
HP NonStop SQL/MP
Query Guide
Abstract

This manual describes how to write queries for an HP NonStop™ SQL/MP database.
Users who want information on how to use the SELECT statement, as well as those
who program or manage a NonStop SQL/MP database, will find this manual helpful.

Product Version

NonStop SQL/MP G07

Supported Release Version Updates (RVUs)

This publication supports D31.00 and all subsequent D-series RVUs and G06.13 and
all subsequent G-series RVUs until otherwise indicated by its replacement publication.

Part Number Published

524488-003 November 2004

Document History
Part Number Product Version Published

093964-000 NonStop SQL/MP D30 December 1994

118375-001 NonStop SQL/MP D30 February 1996

524488-001 NonStop SQL/MP D30 August 2002

524488-002 NonStop SQL/MP G07 February 2004

524488-003 NonStop SQL/MP G07 November 2004

HP NonStop SQL/MP Query
Guide
Index Examples Figures Tables
What’s New in This Manual xi
Manual Information xi
New and Changed Information xi

About This Manual xiii
Who Should Use This Manual? xiii
Prerequisites xiii
Organization xiii
Related Manuals xiv
Notation Conventions xvi

1. Retrieving Data: How to Write Queries
Using the SELECT Statement 1-2

Selecting Columns 1-3
Selecting Rows 1-4
Organizing Results 1-4
Specifying Search Conditions 1-8
Using the SELECT Statement in Programs 1-10

Using Null Values 1-14
Using String Functions 1-15

Extracting Part of a String 1-15
Searching for a String Within a String 1-17
Searching for a String Without Regard for its Case 1-18
Determining the Length of a String 1-18
Removing Leading or Trailing Characters From a String 1-19

Using the Concatenation Operator 1-20
Using Date-Time Columns 1-21

Accessing Date-Time Values 1-22
Specifying Date-Time Values in Programs 1-28

Defining Subqueries 1-28
Correlated Subqueries 1-29
Noncorrelated Subqueries 1-29
 Hewlett-Packard Company—524488-003
i

Contents 1. Retrieving Data: How to Write
Queries (continued)
1. Retrieving Data: How to Write Queries (continued)
Defining Predicates 1-30

Comparison Predicate 1-31
BETWEEN Predicate 1-32
LIKE Predicate 1-33
Predicates Connected by OR Operators 1-35
IN Predicate 1-36
EXISTS Predicate 1-37
Quantified Predicates 1-38
IS NULL Predicate 1-39
Multivalued Comparison Predicate 1-40
Using Multivalued Comparison Predicates in Context-Free Servers 1-41
Aggregate Functions in Predicates 1-41

Using CASE Expressions 1-43
Decoding Values 1-43
Evaluating Multiple Conditions 1-44
Computing Aggregates Based on Specific Conditions 1-45
Finding the Highest Value in a Row 1-47
Converting Long, Narrow Tables Into Short, Wide Ones 1-49
Ignoring the Largest and Smallest Values in a Set 1-51

Combining Data From More Than One Table 1-51
Types of Join Queries 1-53
Restrictions on Join Queries 1-59
Using Views With Joins 1-59
The ON Clause and the WHERE Clause in Join Queries 1-59

Using the UNION Operator 1-61
ORDER BY Clause With UNION Operator 1-63
GROUP BY and HAVING Clauses With UNION Operator 1-64
Using Collations With the UNION Operator 1-64

Developing Interactive Multistep Queries 1-65
Multilevel Group Aggregates 1-65
Computing Row Value as a Percent of All Row Values 1-66

2. The Optimizer
SQL Components and the Optimizer 2-1

SQL Executor 2-3
File System 2-3
Disk Processes 2-3

How the Optimizer Chooses an Execution Plan 2-3
HP NonStop SQL/MP Query Guide—524488-003
ii

Contents 2. The Optimizer (continued)
2. The Optimizer (continued)
Processor Assignment by the SQL/MP Optimizer and Executor for Executor Server

Processes (ESPs) 2-5

3. Improving Query Performance Through Query Design
Selecting Columns for Faster Data Access 3-2
Preparing Queries 3-3
How the Optimizer Processes Predicates 3-4

Classification of Predicates 3-4
Transformation of Predicates 3-4
Evaluation of Predicates 3-12

Writing Efficient Predicates 3-15
Positioning With Key Predicates 3-16
Specifying Join Predicates 3-18
Specifying Multivalued Predicates 3-19
Controlling the Expansion of Predicates 3-20
Using OR Operators in Predicates 3-22
Using LIKE Predicates 3-24

How the Optimizer Processes Join Operations 3-24
Nested Join 3-25
Sort Merge Join 3-25
Key-Sequenced Merge Join 3-27
Hash Join 3-29
Determining a Join Strategy 3-34

Writing Efficient Joins 3-39
Using Indexes 3-40
Eliminating Implicit Joins 3-40
Adding Join Predicates 3-41
Using Joins Instead of Subqueries 3-41
Specifying a Join Method 3-43
Specifying a Join Sequence 3-45

How the Optimizer Processes Aggregates and Group-By Operations 3-46
MIN and MAX Optimization 3-46
Evaluation by the Disk Process 3-47
Evaluation by the Executor Component 3-50
Hashed Aggregation and Grouping 3-50
Sorted GROUP BY Operation 3-51

Optimizing Subqueries 3-51
Correlated Subquery 3-51
HP NonStop SQL/MP Query Guide—524488-003
iii

Contents 3. Improving Query Performance Through Query
Design (continued)
3. Improving Query Performance Through Query
Design (continued)

Noncorrelated Subquery 3-53
Avoiding Full Table Scans 3-54
Minimizing Sort Costs for Ordering and Grouping Operations 3-54

Sort Operations 3-55
Optimizing Combinations of Clauses 3-57
Using Indexes 3-58

Writing Efficient Programmatic Statements 3-60
Single-Row and Multiple-Row SELECT Statements 3-60
Multiple-Row (Cursor) SELECT Statements 3-60
Update and Insert Operations 3-60

Decision Support Considerations 3-61
Online Transaction Processing Considerations 3-62
Batch Considerations 3-63

4. Improving Query Performance With Environmental Options
Keeping Statistics Current 4-2
Optimizing the Access Path 4-4

Primary Access 4-4
Alternate-Index Access 4-5
Using the CONTROL QUERY Directive 4-6
Selecting an Access Path When an Index Is Not Available 4-7
Understanding Unexpected Access Paths 4-8
Specifying an Access Path 4-11

Requesting Parallel Processing 4-13
Using the CONTROL EXECUTOR Directive 4-13
How Parallel Processing Is Implemented 4-14
Requesting Parallel Operations on Partitioned Data 4-14

Specifying Access Option and Lock Characteristics 4-16
Access Option 4-16
Lock Mode 4-19
Lock Granularity 4-19
Waiting For Locks 4-20
Performance Implications 4-20

Reducing Messages With Buffering Options 4-21
Types of Buffering 4-21
Single-Row Access 4-22
Real Sequential Block Buffering (RSBB) 4-23
HP NonStop SQL/MP Query Guide—524488-003
iv

Contents 4. Improving Query Performance With
Environmental Options (continued)
4. Improving Query Performance With Environmental
Options (continued)

Virtual Sequential Block Buffering (VSBB) 4-24
Comparison of Buffering Types 4-27
Requesting Buffering 4-28
Optimizing Sequential Access With Block Buffering 4-28
Effects of Cursor Operations on Performance 4-28

Controlling the Opening of Tables, Views, and Indexes 4-29
Controlling the Number of Key Columns Used by MDAM 4-30
Controlling MDAM’s Use of DENSE or SPARSE Algorithms 4-30
Controlling the Creation of NonStop SQL/MP Processes 4-31
Enhancing Sort Performance 4-32
Understanding Concurrency 4-32
Minimizing Overhead of Query Programs 4-33

5. Selectivity and Cost Estimates
How the Optimizer Estimates Selectivity 5-1

Computing Selectivity 5-2
Predicate Selectivity 5-3
Index Selectivity 5-6
Table Selectivity 5-7
Example Combining Predicate, Index, and Table Selectivity 5-8
Use of Default Selectivity Values 5-9
Join Selectivity 5-10
Grouping Selectivity 5-10

Assigning Cost to a Query 5-11
Cost of Accessing Tables 5-12
Cost of Physical I/Os 5-12
Cost of Record Overhead 5-13
Cost of Messages 5-13
Cost of Data Transfer 5-13
Cost of Subqueries 5-14
Cost of Sorts 5-14
Cost of Join Operations 5-15
The Effects of Indexes and Predicates on Costs 5-16
The Effect of the MultiDimensional Access Method (MDAM) on Costs 5-17

Evaluating Cost Estimates 5-19
How the Optimizer Chooses an Execution Plan 5-19
Forcing Execution Plans 5-20
HP NonStop SQL/MP Query Guide—524488-003
v

Contents 6. Analyzing Query Performance
6. Analyzing Query Performance
Guidelines for Tuning Queries 6-2
Preparing Your Queries 6-3
Using DISPLAY STATISTICS 6-3

Simple Query Example 6-4
Simple Query With ORDER BY Example 6-6

Using Measure 6-7
Process Execution 6-7
Statement Execution 6-7
Evaluating Measure Data 6-8

Using EXPLAIN 6-8
Generating an EXPLAIN Plan 6-9
Interpreting an EXPLAIN Plan 6-12
Reviewing Sample EXPLAIN Plans 6-16

EXPLAIN Plan for Simple SELECT 6-16
EXPLAIN Plan for Primary Access 6-18
EXPLAIN Plan for Index-Only Access 6-19
EXPLAIN Plans for Bounded Predicates 6-20

Query With Lower Bound 6-20
Query With Lower and Upper Bound 6-22

EXPLAIN Plan for Key Predicates 6-23
EXPLAIN Plan for DISTINCT 6-24
EXPLAIN Plan for ORDER BY 6-25
EXPLAIN Plans for GROUP BY 6-26

SELECT With GROUP BY Using a Serial Plan 6-26
SELECT With GROUP BY Using a Parallel Plan 6-28

EXPLAIN Plans for Subqueries 6-29
Noncorrelated Subquery 6-29
Correlated Subquery 6-31

EXPLAIN Plans for CASE 6-33
CASE With Multiple Conditions 6-33
CASE With Aggregates 6-34
CASE for Finding the Highest Value in a Row 6-35
CASE for Converting Long, Narrow Tables Into Short, Wide Ones 6-36
CASE for Ignoring the Largest and Smallest Values in a Set 6-38

EXPLAIN Plans for String Functions 6-39
SUBSTRING 6-39
TRIM and CHAR_LENGTH 6-40

EXPLAIN Plans for MDAM 6-42
HP NonStop SQL/MP Query Guide—524488-003
vi

Contents 6. Analyzing Query Performance (continued)
6. Analyzing Query Performance (continued)
MDAM With OR and Equality Predicate on Second Key Column 6-42
MDAM with Missing First Key Column 6-43
MDAM With IN List on Key Column 6-44
MDAM With Multiple Predicate Sets, LIKE, and Missing Key Column 6-44

EXPLAIN Plan for Determining the Cost of Multiple Predicate Sets 6-46
EXPLAIN Plan for Selectivity for Range Predicates 6-47
EXPLAIN Plans for Join Queries 6-48

Parallel Execution of Hash Join 6-49
Nested Inner Join 6-51
Cross Product Join 6-53
Parallel Execution of Nested Inner Join 6-56
Parallel Execution of Forced Merged Inner Join 6-58
Key-Sequenced Merge Join 6-60
Key-Sequenced Merge Join With Executor Aggregates 6-62
Left Join Not Transformed Into an Inner Join 6-64
Left Join Transformed Into an Inner Join 6-66

EXPLAIN Plan for UNION Operation 6-68
EXPLAIN Plan for MAX Optimization 6-70
EXPLAIN Plan for Cursor UPDATE 6-72
EXPLAIN Plan for Cursor DELETE 6-73
EXPLAIN Plan for INSERT 6-74
EXPLAIN Plan for INSERT-SELECT 6-75
EXPLAIN Plan for UPDATE 6-77
EXPLAIN Plan With Date-Time Values 6-78

HOUR Date-Time Values 6-78
DAY Date-Time Values 6-79

Comparing Cost: A Scenario 6-80
First Formulation 6-80
Second Formulation 6-83

Index

Examples
Example 1-1. SELECT Statement With ORDER BY Clause 1-5
Example 1-2. SELECT Statement With Duplicate Rows 1-6
Example 1-3. SELECT Statement With DISTINCT Clause 1-6
Example 1-4. SELECT Statement With GROUP BY Clause 1-7
Example 1-5. SELECT Statement With GROUP BY Clause and SUM Function 1-8
HP NonStop SQL/MP Query Guide—524488-003
vii

Contents Examples (continued)
Examples (continued)
Example 1-6. SELECT Statement With WHERE Clause 1-9
Example 1-7. SELECT Statement With HAVING Clause 1-9
Example 1-8. Sample Tables for Predicate Examples 1-31
Example 1-9. Sample Tables for Join Examples 1-54
Example 1-10. Sample Tables For Hierarchical Relationship Examples 1-57
Example 6-1. Simple Query 6-4
Example 6-2. DISPLAY STATISTICS for Simple Query 6-4
Example 6-3. Simple Query With ORDER BY 6-6
Example 6-4. DISPLAY STATISTICS for Simple Query With ORDER BY 6-6
Example 6-5. EXPLAIN Plan for Simple Query With ORDER BY 6-10
Example 6-6. EXPLAIN Plan for Simple Query Without ORDER BY 6-11
Example 6-7. EXPLAIN Plan for Simple SELECT 6-17
Example 6-8. EXPLAIN Plan Choosing Primary Access 6-18
Example 6-9. EXPLAIN Plan Choosing Index-Only Access 6-20
Example 6-10. EXPLAIN Plan for Lower-Bound Predicate 6-21
Example 6-11. EXPLAIN Plan for Lower and Upper Bounded Predicates 6-22
Example 6-12. EXPLAIN Plan for Key Predicates 6-23
Example 6-13. EXPLAIN Plan for SELECT DISTINCT 6-24
Example 6-14. EXPLAIN Plan for SELECT With ORDER BY 6-25
Example 6-15. EXPLAIN Plan for SELECT With GROUP BY Using a Serial

Plan 6-26
Example 6-16. EXPLAIN Plan for SELECT With GROUP BY Using a Parallel

Plan 6-28
Example 6-17. EXPLAIN Plan for Noncorrelated Subquery 6-30
Example 6-18. EXPLAIN Plan for Correlated Subquery 6-31
Example 6-19. EXPLAIN Plan for CASE With Multiple Conditions 6-33
Example 6-20. EXPLAIN Plan for CASE With Aggregates 6-34
Example 6-21. EXPLAIN Plan for CASE for Finding the Highest Value in a

Row 6-35
Example 6-22. EXPLAIN Plan for Converting Long, Narrow Tables Into Short, Wide

Ones 6-37
Example 6-23. EXPLAIN Plan for Ignoring the Largest and Smallest Values in a

Set 6-38
Example 6-24. EXPLAIN Plan for SUBSTRING 6-40
Example 6-25. EXPLAIN Plan for TRIM and CHAR_LENGTH 6-41
Example 6-26. EXPLAIN Plan for MDAM With OR and Equality Predicate on Second

Key Column 6-42
Example 6-27. EXPLAIN Plan for MDAM With Missing First Key Column 6-43
Example 6-28. EXPLAIN Plan for MDAM With IN List on Key Column 6-44
HP NonStop SQL/MP Query Guide—524488-003
viii

Contents Examples (continued)
Examples (continued)
Example 6-29. EXPLAIN Plan for MDAM With Multiple Predicate Sets, LIKE, and

Missing Leading Key Column 6-45
Example 6-30. EXPLAIN Plan for Determining the Cost of Multiple Predicate

Sets 6-46
Example 6-31. EXPLAIN Plan for Selectivity for Range Predicates 6-48
Example 6-32. EXPLAIN Plan for Hash Join 6-49
Example 6-33. EXPLAIN Plan for Nested Inner Join 6-52
Example 6-34. EXPLAIN Plan for Cross Product Join 6-54
Example 6-35. EXPLAIN Plan for Nested Inner Join 6-56
Example 6-36. EXPLAIN Plan for Parallel Execution of Sort Merge Inner Join 6-58
Example 6-37. EXPLAIN Plan for Key-Sequenced Merge Join 6-61
Example 6-38. EXPLAIN Plan for Key-Sequenced Merge Join With Executor

Aggregates 6-63
Example 6-39. EXPLAIN Plan for Left Join Not Transformed Into an Inner Join 6-65
Example 6-40. EXPLAIN Plan for Left Join Transformed Into an Inner Join 6-67
Example 6-41. EXPLAIN Plan for UNION Operation 6-69
Example 6-42. EXPLAIN Plan for MAX Optimization 6-71
Example 6-43. EXPLAIN Plan for Cursor UPDATE 6-72
Example 6-44. EXPLAIN Plan for Cursor DELETE 6-74
Example 6-45. EXPLAIN Plan for INSERT Statement 6-75
Example 6-46. EXPLAIN Plan for INSERT With SELECT 6-76
Example 6-47. EXPLAIN Plan for Unique UPDATE 6-77
Example 6-48. EXPLAIN Plan With HOUR Date-Time Values 6-79
Example 6-49. EXPLAIN Plan With DAY Date-Time Values 6-80
Example 6-50. DISPLAY STATISTICS Output for QUERY1 6-81
Example 6-51. EXPLAIN Plan for QUERY1 6-82
Example 6-52. DISPLAY STATISTICS Output for QUERY2 6-84
Example 6-53. EXPLAIN Plan for QUERY2 6-84

Figures
Figure i. NonStop SQL/MP Library Map xv
Figure 1-1. Selecting Columns From a Table (Projection) 1-3
Figure 1-2. Selecting Rows From a Table (Restriction) 1-4
Figure 1-3. Selecting From Two Tables 1-53
Figure 1-4. UNION of Two Tables 1-62
Figure 1-5. UNION ALL of Two Tables 1-62
Figure 2-1. SQL Components That Execute a Query 2-2
Figure 3-1. Nested Join 3-25
HP NonStop SQL/MP Query Guide—524488-003
ix

Contents Figures (continued)
Figures (continued)
Figure 3-2. Sort Merge Join 3-27
Figure 3-3. Key-Sequenced Merge Join 3-29
Figure 3-4. Hash Function Example 3-30
Figure 4-1. Parallel Execution of a SELECT Statement 4-15
Figure 4-2. Single-Row Access 4-22
Figure 4-3. Real Sequential Block Buffering (RSBB) 4-23
Figure 4-4. Virtual Sequential Block Buffering (VSBB) 4-25

Tables
Table i. Summary of Contents xiii
Table 1-1. Date-Time Data Types 1-21
Table 1-2. Sample Table for Date-Time and INTERVAL Arithmetic Examples 1-22
Table 1-3. Date-Time Functions 1-24
Table 1-4. Evaluation of Expressions That Contain Null Values 1-40
Table 1-5. Aggregate Functions 1-41
Table 3-1. The Effect of =_SQL_CMP_EQ_LIMIT Values on Compilation

Time 3-20
Table 3-2. Rules for Expansion of Useful Equality Predicates 3-21
Table 3-3. Calculation of Resource Costs for Joins 3-36
Table 3-4. Comparison of Join Strategies 3-37
Table 4-1. A Comparison of Buffering Modes 4-27
Table 5-1. Selectivity Formulas for Multivalued Predicates 5-5
Table 5-2. Computed and Default Selectivity Values for Predicates 5-9
Table 5-3. Costs for Indexes With Predicates 5-16
HP NonStop SQL/MP Query Guide—524488-003
x

What’s New in This Manual

Manual Information
HP NonStop SQL/MP Query Guide

Abstract

This manual describes how to write queries for an HP NonStop™ SQL/MP database.
Users who want information on how to use the SELECT statement, as well as those
who program or manage a NonStop SQL/MP database, will find this manual helpful.

Product Version

NonStop SQL/MP G07

Supported Release Version Updates (RVUs)

This publication supports D31.00 and all subsequent D-series RVUs and G06.13 and
all subsequent G-series RVUs until otherwise indicated by its replacement publication.

Document History

New and Changed Information
Added a new subsection, Processor Assignment by the SQL/MP Optimizer and
Executor for Executor Server Processes (ESPs) on page 2-5.

Part Number Published

524488-003 November 2004

Part Number Product Version Published

093964-000 NonStop SQL/MP D30 December 1994

118375-001 NonStop SQL/MP D30 February 1996

524488-001 NonStop SQL/MP D30 August 2002

524488-002 NonStop SQL/MP G07 February 2004

524488-003 NonStop SQL/MP G07 November 2004
HP NonStop SQL/MP Query Guide—524488-003
xi

What’s New in This Manual New and Changed Information
HP NonStop SQL/MP Query Guide—524488-003
xii

About This Manual
NonStop SQL/MP is an HP implementation of a relational database management
system that uses the industry-standard Structured Query Language (SQL) to define
and manipulate data.

Who Should Use This Manual?
This manual is for any NonStop SQL/MP user, although there are two primary
audiences:

• Users who want information on how to write SELECT statements

• Users who want to know how query design affects system performance

Prerequisites
This manual discusses the use and formulation of queries. Examples are in interactive
form, such as that used by the NonStop SQL/MP Conversational Interface (SQLCI).
Before reading this manual, you should understand these concepts:

• Tables, including key-sequenced, relative, and entry-sequenced table structures
• Primary keys
• Indexes
• Views
• Data Partitioning

For more information about these concepts, see the Introduction to NonStop SQL/MP.

You should also be familiar with the operating system and one of the host
programming languages: C, COBOL85, Pascal, or TAL. You should also understand
relational database theory and terminology.

If you are not yet familiar with NonStop SQL/MP, you should read the Introduction to
NonStop SQL/MP and the SQL/MP Quick Start before reading this manual.

Organization

Table i. Summary of Contents (page 1 of 2)

Section 1, Retrieving Data:
How to Write Queries

Describes how to write queries for a NonStop SQL/MP
database and provides information on how to retrieve data.

Section 2, The Optimizer Explains how the NonStop SQL/MP optimizer chooses a
query execution plan and how you can influence its choice
of a plan

Section 3, Improving Query
Performance Through Query
Design

Describes how to write queries so that they capitalize on
SQL performance features and how to improve query
performances.
HP NonStop SQL/MP Query Guide—524488-003
xiii

About This Manual Related Manuals
Related Manuals
This manual is part of the NonStop SQL/MP library of manuals, as shown in Figure i on
page -xv.

In addition to this manual, the library includes these manuals:

• Introduction to NonStop SQL/MP provides an overview of the NonStop SQL/MP
relational database management system.

• SQL Quick Start describes how to use basic features of the NonStop SQL/MP
conversational interface (SQLCI), how to execute simple queries, and how to use
the SQLCI report writer to produce a simple formatted report.

• SQL/MP Reference Manual describes the language elements and statement and
command syntax for all NonStop SQL/MP statements and SQLCI commands.

• SQL/MP Report Writer Guide describes use of the NonStop SQL/MP report writer
commands and SQLCI options that relate to reports.

• SQL/MP Programming Manual (available for C and COBOL) and the SQL
Programming Manual (available for Pascal and TAL) describe the programmatic
interface for the particular host language.

• SQL/MP Installation and Management Guide describes how to perform the tasks of
planning, installing, creating, and managing a NonStop SQL/MP database.

• SQL/MP Version Management Guide provides guidelines for managing NonStop
SQL/MP installations using the NonStop SQL/MP version management system.

• SQL/MP Messages Manual describes NonStop SQL/MP messages for the
NonStop SQL/MP conversational interface, the application programming interface,
and NonStop SQL/MP utilities, as well as file-system and FastSort messages
returned by NonStop SQL/MP.

• SQL/MP Glossary describes the SQL database terminology used in the NonStop
SQL/MP documentation library.

Section 4, Improving Query
Performance With
Environmental Options

Discusses several environmental factors that can influence
query performance

Section 5, Selectivity and
Cost Estimates

Discusses how the optimizer estimates selectivity, assigning
cost to a query, evaluating cost estimates, how the
optimizer chooses an execution plan, and forcing execution
plans.

Section 6, Analyzing Query
Performance

Discusses how to analyze query performance by using
DISPLAY STATISTICS, the Measure product, and the
EXPLAIN utility.

Table i. Summary of Contents (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
xiv

About This Manual Related Manuals
Figure i. NonStop SQL/MP Library Map

VSTX01.vsd

Introduction
to NonStop
SQL
(C30 07)*

NonStop
SQL Quick
Start
(C30 07)*

NonStop
SQL/MP
Install and
Management
Guide

NonStop
SQL/MP
Programming
Manual for C

NonStop
SQL/MP
Programming
Manual for
COBOL85

NonStop
SQL/MP
Query
Guide

NonStop
SQL/MP
Report Writer
Guide

NonStop
SQL/MP
Programming
Manual for
Pascal
(C30 07)*

NonStop
SQL/MP
Programming
Manual for
TAL
(C30 07)*

NonStop
SQL/MP
Messages
Manual

NonStop
SQL/MP
Reference
Manual

NonStop
SQL/MP
Glossary

NonStop
SQL/MP
Version
Management
Guide

Introductory Manuals

Usage Guides Programming Manuals

Reference Manuals

* C30-level documentation - does not include information about D30 enhancements
HP NonStop SQL/MP Query Guide—524488-003
xv

About This Manual Notation Conventions
Notation Conventions

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
HP NonStop SQL/MP Query Guide—524488-003
xvi

About This Manual General Syntax Notation
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…
HP NonStop SQL/MP Query Guide—524488-003
xvii

About This Manual General Syntax Notation
HP NonStop SQL/MP Query Guide—524488-003
xviii

1
Retrieving Data: How to Write
Queries

A query is a statement that requests data from a database. This section describes how
to write queries for a NonStop SQL/MP database. You can specify a query explicitly by
using interactive SELECT statements, application-embedded SELECT and CURSOR
statements, and report writer selections. You can specify a query implicitly in UPDATE,
INSERT, and DELETE statements.

A query can use either dynamic or static SQL. Ad hoc queries submitted through an
interface such as the NonStop ODBC Server and queries submitted directly through
the conversational interface (SQLCI) are likely to be dynamic. NonStop SQL/MP
prepares these queries for execution, compiles them, and executes them as soon as
they are submitted.

Host-language programs containing embedded SQL statements are likely to use static
SQL. NonStop SQL/MP compiles static SQL statements when the program is
developed, after the language compiler compiles the host-language source code. For
further information, see the Introduction to NonStop SQL/MP manual, the SQL/MP
Programming Manual for C, or the SQL/MP Programming Manual for COBOL85.

This section discusses these topics:

• Using the SELECT Statement on page 1-2

• Using Null Values on page 1-14

• Using String Functions on page 1-15

• Using the Concatenation Operator on page 1-20

• Using Date-Time Columns on page 1-21

• Defining Subqueries on page 1-28

• Defining Predicates on page 1-30

• Using CASE Expressions on page 1-43

• Combining Data From More Than One Table on page 1-51

• Using the UNION Operator on page 1-61

• Developing Interactive Multistep Queries on page 1-65

If you are already familiar with SQL and you know how to write queries, you might want
to read only parts of this section; for example, you might want to read the subsection
that describes how to use join queries.

In general, the examples in this section are written for an interactive interface such as
SQLCI, but the same concepts can be used in programmatic queries (embedded
HP NonStop SQL/MP Query Guide—524488-003
1-1

Retrieving Data: How to Write Queries Using the SELECT Statement
SQL). For more information, see Using the SELECT Statement in Programs on
page 1-10.

These related topics, discussed in other manuals, might also be of interest:

• To modify data with an UPDATE, INSERT, or DELETE statement, use query
components. For more information about UPDATE, INSERT, and DELETE
statements, see the SQL/MP Reference Manual and the SQL/MP Programming
Manual for your host language.

• To modify data in a database being updated concurrently by other users or
programs, use transactions to preserve database consistency. The HP NonStop
Transaction Management Facility (TMF) simplifies the task of maintaining data
consistency.

For more information, see the TMF Reference Manual and the descriptions of the
BEGIN WORK, COMMIT WORK, and ROLLBACK WORK statements in the
SQL/MP Reference Manual.

• To customize query reports, use the SQLCI report writer. The report writer includes
report formatting commands, layout and style options, and report functions. For
more information, see the SQL/MP Report Writer Guide.

• To change the default message file (and thus change the language used to display
messages) during an SQL session, use the =_SQL_MSG_system DEFINE,
described in the SQL/MP Reference Manual or in SQLCI online help.

Using the SELECT Statement
To retrieve data from an SQL database, use the SELECT statement. A SELECT
statement must contain a select list and a FROM clause:

• The select list names the columns to be retrieved.

• The FROM clause identifies the table or tables that contain the columns.

Note. If you are using multiple character sets, a SELECT statement might return column
contents that are not supported by some display and print devices.
HP NonStop SQL/MP Query Guide—524488-003
1-2

Retrieving Data: How to Write Queries Selecting Columns
Selecting Columns
Selecting columns from a table is known as projection. The query in Figure 1-1 selects
three columns: FIRST_NAME, LAST_NAME, and DEPTNUM.

Figure 1-1. Selecting Columns From a Table (Projection)

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY

ROGER

JERRY

JESSICA

GREEN

HOWARD

CRINER

9000

1000

3500

100

100

300

175500.00

137000.00

39500.00

1

23

568

EMPLOYEE

SELECT FIRST_NAME, LAST_NAME, DEPTNUM
FROM EMPLOYEE

FIRST_NAME LAST_NAME DEPTNUM

ROGER

JERRY

JESSICA

GREEN

HOWARD

CRINER

9000

1000

3500

VST0101.vsd

••• ••• ••• ••• ••• •••

••• ••• •••
HP NonStop SQL/MP Query Guide—524488-003
1-3

Retrieving Data: How to Write Queries Selecting Rows
Selecting Rows
Selecting rows in a table is called restriction. Figure 1-2 shows a SELECT statement
that selects specific rows from the EMPLOYEE table and shows the result table. The
SELECT statement uses a WHERE clause and predicates to restrict the number of
rows returned: return only those employees who are in department number 9000.

Organizing Results
A SELECT statement can include one or more of these optional clauses that organize
results:

• An ORDER BY clause to list the retrieved rows in a specified order

• A DISTINCT clause to eliminate duplicate rows from the result

• A GROUP BY clause to identify columns used for grouping

Figure 1-2. Selecting Rows From a Table (Restriction)

Note. When you specify certain options such as ORDER BY, GROUP BY, and DISTINCT,
SQL usually performs a sort or hashing operation. Such queries can require significant
resources. For more information on using these clauses efficiently, see Minimizing Sort Costs
for Ordering and Grouping Operations on page 3-54.

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY

EMPLOYEE

JERRY

•••

JESSICA

ROGER

•••

DINAH

HOWARD

•••

CRINER

•••

GREEN

CLARK

1000

•••

3500

9000

•••

9000

100

•••

300

100

•••

900

137000.00

•••

39500.00

175500.00

•••

37000.00

23

•••

568

1

•••

337

004

ROGER

DINAH

GREEN

CLARK

9000

9000

100

900

175500.00

37000.00

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY

1

337

SELECT EMPNUM, FIRST_NAME, LAST_NAME, DEPTNUM, JOBCODE, SALARY
 FROM EMPLOYEE WHERE DEPTNUM = 9000 ;

VST0102.vsd
HP NonStop SQL/MP Query Guide—524488-003
1-4

Retrieving Data: How to Write Queries Organizing Results
The WHERE clause, used in these examples, is described in Specifying Search
Conditions on page 1-8.

The ORDER BY Clause
If you want your report to list employees from highest paid to lowest paid, you can add
an ORDER BY clause, as shown in Example 1-1. The DESC keyword tells SQL to sort
in descending order; the report lists Ben Henderson, who makes $65,000, before Mary
Miller, who makes $56,000. (If you omit the DESC keyword, the ORDER BY clause
automatically sorts in ascending order.)

When evaluating the ORDER BY clause, SQL considers all null values to be equal.
Null values are considered greater than nonnull values.

If a collation is specified as part of the ORDER BY clause in a SELECT statement, the
character set associated with the collation must be the same as the character set
associated with the column in the SELECT statement.

Example 1-1. SELECT Statement With ORDER BY Clause

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE SALARY > 50000
 ORDER BY SALARY DESC ;
LAST_NAME FIRST_NAME SALARY
------------- ------------- ----------
GREEN ROGER 175500.00
 . . .
 . . .
 . . .
HENDERSON BEN 65000.00
MILLER MARY 56000.00

--- 16 row(s) selected.
HP NonStop SQL/MP Query Guide—524488-003
1-5

Retrieving Data: How to Write Queries Organizing Results
The DISTINCT Clause
The DISTINCT clause eliminates duplicate rows from the result table. Consider the
query in Example 1-2. Part numbers 212 and 244 appear several times in the result.

To eliminate the duplicate rows, you can add a DISTINCT clause, as shown in
Example 1-3.

When evaluating the DISTINCT clause, SQL considers all null values to be duplicates
and leaves a single null value.

The DISTINCT clause does not imply ordering; to request a specific order, use the
ORDER BY clause.

Example 1-2. SELECT Statement With Duplicate Rows

SELECT PARTNUM FROM ODETAIL ;
PARTNUM

 244
 2001
 .
 .
 244
 5103
 .
 .
 244
 .
 .
 212
 .
 .
 212
 7301

--- 72 row(s) selected.

Example 1-3. SELECT Statement With DISTINCT Clause

SELECT DISTINCT PARTNUM FROM ODETAIL ;
PARTNUM

 244
 .
 212
 .
 .
 7301

--- 27 row(s) selected.
HP NonStop SQL/MP Query Guide—524488-003
1-6

Retrieving Data: How to Write Queries Organizing Results
The GROUP BY Clause
The GROUP BY clause groups rows with the same value and returns one row per
group. The GROUP BY clause, like the DISTINCT clause, removes duplicate rows
from the result, as well as performing other functions.

To show how the GROUP BY clause works, consider the query from the previous
subsection:

SELECT PARTNUM FROM ODETAIL ;

This query returns 72 rows, with part numbers 212 and 244 appearing several times in
the result.

If you specify a GROUP BY clause on the PARTNUM column, as shown in
Example 1-4, the query returns the same result as if you had specified a DISTINCT
clause.

The GROUP BY clause is powerful because you can use it to combine information
from groups of rows for processing by aggregate functions. For example, you might
want to calculate values such as sums and averages.

The GROUP BY clause does not imply ordering; to request a specific order, use the
ORDER BY clause.

In Example 1-5, the GROUP BY clause determines the rows to which the SUM
function is applied. Each row with the same part number has been grouped and the
SUM function applied to the values in the QTY_ORDERED column.

Example 1-4. SELECT Statement With GROUP BY Clause

SELECT PARTNUM FROM ODETAIL
 GROUP BY PARTNUM ;
PARTNUM

 244
 .
 212
 .
 .
 7301

--- 27 row(s) selected.
HP NonStop SQL/MP Query Guide—524488-003
1-7

Retrieving Data: How to Write Queries Specifying Search Conditions
When evaluating the GROUP BY clause, SQL considers all null values to be equal.
The result can have at most one null group.

If a collation is specified as part of the GROUP BY clause in a SELECT statement, the
character set associated with the collation must be the same as the character set
associated with the column in the SELECT statement.

For more information about aggregate functions such as SUM, see Aggregate
Functions in Predicates on page 1-41. For more information about GROUP BY
operations, see How the Optimizer Processes Aggregates and Group-By Operations
on page 3-46.

Specifying Search Conditions
When you write a query, you can specify a set of conditions called search conditions
that restrict the amount of data retrieved from the database. Search conditions
determine which rows are returned in the result table.

A search condition consists of one or more subqueries and predicates, used together
as a single test for the data:

• A subquery is a form of SELECT statement specified as part of a search condition.
Defining Subqueries on page 1-28 describes how to write queries that contain
subqueries.

• A predicate is a condition that always evaluates to one of three values: true, false,
or unknown (if not enough information is known by SQL to return true or false).
SQL returns rows only if the predicate evaluates to true. Example 1-1 used a
predicate with the greater-than operator (>) to compare values in the table. For
more information, see Defining Predicates on page 1-30.

You can specify search conditions within these clauses of a SELECT statement:

• WHERE clause

• HAVING clause

• ON clause in a SELECT statement involving a join operation

Example 1-5. SELECT Statement With GROUP BY Clause and SUM Function

SELECT PARTNUM, SUM (QTY_ORDERED) FROM ODETAIL
 GROUP BY PARTNUM ;
PARTNUM (EXPR)
------- ----------
 212 20
 244 47
 . .
 . .
 7301 96

--- 27 row(s) selected.
HP NonStop SQL/MP Query Guide—524488-003
1-8

Retrieving Data: How to Write Queries Specifying Search Conditions
The WHERE clause and HAVING clause are described next. The ON clause is
described in Combining Data From More Than One Table on page 1-51.

The WHERE Clause
Suppose that you want a report of all employees whose salaries are greater than
$50,000. You can add a WHERE clause to restrict the number of rows returned. Only
those employees who earn more than $50,000 are included in the report.

Example 1-6 shows the query and its results.

The HAVING Clause
You can use the HAVING clause to restrict groups selected by a prior GROUP BY
clause; you should use it only in conjunction with the GROUP BY clause.

Example 1-7 shows a SELECT statement with a HAVING clause. Note that the part
numbers with a total quantity ordered of 20 or less (such as 212) do not appear in the
result:

Example 1-6. SELECT Statement With WHERE Clause

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE SALARY > 50000 ;

LAST_NAME FIRST_NAME SALARY
------------- ------------- ----------
GREEN ROGER 175500.00
 . . .
 . . .
MILLER MARY 56000.00
HENDERSON BEN 65000.00

--- 16 row(s) selected.

Example 1-7. SELECT Statement With HAVING Clause

SELECT PARTNUM, SUM (QTY_ORDERED)
 FROM ODETAIL
 GROUP BY PARTNUM
 HAVING SUM (QTY_ORDERED) > 20 ;

PARTNUM (EXPR)
------- ----------
 244 47
 . .
 . .
 7301 96

--- 20 row(s) selected.
HP NonStop SQL/MP Query Guide—524488-003
1-9

Retrieving Data: How to Write Queries Using the SELECT Statement in Programs
Using the SELECT Statement in Programs
A SELECT statement in a program typically retrieves data into a host variable. You can
use two types of SELECT statements in a program:

• A single-row SELECT (also called a singleton or standalone SELECT) that returns
a single row or value.

• A multiple-row SELECT (also called a cursor SELECT) that returns multiple rows
one row at a time. Use of a cursor handles the uncertainty involved in retrieving a
variable number of rows.

These paragraphs describe each type of statement; for performance information, see
Section 3, Improving Query Performance Through Query Design.

Single-Row SELECT
A single-row SELECT statement is a request to return a single row to the host
program. This method is preferable to a cursor SELECT when only one row needs to
be retrieved.

The single row is typically one of these:

• An aggregate without a GROUP BY clause

• A row identified by a unique key value

• A row identified by a unique value of a column within a row

This example shows an aggregate without a GROUP BY clause:

SELECT SUM (SALARY) FROM EMPLOYEE ;

For more information about aggregate functions, see Aggregate Functions in
Predicates on page 1-41.

You can write a single SELECT statement to return the desired row, whether the
identifying value is a key value or a nonkey value. Such a SELECT statement contains
a WHERE clause that should uniquely identify one row.

You can also use a unique alternate-key value; to optimize efficiency in such a case,
the index should be defined with the UNIQUE attribute.
HP NonStop SQL/MP Query Guide—524488-003
1-10

Retrieving Data: How to Write Queries Using the SELECT Statement in Programs
The INTO clause of the SELECT statement is used to return a single-row result of a
query to a host variable. Here is an example of a single-row SELECT statement that
selects by a primary-key column, col1:

EXEC SQL
 SELECT col2,
 col3,
 col4
 INTO :hv2,
 :hv3,
 :hv4
 FROM MYTABLE
 WHERE col1 = :hvkey
END-EXEC.

In this example, the WHERE clause specifies that the selected row contains a primary
key, col1, whose value is equal to the value of a specified host variable. Only one
row is retrieved from the table because a unique, primary-key value is used for the
selection.

Here is an example of a single-row SELECT statement that selects by a nonkey
column, price:

EXEC SQL
 SELECT partnum,
 partdesc,
 price,
 qty_available
 INTO :part-no of parts,
 :part-desc of parts,
 :price of parts,
 :qty_available of parts
 FROM MYTABLE
 WHERE price = :hvdata
END-EXEC.

The WHERE clause specifies that the column price contains a value equal to the value
of a host variable, :hvdata.

When the SELECT statement is executed, the system scans the database to find the
first row with the specified value in price. When found, this specific row is returned to
the program. Because price is not a primary key, and assuming that UNIQUE was not
specified for price in any alternate index, the system then reads the rest of the table to
make sure the row it found is the only qualifying row; if it is not, the system returns an
error.
HP NonStop SQL/MP Query Guide—524488-003
1-11

Retrieving Data: How to Write Queries Using the SELECT Statement in Programs
Multiple-Row (Cursor) SELECT
A multiple-row SELECT statement returns multiple rows one row at a time. This
technique is usually preferred over a single-row SELECT when retrieving multiple
rows.

A host variable cannot hold data from more than one row, so you must declare a cursor
for this type of SELECT statement. A cursor is the mechanism for dealing with a set of
rows returned in sequence to an application program. To use cursors, use these SQL
statements in your programs:

• DECLARE CURSOR
• OPEN
• FETCH
• CLOSE

Use these statements as indicated in these steps:

1. Name and define a cursor in a DECLARE CURSOR statement. The DECLARE
CURSOR statement includes a SELECT statement to describe the rows to be
returned.

2. Initialize any host variables used in the SELECT statement. After the cursor is
declared and the values initialized, you can open the cursor and fetch each
selected row sequentially.

3. Open the cursor using the OPEN statement.

4. Fetch each selected row into the program with the FETCH statement.

5. Close the cursor with the CLOSE statement.

These steps are required even when only the next single row is needed and only one
FETCH is done.

Here is a pseudocode example of a multiple-row SELECT statement using a cursor:

EXEC SQL
 DECLARE listnext CURSOR FOR
 SELECT partnum,
 partdesc,
 price,
 qty_available
 FROM parts
 WHERE partnum > :hvkey
END-EXEC.
 ...

Move initial value to :hvkey

EXEC SQL
 OPEN listnext
END-EXEC.

EXEC SQL
HP NonStop SQL/MP Query Guide—524488-003
1-12

Retrieving Data: How to Write Queries Using the SELECT Statement in Programs
 FETCH listnext
 INTO :part-no,
 :part-desc,
 :price,
 :qty_available
END-EXEC.

EXEC SQL
 CLOSE listnext
END-EXEC.

A row is returned each time the FETCH statement is executed. This example retrieves
all the rows with partnum values greater than the :hvkey value.

Initializing a Cursor
Opening a cursor causes the set of rows in the query result to be defined and ordered.
If a cursor SELECT statement contains host variables, you must initialize the values of
the host variables before you open the cursor with an OPEN statement.

The SQL executor copies input variables into its buffers when it opens the cursor. If
you do not initialize the variables before the OPEN statement, several things can
happen:

• If the variables contain values that do not conform to the data types expected,
overflow or truncation errors can result when the cursor is opened.

• If the variables are of the expected types but they contain values left from a
previous use of the program, these bad values are used as a starting point for
subsequent FETCH operations. As a result, the returned rows do not begin at the
expected location.

Closing a Cursor
A FREE RESOURCES, COMMIT WORK, ROLLBACK WORK, or an explicit CLOSE
statement closes an open cursor. As a general rule, you can leave cursors open to
save the overhead of reopening a cursor you plan to use again. In some cases,
however, you should explicitly close open cursors. In particular, when you use cursors
in Pathway applications, you should follow these rules:

• Close any open cursor before returning control to a requester.

• If your program is a server and a TMF transaction was started by a requester,
direct your program to close cursors, to release space used by the cursors and to
free locks before returning control to the requester.

Note. If a single-row SELECT statement is sufficient, do not use a cursor because it requires
three calls (OPEN, FETCH, and CLOSE) instead of one and therefore performs less efficiently
for the same result.
HP NonStop SQL/MP Query Guide—524488-003
1-13

Retrieving Data: How to Write Queries Using Null Values
The FREE RESOURCES statement is usually more efficient than CLOSE CURSOR
unless only a small percentage of defined cursors are active.

Cursors and Performance
When you use a cursor, the sequential block buffer may be invalidated frequently if
these two conditions are true:

• The execution plan for the cursor uses RSBB or VSBB to access a table or view
from within a process.

• The process also performs insertions, updates, or deletions against the same table
or view.

The result can be poor performance.

To improve performance, use the same cursor to do the updates or deletions. If you
must mix cursor retrievals (using sequential block buffering) with insertions into the
same table or view, disable sequential block buffering by using a CONTROL
TABLE . . . SEQUENTIAL READ OFF directive. For more information on this directive,
see the SQL/MP Reference Manual.

Using Null Values
A null value is a special symbol, independent of data type, that represents an unknown
or inapplicable value. A null value indicates that an item has no value.

A column that allows null values can be empty at any row position. In SQL, such a
column has two extra bytes associated with it in each row. A minus one (-)1 stored in
those two bytes indicates that the column is empty for that row. Unless a column
definition includes the NOT NULL clause to prohibit nulls or the column is part of the
primary key of the table, nulls are allowed.

Unless a column definition includes either the DEFAULT clause to specify some value
or the NO DEFAULT clause to prohibit any default value, a null value is used as the
default value. The default value for a column is the value the system inserts in a row
when an INSERT statement omits a value for a particular column or when a column is
added to a table.

Various scenarios exist in which a row in a table might contain no value for a specific
column, as for example, the following:

• A database of telemarketing contacts might have AGE columns empty if contacts
did not give their age.

• An order record might have a DATE_SHIPPED column empty until the order is
actually shipped.

• An employee record for an international employee might not have a social security
number.

Note. A FREE RESOURCES statement is required for nonaudited tables to release locks.
HP NonStop SQL/MP Query Guide—524488-003
1-14

Retrieving Data: How to Write Queries Using String Functions
Null values are not the same as blanks. Two blanks can be compared and found equal,
while the equivalence of two null values is indeterminate. Similarly, null values are not
the same as zeros. Zeros can participate in arithmetic operations, while null values are
excluded from arithmetic.

To determine whether a column accepts null values, you can query the COLUMNS
catalog table, or you can invoke a table description in the SQL format. The COLUMNS
table contains descriptions of all columns of all tables registered in a catalog (as
recorded in the TABLES catalog table). The one-character NULLALLOWED column in
the COLUMNS table contains a Y if a null value is allowed and an N if a null value is
prohibited. For more information, see the SQL/MP Reference Manual.

Using String Functions
A function is a specialized routine that can be applied to data to return a result. You
can use functions in SQL statements to manipulate characters. For example, using a
string function within SQL, you can:

• Extract part of a string

• Search for a string within a string

• Search for a string, disregarding its case

• Determine the length of a string in either characters or bytes

• Remove leading and trailing characters from a string

You can apply string functions to all character data types, including VARCHAR. You
can also apply them to CHAR and VARCHAR data types that have the UPSHIFT
function applied.

Character operands must all have comparable collations if they will be compared to
each other. The result of a string function contains the same character set as the
operands.

You can also concatenate the results of string functions. For more information, see
Using the Concatenation Operator on page 1-20.

Extracting Part of a String
You can use the SUBSTRING function to extract any part of a string. You do this by
providing the string, the starting position for the extraction, and an optional length for
the result. The starting position is represented by a count of the number of characters
from the beginning of the string. The result of the SUBSTRING function is a character
expression called a substring.

Consider these examples:

SUBSTRING ("ROBERT JOHN SMITH" FROM 8 FOR 4)
SUBSTRING ("ROBERT JOHN SMITH" FROM 8)
SUBSTRING ("ROBERT JOHN SMITH" FROM 1 FOR 17)
HP NonStop SQL/MP Query Guide—524488-003
1-15

Retrieving Data: How to Write Queries Extracting Part of a String
In the first example, the extracted string starts from the eighth position of the original
string, “ROBERT JOHN SMITH”, and extends for four characters. “JOHN” is the result.

In the second example, the extracted string starts from the eighth position of the
original string and extends until the end. “JOHN SMITH” is the result.

The substring in the third example is the whole string. “ROBERT JOHN SMITH” is the
result.

If the sum of the starting position and the substring length is greater than the length of
the original character string, the substring from the start position to the end of the string
is returned. In this example, the sum of 8 and 15 is 23, which is longer than the 17-
character string:

SUBSTRING ("ROBERT JOHN SMITH" FROM 8 FOR 15)

Therefore, the string “JOHN SMITH” is returned.

If you do not specify a substring length, the result is the original string, beginning with
the specified start position and continuing through the end of the original string. “RT
JOHN SMITH” is the result in this example:

SUBSTRING ("ROBERT JOHN SMITH" FROM 5)

If the starting position is negative, the negative positions and position 0 are counted as
one character each but do not show up in the resulting string:

SUBSTRING ("ROBERT JOHN SMITH" FROM -1 FOR 5)

Positions -1 and 0 are counted as the first two positions. “ROB” is the resulting string.

Using a Substring in a Query
This example shows a SUBSTRING function used in a query:

SELECT LAST_NAME, FIRST_NAME
 FROM EMPLOYEE
 WHERE SUBSTRING (FIRST_NAME FROM 1 FOR 4) = "MARY" ;

A list of all employees whose first names start with “MARY” is the result.

Data Types for Substring Results
A FIXED CHAR or VARCHAR data type returns a VARCHAR data type, and an
UPSHIFT CHAR or VARCHAR data type returns an UPSHIFT VARCHAR data type
with the same collating attributes as those of the source character string.

This example returns “ROBERT” with a collating sequence of FRENCH:

SUBSTRING ("ROBERT JOHN SMITH" COLLATE FRENCH FROM 1 FOR 6)
HP NonStop SQL/MP Query Guide—524488-003
1-16

Retrieving Data: How to Write Queries Searching for a String Within a String
Substring Results That Are Null
If the character string, the starting position, or the substring length is a null value, the
result is null.

Substring Results That Are Empty Strings
Sometimes a SUBSTRING function returns a result that is an empty string. An empty
string is a string with a length of 0 (“”), which is not the same as a null value.

These examples of SUBSTRING functions return empty strings:

• The sum of the starting position and the substring length is less than 1:

SUBSTRING ("ROBERT JOHN SMITH" FROM -5 FOR 3)

The sum of -5 and 3 is -2. The resulting substring length is 0.

• The starting position is greater than the length of the character string:

SUBSTRING ("ROBERT JOHN SMITH" FROM 19 FOR 3)

The starting position is 19, but the string length is only 17.

• The length for the extracted substring is 0:

SUBSTRING ("ROBERT JOHN SMITH" FROM 8 FOR 0)

Substring Errors
An error occurs if either of these conditions is violated:

• If the substring is not part of a dynamically prepared statement, the data types of
the starting position and the substring length each must be an exact numeric value
with a scale of 0. (If the substring is part of a dynamically prepared statement, the
data type is processed as if it were numeric (x,0)).

In this example, if colb is a numeric column with the value 5.3, a compilation error
occurs:

SUBSTRING ("ROBERT JOHN SMITH" FROM 2 FOR colb)

• The sum of the starting position and the substring length can be negative if the
substring length is not explicitly negative. Because the substring length in this
example is an explicit -3, the query returns an error:

SELECT SUBSTRING (A FROM 2 FOR -3) FROM TABLE ;

Searching for a String Within a String
The POSITION function searches for a given substring in a character string and
returns the starting character position of that substring. In this example, the result is 6:

POSITION ("JANE" IN "MARY JANE MASTERS")
HP NonStop SQL/MP Query Guide—524488-003
1-17

Retrieving Data: How to Write Queries Searching for a String Without Regard for its Case
You can optionally specify which occurrence of the substring you are seeking; for
example, you can specify the first occurrence or the third. The data type of the
occurrence is unsigned numeric with a scale of 0. The result for this search is 5:

POSITION ("IS" IN "MISSISSIPPI", 2)

If no substring is found, the function returns 0. If you omit occurrence, then the function
returns the first occurrence of the substring.

Searching for a String Without Regard for its Case
Using the UPSHIFT function, you can ignore the case of a string when searching for a
value:

SELECT * FROM EMPLOYEE
 WHERE UPSHIFT(LAST_NAME) = "SMITH" ;

The example results in a list of all employees whose last names are Smith. The value
“SMITH” in the LAST_NAME column can be uppercase, lowercase, or a combination
of cases, and it will be found.

You can also use a collation to ignore case, but performance could be better when you
use the UPSHIFT function.

Determining the Length of a String
You can use the OCTET_LENGTH function to obtain the number of bytes in a
character string. You can use the CHARACTER_LENGTH function, abbreviated
CHAR_LENGTH, to obtain the number of characters in a character string.

For multibyte characters, such as Kanji, the OCTET_LENGTH and CHAR_LENGTH
functions return results that differ from each other.

OCTET_LENGTH (_KANJI "abcdef")

returns the value 6, but this example returns the value 3:

CHAR_LENGTH (_KANJI "abcdef")

For single-byte characters, the results returned by OCTET_LENGTH and
CHAR_LENGTH are the same. The data type of the result for single-byte and for
multibyte characters for both functions is a 2-byte signed integer with a scale of 0.

When the OCTET_LENGTH or the CHAR_LENGTH functions are applied to a string
literal, such as “ROBERT”, the result is the length of the string. But when these
functions are applied to a column, the value depends on the definition of the column.
HP NonStop SQL/MP Query Guide—524488-003
1-18

Retrieving Data: How to Write Queries Removing Leading or Trailing Characters From a
String
For fixed-length CHAR columns, the result is the length of the column. For columns
defined as VARCHAR, the result is the length of the string in the column. Consider this
example:

CREATE TABLE EMPLOYEE (LAST_NAME CHAR(20),
 ADDRESS VARCHAR (100);

INSERT INTO EMPLOYEE VALUES ("ROBERT SMITH",
 ("19333 LEXINGTON PARKWAY") ;

CHAR_LENGTH (LAST_NAME)

CHAR_LENGTH (ADDRESS)

Because LAST_NAME is a fixed-length column of 20 characters, the result for the
CHAR_LENGTH function on LAST_NAME is 20, if LAST_NAME is not null. If
LAST_NAME is null, then CHAR_LENGTH is null.

Because ADDRESS is a variable-length column, the result for the CHAR_LENGTH
function on ADDRESS is the current length of the string. The length of the string in the
example is 23. If the address is updated to “12 BENTON PARK”, then the function
returns the updated string length of 14.

Any argument that is null returns a null value. If the argument is a host variable with a
null value or a null result of another function, the result is null. In the previous example,
if ADDRESS is null, a null value is returned.

Do not confuse a null value with a string that has a length of 0. A string with 0 length
returns a value of 0:

CHAR_LENGTH ("")

Removing Leading or Trailing Characters From a String
You can use the TRIM function to remove any of these from a character string:

• Leading characters

• Trailing characters

• Both leading and trailing characters

The trim option you specify describes which of the three options you want. If you
specify no trim option, the default is both. You can provide the TRIM character you
want removed or use the default, which is a blank character.

TRIM (ADDRESS)

uses the default blank TRIM character, removes leading and trailing blank characters,
and implies this:

TRIM (BOTH " " FROM ADDRESS)
HP NonStop SQL/MP Query Guide—524488-003
1-19

Retrieving Data: How to Write Queries Using the Concatenation Operator
The next example uses an asterisk as a TRIM character and removes leading
asterisks from the value in the ADDRESS column:

TRIM (LEADING "*" FROM ADDRESS)

This example removes trailing blank characters from the value in the LAST_NAME
column:

TRIM (TRAILING " " FROM LAST_NAME)

The resulting string is always VARCHAR. For example, a CHAR or VARCHAR returns
a VARCHAR. An UPSHIFT CHAR or VARCHAR returns an UPSHIFT VARCHAR with
the same collating and character set attributes as those of the source character string.

The TRIM character and the character string to be trimmed must have comparable
collations and identical character sets.

TRIM can be useful with the concatenation operator. For an example, see Using the
Concatenation Operator next. You can also use TRIM to do LIKE comparisons with
fixed-length host variables. See Using LIKE With TRIM on page 1-35.

Using the Concatenation Operator
Using the concatenation operator (||), you can concatenate two strings to generate a
single string result, as in this example:

"ROBERT " || "SMITH"

which results in:

"ROBERT SMITH"

If either of the character strings is VARCHAR, then the concatenated result is
VARCHAR. If both character strings are CHAR, then the concatenated result is CHAR.

The collating sequence attribute of the concatenated string is determined by the rules
you use to determine the collating sequence of a comparison predicate. For further
information, see “Comparison Predicate” in the SQL/MP Reference Manual.

The concatenation operator is useful in combination with the TRIM function. Consider
this table:

CREATE TABLE NAMES (FIRST_NAME CHAR(15), LAST_NAME CHAR (15));
INSERT INTO NAMES VALUES ("ROBERT", "SMITH");

You can use the concatenation operator to retrieve the full name:

FIRST_NAME || LAST_NAME

This is the result:

"ROBERT SMITH "
HP NonStop SQL/MP Query Guide—524488-003
1-20

Retrieving Data: How to Write Queries Using Date-Time Columns
This example removes the trailing blanks after FIRST_NAME and LAST_NAME and
inserts one blank between the names:

TRIM (TRAILING " " FROM FIRST_NAME || " " ||
 TRIM (TRAILING " " FROM LAST_NAME)

The result is:

"ROBERT SMITH"

For more information on the TRIM function, see Removing Leading or Trailing
Characters From a String on page 1-19.

Using Date-Time Columns
SQL supports a set of date-time data types so that you can define, modify, and access
data that specifies date and time values. SQL also provides a set of date-time
functions you can use in expressions that involve columns defined with the date-time
data types.

For a complete description of date-time data types, see the SQL/MP Reference
Manual. Accessing Date-Time Values on page 1-22 describes how to access date-time
values in SQL.

Table 1-1. Date-Time Data Types

Data Type Description

DATETIME Contains a range of logically contiguous date and time fields, called
DATETIME columns, in this implied order: YEAR, MONTH, DAY, HOUR,
MINUTE, SECOND, and FRACTION.

DATE Designates a date according to the Gregorian calendar and is a synonym
for DATETIME YEAR TO DAY. A column of type DATE can contain values
that have this contiguous DATETIME fields: YEAR, MONTH, and DAY.

TIME Designates a time of day according to a 24-hour clock and is the same as
DATETIME HOUR TO SECOND. A column of type TIME can contain
values that have this contiguous DATETIME fields: HOUR, MINUTE, and
SECOND.

TIMESTAMP Designates a date according to the Gregorian calendar and a time of day
according to a 24-hour clock. TIMESTAMP is a synonym for DATETIME
YEAR TO FRACTION(6). A column of type TIMESTAMP can contain
values that have all the DATETIME fields, which are contiguous: YEAR,
MONTH, DAY, HOUR, MINUTE, SECOND, and FRACTION.

INTERVAL Contains values that designate durations of time in either year-month or
day-time intervals. The YEAR and MONTH fields of INTERVAL designate a
number of years and months. The DAY, HOUR, MINUTE, SECOND, and
FRACTION fields of INTERVAL designate a number of days, hours,
minutes, seconds, and fractions of a second.
HP NonStop SQL/MP Query Guide—524488-003
1-21

Retrieving Data: How to Write Queries Accessing Date-Time Values
Accessing Date-Time Values
For these examples, suppose that the PROJECTS table contains the data shown in
Table 1-2. The WAIT_TIME column specifies a number of days.

This query accesses two rows of the PROJECTS table:

SELECT * FROM PROJECTS
 WHERE PROJECT_NAME = "134"
 OR PROJECT_NAME = "920" ;

The query returns this result:

PROJECT_NAME START_DATE END_DATE WAIT_TIME
------------ ---------------- ---------------- ---------
920 1988-02-21:20:30 1989-03-21:20:30 20
134 1970-01-01:00:00 1992-01-29:20:30 30

--- 2 row(s) selected.

Adding an INTERVAL Value to a DATETIME Value
This example adds an INTERVAL value with a YEAR value to a DATETIME value:

SELECT end_date + INTERVAL "1" YEAR
 FROM projects
 WHERE project_name = "922" ;

The query returns this result:

(EXPR)

1992-01-20:12:30

The next example adds an INTERVAL value (WAIT_TIME) to a DATETIME value
(START_DATE). The system handles 1988 as a leap year.

SELECT start_date + wait_time
 FROM projects
 WHERE project_name = "920" ;

Table 1-2. Sample Table for Date-Time and INTERVAL Arithmetic Examples

project_name start_date end_date wait_time

920 1988-02-21:20:30 1989-03-21:20:30 20

134 1970-01-01:00:00 1992-01-29:20:30 30

922 1940-02-21:12:30 1991-01-20:12:30 13

955 1990-10-14:14:30 1991-01-20:12:30 14

945 1989-10-20:00:00 1990-10-21:00:00 30
HP NonStop SQL/MP Query Guide—524488-003
1-22

Retrieving Data: How to Write Queries Accessing Date-Time Values
The query returns this result:

(EXPR)

1988-03-12:20:30

Subtracting an INTERVAL Value From a DATETIME Value
This example subtracts an INTERVAL value with a MONTH value from a DATETIME
value:

SELECT end_date - INTERVAL "1" MONTH
 FROM projects
 WHERE project_name = "955" ;

The query returns this result:

(EXPR)

1990-12-20:12:30

In this case, the YEAR value was decremented by 1 because subtracting a month from
January 20 caused the date to be in the previous year.

The next example subtracts an INTERVAL value from a DATETIME value and adjusts
the adjacent column:

SELECT start_date - INTERVAL "15:30" HOUR TO MINUTE
 FROM projects
 WHERE project_name = "922" ;

The query returns this result:

(EXPR)

1940-02-20:21:00

Adding Two INTERVAL Values
This expression adds two INTERVAL values:

INTERVAL "30" DAY + INTERVAL "3" HOUR

Because the receiving column (on the left) has a DAY range, the result of adding 3
hours is 30 days. To retain the HOUR value, the receiving column must be defined with
the range DAY TO HOUR; for example:

WAIT_TIME INTERVAL DAY(2) TO HOUR NO DEFAULT NOT NULL
HP NonStop SQL/MP Query Guide—524488-003
1-23

Retrieving Data: How to Write Queries Accessing Date-Time Values
Multiplying an INTERVAL Value
This expression doubles an INTERVAL value:

INTERVAL "2-7" YEAR TO MONTH * 2

The result is 5 years 2 months.

For example, suppose that you specify this query:

SELECT END_DATE + INTERVAL "2-7" YEAR TO MONTH * 2
 FROM PROJECTS
 WHERE PROJECT_NAME = "922" ;

The value of the END_DATE column increases by 5 years and 2 months. The query
returns this result:

(EXPR)

1996-03-20:12:30

Dividing an INTERVAL Value
This expression divides an INTERVAL value by another INTERVAL value:

INTERVAL "3" DAY / INTERVAL "2" HOUR

The result is 36. Using Date-Time Functions

Date-time functions, as well as the MAX and MIN functions, are used in expressions
that involve columns defined with the date-time data types. You can use the date-time
functions anywhere a DATETIME expression is allowed.

