLEREQUEST to access jobs that reside in the D41 and later
releases of the spooler only if they are in the form of file code 129 job files;
otherwise you must use SPOOLEREQUEST2.

INT:ref:64 (Use with SPOOLEREQUEST)

INT:ref:128 (Use with SPOOLEREQUEST2)
Spooler Programmer’s Guide—522287-002
4-43

Spooler Procedure Calls SPOOLERSTATUS2 Procedure
SPOOLERSTATUS2 Procedure
The SPOOLERSTATUS2 procedure performs Spoolcom and Peruse operations from
within applications. SPOOLERSTATUS allows a process to obtain the status of spooler
components.

SPOOLERSTATUS2 differs from SPOOLERSTATUS in that command-code 13 has
been added to support font information, command-code 14 has been added to support
batch processing, and the size of the status-buffer has been doubled.

error-code returned value

INT

returns one of the following spooler error codes:

supervisor-filenum input

INT:value

is the file number of an open supervisor file. The file number is returned when the
supervisor is opened.

command-code input

INT:value

error-code := SPOOLERSTATUS2 (supervisor-filenum ! i
 ,command-code ! i
 ,scan-type ! i
 ,status-buffer); ! i,o

0 Successful operation

%3000-
%3377

Error on file to supervisor (file-system error in bits <8:15>; refer
to Appendix C, Spooler-Related Errors, or to the Guardian
Procedure Errors and Messages Manual).

%10000 Parameter missing

%10001 Parameter in error

%14001 Command parameter missing

%14002 Command parameter in error

%14006 End of SPOOLERSTATUS2 entries

%14007 Entry not found by SPOOLERSTATUS2

%14015 Process not a spooler supervisor

%14016 SPOOLERSTATUS2 request in progress
Spooler Programmer’s Guide—522287-002
4-44

Spooler Procedure Calls SPOOLERSTATUS2 Procedure
specifies the spooler component whose status is being sought. The range of
values and their meanings are listed in Table 4-11.

scan-type input

 INT:value

specifies the type of scan desired as follows:

0 = Status of the item specified in the status-buffer
1 = Status of the item that follows the item specified in the status-buffer

status-buffer input, output

is a 64-word or 128-word buffer where the status is returned. The format of the
status buffer depends on the particular command code.

Table 4-11. SPOOLERSTATUS2 Command Codes

Command
Code Component

1 Device

2 Job

3 Location

4 Collector

5 Print process

6 Spooler

7 Jobs on a particular device queue

8 Occurrences of a particular job

9 Jobs with a particular location

10 Cross-reference by location

11 Cross-reference by device

12 Cross-reference by print process

13 Font information (SPOOLERSTATUS2 only)

14 Batch information (SPOOLERSTATUS2 only)

25 Collector LISTOPENS data

INT:ref:64 (Use with SPOOLERSTATUS)

INT:ref:128 (Use with SPOOLERSTATUS2)
Spooler Programmer’s Guide—522287-002
4-45

Spooler Procedure Calls Considerations
Considerations

The following considerations apply to the use of the SPOOLERSTATUS2 procedure:

 Before calling the SPOOLERSTATUS2 procedure, you must open a file to the
spooler supervisor. You must specify waited I/O.

Obtaining the Spooler Statistics and Status

The spooler supervisor maintains a separate list for each type of spooler component.
The lists of print processes, devices, collectors, and locations are in alphabetical order.
The list of jobs is in ascending numerical order by job number. The
SPOOLERSTATUS2 procedure allows you to access the elements of these lists
sequentially or individually.

Listed below are the spooler components in command-code order, where command-
code is a parameter of SPOOLERSTATUS2 as described in Table 4-11. For each type
of component, you will find the STRUCTs that determine the format of the status-
buffer where the status is returned.

Obtaining the Status of a Device (Command Code 1)

To obtain the status of a device, set the command-code parameter of
SPOOLERSTATUS2 to 1 and pass either a 64-word status buffer to
SPOOLERSTATUS or a 128-word status buffer to SPOOLERSTATUS2. The following
STRUCT shows the fields of the buffer:

STRUCT device;

BEGIN

 INT name [0:15], ! $device name
! name[0:3] = \system name
! name[4:7] = $device name
! name[8:11] = #subdevice
! name[12:15] = (blank-filled)

 state, ! 1 = device waiting
! 2 = device busy
! 3 = device suspended
! 4 = device error (deverror)
! 5 = device offline
! 6 = print process error
! (procerror)

 last^error, ! the last spooler error code
! recorded on the device

 flags; ! device flags (0=off, 1=on)
 ! flags. <0> = Devreset

! flags.<1:2> = Startff
 00 = OFF

 01 = ON
 10 = OFF !
! flags.<3> = Endff
! flags.<4:7> = DEVTYPE
0001 = SNAX LU1
0010 = SNAX LU3
0111 = 7 SUB-TYPE FOR 5515,
Spooler Programmer’s Guide—522287-002
4-46

Spooler Procedure Calls Obtaining the Spooler Statistics and Status
 5516, 5518
1000 = 8 SUB-TYPE FOR 5573,5574
1001 = 9 SUB-TYPE FOR 5512

 1010 = 10 SUB-TYPE FOR 5577
! flags. <8> = Batch header
! flags. <9> = Exclusive OFF!
! flags.<10> = Truncation
! flags.<11> = Job printing
! flags.<12> = Device draining
! flags.<13> = Header
! flags.<14> = Exclusive
! flags.<15> = FIFO

STRING form^name [0:15]; ! form name of device,
! blank-filled

INT retry^interval, ! minimum period to wait between
! retries

 time^out, ! number of retries to attempt
! before timing out device

 speed; ! device speed specified in the
! Spoolcom command (not
! actual speed of the device)

STRING print^process [0:5]; ! print process name,
! blank-filled

INT job^number, ! job number of job currently
! being printed

 parameter, ! parameter specified in
! Spoolcom command

 width, ! device width specified in the
! Spoolcom command (not
! necessarily actual width
! of device)

 retries, ! number of retries attempted on
! device. Valid only when in
! deverror state.

 busy^time[0:1], ! amount of time (in seconds)
! required for current job to
! complete printing. Valid
! only when device is in
! print state.

 restart^interval, ! automatic device restart
! specification

 charmap, ! multibyte character set
! translation flag, where
! -1 = no translation
! 2 = IBMKANJIKANA
! 5 = JEFKANJIKANA
! 8 = JISKANJIKANA

devflagx; ! Optional Device Flag
! (0 = OFF, 1 = ON)
! devflagx.<1> = Prexlate
! DEVFLAGX.<10:11>= Lutofvalue
 00 = CRFFCR
 01 = FFCR
 10 = FF
Spooler Programmer’s Guide—522287-002
4-47

Spooler Procedure Calls Obtaining the Spooler Statistics and Status
 11 = NEVER
(for FASTP substitute for
 DEV PARM bits 10:11)
! DEVFLAGX.<12:13>= Lueolwhen

 00 = LT132
 11 = ALWAYS
 10 = LTWIDTH
 11 = NEVER
(for FASTP substitute for
 DEV PARM bits 12:13)
! DEVFLAGX.<15>= Lueolvalue
 0 = CRLF
 1 = NL
(for FASTP substitute for
 DEV PARM bit 15)

END;

If you want the status of all devices in the spooler subsystem, fill the device.name
field with blanks and enter a 1 as the scan-type. The first call returns the status of
the device whose name comes first alphabetically. Continue calling
SPOOLERSTATUS2 until it returns error %14006 (end of entries).

If you want the status of a particular device, fill the device.name field with the name
of the device whose status you want (remember to fill the right side of the field with
blanks). Then call SPOOLERSTATUS2 with scan-type set to 0.

The values that can be returned for the field device.charmap are as follows:

Because device.charmap is at the end of the structure, you do not have to include it
in your program. Programs created before the addition of this device attribute will
continue to execute properly.

The values that can be returned for the field device.devflagx.<1> are as follows:

All other bits in devflagx are reserved for use by the spooler.

Obtaining the Status of a Job (Command Code 2)

To obtain the status of a job, set the command-code parameter of
SPOOLERSTATUS2 to 2 and pass either a 64-word status buffer to
SPOOLERSTATUS or a 128-word status buffer to SPOOLERSTATUS2. The last five

-1 specifies that the device does not support multibyte character set translation.

 2 specifies that the device supports IBMKANJIKANA characters.

 5 specifies that the device supports JEFKANJIKANA characters.

 8 specifies that the device supports JISKANJIKANA characters.

0 specifies that the device is not in pretranslate mode.

1 specifies that the device is in pretranslate mode.
Spooler Programmer’s Guide—522287-002
4-48

Spooler Procedure Calls Obtaining the Spooler Statistics and Status
fields of the following STRUCT support spooler batch jobs and require the larger status
buffer with SPOOLERSTATUS2. The following STRUCT shows the fields of the buffer:

STRUCT job^buffer;

BEGIN

 INT number, ! job number
! if number.<0> = 0, then
! SPOOLERSTATUS2 returns
! the status of all jobs
! in the spooler subsystem.

 state; ! 1 = Open
! 2 = Ready
! 3 = Hold
! 4 = Printing

STRUCT location; ! location of job in
BEGIN ! internal form
 STRING group [0:7], ! #group name, blank-filled
 destination [0:7]; ! destination, blank-filled
END;

STRING form^name [0:15], ! job form name, blank-filled
 report^name [0:15]; ! job report name, blank-filled

INT flags, ! device flags (0=off, 1=on)
! flags.<6> = Abnormal close
! (print process failed to
! call SPOOLEND prior to
! closing the file to the
! collector)
! flags.<9> = Hold
! flags.<10> = Holdafter
! flags.<13:15> = Selection
! priority

 page^size, ! number of lines per page
 owner^ID, ! owner^ID.<0:7> = owner's group ID

! owner^ID.<8:15> = owner's user ID
 copies, ! number of copies to be printed
 pages, ! total number of pages in job
 lines, ! total number of lines in job
 time^opened [0:2], ! time opened (48-bit timestamp)
 time^closed [0:2]; ! time closed (48-bit timestamp)

STRUCT data^file; ! name of file containing the job
BEGIN
 INT volume [0:3], ! $volume, blank-filled
 subvolume [0:3], ! subvolume, blank-filled
 filename [0:3]; ! file name, blank-filled
END;

STRING collector^process^name [0:5];
! process name of collector
! used to create this job

INT units^allocated; ! number of units allocated
! by collector to the job

INT jobid; ! job id for this job
INT (32) max^lines; ! maximum number of lines

! allocated to the job
INT (32) max^pages; ! maximum number of pages

! allocated to the job
INT batch^name [0:15], ! batch name that includes

! this job
Spooler Programmer’s Guide—522287-002
4-49

Spooler Procedure Calls Obtaining the Spooler Statistics and Status
 batch^id; ! batch number
INT gmom^crtpid [0:3] ! crtpid of Netbatch monitor
END;

If you want the status of all jobs in the spooler subsystem, set the
job^buffer.number field to 0 and pass a 1 as the scan-type parameter. The first
call will return the status of the job with the lowest job number. Continue calling
SPOOLERSTATUS2 until it returns error %14006 (end of entries).

If you want the status of jobs belonging to a specific owner ID, set bit 0 of
job^buffer.number to 1, set job^buffer.owner^ID to the access ID of the
person whose jobs you want returned, and pass 1 as the SPOOLERSTATUS2 scan-
type. Note that SPOOLERSTATUS2 can return (without any error code) jobs that
belong to other users (because the supervisor limits its search to 32 jobs and can
return a job number even if the owner ID does not match). Your program should
examine the returned buffer to verify that the owner is correct. If it is not, reissue the
request and continue.

If you want the status of a particular job, set job^buffer.number to the job number
of the job whose status you want. Then call SPOOLERSTATUS2 with scan-type set
to 0.

If you want the status of only certain jobs in the spooler subsystem, set bit 1 of
job^buffer.number to 1 and pass a 1 as the SPOOLERSTATUS2 scan-type.
SPOOLERSTATUS2 returns error %14016 (request in progress) if the supervisor is
unable to find a job that meets the qualifications after searching 32 jobs. Do not use
the contents of the returned buffer. Instead, reassign the buffer and call
SPOOLERSTATUS2 until %14006 (end of entries) is returned. SPOOLERSTATUS2
returns only the jobs that meet the following criteria:

 If state is not equal to 0, only jobs in the specified state are returned.

 If location.group is nonblank, only jobs with the specified group and location
are returned.

 If location.destination is nonblank, only jobs with the specified destination
are returned.

 Only jobs with the same form^name are returned.

 If report^name is nonblank, only jobs with the specified report name are
returned.

 If pages is greater than 0, then all jobs with more than the number of pages
specified are returned. If pages is less than 0, then all jobs with less than the
absolute value of the number of pages specified are returned. Setting pages to 0
allows all jobs to be returned.

 All jobs that have closing timestamps less than time^closed and greater than
time^opened are returned. Open jobs have infinite closing timestamps.

 If collector^process^name is nonblank, only jobs collected by the specified
collector are returned.
Spooler Programmer’s Guide—522287-002
4-50

Spooler Procedure Calls Obtaining the Spooler Statistics and Status
 If data^file is nonblank, only jobs stored in the specified data file are returned.

When using a SPOOLERSTATUS2 scan-type of 1, if either bit 0 or bit 1 of number
is set to 1 by the caller, these bits must be restored between calls. The low-order bits
of number must not be allowed to change between calls. The easiest method to
ensure this does not occur is to logically OR these bits with number. When using a
scan-type of 1 with bit 1 of number, all fields except number must be reassigned.

SPOOLERSTATUS2 returns %14006 (end of entries) when all jobs have been
returned.

Obtaining the Status of a Location (Command Code 3)

To obtain the status of a location, set the command-code parameter of
SPOOLERSTATUS2 to 3 and pass either a 64-word status buffer to
SPOOLERSTATUS or a 128-word status buffer to SPOOLERSTATUS2. The following
STRUCT shows the fields of the buffer:

STRUCT location;
BEGIN
 STRUCT name; ! name of location
 BEGIN
 STRING group [0:7], ! #group name, blank-filled
 destination [0:7]; ! destination, blank-filled
 END;
 INT flags, ! location flags

! (1=on, 0=off)
! flags.<8> = broadcast

 device^name [0:15], ! device name
! name[0:3] = \system name*
! name[4:7] = $device name*
! name[8:11] = #subdev name*

! name[12:15] = (blank-filled)
 fontname [0:7]; ! font associated with location
END; ! * field is blank-filled

If you want the status of all locations in the spooler subsystem, fill location.name
(both group and destination) with blanks and enter a 1 as the SPOOLERSTATUS2
scan-type parameter. The first call will return the status of the location whose name
comes first alphabetically. Continue calling SPOOLERSTATUS2 until it returns error
%14006 (end of entries).

When the group changes, you must make two calls to SPOOLERSTATUS2 in order to
get complete information. The first call returns the group number, with the destination
as blank; the next call returns all destinations within this group. In other words, the first
return you receive is not the first location for this group; it is the group description itself.

If you want the status of a particular location, fill location.name with the group name
and, as the destination, the name of the location whose status you want (both group
and destination must be blank-filled). Then call SPOOLERSTATUS2 with the scan-
type parameter set to 0.
Spooler Programmer’s Guide—522287-002
4-51

Spooler Procedure Calls Obtaining the Spooler Statistics and Status
Obtaining the Status of a Collector (Command Code 4)

To obtain the status of a collector, set the command-code parameter of
SPOOLERSTATUS2 to 4 and pass either a 64-word status buffer to
SPOOLERSTATUS or a 128-word status buffer to SPOOLERSTATUS2. The following
STRUCT shows the fields of the buffer:

STRUCT collector;
BEGIN
 STRING name [0:5]; ! collector process name, in

! local form, blank-filled
 INT state, ! collector state:

! 1 = Active
! 2 = Dormant
! 3 = Procerror
! 4 = Drain

 reserved, ! reserved for use by HP
 last^error; ! last error recorded on collector

STRUCT program^file; ! file name of collector
BEGIN ! program
 INT volume [0:3], ! $volume, blank-filled
 subvolume [0:3], ! subvolume, blank-filled
 filename [0:3]; ! file name, blank-filled
END;

INT cpus, ! CPUs executing the
! collector program
! cpus.<0:7> = primary
! cpus.<8:15> = backup

 priority; ! execution priority of
! the collector process

STRUCT data^file; ! file name of collector
BEGIN ! output file
 INT volume [0:3], ! $volume, blank-filled
 subvolume [0:3], ! subvolume, blank-filled
 filename [0:3]; ! file name, blank-filled
END;

 INT unit^size, ! number of blocks reserved
! for when it needs more
! disk space

 units^allocated, ! number of blocks already
! allocated

 total^units; ! total number of units
! available in data file

 INT pagesize; ! default page size

END;

If you want the status of all collectors in the spooler subsystem, fill the
collector.name field with blanks and enter a 1 as the SPOOLERSTATUS2 scan-
type parameter. The first call will return the status of the device whose name comes
first alphabetically. Continue calling SPOOLERSTATUS2 until it returns error %14006
(end of entries).

If you want the status of a particular collector, fill the collector.name field with the
name of the collector whose status you want (blank-fill the right side of the field). Then
call SPOOLERSTATUS2 with the scan-type parameter set to 0.
Spooler Programmer’s Guide—522287-002
4-52

Spooler Procedure Calls Obtaining the Spooler Statistics and Status
Obtaining the Status of a Print Process (Command Code 5)

To obtain the status of a print process, set the command-code parameter of
SPOOLERSTATUS2 to 5 and pass either a 64-word status buffer to
SPOOLERSTATUS or a 128-word status buffer to SPOOLERSTATUS2. The following
STRUCT shows the fields of the buffer:

STRUCT print;
BEGIN
 STRING process^name [0:5]; ! print process name,
 ! blank-filled
 INT state, ! print process state:

! 1 = Active
! 2 = Dormant
! 3 = Procerror
! 4 = Drain

 flags, ! print process flags
! (1 = yes, 0 = no)
! flags.<14> = Associate
! print process
! flags.<15> = Debug mode

 last^error; ! last error logged on
! print process

STRUCT program^file; ! program file of print process
BEGIN
 INT volume [0:3], ! $volume, blank-filled
 subvolume [0:3], ! subvolume, blank-filled
 filename [0:3]; ! file name, blank-filled
END;

INT cpus, ! CPUs executing print
! process program
! cpus.<0:7> = primary
! cpus.<8:15> = backup

 priority, ! execution priority of
! the print process

 parameter; ! parameter from Spoolcom
! command

END;

If you want the status of all print processes in the spooler subsystem, fill the
print.process^name field with blanks and enter a 1 as the scan-type. The first
call will return the status of the print process whose name comes first alphabetically.
Continue calling SPOOLERSTATUS2 until it returns error %14006 (end of entries).

If you want the status of a particular print process, fill the print.process^name field
with the name of the print process whose status you want (fill the right side of the field
with blanks). Then call SPOOLERSTATUS2 with the scan-type parameter set to 0.