SQL provides the date-time functions listed in Table 1-3.

Table 1-3. Date-Time Functions

Function Description

CONVERTTIMESTAMP Converts a Julian timestamp to a DATETIME value.

CURRENT Returns the current date, current time, or current date and time.

DATEFORMAT Formats a DATETIME value.

DAYOFWEEK Returns an integer representing a day of the week.

EXTEND Adjusts the range of fields for a DATETIME value.

JULIANTIMESTAMP Returns the Julian timestamp (an operating system timestamp)
representation of a DATETIME value.

Note. SQL does not recognize an operating system timestamp as a data type. An operating
system timestamp is a LARGEINT data type that contains valid values for the
JULIANTIMESTAMP function.
HP NonStop SQL/MP Query Guide—524488-003
1-24

Retrieving Data: How to Write Queries Accessing Date-Time Values
The date-time qualifiers on both sides of a comparison operator must have the same
precision. If, for example, one of your columns contains a fraction value, you might
change the other literal to include the fraction column. Alternatively, you could use the
EXTEND function to adjust the range.

CONVERTTIMESTAMP Function
Suppose that the BDAY2 table contains birth dates in Julian timestamp form. This
example converts the Julian timestamp to a DATETIME value:

SELECT NAME, CONVERTTIMESTAMP (JULIAN_BDAY), HOBBIES
 FROM BDAY2
 WHERE NAME = "CAROLYN" ;

The query returns this result:

NAME (EXPR) HOBBIES
------- -------------------------- ---------------------
CAROLYN 1957-04-23:00:00:00.000000 GARDENING, DACHSHUNDS

--- 1 row(s) selected.

CURRENT Function
This example calls the CURRENT function and returns all rows from the PID table with
the current date:

SELECT PROJ_ID, START_DATE
 FROM PID
 WHERE START_DATE = CURRENT YEAR TO DAY ;

If CURRENT is called on January 29, 1992, at 11:30 PM, CURRENT YEAR TO DAY
returns all rows with a start date of 1992-01-29. The query returns this result:

PROJ_ID START_DATE
----------- ------------
5551 1992-01-29

--- 1 row(s) selected.

The date is returned in the default date format. You can specify a different format by
using the DATEFORMAT function.
HP NonStop SQL/MP Query Guide—524488-003
1-25

Retrieving Data: How to Write Queries Accessing Date-Time Values
DATEFORMAT Function
For an example of the DATEFORMAT function, consider modifying the query used
previously for the CURRENT function:

SELECT PROJ_ID, DATEFORMAT (START_DATE, USA)
 FROM PID
 WHERE START_DATE = CURRENT YEAR TO DAY ;

The query returns this result. The date is now in USA format:

PROJ_ID (EXPR)
----------- ------------
5551 1992/01/29

--- 1 row(s) selected.

DAYOFWEEK Function
This example retrieves the day of the week from the date-time value in the
START_DATE column of the PROJECTS table:

SELECT project_name, start_date, DAYOFWEEK(start_date)
 FROM projects
 WHERE project_name = "920";

The query returns this result:

PROJECT_NAME START_DATE (EXPR)
------------ ---------------- ------
920 1988-02-21:20:30 1

--- 1 row(s) selected.

The value selected is 1, representing Sunday.

The next example retrieves the day of the week from the date-time value in the
BIRTHDATE column of the BDAY2 table:

SELECT NAME, BIRTHDATE, DAYOFWEEK(BIRTHDATE)
 FROM BDAY2
 WHERE NAME = "CAROLYN" ;

The query returns this result:

NAME BIRTHDATE (EXPR)
----------- ----------- ------
CAROLYN 1957-04-23 3

--- 1 row(s) selected.

The value selected is 3, representing Tuesday.
HP NonStop SQL/MP Query Guide—524488-003
1-26

Retrieving Data: How to Write Queries Accessing Date-Time Values
EXTEND Function
In this example, the DAY, HOUR, MINUTE, SECOND, and FRACTION fields to the
right of MONTH are initialized to 01 (for DAY), 00 (for HOUR, MINUTE, and SECOND)
and 000000 (for FRACTION):

EXTEND (DATETIME "1989-11" YEAR TO MONTH, YEAR TO FRACTION)

The function returns this value:

1989-11-01:00:00:00.000000

In the next example, the YEAR field to the left of MONTH is initialized to the current
year. The HOUR and MINUTE fields to the right of MONTH are initialized to 00:

EXTEND (DATETIME "11-24" MONTH TO DAY , YEAR TO MINUTE)

In 1989, the function returns this value:

1989-11-24:00:00

The EXTEND function is especially useful when comparing DATETIME columns that
contain different fields.

You can also use the EXTEND function to shorten a DATETIME column. For example,
suppose column ATIME is defined as YEAR TO FRACTION (6) and you want to
specify grouping on YEAR TO DAY. You can specify this query:

SELECT EXTEND (ATIME, YEAR TO DAY) FROM TIMER GROUP BY 1 ;

JULIANTIMESTAMP Function
This example converts a DATETIME value into a Julian timestamp representation of
the value. The query selects the START_DATE column from this row in the
PROJECTS table:

PROJECT_NAME START_DATE END_DATE WAIT_TIME
------------ ---------------- ---------------- ---------
920 1988-02-21:20:30 1989-03-21:20:30 20

SELECT JULIANTIMESTAMP(START_DATE)
 FROM PROJECTS
 WHERE PROJECT_NAME = "920" ;

The query returns this result:

(EXPR)

211439233800000000
HP NonStop SQL/MP Query Guide—524488-003
1-27

Retrieving Data: How to Write Queries Specifying Date-Time Values in Programs
Specifying Date-Time Values in Programs
In SELECT, UPDATE, DELETE, and SELECT with INSERT statements, date values
can be specified in different ways, depending on whether the date value is a date literal
or a parameter or host variable in a program.

For a literal, a date-time value is specified as follows:

DATETIME "09-15-1994" YEAR TO DAY

For a parameter, a date-time data type is specified as follows:

?date TYPE AS DATE

Defining Subqueries
SQL supports the construct of nested queries or subqueries. A subquery is a SELECT
statement that appears within the body of another expression, such as a SELECT,
UPDATE, or DELETE statement, and selects an element for comparison purposes. For
example, a subquery can appear in the ON, WHERE, or HAVING clause of a SELECT
statement (called the outer query).

A subquery selects an element for the purpose of comparison. A subquery is one way
to relate data in more than one table. For example, suppose that you want to find all
employees whose salary is greater than the average salary of all employees. Logically,
this information can be derived from two separate queries:

SELECT AVG(SALARY)
 FROM EMPLOYEE ;

The first query returns this result:

(EXPR)

48784.65

--- 1 row(s) selected.

Now enter the second query, substituting the value retrieved from the first query:

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE SALARY > 48784.65 ;

The query returns this result:

LAST_NAME FIRST_NAME SALARY
------------- ------------- ----------
GREEN ROGER 175500.00
 . . .
 . . .
HENDERSON BEN 65000.00

--- 17 row(s) selected.
HP NonStop SQL/MP Query Guide—524488-003
1-28

Retrieving Data: How to Write Queries Correlated Subqueries
You can combine these two queries into a single query that contains a subquery, as
follows:

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE) ;

The SELECT that appears on the right-hand side of the predicate is the subquery,
sometimes called an inner query. The other SELECT, sometimes called the outer
SELECT, uses the value or set of values computed by the subquery.

The select list of a subquery must contain only one element unless the subquery is part
of an EXISTS predicate or a quantified predicate (ANY or ALL), described under
Defining Predicates on page 1-30.

The two types of subqueries, correlated and noncorrelated, are described next. A
subquery can also be quantified or nonquantified, depending on the type of predicate
specified; for more information about the latter, see Quantified Predicates on
page 1-38.

The use of subqueries can have an impact on performance; for more information, see
Section 3, Improving Query Performance Through Query Design.

Correlated Subqueries
A correlated subquery references values from the outer query. For example, the
subquery uses values returned by the outer query and is, therefore, a correlated
subquery.

SELECT item_name, retail_price
 FROM INVNTRY outer
 WHERE retail_price >
 (SELECT AVG(retail_price)
 FROM INVNTRY
 WHERE producer = outer.producer) ;

Noncorrelated Subqueries
A noncorrelated subquery does not reference or depend on the result of the outer
query. The subquery is performed only once for the query, instead of being performed
once for each qualifying outer table row. This subquery uses two instances of the
EMPLOYEE table, EMP1 and EMP2, and is a noncorrelated subquery:

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE EMP1

Note. The preceding example associates the correlation name OUTER with the first
occurrence of the INVNTRY table. This technique is also used in subsequent examples. A
correlation name is an SQL identifier that you associate with a table or view. You can define
correlation names in the FROM clause of the SELECT statement. For more information on
correlation names, see the SQL/MP Reference Manual.
HP NonStop SQL/MP Query Guide—524488-003
1-29

Retrieving Data: How to Write Queries Defining Predicates
 WHERE SALARY > (SELECT AVG(SALARY)
 FROM EMPLOYEE EMP2) ;

Defining Predicates
A predicate is a condition that a row must satisfy to be returned to the application. For
example, “ITEM_NO > 10” is the predicate in this query:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVNTRY
WHERE ITEM_NO > 10 ;

You can use these predicates to specify a search condition:

• Comparison predicates (also known as relational predicates), which allow you to
compare values:

<> < <= = >= >

• BETWEEN predicates, used to perform range comparisons

• LIKE predicates, used to match patterns in character strings

• IN predicates, used to compare one value with a list of values

• EXISTS predicates, used to check whether at least one value satisfies a given
condition

• SOME, ANY, and ALL predicates, known as quantified predicates, which enable
you to quantify the number of values to be compared

• IS NULL predicates, used to check whether a given value is null

You can combine different kinds of predicates with the operators AND and OR, or use
the NOT operator to reverse the truth value of a predicate. In addition, you can use
aggregate functions such as MAX and MIN as part of a predicate.

The examples under Comparison Predicate refer to a database that consists of two
tables, EMPLOYEE and DEPT, as shown in Example 1-8.
HP NonStop SQL/MP Query Guide—524488-003
1-30

Retrieving Data: How to Write Queries Comparison Predicate
Comparison Predicate
You can use this comparison operators to compare the value of one expression with
the value of another expression:

<> < <= = >= >

The data types of the two expressions must be compatible for the comparison to take
place. For example, an expression of data type CHAR cannot be compared with
another expression of data type NUMERIC.

This SELECT statement illustrates the use of the >= comparison operator:

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE SALARY >= 50000 ;

The query returns this result:

LAST_NAME FIRST_NAME SALARY
--------- ---------- --------
Simpson Travis 68000.00
Nakagawa Etsuro 72000.00
Nakamura Eichiro 50000.00

Example 1-8. Sample Tables for Predicate Examples

EMPLOYEE Table

EMP_ID LAST_NAME FIRST_NAME DEPT_NUM MGR_ID SALARY
------ --------- ---------- -------- ------ --------
 2703 Smith James 7620 2705 47500.00
 2705 Simpson Travis 7600 6554 68000.00
 2906 Nakagawa Etsuro 6400 6554 72000.00
 3598 Nakamura Eichiro 6480 2906 50000.00
 4096 Murakami Kazuo 6410 3598 36000.00
 5361 Smythe Roger 7690 9069 42650.00
 9069 Smith John 7690 2705 38760.00
 9502 Smithson Richard 6400 6554 58300.00

DEPT Table

DEPT_NUM DEPT_NAME DEPT_LOC
-------- ------------------------ --------
 6400 Marketing - Far East 900
 6410 Marketing - Korea 910
 6420 Marketing - Hong Kong 920
 6440 Marketing - Singapore 940
 6470 Marketing - Taiwan 970
 6480 Marketing - Australia 980
 7600 Marketing - USA 100
 7620 Marketing - USA West 120
 7690 Marketing - USA East 200
HP NonStop SQL/MP Query Guide—524488-003
1-31

Retrieving Data: How to Write Queries BETWEEN Predicate
Smithson Richard 58300.00

--- 4 row(s) selected.

You can also use comparison operators with a subquery that returns a single value
(sometimes called a scalar subquery). Suppose that you want to know the name and
location of the department that James Smith (employee ID 2703) is in. This example
illustrates the use of the = operator with a subquery:

SELECT DEPT_NAME, DEPT_LOC
 FROM DEPT
 WHERE DEPT_NUM =
 (SELECT DEPT_NUM FROM EMPLOYEE
 WHERE EMP_ID = 2703) ;

The query returns this result:

DEPT_NAME DEPT_LOC
------------------------ --------
Marketing - USA West 120

--- 1 row(s) selected.

If a key column has a collation, you can use a comparison predicate as a begin or end
key only if you compare the column to a value that has the same collation and the
same length. A begin key establishes an initial row position within a table or index; An
end key establishes a stopping point.

If the comparison predicate compares two character expressions, these guidelines
apply to the use of character sets:

• The same character set must be associated with each of the two character
expressions. Any character data type is compatible with other character data types
as long as both have the same associated character set.

• If neither character expression references a column with an associated collation, a
binary comparison is used for all comparisons.

• If the character expressions have two different lengths, the shorter string is filled on
the right with spaces to match the length of the longer string. Spaces are used
whether or not a single-byte or double-byte character set is associated with the
expression.

BETWEEN Predicate
You can use a BETWEEN predicate to perform a bounded search. A bounded search
is a search within a specific range of values. Predicates that specify bounds on a
search are also called range predicates.

Consider this statement:

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE SALARY BETWEEN 50000 AND 72000 ;
HP NonStop SQL/MP Query Guide—524488-003
1-32

Retrieving Data: How to Write Queries LIKE Predicate
SQL transforms this kind of predicate into a range predicate, as follows:

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE SALARY >= 50000 AND SALARY <= 72000 ;

The query returns this result:

LAST_NAME FIRST_NAME SALARY
--------- ---------- --------
Simpson Travis 68000.00
Nakagawa Etsuro 72000.00
Nakamura Eichiro 50000.00
Smithson Richard 58300.00

--- 4 row(s) selected.

If the BETWEEN predicate compares two character expressions, these guidelines
apply to the use of character sets:

• The same character set must be associated with each of the two character
expressions. Any character data type is compatible with other character data types
as long as both have the same associated character set.

• If neither character expression references a column with an associated collation, a
binary comparison is used for all comparisons.

• If the character expressions have two different lengths, the shorter string is filled on
the right with spaces to match the length of the longer string. Spaces are used
whether or not a single-byte or double-byte character set is associated with the
expression.

LIKE Predicate
A LIKE predicate searches for character strings that match a pattern. You can use
LIKE to find a character string within a column. For example, you might want to find the
string “Ann” in the VARCHAR column FIRST_NAME.

SELECT FIRST_NAME FROM NAMES
 WHERE FIRST_NAME LIKE "Ann" ;

SQL retrieves all values in the column FIRST_NAME that contain the string “Ann” and
contain no trailing blanks.

LIKE performs differently on CHARACTER and VARCHAR columns.
HP NonStop SQL/MP Query Guide—524488-003
1-33

Retrieving Data: How to Write Queries LIKE Predicate
Using LIKE With CHARACTER Columns
Columns of data type CHARACTER are fixed length. If the string stored in
CHARACTER data columns is shorter than the length of the column, the string is
padded with blanks for the length of the column. For example, if you insert “Joe” into a
CHAR(6) column, the stored value becomes “Joe ”, which is padded with three
blank characters at the end of the string. In this example, the column FIRST_NAME
contains the value “Joe ”.

SELECT FIRST_NAME FROM NAMES
 WHERE FIRST_NAME LIKE "Joe" ;

The query does not result in a match because of the column value’s blank padding. For
information on how to force a match in similar instances, see Using LIKE With TRIM on
page 1-35.

Using LIKE With Varying-Length Character Columns
Columns of varying-length data types do not include trailing blanks unless you specify
trailing blanks when you enter the values. For example, if you enter “Joe” into a
VARCHAR(4) column, the column contains “Joe”, with no padded blanks. In the
previous example, if FIRST_NAME were a VARCHAR column containing “Joe”, the
result would be a match.

Using LIKE With Wild-Card Characters
The LIKE predicate becomes more useful when you use wild-card characters.
Wild-card characters allow SQL to select values that include any characters, instead of
specific characters. For example, “Joe%” contains the wild-card character %. The %
character represents 0 or more characters of any value. By specifying “Joe%” as the
pattern for SQL to match, you are directing SQL to select all values that start with “Joe”
and end with any or no characters. In this example, “Joey”, “Joellen”, and “Joe” are
matches for “Joe%”:

SELECT FIRST_NAME FROM NAMES
 WHERE FIRST_NAME LIKE "Joe%" ;

The underscore (_) wild-card character signifies that any single character is
acceptable. For example, “Joe_” matches “Joey” but not “Joellen” or “Joe”.

You can use more than one wild-card character. For example, “%Joe%” indicates a
string that contains the string “Joe”, regardless of the characters or number of
characters that precede or follow “Joe”.

Wild-card characters work on columns of fixed or varying length.

Be sure to specify wild-card characters (percent and underscore) in the character set
associated with the column or you might receive unexpected results. The SQL/MP
Reference Manual specifies the values for the character sets SQL supports.
HP NonStop SQL/MP Query Guide—524488-003
1-34

Retrieving Data: How to Write Queries Predicates Connected by OR Operators
Using LIKE With TRIM
You can use LIKE in combination with TRIM to do comparisons. This combination is
useful when the host variable is fixed length and the pattern to match is shorter than
the length of the host variable.

In this example, :hostvar contains the value “ROB% ” (padded with three
blanks):

CREATE TABLE NAMES (FIRST_NAME VARCHAR (10)) ;
INSERT INTO NAMES VALUES ("ROBERT") ;
INSERT INTO NAMES VALUES ("ROB") ;
INSERT INTO NAMES VALUES ("ROBBIE") ;
INSERT INTO NAMES VALUES ("PEDRO") ;

SELECT FIRST_NAME FROM NAMES
 WHERE (FIRST_NAME) LIKE TRIM (:hostvar) ;

SQL selects the first three rows because :hostvar is trimmed to “ROB%” and the %
wild card directs SQL to select all NAMEs whose values begin with “ROB” and have
any or no trailing characters.

For information on TRIM, see Removing Leading or Trailing Characters From a String
on page 1-19.

Using LIKE Efficiently
Some formulations of LIKE predicates are more efficient than others. For more
information, see Using LIKE Predicates on page 3-24.

For more information on LIKE, see the SQL/MP Reference Manual.

Predicates Connected by OR Operators
You can use the OR operator to connect predicates. You might want to use the OR
operator, for example, to select a set of rows that have different values in the same
column or to compare values in different columns.

In this example, the OR operator is used to select information about two employees
from the database:

SELECT EMP_ID, LAST_NAME, FIRST_NAME, DEPT_NUM, MGR_ID
 FROM EMPLOYEE
 WHERE EMP_ID = 2705 OR EMP_ID = 2906 ;
HP NonStop SQL/MP Query Guide—524488-003
1-35

Retrieving Data: How to Write Queries IN Predicate
The query returns this result:

EMP_ID LAST_NAME FIRST_NAME DEPT_NUM MGR_ID
------ --------- ---------- -------- ------
 2705 Simpson Travis 7600 6554
 2906 Nakagawa Etsuro 6400 6554

--- 2 row(s) selected.

IN Predicate
You can use an IN predicate to compare the value of an expression with one or more
values of another expression. There are two types of IN predicates, classified
according to the comparison expression:

• An IN predicate with a list of values as its comparison expression

• An IN subquery predicate

If the expression is a list of values, the predicate is specified as shown by this example:

SELECT DEPT_NUM, LAST_NAME, FIRST_NAME
 FROM EMPLOYEE
 WHERE DEPT_NUM IN (6400, 6410, 6470, 6480) ;

The query returns this result:

DEPT_NUM LAST_NAME FIRST_NAME
-------- --------- ----------
 6400 Nakagawa Etsuro
 6480 Nakamura Eichiro
 6410 Murakami Kazuo
 6400 Smithson Richard

--- 4 row(s) selected.

SQL transforms the list of values associated with an IN predicate into a search
condition involving predicates connected by one or more OR operators. The IN
predicate in the previous example is transformed into this search condition:

WHERE DEPT_NUM = 6400
 OR DEPT_NUM = 6410
 OR DEPT_NUM = 6470
 OR DEPT_NUM = 6480

Therefore, the IN predicate that uses a list of values provides a convenient way for
formulating OR predicates.

The second type of IN predicate is provided by using a subquery, instead of a list of
values, as follows:
HP NonStop SQL/MP Query Guide—524488-003
1-36

Retrieving Data: How to Write Queries EXISTS Predicate
SELECT DEPT_NUM, LAST_NAME, FIRST_NAME
 FROM EMPLOYEE
 WHERE DEPT_NUM IN (SELECT DEPT_NUM
 FROM DEPT
 WHERE DEPT_LOC BETWEEN 900 AND 999) ;

The query returns this result:

DEPT_NUM LAST_NAME FIRST_NAME
-------- --------- ----------
 6400 Nakagawa Etsuro
 6480 Nakamura Eichiro
 6410 Murakami Kazuo
 6400 Smithson Richard

--- 4 row(s) selected.

The list provided by the subquery is a result of the location of the department. (If the
database contained employees in departments 6420, 6440, or 6470, SQL would have
also selected these departments and their employees.)

If the IN predicate compares two character strings, these guidelines apply to the use of
character sets:

• The same character set must be associated with each of the two character
expressions. Any character data type is compatible with other character data types
as long as both have the same associated character set.

• If neither character expression is a column with an associated collation, a binary
comparison is used for all comparisons.

• If the character expressions have two different lengths, the shorter string is filled on
the right with spaces to match the length of the longer string. Spaces are used
whether or not a single-byte or double-byte character set is associated with the
expression.

EXISTS Predicate
An EXISTS predicate always involves a subquery. The EXISTS predicate evaluates to
true if the subquery selects a row that satisfies the specified condition or conditions.
This statement queries the database to select information about all those employees
who are identified as managers:

SELECT DISTINCT EMP_ID, LAST_NAME, FIRST_NAME
 FROM EMPLOYEE EMP1
 WHERE EXISTS (SELECT MGR_ID
 FROM EMPLOYEE EMP2
 WHERE EMP2.MGR_ID = EMP1.EMP_ID) ;

The query returns this result:
HP NonStop SQL/MP Query Guide—524488-003
1-37

Retrieving Data: How to Write Queries Quantified Predicates
EMP_ID LAST_NAME FIRST_NAME
------ --------- ----------
 2705 Simpson Travis
 2906 Nakagawa Etsuro
 3598 Nakamura Eichiro
 9069 Smith John

--- 4 row(s) selected.

Quantified Predicates
A quantified predicate always involves a subquery. You can use a quantified predicate
to compare an expression that applies to the outer query with all, any, or some of the
values returned by a subquery predicate.

If you specify ALL, a row selected by the outer query appears in the result if the
quantified predicate is true for each and every value selected by the subquery.

This example queries the database to select information about employees whose
salary is greater than or equal to the salary of all other employees:

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE SALARY >= ALL (SELECT SALARY
 FROM EMPLOYEE) ;

The query returns this result:

LAST_NAME FIRST_NAME SALARY
--------- ---------- --------
Nakagawa Etsuro 72000.00

--- 1 row(s) selected.

If you specify SOME or ANY, a row selected by the outer query appears in the result if
the quantified predicate is true for at least one value selected by the subquery, as
follows:

SELECT LAST_NAME, FIRST_NAME, DEPT_NUM
 FROM EMPLOYEE
 WHERE DEPT_NUM = ANY (SELECT DEPT_NUM
 FROM DEPT
 WHERE DEPT_LOC BETWEEN 900 AND 999) ;

The query returns this result:

LAST_NAME FIRST_NAME DEPT_NUM
--------- ---------- --------
Nakagawa Etsuro 6400
Nakamura Eichiro 6480
Murakami Kazuo 6410
Smithson Richard 6400

--- 4 row(s) selected.
HP NonStop SQL/MP Query Guide—524488-003
1-38

Retrieving Data: How to Write Queries IS NULL Predicate
SOME and ANY are synonyms. In this example, a SOME query is formulated to select
information about employees who are also managers. Note that this example is
logically equivalent (that is, it retrieves the same data) to the EXISTS example
previously discussed.

SELECT EMP_ID, LAST_NAME, FIRST_NAME
 FROM EMPLOYEE
 WHERE EMP_ID = SOME (SELECT MGR_ID
 FROM EMPLOYEE) ;

The query returns this result:

EMP_ID LAST_NAME FIRST_NAME
------ --------- ----------
 2705 Simpson Travis
 2906 Nakagawa Etsuro
 3598 Nakamura Eichiro
 9069 Smith John

--- 4 row(s) selected.

If the quantified predicate compares two character strings, these guidelines apply to
the use of character sets:

• The same character set must be associated with each of the two character
expressions. Any character data type is compatible with other character data types
as long as both have the same associated character set.

• If neither character expression is a column with an associated collation, a binary
comparison is used for all comparisons.

• If the character expressions have two different lengths, the shorter string is filled on
the right with spaces to match the length of the longer string. Spaces are used
whether or not a single-byte or double-byte character set is associated with the
expression.

IS NULL Predicate
You can use the IS NULL and IS NOT NULL predicates to determine whether a column
contains an unknown (null) value.

The existence of null values produces logic with three possible values: true, false, and
unknown.

Table 1-4 on page 1-40 summarizes expression evaluation with null values. For
complete syntax and details on each type of expression, see the SQL/MP Reference
Manual.
HP NonStop SQL/MP Query Guide—524488-003
1-39

Retrieving Data: How to Write Queries Multivalued Comparison Predicate
If the operand of the IS NULL predicate evaluates to null, then the IS NULL predicate
evaluates to true; otherwise, IS NULL evaluates to false. For example, this predicate
finds all rows with null values in the FIRST_NAME column:

FIRST_NAME IS NULL

Similarly, if the operand of the IS NULL predicate evaluates to a value other than null,
then the IS NOT NULL predicate evaluates to true; otherwise, IS NOT NULL evaluates
to false. This predicate evaluates to true if the value in :jobcode is not null:

:jobcode IS NOT NULL

Multivalued Comparison Predicate
A multivalued comparison predicate specifies more than one value in the same
predicate.

These examples show two formulations of the same query. The first example uses the
AND and OR operators to retrieve the desired result. The second example shows how
you can simplify the query using a multivalued predicate.

This query, written with the AND and OR operators, lists all employees whose names
follow JAMES SMITH:

SELECT EMP_ID, LAST_NAME, FIRST_NAME
 FROM EMPLOYEE
 WHERE LAST_NAME > "Smith"
 OR (LAST_NAME = "Smith"
 AND FIRST_NAME > "James") ;

Table 1-4. Evaluation of Expressions That Contain Null Values

Expression Type Condition Result

Boolean (AND, OR, NOT) Either value is null or
both values are null.

Null

Arithmetic Either value is null or
both values are null.

Null

Aggregate (except COUNT) Expression is evaluated after
eliminating nulls.

Null if set is empty

COUNT DISTINCT Expression is evaluated after
eliminating nulls.

Zero if set is empty

COUNT Expression is evaluated without
eliminating nulls.

Zero if set is empty

> < = >=<= <> LIKE Either value is null or
both values are null.

Null

IN predicate Expression is null. Null

Subquery No values are returned. Null
HP NonStop SQL/MP Query Guide—524488-003
1-40

Retrieving Data: How to Write Queries Using Multivalued Comparison Predicates in
Context-Free Servers
Note that there are two conditions for the name Smith, so that the query retrieves
information about other employees with the last name of Smith as well as employees
whose last name follows Smith in the alphabet.

You can reformulate the preceding query using a multivalued comparison predicate, as
follows:

SELECT EMP_ID, LAST_NAME, FIRST_NAME
 FROM EMPLOYEE
 WHERE LAST_NAME, FIRST_NAME > "Smith", "James" ;

Both formulations return this result:

EMP_ID LAST_NAME FIRST_NAME
------ --------- ----------
 5361 Smythe Roger
 9069 Smith John
 9502 Smithson Richard

--- 3 row(s) selected.

The second formulation can result in a more efficient plan. For more information about
efficiency, see Writing Efficient Predicates on page 3-15.

Using Multivalued Comparison Predicates in Context-Free
Servers

Multivalued comparison predicates can be useful in context-free servers. For example,
suppose that a server processes a batch of employees for each request from the
requester. The server then positions to a row following the one that has a key value
supplied by the requester.

A multivalued predicate can be matched with a group of key columns for use as a
begin or end key predicate only if all of the key columns have the same ordering
attribute: either all must be ascending, or all must be descending, as defined in the
KEY specifications of CREATE TABLE and the CREATE INDEX statements.

Aggregate Functions in Predicates
Aggregate functions compute a value. They take a set of rows as their arguments and
return a single row as their result.

Table 1-5. Aggregate Functions

Function Description

AVG Computes the average of a set of numbers

MAX Determines a maximum value

MIN Determines a minimum value

SUM Computes the sum of a set of numbers

COUNT Counts the number of rows that result from the query
HP NonStop SQL/MP Query Guide—524488-003
1-41

Retrieving Data: How to Write Queries Aggregate Functions in Predicates
Suppose that you want to find the sum of all salaries in the EMPLOYEE table. You can
specify this query:

SELECT SUM(SALARY)
 FROM EMPLOYEE ;

The query returns this result:

(EXPR)

413210.00

--- 1 row(s) selected.

The query returns the sum of salaries of all employees in EMPLOYEE.

Now suppose that you want to find the name of the employee who makes the
maximum salary. You specify this query:

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE SALARY =
 (SELECT MAX(SALARY) FROM EMPLOYEE) ;

The query returns this result:

LAST_NAME FIRST_NAME SALARY
--------- ---------- ------------
Nakagawa Etsuro 72000.00

--- 1 row(s) selected.

You can use the GROUP BY clause to group data for calculations. For example,
suppose that you want to find the sum of the salaries for employees in departments
6400 and 7690:

SELECT DEPT_NUM, SUM (SALARY)
 FROM EMPLOYEE
 WHERE DEPT_NUM IN (6400, 7690)
 GROUP BY DEPT_NUM ;

The query returns this result:

DEPT_NUM (EXPR)
-------- ----------------
6400 130300.00
7690 81410.00

--- 2 row(s) selected.

In a query that selects both aggregate and nonaggregate columns, you must include
the GROUP BY clause on the nonaggregate columns. For more information about how
to use aggregate functions, see the SQL/MP Reference Manual.

The MAX and MIN functions support collations for character string arguments that
involve comparisons. For more information about collations, see the SQL/MP
Reference Manual.
HP NonStop SQL/MP Query Guide—524488-003
1-42

Retrieving Data: How to Write Queries Using CASE Expressions
Using CASE Expressions
A CASE expression evaluates a set of conditions and returns a result that depends on
which condition is true. These are some of the ways you can use CASE:

• Decoding values

• Evaluating multiple conditions

• Computing aggregates based on specific conditions

• Finding the highest value in a row

• Converting long, narrow tables into short, wide ones

• Ignoring the largest and smallest values in a set

Using CASE expressions, you can reduce the number of table scans, often to a single
scan.

CASE is a conditional expression, not a statement. You can use a CASE expression in
a subquery, but only in the predicate portion, not in the SELECT portion of the
statement.

The following subsections provide examples and more information on some of the
possible uses for CASE.

Decoding Values
You can use CASE expressions when you need to change the representation of data.
Typically, a CASE expression is used to decode values so that the results are more
meaningful. For example, you might want to store the value “M” but present the value
“MALE”. Using CASE, you can do this without involving the host program. CASE
expressions help you to avoid using a join against a lookup table and they can
eliminate your need to write an application program or client tool code.

This an example of a CASE expression that decodes values:

SELECT LAST_NAME, FIRST_NAME,
 CASE MARITAL_STATUS
 WHEN 1 THEN "SINGLE"
 WHEN 2 THEN "MARRIED"
 WHEN 3 THEN "DIVORCED"
 ELSE NULL
 END
FROM EMPLOYEE ;
HP NonStop SQL/MP Query Guide—524488-003
1-43

Retrieving Data: How to Write Queries Evaluating Multiple Conditions
This is the result:

LAST_NAME FIRST_NAME (EXPR)
------------- ------------- --------
CHENG TINA MARRIED
GONZALES LINDA SINGLE
LEBLANC PIERRE DIVORCED
PETSKI STEVE SINGLE

--- 4 row(s) selected.

Although the marital statuses of the employees were encoded as 1, 2, and 3, the result
contains marital statuses that are decoded.

Evaluating Multiple Conditions
When you use CASE with a search condition, SQL can evaluate multiple conditions in
a single query, eliminating your need to write several queries that scan tables multiple
times. Processing takes place within the SQL statement, reducing the coding required
for the application program.

Suppose that you want to know the salaries of employees after you give a 10 percent
raise to those in Department 9000 and a 12 percent raise to those in Department 1000.
You can determine these salaries by using CASE with a search condition.

This example shows your employees with their current salaries:

SELECT LAST_NAME, FIRST_NAME, DEPTNUM, SALARY FROM EMPLOYEE ;

LAST_NAME FIRST_NAME DEPTNUM SALARY
------------- ------------- ------ ----------
CHENG TINA 1000 65000.00
GONZALES LINDA 9000 75500.00
LEBLANC PIERRE 9000 37000.00
PETSKI STEVE 3500 50000.00

--- 4 row(s) selected.

When you perform a query using a CASE expression with a search condition, you can
see each employee’s new salary:
HP NonStop SQL/MP Query Guide—524488-003
1-44

Retrieving Data: How to Write Queries Computing Aggregates Based on Specific
Conditions
SELECT LAST_NAME, FIRST_NAME, DEPTNUM,
 CASE
 WHEN DEPTNUM = "9000"
 THEN SALARY * 1.10
 WHEN DEPTNUM = "1000"
 THEN SALARY * 1.12
 ELSE SALARY
 END
 FROM EMPLOYEE;

LAST_NAME FIRST_NAME DEPTNUM (EXPR)
------------- ------------- ------- ----------
CHENG TINA 1000 72800.00
GONZALES LINDA 9000 83050.00
LEBLANC PIERRE 9000 40700.00
PETSKI STEVE 3500 50000.00

--- 4 row(s) selected.

Linda Gonzales and Pierre LeBlanc, both in Department 9000, received 10 percent
raises, and Tina Cheng, in Department 1000, received a 12 percent raise. Steve
Petski, who is in neither Department 9000 nor Department 1000, received no raise.

Computing Aggregates Based on Specific Conditions
You can use CASE to produce a report that contains aggregate values calculated for
groups, which are each selected using different criteria. By using CASE, you eliminate
the need to create a temporary table and insert data into it.

For example, suppose that a report counts the number of employees, by department,
whose salaries are in these ranges:

Range 1 < 20000
Range 2 < 50000
Range 3 < 200000
HP NonStop SQL/MP Query Guide—524488-003
1-45

Retrieving Data: How to Write Queries Computing Aggregates Based on Specific
Conditions
Using CASE, you aggregate the necessary information with a single scan of the
EMPLOYEE table:

SET LIST_COUNT 0 ;
SELECT DEPTNUM,
 SUM (CASE
 WHEN SALARY < 20000 THEN 1
 ELSE 0
 END),
 SUM (CASE
 WHEN SALARY < 50000 THEN 1
 ELSE 0
 END),
 SUM (CASE
 WHEN SALARY < 200000 THEN 1
 ELSE 0
 END)
FROM PERSNL.EMPLOYEE
GROUP BY DEPTNUM ;

DETAIL DEPTNUM,
 COL 2 AS I12 HEADING "SAL. < 20000",
 COL 3 AS I12 HEADING "SAL. < 50000",
 COL 4 AS I12 HEADING "SAL. < 200000" ;
LIST ALL ;

DEPTNUM SAL. < 20000 SAL. < 50000 SAL. < 200000
------- ------------ ------------ -------------

 1000 1 3 5
 1500 1 3 4
 2000 0 4 5

 4000 1 9 15
 9000 0 1 2

--- 11 row(s) selected.

For information on SUM, see Aggregate Functions in Predicates on page 1-41. For
information on GROUP BY, see The GROUP BY Clause on page 1-7.

Another example that uses CASE with aggregates: Suppose that you have a table with
rows that contain each employee’s name, age, department, and number of cars. The
table contains no nulls and all numeric values for the number of cars. The primary key
is NAME.
HP NonStop SQL/MP Query Guide—524488-003
1-46

Retrieving Data: How to Write Queries Finding the Highest Value in a Row
These are the values in the table:

NAME AGE DEPT CARS
-------- ------ ----------- ------

BROWN 30 50 1
CHANG 38 50 2
GONZALES 22 50 1
HO
38 50 2
KAPOOR 28 50 1
LEBLANC 25 50 0
PETSKI 23 40 4
YAMASAKI 24 40 2

--- 8 row(s) selected.

You need to compute the number of employees who have one car, two cars, and so
on. Using CASE and SUM, you can get the result:

set list_count 0 ;
select SUM(CASE when cars = 0 then 1 else 0 END),
 SUM(CASE when cars = 1 then 1 else 0 END),
 SUM(CASE when cars between 2 and 3 then 1 else 0 END),
 SUM(CASE when cars > 3 then 1 else 0 END)
 from emp;
detail col 1 as I1 heading “None”,
 col 2 as I1 heading “One”,
 col 3 as I1 heading “Two or Three”,
 col 4 as I1 heading “More Than Three”;
list all;

None One Two or Three More Than Three
---- --- ------------ ---------------

 1 3 3 1

See CASE With Aggregates on page 6-34 for the EXPLAIN plan. For information on
SUM, see Aggregate Functions in Predicates on page 1-41.

Finding the Highest Value in a Row
Suppose that you need to select the largest (or smallest) value from multiple columns
in each row of a table. For example, each row in a table of students contains the
student’s name and scholastic aptitude test scores (SATs) for the past two years. All
SAT scores are numeric, and none are null. The primary key is NAME.
HP NonStop SQL/MP Query Guide—524488-003
1-47

Retrieving Data: How to Write Queries Finding the Highest Value in a Row
The values in the table are as follows:

NAME SAT1 SAT2
-------- ----------- -----------

BROWN 480 520
BYSTROM 510 715
CHUNG 725 650
GOMEZ 780 610
HO 715 680
MCLAIN 600 520
MINSKY 400 510
PONG 790 720
SCHMIDT 580 590
SMITH 550 630

--- 10 row(s) selected.

You want to list the name and the highest of the two scores for each student. You can
use CASE to produce the result:

set list_count 0 ;
select name, CASE
 when sat1 >= sat2 then sat1
 else sat2
 END
 from scores;
detail name,
 col 2 as I3 heading "Highest Score";
list all;

NAME Highest Score
-------- -------------

BROWN 520
BYSTROM 715
CHUNG 725
GOMEZ 780
HO 715
MCLAIN 600
MINSKY 510
PONG 790
SCHMIDT 590
SMITH 630

--- 10 row(s) selected.

For the EXPLAIN plan, see CASE for Finding the Highest Value in a Row on
page 6-35.
HP NonStop SQL/MP Query Guide—524488-003
1-48

Retrieving Data: How to Write Queries Converting Long, Narrow Tables Into Short, Wide
Ones
Converting Long, Narrow Tables Into Short, Wide Ones
You might find that you can manipulate data easily when you use long, narrow tables,
but for reports, you may prefer short, wide tables.

Suppose that you have a table that contains each salesperson’s name, a month
number, and a bonus amount for that month. No amounts are null and all are numeric.
The primary key is NAME and MONTH. Twelve rows represent the amounts for a year
for one salesperson, as in this example:

NAME MONTH AMOUNT
-------- ------ --------------------

CHIN 1 200
CHIN 2 0
CHIN 3 0
CHIN 4 0
CHIN 5 400
CHIN 6 120
CHIN 7 80
CHIN 8 220
CHIN 9 115
CHIN 10 130
CHIN 11 75
CHIN 12 105
KAPOOR 1 200
KAPOOR 2 0
KAPOOR 3 150
KAPOOR 4 300
KAPOOR 5 0
KAPOOR 6 110
KAPOOR 7 20
KAPOOR 8 130
KAPOOR 9 0
KAPOOR 10 50
KAPOOR 11 200
KAPOOR 12 110
KLEIN 1 100
KLEIN 2 60
KLEIN 3 220
KLEIN 4 230
KLEIN 5 210
KLEIN 6 40
KLEIN 7 120
KLEIN 8 140
KLEIN 9 20
KLEIN 10 150
KLEIN 11 0
KLEIN 12 60
--- 36 row(s) selected.
HP NonStop SQL/MP Query Guide—524488-003
1-49

Retrieving Data: How to Write Queries Converting Long, Narrow Tables Into Short, Wide
Ones
To produce a report with a row for each salesperson’s name and corresponding bonus
amounts for months 1 through 12, you can use CASE with GROUP BY:

set list_count 0 ;
select name,
 SUM(CASE when month = 1 then amount else 0 END),
 SUM(CASE when month = 2 then amount else 0 END),
 SUM(CASE when month = 3 then amount else 0 END),
 SUM(CASE when month = 4 then amount else 0 END),
 SUM(CASE when month = 5 then amount else 0 END),
 SUM(CASE when month = 6 then amount else 0 END),
 SUM(CASE when month = 7 then amount else 0 END),
 SUM(CASE when month = 8 then amount else 0 END),
 SUM(CASE when month = 9 then amount else 0 END),
 SUM(CASE when month = 10 then amount else 0 END),
 SUM(CASE when month = 11 then amount else 0 END),
 SUM(CASE when month = 12 then amount else 0 END)
 from bonus
 group by name;
detail name,
 col 2 as I3 heading "JAN",
 col 3 as I3 heading "FEB",
 col 4 as I3 heading "MAR",
 col 5 as I3 heading "APR",
 col 6 as I3 heading "MAY",
 col 7 as I3 heading "JUN",
 col 8 as I3 heading "JUL",
 col 9 as I3 heading "AUG",
 col 10 as I3 heading "SEP",
 col 11 as I3 heading "OCT",
 col 12 as I3 heading "NOV",
 col 13 as I3 heading "DEC";
list all;
NAME JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
-------- --- --- --- --- --- --- --- --- --- --- --- ---

CHIN 200 0 0 0 400 120 80 220 115 130 75 105
KAPOOR 200 0 150 300 0 110 20 130 0 50 200 110
KLEIN 100 60 220 230 210 40 120 140 20 150 0 60

--- 3 row(s) selected.

If required, you could also calculate totals for each month and a yearly total for each
salesperson.

For the EXPLAIN plan for the query in the example, see CASE for Converting Long,
Narrow Tables Into Short, Wide Ones on page 6-36. For information on SUM, see
Aggregate Functions in Predicates on page 1-41. For information on GROUP BY, see
The GROUP BY Clause on page 1-7.
HP NonStop SQL/MP Query Guide—524488-003
1-50

Retrieving Data: How to Write Queries Ignoring the Largest and Smallest Values in a Set
Ignoring the Largest and Smallest Values in a Set
You can use CASE with SUM to retrieve the values in the table used in the previous
example and ignore the largest and smallest values in the table:

set list_count 0 ;
select x.value
 from data x, data y
 group by x.value
 having SUM (CASE when y.value <= x.value then 1 else 0 END) > 1
 AND SUM (CASE when y.value >= x.value then 1 else 0 END) > 1;
detail col 1 as I4 heading "Value";
list all;

Value

 10
 12
 20
 24
 38
 40
 48
 50
 52
 66
 67
 80

--- 12 row(s) selected.

For the EXPLAIN plan, see CASE for Ignoring the Largest and Smallest Values in a
Set on page 6-38. For information on SUM, see Aggregate Functions in Predicates on
page 1-41.

Combining Data From More Than One Table
You can join two tables to form a new table. When tables are joined, each new row is
formed by concatenating two rows, one from each of the original tables. This type of
query is called a join query.

To join tables, name the tables (or views) in the FROM clause of a SELECT statement.
When tables are joined, each new row is formed by concatenating the rows from each
of the original tables. The values in the paired rows must satisfy the join condition. For
example, this query joins two tables together on the column DEPT_NO:

SELECT EMPLOYEE_NAME, DEPT_NAME
 FROM EMPLOYEE, DEPT
 WHERE EMPLOYEE.DEPT_NO = DEPT.DEPT_NO ;

The predicate EMPLOYEE.DEPT_NO = DEPT.DEPT_NO is called a join predicate. A
join query contains zero or more join predicates that identify and compare columns
HP NonStop SQL/MP Query Guide—524488-003
1-51

Retrieving Data: How to Write Queries Combining Data From More Than One Table
from each table. The join predicate determines whether or not the columns satisfy a
given search condition. Defining Predicates on page 1-30 describes how to use
predicates to narrow the range of searching. The same principles apply to join queries.

If columns satisfy the condition, the join operation selects the desired columns,
concatenates the rows, and returns them to the result table.

If you specify multiple tables in the FROM clause but do not specify search conditions,
SQL forms a Cartesian product (or cross product) by concatenating, in turn, each row
of each table with every other row of every other table.

A Cartesian product involving two tables, one with M rows and the other with N rows, is
of size M x N. Therefore, the use of join predicates is likely to reduce the size of the
result. Furthermore, use of join predicates can reduce the amount of work done by
SQL to produce the result. For more information, see Section 3, Improving Query
Performance Through Query Design.

In the query in Figure 1-3 on page 1-53, the joining columns are
EMPLOYEE.EMPNUM and DEPT.MANAGER. The predicate is:

WHERE EMPLOYEE.EMPNUM = DEPT.MANAGER

SQL concatenates those rows from the two tables, EMPLOYEE and DEPT, that have
the same values in EMPNUM and MANAGER, respectively.
HP NonStop SQL/MP Query Guide—524488-003
1-52

Retrieving Data: How to Write Queries Types of Join Queries
Types of Join Queries
You can perform two types of join operations using SQL:

• An inner join operation returns all rows that satisfy a given search condition. The
inner join is useful for reporting information that satisfies a particular set of
requirements—for example, salespersons who have booked orders.

• A left join operation, or left outer join, returns all rows that satisfy a given search
condition plus those rows in the left table (listed left of the JOIN keyword) that fail
to satisfy the condition—for example, salespersons who have not booked any
orders. These rows, the exceptions to the rule represented by the join condition,
can provide useful information for exception reports.

Figure 1-3. Selecting From Two Tables

VST0103.vsd

005

EMPNUM FIRST_NAME LAST_NAME DEP TNUM JO BCO DE

EMPLO YEE

1

23

29

213
234

32

FIRS T_NA ME LAS T_NAME DEP TNAME

JERRY

ROB ERT

THOMAS

ROGER

•••

HO WA RD

WHITE

RUTLOFF

G REEN

•••

FINANCE

PERSO NNEL

INVENTORY

CORPORAT E

•••

•••

RO GE R

JERRY

JA NE

RO BE RT
MARY

THO MAS
•••

WHITE

GRE EN

HOWARD

RAYMO ND

MILLER

RUTLO FF
•••

1500

9000

1000

3000

2500

2000
•••

100

100

100

100

100

100
•••

1000

1500

2000

2500

4100
9000

INVENTO RY

CORPORA TE

23

213

32

234

87
1

•••

PERS ONNEL

PLANNING

SHIPPING

FINANCE

••• •••

SELE CT FIRS T_NAME, LAST_NAME, DEPTNAME
 FROM EMPLOY EE, DEPT
 WHE RE EMP LO YEE.EMPNUM = DEP T.MANAG ER
 ORDER BY DEPT.DEPTNUM ;

DEPT

DEP TNUM DEPTNAME MA NAG ER
HP NonStop SQL/MP Query Guide—524488-003
1-53

Retrieving Data: How to Write Queries Types of Join Queries
Do not confuse inner and left join operations with join strategies, such as sort merge,
key-sequenced merge, nested, and hash. Join strategies refer to the mechanisms SQL
uses to perform joins. These strategies are discussed in Section 3, Improving Query
Performance Through Query Design.

Example 1-9 shows the sample tables for several of the join examples that follow.

Inner Join
This query formulates an inner join of the tables SALESEMP and ORDERS:

SELECT S.EMP_NUM, S.EMP_NAME, O.ORD_NUM
 FROM SALESEMP S, ORDERS O
 WHERE S.EMP_NUM = O.BOOKED_BY ;

You can also write this query using the INNER JOIN keywords as follows:

SELECT S.EMP_NUM, S.EMP_NAME, O.ORD_NUM
 FROM SALESEMP S INNER JOIN ORDERS O
 ON S.EMP_NUM = O.BOOKED_BY ;

Note. Certain combinations of left joins, inner joins, and the UNION operator are not valid in a
single SELECT statement. For more information, see the SQL/MP Reference Manual.

Example 1-9. Sample Tables for Join Examples

SALESEMP Table

EMP_NUM EMP_NAME REG_NUM MGR_NUM
------- -------- ------- -------
 2703 MORRISON, J. 7600 2705
 2705 HENNESSY, A. 7600 6554
 2906 NAKAGAWA, E. 6400 6554
 3598 CHU, F. 6470 2906
 4096 CHOW, J. 6420 3598

REGION Table

REG_NUM REG_NAME REG_HQLOC
-------- -------- ---------
 6400 JAPAN 900
 6420 HONG KONG 920
 6470 TAIWAN 970
 7600 USA 100

ORDERS Table

ORD_NUM CUST_NUM BOOKED_BY
------- --------- ---------
 12 729 3598
 57 283 2705
 77 1064 2906
HP NonStop SQL/MP Query Guide—524488-003
1-54

Retrieving Data: How to Write Queries Types of Join Queries
Both queries produce the same result. The result contains only those rows that satisfy
the join predicate given in the WHERE clause in the first query and the ON clause in
the second query, as follows:

EMP_NUM EMP_NAME ORD_NUM
------- -------- -------
 2705 HENNESSY, A. 57
 2906 NAKAGAWA, E. 77
 3598 CHU, F. 12

--- 3 row(s) selected.

The order of the table names in the queries does not influence join order (which table
is the outer table and which is the inner table).

An inner join discards all rows that do not satisfy the given search condition, so
information about salespersons who have not booked any orders is missing from the
result of this query. If you want such information, you can specify a left join operation.

Left Join
The left join, or left outer join, returns all rows that satisfy the given predicates. In
addition, it returns all rows in the left table that fail to satisfy the join predicates; these
rows, however, have information missing in all of the columns that correspond to the
right table. In other words, the result contains information from the left table, regardless
of whether matching right table rows exist.

This query formulates a left join operation of the tables SALESEMP and ORDERS:

SELECT S.EMP_NUM, S.EMP_NAME, O.ORD_NUM
 FROM SALESEMP S LEFT JOIN ORDERS O
 ON S.EMP_NUM = O.BOOKED_BY ;

The query returns this result:

EMP_NUM EMP_NAME ORD_NUM
------- -------- -------
 2703 MORRISON, J. ?
 2705 HENNE0SSY, A. 57
 2906 NAKAGAWA, E. 77
 3598 CHU, F. 12
 4096 CHOW, J. ?

--- 5 row(s) selected.

The left join shows three employees who booked orders and also shows the
employees who did not book any orders, indicated by a question mark (?) in the
ORD_NUM column: J. Morrison (employee number 2703) and J. Chow (employee
number 4096). The question mark indicates a null value, denoting unknown or null
information. These are rows that failed to satisfy the search condition.

If you use host variables to store results in a program, the program must handle the
null values that can result from left join operations.
HP NonStop SQL/MP Query Guide—524488-003
1-55

Retrieving Data: How to Write Queries Types of Join Queries
Notice also that the ON clause specifies the join conditions. In a left outer join query,
the WHERE clause applies restrictions on the result of the join operation. To list
employees who do not have departments, you could check for the occurrence of a null
value in the DEPT_NUM column of the DEPT table as follows:

SELECT S.EMP_NAME
 FROM SALESEMP S LEFT JOIN
 DEPT DT
 ON S.DEPT_NUM = DT.DEPT_NUM
 WHERE DT.DEPT_NUM IS NULL;

The IS NULL predicate applies to the DEPTNUM column of the DEPT table because it
appears in the join predicate and belongs to the table that is not to be preserved.
Because of these two reasons, a null value is guaranteed to appear in the DEPTNUM
columns of the result whenever SQL finds that, for a given EMPLOYEE.DEPTNUM
value, a matching DEPT.DEPTNUM value does not exist.

How a Left Join Preserves Data
SQL preserves data from the table on the left of the keywords LEFT JOIN. So, in the
preceding example, data from the SALESEMP table is preserved.

To preserve rows from the SALESEMP table, SQL extends each row that does not
satisfy the search condition with as many null values as there are columns from the
table on the right in the result. Such a row is called a null-augmented row. The row is
added to the result after extending or augmenting it with null values.

Note that the null values only appear in those columns that belong to the table that
appears on the right of the keywords LEFT JOIN (in the preceding example, the
ORDERS table).

Predicates that involve columns from a table that appears on the right of the keywords
LEFT JOIN are evaluated after the left join is performed: that is, only after null
augmentation is performed.
HP NonStop SQL/MP Query Guide—524488-003
1-56

Retrieving Data: How to Write Queries Types of Join Queries
Using a Left Join to Show Hierarchical Relationships
You can use the left join operation to display hierarchical relationships among data.
These examples use the sample database shown in Example 1-10.

This query requests information about employees and their dependents from three
tables: DEPT, EMPLOYEE, and DEPD:

SELECT DT.DEPTNAME, E.EMP_LNAME, E.EMP_FNAME, DD.DEP_FNAME
 FROM DEPT DT, EMPLOYEE E, DEPD DD
 WHERE DT.DEPTNO = E.DEPTNO AND E.EMPNO = DD.EMPNO ;

Because this query specifies an inner join operation, the result does not include
departments that have no employees or employees who have no dependents:

DEPTNAME EMP_LNAME EMP_FNAME DEP_FNAME
------------ --------------- ------------- ----------
Maintenance Gray Tina William
Maintenance Gray Tina Gwendolyn

--- 2 row(s) selected.

Example 1-10. Sample Tables For Hierarchical Relationship Examples

DEPT Table

DEPTNO DEPTNAME MANAGER RPTDEPT LOCATION
------ ------------- ------- ------- ------------
 101 Accounting 23 9000 CHICAGO
 102 Maintenance 213 1000 CHICAGO
 103 Personnel 32 9000 LOS ANGELES

EMPLOYEE Table

EMPNO EMP_FNAME EMP_LNAME DEPTNO JOBCODE SALARY
----- ------------- -------------- ------ ------- -----------
 10 John Smith 101 100 175500.00
 20 Tina Gray 102 100 137000.10

DEPD Table

DEPDNO DEP_FNAME DEP_LNAME EMPNO
------ ------------- ------------------ -----
 521 William Gray 20
 522 Gwendolyn Gray 20

Note. The examples in this subsection associate correlation names—DT, E, and DD—with the
table names DEPT, EMPLOYEE, and DEPD.
HP NonStop SQL/MP Query Guide—524488-003
1-57

Retrieving Data: How to Write Queries Types of Join Queries
The next query specifies a left join operation. All data is preserved from the DEPT
table:

SELECT DT.DEPTNAME, E.EMP_LNAME, E.EMP_FNAME, DD.DEP_FNAME
 FROM DEPT DT
 LEFT JOIN EMPLOYEE E ON DT.DEPTNO = E.DEPTNO
 LEFT JOIN DEPD DD ON E.EMPNO = DD.EMPNO ;

Now, the Personnel department, which has no employees, and the Accounting
department, which has one employee with no dependents, appear in the result table:

DEPTNAME EMP_LNAME EMP_FNAME DEP_FNAME
------------ -------------- --------------- -----------
Accounting Smith John ?
Maintenance Gray Tina William
Maintenance Gray Tina Gwendolyn
Personnel ? ? ?

--- 4 row(s) selected.

This left join operation displays this hierarchical relationship:

For another example of a left join operation, consider this query and its result table. All
data is preserved from the EMPLOYEE table. Note that the department without an
employee is not shown as this is not the relation requested:

SELECT DT.DEPTNAME, E.EMP_LNAME, E.EMP_FNAME, DD.DEP_FNAME
 FROM EMPLOYEE E
 LEFT JOIN DEPT DT ON E.DEPTNO = DT.DEPTNO
 LEFT JOIN DEPD DD ON E.EMPNO = DD.EMPNO ;

DEPTNAME EMP_LNAME EMP_FNAME DEP_FNAME
------------ ------------ ------------- ------------
Accounting Smith John ?
Maintenance Gray Tina William
Maintenance Gray Tina Gwendolyn

--- 3 row(s) selected.

Department

Dependent

Employee

010
HP NonStop SQL/MP Query Guide—524488-003
1-58

Retrieving Data: How to Write Queries Restrictions on Join Queries
In this case, the left join operation displays this hierarchical relationship:

Restrictions on Join Queries
There are a few restrictions on the use of the join operation, as follows:

• A shorthand view based on any join cannot be specified as the right table of a left
join.

• A shorthand view whose definition is based on a union of SELECT commands
cannot participate in another join operation.

For additional information about join operations, see the SQL/MP Reference Manual.

Using Views With Joins
For frequently performed join operations, the definition of a view can hide the join
operation from the user and make the columns simpler to access.

The ON Clause and the WHERE Clause in Join Queries
A query can combine inner and left join operations in the same FROM clause.
Therefore, you must indicate which join conditions apply to which join operations, as
follows:

• Specify join conditions for a left join in the ON clause.

• Specify join conditions for an inner join or between tables participating in different
left joins in the WHERE clause.

Consider this query:

SELECT S.EMP_NUM, S.EMP_NAME, O.ORD_NUM, R.REG_NAME
FROM REGION R,
 SALESEMP S LEFT JOIN ORDERS O
 ON S.EMP_NUM = O.BOOKED_BY
 AND S.EMP_NUM < 2800
 WHERE S.REG_NUM = R.REG_NUM
 AND S.REG_NUM IN (6400, 7600) ;

Employee

Department Dependent

011
HP NonStop SQL/MP Query Guide—524488-003
1-59

Retrieving Data: How to Write Queries The ON Clause and the WHERE Clause in Join
Queries
SQL first performs an inner join of the REGION table with the SALESEMP table. The
result table of this inner join operation is then left joined with the ORDERS table.

Because SALESEMP appears on the left of the keywords LEFT JOIN, SALESEMP is
the table that is preserved from the left join operation.

The query returns this result:

EMP_NUM EMP_NAME ORD_NUM REG_NAME
------- -------- ------- ------------
 2703 MORRISON, J. ? USA
 2705 HENNESSY, A. 57 USA

--- 2 row(s) selected.

The ON Clause
For each occurrence of the LEFT JOIN keywords in the FROM clause, there is a
corresponding ON clause.

The predicates in the ON clause specify the conditions for the left join evaluation.
These conditions determine whether rows can be joined together or whether the rows
from the preserved table are preserved through null augmentation.

In the former example, there was one left join operation:

SALESEMP S LEFT JOIN ORDERS O
 ON S.EMP_NUM = O.BOOKED_BY
 AND S.EMP_NUM < 2800

The table preserved in each left join can, in turn, be inner-joined or left-joined with
another table.

The WHERE Clause
Predicates in the WHERE clause specify join conditions and define restrictions on
individual tables named in the FROM clause.

In the previous example, the WHERE clause joins the REGION table with the
SALESEMP table and specifies a restriction on the SALESEMP table:

WHERE S.REG_NUM = R.REG_NUM
 AND S.REG_NUM IN (6400, 7600)

In a left join query, predicates from the WHERE clause that apply to a table
participating in a left join operation are evaluated as follows:

• If a predicate contains columns from the right table, the predicate is evaluated after
the left join operation: that is, only after null augmentation is performed.

• Otherwise, the predicate can be evaluated before or after the left join operation.
HP NonStop SQL/MP Query Guide—524488-003
1-60

Retrieving Data: How to Write Queries Using the UNION Operator
For example, consider this query:

SELECT E.LAST_NAME, E.FIRST_NAME, E.DEPTNUM
 FROM EMPLOYEE E LEFT JOIN DEPT DT
 ON E.DEPTNO = DT.DEPTNO
 WHERE E.LAST_NAME = "SPENCER"
 AND DT.MANAGER = 23;

Table E is preserved, table DT is not. The predicates, therefore, can be evaluated as
follows:

• The predicate E.LAST_NAME = SPENCER can be evaluated anytime after SQL
has examined a row from E.

• The predicate DT.MANAGER = 23, however, must be evaluated only after null
augmentation is performed. This restriction exists because columns like
DT.MANAGER might contain a null value whenever a row from E is preserved.

Using the UNION Operator
SQL supports two types of union operations:

• A UNION operation combines two tables whose respective column data types are
comparable and automatically deletes duplicate rows from the result. Thus, a
UNION of two select operations, one on TABLE1 and one on TABLE2, is the set of
all distinct rows returned from the first select (TABLE1) and the second select
(TABLE2).

• A UNION ALL operation works the same as the UNION operation, except that
UNION ALL preserves duplicate rows in the result. If you know that no duplicates
exist in your data—or if you are willing to handle duplicate rows within your
application—the ALL option can avoid a sort operation.
HP NonStop SQL/MP Query Guide—524488-003
1-61

Retrieving Data: How to Write Queries Using the UNION Operator
Figure 1-4 shows how a union of two selects, one on LOC01 and one on LOC02, could
be useful for determining all record titles available at two different store locations.

Figure 1-5 shows how a UNION ALL of two selects, one on LOC01 and one on
LOC02, could be useful for evaluating inventory at both stores.

Note that the UNION ALL operation does not eliminate duplicate rows. Neither UNION
operation orders the results. To order results, use the ORDER BY clause, as described
in this subsection.

Figure 1-4. UNION of Two Tables

Figure 1-5. UNION ALL of Two Tables

LOC01

TITLE

ABBEY ROAD
LET IT BE

LABEL

APPLE
APPLE

LOC02

LABEL

APPLE
CAPITOL

SELECT TITLE, LABEL, QUANTIT Y FROM LOC01
UNION SELECT TITLE,LABEL FROM LOC02

TITLE

ABBEY ROAD
LET IT BE
RUBBER SOUL

LABEL

APPLE
APPLE
CAPITOL

012

QUANTITY

12
20

TITLE

ABBEY ROAD
RUBBER SOUL

QUANTITY

3
14

QUANTITY

12
20
14

VST0104.vsd

LOC01

TITLE

ABBEY ROAD
LET IT BE

LABEL

APPLE
APPLE

LOC02

LABEL

APPLE
CAPITOL

SELECT TITLE, LABEL,QUANTITY FROM LOC01
UNION ALL
SELECT TITLE,LABEL,QUANTITY FROM LOC02

TITLE

ABBEY ROAD
LET IT BE
ABBEY ROAD
RUBBER SOUL

026

QUANTITY

12
20

QUANTITY

3
14

QUANTITY

12
20
3
14

TITLE

ABBEY ROAD
RUBBER SOUL

VST0105.vsd
HP NonStop SQL/MP Query Guide—524488-003
1-62

Retrieving Data: How to Write Queries ORDER BY Clause With UNION Operator
To specify a UNION operation, these rules apply:

• Both select lists must specify the same number of columns.

• Columns in corresponding positions must have compatible data types. (For
information on compatible data types, see the SQL/MP Reference Manual.)

You can specify a UNION operator in these instances where a single SELECT
statement is allowed:

• A shorthand view definition

• A subquery

• An INSERT operation through a query

• A nonupdatable cursor statement

Additional guidelines for using the UNION operator follow. In this discussion, catalog
tables are used to demonstrate the UNION operator. Catalog tables are candidates for
a UNION operation because different instances of the catalog tables in different
catalogs have the same attributes for their columns.

To get a list of all programs that are described in the application catalogs from $VOL1
and $VOL2 on your system, you can specify this query:

 SELECT A.PROGRAMNAME
 FROM $VOL1.PROGCAT.PROGRAMS A
UNION
 SELECT B.PROGRAMNAME
 FROM $VOL2.PROGCAT.PROGRAMS B ;

For complete information about UNION and UNION ALL, see the SQL/MP Reference
Manual.

ORDER BY Clause With UNION Operator
You can use the ORDER BY clause to order the result of a UNION operation. These
restrictions apply, however:

• The ORDER BY clause must follow the last SELECT statement and any options
associated with that individual SELECT statement. You cannot use parentheses to
associate an ORDER BY clause with either SELECT statement.

• The ORDER BY clause must contain one of these:

° The names of the columns explicitly referenced outside a function or an
expression in the select list

Note. A shorthand view whose definition involves a UNION cannot participate in a join
operation. A SELECT on the view cannot specify a GROUP BY clause, a HAVING clause, or
aggregate functions on any view column. A shorthand view cannot be updated, regardless of
whether the UNION operator is used.
HP NonStop SQL/MP Query Guide—524488-003
1-63

Retrieving Data: How to Write Queries GROUP BY and HAVING Clauses With UNION
Operator
° An integer that indicates the ordinal position of a column, a function, or an
expression in the select list

This statement shows incorrect use of the ORDER BY clause and UNION operator:

 SELECT A.PROGRAMNAME
 FROM $VOL1.PROGCAT.PROGRAMS A
 ORDER BY A.PROGRAMNAME
UNION
 SELECT B.PROGRAMNAME
 FROM $VOL2.PROGCAT.PROGRAMS B ;

Instead, you should formulate the preceding query as:

 SELECT A.PROGRAMNAME
 FROM $VOL1.PROGCAT.PROGRAMS A
UNION
 SELECT B.PROGRAMNAME
 FROM $VOL2.PROGCAT.PROGRAMS B
ORDER BY A.PROGRAMNAME ;

GROUP BY and HAVING Clauses With UNION Operator
You cannot use the GROUP BY and HAVING clauses to form groups in the result of a
UNION operation.

Unlike the ORDER BY clause, which can define an ordering on the result of the UNION
operation, the GROUP BY and HAVING clauses are associated only with the SELECT
statement in which the clauses appear. Consequently, the groups are visible only in the
result table of the SELECT statement that contains the clauses and not in the result of
the UNION operation.

Using Collations With the UNION Operator
The UNION operator is affected by collations in associated tables as follows:

• Comparisons might occur during the computation of the result

• Because the output of the UNION operation is a table, the default collation for its
columns must be specified

For example, if column A in table X has collation FINNISH and column B in table Y has
collation ITALIAN and you attempt to SELECT A FROM X UNION Y, then column A
has no collation. Instead, you could use this statement:

SELECT A COLLATE FRENCH FROM X
 UNION
SELECT A COLLATE FRENCH FROM Y;

Note. When requesting UNION operations, the choice of access option can affect
performance. For more information, see Specifying Access Option and Lock Characteristics on
page 4-16.
HP NonStop SQL/MP Query Guide—524488-003
1-64

Retrieving Data: How to Write Queries Developing Interactive Multistep Queries
Developing Interactive Multistep Queries
This subsection describes techniques for developing multistep queries to select data
for reports. You can use multistep queries as follows:

• To apply aggregate functions to multiple levels of groups

• To compute what percent the current row value is of all rows

These techniques use temporary tables to select data based on more than one query.
To create a table, you use the CREATE TABLE statement. You must have access to a
catalog to define a table, or you must have the authority to create your own catalog.
For information about the requirements for creating tables, see the CREATE TABLE
statement in the SQL/MP Reference Manual.

For information about the report writer commands used in these examples (SET
LIST_COUNT, NAME, DETAIL, BREAK ON, LIST), see the SQL/MP Reference
Manual and the SQL/MP Report Writer Guide.

Multilevel Group Aggregates
The GROUP BY Clause on page 1-7 describes how to apply aggregate functions to
groups of rows. To apply aggregate functions to multiple levels of groups, you must
specify more than one query and use temporary tables.

For example, suppose that you want to report the average salary for each department
and, within each department, for each job classification. You must follow these steps:

1. Create a temporary table to contain the department number and average salary for
each department. Use the INVOKE statement to determine the data type for the
DEPTNUM column of the DEPT table. Then use CREATE TABLE to create the
temporary table:

>> CREATE TABLE DEPTAVG (
+> DEPTNUM NUMERIC (4) UNSIGNED NO DEFAULT,
+> AVGSAL NUMERIC (6) UNSIGNED NO DEFAULT)
+> CATALOG TEMPTABS ;

2. Insert the department number and average salary for each department in the
DEPTAVG table:

>> INSERT INTO DEPTAVG
+> (SELECT DEPTNUM, AVG(SALARY)
+> FROM PERSNL.EMPLOYEE
+> GROUP BY DEPTNUM) ;

3. Create another temporary table to contain the job code and average salary for
each type of job within a department:
HP NonStop SQL/MP Query Guide—524488-003
1-65

Retrieving Data: How to Write Queries Computing Row Value as a Percent of All Row
Values
>> CREATE TABLE JOBAVG (
+> DEPTNUM NUMERIC (4) UNSIGNED NO DEFAULT,
+> JOBCODE NUMERIC (4) UNSIGNED NO DEFAULT,
+> AVGSAL NUMERIC (6) UNSIGNED NO DEFAULT)
+> CATALOG TEMPTABS ;

4. Insert the department number, job code, and average salary for each job in each
department in the JOBAVG table:

>> INSERT INTO JOBAVG
+> (SELECT DEPTNUM, JOBCODE, AVG(SALARY)
+> FROM PERSNL.EMPLOYEE
+> GROUP BY DEPTNUM, JOBCODE) ;

5. Join the temporary tables and select the report information:

>> SET LIST_COUNT 0 ;
>> SELECT D.DEPTNUM, JOBCODE, D.AVGSAL, J.AVGSAL
+> FROM DEPTAVG D, JOBAVG J
+> WHERE D.DEPTNUM = J.DEPTNUM
+> ORDER BY D.DEPTNUM;
S> NAME COL 3 DEPT_AVGSAL ;
S> NAME COL 4 JOB_AVGSAL ;
S> DETAIL DEPTNUM, DEPT_AVGSAL, JOBCODE, JOB_AVGSAL ;
S> BREAK ON DEPTNUM, DEPT_AVGSAL ;
S> LIST N 8 ;

DEPTNUM DEPT_AVGSAL JOBCODE JOB_AVGSAL
------- ----------- ------- ----------
 1000 52000 100 137000
 500 34666
 900 19000
 1500 41250 100 90000
 600 29000
 900 17000
 2000 50000 100 13800
 200 24000
S>

The BREAK ON command suppresses printing of the same department number
and salary average in multiple lines.

You can drop the tables or purge the data and reuse the tables in future reports.

Computing Row Value as a Percent of All Row Values
You can also use multistep queries to compute what percent the current row value is of
all row values. For example, these report displays the percent that an individual’s
salary is of all salaries in a department. The report is produced with these steps:
HP NonStop SQL/MP Query Guide—524488-003
1-66

Retrieving Data: How to Write Queries Computing Row Value as a Percent of All Row
Values
1. Create a temporary table to contain the average salary for each department:

>> CREATE TABLE TEMPTABS.AVGTEMP (
+> DEPTNUM NUMERIC (4) UNSIGNED NOT NULL,
+> AVGSAL NUMERIC (6) UNSIGNED NOT NULL)
+> CATALOG TEMPTABS ;

2. Insert the department number and average salary into the temporary table:

>> INSERT INTO TEMPTABS.AVGTEMP
+> (SELECT DEPTNUM, AVG(SALARY) FROM PERSNL.EMPLOYEE
+> GROUP BY DEPTNUM) ;

3. Select the information for the report. Include an expression in the select list to
compute the percent of the department average:

>> SELECT E.DEPTNUM, EMPNUM, LAST_NAME, SALARY,
+> SALARY/AVGSAL*100.00
+> FROM PERSNL.EMPLOYEE E, TEMPTABS.AVGTEMP A
+> WHERE E.DEPTNUM = A.DEPTNUM;
S> DETAIL DEPTNUM, EMPNUM, LAST_NAME,
+> SALARY AS F10.2,
+> COL 5 AS F10.2 HEADING "PCT OF AVG" ;
S> LIST ALL ;

DEPTNUM EMPNUM LAST_NAME SALARY PCT OF AVG
------- ------ ---------------- ---------- ----------

 1000 23 HOWARD 137000.10 263.46
 1000 202 CLARK 25000.75 48.08
 1000 208 CRAMER 19000.00 36.54

 9000 1 GREEN 175500.00 165.00
 9000 337 CLARK 37000.00 34.82

--- 57 row(s) selected.

You can drop the temporary table or purge the data and keep the table for use in
producing future reports.
HP NonStop SQL/MP Query Guide—524488-003
1-67

Retrieving Data: How to Write Queries Computing Row Value as a Percent of All Row
Values
HP NonStop SQL/MP Query Guide—524488-003
1-68

2 The Optimizer
The NonStop SQL/MP optimizer is a component of the SQL compiler. The optimizer
plays an important role in the high-performance operation of SQL by selecting the most
efficient access plan for a query. During compilation, the optimizer examines each data
manipulation statement and generates query execution plans (also called access
plans) to retrieve the requested data from the database. The optimizer also examines
statistics in the catalog for each column referenced by the statement; if statistics are
current, the optimizer can choose an efficient query execution plan to retrieve the
required data.

For example, a plan for a query that references a single table consists of a strategy for
accessing the table using a specified index and begin and end keys. For a query that
references multiple tables, an execution plan also specifies the order in which the
tables should be accessed.

This section contains these topics:

• SQL Components and the Optimizer on page 2-1

• How the Optimizer Chooses an Execution Plan on page 2-3

To evaluate the performance of an existing query, see Section 6, Analyzing Query
Performance.

Issues of database design, tuning, and ongoing maintenance are not discussed in this
manual. For more information on these topics, see the SQL/MP Installation and
Management Guide.

SQL Components and the Optimizer
These components play a role in executing an execution plan provided by the
optimizer:

• SQL executor
• File system
• Disk process

SQL statements invoke the SQL executor, a set of library routines that run in the
application’s process environment. The executor invokes the file system. The file
system accesses each table required by the query execution plan by sending
messages to the appropriate disk processes.

Message traffic is reduced by filtering data at its source. Data can be returned to the
file system one row at a time or can be buffered and returned as a block by the disk
process.

Figure 2-1 on page 2-2 shows the components involved in the execution of an
interactive SQL query using SQLCI.
HP NonStop SQL/MP Query Guide—524488-003
2-1

The Optimizer SQL Components and the Optimizer
For embedded SQL, the model in Figure 2-1 would not include the SQLCI process,
and the SQLCI2 process would be replaced by the user process.

In Figure 2-1, each disk process communicates with a different table. Multiple disk
processes can also work on separate partitions of a table or index, thus providing
parallel access to a table. To facilitate faster execution, SQL can also process queries
in parallel by dividing the query into smaller tasks assigned to separate processors. For
more information, see Requesting Parallel Processing on page 4-13 and How Parallel
Processing Is Implemented on page 4-14.

These paragraphs explain, in more detail, the tasks performed by the executor, the file
system, and the disk process in executing a query.

Figure 2-1. SQL Components That Execute a Query

SQLCI Process

SQLCI2 Process

SQL Executor

SQL File System

$V1.SVOL.TABLE1

Disk Process Disk Process Disk Process Disk Process

014

$V2.SVOL.TABLE2 $V3.SVOL.TABLE3 $V4.SVOL.TABLE4

VST0201.vsd
HP NonStop SQL/MP Query Guide—524488-003
2-2

The Optimizer SQL Executor
SQL Executor
The executor is a set of system library procedures that executes compiled DML
statements against database tables, views, or the database catalogs. To execute a
DML statement, the executor uses the query execution plan generated and optimized
by the SQL compiler.

The executor maps logical names to physical names, obtains rows from various tables
by using the file system, joins tables, sorts where required, and returns the result to the
SQLCI process or to the host variables in a user program.

File System
The file system, which also resides in the system library, handles the opening of tables
and indexes, partitioning, sending requests to appropriate disk processes, and
buffering of replies, inserts, and updates. When a table is updated, the file system
manages the updates to a table and all its alternate indexes.

Disk Processes
Disk processes manage disk space, access paths, locks, log records, and a main
memory buffer pool of recently used blocks called the cache. Disk processes can also
evaluate predicates, aggregates, groupings, and table constraints. Each disk process
authorizes the application process to access the table when the file system sends an
OPEN request.

Each disk volume is managed by a set of disk processes, which have a common
request queue and a shared cache.

How the Optimizer Chooses an Execution Plan
Before determining the most efficient access plan, the optimizer performs query
transformations, if possible, to make the query more efficient and then evaluates these:

• An access path (primary key, index, index-only) to each table:

° In primary access, rows are read directly from the base table, without using an
alternate index.

° In index access, an alternate index is used to access the base table. An
alternate index is a key-sequenced file containing a copy of selected columns
of every row of the base table. The columns of an index consist of the index
key columns plus the primary key columns. After reading a row from an index,
the file system can use the primary key within the index to read the
corresponding row of the base table.

° Index-only access occurs if all of the needed columns are already present in
the index row. In such a case, there is no need to access the base table. SQL
can retrieve the data directly from the index.
HP NonStop SQL/MP Query Guide—524488-003
2-3

The Optimizer How the Optimizer Chooses an Execution Plan
• Execution step at which a predicate or subquery should be evaluated

• The sequence (join order) in which tables will be scanned

• The join strategy—hash, sort merge, key-sequenced merge, or nested

• Optimal sort strategy, by the following:

° Examining the sort keys for any ORDER BY, GROUP BY, or DISTINCT
requests, and combining the sorts whenever possible

° Eliminating sorts for ORDER BY, GROUP BY, or DISTINCT requests if the
chosen access path returns rows in the desired order

• Optimal sort type: sorting in memory (UPS), using a sort process (SORTPROG) or
insertion sort

• Whether sequential block buffering (SBB) will be used

• If parallel execution is enabled, whether parallel or nonparallel execution is more
efficient

• Whether table locking would be appropriate

These topics are described in Section 3, Improving Query Performance Through Query
Designand Section 4, Improving Query Performance With Environmental Options.

Two important aspects of query evaluation are selectivity and cost, both described in
Section 5, Selectivity and Cost Estimates

• Selectivity is an estimate of the percentage of rows in a table or an index that
satisfy a search condition. Selectivity is represented as a percentage from 0 to
100.

• Cost is an estimate of the amount of time the system takes to complete evaluation
of a specific query. Cost includes an estimate of consumption of these resources:

° Number of I/Os

° Number of sorts to be performed

° Amount of data to be processed

° Number of interprocess messages

° CPU processing for searches, fetches, processing (joins, grouping), and
moving data between buffers

Cost is expressed in terms of the equivalent number of I/O operations that could be
performed in the same time.

SQL chooses the execution plan with the lowest estimated cost.
HP NonStop SQL/MP Query Guide—524488-003
2-4

The Optimizer Processor Assignment by the SQL/MP Optimizer
and Executor for Executor Server Processes (ESPs)
Processor Assignment by the SQL/MP
Optimizer and Executor for Executor Server
Processes (ESPs)

Apply these rules:

1. The SQL/MP optimizer tries to assign the ESP the same processor as that
assigned for the primary disk process of the table partition that the ESP will
access.

2. If the disk processor has already been assigned to another ESP, postpone the
assignment until other ESPs are assigned to the processors.

3. For all the unassigned ESPs, use the round-robin approach to distribute the rest of
the processors:

a. For the system in which the partition resides, use a processor that is not yet
assigned in the first round and assign it to the unassigned ESP.

b. If there are no free processors, the optimizer marks it as a case where there
are more partitions than processors. It then tries to assign processors by
repeating Step 1 through Step 3. This strategy involves reusing all the
processors in the system (that is treating all processors as not-in-use) to
increase the likelihood that the second round will succeed in assigning a
processor to a partition.

c. If no processors are available to the system (that is, if it is a remote partition
access or an error occurs in accessing disk information), the current processor
status is set to -1, indicating that the SQL/MP executor will assign the
processor at run time.

4. During run time, the SQL/MP executor runs a check to see if the processor
mentioned in the plan is available. If the planned processor is not available or if the
status is set to -1, any processor on the system is assigned.

5. For a parallel repartitioning plan, the temporary tables and ESPs that access them
are distributed evenly across available processors. Each ESP is assigned to the
processor that is the primary disk process processor for the temporary table that a
specific ESP will access. If the amount of data to be repartitioned is large, more
than one temporary table (and related ESPs) might be assigned to the same
processor.
HP NonStop SQL/MP Query Guide—524488-003
2-5

The Optimizer Processor Assignment by the SQL/MP Optimizer
and Executor for Executor Server Processes (ESPs)
HP NonStop SQL/MP Query Guide—524488-003
2-6

3
Improving Query Performance
Through Query Design

You can formulate the same NonStop SQL/MP query in a number of different ways.
Some formulations perform better than others because SQL requires less work to
return the same result.

This section describes how to write queries so that they capitalize on SQL performance
features.

The guidelines in this section focus on individual SQL statements. Topics include:

• Selecting Columns for Faster Data Access on page 3-2

• Preparing Queries on page 3-3

• How the Optimizer Processes Predicates on page 3-4

• Writing Efficient Predicates on page 3-15

• How the Optimizer Processes Join Operations on page 3-24

• Writing Efficient Joins on page 3-39

• How the Optimizer Processes Aggregates and Group-By Operations on page 3-46

• Optimizing Subqueries on page 3-51

• Avoiding Full Table Scans on page 3-54

• Minimizing Sort Costs for Ordering and Grouping Operations on page 3-54

• Writing Efficient Programmatic Statements on page 3-60

• Decision Support Considerations on page 3-61

• Online Transaction Processing Considerations on page 3-62

• Batch Considerations on page 3-63

Although the focus of this section is on practical, useful guidelines, the predicate-
optimization information describes how the optimizer performs its underlying
operations. Therefore, portions of this section require a basic understanding of the
optimizer, executor, file system, and disk processes as presented in Section 2, The
Optimizer.

The premise of this section is that the physical database design process produced an
efficient access path to the data; if such a path does not exist, the design cycle should
be revisited. For more information, see the SQL/MP Installation and Management
Guide.
HP NonStop SQL/MP Query Guide—524488-003
3-1

Improving Query Performance Through Query
Design

Selecting Columns for Faster Data Access
For information about database management options and directives that can influence
query performance, see Section 4, Improving Query Performance With Environmental
Options. Several management options can be used interactively from SQLCI as well as
from a program.

Selecting Columns for Faster Data Access
When requesting specific columns within a row, these guidelines can help you write
queries that can be processed efficiently with minimal message overhead:

• Specify only columns that you really need. Avoid the use of SELECT *, which can
disable efficient access mechanisms such as virtual sequential block buffering
(VSBB, described in Section 4, Improving Query Performance With Environmental
Options) and index-only access.

• Avoid selecting columns you already have values for (such as those having equal
predicates to host variables). Column selection can influence message size; it can
also influence whether the optimizer chooses sequential block buffering.

• If you specify most of a leftmost group of contiguous columns in your query,
consider adding remaining columns so that the SELECT specifies contiguous
columns. This can allow efficient bulk move operations, but might, however,
disable index-only access; check EXPLAIN output to compare resulting plans.

• If you retrieve a set of column values to accumulate a total, and could perform the
operation with aggregate functions, change the queries so that aggregates perform
the operation. As of SQL/MP 2.0, this change reduces message cost because the
evaluation is performed at the disk process level when possible. For more
information, see How the Optimizer Processes Aggregates and Group-By
Operations on page 3-46.

• For complex queries or difficult problems, consider using multiple step queries, left
outer join, and UNION as possible alternatives. Try to break up the query into
smaller steps that use keys and combine smaller result sets.

• To avoid sorts, specify DISTINCT only for matching leftmost columns of an index.

Column definition is also important for good performance. To learn how to define
columns for maximum performance, see the SQL/MP Installation and Management
Guide.

When writing queries, a smaller number of selected columns generally results in a
smaller message size—or fewer blocks moved—between the file system and the disk
process. For example, this query retrieves a list of employees from the EMPLOYEE
table in the sample database:

SELECT * FROM EMPLOYEE;

Note. This manual supports NonStop SQL/MP D30.02 and D30.03. Information that describes
how the NonStop SQL/MP optimizer chooses a query execution plan can change from release
to release.
HP NonStop SQL/MP Query Guide—524488-003
3-2

Improving Query Performance Through Query
Design

Preparing Queries
The query returns this result:

EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY
------ ------------- ------------- ------- ------- ----------
 1 ROGER GREEN 9000 100 175500.00

 568 JESSICA CRINER 3500 300 39500.00

--- 57 row(s) selected.

To improve the performance of the query, you can refine the query by specifying only
the columns you really need, reducing the amount of data SQL must return.

Suppose that the only items you are really interested in are the employee’s
identification number, last name, first name, and job category for employees in
department 3000. You can request this information by entering

SELECT empnum, last_name, first_name, jobcode
 FROM employee
 WHERE deptnum = 3000 ;

The query returns this result:

EMPNUM LAST_NAME FIRST_NAME JOBCODE
------ ------------- ------------- -------
 29 RAYMOND JANE 100
 75 WALKER TIM 300
 201 HERMAN JIM 300
 343 TERRY ALAN 900

--- 4 row(s) selected.

As you refine the query to return only the data you require, the number of rows that
satisfy the query is reduced, which makes the query more efficient and diminishes the
processing overhead on the system.

Preparing Queries
For SQLCI and dynamic SQL users, if you plan to use the same query repeatedly, you
can prepare the statement and cause SQL to save a compiled version of it for later
use. By doing so, you increase the efficiency of subsequent use of the query. You can
do this from within an SQLCI session or from a program. For example, this statement
prepares a query and associates the name Q1 with it:

>> PREPARE Q1 FROM
+> SELECT * FROM EMPLOYEE ;

To execute the query, enter this statement:

>> EXECUTE Q1 ;

To explain the query, enter this statement:

EXPLAIN Q1 ;
HP NonStop SQL/MP Query Guide—524488-003
3-3

Improving Query Performance Through Query
Design

How the Optimizer Processes Predicates
For more information about EXPLAIN, see Section 6, Analyzing Query Performance.

How the Optimizer Processes Predicates
A predicate is an expression that makes an assertion about data. This subsection
describes how predicates are classified by the optimizer, how they can be transformed
by SQL prior to evaluation, and how SQL evaluates predicates.

Classification of Predicates
This terminology is used to classify predicates by syntactic structure:

• A join predicate is any predicate that refers to columns in two or more tables
(including the same table referenced more than once); for example:

t.col = u.col

• An equijoin predicate relates columns using an equal (=) comparison operator.

• A range predicate establishes an upper or lower limit on the value of a column. A
range predicate uses one of the comparison operations (<, <=, >=, or >) to
compare a column with the value of an expression; for example:

EMP.EMPNUM > :hv1

• A multivalued (compound) predicate specifies more than one column or value on
each side of a predicate. It compares multiple columns with corresponding values.

• A predicate set is a series of predicates that comprises only ANDs, BETWEENs,
and IN predicates. This is an example of a predicate set:

B BETWEEN 5 AND 10 AND B = 5 AND C = 10 AND C IN (5, 10)

Transformation of Predicates
SQL transforms some types of predicates into other forms that are more efficient but
logically equivalent to the original predicate. The modified query either reduces the
complexity of the query or improves the performance of the query. Transformation is
typically done with LIKE, BETWEEN, NOT, IN, and join predicates.

Transformation of Key Column Predicates and Predicate
Sets
For predicates that contain key columns, SQL uses an optimization method called the
MultiDimensional Access Method (MDAM). Based on the key predicates you specify,
MDAM considers all possible key values and attempts to read only those rows.
Duplicate key predicates are eliminated at run time. Whenever the cost of a direct
access method is less than the cost of a table scan, SQL could choose MDAM.
HP NonStop SQL/MP Query Guide—524488-003
3-4

Improving Query Performance Through Query
Design

Transformation of Predicates
Some WHERE clauses cannot be processed by MDAM as single predicate sets.
Usually these clauses contain one or more ORs and must be processed as multiple
predicate sets.

An IN predicate equivalent is the result when an IN predicate is converted into a series
of ORs, as follows:

COL1 IN (1, 2, 3)

This IN predicate is converted into this:

COL1 = 1 OR COL1 = 2 or COL1 = 3

Consider this query:

SELECT * FROM T WHERE
 ((C = 10 AND B BETWEEN 5 AND 10) OR A IN (2, 4, 5)) AND
 ((A = 4 AND C = 5) OR (C IN (5,10) AND (B = 5 OR A = 2))) ;

Using MDAM, the optimizer transforms this query into these six predicate sets:

(A = 4 AND B BETWEEN 5 AND 10 AND C = 10 AND C = 5)
OR (B BETWEEN 5 AND 10 AND B = 5 AND C = 10 AND C IN (5, 10))
OR (A = 2 AND B BETWEEN 5 AND 10 AND C = 10 AND C IN (5, 10))
OR (A IN (2, 4, 5) AND A = 4 AND C = 5)
OR (A IN (2, 4, 5) AND B = 5 AND C IN (5, 10))
OR (A IN (2, 4, 5) AND A = 2 AND C IN 5, 10))

SQL might choose MDAM based on the key predicates you specify in the query, but
you can force MDAM by using a CONTROL directive. The EXPLAIN plan for the query
shows when SQL uses MDAM.

Plans That Do Not Use MDAM

MDAM is not used in these cases:

• The predicate contains no key columns.

• A join predicate is used for a key-sequenced merge join. For more information on
key-sequenced merge joins, see Key-Sequenced Merge Join on page 3-27 and be
aware that MDAM can be used for reading the outer table.

• An OR is used to connect a key predicate with a nonkey predicate.

In this example, the query would not use MDAM because an OR connects the key
predicate UNIQUE2 = 5 with the nonkey predicate FOUR = 2:

SELECT * FROM
 FROM TENKTUP1
 WHERE UNIQUE2 = 4
 OR (UNIQUE2 = 5 OR FOUR = 2);

However, MDAM would be considered for this query because an AND is used to
connect the key predicate UNIQUE2 = 5 with the nonkey predicate FOUR = 2:

SELECT * FROM
 FROM TENKTUP1
HP NonStop SQL/MP Query Guide—524488-003
3-5

Improving Query Performance Through Query
Design

Transformation of Predicates
 WHERE UNIQUE2 = 4
 OR (UNIQUE2 = 5 AND FOUR = 2);

Transformation of LIKE Predicates
A LIKE predicate searches for rows that match a pattern. When using LIKE against a
positioning column of an index, if the match is on a leftmost matching string (a literal
beginning with anything other than the pattern match symbol, % or _), SQL transforms
the statement into an equivalent range predicate.

For example, this request contains a leftmost matching string (the leftmost characters
are stated explicitly). Suppose that the column C contains only uppercase letters:

C LIKE "ABC%"

SQL transforms this clause to this:

C >= "ABC " AND C <= "ABCD "

This query retrieves all names that start with the string “CH” (CHARLES, CHRIS, and
so on):

SELECT NAME, PHONE_NUMBER
 FROM PHONE_BOOK
 WHERE NAME LIKE "CH%"

SQL transforms the preceding query into this:

SELECT NAME, PHONE_NUMBER FROM PHONE_BOOK
 WHERE NAME LIKE "CH%"
 AND NAME >= "CH"
 AND NAME < "CI"

With this modification, SQL can take advantage of an index on NAME (if one exists)
and use values in the predicates as the begin and end keys to the index:

NAME >= "CH" and NAME < "CI"

Thus, SQL retrieves only those rows that are alphabetically equal to or greater than CH
but before CI.

SQL does not transform a LIKE predicate if there is a wild-card character (% or _) as
the leftmost character of a column value in the predicate.

SQL does not transform a LIKE predicate if there is a collation involved.

When a LIKE predicate is present on a key column and the column value does not
start with a wild card, the predicate becomes a candidate for MDAM optimization.
When MDAM is chosen, the transformed predicate shows as an MDAM predicate set
in the EXPLAIN plan.
HP NonStop SQL/MP Query Guide—524488-003
3-6

Improving Query Performance Through Query
Design

Transformation of Predicates
Transformation of BETWEEN Predicates
SQL transforms a BETWEEN predicate into the equivalent range predicate; for
example:

X BETWEEN Y AND Z

is transformed to

X >= Y AND X <= Z

Transformation of Predicates With the NOT Operator
A predicate with one or more NOT operators is transformed to simplify and reduce the
number of NOT operations; these series of transformations illustrates the process:

NOT ((a > b) OR (x < y))
becomes:
NOT (a > b) OR NOT (x < y)
and then becomes:
a <= b OR x >= y

When used with EXISTS, LIKE, or IS NULL, the NOT operator is not transformed; it
remains the same.

MDAM processes NOT predicates on key columns as key predicates and does key
accesses on them.

Transformation of IN Predicates
SQL always transforms an IN predicate into another form. The final form depends on
whether the expression of the IN predicate is a value list or a subquery.

IN Predicates With Value Lists

If the expression of an IN predicate contains a value list, SQL transforms the list into a
search condition with the predicates connected by one or more OR operators; for
example, this predicate:

DEPT_NUM IN (:hv1, :hv2, :hv3)

is transformed into:

DEPT_NUM = :hv1 OR DEPT_NUM = :hv2 OR DEPT_NUM = :hv3

If DEPT_NUM is the key prefix—the leading (leftmost) contiguous set of columns in the
key—then OR optimization might be performed on the query predicate. DEPT_NUM
need not be a key prefix for MDAM processing to take place.

SQL transforms the list of values into a search condition that has equality predicates
connected by one or more OR operators:

WHERE DEPT_NUM = :hv1
 OR DEPT_NUM = :hv2
 OR DEPT_NUM = :hv3
HP NonStop SQL/MP Query Guide—524488-003
3-7

Improving Query Performance Through Query
Design

Transformation of Predicates
With MDAM, only rows that match the values in the value list are read. Unlike OR
optimization, when a predicate has more than one element in the value list, MDAM
eliminates any duplicate values at run time, not at compile time. Because this is done
before any tables are accessed, there is no performance penalty. MDAM processing
appears as an MDAM predicate set in the EXPLAIN plan.

For more information, see Using OR Operators in Predicates on page 3-22.

IN Predicates With Subqueries

If the expression of an IN predicate is a subquery, then SQL transforms the IN
predicate into an “= ANY” subquery. For example, this predicate

DEPT_NUM IN (SELECT DNUM ...)

is transformed into:

DEPT_NUM = ANY (SELECT DNUM ...)

SQL optimizes the execution of noncorrelated ANY, ALL, and SOME subqueries. The
SQL executor builds a table in memory that contains the result of the subquery. In the
preceding example, SQL uses the key DNUM to search the in-memory table for values
that match the DEPT_NUM value retrieved by the outer query.

SQL does not generate parallel plans for IN subqueries. The use of EXISTS or a join
operation, which can both support parallel plans, might be more efficient than using an
IN predicate in a subquery.

Transformations Related to Joins
The optimizer uses a feature called Query Rewrite to transform user-specified search
conditions for faster execution of join queries. These automatic transformations are
especially useful in decision support applications—applications that allow you to invoke
ad hoc queries and often can consume large amounts of time and disk space.

The transformation of search conditions can provide these benefits:

• Reduce the number of rows involved in a join operation

• Present a broader range of alternative plans during join optimization

• Remove redundant or unnecessary operations

• Make better use of existing access paths

Applications that benefit most include those that have one or more of these
characteristics:

• SQL DML generated by software

• Extensive use of shorthand views

• Applications ported to NonStop SQL/MP from another database management
system
HP NonStop SQL/MP Query Guide—524488-003
3-8

Improving Query Performance Through Query
Design

Transformation of Predicates
• Queries written by users who are not NonStop SQL/MP experts

Optimization time can increase when these transformations take place. Although the
transformations are automatic, you can use a DEFINE to control compilation time and
still receive optimization benefits. For information on the DEFINE, see Controlling the
Expansion of Predicates on page 3-20.

How Query Rewrite Works

When the optimizer determines that a query can benefit from Query Rewrite, it
repeatedly performs these tasks until the query reaches a final state:

• Transforms unnecessary left joins to inner joins

• Propagates constants

• Expands equality predicates

• Eliminates unnecessary predicates

• Simplifies predicates

The EXPLAIN plan for the query shows the results of these tasks.

Transforming Left Joins to Inner Joins

In a left join, if a row from the table specified on the right side of the left join operator
does not satisfy a search condition, SQL preserves the row from the table specified on
the left by extending it with as many null values as there are columns in the table on
the right. These rows are called null-augmented rows.

If a WHERE or INNER JOIN predicate is certain to eliminate all of the null-augmented
rows generated by a left join, then the optimizer transforms the left join into a more
efficient inner join.

Consider this view and query:

CREATE VIEW V AS SELECT T.C, U.D
 FROM T LEFT JOIN U ON T.C = U.C ;

SELECT * FROM V WHERE D = 1 ;

T is the table on the left side of the JOIN keyword. T contains no column D. To
preserve rows from the T table, SQL extends each row that does not satisfy the
condition D = 1. The result is the generation of null-augmented rows.

If an inner join were performed, only the rows that satisfy the condition D = 1 would be
returned, and the null-augmented rows would not be generated. Therefore, for the
query in the example, the optimizer converts the left join to an inner join.

The same is true in this query:

SELECT * FROM V WHERE D = 1 or D = 2 ;
HP NonStop SQL/MP Query Guide—524488-003
3-9

Improving Query Performance Through Query
Design

Transformation of Predicates
In this query, the left join cannot be converted to an inner join:

SELECT * FROM V WHERE C = 1 OR D = 2 ;

The search condition C = 1 OR D = 2 selects rows in which C = 1, regardless of the
value of D.

Suppose that the left-join operation generates a null-augmented row in which C = 1
and D is null. A logical OR is true if either of its operands is true. For this row, the
condition C = 1 is true, so the row is included in the query result, regardless of the
value of D. The optimizer cannot convert this left join to an inner join because the
conversion would eliminate the null-augmented row and change the result of the query.

Propagating Constants

 Propagation of constants deals with constant expressions and equivalence classes. A
constant expression is an expression that contains no subqueries and no column
references other than outer references, such as in this example:

:hva + :hvb * 2

An equivalence class is a set of expressions equal to each other. For example, in this
statement, 1 is a constant expression, and A, B, C, and 1 are all expressions in the
same equivalence class:

SELECT * FROM T WHERE
 A = 1
 AND B = 1
 AND C = A ;

Some queries execute faster if members of the same equivalence class are replaced
by constant expressions. This replacement is called constant propagation. If a member
of an equivalence class is a constant expression, then most occurrences of the other
members of the class can be replaced by the constant expression; for example:

A = B + C AND C = 1

can be transformed into:

A = B + 1 AND C = 1

Because the LIKE predicate can distinguish character strings with different numbers of
trailing spaces, LIKE predicates are exempted from constant propagation. For
example, if (C = D) and (C LIKE X), the optimizer cannot infer that D LIKE X.
HP NonStop SQL/MP Query Guide—524488-003
3-10

Improving Query Performance Through Query
Design

Transformation of Predicates
Expanding Equality Predicates

You can code the same query in several different ways. Each way generates the same
result, but if Query Rewrite did not exist, the queries could differ widely in performance,
as in these examples:

SELECT * FROM T, U WHERE T.C = :hv AND U.D = :hv ;

SELECT * FROM T, U WHERE T.C = U.D AND T.C = :hv ;

SELECT * FROM T, U WHERE T.C = U.D AND U.D = :hv ;

SELECT * FROM T, U WHERE T.C = U.D AND T.C = :hv
 AND U.D = :hv ;

All these alternatives produce the same result. For each alternative, the optimizer
would consider a different subset of the possible access plans, resulting in a variance
in performance.

For instance, no hash joins would be considered for the first query because T.C = U.D
is not explicitly stated. The nested loop join method is the only method that can be
used when no equijoin predicate directly connects a pair of join columns.

The second query would require a 100 percent scan of table U because U.D = :hv is
not explicitly stated. The third alternative would perform a 100 percent scan of table T
because T.C = :hv is not explicitly stated.

The fourth alternative states all equality relationships explicitly. Therefore, all
appropriate join methods would be considered. The optimizer would apply the T.C =
:hv and U.D = :hv predicates before the join.

Using Query Rewrite, the optimizer adds any missing predicates so that it has more
plans to consider and a better chance of executing the best plan. In the example, the
optimizer converts the first three queries into the fourth.

Before adding missing predicates, the optimizer considers whether additional equality
predicates are potentially useful for optimization and then takes the appropriate action.

When Additional Equality Predicates Are Useful

The optimizer might consider additional equality predicates useful if their positions
within the query allow them to execute independently from other predicates. It expands
predicates that are not within the scope of a logical OR operator and queries that are
eligible for OR optimization. For details about OR optimization, see Using OR
Operators in Predicates on page 3-22. For information on how you can affect the
expansion of predicates, see Controlling the Expansion of Predicates on page 3-20.

Eliminating Unnecessary Predicates

The optimizer eliminates predicates not necessary for processing, such as redundant
predicates.
HP NonStop SQL/MP Query Guide—524488-003
3-11

Improving Query Performance Through Query
Design

Evaluation of Predicates
Simplifying Predicates

Sometimes the optimizer can determine the results of predicates at SQL compilation
time and then simplify or eliminate the predicates.

When the optimizer compares values known to be equal, it substitutes a NOT NULL
predicate if both these conditions occur:

• The expression can be null.

• The operator is one of the following: <=, =, or >=.

Otherwise, the comparison reduces to either true or false, depending on the operator.

Evaluation of Predicates
These three NonStop SQL/MP components participate in data retrieval and can also
evaluate predicates:

• SQL executor, which usually evaluates predicates for a serial search against
nonkey columns

• File system, which evaluates predicates for a serial search of a memory-resident
block of rows

• Disk process, which evaluates predicates for searches with leftmost column
matches on defined ranges

The disk process obtains data first, then passes it to the file system, which in turn
passes the data to the SQL executor process. Section 2, The Optimizer, describes
these components in more detail.

To minimize resource use, SQL evaluates predicates as early as possible in this
processing chain. By evaluating predicates in the disk process or file process, SQL can
minimize the number of rows searched and the data movement between the
application and the disk process. Unwanted rows contribute nothing to the output but
add to the expense of the query. If unwanted rows can be eliminated early, by the disk
process for example, the query uses fewer resources to transmit the data to the user.

To determine where a predicate is evaluated in an existing query, use the EXPLAIN
utility, described in Section 6, Analyzing Query Performance.

The types of predicates you use determine where they are evaluated. The optimizer
analyzes predicates and assigns each one to the most appropriate role within the
execution plan, using these four predicate categories (in order of decreasing
efficiency):

• Key predicate
• Index predicate
• Base-table predicate
• Executor predicate
HP NonStop SQL/MP Query Guide—524488-003
3-12

Improving Query Performance Through Query
Design

Evaluation of Predicates
If a query execution plan changes (because of new statistics or a new index, for
example) the category of a predicate might change.

These paragraphs describe the four evaluation categories of predicates.

Key Predicates
A key predicate is a begin key or an end key that defines a lower or upper bound on
key columns for sequential retrieval. A begin key establishes an initial row position
within a table or index; the end key establishes a stopping point. Rows are read
sequentially (in ascending or descending order) as long as the end-key predicate
remains true.

In this query, the WHERE...AND... clause defines lower and upper bounds for the
search, assuming there is an index on the LAST_NAME column:

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE LAST_NAME >= JONES
 AND LAST_NAME <= SMITH ;

Key predicates can greatly reduce the resources needed for a query. Specify key
predicates to avoid the expense of reading and examining an entire table or index. Key
predicates are evaluated by the disk process before returning data to the file system.

If a query specifies a range predicate or an equality predicate for any key column, SQL
considers MDAM. When this happens, data outside the bounds need not be read from
disk or handled in any way.

For more information on key predicates, see Positioning With Key Predicates on
page 3-16.

Index Predicates
An index predicate is any predicate, other than a begin-key or end-key predicate, that
is applied to the rows of an alternate index. Whenever a scan operation uses alternate
index access, all possible predicates are applied to index rows before accessing the
base table. If an index predicate evaluates to false or unknown, SQL does not access
the corresponding base table row.

Index predicates are evaluated for every index row within the bounds defined by the
begin-key and end-key predicates. Index predicates can reduce the number of rows
read from the base table, thus avoiding physical I/O operations.

Index predicates are evaluated by the file system or the disk process, depending on
the type of I/O buffering chosen:

• If single-row access (no sequential block buffering) or virtual sequential block
buffering (VSBB) is chosen, the disk process evaluates index predicates, returning
only those rows for which the predicates are true.
HP NonStop SQL/MP Query Guide—524488-003
3-13

Improving Query Performance Through Query
Design

Evaluation of Predicates
• If real sequential block buffering (RSBB) is chosen, the file system evaluates index
predicates.

For more information about RSBB, VSBB, and other buffering options, see Section 4,
Improving Query Performance With Environmental Options.

To review the index predicates chosen for a scan, see the EXPLAIN listing for the
query. Index predicates are noted with the title “Index pred.”

This example illustrates the use of key predicates with a table that has 100 rows:

CREATE TABLE t (a INT, b INT, c INT) ;
CREATE INDEX ti ON t (a,b) ;

INSERT INTO t VALUES (0,0,0) ;
INSERT INTO t VALUES (1,1,1) ;
INSERT INTO t VALUES (2,2,2) ;
INSERT INTO t VALUES (3,3,3) ;
 ...
INSERT INTO t VALUES (99,99,99) ;

SELECT * FROM t WHERE a < 4 AND b < 2 ;

SQL requests this, assuming an index access path is chosen:

• Access to the data through index ti. The end key would specify a<4 and an index
predicate would specify b<2. Two rows of the index would qualify.

• Access to the base table to retrieve the corresponding rows (b = 0 and
b = 1). The file system requires base-table access because of the * (all) in the
SELECT statement.

Base-Table Predicates
A base-table predicate is any predicate applied to rows in the base table.

SQL evaluates base-table predicates for every base table row within the bounds
defined by the primary begin-key and end-key predicates or for every base table row
accessed.

Base-table predicates are evaluated by the file system or the disk process, depending
on the type of I/O buffering chosen:

• If the primary access path is chosen and real sequential block buffering (RSBB) is
used, the file system evaluates the base-table predicates.

• If index-only access is chosen, there were no base-table predicates.

• In all other cases, the disk process evaluates base-table predicates before
returning data to the file system.

Base-table predicates do not reduce the amount of physical I/O to the base table. If,
however, base-table predicates are evaluated by the disk process, they can reduce the
number and size of messages returned from the disk process to the file system, and
HP NonStop SQL/MP Query Guide—524488-003
3-14

Improving Query Performance Through Query
Design

Writing Efficient Predicates
can reduce the amount of data to be sorted or hashed for sort merge joins, hash joins,
or aggregate functions.

Executor Predicates
An executor predicate is a predicate that must be evaluated by the SQL executor
instead of by the disk process or file system.

Executor predicates are the least efficient type of predicate because they reject rows
only after the rows have already been handled by the disk process and the file system.
These predicates do not reduce the amount of physical I/O to the base table, but like
all types of predicates, executor predicates might reduce the number of rows
processed for a sort, correlated subquery, merge join, and so on, and therefore reduce
the total cost of the query.

These predicates are always evaluated by the SQL executor:

• Correlated subquery predicates

• Quantified (ANY, ALL, SOME) subquery predicates

• IN and EXISTS subquery predicates

• Merge-join and hash-join predicates

• Predicates contained in these clauses:

° HAVING clause

° WHERE clause of a left join query that references columns from the table that
appears on the right of the keywords LEFT JOIN

• Executor predicates connected by an OR operator:

(EMP.EMPNUM = :hv1) OR
 (EXISTS (SELECT col1,col2 FROM TABLE1 WHERE col1 = 50))

Writing Efficient Predicates
There are several guidelines that can help improve the performance of predicates.
These guidelines are summarized here and are described in the following subsections:

• Use key predicates for positioning whenever possible.

• Use join predicates to specify search conditions when joining multiple tables.

• Use multivalued predicates when possible.

• Understand when OR operations are optimized and when they are not.

• Understand the performance implications of using the LIKE predicate.
HP NonStop SQL/MP Query Guide—524488-003
3-15

Improving Query Performance Through Query
Design

Positioning With Key Predicates
Positioning With Key Predicates
Key predicates can greatly reduce the resources required for a query. To specify a key
predicate, use a WHERE clause that restricts the search based on the primary key or
an index. You can do this, for example, using these predicates:

• An equality predicate (=) on a key or index column

• Range (begin-key and end-key) predicates on key or index columns

• A BETWEEN predicate on a key column

• An IS NULL predicate on a key column

• A LIKE predicate on a key column that uses a literal beginning with anything but
the pattern match symbol (% or _)

• IN predicate with a value-list on key columns

• AND predicates

• OR predicates that match leftmost key or index columns

If the leading key column or columns are missing from the predicate, MDAM allows
tables and indexes to be accessed through an index:

WHERE KEY3 < 10
 AND KEY4 = 6

The EXPLAIN utility lists begin-key and end-key predicates or MDAM key predicates. If
your EXPLAIN output says NONE for either the begin-key or end-key predicate or for
both, then consider adding bounds to the query to improve performance.

Use equality predicates for keys or partial keys where possible. SQL uses key
positioning for all leftmost key columns that have equality predicates.

These predicates cannot be used to specify begin-key and end-key conditions:

• EXISTS predicates

• IN predicates with a subquery providing the list

• LIKE predicates that use a literal beginning with a pattern match symbol (% or _) or
that use a host variable

• Quantified predicates (SOME, ANY, ALL)

• Predicates with arithmetic expressions

If both the left and right arguments of a comparison predicate reference the same
table, the compiler does not use the predicate in a begin-key or end-key for index
access.
HP NonStop SQL/MP Query Guide—524488-003
3-16

Improving Query Performance Through Query
Design

Positioning With Key Predicates
Examples of Key Predicates
This query specifies a begin key and uses a host variable. If an index exists on the
column LAST_NAME and if SQL uses the index to perform the search, then this query
performs better than if SQL sequentially reads every row in the table, starting with the
first row.

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE LAST_NAME >= :hvar1 ;

The query returns this result:

LAST_NAME FIRST_NAME SALARY
--------- ---------- ---------
GREEN ROGER 175500.00
HENDERSON BEN 65000.00
HOWARD JERRY 137000.10
 . . .
 . . .
WINTER PAUL 90000.10

--- 17 row(s) returned.

The next query specifies a begin and end key, and probably performs better.
Specification of both a begin and end key increases the likelihood that SQL will choose
index access instead of a table:

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE LAST_NAME >= :hvar1
 AND LAST_NAME <= :hvar2 ;

The likelihood of index access is higher for the second example because the selectivity
is lower for the second example. Selectivity is estimated as .33 for the first example
and .33 * .33 = .11 for the second example. For more information about selectivity, see
Section 5, Selectivity and Cost Estimates.

The query returns the same result:

LAST_NAME FIRST_NAME SALARY
--------- ---------- ---------
GREEN ROGER 175500.00
HENDERSON BEN 65000.00
HOWARD JERRY 137000.10
 . . .
 . . .
WINTER PAUL 90000.10

--- 17 row(s) returned.
HP NonStop SQL/MP Query Guide—524488-003
3-17

Improving Query Performance Through Query
Design

Specifying Join Predicates
Using Range Predicates for Positioning
A range predicate on a column of the key can be used for key positioning, but
subsequent key columns cannot be used for key positioning and instead are evaluated
as index or base table predicates.

In this example, PKEY1, PKEY2, PKEY3, and PKEY4 are the first four columns of the
primary key:

SELECT PKEY1, PKEY2, PKEY3, PKEY4, COL1 FROM TABLE1
 WHERE PKEY1 = :hv1
 AND PKEY2 = :hv2
 AND PKEY3 >= :hv3 AND PKEY3 <= :hv4
 AND PKEY4 > :hv5

SQL uses PKEY1, PKEY2, and PKEY3 as key predicates. PKEY4 > :hv5 cannot be a
key predicate, because it follows an expression with a range predicate. Instead, it
becomes a base table predicate.

For an alternative to specifying key columns in separate clauses, see Specifying
Multivalued Predicates on page 3-19. For information on predicates with missing key
columns, see Index Predicates on page 3-13.

Defining Key Predicates With Multiple Columns
For tables and alternate indexes with keys that consist of multiple columns, specify
predicates with a key prefix (either a full or partial key, starting with the leftmost key
column). In this example, the PARTLOC table has a primary key consisting of
LOC_CODE and PARTNUM. There is no index on PARTLOC. This query causes a
scan of the entire table:

SELECT PARTNUM, QTY_ON_HAND
 FROM PARTLOC
 WHERE PARTNUM > 10 ;

If you add a value for the leftmost part of the key (defined as LOC_CODE), or provide
an index on PARTNUM, SQL can retrieve the data more efficiently.

Include leftmost key column values, if known, in every predicate.

Specifying Join Predicates
In general, specify a join predicate when you request a join operation. (For a
description of join predicates, see Combining Data From More Than One Table on
page 1-51.) To broaden the types of join strategies SQL can use, include an equal
operator in the join predicate. For more information, see Writing Efficient Joins on
page 3-39.
HP NonStop SQL/MP Query Guide—524488-003
3-18

Improving Query Performance Through Query
Design

Specifying Multivalued Predicates
Specifying Multivalued Predicates
You can influence the selection of an access path—and eliminate extra scanning—by
specifying more than one column or value on each side of a predicate. Such a
predicate, called a multivalued predicate, compares multiple columns with
corresponding values.

This strategy can be especially useful for key prefixes. If key columns are supplied
sequentially (as in col1 = x AND col2 = y), SQL might read the entire table,
possibly scanning unnecessary rows several times. Instead, if the keys are a prefix for
an index, you can use the multivalued predicate construct to specify the set of keys as
a group, eliminating extra scanning.

The columns in a multivalue predicate can be used as keys if a corresponding
multicolumn index exists.

For example, suppose that you want to list all employee rows with names that come
after “JONES, JOHN”; you might write this query, assuming that LAST_NAME and
FIRST_NAME are key columns:

SELECT *
 FROM employee
 WHERE last_name > "JONES"
 OR (last_name = "JONES"
 AND first_name > "JOHN") ;

This query essentially searches for all JONES entries after JOHN JONES and then
searches for all rows past LAST_NAME = JONES. Because an OR operator is used,
this query might cause SQL to read the entire table, with possible rescanning of
unneeded rows.

You can write a more efficient query by combining the two key columns in a single,
multivalued predicate that represents the same conditions, as follows:

SELECT *
 FROM EMPLOYEE
 WHERE LAST_NAME, FIRST_NAME > "JONES", "JOHN" ;

The columns in the multivalued predicate are used as keys if a multicolumn index
exists on LAST_NAME, FIRST_NAME. The statement is equivalent to the earlier one,
but is more efficient and more compact.

Column Order Considerations
A multivalue predicate can be matched with a group of key columns for use as a begin-
key or end-key predicate only if all of the key columns have the same ordering
attribute: either all must be ascending, or all must be descending, as defined in the
KEY specifications of CREATE TABLE and the CREATE INDEX statements.

To maximize the performance of multivalue key predicates, avoid using the DESC
option in KEY specifications in the CREATE TABLE and CREATE INDEX statements,
or define all key columns as DESC.
HP NonStop SQL/MP Query Guide—524488-003
3-19

Improving Query Performance Through Query
Design

Controlling the Expansion of Predicates
If the application does not permit a uniform ordering of key columns, an alternative is to
truncate the multivalue predicate so that it excludes the nonconforming column.

Controlling the Expansion of Predicates
If the optimizer determines additional equality predicates are useful, then it considers
each equivalence class separately for expansion. You can affect the expansion by
using a DEFINE for =_SQL_CMP_EQ_LIMIT. This system DEFINE allows you to
specify the number of equivalent predicates that SQL can use to optimize the join order
of the tables and the index selection.

If a join involves numerous tables, the time the optimizer uses to consider the various
combinations of tables can be long. Set the value for the DEFINE low enough to obtain
a reasonable SQL compilation time but high enough to obtain the benefits of the
optimization process.

Table 3-1 shows typical values and their effects on optimization.

The default value for =_SQL_CMP_EQ_LIMIT is 5.

For more information on this DEFINE, see the SQL/MP Reference Manual.

Table 3-2 on page 3-21 describes the rules for expansion of predicates for various
DEFINE values. The optimizer considers the conditions in the table in sequence and
applies the first condition satisfied.

Table 3-1. The Effect of =_SQL_CMP_EQ_LIMIT Values on Compilation Time

=_SQL_CMP_EQ_LIMIT Value Effect on Optimization

0 or 1 SQL does not generate any extra join
predicates.

2 or 3 Increased compile time is negligible.

4 to 6 Compile time is increased but a wider
range of table combinations can occur,
allowing a more efficient possibly query
plan.
HP NonStop SQL/MP Query Guide—524488-003
3-20

Improving Query Performance Through Query
Design

Controlling the Expansion of Predicates
Table 3-2. Rules for Expansion of Useful Equality Predicates

Condition Expansion Example

The equivalence class
contains a constant
expression.

Equality predicates are
generated between all pairs
of members that are single
columns of different tables
so that a hash join, sort
merge join, or key-
sequenced merge join can
occur. Also, an equality
predicate is generated
between the constant
expression and each of the
other members.

Before:
T.C = 1 AND
U.D = 1

After:
T.C = 1 AND
U.D = 1 AND
T.C = U.D

The number of members of
the equivalence class is less
than or equal to the value for
the DEFINE for
=_SQL_CMP_EQ_LIMIT.

Equality predicates are
generated between all pairs
of members.

Suppose that the DEFINE
=_SQL_CMP_EQ_LIMIT is
set to 3 or greater.

Before:
T.C = T.D AND
T.D = V.E
After:
T.C = T.D AND
T.D = V.E AND
T.C = V.E

The number of members of
the equivalence class that
are single columns is less
than or equal to the value for
the DEFINE for
=_SQL_CMP_EQ_LIMIT.

Equality predicates are
generated between all pairs
of members that are single
columns of different tables.

Suppose that the DEFINE
=_SQL_CMP_EQ_LIMIT is
set to 2.

Before:
T.C = T.D + :hv1 AND
U.C = T.D + :hv1
After:
T.C = T.D + :hv1 AND
U.C = T.D + :hv1 AND
T.C = U.C

The number of members in
the equivalence class that
are single columns exceeds
the value for the DEFINE for
=_SQL_CMP_EQ_LIMIT.

No extra equality predicates
are added for this
equivalence class.

Suppose that the DEFINE
=_SQL_CMP_EQ_LIMIT is
set to 2.

Before:
T.C = T.D AND
U.C = T.D
After:
T.C = T.D AND
U.C = T.D
HP NonStop SQL/MP Query Guide—524488-003
3-21

Improving Query Performance Through Query
Design

Using OR Operators in Predicates
Using OR Operators in Predicates
SQL uses a feature called OR optimization for some queries with OR operations. OR
optimization uses more than one access path to obtain the data and eliminates
duplicate predicates at compile time to produce the result.

MDAM is another feature that works with OR operators. It provides some benefits that
the OR optimization feature does not:

• MDAM eliminates duplicate key values in OR predicates at run time. It does so
before SQL/MP accesses any tables so there is no performance penalty.

• MDAM can process multiple tables in a query and be used on the inner and outer
tables of nested joins and on the outer tables of sort merge, hash, and key-
sequenced merge joins.

• WHERE clauses need not be in disjunctive normal form. That is, WHERE clauses
can have more than one level of OR operations.

MDAM is enabled by default.

Choosing Optimized OR Plans
SQL might use an optimized OR plan when all of these conditions are satisfied:

• There are two or more search conditions connected by OR operators.

• Each search condition contains predicates used as keys on an index. That is, the
predicates involve columns that belong to the key prefix of an index.

• The search condition is in disjunctive normal form. That is, there is only one level
of OR operations; for example:

(P1 AND P2 AND P3) OR (P4 AND P5) OR (P6 AND P7 AND P8)

Note that the parentheses are not required; the AND operator has precedence
over the OR operator.

For execution plans that use OR optimization, the optimizer considers index-only
access for each index scan independently. Index-only access can, however, be used
only if the index contains all of the columns referenced in the entire query.

Additional indexes might enable OR optimization for additional columns.

Plans That Do Not Use OR Optimization
In general, OR optimization is not used in these cases:

• A query involves more than one table.

• Columns in the predicate are not part of a key prefix.

• At least one single predicate—or set of predicates connected by AND operators—
contains only nonkey predicates.
HP NonStop SQL/MP Query Guide—524488-003
3-22

Improving Query Performance Through Query
Design

Using OR Operators in Predicates
• At least one single predicate—or set of predicates connected by AND operators—
contains an executor predicate.

• A group of predicates connected by AND operators has a high selectivity, which is
likely to occur when the operator is not an equal operator (=); instead, SQL might
choose to read the table sequentially to search for rows that satisfy the query. (For
more information about selectivity, see Section 5, Selectivity and Cost Estimates.)

If you do not see entries like Access Path 1 and Access Path 2 in your EXPLAIN
output, you are not getting OR optimization. One alternative might be to use the
UNION operator.

Examples of OR Optimization
Suppose that columns B and C are key columns of an index I on table T (A, B, C, D, E,
primary key A). If a query on T contains these predicates, then OR optimization might
be performed:

WHERE (B = :hv1 AND C BETWEEN :hv2 AND :hv3)
 OR (B = :hv1 AND C > :hv1 AND E < :hv1)
 OR A = :hv1

OR optimization would use index access on I for the first predicate, an index access
through I for the second predicate, and a primary-keyed access for the third predicate.
In the absence of an index, SQL reads the table sequentially to search for rows that
satisfy the query.

This example would not enable OR optimization:

WHERE (B = :hv1)
 OR (B = :hv2)
 AND (D = :hv3)

but this would enable OR optimization:

WHERE (B = :hv1 AND D = :hv3)
 OR (B = :hv2 AND D = :hv3)

This example, with primary key A,B and index C,D, would also enable OR optimization:

WHERE ((C=10) AND ...)
 OR ((A=10) AND ...)
 OR (((A,B)>(10,10)) AND ...)
 OR ((C>10) AND ...)

Note that this example would enable OR optimization because each set of predicates
separated by OR operators contains possible key predicates (either for the alternate
index or for the primary key) possibly connected by AND operators to additional index
or base table predicates. If you connected this list with an AND operator and another
predicate (either base table or index), then OR optimization would not be considered.
HP NonStop SQL/MP Query Guide—524488-003
3-23

Improving Query Performance Through Query
Design

Using LIKE Predicates
Using LIKE Predicates
LIKE constructs can cause full table scans and can therefore result in inefficient
queries. Avoid using the LIKE predicate when another operator might be more efficient.
Instead, use the equal operator (=) whenever possible.

If you must use LIKE, consider these guidelines:

• Avoid using the LIKE predicate beginning with a pattern match symbol (% or _), as
in this example:

WHERE LAST_NAME LIKE "%SON"

If the wild-card character (% or _) is used as the leftmost character of a column
value, SQL cannot transform the LIKE predicate into a range predicate for a
bounded search.

Consequently, specifying LIKE, beginning with a pattern match symbol, causes a
full table scan.

• Avoid constructs such as this:

WHERE LAST_NAME LIKE ?P1

If the LIKE predicate compares a column with a parameter in SQLCI, SQL cannot
transform the LIKE predicate into a range predicate for a bounded search, but
must scan the table instead.

• Avoid LIKE hostvar when hostvar can represent anything.

SQL assumes the worst case, “%...”, and a full table scan is performed.

How the Optimizer Processes Join Operations
Choosing an execution plan for queries involving a join of two or more tables is an
extension of the process of choosing plans for single-table queries. In addition to
determining how to access a table before the join, the optimizer evaluates different
ways to join the tables.

The optimizer evaluates how each of these four join strategies would perform for the
query:

• Nested join (also called nested-loop join)

• Sort merge join

• Key-sequenced merge join

• Hash join

Except for the nested join, all other join strategies require the existence of an equijoin
predicate, which relates columns using an equal (=) comparison operator.

The following subsections describe the four join methods, followed by a description of
how the optimizer compares and evaluates the different types of join strategies for a
HP NonStop SQL/MP Query Guide—524488-003
3-24

Improving Query Performance Through Query
Design

Nested Join
query. In this discussion, an outer table is a table that is examined before another
table. An inner table is a table examined after the outer table.

Two tables can be joined even if there are no joining predicates. In this case, SQL
creates the new table by concatenating every row in one table with every row in the
other table, using a nested join strategy.

Nested Join
The nested join method retrieves rows one-at-a-time from the outer table and
compares them with the rows in the inner table. If index predicates are specified for the
inner table, they are applied before accessing the inner table.

This method retrieves the rows from the inner table that satisfy the join predicate and
concatenates them with the corresponding rows from the outer table.

The nested join method uses VSBB. SQL sets the begin and end keys to the same
value. Therefore, the buffer contains only the rows that match the current input. The
key-sequenced merge join uses VSBB differently. For more information on the key-
sequenced merge join, see Key-Sequenced Merge Join on page 3-27. For information
on VSBB, see Section 4, Improving Query Performance With Environmental Options.

Figure 3-1 shows a nested join.

For information on forcing a nested join, see the SQL/MP Reference Manual. Also, see
Specifying a Join Method on page 3-43.

Sort Merge Join
The sort merge join method requires that the joining columns of the outer and inner
tables exist in ascending or descending order. The sort merge join method is used only
for equijoin queries (queries in which the operator in the join predicate is an equal (=)
comparison operator).

The inner table is always sorted into a temporary entry-sequenced table prior to
performing the join. The optimizer uses one column for the sort. From potential equijoin

Figure 3-1. Nested Join

Nested join result

Outer table:
One sequential

pass

Inner table:
 Random access

027

VST0301.vsd
HP NonStop SQL/MP Query Guide—524488-003
3-25

Improving Query Performance Through Query
Design

Sort Merge Join
predicates, it chooses the column with the lowest selectivity. That is, it picks the
column that it expects to have the fewest matches between values in the inner and
outer table rows.

If the outer table is not already sorted on the joining column, the table is sorted into a
temporary entry-sequenced table. The join is done between the temporary sorted inner
table and the outer table.

A row is retrieved from the outer table, another row is retrieved from the inner table,
and the values of the join columns for the two rows are compared as follows:

1. If the values are the same, the rows are concatenated, projected, and returned to
the user, and the position of this inner row is stored in memory.

2. The next inner row is retrieved, and the process is repeated until the join-column
values of the inner and outer table rows are different.