Note. To obtain the status of a collector for large values (the values exceed the range of INT)
of units^allocated and total^units, set the command-code parameter of
SPOOLERSTATUS2 to 18. For more information on command-code 18, see the Spooler Plus
Programmer's Guide.
Spooler Programmer’s Guide—522287-002
4-53

Spooler Procedure Calls Obtaining the Spooler Statistics and Status
Obtaining the Status of the Spooler (Command Code 6)

To obtain the status of the spooler, set the command-code parameter of
SPOOLERSTATUS2 to 6, pass either a 64-word status buffer to SPOOLERSTATUS or
a 128-word status buffer to SPOOLERSTATUS2, and set the scan-type parameter to
0. Because the file number specifies the spooler with which SPOOLERSTATUS2 is
communicating, none of the status buffer fields needs to be filled. The following
STRUCT shows the fields of the buffer:

STRUCT spooler^buffer;
BEGIN
 INT state, ! spooler state:

! 1 = Active
! 2 = Warm
! 3 = Cold
! 4 = Drain

 reserved; ! reserved for use by HP

STRUCT logfile; ! supervisor error log file
BEGIN
 INT volume [0:3], ! $volume, blank-filled
 subvolume [0:3], ! subvolume, blank-filled
 filename [0:3]; ! file name, blank-filled
END;

INT last^error; ! last error recorded in log
! file

END;

Obtaining the Status of Jobs Waiting to Print (Command
Codes 7, 8, and 9)

To obtain the status of a job on the ready list, set the command-code parameter of
SPOOLERSTATUS2 for the type of scan you want to perform (7, 8, or 9) and pass
either a 64-word status buffer to SPOOLERSTATUS or a 128-word status buffer to
SPOOLERSTATUS2. The following STRUCT shows the fields of the buffer:

STRUCT job^queue^status;
BEGIN
 INT state; ! job state:

! 1 = Open
! 2 = Ready
! 3 = Hold
! 4 = Printing

 INT device^name [0:15]; ! name of device job is or
! will be printing on
! [0:3] = \system name
! [4:7] = $device name
! [8:11] = #subdevice
! [12:15] = (blank-filled)

 INT sequence^number; ! device queue sequence
! number of job

 INT number; ! job number

STRUCT location; ! location of job in
BEGIN ! internal form
 STRING group [0:7], ! #group name, blank-filled
 destination [0:7]; ! destination, blank-filled
END;
Spooler Programmer’s Guide—522287-002
4-54

Spooler Procedure Calls Obtaining the Spooler Statistics and Status
INT copies, ! number of copies to be printed
 pages, ! number of pages in job
 current^line, ! reserved for use by HP
 total^lines; ! total number of lines in

! the job

STRING form^name [0:15]; ! job form name, blank-filled
INT owner^ID; ! owner^ID.<0:7> = owner's group ID

! owner^ID.<8:15> = owner's user ID
END;

Obtaining the Status of Jobs in a Device Queue (Command
Code 7)

To obtain the status of a job in a particular device queue, set the command-code
parameter of SPOOLERSTATUS2 to 7 and the scan-type parameter to 1.

Put the name of the device whose queue you want to examine in the
job^queue^status.device^name field (blank-filled), and set the
sequence^number field to 0. The first call returns the job at the head of the device
queue. Continue calling SPOOLERSTATUS2, but do not change the device^name or
sequence^number fields. Each subsequent call returns the next job in the queue.
When SPOOLERSTATUS2 returns %14006, the status of all jobs in the queue has
been returned.

In addition to the lists of spooler components, the supervisor also keeps a ready list of
all jobs in a device queue waiting to print. The ready list is composed of all device
queues in the system. The end of one device queue links to the beginning of the next.
The device queues are linked in alphabetical order according to the name of the
device.

The device queue sequentially lists each job in the queue. The job at the front of the
queue is assigned sequence number 1, the next job is sequence number 2, and so on.
Sometimes the same job can appear in more than one queue. Each entry for the job in
a device queue is called a job occurrence.

Figure 4-1 illustrates this data structure. The sequence number of each job is shown
to the left of each job number. Note that Job 234 has a separate occurrence queued
for each of the three devices.
Spooler Programmer’s Guide—522287-002
4-55

Spooler Procedure Calls Obtaining the Spooler Statistics and Status

Obtaining the Status of Occurrences of a Job (Command
Code 8)

To obtain the status of an occurrence of a particular job, set the command-code
parameter of SPOOLERSTATUS2 to 8 and the scan-type parameter to 1.

Put the job number of the job whose occurrence you want to examine in the number
field of the STRUCT. Fill the device^name, location.group, and
location.destination fields with blanks and set sequence^number to zero.

Each call to SPOOLERSTATUS2 returns a different occurrence of the job. Do not
change the number and device^name fields between calls. When
SPOOLERSTATUS2 returns %14006 as the error code, the status of all occurrences of
the job has been returned.

Obtaining the Status of Jobs at a Location (Command Code
9)

To obtain the status of a job at a specified location, set the command-code parameter
of SPOOLERSTATUS2 to 9 and the scan-type parameter to 1.

Set the location.group and location.destination fields of the STRUCT to
the location that you want to examine (blank-fill both fields on the right), and set the
sequence^number field to 0. Each call to SPOOLERSTATUS2 returns the status of a
different job at the specified location. Do not change the sequence^number,
device^name, location.group, or location.destination fields between calls.
When SPOOLERSTATUS2 returns %14006 as the error code, the status of all jobs at
the specified location has been returned.

Figure 4-1. Spooler Ready List

008CDT .CDD

1

2

3

4

5

Job 234

Job 2874

Job 32

Job 645

Job 627

$LPA

1

2

3

4

Job 3455

Job 1111

Job 234

Job 2233

$LPB

1

2

3

Job 1656

Job 4243

Job 234

$LPC
Spooler Programmer’s Guide—522287-002
4-56

Spooler Procedure Calls Obtaining the Spooler Statistics and Status
Obtaining a Cross-Reference (Command Codes 10, 11, and
12)

To obtain a cross-reference of locations, devices, or print processes, set the
command-code parameter of SPOOLERSTATUS2 for the type of cross-reference you
want and pass either a 64-word cross-reference buffer to SPOOLERSTATUS or a 128-
word cross-reference buffer to SPOOLERSTATUS2. The command codes are as
follows:

The following STRUCT shows the fields of the buffer:

STRUCT xref^buffer;
BEGIN
 STRUCT location;
 BEGIN
 STRING group[0:7], ! group name, blank-filled
 destination[0:7]; ! destination, blank-filled
 END;

 INT device^name[0:15]; ! device name (internal
! file-name format)
!

 STRING process^name[0:5]; ! print process name,
! blank-filled

 INT marker; ! must be initialized to 0
END;

If you want a complete cross-reference, initialize the field to zero, set all other fields to
blanks, and use a scan-type of 1.

If you want a cross-reference for a particular item, assign that field, initialize marker to
zero and the other fields to blanks, and use a scan-type of 0.

In both cases, keep calling SPOOLERSTATUS2 until it returns error %14006 (end of
entries).

Because device and print process cross-references can tie up the spooler supervisor
for extended periods, SPOOLERSTATUS2 can return error %14016 (request in
progress). When this error code is returned, the information in the buffer is invalid.
Call SPOOLERSTATUS2 again until %14006 is returned (end of entries).

Obtaining the Status of a Font (Command Code 13)

To obtain the status of a font, set the command-code parameter of
SPOOLERSTATUS2 to 13 and pass either a 64-word status buffer to

10 = by location

11 = by device

12 = by print process

Note. Do not change any of the fields in the buffer between calls. Unexpected results can
occur.
Spooler Programmer’s Guide—522287-002
4-57

Spooler Procedure Calls Obtaining the Spooler Statistics and Status
SPOOLERSTATUS or a 128-word status buffer to SPOOLERSTATUS2. The following
STRUCT shows the fields of the buffer:

STRUCT font;
BEGIN
 INT fontname [0:7]; ! font name
 INT job; ! job associated with the font
END;

If you want the status of all fonts in the spooler subsystem, fill the font.fontname
field with blanks and pass a 1 as the SPOOLERSTATUS scan-type parameter. The
first call will return the status of the font whose name comes first alphabetically.
Continue calling SPOOLERSTATUS until it returns error %14006 (end of entries).

If you want the status of a particular font, fill the font.fontname field with the name
of the font and then call SPOOLERSTATUS2 with scan-type set to 0.

Obtaining the Status of a Batch (Command Code 14)

To obtain the status of a batch, set the command-code parameter of
SPOOLERSTATUS2 to 14 and pass a 128-word status buffer to SPOOLERSTATUS2.
The following STRUCT shows the fields of the buffer:

STRUCT batch;
BEGIN
 INT batch^id, ! batch number
 job, ! job number
 batch^name [0:15], ! name of the batch
 jobs^in^batch; ! number of jobs in batch
END;

If you want the status of a particular spooler batch job, set batch.batch^id to the
batch number of the spooler batch job whose status you want. Then call
SPOOLERSTATUS2 with scan-type set to 0. Note that batch.job returns with the
number of the first spooler job in the spooler batch job. For batch jobs created by
NetBatch, the first job is the user log file.

If you want the status of all spooler batch jobs in the spooler subsystem, set
batch.batch^id to 0 and pass 1 as the scan-type parameter. The first call returns
the status of the spooler batch job with the lowest batch number. Continue calling
SPOOLERSTATUS2 until it returns error %14006 (end of entries). Note that
batch.job returns with the number of the first spooler job in each batch job returned
in this manner.

If you want the status of all spooler jobs in a spooler batch job, set batch.batch^id
to the batch number of the spooler batch job whose spooler jobs you want. Set bit <0>
of batch.job to 1, and set bits <1:15> of batch.job to 0. Then call
SPOOLERSTATUS2 with scan-type set to 1. The first call will return the job number
of the first spooler job in the spooler batch job. Continue calling SPOOLERSTATUS2
to get each job number in the spooler batch job. These job numbers are not in
numerical sequence. They are in the order in which they were linked to the spooler
batch job.
Spooler Programmer’s Guide—522287-002
4-58

Spooler Procedure Calls Obtaining the Spooler Statistics and Status
Example

STATUS^ERROR := SPOOLERSTATUS (FILENUM , COM^CODE , TYPE ,
BUFF);

Obtaining Collector LISTOPENS (Command Code 25)

To obtain a list of the jobs that a specified collector currently has open, along with the
processor and process identification number (PIN) of the processes that are spooling
those jobs, set the command-code parameter of SPOOLERSTATUS2 to 25 and pass
a 128-word status buffer to SPOOLERSTATUS2. The following STRUCT shows the
fields in the buffer:

STRUCT sstatus^listopens; !
BEGIN !
 INT collector[0:2]; !input: collector process name
 INT entry^offset; !input/output: entry number requested
 INT numitems; !number of OPENDATA items returned
 INT status; !status returned from collector
 STRUCT opendata [0:18]; !table of returned LISTOPENS data
 BEGIN
 INT jobid; !job number
 INT procname[0:2]; !process with job open
 INT cpu; !processor
 INT pin; !process identification number
 END;
END;

Set the collector field to the name of the collector for the LISTOPENS information
needed and set the entry^offset field to 0. The call SPOOLERSTATUS2 with bit 15
of the scan-type parameter set to 1. The numitems field returned to the status
buffer indicates how many valid occurrences of items exist in the opendata structure.

Each call to SPOOLERSTATUS2 will return data for up to 19 jobs. More than one call
may be required to obtain all the LISTOPENS information. The status word returned
will indicate whether all the data has been obtained. If the status word returned is 0,
then there may be more data to be retrieved; if the status word is 1, then all the
LISTOPENS data has been retrieved.

If you make subsequent calls to SPOOLERSTATUS2, make the additional calls without
changing the input parameters or buffer contents, including entry^offset. The
return from the first call will provide the internal entry^offset into the list of openers
for the collector needed for the additional calls.
Spooler Programmer’s Guide—522287-002
4-59

Spooler Procedure Calls SPOOLJOBNUM Procedure
SPOOLJOBNUM Procedure
The SPOOLJOBNUM procedure returns the job number of the job currently being
spooled to the collector. This procedure can be used when spooling at level 1, 2, or 3.

error-code returned value

INT

returns one of the following spooler error codes:

filenum-of-collector input

INT:value

is the file number of the collector. The file number is returned when the collector is
opened.

job-num output

INT:ref:1

is the job number of the job currently being spooled to the collector through the
specified file number. The value -1 is returned to job-num when filenum-of-
collector is a spooler job file.

Considerations

The following considerations apply to the use of this procedure:

 A call to SPOOLJOBNUM can be issued by an application spooling at any level.

 SPOOLJOBNUM cannot be called with nowait I/O.

 When spooling at level 1, a job is not created until after the WRITE[X], SETMODE,
or CONTROL procedure is called once.

 When spooling at level 2 or 3, a job is not created until after the SPOOLSTART
procedure is called.

error-code := SPOOLJOBNUM (filenum-of-collector ! i
 ,job-num); ! o

0 Successful operation

%1000-%1377 Error on file to collector (bits <8:15> contain a file-system error
number; see Considerations on page 4-60)

%10000 Missing parameter

%11001 Attempted to write to the collector without first opening the file
Spooler Programmer’s Guide—522287-002
4-60

Spooler Procedure Calls Example
 Some file-system errors have special significance to a process sending data to a
collector; many of these errors are described in Appendix C, Spooler-Related
Errors. All of the file-system errors are listed in the Guardian Procedure Errors and
Messages Manual.

A program using level-1 or level-2 spooling gets these errors from the WRITE[X] or
OPEN procedures, while a program spooling at level 3 obtains these errors in bits
<8:15> of a spooler error code in the %1000 range.

Example

ERROR := SPOOLJOBNUM (FILENUM^COLL , JOB^NUM);
Spooler Programmer’s Guide—522287-002
4-61

Spooler Procedure Calls SPOOLSETMODE Procedure
SPOOLSETMODE Procedure
The SPOOLSETMODE procedure is used to set device-dependent functions when an
application process is using the spooler interface procedures.

This procedure must be used in place of the SETMODE procedure if a level-3 buffer is
specified in a call to SPOOLSTART.

error-code returned value

INT

returns one of the following spooler error codes:

level-3-buff input, output

INT:ref:512

is the level-3-buff specified in the call to SPOOLSTART.

function input

INT:value

is a SETMODE function (see the Guardian Procedure Calls Reference Manual).

param1 input

INT:value

is a parameter for the specified SETMODE function (see the Guardian Procedure
Calls Reference Manual).

param2 input

INT:value

error-code := SPOOLSETMODE (level-3-buff ! i,o
 ,function ! i
 ,[param1] ! i
 ,[param2] ! i
 ,[bytes-written-to-buff]) ! o
 ,[extended-level-3-buff]); ! i,o

0 Successful operation

%1000-%1377 Error on file to collector (bits <8:15> contain a file-system error
number; see Considerations on page 4-63)

%11000 Checkpoint exit

%11001 Attempted to write to the collector without first opening the file
Spooler Programmer’s Guide—522287-002
4-62

Spooler Procedure Calls Considerations
is a parameter for the specified SETMODE function (see the Guardian Procedure
Calls Reference Manual).

bytes-written-to-buff output

INT:ref:1

returns the number of bytes to be checkpointed from the level-3-buff.
This parameter is used by fault-tolerant applications.

extended-level-3-buff input,output

INT:.EXT.ref.*

is the extended-level-3-buff specified in the SPOOLSTART procedure.

Considerations

The following considerations apply to the use of the SPOOLSETMODE procedure:

 If flags.<11> of SPOOLSTART is set to 1, a return of %11000 from
SPOOLSETMODE indicates that the level-3-buff is about to be written to the
collector. The buffer should be checkpointed, and SPOOLSETMODE should be
called again.

 Some file-system errors have special significance to a process sending data to a
collector; these errors are listed in the Guardian Procedure Errors and Messages
Manual.

A program using level-1 or level-2 spooling gets these errors from the WRITE[X],
OPEN, or FILE_OPEN_ procedure, while a program spooling at level 3 obtains
these errors in bits <8:15> of a spooler error code in the %1000 range.

Example

ERROR := SPOOLSETMODE (COLL^BUFF , 68 , 2); ! select expanded
 ! print.
Spooler Programmer’s Guide—522287-002
4-63

Spooler Procedure Calls SPOOLSTART Procedure
SPOOLSTART Procedure
The SPOOLSTART procedure formats a spooler buffer suitable for passing to other
spooler interface procedures. It is used to specify job attributes, establish a level-2 or
level-3 spooling session with a spooler collector, or establish a level-3 spooling
session to a spooler job file.

error-code returned value

INT

returns one of the following spooler error codes:

filenum-of-collector input

INT:value

is the file number of the collector or spooler job file obtained through a call to the
system OPEN or FILE_OPEN_ procedure. The collector must be opened for
waited I/O.

error-code := SPOOLSTART ([filenum-of-collector] ! i
 ,[level-3-buff] ! o
 ,[location] ! i
 ,[form-name] ! i
 ,[report-name] ! i
 ,[num-of-copies] ! i
 ,[page-size] ! i
 ,[flags] ! i
 ,[owner] ! i
 ,[max-lines] ! i
 ,[max-pages] ! i
 ,[file-name] ! i,o
 ,[filenum]) ! i,o
 ,[extended-level-3-buff]); ! i

0 Successful operation

%1000-%1377 Error on file to collector (bits <8:15> contain a file-system error
number; see Considerations on page 4-67)

%10000 Missing parameter

%10001 Parameter is present, but its content is wrong

%11000 Checkpoint exit

%11001 Attempted to write to the collector without first opening the file
Spooler Programmer’s Guide—522287-002
4-64

Spooler Procedure Calls SPOOLSTART Procedure
level-3-buff output

INT:ref:512

indicates that the spooler interface procedures are used to send data to the
collector. The data is put into a buffer. The address of this buffer is returned by the
SPOOLSTART procedure and must be passed to other interface procedures. The
buffer is initialized and its address returned as a result of this call. The buffer is
located in the data stack and is limited to 512 bytes. If a buffer area in extended
memory is needed, use the extended-level-3-buff parameter instead of the
level-3-buff parameter. Use either level-3-buff or extended-level-
3-buff, but not both.

location input

INT:ref:8

specifies a location for this job and overrides the location specified in the call to
OPEN or FILE_OPEN_. The default location for the job is the location specified
when the collector was opened.

form-name input

INT:ref:8

specifies a form name for the job. The form name can contain letters, digits, and
blanks. The default form-name is all blank-filled.

report-name input

INT:ref:8

specifies a report name for the job. The report name can contain letters, digits,
and blanks.

The default report-name is the user name of the person executing the
application program.

num-of-copies input

INT:value

specifies the number of copies to print. The default num-of-copies is 1.

page-size input

INT:value

specifies the page size used by Peruse when a PAGE or LIST command is given.
The default page-size is 60.

flags input

INT:value
Spooler Programmer’s Guide—522287-002
4-65

Spooler Procedure Calls SPOOLSTART Procedure
specifies certain attributes of the job.

The bit fields are as follows:

The default job priority is 4; all other bits are set to 0.

owner input

INT:value

allows the caller to assign job ownership. The owner name is
group number:user number.

The default owner of a job is the user who opened the file to the collector.

max-lines input

INT(32):value

is the maximum number of lines to allow for the job. The current range is 0
through 65534. This parameter is a 32-bit integer to allow for future expansion of
the upper limit. If max-lines is omitted or 0, no maximum number is enforced.

max-pages input

INT(32):value

is the maximum number of pages to allow for the job. The current range is
0 through 999999. This parameter is a 32-bit integer to allow for future expansion
of the upper limit. If max-pages is omitted or 0, no maximum number is enforced.

<0> Reserved for use by the collector

<1> ASCII compression: 0 = off

1 = on

<2:8> Reserved for use by the collector

<9> HOLD flag: 0 = off

1 = on

<10> HOLDAFTER flag: 0 = off

1 = on

<11> SPOOLWRITE, SPOOLCONTROL, SPOOLCONTROLBUF,
and SPOOLSETMODE exit before writing the level-3 buffer
to the collector process, so that user can checkpoint:

0 = no

1 =
yes

<12> Delete existing data in spooler job file: 0 = no

1 =
yes

<13:15> Job priority
Spooler Programmer’s Guide—522287-002
4-66

Spooler Procedure Calls Considerations
file-name input, output

INT:ref:12

specifies the file name of the spooler collector or spooler job file to be opened for
the spooling session.

filenum input, output

INT:ref:1

is an alternative parameter to filenum-of-collector. See Considerations on
page 4-67 for more information.

extended-level-3-buff output

INT:.EXT.ref.*

indicates that the spooler interface procedures are used to send data to the
collector. The data is put into a buffer. The address of this buffer is returned by the
SPOOLSTART procedure and must be passed to other interface procedures. The
buffer is initialized and its address returned as a result of this call. The buffer is
allocated in an extended data segment.

Use either level-3-buff or extended-level-3-buff, but not both.

Considerations

The following considerations apply to the use of the SPOOLSTART procedure:

 Only level-3 spooler data can be directed to a spooler job file, an unstructured disk
file with a file code of 129. Use file-name to specify the spooler job file. If
file-name does not exist, a spooler job file is created with primary and
secondary extent sizes of 50 pages (2048 bytes per page) and maximum extents
of 1000.

 If a blank-filled volume name is passed in file-name, a temporary spooler job file
is created. The complete file-name is returned in file-name. If file-name
exists, new data is appended to the data already in the file unless flags.<12> is
equal to 1, in which case an error message is generated.

 If SPOOLSTART is appending data to a previously written spooler job file and
either max-lines or max-pages is specified, the current number of lines or
pages already in the file is added to the maximums so that the maximums then
refer to the total amount of data the file can hold. If either maximum value is
greater than 65,534, the value is reset to 0 (no maximum enforced).

 The filenum-of-collector and filenum parameters are two different
parameters for the file number of the collector or spooler job file. The filenum-
of-collector is a value parameter and the filenum is a reference parameter.
You should pass one or the other of these parameters to SPOOLSTART if you use
them, but not both.
Spooler Programmer’s Guide—522287-002
4-67

Spooler Procedure Calls Considerations
Pass the three parameters filenum-of-collector, file-name, and filenum
in one of the following ways:

 If the file is already open, pass the file number as either filenum-of-
collector or filenum. You can pass file-name but it is ignored.

 If the file is not open and the caller does not need to know the file number,
pass file-name. The filenum-of-collector and filenum parameters
can be omitted, or one of them can be passed containing the value -1.

 If neither the filenum-of-collector nor the filenum is passed, the
file-name must be passed.

 If the file is not open and the caller wants to know the file number, pass file-
name and filenum set to -1. Do not pass filenum-of-collector. The
number of the file opened is returned in filenum. The value -1 is returned if
the file cannot be opened.

 Some file-system errors have special significance to a process sending data to a
collector; these errors are listed in the Guardian Procedure Errors and Messages
Manual.

A program using level-1 or level-2 spooling gets these errors from the WRITE[X] or
OPEN procedure, while a program spooling at level 3 obtains these errors in bits
<8:15> of a spooler error code in the %1000 range.

 ASCII compression (specified by flags.<1>) is meaningful only when writing to
spooler job files. The compression results in a file-size savings of about 33
percent.
Spooler Programmer’s Guide—522287-002
4-68

Spooler Procedure Calls SPOOLWRITE Procedure
SPOOLWRITE Procedure
The SPOOLWRITE procedure is used to write to a collector when the application
process is spooling at level 3.

The SPOOLWRITE procedure compresses and blocks data into the level-3 buffer and,
when the buffer is full, writes the buffer to the collector or a spooler job file. This
procedure must be used in place of the WRITE[X] procedure if a level-3 buffer is
specified in a call to SPOOLSTART.

error-code returned value

INT

returns one of the following spooler error codes:

level-3-buff input, output

INT:ref:512

is the level-3-buff specified in the call to SPOOLSTART.

print-line input

INT:ref:*

is an array containing the line of data to be sent to the collector. The size of
print-line must not exceed 900 bytes.

write-count input

INT:value

is the number of bytes of print-line to be written; it must not exceed 900 bytes.

error-code := SPOOLWRITE (level-3-buff ! i,o
 ,print-line ! i
 ,write-count ! i
 ,[bytes-written-to-buff]) ! o
 ,[extended-level-3-buff]); ! i,o

0 Successful operation

%1000-
%1377

Error on file to collector (<8:15> contains a file-system error
number; see Considerations on page 4-70)

%10000 Missing parameter

%10001 Parameter is present, but its content is wrong

%11000 Checkpoint exit

%11001 Attempted to write to the collector without first opening the file
Spooler Programmer’s Guide—522287-002
4-69

Spooler Procedure Calls Considerations
bytes-written-to-buff output

INT:ref:*

returns the number of bytes in the level-3-buff to be checkpointed.

extended-level-3-buff input,output

INT:.EXT.ref.*

is the extended-level-3-buff specified in the SPOOLSTART procedure.

Considerations

The following considerations apply to the use of the SPOOLWRITE procedure:

 Each call to SPOOLWRITE causes print-line to be written to the level-3-
buff. When a call to SPOOLWRITE causes the level-3-buff to overflow, the
buffer is written to the collector.

The blocking and compression of data into the level-3-buff are invisible to the
application process.

 If bit 11 of the flags parameter of SPOOLSTART is set to 1, SPOOLWRITE exits
with a spooler error code of %11000 prior to writing the level-3-buff to the
collector. Applications running as a NonStop process pair can then perform a
checkpoint before the buffer is written to the collector. SPOOLWRITE should be
called again after checkpointing.

 Some file-system errors have special significance to a process sending data to a
collector; these errors are listed in the Guardian Procedure Errors and Messages
Manual.

A program using level-1 or level-2 spooling gets these errors from the WRITE[X] or
OPEN procedures, while a program spooling at level 3 obtains these errors in bits
<8:15> of a spooler error code in the %1000 range.

Example

SPERRNUM := CALL SPOOLWRITE (COLL^BUFFER , PRINT^LINE ,
LENGTH);
Spooler Programmer’s Guide—522287-002
4-70

A Sample Print Process

This appendix shows an example of a print process. It includes a description of the
program and the code.

The example has been kept as simple as possible in the interest of clarity.
Simplifications include the following:

 Only one job at a time can be printed.
 No form alignment is performed.
 The record size of all devices is assumed to be 132.
 The truncation flag is ignored.
 The print process parameter and device parameter are not used.

The structure of the sample print process is such that these features can easily be
implemented.

 INT .p^buf[0:63], ! print control buffer
 .job^buffer[0:559], ! job buffer
 .data^line[0:65], ! next line of data
 count^read, ! number of bytes in "data^line"
 .out^buf[0:65], ! buffer written to device
 .time^array [0:6], ! date & time for header pages
 recv^fnum, ! $RECEIVE file number
 supv^fnum, ! supervisor file number
 dev^fnum, ! device file number
 data^file^fnum, ! collector data file number
 busy^flag := 0, ! true when a job is printing
 suspend := 0, ! true when a job is suspended
 suspended := 0, ! true when a job is suspended due
 ! to a write error
 end^of^job^flag := 0, ! true = indicates end of job,
 ! start job clean-up tasks
 header^index :=0, ! true = print job banner page
 msg^type, ! used to send error to supervisor
 successful^op := 1; ! used to determine which message
 ! type is sent on device error
 ! information returned by
 ! PRINTREADCOMMAND
 STRUCT DEV;
 BEGIN
 INT flags; ! indicates the state of the
 ! device's header and
 ! truncation flags
 INT param; ! parameter specified in the
 ! "DEV, PARAM" SPOOLCOM
 ! command
 INT width; ! value specified in the "DEV,
 ! WIDTH" SPOOLCOM command
 INT job^num; ! spooler-assigned job number
 INT locationname[0:7]; ! location name
 INT formname[0:7]; ! form name
 INT reportname[0:7]; ! report name
 INT page^size; ! number of lines per page
 END;

Note. The program presented in this appendix can be compiled and run exactly as presented.
However, it is not a supported software product of HP and has not undergone the rigorous
testing given to an officially released product. Please keep this in mind when adapting the
code for your needs.
Spooler Programmer’s Guide—522287-002
A-1

Sample Print Process
 STRING
 .s^out^buf := @out^buf '<<' 1, ! string pointer to "out^buf"
 .s^data^line := @data^line '<<' 1; ! string pointer to
 ! "data^line"

 STRUCT .header[0:14]; ! header array
 BEGIN
 INT line[0:59];
 END;

 LITERAL
 sending^status = 0, ! PRINTSTATUS message types
 dev^error^1 = 1, !
 end^job = 2, !
 cant^open^device = 3, !
 invalid^operation = 4, !
 dev^error^5 = 5, !
 max^read^count = 132, ! maximum PRINTREAD count
 data^file^error = %2000, ! spooler error codes
 device^file^error = %4000, !
 no^job^printing = %13002, !
 job^running = %13003, !
 tables^full = %13004; !

!SOURCE $SYSTEM.SYSTEM.EXTDECS (ABEND, AWAITIO, CANCEL, CONTROL,
! CLOSE, FILEINFO, NUMOUT, OPEN, READ, SETMODE, STOP, TIME,
! WRITE, PRINTINIT, PRINTCOMPLETE, PRINTINFO, PRINTSTATUS,
! PRINTREAD, PRINTREADCOMMAND, PRINTSTART)
?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS (ABEND, AWAITIO, CANCEL, CONTROL,
? CLOSE, FILEINFO, NUMOUT, OPEN, READ, SETMODE, STOP, TIME,
? WRITE, PRINTINIT, PRINTCOMPLETE, PRINTINFO, PRINTSTATUS,
? PRINTREAD, PRINTREADCOMMAND, PRINTSTART)
?LIST
INT PROC openfile (fname, fnum, flags) VARIABLE;
 INT .fname,
 .fnum,
 flags;
 FORWARD;
INT PROC writefile (fnum, buf, write^count);
 INT fnum,
 .buf,
 write^count;
 FORWARD;
PROC tell^super (type, device, error, page, line, total^lines,
 num^copies) VARIABLE;
 INT type, ! required parameter
 .device, ! required parameter, name of the device
 error, ! required parameter for type 1, 2, 4, and 5
 page, ! required parameter for type 0; current
 ! page number
 line, ! required parameter for type 0; current
 ! line number
 total^lines, ! required parameter for type 0; total
 ! number of lines printed
 num^copies; ! required parameter for type 0; number of
 ! copies of the job remaining to be printed

 FORWARD;
PROC build^header;
 FORWARD;
PROC read^and^print (page^num, device);
 INT page^num,
 .device;
 FORWARD;
PROC open^dev (device);
Spooler Programmer’s Guide—522287-002
A-2

Sample Print Process
 INT .device;
 FORWARD;
PROC close^dev (device);
 INT .device;
 FORWARD;
PROC start^job (device, data^file^name, job^num, location, formname,
 reportname, flags, params, dev^width, page^size);
 INT .device,
 .data^file^name,
 job^num,
 .location,
 .formname,
 .reportname,
 flags,
 params,
 dev^width,
 page^size;
 FORWARD;
PROC init^job;
 FORWARD;
PROC stop^job (device, error);
 INT .device,
 error;
 FORWARD;
PROC req^stop^job (device);
 INT .device;
 FORWARD;
PROC resume^job (device);
 INT .device;
 FORWARD;
PROC suspend^job (device);
 INT .device;
 FORWARD;
PROC align^form (device);
 INT .device;
 FORWARD;
PROC skip^to^page (skip^num, device);
 INT skip^num,
 .device;
 FORWARD;
PROC skip^page (skip^num, device);
 INT skip^num,
 .device;
 FORWARD;
PROC send^status (device);
 INT .device;
 FORWARD;
PROC main^loop;
 FORWARD;

! *===*
!- -
! procedure name: OPENFILE
! parameters: FNAME - name of the file to open
! FNUM - file number returned to the calling routine
! FLAGS - open flags
! description: This procedure is the same as the Guardian file-
! system procedure "OPEN", plus a check of the returned
! condition code. Returns a Guardian file-system error
! number if condition code < 0.
!- -

INT PROC openfile (fname, fnum, flags) VARIABLE;
 INT .fname,
 .fnum,
 flags;
Spooler Programmer’s Guide—522287-002
A-3

Sample Print Process
 BEGIN
 LITERAL missing^parameter = 29;

 INT err := 0,
 flags^ := 0;

!---Beginning of code--
 IF NOT ($PARAM (fname) AND $PARAM (fnum)) THEN
 RETURN missing^parameter;
 IF $PARAM (flags) THEN
 flags^ := flags;
 CALL OPEN (fname, fnum, flags^);
 IF < THEN
 CALL FILEINFO (-1, err);
 RETURN err;
 END;

! *===*

!- -
! procedure name: WRITEFILE
! parameters: FNUM - file number
! BUF - buffer that contains the text to be written
! WRITE^COUNT - number of bytes to be written
! description: This procedure is the same as the Guardian file-
! system procedure "WRITE", plus a check of the returned
! condition code. Returns a Guardian file-system error
! number if condition code < 0.
!- -

INT PROC writefile (fnum, buf, write^count);
 INT fnum,
 .buf,
 write^count;
 BEGIN

 INT err := 0;

!---Beginning of code--

 CALL WRITE (fnum, buf, write^count);
 IF < THEN
 CALL FILEINFO (fnum, err);
 RETURN err;
 END;

! *===*

!- -
! procedure name: TELL^SUPER
! parameters: TYPE - type of message sent
! DEVICE - name of the device on which the error occurred
! ERROR - the error number that caused this call to
! TELL^SUPER
! PAGE - current page number, required parameter for type
! 0
! LINE - current line number, required parameter for type
! 0
! TOTAL^LINES - total number of lines printed, required
! parameter for type 0
! NUM^COPIES - number of copies of the job remaining to be
! printed, required parameter for type 0
! description: This procedure informs the spooler supervisor that an
! error occurred (Guardian file-system error number) or
! responds to a request for the status of a job by
! calling PRINTSTATUS. The parameters to this procedure
Spooler Programmer’s Guide—522287-002
A-4

Sample Print Process
! are exactly the same as those of PRINTSTATUS, except
! that the supervisor file number and print control
! buffer are not required. Instead, this procedure simply
! assumes that these are "supv^fnum" and "p^buf",
! respectively.
!
! Like PRINTSTATUS, some parameters of this procedure are
! either required or optional depending on the message
! type. However, rather than checking for required
! parameters, it is assumed that these parameters have
! been correctly supplied by the print process.
!- -

PROC tell^super (type, device, error, page, line, total^lines,
 num^copies) VARIABLE;
 INT type, ! required parameter
 .device, ! required parameter, name of the device
 error, ! required parameter for type 1, 2, 4, and 5
 page, ! required parameter for type 0; current
 ! page number
 line, ! required parameter for type 0; current
 ! line number
 total^lines, ! required parameter for type 0; total
 ! number of lines printed
 num^copies; ! required parameter for type 0; number of
 ! copies of the job remaining to be printed
 BEGIN

!---Beginning of code--

 CASE type OF
 BEGIN
!-0- sending status of a job
 error := PRINTSTATUS (supv^fnum, p^buf, type, device,
 num^copies, page, line, total^lines);

!-1- error occurred on print device, previous operation was unsuccessful
 error := PRINTSTATUS (supv^fnum, p^buf, type, device, error);

!-2- end of job
 error := PRINTSTATUS (supv^fnum, p^buf, type, device, error);

!-3- unable to open job
 error := PRINTSTATUS (supv^fnum, p^buf, type, device, error);

!-4- invalid operation in current state
 error := PRINTSTATUS (supv^fnum, p^buf, type, device, error);

!-5- error occurred on print device, previous operation was successful
 error := PRINTSTATUS (supv^fnum, p^buf, type, device, error);
 END;
 IF error THEN
 CALL ABEND;
 RETURN;
 END;
Spooler Programmer’s Guide—522287-002
A-5

Sample Print Process
! *===*

!- -
! procedure name: BUILD^HEADER
! parameters: none
! description: This procedure builds the job page banner, which in
! general is entirely application-defined. The page banner
! printed by this sample process is:
!
! **
! * *
! * DATE: today's date *
! * TIME: current time *
! * JOB NUMBER: spooler job number *
! * LOCATION NAME: spooler location name *
! * REPORTNAME: name of report *
! * FORM NAME: name of form *
! * *
! **
!
!- -

PROC build^header;
 BEGIN
 INT i,
 error;
 STRING .locations := @dev.locationname '<<' 1,
 .formnames := @dev.formname '<<' 1,
 .reportnames := @dev.reportname '<<' 1;
 STRING months [0:35] = 'P' :=
 "JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
 STRING .ptr;

!---Beginning of code--

 FOR i := 0 to 14 DO
 BEGIN
 header[i].line := " ";
 header[i].line[1] ':=' header[i].line FOR 59;
 END;
! Load the header array
 IF header^index = 2 THEN
 BEGIN
 @ptr := @header[0].line '<<' 1;
 ptr[20] := "*";
 ptr[21] ':=' ptr[20] FOR 60;
 error := writefile (dev^fnum,header[0].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
 END;
 IF header^index = 3 THEN
 BEGIN
 @ptr := @header[1].line '<<' 1;
 ptr[20] := ptr[80] := "*";
 CALL TIME (time^array);
 error := writefile (dev^fnum,header[1].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
 END;
 IF header^index = 4 THEN
 BEGIN
 @ptr := @header[2].line '<<' 1;
Spooler Programmer’s Guide—522287-002
A-6

Sample Print Process
 ptr[20] := ptr[80] := "*";
 ptr[30] ':=' "DATE: ";
 CALL NUMOUT (ptr[37], time^array[2], 10, 2);
 ptr[40] ':=' months [3 * (time^array[1] - 1)] FOR 3;
 CALL NUMOUT (ptr[44], time^array, 10, 2);
 error := writefile (dev^fnum,header[2].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
 END;
 IF header^index = 5 THEN
 BEGIN
 @ptr := @header[3].line '<<' 1;
 ptr[20] := ptr[80] := "*";
 error := writefile (dev^fnum,header[3].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
 END;
 IF header^index = 6 THEN
 BEGIN
 @ptr := @header[4].line '<<' 1;
 ptr[20] := ptr[80] := "*";
 ptr[30] ':=' "TIME: ";
 ptr[39] := ptr[42] := ":";
 CALL NUMOUT (ptr[37], time^array[3], 10, 2);
 CALL NUMOUT (ptr[40], time^array[4], 10, 2);
 CALL NUMOUT (ptr[43], time^array[5], 10, 2);
 error := writefile (dev^fnum,header[4].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
 END;
 IF header^index = 7 THEN
 BEGIN
 @ptr := @header[5].line '<<' 1;
 ptr[20] := ptr[80] := "*";
 error := writefile (dev^fnum,header[5].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
 END;
 IF header^index = 8 THEN
 BEGIN
 @ptr := @header[6].line '<<' 1;
 ptr[20] := ptr[80] := "*";
 ptr[30] ':=' "JOB NUMBER: ";
 CALL NUMOUT (ptr[43], dev.job^num, 10, 2);
 error := writefile (dev^fnum,header[6].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
 END;
 IF header^index = 9 THEN
 BEGIN
 @ptr := @header[7].line '<<' 1;
 ptr[20] := ptr[80] := "*";
 error := writefile (dev^fnum,header[7].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
Spooler Programmer’s Guide—522287-002
A-7