3. The next row is then retrieved from the outer table:

a. If the join-column value is the same as that in the previous outer row, the inner
table is restored to its original position, and the process is repeated from Step
1.

b. If the join-column value of the inner row is less than that of the outer row, the
next inner row is retrieved until the value of the inner row is greater than or
equal to that of the outer row.

c. If the join-column value of the inner row is greater than that of the outer row,
the next outer row is retrieved until the outer row has a value greater than or
equal to that of the inner row.

d. If the join column values of the outer row and inner row are equal, then the
process is repeated from Step 1.

SQL makes one pass through the inner table, with possible limited looping within a
value range. The performance difference between a nested join and a sort merge join
is the difference between random access with possible repeated access to the same
pages needed for a nested join and the cost of sort operations needed for the sort
merge join.

Steps 1 through 3 are repeated until all rows from the outer table have been examined.
HP NonStop SQL/MP Query Guide—524488-003
3-26

Improving Query Performance Through Query
Design

Key-Sequenced Merge Join
For information on forcing a merge join, see the SQL/MP Reference Manual. Also, see
Specifying a Join Method on page 3-43.

Key-Sequenced Merge Join
The key-sequenced merge join method can apply a merge-join method to tables
without doing a sort or using a temporary file. A key-sequenced merge join involves an
outer composite and an inner table. An outer composite is either a single outer table or
the result of any joins that have occurred so far. The operator in the join predicate must
be an equal (=) operator, and one of these conditions must be met:

• The tables must be in the same order.

• If rows from the inner table must be accessed by index, then the outer table of the
join must be in the same sequence as one of the indexes of the inner table.

The key-sequenced merge join has two advantages over a sort merge join: it does not
require a sort on one or both tables and it is not limited to a single column.

Figure 3-2. Sort Merge Join

Sort-merge join result

Outer table:
One sequential

pass

Inner table:
 One sequential

pass

028

Sort

Only if
outer table is
not in sorted

order Temporary
file

Sort

Temporary
file

VST0302.vsd
HP NonStop SQL/MP Query Guide—524488-003
3-27

Improving Query Performance Through Query
Design

Key-Sequenced Merge Join
The read process for the key-sequenced merge join is the same as that for the sort
merge join, except for the third step. A row is retrieved from the outer table, another
row is retrieved from the inner table, and the values of the join columns for the two
rows are compared as follows:

1. If the values are the same, the rows are concatenated, projected, and returned to
the user, and the position of this inner row is stored in memory.

2. The next inner row is retrieved and the process is repeated until the join-column
values of the inner and outer table rows are different.

3. The next row is then retrieved from the outer table:

a. If the join-column value is the same as that in the previous outer row, the inner
table is restored to its original position, and the process is repeated from Step
1.

b. If the join-column value of the inner row is less than that of the outer row, then
the following occurs:

1. A limited number of rows are read until the value of the inner row is greater
than or equal to that of the outer row. (The optimizer chooses the limit.)

2. If the limit is reached before SQL finds such an inner row, the inner table
rows are skipped and the outer row value is then used as an index into the
inner table.

c. If the join-column value of the inner row is greater than that of the outer row,
the next outer row is retrieved until the outer row has a value greater than or
equal to that of the inner row.

d. If the join column values of the outer row and inner row are equal, then the
process is repeated from Step 1.

When a left join uses a key-sequenced merge join, a null-augmented row is created for
the inner table when no match occurs. Then a random position takes place on the
inner table, using the next new outer row key.
HP NonStop SQL/MP Query Guide—524488-003
3-28

Improving Query Performance Through Query
Design

Hash Join
The key-sequenced merge join method differs from a nested join in the way that
records are retrieved from both the outer and inner tables. The key-sequenced merge
join method may read several rows on the outer table before retrieving a row from the
inner table. The nested join method reads only one row from the outer table before
accessing the inner table.

A key-sequenced merge join uses virtual sequential block buffering (VSBB) when it
sequentially retrieves rows from the inner table. A nested join randomly accesses rows
on the inner table, using separate retrievals for each outer row.

Even though the key-sequenced merge join method can reposition and reread rows on
the inner table, this method can still be more efficient than the nested join. When the
key-sequenced merge join uses VSBB, it sets the end key to the maximum possible
value. As a result, more data can be in the buffer than is actually needed. On
subsequent retrievals, the data will already be in the buffer. This result is not true for
the VSBB used in the nested join. For more information on VSBB and the nested join,
see Nested Join on page 3-25. For information on VSBB, see Section 4, Improving
Query Performance With Environmental Options.

The DISPLAY STATISTICS for a key-sequenced merge join can be misleading
because the counts for records accessed and for records used can be greater than
those in a nested join.

For information on forcing a key-sequenced merge join, see the SQL/MP Reference
Manual. Also, see Specifying a Join Method on page 3-43.

Hash Join
Hash methods eliminate sort operations for a join operation. The hash-join strategy is
considered an asymmetric algorithm because only the inner table is stored in memory.

Hashing is most efficient when the inner table can fit entirely into memory and is ideal
for joining a large table with a small table when the joining columns are not key
columns. The size of a large outer table does not influence the amount of memory
needed—an advantage over sort merge joins, which sometimes must sort the large
table.

Figure 3-3. Key-Sequenced Merge Join

Key-sequenced
merge join result

Outer table:
One sequential

pass

Inner table:
 Sequential

acc ess

029

VST0303.vsd
HP NonStop SQL/MP Query Guide—524488-003
3-29

Improving Query Performance Through Query
Design

Hash Join
A hash join uses a hashing function, rather than indexes or sequential reads, to access
specific rows in a file. In general, the process has two phases:

1. The build phase reads the inner table of the join into virtual memory and builds an
in-memory hash table for it, using a hashing function based on join attributes.

The hashing function calculates indexes into an array of values in main memory.
All equal values go to the same table entry and are chained by linked list; other
values can also hash to the same array entry. The array is divided into buckets,
each of which is small enough to fit into main memory. If the join is partitioned, the
arrays are distributed across partitions.

Figure 3-4 shows the in-memory hash chain structure for an inner table.

2. The probe phase reads the outer table sequentially. For each outer (probing) row, it
accesses matching rows in the hashed inner table and generate result rows.

SQL supports two types of hash joins, simple and hybrid:

• A simple hash join is fastest when the inner table of the join operation fits entirely
within memory.

• A hybrid hash join increases performance when the inner table is much larger than
available memory.

SQL supports hashing for multiple join columns. This strategy allows efficient hashing
when more than one column is specified in the join predicate.

SQL does not support hash joins for columns that use collations.

For information on forcing a hash join, see the SQL/MP Reference Manual. Also, see
Specifying a Join Method on page 3-43.

The following subsections describe sequential and parallel operation of each type of
hash join.

Figure 3-4. Hash Function Example

Hash

F unction

Hash

Buc kets

Has h Chains

of Records

024

VST0304.vsd
HP NonStop SQL/MP Query Guide—524488-003
3-30

Improving Query Performance Through Query
Design

Hash Join
Simple Sequential Hash Join
To execute a simple sequential hash join, the executor performs two steps.

1. The executor makes a single pass over the inner table of the join, applying
selection and projection operations (if possible) to eliminate unnecessary rows and
columns of the inner table prior to the actual join operation. The executor stores
the remaining portion of the inner table in memory, building an in-memory hash
table using the smaller table hashed on the join attribute. (The join attributes are
used as a hash key.)

2. The executor then makes one pass over the outer table of the join, applying
selection and projection operations if possible. For each row of the outer table that
remains after selection and projection, the executor obtains the corresponding row
or rows of the inner table (as in a nested join). The executor joins matching rows
and delivers them to the next stage of the query execution process.

Instead of sorting, the inner table is read into a memory-resident hash table. The outer
table is processed like the outer table of a nested join. Building a hash table is faster
than sorting, so hash joins have better performance as long as enough memory is
available.

The order of the outer table is preserved during a simple sequential hash-join
operation.

Hybrid Hash Join
A hybrid hash join handles overflow situations when the smaller table does not fit
entirely in physical memory. The hybrid join retains as much as possible of the inner
table in memory, but divides rows of both inner and outer tables into buckets, or
clusters, that reside on disk and can be processed in memory.

If the outer table is actually a composite of more than one table, SQL must write it
entirely to disk and complete the previous join before it can begin the current hybrid
hash join. This is an expensive operation.

The hybrid hash join does not preserve ordering, because clusters of data might be
written to disk. Each cluster is in order, but the concatenation of them is not in order.
This situation affects performance when the query requests subsequent orderings such
as an ORDER BY request.
HP NonStop SQL/MP Query Guide—524488-003
3-31

Improving Query Performance Through Query
Design

Hash Join
Parallel Hash Join
The optimizer considers a parallel hash-join strategy if CONTROL EXECUTOR
PARALLEL EXECUTION ON is specified for the query. SQL supports three types of
parallel hash joins:

• Plain parallel

• Repartitioned parallel hash

• Matching partitions

Plain Parallel

SQL can execute hash joins across processors and across disk partitions. A parallel
hash join uses existing partitions and follows these steps:

1. The executor starts an ESP for each partition of the inner table.

2. The executor starts an ESP for each partition of the outer table. (The outer table
must have more than one partition.)

3. Each inner ESP reads its partition, applies selection and projection criteria, and
sends the results to the outer ESPs.

4. Each outer ESP receives a copy of the inner ESP results, stores them in a hash
structure in memory, and reads its own partition in a single pass to perform the join.
For each row, the matching rows are searched in the hash table and result rows
are generated.

Thus, a large join can be split into smaller joins and executed in parallel, and, perhaps
more importantly, the multiple processes can take advantage of a greater amount of
main memory. An inner table that might not fit into memory in a single processor might
fit into memory when divided into smaller pieces and directed to use multiple
processors

For a two-table parallel hash join, a hybrid parallel hash join is used for the parallel
hash join. For a join with three or more tables, where parallel hash join is selected for
the third table, a simple hash join is selected.

As with all parallel plans, order is not preserved after the join operation.

Note. If your system has limited process resources, the number of ESP processes might
cause a performance reduction. In such a case, if you plan to use parallel hash joins, you
might consider defining fewer partitions for the outer table so that fewer ESPs are started up.
HP NonStop SQL/MP Query Guide—524488-003
3-32

Improving Query Performance Through Query
Design

Hash Join
Repartitioned Parallel Hash Join

A repartitioned parallel hash join reads from existing partitions and repartitions the data
across all processors, using these steps:

1. The executor starts an ESP for each partition of the inner table.

2. The executor starts an ESP for each partition of the outer table. (The outer table
must have more than one partition.)

3. The executor starts an ESP in each processor on the local system to join
repartitioned inner and outer rows.

4. Data from the inner table is read and repartitioned into ESP processes for each
processor in the system. The inner table (usually the smaller table) is divided into
partitions by applying a hash function to the join attributes and computing the
partition number. Each partition resides on its own processor.

5. Data from the outer table is read and repartitioned into ESP processes for each
processor in the system. It is repartitioned in the same way the inner table was.
After the outer row is repartitioned and sent to an ESP, a hash join is done.

Thus, the parallel repartitioned hybrid hash join uses three levels of hashing:

• Dividing tables into partitions (for parallelism)

• Dividing tables into buckets, or clusters (for overflow)

• Optimizing access and comparison overhead (base level of hashing)

The repartitioned parallel hash join always uses a hybrid hash join strategy (as
opposed to a simple hash join). In general, the repartitioned parallel hash join is more
efficient than a parallel sort merge join because sorting is avoided.

As with all parallel plans, order is not preserved after the join operation.

Matching Partitions

A matching partitions hash join has inner and outer tables that are keyed and
partitioned the same way. This join method uses only one set of ESPs. The method
works best when most of the rows need to be scanned to perform the join. These are
the steps:

1. The executor starts an ESP for each partition of the outer table.

2. Each ESP reads the corresponding inner table partition and hashes the inner rows
into memory.

3. Each ESP reads its outer table partition sequentially, applies the selection and
projection criteria, hashes the key, and checks the inner hash table for a match.

4. Matches are passed to the next step of the query.

As with all parallel plans, order is not preserved after the join operation.
HP NonStop SQL/MP Query Guide—524488-003
3-33

Improving Query Performance Through Query
Design

Determining a Join Strategy
Determining a Join Strategy
When evaluating join methods, the optimizer looks at ways to join tables, both with
structure and ordering of combinations of tables and with various join strategies. The
goal is to minimize processor time, disk access, sorts, and other resource use so that
resource consumption is minimized, and performance is as fast as possible.

The optimizer evaluates performance for each access path to each table.

The optimizer uses a cost model to evaluate join strategies and chooses the strategy
with the lowest estimated cost. (For information about cost, see Section 5, Selectivity
and Cost Estimates. To list the chosen strategy, see EXPLAIN output, described in
Section 6, Analyzing Query Performance.)

Combining Tables
When two tables are joined, SQL forms a composite table. For example, if two tables,
T1 and T2, are joined, SQL forms a composite table, T1 JOIN T2, in the course of
evaluating the query.

The number of different ways to join a set of tables increases exponentially as the
number of tables increases, so SQL reduces the number of possibilities when possible.

When joining more than two tables, SQL follows these steps:

1. Joins tables a pair at a time. SQL considers only two-way joins that involve either
two tables or a composite table and a table that does not already belong to the
composite.

2. Evaluates joins between the composite table and all single tables that have not yet
been added to the composite. For each single table, associate all join predicates
that relate the single table with tables that are already in the composite.

3. Generates plans for types of join strategies (nested, sort merge, key-sequenced
merge, and hashed).

4. When the composite table contains all tables that need to be joined, chooses the
plan with the least cost. (For information about cost, see Section 5, Selectivity and
Cost Estimates.)

This pairwise strategy reduces the number of combinations that must be examined and
simplifies evaluation. For example, if tables T1, T2, T3, and T4 are to be joined, this
combination is considered:

(((T1 JOIN T2) JOIN T3) JOIN T4)

This combination is not considered, because it joins two composite tables:

((T1 JOIN T2) JOIN (T3 JOIN T4))

The number of combinations is also reduced by discarding more expensive
combinations that give the same order to result rows. For example, suppose that the
EMPLOYEE table has EMP_NAME as the primary key and an index exists on the
HP NonStop SQL/MP Query Guide—524488-003
3-34

Improving Query Performance Through Query
Design

Determining a Join Strategy
DEPT_NUM column. The DEPT table has DEPT_NUM as the primary key. this query
asks for employee and department information:

SELECT EMP_NAME, DEPT_NAME, SALARY
 FROM EMPLOYEE, DEPT
 WHERE EMPLOYEE.DEPT_NUM = DEPT.DEPT_NUM ;

The information is retrieved by joining the EMPLOYEE and DEPT tables. There are
several ways to join the tables; for example:

• (EMPLOYEE with primary key JOIN DEPT)

• (EMPLOYEE with index JOIN DEPT)

• (DEPT JOIN EMPLOYEE with primary key)

• (DEPT JOIN EMPLOYEE with index)

The order in which the rows are presented depends on the access path used for the
outer table. For choice 1, the rows are presented in EMP_NAME order. For choices 2,
3, and 4, the rows are presented in DEPT order.

If another table, JOB, is to be joined with the preceding result table, SQL considers
only the composite from choice 1 or the composite from the least expensive of choices
2, 3, and 4. This strategy reduces the number of combinations to be joined with JOB
from four to two. In general, SQL discards all but the least expensive of the
combinations for a given order.

Combining Tables for Hash Join Operations
When evaluating a hash join operation, SQL attempts to choose the smaller of two
tables as the inner table so the table is more likely to fit into memory.

Forming Cross Products
If you specify multiple tables in the FROM clause without a join predicate or with a join
predicate that is always true, SQL forms a Cartesian product (or cross product) by
concatenating each row of each table with every row of every other table. This strategy
produces a set of composite rows that contains all possible concatenations of a row
from the first table with a row from the second table.

SQL performs this operation whenever there is a join without an equality predicate
between a table or composite table and another table. For queries with several tables,
the process might be repeated several times.

A Cartesian product involving two tables, one of size M and the other of size N, is of
size M x N. If the tables are large, the performance overhead can be quite costly.
Therefore, in most situations, SQL does not form a Cartesian product unless a single
table does not have a join predicate connecting it to the composite table. If none of the
remaining single tables has a join predicate connecting it to the composite, then the
optimizer considers a Cartesian product between the composite and each of the
remaining tables.
HP NonStop SQL/MP Query Guide—524488-003
3-35

Improving Query Performance Through Query
Design

Determining a Join Strategy
In some situations, SQL forms a single Cartesian product that significantly reduces the
number of rows to be joined.

Consider this example that creates three tables and then selects data from the tables:

CREATE TABLE buildng (a INT, m INT, n INT, KEY a) ;
CREATE TABLE room (x INT, b INT, KEY x) ;
CREATE TABLE locatn (c INT, d INT, e INT, f INT, KEY (c,d)) ;

SELECT * from buildng, room, locatn
 WHERE buildng.a, room.b = locatn.c,locatn.d
 AND room.b = 5
 AND buildng.m > 20 ;

Suppose that the predicates produce these results:

• buildng.m > 20 produces 100 rows

• room.b = 5 produces 10 rows

• The first key of locatn produces 1,000 rows for each equal relation, but both keys
(c and d) yield exactly one row

Without an intermediate cross product, SQL would join buildng to locatn (as in
buildng.a = locatn.c) and then join the composite with room. The join between
the composite and room would involve 100,000 rows.

With a cross product between buildng and room, however, before the join with locatn,
only 1,000 rows remain after the cross product and only 1,000 rows are read from table
locatn, resulting in a substantial reduction in query time.

SQL forms Cartesian products for both serial and parallel execution plans; for parallel
plans, browse access or TABLE LOCK ON must be specified. For more information,
see Section 4, Improving Query Performance With Environmental Options and the
SQL/MP Reference Manual.

Relative Performance of Join Strategies
For each two-way join, SQL considers four join methods: nested, sort merge, key-
sequenced merge, or hash.

If M and N are the number of rows in two joined tables, then the increasing resource
cost of joins is roughly calculated as shown in Table 3-3.

Table 3-3. Calculation of Resource Costs for Joins

Join Strategy Order of Cost

Nested Join M * N, with no indexes

Sort Merge Join N log N

Key-Sequenced Merge Join N

Hash Join N, with a minimum amount of memory
HP NonStop SQL/MP Query Guide—524488-003
3-36

Improving Query Performance Through Query
Design

Determining a Join Strategy
For each join performed within the join strategy listed in the “Join Strategy” column, the
cost increases by the algorithm shown in the “Order of Cost” column. Various factors
influence these general rules.

Table 3-4 compares join strategies.

Table 3-4. Comparison of Join Strategies (page 1 of 2)

Element of
Comparison Nested Join Sort Merge Join

Key-Sequenced
Merge Join Hash Join

Requirements
for join
strategy

None Query must
include an
equality
operation as part
of the join
predicate.

Query must
include an
equality
operation as part
of the join
predicate. Join
predicate must
include the
leading key
columns of the
inner table. Inner
and outer tables
must be in the
same order.

Query must
include an
equality
operation as part
of the join
predicate.

Processor
overhead

If no indexes
are available,
cost increases
with the number
of rows.

Cost increases
by approximately
n log n with the
number of rows
in the smaller
table.

Cost increases
by approximately
n, with the
number of rows
in the larger
table.

Cost increases
by approximately
n, with the
number of rows
in the smaller
table.

Sort
requirements

None Always requires
one sort for the
inner table. If
values in the
joining columns
are not in the
same ascending
or descending
sequence, the
optimizer might
choose to sort
the outer table
as well and then
perform the sort
merge join.

Does not require
a sorting
operation. This
can be
especially helpful
if a sort is not
needed for an
ORDER BY or
GROUP BY
operation in the
query.

Does not require
a sorting
operation. This
can be
especially helpful
if a sort is not
needed for an
ORDER BY or
GROUP BY
operation in the
query.
HP NonStop SQL/MP Query Guide—524488-003
3-37

Improving Query Performance Through Query
Design

Determining a Join Strategy
Hash
requirements

None None None All hash joins
hash the inner
table. Hybrid
hash joins also
hash the outer
table.

Use of MDAM Can be used on
inner and outer
tables.

Can be used on
outer table.

Can be used on
outer table.

Can be used on
outer table.

Scan
requirements

Typically scans
entire inner
table for each
row of the outer
table if join
columns are not
primary key
columns or
alternate key
columns of the
inner table

Inner table
typically scanned
once, but might
be scanned once
per row of the
outer table, in
the worst case
scenario.

Inner table
scanned once.

Inner table
scanned once.

Use of join
predicates as
begin and end
keys

Can use join
predicates as
begin and end
key predicates if
join columns are
primary or
alternate key
columns of the
inner table. In
this manner,
each row of the
outer table
provides starting
and stopping
values for keyed
retrieval from
the inner table.

Can use join
predicates as
begin and end
key predicates if
join columns are
primary or
alternate key
columns of the
inner table.
Balances keyed
and sequential
retrieval. Rows
from the outer
table provide
starting values
for keyed
retrieval from the
inner table.

Cannot use join
predicates as
begin and end
keys. Must read
the entire inner
table unless
there are
additional
nonjoining key
predicates to
limit the scan.
Single pass and
sequential I/O
might, however,
still make the
hash join more
efficient.

Order of
results

Preserves
ordering of
outer table.

Produces the
join result in
order of the join
attribute, which
can eliminate a
later sort
operation.

Preserves
ordering of outer
table.

Simple join
preserves
ordering of the
outer table.

Table 3-4. Comparison of Join Strategies (page 2 of 2)

Element of
Comparison Nested Join Sort Merge Join

Key-Sequenced
Merge Join Hash Join
HP NonStop SQL/MP Query Guide—524488-003
3-38

Improving Query Performance Through Query
Design

Writing Efficient Joins
In general, the optimizer chooses a hash join in preference to a sort merge join for
situations where an equality predicate exists for the join operation. The performance
advantage of the hash join increases with increasing size difference between input
tables. This advantage decreases when data is not distributed uniformly.

The choice between the hash join and the key-sequenced merge join is not so simple.
Both joins scan the inner table at almost the same speed. The major difference is that
the hash join spends time building or probing the hash table, while the key-sequenced
merge join spends time evaluating the join predicates against all the rows qualified by
the scan. However, the key-sequenced merge join has two main advantages:

• The key-sequenced merge join has no space requirement for preprocessing the
inner table, while the hash join needs to allocate space for it.

• Unlike the hash join, the key-sequenced merge join does not have to send the
hashed tables to all of the outer executor server processes. Therefore, a key-
sequenced merge join does not incur this extra message cost.

Also, uneven data distribution can lessen performance by causing differential overflow
of hash clusters; this effect can be especially influential when selectivity is low. (For
information about selectivity, see Section 5, Selectivity and Cost Estimates.)

If tables are partitioned similarly on joining columns, a parallel nested join is used in
preference to a parallel hash join.

The existence of an index on each column of a join predicate also influences the
selection of join technique.

Writing Efficient Joins
The optimizer determines efficient join strategies for various combinations of tables
and join methods (described in How the Optimizer Processes Join Operations on
page 3-24). There are five ways to assist this process:

• Specifying predicates for smaller tables of the join

• Using indexes for the join

• Eliminating implicit joins

• Adding join predicates

• Using joins instead of subqueries

The first option minimizes the amount of data returned by the join; the other options
extend the methods available to SQL for optimizing the operation.

This subsection describes two CONTROL directives that force the optimizer to
evaluate joins in a specific way. These options should only be used with extreme
caution and thorough knowledge of join operations.

If your query requires a join, first make sure there is nothing missing from the query,
such as predicates on key columns.
HP NonStop SQL/MP Query Guide—524488-003
3-39

Improving Query Performance Through Query
Design

Using Indexes
Using Indexes
The use of an index improves join performance by eliminating sort operations. In
situations where the fastest possible response time is required, do not specify joins
where no index exists. If you are not sure which columns are keys or indexes, check
with your database administrator.

Eliminating Implicit Joins
When tables are joined, each new row is formed by concatenating two rows, one from
each of the original tables. The paired rows must have the same value in the joining
column. You do not need to specify a join predicate for a join, but the use of a
predicate can improve the performance of the join operation.

If you specify multiple tables in the FROM clause without a search predicate, SQL
forms a Cartesian product (or cross product) by concatenating, in turn, each row of
each table with every other row of every other table. This strategy is known as an
implicit join.

A Cartesian product involving two tables, one of size M and the other of size N, is of
size M x N. If the tables are large, the performance overhead can be quite costly.

By specifying a join predicate, you can

• Eliminate costly scans of multiple tables

• Provide a greater choice of plans for SQL in these ways:

° A greater number of predicates provides a greater number of ways that SQL
can evaluate possible join combinations.

° SQL does not consider the efficient hash or merge joins unless an equality
predicate is specified for the join operations.

• Reduce the size of the result and, consequently, the amount of work done by SQL
to produce the result

In this example, a join is created between the PARTS and ODETAIL tables. Specifying
ODETAIL O, PARTS P in the FROM clause creates an implicit join; however, because
no join column is specified, a Cartesian product is produced:

SELECT ORDERNUM
 FROM ODETAIL O, PARTS P
 WHERE O.PARTNUM = 5100
 AND QTY_ORDERED <
 (SELECT AVG(QTY_AVAILABLE)
 FROM PARTS
 WHERE P.PARTNUM = 5100) ;

The query returns this result:

ORDERNUM

HP NonStop SQL/MP Query Guide—524488-003
3-40

Improving Query Performance Through Query
Design

Adding Join Predicates
 100210
 300350
 600480
 800660

--- 4 row(s) selected.

To eliminate the unnecessary join and include a join predicate, therefore eliminating the
Cartesian result, rewrite the query as follows:

SELECT ORDERNUM
 FROM ODETAIL O
 WHERE O.PARTNUM = 5100
 AND QTY_ORDERED <
 (SELECT AVG(QTY_AVAILABLE)
 FROM PARTS P
 WHERE P.PARTNUM = 5100) ;

For a cost analysis of both formulations of the query, see Section 5, Selectivity and
Cost Estimates.

Adding Join Predicates
Beyond the advantage of a single join predicate, additional predicates can increase the
choice of execution plans available to SQL without changing the meaning of the query.
Consider this query:

SELECT *
 FROM T1,T2,T3
 WHERE T1.A = T2.B
 AND T2.B = T3.C

Adding this predicate can increase the combinations available to SQL:

 AND T1.A = T3.C

Using Joins Instead of Subqueries
In general, look for ways to formulate your query with join operations instead of
subqueries. The use of join operations can reduce I/O operations, reduce message
traffic, and increase the flexibility with which SQL can choose an execution plan.

When you use a subquery, you direct SQL to perform the subquery first and then
perform the main query. SQL must process two SELECT statements to obtain the
result.

If the select statement in the subquery produces unique results (no duplicate rows),
then the subquery can be transformed into a join. This restriction applies because even
though a subquery can have duplicate rows, each row of the outer table can produce
at most one result row. If, however, a subquery with duplicate rows is converted into a
join, then each row of the outer table can produce multiple result rows, which could
change the result set.
HP NonStop SQL/MP Query Guide—524488-003
3-41

Improving Query Performance Through Query
Design

Using Joins Instead of Subqueries
These examples show how to reformulate subqueries into join queries. Consider this
query, which contains a subquery:

SELECT employee.name
 FROM employee
 WHERE employee.dept_no IN
 (SELECT dept.dept_no FROM dept
 WHERE dept.name = "development")
 ORDER BY employee.name ;

You can change this query into a join query as follows:

SELECT employee.name
 FROM employee, dept
 WHERE employee.dept_no = dept.dept_no
 AND dept.name = "development"
 ORDER BY employee.name ;

Although both formulations produce the same result, their performances are likely to be
very different: the second formulation always matches or outperforms the first one. The
use of the join minimizes I/O operations for separate SELECT statements. In addition,
in the first formulation, the user has dictated how the query is to be performed (perform
the subquery first and then perform the main query). In the second formulation, SQL
can determine the order of the join and is therefore able to choose the most efficient
way to execute the query.

For another example, this noncorrelated subquery:

SELECT emp_id, first_name, last_name, mgr_id
 FROM employee emp1
 WHERE emp_id IN (SELECT mgr_id
 FROM employee emp2) ;

can be reformulated as a self join in this way:

SELECT emp1.emp_id, emp1.first_name,
 emp1.last_name, emp1.mgr_id
 FROM employee emp1, employee emp2
 WHERE emp2.mgr_id = emp1.emp_id ;

The second query performs better because SQL obtains the entire result with a single
SELECT operation rather than two SELECT operations.

A correlated subquery allows you to take advantage of the EXISTS predicate, however.
If you just want to know whether some condition actually exists in the database or not,
a join can be more costly. Do not discard correlated subqueries unconditionally.

You can tell the type of subquery by looking at EXPLAIN output. For a correlated
subquery, the EXPLAIN utility lists “Executes once for each row retrieved.”

For more information about correlated and noncorrelated subqueries, see Section 1,
Retrieving Data: How to Write Queries.
HP NonStop SQL/MP Query Guide—524488-003
3-42

Improving Query Performance Through Query
Design

Specifying a Join Method
Specifying a Join Method
Two directives control the selection of join method:

• The CONTROL QUERY HASH JOIN option specifies whether SQL can use hash
joins if the optimizer expects hash joins to improve query performance.

• The CONTROL TABLE JOIN METHOD option specifies the join method SQL uses
when the specified table is the inner table of a join operation. Options include
NESTED, MERGE, KEY SEQUENCED MERGE, and HASH. If you choose not to
specify a join method, SQL selects an appropriate method for each join of the table
or tables that you specify in the CONTROL TABLE directive.

For more information on these directives, see the SQL/MP Reference Manual.

CONTROL QUERY HASH JOIN Option
A sample CONTROL QUERY HASH JOIN directive follows:

CONTROL QUERY HASH JOIN ENABLE ;

This directive ensures that SQL considers hash joins for subsequent queries.

You should usually leave the HASH JOIN option set to SYSTEM or ENABLE, because
the optimizer is designed to select a hash join only if the resulting plan improves the
performance of your query.

You might, however, choose HASH JOIN OFF if you know that memory contention is
severe in the processor or processors that run your query.

For more information, see the SQL/MP Reference Manual.

CONTROL TABLE JOIN METHOD Option
The JOIN METHOD option applies only to SELECT and INSERT-SELECT statements,
and can be specified with other CONTROL options. Sample directives are:

CONTROL TABLE EMPLOYEE JOIN METHOD NESTED ;
CONTROL TABLE * JOIN METHOD SYSTEM ;

When specifying a merge join or hash join, the query must contain an equijoin
predicate between the two tables.

If you specify JOIN METHOD HASH and the join involves columns with collations, SQL
returns an error.
HP NonStop SQL/MP Query Guide—524488-003
3-43

Improving Query Performance Through Query
Design

Specifying a Join Method
Join method does not affect the first table in a join sequence (the table that ends up as
Step 1 of the query plan). Step 1 is always a scan operation; the remaining steps are
join operations. (For more information see, Specifying a Join Sequence on page 3-45.)

If you suspect that you might benefit from the use of one of these options, check your
application with and without the CONTROL option. To check your application, run
Measure, a performance measurement tool for NonStop systems, on your production
data. This tool enables you to collect and examine performance statistics.

If you use one of the CONTROL options, you might want to change this directive later
for reasons such as these:

• The query might not be able to use a more efficient index that might be created in
the future

• The query might not be able to benefit from future enhancements to SQL

• Changes to the database structure (such as dropping an index) can require
recompilation when the option is in use

Therefore, make any occurrences of it easy to find and change, using one or more of
these alternatives:

• Make sure the directive only applies to the statement and table intended. Return
the specified table to SYSTEM method directly after the statement; for example:

CONTROL TABLE * JOIN METHOD SYSTEM

• Isolate this directive in its own section and perform it from the inline application
code.

• Place all statements affected by this directive in separate modules, called as
services by other modules.

Confirm all use of this option with data from the Measure product and verify its use
periodically to account for changes in data distributions and volumes. Reevaluate its
effectiveness with each new version of SQL.

Combining HASH JOIN and JOIN METHOD Options
If JOIN METHOD SYSTEM and CONTROL QUERY HASH JOIN OFF are both
specified, SQL never selects a hash join.

If JOIN METHOD HASH is specified, it overrides any setting of the CONTROL QUERY
HASH JOIN option for the specified table.

Caution. The JOIN METHOD option overrides the optimizer’s standard cost estimates
(described in Section 5, Selectivity and Cost Estimates), and therefore might cause
performance degradation instead of enhancement. To use this option, you must have a
thorough understanding of the optimizer. Use it only if the optimizer does not produce the
optimal plan.
HP NonStop SQL/MP Query Guide—524488-003
3-44

Improving Query Performance Through Query
Design

Specifying a Join Sequence
Specifying a Join Sequence
The CONTROL TABLE JOIN SEQUENCE option controls the order in which tables are
combined in a join operation. You specify access by defining an ordinal position for a
table. The statement accepts integers; the table associated with the number one is the
first table processed. For example, JOIN SEQUENCE 1 forces SQL to assign the
specified table to the first step of the join operation (the outermost loop).

The JOIN SEQUENCE option applies only to SELECT and INSERT-SELECT
statements and can be specified with other CONTROL options. A sample directive
follows:

CONTROL TABLE EMPLOYEE JOIN SEQUENCE SYSTEM ;

If you specify the SYSTEM option, SQL chooses the join sequence SYSTEM (default)
option. If, for example, you specified CONTROL TABLE EMP1 JOIN SEQUENCE 1 in
an SQLCI session, use CONTROL TABLE EMP1 JOIN SEQUENCE SYSTEM (for
table EMP1) or CONTROL TABLE * JOIN SEQUENCE SYSTEM (for all tables in
subsequent queries) to restore the default join sequence mechanism.

If you suspect that you might benefit from the use of one of these options, check your
application with and without the CONTROL option, using actual Measure statistics from
production data.

You might want to change this directive later for reasons such as these:

• The query might not be able to use a more efficient index that might be created in
the future

• The query might not be able to benefit from future SQL enhancements

• Changes to the database structure (such as dropping an index) can require
recompilation when the option is in use

Therefore, make any occurrences of it easy to find and change, using one or more of
these alternatives:

• Make sure the directive only applies to the statement and table intended. Return
the specified table to SYSTEM sequence directly after the statement.

• Isolate this directive in its own section and perform it from the inline application
code.

• Place all statements affected by this directive in separate modules, called as
services by other modules.

Caution. The JOIN SEQUENCE option overrides the optimizer’s standard cost estimates
(described in Section 5, Selectivity and Cost Estimates) and therefore might cause
performance degradation instead of enhancement. To use this option, you must have a
thorough understanding of the optimizer. Use it only if the optimizer does not produce the
optimal plan.
HP NonStop SQL/MP Query Guide—524488-003
3-45

Improving Query Performance Through Query
Design

How the Optimizer Processes Aggregates and
Group-By Operations
Confirm all use of this option with data from the Measure product and verify its use
periodically to account for changes in data distributions and volumes. Reevaluate its
effectiveness with each new version of SQL.

How the Optimizer Processes Aggregates and
Group-By Operations

SQL can use these strategies to evaluate aggregates and GROUP BY operations,
listed from most to least optimal:

• MIN/MAX optimization

• Evaluation by the disk process

• Evaluation by the executor, without sorting

• Hashed aggregation and grouping

• Sorted GROUP BY operation

In addition, for partitioned tables, SQL can process aggregations in parallel. To do this,
SQL starts an ESP for each partition. Each server process reads its corresponding
partition, processes the partial aggregate, and sends it to the master ESP. If partitions
are distributed across a network, this strategy can reduce the amount of network traffic
as well as interprocessor traffic.

EXPLAIN output lists the location of aggregate and GROUP BY evaluation (disk
process or executor).

These paragraphs describe each type of evaluation strategy.

MIN and MAX Optimization
The processing of MAX and MIN functions usually requires reading the entire table. If,
however, all of these conditions are met for a query, SQL reads only one row when
evaluating a MAX or MIN function:

• The FROM clause names only one table.

• The select list contains only one function.

• The column operand of the MIN or MAX function is in the begin key or the end key.

For example, consider this query. Suppose that there is an index on (A, B, C):

SELECT MAX(C) FROM T
 WHERE A = 10 AND B = 20 ;

This query can be evaluated by reading a single row from the index, even though there
is no predicate on C.
HP NonStop SQL/MP Query Guide—524488-003
3-46

Improving Query Performance Through Query
Design

Evaluation by the Disk Process
If the begin-key and end-key predicates contain only equal comparisons (=), then the
MIN or MAX processing of the next key column in sequence, which is not part of the
begin or end key, is also evaluated by reading only one row from the index.

MAX and MIN functions are not optimized when

• The operand of the MAX or MIN function is an expression; for example:

MAX(-C)

• The query specifies a GROUP BY or a HAVING clause.

• The WHERE clause contains any of these subqueries:

° A correlated subquery

° An ANY, SOME, or ALL subquery

° An EXISTS subquery

• The WHERE clause contains any predicate connected by an OR operator that
might use a keyed access.

• Both MAX and MIN are requested in one SELECT statement; for example:

SELECT MIN(A), MAX(B) FROM T ;

In such cases, you should write two SELECT statements.

If an index exists on the column that is an argument of the MIN or MAX function and
the column is the prefix of the index, the executor component can read the first or last
row to retrieve the MIN or MAX value; for example:

SELECT MIN (RETAIL_PRICE)
 FROM INVNTRY

Assuming that RETAIL_PRICE is the first key column of an index, SQL reads only the
first row of the index to find the minimum value.

Evaluation by the Disk Process
The disk process can evaluate these:

• Aggregate functions AVG, COUNT, MAX, MIN, and SUM

• The GROUP BY clause

When an aggregate or GROUP BY operation can be evaluated by the disk process,
the disk process scans the data and returns only the aggregated or grouped values to
the file system. This can reduce the number of messages sent between the file system
and the disk process.

The requirements for disk process aggregation depend on whether there is a GROUP
BY clause in the query.
HP NonStop SQL/MP Query Guide—524488-003
3-47

Improving Query Performance Through Query
Design

Evaluation by the Disk Process
If there is no GROUP BY clause, disk process aggregation is selected if these
conditions are true:

• The query does not contain any executor predicates (except HAVING); for
example:

SELECT SUM(SALARY)
 FROM EMPDATA
 WHERE SALARY >= 50000;

• The query uses primary index access or index-only access; that is, all columns
referenced by the query can be found in the index.

• If the query includes a join operation, aggregation must be on the innermost table
of the join, as follows:

SELECT SUM(EMPDATA.SALARY)
 FROM DEPT, EMPDATA
 WHERE DEPT.DEPTNO = EMPDATA.DEPTNO ;

If there is no GROUP BY clause, then either serial or parallel processing might occur.

If there is a GROUP BY clause, then grouping and aggregation are done by the disk
process only if certain additional conditions are satisfied. These additional conditions
vary, depending on whether the user has requested parallel processing. You can use
the =_SQL_CMP_PARALLEL DEFINE or a CONTROL EXECUTOR directive to
request the optimizer to consider a parallel plan. (For information on DEFINES, see the
SQL/MP Reference Manual. For information on the CONTROL EXECUTOR directive,
see Section 4, Improving Query Performance With Environmental Options and also the
SQL/MP Reference Manual.) If neither the CONTROL EXECUTOR directive nor the
DEFINE is used, the default is a serial plan.

 VSBB is disabled for disk-process aggregation.

GROUP BY Using a Serial Plan
In a serial plan, grouping and aggregation are done by the disk process if these
conditions are satisfied:

• All aggregate columns and grouping columns are on the same table, or the
aggregate columns are on different tables but are in sorted order before the
GROUP BY operation is performed.

• The access path satisfies the order of the group-by columns, as follows:

CREATE INDEX ix1 ON empdata (manager, salary);
SELECT SUM(salary)
 FROM empdata
 GROUP BY manager ;

• The query only references one table in the FROM clause.

Note: If a left join operator is present with a COUNT (*) operation, the executor process
must perform null augmentation prior to aggregation.
HP NonStop SQL/MP Query Guide—524488-003
3-48

Improving Query Performance Through Query
Design

Evaluation by the Disk Process
• The optimizer determines that there is a saving in messages when using disk
process aggregation and grouping. This determination is based on costing.

• The query does not use OR optimization.

GROUP BY Using a Parallel Plan
In a parallel plan, grouping and aggregation are done by the disk process if this
conditions are satisfied:

• The query accesses a single table.

• The query uses primary index access against a partitioned table that is in grouping
column order, or the query uses index-only access against a partitioned index that
is in grouping column order. Following is an example of the second condition:

CREATE INDEX ix1 ON empdata (manager, salary)
PARTITION (
 $vol1.subvol.ix1p
 FIRST KEY ‘I’,
 $vol2.subvol.ix1p
 FIRST KEY ‘R’);
SELECT manager SUM(salary)
 FROM empdata
 GROUP BY manager ;

Although the index must be partitioned, the table need not be partitioned. The
example creates an index with three partitions for manager. (Manager ranges from
A to H, I to Q, and R to Z.)

• The optimizer determines that there is a lower execution cost when using disk
process aggregation and grouping. This determination is based on the ratio
between the number of groups selected and the total number of rows read.

• The query does not use OR optimization.

GROUP BY and MDAM
When the optimizer chooses MDAM processing, the decision to process GROUP BY
predicates and aggregates in the disk process or in the executor is based, in part, on
the number of columns the optimizer selects for processing by MDAM. (The selected
columns are listed in the EXPLAIN plan under “MDAM predicate set” and “next set.”)

For example, if the EXPLAIN plan shows that the first four columns of a six-column key
are used for MDAM, then a GROUP BY on the first four, five, or all six columns can be
done by the disk process. A GROUP BY on the first, first two, or first three columns
must be done in the executor.

If you do not like the number of columns the optimizer chooses for MDAM processing,
you can use the CONTROL TABLE directive for MDAM and specify the number of key
columns you want MDAM to use. For more information, see Controlling the Number of
Key Columns Used by MDAM on page 4-30 and “CONTROL TABLE Directive” in the
SQL/MP Reference Manual.
HP NonStop SQL/MP Query Guide—524488-003
3-49

Improving Query Performance Through Query
Design

Evaluation by the Executor Component
MDAM can process GROUP BY predicates in queries that use serial or parallel plans.

Evaluation by the Executor Component
If an aggregate or GROUP BY operation does not fit the preceding requirements, it
cannot be evaluated by the disk process. All participating rows are transferred from the
disk process to the executor, where groups are formed and aggregation is done.

These situations also require evaluation by the executor:

• A query that includes an executor predicate, because a row does not qualify until
the executor predicate is evaluated, as shown

SELECT SUM(A) FROM T WHERE A IN (SELECT * FROM T1) ;

• An index access with the aggregate column on the base table.

• A WHERE clause in a LEFT JOIN query that is evaluated on a column from the
inner table after the outer join is done.

• A query that uses real sequential block buffering (RSBB); for more information, see
Section 4, Improving Query Performance With Environmental Options.

• Aggregation if any partition of the table is on a node that runs a D10 or earlier
version of SQL, or if information about a partition is not available at compile time.

Evaluation by Both the Disk Process and the Executor
In these situations, aggregation is done by the disk process but is finalized by the
executor process:

• When OR optimization or MDAM is performed, as shown:

SELECT SUM(A) FROM T WHERE A = 5 OR (A >= 10 AND B = 6) ;

• If there is a nested join in the query

• If the user has requested that SQL skip unavailable partitions, by using the
CONTROL TABLE...SKIP UNAVAILABLE PARTITIONS directive

Hashed Aggregation and Grouping
If the table is not already ordered on the GROUP BY columns, SQL can perform
aggregation and GROUP BY processing with either a sort operation or a hash
operation, depending on which one has a lower cost.

Hashing reduces the cost of sorting data and therefore performs better than other
methods when rows are not already ordered on the grouping columns. (For more
information about cost, see Section 5, Selectivity and Cost Estimates.) SQL hashes the
rows on its grouping columns and then computes the aggregate on the result of the
hashed rows.
HP NonStop SQL/MP Query Guide—524488-003
3-50

Improving Query Performance Through Query
Design

Sorted GROUP BY Operation
For parallel plans, SQL always uses hashed aggregation unless a previous version of
software is running that does not support hashed aggregations. Each ESP process
does its own aggregation and sends its results to the master ESP. This strategy
reduces network traffic by applying grouping and aggregation locally.

SQL does not use hashing for columns that use collations.

Sorted GROUP BY Operation
A sort is usually the least efficient method for processing aggregates and GROUP BY
operations; when using a sort, SQL sorts the entire table on the grouping columns, and
then evaluates the aggregate on the result of the sorted rows.

Optimizing Subqueries
In general, use joins instead of subqueries, as discussed in the preceding subsection.
When you do write subqueries, however, you should understand how the optimizer
evaluates subqueries, and use noncorrelated subqueries instead of correlated
subqueries whenever possible.

Correlated Subquery
Subqueries are usually evaluated before an outer query is executed. If, however, a
subquery cannot be executed independently of the outer query, as when the subquery
references values from the outer query, the subquery is executed for every qualifying
row of the outer query. This type of subquery is called a correlated subquery.

Consider this query, which attempts to select the names of all employees who are
designated as managers:

SELECT EMP_ID, FIRST_NAME, LAST_NAME, MGR_ID
 FROM EMPLOYEE EMP1
 WHERE EXISTS (SELECT MGR_ID
 FROM EMPLOYEE EMP2
 WHERE EMP2.MGR_ID = EMP1.EMP_ID) ;

The query returns this result:
HP NonStop SQL/MP Query Guide—524488-003
3-51

Improving Query Performance Through Query
Design

Correlated Subquery
EMP_ID FIRST_NAME LAST_NAME MGR_ID
------ ---------- --------- ------
 2705 Travis Simpson 6554
 2906 Etsuro Nakagawa 6554
 3598 Eichiro Nakamura 2906
 9069 John Smith 2705

--- 4 row(s) selected.

The EMP1 table appears in the FROM clause of the outer query, but its column,
EMP_ID, is referenced in the search condition of the subquery. This type of reference
is called a correlated reference. A correlated reference acts as a placeholder for a
value belonging to the correlated column, in this case, EMP_ID.

When SQL executes the query for each row selected by the outer query, the correlated
reference in the search condition of the subquery is replaced by its corresponding
value. Therefore, if the first row selected by the outer query contains the value 2705 in
the column EMP_ID, the correlated column reference is replaced by that value.

The subquery is then executed, and the row selected by the outer query is returned if
its search condition evaluates to true. The placeholder is refreshed upon the selection
of the next row by the outer query. The subquery is executed again to select rows
satisfying the new search condition.

You can see that a correlated subquery impacts performance adversely because the
subquery is executed every time its search condition changes; that is, it is executed
once for every row selected by the outer query. If the outer query retrieves 10,000
rows, for example, then the correlated subquery executes 10,000 times.

In some cases, however, a correlated subquery might be more efficient than a
noncorrelated subquery. A correlated subquery might be more efficient, for example, if
there are very few rows returned from the outer query and the subquery queries a very
small table.

Suppose that the outer query in the former example retrieves only 5 rows, and an
index exists on the column specified in the inner query (an index exists on MGR_ID). In
this case, evaluation of the correlated subquery can be satisfied with an index-only
access; that is, all columns that the query references can be found in the index. To
retrieve five rows, the index is accessed five times.

Note. The preceding example associates the correlation names EMP1 and EMP2 to different
instances of the EMPLOYEE table. A correlation name is an SQL identifier that you associate
with a table or view. You can define correlation names in the FROM clause of the SELECT
statement. For more information on correlation names, see the SQL/MP Reference Manual.
HP NonStop SQL/MP Query Guide—524488-003
3-52

Improving Query Performance Through Query
Design

Noncorrelated Subquery
A subquery is dependent on the outer query if the subquery is correlated to the outer
query, as shown:

SELECT ITEM_NAME, RETAIL_PRICE
 FROM INVNTRY OUTER
 WHERE RETAIL_PRICE > SELECT AVG(RETAIL_PRICE)
 FROM INVNTRY
 WHERE PRODUCER = OUTER.PRODUCER

This example selects information on items that cost more than the average price of the
items produced by the same producer. The subquery is dependent on the outer
SELECT because it references the PRODUCER column of a row retrieved for the
outer SELECT. This correlation forces the evaluation of the subquery for every row
retrieved from the outer SELECT. The overall query is more expensive to evaluate
because of the repeated evaluation of the subquery.

Noncorrelated Subquery
A noncorrelated subquery does not reference or depend on the result of the outer
query. Consequently, a noncorrelated subquery can be evaluated once and the results
used repeatedly for the outer query.

This example contrasts the performance of the correlated subquery with that of a
noncorrelated subquery. The subquery in this example executes only once to select
rows that satisfy the specified search condition:

SELECT emp_id, first_name, last_name, mgr_id
 FROM employee emp1
 WHERE emp_id IN (SELECT mgr_id
 FROM employee emp2) ;

The subquery is evaluated to determine MGR_ID, and MGR_ID is then substituted in
the predicate.

The noncorrelated subquery returns the same result as the correlated subquery in the
preceding example, but with fewer system resources:

EMP_ID FIRST_NAME LAST_NAME MGR_ID
------ ---------- --------- ------
 2705 Travis Simpson 6554
 2906 Etsuro Nakagawa 6554
 3598 Eichiro Nakamura 2906
 9069 John Smith 2705

--- 4 row(s) selected.

The subquery is independent of the outer SELECT because it can be evaluated
without any knowledge of the result of the outer SELECT. This independence allows
the subquery to be evaluated only once.

For a cost analysis of correlated and noncorrelated subqueries, see Section 5,
Selectivity and Cost Estimates.
HP NonStop SQL/MP Query Guide—524488-003
3-53

Improving Query Performance Through Query
Design

Avoiding Full Table Scans
Avoiding Full Table Scans
Scans of an entire table can be quite costly in terms of performance. Response time is
directly proportional to the number of rows or blocks processed. In general, you should
avoid online transaction processing queries that invoke full table scans unless the table
is quite small, consisting of only a few blocks.

To avoid table scans, do the following:

• Provide a starting position by using a >= predicate on a key column, as described
in Positioning With Key Predicates on page 3-16.

• Include in the select list only those columns that appear in an index and primary
key.

An alternate option that requires system management knowledge is to define a new
index that includes necessary columns.

You can check for full table scans using DISPLAY STATISTICS or the EXPLAIN utility.
For details, see Section 6, Analyzing Query Performance.

Minimizing Sort Costs for Ordering and
Grouping Operations

A sort might be needed when a query specifies ordering or grouping options. Because
sorting can require significant overhead, the optimizer attempts to select strategies that
minimize the number of sorts.

You cannot control the initiation of the sort process; however, by understanding how to
formulate queries that can minimize sorts, you can improve the performance of the
queries. To eliminate sorts or minimize sort requests, use these guidelines:

• Specify these clauses in your queries only when you really need them:

° The ORDER BY clause (to present the result in a certain order)

° The GROUP BY clause (to group rows)

° The DISTINCT clause (to eliminate duplicate rows)

• Use keys or index columns in your queries where possible.

Use them in the order defined in the database. If you are not sure which columns
are keys or indexes, check with your database administrator. SQL does not use
keys or indexes if the columns are not in the same order as defined in the
database.

If you are not sure which columns are key or index columns, you can ask your
database administrator. Alternatively, you can get this information by using the FUP
INFO tablename, DETAIL command, which returns the column numbers used in
HP NonStop SQL/MP Query Guide—524488-003
3-54

Improving Query Performance Through Query
Design

Sort Operations
the index (the first column is 0). You can also retrieve this information from the
indexes table in the catalog.

• Use predicates for the leading key columns where possible, because SQL uses
predicates for key positioning. As the number of leading key columns with
predicates increases, the key positioning becomes more precise.

• When you use an ORDER BY clause with an index, include all leading columns of
the index being used. This strategy avoids a sort operation. When reading in
reverse, use all leading columns and specify DESCENDING (assuming that the
columns are in ascending order), to avoid the sort.

• When you use a UNION operator, specify UNION ALL. Specifying UNION without
ALL causes a sort operation to eliminate duplicate rows.

• Include DISTINCT columns at the beginning of an ORDER BY list when both
clauses are included in a query.

An alternate option that requires system management knowledge is to maintain
indexes that provide SQL with a naturally sorted order for the sequencing of rows most
often requested.

The next subsection describes sort operations. The following subsections describe
how to use ORDER BY, GROUP BY, and DISTINCT in combination and how an index
can improve performance of a query.

Sort Operations
A logical sort returns values in a specified order. The ORDER BY clause requires a
logical sort operation. The GROUP BY clause, DISTINCT clause, UNION clause
without the ALL option, and noncorrelated subqueries can also require a sort
operation, but these operations can sometimes use a hashing operation, which is more
efficient than a sort. A noncorrelated subquery causes a sort only if it would perform a
sort if it were performed alone.

A sort is logically required when a query specifies that:

• The result is presented in a certain order (using the ORDER BY clause).

• Duplicates are removed (using the DISTINCT key word).

• The result is grouped (using the GROUP BY clause) on certain columns.

Avoiding Sorts
Because sorting is an expensive operation, the optimizer attempts to minimize the
number of sorts that must be performed for a query. The optimizer avoids a sort for an
ORDER BY, GROUP BY, DISTINCT, or UNION operation if the sort specification (such
as the ORDER BY columns) matches a prefix of the index columns.

SQL also avoids unnecessary sorts by removing an ORDER BY clause if no column is
present in the SELECT list.
HP NonStop SQL/MP Query Guide—524488-003
3-55

Improving Query Performance Through Query
Design

Sort Operations
Sort Implementations
Depending upon the query request, SQL determines if a sort of the data rows is
required and automatically initiates the sort process. A logical sort can be implemented
in one of these ways:

• An in-memory user process sort (UPS). If the optimizer estimates that the data
meets all of these requirements, the sort can be performed within the executor’s
extended segment:

° The data to be sorted is less than 4 megabytes (MB)

° The number of rows is less than 32,767

° The number of sort keys is less than 63

At runtime, if the segment is discovered to be too small to hold all of the rows, SQL
invokes an external physical sort. When performed in memory, the sort does not
require startup of a sort process, nor does it use scratch files, thus reducing
elapsed time for queries.

SQL does not choose an in-memory sort if the table to be sorted is the inner table
of a sort merge join operation.

SQL can choose an in-memory sort for the serial portion of a parallel plan if all of
these conditions apply:

° UPS is used for an ORDER BY clause executed by the master ESP

° The ORDER BY clause is preceded by a GROUP BY clause

° The GROUP BY order is achieved by hash grouping

• An external physical sort. SQL can invoke these:

° An external FastSort process if the optimizer estimates that the data to be
sorted might exceed 4 MB, the number of rows is less than 32,767, and the
number of sort keys is less than 63.

° An external physical sort done by a series of inserts into a temporary key-
sequenced table if the number of rows is less than 500, the number of columns
is greater than 63, and the total key length is less than 255 bytes. (If the total
key length is greater than 255 bytes, the sort process returns an error.)

• A primary-key scan

• An alternate-index scan. For example, if an index is available and is chosen by
SQL to satisfy an ORDER BY clause, a physical sort is not necessary.

If a sort process is initiated, the =_SORT_DEFAULTS DEFINE can define the location
of swap and scratch files. (For more information on using this and other DEFINEs, see
the SQL/MP Reference Manual.)
HP NonStop SQL/MP Query Guide—524488-003
3-56

Improving Query Performance Through Query
Design

Optimizing Combinations of Clauses
You can use the EXPLAIN utility to check the type of sort operation performed and the
size of the workspace allocated by the executor (UPS workspace) for in-memory sorts.
For more information on EXPLAIN, see Section 6, Analyzing Query Performance.

Optimizing Combinations of Clauses
The SQL optimizer attempts to minimize the number of sorts required for a query. You
can assist this process by using the guidelines in this subsection.

Specifying ORDER BY With GROUP BY
You can specify order and grouping and still eliminate extra sorts. A single sort orders
and groups results when this occurs:

• The ORDER BY list is a subset of the GROUP BY list.

• For example, consider this query:

SELECT A, B, C, D FROM T
 GROUP BY A, B, C, D
 ORDER BY B, C DESC ;

A single sort (on B, C DESC, A, D) performs both the grouping and the ordering.

• The GROUP BY list contains n items, and those items are also the first n items of
the ORDER BY list; for example:

SELECT A, B, C, COUNT(*), SUM(A) FROM T
 GROUP BY A, B, C
 ORDER BY 1, 2 DESC, 3, 5, 4 ;

SQL need only perform a single sort (on A, B DESC, C) to perform both the
grouping and the ordering.

The formation of groups requires the groups to be hashed in memory or to ordered by
the grouping columns. If they are already in order, then no sorting or hashing is
needed. If they are not in order, the optimizer compares a plan that sorts columns first
with a plan that hashes the columns.

When both an ORDER BY clause and a GROUP BY (or DISTINCT) clause are used in
a query, SQL can choose to combine the lists into a single sort. This is possible only if
the GROUP BY list is a prefix of the ORDER BY list. In such a case, a single sort can
fulfill both the GROUP BY and ORDER BY requests. This can save a sort and make
the plan more efficient, but might still be less efficient than hashing the groupings and
then sorting a small number of resulting rows.
HP NonStop SQL/MP Query Guide—524488-003
3-57

Improving Query Performance Through Query
Design

Using Indexes
Specifying GROUP BY With DISTINCT
You can specify grouping and the elimination of duplicate rows and still avoid extra
sorts. A single sort satisfies both grouping and the elimination of duplicate rows when
this occurs:

• The GROUP BY list is a subset of the SELECT DISTINCT list, as follows:

SELECT DISTINCT COUNT(*), B, B-D, D FROM T
 GROUP BY B, D ;

SQL performs a single sort (on B, D) to perform the grouping. Because each (B, D)
value is unique after grouping, so is each (B, D, B-D, COUNT (*)) value.

• The SELECT DISTINCT list is a subset of the GROUP BY list, there are no
expressions in the select list, and no aggregates in a HAVING clause, as follows:

SELECT DISTINCT A, C FROM T
 GROUP BY A, B, C ;

In this example, the GROUP BY clause is unnecessary. A single sort eliminates
duplicates and performs the grouping (A,C). Because B does not appear in the
select list and there are no aggregates or HAVING clause that depend on the full
grouping, it is not necessary to group by B.

If the DISTINCT column is not already in the GROUP BY list, you can avoid the sort for
the DISTINCT column by adding the DISTINCT column to the list of grouping columns.

Specifying ORDER BY With DISTINCT
You can specify ordering and the elimination of duplicate rows and still avoid extra
sorts, if the ORDER BY list is a subset of the DISTINCT list. Consider this query:

SELECT DISTINCT A, B, C, D FROM T
 ORDER BY A, B DESC ;

SQL can evaluate the query with a single sort on (A, B DESC, C, D) to satisfy both the
ordering and the elimination of duplicate rows. The position and sorting order
(ascending or descending) of A and B must match the index chosen to perform the
sort, but C and D can appear in any position after A and B and in either ascending or
descending order.

Using Indexes
Indexes can improve the performance of queries that would otherwise require a sort
operation.

If an index exists that has the same key columns as the ORDER BY columns, you can
avoid a sort if the sequence of columns in the ORDER BY clause matches the
sequence of columns in the index. State your ordering requirements explicitly; do not
assume that rows will be returned in a specific order because of the primary-key
sequence or because there are equality predicates on index columns. When you
HP NonStop SQL/MP Query Guide—524488-003
3-58

Improving Query Performance Through Query
Design

Using Indexes
specify complete column order, performance is best, but when you cannot, MDAM
preserves the order of the key.

For information about creating indexes, see the SQL/MP Installation and Management
Guide.

Examples
Consider this query:

SELECT * FROM INVNTRY
 ORDER BY ITEM, RETAIL_PRICE ;

If the INVNTRY table is large, the cost of sorting the table might be very high. An index
on the columns ITEM and RETAIL_PRICE would mean that no sort is required to
satisfy the ORDER BY clause:

CREATE INDEX RPRICE
 ON INVNTRY (ITEM, RETAIL_PRICE) ;

It is still possible, however, that a scan and sort might be less expensive than an index
access. If so, SQL ignores the index and scans the base table instead.

For another example, consider a query that specifies the elimination of duplicate rows:

SELECT DISTINCT A, B, C FROM T ;

A unique index on any subset of columns A, B, and C would guarantee that all A, B,
and C values are unique. So, if SQL chooses the unique index as the access path,
there is no need to eliminate duplicates during query execution.

CREATE UNIQUE INDEX UI
 ON T (A, B) ;

As a final example, consider this query:

SELECT COUNT(*) FROM T1
 GROUP BY T1.A, T1.B, T1.C ;

All items in the GROUP BY list are from a single table, so a unique index on any
subset of the GROUP BY list can be used to perform the grouping, as follows:

CREATE UNIQUE INDEX UI
 ON T1 (T1.A, T1.C) ;
HP NonStop SQL/MP Query Guide—524488-003
3-59

Improving Query Performance Through Query
Design

Writing Efficient Programmatic Statements
Writing Efficient Programmatic Statements
When writing programmatic queries, you might have a choice between several
strategies for combinations of SELECT statements, cursor use, and update, delete,
and insert operations.

Single-Row and Multiple-Row SELECT Statements
A single-row SELECT statement is a request to return a single row to the host
program. This method is preferable to a cursor SELECT when only one row needs to
be retrieved, because

• There are fewer executor calls

• The disk process returns a single message instead of two messages when an
equality predicate is specified against columns of a unique index

• The operation disables SBB so that unnecessary scanning and transfer to buffers
is avoided for the single row

Multiple-Row (Cursor) SELECT Statements
A multiple-row (or cursor) SELECT statement returns multiple rows one row at a time.
This technique is useful when retrieving multiple rows because

• The cost of additional executor calls (for OPEN and CLOSE CURSOR) is spread
out over multiple fetches

• SBB allows efficient scanning and transfer to the buffer for multiple-row access

Update and Insert Operations
To minimize executor calls and message traffic, use these guidelines when deciding
how to handle SELECT-with-update or SELECT-with-insert requests:

• Choose a set update or delete instead of either

° A single-row SELECT followed by an exact update or delete.

° Multiple single-row SELECTS and subsequent exact updates or deletes. (Note,
however, that if you update large numbers of rows, lock escalations or
exceeded lock limits might cause aborts of transactions. In such a case,
consider committing a transaction after a certain number of updates or specify
ranges of rows in multiple set updates.)

° A cursor SELECT and one or more UPDATE or DELETE WHERE CURRENT
operations (unless information must be examined prior to update).

• In general, when selecting and updating a single row, choose a single-row
SELECT and exact update or delete over a single updatable cursor UPDATE or
DELETE WHERE CURRENT.
HP NonStop SQL/MP Query Guide—524488-003
3-60

Improving Query Performance Through Query
Design

Decision Support Considerations
• Conversely, when selecting and updating multiple rows, choose multiple updatable
cursor UPDATES and DELETES WHERE CURRENT over multiple single-row
selects followed by exact updates or deletes. The EXCLUSIVE and REPEATABLE
lock mode and access options are recommended for these types of operations. For
more information, see Section 4, Improving Query Performance With
Environmental Options.