Sample Print Process
 RETURN;
 END;
 IF header^index = 10 THEN
 BEGIN
 @ptr := @header[8].line '<<' 1;
 ptr[20] := ptr[80] := "*";
 ptr[30] ':=' "LOCATION NAME: " & locations FOR 8;
 ptr[54] := ".";
 ptr[55] ':=' locations[8] FOR 8;
 error := writefile (dev^fnum,header[8].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
 END;
 IF header^index = 11 THEN
 BEGIN
 @ptr := @header[9].line '<<' 1;
 ptr[20] := ptr[80] := "*";
 error := writefile (dev^fnum,header[9].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
 END;
 IF header^index = 12 THEN
 BEGIN
 @ptr := @header[10].line '<<' 1;
 ptr[20] := ptr[80] := "*";
 ptr[30] ':=' "FORM NAME: " & formnames FOR 8;
 error := writefile (dev^fnum,header[10].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
 END;
 IF header^index = 13 THEN
 BEGIN
 @ptr := @header[11].line '<<' 1;
 ptr[20] := ptr[80] := "*";
 error := writefile (dev^fnum,header[11].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
 END;
 IF header^index = 14 THEN
 BEGIN
 @ptr := @header[12].line '<<' 1;
 ptr[20] := ptr[80] := "*";
 ptr[30] ':=' "REPORT NAME: " & reportnames FOR 16;
 error := writefile (dev^fnum,header[12].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
 END;
 IF header^index = 15 THEN
 BEGIN
 @ptr := @header[13].line '<<' 1;
 ptr[20] := ptr[80] := "*";
 error := writefile (dev^fnum,header[13].line,60);
 IF error THEN
 CALL ABEND;
 header^index := header^index + 1;
 RETURN;
Spooler Programmer’s Guide—522287-002
A-8

Sample Print Process
 END;
 IF header^index = 16 THEN
 BEGIN
 @ptr := @header[14].line '<<' 1;
 ptr[20] := "*";
 ptr[21] ':=' ptr[20] FOR 60;
 error := writefile (dev^fnum,header[14].line,60);
 IF error THEN
 CALL ABEND;
 header^index := 0;
 RETURN;
 END;
 END;

! *===*

!- -
! procedure name: READ^AND^PRINT
! parameters: PAGE^NUM - indicates page that will be printed
! DEVICE - name of the device where the job is printing
! description: This procedure gets and prints one line of the job. If
! the global flag HEADER^FLAG is true, then this
! procedure will print the job banner (header) by a
! succession of calls, one call for each line of the job
! banner, 15 lines in all.
!
! When HEADER^FLAG is false, the spooler procedure
! PRINTREAD is called to return a line of spooled data.
! The line of spooled data is written to the device when
! the error code returned from PRINTREAD is zero.
!
! There are six valid error codes that can be returned by
! PRINTREAD:
!
! 12000 = end of file found. The procedure STOP^JOB is
! called for job termination (normal is
! indicated).
! 12001 = end of copy found. The variable ERROR is
! reset to 0, HEADER^FLAG is set to its
! original start-of-job value, and control is
! passed back to the beginning of this
! procedure.
! 12002 = data file is bad. The procedure STOP^JOB is
! called for job termination (abnormal is
! indicated).
! 12003 = CONTROL found. CONTROL is issued to the IOP.
! If the CONTROL was successful, the next
! spooled data line is read. If unsuccessful,
! the spooler supervisor is notified of the
! error and the print job will be terminated.
! 12004 = SETMODE found. SETMODE is issued to the IOP.
! If the SETMODE was successful, the next
! spooled data line is read. If unsuccessful,
! the spooler supervisor is notified of the
! error and the print job will be terminated.
! 12005 = CONTROLBUF found. CONTROLBUF is issued to the
! IOP. If the CONTROLBUF was successful, the
! next spooled data line is read. If
! unsuccessful, the spooler supervisor is
! notified of the error and the print job will
! be terminated.
! > 12005 = invalid returned error code; the print
! process will abend.
!
! When the return code (variable ERROR) value from the
! procedure WRITE^DEV is 0 (positive return code),
Spooler Programmer’s Guide—522287-002
A-9

Sample Print Process
! control is passed back to MAIN^LOOP. When the return
! code value is <> 0 (negative return code), the spooler
! supervisor is notified of the error and the job will be
! terminated.
!- -

PROC read^and^print (page^num, device);
 INT page^num,
 .device;

 BEGIN

 LITERAL end^of^file = %12000,
 end^of^copy = %12001,
 control^found = %12003,
 setmode^found = %12004,
 next^line = 0;

 INT write^count, ! number of bytes to be written
 error,
 wait^needed; ! Set true when we need to return.

!---Beginning of code--

next^copy:

 IF header^index THEN
 BEGIN
 IF header^index = 1 THEN
 BEGIN
 ! Issue CONTROL to IOP print process
 CALL CONTROL (dev^fnum, 1, 0);
 IF <> THEN ! check CONTROL condition code
 BEGIN
 ! CONTROL was unsuccessful
 suspend := 1;
 suspended := 1;
 CALL FILEINFO (dev^fnum, error);
 msg^type := IF successful^op THEN
 dev^error^1
 ELSE
 dev^error^5;
 CALL tell^super (msg^type, device,
 device^file^error + error);
 successful^op := 0;
 END
 ELSE
 ! CONTROL was successful
 successful^op := 1;
 header^index := header^index + 1;
 END
 ELSE
 CALL build^header;
 END
 ELSE
! Get either first or next line of spooled data
 DO
 BEGIN
 wait^needed := 1;
 error := PRINTREAD (job^buffer, data^line, max^read^count,
 count^read, page^num);
 IF error THEN
 BEGIN
 CASE error - end^of^file OF
 BEGIN
!-12000- end of file found
Spooler Programmer’s Guide—522287-002
A-10

Sample Print Process
 BEGIN
 CALL stop^job (device, 0);
 RETURN;
 END;
!-12001- end of copy found
 BEGIN
 header^index := dev.flags.<13>;
 error := 0;
 CALL SETMODE (dev^fnum, 28, 0);
 goto next^copy;
 END;
!-12002- data file is bad
 BEGIN
 CALL stop^job (device, error);
 END;
!-12003- CONTROL found
 BEGIN
! Issue CONTROL to IOP print process--issue only
! forms control operations - any others are ignored.
 IF data^line <> 1 THEN
 wait^needed := 0 ! No IO so no need to wait
 ELSE
 BEGIN
 CALL CONTROL (dev^fnum, data^line, data^line[1]);
 IF <> THEN ! check CONTROL condition code
 BEGIN
! CONTROL was unsuccessful
 suspend := 1;
 suspended := 1;
 CALL FILEINFO (dev^fnum, error);
 msg^type := IF successful^op THEN
 dev^error^1
 ELSE
 dev^error^5;
 CALL tell^super (msg^type, device,
 device^file^error + error);
 successful^op := 0;
 END
 ELSE
! CONTROL was successful
 successful^op := 1;
 END;
 END;
!-12004- SETMODE found
 BEGIN
! Issue SETMODE to IOP print process
 CALL SETMODE (dev^fnum, data^line, data^line[1],
 data^line[2]);
 IF <> THEN ! check SETMODE condition code
 BEGIN
! SETMODE was unsuccessful
 suspend := 1;
 suspended := 1;
 CALL FILEINFO (dev^fnum, error);
 msg^type := IF successful^op THEN
 dev^error^1
 ELSE
 dev^error^5;
 CALL tell^super (msg^type, device,
 device^file^error + error);
 successful^op := 0;
 END
 ELSE
! SETMODE was successful
 BEGIN
 successful^op := 1;
Spooler Programmer’s Guide—522287-002
A-11

Sample Print Process
 wait^needed := 0; ! SETMODE is a waited
 ! operation
 END;
 END;
 OTHERWISE
 BEGIN
 END;
! End of error case
 END;
 END
 ELSE
! Successful PRINTREAD, write data to device
 BEGIN
 ! If the DEV WIDTH is <0, allow any size of IO
 ! up to a limit set by the literal max^read^count.
 ! Otherwise truncate the IO so that we don't
 ! send more than WIDTH chars to the device
 IF dev.width < 0 THEN
 write^count := count^read
 ELSE
 write^count := $MIN (dev.width , count^read);
 out^buf ':=' data^line FOR write^count;
 error := writefile (dev^fnum, out^buf, write^count);
 IF error THEN
 BEGIN
 suspend := 1;
 suspended := 1;
 msg^type := IF successful^op THEN
 dev^error^1
 ELSE
 dev^error^5;
 CALL tell^super (msg^type, device,
 device^file^error + error);
 successful^op := 0;
 END;
 END;
! End of DO loop
 END
 UNTIL wait^needed;
 RETURN;
 END;

! *===*

!- -
! procedure name: STOP^JOB
! parameters: DEVICE - name of device job is printing on
! ERROR - error number
! description: Closes the collector data file if still open,
! initializes device and job variables/flags, and reports
! "end of job" status (thru TELL^SUPER) to the spooler
! supervisor
!- -

PROC stop^job (device, error);
 INT .device,
 error;
 BEGIN

!---Beginning of code--

 IF data^file^fnum THEN
 CALL CLOSE (data^file^fnum);
 CALL init^job;
 IF error AND error < 1000 THEN
 CALL tell^super (invalid^operation, device, data^file^error +
Spooler Programmer’s Guide—522287-002
A-12

Sample Print Process
 error)
 ELSE
 CALL tell^super (end^job, device, error);
 RETURN;
 END;

! *===*

PROC init^job;
 BEGIN

!---Beginning of code--

 data^file^fnum := 0;
 busy^flag := 0;
 suspend := 0;
 suspended := 0;
 msg^type := 0;
 successful^op := 0;
 end^of^job^flag := 0;
 header^index := 0;
 END;

! *===*

! CONTROL NUMBER = 0: OPEN DEVICE

!- -
! procedure name: OPEN^DEV
! parameters: DEVICE - name of device to be opened
! description: This procedure services the spooler supervisor command
! to open a device (exclusive and nowaited). If the open
! is unsuccessful, a PRINTSTATUS message, type 3 (unable
! to open device), will be sent to the spooler supervisor.
!- -

PROC open^dev (device);
 INT .device;
 BEGIN
 INT exclusive^and^nowait := %21,
 error;

!---Beginning of code--

 error := openfile (device, dev^fnum, exclusive^and^nowait);
 IF error THEN
 BEGIN
 CALL tell^super (cant^open^device, device, device^file^error +
 error);
 END;
 RETURN;
 END;

! *===*

! CONTROL NUMBER = 1: CLOSE DEVICE

!- -
! procedure name: CLOSE^DEV
! parameters: DEVICE - name of device to be closed
! description: This procedure services the spooler supervisor command
! to close a device. If device is currently printing a
! job, the spooler supervisor is notified that the close
! command is invalid.
!- -
Spooler Programmer’s Guide—522287-002
A-13

Sample Print Process
PROC close^dev (device);
 INT .device;

 BEGIN

!---Beginning of code--

 IF busy^flag THEN
! Cannot close device; currently printing a job
 CALL tell^super (invalid^operation, device, job^running)
 ELSE
 BEGIN
 IF NOT dev^fnum THEN
! Device is already closed
 ELSE
 BEGIN
 CALL CLOSE (dev^fnum);
 IF < THEN
 CALL ABEND;
 dev^fnum := 0;
 END;
 END;
 RETURN;
 END;

! *===*

! CONTROL NUMBER = 2: START JOB

!- -
! procedure name: START^JOB
! parameters: DEVICE - name of device where the job is to be printed
! DATA^FILE^NAME - name of the collector data file
! JOB^NUM - job number of the current job
! LOCATION - location name
! FORMNAME - name of form
! REPORTNAME - name of report
! FLAGS - flags that indicate items such as header on
! PARAMS - user parameter word defined through SPOOLCOM
! DEV^WIDTH - device width in bytes, defined through
! SPOOLCOM
! PAGE^SIZE - number of lines in a page
! description: This procedure services the spooler supervisor command
! to start a job. The collector data file is opened (read
! only). If the open is unsuccessful, the spooler
! supervisor is notified that the job has ended, and the
! file-system error (plus spooler print process error
! base number) that caused the job to end (in this case
! terminated) is returned.
!
! The spooler procedure PRINTSTART is called to format
! the job buffer for the job being started. The job
! buffer will be used in subsequent calls to the spooler
! procedure PRINTREAD when reading data from the
! collector file.
!
! SETMODE 28 is issued to the IOP to reset the line
! parameters back to the SYSGEN/OSBUILDER or default values.
!
! Control is then passed to the procedure READ^AND^PRINT
! to fetch data from the collector data file and write it
! to the device.
!
! ***NOTE*** As stated in the beginning of this print
! process, it is designed to support only one device. If
! it is desired to support more than one device, this
Spooler Programmer’s Guide—522287-002
A-14

Sample Print Process
! procedure should move information contained in the
! calling parameters into a device table.
!- -

PROC start^job (device, data^file^name, job^num, location, formname,
 reportname, flags, params, dev^width, page^size);
 INT .device,
 .data^file^name,
 job^num,
 .location,
 .formname,
 .reportname,
 flags,
 params,
 dev^width,
 page^size;
 BEGIN

 LITERAL first^line = 0;

 INT error,
 read^only := 1 '<<' 10; ! used for opening data file

!---Beginning of code--

 IF NOT dev^fnum THEN ! The spooler supervisor can ask us to
 CALL open^dev (device); ! start a job without asking for the
 ! device to be opened.
 IF NOT dev^fnum THEN
 RETURN; ! The OPEN failed
 error := openfile (data^file^name, data^file^fnum, read^only);
 IF error THEN
 BEGIN
 CALL tell^super (end^job, device, data^file^error + error);
 CALL STOP;
 END
 ELSE
 IF PRINTSTART (job^buffer, p^buf, data^file^fnum) THEN
 CALL ABEND;
!**** NOTE**
! this would be a good location for the device table code
!***
 CALL SETMODE (dev^fnum, 28, 0);
 busy^flag := 1;
 dev.flags := flags;
 dev.param := params;
 dev.width := dev^width;
 dev.job^num := job^num;
 dev.page^size := page^size;
 dev.locationname ':=' location for 8;
 dev.formname ':=' formname for 8;
 dev.reportname ':=' reportname for 8;
 header^index := flags.<13>;
 CALL read^and^print (first^line, device);
 RETURN;
 END;

! *===*

! CONTROL NUMBER = 3: STOP JOB

!- -
! procedure name: REQ^STOP^JOB
! parameters: DEVICE - name of device where the job is to be printed
! description: This procedure services the spooler supervisor command
! to stop a job. If the print process is not busy
Spooler Programmer’s Guide—522287-002
A-15

Sample Print Process
! printing a job, the spooler supervisor is notified that
! the stop job command is invalid.
!
! If the print process is currently printing a job, two
! CANCEL requests are issued to cancel any outstanding
! requests. The second request is most likely not needed;
! it is added as extra insurance.
!
! Control is passed to the procedure STOP^JOB to complete
! the tasks of stopping the current job.
!- -

PROC req^stop^job (device);
 INT .device;
 BEGIN

!---Beginning of code--

 IF NOT busy^flag THEN
 CALL tell^super (invalid^operation, device, no^job^printing)
 ELSE
 BEGIN
 CALL CANCEL (dev^fnum);
 CALL CANCEL (dev^fnum);
 CALL stop^job (device, 0);
 END;
 RETURN;
 END;

! *===*

! CONTROL NUMBER = 4: RESUME JOB

!- -
! procedure name: RESUME^JOB
! parameters: DEVICE - name of device where the job is to be printed
! description: This procedure services the spooler supervisor command
! to resume printing a job that had previously been
! suspended. If the current print job is not in a
! suspended state, the spooler supervisor is notified
! that the resume job command is invalid.
!
! When "suspended" flag is set to true, printing will
! resume with the record whose write previously failed.
! Otherwise, printing will resume with the next
! sequential record.
!
! Control is passed to the procedure READ^AND^PRINT, where
! the job resumes printing.
!- -

PROC resume^job (device);
 INT .device;
 BEGIN
 INT error,
 next^line := 0;

!---Beginning of code--

 IF NOT suspend THEN
 CALL tell^super (invalid^operation, device, no^job^printing)
 ELSE
 BEGIN
 IF suspended THEN
 next^line := -1;
 suspend := 0;
Spooler Programmer’s Guide—522287-002
A-16

Sample Print Process
 suspended := 0;
 CALL read^and^print (next^line, device);
 END;
 END;

! *===*

! CONTROL NUMBER = 5: SUSPEND JOB

!- -
! procedure name: SUSPEND^JOB
! parameters: DEVICE - name of device where the job is currently
! printing.
! description: This procedure services the spooler supervisor command
! to suspend the printing of the current job. If the
! print process is not currently printing a job, the
! spooler supervisor is notified that the suspend job
! command is invalid.
!- -

PROC suspend^job (device);
 INT .device;
 BEGIN

!---Beginning of code--

 IF NOT busy^flag THEN
 CALL tell^super (invalid^operation, device, no^job^printing)
 ELSE
 suspend := 1;
 RETURN;
 END;

! *===*

! CONTROL NUMBER = 6: ALIGN FORM

!- -
! procedure name: ALIGN^FORM
! parameters: DEVICE - name of device where the alignment template is
! to be printed.
! description: This procedure services the spooler supervisor command
! to print the alignment template. If the print process
! is currently printing a job, the spooler supervisor is
! notified that the form alignment command is invalid.
!
! The write of the form alignment template can fail in
! two areas: at the Guardian 90 procedure WRITE call (in
! the procedure WRITEFILE) and at the Guardian 90
! procedure AWAITIO call (in the procedure MAIN^LOOP). The
! spooler supervisor will be notified if the form
! alignment template write was unsuccessful.
!
! When the form alignment template write is successful,
! end-of-job status is sent to the spooler supervisor
! through a call to the procedure STOP^JOB in the
! procedure MAIN^LOOP after the AWAITIO completion.
!- -

PROC align^form (device);
 INT .device;
 BEGIN
 INT error;

!---Beginning of code--
Spooler Programmer’s Guide—522287-002
A-17

Sample Print Process
 IF busy^flag THEN
 CALL tell^super (invalid^operation, device, job^running)
 ELSE
 BEGIN
 IF not dev^fnum THEN
 CALL open^dev (device);
 IF not dev^fnum THEN ! Open failed
 RETURN;
 data^line ':='
 "....+....1....+....2....+....3....+....4....+....5....+....6"
 &"....+....7....+....8....+....9....+....0....+....1....+....2";
 error := writefile(dev^fnum, data^line, 120);
 IF error THEN
 BEGIN
 msg^type := IF successful^op THEN
 dev^error^1
 ELSE
 dev^error^5;
 CALL tell^super (msg^type, device,
 device^file^error + error);
 successful^op := 0;
 END;
 successful^op := 1;
 end^of^job^flag := 1;
 END;
 RETURN;
 END;

! *===*

! CONTROL NUMBER = 7: SKIP TO PAGE

!- -
! procedure name: SKIP^TO^PAGE
! parameters: SKIP^NUM - Specific page number where printing is to
! resume.
! DEVICE - name of device where job is printing.
! description: This procedure services the spooler supervisor command
! to skip to a specific page and resume printing. If the
! print process has not started a job (is not busy), the
! spooler supervisor is notified that the skip-to-page
! command is invalid.
!
! A call to CANCEL is issued to cancel any outstanding
! I/O request to prevent error 28 (too many outstanding
! no-wait requests) from occurring.
!
! The header flag is set to off so that the job page
! header will not be repeated. Control is then passed to
! the procedure READ^AND^PRINT, where the skip-to page
! number is passed in the PRINTREAD call. PRINTREAD will
! return the first record on the specified page, which is
! the skip-to page.
!- -

PROC skip^to^page (skip^num, device);
 INT skip^num,
 .device;
 BEGIN
 INT error;

!---Beginning of code--

 IF NOT busy^flag THEN
 CALL tell^super (invalid^operation, device, no^job^printing)
 ELSE
Spooler Programmer’s Guide—522287-002
A-18

Sample Print Process
 BEGIN
 CALL CANCEL (dev^fnum);
 header^index := 0;
 CALL read^and^print (skip^num, device);
 END;
 RETURN;
 END;

! *===*

! CONTROL NUMBER = 8: SKIP <skip^num> PAGES

!- -

! procedure name: SKIP^PAGE
! parameters: SKIP^NUM - number of pages to be skipped.
! DEVICE - name of device where job is printing.
! description: This procedure services the spooler supervisor command
! to skip a specific number of pages and resume printing.
! The spooler procedure PRINTINFO is called to fetch the
! current page number of the current print job. If
! PRINTINFO returns an error, the print process will
! terminate.
!
! The current page number plus the number of pages to
! be skipped is passed to the procedure SKIP^TO^PAGE,
! where printing will resume at the desired page (current
! page number + skip^num + 1).
!
! *** NOTE*** This sample print process does not issue an
! error message prior to calling the Guardian 90 procedure
! ABEND. When creating a print process, it would be best
! to issue an error message prior to abnormal termination.
!- -

PROC skip^page (skip^num, device);
 INT skip^num,
 .device;
 BEGIN
 INT error,
 page;

!---Beginning of code--

 error := PRINTINFO (job^buffer, , page);
 IF error THEN
 CALL ABEND;
 page := page + skip^num;
 IF page < 0 THEN
 page := 0;
 header^index := 0;
 CALL skip^to^page (page, device);
 RETURN;
 END;

! *===*

! CONTROL NUMBER = 9: SEND STATUS

!- -
! procedure name: SEND^STATUS
! parameters: DEVICE - name of device where job is printing.
! description: This procedure services the spooler supervisor command
! for status of the current print job.
!
! If there is no current print job, the spooler supervisor
Spooler Programmer’s Guide—522287-002
A-19

Sample Print Process
! is notified that the status command is invalid.
!
! The spooler procedure PRINTINFO is called to fetch
! information about the current print job.
!- -

PROC send^status (device);
 INT .device;
 BEGIN
 INT error,
 page,
 line,
 total^lines,
 num^copies;

!---Beginning of code--

 IF NOT busy^flag THEN
 CALL tell^super (invalid^operation, device, no^job^printing)
 ELSE
 BEGIN
 error := PRINTINFO (job^buffer, num^copies, page, line,
 total^lines);
 IF error THEN
 CALL ABEND;
 CALL tell^super (sending^status, device, page, line,
 total^lines, num^copies);
 END;
 RETURN;
 END;

! *===*

! outer program loop

!- -

! procedure name: MAIN^LOOP
! parameters: none
! description: This procedure is the nucleus of the print process. It
! issues the call to AWAITIO and services its
! completion. The AWAITIO completion is divided into two
! sections, completion of spooler supervisor requests
! and completion of writes to the device. The writes to
! the device are further divided into two areas,
! successful writes and unsuccessful writes.
!
! SUPERVISOR REQUEST COMPLETIONS: The spooler procedure
! PRINTCOMPLETE is called to obtain a message (command)
! from the spooler supervisor. The message is contained
! in the buffer P^BUF. If an error is returned by
! PRINTCOMPLETE, the print process will terminate
! abnormally and no error message is issued. NOTE: there
! are other options than abending the print process (for
! example, retry the PRINTCOMPLETE call). Also, issuing
! an error message should be considered.
!
! Upon successful completion of PRINTCOMPLETE, the
! spooler procedure PRINTREADCOMMAND is called to
! interpret the message returned by PRINTCOMPLETE. Here
! again, if PRINTREADCOMMAND returns an error, the print
! process will terminate abnormally and no error message
! is issued.
!
! Upon successful completion of PRINTREADCOMMAND, the
! command value stored in "control" is used to select the
Spooler Programmer’s Guide—522287-002
A-20

Sample Print Process
! procedure to process the spooler supervisor command.
!
! DEVICE WRITE COMPLETIONS:
! ERROR:
! When the device write completes in error, the spooler
! supervisor is notified. This notification also
! indicates whether the previous device write was
! successful. This information is used for retryable type
! errors. The "suspend" flag is set to true to indicate
! that the current print job has been suspended. The
! "suspended" flag is also set to true to indicate that
! the current print job was suspended due to an error.
! When the "suspended" flag is true, the record that
! resulted in the write error is returned by
! PRINTREAD, versus PRINTREAD returning the next record
! ("suspend" flag = true and "suspended" flag = false).
!
! When the error is retryable, the spooler supervisor
! sends a RESUME command to the print process, where
! the job resumes printing with the record whose
! write previously failed.
! SUCCESSFUL:
! When the device write successfully completes, the
! "successful^op" flag is set to true, indicating a
! successful I/O occurred. If there is an active print
! job (not suspended), control is passed to the procedure
! READ^AND^PRINT, where the printing of the job is
! continued.
!- -

PROC main^loop;
 BEGIN
 INT control, ! Parameter returned by PRINTREADCOMMAND
 .device[0:11] := 12 * [" "],
 dev^flags,
 dev^param,
 dev^width,
 skip^num,
 .data^file^name[0:11] := 12 * [" "],
 job^num,
 .location[0:7] := 8 * [" "],
 .formname[0:7] := 8 * [" "],
 .reportname[0:7] := 8 * [" "],
 page^size,
 fnum,
 error;
 INT(32) timeout;
 LITERAL next^line = 0;

!---Beginning of code--

 WHILE 1 DO
 BEGIN
 fnum := -1;
 ! If the device is not open, wait 2 minutes before stopping.
 ! During this time the spooler can ask the user to start a new
 ! job without having to fire up a new process.
 IF dev^fnum = 0 THEN
 timeout := 12000D ! 2 minutes
 ELSE
 timeout := -1D; ! forever
 CALL AWAITIO (fnum,,,, timeout);
 CALL FILEINFO (fnum, error);
 IF error = 40 then ! No completion within time limit,
 CALL STOP; ! must be time to stop
 IF fnum = dev^fnum THEN
Spooler Programmer’s Guide—522287-002
A-21

Sample Print Process
 BEGIN
 IF error THEN
 BEGIN
 suspend := 1;
 suspended := 1;
 msg^type := IF successful^op THEN
 dev^error^5
 ELSE
 dev^error^1;
 call tell^super (msg^type, device, device^file^error +
 error);
 successful^op := 0;
 END
 ELSE
 BEGIN
 successful^op := 1;
 IF busy^flag AND NOT suspended THEN
 CALL read^and^print (next^line, device);
 IF end^of^job^flag THEN
 CALL stop^job (device, error);
 END;
 END;
 IF fnum = supv^fnum THEN
 BEGIN
 IF PRINTCOMPLETE (supv^fnum, p^buf) THEN
 CALL ABEND;
 IF PRINTREADCOMMAND (p^buf,
 control,
 device,
 dev^flags,
 dev^param,
 dev^width,
 skip^num,
 data^file^name,
 job^num,
 location,
 formname,
 reportname,
 page^size) THEN
 CALL ABEND;
 CASE control OF
 BEGIN
! control = 0: OPEN DEVICE
 CALL open^dev (device);
! control = 1: CLOSE DEVICE
 CALL close^dev (device);
! control = 2: START JOB
 CALL start^job (device, data^file^name, job^num,
 location, formname, reportname,
 dev^flags, dev^param, dev^width,
 page^size);
! control = 3: STOP JOB
 BEGIN
 CALL req^stop^job (device);
 END;
! control = 4: RESUME JOB
 CALL resume^job (device);
! control = 5: SUSPEND JOB
 CALL suspend^job (DEVICE);
! control = 6: FORM ALIGNMENT
 CALL align^form (DEVICE);
! control = 7: SKIP TO PAGE
 CALL skip^to^page (skip^num, device);
! control = 8: SKIP PAGES
 CALL skip^page (skip^num, device);
! control = 9: SEND STATUS
Spooler Programmer’s Guide—522287-002
A-22

Sample Print Process
 CALL send^status (device);
 END; ! End of control case
 END;
 END; ! End of WHILE 1 loop
 END;

! *===*

! main procedure

!- -
! procedure name: SAMPLE^PRINT^PROCESS
! parameters: none
! description: This procedure opens $RECEIVE and reads the Startup
! message. The spooler supervisor process name is
! extracted from the Startup message and opened. The
! spooler process PRINTINIT is called to initialize the
! print control buffer (P^BUF), which will be used in
! other calls to spooler print procedures. Control is
! then passed to the procedure MAIN^LOOP.
!
! If the $RECEIVE open and read fails, if the spooler
! supervisor open fails, or if PRINTINIT returns an error,
! the print process will abnormally terminate. No error
! message indicating abnormal termination is issued.
!- -

PROC sample^print^process MAIN;
 BEGIN
 INT .recv^buf[0:65] := ["$RECEIVE", 62 * [" "]],
 .supv^name[0:11] := 12 * [" "];

!---Beginning of code--

 IF openfile (recv^buf, recv^fnum) THEN
 CALL ABEND;
 CALL READ (recv^fnum, recv^buf, 132);
 IF <> THEN
 CALL ABEND;
 CALL CLOSE (RECV^FNUM);
 supv^name ':=' recv^buf[21] for 12;
 IF openfile (supv^name, supv^fnum, 1) THEN
 CALL ABEND;
 IF PRINTINIT (supv^fnum, p^buf) THEN
 CALL ABEND;
 CALL main^loop;
 END;

! *===*
Spooler Programmer’s Guide—522287-002
A-23

Sample Print Process
Spooler Programmer’s Guide—522287-002
A-24

B Sample Perusal Process

This appendix shows a sample perusal process. This sample process functions in
much the same way as the listing section of the PERUSE program. The sections of
code concerned with taking commands from the terminal and listing errors are not
included because they are not actually related to the perusal process operation.

! This program performs some of the operations executed by PERUSE.
! The purpose of this program is to illustrate the use of the
! spooler utility procedures and print procedures in a perusal
! process. The commands recognized have been reduced to a subset
! of the PERUSE commands. They include LOC, HOLD, JOB, DEV, LIST,
! and EXIT. The DEV command has been enhanced to return the status
! of all devices when an argument is not supplied.

! All input is taken from the home terminal, and all output is returned
! to the home terminal (IN and OUT files are not used).

! This program can be copied from this guide and compiled.

?page
 STRING command [8:104] = 'P' := ["LOC ",
 "HOLD ",
 "JOB ",
 "DEV ",
 "LIST ",
 "EXIT ",
 "LO ",
 "H ",
 "J ",
 "D ",
 "L ",
 "E "];

! This structure is used to get the status of devices

STRUCT .dev^stat;
 BEGIN
 INT name[0:15],
 state,
 last^error,
 flags;

 STRING form^name [0:15];

 INT retry^interval,
 time^out,
 speed;

 STRING print^process [0:5];

 INT job^number,
 parameter,
 width,
 retries,
 busy^time[0:1];
 END;

Note. The program presented in this appendix can be compiled and run as presented.
However, it is not a supported software product of HP and has not undergone the rigorous
testing given to an officially released product. Please keep this in mind when adapting the
code for your needs.
Spooler Programmer’s Guide—522287-002
B-1

Sample Perusal Process
?page

! This structure is used to get the status of jobs in a device queue

STRUCT .job^status;
BEGIN
 INT state,
 device^name [0:15],
 sequence^number,
 job^number;

 STRUCT location;
 BEGIN
 STRING group [0:7],
 destination [0:7];
 END;

 INT copies,
 pages,
 reserved,
 total^lines;

 STRING form^name [0:15];

 INT owner^id;
END;
?page

! This structure is used to get the status of jobs in a device queue

STRUCT .job ;
BEGIN
 INT number,
 state;

 STRUCT location;
 BEGIN
 STRING group [0:7],
 destination [0:7];
 END;

 STRING form^name [0:15],
 report^name [0:15];

 INT flags,
 page^size,
 owner^id,
 copies,
 pages,
 lines,
 time^opened [0:2],
 time^closed [0:2];

 STRUCT data^file;
 BEGIN
 INT volume [0:3],
 subvolume [0:3],
 filename [0:3];
 END;

 STRING collector^process^name [0:5];
END;

?page
! This structure receives the TACL Startup message from $RECEIVE
Spooler Programmer’s Guide—522287-002
B-2

Sample Perusal Process
STRUCT .ci^Startup;
 BEGIN
 INT msgcode;
 STRUCT default;
 BEGIN
 INT volume[0:3],
 subvolume[0:3];
 END;

 STRUCT infile;
 BEGIN
 INT volume[0:3],
 subvolume[0:3],
 dname [0:3];
 END;

 STRUCT outfile;
 BEGIN
 INT volume[0:3],
 subvolume[0:3],
 dname [0:3];
 END;

 STRING param [0:24];
 END;

?page
! Global declarations

INT .termname [0:11] := [12 * [" "]], ! contains the name of
 ! the user's terminal
 .recname [0:11] := "$RECEIVE ", ! for reading Startup
 ! message
 .supername [0:11] := "$SPLS ", ! file name of
 ! supervisor
 .datafile[0:11], ! file name of collector's
 ! data file
 termnum, ! file number for terminal
 recnum, ! file number for $RECEIVE
 supernum, ! file number for supervisor
 datanum, ! file number for collector's data file
 userid, ! executor's user ID
 current^job, ! number of the current job
 list^job, ! number of the job currently ready for
 ! listing

 .message[0:63], ! these arrays are used by the
 .jobbuff[0:559], ! print procedures to get a
 .dline[0:449]; ! job's data

INT .iline [0:39] := 40 * [" "];
STRING .line := @iline '<<' 1; ! this is the string address of iline.

! The following lines show the external declarations used in this
! program. The actual source command has not been listed for brevity.
! The command itself is shown in the comment lines that follow.

!source $system.system.extdecs(spoolerequest, printinfo, printread,
! printstart, printreadcommand, fileinfo, numout, close, numin,
! spoolercommand, spoolerstatus, open, write, read, writeread,
! creatoraccessid, stop, myterm)

?nolist
Spooler Programmer’s Guide—522287-002
B-3

Sample Perusal Process
?source $system.system.extdecs(spoolerequest, printinfo, printread,
? printstart, printreadcommand, fileinfo, numout, close, numin,
? spoolercommand, spoolerstatus, open, write, read, writeread,
? creatoraccessid, stop, myterm)
?list

?page
! This procedure handles errors from the spooler utility procedures

! No error recovery or diagnostic message is displayed; only the error
! number is listed. A finished program would have error recovery, and
! a meaningful diagnostic message would be displayed.

 PROC err (errcode);
 INT errcode;
 BEGIN
 STRING err^line [0:39] := ["error^code = ", 26 * [" "]];
 INT .ierr^line := @err^line '>>' 1; ! int address of err^line
 CALL NUMOUT (err^line[14], errcode, 10, 10);
 CALL WRITE(termnum, ierr^line,30);
 END;

! This procedure handles errors from the file I/O procedures

! No error recovery or diagnostic message is displayed; only the error
! number is listed. A finished program would have error recovery, and
! a meaningful diagnostic message would be displayed.

 PROC filerr (fnum);
 INT fnum;
 BEGIN
 STRING err^line [0:39] := ["error^code=", 28 * [" "]];
 INT .ierr^line := @err^line '>>' 1; ! int address of err^line
 CALL NUMOUT (err^line[14], fnum, 10, 10);
 CALL WRITE(termnum, ierr^line,30);
 END;
?page

! hold puts the current job in the hold state

PROC hold (holdp);
 INT holdp;
 BEGIN
 INT error^code;

 IF holdp THEN
 BEGIN
 ! Put the job in the hold state
 error^code := SPOOLERCOMMAND(supernum,2,current^job,122);
 IF error^code <> 0 THEN
 BEGIN
 CALL err(error^code);
 ! Error handling
 END;
 END
 ELSE
 BEGIN
 ! Start the job
 error^code := SPOOLERCOMMAND(supernum,2,current^job,115);
 IF error^code <> 0 THEN
 BEGIN
 CALL err(error^code);
 ! Error handling
 END
 END;
 END;
Spooler Programmer’s Guide—522287-002
B-4

Sample Perusal Process
?page

! This procedure breaks a string at a period or a space and puts
! the characters up to a period or a space in the second string

INT PROC breakstr (str, index, dest);
 STRING .str,
 .dest;
 INT index;
 BEGIN
 INT i,ret;
 i := 0;
! Check for invalid characters or a string longer than 8 characters.
 WHILE ($ALPHA(str[i+index]) OR
 $NUMERIC(str[i+index]) OR
 str[i+index] = "#" OR
 str[i+index] = "$" OR
 str[i+index] = "\")
 AND i < 8 DO
 BEGIN
 dest[i] := str[i+index];
 i := i+1;
 END;
 IF i >= 8 OR i <= 0 THEN ret := -1
 ELSE IF str[i+index] = " " OR str[i+index] = %15 THEN ret := 0
 ELSE IF str[i+index] = "." THEN ret := i + index
 ELSE ret := -1;
 RETURN (ret)
 END;

?page
! This procedure returns an integer corresponding to the command
! received in its parameter

INT PROC getcom(comstr);
 STRING .comstr;
 BEGIN
 INT i, j, match;

 FOR i := 0 TO 7 DO IF $ALPHA(comstr[i]) THEN
 comstr[i] := comstr[i] LAND %737;
 match := 1;
 FOR i := 1 TO 12 DO
 BEGIN
 FOR j := 0 to 7 DO
 BEGIN
 IF match THEN
 IF command[(i*8)+j] <> comstr[j] THEN match := 0;
 END;
 IF match THEN RETURN (IF i > 6 THEN i-6 ELSE i);
 match := 1;
 END;
 RETURN (0);
 END;

?page
! comint reads a command from the terminal, decides which command
! it is, and separates the parameters.