• Choose an INSERT from a SELECT instead of a SELECT followed by one or more
INSERTS; for example:

INSERT into INVNTRY
 (SELECT part_no, qty FROM WRKNPROC
 WHERE part_status = "FINISHED") ;

(Note, however, that if you update large numbers of rows, lock escalations or
exceeded lock limits might cause aborts of transactions. In such a case, consider
committing a transaction after a certain number of updates or specify ranges of
rows in multiple set updates.)

Decision Support Considerations
Decision Support Systems (DSS) are systems that provide users a means to retrieve
information from a large database and perform information analysis. These systems
require processing, summarizing, and aggregation of data for quick business
decisions. Requirements include fast processing of large amounts of data.

A typical DSS database consists of a very large table, with the actual temporal data of
the database, and several small tables that contain static information about the data.
Typical queries are joins of these small, static tables to the large database table.

For join operations, these guidelines apply:

• If the joining columns are part of the primary key of the joining tables, a nested join
is typically the most efficient join method.

• If the joining columns are not part of the primary key and alternate indexes are not
available, a hash join is the preferable method.

• If the joining columns are part of the primary key of the tables to be joined and the
tables are joined in the same order as the columns in the primary key, a key-
sequenced merge join is the preferable method.

Features that support DSS include:

• Hash joins. See Hash Join on page 3-29.

• Key-sequenced merge joins. See Key-Sequenced Merge Join on page 3-27.

• MDAM. See Transformation of Predicates on page 3-4.

• Aggregate processing. See How the Optimizer Processes Aggregates and Group-
By Operations on page 3-46.
HP NonStop SQL/MP Query Guide—524488-003
3-61

Improving Query Performance Through Query
Design

Online Transaction Processing Considerations
• Column selectivity. See Combinations of Predicates on page 5-4.

• Query Rewrite. See Transformations Related to Joins on page 3-8.

• Reduction of sorts. See Sort Operations on page 3-55.

• In-memory sorts. See Sort Operations on page 3-55.

• Hashed groupings. See Hashed Aggregation and Grouping on page 3-50.

• CASE expressions. See Using String Functions on page 1-15.

• String functions. See Using String Functions on page 1-15.

• Effective optimizer plan selection. See How the Optimizer Chooses an Execution
Plan on page 2-3.

Online Transaction Processing Considerations
These guidelines apply to interactive queries:

• Avoid processing large numbers of rows.

• For small result sets, use CONTROL QUERY INTERACTIVE ACCESS ON,
described in Section 4, Improving Query Performance With Environmental Options.
This directive requests the optimizer to use an optimal index whenever possible
because the query requests only a few rows.

• Specify SEQUENTIAL INSERT/UPDATE OFF. Sequential operations are usually
reserved for batch processing.

• Avoid the use of REPEATABLE ACCESS because of potential contention and
delays. For more information, see Section 4, Improving Query Performance With
Environmental Options.

• Consider specifying SEQUENTIAL READ OFF. For more information, see
Section 4, Improving Query Performance With Environmental Options.

• Do not use sequential cache unless tables are relatively small.

• Depending on your concurrency requirements, consider using a CONTROL TABLE
LOCK directive. For more information, see Section 4, Improving Query
Performance With Environmental Options.
HP NonStop SQL/MP Query Guide—524488-003
3-62

Improving Query Performance Through Query
Design

Batch Considerations
Batch Considerations
Batch operations imply queries that process large amounts of data in a sequential
order.

Use of these can improve batch performance:

• Block buffering, described in Reducing Messages With Buffering Options on
page 4-21.

• Parallel sorts to increase speed and balance processor and disk use.

• Parallel processes to even out workload and make the system easier to balance.

• Multiple spooler processes so that parallel batch processes can write to multiple
spoolers.

• Key-sequenced tables with indexes to avoid sorts.

These guidelines apply to update operations:

• Whenever an insertion, update, or deletion occurs within a process that has an
open cursor (whose execution plan uses sequential block buffering (SBB) to
access the same table), perform the update or delete with the same cursor (use
the WHERE CURRENT clause). If you do not follow this guideline, virtual
sequential block buffering (VSBB) is used for the SELECT with the UPDATE,
invalidating that buffer, which can be very expensive. CONTROL TABLE
tablename SEQUENTIAL READ OFF cannot be used to avoid this situation.

For more information about SBB and VSBB, see Section 4, Improving Query
Performance With Environmental Options.

• Use cursors for UPDATE with EXCLUSIVE when you know you will update the row
and then UPDATE WHERE CURRENT. Otherwise, you can use a single SELECT.

• Use BEGIN WORK and COMMIT WORK only for update transactions; otherwise,
you incur unnecessary overhead in the audit trails. A start and stop transaction
audit record is written unnecessarily to the audit trail, and TMF maintains a
transaction reference throughout the execution of the transaction.

• Commit as soon as possible when finished. Note that you might need extra
commits to avoid a lock limit or lock escalation.

• If batch updates occur during online processing, define short transaction intervals
so that rows are not locked for long periods of time. If updates are large, consider
dividing them into smaller updates and committing transactions at a frequency
based on concurrency issues and transaction limits. For example, you can commit
transactions based on number of updates or after a fixed length of time.
HP NonStop SQL/MP Query Guide—524488-003
3-63

Improving Query Performance Through Query
Design

Batch Considerations
HP NonStop SQL/MP Query Guide—524488-003
3-64

4
Improving Query Performance With
Environmental Options

The best way to control your NonStop SQL/MP processing environment is to design
and maintain your database so that the mix of queries executes efficiently. Beyond
structural design and ongoing maintenance, however, there are several environmental
factors, discussed in this section, that can influence query performance:

• Keeping Statistics Current on page 4-2

• Optimizing the Access Path on page 4-4

• Requesting Parallel Processing on page 4-13

• Specifying Access Option and Lock Characteristics on page 4-16

• Reducing Messages With Buffering Options on page 4-21

• Controlling the Opening of Tables, Views, and Indexes on page 4-29

• Controlling the Number of Key Columns Used by MDAM on page 4-30

• Controlling MDAM’s Use of DENSE or SPARSE Algorithms on page 4-30

• Controlling the Creation of NonStop SQL/MP Processes on page 4-31

• Enhancing Sort Performance on page 4-32

• Understanding Concurrency on page 4-32

• Minimizing Overhead of Query Programs on page 4-33

For information about how to optimize specific queries, see Section 3, Improving Query
Performance Through Query Design.

The SQL/MP Installation and Management Guide contains information about topics
related to the performance of the database as a whole. Topics include:

• Defining columns for optimal access

• Creating alternate indexes

• Maximizing parallel index maintenance

• Partitioning data

• Specifying cache buffer size

• Maximizing disk prefetch capabilities

Note. This manual supports NonStop SQL/MP D30.02 and D30.03. Information that describes
how the optimizer chooses a query execution plan can change from release to release.
HP NonStop SQL/MP Query Guide—524488-003
4-1

Improving Query Performance With Environmental
Options

Keeping Statistics Current
Keeping Statistics Current
SQL provides an UPDATE STATISTICS utility to collect and save statistics on columns
and tables. The SQL compiler uses these statistics to determine the selectivity of
predicates, indexes, and tables.

Because selectivity directly influences the cost of access plans, it is important to have
current statistics for a table, to increase the likelihood that the optimizer will choose an
efficient plan. (For more information about selectivity, see Section 5, Selectivity and
Cost Estimates.)

You might want to run UPDATE STATISTICS after loading or re-creating a table, after
structural changes such as creation of an index, or after significant update activity
(growth in database size). Before running UPDATE STATISTICS, however, you should
consider the following:

• If you experience performance degradation, check for fragmentation of blocks. Use
the FILEINFO command with the STATISTICS option set on. If blocks are
fragmented, running UPDATE STATISTICS and recompiling the queries does not
help; first reload the table online by using the FUP RELOAD command.

• Run UPDATE STATISTICS only after a table has been loaded with data. Do not
run UPDATE STATISTICS when a table is empty.

• Depending on the size of the table, updating statistics can take longer than you
would like; therefore, run UPDATE STATISTICS during off hours when peak
performance is not required. You can determine the effect of UPDATE STATISTICS
on a production query by bracketing UPDATE STATISTICS and EXPLAIN on the
queries in a transaction.

• First determine the effect of the UPDATE STATISTICS statement by issuing the
statement within a TMF transaction. You can then back out the operation if
necessary. In an SQLCI session, do the following:

° Issue a BEGIN WORK statement; then issue UPDATE STATISTICS with the
NO RECOMPILE option.

° Use EXPLAIN to see if the new statistics would give you the better query
execution plan.

° Depending on the EXPLAIN output, you can decide whether to commit the
transaction (COMMIT WORK) or back out the transaction (ROLLBACK
WORK).
HP NonStop SQL/MP Query Guide—524488-003
4-2

Improving Query Performance With Environmental
Options

Keeping Statistics Current
• Always specify the NO RECOMPILE option when using UPDATE STATISTICS, for
this reasons:

° By default, an UPDATE STATISTICS operation invalidates dependent
programs, even if UPDATE STATISTICS is executed within a transaction that is
backed out.

Catalogs are audited; program file labels are not. Because program file labels
are not audited, updates to program file labels are not backed out.
Consequently, if a transaction is backed out, the program file labels are left in
an invalid state, while the catalog specifies a valid state.

° To avoid invalidating dependent programs and therefore avoid inconsistencies
between the program file label and the catalog. Until you explicitly compile the
affected programs, however, they will not use the new statistics.

• If you want to preserve the existing query execution plan, please be aware that
running UPDATE STATISTICS might cause the optimizer to choose a different
plan.

• Run UPDATE STATISTICS after creating a new index for a table; otherwise, SQL
returns a warning for subsequent operations on the table.

For a thorough evaluation of access options, include key columns, index columns, and
those nonindex columns that participate in predicates. To update statistics for all
columns, you must specify UPDATE ALL STATISTICS.

This example updates statistics for primary key columns of the EMPLOYEE table and
columns that have been specified in any alternate index on the table:

UPDATE STATISTICS FOR TABLE EMPLOYEE NO RECOMPILE;

This example requests statistics by reading all rows in the first 50 blocks of each
partition of the EMPLOYEE file:

UPDATE STATISTICS FOR TABLE EMPLOYEE SAMPLE 50 BLOCKS;

You can choose to read the entire table (EXACT option) or a specified number of
blocks of each partition (SAMPLE n BLOCKS option) for computing statistics. These
options help control the amount of time spent calculating statistics. If neither of these
options is specified, statistics are collected by reading all rows in partitions smaller than
1,000 blocks, and approximately 500 blocks from each partition larger than 1,000
blocks.

Statistics are collected at the table level, except for row count and nonempty block
count, which are stored on a partition-by-partition basis. Unique entry count is divided
equally among the partitions of a table, with any remainder added to the primary
partition.

For more information about the UPDATE STATISTICS statement, see the SQL/MP
Reference Manual and the SQL/MP Installation and Management Guide. For
information on using FILEINFO and FUP RELOAD, see the SQL/MP Installation and
Management Guide.
HP NonStop SQL/MP Query Guide—524488-003
4-3

Improving Query Performance With Environmental
Options

Optimizing the Access Path
Optimizing the Access Path
An access path is the method by which data is accessed. Access can be one of these:

• Primary access (table scan or primary key)

• Alternate-index access

Different access paths provide different degrees of efficiency in accessing a table.

Primary Access
There are two types of primary access: table scan and primary key.

Table Scan
In a table scan, SQL reads the entire base table from beginning to end in primary-key
order. (If necessary, SQL can also read the table in reverse order.) Full table scans can
be quite costly in terms of performance; response time is directly proportional to the
number of rows or blocks processed.

The optimizer might choose to scan the entire table when

• Processing small tables

• Processing a large percentage of rows in a table

• Using parallel execution

• There is no suitable index available

• The estimated cost of reading the index and the corresponding base table rows
exceeds the cost of reading the entire table

In general, OLTP queries should not invoke full table scans unless the table is quite
small, consisting of a few blocks only.

To avoid table scans, do the following:

• Specify a starting position by using a >= predicate on a key column.

• Include in the select list only those columns that appear in an index and primary
key.

• Define a new index.

• Do not disable MDAM.

To check for full table scans, use DISPLAY STATISTICS (if row count is available) or
the EXPLAIN utility. If your EXPLAIN SCAN output says that 100 percent of the table is
being accessed, or if there is no entry for begin or end key in the EXPLAIN plan, the
scan is reading the entire table. For details, see Section 6, Analyzing Query
Performance.
HP NonStop SQL/MP Query Guide—524488-003
4-4

Improving Query Performance With Environmental
Options

Alternate-Index Access
Primary Key
Access through a primary key means reading a portion of the base table derived from
the primary-key value.

Using a primary-key access to retrieve a row is usually cheaper than these other
methods:

• A sequential scan

• Base-table access through an index (described under “Alternate-Index Access,”
following)

The latter is usually less efficient because scanning a range of values in primary-key
order is faster than the random I/O required to read base table rows when scanned
through an index.

The optimizer might choose access through a primary key when

• An index-only access is not possible.

• The estimated cost of the primary-key access is less than the estimated cost of the
alternate-index access.

For example, suppose that the following:

° The primary access reads 100 rows from 5 blocks.

° The index access reads 10 rows from 10 blocks plus the index.

In this case, it is cheaper to read 5 blocks (through the primary key) than 10 blocks
plus the index (through the alternate index).

In general, a scan is more efficient if you request more than about five percent of the
rows in the table. If sequential cache is chosen by the optimizer, the percentage drops
to approximately one percent.

Alternate-Index Access
There are two types of alternate-index access:

• Index-only access

• Base-table access through an index

The optimizer is likely to choose access through an index when any of these are true:

• All of the information can be retrieved from the index (index-only access) at less
cost than accessing the base table.

• ORDER BY, GROUP BY, or DISTINCT is specified and can be satisfied by using
the index (and reading the index is less expensive than reading the base table and
performing the sort).
HP NonStop SQL/MP Query Guide—524488-003
4-5

Improving Query Performance With Environmental
Options

Using the CONTROL QUERY Directive
• A table scan can be avoided and the percentage of rows to be read is small
enough to make index access cheaper.

An index contains one or more columns defined as the index, plus the columns that
make up the primary key. An index benefits the query most when all the columns
needed by the query are located in the index.

Index-Only Access
Index-only access refers to an index that fully satisfies a query without accessing the
base table. That is, all columns that the query references can be found in the index.

Index-only access compares to base-table access through the primary key as follows:

• For random access, an index-only access usually costs about the same as a
primary-key access of the base table.

• For sequential access, an index-only scan is superior to a primary-key scan of the
base table, because the index row sizes are usually considerably smaller than the
base table row sizes (resulting in many more rows being retrieved per physical
I/O).

Base-Table Access Through an Index
Base-table access through an index means that the index row is located first, then the
row in the base table is accessed through its primary key.

If many rows must be accessed to satisfy a query, access to the base table through an
index can be more expensive than a full table scan. When accessing the base table
through an index, rows in the base table are read randomly, and some blocks
containing those rows might be read more than once.

Using the CONTROL QUERY Directive
To inform the SQL compiler that a particular query is interactive or batch, use the
CONTROL QUERY directive; for example:

CONTROL QUERY INTERACTIVE ACCESS ON

This directive influences the optimizer’s choice of access to a table, as follows:

• If you specify INTERACTIVE ACCESS ON, you instruct the optimizer to return
rows by choosing an alternate index over sequential access. This strategy
optimizes the response time for returning the first few rows requested.

You might want to specify INTERACTIVE ACCESS ON, for example, when you
want only the first few rows in the result or if you know that very few rows will be
examined through an index.

• If you specify INTERACTIVE ACCESS OFF, the optimizer optimizes the response
time for returning all rows requested.
HP NonStop SQL/MP Query Guide—524488-003
4-6

Improving Query Performance With Environmental
Options

Selecting an Access Path When an Index Is Not
Available
You should specify INTERACTIVE ACCESS OFF when query or batch processing
a large number of rows.

The default value is OFF.

The CONTROL QUERY directive is most valuable in application use when host-
variable values are not available at compilation time. Because the values are not
available, the optimizer chooses a query execution plan that assumes a large number
of rows will be returned and so might overestimate the resources required for a smaller
interactive query.

The optimizer sometimes chooses sequential access of the base table over an
alternate-index access. This is because an alternate-index access causes a row to be
retrieved from the underlying base table through an additional random I/O request.

Use the CONTROL QUERY directive to turn MDAM off only if you find the query runs
better without it. Using the CONTROL QUERY directive to enable MDAM does not
force MDAM and has no effect because MDAM is enabled by default. For more
information on MDAM, see Transformation of Predicates on page 3-4.

You can also use the CONTROL QUERY directive to enable or disable hash joins. For
more information, see Specifying a Join Method on page 3-43. For a complete
description of the CONTROL QUERY directive, see the SQL/MP Reference Manual.

The CONTROL QUERY directive stays in effect until the end of an SQLCI session, the
end of a program, or until the directive is reentered.

In a host language program, specific placement rules might apply to the CONTROL
QUERY directive. For more information, see the SQL/MP Programming Manual for
your host language.

Selecting an Access Path When an Index Is Not Available
SQL can access required data even if some system resource—an index, for
example—is not available.

For example, suppose that the table TPHONE is on the volume $PHONE; an index on
PHONE_NUMBER is stored on the volume $NUMBER. Consider this query:

SELECT LAST_NAME, FIRST_NAME, PHONE_NUMBER FROM TPHONE
 WHERE PHONE_NUMBER = "725-6000" ;

Suppose further that SQL has chosen to use the index on $NUMBER to retrieve the
requested data.

If the volume $NUMBER is not available at run time, SQL attempts to locate an
alternate path to the data by performing an automatic recompilation—unless you have
specified the NORECOMPILE option. (If the NORECOMPILE option is in effect, SQL
cannot automatically recompile the program, and an error is returned for this SQL
statement.)

At compile time, if any information is unavailable, the SQL compiler sets a flag
indicating that the query must be recompiled at run time. A valid SQL object is still
HP NonStop SQL/MP Query Guide—524488-003
4-7

Improving Query Performance With Environmental
Options

Understanding Unexpected Access Paths
produced because information might be available for other queries in the same
program.

At run time, the SQL executor recompiles the query when it encounters the flag that
indicates a recompile is necessary. The SQL executor instructs the SQL compiler to
ignore unavailable information during this compile. If all information is now available,
the most efficient access plan can be selected. If some information is still not available,
the SQL compiler attempts to identify the most efficient access plan based on the
information that is available.

If the chosen index is still not available (for example, the communications line to a
node is down, or the volume containing the chosen index is down after the
recompilation), the executor instructs the optimizer to choose the primary key of the
table as the access path. This instruction enables the application to access the data
whenever the data is available, even if an optimal path is unavailable.

For more information about compiling programs and the RECOMPILE and
NORECOMPILE options, see the SQL/MP Programming Manual for your host
language.

Understanding Unexpected Access Paths
Sometimes the optimizer does not choose the preferred or expected access path. If
this happens, check these:

• Did a CONTROL TABLE or CONTROL QUERY directive instruct the compiler to
take a different access path?

• Was index-only access not possible because of the columns that must be
retrieved?

• Does a WHERE clause indicate base-table access?

• Does the data have an uneven distribution not recognized by the compiler?

• Would the request cause the Halloween problem?

Control Directive Is Specified
Either a CONTROL QUERY INTERACTIVE ACCESS ON directive instructed the
compiler to take a path that did not require sorting, or a CONTROL TABLE directive
was used to force a particular path.

Note. Compilation rules differ for dynamic queries. For details, see the SQL/MP Programming
Manual for your host language.
HP NonStop SQL/MP Query Guide—524488-003
4-8

Improving Query Performance With Environmental
Options

Understanding Unexpected Access Paths
Index-Only Access Is Not Possible
Index-only access is not used if any of these are true:

• The columns required by the query are not all included in the index.

• An exclusive lock mode is selected.

• OR optimization is done. (For more information, see Writing Efficient Predicates on
page 3-15.)

• The access is part of a DECLARE CURSOR statement with a FOR UPDATE
clause specifying a column that belongs to the index key, or part of an UPDATE
statement that updates a column of the index key.

SQL does not use index-only access if it estimates that more than a third of the
table is to be updated or deleted.

• Data is accessed from a protection view defined with a WHERE clause—unless
real sequential block buffering (RSBB) can be used.

For more information on RSBB, see Reducing Messages With Buffering Options
on page 4-21.

When the SELECT statement specifies more columns than can be satisfied by the
index alone (ineffective projection), base-table access is required. The index might be
used to access the base table, but index-only access is not possible.

WHERE Clause Indicates Base-Table Access
The restriction specified by a WHERE clause might not result in a low enough
selectivity to justify alternate-index access. For example, the overall estimated cost
might be higher for alternate-index access than for primary key access. In addition, if
the base table is small the optimizer might choose to read the base table without
accessing the alternate index.

Data Is Not Evenly Distribution
The optimizer operates as if a column contains a uniform distribution of values.
Consequently, the optimizer might not operate appropriately if the values are, in fact,
unevenly distributed.

For an example, consider table T, which has these characteristics:

• The table contains 2000 rows.

• There are two indexes on the table: one on column A and one on column B.

• The values in column A range from 1 to 10.

There are, however, 1,000 rows with A=10. The other values of column A are
evenly distributed from 1 to 9.

• The values in column B range from 21 to 30 and are evenly distributed.
HP NonStop SQL/MP Query Guide—524488-003
4-9

Improving Query Performance With Environmental
Options

Understanding Unexpected Access Paths
If you specify this query:

SELECT * FROM T
 WHERE A > 9 AND B > 28 ;

The optimizer operates as if these were true:

• 10 percent of the table will be selected through index A.

• 20 percent of the table will be selected through index B.

Based on this assumption, the optimizer will choose index A. However, because there
are 1,000 rows with A = 10, index A will actually access 50 percent of the table.

The Halloween Problem Could Occur
An alternate index is ignored if a cursor or standalone set update was specified for a
column that is part of the alternate index. An update of an alternate index column might
result in the deletion and reinsertion of the alternate index row following the current row
position. This updated row might then be encountered again and updated again and
again (the so-called Halloween problem, named after the holiday on which it was
supposedly discovered).

For example, suppose PRICE is the first column of an index and is being incremented
by 10 percent. As the column is updated, the row is inserted following its original
position. The cursor or set update will once again encounter the row and increment it
by 10 percent.

Selecting an index for an UPDATE query could result in a query plan that does not
terminate when executed. Consider this query:

UPDATE INVNTRY SET RETAIL_PRICE = RETAIL_PRICE * 1.1

The query requests that the price of all items in the INVNTRY table be increased by 10
percent. Suppose that there is a nonunique index on RETAIL_PRICE and that the
index contains these rows before the update:

RETAIL_PRICE

 10
 40

Suppose that the index on RETAIL_PRICE is the chosen access plan for a query
requesting rows that satisfy the predicate:

RETAIL_PRICE > 20

The system finds the row with a retail price of 40 and updates it to 44. When the
system looks for the next row that satisfies the predicate, it finds the same row, but with
a value of 44 for RETAIL_PRICE. This process goes on forever.

The SQL compiler avoids Halloween situations whenever possible. If the use of a given
index causes a Halloween problem and a CONTROL directive instructs the compiler to
use this index, SQL issues an error message.
HP NonStop SQL/MP Query Guide—524488-003
4-10

Improving Query Performance With Environmental
Options

Specifying an Access Path
One way to avoid the Halloween problem is to ignore the index on the column being
updated (RETAIL_PRICE in the previous example) and choose another index as the
access path, but this can result in an inefficient access plan. There are, however,
instances when it is appropriate to use the index; for example, the index on
RETAIL_PRICE is appropriate for this query, even though RETAIL_PRICE is being
updated:

UPDATE INVNTRY
 SET RETAIL_PRICE = 200
 WHERE RETAIL_PRICE BETWEEN 300 AND 400

If there is no other index for the INVNTRY table and the index on RETAIL_PRICE is
not used, the whole table must be read. If the table is large, using the index is much
more efficient.

SQL considers using the index on a column being updated if any of these conditions
are satisfied:

• No key column in the index is being updated

• All key columns in the index are specified with equal (=) predicates, as follows, and
OR optimization is not being considered:

UPDATE INVNTRY
SET RETAIL_PRICE = RETAIL_PRICE * 1.1
WHERE RETAIL_PRICE = 20 AND ITEM = 7 ;

• No column is referenced on the right-hand side of the SET clause, and the index
selectivity of the index is less than 20 percent, as follows:

UPDATE INVNTRY
SET RETAIL_PRICE = 20
WHERE RETAIL_PRICE > 80 AND ITEM > 10 ;

The less-than-20-percent restriction for index selectivity ensures that not too many
rows are updated more than once. (For more information about selectivity, see
Section 5, Selectivity and Cost Estimates.)

A variation of the Halloween problem occurs when newly inserted index rows satisfy
the search condition for a query. In this case, some rows are updated twice, causing
the reported “number of rows updated” to exceed the actual number of rows that
satisfy the search condition.

Specifying an Access Path
You can use the CONTROL TABLE ACCESS PATH option to specify the primary
access path or a specific alternate index. The ACCESS PATH option applies only to
DML (DELETE, SELECT, UPDATE, and the SELECT portion of an INSERT-SELECT)
statements. Sample directives are

CONTROL TABLE EMPLOYEE ACCESS PATH INDEX DEPTNUM ;
CONTROL TABLE EMPLOYEE ACCESS PATH SYSTEM ;
HP NonStop SQL/MP Query Guide—524488-003
4-11

Improving Query Performance With Environmental
Options

Specifying an Access Path
If you specify the SYSTEM option, SQL chooses the access path; this option is the
default. If, for example, you specified CONTROL TABLE * ACCESS PATH PRIMARY
to force primary key access during an SQLCI session, use CONTROL TABLE *
ACCESS PATH SYSTEM to restore the default access path selection mechanism.

Whenever you force MDAM by using the CONTROL TABLE directive, you must specify
an access path. You should not use ACCESS PATH SYSTEM with MDAM ON or in
conjunction with CONTROL TABLE *. Only ACCESS PATH options PRIMARY and
INDEX are valid for MDAM. For more information on MDAM, see Transformation of
Predicates on page 3-4.

Selecting an index for an UPDATE query could result in a Halloween situation. For
more information, see The Halloween Problem Could Occur on page 4-10.

If a forced path is not available, the query does not run. If you want a program to
choose an alternate path, check for error codes.

If you suspect that you might benefit from the use of one of these options, check your
application with and without the CONTROL option, using actual Measure statistics from
production data.

If you use one of the options, you might want to change this directive later for reasons
such as:

• The query might not be able to use a more efficient index that might be created in
the future

• The query might not be able to benefit from future enhancements to SQL

• Changes to the database structure (such as dropping an index) can require
recompilation when the option is in use

Therefore, make any occurrences of it easy to find and change, using one or more of
these alternatives:

• Make sure the directive only applies to the statement and table intended. Return
the specified table to SYSTEM method directly after the statement.

• Isolate this directive in its own section and perform it from the inline application
code.

• Place all statements affected by this directive in separate modules, called as
services by other modules.

Confirm all use of this option with data from the Measure product and verify its use
periodically to account for changes in data distributions and volumes. Reevaluate its
effectiveness with each new version of NonStop SQL/MP.

Caution. If you use the CONTROL TABLE ACCESS PATH option to specify a primary or
index path, you override the optimizer’s standard cost estimates (described in Section 5,
Selectivity and Cost Estimates) and therefore, might cause performance degradation instead of
enhancement. If you use this option, you must have a thorough understanding of the SQL
optimizer. Use it only if the optimizer does not produce the optimal plan.
HP NonStop SQL/MP Query Guide—524488-003
4-12

Improving Query Performance With Environmental
Options

Requesting Parallel Processing
Requesting Parallel Processing
SQL can take advantage of multiprocessor architecture by dividing an SQL query into
smaller tasks and assigning the tasks to separate processors. During parallel
processing, each part or partition of data is processed in parallel. After all partitions are
processed, they are merged to produce the final result.

Because databases can span multiple disks, using separate processes to access
these disks can dramatically improve the performance of a query. This approach can
improve the response time of all the basic SQL operations, including selects, inserts,
updates, deletes, joins, and aggregate functions. Parallel execution is especially
helpful when a large number of rows need to be processed by the executor, but only a
small number of rows need to be returned to satisfy the query.

Using the CONTROL EXECUTOR Directive
To request parallel processing, use the CONTROL EXECUTOR directive. The
optimizer then evaluates whether the system can process the entire statement or parts
of the statement in parallel. Specifying parallel execution, however, does not guarantee
that queries are executed in parallel. The optimizer selects the parallel execution plan
only if it is the best plan. In particular, parallel execution is not chosen in these cases:

• The statement includes a UNION operation.

• The SELECT statement references more than one table and contains a
noncorrelated, nonquantified subquery.

• The statement includes a FOR UPDATE OF clause.

• The CONTROL EXECUTOR PARALLEL EXECUTION OFF statement precedes
the query in the source program file text or in the SQLCI session. (OFF is the
default.)

• The local system has only one processor or none of the tables in the FROM clause
are partitioned.

• The system includes fewer than two logical volumes (excluding $SYSTEM).

• The SELECT statement references a single table that is not partitioned.

• The SELECT statement references a nonaudited table and the FOR BROWSE
ACCESS option is not specified.

• A CREATE INDEX statement includes the WITH SHARED ACCESS option.

• The SQL compiler estimates that the cost is higher to process the query in parallel.

Queries against small tables are usually not candidates for parallel processing. Neither
are queries where relatively few rows are processed by the executor. While these
queries might not be precluded from parallel processing, the cost factor might direct
the optimizer to choose a plan that does not include parallel processing.
HP NonStop SQL/MP Query Guide—524488-003
4-13

Improving Query Performance With Environmental
Options

How Parallel Processing Is Implemented
The optimizer does not choose a nested parallel join when stable access is specified
and the tables are not partitioned exactly the same and on a single column.

The CONTROL EXECUTOR PARALLEL EXECUTION ON directive stays in effect until
the end of an SQLCI session or until the directive is specified again.

You can also specify CONTROL EXECUTOR PARALLEL EXECUTION OFF to prevent
the SQL compiler from generating an execution plan that uses multiple executors. This
option is the default.

In a host language program, specific placement rules might apply to the CONTROL
EXECUTOR directive. For more information, see the SQL/MP Programming Manual
for your host language.

For complete syntax of the CONTROL EXECUTOR directive, see the SQL/MP
Reference Manual.

How Parallel Processing Is Implemented
To implement parallel processing of queries, SQL uses an executor server process
(ESP), which uses parallel processing when executing SQL statements.

A master executor invokes several ESPs in parallel to process a statement or part of a
statement. The ESPs perform the work and return either data or status information to
the master executor. The master executor then processes that information and returns
the end result to the user.

Tables and indexes need not be physically partitioned to achieve parallel execution if
they are participating in a join query. If a table or index is not partitioned then, for the
purposes of processing the query, the data is physically broken into multiple parts
(repartitioned), and each part is processed in parallel. Parallel processing, however,
operates best when a table or index is partitioned.

Consider this query, which requests the average salary of all employees:

CONTROL EXECUTOR PARALLEL EXECUTION ON ;
SELECT AVG(SALARY) FROM EMPLOYEE ;

Because the query is processed in parallel, each partition of the EMPLOYEE table is
processed by an executor server process (ESP). Each ESP computes a partial sum
and count of the SALARY values in the rows in that partition. (The sum and count are
used by the master executor to calculate the average.) During the final processing
stage of the query, the partial results of each ESP are combined to determine the
average for the entire query.

ESPs can be reused by the same SQLCI session.

Requesting Parallel Operations on Partitioned Data
Partitioning a table and its indexes increases the likelihood that the optimizer will
choose a parallel execution plan. Partitions might reside on one system or across
many systems.
HP NonStop SQL/MP Query Guide—524488-003
4-14

Improving Query Performance With Environmental
Options

Requesting Parallel Operations on Partitioned Data
The master executor assigns one ESP process to each partition that must be
accessed. At run time, the master executor starts an ESP process in the current
primary processor of each partition’s disk volume (unless an existing ESP process can
be used).

Each ESP works only on the partition to which it is assigned. The master executor
simultaneously employs a number of ESPs to work in parallel on the chosen part of the
statement. If the table is partitioned across multiple nodes, the ESPs are started on the
nodes where the data resides.

For more information on ESPs, see Processor Assignment by the SQL/MP Optimizer
and Executor for Executor Server Processes (ESPs) on page 2-5.

Figure 4-1 shows how the master executor assigns four ESPs to perform a SELECT
operation on a table with four partitions. Each ESP selects data from one partition and
returns it to the master executor.

Figure 4-1. Parallel Execution of a SELECT Statement

VST0401.vsd

Volume
Containing
Partition 1

Volume
Containing
Partition 2

Volume
Containing
Partition 3

Volume
Containing
Partition 4

Disk Process Disk Process Disk Process Disk Process

ESPESPESPESP

SELECT SELECT SELECT SELECT

Application Process

SQL Master
Executor

020
HP NonStop SQL/MP Query Guide—524488-003
4-15

Improving Query Performance With Environmental
Options

Specifying Access Option and Lock Characteristics
Prior to parallel execution of a SELECT statement, some table might not be partitioned
or might be partitioned in a way that does not facilitate parallel processing. The
optimizer can request that the executor repartition (reorganize) a copy of the data at
run time. During repartitioning, SQL distributes the data over a set of temporary
partitions. Each partition contains data that can then be processed in parallel by a
separate ESP.

The optimizer considers the cost of repartitioning and sorting the data when it selects
the best execution plan for the query. For more information, see Section 5, Selectivity
and Cost Estimates. For more information about adding partitions to tables, see the
SQL/MP Installation and Management Guide.

Specifying Access Option and Lock
Characteristics

SQL supplies locks and access options to protect the integrity and concurrency of a
database:

• Integrity refers to data that is accurate, valid, and consistent according to rules
established for changing the database.

• Concurrency refers to the ability of two or more processes to gain access to the
same data at the same time. With more concurrency, a greater number of
transactions can complete in a given timeframe.

Access option and lock mode can also influence the use of sequential block buffering
and the use of certain parallel access plans.

This subsection provides an introduction to access options, lock mode, and lock
granularity. For more information, see the SQL/MP Reference Manual.

Access Option
SQL provides these access options that affect the characteristics of locks:

• Browse access

Browse access ignores existing locks and does not acquire any locks. A DML
statement using this option reads data locked by other users. This option is allowed
only for querying data (not for updating data). Browse access is also known as
read through locks or dirty reads. For a UNION operation, browse access applies
only to the portion of the query for which it is specified, and does not necessarily
apply to the entire query.

• Repeatable access

Repeatable access locks all data accessed through the DML statement. If a
transaction reads the same row multiple times, the row will contain the same data.
Range locks prohibit the insertion of rows with keys between the first key and the
last key of the range.
HP NonStop SQL/MP Query Guide—524488-003
4-16

Improving Query Performance With Environmental
Options

Access Option
Each row locked with repeatable access stays locked until the corresponding
transaction is committed.

• Stable access

Stable access requires that when a row is retrieved, it must not be locked in an
exclusive manner by another transaction. Stable access locks all data accessed
through the DML statement. This access is useful for applications that want to read
only committed data. Stable access is also known as cursor stability or test lock.

In general, each row locked with stable access is released when the next row is
read, if the row was accessed but not updated. For standalone SELECT
statements with stable access, SQL releases the lock as soon as the row is
returned to the application.

Stable access is the default.

I/O buffering options influence access option behavior. For example, stable access with
VSBB locks all rows and does not release them until SQL is finished with the entire
block. For more information, see Reducing Messages With Buffering Options on
page 4-21.

The option you specify can influence the resources required for a query. In general,
these rules apply:

• Use browse access if possible, but use it with caution—only if inconsistent data is
acceptable.

The BROWSE ACCESS option enables you to read data that is currently being
updated or deleted. This option allows you to read data for which an associated
transaction might not have been committed. This option is especially effective for a
read-only database.

BROWSE ACCESS requires no lock management and allows other techniques
such as RSBB to be used. Many queries (such as those used for application
navigation through a database) can use BROWSE ACCESS successfully.

If potentially inconsistent data is unacceptable, do not specify browse access, but
make sure repeatable access is used only where necessary. (To determine current
access path, review the EXPLAIN plan as shown in Section 6, Analyzing Query
Performance.) If you do use data accessed with BROWSE ACCESS, supply
update protection by comparing the BROWSE data with actual database contents
during update and delete operations to make sure that you do not lose interim
updates.

If you omit BROWSE ACCESS, the default locking mode is STABLE. The executor
obtains a shared lock on each row to ensure that the rows are not changed while
they are being read. If the database is not audited by TMF, stable access is
especially expensive because it prevents the executor from using some of its more
efficient scanning mechanisms.
HP NonStop SQL/MP Query Guide—524488-003
4-17

Improving Query Performance With Environmental
Options

Access Option
When using BROWSE ACCESS in SQLCI for a query that might run for a long
time, disable transaction generation before starting the query. By doing so, you
prevent the lengthy execution of an automatically generated transaction.

To disable transaction generation for user-defined DDL or DML statements,
execute this statement:

SET AUTOWORK OFF ;

See the SQL/MP Reference Manual for information on this statement.

• To encourage parallel execution of queries:

° Use the BROWSE ACCESS or REPEATABLE ACCESS option instead of
STABLE ACCESS. The BROWSE and REPEATABLE options typically allow
parallel execution when the STABLE option does not (unless you specify a
table lock).

° For nonaudited tables, use the BROWSE ACCESS option whenever possible.

° For audited tables, use the BROWSE ACCESS, STABLE ACCESS with table
locking or REPEATABLE ACCESS option whenever possible.

• For interactive queries that access large result sets, avoid the use of
REPEATABLE ACCESS because of potential contention and delays.

• Avoid the use of REPEATABLE ACCESS when locking a range of rows. SQL locks
all rows in the entire range, and no other transaction can access, delete, or insert
rows within that range. Instead, specify shared access or specify only small ranges
of rows and use multiple open cursors.

• Consider specifying REPEATABLE ACCESS for multistep updates or deletes.

• For single SELECT statements followed by an update operation, request
REPEATABLE ACCESS IN EXCLUSIVE MODE. This strategy avoids lock
escalation from shared to exclusive and avoids possible deadlocks in those
situations.

This example retrieves information about employees from the EMPLOYEE table.
Because browse access is specified, no locks are held while the query is processed.

SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE SALARY > 50000
 BROWSE ACCESS ;
HP NonStop SQL/MP Query Guide—524488-003
4-18

Improving Query Performance With Environmental
Options

Lock Mode
Lock Mode
Lock mode controls access to locked data. The two modes are these:

• Exclusive. The lock owner can access and modify the data. Users who have
specified browse access can read the data. This is typically specified for multistep
updates or deletes, where data is selected and then updated or deleted, to
eliminate the need to convert a shared lock (for the select) to an exclusive lock (for
the update or delete).

Exclusive locking mode disables index-only access, because it indicates that the
base table row will be deleted or updated.

• Shared. Multiple users can lock and read the same data. Inserts, updates, and
deletes, however, can only be done by the lock owner.

In the SELECT statement, you can specify IN EXCLUSIVE MODE or
IN SHARE MODE.

Exclusive and shared locks can be used at either the table or row level of granularity.

Lock modes are the same whether you choose stable access or repeatable access.
Lock mode is sometimes determined by the system. SQL ensures that an exclusive
lock is in effect for modified data. For data accessed but not modified, SQL usually
provides a shared lock.

Lock Granularity
Granularity controls the number of rows affected by a single lock. Granularity can refer
to a table, a partition, a subset of rows, or a single row.

The level of concurrency decreases as the size of the lock unit increases.

The LOCKLENGTH attribute for a base table controls the granularity of row locks for
the table. You can control table locks with the LOCK TABLE and CONTROL TABLE
statements; otherwise, the system determines the granularity by considering the
access option you specify, the table size and definition, and the estimated percentage
of rows that the query would access.

SQL might choose a different access path if a table lock can be used. In SQL, you can
specify the use of table locks with these commands:

• In the LOCK TABLE statement, you can choose either the EXCLUSIVE or
SHARED option:

LOCK TABLE table-name

• You can use the TABLELOCK option to control system-chosen table locks from an
SQL compile-time directive. For example, this statement instructs the SQL
compiler to use a table lock for any subsequently compiled DML statements that
specify the CUSTOMER table:

CONTROL TABLE table-name TABLELOCK ON
HP NonStop SQL/MP Query Guide—524488-003
4-19

Improving Query Performance With Environmental
Options

Waiting For Locks
LOCK TABLE is an executable SQL statement. If you use LOCK TABLE, the SQL
compiler is not aware of the table lock before compiling subsequent statements
because each SQL statement is compiled independently. The LOCK TABLE statement
might even be in a separate program from subsequent statements.

CONTROL TABLE is a compiler directive. If you use CONTROL TABLE, the SQL
compiler is aware of the table lock before compiling queries that reference the
specified table.

Requesting a table lock eliminates the overhead of row locking and therefore reduces
the overhead on queries that access many rows. By requesting a table lock (or by
specifying browse access), you make it more likely that VSBB and parallel execution
will be selected. Table locking, however, inhibits concurrency; other users cannot
access the table while it is locked. For batch-type queries without OLTP activity, an
application should request table locks with the CONTROL TABLE directive.

Waiting For Locks
You can use the RETURN/WAIT IF LOCKED option to enable or disable the wait
mechanism for lock requests on data that is already locked by other users. This
example enables the wait mechanism so that a lock request on locked data is held for
60 seconds (the default) before a timeout occurs:

CONTROL TABLE SALES.CUSTOMER WAIT IF LOCKED TIMEOUT DEFAULT

Performance Implications
By changing the characteristics of locks, you might increase the number of
transactions that can be handled in a given time frame. The more concurrency, the
greater number of transactions that can complete.

Access option (browse, stable, repeatable) and lock mode (exclusive or shared) can
affect the query execution plan chosen by the optimizer. Consider these:

• Exclusive mode disables index-only access because exclusive mode usually
indicates that the base table row will be deleted or updated.

• Access option can affect whether sequential block buffering is chosen. For
example, real sequential block buffering (RSBB) is used only when browse access
is specified, or the entire table is locked with a CONTROL TABLE directive.

• Stable access often prohibits parallel execution of queries.
HP NonStop SQL/MP Query Guide—524488-003
4-20

Improving Query Performance With Environmental
Options

Reducing Messages With Buffering Options
Reducing Messages With Buffering Options
This subsection describes how SQL retrieves data from the disk process. Retrieval can
be by row or by block. The size of a block is specified for a table when the table is
created.

Types of Buffering
The optimizer can choose between these types of access:

• Single row—SQL returns data from the disk process one row at a time.

• Sequential block buffering (SBB):

° Real Sequential Block Buffering (RSBB)—SQL obtains data from the disk
process one block at time. Data blocks sent to the requesting process are
exact copies of what is on the disk.

° Virtual Sequential Block Buffering (VSBB)—the disk process builds a block in
the disk process that has only the data the requester is interested in. Thus, the
disk process performs column selection (projection) and row selection
(restriction). The data can come from one or more table blocks. The data area
used for this is called a virtual block because it is not an exact copy of data on
disk.

The optimizer attempts to minimize the number of messages and the amount of data
transferred between the file system and the disk process. Using SBB is one way to
achieve this goal.

When an application uses SBB (either RSBB or VSBB), SQL retrieves a whole block of
rows at a time. All rows in the block are locked. When the application process requests
the next row, the file system returns the next row from the copy of the physical block of
rows. Therefore, SBB reduces the number of messages between the file system and
the disk process by the file's physical blocking factor (the number of rows per block).

If SBB is used, SQL chooses the type of SBB (virtual or real) to use. The optimizer
does not, however, always choose SBB, because SBB involves a certain amount of
overhead.

The following subsections describe each buffering mode in more detail, using an
INVNTRY table defined with these columns:

ITEM_NAME (20 bytes)
RETAIL_PRICE (4 bytes)
ITEM_ON_HAND (4 bytes)
COMMENTS (400 bytes)
HP NonStop SQL/MP Query Guide—524488-003
4-21

Improving Query Performance With Environmental
Options

Single-Row Access
The INVNTRY table has these characteristics:

• The total size of each row is 428 bytes (20 + 4 + 4 + 400).
• The table contains 100 rows.
• There are 90 items with a RETAIL_PRICE value greater than 10.
• There is no alternate index.
• The block size is 4096 bytes.
• There is no slack space in the table.

This query requests the name and retail price of all items whose retail price is greater
than 10:

SELECT ITEM_NAME, RETAIL_PRICE
 FROM INVNTRY
 WHERE RETAIL_PRICE > 10
 FOR BROWSE ACCESS ;

SQL evaluates the query by reading the table sequentially.

Single-Row Access
With single-row access, each request for a row from the file system causes a row to be
returned from the disk process, as shown in Figure 4-2.

The disk process returns each row that satisfies the predicate (RETAIL_PRICE > 10)
to the file system. To evaluate this query, the file system sends 90 messages to the
disk process. The disk process transfers 2,160 bytes of data (90 rows at 24 bytes per
row) to the file system.

Guidelines for Choosing Single-Row Access
Single-row access is chosen when either a single row or a small number of rows
satisfy the query—or when SBB is explicitly disabled by the user (by using the
CONTROL TABLE directive, described in this subsection).

If a WHERE clause matches more than one row but you are interested in only the first
row returned, set SBB off (and request single-row access) using the CONTROL
TABLE SEQUENTIAL READ OFF directive. Similarly, if you are inserting only one row,
use CONTROL TABLE SEQUENTIAL INSERT OFF to disable SBB.

Figure 4-2. Single-Row Access

PEAR 11

File System

Get Next Row Where
RETAIL_PRICE > 10

Disk Process

Returns One Physical Row
(with projection and restriction)

5 ...
11 ...
20 ...

PEACH
PEAR
APPLE

10
11
12

015VST0402.vsd
HP NonStop SQL/MP Query Guide—524488-003
4-22

Improving Query Performance With Environmental
Options

Real Sequential Block Buffering (RSBB)
Real Sequential Block Buffering (RSBB)
If a query accesses most of the rows in a table and most of the columns in each row, it
can be beneficial for the disk process to return a complete block of rows to the file
system rather than returning one row at a time. This process is called real sequential
block buffering (RSBB).

RSBB reduces the number of messages it would otherwise take to return all qualifying
rows, one at a time, to the file system. Figure 4-3 shows the disk process returning a
copy of a physical block of rows to the file system. When the executor requests the
next row, the file system does the projection and restriction of data and returns the next
row to the executor. Therefore, the number of requests (messages) between the file
system and the disk process is reduced by the file’s physical blocking factor (that is,
the number of rows per block).

The disk process returns a physical block of rows to the file system. The file system
examines each row in the returned block and tests the rows against the predicate.
After all the rows in the block have been processed, the file system requests another
block.

The efficiency of RSBB access can be estimated by dividing the number of useful
bytes per physical block by the block size.

Slack Space
RSBB efficiency is diminished if there is slack (unused) space within the data blocks.

In the preceding example, 100 rows are transferred from the disk process to the file
system; however, the file system sends only 12 messages to the disk process
(assuming four-kilobyte data blocks with no slack).

If there is fifteen percent slack space within data blocks, then each physical block
contains eight actual data rows instead of nine and the number of messages increases
from 12 to 13.

For more information about slack space and how you can specify slack space, see the
SQL/MP Reference Manual. The FUP INFO filename, STAT command displays the

Figure 4-3. Real Sequential Block Buffering (RSBB)

File System

Get Next Real Block Where
RETAIL_PRICE > 10

Disk Process

Returns One Physical
Block of Rows

5 ...
11 ...
20 ...

PEACH
PEAR
APPLE

10
11
12

5 ...
11 ...
20 ...

PEACH
PEAR
APPLE

10
11
12

016VST0403.vsd
HP NonStop SQL/MP Query Guide—524488-003
4-23

Improving Query Performance With Environmental
Options

Virtual Sequential Block Buffering (VSBB)
average number of rows per block and average percent slack space per block. Note
that it processes the whole table, so use with caution if the file is large. For more
information, see the File Utility Program (FUP) Reference Manual.

Guidelines for Choosing RSBB
RSBB is used when the disk process can do only a minimal amount of filtering
(selection and projection). For example, this query requests the whole INVNTRY table:

SELECT * FROM INVNTRY ;

In general, SQL uses RSBB when all of these are true:

• Most rows examined satisfy all the predicates.

• More than two-thirds of a row is to be returned.

• More than two-thirds of the table or index is on the local node.

• Browse access is specified or the entire table is locked with a CONTROL TABLE
directive.

Depending on the amount of slack, the optimizer might choose VSBB to reduce the
number of messages. If there is little or no slack, then VSBB offers no advantage, so
the optimizer choose RSBB if possible.

RSBB is used for SELECT operations if the table is accessed through an index from a
protection view that has a selection expression and if at least one of these is true:

• BROWSE ACCESS is specified for the request

• The TABLE LOCK ON option of CONTROL TABLE is specified

• The TABLE LOCK OFF option of CONTROL TABLE is not specified and a table
lock is chosen by the optimizer

RSBB is used for UPDATE and DELETE operations if a table lock is requested and
less than 1 row per block is to be updated.

If a query accesses a protection view, index-only access implies use of RSBB if the
view has a WHERE clause. The optimizer does not use index-only access with a
protection view unless SQL can also use RSBB.

Virtual Sequential Block Buffering (VSBB)
The disk process can construct a virtual block that contains the qualified rows and
selected columns to be returned to the file system. This process is called virtual
sequential block buffering (VSBB).

Figure 4-4 on page 4-25 illustrates how the disk process does the projection and
restriction of data, which comes from several physical blocks.
HP NonStop SQL/MP Query Guide—524488-003
4-24

Improving Query Performance With Environmental
Options

Virtual Sequential Block Buffering (VSBB)
VSBB reduces the number of messages between the file system and the disk process.
Further, it reduces the amount of data transferred between the file system and the disk
process.

The disk process returns a block of rows to the file system, but the block contains only
the requested columns from rows that satisfy the predicate (because the disk process
does the projection and restriction of data). So, only the columns ITEM_NAME and
RETAIL_PRICE are returned to the file system.

Therefore, the disk process returns 2160 bytes of data (90 rows at 24 bytes per row) to
the file system. Because the answer to the query can be contained in one 4 kilobyte
page, the file system sends only one message to the disk process.

VSBB is also used for insert and update operations. It significantly reduces the number
of messages passed between the file system and the disk process.

Guidelines for Choosing VSBB
For a sequential scan, VSBB is chosen when one or more of these is true:

• Less than two-thirds of a row is retrieved or examined.

• Most records examined do not satisfy all of the predicates. (The difference
between the table and indexes selectivities is large.)

• More than one-third of the table is on a remote node.

VSBB is used for audited tables and cursor stability if less than 1 out of 16 rows
examined is to be returned and if any of the preceding conditions are met.

Figure 4-4. Virtual Sequential Block Buffering (VSBB)

11
20
12
25
70

PEAR
APPLE
CHERRY
ORANGE
SOUP

File System

Get Next Virtual Block Where
RETAIL_PRICE > 10

Disk Process

Returns One Virtual Block of Rows
(With Projection and Restriction)

5
11
20

12

PEACH
PEAR
APPLE
 ...
CHERRY

10
11
12

18

...

...

...

...

...

...

...

25
30
50

ORANGE
LEMON
CHEESE
 ...

19
20
21

...
...

50
70

 ...
FLOWER
SOUP

 99
100

017

...

VST0404.vsd
HP NonStop SQL/MP Query Guide—524488-003
4-25

Improving Query Performance With Environmental
Options

Virtual Sequential Block Buffering (VSBB)
VSBB is used for UPDATE and DELETE operations if no more than one row is to be
updated out of 32 rows examined.

VSBB is not used for nonaudited tables if any of these is true:

• The syncdepth value is greater than 0.

• A table lock is not used.

• The table contains alternate indexes, and a varying-length column is being
updated.

When an operation is buffered, data is transferred between the file system and the disk
process a block at a time instead of a row at a time. Consequently, virtual sequential
block buffering (VSBB) improves the performance of queries by reducing the number
of messages exchanged and the amount of data transferred between the file system
and the disk process.

To find out if the optimizer is choosing VSBB, use the EXPLAIN utility, described in
Section 6, Analyzing Query Performance.

Effects of VSBB on Concurrency
The use of VSBB can cause concurrency problems because it requires locks.
Increased lock waits and timeouts can occur for reasons described in these
subsections. If you are experiencing concurrency problems, consider disabling VSBB
(by using the CONTROL TABLE directive).

For sequential read operations, the disk process locks all rows scanned (rather than a
row at a time). Consequently, SQL operations that use VSBB, even with stable access,
can acquire more locks that remain in place longer than operations that do not use
VSBB. (The EXPLAIN utility, described in Section 6, Analyzing Query Performance,
lists VSBB and STABLE ACCESS when both are in use.) Stable locks on rows are
released only when the program is done with the block. You can disable VSBB for read
operations by specifying this directive:

CONTROL TABLE * SEQUENTIAL READ OFF

For sequential update operations, the compiler performs a sequential read before
performing the update. You can disable VSBB for update operations by specifying this
directive:

CONTROL TABLE * SEQUENTIAL UPDATE OFF

When requesting an insert into a key-sequenced table that uses a SYSKEY column or
a timestamp as the primary key, VSBB is usually chosen for the operation, because
inserts into such a table will very likely be sequential. If concurrent servers are inserting
HP NonStop SQL/MP Query Guide—524488-003
4-26

Improving Query Performance With Environmental
Options

Comparison of Buffering Types
into the table, a high percentage of lock waits and timeouts might occur. You can
disable VSBB for insert operations by specifying this directive:

 CONTROL TABLE * SEQUENTIAL INSERT OFF

Comparison of Buffering Types
This discussion compares the three types of buffering techniques, using the example
described earlier in this subsection.

Table 4-1 shows the number of messages transferred between the disk process and
the file system, the number of rows and the number of bytes transferred from the disk
process to the file system, and the number of bytes read from disk by the disk process
for each type of buffering mode: single row, RSBB, and VSBB.

As shown in this table, the choice of buffering mode can have a dramatic influence on
the number of messages required for a query and can, therefore, influence
performance in a major way.

For online transaction processing, you might find that single-row access gives the
fastest response time, because the disk process responds immediately upon finding
the first qualifying row. Alternately, with VSBB, the response might be delayed while
the disk process continues scanning to fill the virtual block. To disable SBB, use the
SEQUENTIAL READ OFF option of the CONTROL TABLE statement. (For more
information, see the CONTROL TABLE SEQUENTIAL READ statement in the SQL/MP
Reference Manual).

Note. Disabling sequential insert or update operations does not automatically disable
sequential read operations. You must specify CONTROL TABLE SEQUENTIAL READ OFF to
disable sequential read operations.

Table 4-1. A Comparison of Buffering Modes

Buffering
Mode

Number of
Messages
Between File
System and
Disk Process

Number of
Bytes Read
From Disk by
Disk Process

Number of
Bytes
Transferred to
File System for
Each Message

Number of
Rows
Transferred to
File System

Single Row 90 48K 2.2K 90

RSBB 12 48K 48.0K 100

VSBB 1 48K 2.2K 90

Note. If stable access is used, VSBB requires 3 messages, because a maximum of 32 rows
can be kept locked within any virtual sequential block.
HP NonStop SQL/MP Query Guide—524488-003
4-27

Improving Query Performance With Environmental
Options

Requesting Buffering
Requesting Buffering
You can use the CONTROL TABLE directive to set buffering to ON, OFF, or ENABLE
for sequential insert, read, or update operations. The ENABLE setting lets the system
choose whether to use SBB or not for a specific query; this is the default for read
operations.

This example requests buffering for sequential UPDATE operations:

CONTROL TABLE SALES.CUSTOMER SEQUENTIAL UPDATE ON

The preceding directive requests buffering of update operations by the file system for
the disk process.

In a host language program, specific placement rules might apply to the
CONTROL TABLE directive. For more information, see the SQL/MP Programming
Manual for your host language.

Optimizing Sequential Access With Block Buffering
When a row is inserted into an SQL table or view, each INSERT statement results in a
single message to the disk process. For files in which inserts are random throughout
the file, using the INSERT statement in this way is the best method. When inserts are
performed in key groups of sequential nature, however, as in batch operations, it is
more efficient to block the inserts, grouping sequential keys in one message to the disk
process.

You can use the CONTROL TABLE statement to control insert operations to allow for
sequential block buffering or to force single writes. For audited tables, the default
option for CONTROL TABLE SEQUENTIAL is ENABLE, which enables the system to
decide which method (sequential block buffering or single messages) is the most
efficient for these operations. For nonaudited tables, the default option for CONTROL
TABLE SEQUENTIAL is OFF, indicating the single messages method.

You can control the option programmatically so that batch throughput performance can
be increased. For more information, see the SQL/MP Programming Manual for your
host language.

The CONTROL TABLE SEQUENTIAL ENABLE option is available for update
operations as well as for the insert function.

Effects of Cursor Operations on Performance
The optimizer often chooses VSBB when compiling a cursor definition.

You should be aware, however, that certain operations invalidate buffering for cursor
operations, and performance can be degraded. For more information, see the SQL/MP
Programming Manual for your programming language.
HP NonStop SQL/MP Query Guide—524488-003
4-28

Improving Query Performance With Environmental
Options

Controlling the Opening of Tables, Views, and
Indexes
Controlling the Opening of Tables, Views, and
Indexes

The NonStop SQL/MP file system opens (grants access to) objects when directed to
do so by the NonStop SQL/MP executor. Tables, views, and indexes, and partitions of
these objects, are usually opened on demand. SQLCI users or application programs
do not influence when tables, views, and indexes are opened or closed.

With the open-on-demand feature, each object or partition is opened during the
processing of individual SQL statements. When many statements require the opening
of many different tables, views, and indexes used as access paths, or partitions of
these objects, this feature can require additional time at the first execution of individual
statements.

You can, however, control this overhead by using the CONTROL TABLE object-
name OPEN directive to override open-on-demand. When the CONTROL TABLE
directive is processed, one or more objects can be opened immediately. You can use
this directive to open all tables, views, indexes, and any partitions of these objects as
soon as a program is started.

This approach shifts the processing time for opening objects to the beginning of
program execution and away from the times when the individual statements that
require the objects are processed. After an object is opened, it stays open until the
program is stopped.

When you enter CONTROL TABLE table-name OPEN ALL PARTITIONS, the table
and all of its partitions and indexes are all opened.

When you enter CONTROL TABLE view-name OPEN ALL, the view and the
underlying tables and indexes are opened.

Caution. Use the CONTROL TABLE statement with the OPEN ALL option only if all these are
true:

• All open activities must occur when the program starts (add a “dummy” call to the cursor
during initialization).

• The object containing the cursor eventually accesses all partitions.

• The plan for the cursor is not a parallel plan.
HP NonStop SQL/MP Query Guide—524488-003
4-29

Improving Query Performance With Environmental
Options

Controlling the Number of Key Columns Used by
MDAM
In addition to the open-on-demand feature, NonStop SQL/MP also ensures that tables
are automatically created to provide local autonomy. Local autonomy ensures that you
can access local data regardless of the availability of other local dependent objects or
remote dependent objects, if the local data that is available can fully satisfy your
request.

With local autonomy, the compiler stores information about partitions that underlie
tables and indexes, enabling the file system to open any available partitions as
needed.

Controlling the Number of Key Columns Used
by MDAM

In most cases, you should allow MDAM to choose the number of key columns to use
for MDAM processing. Occasionally, MDAM chooses more key columns than you
want. On these occasions, you can use the ACCESS PATH . . . MDAM ON option in a
CONTROL TABLE directive, and apply the USE option to specify the number of key
columns for MDAM to use.

Suppose four columns of the key have MDAM predicates. You have determined the
unique entry count of the fourth key column used in a predicate. (You have found the
count by updating statistics and querying the catalog table for the column). If you do
not want MDAM to step through all the different values for the fourth column, you can
specify the number of columns for MDAM to use. If you specify three, then only
predicates on the first three key columns are used.

If you specify a number of columns that is less than or equal to zero, SQL returns an
error. If the number you specify exceeds the number of key columns available for the
index, the optimizer uses the maximum number of key columns usable by MDAM for
each predicate set. Specifying DEFAULT for the number of key columns allows MDAM
to choose the number of key columns.

For more information on MDAM, see Transformation of Predicates on page 3-4.

Controlling MDAM’s Use of DENSE or SPARSE
Algorithms

When you use a CONTROL TABLE directive with MDAM ON, you can specify whether
the optimizer should use an adaptive DENSE or SPARSE algorithm for all columns
during row access. An adaptive algorithm is an algorithm chosen by the optimizer but
might not be chosen by the executor. For example, if the optimizer chooses a DENSE
algorithm and the executor finds a DENSE algorithm is inefficient for accessing a
certain column, the executor adapts by switching to a SPARSE algorithm. It switches
back to the DENSE algorithm as soon as it finds the value it is seeking.

You can determine the density or sparsity of data by the values in a column. For
example, if column A contains the values 1, 2, 3, and 4, it has dense data distribution.
HP NonStop SQL/MP Query Guide—524488-003
4-30

Improving Query Performance With Environmental
Options

Controlling the Creation of NonStop SQL/MP
Processes
If you choose a DENSE algorithm, the executor starts with 1 and increments the value
sequentially to obtain the next values for column A.

However, if the values for column A are 25, 135, 400, and 525, then DENSE would not
be a good algorithm. Too many accesses would be made if each value were
sequentially incremented until the next value were found. If you specified a SPARSE
algorithm, the executor would process all qualifying rows for A = 25 and then do an
extra position to find the next value of A that is greater than 25.

If statistics cause the optimizer to make a mistake and choose DENSE instead of
SPARSE, or SPARSE instead of DENSE, you can change the choice by specifying the
correct option in the CONTROL TABLE directive. However, because the executor does
an adaptive DENSE or SPARSE, it switches accordingly when it finds that the chosen
algorithm is not efficient for the column it is accessing.

If you use a CONTROL TABLE directive to force the use of DENSE, the optimizer still
uses SPARSE for character and float data types. If you specify the SYSTEM option,
the system chooses the algorithm for each column.

When the optimizer chooses a SPARSE algorithm, the executor executes only the
SPARSE algorithm. When the optimizer chooses a DENSE algorithm, the executor
uses a SPARSE algorithm to retrieve the first existing key value but then switches to
DENSE. It continues to use DENSE until it makes several misses and then switches
back to SPARSE to get the next existing key value.

For more information on MDAM, see Transformation of Predicates on page 3-4.

Controlling the Creation of NonStop SQL/MP
Processes

The SQL catalog manager and SQL compiler are always started upon demand for their
services. If these processes are not already running when individual SQL statements
are submitted, a longer response time for statements results. Furthermore, after the
processes are started, they normally remain active for about five minutes. Therefore,
you can improve the performance of certain operations if you group the operations
within your program to take advantage of this timing. For example, if a program needs
to create three temporary tables, you could group the three CREATE TABLE
statements together rather than including them at the separate points where the
program might naturally need them. Beyond these techniques, you have no other
control over the life cycle of the SQL processes.
HP NonStop SQL/MP Query Guide—524488-003
4-31

Improving Query Performance With Environmental
Options

Enhancing Sort Performance
Enhancing Sort Performance
You can enhance the performance of sorts within SQL queries in several ways:

• Use subsorts, configured by specifying appropriate SUBSORT attributes in
=_SORT_DEFAULTS DEFINEs.