PROC comint(command, jobn, location, page, number,lines, hold, device);
 INT .command,
 .jobn,
 .location,
 .page,
 .number,
Spooler Programmer’s Guide—522287-002
B-5

Sample Perusal Process
 .lines,
 .hold,
 .device;
 BEGIN
 STRING str [0:79] := 80*[" "],
 comstr [0:7] := 8 * [" "];
 INT temp, ptr, count, status,devcnt;

 SUBPROC error (errcode);
 INT errcode;
 BEGIN
 CALL err(errcode);
 command := 0;
 END;

 str[0] := "_";
 CALL WRITEREAD (termnum, str, 1, 80,count);
 IF <> THEN CALL filerr(termnum)
 ELSE
 BEGIN
 ! Remove leading spaces from command line
 WHILE str [0] = " " AND count > 0 DO
 BEGIN
 str [0] ':=' str[1] FOR count;
 count := count-1;
 END;
 temp := breakstr (str, 0, comstr);
 IF temp <> 0 THEN CALL error(1)
 ELSE
 BEGIN
 ! Remove command from command line
 WHILE str [0] <> " " AND str [0] <> %15 AND count > 0 DO
 BEGIN
 str [0] ':=' str[1] FOR count;
 count := count-1;
 END;
 ! Remove spaces between command and parameters
 WHILE str [0] = " " AND count > 0 DO
 BEGIN
 str [0] ':=' str[1] FOR count;
 count := count-1;
 END;
 command := getcom(comstr);
! Remove parameters from str
 CASE command OF
 BEGIN

 ! 0 Bad Command !
 CALL error(1);

 !1 LOC! BEGIN
 location[0] := " ";
 location[1] ':=' location[0] FOR 7;
 IF count = 0 THEN location ':=' "#DEFAULT"
 ELSE
 BEGIN
 temp := breakstr(str, 0, location);
 IF temp < 0 THEN CALL error (2)
 ELSE IF temp > 0 THEN
 BEGIN
 temp := temp + 1;
 temp := breakstr(str, temp, location[4]);
 IF temp <> 0 THEN CALL error (2);
 END;
 END;
 END;
Spooler Programmer’s Guide—522287-002
B-6

Sample Perusal Process
 !2 HOLD! BEGIN
 IF count = 0 THEN hold := 1
 ELSE IF str[0] = "O" OR str[0] = "o" THEN
 BEGIN
 IF str[1] = "N" OR str[1] = "n" THEN hold := 1
 ELSE
 IF str[1] = "F" OR str[1] = "f" AND
 str[2] = "F" OR str[2] = "f" THEN hold := 0
 ELSE CALL error (2);
 END
 END;

 !3 JOB! BEGIN
 IF count = 0 THEN jobn := 0
 ELSE
 BEGIN
 CALL NUMIN (str,jobn, 10, status);
 IF status <> 0 THEN CALL error(2)
 ELSE IF jobn > 4095 OR jobn < 1 THEN CALL error (2);
 END;
 END;

 !4 DEV! BEGIN
 devcnt:= 0;
 device[0] := " ";
 device[1] ':=' device[0] FOR 15;
 IF count <> 0 THEN
 BEGIN
 ! Test for local or remote device
 IF str[0] = "$" THEN devcnt := 4;
 temp := breakstr(str, 0, device[devcnt]);
 IF temp < 0 THEN CALL error (2)
 ELSE IF temp > 0 THEN
 BEGIN
 temp := temp + 1;
 devcnt := devcnt + 4;
 temp := breakstr(str, temp, device[devcnt]);
 IF temp < 0 THEN CALL error (2)
 ELSE IF temp > 0 THEN
 BEGIN
 temp := temp + 1;
 devcnt := devcnt + 4;
 temp := breakstr(str, temp, device[devcnt]);
 IF temp < 0 THEN CALL error (2)
 ELSE IF temp > 0 AND devcnt <= 12 THEN
 BEGIN
 temp := temp + 1;
 devcnt := devcnt + 4;
 temp := breakstr(str, temp, device[devcnt]);
 IF temp <> 0 THEN CALL error (2);
 END;
 END;
 END;
 END;
 END;

 !5 LIST! BEGIN
 CALL NUMIN (str, page, 10, status);
 IF status <> 0 THEN CALL error (2)
 ELSE
 BEGIN
 WHILE $NUMERIC(str[0]) DO str[0] ':=' str[1] FOR count;
 IF str[0] = "/" THEN
 BEGIN
 str[0] ':=' str[1] FOR count;
Spooler Programmer’s Guide—522287-002
B-7

Sample Perusal Process
 CALL NUMIN (str,number, 10, status);
 IF status <> 0 THEN CALL error(2)
 ELSE
 BEGIN
 number := (number - page) + 1;
 IF number < 1 THEN CALL error(2);
 END;
 END
 ELSE number := 1;
 END;
 END;
 !6 EXIT! OTHERWISE ;
 END;
 END;
 END;
 END;

?page
! loc changes the location of the current job

PROC loc (location);
 INT .location;
 BEGIN
 INT error^code;

 job.number := current^job;
 ! Get current state of job
 error^code := SPOOLERSTATUS(supernum,2,0,job);
 IF error^code <> 0 THEN
 BEGIN
 ! Error handling
 CALL err(error^code);
 END
 ELSE
 BEGIN
 ! If job is in ready state, put it in the hold state first
 IF job.state = 2 THEN
 BEGIN
 CALL hold(1);
 ! Change the location of the job
 error^code := SPOOLERCOMMAND(supernum, 2, current^job,
 125, location);
 IF error^code <> 0 THEN
 BEGIN
 ! Error handling
 CALL err(error^code);
 END
 ! Restart job
 ELSE CALL hold(0);
 END
 ELSE ! Or else it is already in hold, open, or print state
 BEGIN
 IF job.state = 4 THEN CALL err(7) !job is printing now
 ELSE
 BEGIN
 ! Change the location of the job
 error^code :=
SPOOLERCOMMAND(supernum,2,current^job,125,location);
 IF error^code <> 0 THEN
 BEGIN
 ! Error handling
 CALL err(error^code);
 END;
 END;
 END;
 END;
Spooler Programmer’s Guide—522287-002
B-8

Sample Perusal Process
 END;

?page

! jobchange changes the current job to the one specified in the
! parameter. If jobnum is not owned by the current user, then no change
! is made.

PROC jobchange (jobnum);
 INT jobnum;
 BEGIN
 INT error^code,
 temp;
 ! Get the status of the specified job
 job.number := jobnum;
 error^code := SPOOLERSTATUS(supernum, 2, 0, job);
 IF error^code <> 0 THEN
 BEGIN
 CALL err(error^code);
 ! Error handling
 END
 ELSE
 BEGIN
 ! If owner ID matches, then make the specified job the current job.
 IF job.owner^id = userid THEN
 current^job := jobnum
 ELSE
 BEGIN
 CALL err(6156);
 ! 6156 = security violation
 END;
 END;
 END;
?page

! dev displays the status of a device and the jobs in its queue.

PROC dev(device);
 INT .device;
 BEGIN
 INT error^code,
 temp,
 line^total := 0;
 ! Prepare the header line of the display
 line[0] := " ";
 line[1] ':=' line[0] FOR 79;
 line[0] ':=' "DEVICE STATE: ";
 line[28] ':=' "FORM:";
 dev^stat.name ':=' device FOR 16;
 ! Get the status of the specified device
 error^code := SPOOLERSTATUS(supernum, 1, 0, dev^stat);
 IF error^code <> 0 THEN call err(error^code)
 ELSE
 ! Produce the display
 BEGIN
 CASE dev^stat.state OF
 BEGIN
 !0! call err(dev^stat.state);
 !1! line[14] ':=' "WAITING";
 !2! line[14] ':=' "PRINTING";
 !3! line[14] ':=' "SUSPENDED";
 !4! line[14] ':=' "DEVERROR";
 !5! line[14] ':=' "OFFLINE";
 !6! line[14] ':=' "PROCERROR";
 OTHERWISE CALL err (dev^stat.state);
 END;
Spooler Programmer’s Guide—522287-002
B-9

Sample Perusal Process
 line[34] ':=' dev^stat.form^name FOR 8;
 CALL WRITE (termnum, iline, 80);
 line[0] := " ";
 line[1] ':=' line[0] FOR 79;
 line[2] ':=' "JOB";
 line[8] ':=' "OWNER";
 line[17] ':=' "PAGES";
 line[24] ':=' "WAIT";
 line[35] ':=' "FORM";
 CALL WRITE (termnum, iline, 0);
 CALL WRITE (termnum, iline, 80);
 ! Get and display the status of the jobs waiting to print on the
 ! device
 job^status.device^name ':=' device FOR 16;
 job^status.sequence^number := 0;
 error^code := SPOOLERSTATUS(supernum, 7, 1, job^status);
 WHILE error^code = 0 DO
 BEGIN
 line[0] := " ";
 line[1] ':=' line[0] FOR 79;
 CALL NUMOUT(line[2], job^status.job^number,10, 4);
 temp := job^status.owner^id.<0:7>;
 CALL NUMOUT(line[8], temp, 10, 3);
 temp := job^status.owner^id.<8:15>;
 line[11] := ",";
 CALL NUMOUT(line[12], temp, 10, 3);
 CALL NUMOUT(line[17], job^status.pages,10, 4);
 line^total := line^total +
 (job^status.total^lines/dev^stat.speed);
 CALL NUMOUT(line[24], line^total, 10, 6);
 line[35] ':=' job^status.form^name FOR 16;
 CALL WRITE(termnum, iline, 60);
 error^code := SPOOLERSTATUS(supernum, 7, 1, job^status);
 END;
 IF error^code <> %14006 THEN CALL err(error^code);
 END;
 END;

?page
! devall displays the status of all devices in the system.

PROC devall;
 BEGIN
 INT error^code,
 i, j, temp,
 line^total := 0;
! Prepare the header line of the display
 line[0] := " ";
 line[1] ':=' line[0] FOR 79;
 line[0] ':=' "DEVICE";
 line[36] ':=' "STATE";
 line[51] ':=' "FLAGS";
 line[58] ':=' "PROC";
 line[66] ':=' "FORM";
 CALL WRITE (termnum, iline, 80);
 dev^stat.name ':=' [16 * [" "]];
! Get and display the status of all devices in the spooler
 error^code := SPOOLERSTATUS(supernum, 1, 1, dev^stat);
 WHILE error^code = 0 DO
 BEGIN
 line[0] := " ";
 line[1] ':=' line[0] FOR 79;
 j := 0;
 FOR i := 0 to 16 DO
 BEGIN
 IF dev^stat.name[i].<0:7> <> " " THEN
Spooler Programmer’s Guide—522287-002
B-10

Sample Perusal Process
 BEGIN
 IF j <> 0 AND (i = 4 OR i = 8 OR i = 12) THEN
 BEGIN
 line[j] := ".";
 j := j + 1;
 END;
 line [j] := dev^stat.name[i].<0:7>;
 j := j +1;
 END;
 IF dev^stat.name[i].<8:15> <> " " THEN
 BEGIN
 line [j] := dev^stat.name[i].<8:15>;
 j := j+1;
 END;
 END;
 CASE dev^stat.state OF
 BEGIN
 !0! call err(dev^stat.state);
 !1! line[36] ':=' "WAITING";
 !2! line[36] ':=' "PRINTING";
 !3! line[36] ':=' "SUSPENDED";
 !4! line[36] ':=' "DEVERROR";
 !5! line[36] ':=' "OFFLINE";
 !6! line[36] ':=' "PROCERROR";
 OTHERWISE CALL err (dev^stat.state);
 END;
 IF dev^stat.flags.<10> THEN line[51] :="T";
 IF dev^stat.flags.<12> THEN line[52] :="D";
 IF dev^stat.flags.<13> THEN line[53] :="H";
 IF dev^stat.flags.<14> THEN line[54] :="E";
 IF dev^stat.flags.<15> THEN line[51] :="F";
 line[58] ':=' dev^stat.print^process FOR 6;
 line[66] ':=' dev^stat.form^name FOR 16;
 CALL WRITE (termnum, iline, 80);
 error^code := SPOOLERSTATUS(supernum, 1, 1, dev^stat);
 END;
 IF error^code <> %14006 THEN CALL err(error^code) ;
 END;

?page
! jobstat displays the status of all jobs owned by the current user.

PROC jobstat;
 BEGIN
 INT error^code,
 temp;
! Prepare the header line of the display
 line[0] := " ";
 line[1] ':=' line[0] FOR 79;
 line[2] ':=' "JOB";
 line[8] ':=' "STATE";
 line[15] ':=' "PAGES";
 line[22] ':=' "COPIES";
 line[30] ':=' "PRI";
 line[35] ':=' "HOLD";
 line[41] ':=' "LOCATION";
 line[57] ':=' "REPORT";
 CALL WRITE(termnum, iline, 0);
 CALL WRITE(termnum, iline, 79);
 job.number := 0;
 job.number.<0> := 1;
 job.owner^id := CREATORACCESSID;
 ! Get the status of each job and display it
 error^code := SPOOLERSTATUS(supernum, 2, 1, job);
 WHILE error^code = 0 DO
 BEGIN
Spooler Programmer’s Guide—522287-002
B-11

Sample Perusal Process
 IF job.owner^id = CREATORACCESSID THEN
 BEGIN
 line[0] := " ";
 line[1] ':=' line[0] FOR 79;
 IF job.number = current^job THEN line[1] := "J";
 CALL NUMOUT(line[2], job.number, 10, 4);
 CASE job.state OF
 BEGIN
 !0! ;
 !1! line[8] ':=' "OPEN";
 !2! line[8] ':=' "READY";
 !3! line[8] ':=' "HOLD";
 !4! line[8] ':=' "PRINT";
 END;
 CALL NUMOUT(line[15], job.pages, 10, 5);
 CALL NUMOUT(line[22], job.copies, 10, 5);
 temp := 0;
 temp := job.flags.<13:15>;
 CALL NUMOUT(line[30], temp, 10, 1);
 IF job.state = 1 and job.flags.<9> = 1 THEN
 line[35] := "B";
 IF job.flags.<10> = 1 THEN line[36] := "A";
 line[41] ':=' job.location.group FOR 16;
 line[57] ':=' job.report^name FOR 16;
 CALL WRITE (termnum, iline, 79);
 IF <> THEN CALL filerr(termnum);
 END;
 job.owner^id := CREATORACCESSID;
 job.number.<0> := 1;
 error^code := SPOOLERSTATUS(supernum, 2, 1, job);
 END;
 CALL WRITE(termnum, iline, 0);
 IF <> THEN CALL filerr(termnum);
END;

?page
! This procedure calls PRINTREAD and strips off all SETMODE,
! CONTROL, and CONTROLBUF lines. It then returns the data line.

INT PROC STRIPLINES(buff, line, count, page);
 INT .buff,
 .line,
 count,
 page;
 BEGIN
 INT err^code;
 err^code := PRINTREAD(buff, line, count, page);
 WHILE (err^code = %12003 OR
 err^code = %12004 OR
 err^code = %12005) DO
 err^code := PRINTREAD(buff, line, count,, 0);
 RETURN (err^code)
 END;

?page
! This procedure closes the job currently open for listing and opens
! a new job. It is called when the current job has been changed since
! the last list command.

PROC open^list^job;
 BEGIN
 INT error^code;
 CALL CLOSE(datanum);
 error^code := SPOOLEREQUEST(supernum,current^job,message);
 IF error^code <> 0 THEN
 BEGIN
Spooler Programmer’s Guide—522287-002
B-12

Sample Perusal Process
 ! Error handling
 CALL err(error^code);
 END
 ELSE
 BEGIN
 error^code := PRINTREADCOMMAND(message, ,,,,,,datafile);
 IF error^code <> 0 THEN
 BEGIN
 CALL err(error^code);
 ! Error handling
 END
 ELSE
 BEGIN
 CALL OPEN (datafile,datanum,%2000,1);
 IF <> THEN
 BEGIN
 ! Error handling
 CALL filerr(-1);
 END
 ELSE
 BEGIN
 error^code := PRINTSTART(jobbuff, message,datanum);
 IF error^code <> 0 THEN
 BEGIN
 CALL err(error^code);
 ! Error handling
 END
 ELSE list^job := current^job;
 END;
 END;
 END;
 END;
?page
! LIST performs the listing operation. It first decides whether the
! correct job is open, then it decides whether a set of pages or lines
! should be printed, and then it lists the requested data.

PROC LIST (page, number, lines);
 INT page,
 number,
 lines;
 BEGIN
 INT error^code,
 current^page,
 I;

! If the job currently open does not match the current job, then
! call open^list^job to close the one job and open the other.

 IF list^job <> current^job THEN CALL open^list^job;

 IF page > 0 THEN
 BEGIN
 error^code := STRIPLINES(jobbuff, dline, 900, page);
 IF error^code <> 0 THEN
 BEGIN
 CALL err(error^code);
 ! Error handling
 END
 ELSE
 BEGIN
 error^code := PRINTINFO(jobbuff, , current^page);
 IF error^code <> 0 THEN
 BEGIN
 CALL err(error^code);
 ! Error handling
Spooler Programmer’s Guide—522287-002
B-13

Sample Perusal Process
 END
 ELSE
 BEGIN
 WHILE ((page + number) > current^page)
 AND (error^code = 0) DO
 BEGIN
 CALL WRITE(termnum, dline, 80);
 error^code := STRIPLINES(jobbuff, dline, 900, 0);
 IF error^code <> 0 AND error^code <> %14002 THEN
 BEGIN
 ! Error handling
 CALL err(error^code);
 END;
 error^code := PRINTINFO(jobbuff, , current^page);
 IF error^code <> 0 AND error^code <> %14002 THEN
 BEGIN
 ! Error handling
 CALL err(error^code);
 END
 END;
 END;
 END;
 END
 ELSE ! request for lines not pages
 BEGIN
 FOR i := 1 to lines DO
 BEGIN
 error^code := STRIPLINES(jobbuff, dline, 900, page);
 IF error^code <> 0 THEN
 BEGIN
 ! Error handling
 CALL err(error^code);
 END
 ELSE CALL WRITE(termnum, dline, 80);
 END;
 END;
 END; ! LIST

?page
! INIT initializes global values and opens the terminal and supervisor.
! It also opens $RECEIVE and reads the Startup message.
! Current^job is set to the job most recently opened.
PROC INIT;
 BEGIN
 INT timestamp[0:2] := 3*[0],
 error^code := 0,
 i;
 userid := CREATORACCESSID;
 CALL OPEN(recname, recnum);
 IF <> THEN CALL filerr(-1);
 CALL READ(recnum,ci^id,64);
 IF <> THEN CALL filerr(recnum);
 CALL MYTERM(termname);
 CALL OPEN(termname, termnum);
 IF <> THEN CALL filerr(-1);
 CALL OPEN(supername, supernum);
 IF <> THEN CALL filerr(-1);

 job.number := current^job := 0;

! Find job most recently opened

 job.number.<0> := 1;
 job.owner^id := userid;
 error^code := SPOOLERSTATUS(supernum, 2, 1, job);
 IF error^code <> 0 THEN CALL err(error^code)
Spooler Programmer’s Guide—522287-002
B-14

Sample Perusal Process
 ELSE
 BEGIN
 WHILE error^code = 0 DO
 BEGIN
 IF userid = job.owner^id THEN
 BEGIN
 I :=0;
 WHILE job.time^opened[i] = timestamp[i] DO I:=i+1;
 IF job.time^opened[i] > timestamp[i] THEN
 BEGIN
 current^job := job.number;
 timestamp ':=' job.time^opened FOR 3;
 END;
 END;
 job.number.<0> := 1;
 job.owner^id := userid;
 error^code := SPOOLERSTATUS(supernum, 2, 1, job);
 END;
 END;
 CALL jobstat;
 END;
?page
PROC ROOT MAIN;
 BEGIN
 INT count := 0,
 command := 0,
 jobn := 0,
 page := 0,
 number := 0,
 lines := 0,
 holdp := 0,
 location [0:7] := 8 * [" "],
 device [0:15] := 16 * [" "];

 STRING formn [0:15] := 16 * [" "],
 reportn [0:15] := 16 * [" "];
 CALL INIT;
 WHILE 1 DO
 BEGIN
 CALL comint(command,
 jobn,
 location,
 page,
 number,
 lines,
 holdp,
 device);

 CASE command OF
 BEGIN
!0 no command! ;
!1 LOC ! CALL loc (location);
!2 HOLD! CALL hold(holdp);
!3 JOB ! IF jobn = 0 THEN CALL jobstat ELSE CALL jobchange(jobn);
!4 DEV ! IF device = [16 * [" "]] THEN CALL devall
 ELSE CALL dev(device);
!5 LIST! CALL list(page, number, lines);
!6 EXIT! CALL STOP;
OTHERWISE BEGIN
 CALL err(27);
 CALL STOP;
 END;
 END;
 END;
 END;
Spooler Programmer’s Guide—522287-002
B-15

Sample Perusal Process
Spooler Programmer’s Guide—522287-002
B-16

C Spooler-Related Errors

This appendix explains the error codes returned by the spooler interface, print, and
utility procedures. These codes are listed numerically by type.

Each spooler procedure is a type INT function that returns an octal spooler error code
indicating its outcome. The leftmost part of the error number indicates the source of
the error:

%1000 = File-system errors
%2000 = Collector file errors
%3000 = Spool control file errors
%4000 = Device errors
%5000 = Print errors
%100000 = NEWPROCESS errors or PROCESS_CREATE_ errors

You can extract the relevant file-system error number from most of these error codes
by examining bits <8:15>. For example, if the error code returned is %1074, bits
<8:15> contain file-system error %074 (device has been downed).

Some of the common file-system error codes are described in this appendix. All other
file-system error codes are described in the System Procedure Errors and Messages
Manual.

The NEWPROCESS error codes and the PROCESS_CREATE_ errors are described
in the Guardian Procedure Errors and Messages Manual. The NEWPROCESS error
codes should not be confused with the PROCESS_CREATE_ errors. For example,
when a NEWPROCESS error is encountered, the cause is often included in bits
<8:15> of the error code. With PROCESS_CREATE_ errors, the cause of the error is
often returned in the error-detail parameter.

Interface Errors
The following error codes are returned by the spooler interface procedures.

Cause. The operation was completed.

Effect. None.

Recovery. None.

Cause. The collector encountered a file-system error.

Effect. The spooler ignores the request.

 0 (%0)

 512-767 (%1000 - %1377)
Spooler Programmer’s Guide—522287-002
C-1

Spooler-Related Errors Interface Errors
Recovery. Refer to the information on file-system errors in the Guardian Procedure
Errors and Messages Manual for corrective action for the error number indicated in bits
<8:15>.

Cause. A parameter is missing.

Effect. The spooler ignores the request.

Recovery. Correct the syntax and reenter the command.

Cause. The content of a parameter is wrong, or both filenum and filenum-to-
collector were specified (only one can be specified).

Effect. The spooler ignores the request.

Recovery. Correct the syntax and reenter the command.

Cause. The format of a spooler job file (file code 129) is invalid. A job from a previous
session is not correctly formatted.

Effect. The spooler ignores the request.

Recovery. Purge the spooler job file and build a new one.

Cause. A checkpoint exit occurred. This error code has special significance for an
application running as a NonStop process pair. If bit 11 of the flags parameter of
SPOOLSTART was set to 1, the procedures SPOOLWRITE, SPOOLCONTROL,
SPOOLCONTROLBUF, and SPOOLSETMODE return a value of %11000 when the
level-3 buffer is about to be written to the collector.

Effect. The block is complete and ready to be written to the data file.

Recovery. Checkpoint the buffer and repeat the call.

Cause. A process attempted to write to the collector without first opening the file. This
error occurs if the collector was not opened successfully.

 4096 (%10000)

 4097 (%10001)

 4098 (%10002)

 4608 (%11000)

 4609 (%11001)
Spooler Programmer’s Guide—522287-002
C-2

Spooler-Related Errors File-System Errors
Effect. The HP NonStop Kernel operating system returns a -1 as the file number on a
failed open.

Recovery. Correct your program to verify that the collector has been opened
successfully.

File-System Errors
The following file-system error codes have special significance to a process sending
data to a collector. An application spooling at level 1 or 2 gets these errors from the
write or the open procedure, while an application spooling at level 3 obtains these
errors in bits <8:15> of a spooler error code in the range %1000 through %1377.

Cause. The operation completed successfully.

Effect. None.

Recovery. None.

Cause. The collector received an invalid message. For example, SPOOLSTART was
called for a job that is already open, SPOOLEND was called for a job that is not open,
or the file-system WRITE[X] procedure was called for a job being spooled at level 3.

Effect. The collector ignores the invalid message.

Recovery. Correct the error in your program.

Cause. Illegal parameters were specified in a call to CHECKOPEN.

Effect. The spooler ignores requests from the backup process.

Recovery. Correct your call to the CHECKOPEN procedure for the collector file.

Cause. A data line written to the spooler was too long.

Effect. The write is not performed.

Recovery. Decrease the byte count and reenter the command.

 0 (%0) OPERATION SUCCESSFUL

 2 (%2) OPERATION NOT ALLOWED ON THIS TYPE FILE

 17 (%21) ATTEMPTED CHECKOPEN, PARAMETERS DO NOT
 MATCH PRIMARY OPEN

 21 (%25) ILLEGAL COUNT SPECIFIED
Spooler Programmer’s Guide—522287-002
C-3

Spooler-Related Errors File-System Errors
Cause. The collector was opened with an illegal sync or nowait depth.

Effect. The open is ignored.

Recovery. Make sure that the sync depth is less than or equal to 32 and that bits
<12:15> of the OPEN flags parameter contain a value less than or equal to 1.

Cause. The collector could not obtain enough of some resource (internal buffer space,
job numbers, and so on) to accept a job. For example, more than 32 jobs at level 1 or
2 are opened to a collector.

Effect. The spooler ignores the request.

Recovery. Use Spoolcom to check the collector status. Check your program for the
number of jobs and reduce that number where possible.

For process files, the system might not create any newly named process until at least
one existing named process has stopped.

If the problem is a spooler problem (caused by too many opens for the collector),
consider starting another collector. See the Spooler Utilities Reference Manual for
more information.

Cause. The collector does not have room in its data file for user data.

Effect. The spooler ignores your request.

Recovery. Periodically retry the operation that returned this error. Also contact your
system operator. You might want to increase the size of your collector data file.

Cause. Something stopped the collector after a process opened the collector’s file.

Effect. None.

Recovery. Try opening the file again. If this action is unsuccessful, try another
collector.

 28 (%34) NUMBER OF OUTSTANDING NOWAIT OPERATIONS
 WOULD EXCEED THAT SPECIFIED

 44 (%54) DISK DIRECTORY IS FULL; DCT IS FULL

 45 (%55) FILE IS FULL

 60 (%74) DEVICE DOWNED OR NOT OPENED, OR PROCESS
 HAS FAILED SINCE IT OPENED FILE
Spooler Programmer’s Guide—522287-002
C-4

Spooler-Related Errors File-System Errors
Cause. The collector is not accepting open requests. This error can occur for the
following reasons:

 The system operator brought down the specified device.
 A hard error occurred on the device controller.
 The spooler collector process sent a spooled job to a nonmirrored disk.
 Both halves of a mirrored disk are down.

Effect. A Spoolcom user has issued a SPOOLER DRAIN command. The collector
finishes accepting any jobs that were open when the command was issued, but no new
jobs can start.

Recovery. The same Spoolcom user must issue a SPOOLER START command.

Cause. This error can occur for the following reasons:

 The device was not powered up or is not online.

 A printer is out of paper or is not working.

 A card reader is out of cards.

 A tape drive is accessed while rewinding.

 A tape drive is at a load point but is not online.

 A heavily loaded processor receives a call to open a server process but cannot
respond.

Effect. The procedure sets the error code and returns without performing the
requested operation.

Recovery. Make the device ready. In the case of a heavily loaded processor, repeat
the call to open the process.

Cause. A printer could not continue because it was out of paper or because the paper
bail was not in place.

Effect. The procedure sets the error code and returns without performing the
requested operation.

 66 (%102) DEVICE DOWNED, LIU NOT YET DOWNLOADED,
 OR HARD FAILURE OCCURRED ON CONTROLLER

100 (%144) DEVICE NOT READY OR CONTROLLER NOT
 OPERATIONAL
 (device type: any except 2)

102 (%146) PAPER OUT, BAIL OPEN, OR END OF RIBBON
Spooler Programmer’s Guide—522287-002
C-5

Spooler-Related Errors Spooler Utility Errors
Recovery. Load more paper, close the bail, or replace the ribbon as needed.

Cause. A modem error occurred. For example, the communications link is not yet
established, a modem failure occurred, a momentary loss of carrier occurred, the
modem or link is disconnected, the interprocessor bus monitor process ($IPB) reported
that the FOX link to an Expand line-handler process is down, or a subunit or logical unit
is not in the started condition.

Effect. The procedure sets the error code and returns without performing the
requested operation.

Recovery. Corrective action is device-dependent. If the problem is still not apparent,
submit the trace, OPRLOG, CONFLIST, and subunit and line configuration to your HP
representative.

Cause. A processor probably failed.

Effect. The collector is opened with a sync depth of 0, and its backup process takes
over.

Recovery. You can retry a write, but lines of data might be lost.

Spooler Utility Errors
The spooler utility procedures return the following error codes:

Cause. The operation completed successfully.

Effect. None.

Recovery. None.

Cause. A parameter is missing.

Effect. The spooler ignores your request.

140 (%214) MODEM ERROR (COMMUNICATION LINK NOT YET
 ESTABLISHED, MODEM FAILURE, MOMENTARY
 LOSS OF CARRIER, OR DISCONNECT)

 201 (%311) CURRENT PATH TO DEVICE IS DOWN ATTEMPT WAS
 MADE TO WRITE TO A NONEXISTENT PROCESS, OR
 ERROR IN MESSAGE SYSTEM INTERFACE

 0 (%0)

 4096 (%10000)
Spooler Programmer’s Guide—522287-002
C-6

Spooler-Related Errors Spooler Utility Errors
Recovery. Correct the syntax and reenter the command.

Cause. An invalid command was issued.

Effect. The spooler ignores your request.

Recovery. Correct the command code and reenter the command.

Cause. A command parameter is missing.

Effect. The spooler ignores your request.

Recovery. Correct the command syntax and reenter the command.

Cause. A command parameter is in error.

Effect. The spooler ignores your request.

Recovery. Correct the parameter value and reenter the command.

Cause. An invalid subcommand was issued.

Effect. The spooler ignores your request.

Recovery. Correct the subcommand code and reenter your command.

Cause. A subcommand is missing.

Effect. The spooler ignores your request.

Recovery. Correct the syntax and reenter the command.

Cause. A subcommand parameter is in error.

Effect. The spooler ignores your request.

 6144 (%14000)

 6145 (%14001)

 6146 (%14002)

 6147 (%14003)

 6148 (%14004)

 6149 (%14005)
Spooler Programmer’s Guide—522287-002
C-7

Spooler-Related Errors Spooler Utility Errors
Recovery. Correct the parameter value and reenter the command.

Cause. The program reached the end of the SPOOLERSTATUS entries.

Effect. The spooler ignores your request.

Recovery. If this value is expected, no action is needed. Otherwise, correct the
program so it handles end-of-entries.

Cause. SPOOLERSTATUS or SPOOLEREQUEST could not find an entry.

Effect. The spooler ignores your request.

Recovery. If this value is expected, no action is needed. If not, issue a command for
a valid entry or check the application to determine why the error occurred.

Cause. SPOOLERSTATUS could not add an entry to the tables.

Effect. The spooler ignores your request.

Recovery. If necessary, expand the spooler configuration during the next coldstart.

Cause. The requested entry could not be found.

Effect. The spooler ignores your request.

Recovery. If this value is expected, no action is needed. If not, issue a command for
a valid entry or check the application to determine why the error occurred.

Cause. The entry is not in the proper state for the requested operation.

Effect. The spooler ignores your request.

Recovery. Either change the entry state or wait until the state changes.

 6150 (%14006)

 6151 (%14007)

 6152 (%14010)

 6153 (%14011)

 6154 (%14012)
Spooler Programmer’s Guide—522287-002
C-8

Spooler-Related Errors Spooler Utility Errors
Cause. Because the entry is in use, it cannot be deleted.

Effect. The spooler ignores your request.

Recovery. Wait until the entry becomes available and then delete it.

Cause. The attempted request failed because of a security violation.

Effect. The spooler ignores your request.

Recovery. To execute the request, log on as an authorized user with execute access
to the Spoolcom program.

Cause. The requested process was not a spooler supervisor.

Effect. The command fails to establish communication with the spooler.

Recovery. Use a correct supervisor name and retry the request.

Cause. A SPOOLERSTATUS request was in progress.

Effect. The spooler ignores your request.

Recovery. Call SPOOLERSTATUS again.

Cause. There was an attempt to delete a job that was associated with a font. This is
not allowed.

Effect. The operation is ignored.

Recovery. Delete the font associated with the job in question and retry the operation.

Cause. A JOB command issued through the SPOOLERCOMMAND procedure cannot
be performed on a portion of a spooler batch job.

 6155 (%14013)

 6156 (%14014)

 6157 (%14015)

 6158 (%14016)

 6159 (%14017)

 6160 (%14020)
Spooler Programmer’s Guide—522287-002
C-9

Spooler-Related Errors Print Procedure Errors
Effect. The operation is ignored.

Recovery. Perform the operation on the spooler batch job, or unlink the spooler job
from the spooler batch job and retry the operation.

Cause. An attempt was made to link a spooler job whose attributes (owner, form,
device, and gmom-crtpid-jobid) do not match those of the spooler batch job.

Effect. The operation is ignored.

Recovery. Change the key attributes of the spooler job to match those of the spooler
batch job.

Cause. An attempt was made to link a spooler job to a spooler batch job, but the
spooler job already belonged to the spooler batch job.

Effect. The operation is ignored.

Recovery. None.

Cause. There was an attempt to unlink a spooler job from a spooler batch job
although they were not linked.

Effect. The operation is ignored.

Recovery. This is an informative message only; no action is needed.

Cause. An error occurred while the system was creating a collector or print process.

Effect. The spooler ignores your request.

Recovery. Refer to the information about the PROCESS_CREATE_ errors Guardian
Procedure Errors and Messages Manual for corrective action concerning error
information returned in the error-detail parameter.

Print Procedure Errors
Consider the following when you handle codes returned by print procedures:

 6161 (%14021)

 6162 (%14022)

 6163 (%14023)

 32768-36771 (%100000 - %107477)
Spooler Programmer’s Guide—522287-002
C-10

Spooler-Related Errors Print Procedure Errors
 Error codes returned by PRINTREAD that are not listed below are fatal errors. In
such cases, terminate the job and send the error to the supervisor process.

 Use a negative pagenum parameter in the call to PRINTREAD if you want
PRINTREAD to return the number of the line where a WRITE[X] to a device failed.

 When the spooler supervisor process receives a job-end message with an error
other than 0 or %12000 (end of file), the supervisor process writes the error to its
error log file and puts the job on hold.

The following spooler error codes are relevant to print procedures.

Cause. The operation was completed successfully.

Effect. None.

Recovery. None.

Cause. The data file has a file-system error.

Effect. The print procedure returns no data.

Recovery. Abort the print process. Refer to the information on file-system errors in
the Guardian Procedure Errors and Messages Manual for corrective action for the
error number indicated in bits <8:15>.

Cause. The print procedure encountered a file-system error while attempting to open
the supervisor file.

Effect. There is a communications problem with the supervisor.

Recovery. The print procedure can either call ABEND, retry the operation a number of
times, or continue reading and printing jobs without any further communication with the
supervisor process. Refer to the information on file-system errors in the Guardian
Procedure Errors and Messages Manual for corrective action for the error number
indicated in bits <8:15>.

Cause. There was a file-system error on a spooler device.

Effect. The spooler ignores your request.

 0 (%0)

 1024-1279 (%2000-%2377)

 1536-1791 (%3000-%3377)

 2048-2303 (%4000 - %4377)
Spooler Programmer’s Guide—522287-002
C-11

Spooler-Related Errors Print Procedure Errors
Recovery. Refer to the information on file-system errors in the Guardian Procedure
Errors and Messages Manual for corrective action for the error number indicated in bits
<8:15>.

Cause. There was a file-system error on a file to the print process.

Effect. The spooler ignores your request.

Recovery. Refer to the information on file-system errors in the Guardian Procedure
Errors and Messages Manual for corrective action for the error number indicated in bits
<8:15>.

Cause. A parameter is missing.

Effect. The print procedure ignores your command.

Recovery. Correct the syntax and reenter the command.

Cause. A parameter is in error.

Effect. None.

Recovery. Correct the parameter value and reenter the command.

Cause. A print procedure reached the end of the file.

Effect. If this error code is returned by the PRINTREAD procedure, all lines in the job
have been transferred.

Recovery. Send an “end job” message to the supervisor, using the PRINTSTATUS
procedure, to delete the job.

Cause. A print procedure reached the end of the copy.

Effect. If this error code is returned by the PRINTREAD procedure, the next line
returned is the first line of the next copy of the job. The data line does not contain valid
data when PRINTREAD returns an end-of-copy indication.

 2560-2815 (%5000 - %5377)

 4096 (%10000)

 4097 (%10001)

 5120 (%12000)

 5121 (%12001)
Spooler Programmer’s Guide—522287-002
C-12

Spooler-Related Errors Print Procedure Errors
Recovery. A print procedure can choose to either print a header or do a top-of-form
when an end-of-copy indication is returned.

Cause. A print procedure encountered an invalid data file. The data file from which
PRINTREAD is attempting to read data does not contain the correct job.

A perusal process can receive this error from the PRINTREAD procedure if the job it is
reading is deleted during the read.

Effect. There is no effect. PRINTREAD did not return data.

Recovery. If a print procedure receives this error, it should terminate the job and send
the error to the supervisor using the PRINTSTATUS procedure.

If a perusal process receives this error, refer to the Guardian Procedure Calls
Reference Manual for information about the SPOOLEREQUEST procedure.

Cause. The data line contained a file-system CONTROL operation.

Effect. If this error code is returned by the PRINTREAD procedure, the data line
contains a file-system CONTROL message for the print device. The format of the
CONTROL message is

 data-line [0] = operation
 data-line [1] = parameter

Recovery. The print procedure should pass the CONTROL message to the device by
way of the file-system CONTROL procedure. The CONTROL procedure is
documented in the Guardian Procedure Calls Reference Manual.

Cause. The data line contained a file-system SETMODE operation.

Effect. If this error code is returned by the PRINTREAD procedure, the data line
contains a file-system SETMODE instruction. The SETMODE instruction format is

 data-line [0] = SETMODE function
 data-line [1] = param-1
 data-line [2] = param-2

Recovery. The print procedure should issue a SETMODE operation to the device.
You can find the syntax for the SETMODE procedure in the Guardian Procedure Calls
Reference Manual.

 5122 (%12002)

 5123 (%12003)

 5124 (%12004)
Spooler Programmer’s Guide—522287-002
C-13

Spooler-Related Errors Print Procedure Errors
Cause. The data line contained a file-system CONTROLBUF operation.

Effect. If this error code is returned by the PRINTREAD procedure, the data line
contains a file-system CONTROLBUF message for the print device. The format of the
CONTROLBUF message is

 data-line [0] = operation
 data-line [1] = buffer address
 data-line [2] = count operation

Recovery. The print procedure should pass the CONTROLBUF message to the
device by way of the file-system CONTROLBUF procedure. The CONTROLBUF
procedure is documented in the Guardian Procedure Calls Reference Manual.

Cause. The print process does not recognize a device name that was received in a
supervisor request.

Effect. The spooler takes the device in question offline. If the error occurs before the
job has finished printing, the job remains in the spooler print queue. If the job has
finished printing but the device has not been closed, the job is deleted from the print
queue.