• Direct FastSort to use additional memory when sorting data by setting the VLM
attribute ON in a user-specified SORT DEFINE or a =_SORT_DEFAULTS
DEFINE. When ON, the VLM attribute allows FastSort to use up to 127.5
Megabytes of extended memory (if available on the system), enhancing
performance significantly. FastSort uses the additional memory in either of two
ways:

° To extend the size of the sort tree beyond its default limit of 32 kilobyte nodes if
the extended size would permit the sort to be done in a single pass

° To store some intermediate sorting runs and thereby reduce disk input-output
to a minimum if the sort is still too large for a single pass

• Avoid using a busy processor for your sort operations. Instead, specify the
processor attribute in a =_SORT_DEFAULTS DEFINE to direct all main sort and
subsort operations to another processor.

• Adjust the execution priority of a sort operation by defining the PRI attribute in a
=_SORT_DEFAULTS DEFINE to alter the priority.

• Avoid excessive contention for your sort scratch file by using the SCRATCH
attribute in a =_SORT_DEFAULTS DEFINE to redirect scratch operations to
another volume. In particular, the primary partition's volume, which is the default
volume for the scratch file, often becomes very busy; if your scratch file resides on
this volume, you might want to move it to another. For cases in which performance
is vitally important, you might dedicate an entire volume to sort scratch operations.

• Use SCRATCH, SCRATCHON, AND NOSCRATCHON in a SORT DEFINE so that
FastSort can build a pool of scratch files on appropriate volumes. For more
information, see the FastSort Manual.

For more information about invoking FastSort from SQL, see the FastSort Manual.

Understanding Concurrency
Concurrency is access to the same data by two or more processes at the same time.
The degree of concurrency available depends on the purpose of the access, the
access mode, and whether virtual sequential block buffering (VSBB) is used for the
access.

NonStop SQL/MP provides concurrent database access for most operations, but some
longer-running DDL and utility operations can reduce concurrent access.
HP NonStop SQL/MP Query Guide—524488-003
4-32

Improving Query Performance With Environmental
Options

Minimizing Overhead of Query Programs
For information about limits on concurrency, see the SQL/MP Reference Manual. For
information about maximizing concurrency during DDL operations, see the SQL/MP
Installation and Management Guide.

Minimizing Overhead of Query Programs
NonStop SQL/MP supports several features that can help you minimize the overhead
of query programs:

• For query programs that use static SQL statements, name resolution can occur at
execution time. Thus, if you want a transaction to execute against one of several
different tables, this feature makes it possible to do so without using dynamic SQL,
thus avoiding the compilation overhead of dynamic SQL. To specify execution-time
name resolution, use the CONTROL QUERY BIND NAMES directive.

• After DDL operations or other activity that might invalidate a query plan, you can
minimize recompilation of statements within a program by using the similarity
check to avoid recompilation if the operation did not affect the query plan of the
specific statement.

• You can install programs in a new system without recompiling them by using the
REGISTERONLY option.

• You can install programs in a new system without recompiling or registering them
by using the NOREGISTER option.

For more information about these features, see the SQL/MP Programming Manual for
your host language, the SQL/MP Reference Manual, and the SQL/MP Installation and
Management Guide.
HP NonStop SQL/MP Query Guide—524488-003
4-33

Improving Query Performance With Environmental
Options

Minimizing Overhead of Query Programs
HP NonStop SQL/MP Query Guide—524488-003
4-34

5 Selectivity and Cost Estimates
NonStop SQL/MP uses selectivity and cost when choosing an execution plan. This
section describes these topics:

• How the Optimizer Estimates Selectivity on page 5-1

• Assigning Cost to a Query on page 5-11

• Evaluating Cost Estimates on page 5-19

• How the Optimizer Chooses an Execution Plan on page 5-19

• Forcing Execution Plans on page 5-20

How the Optimizer Estimates Selectivity
Selectivity is an estimate of the number of rows in a table or an index that satisfy a
given search condition and is represented as a percentage of rows, from 0 to 100. It is
central to the selection of an access plan by the optimizer. It depends on column
statistics maintained in the SQL catalog and on the predicates specified for a given
query.

The efficiency of a given index is determined based on its selectivity. If the control
statement INTERACTIVE ACCESS ON is specified, however, the optimizer attempts to
use an index, if feasible, without considering selectivity. The control statement
indicates that only the first few rows of the result set are pertinent to the request.

The number of rows that are examined affects the number of messages that are
exchanged between the file system and disk processes to retrieve the data, the
number of input/output operations that are performed, and so on.

There are three levels of selectivity:

• Predicate selectivity is the fraction of rows in a table that satisfy the predicate.

• Table selectivity is the fraction of rows that satisfy all the predicates of a query.

• Index selectivity is the fraction of index rows that must be examined in evaluating a
query.

Selectivity influences the optimizer’s choice of these:

• Access path (base table, alternate index, or index only)

For example, if the restriction specified by a WHERE predicate does not result in a
low enough selectivity to justify alternate-index access, base-table access is
chosen instead. (For more information about access paths, see Optimizing the
Access Path on page 4-4.)
HP NonStop SQL/MP Query Guide—524488-003
5-1

Selectivity and Cost Estimates Computing Selectivity
• Join order

The selectivity of each table helps determine the optimizer’s choice of the outer
and inner table, because it helps determine cost. Cost and available access paths
are the determining criteria for join order.

• Types of sorts performed (in-memory user process sort or external physical sort)

The following subsections describe general selectivity computations; predicate, index,
and table selectivity; default selectivity; and join and grouping selectivity.

Computing Selectivity
The optimizer estimates selectivities based on statistics obtained prior to the
compilation of queries; therefore, SQL must have current statistics to work from. When
you specify an UPDATE [ALL] STATISTICS command, SQL inserts these statistics
into the COLUMNS, FILES, BASETABS, AND INDEXES catalog table.

Furthermore, the optimizer operates as if the data were uniformly distributed in each
column within the range specified by the statistics and the unique values were
uniformly distributed between the lowest and highest values.

Selectivities are cumulative; that is, the combination of predicate selectivities
determines the selectivity for a table or an index.

The optimizer uses these statistics to compute selectivities:

• The second-high and second-low values of a column (SECONDHIGHVALUE and
SECONDLOWVALUE in the COLUMNS table). To avoid extreme values that might
be very different from the rest of the values, SQL does not use the first-high and
first-low values of a column.

• The unique entry count (UEC), which is the number of unique values of a column
(UNIQUEENTRYCOUNT in the COLUMNS table), used to calculate the selectivity
for equal (=) and not equal (<>) comparisons, IS [NOT] NULL clauses, and join
selectivity.

SQL estimates the overall UEC by linear interpolation. For partitioned tables, the UEC
equals the total number of unique values divided by the number of partitions. Any
remainder is added to the primary partition. The quotient H2/L2 is the same for all
partitions.

By default, UPDATE STATISTICS reads partitions smaller than 1,000 blocks in their
entirety and uses sampling for partitions of 1,000 blocks or larger. You can influence
the amount of data to be examined by specifying the exact number of blocks:

SAMPLE n BLOCKS

For more information about UPDATE STATISTICS, see Section 6, Analyzing Query
Performance. For a complete description of the UPDATE STATISTICS command and
the COLUMNS catalog table, see the SQL/MP Reference Manual.
HP NonStop SQL/MP Query Guide—524488-003
5-2

Selectivity and Cost Estimates Predicate Selectivity
Predicate Selectivity
Predicate selectivity is the estimated percentage of rows in a table or an index that
satisfy a given predicate. The optimizer uses the selectivity of key predicates to
estimate the number of rows to examine; it uses the selectivity of the rest of the
predicates to estimate the number of rows that qualify. Those rows that actually satisfy
the predicate are selected for processing at the next stage.

Predicate selectivity is a number that expresses the effectiveness of a predicate as a
filter. The number is a probabilistic estimate.

For example, suppose that there are 100 items, numbered from 1 to 100, in the
INVNTRY table. The selectivity of this predicate is 0.9 or 90 percent, because 90 out of
100 rows satisfy the condition specified by the predicate:

ITEM_NO > 10

Alternately, if the selectivity of the predicate (SALARY < 50000) equals .6667, then the
optimizer has estimated that 66.67 percent of the rows in the table contain a value less
than 50,000 in the column SALARY.

In general, these rules apply:

• Transformations are applied according to the rules listed in How the Optimizer
Processes Predicates on page 3-4.

• For predicates of the form column = constant, the selectivity of the predicate is:

1 / (UNIQUEENTRYCOUNT)

• Reversing a predicate does not affect its selectivity. For example, these predicates
have identical selectivities:

X >= Y
Y <= X

Numeric Range Predicates
Predicates with one of these forms are called exact numeric range predicates:

column < constant
column <= constant
column > constant
column >= constant

The optimizer distinguishes between < and <=, and > and >=, as follows:

• column < is treated as column < constant

• column <= constant is treated as column < constant + LSB; the least
significant bit of the constant is incremented by 1.

• column > constant is treated as NOT column < constant + LSB; the least
significant bit of the constant is incremented by 1.
HP NonStop SQL/MP Query Guide—524488-003
5-3

Selectivity and Cost Estimates Predicate Selectivity
• column >= is treated as NOT column < constant

For numeric ranges, the optimizer uses the constant to interpolate between the
SECONDLOWVALUE and SECONDHIGHVALUE obtained by UPDATE STATISTICS.
For example, if the RETAIL_PRICE column of the INVNTRY table has a
SECONDHIGHVALUE of 99 and a SECONDLOWVALUE of 2, the selectivity of the
predicate:

RETAIL_PRICE > 10

is the second-high value minus the supplied value, divided by the quantity
(SECONDHIGHVALUE minus the SECONDLOWVALUE):

99 - 10 / 99 - 2, or approximately 0.92

Ideally, this process would allow exact computation of the number of values selected
from a column that has a uniform distribution of data values. In practice, if a predicate
selects a larger proportion of records between the SECONDLOWVALUE and the
SECONDHIGHVALUE, then that predicate has a higher selectivity than one that
selects a smaller proportion of records. The optimizer cannot determine the distribution
of data. Therefore, when data is unevenly distributed, a higher selectivity does not
imply a greater number of selected rows.

Combinations of Predicates
When predicates are connected by the AND or OR operator, SQL calculates selectivity
in one of two ways. If the query contains no range predicate, then selectivity is
calculated according to rules of probability theory. For queries with range predicates, a
different calculation is used.

Selectivity When No Range Is Used

When no range is used, SQL calculates selectivity as follows:

• If predicates are connected by the AND operator, their combined selectivity is
estimated to be the product of their individual selectivities. Thus, a combined
selectivity for these query equals .1 * 0.6667 or 0.06667:

WHERE empno = :hv (selectivity = 0.1)
AND SALARY < 50000 (selectivity = 0.6667)

• If predicates are connected by the OR operator, their combined selectivity is
estimated as the sum of the individual selectivities minus the product of the
individual selectivities. Thus, a combined selectivity for these query equals (0.1 +
0.1 - (0.1 * 0.1)), or 0.19:

WHERE EMPNO = :hv (selectivity = 0.1)
OR SALARY < 5000 (selectivity = 0.1)

These rules rely on the assumption that the truth values of the individual predicates are
independent of one another. This estimate can become inaccurate if the predicates are
highly correlated or redundant.
HP NonStop SQL/MP Query Guide—524488-003
5-4

Selectivity and Cost Estimates Predicate Selectivity
Selectivity for Range Predicates

When a range is used in a predicate, selectivity is calculated as follows:

1. The SECONDLOWVALUE is subtracted from the SECONDHIGHVALUE. The
result is the total number of values in the range. For example, if the
SECONDLOWVALUE is 0 and the SECONDHIGHVALUE is 1000, the result is
1000 minus 0, or 1000.

2. The number of values between the begin-range value and the total number of
values in the range is divided by the total number of values in the range. Consider
this example:

WHERE A >= 100
AND A <= 200

The result is (1000-100)/1000 or .90.

3. Then the number of values between the end-range value and the total number of
values in the range is divided by the total number of values in the range. The result
for the same example is (1000-200)/1000 or .20.

4. Instead of multiplying the two results, as is done when no range is used, the two
results are added together. In the example, the result is .90 + .20 or 1.10.

5. Selectivity is calculated by subtracting 1.00 from the result. In this case, the
selectivity is 1.10 - 1.00 or 10 percent selectivity.

Selectivity of Multivalued Predicates
For a multivalued predicate, SQL uses the formulas in Table 5-1 to determine
selectivity. These formulas are applied recursively so that all comparisons participate in
the result.

SQL calculates selectivity using all columns in the primary key and indexes according
to the rules for AND and OR noted in the preceding subsection.

Beginning with version 3.0, if the operator is =, then all columns of the multivalued
predicate are taken into account for selectivity. Otherwise, only the first pair of
comparison values is used for the calculation.

Table 5-1. Selectivity Formulas for Multivalued Predicates

Predicate
Form Formula

a,b < c,d The selectivity of (a < c) plus the selectivity of (a = c AND b < d)

a,b <= c,d The selectivity of (a < c) plus the selectivity of (a = c AND b <= d)

a,b >= c,d The selectivity of (a > c) plus the selectivity of (a = c AND b >= d)

a,b > c,d The selectivity of (a > c) plus the selectivity of (a = c AND b > d)
HP NonStop SQL/MP Query Guide—524488-003
5-5

Selectivity and Cost Estimates Index Selectivity
NULL Values
The presence of NULL values in a column is considered when determining selectivity
of IS NULL predicates and range predicates and in determining index selectivity for
pairs of range predicates. For example, the selectivity of C IS NULL is 0 percent if
column C has the NOT NULL attribute

If null values are present and the UEC for a column is two or less, SQL sets
SECONDHIGHVALUE to the highest nonnull value in the table. If UEC is three or less,
UPDATE STATISTICS sets the SECONDLOWVALUE to the lowest value in the table.
The optimizer uses these statistics to determine whether SQL detected any null values
in the column.

If UEC is 3 or more, Non Stop SQL operates as if nulls are present unless the column
is defined with the NOT NULL attribute. If nulls are present, SQL operates as if the
nulls occur in equal proportion with other values, and their frequency is estimated as
1 / UEC.

Index Selectivity
Index selectivity refers to the combined selectivity of the begin-key and end-key
predicates for an access path:

• For primary-key access, index selectivity is the estimated percentage of rows in the
base table that will be examined in evaluating the query.

• For alternate-index access, index selectivity is the estimated percentage of index
entries that will be examined.

• For a table scan, begin keys and end keys are not applicable. All rows must be
examined, so index selectivity is always 100 percent.

MDAM predicates also affect selectivity. For related information on MDAM, see The
Effect of the MultiDimensional Access Method (MDAM) on Costs on page 5-17.

Another way to look at index selectivity is the number of rows actually accessed by the
disk process.

To examine a row, the row must be read from disk. Rows that are outside the bounds
set by the begin keys and end keys need not be read, however, so index selectivity
strongly affects the cost of a scan operation. A low index selectivity implies a low cost
estimate for the scan.

To determine index selectivity, the optimizer identifies index predicates for a specific
access path. The optimizer then combines the selectivities as if they are independent
of each other. Thus, the index selectivity is the combined selectivity of begin-key and
end-key predicates for the access path. (Note that this strategy differs from index
predicates, which are used in the calculation of table selectivity.)

The presence of NULL values in a column is considered when determining index
selectivity for pairs of range predicates; for more information, see the preceding
subsection “NULL Values on page 5-6.”
HP NonStop SQL/MP Query Guide—524488-003
5-6

Selectivity and Cost Estimates Table Selectivity
If index predicates are present, their selectivity is combined with the selectivity of the
begin-key and end-key predicates. You can access this information using the EXPLAIN
utility, under the titles “Pred. selectivity” and “Index selectivity.”

Consider this query:

SELECT ITEM_NAME, RETAIL_PRICE
 FROM INVNTRY
 WHERE ITEM_NO = 20 ;

Suppose that there is a unique index on ITEM_NO in the INVNTRY table. If the index
is chosen to evaluate the query, then the predicate (ITEM_NO = 20) is used as both
the begin-key and the end-key predicate. Only one row must be examined because the
index is unique. If there are 100 items, the index selectivity is 1 percent, or .01.

In contrast, if there is no index on ITEM_NO, then the predicate is classified as a base-
table predicate. Because there is no begin-key or end-key predicate, it is necessary to
examine the entire table, so the index selectivity is 100 percent.

Table Selectivity
Table selectivity is the estimated percentage of rows in the table that satisfy all of the
predicates in a query. The difference between index and table selectivity can be
viewed as the difference between the selectivity of positioning predicates and the
selectivity of all (positioning and nonpositioning) predicates. You can also view this
difference as the difference between rows accessed by the disk process and rows
actually returned by the disk process to the file system.

Consider this query:

SELECT ITEM_NAME, RETAIL_PRICE
 FROM INVNTRY
 WHERE ITEM_NO > 10 ;

Because the query has only one predicate (WHERE ITEM_NO > 10), and 90 out of
100 items in the table satisfy the search condition, the table selectivity is also 90
percent. More than one predicate can be specified in a query, however, so table
selectivity is not always equal to predicate selectivity.

Table selectivity is the combined selectivity of all the predicates that participate in a
scan operation. The combined selectivity is estimated as follows:

1. First, the optimizer uses the value estimated for the index selectivity—the
combined selectivity of begin-key and end-key predicates for the access path.

2. Then, if there are other kinds of predicates involved, the optimizer multiplies the
value estimated for the index selectivity with the values estimated for the other

Note. If your selectivity estimate is high but you know that the number of rows to be processed
is small, consider using the CONTROL TABLE ACCESS PATH feature, described in Section 4,
Improving Query Performance With Environmental Options. For example, this feature might be
useful if you have a large table with an index on a column that has many duplicate values.
HP NonStop SQL/MP Query Guide—524488-003
5-7

Selectivity and Cost Estimates Example Combining Predicate, Index, and Table
Selectivity
predicates in this order: index predicates, base-table predicates, executor
predicates.

The combined value is the estimated value for the table selectivity.

Table selectivity strongly influences the estimated cost for subsequent steps of the
query execution plan. For example, suppose that the estimated selectivity for a table
with 1,000 rows is 20 percent. Consequently, it is expected that 200 rows will be
retrieved. This number is used to calculate subsequent cost. For example, if the rows
need to be sorted after the scan, the expected number of rows strongly influences the
sort cost estimate.

For an example of table selectivity with join operations, see Cost of Join Operations on
page 5-15.

If there are no predicates, selectivity is 100 percent because all rows are selected for a
full table scan.

Example Combining Predicate, Index, and Table Selectivity
This example selects data from EMP_TABLE. An index is defined on EMP_TABLE that
consists of the columns EMP_DEPT, EMP_MGR, and EMP_START. The SELECT
statement has six predicates, four of which are used as index predicates:

SELECT ADDRESS, PHONE, SPOUSE_NAME
 FROM EMP_TABLE
 WHERE EMP_DEPT = :dept-num AND
 EMP_MGR = :mgr-num AND
 EMP_START > :min-start AND
 EMP_START < :max-start AND
 EMP_SALARY <> :min-salary AND
 EMP_SALARY < :max-salary ;

The optimizer assigns a predicate selectivity to each combination of column, operator,
and value, such as EMP_DEPT, =, and :dept-num:

 Predicate
 Selectivity
SELECT ADDRESS, PHONE, SPOUSE_NAME
 FROM EMP_TABLE
 WHERE EMP_DEPT = :dept-num AND .0100
 EMP_MGR = :mgr-num AND .0100
 EMP_START > :min-start AND .3333
 EMP_START < :max-start AND .3333
 EMP_SALARY <> :min-salary AND .9900
 EMP_SALARY < :max-salary ; .3333
HP NonStop SQL/MP Query Guide—524488-003
5-8

Selectivity and Cost Estimates Use of Default Selectivity Values
Note that the optimizer combines both EMP_START predicates to obtain a selectivity
of .111. Finally, the optimizer uses the selectivity in steps:

 .0100
 * .0100
 * .3333
 * .3333
 .0000111 = index selectivity
 * .9900
 * .3333
 .00000367 = table selectivity

Use of Default Selectivity Values
The optimizer uses default selectivity values when

• Statistics are not available because an UPDATE STATISTICS has not been
performed.

• Statistics are not available because the table was empty when UPDATE
STATISTICS was last done.

• A predicate involving a >, >=, <, or <= either

° Cannot be used as a key; for example, a + 1 < 5 is not the same as a < 4

° Compares a column with a host variable or parameter

If, for example, the value specified in a predicate is a host variable (as in a COBOL
program), SQL cannot compute the selectivity because the value of the host variable is
not known until run time.

In such cases, SQL operates as if an arbitrarily chosen default selectivity is in effect.

The default values depend on the type of predicate. Table 5-2 lists both computed
values and default values for different types of predicates.

Table 5-2. Computed and Default Selectivity Values for Predicates (page 1 of 2)

Type of Predicate Computed Value
Default
Selectivity

Equals (=) 1 / UNIQUEENTRYCOUNT 1 percent

Not equals (<>) 1 − (1 / UNIQUEENTRYCOUNT) 99 percent

Greater than (>) range / (SECONDHIGHVALUE −
SECONDLOWVALUE)

33 percent

Greater than or equal to (>=) range / (SECONDHIGHVALUE −
SECONDLOWVALUE)

33 percent

Less than (<) range / (SECONDHIGHVALUE −
SECONDLOWVALUE)

33 percent

Less than or equal to (<=) range / (SECONDHIGHVALUE −
SECONDLOWVALUE)

33 percent
HP NonStop SQL/MP Query Guide—524488-003
5-9

Selectivity and Cost Estimates Join Selectivity
For example, the selectivity of this predicate is 0.33:

RETAIL_PRICE > :host_variable

The selectivity of this predicate can be reasonably computed because the computation
does not depend on the supplied value:

RETAIL_PRICE = :host_variable

If the default selectivity differs very much from the actual selectivity, SQL might choose
an inefficient execution plan for the query. Therefore, you should periodically collect
statistics with the UPDATE STATISTICS command.

Join Selectivity
For joins, the effective UEC for join columns equals the UEC of each column times the
selectivity of predicates applied prior to joining. This calculation affects the choice of
join method; for example, if UEC equals 1, hash join is not chosen.

Grouping Selectivity
A grouping operation is performed whenever a GROUP BY is specified. The elements
of a GROUP BY list are either named columns or expressions. For each named
grouping column with statistics, the optimizer uses the UEC as follows:

• Estimates the UEC prior to grouping.

• If there are single-table predicates in a WHERE clause on the column, the
optimizer estimates the UEC as the product of the predicate selectivity times the
lowest selectivity value on the grouping column times the UEC computed by
UPDATE STATISTICS.

• If there is a join predicate on the grouping columns, the optimizer uses the UEC
computed during plan generation.

LIKE N. A 10 percent

NOT LIKE N. A 30 percent

EXISTS N. A 40 percent

NOT EXISTS N. A 60 percent

IS NULL 0 (zero) percent for a column with
the NOT NULL attribute; otherwise,
1 / UNIQUEENTRYCOUNT

0 percent for a
column with the
NOT NULL
attribute;
otherwise, 1
percent

Table 5-2. Computed and Default Selectivity Values for Predicates (page 2 of 2)

Type of Predicate Computed Value
Default
Selectivity
HP NonStop SQL/MP Query Guide—524488-003
5-10

Selectivity and Cost Estimates Assigning Cost to a Query
The number of groups is then the product of the UECs of each grouping column,
bounded by the number of rows being grouped.

Default selectivity is used when statistics are not available. If the grouping element is
an expression, the element’s selectivity is based on the underlying columns in the
expression.

Assigning Cost to a Query
Cost is an estimate of the amount of time the system takes to complete evaluation of a
specific query. The optimizer uses cost as a factor in selecting an optimal access plan.
Even though cost is an estimate and is not an exact measure, it is very useful for
comparing the relative efficiency of different execution plans for a given query.

Cost has many components, including the number of physical I/O operations to
perform, the number of instructions to execute, the number of sorts to perform, and the
number of messages (local and remote), and the amount of data to be transferred
between processes. The optimizer does not take into account the types of processors,
disks, or communication lines when it calculates cost. So the cost of a query will not
change if you use faster processors, disks, or communication lines.

 To facilitate the computation of cost, all components of cost are expressed in the
number of physical I/Os. The optimizer expresses cost in the equivalent number of
physical I/Os that must be issued to complete the query.

Cost is only an estimate because there are many variables the optimizer does not have
access to at compile time—or that SQL cannot control—such as:

• The type of processor can change at run time.

• The load of the system cannot be predicted for the time the query is executed.

• The elapsed time for the completion of a query varies depending a variety of
runtime factors.

• The values of host variables cannot be predicted.

• The size and availability of cache can change. (For information about the effect of
cache on query performance, see Section 4, Improving Query Performance With
Environmental Options.)

In the final phase of query plan selection, the optimizer chooses the plan with the
smallest numeric cost. To display this cost, use DISPLAY STATISTICS or EXPLAIN,
described in Section 6, Analyzing Query Performance.

The following subsections describe how SQL calculates cost for various types of query
operations.
HP NonStop SQL/MP Query Guide—524488-003
5-11

Selectivity and Cost Estimates Cost of Accessing Tables
Cost of Accessing Tables
The cost of using an index to access a table in a query that references only one table
is as follows:

Cost(index) = Cost(physical I/O)
+ Cost(record overhead)
+ Cost(data transfer)
+ Cost(message)
+ Cost(sub-query)
+ Cost(sort)

If the cost of a component is less than one physical I/O, the cost of the component is
truncated to zero.

If a query references multiple tables, the optimizer also considers the different
combinations in which the tables can be joined. Each of these combinations is also
assigned a numeric cost.

These paragraphs describe the elements used in the calculation of index cost and join
cost.

Cost of Physical I/Os
The cost of physical I/O is the estimated number of physical I/Os that must be
performed to retrieve all the rows that satisfy the predicates of the query. This estimate
includes all physical I/Os to retrieve the requested data.

Consider the query:

SELECT ITEM_NUMBER, ITEM_NAME, RETAIL_PRICE
 FROM INVNTRY
 WHERE RETAIL_PRICE > 100

Suppose that there is an index on RETAIL_PRICE of the INVNTRY table. INVNTRY
contains 10,000 rows, and each row is 100 bytes. Assuming a block size of 4 KB,
INVNTRY has approximately 250 blocks. ITEM_NUMBER is the primary-key column
and is 4 bytes, and RETAIL_PRICE is also 4 bytes. Therefore, the index row has a size
of 10 bytes (key tag plus four plus the primary key size), and the index has about 25
blocks. Finally, suppose that 100 rows or 1 percent of the rows will satisfy the
predicate.

If the query is to be evaluated using the primary key, 250 pages must be read from
disk, and the cost of physical I/O would be 250. If the query is to be evaluated with the
index, 102 pages must be read (two index pages + one data page for each qualifying
index row), and the cost of physical I/O would be 102.
HP NonStop SQL/MP Query Guide—524488-003
5-12

Selectivity and Cost Estimates Cost of Record Overhead
Cost of Record Overhead
The cost of record overhead is the processor time, expressed in terms of physical I/Os,
associated with handling rows. This estimate includes the cost of setting up various
control blocks and is dependent on the number of rows examined. The cost equals the
following:

overhead per row × the number of rows to examine

For example, suppose that a processor can perform 2,000,000 instructions per second,
and its disks can perform 30 I/Os per second. If 2,000 instructions are required before
a row can be examined, the overhead per row would be approximately 0.03 I/Os
(2,000 instructions would take one millisecond and is approximately the amount of time
needed to perform 0.03 physical I/Os). If 10,000 rows must be examined, the cost of
row overhead would be 300.

Cost of Messages
The cost of messages is the processor time, expressed in terms of physical I/Os, spent
in sending messages between the file system and the disk process. This measurement
is dependent on the type of SBB being used.

SQL computes the cost of messages as the following:

cost per message × number of messages

The cost per message is a weighing factor computed similarly to overhead per record.

The cost of messages is influenced by the number of columns projected and the
number of rows selected for VSBB. If grouping or aggregation takes place in the disk
process, a considerable reduction in messages occurs over aggregation that takes
place in the executor.

Cost of Data Transfer
The cost of data transfer is the estimated elapsed time, expressed in terms of physical
I/Os, for transferring data from the disk process (possibly remote) to the file system. In
general, transfer cost is negligible for local transfers; it becomes substantial with
remote transfers. This cost is computed as the following:

transfer rate × amount of data to be transferred

For example, suppose that 4,000 bytes are to be transferred from a remote node to the
local node and that the two nodes are connected by one 4 kilobits per second
communication line. Using a disk transfer rate of 30 I/Os per second, the cost of data
transfer is 240.
HP NonStop SQL/MP Query Guide—524488-003
5-13

Selectivity and Cost Estimates Cost of Subqueries
Cost of Subqueries
The cost of a subquery is estimated as if it were a query in its own right. The cost
equals the cost of the subquery, multiplied by the number of times it must be executed.
It is computed as the cost of index’, where index’ is the index chosen to execute the
subquery.

Cost also depends on whether a subquery is correlated or noncorrelated, as described
in Section 1, Retrieving Data: How to Write Queries. These paragraphs discuss costs
for both types of subqueries.

Correlated Subqueries
If a subquery cannot be executed independent from the outer query, the subquery is
executed for every qualifying row of the outer query. This query selects information on
items that cost more than the average price of the items produced by the same
producer:

SELECT ITEM_NAME, RETAIL_PRICE
 FROM INVNTRY OUTER
 WHERE RETAIL_PRICE > SELECT AVG(RETAIL_PRICE)
 FROM INVNTRY
 WHERE PRODUCER = OUTER.PRODUCER

The subquery in this example is dependent on the outer SELECT because it
references the PRODUCER column of a row retrieved for the outer SELECT.

This correlation forces an evaluation of the subquery for every row retrieved from the
outer SELECT. The overall query is more expensive to evaluate because of the
repeated evaluation of the subquery. If the INVNTRY table contains 100 rows, the cost
of evaluating the query is

COST(outer SELECT) + (100 x COST(inner SELECT))

Noncorrelated Subqueries
A noncorrelated subquery can be evaluated before the outer query is executed.
Because a noncorrelated subquery is only evaluated once, the cost of evaluating the
original query is the sum of the cost of evaluating the individual SELECT statements.
The practical limit for nesting is the amount of compile-time and run time resources
(stack space, extended segment space).

The cost of a noncorrelated query is simply added to the cost of the overall plan.

Cost of Sorts
The cost of a sort is the estimated cost of sorting specified rows in a particular order.
(The sort might be initiated by an ORDER BY, DISTINCT, UNION, or GROUP BY
request or by the use of a sort merge join.) SQL supports three types of sorts:
in-memory sort, a sort to a key-sequenced file, and the FastSort process.
HP NonStop SQL/MP Query Guide—524488-003
5-14

Selectivity and Cost Estimates Cost of Join Operations
The cost of a sort depends on the type of sort required. In general, cost items include:

• I/O cost to insert data into entry-sequenced file

• Scratch file cost

• Compare cost

• Temporary file creation

• Miscellaneous message and setup costs

For an in-memory user process sort, only the compare cost is necessary.

Sort costs for an ORDER BY are based on the number of rows going into the sort. If
the ORDER BY is preceded by a hashed grouping operation, the number of rows for
the sort is based on the data reduction expected by the grouping operation.

Parallel sort estimates calculate cost based on the number of rows, divided by the
number of repartitions performing the sorting, including start costs for sort and ESP
processes as well as interprocess messages and gains from parallel execution.

Cost of Join Operations
When estimating the cost of performing a join, SQL computes the cost of accessing
each of the tables involved in the join. The cost of accessing each table is computed in
the same way as in single-table queries, except that predicates must be identified as
associated with a particular table. This approach is necessary because some join
predicates cannot be evaluated until a qualifying row for an outer table has been
retrieved.

Consider this query:

SELECT EMP_NAME, DEPT_NAME, SALARY
 FROM EMPLOYEE, DEPT
 WHERE EMPLOYEE.DEPT_NUM = DEPT.DEPT_NUM
 AND DEPT_NUM < 100

If the DEPT table is the outer table of the join, this predicate can be used to scan
DEPT:

DEPT_NUM < 100

Thus, the predicate is involved in the computation of the cost of accessing DEPT.

The next predicate cannot be used in the cost computation for DEPT because no row
has been retrieved for EMPLOYEE:

EMPLOYEE.DEPT_NUM = DEPT.DEPT_NUM

This predicate, however, could be used in the computation of the cost of accessing
EMPLOYEE.
HP NonStop SQL/MP Query Guide—524488-003
5-15

Selectivity and Cost Estimates The Effects of Indexes and Predicates on Costs
After the cost of accessing each table in the join has been determined, the cost of the
join can be determined. For a nested join of two tables, the cost is

cost (a join b) = cost (a) + n x cost(b)

N is the number of rows that satisfy the nonjoin predicates on table A. (N is the
number of times the inner loop must be performed.) For example, suppose that DEPT
is the outer table of the join, EMPLOYEE is the inner table of the join, and 1,000
employees are in departments with department number less than 100. If the cost of
accessing DEPT is 10 and the cost of accessing EMPLOYEE is 20, the cost of (DEPT
join EMPLOYEE) is (10 + 1000 * 20), or 20,010.

The optimizer calculates separate plans for different access paths and join orders,
evaluates whether to use index-only access, chooses a specific buffering option and
method, if applicable, and takes partitioning into account.

The Effects of Indexes and Predicates on Costs
Because the complete row is not stored in an index, the cost of using an index is
different than the cost of scanning the table. Predicates also play an important role in
determining the cost associated with an index, because some predicates can be used
as a begin-key or end-key for one index but not for other indexes.

This subsection describes the cost formulae when different indexes and predicates are
available. SQL considers six different situations when computing the cost of using an
index; these situations are listed in Table 5-3.

Table 5-3. Costs for Indexes With Predicates (page 1 of 2)

Type of
Access Predicates Physical I/O Cost

Approximate
Index Cost

Primary key Equality predicates
(column = value) specify
all key columns; can
use key positioning.

Number of index levels
minus 1

The cost of physical I/O
(assumes root of file is
in cache)

Index Equality predicates
specify all key columns;
can use keyed read on
index followed by keyed
read on base table.

Number of index levels
of index minus 1, plus
the number of index
levels in the primary file
minus 1

The cost of physical I/O

-or- Equality predicates
specify all key columns;
can use keyed read on
index followed by keyed
read on base table, and
all requested columns
are in the index.

Same as above Same as above
HP NonStop SQL/MP Query Guide—524488-003
5-16

Selectivity and Cost Estimates The Effect of the MultiDimensional Access Method
(MDAM) on Costs
The Effect of the MultiDimensional Access Method (MDAM) on
Costs

SQL estimates costs for MDAM according to Table 5-3, but the cost estimation is
divided into two parts: reading the data for a single access and counting the total
number of accesses. The cost for reading the data is multiplied by the number of
accesses. The result is the cost for a single predicate set. For information about
predicate sets, see Transformation of Key Column Predicates and Predicate Sets on
page 3-4.

Estimating MDAM Costs for a Single Predicate Set
These factors are considered when estimating costs for a single predicate set:

• The number of unique values within a predicate set

• Whether the data is sparse or dense

• Whether a column is the last-used column in a key

The Number of Unique Values Within a Predicate Set

A positioning is done for each unique value within the predicate set. For example, in a
range, SQL does a positioning for each unique value within the range. For the range B

Primary key Equality predicates do
not specify all key
columns.

I/Os for blocks, (index
selectivity × the number
of nonempty blocks in
the primary key file) ×
(the number of rows in
the primary key file)

The cost of physical I/O
plus the cost of record
overhead

Index Equality predicates do
not specify all key
columns, but all
requested columns are
in the index.

Same as above Same as above

Index Equality predicates do
not specify all key
columns, and a physical
I/O is required for each
row in the index.

I/Os for blocks, (index
selectivity × number of
nonempty blocks in the
primary key file) × (the
number of rows in the
primary key file), + a
physical I/O required for
each qualifying row in
the index.

The cost of physical I/O
plus the cost of record
overhead

Table 5-3. Costs for Indexes With Predicates (page 2 of 2)

Type of
Access Predicates Physical I/O Cost

Approximate
Index Cost
HP NonStop SQL/MP Query Guide—524488-003
5-17

Selectivity and Cost Estimates The Effect of the MultiDimensional Access Method
(MDAM) on Costs
BETWEEN 5 AND 10, a positioning takes place for each value of B between 5 and
10. The number of positionings that take place for a predicate set are totaled as part of
the cost.

A positioning does not take place if a range is for the last-used key column.

To estimate the cost of an IN predicate within a predicate set, the optimizer converts it
to an IN predicate equivalent. A positioning is done on each of the equal predicates
and the number of positionings is added to the cost.

The Sparsity or Density of the Data

The optimizer considers the sparsity or density of data whenever a range is present. If
the data in the predicate set is sparse, two positionings are done. The first positioning
finds the next value for a column. The second one accesses the data using the values
for all of the other columns. Based on the statistics, the optimizer estimates the number
of positionings that the executor will do.

If the data is dense, SQL positions only once. The number of key columns and the
predicate selectivity are also considered.

A dense range has the same cost as an IN predicate with the same values, as in:

B BETWEEN 5 and 10

would be costed the same as

IN (5, 6, 7, 8, 9, 10)

The Last-Used Column in a Key

When the last-used key column is a range, the executor reads the entire range as a
unit, and no key positionings are required for each possible value. The cost of reading
a range on the last key column is included in the cost of an access.

Estimating MDAM Costs for Multiple Predicate Sets
For multiple predicate sets, the cost for each predicate set is completed separately,
and the costs are accumulated. For joins, the cost of each predicate set is multiplied by
the number of rows used from the outer table.
HP NonStop SQL/MP Query Guide—524488-003
5-18

Selectivity and Cost Estimates Evaluating Cost Estimates
Evaluating Cost Estimates
When examining cost, these guidelines apply:

• High cost indicates that the given query appears to be (and probably is) expensive.

Always review high cost statements. Try to estimate how much I/O such a query
should take and if it is consistent with that reported by EXPLAIN. If your estimate
and that of EXPLAIN vary considerably, carefully review the EXPLAIN plan to
determine why the optimizer estimated that the query is so expensive. For
example, the data might not be distributed uniformly.

When up-to-date statistics are available, a high Total Cost might indicate that you
are reading too many rows. For a given database with good production level
statistics, you can plot the total cost of a statement with results from SQLSTMT
(see Using Measure on page 6-7) and look at the relationship between Total Cost,
rows accessed, and perceived response time (as experienced by the end user).

• Although low cost is generally desirable, low cost does not necessarily indicate low
overhead. Instead, a low cost might indicate that the optimizer does not have
enough information to estimate the cost accurately. Catalog statistics might be
nonexistent or might not represent the production environment accurately.

• The cost estimate might be inaccurate if data has an uneven distribution instead of
being distributed uniformly across blocks and partitions.

• Beware of plans built for small tables. If your development or test tables are small,
the cost might be very different when the same plan is used on large production
tables. Whenever possible, evaluate EXPLAIN output as it would appear in
production during the query development and program test phases of
development.

For information about how to access cost estimates, see °Section 6, Analyzing Query
Performance.

How the Optimizer Chooses an Execution Plan
The optimizer selects the most efficient execution plan, defined as the one that takes
the least time to complete the evaluation of a query.

The estimated costs associated with several query plans might, however, be very
close; that is, within 10 percent of one another. To select between two plans whose
costs are close, the optimizer chooses a plan based on these priorities, listed in order
of preference:

• A local table or index (as opposed to a remote table or index)

• A table or index in which predicates of the form “column=value” have specified all
the key columns forming a unique access

• A table or index with a lower selectivity
HP NonStop SQL/MP Query Guide—524488-003
5-19

Selectivity and Cost Estimates Forcing Execution Plans
• A table or index with a lower estimated cost

In general, the optimizer attempts to choose a local table or index that has the least
number of qualifying rows that must be examined.

Forcing Execution Plans
The goal of the optimizer is to generate a plan that works well on the average.
Because of variations in applications and data, however, SQL sometimes chooses a
plan that is not optimal. In such cases, you can specify a CONTROL TABLE option that
forces the optimizer to choose these (listed with examples showing when you might
use each option):

• Access path for a table (ACCESS PATH), if CONTROL TABLE INTERACTIVE
ACCESS ON did not cause the optimizer to choose a specific index

• Join sequence when processing a query (JOIN SEQUENCE), if ORDER BY or
other specifications did not influence the join sequence

• Join methods when processing a query (JOIN METHOD), if the Measure product
has been run against different executions of the query and consistently indicates
that a certain join method would perform better than the one chosen by the
optimizer

Note that while CONTROL QUERY and CONTROL EXECUTOR directives
recommend actions, the CONTROL TABLE directive is treated as a specific request.

Situations that might benefit from these CONTROL TABLE options include:

• Nonuniform data distribution; the optimizer operates as if distinct values are
uniformly distributed over ranges of values

• Predicates that are not independent of one another; the optimizer operates as if
predicates are independent.

• Selectivity estimates, being probabilistic, do not reflect the actual runtime
environment.

If you suspect that you might benefit from the use of one of these options, check your
application with and without the CONTROL option, using actual Measure statistics from
production data.

If you use one of the options, you might want to change this directive later for reasons
such as:

• The query might not be able to use a more efficient index that might be created in
the future

Caution. These CONTROL TABLE options override the optimizer’s standard cost estimates
and therefore might cause performance degradation instead of enhancement. Use of these
options requires a thorough understanding of the optimizer. Use these options only if the
optimizer does not produce the optimal plan.
HP NonStop SQL/MP Query Guide—524488-003
5-20

Selectivity and Cost Estimates Forcing Execution Plans
• The query might not be able to benefit from future enhancements to SQL

• Changes to the database structure (such as dropping an index) can require
recompilation when the option is in use

Therefore, make any occurrences of it easy to find and change, using one or more of
these alternatives:

• Make sure the directive only applies to the statement and table intended. Return
the specified table to SYSTEM method directly after the statement.

• Isolate this directive in its own section and perform it from the inline application
code.

• Place all statements affected by this directive in separate modules, called as
services by other modules.

Verify the use of any of these options periodically to account for changes in data
distributions and volumes. Reevaluate their effectiveness with each new version of
SQL.
HP NonStop SQL/MP Query Guide—524488-003
5-21

Selectivity and Cost Estimates Forcing Execution Plans
HP NonStop SQL/MP Query Guide—524488-003
5-22

6 Analyzing Query Performance
Different queries have varying levels of impact on your system. One way to estimate
query use is with the 90-10 rule, which estimates that 10 percent of the queries use up
90 percent of critical resources. The 90-10 rule can help you determine which queries
are most important from a performance viewpoint.

Note, however, that performance evaluation at the statement level should be done on a
system that is as well-tuned as possible. For more information on system tuning and
performance, see the SQL/MP Installation and Management Guide.

This section discusses these topics:

• Guidelines for Tuning Queries on page 6-2

• Preparing Your Queries on page 6-3

• Using DISPLAY STATISTICS on page 6-3

• Using Measure on page 6-7

• Using EXPLAIN on page 6-8

• EXPLAIN Plan for Simple SELECT on page 6-16

• EXPLAIN Plan for Primary Access on page 6-18

• EXPLAIN Plan for Index-Only Access on page 6-19

• EXPLAIN Plans for Bounded Predicates on page 6-20

• EXPLAIN Plan for Key Predicates on page 6-23

• EXPLAIN Plan for DISTINCT on page 6-24

• EXPLAIN Plan for ORDER BY on page 6-25

• EXPLAIN Plans for GROUP BY on page 6-26

• EXPLAIN Plans for Subqueries on page 6-29

• EXPLAIN Plans for CASE on page 6-33

• EXPLAIN Plans for String Functions on page 6-39

• EXPLAIN Plans for MDAM on page 6-42

• EXPLAIN Plan for Determining the Cost of Multiple Predicate Sets on page 6-46

• EXPLAIN Plan for Selectivity for Range Predicates on page 6-47

• EXPLAIN Plans for Join Queries on page 6-48

• EXPLAIN Plan for UNION Operation on page 6-68

• EXPLAIN Plan for MAX Optimization on page 6-70

• EXPLAIN Plan for Cursor UPDATE on page 6-72
HP NonStop SQL/MP Query Guide—524488-003
6-1

Analyzing Query Performance Guidelines for Tuning Queries
• EXPLAIN Plan for Cursor DELETE on page 6-73

• EXPLAIN Plan for INSERT on page 6-74

• EXPLAIN Plan for INSERT-SELECT on page 6-75

• EXPLAIN Plan for UPDATE on page 6-77

• EXPLAIN Plan With Date-Time Values on page 6-78

• Comparing Cost: A Scenario on page 6-80

Guidelines for Tuning Queries
When examining and tuning queries, use available tools such as these:

• The DISPLAY STATISTICS command, which displays run time statistics about the
last DML command you executed.

• The Measure product, which collects statistical information about SQL database
objects and processes, and generates reports about them.

• The EXPLAIN utility, which provides detailed information about the optimizer-
generated query execution plan for a compiled query.

The rules for tuning SQL statements can be summarized as follows:

• For new queries, prototype, prepare, and test the statements. Optimally, use
EXPLAIN and run the statements against production data before incorporating the
query into a program.

• For queries already in use, obtain Measure information and categorize your
programs based on:

° High consumption of system resources

° Poor performance and critical priority

° High volume queries

Focus ongoing performance work on these areas:

• High-impact queries (these might be most-used, highest system resources, longest
response times, or most critical queries)

• Queries being migrated to production

• Review plans after an UPDATE STATISTICS operation
HP NonStop SQL/MP Query Guide—524488-003
6-2

Analyzing Query Performance Preparing Your Queries
Preparing Your Queries
Before you test your queries, you should prepare them using the SQLCI PREPARE
command.

The PREPARE command compiles an SQL statement and assigns a name to the
statement. You can then reference the statement name to execute the statement
multiple times without recompiling, and you can obtain an EXPLAIN plan for the
compiled statement. These steps outline this procedure:

1. Prepare the query:

>> PREPARE QUERY FROM
+> SELECT * FROM EMPLOYEE ;

2. Obtain EXPLAIN plan for compiled query:

>> EXPLAIN PLAN FOR QUERY ;

3. Execute the query:

>> EXECUTE QUERY ;

4. Display execution statistics for the query:

>> DISPLAY STATISTICS ;

Details on analyzing the EXPLAIN plan and execution statistics follow.

Using DISPLAY STATISTICS
The DISPLAY STATISTICS command provides statistics for an executed query. You do
not need to prepare a statement to use DISPLAY STATISTICS. However, if you want to
execute the statement more than once by referring to the statement name, you should
first prepare the statement. You can also refer to the statement name to generate an
EXPLAIN plan.

These queries retrieve data from the EMPLOYEE table of the sample database
provided with the SQL software. The primary key of the EMPLOYEE table is
EMPNUM.
HP NonStop SQL/MP Query Guide—524488-003
6-3

Analyzing Query Performance Simple Query Example
Simple Query Example
Example 6-1 shows a simple query that selects all rows and columns from the
EMPLOYEE table:

To obtain statistics about the query, simply enter DISPLAY STATISTICS after the query
executes:

>>DISPLAY STATISTICS ;

If you want SQL to display the statistics automatically, you can enter SET STATISTICS
ON at any point during the session. From this point on, the statistics will appear
immediately after each command executes.

The statistics in Example 6-2 indicate:

• The estimated cost of the query

The number 2 represents a relative measure derived using the same cost functions
that the optimizer uses to choose an execution plan. The estimate includes
processor, disk I/O, and message costs.

• The start time and the end time

• The SQL elapsed time and execution time:

Example 6-1. Simple Query

23> SQLCI
>> PREPARE Q1 FROM
+> SELECT * FROM EMPLOYEE ;
--- SQL command prepared.
>> EXECUTE Q1 ;
The query returns the following result:
EMPNUM FIRST_NAME LAST_NAME DEPTNUM JOBCODE SALARY
------ ------------- ------------- ------- ------- ----------
 1 ROGER GREEN 9000 100 175500.00

 568 JESSICA CRINER 3500 300 39500.00
--- 57 row(s) selected.

Example 6-2. DISPLAY STATISTICS for Simple Query

Estimated Cost 2

Start Time 95/09/11 09:06:07.864928
End Time 95/09/11 09:06:08.196387
Elapsed Time 00:00:00.331459
SQL Execution Time 00:00:00.112590

 Records Records Disk Message Message
Lock
Table Name Accessed Used Reads Count Bytes
\SQL1.$DATA8.PERSNL.EMPLOYEE
 57 57 0 3 2916
HP NonStop SQL/MP Query Guide—524488-003
6-4

Analyzing Query Performance Simple Query Example
° Elapsed time includes the execution time, I/O time, and the time to display the
result.

° Execution time is the amount of processor time used by the executor.

• The number of records accessed and the number of records used

° Records accessed is the number of rows read (including rows that do not
satisfy the selection criteria).

° The rows are counted for each table, underlying table of a protection view, and
temporary table. If you join a table to itself, separate statistics are reported for
each instance of the table. The number of rows accessed in an index is not
reported.

° This number does not indicate the specific number of physical disk reads or
writes, because the system uses disk caching to reduce the number of physical
read and write operations.

° Records used is the number of rows returned to the executor by the disk
process. If the query includes a join operation, the number of rows returned
might be smaller than the actual number of rows retrieved. The row count for a
delete operation depends on the type of delete operation; a cursor delete
returns a different count than a set delete because of differences in the ways
the types of delete operations are performed.

° In Example 6-1 on page 6-4, all rows must be returned to satisfy the query
(SELECT * with no WHERE clause), so the number of rows accessed and
used is the same.

• The number of disk reads. In Example 6-1 on page 6-4, the data is found in the
disk cache, so there is no need to access the disk.

• The message count. Message count is usually equal to the number of blocks
passed from the disk process to the file system. Sometimes an additional message
is necessary to ensure that the last row was processed. In this example, there
were two disk blocks passed, plus one final message.

• The message lock bytes.
HP NonStop SQL/MP Query Guide—524488-003
6-5

Analyzing Query Performance Simple Query With ORDER BY Example
Simple Query With ORDER BY Example
Example 6-3 selects specific columns and orders them by salary:

Notice that the estimated cost of the simple query in Example 6-1 on page 6-4 is 2, and
that of the simple query with ORDER BY in Example 6-3 on page 6-6 is 3. This is
because the query in Example 6-3 on page 6-6 requires a sort operation for the
ORDER BY SALARY request.

Example 6-3. Simple Query With ORDER BY

>>PREPARE Q2 FROM
+> SELECT LAST_NAME, FIRST_NAME, SALARY
+> FROM EMPLOYEE
+> ORDER BY SALARY ;
--- SQL command prepared.
>>
>>EXECUTE Q2 ;

LAST_NAME FIRST_NAME SALARY
-------------------- --------------- -----------

DAY KATHRYN 12000.00
CHAPMAN SUSAN 17000.00
 . . .
GREEN ROGER 175500.00

--- 57 row(s) selected.
>>
>>DISPLAY STATISTICS ;

Example 6-4. DISPLAY STATISTICS for Simple Query With ORDER BY

Estimated Cost 3

Start Time 95/09/11 09:06:11.863448
End Time 95/09/11 09:06:12.175160
Elapsed Time 00:00:00.311712
SQL Execution Time 00:00:00.124730

 Records Records Disk Message Message Lock
Table Name Accessed Used Reads Count Bytes
\SQL1.$DATA8.PERSNL.EMPLOYEE
 57 57 0 4 2962
HP NonStop SQL/MP Query Guide—524488-003
6-6

Analyzing Query Performance Using Measure
Using Measure
You can use the Measure product to gather statistics on an SQL database and
application programs. This subsection briefly describes the kinds of statistics that
Measure provides. For more information on using Measure, see the SQL/MP
Installation and Management Guide.

The Measure product provides statistics on process execution and on individual
statement execution.

Process Execution
For each process, the Measure product provides these statistics:

• The number of times the entire SQL program was recompiled and the elapsed time
needed for the recompilation

• The number of times static SQL statements were recompiled and the elapsed time
needed for recompilation

• The number of times the SQL compiler and SQL catalog manager were started up
and the elapsed time to do this

• The number of open requests issued by SQL and the elapsed time to do this

Statement Execution
The SQLSTMT report provides information for specific statements of an SQL process.
For each statement, the Measure product provides these statistics:

• The number of times the statement was executed

• The total elapsed time to execute the statement

• The number of rows accessed and altered

• The number of I/O operations

• The number of disk reads needed for execution

• The number and length of messages sent to execute the statement

• The number of sorts performed and the elapsed time to do them

• The number of recompilations and the elapsed time to do them

• The number of timeouts, lock escalations, and lock waits

SQLSTMT entities gather statistics for all statements of a process selected for
measurement; there is one SQLSTMT entity for each statement. The SQLSTMT report
identifies the SQLSTMT section name for each statement.

In the report, a section name is identified by the procedure name and index #nn, which
relates to the SQL Section Paragraph number generated during the host language
HP NonStop SQL/MP Query Guide—524488-003
6-7

Analyzing Query Performance Evaluating Measure Data
compilation. An SQL section is generated for each SQL statement and is listed in the
compilation output following the program code. The exception is for the statements on
cursors: OPEN, FETCH, and CLOSE cursor statements. The counters of the OPEN,
FETCH, and CLOSE cursor statements all contribute to the counter of the DECLARE
CURSOR section number.

Evaluating Measure Data
Use the SQLSTMT report to form a baseline performance picture, which you can then
use to compare to subsequent versions as you tune your queries.

Optimally, measure each transaction or query in isolation; otherwise, you will not get a
clear view of the transaction of interest. If you do not know which of several
transactions is performing poorly, you can execute each transaction separately,
measure it, and compare performance among the group of transactions.

When reviewing the SQLSTMT reports for poorly performing queries, examine and
isolate queries based on number of I/O operations, total time consumed relative to
other queries, frequency of execution within a single transaction, and other
performance-related measurements. Then generate EXPLAIN plans for the queries;
the plans should help identify reasons for poor performance. Sometimes a specific type
of problem is common to a set of queries.

Stopwatch measurements can also be helpful; when compared to Measure
information, they can reveal network problems or other types of delays.

It can be important to establish response-time requirements for specific queries; this
strategy permits identification of a specific goal and completion framework for tuning.

When evaluating changes to queries, consider other transactions that might be
adversely affected by the change. For example, if you add an index, then compare
performance before and after for insert and update transactions. Consider the volume
of the query being addressed and compare it with the volume of update and delete
transactions.

Using EXPLAIN
An EXPLAIN report describes the execution plan for a DML statement. Each plan is
divided into one or more steps: one for a scan of each table in a FROM clause and one
for each union operator in a query. Each step can involve one or more of these:

• Scan of a table

• Join of two or more tables

• UNION operation

• Insert into a table

• Sort operations

• Parallel execution

• Sequential buffering
HP NonStop SQL/MP Query Guide—524488-003
6-8

Analyzing Query Performance Generating an EXPLAIN Plan
If a query has subqueries, the report shows additional steps in the same way for each
subquery.

You can use the information in the EXPLAIN plan for these types of tasks:

• Assisting application program design; for example, the plan can help you

° Determine the access path to be chosen.

° Identify problems causing long response times, such as large sorts, full table
scans, and correlated subqueries.

• Assisting database design; for example, you can use it to tune queries and to help
determine whether to add or drop indexes for a database.

• Determining whether the optimizer chooses the expected plan and whether there
are ways to improve query performance. For example, you might decide that
creating an additional index can improve the performance of the query.

The EXPLAIN report is based on current information at the time you generate the
report. If access paths or statistics change before you execute a query for which you
obtained an EXPLAIN report, SQL might use a different execution plan. If, for example,
you drop an index, the execution plan will be different than the plan that existed before
you dropped the index.

Reports generated through the SQLCOMP compiler option include a section that lists
each DEFINE used in an SQL statement. For more information on the compiler option,
see the SQL/MP Programming Manual for your host language. For detailed information
about each element in the report, see the SQL/MP Reference Manual.

Generating an EXPLAIN Plan
You can invoke EXPLAIN in one of two ways:

• As an SQLCI command

• As an option of the SQL compiler

This subsection describes how to invoke EXPLAIN as an SQLCI command. The
general syntax is:

EXPLAIN [PLAN FOR] { statement }
 { statement-name }

PLAN FOR is an optional clause that does not affect output. statement is an SQL
DML statement, by itself or enclosed in single or double quotation marks. statement-
name is the name of a prepared SQL statement.

This example prepares the statement first and then specifies EXPLAIN:

Note. This manual supports NonStop SQL/MP D30.02 and D30.03. Cost estimates reported
by the EXPLAIN utility are not considered to be comparable with cost estimates from previous
versions; the cost for the same query might differ from release to release.
HP NonStop SQL/MP Query Guide—524488-003
6-9

Analyzing Query Performance Generating an EXPLAIN Plan
>> PREPARE Q2 FROM
+> SELECT LAST_NAME, FIRST_NAME, SALARY
+> FROM EMPLOYEE
+> ORDER BY SALARY ;
--- SQL command prepared.

>> EXPLAIN PLAN FOR Q2 ;

You can also specify EXPLAIN as part of the statement syntax:

>> EXPLAIN
+> SELECT LAST_NAME, FIRST_NAME, SALARY
+> FROM EMPLOYEE
+> ORDER BY SALARY ;

A plan provides different types of information for different types of operations. For
instance, Example 6-5 lists the EXPLAIN plan for the preceding query, and shows
information about one scan operation and one sort operation.

Example 6-5. EXPLAIN Plan for Simple Query With ORDER BY

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 3 out of 6 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 57 rows after the scan
 Operation cost : 2

 Operation 1.1 : Sort
 Requested : Explicitly in the query
 Sort rows in the : Result of a Select
 Purpose : To order rows for an Order By
 Sort technique : FASTSORT
 Sort type : Plan to use User Process Sort
 UPS workspace : 24 Kbytes
 Sort key columns : EMPLOYEE.SALARY asc
 Sort cost : 1

 Total cost : 3
HP NonStop SQL/MP Query Guide—524488-003
6-10

Analyzing Query Performance Generating an EXPLAIN Plan
The total cost represents the cost of doing all the operations to complete the
statement. In Example 6-4 on page 6-6, the DISPLAY STATISTICS command shows
the estimated cost for this query is 3. By using EXPLAIN, you can see that the sort cost
for this query is 1. By removing the ORDER BY clause (which causes the sort request),
you can reduce the total cost of the query to 2, as shown in Example 6-6.

>>PREPARE Q3 FROM
+> SELECT LAST_NAME, FIRST_NAME, SALARY
+> FROM EMPLOYEE ;
--- SQL command prepared.
>> EXPLAIN PLAN FOR Q3 ;

These examples show the cost determined for various operations, such as sorts. (If
you need rows returned in a specific order, however, and the sort cost is a problem,
you can create an index on the sorted column.)

Detailed analyses of several EXPLAIN plans appear later in this section.

Example 6-6. EXPLAIN Plan for Simple Query Without ORDER BY

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 --
 Plan step 1
 --

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 3 out of 6 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 57 rows after the scan
 Operation cost : 2

 Total cost : 2
HP NonStop SQL/MP Query Guide—524488-003
6-11

Analyzing Query Performance Interpreting an EXPLAIN Plan
Interpreting an EXPLAIN Plan
When you examine the EXPLAIN plan, look at all factors and information about the
query. Use this information to assist you in tailoring queries so that they are efficient
and return the information you require.

You should examine the EXPLAIN plan for the following:

• Total cost

• Table scans

• Access path

• Sort operations

• Correlated subqueries

• Key predicates and MDAM predicate sets

• Executor predicates

• Sequential block buffering

• Sequential cache

• Selectivity

• Locking strategy

• Parallel execution

Total Cost
EXPLAIN assigns a total cost to scans and sorts, which represents the cost of doing all
the operations to complete the statement.

Cost is an estimate and not an exact measure. Many variables that the optimizer
cannot control can affect the actual run time execution. Cost, however, can be useful
for comparing the different execution plans for a given query.

Note that the total cost is not the sum of the costs of each step. For example, nested
join steps usually have costs that are multiplied instead of added. Also, sort costs are
not linear with the number of input rows.

For OLTP requests, watch for costs that are high. In some production application
programs, costs in the millions are possible. The maximum displayable value is equal
to the size of an SQL LARGEINT value—a maximum value of (2**63) − 1. Any amount
greater than this cannot be displayed. In some cases, reformulating queries with very
high costs can reduce execution time considerably. For fast OLTP response (seconds),
the total cost should be low.

For more information about cost, see Evaluating Cost Estimates on page 5-19.

The following subsections describe factors that influence cost.
HP NonStop SQL/MP Query Guide—524488-003
6-12

Analyzing Query Performance Interpreting an EXPLAIN Plan
Table Scans
Full table scans can affect performance adversely—especially if the table is quite large.
To check for costly table scans, look for:

• Index selectivity of 100 percent

• No begin-key predicates, end-key predicates, or MDAM predicates

Access Path
Access can be by primary key or alternate index. Remember that an alternate index
consists of all the columns defined for the index plus the column (or columns) that
make up the primary key.

For example, the CONTROL QUERY INTERACTIVE ACCESS ON directive forces the
optimizer to consider index access. The directive indicates to the optimizer that only a
few rows are needed by the query and not the complete qualifying set. If the WHERE
clause contains columns that are part of an index prefix, the index will be used despite
selectivity and other considerations. If the EXPLAIN listing seems to indicate an
otherwise illogical choice, you should look for this directive.

For more information about access path, see Optimizing the Access Path on page 4-4.

Sort Operations
Always check for sorts and high sort costs.

Sorts can occur as a result of ordering requests (specifying an ORDER BY, GROUP
BY, or DISTINCT clause) or as a result of unanticipated join ordering requirements. For
more information, see Minimizing Sort Costs for Ordering and Grouping Operations on
page 3-54.

Correlated Subqueries
Correlated subqueries often impact performance adversely.

For queries containing subqueries, review the EXPLAIN plan for correlated subquery
characteristics. If the plan gives this message about the subquery, a correlated
subquery is present:

Executes once per row retrieved by operation

For more information, see Optimizing Subqueries on page 3-51.

Key Predicates and MDAM Predicate Sets
The EXPLAIN plan lists all begin-key and end-key predicates. Key predicates narrow
the range of searching. Such conditions reduce the number of rows processed by the
disk process; therefore, the query executes faster.
HP NonStop SQL/MP Query Guide—524488-003
6-13

Analyzing Query Performance Interpreting an EXPLAIN Plan
If the EXPLAIN plan indicates there are no key predicates, you might want to review
the query and consider adding search conditions, based on leftmost key columns, that
restrict the number of rows accessed, if feasible. For more information, see Writing
Efficient Predicates on page 3-15.

A lack of key predicates can also be a factor in causing a full table scan.

When the optimizer uses MDAM, the EXPLAIN plan shows the result of converting the
key-column predicates to MDAM predicate sets. These predicate sets show how the
optimizer processes the predicates.

Executor Predicates
Check the EXPLAIN plan for evaluation of predicates at the executor level.

The most efficient predicate evaluation is at the disk process level. Executor evaluation
indicates a bigger impact on performance. For more information on which predicates
cause evaluation at the executor level, see How the Optimizer Processes Predicates
on page 3-4.

Sequential Block Buffering (SBB)
If you specify sequential access by using the CONTROL TABLE SEQUENTIAL
directive, the optimizer uses virtual sequential block buffering (VSBB) and prefetch
techniques, if feasible.

In some cases, the preferred SBB might not be selected if the criteria required for SBB
are not met or if you have disabled sequential buffering (by using the CONTROL
TABLE directive). For more information, see Reducing Messages With Buffering
Options on page 4-21.

When you expect SQL to return only a few rows, you may want to turn off SBB to
eliminate unnecessary processing of additional rows. When opening a cursor, fetching
one row, and closing the cursor, use a CONTROL TABLE SEQUENTIAL READS OFF
statement. This statement will keep SQL from processing additional rows to fill a VSBB
buffer.

Sequential Cache
In the description of the access path, the EXPLAIN plan states whether access is
sequential and whether data is kept in cache memory, or sequential cache, for only a
short time.

With sequential cache, as soon as all the rows in a block have been used, the block is
discarded twice as quickly as it would have been if sequential cache were not used.

Sequential cache is ignored if the threshold for sequential prefetch is not reached.

For more information about the cache buffer, see the SQL/MP Installation and
Management Guide.
HP NonStop SQL/MP Query Guide—524488-003
6-14

Analyzing Query Performance Interpreting an EXPLAIN Plan
Selectivity
The EXPLAIN plan lists selectivities for tables and indexes. Selectivity values influence
the optimizer’s choice of the following:

• Access path (base table, alternate index, or index only)

For example, if the restriction specified by a WHERE predicate does not result in a
low enough selectivity to justify alternate-index access, base-table access is
chosen instead. In such a case, the index plus base table access could be worse
than a base table scan with sequential prefetch.

• Join order

The selectivity of each table determines the optimizer’s choice of the outer and
inner table.

• Type of sorts performed

Check for table or index selectivities of 100 percent, which indicate costly table scans.

For more information about selectivity, see Section 5, Selectivity and Cost Estimates.

Locking Strategy
The EXPLAIN plan indicates the following:

• Granularity of lock (row, partition, table).

• Access option (browse, stable, repeatable).

• Whether the lock mode (exclusive or shared) is chosen by the system or by the
user.

° If the lock mode is chosen by the system, the plan indicates “chosen by the
system,” but does not show which mode was chosen.

° If the lock mode is specified by the user, the plan simply states “Share” or
“Exclusive.”

Check for unexpected lock escalation and check the access option. Is the system
choosing stable access (the default) when browse access is sufficient? Browse access
enables you to read data currently being updated or deleted. If potentially inconsistent
data is unacceptable, do not specify browse access.

Parallel Execution
EXPLAIN indicates at the beginning of the plan whether parallel execution is used and
for which operations.

Parallel execution is especially useful when a large number of rows needs to be
processed by the executor, but only a small number of rows needs to be returned to
satisfy the query. (Section 4, Improving Query Performance With Environmental
HP NonStop SQL/MP Query Guide—524488-003
6-15

Analyzing Query Performance Reviewing Sample EXPLAIN Plans
Options, provides a more thorough description of when parallel execution is and is not
chosen.)

If you are expecting parallel execution and it is not chosen, you might not have enabled
parallel execution. You must enable parallel execution by specifying CONTROL
EXECUTOR PARALLEL EXECUTION ON before SQL attempts to process a query or
parts of a query in parallel.

Reviewing Sample EXPLAIN Plans
The following subsections show several examples of EXPLAIN plans. The descriptions
of the first two examples include a detailed analysis of the entire EXPLAIN plan.

To avoid needless repetition, the remaining examples, describe only specific aspects of
each EXPLAIN plan—details that were not seen in previous plans. For example, the
descriptions of the EXPLAIN plans for subqueries emphasize only those details related
to subquery evaluation.

Scan through all the examples to get a thorough knowledge of the type of information
you can discern from an EXPLAIN plan. Also, see the SQL/MP Reference Manual,
which provides an alphabetic description of each element of an EXPLAIN plan.

When scanning the following examples, keep in mind that an EXPLAIN plan can
consist of several plan steps. The steps describe such things as scans of tables,
UNION operations, and so on. Plan steps are not necessarily executed according to
how they are numbered. For example, if the query is a noncorrelated subquery, then
plan step 2, the evaluation of the subquery, evaluates once before plan step 1, the
evaluation of the outer query.

Each plan step might consist of one or more operations, such as scans or sorts. Each
operation is assigned a separate cost. Each query is assigned a total cost.

EXPLAIN Plan for Simple SELECT
This example shows an EXPLAIN plan for a simple SELECT statement on a single
table.

The query retrieves all rows from the EMPLOYEE table. The primary key is EMPNUM.
The query follows:

EXPLAIN SELECT * FROM EMPLOYEE ;

The total cost of the query is 2.

Example 6-7 on page 6-17 shows the EXPLAIN plan for the query. The plan consists of
one step with one operation. A detailed analysis follows.
HP NonStop SQL/MP Query Guide—524488-003
6-16

Analyzing Query Performance EXPLAIN Plan for Simple SELECT
Plan step 1 involves a scan of the EMPLOYEE table. The SELECT * operation
requires that all columns (6 out of 6) be retrieved from the table. The EXPLAIN plan
includes this information:

• The lock granularity, shown in the access type, is row (record). The access option
is stable (the default).

• The lock mode is chosen by the system. (If the system chooses the lock mode, the
EXPLAIN plan does not specify which type. The plan simply states “Chosen by the
system.”)

• The access path is by primary key.

• Virtual sequential block buffering (VSBB) is used to read the table.

• Index selectivity is 100 percent, which indicates that the optimizer estimates that
the entire table will be read.

• Table selectivity is 100 percent, which indicates that all rows are selected from the
table.

Because the index and table selectivity are 100 percent, SQL performs a full table scan
with all rows returned. The table is small, however, so the total cost of the query is
small.

Example 6-7. EXPLAIN Plan for Simple SELECT

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 6 out of 6 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 57 rows after the scan
 Operation cost : 2

 Total cost : 2
HP NonStop SQL/MP Query Guide—524488-003
6-17

Analyzing Query Performance EXPLAIN Plan for Primary Access
EXPLAIN Plan for Primary Access
Example 6-8 and Example 6-9 show different EXPLAIN plans for the same query: one
plan uses primary access; the other uses index-only access.

The query selects all rows from the EMPLOYEE table (primary key EMPNUM) and
orders the rows by LAST_NAME, FIRST_NAME:

EXPLAIN PLAN FOR
 SELECT EMPNUM, FIRST_NAME, LAST_NAME
 FROM EMPLOYEE
 ORDER BY LAST_NAME, FIRST_NAME ;

Example 6-8 shows the EXPLAIN plan for the query before creating an index on the
LAST_NAME, FIRST_NAME columns.

SQL must sort the rows to satisfy the ORDER BY clause. A detailed analysis of the
plan follows.

Example 6-8. EXPLAIN Plan Choosing Primary Access

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 3 out of 6 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 57 rows after the scan
 Operation cost : 2

 Operation 1.1 : Sort
 Requested : Explicitly in the query
 Sort rows in the : Result of a Select
 Purpose : To order rows for an Order By
 Sort technique : FASTSORT
 Sort type : Plan to use User Process Sort
 UPS workspace : 24 Kbytes
 Sort key columns : EMPLOYEE.LAST_NAME asc, EMPLOYEE.FIRST_NAME asc
 Sort cost : 1

 Total cost : 3
HP NonStop SQL/MP Query Guide—524488-003
6-18

Analyzing Query Performance EXPLAIN Plan for Index-Only Access
Plan step 1 involves two operations: a scan of the EMPLOYEE table and a sort
operation.

Operation 1.0 is a scan of the EMPLOYEE table. The query requires that 3 out of 6
columns be retrieved from the table. The EXPLAIN plan for this operation includes the
following:

• The lock granularity is row (record). The access type is stable (the default).

• The lock mode is chosen by the system.

• The access path is the primary key.

• Virtual sequential block buffering (VSBB) is used to read the table.

• Index selectivity is 100 percent. This indicates that the optimizer expects that the
entire table will be read.

• Table selectivity is 100 percent. All rows are selected from the table.

• The cost of operation 1.0 is 2.

Operation 1.1 is a sort operation requested explicitly in the query as a result of the
ORDER BY clause. The purpose of the sort is to sort rows in a specific order
(LAST_NAME, FIRST_NAME). The EXPLAIN plan for this operation includes the
following:

• The sort technique is FASTSORT.

• The columns are sorted in ascending order.

• The sort cost is 1.

The total cost of the query is 3.

EXPLAIN Plan for Index-Only Access
This query selects all rows from the EMPLOYEE table (primary key EMPNUM) and
orders the rows by LAST_NAME, FIRST_NAME:

EXPLAIN PLAN FOR
 SELECT EMPNUM, FIRST_NAME, LAST_NAME
 FROM EMPLOYEE
 ORDER BY LAST_NAME, FIRST_NAME ;

Example 6-9 on page 6-20 shows the EXPLAIN plan for the query after creating an
index that will satisfy the ORDER BY clause:

CREATE INDEX XEMPNAME
 ON EMPLOYEE
 (LAST_NAME, FIRST_NAME) ;
HP NonStop SQL/MP Query Guide—524488-003
6-19

Analyzing Query Performance EXPLAIN Plans for Bounded Predicates

The optimizer chooses index-only access rather than access to the base table through
the primary key:

Access path 1 : Alternate\SQL1.$DATA8.PERSNL.XEMPNAME,
 index only

Because the index is in the same key sequence as the ORDER BY request
(LAST_NAME, FIRST_NAME), a sort is not required before returning the rows in the
requested order. Note that the total cost of the query is now 2 (compared to 3 for the
plan choosing primary access to the table).

EXPLAIN Plans for Bounded Predicates
Example 6-10 on page 6-21 and Example 6-11 on page 6-22 show EXPLAIN plans for
two queries that specify bounds in the search condition. Both queries retrieve data
from the EMPLOYEE table (primary key EMPNUM).

Query With Lower Bound
The query for the EXPLAIN plan in Example 6-10 on page 6-21 specifies a predicate
with a lower bound (WHERE SALARY >= 50000):

Example 6-9. EXPLAIN Plan Choosing Index-Only Access

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 3 out of 6 columns

 Access path 1 : Alternate \SQL1.$DATA8.PERSNL.XEMPNAME, index only
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from index
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 57 rows after the scan
 Operation cost : 2

 Total cost : 2
HP NonStop SQL/MP Query Guide—524488-003
6-20

Analyzing Query Performance Query With Lower Bound
EXPLAIN
 SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE SALARY >= 50000 ;

The total cost of the query is 2.

The base table predicate is evaluated by the disk process:

Base table pred. : Will be evaluated by the disk process
 SALARY >= 50000

Predicate and table selectivity are both approximately 72 percent, which indicates that
approximately 72 percent of the rows in the table satisfy the predicate. Specifically, for
a range predicate:

 SECONDHIGHVALUE - 50000
selectivity = --------------------------------
 SECONDHIGHVALUE - SECONDLOWVALUE

(Because there is only one predicate, predicate and table selectivity are the same.)

Example 6-10. EXPLAIN Plan for Lower-Bound Predicate

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 3 out of 6 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 SALARY >= 50000
 Pred. selectivity : Expect to select 72.3141% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 72.3141% of rows from table
 Expected row count: 41 rows after the scan
 Operation cost : 2

 Total cost : 2
HP NonStop SQL/MP Query Guide—524488-003
6-21

Analyzing Query Performance Query With Lower and Upper Bound
Query With Lower and Upper Bound
The query for the EXPLAIN plan in Example 6-11 specifies both a lower bound
(>=50,000) and an upper bound (<=100,000):

EXPLAIN
 SELECT LAST_NAME, FIRST_NAME, SALARY
 FROM EMPLOYEE
 WHERE SALARY >= 50000
 AND SALARY <= 100000 ;

The total cost of the query is 2.

Note that predicate and table selectivity are both approximately 38.5 percent. For the
range predicates, selectivity is calculated as follows:

 100000 - 50000
selectivity = --------------------------------
 SECONDHIGHVALUE - SECONDLOWVALUE

Example 6-11. EXPLAIN Plan for Lower and Upper Bounded Predicates

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 3 out of 6 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 (SALARY >= 50000) AND (SALARY <= 100000)
 Pred. selectivity : Expect to select 38.5048% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 38.5048% of rows from table
 Expected row count: 22 rows after the scan
 Operation cost : 2

 Total cost : 2
HP NonStop SQL/MP Query Guide—524488-003
6-22

Analyzing Query Performance EXPLAIN Plan for Key Predicates
EXPLAIN Plan for Key Predicates
The EXPLAIN plan shows a query that specifies both a begin-key and an end-key
predicate.

The query retrieves data from the PARTS table. PARTNUM is the primary key. The
query follows:

EXPLAIN
 SELECT PARTNUM, PRICE, QTY_AVAILABLE
 FROM PARTS
 WHERE PARTNUM BETWEEN 5000 AND 7000 ;

The total cost of the query is 1.

The plan includes this information:

• The BETWEEN operator is converted to a range predicate, “PARTNUM >= 5000
AND PARTNUM <= 7000.”

• The WHERE predicate is specified against PARTNUM, the primary key. The
predicate specifies a range of values, so there is both a begin-key and an end-key
predicate:

Begin key pred. : PARTNUM >= 5000
End key pred. : PARTNUM <= 7000

Example 6-12. EXPLAIN Plan for Key Predicates

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.SALES.PARTS
 with correlation name PARTS
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 3 out of 4 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : PARTNUM >= 5000
 End key pred. : PARTNUM <= 7000
 Index selectivity : Expect to examine 26.0514% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 26.0514% of rows from table
 Expected row count: 7 rows after the scan
 Operation cost : 1

 Total cost : 1
HP NonStop SQL/MP Query Guide—524488-003
6-23

Analyzing Query Performance EXPLAIN Plan for DISTINCT
• Index and table selectivity are both approximately 26 percent. For the range
predicates, selectivity is calculated as follows:

 7000 - 5000
selectivity = --------------------------------
 SECONDHIGHVALUE - SECONDLOWVALUE

• The selectivity is significantly lowered because of the addition of the upper bound;
that is, the optimizer expects the number of rows returned will be smaller.

EXPLAIN Plan for DISTINCT
This query uses DISTINCT to remove duplicate rows from the result:

SELECT DISTINCT PARTNUM, PRICE
 FROM PARTS
 WHERE PARTNUM < 7000 AND PARTNUM > 5000 ;

The total cost of the query is 1.

The plan contains one step, which scans the PARTS table. Access is by primary key.

Example 6-13. EXPLAIN Plan for SELECT DISTINCT

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.SALES.PARTS
 with correlation name PARTS
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 2 out of 4 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : PARTNUM > 5000
 End key pred. : PARTNUM < 7000
 Index selectivity : Expect to examine 26.0254% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 26.0254% of rows from table
 Expected row count: 7 rows after the scan
 Operation cost : 1

 Total cost : 1
HP NonStop SQL/MP Query Guide—524488-003
6-24

Analyzing Query Performance EXPLAIN Plan for ORDER BY
EXPLAIN Plan for ORDER BY
This query requires a sort operation to present columns in a specific order:

EXPLAIN
 SELECT PARTNUM,PRICE,QTY_AVAILABLE
 FROM PARTS
 ORDER BY 2 DESC, 3 ASC, 1 ;

The total cost of the query is 3.

The plan consists of one step involving two operations: a scan of the PARTS table and
a sort operation.

Example 6-14. EXPLAIN Plan for SELECT With ORDER BY

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.SALES.PARTS
 with correlation name PARTS
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 3 out of 4 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 28 rows after the scan
 Operation cost : 2

 Operation 1.1 : Sort
 Requested : Explicitly in the query
 Sort rows in the : Result of a Select
 Purpose : To order rows for an Order By
 Sort technique : FASTSORT
 Sort type : Plan to use User Process Sort
 UPS workspace : 24 Kbytes
 Sort key columns : PARTS.PRICE desc, PARTS.QTY_AVAILABLE asc,
 PARTS.PARTNUM asc
 Sort cost : 1

 Total cost : 3
HP NonStop SQL/MP Query Guide—524488-003
6-25

Analyzing Query Performance EXPLAIN Plans for GROUP BY
The sort operation is requested explicitly in the query as a result of the ORDER BY
clause. The purpose of the sort is to order columns in a specific order. The sort
technique is FastSort.

The columns are sorted in the following order:

• The PRICE column in descending order

• The QTY_AVAILABLE column in ascending order

• The PARTNUM column in ascending order

EXPLAIN Plans for GROUP BY
These examples show EXPLAIN plans that use GROUP BY to group data.

SELECT With GROUP BY Using a Serial Plan
This query requires a hash operation to group rows for an aggregate function:

CONTROL EXECUTOR PARALLEL EXECUTION OFF;

EXPLAIN
 SELECT DEPTNUM, JOBCODE, COUNT(*) FROM EMPLOYEE
 GROUP BY 1,2;

The plan, which consists of one step, is performed serially. The total cost of the query
is 3.

Example 6-15. EXPLAIN Plan for SELECT With GROUP BY Using a Serial
Plan (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 2 out of 6 columns
HP NonStop SQL/MP Query Guide—524488-003
6-26

Analyzing Query Performance SELECT With GROUP BY Using a Serial Plan
The plan consists of one step involving two operations: a scan of the EMPLOYEE table
and a hash operation. The plan contains this information:

• The aggregate function COUNT, which is computed for each group, is evaluated at
the executor level:

Executor aggr. : Computed for each group

 GROUP BY Using a Serial Plan on page 3-48 lists the conditions that must be met
if you want the disk process to do the aggregation. If all the conditions had been
satisfied, DP2 aggregation would have taken place in this step. The entry in the
EXPLAIN plan would look like this:

DP2 aggregate : Computed for each group
 COUNT (*)

• The hash operation is requested explicitly in the query as a result of the GROUP
BY clause; its purpose is to group rows for the aggregate function.

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Executor aggr. : Computed for each group
 COUNT (*)
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 57 rows after the scan
 Operation cost : 2

 Operation 1.1 : Hash
 Requested : By the optimizer
 Hash rows in the : Result of a Select
 Purpose : To form groups of rows for a Group By
 Hash key columns : EMPLOYEE.DEPTNUM , EMPLOYEE.JOBCODE
 Expected row count: 57 rows after the group by
 Hash cost : 1

 Total cost : 4

Example 6-15. EXPLAIN Plan for SELECT With GROUP BY Using a Serial
Plan (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-27

Analyzing Query Performance SELECT With GROUP BY Using a Parallel Plan
SELECT With GROUP BY Using a Parallel Plan
This query creates an index on DEPTNUM and requests parallel execution:

CONTROL EXECUTOR PARALLEL EXECUTION ON ;

CREATE INDEX XDEPT ON EMPLOYEE (DEPTNUM,JOBCODE)
 PARTITION ($DATA2.PERSNL.XDEPT FIRST KEY 4,
 $DATA5.PERSNL.XDEPT FIRST KEY 7);

CONTROL TABLE EMPLOYEE ACCESS PATH INDEX XDEPT ;
EXPLAIN
 SELECT DEPTNUM, JOBCODE, COUNT(*) FROM EMPLOYEE
 GROUP BY 1,2;

Example 6-16. EXPLAIN Plan for SELECT With GROUP BY Using a Parallel
Plan (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1 : Will utilize parallel execution
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Each operation is performed in parallel for this step

 Each ESP will read one of the following partitions:
 \SQL1.$DATA2 \SQL1.$DATA5 \SQL1.$DATA8
 The ESP's will be started in the cpu's numbered
 0 2 1

 Group By will be performed by 3 ESP's in parallel

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 2 out of 6 columns

 Access path 1 : Alternate \SQL1.$DATA8.PERSNL.XDEPT, index only,
 partitioned, path forced
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from index
 Index pred. : None
 Base table pred. : None
HP NonStop SQL/MP Query Guide—524488-003
6-28

Analyzing Query Performance EXPLAIN Plans for Subqueries
The plan has one step with two operations:

• In Operation 1.0, SQL scans the EMPLOYEE table. The executor computes
aggregate values for the local partitions:

Executor aggr. : Computed for each group
 COUNT (*)

 GROUP BY Using a Parallel Plan on page 3-49 lists the conditions that must be
met if you want the disk process to do the aggregation. If all the conditions had
been satisfied, DP2 aggregation would have taken place in this step. The entry in
the EXPLAIN plan would look like this:

DP2 aggregate : Computed for each group
 COUNT (*)

• In Operation 1.1, the master executor uses a hash table to compute the global
aggregate results.

EXPLAIN Plans for Subqueries
These examples show EXPLAIN plans for two types of subqueries: noncorrelated and
correlated.

The queries retrieve data from the ordone and ordtwo tables. Both tables have system-
defined primary keys (SYSKEY).

Noncorrelated Subquery
This query and EXPLAIN plan are for a noncorrelated subquery.

EXPLAIN
 SELECT *
 FROM ordone
 WHERE A = (SELECT B FROM ordtwo) ;

 Executor pred. : None
 Executor aggr. : Computed for each group
 COUNT (*)
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 57 rows after the scan
 Operation cost : 151

 Operation 1.1 : Hash
 Requested : By the optimizer
 Hash rows in the : Result of a Select
 Purpose : To form groups of rows for a Group By
 Hash key columns : EMPLOYEE.DEPTNUM , EMPLOYEE.JOBCODE
 Expected row count: 57 rows after the group by
 Hash cost : 1

 Total cost : 153

Example 6-16. EXPLAIN Plan for SELECT With GROUP BY Using a Parallel
Plan (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-29

Analyzing Query Performance Noncorrelated Subquery
The total cost for the query is 2.

Example 6-17. EXPLAIN Plan for Noncorrelated Subquery

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA7.REG1.ORD1
 with correlation name ORDONE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 2 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 A = B .. result of plan step 2
 Pred. selectivity : Expect to select 50% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 50% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 1

 --
 Plan step 2
 Characteristic : Executes once before plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA7.REG1.ORD2
 with correlation name ORDTWO
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 2 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 1

 Total cost : 2
HP NonStop SQL/MP Query Guide—524488-003
6-30

Analyzing Query Performance Correlated Subquery
The plan consists of two steps:

• Plan step 1 includes a scan of the ordone table.

• Plan step 2 includes a scan of the ordtwo table and is an evaluation of the
subquery:

SELECT B FROM ordtwo

Plan step 2 executes once before plan step 1, which indicates that the subquery is
evaluated once before the outer query and that this is a noncorrelated subquery.

Correlated Subquery
This query and EXPLAIN plan are for a correlated subquery:

EXPLAIN
 SELECT *
 FROM ordone o1
 WHERE NOT EXISTS (SELECT B
 FROM ordtwo o2
 WHERE o1.A = o2.B) ;

The total cost for this query is 3.

Example 6-18. EXPLAIN Plan for Correlated Subquery (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA7.REG1.ORD1
 with correlation name O1
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 2 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None
HP NonStop SQL/MP Query Guide—524488-003
6-31

Analyzing Query Performance Correlated Subquery
 The plan consists of two steps:

• Plan step 1 is a scan of the ordone table.

• Plan step 2 includes a scan of the ordtwo table and is an evaluation of the
subquery:

SELECT B FROM ordtwo
WHERE ordone.A = ordtwo.B

Plan step 2 executes once per row retrieved in plan step 1, which indicates that the
subquery is evaluated for every row retrieved from plan step 1 and is therefore a
correlated subquery.

 Executor pred. : On rows retrieved by the scan
 NOT (EXISTS (.. result of plan step 2))
 Pred. selectivity : Expect to select 60% of rows from table
 Table selectivity : Expect to select 60% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 1

 Plan step 2
 Characteristic : Executes once per row retrieved in plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA7.REG1.ORD2
 with correlation name O2
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 0 out of 2 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 O2.B = O1.A
 Pred. selectivity : Expect to select 100% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 1

 Total cost : 3

Example 6-18. EXPLAIN Plan for Correlated Subquery (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-32

Analyzing Query Performance EXPLAIN Plans for CASE
EXPLAIN Plans for CASE
This subsection contains EXPLAIN plans that show how the optimizer processes
CASE.

CASE With Multiple Conditions
This query selects the last names, first names, and department numbers of employees
with job codes of 100 whose salaries are less than 100,000 and also those employees
with job codes of 600 whose salaries are less than 30,000.

EXPLAIN
 SELECT LAST_NAME,FIRST_NAME,DEPTNUM FROM EMPLOYEE
 WHERE SALARY < CASE JOBCODE
 WHEN 100 THEN 100000
 WHEN 600 THEN 30000
 END ;

The plan consists of one step with one operation. The CASE expression shows as a
base table predicate that is evaluated by the disk process. The total cost is 2.

Example 6-19. EXPLAIN Plan for CASE With Multiple Conditions

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 3 out of 6 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 SALARY < CASE WHEN JOBCODE = 100 THEN 100000 WHEN
 JOBCODE = 600 THEN 30000 END
 Pred. selectivity : Expect to select 33.33% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 33.33% of rows from table
 Expected row count: 19 rows after the scan
 Operation cost : 2

 Total cost : 2
HP NonStop SQL/MP Query Guide—524488-003
6-33

Analyzing Query Performance CASE With Aggregates
CASE With Aggregates
This create statement and query appear under Computing Aggregates Based on
Specific Conditions on page 1-45.

create table emp
 (name char(8),
 age smallint NOT NULL,
 dept int,
 cars smallint NOT NULL,
 primary key name);

select SUM(CASE when cars = 0 then 1 else 0 END),
 SUM(CASE when cars = 1 then 1 else 0 END),
 SUM(CASE when cars between 2 and 3 then 1 else 0 END),
 SUM(CASE when cars > 3 then 1 else 0 END)
 from emp;

The plan is one step with one operation. Access is by primary key. The optimizer uses
DP2 aggregates to compute each group. The total cost is 3.

Example 6-20. EXPLAIN Plan for CASE With Aggregates

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PUBS.EMP
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 4 columns

 Access path 1 : Primary
 SBB for reads : Not used
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 DP2 aggregate : Computed for each group
 SUM (CASE WHEN CARS = 0 THEN 1 ELSE 0 END)
 SUM (CASE WHEN CARS = 1 THEN 1 ELSE 0 END)
 SUM (CASE WHEN (CARS >= 2) AND (CARS <= 3)
 THEN 1
 ELSE 0 END)
 SUM (CASE WHEN CARS > 3 THEN 1 ELSE 0 END)
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 81 rows after the scan
 Operation cost : 3

 Total cost : 3
HP NonStop SQL/MP Query Guide—524488-003
6-34

Analyzing Query Performance CASE for Finding the Highest Value in a Row
CASE for Finding the Highest Value in a Row
Following are the create statement and the query in Finding the Highest Value in a
Row on page 1-47. The query retrieves the highest SAT scores from each row in the
scores table.

create table scores
 (name char(30),
 sat1 int NOT NULL,
 sat2 int NOT NULL,
 primary key name);

select name, CASE
 when sat1 >= sat2 then sat1
 else sat2
 END
 from scores;

The EXPLAIN plan shows that the optimizer uses the primary key for access and
expects to examine all the rows. CASE is not mentioned in the plan. The total cost is 3.

Example 6-21. EXPLAIN Plan for CASE for Finding the Highest Value in a Row

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PUBS.SCORES
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 3 out of 3 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 90 rows after the scan
 Operation cost : 3

 Total cost : 3
HP NonStop SQL/MP Query Guide—524488-003
6-35

Analyzing Query Performance CASE for Converting Long, Narrow Tables Into
Short, Wide Ones
CASE for Converting Long, Narrow Tables Into Short, Wide Ones
Following are the create statement and the query in Converting Long, Narrow Tables
Into Short, Wide Ones on page 1-49.

create table bonus
 (name char(30),
 month smallint NOT NULL,
 amount largeint NOT NULL,
 primary key (name, month));
select name,
 SUM(CASE when month = 1 then amount else 0 END),
 SUM(CASE when month = 2 then amount else 0 END),
 SUM(CASE when month = 3 then amount else 0 END),
 SUM(CASE when month = 4 then amount else 0 END),
 SUM(CASE when month = 5 then amount else 0 END),
 SUM(CASE when month = 6 then amount else 0 END),
 SUM(CASE when month = 7 then amount else 0 END),
 SUM(CASE when month = 8 then amount else 0 END),
 SUM(CASE when month = 9 then amount else 0 END),
 SUM(CASE when month = 10 then amount else 0 END),
 SUM(CASE when month = 11 then amount else 0 END),
 SUM(CASE when month = 12 then amount else 0 END)
 from bonus
 group by name;

Example 6-22 on page 6-37 shows the EXPLAIN plan.
HP NonStop SQL/MP Query Guide—524488-003
6-36

Analyzing Query Performance CASE for Converting Long, Narrow Tables Into
Short, Wide Ones

The plan contains one step with one operation. The optimizer uses the primary key to
access the table and uses DP2 aggregates to compute the name groups. The total
cost is 3.

Example 6-22. EXPLAIN Plan for Converting Long, Narrow Tables Into Short,
Wide Ones

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PUBS.BONUS
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 3 out of 3 columns

 Access path 1 : Primary
 SBB for reads : Not used
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 DP2 aggregate : Computed for each group
 SUM (CASE WHEN MONTH = 1 THEN AMOUNT ELSE 0 END)
 SUM (CASE WHEN MONTH = 2 THEN AMOUNT ELSE 0 END)
 SUM (CASE WHEN MONTH = 3 THEN AMOUNT ELSE 0 END)
 SUM (CASE WHEN MONTH = 4 THEN AMOUNT ELSE 0 END)
 SUM (CASE WHEN MONTH = 5 THEN AMOUNT ELSE 0 END)
 SUM (CASE WHEN MONTH = 6 THEN AMOUNT ELSE 0 END)
 SUM (CASE WHEN MONTH = 7 THEN AMOUNT ELSE 0 END)
 SUM (CASE WHEN MONTH = 8 THEN AMOUNT ELSE 0 END)
 SUM (CASE WHEN MONTH = 9 THEN AMOUNT ELSE 0 END)
 SUM (CASE WHEN MONTH = 10 THEN AMOUNT ELSE 0 END)
 SUM (CASE WHEN MONTH = 11 THEN AMOUNT ELSE 0 END)
 SUM (CASE WHEN MONTH = 12 THEN AMOUNT ELSE 0 END)
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 81 rows after the scan
 Operation cost : 3

 Total cost : 3
HP NonStop SQL/MP Query Guide—524488-003
6-37

Analyzing Query Performance CASE for Ignoring the Largest and Smallest Values
in a Set
CASE for Ignoring the Largest and Smallest Values in a Set
Following are the create statement and the query in Ignoring the Largest and Smallest
Values in a Set on page 1-51.

create table data
 (value int NOT NULL,
 primary key value);

select x.value
 from data x, data y
 group by x.value
 having SUM (CASE when y.value <= x.value then 1 else 0 END) > 1
 AND SUM (CASE when y.value >= x.value then 1 else 0 END) > 1;

Example 6-23. EXPLAIN Plan for Ignoring the Largest and Smallest Values in a
Set (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PUBS.DATA
 with correlation name X
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 1 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : From the Having clause
 (SUM (CASE WHEN Y.VALUE <= X.VALUE THEN 1 ELSE 0
 END
) > 1) AND (SUM (CASE WHEN Y.VALUE >= X.VALUE THEN
 1
 ELSE 0 END) > 1)
 Executor aggr. : Computed for each group
 SUM (CASE WHEN Y.VALUE <= X.VALUE THEN 1 ELSE 0
 END)
 SUM (CASE WHEN Y.VALUE >= X.VALUE THEN 1 ELS 0
 END)

 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 204 rows after the scan
 Expected row count: 100 rows after the having
 Operation cost : 6
HP NonStop SQL/MP Query Guide—524488-003
6-38

Analyzing Query Performance EXPLAIN Plans for String Functions
The plan contains two steps. Plan step 1 is a scan of the table. The plan shows that
the HAVING clause is an executor predicate and the GROUP BY clause is an executor
aggregate. The expected row count is 204 after the scan and 100 after the HAVING
clause. The operation cost is 6.

Plan step 2 is a nested inner join that scans the same table and joins the rows that
resulted from plan step 1. Its expected row count is 41,616 after the join.

The total cost is 1162.

EXPLAIN Plans for String Functions
This subsection contains EXPLAIN examples for queries that contain the string
functions SUBSTRING, TRIM, and CHAR_LENGTH.

SUBSTRING
This query uses a substring to search for the letter “C” in the first position of each
employee’s last name.

EXPLAIN
 SELECT LAST_NAME, FIRST_NAME FROM EMPLOYEE
 WHERE SUBSTRING(LAST_NAME FROM 1 FOR 1) = 'C' ;

 --
 Plan step 2 : Perform an Inner Join
 Join strategy : Nested Join
 Characteristic : Joins a row resulting from plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA8.PUBS.DATA
 with correlation name Y
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 1 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 41616 rows after the join
 Operation cost : 6

 Total cost : 1162

Example 6-23. EXPLAIN Plan for Ignoring the Largest and Smallest Values in a
Set (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-39

Analyzing Query Performance TRIM and CHAR_LENGTH
The plan consists of one step with one operation. The substring shows as a base table
predicate that is evaluated by the disk process. The total cost is 2.

TRIM and CHAR_LENGTH
This query concatenates the first and last names of employees whose last names have
more than five characters:

EXPLAIN
 SELECT LAST_NAME, FIRST_NAME || LAST_NAME FROM EMPLOYEE
 WHERE CHAR_LENGTH(TRIM(LAST_NAME)) > 5 ;

Example 6-24. EXPLAIN Plan for SUBSTRING

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 2 out of 6 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 SUBSTRING (LAST_NAME FROM 1 FOR 1) = "C"
 Pred. selectivity : Expect to select 1.7544% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 1.7544% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 2

 Total cost : 2
HP NonStop SQL/MP Query Guide—524488-003
6-40

Analyzing Query Performance TRIM and CHAR_LENGTH
The plan consists of one step with one operation. The CHAR_LENGTH and TRIM
functions appear in the base table predicate evaluated by the disk process. The total
cost is 2.

Example 6-25. EXPLAIN Plan for TRIM and CHAR_LENGTH

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 2 out of 6 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 CHAR_LENGTH (TRIM (BOTH " " FROM LAST_NAME))
 > 5
 Pred. selectivity : Expect to select 33.33% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 33.33% of rows from table
 Expected row count: 19 rows after the scan
 Operation cost : 2

 Total cost : 2
HP NonStop SQL/MP Query Guide—524488-003
6-41

Analyzing Query Performance EXPLAIN Plans for MDAM
EXPLAIN Plans for MDAM
These examples show how the optimizer uses MDAM.

MDAM With OR and Equality Predicate on Second Key Column
In this example, an index is created on LAST_NAME, FIRST_NAME. The query
specifies an OR on the first key column (LAST_NAME) and an equality predicate on
the second key column (FIRST_NAME).

CREATE INDEX XEMPNAME
 ON EMPLOYEE
 (LAST_NAME, FIRST_NAME);

EXPLAIN SELECT * FROM EMPLOYEE
 WHERE (LAST_NAME = "Marks" OR LAST_NAME = "Jones") AND
 FIRST_NAME = "Mary";

The OR and the equality predicates show in the MDAM predicate set. The total cost is
4.

Example 6-26. EXPLAIN Plan for MDAM With OR and Equality Predicate on
Second Key Column

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 6 out of 6 columns

 Access path 1 : Alternate \SQL1.$DATA8.PERSNL.XEMPNAME
 SBB for reads : Virtual
 MDAM predicate set: (LAST_NAME = "Jones" OR "Marks") AND FIRST_NAME =
 "Mary"
 Index selectivity : Expect to examine 3.5088% of rows from index
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 3.5088% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 4

 Total cost : 4
HP NonStop SQL/MP Query Guide—524488-003
6-42

Analyzing Query Performance MDAM with Missing First Key Column
MDAM with Missing First Key Column
This creates an index on LAST_NAME, FIRST_NAME. The first key column is missing
from the query predicate.

CREATE INDEX XEMPNAME
 ON EMPLOYEE
 (LAST_NAME, FIRST_NAME);

EXPLAIN SELECT * FROM EMPLOYEE WHERE FIRST_NAME = "Mary";

Although the LAST_NAME column is missing from the query, the MDAM predicate set
shows that SQL considers all LAST_NAME values. It finds all the values for
LAST_NAME and uses them with the specified value for FIRST_NAME to retrieve only
the qualifying rows. The total cost is 169.

Example 6-27. EXPLAIN Plan for MDAM With Missing First Key Column

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 6 out of 6 columns

 Access path 1 : Alternate \SQL1.$DATA8.PERSNL.XEMPNAME
 SBB for reads : Virtual
 MDAM predicate set: (ALL LAST_NAME VALUES) AND FIRST_NAME = "Mary"
 Index selectivity : Expect to examine 96.4912% of rows from index
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 96.4912% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 169

 Total cost : 169
HP NonStop SQL/MP Query Guide—524488-003
6-43

Analyzing Query Performance MDAM With IN List on Key Column
MDAM With IN List on Key Column
This creates an index on LAST_NAME, FIRST_NAME. The query uses MDAM to
process an IN list for the LAST_NAME key column.

CREATE INDEX XEMPNAME
 ON EMPLOYEE
 (LAST_NAME, FIRST_NAME);

EXPLAIN SELECT * FROM EMPLOYEE
 WHERE LAST_NAME IN ("Marks","Jones") AND FIRST_NAME = "Mary";

The plan converts the IN list for the key column LAST_NAME to a list of OR
predicates. The total cost of the query is 4.

MDAM With Multiple Predicate Sets, LIKE, and Missing Key
Column

This query uses MDAM to process the following:

• A predicate that specifies both key columns

• A predicate with a missing key column

• LIKE

Example 6-28. EXPLAIN Plan for MDAM With IN List on Key Column

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 6 out of 6 columns

 Access path 1 : Alternate \SQL1.$DATA8.PERSNL.XEMPNAME
 SBB for reads : Virtual
 MDAM predicate set: (LAST_NAME = "Jones" OR "Marks") AND FIRST_NAME =
 "Mary"
 Index selectivity : Expect to examine 3.5088% of rows from index
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 3.5088% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 4

 Total cost : 4
HP NonStop SQL/MP Query Guide—524488-003
6-44

Analyzing Query Performance MDAM With Multiple Predicate Sets, LIKE, and
Missing Key Column
 An index is created on LAST_NAME, FIRST_NAME.

CREATE INDEX XEMPNAME
 ON EMPLOYEE
 (LAST_NAME, FIRST_NAME);

EXPLAIN SELECT * FROM EMPLOYEE
 WHERE ((LAST_NAME = "Marks" OR LAST_NAME = "Jones") AND
 FIRST_NAME = "Mary")
 OR
 (FIRST_NAME LIKE "Ha%");

SQL converts the predicates to two MDAM predicate sets.

In the first predicate set, both key columns are specified. In the second predicate set,
the leading key column (LAST_NAME) is missing. SQL finds all values for this column.

Duplicate key predicates and contradictory key predicates are eliminated at run time.

SQL converts the LIKE to a range.

Example 6-29. EXPLAIN Plan for MDAM With Multiple Predicate Sets, LIKE, and
Missing Leading Key Column

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 6 out of 6 columns

 Access path 1 : Alternate \SQL1.$DATA8.PERSNL.XEMPNAME
 SBB for reads : Virtual
 MDAM predicate set: (LAST_NAME = "Jones" OR "Marks") AND FIRST_NAME =
 "Mary"
 next set: (ALL LAST_NAME VALUES) AND FIRST_NAME < "Hb" AND
 FIRST_NAME >= "Ha"
 Index selectivity : Expect to examine 3.5088% of rows from index
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 3.5088% of rows from table
 Expected row count: 13 rows after the scan
 Operation cost : 173

 Total cost : 173
HP NonStop SQL/MP Query Guide—524488-003
6-45

Analyzing Query Performance EXPLAIN Plan for Determining the Cost of Multiple
Predicate Sets
EXPLAIN Plan for Determining the Cost of
Multiple Predicate Sets

This query contains a predicate that SQL converts into multiple predicate sets. An
index is created for DEPTNUM and JOBCODE.

CREATE INDEX HLX ON EMPLOYEE (DEPTNUM, JOBCODE) CATALOG PERSNL ;
EXPLAIN
 SELECT * FROM EMPLOYEE
 WHERE ((DEPTNUM = 1500 AND JOBCODE BETWEEN 100 AND 300)
 OR JOBCODE IN (400, 450))
 AND ((SALARY = 50000 AND JOBCODE = 450) OR (JOBCODE IN
 (500,600)
 AND (DEPTNUM = 4000 OR DEPTNUM = 7000))) ;

Example 6-30. EXPLAIN Plan for Determining the Cost of Multiple Predicate
Sets (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 6 out of 6 columns

 Access path 1 : Alternate \SQL1.$DATA8.PUBS.HLX
 SBB for reads : Not used
 MDAM predicate set: DEPTNUM = 1500 AND JOBCODE <= 300 AND JOBCODE >=
 100 AND JOBCODE = 450
 next set: DEPTNUM = 1500 AND (DEPTNUM = 7000 OR 4000) AND
 JOBCODE <= 300 AND JOBCODE >= 100 AND (JOBCODE =
 600 OR 500)
 next set: (ALL DEPTNUM VALUES) AND (JOBCODE = 450 OR 400)
 AND JOBCODE = 450
 next set: (DEPTNUM = 7000 OR 4000) AND (JOBCODE = 450 OR
 400 AND (JOBCODE = 600 OR 500)
 Index selectivity : Expect to examine 30.5861% of rows from index
 Index pred. : Will be evaluated by the disk process
 ((DEPTNUM = 1500) AND (JOBCODE >= 100) AND (
 JOBCODE <= 300)) OR (JOBCODE = 400) OR (
 JOBCODE = 450)
HP NonStop SQL/MP Query Guide—524488-003
6-46

Analyzing Query Performance EXPLAIN Plan for Selectivity for Range Predicates
SQL converts the predicates into four MDAM predicate sets. In the first set, a
positioning takes place for each unique JOBCODE value between 100 and 300.

In following predicate sets, SQL converts IN lists for JOBCODE values into OR
predicates. A positioning is done on each of the equal predicates for JOBCODE. The
total cost for the query is 48.

EXPLAIN Plan for Selectivity for Range
Predicates

This query contains range predicates:

UPDATE STATISTICS FOR TABLE EMPLOYEE;
EXPLAIN
 SELECT * FROM EMPLOYEE
 WHERE JOBCODE >= 150
 AND JOBCODE <= 500 ;

Example 6-31 on page 6-48 shows the selectivity.

 Pred. selectivity : Expect to select 30.5861% of rows from index
 Base table pred. : Will be evaluated by the disk process
 ((SALARY = 50000) AND (JOBCODE = 450)) OR ((
 (JOBCODE = 500) OR (JOBCODE = 600)) AND ((
 DEPTNUM = 4000) OR (DEPTNUM = 7000)))
 Pred. selectivity : Expect to select 30.5861% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 31.3476% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 48

 Total cost : 48

Example 6-30. EXPLAIN Plan for Determining the Cost of Multiple Predicate
Sets (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-47

Analyzing Query Performance EXPLAIN Plans for Join Queries
The EXPLAIN plan has one step. SQL expects that approximately 61 percent of the
rows have JOBCODE values between 150 and 500. SQL computed this value by
calculating selectivities separately for the >= 150 predicate and the <=500 predicate
and applying the rules provided in Selectivity for Range Predicates on page 5-5.

EXPLAIN Plans for Join Queries
This subsection shows EXPLAIN plans for join queries.

Join queries involve two or more tables. The optimizer determines the outer (left) and
inner tables based on the number of rows selected. Usually, the table with the most
rows selected is chosen as the outer table. This table is listed first in the EXPLAIN
plan.

The plans chosen show both types of join queries (left and inner), the four types of join
methods (hash, nested, sort merge, and key-sequenced merge), and parallel execution
of queries.

For a plan involving parallel execution, each partition is read by an ESP in a separate
processor. The EXPLAIN plan indicates which partitions will be read by each of the
ESPs and in which processors.

Example 6-31. EXPLAIN Plan for Selectivity for Range Predicates

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 6 out of 6 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 (JOBCODE >= 150) AND (JOBCODE <= 500)
 Pred. selectivity : Expect to select 61.425% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 61.425% of rows from table
 Expected row count: 35 rows after the scan
 Operation cost : 2

 Total cost : 2
HP NonStop SQL/MP Query Guide—524488-003
6-48

Analyzing Query Performance Parallel Execution of Hash Join
For more information on ESPs, see Processor Assignment by the SQL/MP Optimizer
and Executor for Executor Server Processes (ESPs) on page 2-5.

Parallel Execution of Hash Join
The EXPLAIN plan in Example 6-32 chooses parallel execution for a join operation.
SQL chooses the hash join method to join the tables. The hash join method is often
chosen when joining a large table and a much smaller table. The query follows:

EXPLAIN
 SELECT *
 FROM TENKTUP1 A, TENKTUP2 B
 WHERE A.TENPCT = B.TENPCT ;

The query involves a scan of two tables, TENKTUP1 (correlation name A) and
TENKTUP2 (correlation name B), which are joined according to the following search
condition: WHERE A.TENPCT = B.TENPCT.

.

Example 6-32. EXPLAIN Plan for Hash Join (page 1 of 3)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1 : Will utilize parallel execution
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Each operation is performed in parallel for this step

 Each ESP will read one of the following partitions:
 \SQL1.$DATA3 \SQL1.$DATA4 \SQL1.$DATA2
 The ESP's will be started in the cpu's numbered
 0 2 3

 Operation 1.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP1
 with correlation name A
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 16 out of 16 columns

 Access path 1 : Primary, partitioned, sequential cache
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 74999 rows after the scan
 Operation cost : 2279
HP NonStop SQL/MP Query Guide—524488-003
6-49

Analyzing Query Performance Parallel Execution of Hash Join

 Plan step 2 : Perform an Inner Join
 Join strategy : Hybrid Hash Join

 Each operation is performed in parallel for this step

 Each ESP will read one of the following partitions:
 \SQL1.$DATA3 \SQL1.$DATA4 \SQL1.$DATA2
 The ESP's will be started in the cpu's numbered
 0 1 2

 Current table and join composite (excluding current table)
 will each be repartitioned 4 ways on the join column to:
 \SQL1.$DATA7 \SQL1.$DATA4 \SQL1.$DATA6 \SQL1.$DATA3

 4 ESP's will be started to read the repartitioned data
 The ESP's will be started in the cpu's numbered
 2 0 3 1

 Each ESP will:
 Hash one repartition of the join composite excluding the current table
 Hash one repartition of the current table

 Each ESP will perform a Hybrid Hash Join (repartitioned)
 Characteristic : Joins a row resulting from plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP2
 with correlation name B
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 16 out of 16 columns

 Access path 1 : Primary, partitioned, sequential cache
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : On hashed rows
 A.TENPCT = B.TENPCT
 Pred. selectivity : Expect to select 0.0131% of rows from table
 Table selectivity : Expect to select 0.0131% of rows from table
 Expected row count: 733929 rows after the join
 Operation cost : 2276

Example 6-32. EXPLAIN Plan for Hash Join (page 2 of 3)
HP NonStop SQL/MP Query Guide—524488-003
6-50

Analyzing Query Performance Nested Inner Join
The plan consists of two steps:

• Plan step 1 includes a scan of the TENKTUP1 table, which is partitioned across
three disk volumes.

• Plan step 2 includes a scan of the TENKTUP2 table, which is then inner joined with
the TENKTUP1 table.

Plan step 2 involves the following:

• A hashing operation on the predicate A.TENPCT = B.TENPCT (instead of a sort
operation).

• Performance of each operation in parallel:

° Each ESP joins one of the partitions and performs a hash join with parallel
access

° The current table is repartitioned three ways on the join column

° An ESP is started to read the repartitioned data

Nested Inner Join
Example 6-33 on page 6-52 lists EXPLAIN output for a query that involves a scan of
two tables, TENKTUP1 (correlation name A) and TENKTUP2 (correlation name B).
The tables are joined according to this search condition: WHERE A.UNIQUE2 <10
AND B.UNIQUE1 = 3:

EXPLAIN SELECT * FROM TENKTUP1 A, TENKTUP2 B
 WHERE A.UNIQUE2 < 10 AND B.UNIQUE1 = 3 ;

This EXPLAIN plan chooses parallel execution for an inner join query. The nested-join
method is chosen instead of a hashed, sort merge, or key-sequenced merge join
because the join predicate is “less than” (<) instead of equal.

 Operation 2.1 : Hash
 Requested : By the optimizer
 Hash rows in the : Join composite excluding current table
 Purpose : To hash its rows before the Join
 Hash key columns : A.TENPCT
 Hash cost : 126

 Operation 2.2 : Hash
 Requested : By the optimizer
 Hash rows in the : Current table
 Purpose : To hash its rows before the Join
 Hash key columns : B.TENPCT
 Hash cost : 631

 Total cost : 7959

Example 6-32. EXPLAIN Plan for Hash Join (page 3 of 3)
HP NonStop SQL/MP Query Guide—524488-003
6-51

Analyzing Query Performance Nested Inner Join
Example 6-33. EXPLAIN Plan for Nested Inner Join (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1 : Will utilize parallel execution
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Each operation is performed in parallel for this step

 Each ESP will read one of the following partitions:
 \SQL1.$DATA3 \SQL1.$DATA4 \SQL1.$DATA2
 The ESP's will be started in the cpu's numbered
 0 2 3

 Operation 1.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP1
 with correlation name A
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 16 out of 16 columns

 Access path 1 : Primary, partitioned
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : A.UNIQUE2 < 10
 Index selectivity : Expect to examine 0.0133% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 0.0133% of rows from table
 Expected row count: 10 rows after the scan
 Operation cost : 152

 Plan step 2 : Perform an Inner Join
 Join strategy : Nested Join

 Each operation is performed in parallel for this step

 Each ESP from previous step will join one of the following partitions:
 \SQL1.$DATA2
 Each ESP will perform a Nested Join (parallel access)
 Characteristic : Joins a row resulting from plan step 1
HP NonStop SQL/MP Query Guide—524488-003
6-52

Analyzing Query Performance Cross Product Join
This plan consists of two steps:

• Plan step 1 includes a scan of the TENKTUP1 table.

• Plan step 2 includes a scan of the TENKTUP2 table, which is then inner joined with
the TENKTUP1 table.

Cross Product Join
A cross product join is a nested join without any join predicates. Example 6-34 on
page 6-54 shows the EXPLAIN plan for the following join.

EXPLAIN SELECT * FROM TENKTUP1 A,TENKTUP2 B,TENKTUP2 C
 WHERE A.UNIQUE2 <10 AND B.UNIQUE1 = 3
 AND A.TENPCT=C.TENPCT
 AND B.TWENTY=C.TWENTY;

The plan includes a cross product as an intermediate step.

 Operation 2.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP2
 with correlation name B
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 16 out of 16 columns

 Access path 1 : Alternate \SQL1.$DATA2.WISCREG.TKTUP2I, unique
 SBB for reads : Not used
 Begin key pred. : B.UNIQUE1 = 3
 End key pred. : B.UNIQUE1 = 3
 Index selectivity : Expect to examine 0.0013% of rows from index
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 0.0013% of rows from table
 Expected row count: 10 rows after the join
 Operation cost : 3

 Total cost : 174

Example 6-33. EXPLAIN Plan for Nested Inner Join (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-53

Analyzing Query Performance Cross Product Join
Example 6-34. EXPLAIN Plan for Cross Product Join (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP2
 with correlation name B
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 16 out of 16 columns

 Access path 1 : Alternate \SQL1.$DATA2.WISCREG.TKTUP2I, unique
 SBB for reads : Not used
 Begin key pred. : B.UNIQUE1 = 3
 End key pred. : B.UNIQUE1 = 3
 Index selectivity : Expect to examine 0.0013% of rows from index
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 0.0013% of rows from table
 Expected row count: 10 rows after the join
 Operation cost : 3

 Plan step 2 : Perform an Inner Join
 Join strategy : Nested Join
 Characteristic : Joins a row resulting from plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP2
 with correlation name C
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 16 out of 16 columns
HP NonStop SQL/MP Query Guide—524488-003
6-54

Analyzing Query Performance Cross Product Join
This plan consists of three steps:

• Plan step 1 includes a scan of the TENKTUP2 table.

• The TENKTUP2 table is also scanned in step 2 and is then inner joined with the
TENKTUP1 table (cross product step).

• Plan step 3 includes a scan of the TENKTUP1 table, which is then inner joined with
the result of step 2.

Access path 1 : Primary, partitioned, sequential cache
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 B.TWENTY = C.TWENTY
 Pred. selectivity : Expect to select 5% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 5% of rows from table
 Expected row count: 3734 rows after the join
 Operation cost : 6322

 Plan step 3 : Perform an Inner Join
 Join strategy : Hash Join
 Characteristic : Joins a row resulting from plan step 2

 Operation 3.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP1
 with correlation name A
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 16 out of 16 columns

 Access path 1 : Primary, partitioned
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : A.UNIQUE2 < 10
 Index selectivity : Expect to examine 0.0133% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : On hashed rows
 A.TENPCT = C.TENPCT
 Pred. selectivity : Expect to select 0% of rows from table
 Table selectivity : Expect to select 0.0013% of rows from table
 Expected row count: 5 rows after the join
 Operation cost : 2

 Operation 3.1 : Hash
 Requested : By the optimizer
 Hash rows in the : Current table
 Purpose : To hash its rows before the Join
 Hash key columns : A.TENPCT
 Hash cost : 1

 Total cost : 6227

Example 6-34. EXPLAIN Plan for Cross Product Join (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-55

Analyzing Query Performance Parallel Execution of Nested Inner Join
Parallel Execution of Nested Inner Join
This example and the following merged join example both use the query from
Example 6-32 on page 6-49, but each uses a different CONTROL TABLE directive:

CONTROL TABLE * JOIN METHOD NESTED;

EXPLAIN
 SELECT *
 FROM TENKTUP1 A, TENKTUP2 B
 WHERE A.TENPCT = B.TENPCT ;

Example 6-35. EXPLAIN Plan for Nested Inner Join (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1 : Will utilize parallel execution
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Each operation is performed in parallel for this step

 Each ESP will read one of the following partitions:
 \SQL1.$DATA3 \SQL1.$DATA4 \SQL1.$DATA2
 The ESP's will be started in the cpu's numbered
 0 2 3

 Operation 1.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP2
 with correlation name B
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 16 out of 16 columns

 Access path 1 : Primary, partitioned, sequential cache
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 74666 rows after the scan
 Operation cost : 2276
HP NonStop SQL/MP Query Guide—524488-003
6-56

Analyzing Query Performance Parallel Execution of Nested Inner Join
The plan contains the following information:

• Both steps are performed in parallel. For a plan involving parallel execution, each
partition is read by an ESP in a separate processor. The EXPLAIN plan states
which partitions will be read by each of the ESPs and in which processors.

• Step 2 indicates that the join was forced by user directive. In practice, this directive
should be used with caution. To force a join method, use the CONTROL TABLE
directive. For more information, see Specifying a Join Method on page 3-43.
Without this directive, SQL would choose the hash join method for this query; its
cost, listed in Example 6-32 on page 6-49, is lower than that of the nested join.

If the total cost for the nested inner join seems large in comparison to the operation
costs for operations 1.0 and 2.0, the reason is that SQL calculates the total cost by first
multiplying the cost of the scan by the number of probes (outer composite expected
row counts). Note that this amount is then reduced to reflect the benefit of using cache.

Plan step 2 : Perform an Inner Join
 Join strategy : Nested Join
 Plan Forced : Join Method forced by user directive

 Each operation is performed in parallel for this step

 Each ESP from previous step will join one of the following partitions:
 \SQL1.$DATA3 \SQL1.$DATA4 \SQL1.$DATA2
 Each ESP will perform a Nested Join (parallel access)
 Characteristic : Joins a row resulting from plan step 1
 --

 Operation 2.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP1
 with correlation name A
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 16 out of 16 columns

 Access path 1 : Primary, partitioned, sequential cache
 SBB for reads : Not used
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 A.TENPCT = B.TENPCT
 Pred. selectivity : Expect to select 0.0131% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 0.0131% of rows from table
 Expected row count: 733929 rows after the join
 Operation cost : 6297

 Total cost : 56658817

Example 6-35. EXPLAIN Plan for Nested Inner Join (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-57

Analyzing Query Performance Parallel Execution of Forced Merged Inner Join
Parallel Execution of Forced Merged Inner Join
This EXPLAIN plan chooses parallel execution for an inner join query. The merge join
method was chosen to join the tables. The query for this example is the same as the
one for Example 6-32 on page 6-49, but the CONTROL TABLE directive differs:

CONTROL TABLE * JOIN METHOD MERGE;

EXPLAIN
 SELECT *
 FROM TENKTUP1 A, TENKTUP2 B
 WHERE A.TENPCT = B.TENPCT ;

In Example 6-32, the query is run by default and the optimizer chooses a hybrid hash
join. But in Example 6-36, a join method is forced, so the optimizer chooses a parallel
sort merge join.

Example 6-36. EXPLAIN Plan for Parallel Execution of Sort Merge Inner
Join (page 1 of 3)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1 : Will utilize parallel execution
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Each operation is performed in parallel for this step

 Each ESP will read one of the following partitions:
 \SQL1.$DATA3 \SQL1.$DATA4 \SQL1.$DATA2
 The ESP's will be started in the cpu's numbered
 0 3 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP2
 with correlation name B
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 16 out of 16 columns

 Access path 1 : Primary, partitioned, sequential cache
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 74666 rows after the scan
 Operation cost : 2276
HP NonStop SQL/MP Query Guide—524488-003
6-58

Analyzing Query Performance Parallel Execution of Forced Merged Inner Join

 Plan step 2 : Perform an Inner Join
 Join strategy : Merge Join
 Plan Forced : Join Method forced by user directive

 Each operation is performed in parallel for this step

 Each ESP will read one of the following partitions:
 \SQL1.$DATA3 \SQL1.$DATA4 \SQL1.$DATA2
 The ESP's will be started in the cpu's numbered
 0 1 2

 Current table and join composite (excluding current table)
 will each be repartitioned 4 ways on the join column to:
 \SQL1.$D30SYS \SQL1.$DATA10 \SQL1.$DSSQA1 \SQL1.$DATA9

 4 ESP's will be started to read the repartitioned data
 The ESP's will be started in the cpu's numbered
 0 2 3 1

 Each ESP will start 2 sorts to:
 Sort one repartition of the join composite excluding the current table
 Sort one repartition of the current table
 Each ESP will perform a Merge Join (repartitioned)
 Characteristic : Joins a row resulting from plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP1
 with correlation name A
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 16 out of 16 columns

 Access path 1 : Primary, partitioned, sequential cache
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : On sorted rows
 A.TENPCT = B.TENPCT
 Pred. selectivity : Expect to select 0.0131% of rows from table
 Table selectivity : Expect to select 0.0131% of rows from table
 Expected row count: 733929 rows after the join
 Operation cost : 2276

Operation 2.1 : Sort
 Requested : By the optimizer
 Sort rows in the : Join composite excluding current table
 Purpose : To order its rows before the Join
 Sort technique : FASTSORT
 Sort type : Insertion into an entry-sequenced disk file
 Sort key columns : B.TENPCT asc
 Sort cost : 7049

Example 6-36. EXPLAIN Plan for Parallel Execution of Sort Merge Inner
Join (page 2 of 3)
HP NonStop SQL/MP Query Guide—524488-003
6-59

Analyzing Query Performance Key-Sequenced Merge Join
The plan consists of two steps:

• Plan step 1 includes a scan of the TENKTUP2 table, which is partitioned across
three disk volumes.

• Plan step 2 includes a scan of the TENKTUP1 table, which is then inner joined with
the TENKTUP2 table.

Plan step 2 involves the following operations:

• The scan.

• Two sort operations, each using FastSort, to satisfy the merge join method. Both
sort operations are requested by the optimizer for the purpose of ordering rows
before the join. The key columns for each sort as well as the cost of each sort are
described.

• Each operation is performed in parallel. Each ESP reads one of the partitions. The
current table is repartitioned four ways on the join column. An ESP is started to
read the repartitioned data. Each ESP starts two sorts:

° Operation 2.1 is the first sort required to satisfy the merge join method. The
sort is requested by the optimizer to order rows in the composite table before
completing the join operation.

° Operation 2.2 is the second sort required to satisfy the merge join method. The
sort is requested by the optimizer to sort rows in the current table (TENKTUP1)
before completing the join operation.

• Each ESP performs a merge join of the repartitioned data to join a row resulting
from plan step 1.

Key-Sequenced Merge Join
This query chooses the key-sequenced merge join to list orders by date and provide a
count of the parts per order. The join method is forced for the purpose of this example.

 Operation 2.2 : Sort
 Requested : By the optimizer
 Sort rows in the : Current table
 Purpose : To order its rows before the Join
 Sort technique : FASTSORT
 Sort type : Insertion into an entry-sequenced disk file
 Sort key columns : A.TENPCT asc
 Sort cost : 7049

 Total cost : 32307

Example 6-36. EXPLAIN Plan for Parallel Execution of Sort Merge Inner
Join (page 3 of 3)
HP NonStop SQL/MP Query Guide—524488-003
6-60

Analyzing Query Performance Key-Sequenced Merge Join
CONTROL TABLE * JOIN METHOD KEY SEQUENCED MERGE;

EXPLAIN
 SELECT X.ORDER_DATE, X.ORDERNUM, COUNT(*)
 FROM ORDERS X,ODETAIL Y
 WHERE X.ORDERNUM = Y.ORDERNUM
 GROUP BY X.ORDERNUM,X.ORDER_DATE
 ORDER BY X.ORDER_DATE,X.ORDERNUM ;

Example 6-37. EXPLAIN Plan for Key-Sequenced Merge Join (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.SALES.ORDERS
 with correlation name X
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 2 out of 5 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Executor aggr. : Computed for each group
 COUNT (*)
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 13 rows after the scan
 Operation cost : 1

 Plan step 2 : Perform an Inner Join
 Join strategy : Key-Sequenced Merge Join
 Plan Forced : Join Method forced by user directive
 Characteristic : Joins a row resulting from plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA8.SALES.ODETAIL
 with correlation name Y
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 4 columns
 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : X.ORDERNUM = Y.ORDERNUM
 End key pred. : None
 Index selectivity : Expect to examine 7.1429% of rows from table
 Index pred. : None
 Base table pred. : None
HP NonStop SQL/MP Query Guide—524488-003
6-61

Analyzing Query Performance Key-Sequenced Merge Join With Executor
Aggregates
The plan contains two steps. Step two shows that the key-sequenced merge join was
chosen.

In plan step 1, the access path is primary and the operation cost is 1.

In plan step 2, the access path is primary and the operation cost for the first operation
is 1. The second operation in step 2 includes a sort by X.ORDER_DATE and
X.ORDERNUM, both ascending. The cost of the sort is 1.

The total cost for the query is 5.

Key-Sequenced Merge Join With Executor Aggregates
This query also chooses the key-sequenced merge join but contains executor
aggregates.