Recovery. Using Spoolcom, restart the device (for example, issue the DEV
$LP, START command).

If the error persists, stop and then restart the print process.

If the error occurs after you have stopped and restarted the print process, shut down
the spooler and then warmstart it.

Cause. The print process received a request from the supervisor to open a device that
is already open.

Effect. The spooler takes the device in question offline. If the error occurs before the
job has finished printing, the job remains in the spooler print queue. If the job has
finished printing but the device has not been closed, the job is deleted from the print
queue.

Recovery. Using Spoolcom, restart the device (for example, issue the DEV
$LP, START command).

If the error persists, stop and then restart the print process.

 5125 (%12005)

 5632 (%13000)

 5633 (%13001)
Spooler Programmer’s Guide—522287-002
C-14

Spooler-Related Errors Print Procedure Errors
If the error occurs after you have stopped and restarted the print process, shut down
the spooler and then warmstart it.

Cause. The print process received a request from the supervisor to perform an action
on a device that is busy.

Effect. The spooler takes the device in question offline. If the error occurs before the
job has finished printing, the job remains in the spooler print queue. If the job has
finished printing but the device has not been closed, the job is deleted from the print
queue.

Recovery. Using Spoolcom, restart the device (for example, issue the DEV
$LP, START command).

If the error persists, stop and then restart the print process.

If the error occurs after you have stopped and restarted the print process, shut down
the spooler and then warmstart it.

Cause. The print process received a request from the supervisor to start a job, but the
print process has run out of device table space.

Effect. The spooler takes the device in question offline. If the error occurs before the
job has finished printing, the job remains in the spooler print queue. If the job has
finished printing but the device has not been closed, the job is deleted from the print
queue.

Recovery. Using Spoolcom, restart the device (for example, issue the DEV
$LP, START command).

If the error persists, stop and then restart the print process.

If the error occurs after you have stopped and restarted the print process, shut down
the spooler and then warmstart it.

 5635 (%13003)

 5636 (%13004)
Spooler Programmer’s Guide—522287-002
C-15

Spooler-Related Errors Print Procedure Errors
Spooler Programmer’s Guide—522287-002
C-16

Index

A
Abend

See Abnormal termination

Abnormal termination
collector 1-12

job 1-10, 3-7

Accessing spooled data 4-9
Active state

collector 1-12

print process 1-14

spooler 1-8

Attributes, job 1-23, 1-26

B
BACKUP subcommand, SPOOLCOM
COLLECT 1-10, 4-36
BACKUP subcommand, SPOOLCOM
PRINT 1-13, 4-37
Batch job name, obtaining current 4-23
Batch jobs 1-26/1-28
BATCHNAME subcommand, SPOOLCOM
JOB 1-23
Batch, obtaining status of 4-57
Broadcast location 1-22
BROADCAST subcommand, SPOOLCOM
LOC 1-22, 4-35
Buffer overflow logic 2-25
Busy state, device 1-20

C
CHARMAP

device attribute of 1-16

device status of 4-48

CHARMAP subcommand, SPOOLCOM
DEV 1-16
Checkpointing considerations 2-17/2-35
CLOSE procedure 2-5, 2-8, 2-10
COBOL 2-14/2-16

COBOL85^SPECIAL^OPEN
procedure 2-14
COBOLSPOOLOPEN procedure 2-14
Cold state, spooler 1-8
Collector 1-3, 1-10/1-13
Communication, spooler 3-8
Components, spooler 1-3
Compression

ASCII 4-68

data 1-9

Control files, spooler 1-6
CONTROL procedure 1-10, 2-4
CONTROLBUF procedure 1-10, 2-4
COPIES subcommand, SPOOLCOM
JOB 1-23
CPU subcommand, SPOOLCOM
COLLECT 1-10
CPU subcommand, SPOOLCOM
PRINT 1-13
Cross-reference, obtaining 4-56
CTRLTOSPACE 3-3

D
Data buffer, level-3 spooling 4-26, 4-69
Data compression 1-9
Data files, spooler 1-6
DATA subcommand, SPOOLCOM
COLLECT 1-10
DEBUG subcommand, SPOOLCOM
PRINT 1-13
Debugging print processes 3-8
Destination name 1-22
DEV command, SPOOLCOM 1-16, 1-20
DEV subcommand, SPOOLCOM
LOC 1-22
Deverror state, device 1-20
Device

obtaining status of 4-46

Device errors 3-6
Devices 1-16/1-21
Spooler Programmer’s Guide—522287-002
Index-1

Index E
Disk files maintained by spooler 1-6
Dormant state

collector 1-12

print process 1-14

spooler 1-8

Drain state
collector 1-12

spooler 1-8

E
ERRLOG command, SPOOLCOM
SPOOLER 1-15
Error codes

file-system errors C-3/C-6

print procedure errors C-10/C-15

spooler interface errors C-1/C-3

spooler utility errors C-6/C-10

Error log file 1-15, 1-20
Error state

collector 1-12

Errors
device 3-6

job number 0 1-25

messages to supervisor 3-6

PRINTREAD 3-7

Exclusive
device 1-14, 1-21

EXCLUSIVE subcommand, SPOOLCOM
DEV 1-16

F
FASTP 1-3, 1-13
Fictitious device

see Device, virtual

FIFO subcommand, SPOOLCOM
DEV 1-16
FILE subcommand, SPOOLCOM
COLLECT 1-10
FILE subcommand, SPOOLCOM
PRINT 1-13

File-system errors C-3/C-6
FILE_OPEN_ procedure call 2-3
FONT subcommand, SPOOLCOM
LOC 1-22
Font, obtaining status of 4-57
Form name, batch job 1-26
FORM subcommand, SPOOLCOM
DEV 1-16
FORM subcommand, SPOOLCOM
JOB 1-23

G
Group name 1-22

H
Header messages, printing 4-15
HEADER subcommand, SPOOLCOM
DEV 1-16
Hold state

job 1-25

HOLD subcommand, SPOOLCOM
JOB 1-23
HOLDAFTER subcommand, SPOOLCOM
JOB 1-23

I
Independent print process 1-14
Initializing

communication with spooler

supervisor 4-7

Input-output (I/O) operations, device-
dependent 4-24, 4-26, 4-62
Interface errors C-1/C-3
Interface procedures, spooler 2-1

J
Job 1-23/1-26

attributes 1-23

controlling 1-26

destination 1-22
Spooler Programmer’s Guide—522287-002
Index-2

Index K
Job (continued)
key attributes 1-26

number 0 1-25

numbers 1-25, 4-60

obtaining status of 4-48, 4-54, 4-56

occurrences 1-25, 4-56

routing 1-25

states 1-10, 1-24/1-25

Job buffer, formatting for a spooler job 4-17
Job numbers, for spooled jobs 4-60
JOBID job attribute 1-26

K
Kanji translation 4-15, 4-32, 4-48
Key attributes 1-26

L
Levels of spooling 2-2
Level-1 spooling 2-2, 2-17/2-24

COBOL 2-14

example 2-5/2-7

nonzero sync depth 2-21/2-24

zero sync depth 2-17/2-20

Level-2 spooling 2-2
COBOL 2-14

establishing session 4-64

example 2-7/2-10

nonzero sync depth 2-21/2-24

zero sync depth 2-17/2-20

Level-3 buffer 4-24, 4-26, 4-62
Level-3 spooling 2-2, 2-25/2-35

COBOL 2-14

data buffer for 4-64

establishing session 4-64

example 2-10/2-13, 2-25/2-35

nonzero sync depth 2-31/2-35

zero sync depth 2-27/2-30

LOC subcommand, SPOOLCOM JOB 1-23
Location

batch job 1-26

connecting to a group 1-22

connecting to devices 1-22

obtaining a cross reference 4-56

obtaining status of 4-51, 4-56

Logical destination 1-22

M
MAXPRINTLINES subcommand,
SPOOLCOM JOB 1-23
MAXPRINTPAGES subcommand,
SPOOLCOM JOB 1-23
Messages

See also Error codes

Startup 3-4

supervisor 3-5

Multibyte character set translation 4-15,
4-32, 4-48

N
Nowait spooling 2-3

O
Offline state, device 1-20
OPEN procedure call 2-3
Open state

job 1-25

Opening a file to a collector 2-3
Overflow, buffer 2-25
Owner attribute, for batch jobs 1-26
OWNER subcommand, SPOOLCOM
JOB 1-23
Ownership, device 1-16
Spooler Programmer’s Guide—522287-002
Index-3

Index P
P
PAGESIZE subcommand, SPOOLCOM
COLLECT 1-10
PAGESIZE subcommand, SPOOLCOM
JOB 1-23
PARM subcommand, SPOOLCOM
DEV 1-16
PARM subcommand, SPOOLCOM
PRINT 1-13
Perusal process 3-1, 3-9/3-10

accessing a spooled job 4-42

basic outline of 3-10

reading spooled data 4-12

sample B-1/B-15

writing 3-9

PERUSE 1-3
PERUSE operations, in a program 4-30
Physical destination 1-22
PRI subcommand, SPOOLCOM
COLLECT 1-10
PRI subcommand, SPOOLCOM
PRINT 1-13
Print job status 4-5
Print procedures 3-1

errors C-10/C-15

external declarations 3-3

summary 3-1

Print process 1-13/1-16, 3-1, 3-3/3-9
attributes 1-13

communicating with spooler
supervisor 3-5/3-6

communication with spooler
supervisor 4-3, 4-5

debugging 3-8

difference from perusal process 3-9

how job is handled 3-2

independent 1-15

initializing communication with

spooler supervisor 4-7

obtaining a cross reference 4-56

obtaining status of 4-52

Print process (continued)
printing spooled data 3-4

reading spooled data 4-9, 4-12

sample A-1/A-23

sending status messages to the
spooler 4-19

Startup message 3-4

states 1-14

writing 3-3/3-9

Print process states 1-14
Print state

job 1-25

Print status messages 4-21
PRINTCOMPLETE[2] procedure 3-1, 4-3
PRINTINFO procedure 3-1, 4-5
Printing a job 3-2
Printing spooled data 3-4
PRINTINIT[2] procedure 3-1, 4-7
PRINTREAD errors 3-7
PRINTREAD procedure 3-1, 4-9
PRINTREADCOMMAND procedure 3-1,
4-12
PRINTSTART[2] procedure 3-1, 4-17
PRINTSTATUS[2] procedure 3-1, 4-19
Procedures

See also Spooler procedures

description 4-1/4-70

Procerror state
print process 1-15

Procerror state, device 1-20
PROCESS subcommand, SPOOLCOM
DEV 1-16

Q
Queues, device 1-21, 4-55
Spooler Programmer’s Guide—522287-002
Index-4

Index R
R
Ready state

job 1-25

REPORT subcommand, SPOOLCOM
JOB 1-23
RESTART subcommand, SPOOLCOM
DEV 1-16
RETRY subcommand, SPOOLCOM
DEV 1-16
Routing structure 1-22/1-23

S
SELPRI subcommand, SPOOLCOM
JOB 1-23
Sessions, establishing spooling 4-64
SETMODE procedure 1-10, 2-4
Sharing a device 1-21
SPEED subcommand, SPOOLCOM
DEV 1-16
SPOOLBATCHNAME procedure 4-23
SPOOLCOM 1-4
SPOOLCOM operations

BATCH 4-40

COLLECT 4-36

DEV 4-32

FONT 4-39

JOB 4-34

LOC 4-35

PRINT 4-37

SPOOLER 4-38

SPOOLCOM operations, in a
program 4-30/4-40
SPOOLCONTROL procedure 1-10, 2-4,
4-24
SPOOLCONTROLBUF procedure 1-10,
2-4, 4-26
SPOOLEND procedure 4-28
Spooler

collector, See Collector

communication 3-8

components 1-3

Spooler (continued)
control files 1-6

creation 1-7

data files 1-6

draining 1-8

features 1-2

files 1-6

job states 1-10

multiple 1-6

obtaining a cross reference 4-56

obtaining status

of a device 4-46

of a job 4-48

obtaining status of 4-53

perusal process

See Perusal process

print procedures

See Print procedures

print process

See Print process

print processes 1-13

starting 1-7

states 1-7

unit size 1-12

Spooler error codes
See Error codes

Spooler interface errors C-1/C-3
Spooler interface procedures

external declarations 2-2

summary 2-1

Spooler job files
formatting job buffer 4-17

job status 4-5

opening 4-64

printing 4-9

writing to 4-69

Spooler procedure functions
accessing a spooled job 4-42

communicating with a print process 4-3
Spooler Programmer’s Guide—522287-002
Index-5

Index S
Spooler procedure functions (continued)
completing a job 4-28

establishing a spooling session 4-64

obtaining number of spooled job 4-60

obtaining status of a spooler

component 4-44

obtaining status of spooler
components 4-44

performing

device-dependent I/O 4-24

PERUSE operations 4-30

SPOOLCOM operations 4-30

performing device-dependent I/O 4-24,
4-26, 4-62

writing to the collector 4-69

Spooler procedures
PRINTCOMPLETE[2] 4-3

PRINTINFO 4-5

PRINTINIT[2] 4-7

PRINTREAD 4-9

PRINTREADCOMMAND 4-12

PRINTSTART[2] 4-17

PRINTSTATUS[2] 4-19

SPOOLBATCHNAME 4-23

SPOOLCONTROL 4-24

SPOOLCONTROLBUF 4-26

SPOOLEND 4-28

SPOOLERCOMMAND 4-30

SPOOLEREQUEST[2] 4-42

SPOOLERSTATUS2 4-44

SPOOLJOBNUM 4-60

SPOOLSETMODE 4-62

SPOOLSTART 4-64

SPOOLWRITE 4-69

Spooler states 1-7
Spooler supervisor 1-3

communicating with 3-5

messages 3-5/3-6

messages from 3-8

sending error messages to 3-6

Spooler utility errors C-6/C-10
SPOOLERCOMMAND procedure 4-30
SPOOLEREQUEST[2] procedure 4-42
SPOOLERSTATUS[2] procedure 4-44,
4-46
Spooling

See also Level-1 spooling

See also Level-2 spooling

See also Level-3 spooling

across a network 3-3

at different levels 2-3

collector limits 2-3

from a NonStop process pair 2-17

levels of 2-2

nowait I/O 2-3

See also Level-1 spooling

See also Level-2 spooling

See also Level-3 spooling

several concurrent jobs 2-3

waited I/O 2-3

Spooling example
COBOL 2-14

level-1 2-5

level-2 2-7

level-3 2-10

Spooling session, establishing 4-64
SPOOLJOBNUM procedure 4-60
SPOOLSETMODE procedure 1-10, 2-4,
4-62
SPOOLSTART procedure 4-64
SPOOLWRITE procedure 4-69
Startup message format 3-4
Status, obtaining

of a batch 4-57

of a collector 4-51

of a font 4-57

of a location 4-51

of a print process 4-52

of jobs at a location 4-56

of jobs in a device queue 4-55
Spooler Programmer’s Guide—522287-002
Index-6

Index T
Status, obtaining (continued)
of jobs waiting to print 4-54

of occurrences of a job 4-56

of the spooler 4-53

STOP command 1-8, 1-16
Supervisor

See Spooler supervisor

Suspended state, device 1-20
Sync depth 2-17

T
TIMEOUT subcommand, SPOOLCOM
DEV 1-16
Top-of-form control 1-10, 2-5
TRUNC subcommand, SPOOLCOM
DEV 1-16

U
Unit size 1-12
UNIT subcommand, SPOOLCOM
COLLECT 1-10

W
Waited spooling 2-3
Waiting state, device 1-20
Warm state

spooler 1-8

WIDTH subcommand, SPOOLCOM
DEV 1-16
Writing perusal processes 3-9/3-10
Writing print processes 3-3/3-9

Special Characters
$SYSTEM.SYSTEM.CSPOOL 1-10
$SYSTEM.SYSTEM.EXTDECS0 2-2, 3-3
$SYSTEM.SYSTEM.FASTP 1-13
Spooler Programmer’s Guide—522287-002
Index-7

	Spooler Programmer’s Guide
	Legal Notices
	Contents

	What’s New in This Manual
	Manual Information
	About This Manual
	Who Should Use This Manual
	How This Manual Is Organized
	Related Manuals
	Notation Conventions
	HP Encourages Your Comments

	1 Introduction to the Spooler Subsystem
	Spooler and Spooler Plus Comparison
	Spooler Features
	Spooler Components
	Spooler Supervisor
	Collector
	Print Processes
	Perusal Processes
	Spoolcom

	Disk Files Maintained by the Spooler
	Multiple Spoolers
	Spooler States
	Spooling From an Application Program
	Data Compression
	Job States While Spooling From a Program

	Collectors
	Collector Attributes
	Collector States
	Unit Size

	Print Processes
	Print Process Attributes
	Print Process States
	Independent Print Processes

	Devices
	Device Attributes
	Device States
	Declaring and Initializing Devices
	Virtual Devices
	Device Ownership
	Device Queues

	Routing Structure
	Locations
	Connecting Devices and Locations

	Jobs
	Job Attributes
	Job States
	Job Numbers
	Occurrences of Jobs
	Controlling Jobs

	The Spooler and Batch Jobs

	2 Using the Spooler Interface Procedures
	External Declarations for Spooler Interface Procedures
	Levels of Spooling From an Application Program
	Opening a File to a Collector
	Summary of Spooling From an Application Program

	COBOL Spooling
	COBOL Spooling-Level 1
	COBOL Spooling-Levels 2 and 3

	Spooling From a NonStop Process Pair
	Use of Sync Depth
	Spooling-Levels 1 and 2
	Spooling-Level 3

	3 Using the Spooler Print Procedures, Print Processes, and Perusal Processes
	Print and Perusal Processes
	Summary of Print Procedures
	How the Print Process Handles a Job
	External Declarations for Print Procedures
	Writing a Print Process
	Print Process Startup Message
	Retrieving and Printing Spooled Data
	Communicating With the Spooler Supervisor
	Device Errors
	PRINTREAD Errors
	Combining Data Retrieval With Spooler Communication
	Debugging Print Processes

	Writing a Perusal Process
	Outline of the Basic Perusal Process

	4 Spooler Procedure Calls
	PRINTCOMPLETE[2] Procedure
	Considerations
	Example

	PRINTINFO Procedure
	Considerations

	PRINTINIT[2] Procedure
	Considerations

	PRINTREAD Procedure
	Considerations
	Example

	PRINTREADCOMMAND Procedure
	Considerations
	Example

	PRINTSTART[2] Procedure
	Considerations

	PRINTSTATUS[2] Procedure
	Considerations
	Example

	SPOOLBATCHNAME Procedure
	Considerations

	SPOOLCONTROL Procedure
	Considerations

	SPOOLCONTROLBUF Procedure
	Considerations
	Example

	SPOOLEND Procedure
	Considerations
	Example

	SPOOLERCOMMAND Procedure
	SPOOLERCOMMAND Procedure and Subcommand Parameters
	Considerations
	Example

	SPOOLEREQUEST[2] Procedure
	Considerations

	SPOOLERSTATUS2 Procedure
	Considerations
	Obtaining the Spooler Statistics and Status

	SPOOLJOBNUM Procedure
	Considerations
	Example

	SPOOLSETMODE Procedure
	Considerations
	Example

	SPOOLSTART Procedure
	Considerations

	SPOOLWRITE Procedure
	Considerations
	Example

	A Sample Print Process
	B Sample Perusal Process
	C Spooler-Related Errors
	Interface Errors
	File-System Errors
	Spooler Utility Errors
	Print Procedure Errors