EXPLAIN
 SELECT COUNT(*)
 FROM TENKTUP1,TENKTUP2
 WHERE TENKTUP1.UNIQUE1 = TENKTUP2.UNIQUE1 ;

 Executor pred. : None
 Table selectivity : Expect to select 7.1429% of rows from table
 Expected row count: 67 rows after the join
 Operation cost : 1

 Operation 2.1 : Sort
 Requested : Explicitly in the query
 Sort rows in the : Result of a Select
 Purpose : To form groups of rows for a Group By
 Sort technique : FASTSORT
 Sort type : Plan to use User Process Sort
 UPS workspace : 24 Kbytes
 Sort key columns : X.ORDER_DATE asc, X.ORDERNUM asc
 Expected row count: 67 rows after the group by
 Sort cost : 1

 Total cost : 5

Example 6-37. EXPLAIN Plan for Key-Sequenced Merge Join (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-62

Analyzing Query Performance Key-Sequenced Merge Join With Executor
Aggregates
Example 6-38. EXPLAIN Plan for Key-Sequenced Merge Join With Executor
Aggregates

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP2
 with correlation name TENKTUP2
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 16 columns

 Access path 1 : Alternate \SQL1.$DATA2.WISCREG.TKTUP2I, index
 only, sequential cache
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from index
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Executor aggr. : Computed for each group
 COUNT (*)
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 74666 rows after the scan
 Operation cost : 2187

 Plan step 2 : Perform an Inner Join
 Join strategy : Key-Sequenced Merge Join
 Plan Forced : Join Method forced by user directive
 Characteristic : Joins a row resulting from plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA2.WISCREG.TENKTUP1
 with correlation name TENKTUP1
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 16 columns

 Access path 1 : Alternate \SQL1.$DATA2.WISCREG.TKTUP1I, unique,
 index only, sequential cache
 SBB for reads : Virtual
 Begin key pred. : TENKTUP1.UNIQUE1 = TENKTUP2.UNIQUE1
 End key pred. : None
 Index selectivity : Expect to examine 0.0013% of rows from index
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 0.0013% of rows from table
 Expected row count: 74704 rows after the join
 Operation cost : 1

 Total cost : 4389
HP NonStop SQL/MP Query Guide—524488-003
6-63

Analyzing Query Performance Left Join Not Transformed Into an Inner Join
This plan contains two steps. Step 2 shows that the key-sequenced merge join method
was chosen. Executor aggregates were chosen because aggregates cannot be done
in DP2 on the inner table of a key-sequenced merge join.

In plan step 1, the access path is alternate, index only, sequential cache. The operation
cost is 2187.

In plan step 2, the access path is alternate, unique, index only, sequential cache. No
sort takes place. The operation cost is 1.

The total cost for the query is 4389.

Left Join Not Transformed Into an Inner Join
The EXPLAIN plans in Example 6-39 on page 6-65 and Example 6-40 on page 6-67
are for two queries that use the same view:

CREATE VIEW EMPORD AS
SELECT *
 FROM EMPLOYEE E LEFT JOIN ORDERS O
 ON E.EMPNUM = O.SALESREP ;

This query executes a left join that is not transformed into an inner join. It does this with
an IS NULL predicate.

EXPLAIN
 SELECT DISTINCT LAST_NAME
 FROM EMPORD
 WHERE SALESREP IS NULL ;

The query for Example 6-40 on page 6-67 executes a left join that is transformed into
an inner join. It does this with an IS NOT NULL predicate.

In both examples, if the right table does not satisfy the search condition, SQL creates
null-augmented rows on the left table. If a WHERE or inner join predicate is certain to
eliminate all of the null-augmented rows generated by the left join, then the optimizer
transforms the left join into a more efficient inner join.

This example shows the EXPLAIN plan for the left join not transformed into an inner
join.
HP NonStop SQL/MP Query Guide—524488-003
6-64

Analyzing Query Performance Left Join Not Transformed Into an Inner Join

Example 6-39. EXPLAIN Plan for Left Join Not Transformed Into an Inner
Join (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 --
 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name E
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 2 out of 6 columns
 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 57 rows after the scan
 Operation cost : 2

 Plan step 2 : Perform a Left Join
 Join strategy : Hash Join
 Characteristic : Joins a row resulting from plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA8.SALES.ORDERS
 with correlation name O
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 5 columns

 Access path 1 : Alternate \SQL1.$DATA8.SALES.XORDREP, index only
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from index
 Index pred. : None
 Base table pred. : None

 Executor pred. : On hashed rows
 O.SALESREP = E.EMPNUM
 Pred. selectivity : Expect to select 11.1111% of rows from table
 Executor pred. : On null augmented rows
 O.SALESREP IS NULL
 Pred. selectivity : Expect to select 1.2346% of rows from table
 Table selectivity : Expect to select 11.1111% of rows from table
 Expected row count: 1 row after the join
 Operation cost : 1
HP NonStop SQL/MP Query Guide—524488-003
6-65

Analyzing Query Performance Left Join Transformed Into an Inner Join
The IS NULL predicate selects only the special null-augmented rows generated by the
left join operator. In this query, SQL must keep the null-augmented rows, so the left join
is necessary, and Query Rewrite does not change the left join to an inner join.

Plan step 2 shows the left join. SQL uses a hash join in this step.

The expected row count for the scan on the EMPLOYEE table is 57. For the scan on
the ORDERS table it is 1. The total cost is 6. Compare this EXPLAIN plan to the one in
Example 6-40 on page 6-67.

Left Join Transformed Into an Inner Join
Example 6-40 on page 6-67 uses the view created for Example 6-39 on page 6-65:

CREATE VIEW EMPORD AS
SELECT *
 FROM EMPLOYEE E LEFT JOIN ORDERS O
 ON E.EMPNUM = O.SALESREP ;

Instead of the IS NULL predicate specified in the query for Example 6-39 on
page 6-65, this query specifies an IS NOT NULL predicate:

EXPLAIN
 SELECT DISTINCT LAST_NAME
 FROM EMPORD
 WHERE SALESREP IS NOT NULL ;

Example 6-40 on page 6-67 shows the EXPLAIN plan.

 Operation 2.1 : Hash
 Requested : By the optimizer
 Hash rows in the : Current table
 Purpose : To hash its rows before the Join
 Hash key columns : O.SALESREP
 Hash cost : 1

 Operation 2.2 : Hash
 Requested : By the optimizer
 Hash rows in the : Result of a Select
 Purpose : To form groups of rows for a Group By
 Hash key columns : E.LAST_NAME
 Expected row count: 1 after the group by
 Hash cost : 1

 Total cost : 6

Example 6-39. EXPLAIN Plan for Left Join Not Transformed Into an Inner
Join (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-66

Analyzing Query Performance Left Join Transformed Into an Inner Join
Example 6-40. EXPLAIN Plan for Left Join Transformed Into an Inner Join

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.SALES.ORDERS
 with correlation name O
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 5 columns

 Access path 1 : Alternate \SQL1.$DATA8.SALES.XORDREP, index only
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from index
 Index pred. : None
 Base table pred. : None
 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 13 rows after the scan
 Operation cost : 1
 --
 Plan step 2 : Perform an Inner Join
 Join strategy : Key-Sequenced Merge Join
 Characteristic : Joins a row resulting from plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name E
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 2 out of 6 columns

 Access path 1 : Primary, unique
 SBB for reads : Virtual
 Begin key pred. : O.SALESREP = E.EMPNUM
 End key pred. : None
 Index selectivity : Expect to examine 1.7544% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 1.7544% of rows from table
 Expected row count: 13 rows after the join
 Operation cost : 1
 Operation 2.1 : Hash
 Requested : By the optimizer
 Hash rows in the : Result of a Select
 Purpose : To form groups of rows for a Group By
 Hash key columns : E.LAST_NAME
 Expected row count: 13 rows after the group by
 Hash cost : 1

 Total cost : 4
HP NonStop SQL/MP Query Guide—524488-003
6-67

Analyzing Query Performance EXPLAIN Plan for UNION Operation
The IS NOT NULL predicate in the query eliminates the special null-augmented rows
produced by the left join operator. The search condition retains only the joined rows
that are the same as those that result for an inner join. No performance gain results if
SQL generates null-augmented rows that will be discarded, so Query Rewrite changes
the left join to an inner join.

The EXPLAIN plan shows that plan step 2 is an inner join. The left join allows the
SALESREP column to contain nulls, so the NOT NULL predicate is unnecessary.
Therefore, Query Rewrite eliminates it. Without the left join, SQL can consider using
access plans that use ORDERS as the outer table (processed in plan step 1). As a
result, SQL uses a key-sequenced merge join.

The expected row count for the scan on the ORDERS table is 13. The expected row
counts for the scan on the EMPLOYEE table and for the hash operation are both 13.

The total expected row counts for the EXPLAIN plan in Example 6-39 on page 6-65 is
58 (57 plus 1) and the total cost is 6. In Example 6-40 on page 6-67, the total expected
row count is only 39 (13 times 3) and the total cost is 4.

EXPLAIN Plan for UNION Operation
This example shows an EXPLAIN plan for a query that includes a UNION of two
SELECT statements.

The statements retrieve data from the ordone and ordtwo tables. Both tables have a
system-defined primary key (SYSKEY).

The query follows:

EXPLAIN
 SELECT * FROM ordone
 UNION
 SELECT * FROM ordtwo ;

The total cost of the query is 3.
HP NonStop SQL/MP Query Guide—524488-003
6-68

Analyzing Query Performance EXPLAIN Plan for UNION Operation
Example 6-41. EXPLAIN Plan for UNION Operation (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Union of Selects
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1 : perform a Union

 Operation 1.0 : Union of plan step 2 and plan step 3

 Operation 1.1 : Sort
 Requested : Explicitly in the query
 Sort rows in the : Result of a Union
 Purpose : To discard duplicate rows for a Distinct
 Sort technique : FASTSORT
 Sort type : Plan to use User Process Sort
 UPS workspace : 24 Kbytes
 Sort key columns : ORDONE.A asc
 Sort cost : 1

 Plan step 2
 Characteristic : Executes once before plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA7.REG1.ORD1
 with correlation name ORDONE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 2 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 3 rows after the scan
 Operation cost : 1

 Plan step 3
 Characteristic : Executes once before plan step 1

 Operation 3.0 : Scan
 Table : \SQL1.$DATA7.REG1.ORD2
 with correlation name ORDTWO
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 2 columns
 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None
HP NonStop SQL/MP Query Guide—524488-003
6-69

Analyzing Query Performance EXPLAIN Plan for MAX Optimization
Plan step 1 is a union of the result of plan steps 2 and 3. Plan step 1 executes after
plan steps 2 and 3.

Plan step 1 involves a sort operation to eliminate duplicate rows in the union result.
(Unless you specify UNION ALL, duplicate rows are automatically discarded from a
union result.)

Plan step 2 is a scan of the ordone table.

Plan step 3 is a scan of the ordtwo table.

EXPLAIN Plan for MAX Optimization
The EXPLAIN plan chooses MAX optimization for a query containing the MAX
aggregate function.

An index is created on the EMPLOYEE table:

CREATE INDEX SAL ON EMPLOYEE (SALARY,LAST_NAME,FIRST_NAME);

EXPLAIN
 SELECT MAX(SALARY)
 FROM EMPLOYEE
 WHERE LAST_NAME > "JONES"
 AND FIRST_NAME BETWEEN ?P1 AND ?P2;

The total cost of the query is 1.

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 1

 Total cost : 3

Example 6-41. EXPLAIN Plan for UNION Operation (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-70

Analyzing Query Performance EXPLAIN Plan for MAX Optimization

The plan contains the following information:

• It consists of one step.

• Access is by alternate index:

 Access path 1 : Alternate \SQL1.$DATA8.PUBS.SAL, index only

• The optimizer reads only one row from the table;

Executor aggr. : Derived from the 1st row returned by the scan
 MAX (SALARY)

Example 6-42. EXPLAIN Plan for MAX Optimization

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 6 columns

 Access path 1 : Alternate \SQL1.$DATA8.PUBS.SAL, index only
 SBB for reads : Not used
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 26.7686% of rows from index
 Index pred. : Will be evaluated by the disk process
 (LAST_NAME > "JONES") AND (FIRST_NAME <= ?P2)
 AND
 (FIRST_NAME >= ?P1)
 Pred. selectivity : Expect to select 1.7544% of rows from index
 Base table pred. : None

 Executor pred. : None
 Executor aggr. : Derived from the 1st row returned by the scan
 MAX (SALARY)
 Table selectivity : Expect to select 1.7544% of rows from table
 Expected row count: 4 rows after the scan
 Operation cost : 1

 Total cost : 1
HP NonStop SQL/MP Query Guide—524488-003
6-71

Analyzing Query Performance EXPLAIN Plan for Cursor UPDATE
EXPLAIN Plan for Cursor UPDATE
This EXPLAIN plan shows an UPDATE operation using a cursor.

The query updates the EMPLOYEE table (primary key EMPNUM) according to data in
the TABLES catalog table (primary key TABLENAME). The query follows:

EXPLAIN
 UPDATE EMPLOYEE
 SET JOBCODE = 105
 WHERE EXISTS (SELECT TABLENAME
 FROM TABLES
 WHERE TABLETYPE = 'VI');

The total cost of the query is 54.

Example 6-43. EXPLAIN Plan for Cursor UPDATE (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1 : Will utilize parallel execution
 SQL request : Update
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Each operation is performed in parallel for this step

 Each ESP will read one of the following partitions:
 \SQL1.$DATA8
 The ESP's will be started in the cpu's numbered
 2

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 0 out of 6 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None
 Type of Update : Cursor
 SBB for Update : Requested by the optimizer
HP NonStop SQL/MP Query Guide—524488-003
6-72

Analyzing Query Performance EXPLAIN Plan for Cursor DELETE
The plan consists of 2 steps:

• Plan step 1 is a scan of the EMPLOYEE table.

• Plan step 2 is a scan of the TABLES table. Plan step 2 executes once before plan
step 1.

The type of update is a cursor update, as shown in operation 1.0. Virtual sequential
block buffering is requested by the optimizer for the update operation.

EXPLAIN Plan for Cursor DELETE
The EXPLAIN plan shows a cursor DELETE operation.

The query deletes data from the EMPLOYEE table (primary key EMPNUM). The query
follows:

EXPLAIN
 DELETE
 FROM EMPLOYEE
 WHERE DEPTNUM = 1500;

 Executor pred. : On rows retrieved by the scan
 EXISTS (.. result of plan step 2)
 Pred. selectivity : Expect to select 40% of rows from table
 Table selectivity : Expect to select 40% of rows from table
 Expected row count: 23 rows after the scan
 Operation cost : 52

 Plan step 2
 Characteristic : Executes once before plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.TABLES
 with correlation name TABLES
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 0 out of 12 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 TABLETYPE = "VI"
 Pred. selectivity : Expect to select 50% of rows from table
 Executor pred. : None
 Table selectivity : Expect to select 50% of rows from table
 Expected row count: 11 rows after the scan
 Operation cost : 2

 Total cost : 54

Example 6-43. EXPLAIN Plan for Cursor UPDATE (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-73

Analyzing Query Performance EXPLAIN Plan for INSERT
The total cost of the query is 1.

The plan contains the following information:

• The lock granularity is record (row):

 Access type : Record locks, stable access

• The type of delete is a cursor delete.

EXPLAIN Plan for INSERT
The EXPLAIN plan shows an INSERT operation.

The query inserts data into the ordtwo table, as follows:

EXPLAIN
 INSERT INTO ordtwo VALUES (100) ;

The total cost of the query is 1.

Example 6-45 on page 6-75 shows the EXPLAIN plan for the query.

Example 6-44. EXPLAIN Plan for Cursor DELETE

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Delete
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 0 out of 6 columns

 Access path 1 : Alternate \SQL1.$DATA8.PERSNL.XEMPDEPT, index
 only
 SBB for reads : Virtual
 Begin key pred. : DEPTNUM = 1500
 End key pred. : DEPTNUM = 1500
 Index selectivity : Expect to examine 9.0909% of rows from index
 Index pred. : None
 Base table pred. : None
 Type of Delete : Cursor

 Executor pred. : None
 Table selectivity : Expect to select 9.0909% of rows from table
 Expected row count: 11 rows after the scan
 Operation cost : 1

 Total cost : 1
HP NonStop SQL/MP Query Guide—524488-003
6-74

Analyzing Query Performance EXPLAIN Plan for INSERT-SELECT
EXPLAIN Plan for INSERT-SELECT
This example shows the EXPLAIN plan for an INSERT-SELECT operation.

The query selects data from the ordone table and inserts it into the ordtwo table, as
follows:

EXPLAIN
 INSERT INTO ordone SELECT * FROM ordtwo ;

The total cost of the query is 2.

Example 6-45. EXPLAIN Plan for INSERT Statement

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Insert
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Insert
 Table : \SQL1.$DATA7.REG1.ORD2
 Access path : Primary
 SBB for Insert : Requested by the optimizer
 Insert Cost : 1
 Operation cost : 1

 Total cost : 1
HP NonStop SQL/MP Query Guide—524488-003
6-75

Analyzing Query Performance EXPLAIN Plan for INSERT-SELECT
If you are using INSERT-SELECT to populate a table from another table, be aware that
the LOAD command performs this task more efficiently. The next most efficient way is
to use an INSERT-SELECT statement on tables that are audited with sequential block
buffering on. If the output table is unaudited and uses sequential block buffering, the
performance decreases measurably.

The LOAD command and the INSERT-SELECT statement differ in the ways they write
to the target table. The LOAD command writes in blocks and the INSERT-SELECT
statement writes one row at a time.

For more information on the LOAD command and the INSERT-SELECT statement,
see the SQL/MP Reference Manual.

Example 6-46. EXPLAIN Plan for INSERT With SELECT

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Insert-Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA7.REG1.ORD2
 with correlation name ORDTWO
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 2 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 1

 Operation 1.1 : Insert
 Table : \SQL1.$DATA7.REG1.ORD1
 Access path : Primary
 SBB for Insert : Requested by the optimizer
 Insert Cost : 1

 Total cost : 2
HP NonStop SQL/MP Query Guide—524488-003
6-76

Analyzing Query Performance EXPLAIN Plan for UPDATE
EXPLAIN Plan for UPDATE
This example shows the EXPLAIN plan for an UPDATE operation. The query updates
the EMPLOYEE table as follows:

EXPLAIN
 UPDATE employee SET deptnum = 5
 WHERE empnum = ?parm3;

The total cost of the query is 1.

Example 6-47. EXPLAIN Plan for Unique UPDATE

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Update
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.PERSNL.EMPLOYEE
 with correlation name EMPLOYEE
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 0 out of 6 columns

 Access path 1 : Primary, unique
 SBB for reads : Not used
 Begin key pred. : EMPNUM = ?PARM3
 End key pred. : EMPNUM = ?PARM3
 Index selectivity : Expect to examine 1.7544% of rows from table
 Index pred. : None
 Base table pred. : None
 Type of Update : Unique
 SBB for Update : Not used

 Executor pred. : None
 Table selectivity : Expect to select 1.7544% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 1

 Total cost : 1
HP NonStop SQL/MP Query Guide—524488-003
6-77

Analyzing Query Performance EXPLAIN Plan With Date-Time Values
EXPLAIN Plan With Date-Time Values
These examples show EXPLAIN plans for an UPDATE operation.

If no end-date-time is provided for an INTERVAL data type and is implied for a start-
date-time, SQL expands the original syntax of the query to show the implied end-date-
time.

HOUR Date-Time Values
Example 6-48 on page 6-79 shows HOUR(2) expanded to HOUR. The query used in
this example is as follows.

INVOKE B2UNS01 ;
 Definition of table \SQL1.$DATA5.SQLDOPTS.B2UNS01
 Definition current at 09:08:07 - 09/11/95

 (
 CHAR0_N10 CHAR(2) DEFAULT "AD"
 HEADING 'char0_n10 with default ''AD'''
 , SBIN0_UNIQ SMALLINT DEFAULT SYSTEM NOT NULL
 , SDEC0_N500 DECIMAL(18, 0) DEFAULT SYSTEM
 , DATE0_UNIQ DATETIME YEAR TO DAY NO DEFAULT NOT NULL
 , INT0_YTOM_NUNIQ INTERVAL YEAR(5) TO MONTH NO DEFAULT
 , INT1_HTOS_1000 INTERVAL HOUR(2) TO SECOND DEFAULT SYSTEM
 NOT NULL
 , DATE1_N4 DATETIME YEAR TO DAY DEFAULT SYSTEM
 , REAL1_UNIQ FLOAT(22) NO DEFAULT NOT NULL
 , UBIN1_N2 NUMERIC(4, 0) UNSIGNED NO DEFAULT
 , UDEC1_100 DECIMAL(2, 0) UNSIGNED DEFAULT SYSTEM
 NOT NULL
)
EXPLAIN
 SELECT INT1_HTOS_1000 FROM B2UNS01
 WHERE INT1_HTOS_1000 = INTERVAL '0' HOUR(2) ;
HP NonStop SQL/MP Query Guide—524488-003
6-78

Analyzing Query Performance DAY Date-Time Values
DAY Date-Time Values
Example 6-49 on page 6-80 shows DAY(3) expanded to DAY. The query used in this
example is as follows:

INVOKE B2UNL13 ;
 Definition of table \SQL1.$DATA5.SQLDOPTS.B2UNL13
 Definition current at 09:08:10 - 09/11/95

 (
 DATE0_N100 DATETIME YEAR TO DAY DEFAULT NULL
 , SBIN0_4 SMALLINT DEFAULT SYSTEM NOT NULL
 , SDEC0_N100 DECIMAL(2, 0) DEFAULT SYSTEM
 , INT0_DTOF6_UNIQ INTERVAL DAY(2) TO FRACTION(6) NO DEFAULT
 NOT NULL
 , VARCHAR0_N1000 VARCHAR(8) NO DEFAULT
 , UDEC1_10P DECIMAL(9, 0) UNSIGNED DEFAULT SYSTEM
 NOT NULL
 , REAL1_N100 FLOAT(22) DEFAULT SYSTEM
 , UBIN1_UNIQ NUMERIC(9, 0) UNSIGNED NO DEFAULT NOT
NULL
 , TS1_NUNIQ DATETIME YEAR TO FRACTION(6) NO DEFAULT
 , INT1_YTOM_100 INTERVAL YEAR(2) TO MONTH DEFAULT SYSTEM
 NOT NULL
)
EXPLAIN
 SELECT
 INT0_DTOF6_UNIQ FROM B2UNL13

Example 6-48. EXPLAIN Plan With HOUR Date-Time Values

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA5.SQLDOPTS.B2UNS01
 with correlation name B2UNS01
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 11 columns

 Access path 1 : Primary, sequential cache
 SBB for reads : Not used
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 INT1_HTOS_1000 = INTERVAL ' 00' HOUR (2) TO HOUR
 Pred. selectivity : Expect to select 0.1% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 0.1% of rows from table
 Expected row count: 2 rows after the scan
 Operation cost : 272

 Total cost : 272
HP NonStop SQL/MP Query Guide—524488-003
6-79

Analyzing Query Performance Comparing Cost: A Scenario
 WHERE INT0_DTOF6_UNIQ >= INTERVAL '0' DAY(3) AND
 INT0_DTOF6_UNIQ <= INTERVAL '2' DAY(3) ;

Comparing Cost: A Scenario
The next two query examples show how you can reformulate a query and produce the
same result but with much improved performance. The DISPLAY STATISTICS and
EXPLAIN plans show you the results.

The first formulation has an estimated cost of 50. The second formulation has an
estimated cost of 4.

First Formulation
This statement prepares the first formulation of the query:

PREPARE QUERY1 FROM
 SELECT DISTINCT ORDERNUM
 FROM ODETAIL O, PARTS P
 WHERE O.PARTNUM = 5100
 AND QTY_ORDERED <
 (SELECT AVG(QTY_AVAILABLE)
 FROM PARTS
 WHERE P.PARTNUM = 5100) ;

Example 6-49. EXPLAIN Plan With DAY Date-Time Values

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA5.SQLDOPTS.B2UNL13
 with correlation name B2UNL13
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 10 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : INT0_DTOF6_UNIQ >= INTERVAL ' 00' DAY (3) TO DAY
 End key pred. : INT0_DTOF6_UNIQ <= INTERVAL ' 02' DAY (3) TO DAY
 Index selectivity : Expect to examine 0.0012% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Table selectivity : Expect to select 0.0012% of rows from table
 Expected row count: 2 rows after the scan
 Operation cost : 3

 Total cost : 3
HP NonStop SQL/MP Query Guide—524488-003
6-80

Analyzing Query Performance First Formulation
After executing the query, use the DISPLAY STATISTICS command to display the
statistics as shown in Example 6-50 The estimated cost is 50. The ODETAIL table is
scanned once. The PARTS table is scanned twice.

By examining the EXPLAIN plan shown in Example 6-51 on page 6-82, you can better
understand how the cost is determined.

Example 6-50. DISPLAY STATISTICS Output for QUERY1

Estimated Cost 50

Start Time 95/09/11 09:08:13.871517
End Time 95/09/11 09:08:14.546697
Elapsed Time 00:00:00.675180
SQL Execution Time 00:00:00.229874

 Records Records Disk Message Message Lock
Table Name Accessed Used Reads Count Bytes
\SQL1.$DATA8.SALES.ODETAIL
 72 4 2 3 490
\SQL1.$DATA8.SALES.PARTS
 112 112 2 8 3792
\SQL1.$DATA8.SALES.PARTS
 3136 112 2 336 90048
HP NonStop SQL/MP Query Guide—524488-003
6-81

Analyzing Query Performance First Formulation
Example 6-51. EXPLAIN Plan for QUERY1 (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.SALES.ODETAIL
 with correlation name O
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 2 out of 4 columns

 Access path 1 : Primary
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 O.PARTNUM = 5100
 Pred. selectivity : Expect to select 3.7037% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 3.7037% of rows from table
 Expected row count: 3 rows after the scan
 Operation cost : 3

 Plan step 2 : Perform an Inner Join
 Join strategy : Nested Join
 Characteristic : Joins a row resulting from plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA8.SALES.PARTS
 with correlation name P
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 4 columns

 Access path 1 : Alternate \SQL1.$DATA8.SALES.XPARTDES, index only
 SBB for reads : Virtual
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from index
 Index pred. : None
 Base table pred. : None

 Executor pred. : On rows retrieved by the scan
 QTY_ORDERED < AVG (QTY_AVAILABLE) .. result of plan
 step 3
 Pred. selectivity : Expect to select 33.33% of rows from table
 Table selectivity : Expect to select 33.33% of rows from table
 Expected row count: 25 rows after the join
 Operation cost : 2
HP NonStop SQL/MP Query Guide—524488-003
6-82

Analyzing Query Performance Second Formulation
The plan consists of three steps: a scan of the ODETAIL table, a join of the PARTS and
ODETAIL tables, and a scan of the PARTS table.

The PARTS table is scanned twice, because the FROM clause of QUERY 1 specifies
an implicit join operation:

FROM ODETAIL O, PARTS P

In step 3, the optimizer chooses aggregate evaluation by the disk process (DP2),
which is the most efficient aggregate evaluation method.

Second Formulation
Now suppose that you reformulate the query to eliminate the unnecessary join as
follows:

PREPARE QUERY2 FROM
 SELECT ORDERNUM
 FROM ODETAIL O
 WHERE O.PARTNUM = 5100
 AND QTY_ORDERED <
 (SELECT AVG(QTY_AVAILABLE)
 FROM PARTS P
 WHERE P.PARTNUM = 5100) ;

 Plan step 3
 Characteristic : Executes once per row retrieved in plan step 2

 Operation 3.0 : Scan
 Table : \SQL1.$DATA8.SALES.PARTS
 with correlation name PARTS
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 4 columns

 Access path 1 : Primary
 SBB for reads : Not used
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 P.PARTNUM = 5100
 Pred. selectivity : Expect to select 100% of rows from table

 Executor pred. : None
 DP2 aggregate : Computed for each group
 AVG (QTY_AVAILABLE)
 Table selectivity : Expect to select 100% of rows from table
 Expected row count: 28 rows after the scan
 Operation cost : 2

 Total cost : 50

Example 6-51. EXPLAIN Plan for QUERY1 (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-83

Analyzing Query Performance Second Formulation
After executing the query, use the DISPLAY STATISTICS command to display the
statistics shown in Example 6-52 on page 6-84.

By reformulating the query to remove the unnecessary join operation, you have
reduced the estimated cost of the query from 50 to 4.

The EXPLAIN plan in Example 6-53, shows that the plan now consists of two steps: a
scan of the ODETAIL table and a scan of the PARTS table to satisfy the subquery.

Example 6-52. DISPLAY STATISTICS Output for QUERY2

Estimated Cost 4

Start Time 95/09/11 09:08:17.871610
End Time 95/09/11 09:08:18.010648
Elapsed Time 00:00:00.139038
SQL Execution Time 00:00:00.016799

 Records Records Disk Message Message Lock
Table Name Accessed Used Reads Count Bytes
\SQL1.$DATA8.SALES.PARTS
 1 1 0 2 188
\SQL1.$DATA8.SALES.ODETAIL
 72 4 0 5 744

Example 6-53. EXPLAIN Plan for QUERY2 (page 1 of 2)

 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Query plan 1
 SQL request : Select
 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 Plan step 1

 Operation 1.0 : Scan
 Table : \SQL1.$DATA8.SALES.ODETAIL
 with correlation name O
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 4 columns

 Access path 1 : Primary
 SBB for reads : Not used
 Begin key pred. : None
 End key pred. : None
 Index selectivity : Expect to examine 100% of rows from table
 Index pred. : None
 Base table pred. : Will be evaluated by the disk process
 (O.PARTNUM = 5100) AND (QTY_ORDERED < AVG (
 QTY_AVAILABLE) .. result of plan step 2)
 Pred. selectivity : Expect to select 1.3889% of rows from table

 Executor pred. : None
 Table selectivity : Expect to select 1.3889% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 3
HP NonStop SQL/MP Query Guide—524488-003
6-84

Analyzing Query Performance Second Formulation

 Plan step 2
 Characteristic : Executes once before plan step 1

 Operation 2.0 : Scan
 Table : \SQL1.$DATA8.SALES.PARTS
 with correlation name P
 Access type : Record locks, stable access
 Lock mode : Chosen by the system
 Column processing : Requires retrieval of 1 out of 4 columns

 Access path 1 : Primary, unique
 SBB for reads : Not used
 Begin key pred. : P.PARTNUM = 5100
 End key pred. : P.PARTNUM = 5100
 Index selectivity : Expect to examine 3.5714% of rows from table
 Index pred. : None
 Base table pred. : None

 Executor pred. : None
 Executor aggr. : Computed for each group
 AVG (QTY_AVAILABLE)
 Table selectivity : Expect to select 3.5714% of rows from table
 Expected row count: 1 row after the scan
 Operation cost : 1

 Total cost : 4

Example 6-53. EXPLAIN Plan for QUERY2 (page 2 of 2)
HP NonStop SQL/MP Query Guide—524488-003
6-85

Analyzing Query Performance Second Formulation
HP NonStop SQL/MP Query Guide—524488-003
6-86

Index

A
Access option 4-16
Access path

alternate index 4-5
base table, through an index 4-6
description of 4-4
displaying with EXPLAIN 6-13
index-only 4-6
primary key 4-5
table scan 4-4

Aggregate functions
AVG 1-41
CASE and 1-45
conditional 1-45
COUNT 1-41
description of 1-41
evaluating 3-46, 3-47, 6-83
MAX 1-41
MIN 1-41
optimizing 3-46
SUM 1-41

ALL predicate 1-38
ANY predicate 1-38
Assignment, processor 2-5
AVG function 1-41

B
Base table

accessing through an index 4-6
accessing through primary key 4-5
predicate 3-14
scanning 4-4

Batch processing considerations 3-63
Begin key 1-32
BEGIN WORK statement 4-2
Begin-key predicate 3-13
BETWEEN predicate 1-32

Blocks, buffering of 4-28
Bounded predicate, EXPLAIN plan for 6-20
Bounded search 1-32
Browse access

for long-running queries 4-18
options 4-16

Buffering mode
description of 4-21
effect of cursor operations on 4-28
how the optimizer chooses 4-21
real sequential 4-23
single row 4-22
virtual sequential 4-24

Build phase of hash-join method 3-30

C
Cartesian product

description of 1-52
eliminating 3-35, 3-40

CASE expression
description of 1-43
EXPLAIN plans for 6-33
for computing aggregates on specific
conditions 1-45
for converting tables 1-49
for decoding values 1-43
for finding the highest value 1-47
for ignoring largest and smallest
values 1-51
for use with multiple conditions 1-44

CHAR_LENGTH function 1-18
CHECK option 4-33
CLOSE cursor statement 1-12, 1-13
Columns

listed in SELECT statement 1-2
projecting 1-3
selecting with faster access 3-2

COMMIT WORK statement 4-2
HP NonStop SQL/MP Query Guide—524488-003
Index-1

Index C
Comparison predicate
description of 1-31
multivalued 1-40
operators 1-31

COMPILE option 4-33
Composite table 3-34
Concatenation operator 1-20
Concurrency, optimizing 4-32
Conditional aggregates 1-45
Consistency 4-16
Constant expression 3-10
Constants, propagation of 3-10
Context-free servers 1-41
CONTROL EXECUTOR directive 4-13
CONTROL QUERY directive

BIND NAMES option 4-33
EXPLAIN plan and 6-13
HASH JOIN option 3-43
INTERACTIVE ACCESS option 4-6,
4-8

CONTROL TABLE directive
ACCESS PATH option 4-11, 5-20
buffering 4-28
CONTROL SEQUENTIAL READ
option 4-27
HASH JOIN SEQUENCE option 3-45
JOIN METHOD option 3-43, 5-20
JOIN SEQUENCE option 5-20
SEQUENTIAL option 4-28
using to force a path 4-8
using to override open-on-
demand 4-29

CONVERTTIMESTAMP function 1-24
Correlated references 1-29, 3-52
Correlated subquery

description of 1-29
EXPLAIN plan 6-13, 6-31
performance and 3-51, 5-14

Cost
data transfer 5-13
description of 5-11

Cost (continued)
DISPLAY STATISTICS command 6-3
evaluating 5-19
EXPLAIN plan and 6-12
how the optimizer determines 5-11
MDAM and 3-4, 5-17
messages 5-13
of indexes and predicates 5-16
of join operations 5-15
of sorts 5-14
physical I/O 5-12
record overhead 5-13
subqueries 5-14
table access 5-12

COUNT function 1-41
Cross product

description of 1-52
eliminating 3-35, 3-40
EXPLAIN plan for join 6-53

CURRENT function
description of 1-24
example of 1-25

Cursor operations
CLOSE statement and 1-12
closing 1-13
DECLARE CURSOR statement
and 1-12
effect on performance 4-28
EXPLAIN plan for

DELETE 6-73
UPDATE 6-72

FETCH statement and 1-12
FREE RESOURCES statement 1-13
initializing 1-12, 1-13
OPEN statement and 1-12
performance and 1-14
SELECT statement and 1-12
HP NonStop SQL/MP Query Guide—524488-003
Index-2

Index D
D
Data

date-time type 1-21
density 4-30, 5-18
distribution 4-9, 5-2
manipulation statements 1-2
missing, using left join to reveal 1-55
repartitioned 2-5
retrieval

from two tables 1-51
of multiple rows 1-12
ordering the results of 1-5
SELECT statement and 1-2
single row and 1-10
specifying search conditions for 1-8
with cursor 1-12

sparsity 4-30, 5-18
transfer, cost of 5-13

Data distribution, uneven
access 4-9
selectivity 5-2

Database
designing 4-1
searching 1-8

DATEFORMAT function 1-24, 1-26
Date-time

data types 1-21
functions

CONVERTTIMESTAMP 1-25
CURRENT 1-25
DATEFORMAT 1-26
DAYOFWEEK 1-26
description of 1-24
EXTEND 1-27
JULIANTIMESTAMP 1-27

values, EXPLAIN plan for 6-78
DAYOFWEEK function 1-26
Decision Support Systems (DSS) 3-61
DECLARE CURSOR statement 1-12

DELETE statement 1-2
Directives

CONTROL EXECUTOR 4-13
CONTROL QUERY

See CONTROL QUERY directive
CONTROL TABLE

See CONTROL TABLE directive
specifying for optimum
performance 4-1

Disk process 2-3
Disk processor assignment 2-5
DISPLAY STATISTICS command 6-3
DISTINCT clause

EXPLAIN plan for 6-24
of SELECT statement 1-4, 1-6
using 3-54
with GROUP BY 3-58
with ORDER BY 3-58

DML statements 1-2
DSS (Decision Support Systems) 3-61
Duplicate rows, eliminating 1-6
Dynamic SQL 1-1

E
Embedded SQL

SELECT statement in 1-10
using cursors in 1-12

End key 1-32
End-key predicate 3-13
Equality predicate

adding 3-11
using 3-16

Equijoin query 3-25
Equivalence class 3-10
ESP (executor server process) 4-14
Exclusive lock

description of 4-19
granularity 4-19

EXCLUSIVE option, LOCK TABLE
statement 4-19
HP NonStop SQL/MP Query Guide—524488-003
Index-3

Index F
EXECUTE statement 3-3
Execution statistics, displaying 6-3
Execution-time name resolution 4-33
Executor 2-3
Executor predicate

description of 3-15
EXPLAIN plan and 3-12
EXPLAIN plan evaluation 6-14
list of 3-15

Executor server process (ESP)
description 4-14
processor assignment 2-5

EXISTS predicate
description of 1-37
performance implication 3-16

EXPLAIN examples
bounded predicates in 6-20
CASE

for converting tables 6-36
for finding the highest value in a
row 6-35
for ignoring largest and smallest
values 6-38
using with aggregates 6-34
using with multiple conditions 6-33

cross product join 6-53
cursor DELETE 6-73
cursor UPDATE 6-72
date-time values 6-78
DISTINCT 6-24
GROUP BY

using a parallel plan 6-28
using a serial plan 6-26

hash join 6-49
index-only access 6-19
INSERT 6-74
INSERT-SELECT 6-75
join queries 6-48
key predicates 6-23
key-sequenced merge join 6-60, 6-62

EXPLAIN examples (continued)
left join 6-64, 6-66
MAX optimization 6-70
MDAM 6-42, 6-43, 6-44
multiple predicate sets 6-46
nested inner join 6-51
ORDER BY 6-6, 6-10, 6-25
parallel execution 6-49, 6-58
primary access versus index-only
access 6-18
selectivity 6-47
simple SELECT 6-16
subqueries 6-29
SUBSTRING 6-39
UNION operation 6-68
UPDATE 6-77

EXPLAIN plan
access path and 6-13
block buffering and 6-14
correlated subquery and 6-13
cost and 6-12
effect of uneven data distribution
on 4-9
executor evaluation and 6-14
generating 6-9
interpreting 6-12
key predicates and 6-13
locking and 6-15
parallel execution and 6-15
selectivity and 6-15
sequential cache and 6-14
sort operations and 6-13
table scans and 6-13

EXTEND function 1-24, 1-27

F
FETCH cursor statement 1-12
File system 2-3
FREE RESOURCES statement and
cursors 1-13
HP NonStop SQL/MP Query Guide—524488-003
Index-4

Index G
FROM clause of SELECT statement 1-2
Full table scan, avoiding 3-54, 4-4
Functions

aggregate 1-41
AVG 1-41
COUNT 1-41
CURRENT 1-25
DATEFORMAT 1-26
date-time 1-24
DAYOFWEEK 1-26
EXTEND 1-27
JULIANTIMESTAMP 1-27
MAX 1-41
MIN 1-41
SUBSTRING 1-15
SUM 1-41

G
Granularity 4-19
GROUP BY clause

efficient use of 3-47, 3-54
EXPLAIN plan for 6-26, 6-28
MDAM and 3-49
of SELECT statement 1-4, 1-7
parallel plans and 3-49
selectivity 5-10
serial plans and 3-48
UNION operation and 1-64
with DISTINCT 3-58
with ORDER BY 3-57

Grouping rows for aggregate functions 1-7

H
Halloween problem 4-10
Hash join method

build phase 3-30
description of 3-30
EXPLAIN plan for 6-49
hybrid 3-31

Hash join method (continued)
matching partitions 3-33
parallel 3-32
probe phase 3-30
repartitioned parallel 3-33
simple sequential 3-31

HAVING clause
search conditions and 1-9
UNION operation and 1-64

Host variables
initializing in cursor 1-12
with SELECT statement 1-10

I
IN EXCLUSIVE MODE option 4-19
IN predicate

description of 1-36
performance implication of 3-7
transformation of 3-7

IN SHARE MODE option 4-19
Index

access 4-5, 4-6
availability of 4-7
base-table access 4-6
controlling opening of 4-29
cost of 5-16
length 4-5
performance improvement 3-22
predicate 3-13
selectivity 5-1, 5-6

Index-only access
description of 4-5, 4-6
EXPLAIN plan for 6-19
using 4-9

Inner join operation 1-53, 1-54, 6-68
Inner query

See Subquery
Inner table 3-25
HP NonStop SQL/MP Query Guide—524488-003
Index-5

Index J
INSERT statement
EXPLAIN plan for 6-74
for modifying data 1-2

INSERT-SELECT, EXPLAIN plan for 6-75
Integrity of data 4-16
INTERVAL data type 1-21, 1-22
INTO clause 1-11

J
Join methods

See also Join operation
See also Join predicate
evaluation by optimizer 3-34
hash join 3-30
key-sequenced merge join 3-27
nested join 3-25
relative performance 3-36
sort merge join 3-25

Join operation
cost of 5-15
description of 1-51
evaluating 3-24
EXPLAIN plans for 6-48
inner 1-53, 1-54
left (outer) 1-53, 1-55
methods comparing 3-36
outer 1-53, 1-55
queries for 1-51
restrictions 1-59
selectivity 5-10
self join 3-42
using instead of subquery 3-41
writing efficient joins for 3-39

Join predicate
Cartesian product and 3-35, 3-40
cross product and 3-35
description of 1-51
performance implications of 3-40
specifying 3-18

Join predicate (continued)
widening choice of execution plans
with 3-41

Join query
See also Join operation
faster execution with Query
Rewrite 3-8
transformations related to 3-8

JULIANTIMESTAMP function 1-24, 1-27

K
Key predicate

description of 3-13
examples 3-17
EXPLAIN plan for 6-13, 6-23
specifying for better performance 3-13,
3-16
with multiple columns 3-18

Key prefix 3-7
Key-sequenced merge join

description of 3-27
EXPLAIN plan for 6-60, 6-62

L
Left join operation

description of 1-53, 1-55
EXPLAIN plan for 6-64, 6-66
hierarchical relationships and 1-57
null augmentation and 1-56
preserved data and 1-53, 1-56
revealing missing data 1-55
transforming to inner join 3-9

LIKE predicate
See also Predicates, LIKE
constant propagation and 3-10
description of 1-33
with wild-card characters 1-34

LOAD command 6-76
HP NonStop SQL/MP Query Guide—524488-003
Index-6

Index M
Lock mode
description of 4-16
exclusive 4-19
shared 4-19

LOCK TABLE statement 4-19
Locks

access options 4-16
characteristics of 4-20
description of 4-16
duration of 4-16, 4-20
exclusive 4-19
EXPLAIN plan and 6-15
granularity of 4-19
mode 4-16, 4-19
shared 4-19

M
MAX function

description of 1-41
EXPLAIN plan for 6-70
optimizing 3-46

MDAM (MultiDimensional Access Method)
CONTROL QUERY directive 4-7
CONTROL TABLE directive 4-12
controlling the dense or sparse
algorithm 4-30
controlling the number of key
columns 4-30
cost

for a single predicate 5-17
for multiple predicate sets 5-18
for sparse or dense data 5-18

description of 3-4
EXPLAIN plan for 6-42, 6-43, 6-44
joins and 3-22
multiple tables in a query and 3-22
OR predicates and 3-22
plans that do not use 3-5

MDAM (MultiDimensional Access Method)

MDAM (MultiDimensional Access
Method) (continued)

predicates with missing key columns
and 3-16
range predicates on key columns
and 3-13

Messages, cost of 5-13
MIN function

description of 1-41
optimizing 3-46

Missing data, using left join to reveal 1-55
Multicolumn searches 3-19
Multiple predicate sets, EXPLAIN plan
for 6-46
Multiple-row SELECT statement 1-12, 3-60
Multistep queries 1-65
Multivalued predicate

description of 1-40, 3-4
performance implications of 3-19

N
Nested join method

description of 3-25
EXPLAIN plan for 6-51

NO RECOMPILE option, UPDATE
STATISTICS statement 4-3
Noncorrelated references 1-29, 3-53
Noncorrelated subquery

description of 1-29
EXPLAIN plan and 6-29
performance and 3-53

NOREGISTER option 4-33
Null augmentation for left join

description of 1-56
predicate evaluation and 1-60

NULL predicate 1-39
Null values 1-14

O
OCTET_LENGTH function 1-18
HP NonStop SQL/MP Query Guide—524488-003
Index-7

Index P
ON clause
in join operations 1-59, 1-60
search conditions and 1-9

Online transaction processing (OLTP)
considerations 3-62
OPEN cursor statement 1-12
Operators for predicates 1-30
Optimization

See Performance
Optimizer

choosing an execution plan 2-3
determining cost with 5-11, 6-12
join strategy 3-34

OR operator
description of 1-35
optimizing 3-22
specifying indexes for improved
performance with 3-22

ORDER BY clause
EXPLAIN plan for 6-10, 6-25
of SELECT statement 1-4, 1-5
UNION operation and 1-63
using 3-54
with DISTINCT 3-58
with GROUP BY 3-57

Ordering rows, using the ORDER BY
clause 1-5
Outer join (left) operation 1-53, 1-55
Outer query 1-28
Outer SELECT 1-29
Outer table 3-25

P
Parallel execution, EXPLAIN plan and 6-15
Parallel processing of queries

CONTROL EXECUTOR directive 4-13
description of 4-13
EXPLAIN plan and 6-15
implementing 4-14
partitioning data for 4-14

Partitioned data
description of 4-14
for parallel processing of queries 4-14

Percent of all row values, computing 1-66
Performance

avoiding table scans 3-54, 4-4
considerations 3-1
cost comparisons of 6-12
efficient evaluation of predicates 3-4
gathering statistics about 6-2
IN optimization 3-7
keeping pertinent statistics on tables
and columns for 4-2
key predicates for 3-13
MIN and MAX optimizations 3-46
OR optimization 3-22
selecting columns for 3-2
sort 4-32
specifying block buffering for 4-28
specifying locking access options
for 4-17
specifying parallel execution of queries
for 4-13
types of subqueries for 3-51
using joins instead of subqueries
for 3-41

Physical design 4-1
Physical I/O, cost of 5-12
POSITION function 1-17
Predicate set

definition of 3-4
estimating cost

for a single 5-17
for multiple 5-18

processing 3-5
shown in EXPLAIN plan 3-6, 3-8, 3-49
transforming into 3-5

Predicates
aggregate functions and 1-41, 3-46
ALL 1-38
HP NonStop SQL/MP Query Guide—524488-003
Index-8

Index Q
Predicates (continued)
ANY 1-38
base table 3-14
BETWEEN 1-32
comparison 1-31
connected by OR operators 1-35
controlling generation of
additional 3-20
cost of 5-16
efficient writing of 3-15
eliminating 3-11
evaluating 3-4
executor 3-15
EXISTS 1-37
IN 1-36, 3-7
index 3-13
join 3-18, 3-40
key 3-13
LIKE

description of 1-33
efficiency and 3-24
with CHAR columns 1-34
with columns of varying length 1-34
with TRIM 1-35

missing key columns 3-16
multivalued 1-40, 3-19
NULL 1-39
operators in 1-30
OR operators in 3-22
positioning 3-13
quantified (SOME, ANY, ALL) 1-38
queries with 1-30
selectivity 5-1, 5-4, 5-5, 5-6
simplifying 3-12
SOME 1-38
transformation 3-4

Prefix 3-7
PREPARE command (SQLCI) 6-3
PREPARE statement 3-3

Primary access
description of 4-4
EXPLAIN plan for 6-18

Probe phase during hash join
operation 3-30
Processes, controlling creation of 4-31
Processor assignment 2-5
Programmatic SQL

SELECT statement in 1-10
using cursors in 1-12

Projection of columns 1-3

Q
Quantified predicate (SOME, ANY,
ALL) 1-38
Query

See also Query optimization
cost of 5-11
description of 1-1
executing

by disk process 2-3
by executor 2-3
by file system 2-3

inner join operation 1-53, 1-54
joining tables 1-51
left join operation 1-53, 1-55
multistep 1-65
outer 1-28
parallel processing of 4-13
predicates in 1-30
preparing 3-3
refining 3-3
search conditions in 1-8
statistics on 6-2
subqueries as part of 1-28
UNION operator in 1-61

Query execution plan
choosing 5-1, 5-19
cost 5-11, 6-12
forcing 5-20
HP NonStop SQL/MP Query Guide—524488-003
Index-9

Index R
Query execution plan (continued)
generating 6-9
interpreting 6-12

Query optimization
See also Performance
CONTROL EXECUTOR directive 4-13
CONTROL TABLE directive 4-28
cursor operations and 4-28
formulating queries for 3-1
keeping statistics current for 4-2
specifying appropriate access type
for 4-17
specifying buffered operations for 4-28

Query Rewrite
description of 3-9
for propagating constants 3-10
left joins and 3-9, 6-66, 6-68
using 3-8

R
Range predicate

description of 1-32
MDAM and 3-13
performance implication of 3-13
selectivity 5-3

Read-only access 4-16
Real sequential block buffering (RSBB)

See RSBB
Recompilation 4-3
Record overhead, cost of 5-13
References

correlated 1-29, 3-52
noncorrelated 1-29, 3-53

REGISTERONLY option 4-33
Repeatable access 4-16, 4-17
Restriction of rows 1-4
Retrieving data

See Data, retrieval
ROLLBACK WORK statement 4-2

Rows
computing value as percent of all 1-66
eliminating duplicate 1-6
grouping for aggregate functions 1-7
null-augmented 1-56
ordering 1-5
restricting 1-4
selecting 1-2, 1-10

Row-at-a-time select 1-12
RSBB (Real sequential block buffering)

description of 4-23
how the optimizer chooses 4-24

S
SBB (Sequential block buffering)

EXPLAIN plan and 6-14
real 4-23
virtual 4-24

Search conditions
description of 1-8
predicates in 1-30
WHERE clause and 1-9

Searching databases 1-8
SELECT statement

and cursors 3-60
as used in programs 1-10
cursor operation 1-12
DISTINCT clause 1-6
for retrieving data 1-2
GROUP BY clause 1-7
IN EXCLUSIVE MODE option 4-19
IN SHARE MODE option 4-19
inner query 1-28
INTO clause and host variables 1-11
multiple-row 1-12, 3-60
ORDER BY clause 1-5
outer query 1-28
row-at-a-time 1-12
select list in 3-2
HP NonStop SQL/MP Query Guide—524488-003
Index-10

Index S
SELECT statement (continued)
single-row 1-10, 3-60
WHERE clause 1-9

Selectivity
and EXPLAIN plan 6-15
computing

description of 5-2
when a range is used 5-5
when no range is used 5-4

default values for 5-9
definition of 5-1
index 5-6
predicate 5-3
statistics for estimating 5-2
table 5-7

Self join 3-42
Sequential access 4-28
Sequential block buffering (SBB)

See SBB
Sequential cache, EXPLAIN plan and 6-14
Sequential table scan 4-5
SET STATISTICS ON option 6-4
Shared lock 4-19
SHARED mode, LOCK TABLE
statement 4-19
Similarity checking 4-33
Single-row

disk access 4-21, 4-22
SELECT statement 1-10, 3-60

Slack space 4-23
SOME predicate 1-38
Sort merge join method

description of 3-25
EXPLAIN plan for 6-58

Sort operations
cost of 5-14
DISTINCT clause and 3-55
EXPLAIN plan and 6-13
GROUP BY clause and 3-55
logical 3-55

Sort operations (continued)
ORDER BY clause and 3-55
physical 3-56
removing requests for 3-54
specifying indexes to improve
performance of 3-58
UNION clause and 3-55

Sorts, enhancing performance of 4-32
SQL

dynamic 1-1
embedded

SELECT statement in 1-10
using cursors in 1-12

parallel processing 4-13
programmatic

SELECT statement in 1-10
using cursors in 1-12

static 1-1
SQL executor 2-3
Stable access 4-17
Statistics

DISPLAY STATISTICS command 6-3
effect of skewed data on 4-9, 5-2
SET STATISTICS ON option 6-4
UPDATE STATISTICS statement 4-2
updating for tables and columns 4-2
using for better query plan 4-2

String functions 1-15
Strings

determining the length of 1-18
extracting parts of 1-15
removing leading characters from 1-19
removing trailing characters from 1-19
searching for patterns within 1-17
searching without regard for case 1-18

Subquery
compared to join 3-41
correlated 1-29, 5-14
cost of 5-14
description of 1-28
HP NonStop SQL/MP Query Guide—524488-003
Index-11

Index T
Subquery (continued)
evaluating 3-51
noncorrelated 1-29, 3-53
nonquantified 1-29
quantified 1-29

SUBSTRING function
data types for results 1-16
empty string results 1-17
errors 1-17
EXPLAIN plan for 6-39
in a query 1-16
null results 1-17
to extract part of a string 1-15

SUM function 1-41

T
Tables

controlling opening of 4-29
cost of accessing 5-12
full scans of, avoiding 3-54, 4-4
inner 3-25
joining 1-51
outer 3-25
scanning 4-4
scans and EXPLAIN 6-13
selectivity of 5-1, 5-7

TIME data type 1-21
Timeout of processes 4-31
TIMESTAMP data type 1-21
TRIM function 1-19

U
UEC (unique entry count) 5-2
Unassigned ESPs, processor assignment
and 2-5
UNION ALL, using to avoid sorts 1-61
UNION clause

description of 1-61
GROUP BY clause and 1-64

UNION clause (continued)
HAVING clause and 1-64
ORDER BY clause and 1-63
using 3-54

Unique entry count (UEC) 5-2
UPDATE statement, EXPLAIN plan
for 6-77
UPDATE STATISTICS statement 4-2
UPS (User Process Sort) 3-56
UPSHIFT function 1-18
User process sort (UPS) 3-56

V
Views, controlling opening of 4-29
Virtual sequential block buffering (VSBB)

See VSBB
VLM option for FastSort 4-32
VSBB (Virtual sequential block buffering)

description of 4-21, 4-24
how the optimizer chooses 4-21

W
WHERE clause

in join operations 1-59, 1-60
of SELECT statement 1-9
search conditions and 1-8

Wild-card characters 1-34
HP NonStop SQL/MP Query Guide—524488-003
Index-12

	What’s New in This Manual
	About This Manual
	1 Retrieving Data: How to Write Queries
	Using the SELECT Statement
	Selecting Columns
	Selecting Rows
	Organizing Results
	Specifying Search Conditions
	Using the SELECT Statement in Programs

	Using Null Values
	Using String Functions
	Extracting Part of a String
	Searching for a String Within a String
	Searching for a String Without Regard for its Case
	Determining the Length of a String
	Removing Leading or Trailing Characters From a String

	Using the Concatenation Operator
	Using Date-Time Columns
	Accessing Date-Time Values
	Specifying Date-Time Values in Programs

	Defining Subqueries
	Correlated Subqueries
	Noncorrelated Subqueries

	Defining Predicates
	Comparison Predicate
	BETWEEN Predicate
	LIKE Predicate
	Predicates Connected by OR Operators
	IN Predicate
	EXISTS Predicate
	Quantified Predicates
	IS NULL Predicate
	Multivalued Comparison Predicate
	Using Multivalued Comparison Predicates in Context-Free Servers
	Aggregate Functions in Predicates

	Using CASE Expressions
	Decoding Values
	Evaluating Multiple Conditions
	Computing Aggregates Based on Specific Conditions
	Finding the Highest Value in a Row
	Converting Long, Narrow Tables Into Short, Wide Ones
	Ignoring the Largest and Smallest Values in a Set

	Combining Data From More Than One Table
	Types of Join Queries
	Restrictions on Join Queries
	Using Views With Joins
	The ON Clause and the WHERE Clause in Join Queries

	Using the UNION Operator
	ORDER BY Clause With UNION Operator
	GROUP BY and HAVING Clauses With UNION Operator
	Using Collations With the UNION Operator

	Developing Interactive Multistep Queries
	Multilevel Group Aggregates
	Computing Row Value as a Percent of All Row Values

	2 The Optimizer
	SQL Components and the Optimizer
	SQL Executor
	File System
	Disk Processes

	How the Optimizer Chooses an Execution Plan
	Processor Assignment by the SQL/MP Optimizer and Executor for Executor Server Processes (ESPs)

	3 Improving Query Performance Through Query Design
	Selecting Columns for Faster Data Access
	Preparing Queries
	How the Optimizer Processes Predicates
	Classification of Predicates
	Transformation of Predicates
	Evaluation of Predicates

	Writing Efficient Predicates
	Positioning With Key Predicates
	Specifying Join Predicates
	Specifying Multivalued Predicates
	Controlling the Expansion of Predicates
	Using OR Operators in Predicates
	Using LIKE Predicates

	How the Optimizer Processes Join Operations
	Nested Join
	Sort Merge Join
	Key-Sequenced Merge Join
	Hash Join
	Determining a Join Strategy

	Writing Efficient Joins
	Using Indexes
	Eliminating Implicit Joins
	Adding Join Predicates
	Using Joins Instead of Subqueries
	Specifying a Join Method
	Specifying a Join Sequence

	How the Optimizer Processes Aggregates and Group-By Operations
	MIN and MAX Optimization
	Evaluation by the Disk Process
	Evaluation by the Executor Component
	Hashed Aggregation and Grouping
	Sorted GROUP BY Operation

	Optimizing Subqueries
	Correlated Subquery
	Noncorrelated Subquery

	Avoiding Full Table Scans
	Minimizing Sort Costs for Ordering and Grouping Operations
	Sort Operations
	Optimizing Combinations of Clauses
	Using Indexes

	Writing Efficient Programmatic Statements
	Single-Row and Multiple-Row SELECT Statements
	Multiple-Row (Cursor) SELECT Statements
	Update and Insert Operations

	Decision Support Considerations
	Online Transaction Processing Considerations
	Batch Considerations

	4 Improving Query Performance With Environmental Options
	Keeping Statistics Current
	Optimizing the Access Path
	Primary Access
	Alternate-Index Access
	Using the CONTROL QUERY Directive
	Selecting an Access Path When an Index Is Not Available
	Understanding Unexpected Access Paths
	Specifying an Access Path

	Requesting Parallel Processing
	Using the CONTROL EXECUTOR Directive
	How Parallel Processing Is Implemented
	Requesting Parallel Operations on Partitioned Data

	Specifying Access Option and Lock Characteristics
	Access Option
	Lock Mode
	Lock Granularity
	Waiting For Locks
	Performance Implications

	Reducing Messages With Buffering Options
	Types of Buffering
	Single-Row Access
	Real Sequential Block Buffering (RSBB)
	Virtual Sequential Block Buffering (VSBB)
	Comparison of Buffering Types
	Requesting Buffering
	Optimizing Sequential Access With Block Buffering
	Effects of Cursor Operations on Performance

	Controlling the Opening of Tables, Views, and Indexes
	Controlling the Number of Key Columns Used by MDAM
	Controlling MDAM’s Use of DENSE or SPARSE Algorithms
	Controlling the Creation of NonStop�SQL/MP Processes
	Enhancing Sort Performance
	Understanding Concurrency
	Minimizing Overhead of Query Programs

	5 Selectivity and Cost Estimates
	How the Optimizer Estimates Selectivity
	Computing Selectivity
	Predicate Selectivity
	Index Selectivity
	Table Selectivity
	Example Combining Predicate, Index, and Table Selectivity
	Use of Default Selectivity Values
	Join Selectivity
	Grouping Selectivity

	Assigning Cost to a Query
	Cost of Accessing Tables
	Cost of Physical I/Os
	Cost of Record Overhead
	Cost of Messages
	Cost of Data Transfer
	Cost of Subqueries
	Cost of Sorts
	Cost of Join Operations
	The Effects of Indexes and Predicates on Costs
	The Effect of the MultiDimensional Access Method (MDAM) on Costs

	Evaluating Cost Estimates
	How the Optimizer Chooses an Execution Plan
	Forcing Execution Plans

	6 Analyzing Query Performance
	Guidelines for Tuning Queries
	Preparing Your Queries
	Using DISPLAY STATISTICS
	Simple Query Example
	Simple Query With ORDER BY Example

	Using Measure
	Process Execution
	Statement Execution
	Evaluating Measure Data

	Using EXPLAIN
	Generating an EXPLAIN Plan
	Interpreting an EXPLAIN Plan
	Reviewing Sample EXPLAIN Plans

	EXPLAIN Plan for Simple SELECT
	EXPLAIN Plan for Primary Access
	EXPLAIN Plan for Index-Only Access
	EXPLAIN Plans for Bounded Predicates
	Query With Lower Bound
	Query With Lower and Upper Bound

	EXPLAIN Plan for Key Predicates
	EXPLAIN Plan for DISTINCT
	EXPLAIN Plan for ORDER�BY
	EXPLAIN Plans for GROUP BY
	SELECT With GROUP BY Using a Serial Plan
	SELECT With GROUP BY Using a Parallel Plan

	EXPLAIN Plans for Subqueries
	Noncorrelated Subquery
	Correlated Subquery

	EXPLAIN Plans for CASE
	CASE With Multiple Conditions
	CASE With Aggregates
	CASE for Finding the Highest Value in a Row
	CASE for Converting Long, Narrow Tables Into Short, Wide Ones
	CASE for Ignoring the Largest and Smallest Values in a Set

	EXPLAIN Plans for String Functions
	SUBSTRING
	TRIM and CHAR_LENGTH

	EXPLAIN Plans for MDAM
	MDAM With OR and Equality Predicate on Second Key Column
	MDAM with Missing First Key Column
	MDAM With IN List on Key Column
	MDAM With Multiple Predicate Sets, LIKE, and Missing Key Column

	EXPLAIN Plan for Determining the Cost of Multiple Predicate Sets
	EXPLAIN Plan for Selectivity for Range Predicates
	EXPLAIN Plans for Join Queries
	Parallel Execution of Hash Join
	Nested Inner Join
	Cross Product Join
	Parallel Execution of Nested Inner Join
	Parallel Execution of Forced Merged Inner Join
	Key-Sequenced Merge Join
	Key-Sequenced Merge Join With Executor Aggregates
	Left Join Not Transformed Into an Inner Join
	Left Join Transformed Into an Inner Join

	EXPLAIN Plan for UNION Operation
	EXPLAIN Plan for MAX Optimization
	EXPLAIN Plan for Cursor UPDATE
	EXPLAIN Plan for Cursor DELETE
	EXPLAIN Plan for INSERT
	EXPLAIN Plan for INSERT-SELECT
	EXPLAIN Plan for UPDATE
	EXPLAIN Plan With Date-Time Values
	HOUR Date-Time Values
	DAY Date-Time Values

	Comparing Cost: A Scenario
	First Formulation
	Second Formulation

	Index

